

High thoughput study of biofilm and virulence in Listeria monocytogenes using innovative approaches Bo-Hyung Lee

▶ To cite this version:

Bo-Hyung Lee. High thoughput study of biofilm and virulence in Listeria monocytogenes using innovative approaches. Genomics [q-bio.GN]. Université Clermont Auvergne [2017-2020], 2019. English. NNT: 2019CLFAC017. tel-02918077

HAL Id: tel-02918077 https://theses.hal.science/tel-02918077

Submitted on 20 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. UNIVERSITÉ CLERMONT-AUVERGNE CLERMONT-FERRAND N° D.U.

Ecole Doctorale Des Sciences de la Vie, Santé, Agronomie et Environnement N° d'ordre :

Thèse

Présentée à l'Université Clermont-Auvergne pour l'obtention du grade de

DOCTEUR D'UNIVERSITÉ

Spécialité

Génétique, Physiologie, Pathologie, Nutrition, Microbiologie Santé et Innovation

BO-HYUNG LEE

High throughput study of biofilm and virulence in *Listeria monocytogenes* using innovative approaches

Soutenue publiquement le 28 mai 2019 devant le jury composé de :

Présidente	Christiane Forestier, Professeure – Université Clermont Auvergne
Rapporteurs	Graziella Bourdin-Midelet, Chargée de Projet – ANSES Boulogne sur Mer Jean Guzzo, Professeur – Université de Bourgogne
Membres	Stéphanie Badel-Berchoux, Responsable Laboratoire – BioFilm Control Pascal Piveteau, Maître de Conférence – Université de Bourgogne
Directeur de thèse	Michel Hébraud, Directeur de Recherche – INRA de Theix

Table of Contents

General introduction	1
Chapter I Objectives of the thesis	4
Chapter II Bibliography	7
I Listeria monocytogenes	7
I.1 General characteristics	7
I.2 Distribution	9
I.3 Taxonomy	10
I.3.1 Serotyping	11
I.3.2 Lineages	12
I.3.3 PFGE	14
I.3.4 MLST and MVLST	15
I.3.5 WGS related methods	16
I.4 Genetic heterogeneity	18
I.4.1 Phenotype-genotype heterogeneity	
I.5 pathogenicity	21
I.5.1 Listeriosis	21
I.5.1.1 Phylogenetic distribution	21
I.5.1.2 Incidence and outbreaks	22
I.5.1.3 Clinical features and host immune response	
I.5.2 Host barrier	
I.5.3 Intracellular lifecycle	
I.5.4 Virulence factors and their regulation	
I.5.4.1 PrfA, master regulator of virulence	
I.5.4.2 σB regulation	
I.5.4.3 Other protein regulators	
I.5.4.3.1 VirR/S I.5.4.3.2 CodY	
I.5.4.3.3 MogR/GmaR	-
I.5.4.4 RNA-mediated regulators	
I.5.5 Virulence assay	
I.5.5.1 In vivo assay	
I.5.5.1.1 Mammalian model	
I.5.5.1.2 Galleria mellonella model	38

I.5.5.2 In vitro assay-cell culture models	39
I.5.5.3 Phenotypic tests	41
I.6 Listeria monocytogenes in foods	42
I.7 Foods related stress response determinants	44
I.7.1 Osmotic Shock	44
I.7.2 Cold shock	45
I.7.3 Acid shock	47
I.7.4 Disinfectants and heavy metal	48
I.8 Regulation and surveillance of <i>L. monocytogenes</i>	50
II Bacterial biofilm	53
II.1 General features	53
II.1.1 Formation steps	54
II.1.2 Matrix	
II.1.3 Localization	
II.1.3.1 Natural environment	58
II.1.3.2 Medicine domain	
II.1.3.3 Food industry	
II.1.3.4 Others	
II.2 Regulation of biofilm formation	
II.2.1 Cyclic-di-GMP	
II.2.2 RpoS Activity	
II.2.3 Others	
II.3 Biofilm development and stress response	68
II.4 Listeria monocytogenes biofilms	70
II.4.1 Specific regulation of <i>L. monocytogenes</i> biofilm formation	
II.4.2 L. monocytogenes biofilms and stress factors	71
II.4.3 Persistence and biofilms of <i>L. monocytogenes</i>	72
II.5 Some methods for biofilm study	74
II.5.1 Microtiter plate assay	74
II.5.2 Microscopy	
II.5.3 Biofilm Ring Test	77
III References	80
Chapter III Increased adhesion of Listeria monocytogenes strains to	abiotic
surfaces under cold stress	
I Preface	126
II Article	

Chapter IV	Biofilm formation of Listeria monocytogenes strains und	er food
processing e	environments and pan-genome-wide association study	141
I Preface		141
II Article.		143

Chapter V Exploring Listeria monocytogenes transcriptomes in correlation with divergence of lineages and virulence measured in Galleria mellonella 183

I Preface .		
II Article		
Chapter VI	Conclusion and perspectives	
Chapter VII	Supplementary materials	

Chapter II

Figure 1. Phylogeny of the four phylogenetic lineages (Moura et al., 2016).

Figure 2. Trend in reported confirmed human cases of listeriosis in the EU/EEA, by month, 2008–2017 (EFSA and ECDC, 2018).

Figure 3. Overview of *Listeria monocytogenes* infection at cellular level (Radoshevich and Cossart, 2018).

Figure 4. The PrfA regulon and its multiple control mechanisms (Lebreton and Cossart, 2016).

Figure 5. Genetic organization of the *virR/virS* locus (Mandin et al., 2005).

Figure 6. Model for the temperature-dependent regulation of GmaR expression and flagellar motility gene transcription in *L. monocytogenes* (Kamp and Higgins, 2011).

Figure 7. Model for the B12-dependent regulation of *pocR* via AspocR (Cossart and Lebreton, 2014).

Figure 8. Physiological differences among laboratory animal species as well as humans and their importance in *L. monocytogenes* infection (Hoelzer et al., 2012).

Figure 9. Overview of *L. monocytogenes* testing along the food chain according to the sampling stage, the sampler and the objective of the sampling (EFSA and ECDC, 2018).

Figure 10. The five stages of biofilm development (Unosson, 2015).

Figure 11. General scheme of production, degradation, mechanism of action, and physiological target processes of the second messenger c-di-GMP (Hengge et al., 2016).

Figure 12. Model for the interplay between HapR and VpsT in the regulation of RpoS expression (Wang et al., 2014).

Figure 13. Micrographs of *L. monocytogenes* biofilms stained with crystal violet and observed by light optical microscopy (unpublished data).

Figure 14. A representative of motile *L. monocytogenes* strains forming biofilms with a honeycomb morphotype (Guilbaud et al., 2015).

Figure 15. The BRT workflow (The BRT technology, n.d.).

Chapter III

Figure 1. Experimental scheme. Time frame for incubation at 37°C or 4°C is shown, with arrows indicating cells in stationary phase used for experiments.

Figure 2. Increased adherence of cold-stressed cells compared to cold-adapted cells, measured by BRT.

Figure 3. Cold-stressed cells form more biomass than cold-adapted cells (A), while cold-adapted cells exceed total cell densities (B) as assessed using MPA.

Figure 4. Solvent affinities (%) of all 22 *L. monocytogenes* strains in stationary phase at 37°C and 4°C.

Figure 5. Correlation ($r^2 = 0.3055$, p < 0.01) between affinity for ethyl acetate and quantification of adherent cells, measured by CV staining of cold-adapted cells.

Figure 6. Comparison of L. monocytogenes biofilm formation under different conditions.

Figure 7. Observation of L. monocytogenes adhesion patterns and cellular morphology.

Supplementary Figure 1. Recovery of cold shock-induced adherence is demonstrated by BRT.

Supplementary Figure 2. Comparison of total biomass measured by CV staining.

Supplementary Figure 3. Affinity (%) of 22 *L. monocytogenes* strains to solvents in stationary phase at 37°C (A) and 4°C (B).

Chapter IV

Figure 1. Effect of various growth conditions on biofilm formation.

Figure 2. Comparative analysis of biofilm formation among lineages and serogroups.

Figure 3. Inter- and intra-genotype variation in biofilm formation.

Figure 4. Comparative analysis of biofilm formation among persistent (group 1), prevalent (group 2), and rare (group 3) isolates.

Figure 5. Enhanced adhesion of L. monocytogenes upon nutrient stress measured by BRT.

Figure 6. Phylogenetic tree of 57 L. monocytogenes isolates with biofilm phenotype.

Figure 7. Genes identified by pan-GWAS and Gene Ontology (GO) analysis under different growth conditions.

Figure 8. Functional enrichment analysis.

Supplementary Figure 1. Intra-genotype comparison of biofilm formation.

Chapter V

Figure 1. Varying virulence levels of 91 L. monocytogenes isolates in G. mellonella.

Figure 2. Phylogenetic tree reconstructed on the basis of whole-genome sequences for the 33 *L*. *monocytogenes* isolates selected for transcriptome profiling.

Figure 3. High variability in the original transcriptome data.

Figure 4. Principal component axis 1 (PC1) distinguishes variations arising from changes in growth stage.

Figure 5. Principal components axes (PCs) explicate relationships between transcriptomes and variables.

Figure 6. Analysis of the refined transcriptome data set created by filtering out the variations captured by PC1 and PC2.

Figure 7. Impact of removing PC1 and PC2 on the correlation analysis between transcriptome profiles and isolate characteristics.

Figure 8. Highest correlation between transcript levels and covariates.

Figure 9. Functional classification of transcripts whose expression are correlated to division of lineages and Maury's classification.

Supplementary Figure 1. Comparison of transcript levels of core PrfA virulon.

Supplementary Figure 2. Comparison of transcript pattern of genes between lineage I and II to the data from Severino et al. (2007).

Chapter II

Table 1. Compositions of somatic (O) and flagellar (H) antigens in *Listeria* serotypes (Based on Liu, 2006; Seeliger and Jones, 1986).

Table 2. The history of *L. monocytogenes* lineages: overview of different designations that have been used (Orsi et al., 2011).

Table 3. The major outbreaks with more than 50 reported cases.

Table 4. Food safety criteria (modified from European Commission, 2005).

Chapter III

Table 1. L. monocytogenes strains used in this study.

Table 2. Viable cell counts of 6 strains grown at stationary phase at two temperatures.

Chapter IV

Table 1. L. monocytogenes strains used in this study (Henri et al., 2016).

Table 2. Impact of growth condition on biofilm production quantified by MPA.

Supplementary Table 1. List of genes associated with biofilm phenotype in BHI media at 37° C after pan-GWAS (p < 0.05).

Supplementary Table 2. List of genes associated with biofilm production in dBHI media at 37° C after pan-GWAS (p < 0.05).

Supplementary Table 3. List of genes associated with biofilm production in BHI media supplemented with 0.85% NaCl at 37°C after pan-GWAS (p < 0.05).

Supplementary Table 4. List of genes associated with biofilm production in dBHI media supplemented with 0.85% NaCl at 37°C after pan-GWAS (p < 0.05).

Supplementary Table 5. List of genes associated with biofilm production in BHI media at 10° C after pan-GWAS (p < 0.05).

Supplementary Table 6. List of genes associated with biofilm production in dBHI media at 10° C after pan-GWAS (p < 0.05).

Supplementary Table 7. List of genes associated with biofilm production in BHI media supplemented with 0.85% NaCl at 10°C after pan-GWAS (p < 0.05).

Supplementary Table 8. List of genes associated with biofilm production in dBHI media supplemented with 0.85% NaCl at 10°C after pan-GWAS (p < 0.05).

Chapter V

Table 1. Characteristics of *L. monocytogenes* strains used in the study.

Table 2. Comparison of number of genes selected by Spearman correlation analysis with different variates (lineage, Maury's classification of genotypes, and *in vivo* virulence).

Table 3. List of genes whose transcript levels are correlated with virulence measured in *G. mellonella*.

Supplementary Table 1. List of genes in 12 clusters and corresponding transcription factors.

Supplementary Table 2. List of genes whose transcript levels are correlated with phylogenetic divergence (lineage II versus I).

Supplementary Table 3. List of genes whose transcript levels are correlated with genotype classification with regard to virulence (hyper- versus hypovirulence).

Supplementary Table 4. Comparison of q-values in Spearman's rank correlation analyses between original and refined datasets.

General introduction

Listeria monocytogenes is ubiquitous in nature. The bacteria reveal high plasticity in the lifestyle from an extracellular free-living saprophyte or sessile bacteria embedded in a biofilm to an intracellular parasite causing listeriosis (Freitag et al., 2009). Soil is believed to be the natural reservoir, however, the bacteria is repeatedly discovered from a broad range of environments (Sauders et al., 2012). Despite the lack of sporulation, it is widely distributed as a result of its high adaptability and ability to survive adverse environments. The bacterium exhibits high tolerance and resistance to stressful physicochemical conditions. Even though it has mesophilic characteristic having an optimal growth temperature around 37°C (Jones and D'Orazio, 2013), it has a psychrotrophic nature demonstrated by a slow growth at refrigerating temperatures (Junttila et al., 2008; Lee et al., 2017), which leads to qualifying this species as psychrotolerant. It effectively resists osmotic stress (Shabala et al., 2008) as well as low water activity (Nolan et al., 1992). The bacteria also withstand acidic and alkali environments (Liu et al., 2005). Importantly, exposure to a stress factor provides cross-adaptation to subsequent exposure to other stresses which may function as a protective mechanism of the bacteria in fluctuating environmental conditions (Begley et al., 2002; Bergholz et al., 2012).

L. monocytogenes is the etiologic agent of listeriosis. As a foodborne pathogen, biofilm formation by *L. monocytogenes* in food premises is a growing concern (Colagiorgi et al., 2017). Bacterial cells growing in biofilms exert higher resistance to stress factors that the bacteria may encounter during food processing such as sanitizing compounds (Fagerlund et al., 2017), cold temperature, and desiccation stresses (Zoz et al., 2017). Therefore, they have higher chances of transferring to the final food products. With modern diet habits relying greatly on ready-to-eat foods and the increasing proportion of elderly population, the risk of listeriosis is increasing (Ricci et al., 2018).

Despite the wide distribution of *L. monocytogenes* in environments, incidence of listeriosis is considerably lower than other foodborne pathogens (EFSA and ECDC, 2017, 2018). The host risk factors play an important role in the development of the infection (Buchanan et al., 2017). Listeriosis can lead to severe consequences in pregnant women resulting in high rate of abortion or stillbirth caused by vertical transmission from the maternal circulation (Lamont et al., 2011). In non-pregnant adult, listeriosis is realized in two forms. Invasive listeriosis in immunocompromised individuals manifests by severe gastroenteritis and subsequent infection in bloodstream and the central nervous system causing meningitis. It results in high

fatality rate of more than 20% (EFSA and ECDC, 2017; Mylonakis et al., 1998). Non-invasive listeriosis often occurs in healthy individuals with symptoms of mild gastroenteritis, diarrhea and fever and most infection pass by unrecognized. However, certain listeriosis cases involve serious infections in immunocompetent individuals caused by *L. monocytogenes* strains of high virulence. Virulence potential varies between strains and serotype 4b in lineage I strains, compared to lineage II strains which show higher occurrence in environmental isolates, have been associated with the major outbreaks (Buchrieser et al., 1993; Farber and Peterkin, 1991; Jacquet et al., 2004). In the last decade, population genomics disclosed a clonal structure of the bacteria (Ragon et al., 2008). Analysing the epidemic data in the clonal frame revealed that hypervirulent genotypes were mainly composed of serotype 4b (Maury et al., 2016; Yin et al., 2015).

Heterogeneity in phenotypes and genetic composition prevails in the *L. monocytogenes* population. Advances in sequencing technologies and subsequent accumulation of genomic data allowed interspecies as well as intraspecies comparative genomic analyses which led to discoveries of genetic determinants for certain phenotypes, such as virulence (den Bakker et al., 2010a; Fox et al., 2016; Glaser et al., 2001; Hilliard et al., 2018; Rychli et al., 2017). Moreover, transcriptomic studies empowered by increased sequencing depth further unveiled the intricate transcriptional regulatory network (Soni et al., 2011; Vivant et al., 2017; Wurtzel et al., 2012). As a saprophyte that transforms to an intracellular parasite by opportunistic infections, cross-talk among numerous transcription factors such as PrfA and oB (Guldimann et al., 2017; Ollinger et al., 2009b) as well as various non-coding RNAs (Izar et al., 2011; Mellin and Cossart, 2012; Peng et al., 2016) plays important roles in L. monocytogenes physiology. Therefore, the variations in genetic contents and transcriptional remodelling largely determine the phenotypic response to environmental signals. Since the first discovery of *L. monocytogenes* in 1924 (Murray et al., 1926), a large amount of studies contributed to deciphering its biology through implication of infection biology (Cossart and Toledo-Arana, 2008; Rolhion and Cossart, 2017). Furthermore, with the fundamental progress in molecular biology techniques and related data processing tools in genomics, transcriptomics and proteomics, we anticipate to unveil the complete picture of L. monocytogenes pathogenesis and physiology.

Chapter I Objectives of the thesis

The current doctoral study was designed as a part of a European research project "List_MAPS" funded by Union Horizon2020 program under the Marie-Skłodowska Curie actions. The project engaged 11 early stage researchers in nine beneficiaries and two partners from both private and public domains in five European countries (France, Germany, Ireland, The Netherlands and Denmark). With divergent expertise of the participants, List_MAPS focused on exploring the dynamics of *L. monocytogenes* from different aspects including soil as natural habitat, biofilm formation in food processing environments, and *in vivo* infection model. Also, as a multidisciplinary team, List_MAPS aimed to integrate results obtained from high throughput epigenetics, transcriptome profiling, proteomics, microbiology and mathematics.

Under this scope, the research work for this thesis was carried out in two private companies, BioFilm Control in France and GenXPro in Germany. BioFilm Control is the inventor of a biofilm detection technique called Biofilm Ring Test (BRT) which discriminates microorganisms by comparing efficiency in the first step of biofilm formation, adhesion. GenXPro has expertise in sequencing library preparation for challenging samples such as host/pathogen mixed samples or microorganisms in the rhizosphere. Accordingly, the thesis was designed to take advantage of the innovative tools, BRT and RNA sequencing (RNA-seq). The current PhD thesis investigated the two most prominent phenotypes, virulence and biofilm formation, using large sets of *L. monocytogenes* strains to represent interspecies heterogeneity, and further explored their associations at genomic and transcriptomic levels.

The objectives of the present doctoral thesis are as follows:

- The first study investigated the phenotype change of *L. monocytogenes* under cold-shock (4°C), one of the most prominent stress factors for the bacteria in food chains. A set of 22 strains of different origins and serogroups were compared for adhesion level, using BRT, and total biomass between cold-stressed and cold-adapted cells. Cell surface physicochemical property was assessed searching for its association with bacterial phenotypes (Chapter III).

- In the second study, we evaluated the intraspecific diversity in biofilm formation and its association with genetic profiles (genes presence/absence properties) among food-related isolates. To achieve a comprehensive view of adhesion and biofilm production in food processing environment, different combinations of growth conditions were applied as follows: optimal (37°C) *versus* cold (10°C) temperatures; nutrient rich (BHI broth) *versus* nutrient poor (10-fold diluted BHI broth) conditions; and without *versus* with supplementary NaCl at 0.85%. Data were analyzed in multiple aspects as follows: lineages, serogroups, genotypes defined by MLST, and frequency of the genotypes described as persistent, prevalent and rare groups. The genetic compositions in relation to the observed phenotypes were analyzed using pangenome wide association study (Chapter IV).

- The last study focused on disclosing the heterogeneity in transcriptome profiles of *L. monocytogenes* strains and exploring it with respect to phylogenetic divergence encompassing virulence-associated genotypes as well as *in vivo* virulence. In order to effectively compare the virulence potential, *G. mellonella* survival assay was performed on 91 isolates. A set of 33 strains represented by lineages I *versus* II, hyper- *versus* hypovirulent genotypes, as well as varying degree of *in vivo* virulence potential was subjected to high-throughput RNA-seq analysis (Chapter V).

Chapter II Bibliography

I Listeria monocytogenes

I.1 General characteristics

The genus *Listeria* belongs to Firmicutes and consists of Gram-positive bacteria with low G+C content closely related to *Bacillus* and *Staphylococcus* (den Bakker et al., 2010a). *Listeria* spp. are facultative anaerobic, non-spore forming, catalase positive, and oxidase negative bacteria (Orsi and Wiedmann, 2016). The bacteria are rod shaped, 0.4 μ m in width and 0.5-2 μ m in length. *Listeria* species are ubiquitous in nature and the bacteria demonstrate a plant saprophyte lifestyle (Vivant et al., 2013). As an opportunistic pathogen, it demonstrates an intracellular lifestyle in host cells which results in fatal infection in susceptible individuals (Freitag et al., 2009). Heterogeneity in the virulence of *L. monocytogenes* has been demonstrated by epidemiological data and confirmed by *in vivo* and *in vitro* studies (Brosch et al., 1993; Werbrouck et al., 2008).

One of the most eminent features of the *L. monocytogenes* is the temperature-dependent motility. The bacteria express peritrichous flagella which confer motility at ambient temperatures, 20-25°C. However, the flagellar motility genes, including *flaA* encoding the structural protein flagellin, are transcriptionally down-regulated at around 37°C, a temperature that *L. monocytogenes* is exposed to inside animal hosts, including humans (Gründling et al., 2004; Peel et al., 1988). Thus, this temperature-dependent expression of flagella is proposed as an adaptive mechanism to avoid from recognition by host and prevent mobilization of host innate immune responses (Dons et al., 2004).

L. monocytogenes can tolerate extreme growth conditions. It revealed growth at 13% NaCl and survival at 40% NaCl (Liu et al., 2005; Shabala et al., 2008). It also resists highly acidic and alkali environment. A report showed that this species recovered after exposure to pH 12 or pH 3 (Liu et al., 2005). *L. monocytogenes* can easily grow between 3 and 45°C and as a psychrotolerant it adapts to grow at low temperatures with minimal temperature around -2°C (Augustin et al., 2005; Junttila et al., 2008). It can survive in dry conditions and has been reported to survive well in peanut butter spread at a_w 0.33 during a 24-week period at 20°C

(Kenney and Beuchat, 2004). *L. monocytogenes* is facultative anaerobes and it survives oxygen restriction for extended period (Buchanan and Klawitter, 1990).

To control bacterial growth in foods, temperature, pH, NaCl, and oxygen level are often adjusted. However, the physiological properties of *L. monocytogenes* such as growth at low temperatures and tolerance to low oxygen content and high NaCl concentration make the control of this pathogen difficult to food industries. Overall, *Listeria* is a highly adaptable species that survives under extreme conditions such as freezing, high salinity, and dehydration, however, it can easily be killed by cooking at temperatures higher than 65°C (Bunning et al., 1988; Ceylan et al., 2017; Huang, 2004).

I.2 Distribution

Genus listeria is wide spread in nature. A study performed in Austria documented a high occurrence of the bacteria genus in ecosystems (Linke et al., 2014). They reported that *Listeria* was present in 30% of 467 soil samples and 26% of 68 water samples from distinct geological and ecological sites. Furthermore, they found that the most dominant species in soil and water samples were *L. seeligeri*, *L. innocua*, and *L. Ivanovii*. Similar study was conducted on 1,805 soil, water, and other environmental samples from New York state, United states (Sauders et al., 2012). The result revealed similar prevalence of *Listeria spp*. between natural (23.4%) and urban (22.3%) environmental samples. Interestingly, *L. innocua* and *L. monocytogenes* were significantly associated with urban environments.

During 1970's, soil has been believed to natural reservoir for L. monocytogenes (Welshimer and Donker-Voet, 1971). Soil is demonstrated to be the environmental niche for the transmission of this bacterium to plants and animals (Vivant et al., 2013). However, studies revealed that other sources such as animal manure, sewage, silage (fermented plant material) and vegetation (Garrec et al., 2003; Welshimer, 1968) as well as water sources such as rivers and ponds also harbour *L. monocytogenes* (Linke et al., 2014). Recent report from European Food Safety Authority (EFSA) showed that the highest level of non-compliance of RTE foods with the L. monocytogenes microbiological criteria was observed in the food category 'fish and fishery products' at both the processing and retail stages suggesting that sea water and fish could be one of the main reservoirs for L. monocytogenes (EFSA and ECDC, 2018). L. monocytogenes has also been isolated from a wide range of animal hosts. It covers a broad animal species from wild and domestic mammals specifically ruminants and avian species, including domestic and game fowl (Rothrock et al., 2017) to sea animals including crustaceans, fish, and oysters (Motes, 1991), as well as arthropods such as fruit flies (Mansfield et al., 2004). In addition, studies suggest that L. monocytogenes may be carried in the intestinal tracts of asymptomatic human population (Grif et al., 2003).

I.3 Taxonomy

Taxonomically, the genus *Listeria* contains 20species: *L. aquatica, L. booriae, L. cornellensis, L. costaricensis, L. fleischmannii, L. floridensis, L. goaensis, L. grandensis, L. grayi, L. innocua, L. ivanovii, L. marthii, L. monocytogenes, L. newyorkensis, L. riparia, L. rocourtiae, L. seeligeri, L. thailandensis, <i>L. weihenstephanensis,* and *L. welshimeri* (Leclercq et al., 2019; Orsi and Wiedmann, 2016; Weller et al., 2015). Among them, 2 species, *L. monocytogenes* and *L. ivanovii* are known to be intracellular bacterial pathogens. *L. monocytogenes* was first discovered in 1924 as the etiological agent for septicaemia disease in rabbits and guinea pigs (Murray et al., 1926). *L. monocytogenes* can cause severe infections in humans called listeriosis, especially in immunocompromised host, and a variety of other vertebrates, including birds and mammals. *L. ivanovii* is predominantly an animal pathogen which exclusively infects ruminants, especially sheep (Vázquez-Boland et al., 2010), however, *L. ivanovii* have occasionally been associated with human illness (Guillet et al., 2010; Snapir et al., 2006). Although considered avirulent, occasional human infections caused by *L. welshimeri*, *L. seeligeri*, and *L. innocua* have been reported (Andre and Genicot, 1987; Perrin et al., 2003; Rocourt et al., 1986).

Because of the epidemiological importance of human listeriosis, numerous methods have been developed and employed to discriminate between isolates (Jadhav et al., 2012; Wiedmann, 2002). Bacterial subtyping methods serve 2 major tasks: to improve detection and tracking of human listeriosis outbreaks and to track sources of *L. monocytogenes* contamination. Moreover, the use of subtyping methods allows us better understanding of the epidemiology, population genetics, and ecology of *L. monocytogenes*.

Conventionally, subtyping methods were based on phenotypic characteristics such as serotyping and phage typing. However, new subtyping technologies has been constantly introduced and tested to increase the resolution (discriminatory power) and reproducibility and to reduce processing time and preferably, cost as well. The techniques can be grouped as follows: (i) methods based on biochemical constituents of isolates such as multilocus enzyme electrophoresis and spectroscopy; (ii) molecular subtyping techniques such as restriction fragment length polymorphisms, ribotyping, pulsed-field gel electrophoresis (PFGE), polymerase chain reaction (PCR), and random amplified polymorphic DNA; (iii) methods based on polymorphisms that exist in specific DNA nucleotide sequences of isolates such as multilocus sequence typing (MLST), multilocus variable-number tandem-repeat analysis and whole genome sequencing (WGS) (Nyarko and Donnelly, 2015).

The subtyping techniques are advancing to be faster, more standardisable, reproducible, and cost effective with more discriminatory power. We will discuss about serotyping as the most generally accepted method, PFGE and MLST as standardized methods used worldwide

and Whole genome sequencing (WGS) as a prospective solution in subtyping *L. monocytogenes* isolates in the following chapters.

I.3.1 Serotyping

The most widely applied conventional subtyping method is serotyping. The method utilizes 15 subtypes of somatic (O) and 4 subtypes of flagellar (H) antigens that are present as surface proteins on *L. monocytogenes* (Liu, 2006). By using corresponding monoclonal and polyclonal antibodies for serological detection, it can distinguish isolates into 13 distinct serovars: 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e, and 7 (Allerberger, 2003) (Table 1).

Serotype	O antigens	H antigens
1/2a	I, II	А, В
1/2b	I, II	А, В, С
1/2c	I, II	B, D
3a	II, IV	А, В
3b	II, IV	А, В, С
3c	II, IV	B, D
4a	(V), VII, IX	А, В, С
4b	V, VI	А, В, С
4c	V, VII	А, В, С
4d	(V), VI, VIII	А, В, С
4e	V, VI, (VIII), (IX)	А, В, С
7	XII, XIII	А, В, С
5	(V), VI, (VIII), X	А, В, С
6a	V, (VI), (VII), (IX), XV	А, В, С
6b	(V), (VI), (VII), IX, X, XI	А, В, С

Table 1. Compositions of somatic (O) and flagellar (H) antigens in *Listeria* serotypes (Based on Liu, 2006; Seeliger and Jones, 1986).

Although all 13 serovars are presumed to be able to cause listeriosis in human, there are dominant serovars, 1/2a, 1/2b, 1/2c and 4b, that account for at least 95% of the cases (Farber and Peterkin, 1991; Swaminathan and Gerner-Smidt, 2007; Vázquez-Boland et al., 2001b). Serovars causing human listeriosis revealed a distribution bias as serovar 4b was found in 64% of listeriosis cases, serovar 1/2a in 15%, serovar 1/2b in 10%, and serovar 1/2c in 4% (McLauchlin, 1990). Moreover, while most *L. monocytogenes* strains from environment are composed of serotype 1/2a, 1/2b and 1/2c, isolates from human infection are mainly of serotype 4b (Gray et al., 2004; McLauchlin, 1990; Orsi et al., 2011).

Identification of the serotype of a strain allows an upfront differentiation between important food-borne strains (1/2a, 1/2b, and 4b). Serotyping can provide biological context for phylogenetic relationships and also it enables the comparisons of results from different studies. However, there are certain disadvantages of the method such as comparatively high cost, difficulty in standardization of reagents, as well as the needs of technical expertise. To reduce the difficulties of conventional serotyping, PCR serotyping methods have been developed to separate the major serovars (1/2a, 1/2b, 1/2c, and 4b) into distinct groups (Borucki and Call, 2003; Doumith et al., 2004). Identification of PCR primers for serotyping increased the accessibility and standardization across the different labs and decreased cost and time of laboratory process. PCR primers were designed from variable regions of the L. monocytogenes genome that can distinguish different divisions (lineages) as well as serogroups. The most widely applied multiplex PCR serotyping developed by Michel Doumith et al. (2004) targets 5 genes (Imo0737, Imo1118, ORF2819, ORF2110, and prs) and it can divide isolates into five phylogenetic groups, each correlated with serovars: I.1 (1/2a-3a), I.2 (1/2c-3c), II.1 (4b-4d-4e), II.2 (1/2b-3b-7), and III (4a-4c). Even though the method cannot distinguish the serovar 1/2a from 3a, 1/2c from 3c, 1/2b from 3b and 7, 4a from 4c or 4b from 4d and 4e, the method became widely applied because only 4 major serovars (1/2a, 1/2b, 1/2c and 4b) account for most cases.

Even though serotyping has severed as one of the principal classification systems, unfortunately this approach lacks discrimination power and is unreliable compared to other methods such as PFGE or MLST.

I.3.2 Lineages

The first multilocus electrophoresis (MLEE) grouping study of *L. monocytogenes* isolates was conducted in 1989 (Piffaretti et al., 1989). In the study, *L. monocytogenes* strains were grouped into distinct phylogenetic divisions; division I (lineage I) were represented by strains of serovars 4b, 1/2b and 4a while division II (lineage II) contained strains of serovars 1/2a and 1/2c. In addition to those 2 major lineages, lineage III and IV were subsequently identified. Table 2 summarizes the 4 distinct lineages and their characteristics.

Table 2. The history of L. monocytogenes lineages: overview of different designations that	it
have been used (Orsi et al., 2011).	

Lineage	Initial identification	Serotypes	Genetic characteristics	Distribution
1	First described in an MLEE study by Piffaretti et al., 1989	1/2b, 3b, 3c, 4b	Lowest diversity among the lineages; lowest levels of recombination among the lineages	Commonly isolated from various sources; overrepresented among human isolates
II	First described in an MLEE study by Piffaretti et al., 1989	1/2a, 1/2c, 3a	Most diverse, highest recombination levels	Commonly isolated from various sources; overrepresented among food and food- related as well as natural environments
	First described using partial sequence data analyses by Rasmussen et al., 1995	4a, 4b, 4c	Very diverse; recombination levels between those for lineage I and lineage II	Most isolates obtained from ruminants
IV	First described as IIIB using partial sequence data analyses by Roberts et al., 2006; first reported as lineage IV by Ward et al., 2008	4a, 4b, 4c	Few isolates analysed to date	Most isolates obtained from ruminants

Polygenetic analysis of 1,696 *L. monocytogenes* strains from diverse sources and geographical locations revealed that major phylogenetic lineages were clearly separated (Figure 1).

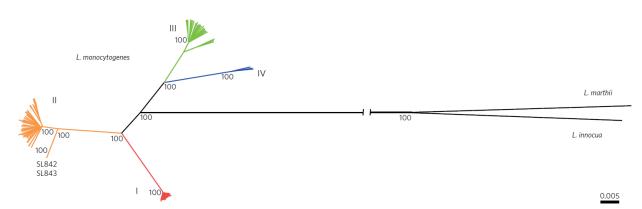


Figure 1. Phylogeny of the four phylogenetic lineages (I, red; II, orange; III, green; IV, blue). Representative isolates of the four lineages were used to determine the location of the root, using *L. innocua* and *L. marthii* as outgroups (The tree was obtained using FastME on the p-distance of the 1,748 concatenated alignments; Moura et al., 2016).

I.3.3 PFGE

Pulse field gel electrophoresis (PFGE) is applied as a routine subtyping method for several bacteria species such as *Escherichia coli* O157:H7, non-typhoidal *Salmonella spp.*, and *Shigella spp.* (Hunter et al., 2005). It had been also served as the international gold standard for *L. monocytogenes* epidemiological investigations (Graves and Swaminathan, 2001). In USA, the Centers for Disease Control and Prevention (CDC) succeeded in implementing the harmonized system for nationwide database. From 1996 to 2016, PulseNet (the National Molecular Subtyping Network for Foodborne Disease Surveillance) has implemented PFGE analysis as a tool to identify pathogens causing foodborne illnesses. It fastened the whole process of detection of infectious bacteria and epidemiological follow-up of an outbreak.

For PFGE analysis, firstly DNA of *L. monocytogenes* isolate is extracted and digested using restriction enzymes such as *Ascl* and *Apal* to cut genomic DNA infrequently. This yields 8-25 large fragments ranging in size from 20kb to over 20Mb. The fragmented DNA is slowly separated on an agarose gel (for 30-50 h) during which alternating currents are applied to move the DNA back and forth, resulting in higher resolution (Nightingale, 2010). The pattern image is captured for computer-based analysis using specific software which allows rapid result acquisition and comparison with other strains by sharing the data via the internet (https://www.cdc.gov/pulsenet/). The exchange of PFGE patterns through PulseNet and food

regulatory agency laboratories is coordinated by the USA CDC. In Europe, European Union Reference Laboratory for *L. monocytogenes* collaborates with National Reference Laboratories to standardize the PFGE protocol, exchange the data within the network and integrate into the European surveillance system of *L. monocytogenes* strains (Félix et al., 2014). PFGE analysis was regarded considerably successful in differentiating strains which are implicated in outbreaks by clustering isolates into four lineages and discriminating isolates belonging to the same serotype. However, some drawbacks were noted, for example: (i) long time for completion since it requires at least 2 days to obtain a final result; (ii) expertise requirement in performing the technique; (iii) non-comparable results across laboratories due to different restriction enzymes used (Liu, 2006).

I.3.4 MLST and MVLST

Multilocus sequence typing (MLST) was first proposed in 1998 by Maiden and colleagues for typing bacterial isolates (Maiden et al., 1998). The method relies on variation in nucleic acids sequence at several chromosomal loci depending on bacteria species. In L. monocytogenes, the method is based on the sequences of gene fragments from several housekeeping loci, initially six then later extended to seven. The seven housekeeping genes used for MLST in L. monocytogenes are abcZ (ABC transporter), bglA (6-phospho-betaglucosidase), cat (catalase), dapE (succinyl diaminopimelate desuccinylase), dat (D-amino acid aminotransferase), Idh (L-lactate dehydrogenase), and IhkA (histidine kinase) (Salcedo et al., 2003). The length of nucleotide sequences amplified for each locus is generally in the range of 400-600 bp. The internal fragments of each gene are accurately sequenced on both strands using an automated DNA sequencer. To analyse the sequences, the different sequences within a bacterial species are assigned as distinct alleles for each house-keeping gene. The combination of alleles at each of the seven loci defines the allelic profile termed sequence type (ST) for an isolate. Therefore, each isolate of a species is unambiguously characterized. Then from sequence types, clonal complexes (CCs) are defined as groups of allelic profiles sharing 6 out of 7 genes. Reports revealed that certain CCs represented by epidemic clones are responsible for numerous outbreaks (Cantinelli et al., 2013; den Bakker et al., 2010b).

The MLST data is publicly accessible on network-based database software at <u>http://bigsdb.pasteur.fr/listeria/</u>. Total 1,433 STs, part of which are comprising 107 CCs, have been identified by the time of 2019 May. The panel of MLST output can be further expanded if a different genome of an isolate is sequenced.

It appears that MLST is so far the best technique for population genetic study, however, it is costly. Moreover, it shows limitations for its use in epidemiological investigation due to the low discriminatory power originating from the high sequence conservation in housekeeping genes. To solve this problem, a multi-virulence-locus sequence typing (MVLST) method has

been developed in *L. monocytogenes* (Zhang et al., 2004). MVLST method targets virulence genes, which may be more polymorphic than housekeeping genes. Virulence factors are important in pathogenesis such as intracellular survival, cell-to-cell spread, and virulence. The six virulence and virulence-associated genes used for MVLST in *L. monocytogenes* are as follows: *prfA* (master virulence regulator), *inlB* (Internalin B), *inlC* (Internalin C), *dal* (alanine racemase), *lisR* (LisR), and *clpP* (ATP-dependent Clp protease proteolytic subunit). This method showed greater discriminatory power for subtyping *L. monocytogenes* isolates. Moreover, the virulence-associated genes are often highly mobile and recombining between strains therefore, MVLST method demonstrated high epidemiological relevance and efficiency in detection of epidemic clones (Chen et al., 2005). Moreover, the MLST can be assigned from whole-genome sequence information which can be obtained at relatively modest cost and effort by advent of second-generation sequencing technologies.

Genotypic analyses such as PFGE (Neves et al., 2008) and MLST (den Bakker et al., 2008) have been further applied to cluster *L. monocytogenes* isolates which revealed a structured population composed of divergent lineages (Orsi et al., 2011).

I.3.5 WGS related methods

Whole genome sequencing (WGS) has emerged today as an ultimate typing tool for identifying microbial source of food contamination and comparing bacterial isolates in outbreak investigation thanks to its decreasing cost and dominant competitiveness in resolution (Jackson et al., 2016; Lüth et al., 2018). EFSA and Food and Drug Administration of US are increasingly using WGS as a mean to better understand foodborne pathogens (Jackson et al., 2016; Moura et al., 2017). Bacterial sequence data can provide accurate phylogenetic characterization including lineage assignment. However, data analysis and comparability of WGS data across laboratories hampered WGS-based subtyping approach. To solve this problem, core genome MLST (cgMLST) was developed which interpret WGS data in standardized nomenclatures of alleles and types (Hyden et al., 2016; Lüth et al., 2018; Ruppitsch et al., 2015). The target core gene set was determined by genome-wide gene-bygene comparison using SeqSphere+ software which resulted in 1,701 genes out of 2,867 genes of reference strain EGDe (accession number: NC 003210.1) (Ruppitsch et al., 2015; Schmid et al., 2014). The data is available on Internet at https://www.cgmlst.org/ncs/schema/690488/. By cgMLST, isolates that share very closely related genomes are grouped in a Complex Type or Cluster Type.

Using classic MLST approach, it is difficult to differentiate isolates in an outbreak from epidemiologically unrelated isolates which belong to the same clonal group. The cgMLST scheme demonstrated higher discriminatory power and thereby more suitable for outbreak

investigations by clearly differentiating outbreak isolates from non-outbreak isolates (Ruppitsch et al., 2015).

Along with the development of cgMLST, other methods based on WGS data were emerged such as whole genome MLST (wgMLST) or Single Nucleotide Polymorphism (SNP) analysis (Moura et al., 2016). Compared to cgMLST, wgMLST utilizes a set of genes from both core and accessory genome. For SNP approach, genomes of isolates are aligned to reference genomes such as EGDe and EGD (accession number: NC_022568.1) to find SNP. High concordance between wgMLST, cgMLST, and SNP approaches were found allowing all typing methods suitable for investigation of *L. monocytogenes* (Henri et al., 2017). Certainly, WGS genotyping will be the standard method due to its accurate outcome and high discriminatory power.

I.4 Genetic heterogeneity

Recent studies on population structure on a global scale revealed that L. monocytogenes is a genetically heterogeneous species (Bakker et al., 2010; Ragon et al., 2008). L. monocytogenes strains are composed of the distinction of phylogenetic lineages, each of which is genetically heterogeneous containing multiple CCs (Haase et al., 2014). The differences between the evolutionary lineages arise from the contributions of homologous recombination and genetic diversification. However, analyses of multilocus sequence data indicate that L. monocytogenes is one of the bacterial species with the lowest rate of homologous recombination (Ragon et al., 2008). Interestingly, unequal rates of recombination were noticed among the main lineages I and II, with recombination more prevalent in lineage II (Bakker et al., 2013). To date, total 178 complete genome sequences have been available on NCBI (https://www.ncbi.nlm.nih.gov/genome/genomes/159?) whose sizes vary from 2,776,520 to 3,243,300 base pairs containing 2858-3337 genes. In 2015, a pan-genome analysis using 44 complete genomes revealed that *L. monocytogenes* strains consists in $\approx 43\%$ (2360) of core genes and the remaining \approx 57% (3109) of accessory genes (Tan et al., 2015). Another study performed mapping of the distribution of accessory genes of 8 L. monocytogenes strains and found a distinct division in chromosome regions: an accessory gene rich region distributed in the first 65° adjacent to the origin of replication and comparatively, a more stable region enriched for core genes in the last 295° (Bakker et al., 2013).

Accessory loci that distinguish the two major lineages, I and II, exhibited large variations. For instance, transcriptional regulators and internalins were differently distributed and, furthermore, each lineage showed specific antimicrobial resistance-related genes (Bakker et al., 2013). Some evidences indicate the divergence of pathogenic and non-pathogenic *Listeria* species arose from a pathogenic ancestor containing the key virulence genes about 47 million years ago (den Bakker et al., 2010a). Supporting this, serogroup 4 was found to be ancestral and gene clusters associated with serogroup 1/2 were believed to be introduced through horizontal gene transfer in the ancestral population (Tan et al., 2015). Gene loss also plays an important role in diversification of *Listeria*, a well-known example is the loss of the *prfa* cluster, which accelerates transition of *Listeria* species from a facultative pathogen to a saprotroph, even though some non-pathogenic species still carry some virulence-associated genes (den Bakker et al., 2010a).

I.4.1 Phenotype-genotype heterogeneity

The apparent bias in the distribution between lineage I and II, or serotypes 4b and 1/2 strains among clinical and food isolates led to investigations on the related phenotypes. A

population diversity study using 1,696 isolates revealed distinct genetic features that account for heterogeneity in virulence and stress resistance among clinical and food isolates (Moura et al., 2016). The major pathogenicity island LIPI-1 (*Listeria* pathogenicity island-1, *prfA*, *plcA*, *hly*, *mpl*, *actA*, and *plcB*) was highly conserved in the bacteria, however complete LIPI-3 (*llsA*, *llsG*, *llsH*, *llsX*, *llsB*, *llsY*, *llsD*, and *llsP*) was almost exclusively present within lineage I. Moreover, the study found that certain genetic contents that were associated with sublineages were highly related with the origin of a strain. For example, *inlA* alleles encoding truncated internalin A variants which are related with virulence attenuation were significantly associated with food and food-related origins. Similarly, the presence of genes (*qac*, *bcrABC*, and *ermE*) that confer resistance to benzalkonium chloride (BC), a quaternary ammonium compound that is most commonly used disinfectant in food industry, were significantly associated with lineage II.

There also exist correlations between clonal groups and infection or source of isolates. The aforementioned subtyping methods such as MLST and MLVST enabled evaluation of phenotypes at clonal level in L. monocytogenes. It has long been suggested that the clonal genetic structure is related to the virulence potential of L. monocytogenes population (Bergholz et al., 2018; Piffaretti et al., 1989). Studies attempted to delineate L. monocytogenes clones in order to determine those that contribute the most to human or animal infections (Chen et al., 2007; Ducey et al., 2007; Kathariou, 2008). A study in 2016 made use of a large set of isolates comprising 4,049 food isolates and 2,584 clinical isolates (Maury et al., 2016). Using MLST approach, the collected strains were distinguished into 63 different genotypes. The result showed that the frequency distribution of the clones was markedly uneven; moreover, there was a significant difference in clonal distribution between food and clinical origin. While the most prevalent infection-associated clones were CC1, CC2, CC4 and CC6, food-associated clones were CC9 and CC121. Murine infection further confirmed that the clinical clones were hypervirulent in comparison to the food isolates. Moreover, LIPI-4, a cluster of 6 genes encoding a cellobiose-family phosphotransferase system, was found exclusively in certain subtypes such as CC4 strains that were specifically associated with neuroinvasiveness and maternal-neonatal infection.

In 2008, a listeriosis outbreak associated with ready-to-eat (RTE) meat products resulted in 22 deaths and at least 57 patients. The causative isolate belonged to CC8 and a novel 50 kbp (coding sequences LM5578_1850 to LM5578_1903) *Listeria* genomic island (LGI-1) was discovered that is specific to CC8 (Gilmour et al., 2010).

Similarly, a study from Hingston et al. (2017b) found certain connections between genotypes and bacterial growth under unfavorable conditions including low temperature, salt and acid stresses. For example, integrity of *inIA* was significantly associated with cold

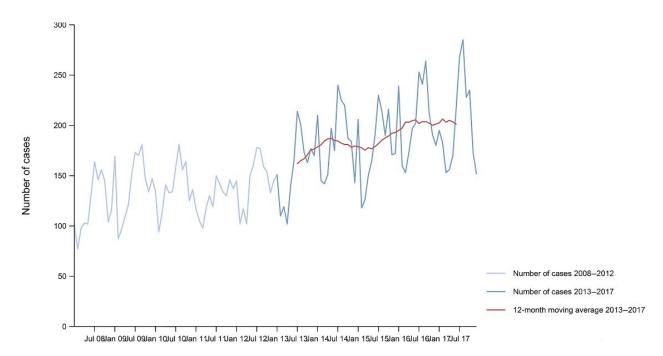
tolerance and a plasmid with acid tolerance. However, they also revealed that a minor genetic variation could influence the stress tolerance traits.

Taken together, accumulating data demonstrated heterogeneity in genomic features with regard to bacterial virulence and stress resistance. As a matter of fact, it is difficult to make direct associations between specific genetic elements and phenotypes such as virulence due to high complexity in the pathogenesis in *L. monocytogenes*. Likewise, stress resistance in association with food contamination in food processing environments (FPE) is difficult to presume because of the uncertainty in the process of food contamination.

I.5 pathogenicity

I.5.1 Listeriosis

Infection caused by bacteria genus *Listeria* is called listeriosis in animals including humans. There are 20 *Listeria* species among which only few are known to be pathogenic responsible for listeriosis. *L. ivanovii* is predominantly an animal pathogen responsible for infections in ruminants, especially sheep (Vázquez-Boland et al., 2001b), though, few human cases have been reported (Guillet et al., 2010; Snapir et al., 2006). Listeriosis in human is predominantly a foodborne disease caused by ingestion of contaminated food products with *L. monocytogenes* except for fœtal infection caused by congenital infection in pregnant women. Listeriosis manifests serious localized and generalized infections resulting in up to 90% hospitalization rate and a high fatality rate (Farber and Peterkin, 1991; Scallan et al., 2011). It is particularly deadly in senior group and immunocompromised population. In European Union, the annual number of deaths recorded since 2008 increased steadily and the overall fatality was reported as 16.2% in 2016 and 13.8% in 2017 (EFSA and ECDC, 2017, 2018).


I.5.1.1 Phylogenetic distribution

As discussed earlier (Chapter I.3.1 Serotyping), accumulated epidemic data clearly show that serotype 4b strains are associated with high virulence potential. While serovar 4b strains were shown to be responsible for the most of listeriosis, it is the serogroup 1/2 (serotype 1/2a, 1/2b and 1/2c) which mainly compose food and environmental isolates (McLauchlin, 1990; Wiedmann, 2002; Wiedmann et al., 1997). This indicates that the association between 4b strains and clinical result is not due to the higher exposure to serotype 4b strains, but rather the hyper virulence of epidemic clones in serotype 4b strains (Barbosa et al., 2015; Evans et al., 2004; Ochiai et al., 2014).

As previously mentioned, Maury et al. (2016) reported the significant distribution bias among strains between food and clinical origins and further identified virulence-associated genotypes. When compared to the phylogenetic position, the genotype CC121 and CC9 representing a food origin were mostly composed of serotype 1/2a and 1/2c strains (Ragon et al., 2008). Meanwhile hypervirulent genotypes CC1, CC2, CC4, and CC6 mostly consisted of serotype 4b strains supporting the distinct phylogenetic distribution of the epidemic clones. Recent study further disclosed a distribution bias with regard to source of isolation among those high-virulent genotypes in a limited region. A total of 347 serotype 4b isolates primarily from North America revealed that while CC4 clone were significantly overrepresented among human isolates, CC2 exhibited significant propensity for food (Lee et al., 2018).

I.5.1.2 Incidence and outbreaks

EFSA reported that the incidence of listeriosis is continually increasing (Figure 2) with high fatality rate of 13.8% among the 1,633 confirmed cases with known outcome in EU in 2017 (EFSA and ECDC, 2018). Notably, European countries are experiencing an increased incidence of listeriosis among senior groups with > 60 years of age (Goulet et al., 2008). Recent report in 2017 showed that the senior population are most commonly affected by the infection by showing the fatality of 15.5% and 24.2% in the age group over 64 years and over 84 years, respectively (EFSA and ECDC, 2018).

Month

Source: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Malta, Netherlands, Norway, Poland, Romania, Slovakia, Slovenia, Spain, Sweden and United Kingdom.

Bulgaria, Croatia, Luxembourg and Portugal did not report data to the level of detail required for the analysis. Figure 2. Trend in reported confirmed human cases of listeriosis in the EU/EEA, by month, 2008–2017 (EFSA and ECDC, 2018).

Similarly, in USA, annual predictions estimated that listeriosis causes approximately 1,600 invasive infections, 1,500 hospitalizations and 250 deaths. Confirmed cases of listeriosis infection showed 94% hospitalization rate and 15.9% death rate (Scallan et al., 2011).

Although the incidence of *L. monocytogenes* infection is comparatively low compared to *Salmonella* or *Campylobacter* infections, listeriosis outbreaks remain a serious public health

]		•		
Year	Location	Invasive/Non-	Number of	Foods	References
		invasive	cases (deaths)		
1983-	Switzerland	Invasive	122 (31)	Soft cheese	Büla et al., 1995;
1987					Farber and Peterkin,
					1991
1985	U.S.A.	Invasive	142 (48)	Mexican-style fresh	Centers for Disease
				cheese	Control (CDC), 1985;
					Linnan et al., 1988
1987-	United	Invasive	355 (94)	Pâté	McLauchlin et al.,
1989	Kingdom and				1991
	Ireland				
1992	France	Invasive	279 (85)	Jellied pork tongue	Jacquet et al., 1995;
					McLauchlin et al.,
					1991; Salvat et al.,
					1995
1997	Italy	Non-invasive	1566	Corn and tuna	Aureli et al., 2000
				salad	
1998-	U.S.A.	Invasive	108 (14)	Meat frankfurters	CDC, 1998, 1999;
1999					Mead et al., 2006
2001	Sweden	Non-invasive	> 120	Fresh cheese made	Carrique-Mas et al.,
				from raw milk in a	2003; Danielsson-
				summer farm	Tham et al., 2004
2002	Canada (BC)	Non-invasive	86	Cheese made from	Pagotto et al., 2006
				pasteurized milk	
2008	Canada	Invasive	57 (22)	RTE meat products	Currie et al., 2015
2011	U.S.A.	Invasive	147 (33)	cantaloupe	CDC, 2011;
					McCollum et al.,
					2013
2014	Denmark	Invasive	41 (17)	RTE delicatessen	Kvistholm Jensen et
				meat	al., 2016
2017-	South Africa	Invasive	1060 (216)	RTE processed	Smith et al., 2019
2018				meat products	
2014-	Denmark,	Invasive	22 (5),	Cold-smoked trout	Multi-country
ongoing	Estonia,		number can	and salmon	outbreak, 2019
	Finland,		increase		
	France, and				
	Sweden				

Table 3. The major outbreaks with more than 50 reported cases.

concern. By definition, an outbreak has the same meaning as an epidemic, but often outbreaks refer to geographically more limited epidemics. A listeriosis outbreak is a cluster of listeriosis cases caused by the same source of *Listeria* strain in excess during a specified period of time (Table 3).

I.5.1.3 Clinical features and host immune response

Listeriosis has a long incubation period (3 to 60 days) and host immune system status determines the development of clinical signs and disease. Listeriosis is often associated with patients with underlying debilitating diseases such as malignancies (leukemia, lymphoma, or sarcoma), anticancer chemotherapy or immunosuppressive therapy (organ transplantation or corticosteroid use), diseases in liver, kidney, and diabetes as well as immunocompromised groups such as HIV patients, pregnant women, and elderly persons (Drevets and Bronze, 2008; Goulet et al., 2012). This suggests that altered or deficient immune responses predispose to listeriosis. Listeriosis can be distinguished in 2 main forms: perinatal listeriosis and listeriosis in the adults. In both cases, the predominant clinical forms are manifested by disseminated infection or local infection in the central nervous system (Doganay, 2003; Vázquez-Boland et al., 2001b).

The severe forms of listeriosis infection include encephalitis, meningitis, and bacteremia in compromised groups as discussed above. In perinatal listeriosis *L. monocytogenes* infects the placenta and fetus. Listeriosis in pregnant women show flu-like symptoms, but the infection can severely infect the fetus resulting in spontaneous abortion, still birth, premature birth to either an infected or a healthy child (Frederiksen and Samuelsson, 1992; Mylonakis et al., 2002). A noninvasive form of listeriosis occurs in immunocompetent individuals, and it is characterized by febrile gastroenteritis including diarrheal illness and flu-like symptoms (Drevets and Bronze, 2008). Moreover, asymptomatic carriers shedding *L. monocytogenes* in theirs stools were detected (Grif et al., 2003). However, a few sporadic listeriosis cases with invasive form of infection have been reported in healthy adult individuals (Jamal et al., 2005; Kelly et al., 1999; Vrbi et al., 2013; Zhang et al., 2012). This may be ascribed to the differential bacterial load in the contaminated food involved in the infection or high virulence of the corresponding *L. monocytogenes* strains.

L. monocytogenes seldom results cutaneous form of infection but it occurs mainly in farmers and veterinarians. The cutaneous listeriosis is characterized by localized, nonpruritic, self-limited, nonpainful, papulopustular or vesiculopustular eruptions in healthy individuals (Godshall et al., 2013). The infection is largely owing to direct contact with infected animals or vegetations.

Most studies have investigated the host immune responses in *Listeria* infection using mice model (Bou Ghanem et al., 2013). In the murine model, the innate immunity is responsible for

detecting and restraining the pathogen while adaptive immunity is responsible for clearance of *L. monocytogenes* and enhanced protection against future infections. Once *L. monocytogenes* are ingested, innate immune responses rapidly activate involving macrophages that plays an essential role in the early control of the infection. After entering bloodstream, *L. monocytogenes* are engulfed by various myeloid cells such as macrophages and dendritic cells, mainly in the spleen and liver and other tissues (Waite et al., 2011). The bacteria are rapidly internalized by resident macrophages in which the bacterial replication occurs and at the same time which mediate clearance of the bacteria. This innate immune response, as the first line of defence against bacteria, combat the infection until specific CD4+ and CD8+ T-cells are recruited (Zenewicz and Shen, 2007). In relatively low number, the bacteria in circulation also phagocytosed by patrolling neutrophils that are very efficient in killing the bacteria. The role of neutrophils was shown to play a critical role in early resistance to *L. monocytogenes* infection and in central nervous system infection (Conlan, 1997; López et al., 2000).

I.5.2 Host barrier

First, virulence potential of *L. monocytogenes* strain is associated with its capacity to circumvent innate host barrier such as gut microbiota and bile acids exposure (Gahan and Hill, 2014). The varying adaptability of the bacterial cells to the host barriers plays selective force for infection. Several studies demonstrated that various stress factors related to food matrix induced virulence related genes and enhances subsequent infectivity of *L. monocytogenes* (Bo Andersen et al., 2007; Neuhaus et al., 2013). For instance, pre-exposure to 0.3 M NaCl for 1 h significantly increased the ability of *L. monocytogenes* to survive in the lethal concentrations of bile (Sleator et al., 2007). Moreover, prior adaptation to sublethal levels of bile acids (0.08%), acid (pH 5.5 with 3 M lactic acid), heat (42°C), salt (5% NaCl), or sodium dodecyl sulfate (0.01%) significantly enhanced bile resistance of exponential phase growing *L. monocytogenes* (Begley et al., 2002). Acid has been widely investigated in relation to virulence potential since stomach is the first barrier that the bacteria encounter upon ingestion. A study showed that acid shock at low environmental temperatures induced PrfA related genes and increased the invasiveness for epithelial cells and *in vivo* (*Caenorhabditis elegans*) virulence (Neuhaus et al., 2013).

I.5.3 Intracellular lifecycle

Furthermore, the pathogenicity of the bacterium is highly associated with its intracellular lifecycle concerning adherence, invasion, immune evasion and modulation, intracellular growth and cell-to-cell spread (Vázquez-Boland et al., 2001b). Figure 3 depicts the general scheme of *L. monocytogenes* infection of non-phagocytic cells. Briefly, the bacteria enter host

non-phagocytic cells, such as epithelial cells, through receptor-mediated endocytosis. Listeriolysin O (LLO), phospholipase A (PlcA) and PlcB mediate escape of the bacteria from the vacuole. Bacteria can transcytose across the cell within a vacuole in goblet cells in intestinal epithelium (Nikitas et al., 2011) and replicate in spacious *Listeria*-containing phagosomes (SLAPs) in some macrophages. In host cell cytosol, L. monocytogenes subsequently polymerizes actin to promote cell-to-cell spread. Activity of virulence factors provokes a cascade of effects on the infected host cells. For example, the pore-forming activity of extracellular LLO leads to changes in histone modification, endoplasmic reticulum (ER) stress and lysosomal permeabilization, desumoylation, and mitochondrial fission (Birmingham et al., 2008; Carrero et al., 2004; Gedde et al., 2000; Hamon et al., 2012; Kayal and Charbit, 2006; Schnupf et al., 2007; Wallecha et al., 2013). To derepress host interferon-stimulated genes (ISGs), nuclear targeted protein A (LntA) of L. monocytogenes interacts with the host Bromo adjacent homology domain-containing 1 protein (BAHD1) complex (Lebreton et al., 2011). L. monocytogenes provokes translocation of NAD-dependent protein deacetylase sirtuin 2 (SIRT2) to the host nucleus to deacetylate histone 3 at lysine 18. This leads to changes in chromatin packing repressing downstream gene expression (Eskandarian et al., 2013). Listeria infection also leads to the host cell DNA damage, and the host cell counteracts the infection by upregulating a number of antibacterial effectors such as ISG15, ubiquitin-like protein, that is induced in an early stage of infection. Expression of ISG15 and the process of modification by ISG15 called ISGylation modulates cytokine secretion by covalent modification of ER and Golgi proteins (Radoshevich et al., 2015).

Bibliography

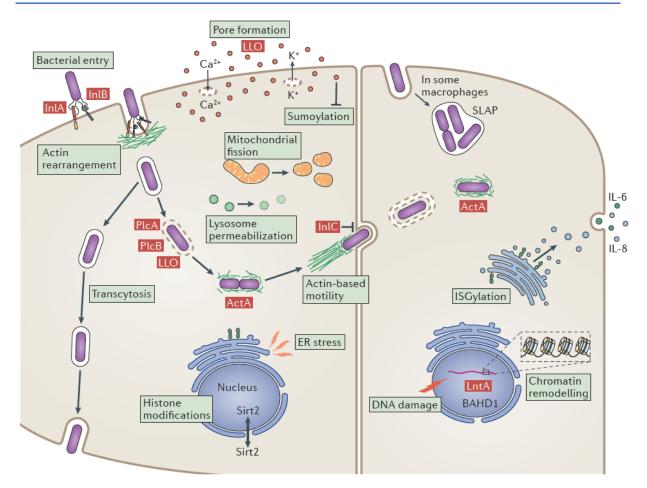


Figure 3. Overview of *Listeria monocytogenes* infection at cellular level. ActA, actin assemblyinducing protein; LLO, listeriolysin O; PlcA and PlcB, phospholipase A and B; Inl, Internalin; IL, interleukin; ER, endoplasmic reticulum; ISGs, interferon-stimulated genes; SLAPs, spacious *Listeria*-containing phagosomes; BAHD1, Bromo adjacent homology domain-containing 1 protein; SIRT2, sirtuin 2 (Radoshevich and Cossart, 2018).

I.5.4 Virulence factors and their regulation

To cause illness the bacteria first penetrate host cells of the epithelial lining in gastrointestinal track. Once internalized in host cells, *L. monocytogenes* proliferate in host cytosol, spread by cell-to-cell invasion to neighboring cells and cross brain-blood barrier and/or placental barrier. For this pathogenesis process, the status of host immune system plays an important role.

I.5.4.1 PrfA, master regulator of virulence

Positive regulatory factor A (PrfA) is a major transcription activator mediating the expression of the virulence factors in *L. monocytogenes*. The regulatory protein integrates environmental cues that signal the transition of a bacteria from saprotrophic to intracellular lifestyle (de las Heras et al., 2011). PrfA belongs to a member of the Crp/Fnr (Cyclic AMP (cAMP) receptor protein/fumarate nitrate reductase) family global transcriptional regulators mediating various metabolic pathways in bacteria (Freitag et al., 2009). Unlike other Crp/Fnr family regulators that requires a cofactor for DNA binding, PrfA is capable of binding to its consensus DNA sequence with low affinity without the presence of a cofactor. However, recent studies found that cofactors are required to exert its full activity. For instance, an allosteric mode of activation of PrfA mediated by a glutathione was suggested in the cytosol of the host cell (Hall et al., 2016).

PrfA was shown to induce the expression of virulence factors required for intracellular lifestyle when they are grown in blood (Toledo-Arana et al., 2009). The core PrfA virulon are clustered in a 9-kb chromosomal island LIPI-1, which is exclusively present in L. monocytogenes and L. ivanovii among Listeria spp. (Vázquez-Boland et al., 2001a). The cluster includes prfA, plcA, hly, mpl, actA, and plcB. plcA and plcB encode phospholipases (PlcA and PlcB) and hly encodes listeriolysin O (LLO); they mediate the lysis of the acidic phagosomes allowing the bacterial escape into the cytosol where they replicate intracellularly and they are also responsible for cell-to-cell spread (Dramsi and Cossart, 2002). As discussed earlier, the LLO toxin has a plethora of effects on the infected cell including histone modifications inducing host immune suppression (Hamon et al., 2007). The surface protein ActA encoded by actA mediates intracellular motility (Pistor et al., 1994) and metalloprotease encoded by mpl is responsible for the activation of PlcA and PlcB (Bitar et al., 2008; Poyart et al., 1993). PrfA coordinately activates the expression of genes in other loci than LIPI-1 that harbour a PrfA box in their promoter region such as: bsh, encoding a bile salt hydrolase which promotes survival within the gut (Dussurget et al., 2002); inIC, encoding a short, secreted internalin-like protein important for cell-to-cell spread and dampening of host innate response (Engelbrecht et al., 1996; Gouin et al., 2010); hpt (also known as uhpT), encoding an hexose phosphate transporter for intracytosolic proliferation (Chico-Calero et al., 2002); inIAB encoding InIA and B responsible for invasion of non-phagocytic cells (Parida et al., 2002; Schubert et al., 2002).

The regulation of PrfA is thermo-dependent. A thermosensor is located at the 5'untranslated region (UTR) of the *prfA* transcript which serves conformational changes at different temperatures (Johansson et al., 2002). At low temperatures (< 30°C), it forms a secondary hairpin loop structure which masks the Shine-Dalgarno (SD) ribosome binding site and further prevents translation of PrfA. The secondary structure is disrupted at higher

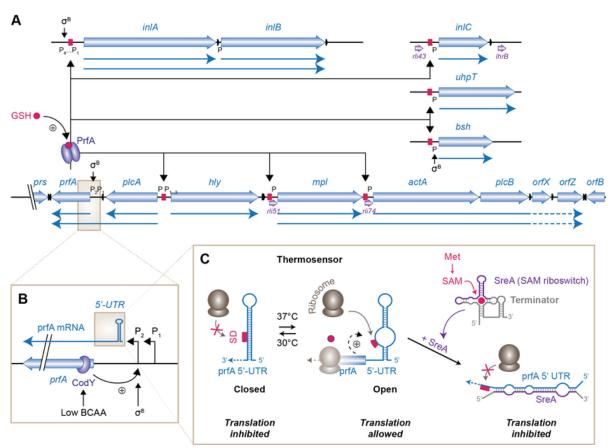


Figure 4. The PrfA regulon and its multiple control mechanisms. (A) Diagram of the main virulence cluster in L. monocytogenes and other PrfA-dependent genes, inspired from Kreft and Vázquez-Boland (2001) and de las Heras et al. (2011). Open reading frames (ORF) are highlighted in thick blue arrows, small RNAs in purple, terminators in black. The main transcriptional units are displayed with plain blue arrows. PrfA binding sites are boxed in magenta. Positive or negative regulators are shown. P, promoter; GSH, glutathione. (B) Transcriptional control of *prfA*. In addition to oB-dependent regulation, transcription is enhanced by binding of CodY in the coding sequence, in response to low availability of branched-chain amino-acids (BCAA). UTR, untranslated region. (C) Control of prfA translation initiation, adapted from Cossart and Lebreton (2014). At 30°C, the Shine-Dalgarno (SD) sequence of prfA mRNA is masked from ribosomes by a closed stem-loop structure. At 37°C, a change in the conformation of the 5'-UTR liberates the SD and allows translation initiation. Binding of ribosomes to the SD is further stabilised by the 20 first codons of the ORF. The SreA small RNA, which is the product of a S-adenosylmethionine (SAM) riboswitch, can also basepair with prfA 5'-UTR and block access of ribosomes to the SD sequence (Lebreton and Cossart, 2016).

temperatures (37°C) allowing the binding of the ribosome and translation initiates. Followed by this discovery, several S-adenosylmethionine (SAM)-responsive riboswitches, regulatory segments of a mRNA molecule, which control the expression of virulence genes including PrfA were found in *L. monocytogenes* genomes (Loh et al., 2009; Xayarath and Freitag, 2009) (Figure 4). The RNA-mediated regulation will be discussed more in 'Chapter I.5.2.6 RNA-mediated regulators'.

A fine-tuned regulation of those virulence factors is critical for the successful infection of the bacteria. ActA is one of the most abundant proteins produced during intracellular infection. Transcription of actA is induced more than 200-fold during infection of host cells (Shetron-Rama et al., 2003). A small decrease in ActA level induced a dramatic decrease in the efficiency of cell-to-cell spread (Brundage et al., 1993; Smith et al., 1996; Wong et al., 2004); in contrast, overexpression of ActA also hampered cell-to-cell spread (Lauer et al., 2002). Similarly, mutants lacking LLO is avirulent; however, overexpression of LLO is also detrimental for the bacteria since it causes the early rupture of host cells which render the higher chance of immune clearance of the bacteria (Decatur and Portnoy, 2000). In sum, the stringent regulation of virulence factors by PrfA as well as its cross-talk with other virulence regulators are crucial for successful *L. monocytogenes* infection.

I.5.4.2 σB regulation

In prokaryotes, sigma factors control the global switch of the genes expression (Mauri and Klumpp, 2014). Several types of sigma factors are conserved across diverse Gram-positive bacteria and some phages carry genes encoding sigma factors that control transcription of phage genes (Kolesky et al., 1999). Sigma factors are dissociable subunits of RNA polymerase in prokaryotic cells which enable the rapid modulation of transcription of regulons in response to environmental signals. In L. monocytogenes as well as in other Gram-positive bacteria, an alternative sigma factor σB regulates genes important for adaptation and survival against adverse conditions, such as low pH, oxidative stress and carbon starvation (Ferreira et al., 2001, 2003). Therefore, a σB deletion mutant have a deficient stress response rendering it more sensitive to environmental stresses. In addition to stress response, σB is another major transcription regulator for virulence factors next to PrfA for the survival in host intestinal environment and intracellular growth (Chaturongakul et al., 2008). Importantly, oB regulates expression of PrfA as seen above in Figure 4A (Nadon et al., 2002). It is not surprising that numerous PrfA regulons overlap with oB regulons since the host barriers often mirror environmental stress (Ollinger et al., 2009a). For example, σB regulates expression of some virulence genes required for survival and multiplication under acidic pH in the gastric environment or oxidative stress in the phagosome (Chaturongakul et al., 2008; Gahan and Hill, 2014). oB also contributes to the transcriptional regulation of genes responsible for bile

tolerance such as *bsh*, which encodes a bile-salt hydrolase (Hain et al., 2008). A study revealed that 168 σ B regulon were comprised of 26 operons in *L. monocytogenes* including 10 genes that do not have homologues in *L. innocua* including *inlA*, *inlB*, *inlD*, *sepA*, *Imo2085*, *bsh*, *Imo0445*, *Imo2671*, *Imo2290*, and *Imo2387* (Raengpradub et al., 2008). A study using a σ B inhibitor, fluoro-phenyl-styrene-sulfonamidein, has newly identified σ B-dependent expressions in *Imo0937* and *Imo0915* (Palmer et al., 2011).

I.5.4.3 Other protein regulators

Comparative genomics and transcriptomics further identified various virulence regulators other than the major transcription factors, PrfA and oB. Those regulators that contribute to the virulence regulatory network to a lesser extent are as follows: VirR/S (Mandin et al., 2005), CodY (Lobel et al., 2015), MogR (Shen and Higgins, 2006), RNA-binding protein Hfq (Christiansen et al., 2004), orphan response regulator DegU (Williams et al., 2005b), transcriptional antirepressor GmaR (Kamp and Higgins, 2009), transcriptional regulator MouR (Pinheiro et al., 2018) and accessory gene regulator Agr (Riedel et al., 2009). A complex cross-talk of those regulators plays a role in fine-tuned regulation of the virulence genes expression. In this chapter, we will scrutinize the details of the three regulators, VirR/S, CodY and MogR.

I.5.4.3.1 VirR/S

A study involving signature-tagged mutagenesis identified a novel virulence gene encoding a response regulator of a two-component system named VirR, for Virulence Regulator (Mandin et al., 2005). Together with VirS encoding histidine kinase, the 2-component system VirR/S controls the expression of 17 genes, including its own operon (Figure 5).

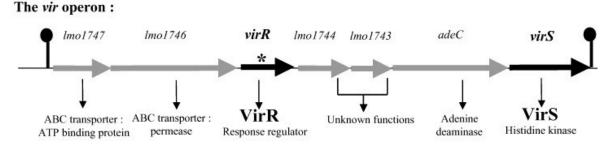


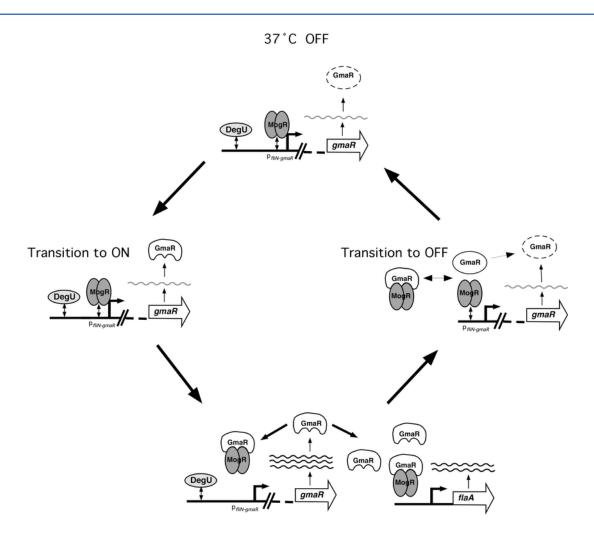
Figure 5. Genetic organization of the *virR/virS* locus. Hairpins indicate putative rhoindependent terminators (Mandin et al., 2005).

The 17 genes of VirR/S regulon are as follows; *Imo2114*, *Imo2115*, *dltA/B/C/D*, *mprF* (*Imo1695*), *Imo1696*, *Iom2177*, *Imo0604*, *Imo2349*, *Imo2156*, *virR*, *Imo1744*, *Imo1743*, *adeC*, and *virC*. The *In vivo* test showed that the expressions of 13 out of 17 VirR/S regulon genes

were upregulated in the spleen of infected mice (Camejo et al., 2009). The *dlt* operon (*dltA/B/C/D*) encoding proteins involved in the incorporation of D-alanine residues into the cell wall-associated lipoteichoic acids are required for virulence. Mutant lacking DltA revealed impaired virulence in a mouse infection model and decreased adhesion in various cell lines (Abachin et al., 2002). Moreover, majority of the characterized VirR/S regulon genes contributes to the modification of bacterial surface components which confer resistance to antimicrobial peptides (Kang et al., 2015). *Lmo1695* encoding MprF confers resistance to cationic antimicrobial peptides (Thedieck et al., 2006). Similarly, *lmo1696* encodes a putative glycopeptide antibiotic resistance protein of the VanZ family (Arthur and Courvalin, 1993). The ABC transporter encoded by *anrAB* (*lmo2114* and *lmo2115*) is involved in resistance to the bacteriocin nisin, and to other β -Lactam antibiotics (Collins et al., 2010).

I.5.4.3.2 CodY

CodY is a nutrient responsive regulator that modulates the expression of both metabolic and virulence genes in Gram-positive bacteria. CodY was shown to activate indirectly the expression of certain virulence genes in Clostridium perfringens (Li et al., 2013), Bacillus anthracis (Château et al., 2013; van Schaik et al., 2009) and Streptococcus pyogenes (Kreth et al., 2011). Recent study using RNA-Seq and ChIP-Seq techniques revealed that CodY serves as a repressor and activator of different genes of wide functional spectrum under nutrient rich and poor conditions (Lobel and Herskovits, 2016). A study conducted in macrophages found that 12 metabolic pathways were differentially active during the bacterial growth in macrophage cells (Lobel et al., 2012). Intracellular replication required de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs) as well as catabolism of glycerol and L-rhamnose. Therefore, it is reasonable to assume that sensing of metabolite availability within the host cell may alert the bacteria of their intracellular location and the need to activate the virulence state. The BCCAAs serve as a ligand for CodY activation. Classically, CodY was presumed to bind DNA in its isoleucine-bound state, and function primarily as a repressor under rich growth conditions. A study demonstrated that limiting concentrations of BCAAs, primarily of isoleucine, resulted in a dramatic increase in virulence genes (Lobel et al., 2015). Most important role of CodY is its involvement in the regulation of the major virulence regulator *prfA*. When the bacteria are limited with BCAAs, it upregulates the expression of *prfA* by directly binding in its coding sequence, 15 nucleotides downstream of the start codon as shown in Figure 4B. Also, CodY binding region was found in the upstream to the actA gene, responsible for intracellular actin-based motility (Lobel and Herskovits, 2016). Interestingly, CodY induced a repression of oB expression in nutrient rich medium. This suggests that prfA transcription may be induced by CodY by two mechanisms when BCAAs are


limited: first, via a direct binding of CodY to the *prfA* promoter, or second, via an indirect mode by relieving σB repression.

The multifaceted CodY regulation of versatile genes in both directions (activation or repression) under different conditions establishes CodY as one of the main factors regulating *L. monocytogenes* physiology.

I.5.4.3.3 MogR/GmaR

Transition from an extracellular to an intracellular lifestyle provokes transcriptome reshaping involving the up-regulation of virulence factors and the reciprocal down regulation of other genes, such as genes related to flagellar motility in *L. monocytogenes*. Motility gene repressor (MogR) encoded by *Imo0674* was shown for its regulation in motility related genes (Gründling et al., 2004). Flagellum-mediated motility was shown to enhance *L. monocytogenes* invasion of human epithelial cells and the early colonization of the intestinal tract in mice soon after bacterial ingestion (O'Neil and Marquis, 2006). *In vitro* plaquing assays revealed that deletion of *mogR* resulted in a significant decrease in the efficiency of cell-to-cell spread and, furthermore, a dramatic attenuation (250-fold decrease) in virulence was observed in mice infection model.

Expression of flagellar motility genes, including *flaA* which encodes flagellin, are thermoregulated. MogR acts as a repressor on the transcription of both flagella genes and *gmaR* which encodes bifunctional flagellar anti-repressor/glycosyltransferase GmaR. At 37°C, transcription of flagellar motility genes is repressed due to the binding activity of the MogR and GmaR. *gmaR* is co-transcribed within an operon harbouring *fliN* which encodes flagellar motor switch protein FliN. At lower temperatures, MogR is released from the *fliN-gmaR* promoter (pfliN-gmaR) by the anti-repressor GmaR which is transcriptionally activated by DegU, thereby positively regulating its own expression and allowing the transcription of flagellar motility regulon. Additionally, the regulation requires the DegU response regulator which constitutively activates transcription of *gmaR* in a temperature-independent manner (Kamp and Higgins, 2009) (Figure 6).

30°C ON

Figure 6. Model for the temperature-dependent regulation of GmaR expression and flagellar motility gene transcription in *L. monocytogenes*. 37°C OFF: At 37°C, when flagellar motility is OFF, the opposing activities of the MogR repressor and the DegU activator at *pfliN-gmaR* result in minimal *fliN-gmaR* transcripts. Any GmaR produced at 37°C is rapidly degraded and cannot interact with MogR. Transition to ON: as the temperature decreases below 37°C, newly synthesized GmaR produced from *fliN-gmaR* transcripts is no longer degraded and is able to interact with MogR. 30°C ON: Once GmaR is initially translated at lower temperatures, GmaR removes MogR from the *fliN-gmaR* promoter increasing transcription of *gmaR*. Elevated levels of GmaR result in anti-repression of all flagellar motility gene promoters, allowing flagellar motility gene transcription to occur. Transition to OFF: as the temperature increases, the MogR:GmaR complex is destabilized due to a temperature-dependent conformational change in GmaR. Released GmaR is degraded, while released MogR binds flagellar promoter region DNA to reinstate repression of *gmaR* and all flagellar motility genes (Kamp and Higgins, 2011).

I.5.4.4 RNA-mediated regulators

Apart from the protein-based regulatory networks discussed above, some RNA can also regulate gene expression, both at the level of transcription and translation. Belonging to noncoding RNA, those RNA molecules are called small RNAs (sRNAs) that range from 50-500 nucleotides long and wide distributed both in prokaryotes and eukaryotes (Mandin et al., 2007). In addition, RNA carries out roles that once thought to be restricted to proteins. One of them is to bind low-molecular weight metabolites that doesn't require complementary base pairing which is the distinguished mode of action for sRNAs. The binding is mediated by the folding of the RNAs into 3-dimentional structure that recognizes the specific target molecule which induces allosteric structure changes of the RNA element. Those cis-regulatory RNA elements, which resemble repressors or activators regulating gene expressions, are called riboswitches (Mellin et al., 2013; Winkler and Breaker, 2005). The critical role of these regulatory RNAs including sRNAs and riboswitches in the modulation of L. monocytogenes gene expression is supported by increasing evidence (Cossart and Lebreton, 2014; Xayarath and Freitag, 2009). Firstly, long untranslated regions (UTRs) harbouring secondary structures have been identified in numerous virulence genes, such as prfa, hly, actA, and mpl (Shen and Higgins, 2005; Toledo-Arana et al., 2009; Wong et al., 2004). The integrity of the 5'-UTRs of these genes affect the stability of the mRNA and influence the translation of proteins (Loh et al., 2006).

Early study identified 3 Hfq (a RNA-binding protein that contributes to stress tolerance and virulence)-binding sRNAs using immunoprecipitation approach in L. monocytogenes (Christiansen et al., 2006). The sRNAs were expressed when L. monocytogenes replicated within mammalian cells inferring their associations with virulence. Shortly after this discovery, in silico analysis identified 12 sRNAs, 3 of which were antisense RNAs (Mandin et al., 2007). The crucial findings in the regulatory RNAs was from a study of Toledo-Arana and colleagues in 2009 (Toledo-Arana et al., 2009). They newly identified numerous sRNAs including antisense RNAs (asRNAs) by comparing a complete transcriptome between in vitro, ex vivo and in vivo growth conditions. Moreover, several sRNAs that are absent in *L. innocua*, a non-pathogenic species, exhibited expression pattern similar to that of protein-coding virulence genes. Using a tiling microarray, they built the complete operon map of *L. monocytogenes* which was shown to harbour 50 sRNAs. Among those sRNAs, 29 were newly identified sRNAs, and 7 were predicted to be cis-acting asRNAs. Besides, 40 riboswitches were found that showed 'on' and 'off' modes upon transition into different environments, among which functioned as terminators for upstream genes. In 2011, a study compared transcriptome profiles especially of lower molecular weight (< 500 nucleotides in length) between extracellularly growing bacteria and intracellularly growing *L. monocytogenes* in macrophages (Mraheil et al., 2011).

They identified 71 new regulatory sRNAs among which 29 including asRNAs were specifically expressed intracellularly. In sum, the increasing resolution in transcriptome data resulted in discovering a large set of conserved non-coding RNAs. Finally, 305 noncoding RNAs exist in *L. monocytogenes* which decompose into 154 trans-acting sRNAs, 46 cis-regulatory RNAs and 104 asRNAs (Bécavin et al., 2014).

Interestingly, unlike other riboswitches located in 5'-UTRs, sRNA *Rli39* is located at the 3'end of a gene which is in antisense orientation to the downstream gene *pocR*, which encodes transcriptional regulator PocR for genes engaged in propanediol pathway. Propanediol catabolism requires B12 as a cofactor and is important for the pathogenesis of intestinal pathogens (Mellin et al., 2013; Sampson and Bobik, 2008). In *Listeria*, riboswitch Rli39 controls the transcription of a noncoding RNA AspocR, which is an asRNA to *pocR*, and thereby regulates PocR depending on the availability of B12 (Figure 7).

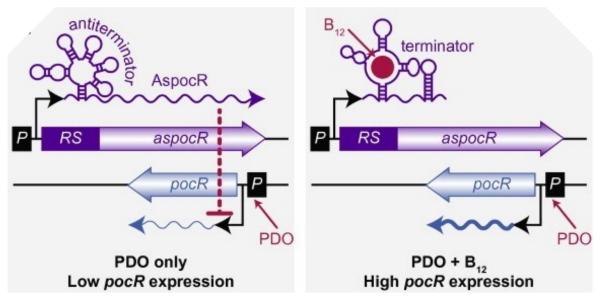


Figure 7. Model for the B12-dependent regulation of *pocR* via AspocR. (Left) In absence of B12, AspocR is transcribed and inhibits *pocR* expression by base-pairing with PocR mRNA. (Right) In presence of B12, binding of this ligand to the riboswitch (RS) triggers the premature transcription termination of AspocR; as a consequence, PocR mRNA can be produced. Note that transcription of *pocR* is also dependent on propanediol (PDO) (Cossart and Lebreton, 2014).

I.5.5 Virulence assay

The pathogenicity is defined as an overall ability of a bacteria to cause disease in host and virulence is the measurement of a level of pathogenicity which is comparable between

different strains. *L. monocytogenes* isolates are heterogeneous in virulence. From a risk assessment perspective, it is important to understand the virulence potential of *L. monocytogenes* strains. Numerous methods have been developed to investigate the virulence potentials of pathogens including *L. monocytogenes*. The aim of virulence assays is to determine either the number of bacteria or the time required to cause disease and death. One of the most widely used measurements is to express the differences in virulence by median Lethal Dose (LD50), the number of bacterial cells to kill half of the members of a tested population or median Lethal Time (LT50), the time to kill half of the members of a tested population.

I.5.5.1 In vivo assay

I.5.5.1.1 Mammalian model

Using a human model is excluded because *L. monocytogenes* infection causes high fatality. Primarily, animal models including laboratory mice and guinea pigs have been widely used for virulence assays since they were first described as host animals for *L. monocytogenes* (Cabanes et al., 2008; Murray et al., 1926). The first systematic murine infection model was reported in the early 1960s (Mackaness, 1962). The animals infected with *L. monocytogenes* either intragastrically or intravenously, and virulence is evaluated by several methods. Difference in virulence between strains are compared by LD50 or LT50 values as well as the number of bacteria colonized within infected target organs by enumerating them.

In nature, L. monocytogenes causes diseases through gastrointestinal tract by ingestion of contaminated foods. The process of the bacteria infection in intestinal epithelial cells requires an interaction of InIA expressed on bacterial cell surface and epithelial cadherin (E-cadherin) of host epithelial cells (Gaillard et al., 1991). However, murine E-cadherin poses a difference in an amino-acid sequence which in turn does not interact with internalin. Thus, mice are relatively resistant to intestinal infection making the oral transmission of L. monocytogenes in mice model inefficient (Lecuit et al., 2001). The major differences in the in vivo infection mechanism concerning InIA and InIB among different species including human and the most widely used animal models such as mice, guinea pigs, rats, gerbils and rabbits are compared in Figure 8. For example, in species that possess E-cadherin, such as humans or guinea pigs, the bacteria primarily invade the epithelium of the intestinal villi through interaction with InIA and replicate in the underlying lamina propria. In contrast, in species deficient of functional Ecadherin such as mice, L. monocytogenes translocates through M-cells, phagocytic cells in the Peyer's patches of the ileum (Lecuit, 2005). Similarly, the bacteria show direct invasion of endothelial cells including those in the blood-brain barrier through interaction of inlB with MetC receptors in host such as humans and mice (Parida et al., 2002). However, for MetC deficient species such as guinea pigs, phagocytic cells such as macrophages (Kupffer cells in liver) indirectly mediate cell-to-cell spread.

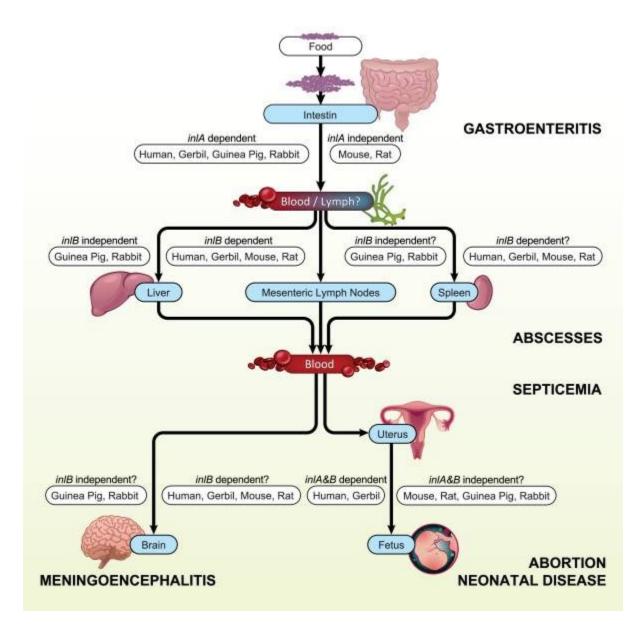


Figure 8. Physiological differences among laboratory animal species as well as humans and their importance in L. monocytogenes infection (Hoelzer et al., 2012).

I.5.5.1.2 Galleria mellonella model

Non-mammalian animal models were introduced to increase the screening power and avoid ethical problems in using mammalian hosts for pathogenesis studies, toxicology tests or

drug screening (Freires et al., 2017). The examples of these alternatives include roundworms (*Caenorhabditis elegans*) (Charão et al., 2015), fruit flies (*Drosophila melanogaster*) (Mansfield et al., 2004) and greater wax moth (*Galleria mellonella*) (Martinez et al., 2017). Utilization of *G. mellonella* larvae for testing virulence has been reported in a wide range of pathogens from eukaryotic to prokaryotic species (Fallon et al., 2012; Joyce and Gahan, 2010; Olsen et al., 2011; Seed and Dennis, 2008; Wagley et al., 2018; Wand et al., 2013; Wuensch et al., 2018).

There are numerous advantages in non-mammalian hosts (Mansfield et al., 2004). For example, they are often easier to manipulate than mammalian tests requiring less specialized handling techniques. It is more economical for testing a large panel of strains because the cost per animal as well as necessary facilities including animal husbandry is undoubtedly competitive. Additionally, one of the important positive prospects of *G. mellonella* as an *in vivo* model for evaluating virulence of human pathogens is the conserved innate immune response to microbial infections between insects and mammals. The immune system of *G. mellonella* larvae shows high structural and functional similarity to the innate immune response of mammals (Binder et al., 2016; Pereira et al., 2018; Tsai et al., 2016). The cuticle of the insect is the first barrier to pathogens as is the skin in mammalian hosts. The basic immune system is structured in hemolymph, analogous to mammalian blood, which contains hemocytes, comparable to mammalian neutrophils. The hemocytes show phagocytotic activity including phagocytosis of pathogens and destruction of them by superoxide production (Slepneva et al., 1999).

Finally, another advantage that make this animal model more favorable is that the larvae can be reared at 37°C which mimics the human core-temperature. Human pathogens are adapted to this temperature for expressing virulence determinants, therefore, incubation of the larvae at 37°C allows the analysis of microorganism behaviour at mammalian temperature and, more importantly, temperature-dependent virulence associated transcription regulators such as PrfA and σ B in *L. monocytogenes* (Ivy et al., 2010).

The application of *G. mellonella* virulence tests shows high conformity in *L. monocytogenes* studies. A correlation was found between the virulence of a strain in *G. mellonella* and that in mice (Mukherjee et al., 2010). Production of LLO was required for bacterial toxicity and growth in the larvae (Joyce and Gahan, 2010). Similarly, isogenic mutants with the deletions in core virulence genes (*prfA*, *plcA*, *hly*, *actA* and *virR*) genes, revealed significantly higher LT50 than the wild type strain (Martinez et al., 2017).

I.5.5.2 In vitro assay-cell culture models

It is amenable to compare the virulence potential of *L. monocytogenes* strains using *in vitro* models of infection because the bacteria invade a broad range of tissue culture cells (Marquis, 2006; Portnoy et al., 2002). One of the most well-established models is Caco-2 cells, a human

colon enterocyte-like cell line, first introduced in 1987 (Gaillard et al., 1987). The study showed that only pathogenic species (L. monocytogenes and L. ivanovii) induced their own phagocytosis by Caco-2 cells, as opposed to non-pathogenic species (L. seeligeri, L. welshimeri, and L. innocua). High congruency was observed between the Caco-2 cell line and mouse model in infection characteristics such as adhesion, invasion, and translocation (Jaradat and Bhunia, 2003). Other human intestinal tissue derived cell lines have been applied for *in vitro* assays in L. monocytogenes such as Int-407 from jejunum, HT-29 from colon, and HCT-8 from ileocecal epithelial cells (Araujo et al., 2018; Jagadeesan et al., 2011; Jaradat et al., 2003; Larsen et al., 2010). Also, due to the capacity of *L. monocytogenes* to invade and infect various cell types, cell lines derived from other tissues than intestinal epithelial cells or immune cells from different animals have been used as follows: HepG-2 cells from human liver (Kortebi et al., 2017); Vero cells from monkey kidney (Khan et al., 2014); CHO cells from hamster ovary (Alvarez-Domínguez et al., 1997); HeLa cells from human cervix (Weiglein et al., 1997); and BeWo cells from trophoblasts in human placenta (Lecuit et al., 2004). Another widely employed tissue culture is various macrophages cell lines (Ohya et al., 1998). Macrophage-like cell lines can internalize up to 20 bacteria per cell. The critical difference of macrophage cell lines is that they actively uptake the L. monocytogenes cells while the aforementioned epithelial cell lines require active invasion of L. monocytogenes. Therefore, an adequate in vitro culture type must be employed depending on the research aim regarding the step of the infection to be characterized.

However, the challenge in tissue culture models aroused with the growth of *L. monocytogenes* in the culture media as it is a facultative pathogen. To overcome the problem, the aminoglycoside antibiotic gentamicin is supplemented to infected cells subsequent to bacterial internalization at a bactericidal concentration in order to prevent extracellular bacterial replication (Jaradat and Bhunia, 2003). On the other hand, such membrane-impermeable antibiotics can also interfere with the results because it can enter the *in vitro* tissue cells and kill intracellular bacteria (Drevets et al., 1994). It was shown that while a comparatively high concentration of gentamicin (higher than 50 μ g/ml) is bactericidal for extracellular bacteria, no measurable effect was observed on intracellular bacteria during the first 8 h of infection in an early study using the mouse macrophage-like cell line J774 (Brundage et al., 1993).

Intracellular growth rate of wild-type *L. monocytogenes* is comparable to extracellular growth rate in rich media which is equivalent to doubling times of \approx 40 min. Invasion and internalization in a host cell followed by intracellular proliferation is the first step in infection. The bacteria start cell-to-cell spread to neighboring cells, propagating infection. The measurement of virulence *in vitro* is realized by plaque forming assay that measures the diameter of macroscopic plaques formed in monolayers of cells (Sun et al., 1990). This enables

the quantification of intracellular growth as well as cell-to-cell spread. *In vitro* virulence level measured using plaque forming assay showed a high correlation with mice infection model (Roche et al., 2001).

I.5.5.3 Phenotypic tests

A number of phenotypic tests have been developed to interpret virulence level by measuring the production of certain virulence factors in *L. monocytogenes*. The most crucial virulence factor is hemolysin called Listeriolysin O (LLO) and encoded by *hly* gene. The activity of LLO can be assessed by measuring the diameter of a hemolytic zone on blood agar (Dubail et al., 2000). This approach distinguishes the LLO mutant strains from a wild type strain. However, it is difficult to interpret among various strains with different LLO activities because the quantification may not be homogeneous due to the varying intensity of the hemolysis also because some strains produce very small zones which may be undetectable. In 1986, a microplate technique using erythrocyte suspensions was developed for the typing of *Listeria* species between hemolytic and nonhemolytic strains (Dominguez Rodriguez et al., 1986).

Similarly, the level of the two phospholipases C, phosphatidylinositol phospholipase C (PI-PLC) and phosphatidylcholine phospholipase C (PC-PLC), encoded by *plcA* and *plcB* genes respectively, can be used as a substitute method to estimate the virulence level (Goldfine and Knob, 1992). The phospholipases mediate the phagosomal lysis along with LLO in infected host cells. The method measures the phospholipases expressed in bacterial suspensions which are filtered and titrated. A study revealed that the phospholipases activity was correlated to cell infection phenotype to some extent (Roche et al., 2005).

The phenotypical methods for measuring virulence level have become secondary to high throughput genotypic assays, such as DNA microarray, because of their low sensitivity in discriminating between strains.

I.6 Listeria monocytogenes in foods

Some microorganisms such as *Salmonella, Campylobacter*, and *Listeria* pose pathogenic properties through contaminated food products, thus represent a considerable concern within the food industry due to their potential to establish infections in humans. As discussed earlier, *L. monocytogenes* is widely distributed in nature including soil, water, and vegetation as well as human carriers, all of which can contribute to food contaminations (Zhu et al., 2017). Moreover, sea water being suspected to be another major source of contamination, regulation of *L. monocytogenes* in fresh seafoods and related food products seems to be challenging (Leong et al., 2014).

Theoretically, food contamination by *L. monocytogenes* can occur at any point in the food chain, from raw food materials on farms, in food processing plants, in retail establishments and in the consumer's home. The first passage of *L. monocytogenes* to cause food contamination in food processing plants is to be carried by raw materials from natural environment including soil, vegetation and animal host to food processing facilities. Then by direct and indirect contact, including human interventions, the pathogen is delivered to final food products. The post-processing exposure of *L. monocytogenes*, such as at retails or home, is widely recognized as another predominant source of food contaminations (Jofré et al., 2016; Lakicevic et al., 2015).

A wide variety of foods have risks of carrying L. monocytogenes among which the most frequently associated foods are RTE deli meats and hot dogs, refrigerated pâtés or meat spreads, refrigerated smoked seafood, raw sprouts, unpasteurized milk and dairy products such as soft cheese made with unpasteurized milk (queso fresco, Feta, Brie, Camembert) (EFSA and ECDC, 2018). Recent report from the EFSA revealed that RTE food categories are typically associated with human listeriosis (Ricci et al., 2018). Despite the regulation on RTE foods (EU Regulation No 2073/2005 microbiological (EC) on criteria, https://eurlex.europa.eu/eli/reg/2005/2073/oj) (European Commission, 2005), human listeriosis caused by RTE foods is significant increasing (Ricci et al., 2018). The fundamental reason is because most of RTE foods do not require any heat treatment such as heating in microwave or cooking on pan or in oven which could reduce number of live bacterial cells. Along with the demands from consumers on RTE foods which are mildly treated, fresh and with high nutritional value, there is increasing chance of contamination to evoke listeriosis.

L. monocytogenes is known to survive over long period of time in FPE, and it is often believed to be persistent strain in FPE that result recurring contamination in foods. Various molecular subtyping methods permitted identification of a persistent strain. A particular subtype that is re-isolated over an extended period of observation time is defined as persistent strain (Ferreira et al., 2014; Keto-Timonen et al., 2007). However, determining an isolate as a persistent strain is difficult. Firstly, it is not feasible to discriminate a persisting strain in specific FPE from isolates with the identical subtype that are reintroduced at different times via contaminated incoming raw materials. For example, a contaminated personnel, equipment or material can repetitively introduce the same strain from outside the FPE. On the contrary, persistent strains could have been mis-categorized as a non-persistent or sporadic strain due to a non-compliance between the introduction of the strain to FPE and the observation period. Also, real persistent clones may have been isolated only sporadically because it is not physically possible to sample all bacteria present in FPE. Consequently, only a subset of the population is sampled by random sampling practices and persistent strain could be omitted or taken as a sporadic strain. It is also disputed whether certain *L. monocytogenes* subtypes colonize specific favorable niches in FPE and thus persist over a long period, however, there has been no report of persistent or sporadic can be a challenging task.

I.7 Foods related stress response determinants

Microorganisms are continuously exposed to environmental perturbations which are considered as stresses in broad term. A mild stress means a stress that causes reduced growth rate while a severe stress refers to a stress that negatively impact on cell survival (NicAogáin and O'Byrne, 2016). It requires extra energy for cells to keep homeostasis and adapt to the stress conditions to which they are exposed. The extra costs include synthesis of new cell components or macromolecules to protect themselves from the adverse condition.

In FPE and food matrices, *L. monocytogenes* is exposed to a number of stress factors including cold temperatures, osmolar shock, acids, disinfectants treatments, etc. The adaptation ability of *L. monocytogenes* to these stresses promotes its survival and transmission in the food chain. Several hypotheses were proposed to explain the growth of *L. monocytogenes* in food industry including colonization of niches, biofilm formation, and activation of resistance mechanisms (Bergholz et al., 2018). The presence of the general stress response attributes to the stress tolerance in *L. monocytogenes*. Under a stress condition, oB mediates transcriptional responses to provide homeostatic and protective functions (Guldimann et al., 2016).

A large-scale study using 166 strains was performed in order to find potential relationships between *L. monocytogenes* genotypes and food-related stress tolerance phenotypes including tolerances to cold, salt, acid, or desiccation stresses. Interestingly, it found some overlapping stress tolerance phenotypes: salt and acid sensitive (n = 10), salt sensitive and desiccation tolerant (n = 6), cold and acid tolerant (n = 5), and cold tolerant and salt sensitive (n = 5). A whole genome single-nucleotide-variants phylogeny found the close relatedness among sensitive and tolerant isolates implying that minor genetic differences can influence the stress tolerance of *L. monocytogenes* (Hingston et al., 2017b).

I.7.1 Osmotic Shock

Various salts including NaCl are commonly used in food products to repress the bacterial growth. The most relevant example is RTE foods including cheese or daily meet products which have long shelf lives. However, *L. monocytogenes* is highly tolerant to salt stress demonstrating survival under 40% NaCl and growth under 13% NaCl (Liu et al., 2005; Shabala et al., 2008). Studies showed the phylogenetic variations in the salt tolerance which further depends on other growth conditions. In a study using 40 strains, lineage I strains were shown to be more salt tolerant (6% NaCl) than Lineage II strains at 37°C but not at 7°C (Bergholz et al., 2010). Another study also revealed different salt tolerance levels among serotypes under various conditions using 138 isolates. At pH neutral (pH 7·4) and mild acidic conditions (pH 5·5) serotype 4b strains showed highest tolerance to high NaCl at 30°C while serotype 1/2b showed

the highest tolerance to high NaCl at 7°C (Veen et al., 2008). A study of Hingston et al. (2017b) using 166 strains demonstrated a varying level of salt tolerance among CCs: in 6% NaCl, CC7 (1/2a) isolates were salt sensitive while CC2 (4b) and CC11 (1/2a) were salt tolerant demonstrating the existence of genetic variation on salt resistant trait at the clonal level rather than the serotype level.

As a primary response of *L. monocytogenes* to hyperosmotic shock, the bacteria accumulate potassium (K⁺) and its counterion glutamate in cytoplasm (Patchett et al., 1992). This response under hyperosmotic shock depends not only on the genetic composition of the strain but also on the surrounding availability of osmoprotectants in the food material (de Zwart et al., 2003). Osmoprotectants or compatible solutes are utilized in osmoadaptation such as glycine betaine, carnitine, proline, glycerol, and trehalose that can be found in foods at varying levels (Inguglia et al., 2017). The transfer of solutes is mediated by compatible solute systems such as glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC in *L. monocytogenes* (Sleator et al., 2003).

Transcriptional analyses are providing more information on genes that are responsible for the response against salt stress. Bergholz et al. (2012) found a large set of transcripts that were altered during the adaptation to salt stress (6% NaCl). The majority of these changes initiated by osmotic stress were temperature-dependent, observed at 2 distinct growth temperatures at 37°C and 7°C, indicating that the mechanism to adapt to osmotic stress differs in a temperature-dependent manner. At both temperatures, short term transcriptional change upon salt stress included increased transcript levels of σ B and σ B-regulated genes. They observed significant upregulation of 55 σ B genes by salt stress at both 7°C and 37°C which had similar patterns of induction over time. Similarly, they observed increased expression of *mrpABCDEFG*, encoding a sodium/proton antiporter, and deletion mutation of the antiporter resulted in a longer lag phase indicating its role in adaptation to salt stress at both temperatures. Another study showed that the transcriptional levels of genes associated with a phosphoenolpyruvate-dependent sugar phosphotransferase system were dependent on NaCl concentrations (2.5, 5, and 10%) in *L. monocytogenes* (Bae et al., 2012).

I.7.2 Cold shock

L. monocytogenes is one of the few psychrotrophic pathogens that contributes significantly to the risk of food safety. It is less competitive at low temperatures than some psychrotrophic food spoilage germs such as several *Pseudomonas* species, however, it is still able to multiply at refrigeration temperatures. Aforementioned study by Hingston et al. (2017b) compared cold tolerance capabilities across different genotypes of *L. monocytogenes* strains to find no significant difference, however, in general serotype 1/2c revealed lower cold tolerance than others even though there existed inter-strain variation. A study revealed that

the level of cold tolerance at 4°C was associated with expression of cold tolerance genes, including putative cold shock protein A (*CspLA*) and cyclic-di-AMP phosphodiesterase (*pgpH*) (Arguedas-Villa et al., 2010). Cold tolerant strains expressed higher transcriptional activation of *cspLA* and *pgpH* after exposure to cold stress compared to the cold sensitive strains. Several mechanisms involved in *L. monocytogenes* response to cold have been implicated including cell membrane-based responses, accumulation of low molecular weight solutes, Csps, cold acclimation proteins (Caps), adaptive regulatory proteins, general stress response proteins, and so on (Tasara and Stephan, 2006).

Membrane fluidity is affected by environmental temperatures and bacteria modify the composition of the membrane, particularly in terms of lipid content to maintain the bacterial homeostasis. The process includes a change in the fatty acid chain lengths, an alteration in the degree of fatty acid unsaturation, and a change in the type of branching at the methyl end of the fatty acids (Suutari and Laakso, 1994). A recent study revealed that the principal in altering fatty acid composition of cell-membrane lipids in *L. monocytogenes* is by desaturation of existing fatty acids (Hingston et al., 2017a).

Csps, Caps and other adaptive regulatory proteins play a role in cold adaptation of *L. monocytogenes* (Bayles et al., 1996). Csp family consists of small, highly conserved, and structurally related nucleic acid binding proteins widely distributed among prokaryotes. CspLA, CspLB, and CspD were found in *L. monocytogenes* and their role in cold tolerance as well as osmotic stress tolerance were evaluated (Schmid et al., 2009). The result demonstrated different functional importance in response to those stresses: CspLA >CspD>CspLB in response to cold stress versus CspD>CspLA/CspLB in response to osmotic stress. Another study found overexpression of a low molecular mass protein when transferring *L. monocytogenes* from 30 to 5°C. It is the case for the ferritin-like protein (Flp), a polypeptide composed of six 18 kDasubunits able to oxidize and sequester numerous iron atoms and the *flp* transcripts were overexpressed upon thermal stresses including cold stress (30 to 4°C) as well as heat stress (30 to 49°C) (Hébraud and Guzzo, 2000).

One of the mechanisms used by *L. monocytogenes* to combat cold shock is the accumulation of low molecular weight solutes including glycine betaine and carnitine which are abundant in food matrices. This method also conferred resistance to osmotic stress. The increase in interacellular solute levels as cryoprotectants may help to decrease loss of intracellular water from the cell when temperatures decrease. A study showed that when *L. monocytogenes* was incubated in the presence of compatible solutes, bacterial generation time decreased significantly at 4°C. Especially, Gbu-mediated glycine betaine uptake at 4°C significantly promoted chilled-cell growth (Angelidis and Smith, 2003).

The role of σB in adaptation to cold stress is controversial. A study found both σB dependent and σB -independent mechanisms on cold adaptation of *L. monocytogenes* (Chan et al., 2007). Even though σ B activity was induced during the first 30 min of cold shock (37 to 4°C) in BHI medium, it did not induce σ B-dependent and σ B-independent genes. Expressions of cold stress genes *ltrC* and *bsh* were partially σ B-dependent in stationary phase at 4°C, however, expressions of *opuCA*, *fri* (also called *flp* above), and *oppA* were σ B-independent during growth at 4°C. Moreover, the study found that σ B was not required for *L. monocytogenes* growth at 4°C by demonstrating that σ B deletion mutant did not show reduced growth at 4°C compared to the wildtype.

Other systems have been suggested to play a role in cold stress adaptation of *L. monocytogenes*. In the genome of EGDe, there are 16 two-component regulatory systems, among which 15 are complete signaling systems and 1, encoded by *Imo2512* (*degU*), is an orphan response regulator (Glaser et al., 2001). Pöntinen et al. (2015) found that histidine kinases, belonging to two-component regulatory system was important for the growth and adaptation of *L. monocytogenes* under cold temperatures, and also found the histidine kinases encoding genes, *yycG* and *lisK*.

I.7.3 Acid shock

L. monocytogenes has been isolated from several food products with acidic pH indicating its ability to tolerate low pH and its ability to tolerate acid varies among strains (Koutsoumanis et al., 2003). Studies found various mechanisms of *L. monocytogenes* that cope with acid stress including the glutamate decarboxylase (GAD) system, adaptive acid tolerance response (ATR), and the arginine deaminase (ADI) system.

One of the most well-known acid tolerance mechanisms in *L. monocytogenes* is the GAD system. It is proposed that the GAD system relies on the glutamine/ γ -aminobutyric acid (GABA) antiport system as well as an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and, therefore increase the internal pH of the organism to facilitate pH homeostasis. A study demonstrated that the acid resistance of a strain was linked to different regulation of the genes encoding the decarboxylase and transporter (Feehily et al., 2014). The study also found that the GAD system plays a significant role in the overall virulence in mice model which is relevant to the low pH condition in host body such as gut environment.

The ADI system is involved in a variety of Gram-positive microorganisms for an increased survival at acidic environments (Cunin et al., 1986). The ADI pathway consists of three enzymes: ADI encoded by *arcA*, ornithine carbamoyl-transferase encoded by *arcB*, and carbamate kinase encoded by *arcC*. Arginine is transported into the cells via a membrane antiporter *arcD* then converted to ornithine, CO₂, ammonia and ATP by *arcABC* genes. During this process, the by-product ammonia can form NH₄⁺ in association with intracellular protons which lead to an increase in the cytoplasmic pH. A study showed a functional ADI system in *L. monocytogenes* that is implicated in survival at low pH and virulence *in vivo* and found a

putative activator of ADI genes, namely ArgR as a regulator of the ADI system (Ryan et al., 2009). Interestingly, the transcription of *arcA* and *argR* were both oB and PrfA-dependent suggesting a role for the ADI system in both stress response and virulence.

A study confirmed the presence of the ATR system in *L. monocytogenes* and showed that pre-exposure to sub-lethal pH (pH 5.0-5.5) increased survival in lethal pH (pH 3.0-3.5) condition (Davis et al., 1996). Pre-exposure to sublethal acid (pH 5.0) stress at 37°C or 22°C significantly induced acid-stress (pH 3.5) adaptation in tryptic soy broth supplemented with 0.6% yeast extract, however, no acid-stress adaptation was induced at 4°C (Shen et al., 2013). Some studies showed that this protective effect was extended to other stresses such as heat and osmotic shock (Lou and Yousef, 1996; O'Driscoll et al., 1996). Ferreira et al. (2003) showed that survival rate of sigB deletion mutant was lower than the wild-type strain after being pre-exposed to sub-lethal pH (pH 2.5), however, the oB activity on acid resistance was growth phase dependent demonstrating that oB-independent mechanism(s) regulates growth phase-dependent ATR.

I.7.4 Disinfectants and heavy metal

Adaptation of L. monocytogenes to food processing plants is also associated with resistance to disinfectants used in the food industry. The difference in MIC level shows sensitivity between strains of L. monocytogenes to disinfectants (Aase et al., 2000). The decreased susceptibility of *L. monocytogenes* to quaternary ammonium compounds (QACs) was at least partially caused by activation of efflux pumps that reduced intracellular accumulation of QACs (Romanova et al., 2006). However, a study revealed that all L. monocytogenes isolates carried the mdrL gene which encodes a multidrug efflux pump, and the orfA gene, a putative transcriptional repressor of mdrL, independent of QAC sensitivity indicating that those ubiquitous genetic elements are not responsible for the resistance to QACs (Mereghetti et al., 2000). Another study found that the expression of mdrL was significantly increased upon adaptation to BC, the most widely used QAC, in originally sensitive L. monocytogenes isolates, while originally tolerant strains expressed low to intermediate levels of *mdrL* indicating its partial role in adaptation to BC (Romanova et al., 2006). The originally tolerant strains to BC could be due to the intrinsic resistance attributed to modifications in cell wall such as thickness and the degree of cross-linking of peptidoglycan in the cell wall (McDonnell and Russell, 1999).

Aforementioned LGI-1 which contributes high virulence specific to CC8 in a large outbreak in Canada also plays a role in stress resistance (Gilmour et al., 2010). LGI-1 carries *emrE* gene, encoding a small multidrug-resistant efflux pump, which is responsible for the increased tolerance to QACs that are often used as sanitizing agents in the food processing industry. In the presence of BC, the expression level of *emrE* was upregulated demonstrating the possible adaptation of *emrE* harbouring strains in FPE (Kovacevic et al., 2016). Other genetic elements associated with BC tolerance such as plasmid-born *bcrABC* resistance cassette (Elhanafi et al., 2010) and novel transposon Tn6188 (Müller et al., 2013) were identified. The *bcrABC* sequence was highly conserved among strains and vast majority of BC resistant strains were discovered to harbour *bcrABC*, regardless of serotype or source (Dutta et al., 2013). Tn6188 also confers increased tolerance towards other QACs and it was particularly abundant among ST121 strains suggesting clonal structure of *L. monocytogenes* population with regard to stress resistance phenotype (Rychli et al., 2017).

Stress resistance as a way of environmental adaptation also involves resistance to heavy metals, mostly cadmium and arsenic (McLauchlin et al., 2004). Evidences show that resistance to heavy metals are associated with resistance to QACs. In a study using 192 *L. monocytogenes* strains, all BC-resistant strains were also resistant to the heavy metal cadmium (Mullapudi et al., 2008). This arose from the fact that the same plasmid (e.g., pLM80) that carries *bcrABC* also harbours the cadmium efflux determinant *cadA2* (Katharios-Lanwermeyer et al., 2012). Other *cad* genes including plasmid-borne *cadA1* and chromosomal *cadA3* and *cadA4* also confer the resistance to cadmium. Interestingly, *L. monocytogenes* virulence study using *G*. mellonella model showed negative effect of *cadA4* gene on virulence, although it showed positive effect on biofilm formation (Parsons et al., 2017).

I.8 Regulation and surveillance of *L. monocytogenes*

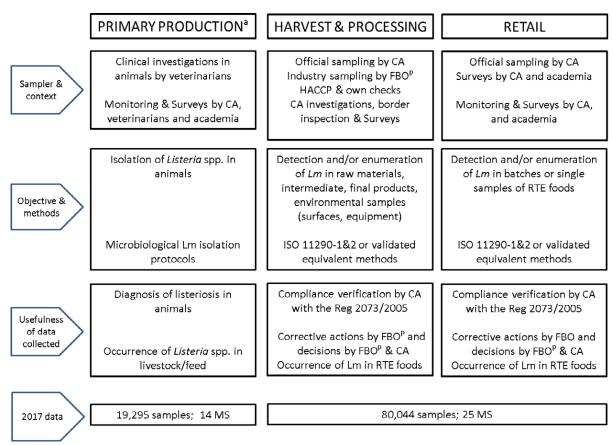
As a foodborne pathogen, *L. monocytogenes* demands attentive control for its contamination in foods. The European Commission Regulation No. 2073/2005 established microbiological criteria for foods applicable from 2006 based on which food business stake holders should ensure food safety at each point of the food chain, 'from farm to fork' (European Commission, 2005).

In case of *L. monocytogenes*, there are three main categories proposed specially for RTE foods as detailed in Table 4.

Table 4. Food	safety c	riteria	(modified	from	European	Commission,	2005).	CFU:	Colony
Forming Unit.									
Food category			Limits	Ar	nalytical	Stage	where	the	

Food category	Limits	Analytical	Stage where the
		reference method	criterion applies
Ready-to-eat foods intended	Absence	EN/ISO 11290-1	Products placed on the
for infants and ready-to-eat	in 25 g		market during their
foods for special medical			shelf-life
purposes			
Ready-to-eat foods able to	100	EN/ISO 11290-2	Products placed on the
support the growth of <i>L</i> .	CFU/g		market during their
monocytogenes, other than			shelf-life
those intended for infants	Absence	EN/ISO 11290-1	Before the food has left
and for special medical	in 25 g		the immediate control of
purposes			the food business
			operator, who has
			produced it
Ready-to-eat foods unable to	100	EN/ISO 11290-2	Products placed on the
support the growth of <i>L</i> .	CFU/g		market during their
monocytogenes, other than			shelf-life
those intended for infants			
and for special medical			
purposes			

Australia and New Zealand apply the same policy for the control of *L. monocytogenes* under the scheme 'Standard 1.6.1' in RTE foods which are divided into two criteria based on whether growth of *L. monocytogenes* will or will not occur in the RTE food (Australian Government). In USA, Food and Drug Administration have kept a conservative approach in


regulation of *L. monocytogenes* called 'zero tolerance'. According to the policy, for the RTE foods that support the growth of *L. monocytogenes*, the complete absence of the pathogen is required and this action seems to be maintained in the future (Archer, 2018).

Surveillance of human listeriosis is managed at national and international level which focused on invasive forms of *L. monocytogenes* infection, mostly manifested as septicemia, meningitis or spontaneous abortion.

Since 1999, it has been mandatory to report human listeriosis to public health agencies in France (Goulet et al., 2008). The National Public Health Agency collects epidemiologic data including food consumption histories from all patients by using a specific hypothesis-generating questionnaire with laboratory-confirmed infection of *L. monocytogenes*. At the National Reference Centre for *Listeria*, all human and food isolates are characterized to detect clusters of genetically related strains (Moura et al., 2017). To identify the original source of a listeriosis case, food and environmental investigations are conducted systematically, for example, in refrigerators of patients with neurolisteriosis or in hospital kitchens if the listeriosis is suspected to be hospital-acquired. Once incriminated food products are identified, the Ministry of Agriculture conducts investigations in the producers of the foods.

In EU, listeriosis is monitored in most of the European countries by EFSA and the European Centre for Disease Prevention and Control (ECDC) (EFSA and ECDC, 2018). The invasive forms of listeriosis are reported and data are available on ECDC website (https://ecdc.europa.eu/en/home). Monitoring of *L. monocytogenes* in RTE food is conducted in several points along with the food chain. The Figure 9 shows different monitoring points that are carried out by various agencies.

Bibliography

CA: competent authorities; FBOp: food business operator; HACCP: Hazard Analysis and Critical Control Points; RTE: ready-to-eat; Lm: *Listeria monocytogenes*; MS: Member State in European countries; FBOp, Food Business Operator

(a): Primary production sector: samples from animals and feed.

Figure 9. Overview of *L. monocytogenes* testing along the food chain according to the sampling stage, the sampler and the objective of the sampling (EFSA and ECDC, 2018).

II Bacterial biofilm

II.1 General features

The first documented discovery of microbial biofilm dates back to 17th century by Van Leeuwenhoek, who observed the microbial biofilms on tooth surfaces using his microscope (Donlan, 2002). In 1940, Heukelekian and Heller (1940) discovered that growth and activity of *E. coli* were substantially enhanced in the presence of solid surfaces. Zobell (1943) observed that the bacteria population on solid surfaces was dramatically denser than in the surrounding medium.

Biofilm is a community of microbial sessile cells that aggregate on a biotic or abiotic substratum, sometimes at a solid-liquid interface, often embedded in self-produced of extracellular polymeric matrix. Biofilm formation is a cooperative group behaviour that engages a comprehensive crosstalk within a bacterial population allowing them to behave like a multi-cellular organism. Microorganisms form biofilms on a wide range of surfaces, including living tissues, indwelling medical devices, industrial piping systems, natural aquatic systems, food processing equipment, or sewage. The most notable physiological change observed in bacterial cells growing in biofilm is the change in composition of the bacterial membrane. Different fatty acids contents of cells within a biofilm as compared to their planktonic growing counterpart were observed (Dubois-Brissonnet et al., 2016; Gianotti et al., 2008). The content of saturated fatty acids increased in biofilm cells compared to planktonic cells and branchedchain fatty acids decreased concomitantly in Gram-positive bacteria (L. monocytogenes and Staphylococcus aureus). This change in membrane lipid composition enhances bilayer stability and increases membrane phase transition temperature resulting in a higher density of packing (Denich et al., 2003). These physiological changes occurring during biofilm formation allow the bacteria better equipped for stressful conditions encountered in their environment.

Biofilm mode is the most common and successful way of life for microorganisms in nature (Flemming et al., 2016). Few reasons have been proposed to explain the formation of microbial biofilms (Jefferson, 2004). Firstly, biofilms are a way of microbial defense mechanism that increases survival in nature. Biofilms are resistant to physical forces such as the shear forces produced, for example, in pipes or ducts or by flow of blood or saliva that could otherwise remove cells. Cells in biofilms can also resist phagocytosis by protozoa and immune cells and delay the penetration of toxic substances such as antimicrobial reagents. Cells in biofilms can withstand adverse changes such as nutrient deprivation or exposure to extreme pH changes. These advantages could have served as an evolutionary force for microorganisms to build biofilms in order to improve the chances of survival. Second, microorganisms form biofilms in order to allow cells to remain in a favorable niche. Human and animal bodies are a favorable habitat for bacteria because it is nutrient rich and relatively

stable concerning water content, oxygen availability, and temperature. Also, in nature, on abiotic surfaces in flowing systems, biofilms fix bacterial cells where nutrients are abundant and constantly being replenished. Third, biofilms are formed in order to allow cells to live in close association with each other. The cells in community can facilitate nutrient and genetic exchange by cell-to-cell communication which increase chances for survival in general. Upon change in their surroundings, the cells in biofilms exert phenotypic heterogeneity similar to cellular differentiation seen in multicellular organisms. This behaviour enables cells in biofilms to adjust their metabolic processes and defend themselves from deleterious conditions.

II.1.1 Formation steps

Biofilm formation takes place as a sequence of continuous steps which can be categorized into, for example, three steps including adhesion, maturation, and dispersal or five steps including reversible attachment, irreversible attachment, maturation I and II, and dispersion (Monroe, 2007; Stoodley et al., 2002b; Vogeleer et al., 2014). Each step of this process depends on various factors such as the microbial species, physiological status of the microorganism, characteristics of substratum as well as environmental conditions. Quorum sensing, a cell–cell communication mechanism, plays a crucial role in biofilm formation. As it requires cooperative bacterial interaction, quorum sensing synchronizes gene expression in response to population cell density and coordinates the switch from planktonic to sessile lifestyles and *vice versa* (An et al., 2006; Li and Tian, 2012; Solano et al., 2014). Figure 10 visualizes the biofilm forming steps.

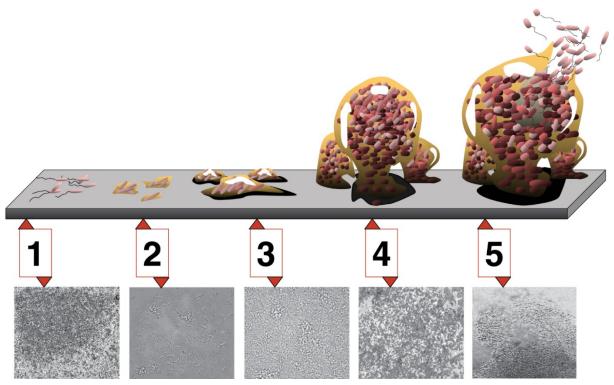


Figure 10. The five stages of biofilm development (Monroe, 2007). Stage 1, initial attachment: Planktonic bacteria adhere to surface. Stage 2, irreversible attachment: Cells aggregates form micro colonies and excrete extracellular polymeric substances. Stage 3, maturation I: A biofilm starts to maturate with cells arranged in multi-layered clusters. Stage 4, maturation II: Three-dimensional (mushroom-like) structure and further maturation of the biofilm. Stage 5, dispersion: Cells in the biofilm disperse into planktonic bacteria, ready to colonize other surfaces. Each stage of development is paired with a photomicrograph of a developing *P. aeruginosa* biofilm. All photomicrographs are shown to same scale. Image Credit: D. Davis

In general, the initial step is the colonization of abiotic and biotic surfaces by planktonic cells which is called adhesion. There exist several terms to describe the first step of the biofilm formation including adhesion, attachment, or adsorption. Attachment of a cell to a surface is termed adhesion while cell to cell attachment is called cohesion (Garrett et al., 2008). Fletcher described that adsorption is the accumulation of a microorganism on a substrate which followed by attachment, consolidation of the interface between the organism and the surface (Fletcher and Loeb, 1979). In liquid, microbial cells move toward a surface either by physical force including gravitation or voluntary movement propelled by bacterial appendages such as flagella. When bacteria reach the surface, various factors play a role in the adsorption process such as available energy, surface functionality, bacterial orientation, temperature and

pressure conditions (Garrett et al., 2008). The initial and reversible interaction between a bacterial cell and a surface involves non-specific Lifshitz-van der Waals, Lewis acid-base, and electrostatic forces (Renner and Weibel, 2011; van Oss, 1993).

The reversible attachment is strengthened by adhesins presented on the bacterial cell surface or on cellular appendages such as pili and fimbriae (Rosan and Lamont, 2000). Once cells adhere or irreversibly attached to a surface, they are not washed away by gently washing. Adhered cells often produce extracellular polymeric substances (EPS) that form matrix between a cell and surface as well as between adjacent cells. Also, the sessile cells multiply in numbers. As the matrix and cells accumulates, the biofilm architecture begins to establish and become mature. The developed mature biofilms contain millions of tightly packed cells that are represented by pillar- and mushroom-shaped structures that project into the surrounding medium (Hall-Stoodley et al., 2004).

The last step of biofilm development is the detachment of cells from the biofilm to disperse into the environment. The dispersal of biofilm cells is an essential stage that contributes to transmission of bacteria from environmental reservoirs to human hosts biological dispersal, bacterial survival, and disease transmission (Kaplan, 2010). Dispersal is an elaborated process that involves environmental signals, signal transduction pathways, and effectors. The mechanism of dispersal includes synthesis of enzymes that degrade adhesins, recovery of cell motility, surfactant production, cell lysis and swimming out of motile cells from the inner region of microcolony called 'swarming dispersal' (Karatan and Watnick, 2009). One example of initiating biofilm dispersal is a change in surrounding nutrient level (Sauer et al., 2004). Both decreases and increases in environmental nutrients composition induce dispersal of biofilm cells.

II.1.2 Matrix

In most biofilms, matrix accounts for over 90% of total mass most of which are highly hydrated (Flemming and Wingender, 2010). The matrix consists of various types of biopolymers, known as extracellular polymeric substances (EPS). Initially, EPS indicated 'extracellular polysaccharides' due to the abundance of polysaccharides in the matrix. However, EPS became to define extracellular polymeric substances since studies revealed that other components such as extracellular proteins, nucleic acids, lipids and other biopolymers such as humic substances are produced by microorganisms to form matrix of biofilms (Flemming et al., 2007; Flemming and Wingender, 2010). Most of the components including exopolysaccharides, extracellular proteins, and DNA are hydrophilic molecules that provides highly hydrated environments to cells in biofilms. Various studies indicate that biofilms are hydrogels meaning that polymer chains trap water in order to protect the biofilms from fluctuations in water availability and shear stresses in the environment. This allows protection

of bacterial cells in biofilms from surroundings and thus increase the survival. As a respond to desiccation stress, bacteria actively produce EPS and a study revealed that *L. monocytogenes* in biofilms was highly resistance to desiccation stress (Hansen and Vogel, 2011; Roberson and Firestone, 1992).

Exopolysaccharides were believed to be major composition of the EPS, however, in environmental biofilms, polysaccharides contributed to only a minor part in the matrix (Frølund et al., 1996). Polysaccharides, with a molecular mass of $0.5 - 5 \times 10^6$ Da, can be visualized by electron microscopy as a fine strand attached to the cell surfaces. Exopolysaccharides may either be homopolymeric or heteropolymeric in composition. However, most polysaccharides are heteropolysaccharides, a mixture of neutral and charged sugar residues varying in size from disaccharides to heptasaccharides. Most studied exopolysaccharides include alginate, xanthan and dextran, cellulose, and colanic acid (Nwodo et al., 2012). In general, polysaccharides in EPS provide diverse benefits including adhesion to surfaces, protection from various stresses, and structuring and maintaining biofilms (Limoli et al., 2015). Neutral polysaccharides function as structural components while charged or hydrophobic polysaccharides are involved in ion exchange and sorption (Flemming et al., 2007).

Extracellular proteins are present in considerable amount in biofilm matrix which was reported to exceed the content of polysaccharide on a mass basis (Conrad et al., 2003), especially in environmental biofilms such as sludge and biofilms in sewers (Jahn and Nielsen, 1998). Various extracellular enzymes are detected which are involved in the degradation of biopolymers including water soluble and insoluble compounds and organic particles. The enzymes include protease, peptidase, endocellulase, chitinase, lipase, phospatase and so on. Some enzymes degrade EPS components to produce low-molecular products that can be utilized as carbon and energy sources. Other enzymes have a function in dispersal step of biofilms to release sessile cells into planktonic cells or a function as virulence factors in infection process. There are also non-enzymatic proteins that are involved in structuring the matrix. Several lectins and lectin-like proteins were reported for their function in stabilization of the matrix network in several species for example, *Streptococcus* mutants (Lynch et al., 2007), *Azospirillum brasilense* (Mora et al., 2008) and *Pseudomonas aeruginosa* (Diggle et al., 2006).

Various species produce extracellular DNA in their biofilm matrix which, in some species, such as *S. aureus* and *P. aeruginosa*, plays an integral role as a major matrix component (Montanaro et al., 2011). The common mechanism to release eDNA is by cellular autolysis, however, some studies found that biofilm eDNA is different from genomic DNA implying that eDNA is actively produced and transported to extracellular biofilm matrix (Böckelmann et al., 2006).

II.1.3 Localization

II.1.3.1 Natural environment

There are fossil records that show evidences of biofilm formations which date back to few billion years (Rasmussen, 2000; Westall et al., 2001). The evidences are found particularly in hydrothermal environments. Comparable morphological similarity was observed between fossil biofilms and modern biofilms found in hot springs or deep-sea vents (Reysenbach and Cady, 2001; Taylor et al., 1999). It is plausible that hostile and fluctuating environmental conditions of primitive earth promoted biofilm formation as an adaptive response that could provide microorganisms homeostasis. It was believed that bacterial planktonic mode of life proceeded sessile mode of life. However, concurrent evolutionary development of both sessile and planktonic forms has been suggested evidenced by fossil biofilms as well as catalytic and protective conditions offered to sessile microorganisms (Stoodley et al., 2002b).

The structural features of biofilms are found to be generally isotropic in diverse environments (Hall-Stoodley et al., 2004). Moreover, *in vitro* grown biofilms by single species and biofilms formed by mixed species in nature exhibited similar overall structural characteristics (Costerton et al., 1995). In quiescent waters where shear force is not apparent, biofilms tend to form mushroom or mound-like structures (Stoodley et al., 2002b). However, under high unidirectional flows, the biofilm cell clusters elongate in the downstream direction to form filamentous streamers (Stoodley et al., 1999). The highly hydrated structure of biofilms grants viscoelastic behaviour when grown under flow either in nature or *in vitro* (Stoodley et al., 2002a). This allows biofilms to withstand water fluctuation and shear stresses that occurs periodically in nature due to seasonal and weather changes.

Microbial biofilms are often found in extreme environments, such as in acid mine drainage (at a pH of 0) where the acidophiles contribute to acid mine drainage and presumably iron and sulfur cycles as well (Edwards et al., 2000). In thermal springs, cyanobacterial biofilms are extensively observed (Ward et al., 1998) and biofilms are also observed in the desert-like lake ice cover in Antarctica (Paerl and Priscu, 1998). Various biological processes were observed including photosynthesis, nitrogen fixation and fermentation in the biofilms formed in these extreme environments. In the marine environment, floating biofilms which are not bound to surfaces, often referred to as marine snow, are investigated (Caron et al., 1986). These macroaggregates are an assembly of bacterial cells, organic and inorganic materials that are involved in biogeochemical transformation of particulate organic carbon in the pelagic environment.

II.1.3.2 Medicine domain

Various bacteria adhere and form biofilms inside or on the surface of host tissues and some of them lead to deleterious infections. The profound knowledge of biofilm formation from environmental studies helped understanding biofilm infections. Now, it is well recognized that biofilm formation is a crucial aspect of many bacterial infections, including urinary tract infections, native valve endocarditis, osteomyelitis, dental caries, middle ear infections, medical device-related infections, ocular implant infections, and chronic lung infections in cystic fibrosis patients (Donné and Dewilde, 2015). It is more challenging to treat infections established in the format of biofilms, because biofilms tolerate antimicrobial agents at concentrations of 10 to 1,000 times higher than that are needed to kill isogenic planktonic bacteria.

Complex interactions between biofilm pathogens and the host inflammatory response are involved in order to modify the host environment and alter the phenotype of the bacteria that contribute to the pathogenesis of biofilm infections (Hall-Stoodley et al., 2004).

One thoroughly documented example is cystic fibrosis pneumonia, an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (Høiby et al., 2010). This results in dysfunction of electrolyte secretion and absorption primarily manifesting dysfunction in respiratory system. Main features include more viscous respiratory mucous layer and impaired mucociliary clearance due to the reduced hydration of the airway surface fluid. It leads to subsequent airway obstruction and progressive destruction of the airway epithelium developing to respiratory failure. Colonization of the lower respiratory tract of CF patients begins with S. aureus and Haemophilus influenzae in childhood and transfer to P. aeruginosa from early adulthood (Koch and Høiby, 1993). P. aeruginosa in lung grows in biofilms that cause persistent chronic infections due to their increased tolerance to antibiotics, resistance to phagocytosis and other innate and the adaptive immune system. This leads to immune complex-mediated chronic inflammation manifested by polymorphonuclear leukocytes which causes damages in the lung tissue. In cystic fibrosis, P. aeruginosa biofilms establish antibiotic resistant through several mechanisms including chromosomal β -lactamase, upregulated efflux pumps, and mutations of antibiotic target molecules in the bacteria (Høiby et al., 2010).

Implant contaminations are another main infection caused by biofilms. The causative medical devices include intravenous catheters, peritoneal dialysis catheters, cardiac pacemakers, prosthetic heart valves, joint prostheses, cerebrospinal fluid shunts and endotracheal tubes (Hall-Stoodley et al., 2004). The most frequently associated bacteria are *S. epidermidis*, *S. aureus*, *P. aeruginosa* and other opportunistic bacteria that infect compromised host under invasive medical intervention. The infection caused by biofilm

formed on medical implants is termed as 'polymer-associated infections' (Eiff et al., 1999; von Eiff et al., 1999). The most profound feature of biofilms produced by staphylococci is abundant amount of EPS encasing cells to protect against host immune defences and antibiotic treatment.

II.1.3.3 Food industry

Microbial contamination of food products is of great concern for public health. Contamination of foods with microorganisms occurs when food comes in contact with contaminated surfaces increasing the food safety risk. It is proposed that the microorganisms that persist by forming biofilms lead to repeated food contaminations.

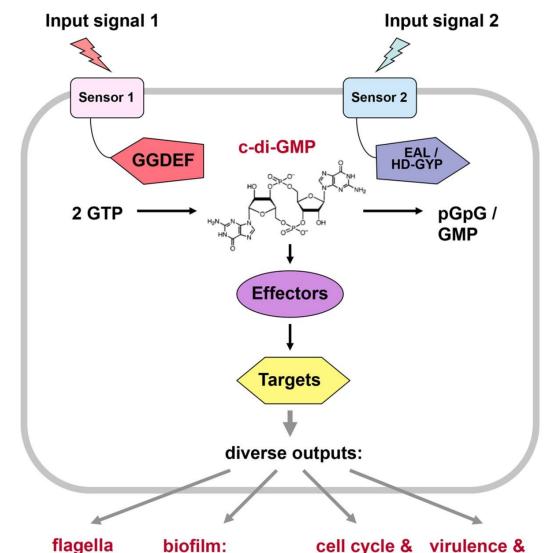
Linked to the food industry, the most studied bacteria forming biofilms are *P. aeruginosa*, Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms), E. coli (which may include enterotoxigenic and even enterohemorrhagic strains), S. aureus (known for its numerous enteric toxins), Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly), Campylobacter jejuni, Vibrio cholerae, and L. monocytogenes (Coughlan et al., 2016; EFSA and ECDC, 2018; Galié et al., 2018). It is believed that the pathogenic bacteria enter FPE via flows of raw materials, working personnel as well as food processing equipment. Studies demonstrated that in food processing industry, bacterial biofilm was found on various surfaces and crevices of many equipment including stainless steel pipes, vessels, valves, tables, drains and conveyors (Austin and Bergeron, 1995; Marchand et al., 2012). Attached bacteria were also found in liquids contact surfaces such as milking equipment and milk tanks (Latorre et al., 2010). Once biofilm is formed on food contact surfaces, it becomes highly resistant to disinfectants and other cleaning agents compared to the cells in planktonic form (Chmielewski and Frank, 2003; Pan et al., 2006). Moreover, microorganisms existing in biofilms exert higher resistance to other environmental stress factors related to food industry such as cold temperatures, shear force, nutrient deprivation, low water availability, and desiccation stress (Esbelin et al., 2018; Wong, 1998). This higher stress resistance of microorganisms in biofilm is presumed to lead them to colonize, multiply, and persist in FPE including food processing equipment over extended periods and increase the chance of repeated food contaminations (Colagiorgi et al., 2017; Fratamico et al., 2009; Lappi et al., 2004).

II.1.3.4 Others

Dental biofilm, termed dental plaque, is primarily composed of microorganisms community found on a tooth surface embedded in a matrix of organic and inorganic materials derived from saliva, gingival crevicular fluid and bacterial products (Saini et al., 2011). Early colonizer of tooth surfaces are *streptococci* (for example, *Streptococcus mitis* and *S. oralis*)

that bind to acquired pellicle, a thin film of active proteins that coat tooth surfaces. With time, the early colonizers make the environment more anaerobic and other obligate anaerobes multiply and produce EPS to consolidate the biofilm (Huang et al., 2011; Marsh, 2010).

Marine biofilm, termed biofouling, is the colonization of submerged surfaces by microorganisms and is detrimental for devices used in different fields including shipbuilding and aquaculture industries. Microfouling formed by bacteria and microalgae leads to the adhesion of larger organisms including algae, mussels and barnacles causing macrofouling (Carvalho and R, 2018). On the hull surfaces of ships immersed in seawater, biofouling diminishes their hydrodynamic performances. Moreover, the US Navy estimated that the overall cost related to hull fouling for the entire US Navy surface fleet was calculated to be 180–260 million dollars (Schultz et al., 2011).


Biofilms in water distribution systems including pipes can lead to chlorine demand, pipe corrosion and degrading water taste and odor (Hallam et al., 2001). Biofilm built in water pipelines consists of bacterial populations within a slime layer that is in contact with water. Even though water is disinfected before distribution in treatment plants by water authorities, by the time it reaches end point users the quality may decrease dramatically due to contamination of water pipes with biofilms (Mahapatra et al., 2015). A study conducted in UK showed that bacterial communities were highly variable and fluctuating with season and pipe material (Douterelo et al., 2016).

II.2 Regulation of biofilm formation

Biofilm formation is a string of simultaneous processes engaging various steps as well as diverse physiological cellular states. High throughput studies conducted on cells growing in biofilms pointed out time-dependent differential genes expression patterns in various bacterial species (Sauer, 2003). For example, in Bacillus subtilis using microarrays for comparison of planktonic versus biofilm cells after 8, 12, and 24 h growth, a total of 519 genes were identified as differentially expressed during the time-course of which more than 55% were expressed at only one of the three time points (Stanley et al., 2003). This result indicates temporal and stochastic regulation of genes expression during different biofilm formation steps. Similar findings were observed in Porphyromonas gingivalis (Yamamoto et al., 2011) and L. monocytogenes (Prakash and Tirumalai, 2012). Together, these findings support the fact that divergent modules of genes are involved in each step of biofilm formation, thus, analyzing a snapshot of bacterial expression patterns may not represent well the regulatory networks involved in biofilm formation at each step. Herein, we will discuss the well described microbial biofilm regulators and discuss further about specific regulators for L. monocytogenes biofilm formation later in 'Chapter II.4.1 Specific regulation of L. monocytogenes biofilm formation'.

II.2.1 Cyclic-di-GMP

In 1987, bis-(3',5')-cyclic diguanosine monophosphate (c-di-GMP) was first reported in *Acetobacter xylinum* as an allosteric activator for cellulose synthase (Ross et al., 1987). As one of the major second messengers, c-di-GMP mediates wide signaling pathways modulating a large range of bacterial behaviours (Hengge et al., 2016). It was demonstrated that GGDEF and EAL domains, consisting sensor kinases in bacterial two component regulatory systems, regulate the expression of c-di-GMP (Galperin et al., 2001; Ryjenkov et al., 2005; Schmidt et al., 2005) (Figure 11).

motility adhesins & matrix development predation

Figure 11. General scheme of production, degradation, mechanism of action, and physiological target processes of the second messenger c-di-GMP (Hengge et al., 2016).

Proteins with GGDEF domain demonstrate diguanylate cyclase (DGC) activity which produces the c-di-GMP while proteins with EAL and HD-GYP domains, which are distinct families of c-di-GMP-specific phosphodiesterases (PDEs), degrade it. The expression of these domains and subsequent c-di-GMP signaling pathway are ubiquitous in bacteria. The domains, often bound to bacterial membrane, sense environmental and intracellular signals such as light (Tschowri et al., 2012), oxygen (Schmidt et al., 2016), membrane-derived signals and other small ligands (Furukawa et al., 2012) and change the c-di-GMP levels, which in turn regulate bacterial lifestyle. One of the well-known functions governed by this cascade is the establishment of a sessile lifestyle by inhibiting motility and increasing biosynthesis of

exopolysaccharides and biofilm formation in various proteobacterial species (Ryjenkov et al., 2005). Implication of this signaling pathway in exopolysaccharide production and biofilm control was demonstrated in *A. xylinum* (Ross et al., 1987), *V. cholerae* (Bomchil et al., 2003), *P. aeruginosa* (D'Argenio et al., 2002), *Pseudomonas fluorescens* (Spiers et al., 2003), *Agrobacterium tumefaciens* (Ausmees et al., 2001), *S. enterica* and *E. coli* (Branchu et al., 2013; Lindenberg et al., 2013; Richter et al., 2014, 4; Simm et al., 2004). In *L. monocytogenes*, c-di-GMP-inducible exopolysaccharide caused cell aggregation and enhanced bacterial tolerance to disinfectants as well as desiccation stress, however, it did not promote biofilm formation on abiotic surfaces (Chen et al., 2014).

II.2.2 RpoS Activity

Bacteria growing in biofilms exhibit physiological behaviours similar to stationary-phase growing cells expressing molecular signals for stress conditions and slow growth. In this regard, the role of a stationary-phase sigma factor RpoS has been implicated in biofilm production in Gram-negative bacteria (Symposium et al., 2000). As a general stress-response regulator, RpoS activates a large number of genes, (23% of genes were regulated in the *E. coli*) in response to various stressful environments to adapt to changing conditions and confer stress tolerance (Wong et al., 2017). As a consequence, RpoS plays a major role in entire cell physiology under suboptimal conditions (Landini et al., 2014). Expression of RpoS is correlated with repression of bacterial motility and transition into sessile mode of life (Adnan et al., 2017; Corona-Izquierdo and Membrillo-Hernández, 2002). The expression of RpoS induces a key transcriptional regulator CsgD at the transcriptonal level which determines switch between planktonic and sessile modes of growth (Chambers and Sauer, 2013). It was shown that the RpoS-CsgD cascade enhanced adhesion and biofilm production by activating the production of curli fimbriae while deregulation the expression of several flagellar biosynthesis genes in *E. coli* and *Salmonella* strains (Barnhart and Chapman, 2006; Ogasawara et al., 2011).

However, heterogeneous results were observed in different bacterial species suggesting a strain-specific role of RpoS with regard to biofilm formation. In an endophytic bacterium *Serratia plymuthica*, mutants of rpos resulted in enhanced motility as well as biofilm formation (Liu et al., 2016).

Moreover, the expression of RpoS is differentially regulated depending on cell density by interplay between HapR, the quorum-sensing regulator, and VpsR and VpsT, regulators for modulating expression of *vps* genes which encode matrix proteins and polysaccharides synthesis in *V. cholerae* (Wang et al., 2012) (Figure 12). In the bacteria, enhanced motility induced by RpoS was also observed, together, the removal of RpoS repression from VpsT in biofilms enhances motility thus promoting bacterial detachment (Wang et al., 2014).

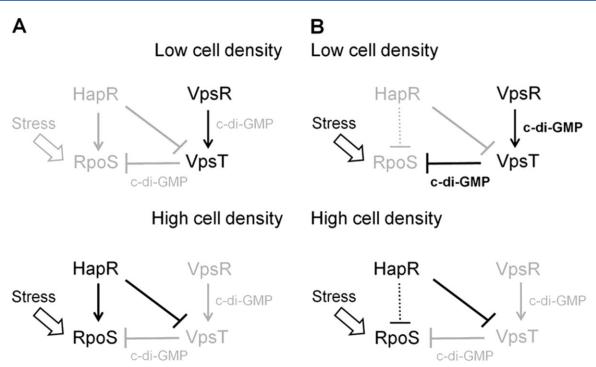


Figure 12. Model for the interplay between HapR and VpsT in the regulation of RpoS expression. Disabled regulations and low c-di-GMP content are represented by lines and fonts in light grayscale. Symbols: \rightarrow , activation; \perp , repression. (A) Planktonic cells. In nutrient-rich medium, the level of c-di-GMP is not sufficiently high for VpsT to repress *rpoS* transcription. HapR enhances *rpoS* in a VpsT-independent manner. (B) Biofilm cells. Biofilm cells can exhibit a higher starting intracellular c-di-GMP level than planktonic cells and experience stress conditions resulting in earlier expression of RpoS. At a low cell density, VpsT represses *rpoS* transcription. At a high cell density, HapR represses VpsT and diminishes the c-di-GMP pool to relieve *rpoS* from VpsT repression. We postulate that in biofilms, HapR could have a negative effect on *rpoS* expression (dotted line) that is masked in the *hapR* mutant due to the much stronger repressive effect of VpsT (Wang et al., 2014).

II.2.3 Others

As the first step of biofilm formation, adhesion plays a critical role in determining the overall path of sessile format of lifestyle. Notably, several bacterial cell surface structures function as adhesins in this initial step. Some well described bacterial appendages important for adhesion are capsules, fimbriae, pili and flagella. Capsulation occurs in certain bacterial species which protect the pathogens from host defense mechanisms. The capsular polysaccharides were shown to enhance adhesion in *Klebsiella pneumoniae* (Wang et al., 2015). For pathogenic bacteria, fibrillar structures such as fimbriae and pili serve bacterial

adhesion and colonization or invasion of host tissues (Finlay and Falkow, 1997). It was observed in diverse species, such as E. coli (Lasaro et al., 2009), Proteus mirabilis (Scavone et al., 2016), and K. pneumoniae (Schroll et al., 2010) where fimbriae contribute to adhesion and biofilm maturation. Accumulated data show that various types of fimbriae differentially regulated biofilm construction. Similarly, flagellum-mediated adherence was also reported (Girón et al., 2002). Furthermore, a study showed that flagella and type 1 fimbriae served as integral components for adhesion and invasion of intestinal epithelial cell line in E. coli strain LF82 (Barnich et al., 2003; Boudeau et al., 2001). The two components were shown to be regulated in a coordinate manner. However, contradictory findings were reported regarding the role of flagella in biofilm formation depending on the experimental settings. Flagellar motility showed a critical role in biofilm formation in *L. monocytogenes* (Lemon et al., 2007) and transposon mutagenesis screening identified that genes involved in flagellar motility (*fliQ*, flaA, fli1, motA and lrmg_00396) were necessary for biofilm formation, especially for early adhesion to surfaces (Alonso et al., 2014). Unlike the static cultivation used in those studies, a study using a flow cell demonstrated that motility mutants produced more biofilms (Todhanakasem and Young, 2008). Similarly, a study demonstrated that flagella in L. monocytogenes served for motility but not for adhesion to Caco-2 cells (O'Neil and Marguis, 2006). In E. coli K-12 strain, flagellar motility was not required for initial adhesion nor for biofilm development (Prigent-Combaret et al., 2000). Flagella in principal confer swimming locomotion enabling bacteria to move towards favorable responses, for example, nutrients and away from unfavorable stimuli, such as disinfectants. Flagella, therefore, demonstrate a reciprocal balance between motility and adhesion.

Several transcription factors have been identified in the regulatory networks of biofilmassociated gene in different species. In *B. subtilis*, the major early sporulation transcription factor SpoOA plays a central role controlling the expression of more than hundred genes including those required for biofilm matrix formation and sporulation (Hamon and Lazazzera, 2001). A study showed that mutant lacking *spoOA* was capable of adhering to a surface in a monolayer of cells, however, failed to build mature three-dimensional biofilms. Intracellular ratio of phosphorylated SpoOA (SpoOA-P) in comparison to SpoOA determines the bacterial behavioural change between cannibalism, competence or biofilm production (Vlamakis et al., 2013). Biofilm formation and sporulation are repressed when SpoOA-P level is low and biofilm formation is induced when SpoOA is initially phosphorylated as a result of matrix gene expression (Fujita et al., 2005). Higher level of SpoOA-P induces sporulation genes.

Surface proteins and extracellular matrix components are involved in interbacterial adhesion and biofilm structure. Surface proteins are important for promoting bacterial colonization. Among them type V secretion pathway plays an important role in contact-dependent translocation of proteins toward the extracellular medium in *E. coli* (Beloin et al.,

2008). Antigen 43 promotes cell-to-cell adhesion (Kjærgaard et al., 2000). Biofilm Regulator, EbrB modulates biofilm formation and intestinal colonization (Top et al., 2013).

II.3 Biofilm development and stress response

As discussed earlier, in nature habitats most microorganisms live in contact with solid materials. Bacteria have evolved efficient ways to cope with fluctuating and adverse conditions and rapid switch to surface-attached biofilm lifestyle is one of the most advantageous for the survival (Donlan, 2002). In principal, sessile lifestyle is favored for contradictory reasons: while bacteria switch from free-living to biofilm mode of life to colonize and remain in a favorable niche, non-optimal growth conditions also trigger biofilm formation as a defense mechanism (Jefferson, 2004). To support these opposing phenomena, controversial findings were reported regarding the impact of environmental conditions on biofilm formation. For example, nutrient contents in media resulted in different outcomes with regard to biofilm formation. While some studies found that biofilm production was enhanced in nutrient-limited condition (Anutrakunchai et al., 2015), others showed that nutrient rich media produced more biofilms (Stepanović et al., 2004). In fact, the differences were carbon-source specific (Totani et al., 2017) and also species specific (Stepanović et al., 2004).

In cases in which biofilm formation is promoted as defense mechanism, therefore, environmental signals that activate stress responses often lead to biofilm formation. Bacteria growing in biofilms, in turn, exert higher resistance against broad range of stress factors such as antibiotics (Mah and O'Toole, 2001), sanitizers (Chavant et al., 2004), acid (Welin-Neilands and Svensäter, 2007), osmotic, and temperature (Vatansever and Turetgen, 2018) stresses. Several mechanisms underlie the general resistance phenomenon. As mentioned earlier, change in membrane lipid composition in biofilm cells enhances stress resistance. The EPS matrix grant physical resistance to stresses. Finally, metabolic pathways in biofilms share stress response mechanisms. For instance, oxidative stress is one of the most common stresses for microorganisms in nature (Imlay, 2019). Response to oxidative stress in bacteria share common regulatory pathways with biofilm formation of which involve reactive oxygen species (ROS) as a signaling molecule. Bacteria alter their metabolism to avoid cellular damages from ROS. They integrate ROS into several signaling pathways which mediate the transit from planktonic to sessile forms of lifestyle (Cáp et al., 2012). ROS in biofilm cells provoke genetic variabilities and promote programmed cell death in core regions. Also, ROS are involved in other pathways engaged in biofilm formations, such as quorum sensing (Karatan and Watnick, 2009) or indole signaling pathway (Hu et al., 2010). An experimental evolution assay demonstrated that ROS led to the emergence of pro-biofilm cells in P. aeruginosa (Chua et al., 2016). Moreover, oxidative stress induced the activation of the DNA repair system such as a DNA double-strand break repair system, resulting in higher phenotypic diversity. This confer readiness on bacteria to adapt to environmental changes also to

withstand environmental stresses (Boles and Singh, 2008). Recent study found that polysaccharides cellulose and alginate in biofilm matrix protected *Pseudomonas putida* against ROS produced under matric stress and copper exposure (Svenningsen et al., 2018).

Similarly, histidine kinase QseC involved in two-component regulatory system mediates osmotic stress resistance and induces biofilm formation in *Haemophilus parasuis* (He et al., 2018). Also, a study showed that high temperature (40°C) induced RpoS expression which promoted biofilm formation in *P. putida* (Srivastava et al., 2008).

II.4 Listeria monocytogenes biofilms

It was suggested that *L. monocytogenes* could only form an attached monolayer of cells on surfaces without growing into mature biofilms, however, recent studies revealed a various degree of maturation in biofilms produced by *L. monocytogenes* (Borucki et al., 2003; Lee et al., 2017; Rieu et al., 2008). *L. monocytogenes* exhibits a capacity to adhere to a wide range of materials after a short contact time such as stainless steel, polypropylene, glass or rubber which implicate the capacity of this pathogen to colonize equipment used in FPE (Beresford et al., 2001; Chavant et al., 2002; Mafu et al., 1990).

Using microscopy such as scanning electron microscopy (SEM) or confocal laser scanning microscopy (CLSM), *L. monocytogenes* biofilm architecture can be visualized. Diverse biofilm structures exist ranging from flat multilayers to complex honeycomb-like structures decorated with hollow voids among *L. monocytogenes* strains (Guilbaud et al., 2015).

In the *L. monocytogenes* biofilm matrix, various EPS were detected including polysaccharides and proteins as well as extracellular DNA (Colagiorgi et al., 2016). Among them, teichoic acid is the major polysaccharide which has the same origin as cell wall teichoic acid (Brauge et al., 2016). Study using 80 *L. monocytogenes* strains revealed that all strains were able to produce exopolysaccharide and the level of production was correlated with cell adherence for high biofilm formers (Borucki et al., 2003).

Under various conditions, one *L. monocytogenes* strain demonstrated significant variation of biofilm production indicating that intra-strain phenotype changes were dependent on experimental settings (Nowak et al., 2015). Interestingly, nutrient deprivation enhanced biofilm formation in microfluidic conditions, however, under static incubation, nutrient restriction resulted in less biofilms (Cherifi et al., 2017; Guilbaud et al., 2015). Moreover, interstrain variability of biofilm formation has been extensively studied, however, no conclusive agreement was made on describing biofilm forming capacities of L. monocytogenes in relation to their origins or serotypes. While some studies found higher biofilm production with serotype 1/2a and 1/2c strains (Borucki et al., 2003; Nilsson et al., 2011), others demonstrated the opposite result showing greater biofilm production capacity of serotype 4b strains (Djordjevic et al., 2002). Moreover, a study using 143 strains implied the impact of experimental settings in finding such a relation (Kadam et al., 2013). In the study, the effect of serotypes on biofilm formation was influenced by growth media which, at the same time, differently affected the kinetics of total biomass measured by crystal violet staining during different incubation time. Another study using 98 L. monocytogenes strains could not observe any relation between serological groups and biofilm production (Doijad et al., 2015).

II.4.1 Specific regulation of *L. monocytogenes* biofilm formation

The molecular basis that governs biofilm formation of *L. monocytogenes* are not completely elucidated. However, recent studies identified numerous factors that play a certain role through a screening of insertion mutant libraries (Gorski et al., 2003; Taylor et al., 2002) and proteomic approaches (Helloin et al., 2003; Trémoulet et al., 2002). Trémoulet and colleagues (2002) found that two key enzymes, pyruvate dehydrogenase and 6-phosphofructokinase, involved in global carbon metabolism, were increased in biofilm formation in *L. monocytogenes*. Also, 22 and 9 proteins were up- and down-regulated, respectively, among which diverse functions were observed. For instance, ribosomal proteins YvyD and rpsB that may act as sensors to detect physical or chemical change, SOD and CysK that may be involved in quorum sensing, RecO conferring DNA repair and protection and DivIVA which controls cellular division were upregulated in biofilms.

A surface protein called Biofilm-associated protein (Bap) is involved in biofilm formation in several bacterial species. A protein showing Bap-like structural features was identified in L. monocytogenes and thereby designated as BapL (Jordan et al., 2008). Though BapL contributed to adherence on abiotic surfaces, it was not an essential requirement since non-BapL possessing strains revealed attachment to comparable extent. Another study found the deletion of relA and hpt induced impaired growth of biofilms due to lack of accumulation of guanosine pentaphosphate in response to amino acid starvation (Taylor et al., 2002). Biofilm formation related genes were newly found at 15°C which represent a temperature close to that found in food production environments (Piercey et al., 2016). The study performed insertional mutagenesis and found the following genes that resulted higher biofilm formation at 15°C: Imo2572, Imo2488 (uvrA), Imo1224, Imo0434 (inIB), Imo0263 (inIH), Imo0543, Imo0057 (esaA), Imo2563, and Imo0453. Also, transcriptional regulator DegU was found to be directly mediating biofilm formation of L. monocytogenes (Gueriri et al., 2008). Among one of the many two-component systems involved in response to fluctuating environmental conditions including stress stimuli, the accessory gene regulator agr influences adhesion in L. monocytogenes (Williams et al., 2005a). Mutants lacking agrA and agrD showed impaired adhesion but did not affect mature biofilm formation (Rieu et al., 2007).

II.4.2 *L. monocytogenes* biofilms and stress factors

As a foodborne pathogen, numerous studies investigated the susceptibility of disinfectants in *L. monocytogenes*, especially with respect to biofilm cells. Pan and colleagues (2006) designed a simulated food processing experimental setting to compare the resistance of *L. monocytogenes* between biofilm cells pre-exposed and non-exposed to peroxide sanitizers. The results showed that biofilm cells that were repeatedly exposed to the peroxide agent developed resistance to it as well as other sanitizing compounds including QACs and chlorine (Pan et al., 2006). However, the resistance of cells detached from peroxide pre-exposed and non-exposed biofilm cells did not differ significantly suggesting that the resistant may be attributed to extracellular polymeric substances. Similarly, another study mimicking a sanitation regime applied in real food processing premises showed that *L. monocytogenes* in biofilm could tolerate disinfectants treatment suggesting that biofilms make the sanitary regime inefficient for preventing bacterial food contaminations (Fagerlund et al., 2017).

One of the most predominant factors related to FPE is the low temperature. Most of the studies assessed the influence of different temperatures on biofilm formation. In general, as the temperatures decrease under optimal growth temperature (around 30-37°C), the total biomass also decreases (Nilsson et al., 2011). However, the different growth kinetics were not taken account, therefore, it is not clear whether the bacteria may reach the same maturity of biofilm achieved at optimal temperatures. Our study revealed that cold stress enhanced adhesion of bacteria to abiotic surfaces as a transient phenotype change (Chapter III). Another study showed that cold-adapted *L. monocytogenes* strains by storing at -20°C for 6 and 24 months increased adhesion and biofilm formation on various surfaces (Slama et al., 2012). Interestingly, cross adaptation to a different stress was observed; for example, influence of temperature on chitosan resistance. Chitosan resistance was compared between biofilm cells produced at 20°C or 4°C. The morphology of the chitosan injuries and viability recovery rate of *L. monocytogenes* showed that cold stress increased the tolerance to the chitosan (Puga et al., 2016).

Biofilms formed on equipment in FPE are regularly exposed to desiccation stress. A study performed desiccation stress (43% relative humidity) at 15°C for 23 days on biofilm cells to examine survival and subsequent transfer to salmon products (Hansen and Vogel, 2011). The cells in biofilms were significantly protected against the desiccation treatment compared to the planktonic cells. Moreover, cells adapted to 5% NaCl produced a biofilm that showed significantly increased survival against a long-term (49 days) desiccation. As a result of the enhanced tolerance to desiccation, more bacteria from cells grown in biofilms survived after transfer to salmon products. A recent study compared the difference in desiccation resistance among 14 strains and found the most resistant strains harboured Stress Survival Islet 1 genetic marker which, however, was not a major determinant of survival during desiccation, exposure BC, as well as biofilm formation (Piercey et al., 2017).

II.4.3 Persistence and biofilms of *L. monocytogenes*

Development in molecular subtyping methods such as PFGE and MLST allowed observation of specific subtypes of *L. monocytogenes* that survive over long periods of time in

food production facilities. To explain the persistence trait of certain L. monocytogenes subtypes, studies investigated the association of persistence with phenotypic characteristics including tolerance to food related-stresses, desiccation stress, resistance to disinfection processes as well as biofilm formation (Ferreira et al., 2011; Holah et al., 2002; Lundén et al., 2008). It is hypothesized that a higher biofilm forming ability might cause strain persistence in FPE. Borucki et al. (2003) demonstrated the differences in biofilm formation among persistent and non-persistent isolated from bulk milk samples. They revealed that the persistent strains were more efficient in biofilm formation than non-persistent strains. Similarly, Lundén et al. (2000) found that persistent strains were more efficient in adherence after short contact times. Norwood and Gilmour (2001) also showed that the adhesion of persistent strains was superior than that of sporadic strains. However, other studies revealed conflicting results. Djordjevic et al. (2002) found no relationship between persistence of a strain and biofilm formation. A study from Jensen et al. (2007) also revealed no significant relation between adherence and persistence. Similarly, conflicting results were observed between persistent and nonpersistence strains with respect to food associated stress factors and susceptibility to disinfectants or sanitizers (Fagerlund et al., 2017; Heir et al., 2004; Holah et al., 2002; Magalhães et al., 2016). In sum, accumulating data disclose diverse phenotypic and genetic characteristics in persistent L. monocytogenes suggesting that it is unlikely that biofilm forming capability underlie persistence of *L. monocytogenes* in FPE (Ferreira et al., 2011).

The discrepancies can be ascribed to the different experimental settings between studies including sample size and methodology for quantifying biofilms. Also, the *in vitro* measurements may not reflect well the real environmental conditions that might induce different bacterial behaviours. Moreover, an identification of persistent strains could have been mistaken. A persistent strain, defined as a particular subtype that is re-isolated from the same environment over an extended observation period, is often difficult to determine for several reasons as discussed earlier (Chapter I.6 *Listeria monocytogenes* in foods). Also, discrepancies were observed among studies in discriminating a persistent subtype from sporadic isolates. For example, variations in the observation period or the minimum number of isolations for a subtype to be determined as persistent or sporadic may have caused biases. Moreover, it is disputed as to whether particular *L. monocytogenes* subtypes can persist or they incidentally colonize specific niches in FPE. More investigations are required in this topic regarding whether a genotype associated with persistence exists or an isolate colonize specific favorable niches in FPE conferring, what we define as persistence.

II.5 Some methods for biofilm study

As the concept of a microbial biofilm became concrete, researchers developed numerous techniques or adapted new technologies to investigate biofilms in several aspects. The most widely applied basic method is counting the colony forming units (CFU) on agar media. Microbial cells in biofilms are detached from an adhering surface using sonication or mechanical disruptions then are subjected to serial dilutions which are spread on an agar plate to numerate the CFU after an adequate incubation (Bjerkan et al., 2009). The CFU approach, affordable and available in every microbiology lab, however, revealed some limitations (Li et al., 2014). There exists a status of microbial cells called viable but non-culturable (VBNC) that are still viable but not able to resuscitate and grow over the given condition of incubation to be counted as a colony. Stressful conditions such as osmotic, oxidative or starvation can trigger transition of bacterial cells to VBNC status which leads to an underestimation of total viable cells in samples. Moreover, the CFU does not represent the entire amount of biofilm including dead cells and EPS components.

Colorimetric methods were developed primarily based on staining of biomass with appropriate dyes. For instance, crystal violet (CV) staining is most widely used in laboratories for measuring total biomass and Alcian Blue or Ruthenium red staining can be used for staining the EPS matrix (Borucki et al., 2003; Sohm et al., 2011). Stained biofilms can be either observed using microscopy or quantified by measuring optical density of destained solution using spectrophotometer. More recently, a method specialized to measure adhesion capacity of microorganism called Biofilm Ring Test (BRT) was developed which is manifested by less manipulations and faster result acquisition (Azeredo et al., 2017).

II.5.1 Microtiter plate assay

The Microtiter plate assay (MPA) is most widely used as a quantitative method. The method was first introduced in 1997 to assess the attachment of a marine *Pseudomonad* (Fletcher, 1977). The MPA was successfully applied in *L. monocytogenes*, and numerous studies utilized the method (Borucki et al., 2003; Djordjevic et al., 2002; Moltz and Martin, 2005). CV stains both living and dead cells as well as some matrix components thus it represents the best the total amount of biofilm (Azeredo et al., 2017). In the classical protocol, biofilms are grown on a sterile polystyrene plate, the most used cell culture plate in laboratories. The material of plates as well as size of a well could be of any kind corresponding to the interest of a study. Using the conventional cell culture plates, MPA measures biofilms formed on the bottom and walls of the plate, which may include cells that were sedimented due to gravity or loss of cell vitality and embedded in biofilm device was developed (Ceri

et al., 1999). The device is characterized by pegs under the lid that protrude into wells of a microtiter plate. This device allows the selection of biofilms actively produced by microorganisms that adhere to the pegs only.

The first step of conventional MPA is to grow biofilms in microtiter plate under a condition designed for aims of a study. When the incubation ends, medium is emptied by flipping the plate upside down or pipetting carefully without disturbing biofilms and washed with distilled water or saline for a few times to wash out unattached planktonic cells. Optionally before staining, the sessile cells are fixed using 95% ethanol. Next, biofilms are dried then subjected to 0.1-1% CV staining, often filtered before use. Unbound dye is removed by rinsing with distilled water by flipping the plate or pipetting several times. After drying, the CV is solubilized with 33% acetic acid or 70-95% ethanol. The optical density of each well is quantified using spectrophotometry plate reader at an absorbency of 570-630 nm.

In general, a condition includes triplicate wells as well as negative controls containing no microorganism resulting in slight staining due to the impact of media on surfaces that must be subtracted from absorbency of samples. The method is advantageous over other methods because it is affordable and it does not require much proficiency in performance. However, the method often produces results with poor reproducibility among independent replicates or individuals who are performing MPA and it is assumed to be originated from multiple manipulation steps. Moreover, as seen in the protocol, there are variations in each step across the laboratories such as way of washing wells, inclusion of fixation step, percentage and volume of CV for each well, type and volume of destaining solution, and optical density for spectrophotometry. These inconsistencies render the method unharmonized that may lead to biased interpretation of data from different laboratories.

II.5.2 Microscopy

As microscopic technology developed, researchers became to make use of various microscopy tools to study biofilms. Numerous methods were discussed in a review on biofilm methods including light microscopy, CLSM, SEM, other SEM-derived microscopies, and atomic force microscopy (Azeredo et al., 2017). Here, we will discuss the most widely used methods: light microscopy, CLSM and SEM.

Above all, light microscopy is the most useful tool to provide visualization of biofilms due to its high accessibility in laboratories accompanied with affordable cost. A range of dyes are used in this technique including: CV stain as utilized in MPA, Periodic acid–Schiff, Alcian Blue and Ruthenium red dyes for staining EPS, Hematoxylin and eosin stain for staining nuclei and cytoplasm of bacteria and so on (Sohm et al., 2011). Stained biofilms are observed under a light optical microscope that gives two-dimensional images in comparatively low magnification. The structural organization in biofilms can be detected by this method. For example, Harvey et al. (2007) observed that *L. monocytogenes* formed networks of microcolonies in biofilm formation. In our experiments, we observed varying size of microcolonies and some regions showed higher intensity of CV stain in the images indicating multi-layer cellular structures (Figure 13).

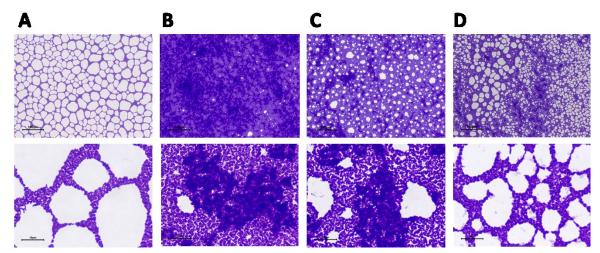


Figure 13. Micrographs of *L. monocytogenes* biofilms stained with crystal violet and observed by light optical microscopy. Cells were grown in BHI media for 24 h at 37°C with additional NaCl concentrations at (A) 0%; (B) 0.85%; (C) 2%; (D) 5%. Scale bars, 100 μ m in upper figures, and 10 μ m in lower figures (unpublished data).

The limitation of light microscopy such as a two-dimensional observation and low magnification can be overcome by CLSM or SEM. CLSM is advantageous in visualizing a threedimensional spatial structure of biofilm. In CLSM, biofilms are labeled with various fluorescent probes. The most widely applied dyes are cell permeant nucleic acid dyes, for example, SYTO-9 and SYBR-Green (Neu and Lawrence, 2014). Along with these green fluorescent markers, red cell impermeant marker such as propidium iodide can be accompanied for a live/dead viability test (Bogachev et al., 2018) that calculate the ratio of live/dead cells (Figure 14). On top of the visualization, quantitative parameters of biofilms can be obtained such as biovolume, substratum coverage, thickness and roughness using a software, making CLSM an attractive method (Bridier et al., 2010; Xavier et al., 2003).

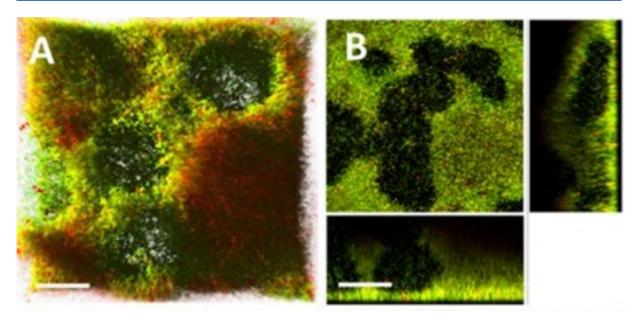


Figure 14. A representative of motile *L. monocytogenes* strains forming biofilms with a honeycomb morphotype. An isosurface representation (A) and section view (B) of CLSM images from biofilms forming honeycomb-like structures stained in green with SYTO-9 and in red with propidium iodide. The scale bars represent 30 μ m (Guilbaud et al., 2015).

SEM also provides visualization of a spatial three-dimensional architecture of biofilms at varying resolution which can go up to around 100 nm scale. It is a preferable method in that it can detect EPS matrix produced by microorganisms. In literature, SEM is often performed in parallel with a quantitative biofilm detection method such as MPA. However, sample preparation process is time-consuming involving fixation, dehydration and coating. To gradually replace water with organic solvents, dehydration step is performed with a series of ascending concentrations of acetone or ethanol and samples are dried completely which might form artifacts (Hannig et al., 2010). For coating step, samples are often sputtered with conductive material, for example, gold, to create a thin conductive layer to inhibit charging and thermal damage as well as to improve secondary electrons from electrons beam interact with atoms in the sample and secondary electrons emitted by atoms are detected to produce images. SEM, however, is not a routine laboratory method due to its high cost and limited accessibility to the equipment and trained personnel who can manipulate this technology.

II.5.3 Biofilm Ring Test

Adhesion is the first step in biofilm formation which is manifested by irreversible attachment of bacterial cells to biotic or abiotic surfaces. BRT is a comparably new analysis

that is specialized in detecting the adhesion step and is provided in a form of kit comprising mainly BHI media, microtiter plate, and magnetic beads (Figure 15) (Chavant et al., 2007).

Figure 15. The BRT workflow (The BRT technology, n.d.). Microorganism of interest is suspended in a well with magnetic beads and incubated until they form the first layer of biofilms on the bottom of microtiter plate. After incubation, the wells are placed on the Magnets holder for 1 min to apply magnetic fields at the center of all wells. The movement of sedimented magnetic beads are subsequently blocked by sessile cells which adhere on the bottom, thus the degree of mobile beads depends on the extent of sessile cells. Then the bottom of plate is scanned with the Plate Reader and analyzed by a software provided with the kit. The software calculates the size and intensity of the pulled beads in the middle of the well and outputs numeric values of each well called the BioFilm Index (BFI) ranging from 0 to 20. A BFI around 20 resulted from a high mobility of magnetic beads implies no biofilm was formed in the well, in comparison to a lower or near zero BFI which is resulted from an immobilization of beads by sessile cells in biofilms.

There are two protocols in BRT used for comparing biofilm forming abilities among different microorganisms. First protocol is to diversify the concentration of microorganisms used for inoculation, for example, serial 10-fold or 5-fold dilutions are performed starting from a same bacterial number determined by optical density (Di Domenico et al., 2016). Each dilution point of strains is inoculated on a same microplate displaying, for instance, serial dilutions by row and different strains by column. This enables comparison of BFIs in each inoculum of various bacteria to further discriminate strong biofilm formers from weak biofilm

formers. Second protocol is to make multiple plates and read a plate every 2 to 3 hours making a kinetic analysis (Olivares et al., 2016). If some bacteria form biofilms after a shorter incubation time than the others with same initial inoculum, they can be considered to be more efficient in the early phases of adhesion and biofilm formation.

The technique is especially interesting for high-throughput screening tests, for example, anti-biofilm reagents screening test. In clinics, the application of BRT was introduced as 'antibiofilmogram' as a complementary examination to widely practiced antibiogram in order to aid antibiotic selection in biofilm related bacterial diseases (Tasse et al., 2016). The utilization of this method in normal microbiology lab, however, is limited because it requires specific devices such as Magnets holder or Plate Reader.

III References

- Aase, B., Sundheim, G., Langsrud, S., and Rørvik, L. M. (2000). Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in *Listeria monocytogenes*. *Int. J. Food Microbiol.* 62, 57–63.
- Abachin, E., Poyart, C., Pellegrini, E., Milohanic, E., Fiedler, F., Berche, P., et al. (2002). Formation of Dalanyl-lipoteichoic acid is required for adhesion and virulence of *Listeria monocytogenes*. *Mol. Microbiol.* 43, 1–14.
- Adnan, M., Sousa, A. M., Machado, I., Pereira, M. O., Khan, S., Morton, G., et al. (2017). Role of *bolA* and *rpoS* genes in biofilm formation and adherence pattern by *Escherichia coli* K-12 MG1655 on polypropylene, stainless steel, and silicone surfaces. *Acta Microbiol. Immunol. Hung.* 64, 179–189. doi:10.1556/030.63.2016.018.
- Aké, F. M. D., Joyet, P., Deutscher, J., and Milohanic, E. (2011). Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression *in Listeria monocytogenes*. *Mol. Microbiol.* 81, 274–293. doi:10.1111/j.1365-2958.2011.07692.x.
- Allerberger, F. (2003). *Listeria*: growth, phenotypic differentiation and molecular microbiology. *FEMS Immunol. Med. Microbiol.* 35, 183–189. doi:10.1016/S0928-8244(02)00447-9.
- Alonso, A. N., Perry, K. J., Regeimbal, J. M., Regan, P. M., and Higgins, D. E. (2014). Identification of *Listeria monocytogenes* determinants required for biofilm formation. *PLOS ONE* 9. doi:10.1371/journal.pone.0113696.
- Alvarez-Domínguez, C., Vázquez-Boland, J. A., Carrasco-Marín, E., López-Mato, P., and Leyva-Cobián, F. (1997). Host cell heparan sulfate proteoglycans mediate attachment and entry of *Listeria monocytogenes*, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. *Infect. Immun.* 65, 78–88.
- An, D., Danhorn, T., Fuqua, C., and Parsek, M. R. (2006). Quorum sensing and motility mediate interactions between *Pseudomonas aeruginosa* and *Agrobacterium tumefaciens* in biofilm cocultures. *Proc. Natl. Acad. Sci. U. S. A.* 103, 3828–3833. doi:10.1073/pnas.0511323103.
- Andre, P., and Genicot, A. (1987). First isolation of *Listeria welshimeri* in a human. *Zentralbl. Bakteriol. Mikrobiol. Hyg.* [A] 263, 605–606.
- Angelidis, A. S., and Smith, G. M. (2003). Role of the glycine betaine and carnitine transporters in adaptation of *Listeria monocytogenes* to chill stress in defined medium. *Appl. Environ. Microbiol.* 69, 7492–7498. doi:10.1128/AEM.69.12.7492-7498.2003.
- Anutrakunchai, C., Sermswan, R. W., Wongratanacheewin, S., Puknun, A., and Taweechaisupapong, S. (2015). Drug susceptibility and biofilm formation of *Burkholderia pseudomallei* in nutrientlimited condition. *Trop. Biomed.* 32, 300–309.

- Araujo, V., Neves, E., Silva, A. C., Martins, A. P. L., and Brito, L. C. (2018). *Listeria monocytogenes* cells under nutrient deprivation showed reduced ability to infect the human intestinal cell line HT-29. *J. Med. Microbiol.* 67, 110–117. doi:10.1099/jmm.0.000648.
- Archer, D. L. (2018). The evolution of FDA's policy on *Listeria monocytogenes* in ready-to-eat foods in the United States. *Curr. Opin. Food Sci.* 20, 64–68. doi:10.1016/j.cofs.2018.03.007.
- Arguedas-Villa, C., Stephan, R., and Tasara, T. (2010). Evaluation of cold growth and related gene transcription responses associated with *Listeria monocytogenes* strains of different origins. *Food Microbiol.* 27, 653–660. doi:10.1016/j.fm.2010.02.009.
- Arthur, M., and Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in enterococci. *Antimicrob. Agents Chemother.* 37, 1563–1571.
- Augustin, J.-C., Zuliani, V., Cornu, M., and Guillier, L. (2005). Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. J. Appl. Microbiol. 99, 1019–1042. doi:10.1111/j.1365-2672.2005.02710.x.
- Aureli, P., Fiorucci, G. C., Caroli, D., Marchiaro, G., Novara, O., Leone, L., et al. (2000). An outbreak of febrile gastroenteritis associated with corn contaminated by *Listeria monocytogenes*. *N. Engl. J. Med.* 342, 1236–1241. doi:10.1056/NEJM200004273421702.
- Ausmees, N., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M., et al. (2001). Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. *FEMS Microbiol. Lett.* 204, 163–167. doi:10.1111/j.1574-6968.2001.tb10880.x.
- Austin, J. W., and Bergeron, G. (1995). Development of bacterial biofilms in dairy processing lines. J. Dairy Res. 62, 509–519.
- Australian Government Australia New Zealand Food Standards Code Standard 1.6.1 Microbiological limits in food. Available at: https://www.legislation.gov.au/Details/F2018C00939/Html/.
- Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., et al. (2017). Critical review on biofilm methods. *Crit. Rev. Microbiol.* 43, 313–351. doi:10.1080/1040841X.2016.1208146.
- Bae, D., Liu, C., Zhang, T., Jones, M., Peterson, S. N., and Wang, C. (2012). Global gene expression of Listeria monocytogenes to salt stress. J. Food Prot. 75, 906–912. doi:10.4315/0362-028X.JFP-11-282.
- Bakker, H. C. den, Bundrant, B. N., Fortes, E. D., Orsi, R. H., and Wiedmann, M. (2010). A population genetics-based and phylogenetic approach to understanding the evolution of virulence in the genus *Listeria*. *Appl. Environ. Microbiol.* 76, 6085–6100. doi:10.1128/AEM.00447-10.
- Bakker, H. C. den, Desjardins, C. A., Griggs, A. D., Peters, J. E., Zeng, Q., Young, S. K., et al. (2013). Evolutionary dynamics of the accessory genome of *Listeria monocytogenes*. *PLOS ONE* 8, e67511. doi:10.1371/journal.pone.0067511.

- Barbosa, A. V., Cerqueira, A. D. M. F., Rusak, L. A., Dos Reis, C. M. F., Leal, N. C., Hofer, E., et al. (2015). Characterization of epidemic clones of *Listeria monocytogenes* serotype 4b isolated from humans and meat products in Brazil. *J. Infect. Dev. Ctries.* 9, 962–969. doi:10.3855/jidc.5639.
- Barnhart, M. M., and Chapman, M. R. (2006). Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147. doi:10.1146/annurev.micro.60.080805.142106.
- Barnich, N., Boudeau, J., Claret, L., and Darfeuille-Michaud, A. (2003). Regulatory and functional cooperation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn's disease. *Mol. Microbiol.* 48, 781–794.
- Bayles, D. O., Annous, B. A., and Wilkinson, B. J. (1996). Cold stress proteins induced in *Listeria* monocytogenes in response to temperature downshock and growth at low temperatures. *Appl. Environ. Microbiol.* 62, 1116–1119.
- Bécavin, C., Bouchier, C., Lechat, P., Archambaud, C., Creno, S., Gouin, E., et al. (2014). Comparison of widely used *Listeria monocytogenes* strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. *mBio* 5, e00969-00914. doi:10.1128/mBio.00969-14.
- Begley, M., Gahan, C. G. M., and Hill, C. (2002). Bile stress response in *Listeria monocytogenes* LO28: Adaptation, cross-protection, and identification of genetic loci involved in bile resistance. *Appl. Environ. Microbiol.* 68, 6005–6012. doi:10.1128/AEM.68.12.6005-6012.2002.
- Beloin, C., Roux, A., and Ghigo, J.-M. (2008). *Escherichia coli* biofilms. *Curr. Top. Microbiol. Immunol.* 322, 249–289.
- Beresford, M. R., Andrew, P. W., and Shama, G. (2001). Listeria monocytogenes adheres to many materials found in food-processing environments. J. Appl. Microbiol. 90, 1000–1005. doi:doi.org/10.1046/j.1365-2672.2001.01330.x.
- Bergholz, T. M., Bowen, B., Wiedmann, M., and Boor, K. J. (2012). Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl. Environ. Microbiol. 78, 2602–2612. doi:10.1128/AEM.07658-11.
- Bergholz, T. M., den Bakker, H. C., Fortes, E. D., Boor, K. J., and Wiedmann, M. (2010). Salt stress phenotypes in *Listeria monocytogenes* vary by genetic lineage and temperature. *Foodborne Pathog. Dis.* 7, 1537–1549. doi:10.1089/fpd.2010.0624.
- Bergholz, T. M., Shah, M. K., Burall, L. S., Rakic-Martinez, M., and Datta, A. R. (2018). Genomic and phenotypic diversity of *Listeria monocytogenes* clonal complexes associated with human listeriosis. *Appl. Microbiol. Biotechnol.* 102, 3475–3485. doi:10.1007/s00253-018-8852-5.
- Best, M., Kennedy, M. E., and Coates, F. (1990). Efficacy of a variety of disinfectants against *Listeria* spp. *Appl. Environ. Microbiol.* 56, 377–380.

- Binder, U., Maurer, E., and Lass-Flörl, C. (2016). *Galleria mellonella*: An invertebrate model to study pathogenicity in correctly defined fungal species. *Fungal Biol.* 120, 288–295. doi:10.1016/j.funbio.2015.06.002.
- Birmingham, C. L., Canadien, V., Kaniuk, N. A., Steinberg, B. E., Higgins, D. E., and Brumell, J. H. (2008). Listeriolysin O allows *Listeria monocytogenes* replication in macrophage vacuoles. *Nature* 451, 350–354. doi:10.1038/nature06479.
- Bitar, A. P., Cao, M., and Marquis, H. (2008). The metalloprotease of *Listeria monocytogenes* is activated by intramolecular autocatalysis. *J. Bacteriol.* 190, 107–111. doi:10.1128/JB.00852-07.
- Bjerkan, G., Witsø, E., and Bergh, K. (2009). Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces *in vitro*. Acta Orthop. 80, 245–250. doi:10.3109/17453670902947457.
- Bo Andersen, J., Roldgaard, B. B., Christensen, B. B., and Licht, T. R. (2007). Oxygen restriction increases the infective potential of *Listeria monocytogenes in vitro* in Caco-2 cells and *in vivo* in guinea pigs. *BMC Microbiol.* 7, 55. doi:10.1186/1471-2180-7-55.
- Böckelmann, U., Janke, A., Kuhn, R., Neu, T. R., Wecke, J., Lawrence, J. R., et al. (2006). Bacterial extracellular DNA forming a defined network-like structure. *FEMS Microbiol. Lett.* 262, 31–38. doi:10.1111/j.1574-6968.2006.00361.x.
- Bogachev, M. I., Volkov, V. Y., Markelov, O. A., Trizna, E. Y., Baydamshina, D. R., Melnikov, V., et al. (2018). Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. *PLOS ONE* 13. doi:10.1371/journal.pone.0193267.
- Boles, B. R., and Singh, P. K. (2008). Endogenous oxidative stress produces diversity and adaptability in biofilm communities. *Proc. Natl. Acad. Sci. U. S. A.* 105, 12503–12508. doi:10.1073/pnas.0801499105.
- Bomchil, N., Watnick, P., and Kolter, R. (2003). Identification and characterization of a *Vibrio cholerae* gene, *mbaA*, involved in maintenance of biofilm architecture. *J. Bacteriol.* 185, 1384–1390.
- Borucki, M. K., and Call, D. R. (2003). *Listeria monocytogenes* serotype identification by PCR. *J. Clin. Microbiol.* 41, 5537–5540.
- Borucki, M. K., Peppin, J. D., White, D., Loge, F., and Call, D. R. (2003). Variation in biofilm formation among strains of *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 69, 7336–7342.
- Bou Ghanem, E. N., Myers-Morales, T., and D'Orazio, S. E. F. (2013). A mouse model of food borne *Listeria monocytogenes* infection. *Curr. Protoc. Microbiol.* 31, 9B.3.1-9B.3.16. doi:10.1002/9780471729259.mc09b03s31.
- Boudeau, J., Barnich, N., and Darfeuille-Michaud, A. (2001). Type 1 pili-mediated adherence of *Escherichia coli* strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. *Mol. Microbiol.* 39, 1272–1284.

- Branchu, P., Hindré, T., Fang, X., Thomas, R., Gomelsky, M., Claret, L., et al. (2013). The c-di-GMP phosphodiesterase VmpA absent in *Escherichia coli* K12 strains affects motility and biofilm formation in the enterohemorrhagic O157:H7 serotype. *Vet. Immunol. Immunopathol.* 152, 132–140. doi:10.1016/j.vetimm.2012.09.029.
- Brauge, T., Sadovskaya, I., Faille, C., Benezech, T., Maes, E., Guerardel, Y., et al. (2016). Teichoic acid is the major polysaccharide present in the *Listeria monocytogenes* biofilm matrix. *FEMS Microbiol. Lett.* 363, fnv229. doi:10.1093/femsle/fnv229.
- Bridier, A., Briandet, R., Thomas, V., and Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. *Biofouling* 27, 1017–1032. doi:10.1080/08927014.2011.626899.
- Bridier, A., Dubois-Brissonnet, F., Boubetra, A., Thomas, V., and Briandet, R. (2010). The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. *J. Microbiol. Methods* 82, 64–70. doi:10.1016/j.mimet.2010.04.006.
- Brosch, R., Catimel, B., Milon, G., Buchrieser, C., Vindel, E., and Rocourt, J. (1993). Virulence heterogeneity of *Listeria monocytogenes* strains from various sources (food, human, animal) in immunocompetent mice and its association with typing characteristics. *J. Food Prot.* 56, 297–301. doi:10.4315/0362-028X-56.4.297.
- Brundage, R. A., Smith, G. A., Camilli, A., Theriot, J. A., and Portnoy, D. A. (1993). Expression and phosphorylation of the *Listeria monocytogenes* ActA protein in mammalian cells. *Proc. Natl. Acad. Sci. U. S. A.* 90, 11890–11894.
- Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., and Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75, 1–13. doi:10.1016/j.foodcont.2016.12.016.
- Buchanan, R. L., and Klawitter, L. A. (1990). Effects of temperature and oxygen on the growth of *Listeria monocytogenes* at pH 4.5. *J. Food Sci.* 55, 1754–1756. doi:10.1111/j.1365-2621.1990.tb03620.x.
- Buchrieser, C., Brosch, R., Catimel, B., and Rocourt, J. (1993). Pulsed-field gel electrophoresis applied for comparing *Listeria monocytogenes* strains involved in outbreaks. *Can. J. Microbiol.* 39, 395– 401. doi:10.1139/m93-058.
- Büla, C. J., Bille, J., and Glauser, M. P. (1995). An epidemic of food-borne listeriosis in western Switzerland: description of 57 cases involving adults. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 20, 66–72.
- Bunning, V. K., Donnelly, C. W., Peeler, J. T., Briggs, E. H., Bradshaw, J. G., Crawford, R. G., et al. (1988). Thermal inactivation of *Listeria monocytogenes* within bovine milk phagocytes. *Appl. Environ. Microbiol.* 54, 364–370.
- Cabanes, D., Lecuit, M., and Cossart, P. (2008). Animal models of *Listeria* infection. *Curr. Protoc. Microbiol.* Chapter 9. doi:10.1002/9780471729259.mc09b01s10.

- Camejo, A., Buchrieser, C., Couvé, E., Carvalho, F., Reis, O., Ferreira, P., et al. (2009). In vivo transcriptional profiling of *Listeria monocytogenes* and mutagenesis identify new virulence factors involved in infection. PLOS Pathog. 5, e1000449. doi:10.1371/journal.ppat.1000449.
- Cantinelli, T., Chenal-Francisque, V., Diancourt, L., Frezal, L., Leclercq, A., Wirth, T., et al. (2013). "Epidemic clones" of *Listeria monocytogenes* are widespread and ancient clonal groups. *J. Clin. Microbiol.* 51, 3770–3779. doi:10.1128/JCM.01874-13.
- Cáp, M., Váchová, L., and Palková, Z. (2012). Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. *Oxid. Med. Cell. Longev.* 2012, 976753. doi:10.1155/2012/976753.
- Caron, D. A., Davis, P. G., Madin, L. P., and Sieburth, J. M. (1986). Enrichment of microbial populations in macroaggregates (marine snow) from surface waters of the North Atlantic. doi:info:doi/10.1357/002224086788403042.
- Carrero, J. A., Calderon, B., and Unanue, E. R. (2004). Listeriolysin O from *Listeria monocytogenes* is a lymphocyte apoptogenic molecule. *J. Immunol.* 172, 4866–4874. doi:10.4049/jimmunol.172.8.4866.
- Carrique-Mas, J. J., Hökeberg, I., Andersson, Y., Arneborn, M., Tham, W., Danielsson-Tham, M. L., et al. (2003). Febrile gastroenteritis after eating on-farm manufactured fresh cheese--an outbreak of listeriosis? *Epidemiol. Infect.* 130, 79–86.
- Carvalho, D., and R, C. C. (2018). Marine biofilms: A successful microbial strategy with economic implications. *Front. Mar. Sci.* 5. doi:10.3389/fmars.2018.00126.
- Centers for Disease Control and Prevention (2011). Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe--United States, August-September 2011. *MMWR Morb. Mortal. Wkly. Rep.* 60, 1357–1358.
- Centers for Disease Control and Prevention (CDC) (1998). Multistate outbreak of listeriosis--United States, 1998. *MMWR Morb. Mortal. Wkly. Rep.* 47, 1085–1086.
- Centers for Disease Control and Prevention (CDC) (1999). Update: multistate outbreak of listeriosis--United States, 1998-1999. *MMWR Morb. Mortal. Wkly. Rep.* 47, 1117–1118.
- Centers for Disease Control (CDC) (1985). Listeriosis outbreak associated with Mexican-style cheese--California. *MMWR Morb. Mortal. Wkly. Rep.* 34, 357–359.
- Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., and Buret, A. (1999). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. *J. Clin. Microbiol.* 37, 1771–1776.
- Ceylan, E., McMahon, W., and Garren, D. M. (2017). Thermal inactivation of *Listeria monocytogenes* and *Salmonella* during water and steam blanching of vegetables. *J. Food Prot.* 80, 1550–1556. doi:10.4315/0362-028X.JFP-16-517.

- Chambers, J. R., and Sauer, K. (2013). Small RNAs and their role in biofilm formation. *Trends Microbiol.* 21, 39–49. doi:10.1016/j.tim.2012.10.008.
- Chan, Y. C., Boor, K. J., and Wiedmann, M. (2007). σB-dependent and σB-independent mechanisms contribute to transcription of *Listeria monocytogenes* cold stress genes during cold shock and cold growth. *Appl. Environ. Microbiol.* 73, 6019–6029. doi:10.1128/AEM.00714-07.
- Charão, M. F., Souto, C., Brucker, N., Barth, A., Jornada, D. S., Fagundez, D., et al. (2015). Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. Int. J. Nanomedicine 10, 5093–5106. doi:10.2147/IJN.S84909.
- Château, A., van Schaik, W., Joseph, P., Handke, L. D., McBride, S. M., Smeets, F. M. H., et al. (2013). Identification of CodY targets in *Bacillus anthracis* by genome-wide *in vitro* binding analysis. *J. Bacteriol.* 195, 1204–1213. doi:10.1128/JB.02041-12.
- Chaturongakul, S., Raengpradub, S., Wiedmann, M., and Boor, K. J. (2008). Modulation of stress and virulence in *Listeria monocytogenes*. *Trends Microbiol*. 16, 388–396. doi:10.1016/j.tim.2008.05.006.
- Chavant, P., Gaillard-Martinie, B., and Hébraud, M. (2004). Antimicrobial effects of sanitizers against planktonic and sessile *Listeria monocytogenes* cells according to the growth phase. *FEMS Microbiol. Lett.* 236, 241–248. doi:10.1016/j.femsle.2004.05.040.
- Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M., and Bernardi, T. (2007). A new device for rapid evaluation of biofilm formation potential by bacteria. *J. Microbiol. Methods* 68, 605–612. doi:10.1016/j.mimet.2006.11.010.
- Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.-N., and Hebraud, M. (2002). *Listeria monocytogenes* LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. *Appl. Environ. Microbiol.* 68, 728–737. doi:10.1128/AEM.68.2.728-737.2002.
- Chen, L.-H., Köseoğlu, V. K., Güvener, Z. T., Myers-Morales, T., Reed, J. M., D'Orazio, S. E. F., et al. (2014). Cyclic di-GMP-dependent signaling pathways in the pathogenic firmicute *Listeria monocytogenes*. *PLOS Pathog*. 10, e1004301. doi:10.1371/journal.ppat.1004301.
- Chen, Y., Zhang, W., and Knabel, S. J. (2005). Multi-virulence-locus sequence typing clarifies epidemiology of recent Listeriosis outbreaks in the United States. *J. Clin. Microbiol.* 43, 5291–5294. doi:10.1128/JCM.43.10.5291-5294.2005.
- Chen, Y., Zhang, W., and Knabel, S. J. (2007). Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of *Listeria monocytogenes*. J. Clin. Microbiol. 45, 835–846. doi:10.1128/JCM.01575-06.

- Cherifi, T., Jacques, M., Quessy, S., and Fravalo, P. (2017). Impact of Nutrient Restriction on the Structure of *Listeria monocytogenes* Biofilm Grown in a Microfluidic System. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.00864.
- Chico-Calero, I., Suárez, M., González-Zorn, B., Scortti, M., Slaghuis, J., Goebel, W., et al. (2002). Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in *Listeria*. *Proc. Natl. Acad. Sci.* 99, 431–436. doi:10.1073/pnas.012363899.
- Chmielewski, R. A. N., and Frank, J. F. (2003). Biofilm formation and control in food processing facilities. *Compr. Rev. Food Sci. Food Saf.* 2, 22–32. doi:10.1111/j.1541-4337.2003.tb00012.x.
- Christiansen, J. K., Larsen, M. H., Ingmer, H., Søgaard-Andersen, L., and Kallipolitis, B. H. (2004). The RNA-binding protein Hfq of *Listeria monocytogenes*: role in stress tolerance and virulence. *J. Bacteriol.* 186, 3355–3362. doi:10.1128/JB.186.11.3355-3362.2004.
- Christiansen, J. K., Nielsen, J. S., Ebersbach, T., Valentin-Hansen, P., Søgaard-Andersen, L., and Kallipolitis, B. H. (2006). Identification of small Hfq-binding RNAs in *Listeria monocytogenes*. *RNA N. Y. N* 12, 1383–1396. doi:10.1261/rna.49706.
- Chua, S. L., Ding, Y., Liu, Y., Cai, Z., Zhou, J., Swarup, S., et al. (2016). Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. *Open Biol.* 6. doi:10.1098/rsob.160162.
- Colagiorgi, A., Bruini, I., Di Ciccio, P. A., Zanardi, E., Ghidini, S., and Ianieri, A. (2017). *Listeria monocytogenes* biofilms in the wonderland of food industry. *Pathogens* 6. doi:10.3390/pathogens6030041.
- Colagiorgi, A., Di Ciccio, P., Zanardi, E., Ghidini, S., and Ianieri, A. (2016). A Look inside the *Listeria monocytogenes* Biofilms Extracellular Matrix. *Microorganisms* 4. doi:10.3390/microorganisms4030022.
- Collins, B., Curtis, N., Cotter, P. D., Hill, C., and Ross, R. P. (2010). The ABC transporter AnrAB contributes to the innate resistance of *Listeria monocytogenes* to nisin, bacitracin, and various beta-lactam antibiotics. *Antimicrob. Agents Chemother.* 54, 4416–4423. doi:10.1128/AAC.00503-10.
- Conlan, J. W. (1997). Critical roles of neutrophils in host defense against experimental systemic infections of mice by *Listeria monocytogenes, Salmonella typhimurium*, and *Yersinia enterocolitica*. *Infect. Immun.* 65, 630–635.
- Conrad, A., Suutari, M. K., Keinänen, M. M., Cadoret, A., Faure, P., Mansuy-Huault, L., et al. (2003). Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. *Lipids* 38, 1093–1105. doi:10.1007/s11745-006-1165-y.
- Corona-Izquierdo, F. P., and Membrillo-Hernández, J. (2002). A mutation in rpoS enhances biofilm formation in *Escherichia coli* during exponential phase of growth. *FEMS Microbiol. Lett.* 211, 105–110. doi:10.1111/j.1574-6968.2002.tb11210.x.

- Cossart, P. (2011). Illuminating the landscape of host–pathogen interactions with the bacterium *Listeria monocytogenes. Proc. Natl. Acad. Sci. U. S. A.* 108, 19484–19491. doi:10.1073/pnas.1112371108.
- Cossart, P., and Lebreton, A. (2014). A trip in the "New Microbiology" with the bacterial pathogen *Listeria monocytogenes. FEBS Lett.* 588, 2437–2445. doi:10.1016/j.febslet.2014.05.051.
- Cossart, P., and Toledo-Arana, A. (2008). *Listeria monocytogenes*, a unique model in infection biology: an overview. *Microbes Infect*. 10, 1041–1050. doi:10.1016/j.micinf.2008.07.043.
- Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. (1995). Microbial biofilms. *Annu. Rev. Microbiol.* 49, 711–745. doi:10.1146/annurev.mi.49.100195.003431.
- Coughlan, L. M., Cotter, P. D., Hill, C., and Alvarez-Ordóñez, A. (2016). New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. *Front. Microbiol.* 7. doi:10.3389/fmicb.2016.01641.
- Couto, N., Belas, A., Oliveira, M., Almeida, P., Clemente, C., and Pomba, C. (2016). Comparative RNAseq-based transcriptome analysis of the virulence characteristics of methicillin-resistant and susceptible *Staphylococcus pseudintermedius* strains isolated from small animals. *Antimicrob. Agents Chemother*. 60, 962–967. doi:10.1128/AAC.01907-15.
- Cunin, R., Glansdorff, N., Piérard, A., and Stalon, V. (1986). Biosynthesis and metabolism of arginine in bacteria. *Microbiol. Rev.* 50, 314–352.
- Currie, A., Farber, J. M., Nadon, C., Sharma, D., Whitfield, Y., Gaulin, C., et al. (2015). Multi-province Listeriosis outbreak linked to contaminated deli meat consumed primarily in institutional settings, Canada, 2008. *Foodborne Pathog. Dis.* 12, 645–652. doi:10.1089/fpd.2015.1939.
- Danielsson-Tham, M.-L., Eriksson, E., Helmersson, S., Leffler, M., Lüdtke, L., Steen, M., et al. (2004). Causes behind a human cheese-borne outbreak of gastrointestinal listeriosis. *Foodborne Pathog. Dis.* 1, 153–159. doi:10.1089/fpd.2004.1.153.
- D'Argenio, D. A., Calfee, M. W., Rainey, P. B., and Pesci, E. C. (2002). Autolysis and autoaggregation in *Pseudomonas aeruginosa* colony morphology mutants. *J. Bacteriol.* 184, 6481–6489.
- Davis, M. J., Coote, P. J., and O'Byrne, C. P. (1996). Acid tolerance in *Listeria monocytogenes*: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. *Microbiology* 142 (Pt 10), 2975–2982. doi:10.1099/13500872-142-10-2975.
- de las Heras, A., Cain, R. J., Bielecka, M. K., and Vázquez-Boland, J. A. (2011). Regulation of *Listeria* virulence: PrfA master and commander. *Curr. Opin. Microbiol.* 14, 118–127. doi:10.1016/j.mib.2011.01.005.

- de Zwart, F. J., Slow, S., Payne, R. J., Lever, M., George, P. M., Gerrard, J. A., et al. (2003). Glycine betaine and glycine betaine analogues in common foods. *Food Chem.* 83, 197–204. doi:10.1016/S0308-8146(03)00063-3.
- Decatur, A. L., and Portnoy, D. A. (2000). A PEST-like sequence in listeriolysin O essential for *Listeria* monocytogenes pathogenicity. *Science* 290, 992–995.
- den Bakker, H. C., Cummings, C. A., Ferreira, V., Vatta, P., Orsi, R. H., Degoricija, L., et al. (2010a). Comparative genomics of the bacterial genus *Listeria*: Genome evolution is characterized by limited gene acquisition and limited gene loss. *BMC Genomics* 11, 688. doi:10.1186/1471-2164-11-688.
- den Bakker, H. C., Didelot, X., Fortes, E. D., Nightingale, K. K., and Wiedmann, M. (2008). Lineage specific recombination rates and microevolution in *Listeria monocytogenes*. *BMC Evol. Biol.* 8, 277. doi:10.1186/1471-2148-8-277.
- den Bakker, H. C., Fortes, E. D., and Wiedmann, M. (2010b). Multilocus sequence typing of outbreakassociated *Listeria monocytogenes* isolates to identify epidemic clones. *Foodborne Pathog. Dis.* 7, 257–265. doi:10.1089/fpd.2009.0342.
- Denich, T. J., Beaudette, L. A., Lee, H., and Trevors, J. T. (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. *J. Microbiol. Methods* 52, 149–182.
- Di Bonaventura, G., Piccolomini, R., Paludi, D., D'Orio, V., Vergara, A., Conter, M., et al. (2008). Influence of temperature on biofilm formation by *Listeria monocytogenes* on various foodcontact surfaces: relationship with motility and cell surface hydrophobicity. *J. Appl. Microbiol.* 104, 1552–1561. doi:10.1111/j.1365-2672.2007.03688.x.
- Di Domenico, E. G., Toma, L., Provot, C., Ascenzioni, F., Sperduti, I., Prignano, G., et al. (2016). Development of an *in vitro* assay, based on the BioFilm Ring Test([®]), for rapid profiling of biofilm-growing bacteria. *Front. Microbiol.* 7, 1429. doi:10.3389/fmicb.2016.01429.
- Diggle, S. P., Stacey, R. E., Dodd, C., Cámara, M., Williams, P., and Winzer, K. (2006). The galactophilic lectin, LecA, contributes to biofilm development in *Pseudomonas aeruginosa*. *Environ*. *Microbiol*. 8, 1095–1104. doi:10.1111/j.1462-2920.2006.001001.x.
- Djordjevic, D., Wiedmann, M., and McLandsborough, L. A. (2002). Microtiter plate assay for assessment of *Listeria monocytogenes* biofilm formation. *Appl. Environ. Microbiol.* 68, 2950–2958.
- Doganay, M. (2003). Listeriosis: clinical presentation. *FEMS Immunol. Med. Microbiol.* 35, 173–175. doi:10.1016/S0928-8244(02)00467-4.
- Doijad, S. P., Barbuddhe, S. B., Garg, S., Poharkar, K. V., Kalorey, D. R., Kurkure, N. V., et al. (2015).
 Biofilm-forming abilities of *Listeria monocytogenes* serotypes isolated from different sources.
 PLOS ONE 10, e0137046. doi:10.1371/journal.pone.0137046.

- Dominguez Rodriguez, L., Vazquez Boland, J. A., Fernandez Garayzabal, J. F., Echalecu Tranchant, P., Gomez-Lucia, E., Rodriguez Ferri, E. F., et al. (1986). Microplate technique to determine hemolytic activity for routine typing of *Listeria* strains. *J. Clin. Microbiol.* 24, 99–103.
- Donlan, R. M. (2002). Biofilms: microbial life on surfaces. *Emerg. Infect. Dis.* 8, 881–890. doi:10.3201/eid0809.020063.
- Donné, J., and Dewilde, S. (2015). "Chapter five The challenging world of biofilm physiology" in Advances in Microbial Physiology Recent Advances in Microbial Oxygen-Binding Proteins., ed. R. K. Poole (Academic Press), 235–292. doi:10.1016/bs.ampbs.2015.09.003.
- Dons, L., Eriksson, E., Jin, Y., Rottenberg, M. E., Kristensson, K., Larsen, C. N., et al. (2004). Role of flagellin and the two-component CheA/CheY system of *Listeria monocytogenes* in host cell invasion and virulence. *Infect. Immun.* 72, 3237–3244. doi:10.1128/IAI.72.6.3237-3244.2004.
- Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C., and Martin, P. (2004). Differentiation of the major *Listeria monocytogenes* serovars by multiplex PCR. *J. Clin. Microbiol.* 42, 3819–3822. doi:10.1128/JCM.42.8.3819-3822.2004.
- Douterelo, I., Husband, S., Loza, V., and Boxall, J. (2016). Dynamics of biofilm regrowth in drinking water distribution systems. *Appl. Environ. Microbiol.* 82, 4155–4168. doi:10.1128/AEM.00109-16.
- Dramsi, S., and Cossart, P. (2002). Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. *J. Cell Biol.* 156, 943–946. doi:10.1083/jcb.200202121.
- Drevets, D. A., and Bronze, M. S. (2008). *Listeria monocytogenes*: epidemiology, human disease, and mechanisms of brain invasion. *FEMS Immunol. Med. Microbiol.* 53, 151–165. doi:10.1111/j.1574-695X.2008.00404.x.
- Drevets, D. A., Canono, B. P., Leenen, P. J., and Campbell, P. A. (1994). Gentamicin kills intracellular *Listeria monocytogenes. Infect. Immun.* 62, 2222–2228.
- Dubail, I., Berche, P., Consortium⁺, T. E. L. G., and Charbit, A. (2000). Listeriolysin O as a reporter to identify constitutive and *in vivo*-inducible promoters in the pathogen *Listeria monocytogenes*. *Infect. Immun.* 68, 3242–3250. doi:10.1128/IAI.68.6.3242-3250.2000.
- Dubois-Brissonnet, F., Trotier, E., and Briandet, R. (2016). The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. *Front. Microbiol.* 7. doi:10.3389/fmicb.2016.01673.
- Ducey, T. F., Page, B., Usgaard, T., Borucki, M. K., Pupedis, K., and Ward, T. J. (2007). A singlenucleotide-polymorphism-based multilocus genotyping assay for subtyping lineage I isolates of *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 73, 133–147. doi:10.1128/AEM.01453-06.
- Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P., et al. (2002). *Listeria monocytogenes* bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. *Mol. Microbiol.* 45, 1095–1106.

- Dutta, V., Elhanafi, D., and Kathariou, S. (2013). Conservation and Distribution of the Benzalkonium Chloride Resistance Cassette *bcrABC* in *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 79, 6067–6074. doi:10.1128/AEM.01751-13.
- Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F. (2000). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. *Science* 287, 1796–1799.
- EFSA and ECDC (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. *EFSA J.* 15. doi:10.2903/j.efsa.2017.5077.
- EFSA and ECDC (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. *EFSA J.* 16. doi:10.2903/j.efsa.2018.5500.
- Eiff, C. von, Heilmann, C., and Peters, G. (1999). New Aspects in the Molecular Basis of Polymer-Associated Infections due to *Staphylococci. Eur. J. Clin. Microbiol. Infect. Dis.* 18, 843–846. doi:10.1007/s100960050417.
- Elhanafi, D., Dutta, V., and Kathariou, S. (2010). Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a *Listeria monocytogenes* strain from the 1998-1999 outbreak. *Appl. Environ. Microbiol.* 76, 8231–8238. doi:10.1128/AEM.02056-10.
- Engelbrecht, F., Chun, S.-K., Ochs, C., Hess, J., Lottspeich, F., Goebel, W., et al. (1996). A new PrfAregulated gene of *Listeria monocytogenes* encoding a small, secreted protein which belongs to the family of internalins. *Mol. Microbiol.* 21, 823–837. doi:10.1046/j.1365-2958.1996.541414.x.
- Esbelin, J., Santos, T., and Hébraud, M. (2018). Desiccation: An environmental and food industry stress that bacteria commonly face. *Food Microbiol.* 69, 82–88. doi:10.1016/j.fm.2017.07.017.
- Eskandarian, H. A., Impens, F., Nahori, M.-A., Soubigou, G., Coppée, J.-Y., Cossart, P., et al. (2013). A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. *Science* 341, 1238858. doi:10.1126/science.1238858.
- European Commission (2005). COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. *Off. J. Eur. Union* 48, 1–26.
- Evans, M. R., Swaminathan, B., Graves, L. M., Altermann, E., Klaenhammer, T. R., Fink, R. C., et al. (2004).
 Genetic markers unique to *Listeria monocytogenes* serotype 4b differentiate epidemic clone II (hot dog outbreak strains) from other lineages. *Appl. Environ. Microbiol.* 70, 2383–2390. doi:10.1128/AEM.70.4.2383-2390.2004.
- Fagerlund, A., Møretrø, T., Heir, E., Briandet, R., and Langsrud, S. (2017). Cleaning and disinfection of biofilms composed of *Listeria monocytogenes* and background microbiota from meat processing surfaces. *Appl. Environ. Microbiol.* doi:10.1128/AEM.01046-17.
- Fallon, J., Kelly, J., and Kavanagh, K. (2012). *Galleria mellonella* as a model for fungal pathogenicity testing. *Methods Mol. Biol. Clifton NJ* 845, 469–485. doi:10.1007/978-1-61779-539-8_33.

- Farber, J. M., and Peterkin, P. I. (1991). *Listeria monocytogenes*, a food-borne pathogen. *Microbiol. Rev.* 55, 476–511.
- Feehily, C., Finnerty, A., Casey, P. G., Hill, C., Gahan, C. G. M., O'Byrne, C. P., et al. (2014). Divergent evolution of the activity and regulation of the glutamate decarboxylase systems in *Listeria* monocytogenes EGD-e and 10403S: roles in virulence and acid tolerance. *PLOS ONE* 9, e112649. doi:10.1371/journal.pone.0112649.
- Félix, B., Danan, C., Van Walle, I., Lailler, R., Texier, T., Lombard, B., et al. (2014). Building a molecular Listeria monocytogenes database to centralize and share PFGE typing data from food, environmental and animal strains throughout Europe. J. Microbiol. Methods 104, 1–8. doi:10.1016/j.mimet.2014.06.001.
- Ferreira, A., O'Byrne, C. P., and Boor, K. J. (2001). Role of çB in Heat, Ethanol, Acid, and Oxidative Stress Resistance and during Carbon Starvation in*Listeria monocytogenes*. *Appl. Environ. Microbiol.* 67, 4454–4457. doi:10.1128/AEM.67.10.4454-4457.2001.
- Ferreira, A., Sue, D., O'Byrne, C. P., and Boor, K. J. (2003). Role of *Listeria monocytogenes* σB in survival of lethal acidic conditions and in the acquired acid tolerance response. *Appl. Environ. Microbiol.* 69, 2692–2698. doi:10.1128/AEM.69.5.2692-2698.2003.
- Ferreira, V., Barbosa, J., Stasiewicz, M., Vongkamjan, K., Moreno Switt, A., Hogg, T., et al. (2011). Diverse geno- and phenotypes of persistent *Listeria monocytogenes* isolates from fermented meat sausage production facilities in Portugal. *Appl. Environ. Microbiol.* 77, 2701–2715. doi:10.1128/AEM.02553-10.
- Ferreira, V., Wiedmann, M., Teixeira, P., and Stasiewicz, M. J. (2014). Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J. Food Prot. 77, 150–170. doi:10.4315/0362-028X.JFP-13-150.
- Finlay, B. B., and Falkow, S. (1997). Common themes in microbial pathogenicity revisited. *Microbiol Mol Biol Rev* 61, 136–169.
- Flemming, H.-C., Neu, T. R., and Wozniak, D. J. (2007). The EPS matrix: the "house of biofilm cells." J. Bacteriol. 189, 7945–7947. doi:10.1128/JB.00858-07.
- Flemming, H.-C., and Wingender, J. (2010). The biofilm matrix. *Nat. Rev. Microbiol.* 8, 623–633. doi:10.1038/nrmicro2415.
- Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., and Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. *Nat. Rev. Microbiol.* 14, 563–575. doi:10.1038/nrmicro.2016.94.
- Fletcher, M. (1977). The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. *Can. J. Microbiol.* doi:10.1139/m77-001.

- Fletcher, M., and Loeb, G. I. (1979). Influence of substratum characteristics on the attachment of a marine *Pseudomonad* to solid surfaces. *Appl. Environ. Microbiol.* 37, 67–72.
- Fox, E. M., Allnutt, T., Bradbury, M. I., Fanning, S., and Chandry, P. S. (2016). Comparative genomics of the *Listeria monocytogenes* ST204 subgroup. *Front. Microbiol.* 7, 2057. doi:10.3389/fmicb.2016.02057.
- Franciosa, G., Maugliani, A., Scalfaro, C., Floridi, F., and Aureli, P. (2009). Expression of internalin A and biofilm formation among *Listeria monocytogenes* clinical isolates. *Int. J. Immunopathol. Pharmacol.* 22, 183–193. doi:10.1177/039463200902200121.
- Fratamico, P. M., Annous, B. A., and Guenther, N. W. (2009). *Biofilms in the Food and Beverage Industries*. 1st ed.Woodhead Publishing.
- Frederiksen, B., and Samuelsson, S. (1992). Feto-maternal listeriosis in Denmark 1981–1988. J. Infect. 24, 277–287. doi:10.1016/S0163-4453(05)80033-7.
- Freires, I. A., Sardi, J. de C. O., de Castro, R. D., and Rosalen, P. L. (2017). Alternative animal and nonanimal models for drug discovery and development: bonus or burden? *Pharm. Res.* 34, 681– 686. doi:10.1007/s11095-016-2069-z.
- Freitag, N. E., Port, G. C., and Miner, M. D. (2009). *Listeria monocytogenes* from saprophyte to intracellular pathogen. *Nat. Rev. Microbiol.* 7, 623–628. doi:10.1038/nrmicro2171.
- Frølund, B., Palmgren, R., Keiding, K., and Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. *Water Res.* 30, 1749–1758. doi:10.1016/0043-1354(95)00323-1.
- Fujita, M., González-Pastor, J. E., and Losick, R. (2005). High- and Low-Threshold Genes in the SpoOA Regulon of *Bacillus subtilis*. J. Bacteriol. 187, 1357–1368. doi:10.1128/JB.187.4.1357-1368.2005.
- Furukawa, K., Gu, H., Sudarsan, N., Hayakawa, Y., Hyodo, M., and Breaker, R. R. (2012). Identification of Ligand Analogs that Control c-di-GMP Riboswitches. ACS Chem. Biol. 7, 1436–1443. doi:10.1021/cb300138n.
- Gahan, C. G. M., and Hill, C. (2014). *Listeria monocytogenes*: survival and adaptation in the gastrointestinal tract. *Front. Cell. Infect. Microbiol.* 4. doi:10.3389/fcimb.2014.00009.
- Gaillard, J. L., Berche, P., Frehel, C., Gouin, E., and Cossart, P. (1991). Entry of *L. monocytogenes* into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from grampositive cocci. *Cell* 65, 1127–1141.
- Gaillard, J. L., Berche, P., Mounier, J., Richard, S., and Sansonetti, P. (1987). *In vitro* model of penetration and intracellular growth of *Listeria monocytogenes* in the human enterocyte-like cell line Caco-2. *Infect. Immun.* 55, 2822–2829.

- Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., and Lombó, F. (2018). Biofilms in the food industry: health aspects and control methods. *Front. Microbiol.* 9. doi:10.3389/fmicb.2018.00898.
- Galperin, M. Y., Nikolskaya, A. N., and Koonin, E. V. (2001). Novel domains of the prokaryotic twocomponent signal transduction systems. *FEMS Microbiol. Lett.* 203, 11–21. doi:10.1111/j.1574-6968.2001.tb10814.x.
- Garrec, N., Picard-Bonnaud, F., and Pourcher, A. M. (2003). Occurrence of *Listeria* sp and L monocytogenes in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of *Listeria* species. *FEMS Immunol. Med. Microbiol.* 35, 275–283.
- Garrett, T. R., Bhakoo, M., and Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. *Prog. Nat. Sci.* 18, 1049–1056. doi:10.1016/j.pnsc.2008.04.001.
- Gedde, M. M., Higgins, D. E., Tilney, L. G., and Portnoy, D. A. (2000). Role of listeriolysin O in cell-tocell spread of *Listeria monocytogenes*. *Infect. Immun.* 68, 999–1003.
- Gianotti, A., Serrazanetti, D. I., Kamdem, S. S., and Guerzoni, M. E. (2008). Involvement of cell fatty acid composition and lipid metabolism in adhesion mechanism of *Listeria monocytogenes*. *Int. J. Food Microbiol*. 123, 9–17.
- Gilmour, M. W., Graham, M., Van Domselaar, G., Tyler, S., Kent, H., Trout-Yakel, K. M., et al. (2010).
 High-throughput genome sequencing of two *Listeria monocytogenes* clinical isolates during a large foodborne outbreak. *BMC Genomics* 11, 120. doi:10.1186/1471-2164-11-120.
- Girón, J. A., Torres, A. G., Freer, E., and Kaper, J. B. (2002). The flagella of enteropathogenic *Escherichia coli* mediate adherence to epithelial cells. *Mol. Microbiol.* 44, 361–379.
- Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., et al. (2001). Comparative genomics of *Listeria* species. *Science* 294, 849–852. doi:10.1126/science.1063447.
- Godshall, C. E., Suh, G., and Lorber, B. (2013). Cutaneous Listeriosis. J. Clin. Microbiol. 51, 3591–3596. doi:10.1128/JCM.01974-13.
- Goldfine, H., and Knob, C. (1992). Purification and characterization of *Listeria monocytogenes* phosphatidylinositol-specific phospholipase C. *Infect. Immun.* 60, 4059–4067.
- Gorski, L., Palumbo, J. D., and Mandrell, R. E. (2003). Attachment of *Listeria monocytogenes* to radish tissue is dependent upon temperature and flagellar motility. *Appl. Environ. Microbiol.* 69, 258– 266.
- Gouin, E., Adib-Conquy, M., Balestrino, D., Nahori, M.-A., Villiers, V., Colland, F., et al. (2010). The *Listeria monocytogenes* InIC protein interferes with innate immune responses by targeting the IκB kinase subunit IKKα. *Proc. Natl. Acad. Sci.* 107, 17333–17338. doi:10.1073/pnas.1007765107.

- Goulet, V., Hebert, M., Hedberg, C., Laurent, E., Vaillant, V., De Valk, H., et al. (2012). Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 54, 652–660. doi:10.1093/cid/cir902.
- Goulet, V., Hedberg, C., Le Monnier, A., and de Valk, H. (2008). Increasing incidence of listeriosis in France and other European countries. *Emerg. Infect. Dis.* 14, 734–740. doi:10.3201/eid1405.071395.
- Graves, L. M., and Swaminathan, B. (2001). PulseNet standardized protocol for subtyping *Listeria monocytogenes* by macrorestriction and pulsed-field gel electrophoresis. *Int. J. Food Microbiol.* 65, 55–62.
- Gray, M. J., Zadoks, R. N., Fortes, E. D., Dogan, B., Cai, S., Chen, Y., et al. (2004). *Listeria monocytogenes* isolates from foods and humans form distinct but overlapping populations. *Appl. Environ. Microbiol.* 70, 5833–5841. doi:10.1128/AEM.70.10.5833-5841.2004.
- Grif, K., Patscheider, G., Dierich, M. P., and Allerberger, F. (2003). Incidence of fecal carriage of *Listeria* monocytogenes in three healthy volunteers: a one-year prospective stool survey. *Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol.* 22, 16–20. doi:10.1007/s10096-002-0835-9.
- Gründling, A., Burrack, L. S., Bouwer, H. G. A., and Higgins, D. E. (2004). *Listeria monocytogenes* regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. *Proc. Natl. Acad. Sci.* 101, 12318–12323. doi:10.1073/pnas.0404924101.
- Gueriri, I., Cyncynatus, C., Dubrac, S., Arana, A. T., Dussurget, O., and Msadek, T. (2008). The DegU orphan response regulator of *Listeria monocytogenes* autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation. *Microbiology* 154, 2251–2264. doi:10.1099/mic.0.2008/017590-0.
- Guilbaud, M., Piveteau, P., Desvaux, M., Brisse, S., and Briandet, R. (2015). Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Appl. Environ. Microbiol. 81, 1813–1819. doi:10.1128/AEM.03173-14.
- Guillet, C., Join-Lambert, O., Le Monnier, A., Leclercq, A., Mechaï, F., Mamzer-Bruneel, M.-F., et al. (2010). Human listeriosis caused by *Listeria ivanovii*. *Emerg. Infect. Dis.* 16, 136–138. doi:10.3201/eid1601.091155.
- Guldimann, C., Boor, K. J., Wiedmann, M., and Guariglia-Oropeza, V. (2016). Resilience in the face of uncertainty: Sigma Factor B fine-tunes gene expression to support homeostasis in Grampositive bacteria. *Appl. Environ. Microbiol.* 82, 4456–4469. doi:10.1128/AEM.00714-16.
- Guldimann, C., Guariglia-Oropeza, V., Harrand, S., Kent, D., Boor, K. J., and Wiedmann, M. (2017). Stochastic and differential activation of oB and PrfA in *Listeria monocytogenes* at the single cell level under different environmental stress conditions. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.00348.

- Haase, J. K., Didelot, X., Lecuit, M., Korkeala, H., L. monocytogenes MLST Study Group, and Achtman, M. (2014). The ubiquitous nature of *Listeria monocytogenes* clones: a large-scale Multilocus Sequence Typing study. *Environ. Microbiol.* 16, 405–416. doi:10.1111/1462-2920.12342.
- Hain, T., Hossain, H., Chatterjee, S. S., Machata, S., Volk, U., Wagner, S., et al. (2008). Temporal transcriptomic analysis of the *Listeria monocytogenes* EGD-e σB regulon. *BMC Microbiol.* 8, 20. doi:10.1186/1471-2180-8-20.
- Hall, M., Grundström, C., Begum, A., Lindberg, M. J., Sauer, U. H., Almqvist, F., et al. (2016). Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in *Listeria*. *Proc. Natl. Acad. Sci. U. S. A.* 113, 14733–14738. doi:10.1073/pnas.1614028114.
- Hallam, N. B., West, J. R., Forster, C. F., and Simms, J. (2001). The potential for biofilm growth in water distribution systems. *Water Res.* 35, 4063–4071. doi:10.1016/S0043-1354(01)00248-2.
- Hall-Stoodley, L., Costerton, J. W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. *Nat. Rev. Microbiol.* 2, 95–108. doi:10.1038/nrmicro821.
- Hamon, M. A., Batsché, E., Régnault, B., Tham, T. N., Seveau, S., Muchardt, C., et al. (2007). Histone modifications induced by a family of bacterial toxins. *Proc. Natl. Acad. Sci. U. S. A.* 104, 13467– 13472. doi:10.1073/pnas.0702729104.
- Hamon, M. A., and Lazazzera, B. A. (2001). The sporulation transcription factor Spo0A is required for biofilm development in *Bacillus subtilis*. *Mol. Microbiol*. 42, 1199–1209.
- Hamon, M. A., Ribet, D., Stavru, F., and Cossart, P. (2012). Listeriolysin O: the Swiss army knife of *Listeria*. *Trends Microbiol*. 20, 360–368. doi:10.1016/j.tim.2012.04.006.
- Hannig, C., Follo, M., Hellwig, E., and Al-Ahmad, A. (2010). Visualization of adherent micro-organisms using different techniques. J. Med. Microbiol. 59, 1–7. doi:10.1099/jmm.0.015420-0.
- Hansen, L. T., and Vogel, B. F. (2011). Desiccation of adhering and biofilm *Listeria monocytogenes* on stainless steel: Survival and transfer to salmon products. *Int. J. Food Microbiol.* 146, 88–93. doi:10.1016/j.ijfoodmicro.2011.01.032.
- Harvey, J., Keenan, K. P., and Gilmour, A. (2007). Assessing biofilm formation by *Listeria* monocytogenes strains. Food Microbiol. 24, 380–392. doi:10.1016/j.fm.2006.06.006.
- He, L., Dai, K., Wen, X., Ding, L., Cao, S., Huang, X., et al. (2018). QseC Mediates Osmotic Stress Resistance and Biofilm Formation in *Haemophilus parasuis*. *Front. Microbiol.* 9, 212. doi:10.3389/fmicb.2018.00212.
- Hébraud, M., and Guzzo, J. (2000). The main cold shock protein of *Listeria monocytogenes* belongs to the family of ferritin-like proteins. *FEMS Microbiol. Lett.* 190, 29–34. doi:10.1111/j.1574-6968.2000.tb09257.x.
- Heir, E., Lindstedt, B.-A., Røtterud, O.-J., Vardund, T., Kapperud, G., and Nesbakken, T. (2004). Molecular epidemiology and disinfectant susceptibility of *Listeria monocytogenes* from meat

processing plants and human infections. *Int. J. Food Microbiol.* 96, 85–96. doi:10.1016/j.ijfoodmicro.2004.03.014.

- Helloin, E., Jänsch, L., and Phan-Thanh, L. (2003). Carbon starvation survival of *Listeria monocytogenes* in planktonic state and in biofilm: a proteomic study. *Proteomics* 3, 2052–2064. doi:10.1002/pmic.200300538.
- Hengge, R., Gründling, A., Jenal, U., Ryan, R., and Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. J. Bacteriol. 198, 15–26. doi:10.1128/JB.00331-15.
- Henri, C., Félix, B., Guillier, L., Leekitcharoenphon, P., Michelon, D., Mariet, J.-F., et al. (2016). Population genetic structure of *Listeria monocytogenes* strains determined by pulsed-field gel electrophoresis and multilocus sequence typing. *Appl. Environ. Microbiol.*, AEM.00583-16. doi:10.1128/AEM.00583-16.
- Henri, C., Leekitcharoenphon, P., Carleton, H. A., Radomski, N., Kaas, R. S., Mariet, J.-F., et al. (2017).
 An Assessment of Different Genomic Approaches for Inferring Phylogeny of *Listeria* monocytogenes. Front. Microbiol. 8. doi:10.3389/fmicb.2017.02351.
- Heukelekian, H., and Heller, A. (1940). Relation between Food Concentration and Surface for Bacterial Growth1. J. Bacteriol. 40, 547–558.
- Hilliard, A., Leong, D., O'Callaghan, A., Culligan, E. P., Morgan, C. A., DeLappe, N., et al. (2018). Genomic characterization of *Listeria monocytogenes* isolates associated with clinical Listeriosis and the food production environment in Ireland. *Genes* 9. doi:10.3390/genes9030171.
- Hingston, P., Chen, J., Allen, K., Truelstrup Hansen, L., and Wang, S. (2017a). Strand specific RNAsequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in *Listeria monocytogenes*. *PLoS ONE* 12. doi:10.1371/journal.pone.0180123.
- Hingston, P., Chen, J., Dhillon, B. K., Laing, C., Bertelli, C., Gannon, V., et al. (2017b). Genotypes associated with *Listeria monocytogenes* isolates displaying impaired or enhanced tolerances to cold, salt, acid, or desiccation stress. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.00369.
- Hoelzer, K., Pouillot, R., and Dennis, S. (2012). Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. *Vet. Res.* 43, 18. doi:10.1186/1297-9716-43-18.
- Høiby, N., Ciofu, O., and Bjarnsholt, T. (2010). *Pseudomonas aeruginosa* biofilms in cystic fibrosis. *Future Microbiol.* 5, 1663–1674. doi:10.2217/fmb.10.125.
- Holah, J. T., Taylor, J. H., Dawson, D. J., and Hall, K. E. (2002). Biocide use in the food industry and the disinfectant resistance of persistent strains of *Listeria monocytogenes* and *Escherichia coli*. *Symp. Ser. Soc. Appl. Microbiol.*, 111S-120S.

- Hu, M., Zhang, C., Mu, Y., Shen, Q., and Feng, Y. (2010). Indole Affects Biofilm Formation in Bacteria. *Indian J. Microbiol.* 50, 362–368. doi:10.1007/s12088-011-0142-1.
- Huang, L. (2004). Thermal resistance of *Listeria monocytogenes*, *Salmonella Heidelberg*, and *Escherichia coli* O157:H7 at elevated temperatures. *J. Food Prot.* 67, 1666–1670. doi:10.4315/0362-028X-67.8.1666.
- Huang, R., Li, M., and Gregory, R. L. (2011). Bacterial interactions in dental biofilm. *Virulence* 2, 435–444. doi:10.4161/viru.2.5.16140.
- Hunter, S. B., Vauterin, P., Lambert-Fair, M. A., Duyne, M. S. V., Kubota, K., Graves, L., et al. (2005). Establishment of a Universal Size Standard Strain for Use with the PulseNet Standardized Pulsed-Field Gel Electrophoresis Protocols: Converting the National Databases to the New Size Standard. J. Clin. Microbiol. 43, 1045–1050. doi:10.1128/JCM.43.3.1045-1050.2005.
- Hyden, P., Pietzka, A., Lennkh, A., Murer, A., Springer, B., Blaschitz, M., et al. (2016). Whole genome sequence-based serogrouping of *Listeria monocytogenes* isolates. *J. Biotechnol.* 235, 181–186. doi:10.1016/j.jbiotec.2016.06.005.
- Imlay, J. A. (2019). Where in the world do bacteria experience oxidative stress? *Environ. Microbiol.* 21, 521–530. doi:10.1111/1462-2920.14445.
- Inguglia, E. S., Zhang, Z., Tiwari, B. K., Kerry, J. P., and Burgess, C. M. (2017). Salt reduction strategies in processed meat products – A review. *Trends Food Sci. Technol.* 59, 70–78. doi:10.1016/j.tifs.2016.10.016.
- Ivy, R. A., Chan, Y. C., Bowen, B. M., Boor, K. J., and Wiedmann, M. (2010). Growth temperaturedependent contributions of response regulators, σB, PrfA, and motility factors to *Listeria monocytogenes* invasion of Caco-2 cells. *Foodborne Pathog. Dis.* 7, 1337–1349. doi:10.1089/fpd.2010.0563.
- Izar, B., Mraheil, M. A., and Hain, T. (2011). Identification and Role of Regulatory Non-Coding RNAs in *Listeria monocytogenes. Int. J. Mol. Sci.* 12, 5070–5079. doi:10.3390/ijms12085070.
- Jackson, B. R., Tarr, C., Strain, E., Jackson, K. A., Conrad, A., Carleton, H., et al. (2016). Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 63, 380–386. doi:10.1093/cid/ciw242.
- Jacquet, C., Catimel, B., Brosch, R., Buchrieser, C., Dehaumont, P., Goulet, V., et al. (1995). Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. *Appl. Environ. Microbiol.* 61, 2242–2246.
- Jacquet, C., Doumith, M., Gordon, J. I., Martin, P. M. V., Cossart, P., and Lecuit, M. (2004). A molecular marker for evaluating the pathogenic potential of foodborne *Listeria monocytogenes*. J. Infect. Dis. 189, 2094–2100. doi:10.1086/420853.

- Jadhav, S., Bhave, M., and Palombo, E. A. (2012). Methods used for the detection and subtyping of *Listeria monocytogenes. J. Microbiol. Methods* 88, 327–341. doi:10.1016/j.mimet.2012.01.002.
- Jagadeesan, B., Littlejohn, A. E. F., Amalaradjou, M. A. R., Singh, A. K., Mishra, K. K., La, D., et al. (2011). N-Terminal Gly224–Gly411 domain in *Listeria* adhesion protein interacts with host receptor Hsp60. *PLOS ONE* 6, e20694. doi:10.1371/journal.pone.0020694.
- Jahn, A., and Nielsen, P. H. (1998). Cell biomass and exopolymer composition in sewer biofilms. *Water Sci. Technol.* 37, 17–24. doi:10.1016/S0273-1223(97)00751-8.
- Jamal, W., Al-Shomari, S., Boland, F., and Rotimi, V. (2005). *Listeria monocytogenes* meningitis in an immunocompetent adult patient. *Med. Princ. Pract.* 14, 55–57. doi:10.1159/000081925.
- Jaradat, Z. W., and Bhunia, A. K. (2003). Adhesion, invasion, and translocation characteristics of *Listeria* monocytogenes serotypes in Caco-2 cell and mouse models. *Appl. Environ. Microbiol.* 69, 3640–3645. doi:10.1128/AEM.69.6.3640-3645.2003.
- Jaradat, Z. W., Wampler, J. L., and Bhunia, A. K. (2003). A *Listeria* adhesion protein-deficient *Listeria monocytogenes* strain shows reduced adhesion primarily to intestinal cell lines. *Med. Microbiol. Immunol. (Berl.)* 192, 85–91. doi:10.1007/s00430-002-0150-1.
- Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? *FEMS Microbiol. Lett.* 236, 163–173. doi:10.1016/j.femsle.2004.06.005.
- Jensen, A., Larsen, M. H., Ingmer, H., Vogel, B. F., and Gram, L. (2007). Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of *Listeria monocytogenes* strains. *J. Food Prot.* 70, 592–599.
- Jofré, A., Garriga, M., Aymerich, T., Pérez-Rodríguez, F., Valero, A., Carrasco, E., et al. (2016). Closing gaps for performing a risk assessment on *Listeria monocytogenes* in ready-to-eat (RTE) foods: activity 1, an extensive literature search and study selection with data extraction on *L. monocytogenes* in a wide range of RTE food. *EFSA Support. Publ.* 13, n/a-n/a. doi:10.2903/sp.efsa.2016.EN-1141.
- Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. (2002). An RNA thermosensor controls expression of virulence genes in *Listeria monocytogenes*. *Cell* 110, 551– 561. doi:10.1016/S0092-8674(02)00905-4.
- Jones, G. S., and D'Orazio, S. E. F. (2013). *Listeria monocytogenes*: cultivation and laboratory maintenance. *Curr. Protoc. Microbiol.* 31, 9B.2.1-9B.2.7. doi:10.1002/9780471729259.mc09b02s31.
- Jordan, K., Hunt, K., Lourenco, A., and Pennone, V. (2018). *Listeria monocytogenes* in the food processing environment. *Curr. Clin. Microbiol.* Rep. 5, 106–119. doi:10.1007/s40588-018-0090-1.

- Jordan, S. J., Perni, S., Glenn, S., Fernandes, I., Barbosa, M., Sol, M., et al. (2008). *Listeria monocytogenes* biofilm-associated protein (BapL) may contribute to surface attachment of *L. monocytogenes* but is absent from many field isolates. *Appl. Environ. Microbiol.* 74, 5451–5456. doi:10.1128/AEM.02419-07.
- Joyce, S. A., and Gahan, C. G. M. (2010). Molecular pathogenesis of *Listeria monocytogenes* in the alternative model host *Galleria mellonella*. *Microbiology* 156, 3456–3468. doi:10.1099/mic.0.040782-0.
- Junttila, J. R., Niemelä, S. I., and Hirn, J. (2008). Minimum growth temperatures of *Listeria* monocytogenes and non-haemolytic *Listeria*. J. Appl. Bacteriol. 65, 321–327. doi:10.1111/j.1365-2672.1988.tb01898.x.
- Kadam, S. R., den Besten, H. M. W., van der Veen, S., Zwietering, M. H., Moezelaar, R., and Abee, T. (2013). Diversity assessment of *Listeria monocytogenes* biofilm formation: impact of growth condition, serotype and strain origin. *Int. J. Food Microbiol.* 165, 259–264. doi:10.1016/j.ijfoodmicro.2013.05.025.
- Kamp, H. D., and Higgins, D. E. (2009). Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in *Listeria monocytogenes*. *Mol. Microbiol*. 74, 421–435. doi:10.1111/j.1365-2958.2009.06874.x.
- Kamp, H. D., and Higgins, D. E. (2011). A protein thermometer controls temperature-dependent transcription of flagellar motility genes in *Listeria monocytogenes*. *PLoS Pathog.* 7. doi:10.1371/journal.ppat.1002153.
- Kang, J., Wiedmann, M., Boor, K. J., and Bergholz, T. M. (2015). VirR-mediated resistance of *Listeria* monocytogenes against food antimicrobials and cross-protection induced by exposure to organic acid salts. *Appl. Environ. Microbiol.* 81, 4553–4562. doi:10.1128/AEM.00648-15.
- Kaplan, J. B. (2010). Biofilm Dispersal. J. Dent. Res. 89, 205–218. doi:10.1177/0022034509359403.
- Karatan, E., and Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. *Microbiol. Mol. Biol. Rev. MMBR* 73, 310–347. doi:10.1128/MMBR.00041-08.
- Katharios-Lanwermeyer, S., Rakic-Martinez, M., Elhanafi, D., Ratani, S., Tiedje, J. M., and Kathariou, S. (2012). Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic *Listeria* spp. to other *Listeriae*. *Appl. Environ. Microbiol.* 78, 7549–7556. doi:10.1128/AEM.02245-12.
- Kathariou, S. (2008). "Foodborne outbreaks of listeriosis and epidemic-associated lineages of Listeria monocytogenes" in *Microbial Food Safety in Animal Agriculture* (John Wiley & Sons, Ltd), 243– 256. doi:10.1002/9780470752616.ch25.
- Kayal, S., and Charbit, A. (2006). Listeriolysin O: a key protein of *Listeria monocytogenes* with multiple functions. *FEMS Microbiol. Rev.* 30, 514–529. doi:10.1111/j.1574-6976.2006.00021.x.

- Kelly, J., Barnass, S., Sawicka, E., and Dean, A. (1999). Listeria meningitis presenting in an immunocompetent adult patient. Hosp. Med. 60, 140–141. doi:10.12968/hosp.1999.60.2.1046.
- Kenney, S. J., and Beuchat, L. R. (2004). Survival, growth, and thermal resistance of *Listeria* monocytogenes in products containing peanut and chocolate. J. Food Prot. 67, 2205–2211. doi:10.4315/0362-028X-67.10.2205.
- Keto-Timonen, R., Tolvanen, R., Lundén, J., and Korkeala, H. (2007). An 8-year surveillance of the diversity and persistence of *Listeria monocytogenes* in a chilled food processing plant analyzed by amplified fragment length polymorphism. *J. Food Prot.* 70, 1866–1873.
- Khan, J. A., Rathore, R. S., Khan, S., and Ahmad, I. (2014). *In vitro* detection of pathogenic *Listeria* monocytogenes from food sources by conventional, molecular and cell culture method. *Braz. J. Microbiol.* 44, 751–758.
- Kjærgaard, K., Schembri, M. A., Hasman, H., and Klemm, P. (2000). Antigen 43 from *Escherichia coli* induces inter- and intraspecies cell aggregation and changes in colony morphology of *Pseudomonas fluorescens. J. Bacteriol.* 182, 4789–4796.
- Koch, C., and Høiby, N. (1993). Pathogenesis of cystic fibrosis. *The Lancet* 341, 1065–1069. doi:10.1016/0140-6736(93)92422-P.
- Kolesky, S., Ouhammouch, M., Brody, E. N., and Geiduschek, E. P. (1999). Sigma competition: the contest between bacteriophage T4 middle and late transcription. J. Mol. Biol. 291, 267–281. doi:10.1006/jmbi.1999.2953.
- Kortebi, M., Milohanic, E., Mitchell, G., Péchoux, C., Prevost, M.-C., Cossart, P., et al. (2017). *Listeria monocytogenes* switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. *PLoS Pathog.* 13. doi:10.1371/journal.ppat.1006734.
- Koutsoumanis, K. P., Kendall, P. A., and Sofos, J. N. (2003). Effect of Food Processing-Related Stresses on Acid Tolerance of *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 69, 7514–7516. doi:10.1128/AEM.69.12.7514-7516.2003.
- Kovacevic, J., Ziegler, J., Wałecka-Zacharska, E., Reimer, A., Kitts, D. D., and Gilmour, M. W. (2016). Tolerance of *Listeria monocytogenes* to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by *emrE. Appl. Environ. Microbiol.* 82, 939–953. doi:10.1128/AEM.03741-15.
- Kreft, J., and Vázquez-Boland, J. A. (2001). Regulation of virulence genes in *Listeria*. *Int. J. Med. Microbiol. IJMM* 291, 145–157. doi:10.1078/1438-4221-00111.
- Kreth, J., Chen, Z., Ferretti, J., and Malke, H. (2011). Counteractive Balancing of Transcriptome Expression Involving CodY and CovRS in *Streptococcus pyogenes*. J. Bacteriol. 193, 4153–4165. doi:10.1128/JB.00061-11.

- Kvistholm Jensen, A., Nielsen, E. M., Björkman, J. T., Jensen, T., Müller, L., Persson, S., et al. (2016).
 Whole-genome sequencing used to investigate a nationwide outbreak of Listeriosis caused by Ready-to-eat delicatessen meat, Denmark, 2014. *Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am.* 63, 64–70. doi:10.1093/cid/ciw192.
- Lakicevic, B., Nastasijevic, I., and Raseta, M. (2015). Sources of *Listeria monocytogenes* contamination in retail establishments. *Procedia Food Sci.* 5, 160–163. doi:10.1016/j.profoo.2015.09.046.
- Lamont, R. F., Sobel, J., Mazaki-Tovi, S., Kusanovic, J. P., Vaisbuch, E., Kim, S. K., et al. (2011). Listeriosis in human pregnancy: a systematic review. *J. Perinat. Med.* 39, 227–236. doi:10.1515/JPM.2011.035.
- Landini, P., Egli, T., Wolf, J., and Lacour, S. (2014). sigmaS, a major player in the response to environmental stresses in *Escherichia coli*: role, regulation and mechanisms of promoter recognition. *Environ. Microbiol. Rep.* 6, 1–13. doi:10.1111/1758-2229.12112.
- Lappi, V. R., Ho, A., Gall, K., and Wiedmann, M. (2004). Prevalence and growth of *Listeria* on naturally contaminated smoked salmon over 28 days of storage at 4 degrees C. *J. Food Prot.* 67, 1022–1026.
- Larsen, M. H., Koch, A. G., and Ingmer, H. (2010). *Listeria monocytogenes* efficiently invades Caco-2 cells after low-temperature storage in broth and on deli meat. *Foodborne Pathog. Dis.* 7, 1013–1018. doi:10.1089/fpd.2009.0470.
- Lasaro, M. A., Salinger, N., Zhang, J., Wang, Y., Zhong, Z., Goulian, M., et al. (2009). F1C Fimbriae play an important role in biofilm formation and intestinal colonization by the *Escherichia coli* commensal strain Nissle 1917. *Appl. Environ. Microbiol.* 75, 246–251. doi:10.1128/AEM.01144-08.
- Latorre, A. A., Van Kessel, J. S., Karns, J. S., Zurakowski, M. J., Pradhan, A. K., Boor, K. J., et al. (2010). Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with *Listeria monocytogenes*. J. Dairy Sci. 93, 2792–2802. doi:10.3168/jds.2009-2717.
- Lauer, P., Chow, M. Y. N., Loessner, M. J., Portnoy, D. A., and Calendar, R. (2002). Construction, characterization, and use of two *Listeria monocytogenes* site-specific phage integration vectors. *J. Bacteriol.* 184, 4177–4186.
- Lebreton, A., and Cossart, P. (2016). RNA- and protein-mediated control of *Listeria monocytogenes* virulence gene expression. *RNA Biol.* 14, 460–470. doi:10.1080/15476286.2016.1189069.
- Lebreton, A., Lakisic, G., Job, V., Fritsch, L., Tham, T. N., Camejo, A., et al. (2011). A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. *Science* 331, 1319–1321. doi:10.1126/science.1200120.
- Leclercq, A., Moura, A., Vales, G., Tessaud-Rita, N., Aguilhon, C., and Lecuit, M. (2019). *Listeria* thailandensis sp. nov. *Int. J. Syst. Evol. Microbiol.* 69, 74–81. doi:10.1099/ijsem.0.003097.

- Lecuit, M. (2005). Understanding how *Listeria monocytogenes* targets and crosses host barriers. *Clin. Microbiol. Infect.* 11, 430–436. doi:10.1111/j.1469-0691.2005.01146.x.
- Lecuit, M., Nelson, D. M., Smith, S. D., Khun, H., Huerre, M., Vacher-Lavenu, M.-C., et al. (2004). Targeting and crossing of the human maternofetal barrier by *Listeria monocytogenes*: Role of internalin interaction with trophoblast E-cadherin. *Proc. Natl. Acad. Sci. U. S. A.* 101, 6152– 6157. doi:10.1073/pnas.0401434101.
- Lecuit, M., Vandormael-Pournin, S., Lefort, J., Huerre, M., Gounon, P., Dupuy, C., et al. (2001). A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. *Science* 292, 1722–1725. doi:10.1126/science.1059852.
- Lee, B.-H., Hébraud, M., and Bernardi, T. (2017). Increased adhesion of *Listeria monocytogenes* strains to abiotic surfaces under cold stress. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.02221.
- Lee, S., Chen, Y., Gorski, L., Ward, T. J., Osborne, J., and Kathariou, S. (2018). *Listeria monocytogenes* source distribution analysis indicates regional heterogeneity and ecological niche preference among serotype 4b clones. *mBio* 9, e00396-18. doi:10.1128/mBio.00396-18.
- Lemon, K. P., Higgins, D. E., and Kolter, R. (2007). Flagellar motility is critical for *Listeria* monocytogenes biofilm formation. *J. Bacteriol.* 189, 4418–4424. doi:10.1128/JB.01967-06.
- Leong, D., Alvarez-Ordóñez, A., and Jordan, K. (2014). Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Front. Microbiol. 5. doi:10.3389/fmicb.2014.00436.
- Li, J., Ma, M., Sarker, M. R., and McClane, B. A. (2013). CodY is a global regulator of virulence-associated properties for *Clostridium perfringens* type D strain CN3718. *mBio* 4. doi:10.1128/mBio.00770-13.
- Li, L., Mendis, N., Trigui, H., Oliver, J. D., and Faucher, S. P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. *Front. Microbiol.* 5, 258. doi:10.3389/fmicb.2014.00258.
- Li, Y.-H., and Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. *Sensors* 12, 2519–2538. doi:10.3390/s120302519.
- Limoli, D. H., Jones, C. J., and Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. *Microbiol. Spectr.* 3. doi:10.1128/microbiolspec.MB-0011-2014.
- Lindenberg, S., Klauck, G., Pesavento, C., Klauck, E., and Hengge, R. (2013). The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. *EMBO* J. 32, 2001–2014. doi:10.1038/emboj.2013.120.
- Linke, K., Rückerl, I., Brugger, K., Karpiskova, R., Walland, J., Muri-Klinger, S., et al. (2014). Reservoirs of *Listeria* species in three environmental ecosystems. *Appl. Environ. Microbiol.* 80, 5583–5592. doi:10.1128/AEM.01018-14.

- Linnan, M. J., Mascola, L., Lou, X. D., Goulet, V., May, S., Salminen, C., et al. (1988). Epidemic listeriosis associated with Mexican-style cheese. *N. Engl. J. Med.* 319, 823–828. doi:10.1056/NEJM198809293191303.
- Liu, D. (2006). Identification, subtyping and virulence determination of *Listeria monocytogenes*, an important foodborne pathogen. *J. Med. Microbiol.* 55, 645–659. doi:10.1099/jmm.0.46495-0.
- Liu, D., Lawrence, M. L., Ainsworth, A. J., and Austin, F. W. (2005). Comparative assessment of acid, alkali and salt tolerance in *Listeria monocytogenes* virulent and avirulent strains. *FEMS Microbiol. Lett.* 243, 373–378. doi:10.1016/j.femsle.2004.12.025.
- Liu, D., Lawrence, M. L., Austin, F. W., and Ainsworth, A. J. (2007). A multiplex PCR for species- and virulence-specific determination of *Listeria monocytogenes*. J. Microbiol. Methods 71, 133–140. doi:10.1016/j.mimet.2007.08.007.
- Liu, X., Wu, Y., Chen, Y., Xu, F., Halliday, N., Gao, K., et al. (2016). RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. *Res. Microbiol.* 167, 168–177. doi:10.1016/j.resmic.2015.11.003.
- Lobel, L., and Herskovits, H. (2016). Systems level analyses reveal multiple regulatory activities of CodY controlling metabolism, motility and virulence in *Listeria monocytogenes*. *PLOS Genet*. 12, e1005870. doi:10.1371/journal.pgen.1005870.
- Lobel, L., Sigal, N., Borovok, I., Belitsky, B. R., Sonenshein, A. L., and Herskovits, A. A. (2015). The metabolic regulator CodY links *Listeria monocytogenes* metabolism to virulence by directly activating the virulence regulatory gene *prfA*. *Mol. Microbiol*. 95, 624–644. doi:10.1111/mmi.12890.
- Lobel, L., Sigal, N., Borovok, I., Ruppin, E., and Herskovits, A. A. (2012). Integrative genomic analysis identifies isoleucine and CodY as regulators of *Listeria monocytogenes* virulence. *PLoS Genet*. 8, e1002887. doi:10.1371/journal.pgen.1002887.
- Loh, E., Dussurget, O., Gripenland, J., Vaitkevicius, K., Tiensuu, T., Mandin, P., et al. (2009). A transacting riboswitch controls expression of the virulence regulator PrfA in *Listeria monocytogenes*. *Cell* 139, 770–779. doi:10.1016/j.cell.2009.08.046.
- Loh, E., Gripenland, J., and Johansson, J. (2006). Control of *Listeria monocytogenes* virulence by 5'untranslated RNA. *Trends Microbiol.* 14, 294–298. doi:10.1016/j.tim.2006.05.001.
- López, S., Marco, A. J., Prats, N., and Czuprynski, C. J. (2000). Critical role of neutrophils in eliminating Listeria monocytogenes from the central nervous system during experimental murine listeriosis. Infect. Immun. 68, 4789–4791. doi:10.1128/IAI.68.8.4789-4791.2000.
- Lou, Y. (Ohio S. U., and Yousef, A. E. (1996). Resistance of *Listeria monocytogenes* to heat after adaptation to environmental stresses. *J. Food Prot. USA* 59, 465–471. doi:10.4315/0362-028X-59.5.465.

- Lundén, J. M., Miettinen, M. K., Autio, T. J., and Korkeala, H. J. (2000). Persistent *Listeria monocytogenes* strains show enhanced adherence to food contact surface after short contact times. *J. Food Prot.* 63, 1204–1207.
- Lundén, J., Tolvanen, R., and Korkeala, H. (2008). Acid and heat tolerance of persistent and nonpersistent *Listeria monocytogenes* food plant strains. *Lett. Appl. Microbiol.* 46, 276–280. doi:10.1111/j.1472-765X.2007.02305.x.
- Lüth, S., Kleta, S., and Al Dahouk, S. (2018). Whole genome sequencing as a typing tool for foodborne pathogens like *Listeria monocytogenes* – The way towards global harmonisation and data exchange. *Trends Food Sci. Technol.* 73, 67–75. doi:10.1016/j.tifs.2018.01.008.
- Lynch, D. J., Fountain, T. L., Mazurkiewicz, J. E., and Banas, J. A. (2007). Glucan-Binding Proteins are Essential for Shaping *Streptococcus mutans* Biofilm Architecture. *FEMS Microbiol. Lett.* 268, 158–165. doi:10.1111/j.1574-6968.2006.00576.x.
- Mackaness, G. B. (1962). Cellular resistance to infection. J. Exp. Med. 116, 381–406.
- Mafu, A. A., Roy, D., Goulet, J., and Magny, P. (1990). Attachment of *Listeria monocytogenes* to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. *J. Food Prot.* 53, 742–746. doi:10.4315/0362-028X-53.9.742.
- Magalhães, R., Ferreira, V., Brandão, T. R. S., Palencia, R. C., Almeida, G., and Teixeira, P. (2016). Persistent and non-persistent strains of *Listeria monocytogenes*: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. *Food Microbiol.* 57, 103–108. doi:10.1016/j.fm.2016.02.005.
- Mah, T. F., and O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. *Trends Microbiol.* 9, 34–39.
- Mahapatra, A., Padhi, N., Mahapatra, D., Bhatt, M., Sahoo, D., Jena, S., et al. (2015). Study of biofilm in bacteria from water pipelines. *J. Clin. Diagn. Res. JCDR* 9, DC09-DC11. doi:10.7860/JCDR/2015/12415.5715.
- Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., et al. (1998). Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. *Proc. Natl. Acad. Sci. U. S. A.* 95, 3140–3145.
- Mandin, P., Fsihi, H., Dussurget, O., Vergassola, M., Milohanic, E., Toledo-Arana, A., et al. (2005). VirR, a response regulator critical for *Listeria monocytogenes* virulence. *Mol. Microbiol.* 57, 1367– 1380. doi:10.1111/j.1365-2958.2005.04776.x.
- Mandin, P., Repoila, F., Vergassola, M., Geissmann, T., and Cossart, P. (2007). Identification of new noncoding RNAs in *Listeria monocytogenes* and prediction of mRNA targets. *Nucleic Acids Res.* 35, 962–974. doi:10.1093/nar/gkl1096.

- Mansfield, B. E., Dionne, M. S., Schneider, D. S., and Freitag, N. E. (2003). Exploration of host-pathogen interactions using *Listeria monocytogenes* and *Drosophila melanogaster*. Cell. Microbiol. 5, 901–911. doi:10.1046/j.1462-5822.2003.00329.x.
- Marchand, S., Block, J. D., Jonghe, V. D., Coorevits, A., Heyndrickx, M., and Herman, L. (2012). Biofilm formation in milk production and processing environments: influence on milk quality and safety. *Compr. Rev. Food Sci. Food Saf.* 11, 133–147. doi:10.1111/j.1541-4337.2011.00183.x.
- Marquis, H. (2006). Tissue culture cell assays used to analyze *Listeria monocytogenes*. *Curr. Protoc. Microbiol.* Chapter 9, Unit 9B.4. doi:10.1002/9780471729259.mc09b04s01.
- Marr, A. K., Joseph, B., Mertins, S., Ecke, R., Müller-Altrock, S., and Goebel, W. (2006). Overexpression of PrfA leads to growth inhibition of *Listeria monocytogenes* in glucose-containing culture media by interfering with glucose uptake. *J. Bacteriol.* 188, 3887–3901. doi:10.1128/JB.01978-05.
- Marsh, P. D. (2010). Microbiology of dental plaque biofilms and their role in oral health and caries. *Dent. Clin. North Am.* 54, 441–454. doi:10.1016/j.cden.2010.03.002.
- Martinez, M. R., Wiedmann, M., Ferguson, M., and Datta, A. R. (2017). Assessment of *Listeria monocytogenes* virulence in the *Galleria mellonella* insect larvae model. *PLOS ONE* 12, e0184557. doi:10.1371/journal.pone.0184557.
- Mauri, M., and Klumpp, S. (2014). A model for sigma factor competition in bacterial cells. *PLoS Comput. Biol.* 10, e1003845. doi:10.1371/journal.pcbi.1003845.
- Maury, M. M., Tsai, Y.-H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., et al. (2016). Uncovering *Listeria monocytogenes* hypervirulence by harnessing its biodiversity. *Nat. Genet.* 48, 308–313. doi:10.1038/ng.3501.
- McCollum, J. T., Cronquist, A. B., Silk, B. J., Jackson, K. A., O'Connor, K. A., Cosgrove, S., et al. (2013). Multistate outbreak of listeriosis associated with cantaloupe. *N. Engl. J. Med.* 369, 944–953. doi:10.1056/NEJMoa1215837.
- McDonnell, G., and Russell, A. D. (1999). Antiseptics and Disinfectants: Activity, Action, and Resistance. *Clin. Microbiol. Rev.* 12, 147–179.
- McLauchlin, J. (1990). Distribution of serovars of *Listeria monocytogenes* isolated from different categories of patients with listeriosis. *Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol.* 9, 210–213.
- McLauchlin, J., Hall, S. M., Velani, S. K., and Gilbert, R. J. (1991). Human listeriosis and paté: a possible association. *BMJ* 303, 773–775.
- McLauchlin, J., Mitchell, R. T., Smerdon, W. J., and Jewell, K. (2004). Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int. J. Food Microbiol. 92, 15–33. doi:10.1016/S0168-1605(03)00326-X.

- Mead, P. S., Dunne, E. F., Graves, L., Wiedmann, M., Patrick, M., Hunter, S., et al. (2006). Nationwide outbreak of listeriosis due to contaminated meat. *Epidemiol. Infect.* 134, 744–751. doi:10.1017/S0950268805005376.
- Mellin, J. R., and Cossart, P. (2012). The non-coding RNA world of the bacterial pathogen *Listeria* monocytogenes. RNA Biol. 9, 372–378. doi:10.4161/rna.19235.
- Mellin, J. R., Tiensuu, T., Bécavin, C., Gouin, E., Johansson, J., and Cossart, P. (2013). A riboswitchregulated antisense RNA in *Listeria monocytogenes*. *Proc. Natl. Acad. Sci. U. S. A.* 110, 13132– 13137. doi:10.1073/pnas.1304795110.
- Mereghetti, L., Quentin, R., Marquet-Van Der Mee, N., and Audurier, A. (2000). Low sensitivity of *Listeria monocytogenes* to quaternary ammonium compounds. *Appl. Environ. Microbiol.* 66, 5083–5086.
- Milenbachs Lukowiak, A., Mueller, K. J., Freitag, N. E., and Youngman, P. (2004). Deregulation of *Listeria* monocytogenes virulence gene expression by two distinct and semi-independent pathways. *Microbiology* 150, 321–333. doi:10.1099/mic.0.26718-0.
- Moltz, A. G., and Martin, S. E. (2005). Formation of biofilms by *Listeria monocytogenes* under various growth conditions. *J. Food Prot.* 68, 92–97.
- Monroe, D. (2007). Looking for chinks in the armor of bacterial biofilms. *PLoS Biol.* 5, e307. doi:10.1371/journal.pbio.0050307.
- Montanaro, L., Poggi, A., Visai, L., Ravaioli, S., Campoccia, D., Speziale, P., et al. (2011). Extracellular DNA in biofilms. *Int. J. Artif. Organs* 34, 824–831. doi:10.5301/ijao.5000051.
- Mora, P., Rosconi, F., Franco Fraguas, L., and Castro-Sowinski, S. (2008). *Azospirillum brasilense* Sp7 produces an outer-membrane lectin that specifically binds to surface-exposed extracellular polysaccharide produced by the bacterium. *Arch. Microbiol.* 189, 519–524. doi:10.1007/s00203-007-0343-5.
- Motes, M. L. (1991). Incidence of *Listeria* spp. in shrimp, oysters, and estuarine waters. *J. Food Prot.* 54, 170–173. doi:10.4315/0362-028X-54.3.170.
- Moura, A., Criscuolo, A., Pouseele, H., Maury, M. M., Leclercq, A., Tarr, C., et al. (2016). Whole genomebased population biology and epidemiological surveillance of *Listeria monocytogenes*. *Nat. Microbiol.* 2, 16185. doi:10.1038/nmicrobiol.2016.185.
- Moura, A., Tourdjman, M., Leclercq, A., Hamelin, E., Laurent, E., Fredriksen, N., et al. (2017). Real-time whole-genome sequencing for surveillance of *Listeria monocytogenes*, France. *Emerg. Infect. Dis.* 23, 1462–1470. doi:10.3201/eid2309.170336.
- Mraheil, M. A., Billion, A., Mohamed, W., Mukherjee, K., Kuenne, C., Pischimarov, J., et al. (2011). The intracellular sRNA transcriptome of *Listeria monocytogenes* during growth in macrophages. *Nucleic Acids Res.* 39, 4235–4248. doi:10.1093/nar/gkr033.

- Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A., and Chakraborty, T. (2010). *Galleria mellonella* as a model system for studying Listeria pathogenesis. *Appl. Environ. Microbiol.* 76, 310–317. doi:10.1128/AEM.01301-09.
- Mullapudi, S., Siletzky, R. M., and Kathariou, S. (2008). Heavy-metal and benzalkonium chloride resistance of *Listeria monocytogenes* isolates from the environment of turkey-processing plants. *Appl. Environ. Microbiol.* 74, 1464–1468. doi:10.1128/AEM.02426-07.
- Müller, A., Rychli, K., Muhterem-Uyar, M., Zaiser, A., Stessl, B., Guinane, C. M., et al. (2013). Tn6188 -A novel transposon in *Listeria monocytogenes* responsible for tolerance to benzalkonium chloride. *PLOS ONE* 8, e76835. doi:10.1371/journal.pone.0076835.
- Multi-country outbreak of *Listeria monocytogenes* linked to cold-smoked fish (2019). European Food Safety Authority. Available at: https://www.efsa.europa.eu/en/press/news/190604
- Murray, E. G. D., Webb, R. A., and Swann, M. B. R. (1926). A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed *Bacillus Bacterium monocytogenes* (n.sp.). *J. Pathol. Bacteriol.* 29, 407–439. doi:10.1002/path.1700290409.
- Mylonakis, E., Hohmann, E. L., and Calderwood, S. B. (1998). Central nervous system infection with *Listeria monocytogenes*. 33 years' experience at a general hospital and review of 776 episodes from the literature. *Medicine (Baltimore)* 77, 313–336.
- Mylonakis, E., Paliou, M., Hohmann, E. L., Calderwood, S. B., and Wing, E. J. (2002). Listeriosis during pregnancy: a case series and review of 222 cases. *Medicine (Baltimore)* 81, 260–269.
- Nadon, C. A., Bowen, B. M., Wiedmann, M., and Boor, K. J. (2002). Sigma B contributes to PrfAmediated virulence in *Listeria monocytogenes*. *Infect. Immun.* 70, 3948–3952. doi:10.1128/IAI.70.7.3948-3952.2002.
- Neu, T. R., and Lawrence, J. R. (2014). "Advanced techniques for in situ analysis of the biofilm matrix (structure, composition, dynamics) by means of laser scanning microscopy" in *Microbial Biofilms* Methods in Molecular Biology. (Humana Press, New York, NY), 43–64. doi:10.1007/978-1-4939-0467-9_4.
- Neuhaus, K., Satorhelyi, P., Schauer, K., Scherer, S., and Fuchs, T. M. (2013). Acid shock of *Listeria monocytogenes* at low environmental temperatures induces *prfA*, epithelial cell invasion, and lethality towards *Caenorhabditis elegans*. *BMC Genomics* 14, 285. doi:10.1186/1471-2164-14-285.
- Neves, E., Lourenço, A., Silva, A. C., Coutinho, R., and Brito, L. (2008). Pulsed-field gel electrophoresis (PFGE) analysis of *Listeria monocytogenes* isolates from different sources and geographical origins and representative of the twelve serovars. *Syst. Appl. Microbiol.* 31, 387–392. doi:10.1016/j.syapm.2008.08.005.

- NicAogáin, K., and O'Byrne, C. P. (2016). The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. *Front. Microbiol.* 7. doi:10.3389/fmicb.2016.01865.
- Nightingale, K. (2010). *Listeria monocytogenes*: knowledge gained through DNA sequence-based subtyping, implications, and future considerations. *J. AOAC Int.* 93, 1275–1286.
- Nikitas, G., Deschamps, C., Disson, O., Niault, T., Cossart, P., and Lecuit, M. (2011). Transcytosis of *Listeria monocytogenes* across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. *J. Exp. Med.* 208, 2263–2277. doi:10.1084/jem.20110560.
- Nilsson, R. E., Ross, T., and Bowman, J. P. (2011). Variability in biofilm production by *Listeria monocytogenes* correlated to strain origin and growth conditions. *Int. J. Food Microbiol.* 150, 14–24. doi:10.1016/j.ijfoodmicro.2011.07.012.
- Nolan, D. A., Chamblin, D. C., and Troller, J. A. (1992). Minimal water activity levels for growth and survival of *Listeria monocytogenes* and *Listeria innocua*. *Int. J. Food Microbiol.* 16, 323–335.
- Norwood, D. E., and Gilmour, A. (2001). The differential adherence capabilities of two *Listeria monocytogenes* strains in monoculture and multispecies biofilms as a function of temperature. *Lett. Appl. Microbiol.* 33, 320–324.
- Nowak, J., Cruz, C. D., Palmer, J., Fletcher, G. C., and Flint, S. (2015). Biofilm formation of the *L. monocytogenes* strain 15G01 is influenced by changes in environmental conditions. *J. Microbiol. Methods* 119, 189–195. doi:10.1016/j.mimet.2015.10.022.
- Nowak, J., Cruz, C. D., Tempelaars, M., Abee, T., van Vliet, A. H. M., Fletcher, G. C., et al. (2017). Persistent *Listeria monocytogenes* strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. *Int. J. Food Microbiol.* 256, 45–53. doi:10.1016/j.ijfoodmicro.2017.05.024.
- Nwodo, U. U., Green, E., and Okoh, A. I. (2012). Bacterial exopolysaccharides: functionality and prospects. *Int. J. Mol. Sci.* 13, 14002–14015. doi:10.3390/ijms131114002.
- Nyarko, E. B., and Donnelly, C. W. (2015). *Listeria monocytogenes*: strain heterogeneity, methods, and challenges of subtyping. *J. Food Sci.* 80, M2868–M2878. doi:10.1111/1750-3841.13133.
- Ochiai, Y., Mochizuki, M., Yamada, F., Takano, T., Hondo, R., and Ueda, F. (2014). Genetic classification of *Listeria monocytogenes* serotype 4b strains, including epidemic clones, isolated from retail meat in the Tokyo metropolitan area. *Jpn. J. Infect. Dis.* 67, 258–263.
- O'Driscoll, B., Gahan, C. G., and Hill, C. (1996). Adaptive acid tolerance response in *Listeria monocytogenes*: isolation of an acid-tolerant mutant which demonstrates increased virulence. *Appl. Environ. Microbiol.* 62, 1693–1698.

- Ogasawara, H., Yamamoto, K., and Ishihama, A. (2011). Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. *J. Bacteriol.* 193, 2587–2597. doi:10.1128/JB.01468-10.
- Ohya, S., Xiong, H., Tanabe, Y., Arakawa, M., and Mitsuyama, M. (1998). Killing mechanism of *Listeria* monocytogenes in activated macrophages as determined by an improved assay system. J. Med. Microbiol. 47, 211–215. doi:10.1099/00222615-47-3-211.
- Olier, M., Garmyn, D., Rousseaux, S., Lemaître, J.-P., Piveteau, P., and Guzzo, J. (2005). Truncated internalin A and asymptomatic *Listeria monocytogenes* carriage: *in vivo* investigation by allelic exchange. *Infect. Immun.* 73, 644–648. doi:10.1128/IAI.73.1.644-648.2005.
- Olivares, E., Badel-Berchoux, S., Provot, C., Jaulhac, B., Prévost, G., Bernardi, T., et al. (2016). The BioFilm Ring Test: a rapid method for routine analysis of *Pseudomonas aeruginosa* biofilm formation kinetics. *J. Clin. Microbiol.* 54, 657–661. doi:10.1128/JCM.02938-15.
- Ollinger, J., Bowen, B., Wiedmann, M., Boor, K. J., and Bergholz, T. M. (2009a). *Listeria monocytogenes* sigmaB modulates PrfA-mediated virulence factor expression. *Infect. Immun.* 77, 2113–2124. doi:10.1128/IAI.01205-08.
- Ollinger, J., Bowen, B., Wiedmann, M., Boor, K. J., and Bergholz, T. M. (2009b). *Listeria monocytogenes* oB modulates PrfA-mediated virulence factor expression. *Infect. Immun.* 77, 2113–2124. doi:10.1128/IAI.01205-08.
- Olsen, R. J., Watkins, M. E., Cantu, C. C., Beres, S. B., and Musser, J. M. (2011). Virulence of serotype M3 Group A *Streptococcus* strains in wax worms (*Galleria mellonella* larvae). *Virulence* 2, 111–119. doi:10.4161/viru.2.2.14338.
- O'Neil, H. S., and Marquis, H. (2006). *Listeria monocytogenes* flagella are used for motility, not as adhesins, to increase host cell invasion. *Infect. Immun.* 74, 6675–6681. doi:10.1128/IAI.00886-06.
- Orsi, R. H., den Bakker, H. C., and Wiedmann, M. (2011). *Listeria monocytogenes* lineages: Genomics, evolution, ecology, and phenotypic characteristics. *Int. J. Med. Microbiol. IJMM* 301, 79–96. doi:10.1016/j.ijmm.2010.05.002.
- Orsi, R. H., and Wiedmann, M. (2016). Characteristics and distribution of *Listeria* spp., including *Listeria* species newly described since 2009. *Appl. Microbiol. Biotechnol.* 100, 5273–5287. doi:10.1007/s00253-016-7552-2.
- Paerl, H. W., and Priscu, J. C. (1998). Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of lake Bonney, Antarctica. *Microb. Ecol.* 36, 221–230.
- Pagotto, F., Ng, L.-K., Clark, C., Farber, J., and Canadian Public Health Laboratory Network (2006). Canadian listeriosis reference service. *Foodborne Pathog. Dis.* 3, 132–137. doi:10.1089/fpd.2006.3.132.

- Palmer, M. E., Chaturongakul, S., Wiedmann, M., and Boor, K. J. (2011). The *Listeria monocytogenes* σB regulon and its virulence-associated functions are inhibited by a small molecule. *mBio* 2, e00241-11. doi:10.1128/mBio.00241-11.
- Pan, Y., Breidt, F., and Kathariou, S. (2006). Resistance of *Listeria monocytogenes* biofilms to sanitizing agents in a simulated food processing environment. *Appl. Environ. Microbiol.* 72, 7711–7717. doi:10.1128/AEM.01065-06.
- Parida, S. K., Domann, E., Rohde, M., Müller, S., Darji, A., Hain, T., et al. (2002). Internalin B is essential for adhesion and mediates the invasion of *Listeria monocytogenes* into human endothelial cells. *Mol. Microbiol.* 28, 81–93. doi:10.1046/j.1365-2958.1998.00776.x.
- Parsons, C., Lee, S., Jayeola, V., and Kathariou, S. (2017). Novel Cadmium Resistance Determinant in *Listeria monocytogenes. Appl. Environ. Microbiol.* 83. doi:10.1128/AEM.02580-16.
- Patchett, R. A., Kelly, A. F., and Kroll, R. G. (1992). Effect of sodium chloride on the intracellular solute pools of *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 58, 3959–3963.
- Peel, M., Donachie, W., and Shaw, A. (1988). Temperature-dependent expression of flagella of *Listeria* monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol. 134, 2171–2178. doi:10.1099/00221287-134-8-2171.
- Peng, Y.-L., Meng, Q.-L., Qiao, J., Xie, K., Chen, C., Liu, T.-L., et al. (2016). The roles of noncoding RNA Rli60 in regulating the virulence of *Listeria monocytogenes*. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 49, 502–508. doi:10.1016/j.jmii.2014.08.017.
- Pereira, T. C., de Barros, P. P., Fugisaki, L. R. de O., Rossoni, R. D., Ribeiro, F. de C., de Menezes, R. T., et al. (2018). Recent advances in the use of *Galleria mellonella* model to study immune responses against human pathogens. *J. Fungi Basel Switz.* 4. doi:10.3390/jof4040128.
- Pérez-Rodríguez, F., Valero, A., Carrasco, E., García, R. M., and Zurera, G. (2008). Understanding and modelling bacterial transfer to foods: a review. *Trends Food Sci. Technol.* 19, 131–144. doi:10.1016/j.tifs.2007.08.003.
- Perrin, M., Bemer, M., and Delamare, C. (2003). Fatal Case of *Listeria innocua* Bacteremia. *J. Clin. Microbiol.* 41, 5308–5309. doi:10.1128/JCM.41.11.5308-5309.2003.
- Piercey, M. J., Ells, T. C., Macintosh, A. J., and Truelstrup Hansen, L. (2017). Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among *Listeria monocytogenes* strains isolated in Canada. *Int. J. Food Microbiol.* 257, 254–261. doi:10.1016/j.ijfoodmicro.2017.06.025.
- Piercey, M. J., Hingston, P. A., and Truelstrup Hansen, L. (2016). Genes involved in *Listeria* monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C. *Int. J. Food Microbiol.* 223, 63–74. doi:10.1016/j.ijfoodmicro.2016.02.009.

- Piffaretti, J. C., Kressebuch, H., Aeschbacher, M., Bille, J., Bannerman, E., Musser, J. M., et al. (1989). Genetic characterization of clones of the bacterium *Listeria monocytogenes* causing epidemic disease. *Proc. Natl. Acad. Sci. U. S. A.* 86, 3818–3822.
- Pinheiro, J., Lisboa, J., Pombinho, R., Carvalho, F., Carreaux, A., Brito, C., et al. (2018). MouR controls the expression of the *Listeria monocytogenes* Agr system and mediates virulence. *Nucleic Acids Res.* 46, 9338–9352. doi:10.1093/nar/gky624.
- Pistor, S., Chakraborty, T., Niebuhr, K., Domann, E., and Wehland, J. (1994). The ActA protein of *Listeria* monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. *EMBO J.* 13, 758–763.
- Pöntinen, A., Markkula, A., Lindström, M., and Korkeala, H. (2015). Two-Component-System histidine kinases involved in growth of *Listeria monocytogenes* EGD-e at low temperatures. *Appl. Environ. Microbiol.* 81, 3994–4004. doi:10.1128/AEM.00626-15.
- Popowska, M., Krawczyk-Balska, A., Ostrowski, R., and Desvaux, M. (2017). InIL from *Listeria monocytogenes* is involved in biofilm formation and adhesion to mucin. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.00660.
- Portnoy, D. A., Auerbuch, V., and Glomski, I. J. (2002). The cell biology of *Listeria monocytogenes* infection. *J. Cell Biol.* 158, 409–414. doi:10.1083/jcb.200205009.
- Poyart, C., Abachin, E., Razafimanantsoa, I., and Berche, P. (1993). The zinc metalloprotease of *Listeria monocytogenes* is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. *Infect. Immun.* 61, 1576–1580.
- Prakash, S., and Tirumalai, P. S. (2012). Time-dependent gene expression pattern of *Listeria* monocytogenes J0161 in biofilms. *Adv. Genomics Genet.* 2, 1–18. doi:10.2147/AGG.S26335.
- Prigent-Combaret, C., Prensier, G., Le Thi, T. T., Vidal, O., Lejeune, P., and Dorel, C. (2000). Developmental pathway for biofilm formation in curli-producing *Escherichia coli* strains: role of flagella, curli and colanic acid. *Environ. Microbiol.* 2, 450–464.
- Puga, C. H., SanJose, C., and Orgaz, B. (2016). Biofilm development at low temperatures enhances *Listeria monocytogenes* resistance to chitosan. *Food Control* 65, 143–151. doi:10.1016/j.foodcont.2016.01.012.
- Radoshevich, L., and Cossart, P. (2018). *Listeria monocytogenes*: towards a complete picture of its physiology and pathogenesis. *Nat. Rev. Microbiol.* 16, 32–46. doi:10.1038/nrmicro.2017.126.
- Radoshevich, L., Impens, F., Ribet, D., Quereda, J. J., Nam Tham, T., Nahori, M.-A., et al. (2015). ISG15 counteracts *Listeria monocytogenes* infection. *eLife* 4. doi:10.7554/eLife.06848.
- Raengpradub, S., Wiedmann, M., and Boor, K. J. (2008). Comparative analysis of the sigma Bdependent stress responses in *Listeria monocytogenes* and *Listeria innocua* strains exposed to selected stress conditions. *Appl. Environ. Microbiol.* 74, 158–171. doi:10.1128/AEM.00951-07.

- Ragon, M., Wirth, T., Hollandt, F., Lavenir, R., Lecuit, M., Monnier, A. L., et al. (2008). A new perspective on *Listeria monocytogenes* evolution. *PLOS Pathog.* 4, e1000146. doi:10.1371/journal.ppat.1000146.
- Rasmussen, B. (2000). Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. *Nature* 405, 676–679. doi:10.1038/35015063.
- Rasmussen, O. F., Skouboe, P., Dons, L., Rossen, L., and Olsen, J. E. (1995). *Listeria monocytogenes* exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. *Microbiology* 141, 2053–2061. doi:10.1099/13500872-141-9-2053.
- Renner, L. D., and Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. *MRS Bull. Mater. Res. Soc.* 36, 347–355. doi:10.1557/mrs.2011.65.
- Reysenbach, A. L., and Cady, S. L. (2001). Microbiology of ancient and modern hydrothermal systems. *Trends Microbiol.* 9, 79–86.
- Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Escámez, P. S. F., et al. (2018). Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 16. doi:10.2903/j.efsa.2018.5134.
- Richter, A. M., Povolotsky, T. L., Wieler, L. H., and Hengge, R. (2014). Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak *Escherichia coli* 0104:H4. *EMBO Mol. Med.* 6, 1622–1637. doi:10.15252/emmm.201404309.
- Riedel, C. U., Monk, I. R., Casey, P. G., Waidmann, M. S., Gahan, C. G. M., and Hill, C. (2009). AgrDdependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in *Listeria monocytogenes*. *Mol. Microbiol.* 71, 1177–1189. doi:10.1111/j.1365-2958.2008.06589.x.
- Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J., and Piveteau, P. (2008). Listeria monocytogenes EGD-e biofilms: No mushrooms but a network of knitted chains. Appl. Environ. Microbiol. 74, 4491–4497. doi:10.1128/AEM.00255-08.
- Rieu, A., Weidmann, S., Garmyn, D., Piveteau, P., and Guzzo, J. (2007). agr System of *Listeria* monocytogenes EGD-e: Role in adherence and differential expression pattern. *Appl. Environ. Microbiol.* 73, 6125–6133. doi:10.1128/AEM.00608-07.
- Roberson, E. B., and Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil *Pseudomonas* sp. *Appl. Environ. Microbiol.* 58, 1284–1291.
- Roberts, A. J., Williams, S. K., Wiedmann, M., and Nightingale, K. K. (2009). Some Listeria monocytogenes outbreak strains demonstrate significantly reduced invasion, inlA transcript levels, and swarming motility in vitro. Appl. Environ. Microbiol. 75, 5647–5658. doi:10.1128/AEM.00367-09.

- Roberts, A., Nightingale, K., Jeffers, G., Fortes, E., Kongo, J. M., and Wiedmann, M. (2006). Genetic and phenotypic characterization of *Listeria monocytogenes* lineage III. *Microbiology* 152, 685–693. doi:10.1099/mic.0.28503-0.
- Roche, S. M., Gracieux, P., Milohanic, E., Albert, I., Virlogeux-Payant, I., Témoin, S., et al. (2005). Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 71, 6039–6048. doi:10.1128/AEM.71.10.6039-6048.2005.
- Roche, S. M., Velge, P., Bottreau, E., Durier, C., Marquet-van der Mee, N., and Pardon, P. (2001). Assessment of the virulence of *Listeria monocytogenes*: agreement between a plaque-forming assay with HT-29 cells and infection of immunocompetent mice. *Int. J. Food Microbiol.* 68, 33– 44.
- Rocourt, J., Hof, H., Schrettenbrunner, A., Malinverni, R., and Bille, J. (1986). Acute purulent *Listeria seelingeri* meningitis in an immunocompetent adult. *Schweiz. Med. Wochenschr.* 116, 248–251.
- Rodrigues, D. A., Almeida, M. A., Teixeira, P. A., Oliveira, R. T., and Azeredo, J. C. (2009). Effect of batch and fed-batch growth modes on biofilm formation by *Listeria monocytogenes* at different temperatures. *Curr. Microbiol.* 59, 457–462. doi:10.1007/s00284-009-9460-5.
- Rolhion, N., and Cossart, P. (2017). How the study of *Listeria monocytogenes* has led to new concepts in biology. *Future Microbiol.* 12, 621–638. doi:10.2217/fmb-2016-0221.
- Romanova, N. A., Wolffs, P. F. G., Brovko, L. Y., and Griffiths, M. W. (2006). Role of efflux pumps in adaptation and resistance of *Listeria monocytogenes* to benzalkonium chloride. *Appl. Environ. Microbiol.* 72, 3498–3503. doi:10.1128/AEM.72.5.3498-3503.2006.
- Rosan, B., and Lamont, R. J. (2000). Dental plaque formation. *Microbes Infect.* 2, 1599–1607.
- Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., et al. (1987). Regulation of cellulose synthesis in *Acetobacter xylinum* by cyclic diguanylic acid. *Nature* 325, 279–281.
- Rothrock, M. J., Davis, M. L., Locatelli, A., Bodie, A., McIntosh, T. G., Donaldson, J. R., et al. (2017). *Listeria* occurrence in poultry flocks: detection and potential implications. *Front. Vet. Sci.* 4, 125. doi:10.3389/fvets.2017.00125.
- Rousseaux, S., Olier, M., Lemaître, J. P., Piveteau, P., and Guzzo, J. (2004). Use of PCR-restriction fragment length polymorphism of *inlA* for rapid screening of *Listeria monocytogenes* strains deficient in the ability to invade Caco-2 cells. *Appl. Environ. Microbiol.* 70, 2180–2185. doi:10.1128/AEM.70.4.2180-2185.2004.
- Ruppitsch, W., Pietzka, A., Prior, K., Bletz, S., Fernandez, H. L., Allerberger, F., et al. (2015a). Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of *Listeria monocytogenes*. J. Clin. Microbiol., JCM.01193-15. doi:10.1128/JCM.01193-15.

- Ryan, S., Begley, M., Gahan, C. G. M., and Hill, C. (2009). Molecular characterization of the arginine deiminase system in *Listeria monocytogenes*: regulation and role in acid tolerance. *Environ. Microbiol.* 11, 432–445. doi:10.1111/j.1462-2920.2008.01782.x.
- Rychli, K., Wagner, E. M., Ciolacu, L., Zaiser, A., Tasara, T., Wagner, M., et al. (2017). Comparative genomics of human and non-human *Listeria monocytogenes* sequence type 121 strains. *PLOS ONE* 12, e0176857. doi:10.1371/journal.pone.0176857.
- Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., and Gomelsky, M. (2005). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. *J. Bacteriol.* 187, 1792–1798. doi:10.1128/JB.187.5.1792-1798.2005.
- Saini, R., Saini, S., and Sharma, S. (2011). Biofilm: A dental microbial infection. J. Nat. Sci. Biol. Med. 2, 71–75. doi:10.4103/0976-9668.82317.
- Salcedo, C., Arreaza, L., Alcalá, B., Fuente, L. de la, and Vázquez, J. A. (2003). Development of a multilocus sequence typing method for analysis of *Listeria monocytogenes* clones. *J. Clin. Microbiol.* 41, 757–762. doi:10.1128/JCM.41.2.757-762.2003.
- Salvat, G., Toquin, M. T., Michel, Y., and Colin, P. (1995). Control of *Listeria monocytogenes* in the delicatessen industries: the lessons of a listeriosis outbreak in France. *Int. J. Food Microbiol.* 25, 75–81.
- Sampson, E. M., and Bobik, T. A. (2008). Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. *J. Bacteriol.* 190, 2966–2971. doi:10.1128/JB.01925-07.
- Sauders, B. D., Overdevest, J., Fortes, E., Windham, K., Schukken, Y., Lembo, A., et al. (2012). Diversity of *Listeria* species in urban and natural environments. *Appl. Environ. Microbiol.* 78, 4420–4433. doi:10.1128/AEM.00282-12.
- Sauer, K. (2003). The genomics and proteomics of biofilm formation. *Genome Biol.* 4, 219. doi:10.1186/gb-2003-4-6-219.
- Sauer, K., Cullen, M. C., Rickard, A. H., Zeef, L. a. H., Davies, D. G., and Gilbert, P. (2004). Characterization of nutrient-induced dispersion in *Pseudomonas aeruginosa* PAO1 biofilm. *J. Bacteriol.* 186, 7312–7326. doi:10.1128/JB.186.21.7312-7326.2004.
- Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States—major pathogens. *Emerg. Infect. Dis.* 17, 7– 15. doi:10.3201/eid1701.P11101.
- Scavone, P., Iribarnegaray, V., Caetano, A. L., Schlapp, G., HÃf¤rtel, S., and Zunino, P. (2016). Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. *Pathog. Dis.* 74. doi:10.1093/femspd/ftw033.

- Schmid, B., Klumpp, J., Raimann, E., Loessner, M. J., Stephan, R., and Tasara, T. (2009). Role of cold shock proteins in growth of *Listeria monocytogenes* under cold and osmotic stress conditions. *Appl. Environ. Microbiol.* 75, 1621–1627. doi:10.1128/AEM.02154-08.
- Schmid, D., Allerberger, F., Huhulescu, S., Pietzka, A., Amar, C., Kleta, S., et al. (2014). Whole genome sequencing as a tool to investigate a cluster of seven cases of listeriosis in Austria and Germany, 2011-2013. *Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis.* 20, 431–436. doi:10.1111/1469-0691.12638.
- Schmidt, A., Hammerbacher, A. S., Bastian, M., Nieken, K. J., Klockgether, J., Merighi, M., et al. (2016).
 Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in *Pseudomonas aeruginosa. Environ. Microbiol.* 18, 3390–3402. doi:10.1111/1462-2920.13208.
- Schmidt, A. J., Ryjenkov, D. A., and Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187, 4774–4781. doi:10.1128/JB.187.14.4774-4781.2005.
- Schnupf, P., Zhou, J., Varshavsky, A., and Portnoy, D. A. (2007). Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect. Immun. 75, 5135–5147. doi:10.1128/IAI.00164-07.
- Schroll, C., Barken, K. B., Krogfelt, K. A., and Struve, C. (2010). Role of type 1 and type 3 fimbriae in *Klebsiella pneumoniae* biofilm formation. *BMC Microbiol.* 10, 179. doi:10.1186/1471-2180-10-179.
- Schubert, W.-D., Urbanke, C., Ziehm, T., Beier, V., Machner, M. P., Domann, E., et al. (2002). Structure of internalin, a major invasion protein of *Listeria monocytogenes*, in complex with its human receptor E-cadherin. *Cell* 111, 825–836. doi:10.1016/S0092-8674(02)01136-4.
- Schultz, M. P., Bendick, J. A., Holm, E. R., and Hertel, W. M. (2011). Economic impact of biofouling on a naval surface ship. *Biofouling* 27, 87–98. doi:10.1080/08927014.2010.542809.
- Scortti, M., Han, L., Alvarez, S., Leclercq, A., Moura, A., Lecuit, M., et al. (2018). Epistatic control of intrinsic resistance by virulence genes in *Listeria*. *PLoS Genet*. 14. doi:10.1371/journal.pgen.1007525.
- Seed, K. D., and Dennis, J. J. (2008). Development of *Galleria mellonella* as an alternative infection model for the *Burkholderia cepacia* complex. *Infect. Immun.* 76, 1267–1275. doi:10.1128/IAI.01249-07.
- Seeliger, H. P. R., and Jones, D. (1986). "Listeria" in *Bergey's Manual of Systematic Bacteriology*, 1235–1245.
- Severino, P., Dussurget, O., Vêncio, R. Z. N., Dumas, E., Garrido, P., Padilla, G., et al. (2007). Comparative transcriptome analysis of *Listeria monocytogenes* strains of the two major lineages reveals differences in virulence, cell wall, and stress response. *Appl. Environ. Microbiol.* 73, 6078–6088. doi:10.1128/AEM.02730-06.

- Shabala, L., Lee, S. H., Cannesson, P., and Ross, T. (2008). Acid and NaCl limits to growth of *Listeria monocytogenes* and influence of sequence of inimical acid and NaCl levels on inactivation kinetics. *J. Food Prot.* 71, 1169–1177.
- Shen, A., and Higgins, D. E. (2005). The 5' untranslated region-mediated enhancement of intracellular listeriolysin O production is required for *Listeria monocytogenes* pathogenicity. *Mol. Microbiol.* 57, 1460–1473. doi:10.1111/j.1365-2958.2005.04780.x.
- Shen, A., and Higgins, D. E. (2006). The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in *Listeria monocytogenes*. *PLoS Pathog*. 2. doi:10.1371/journal.ppat.0020030.
- Shen, Q., Soni, K. A., and Nannapaneni, R. (2013). Influence of temperature on acid-stress adaptation in *Listeria monocytogenes*. *Foodborne Pathog*. *Dis*. 11, 43–49. doi:10.1089/fpd.2013.1611.
- Shetron-Rama, L. M., Mueller, K., Bravo, J. M., Bouwer, H. G. A., Way, S. S., and Freitag, N. E. (2003). Isolation of *Listeria monocytogenes* mutants with high-level *in vitro* expression of host cytosolinduced gene products. *Mol. Microbiol.* 48, 1537–1551.
- Simm, R., Morr, M., Kader, A., Nimtz, M., and Römling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. *Mol. Microbiol.* 53, 1123– 1134. doi:10.1111/j.1365-2958.2004.04206.x.
- Slama, R. B., Bekir, K., Miladi, H., Noumi, A., and Bakhrouf, A. (2012). Adhesive ability and biofilm metabolic activity of *Listeria monocytogenes* strains before and after cold stress. *Afr. J. Biotechnol.* 11, 12475–12482. doi:10.5897/AJB11.3939.
- Sleator, R. D., Clifford, T., and Hill, C. (2007). Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of *Listeria monocytogenes* infection? *Med. Hypotheses* 69, 1090–1092. doi:10.1016/j.mehy.2007.02.028.
- Sleator, R. D., Gahan, C. G. M., and Hill, C. (2003). A postgenomic appraisal of osmotolerance in *Listeria* monocytogenes. Appl. Environ. Microbiol. 69, 1–9. doi:10.1128/AEM.69.1.1-9.2003.
- Slepneva, I. A., Glupov, V. V., Sergeeva, S. V., and Khramtsov, V. V. (1999). EPR detection of reactive oxygen species in hemolymph of *Galleria mellonella* and *Dendrolimus superans sibiricus* (Lepidoptera) larvae. *Biochem. Biophys. Res. Commun.* 264, 212–215. doi:10.1006/bbrc.1999.1504.
- Smith, A. M., Tau, N. P., Smouse, S. L., Allam, M., Ismail, A., Ramalwa, N. R., et al. (2019). Outbreak of Listeria monocytogenes in South Africa, 2017-2018: laboratory activities and experiences associated with whole-genome sequencing analysis of isolates. Foodborne Pathog. Dis. doi:10.1089/fpd.2018.2586.
- Smith, G. A., Theriot, J. A., and Portnoy, D. A. (1996). The tandem repeat domain in the *Listeria* monocytogenes ActA protein controls the rate of actin-based motility, the percentage of

moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. *J. Cell Biol.* 135, 647–660.

- Snapir, Y. M., Vaisbein, E., and Nassar, F. (2006). Low virulence but potentially fatal outcome—*Listeria ivanovii. Eur. J. Intern. Med.* 17, 286–287. doi:10.1016/j.ejim.2005.12.006.
- Sohm, J. A., Edwards, B. R., Wilson, B. G., and Webb, E. A. (2011). Constitutive extracellular polysaccharide (EPS) production by specific isolates of *Crocosphaera watsonii*. *Front. Microbiol.* 2, 229. doi:10.3389/fmicb.2011.00229.
- Solano, C., Echeverz, M., and Lasa, I. (2014). Biofilm dispersion and quorum sensing. *Curr. Opin. Microbiol.* 18, 96–104. doi:10.1016/j.mib.2014.02.008.
- Soni, K. A., Nannapaneni, R., and Tasara, T. (2011). The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of *Listeria monocytogenes*. *Foodborne Pathog. Dis.* 8, 843–852. doi:10.1089/fpd.2010.0746.
- Spiers, A. J., Bohannon, J., Gehrig, S. M., and Rainey, P. B. (2003). Biofilm formation at the air-liquid interface by the *Pseudomonas fluorescens* SBW25 wrinkly spreader requires an acetylated form of cellulose. *Mol. Microbiol.* 50, 15–27.
- Srivastava, S., Yadav, A., Seem, K., Mishra, S., Chaudhary, V., and Nautiyal, C. S. (2008). Effect of high temperature on *Pseudomonas putida* NBRI0987 biofilm formation and expression of stress sigma factor RpoS. *Curr. Microbiol.* 56, 453–457. doi:10.1007/s00284-008-9105-0.
- Stanley, N. R., Britton, R. A., Grossman, A. D., and Lazazzera, B. A. (2003). Identification of catabolite repression as a physiological regulator of biofilm formation by *Bacillus subtilis* by use of DNA microarrays. J. Bacteriol. 185, 1951–1957. doi:10.1128/JB.185.6.1951-1957.2003.
- Stepanović, S., Ćirković, I., Ranin, L., and S√vabić-Vlahović, M. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 38, 428–432. doi:10.1111/j.1472-765X.2004.01513.x.
- Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., and Klapper, I. (2002a). Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29, 361–367. doi:10.1038/sj.jim.7000282.
- Stoodley, P., Lewandowski, Z., Boyle, J. D., and Lappin-Scott, H. M. (1999). Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an *in situ* investigation of biofilm rheology. *Biotechnol. Bioeng.* 65, 83–92.
- Stoodley, P., Sauer, K., Davies, D. G., and Costerton, J. W. (2002b). Biofilms as complex differentiated communities. *Annu. Rev. Microbiol.* 56, 187–209. doi:10.1146/annurev.micro.56.012302.160705.

- Sun, A. N., Camilli, A., and Portnoy, D. A. (1990). Isolation of *Listeria monocytogenes* small-plaque mutants defective for intracellular growth and cell-to-cell spread. *Infect. Immun.* 58, 3770– 3778.
- Suutari, M., and Laakso, S. (1994). Microbial fatty acids and thermal adaptation. *Crit. Rev. Microbiol.* 20, 285–328. doi:10.3109/10408419409113560.
- Svenningsen, N. B., Martínez-García, E., Nicolaisen, M. H., de Lorenzo, V., and Nybroe, O. (2018). The biofilm matrix polysaccharides cellulose and alginate both protect *Pseudomonas putida* mt-2 against reactive oxygen species generated under matric stress and copper exposure. *Microbiology* 164, 883–888. doi:10.1099/mic.0.000667.
- Swaminathan, B., and Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. *Microbes Infect*. 9, 1236–1243. doi:10.1016/j.micinf.2007.05.011.
- Symposium, S. for G. M., Symposium 2000 (Exeter, E. S. for G. M., Allison, D. G., and Microbiology, S. for G. (2000). *Community Structure and Co-operation in Biofilms*. Cambridge University Press.
- Tan, M. F., Siow, C. C., Dutta, A., Mutha, N. V., Wee, W. Y., Heydari, H., et al. (2015). Development of ListeriaBase and comparative analysis of *Listeria monocytogenes*. *BMC Genomics* 16, 755. doi:10.1186/s12864-015-1959-5.
- Tasara, T., and Stephan, R. (2006). Cold stress tolerance of *Listeria monocytogenes*: A review of molecular adaptive mechanisms and food safety implications. *J. Food Prot.* 69, 1473–1484.
- Tasse, J., Croisier, D., Badel-Berchoux, S., Chavanet, P., Bernardi, T., Provot, C., et al. (2016). Preliminary results of a new antibiotic susceptibility test against biofilm installation in device-associated infections: the Antibiofilmogram[®]. *Pathog. Dis.* 74. doi:10.1093/femspd/ftw057.
- Taylor, C. D., Wirsen, C. O., and Gaill, F. (1999). Rapid microbial production of filamentous sulfur mats at hydrothermal vents. *Appl. Environ. Microbiol.* 65, 2253–2255.
- Taylor, C. M., Beresford, M., Epton, H. A. S., Sigee, D. C., Shama, G., Andrew, P. W., et al. (2002). *Listeria monocytogenes relA* and *hpt* mutants are impaired in surface-attached growth and virulence. *J. Bacteriol.* 184, 621–628.
- The BRT technology [Digital image] (n.d.) *Biofilm Control*. Available at: http://www.biofilmcontrol.com/old/en/technical/.
- Thedieck, K., Hain, T., Mohamed, W., Tindall, B. J., Nimtz, M., Chakraborty, T., et al. (2006). The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on *Listeria monocytogenes*. *Mol. Microbiol.* 62, 1325–1339. doi:10.1111/j.1365-2958.2006.05452.x.
- Todhanakasem, T., and Young, G. M. (2008). Loss of flagellum-based motility by *Listeria monocytogenes* results in formation of hyperbiofilms. *J. Bacteriol.* 190, 6030–6034. doi:10.1128/JB.00155-08.

- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., et al. (2009). The *Listeria* transcriptional landscape from saprophytism to virulence. *Nature* 459, 950–956. doi:10.1038/nature08080.
- Top, J., Paganelli, F. L., Zhang, X., Schaik, W. van, Leavis, H. L., Luit-Asbroek, M. van, et al. (2013). The *Enterococcus faecium* Enterococcal biofilm regulator, EbrB, regulates the *esp* operon and is implicated in biofilm formation and intestinal colonization. *PLOS ONE* 8, e65224. doi:10.1371/journal.pone.0065224.
- Totani, T., Nishiuchi, Y., Tateishi, Y., Yoshida, Y., Kitanaka, H., Niki, M., et al. (2017). Effects of nutritional and ambient oxygen condition on biofilm formation in *Mycobacterium avium* subsp. *hominissuis* via altered glycolipid expression. *Sci. Rep.* 7, 41775. doi:10.1038/srep41775.
- Trémoulet, F., Duché, O., Namane, A., Martinie, B., and Labadie, J. C. (2002). Comparison of protein patterns of *Listeria monocytogenes* grown in biofilm or in planktonic mode by proteomic analysis. *FEMS Microbiol. Lett.* 210, 25–31. doi:10.1111/j.1574-6968.2002.tb11155.x.
- Tsai, C. J.-Y., Loh, J. M. S., and Proft, T. (2016). *Galleria mellonella* infection models for the study of bacterial diseases and for antimicrobial drug testing. *Virulence* 7, 214–229. doi:10.1080/21505594.2015.1135289.
- Tschowri, N., Lindenberg, S., and Hengge, R. (2012). Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of *Escherichia coli*. *Mol. Microbiol.* 85, 893–906. doi:10.1111/j.1365-2958.2012.08147.x.
- van Oss, C. J. (1993). Acid—base interfacial interactions in aqueous media. *Colloids Surf. Physicochem. Eng. Asp.* 78, 1–49. doi:10.1016/0927-7757(93)80308-2.
- van Schaik, W., Château, A., Dillies, M.-A., Coppée, J.-Y., Sonenshein, A. L., and Fouet, A. (2009). The global regulator CodY regulates toxin gene expression in *Bacillus anthracis* and is required for full virulence. *Infect. Immun.* 77, 4437–4445. doi:10.1128/IAI.00716-09.
- Vatansever, C., and Turetgen, I. (2018). Investigating the effects of different physical and chemical stress factors on microbial biofilm. *Water SA* 44, 308–317. doi:10.4314/wsa.v44i2.16.
- Vázquez-Boland, J. A., Domínguez-Bernal, G., González-Zorn, B., Kreft, J., and Goebel, W. (2001a). Pathogenicity islands and virulence evolution in *Listeria*. *Microbes Infect.* 3, 571–584.
- Vázquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Domínguez-Bernal, G., Goebel, W., et al. (2001b). *Listeria* pathogenesis and molecular virulence determinants. *Clin. Microbiol. Rev.* 14, 584–640. doi:10.1128/CMR.14.3.584-640.2001.
- Veen, S. V. D., Moezelaar, R., Abee, T., and Wells-Bennik, M. H. J. (2008). The growth limits of a large number of *Listeria monocytogenes* strains at combinations of stresses show serotype- and niche-specific traits. *J. Appl. Microbiol.* 105, 1246–1258. doi:10.1111/j.1365-2672.2008.03873.x.

- Vivant, A.-L., Desneux, J., Pourcher, A.-M., and Piveteau, P. (2017). Transcriptomic analysis of the adaptation of *Listeria monocytogenes* to lagoon and soil matrices associated with a piggery environment: Comparison of expression profiles. *Front. Microbiol.* 8, 1811. doi:10.3389/fmicb.2017.01811.
- Vivant, A.-L., Garmyn, D., and Piveteau, P. (2013). *Listeria monocytogenes*, a down-to-earth pathogen. *Front. Cell. Infect. Microbiol.* 3. doi:10.3389/fcimb.2013.00087.
- Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., and Kolter, R. (2013). Sticking together: building a biofilm the *Bacillus subtilis* way. *Nat. Rev. Microbiol.* 11, 157–168. doi:10.1038/nrmicro2960.
- Vogeleer, P., Tremblay, Y. D. N., Mafu, A. A., Jacques, M., and Harel, J. (2014). Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing *Escherichia coli*. *Front. Microbiol.* 5. doi:10.3389/fmicb.2014.00317.
- von Eiff, C., Heilmann, C., Herrmann, M., and Peters, G. (1999). Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. *Infection* 27 Suppl 1, S7-10.
- Vrbi, M., Dini, M., Jovanovi, M., Rankovi, A., Popovi-Dragonji, L., and Djordjevi-Spasi, M. (2013). Listeria monocytogenes meningitis in an immunocompetent 18-year-old patient as a possible diagnostic and therapeutical problem. - Semantic Scholar. Vojnosanit. Pregl. Mil.-Med. Pharm. Rev. 70. doi:10.2298/vsp1310976v.
- Wagley, S., Borne, R., Harrison, J., Baker-Austin, C., Ottaviani, D., Leoni, F., et al. (2018). Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence 9, 197–207. doi:10.1080/21505594.2017.1384895.
- Waite, J. C., Leiner, I., Lauer, P., Rae, C. S., Barbet, G., Zheng, H., et al. (2011). Dynamic imaging of the effector immune response to *Listeria* infection *in vivo*. *PLoS Pathog*. 7, e1001326. doi:10.1371/journal.ppat.1001326.
- Wallecha, A., Wood, L., Pan, Z.-K., Maciag, P. C., Shahabi, V., and Paterson, Y. (2013). Listeria monocytogenes-derived Listeriolysin O has pathogen-associated molecular pattern-like properties independent of its hemolytic ability. Clin. Vaccine Immunol. 20, 77–84. doi:10.1128/CVI.00488-12.
- Wand, M. E., McCowen, J. W. I., Nugent, P. G., and Sutton, J. M. (2013). Complex interactions of *Klebsiella pneumoniae* with the host immune system in a *Galleria mellonella* infection model. *J. Med. Microbiol.* 62, 1790–1798. doi:10.1099/jmm.0.063032-0.
- Wang, H., Ayala, J. C., Benitez, J. A., and Silva, A. J. (2012). Interaction of the histone-like nucleoid structuring protein and the general stress response regulator RpoS at *Vibrio cholerae* promoters that regulate motility and hemagglutinin/protease expression. *J. Bacteriol.* 194, 1205–1215. doi:10.1128/JB.05900-11.

- Wang, H., Ayala, J. C., Benitez, J. A., and Silva, A. J. (2014). The LuxR-type regulator VpsT negatively controls the transcription of rpoS, encoding the general stress response regulator, in *Vibrio cholerae* biofilms. *J. Bacteriol.* 196, 1020–1030. doi:10.1128/JB.00993-13.
- Wang, H., Wilksch, J. J., Strugnell, R. A., and Gee, M. L. (2015). Role of capsular polysaccharides in biofilm formation: An AFM nanomechanics study. ACS Appl. Mater. Interfaces 7, 13007–13013. doi:10.1021/acsami.5b03041.
- Ward, D. M., Ferris, M. J., Nold, S. C., and Bateson, M. M. (1998). A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. *Microbiol. Mol. Biol. Rev. MMBR* 62, 1353–1370.
- Ward, T. J., Ducey, T. F., Usgaard, T., Dunn, K. A., and Bielawski, J. P. (2008). Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of *Listeria monocytogenes* isolates. *Appl. Environ. Microbiol.* 74, 7629–7642. doi:10.1128/AEM.01127-08.
- Weiglein, I., Goebel, W., Troppmair, J., Rapp, U. R., Demuth, A., and Kuhn, M. (1997). Listeria monocytogenes infection of HeLa cells results in listeriolysin O-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiol. Lett. 148, 189–195. doi:10.1111/j.1574-6968.1997.tb10287.x.
- Welin-Neilands, J., and Svensäter, G. (2007). Acid tolerance of biofilm cells of *Streptococcus mutans*. *Appl. Environ. Microbiol.* 73, 5633–5638. doi:10.1128/AEM.01049-07.
- Weller, D., Andrus, A., Wiedmann, M., and den Bakker, H. C. (2015). *Listeria booriae* sp. nov. and *Listeria newyorkensis* sp. nov., from food processing environments in the USA. *Int. J. Syst. Evol. Microbiol.* 65, 286–292. doi:10.1099/ijs.0.070839-0.

Welshimer, H. J. (1968). Isolation of *Listeria monocytogenes* from vegetation. J. Bacteriol. 95, 300–303.

- Welshimer, H. J., and Donker-Voet, J. (1971). *Listeria monocytogenes* in nature. *Appl. Microbiol.* 21, 516–519.
- Werbrouck, H., Botteldoorn, N., Ceelen, L., Decostere, A., Uyttendaele, M., Herman, L., et al. (2008). Characterization of virulence properties of *Listeria monocytogenes* serotype 4b strains of different origins. *Zoonoses Public Health* 55, 242–248. doi:10.1111/j.1863-2378.2008.01127.x.
- Westall, F., de Wit, M. J., Dann, J., van der Gaast, S., de Ronde, C. E. J., and Gerneke, D. (2001). Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. *Precambrian Res.* 106, 93–116. doi:10.1016/S0301-9268(00)00127-3.
- Wiedmann, M. (2002). Molecular subtyping methods for *Listeria monocytogenes*. J. AOAC Int. 85, 524–531.

- Wiedmann, M., Bruce, J. L., Keating, C., Johnson, A. E., McDonough, P. L., and Batt, C. A. (1997).
 Ribotypes and virulence gene polymorphisms suggest three distinct *Listeria monocytogenes* lineages with differences in pathogenic potential. *Infect. Immun.* 65, 2707–2716.
- Williams, T., Bauer, S., Beier, D., and Kuhn, M. (2005a). Construction and characterization of *Listeria monocytogenes* mutants with in-frame deletions in the response regulator genes identified in the genome sequence. *Infect. Immun.* 73, 3152–3159. doi:10.1128/IAI.73.5.3152-3159.2005.
- Williams, T., Joseph, B., Beier, D., Goebel, W., and Kuhn, M. (2005b). Response regulator DegU of Listeria monocytogenes regulates the expression of flagella-specific genes. FEMS Microbiol. Lett. 252, 287–298. doi:10.1016/j.femsle.2005.09.011.
- Winkler, W. C., and Breaker, R. R. (2005). Regulation of bacterial gene expression by riboswitches. *Annu. Rev. Microbiol.* 59, 487–517. doi:10.1146/annurev.micro.59.030804.121336.
- Wong, A. C. L. (1998). Biofilms in Food Processing Environments. J. Dairy Sci. 81, 2765–2770. doi:10.3168/jds.S0022-0302(98)75834-5.
- Wong, G. T., Bonocora, R. P., Schep, A. N., Beeler, S. M., Lee Fong, A. J., Shull, L. M., et al. (2017). Genome-wide transcriptional response to varying RpoS levels in *Escherichia coli* K-12. J. *Bacteriol.* 199. doi:10.1128/JB.00755-16.
- Wong, K. K. Y., Bouwer, H. G. A., and Freitag, N. E. (2004). Evidence implicating the 5' untranslated region of *Listeria monocytogenes actA* in the regulation of bacterial actin-based motility. *Cell. Microbiol.* 6, 155–166.
- Wuensch, A., Trusch, F., Iberahim, N. A., and van West, P. (2018). *Galleria melonella* as an experimental *in vivo* host model for the fish-pathogenic oomycete *Saprolegnia parasitica*. *Fungal Biol*. 122, 182–189. doi:10.1016/j.funbio.2017.12.011.
- Wurtzel, O., Sesto, N., Mellin, J. R., Karunker, I., Edelheit, S., Bécavin, C., et al. (2012). Comparative transcriptomics of pathogenic and non-pathogenic *Listeria* species. *Mol. Syst. Biol.* 8, 583. doi:10.1038/msb.2012.11.
- Xavier, J. B., White, D. C., and Almeida, J. S. (2003). Automated biofilm morphology quantification from confocal laser scanning microscopy imaging. *Water Sci. Technol. J. Int. Assoc. Water Pollut. Res.* 47, 31–37.
- Xayarath, B., and Freitag, N. E. (2009). A Bacterial pathogen flips the riboswitch. *Cell Host Microbe* 6, 400–402. doi:10.1016/j.chom.2009.10.009.
- Yamamoto, R., Noiri, Y., Yamaguchi, M., Asahi, Y., Maezono, H., and Ebisu, S. (2011). Time course of gene expression during *Porphyromonas gingivalis* Strain ATCC 33277 biofilm formation. *Appl. Environ. Microbiol.* 77, 6733–6736. doi:10.1128/AEM.00746-11.

- Yin, Y., Tan, W., Wang, G., Kong, S., Zhou, X., Zhao, D., et al. (2015). Geographical and longitudinal analysis of *Listeria monocytogenes* genetic diversity reveals its correlation with virulence and unique evolution. *Microbiol. Res.* 175, 84–92. doi:10.1016/j.micres.2015.04.002.
- Zenewicz, L. A., and Shen, H. (2007). Innate and adaptive immune responses to *Listeria monocytogenes*: A short overview. *Microbes Infect. Inst. Pasteur* 9, 1208–1215. doi:10.10110/2/076/j.micinf.2007.05.008.
- Zhang, W., Jayarao, B. M., and Knabel, S. J. (2004). Multi-virulence-locus sequence typing of *Listeria* monocytogenes. Appl. Environ. Microbiol. 70, 913–920.
- Zhang, Y., Zang, G.-Q., Tang, Z.-H., and Yu, Y.-S. (2012). Listeria monocytogenes meningitis in an immunocompetent adult: a case report. Rev. Soc. Bras. Med. Trop. 45, 410–411. doi:10.1590/S0037-86822012000300028.
- Zhu, Q., Gooneratne, R., and Hussain, M. A. (2017). *Listeria monocytogenes* in fresh produce: Outbreaks, prevalence and contamination levels. *Foods* 6. doi:10.3390/foods6030021.
- Zobell, C. E. (1943). The effect of solid surfaces upon bacterial activity1. J. Bacteriol. 46, 39–56.
- Zoz, F., Grandvalet, C., Lang, E., Iaconelli, C., Gervais, P., Firmesse, O., et al. (2017). Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype. Int. J. Food Microbiol. 248, 82–89. doi:10.1016/j.ijfoodmicro.2017.02.010.

Chapter III

Increased adhesion of Listeria monocytogenes strains to abiotic surfaces under cold stress

I Preface

One of the most prominent environmental factors affecting physiology of L. monocytogenes in food chains is the temperature. The bacteria are capable of producing biofilms at refrigerating temperatures even though the amount of total biomass reduces as incubation temperatures decrease under optimal growth temperature (Kadam et al., 2013; Nilsson et al., 2011). It is primarily because the microbial metabolism is highly dependent on the incubation temperatures. Therefore, from the data available in literature, it is presumed that the total biomass obtained at different temperatures reflect the bacterial metabolic rates before the biofilms are oversaturated and start the dispersal step. Meanwhile, as discussed in 'Chapter II.3 Biofilm development and stress response', the transition of planktonic to sessile form of life is promoted by environmental stimuli, both favourable and unfavourable. However, there was no report on whether a sudden downshift in temperature promotes sessile growth. To elucidate this question, total 22 isolates with different origins and serogroups were adapted to cold (4°C). The cells were determined as cold-adapted when they reached stationary phase growth after several days of incubation at 4°C. Concurrently, the same strains grown at optimal (37°C) temperature for overnight were included in the test. The two types of cells exhibited a significant difference in adhesion level measured by BRT. Noncold-adapted cells, termed cold-stressed cells, transited to sessile cells upon sudden exposure to cold more efficiently than cold-adapted counterparts which preferred to grow in free-living form. This is the first report of enhanced adhesion by sudden cold stress in *L. monocytogenes*. We further examined how the cell surface physicochemical properties, such as hydrophobicity was related to the level of adhesion.

II Article

Increased Adhesion of *Listeria monocytogenes* Strains to Abiotic Surfaces under Cold Stress

Bo-Hyung Lee*, Michel Hébraud and Thierry Bernardi

Published in Frontiers in Microbiology in November 2017

Increased Adhesion of *Listeria monocytogenes* Strains to Abiotic Surfaces under Cold Stress

Bo-Hyung Lee^{1,2*}, Michel Hébraud³ and Thierry Bernardi¹

¹ BioFilm Control, Biopôle Clermont Limagne, Saint-Beauzire, France, ² Université Clermont Auvergne, Clermont-Ferrand, France, ³ Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR MEDiS, Saint-Genès-Champanelle, France

Food contamination by Listeria monocytogenes remains a major concern for some food processing chains, particularly for ready-to-eat foods, including processed foods. Bacterial adhesion on both biotic and abiotic surfaces is a source of contamination by pathogens that have become more tolerant or even persistent in food processing environments, including in the presence of adverse conditions such as cold and dehydration. The most distinct challenge that bacteria confront upon entry into food processing environments is the sudden downshift in temperature, and the resulting phenotypic effects are of interest. Crystal violet staining and the BioFilm Ring Test® were applied to assess the adhesion and biofilm formation of 22 listerial strains from different serogroups and origins under cold-stressed and cold-adapted conditions. The physicochemical properties of the bacterial surface were studied using the microbial adhesion to solvent technique. Scanning electron microscopy was performed to visualize cell morphology and biofilm structure. The results showed that adhesion to stainless-steel and polystyrene was increased by cold stress, whereas cold-adapted cells remained primarily in planktonic form. Bacterial cell surfaces exhibited electrondonating properties regardless of incubation temperature and became more hydrophilic as temperature decreased from 37 to 4°C. Moreover, the adhesion of cells grown at 4°C correlated with affinity for ethyl acetate, indicating the role of cell surface properties in adhesion.

OPEN ACCESS

Edited by:

Pierina Visciano, Università di Teramo, Italy

Reviewed by: Efstathios D. Giaouris, University of the Aegean, Greece Even Heir, Nofima, Norway

> *Correspondence: Bo-Hyung Lee 2bohyung@gmail.com

Specialty section:

This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

Received: 20 August 2017 Accepted: 30 October 2017 Published: 14 November 2017

Citation:

Lee B-H, Hébraud M and Bernardi T (2017) Increased Adhesion of Listeria monocytogenes Strains to Abiotic Surfaces under Cold Stress. Front. Microbiol. 8:2221. doi: 10.3389/fmicb.2017.02221 Keywords: Listeria monocytogenes, cold stress, adhesion, biofilm, BRT®, crystal violet staining, MATS, SEM

INTRODUCTION

In recent decades, the foodborne pathogen *Listeria monocytogenes* has become a notable threat to food manufacturers, particularly those making ready-to-eat (RTE) foods (Jofré et al., 2016; Vongkamjan et al., 2016). Infection with this saprophytic and psychrotrophic gram-positive pathogen results in a high mortality rate, especially in susceptible groups such as pregnant women or senior populations (Orsi et al., 2011).

Listeria monocytogenes efficiently survives under extreme conditions, such as 40% w/v NaCl or pH 3.0 (Liu et al., 2005). The risk of listeriosis has increased with growing consumption of RTE foods or frozen foods requiring minimal heat treatment before consumption because food processing plants often utilize adverse conditions such as refrigeration, high salt concentration,

or low pH to preserve foods. Moreover, *L. monocytogenes* persists by adhering to food contact surfaces, causing the contamination of final food products (Ferreira et al., 2014). A biofilm is a sessile community of bacterial cells embedded in a matrix of selfproduced extracellular polymeric substances (EPS), including proteins, polysaccharides, and extracellular DNA. According to recent studies, the composition of EPS in the *L. monocytogenes* biofilm matrix is dominated by teichoic acids (Brauge et al., 2016; Colagiorgi et al., 2016). Biofilms are often multi-species in nature, and interactions with other bacteria may benefit biofilm formation by *L. monocytogenes* (Giaouris et al., 2015). Although maturity may vary depending on environmental conditions, fundamental biofilm growth involves bacterial adhesion to surfaces (Garrett et al., 2008).

Given increasing concerns that biofilms in food premises lead to food contamination with L. monocytogenes, studies have primarily compared the effects of temperature on biofilm formation by growing bacteria at different temperatures, most frequently ranging from 4 to 37°C, and demonstrated that bacteria survive and form biofilms at low temperatures (Di Bonaventura et al., 2008; Nilsson et al., 2011). In general, total biomass production by L. monocytogenes strains is augmented with increased incubation temperature, regardless of the adhesion surface, including hydrophilic stainless-steel coupons and hydrophobic polystyrene culture plates. One study showed that storage of L. monocytogenes strains at -20°C for 6 and 24 months increased adhesion and biofilm formation on various surfaces, including polystyrene microtiter plates and stainless-steel (Slama et al., 2012). Given its exceptional adaptive ability to mitigate and survive harsh environments, biofilm formation by L. monocytogenes may be an adaptation response to stress (Tasara and Stephan, 2006). However, direct observation of cold stress-induced biofilm production by L. monocytogenes has not been reported to date.

In this study, a total of 22 *L. monocytogenes* strains of diverse origins and serogroups were investigated to elucidate the impact of cold on phenotypic changes. Cells acclimatized at 37 and 4°C were exposed to cold to evaluate the effects of cold stress on bacterial adhesion and biofilm formation on polystyrene and stainless-steel surfaces using the BioFilm Ring Test[®] (BRT[®]), crystal violet (CV) staining, and scanning electron microscopy (SEM). Furthermore, microbial affinity to solvents (MATS) analysis was performed to assess cell surface physicochemical properties and their relationship to surface adhesion characteristics.

MATERIALS AND METHODS

Listeria monocytogenes Isolates and Culture Conditions

A panel of 22 isolates of *L. monocytogenes* from human listeriosis cases, animals, foods and food-related premises were used in this study (**Table 1**). All strains were analyzed by the Institut Pasteur (Paris, France) for serogrouping using a multiplex PCR assay (Doumith et al., 2004). Serogroup IVb includes serovars 4b, 4d, and 4e; serogroup IIb includes serovars 1/2b, 3b and 7; serogroup

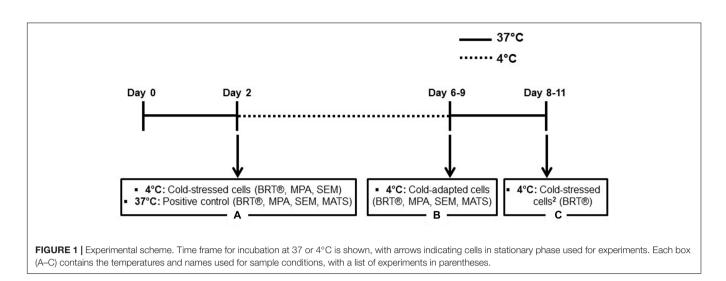
IIa includes 1/2a and 3a; and serogroup IIc includes serovars 1/2c and 3c.

Strains were stored in Brain–Heart Infusion (BHI) broth (Laboratorios Conda, Spain) with 8.3% glycerol at -20°C, and each set of experiments was conducted with freshly recovered isolates on BHI agar (Laboratorios Conda, Spain). Strains were maintained on BHI agar for at least 2 days at 37°C by subculturing daily onto a fresh agar plate.

Sample Preparation

Several colonies were harvested using a sterile inoculating loop, suspended in 20 ml of BHI broth and grown at 37°C with shaking at 100 rpm to reach stationary phase. After incubation for 15 h, stationary cells were pelleted by centrifugation at 5,000 \times g for 10 min at room temperature, dispersed in 5 ml of fresh BHI broth by vortexing, and utilized for different experiments. Some cells were incubated at 37 and 4°C and were denoted positive control and cold-stressed cells, respectively (Figure 1, box A). A portion of the culture was diluted in 20 ml of BHI medium pre-cooled to 4°C to obtain an optical density at 600 nm (OD_{600}) of 0.1 and brought to 4°C to grow under shaking at 100 rpm for 4 to 7 days until the cells reached stationary phase. Stationary cells were harvested by centrifugation at 5,000 \times g for 10 min at 4°C and suspended by vortexing in fresh pre-cooled BHI broth for use as cold-adapted samples (Figure 1, box B). Some cold-adapted cells were streaked onto BHI agar with a sterile inoculating loop and incubated at 37°C overnight. This culture was then exposed to sudden cold stress as described above and designated cold-stressed cells² (Figure 1, box C).

Viable Cell Counts


Portions of the positive control (precultured at 37°C) and coldadapted cells (precultured at 4°C) were used to obtain viable cell counts. After measuring OD₆₀₀ with a spectrophotometer (Biomate3, Thermo Scientific, United States), 50 μ l of culture was transferred to tryptone salt (TS) solution containing 0.1% w/v tryptone (Conda, Spain) and 0.85% w/v NaCl (Sigma–Aldrich, France) and 10-fold serially diluted in TS solution. From each dilution, 100 μ l was spread on a BHI agar plate using sterile glass beads in triplicate. After overnight incubation at 37°C, colonies were counted to calculate colony forming units (CFU) per ml. Total CFU of 30 to 300 per plate were considered valid data.

Two experiments were performed for each condition.

BRT®

The BRT[®] assay was performed in a polystyrene 96-well microplate (BRT kit C004, BioFilm Control, France) as described by Chavant et al. (2007).

A freshly prepared culture was measured at OD₆₀₀ to obtain a final OD₆₀₀ of 0.5 (approximately 1.2 \times 10⁹ CFU/ml) in BHI broth kept at two temperatures: 4°C for cold-stressed and cold-adapted conditions, and room temperature for a positive control. A portion of the suspension was used to perform a threefold dilution to obtain an OD₆₀₀ of 0.17 (approximately 3.8 \times 10⁸ CFU/ml). Toner 4 (magnetic beads) was added to

a final concentration of 10 μ l ml⁻¹. After homogenization of these mixtures, 200 μ l of each bacterial suspension was deposited in each well of the microplate in triplicate. Wells containing only BHI broth with magnetic beads were added as negative controls.

Microplates were kept static for 24 h at 4°C for cold-stressed (precultured at 37°C) and cold-adapted (precultured at 4°C) conditions and at 37°C for the positive control. After incubation, wells were covered with a few drops of Liquid Contrast (inert

TABLE 1	l istoria	monocytogenes	strains	used in	this study	
IADEE I	LISICIA	Inonocytogenes	30 40 13	useu III	ti iio otuuy.	

Strain	Lineage	Serogroup	Origin	Reference
1	I	IVb	Human, epidemic ScottA (pasteurized milk)	
2	I	IVb	Human, epidemic (hot dog)	
3	I	IVb	Meat (sausage)	
4	I	IVb	FCS ^a in FPE ^b	
5	I	llb	Cow	
6	I	llb	Human, sporadic	
7	I	llb	Chocolate milk, epidemic	
8	I	llb	FCS in FPE	
9	Ι	llb	Lean meat	
10		lla	Not known	
11		lla	Cow	
12		lla	Hot dog, sporadic	
13	11	lla	Human, sporadic (hot dog)	
14	11	lla	Meat (batter)	
15		lla	Meat (sausage)	
16	11	lla	FCS in FPE	
17	Ш	lla	FCS in FPE	
18	11	lla	Meat (cured ham)	
19		lla	Meat (batter)	
20	Ш	llc	Rabbit	EGDe
21	Ш	llc	FCS in FPE	
22	11	llc	Human	LO28

^aFCS: food contact surface ^bFPE: food processing environment The contaminated food sources of certain epidemic and sporadic cases are specified.

and non-toxic oil), and the plates were placed on a magnetic block with 96 mini-magnets centered under the 96 wells of the microplate for 1 min to apply magnetic fields that attracted mobile beads, creating a quantifiable spot above each minimagnet. The bottoms of the plates were scanned with a plate reader and analyzed using BFC elements 3[®] software (BioFilm Control, France) to obtain a numerical value termed the BioFilm Index (BFI) for each well, which ranged from 0 to 20 depending on the size and intensity of the spot. A BFI of approximately 20 corresponded to high magnetic bead mobility, implying no or very few sessile cells, while a lower BFI or a value of zero resulted from the immobilization of beads by sessile cells.

At least four experiments were performed, with triplicate wells for each condition.

Microtiter Plate Assay (MPA)

The procedure to prepare a 96-well microplate for microtiter plate assay (MPA) was the same as that described above (BRT[®]), except that no Toner 4 was added. The assay was performed as previously described by Doijad et al. (2015), with slight modifications. After static incubation for 24 h, the absorbance values of negative controls and total cell densities, including sessile and planktonic cells, were measured using a microplate reader (EL800, BioTek, United States) at OD₆₀₀.

Plates were inverted, and the media and planktonic cells were discarded via gentle tapping. To remove loosely attached bacteria, wells were washed twice with 300 μ l of sterile saline solution (8.5 g of NaCl per l). Sessile cells were fixed with 300 μ l of 96% ethanol (Sigma–Aldrich, France) for 20 min and air-dried for 2–3 h at room temperature after removal of the ethanol until no standing moisture was visible. To stain the bacterial biomass, a 0.1% w/v CV (Merck KGaA, Germany) solution was filtered (0.22- μ m filter, Millipore, France), and 220 μ l was added to each well. After static incubation for 30 min, CV solution was removed by sharply flicking the plates while upside down. Wells were washed three times with 300 μ l of saline, followed by tapping them upside down on paper towels. Plates were air-dried for 3–4 h, filled with 150 μ l of 33% v/v acetic acid

 TABLE 2 | Viable cell counts of six strains grown at stationary phase at two temperatures.

Strain	37°C	4°C	
1	9.36 ± 0.03	9.46±0.05	
4	9.33 ± 0.03	9.50±0.05	
6	9.30 ± 0.03	9.45±0.03	
11	9.27 ± 0.06	9.43±0.01	
14	9.24 ± 0.01	9.33±0.02	
20	9.22 ± 0.04	9.35±0.20	

Data are presented as the mean log CFU/ml \pm standard deviation at an OD₆₀₀ of 1.

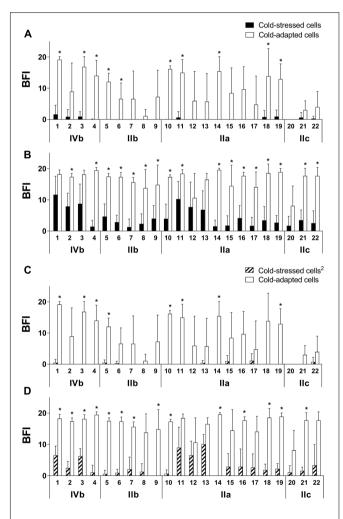
(Sigma–Aldrich, France) and placed on a plate shaker with slight agitation for 10 min to completely destain CV and obtain a homogenized solution. Destained CV levels were determined using a microplate reader at OD_{600} .

At least four experiments were performed, with triplicate wells for each condition.

Physicochemical Experiments

The MATS partitioning method (Bellon-Fontaine et al., 1996) was performed to define bacterial cell surface properties. This method involves comparing the affinities of microbial cells for pairs of monopolar and nonpolar solvents, which have similar van der Waals surface tension components. In this study, the following sets of solvents were used: (i) chloroform, an acidic solvent (electron acceptor), and hexadecane, a nonpolar n-alkane, and (ii) ethyl acetate, a basic solvent (strong electron donor), and decane, a nonpolar n-alkane (Sigma–Aldrich, France).

Cultures grown until stationary phase at 37 and 4°C were pelleted by centrifugation at 5,000 × g for 10 min at room temperature and 4°C, respectively. Sterile 0.15 M NaCl (Sigma– Aldrich, France) solutions pre-incubated at 37 and 4°C were used to wash pellets, in compliance with the original culture temperatures, followed by centrifugation. Bacterial suspensions were prepared to obtain an OD at 400 nm (OD₄₀₀) of approximately 0.6 to 0.7, and the initial OD₄₀₀ was measured as [A₀]. A suspension in a volume of 2.4 ml was vortexed for 60 s with 0.4 ml of each solvent in a glass tube. The mixture was allowed to stand static for 15 min to ensure the complete separation of both phases. The absorbance of the aqueous phase was measured at OD₄₀₀ [A]. The percentage of cells in each solvent was calculated using the following equation: percent affinity = $[1-(A/A_0)] \times 100$.


Each experiment was performed in quadruplicate with independently grown bacterial cultures.

SEM

Biofilms were grown on sterile stainless-steel coupons to visualize adhesion patterns, biofilm architecture, and cell morphologies via SEM with positive control, cold-stressed, and cold-adapted cells.

Fresh cultures in BHI broth were prepared to obtain an OD_{600} of 0.5, and 7 ml of each bacterial suspension was poured into

a petri dish (55-mm diameter) containing a sterile stainlesssteel coupon (AISI 304, mean roughness = 0.064) and statically incubated for 24 h at 37°C for a positive control and at 4°C for the cold-stressed and cold-adapted conditions. After removing the cultures using a pipette, the coupons were gently washed twice by filling the petri dishes with sterile saline solution to remove nonadherent cells. Sessile cells and biofilms were fixed on each coupon in 10 ml of a solution containing 3% glutaraldehyde in 0.2 M cacodylate buffer (pH 7.4) in a 50-ml glass beaker at 4°C for a minimum of 1 h to overnight. Coupons were washed three times for 15 min each via immersion in cacodylate buffer, followed by dehydration using a graded ethanol series (70, 90, and 100%) three times for 15 min each. Further dehydration was performed in a 50:50 mixture of ethanol:hexamethyldisilazane (HMDS) three times for 10 min each. Samples were immersed in pure

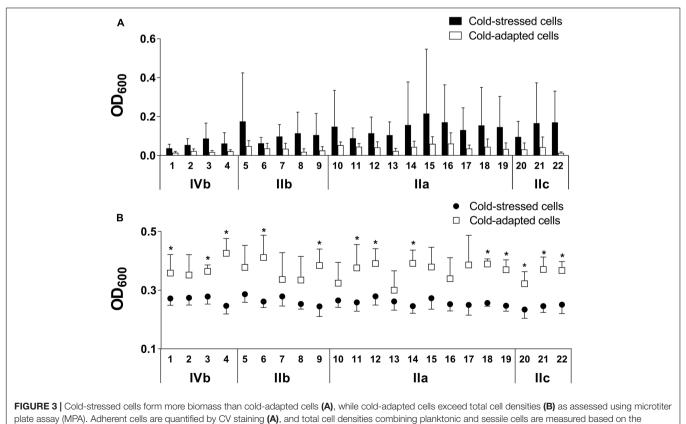
FIGURE 2 | Increased adhesion of cold-stressed cells compared to cold-adapted cells, measured by BRT[®]. Sudden exposure to cold for the first time was denoted as cold-stressed cells (**A**,**B**), and exposure for a second time was denoted as cold-stressed cells² (**C**,**D**); initial inocula were at an OD₆₀₀ of 0.5 (**A**,**C**) and 0.17 (**B**,**D**). Strains and serogroups are indicated on the X-axis, and data are presented as the mean ± standard deviation of the BFI. A BFI of 0 represents full blockage of the magnetic beads. *p < 0.05.

HMDS (Delta Microscopies, France) twice for 10 min, followed by air-drying overnight at room temperature. Coupons were mounted on stubs using adhesive carbon tabs, sputter-coated with gold-palladium (JFC-1300, JEOL, Japan) and observed with a scanning electron microscope (JEOL 6060-LV, JEOL, Japan) at 5 kV in high-vacuum mode.

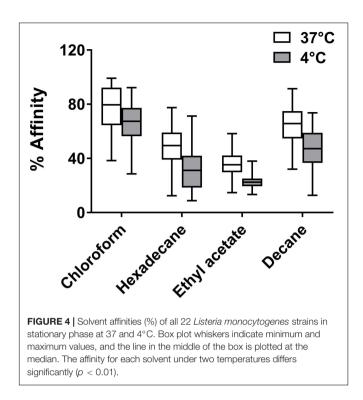
Statistical Analysis

A *t*-test was performed on data comparing cold-stressed and cold-adapted cells or positive control and cold-adapted cells to test for statistically significant differences. Correlations were evaluated to identify any effects of cell surface properties on bacterial adhesion and biofilm formation by calculating the Pearson's correlation coefficient. All data were analyzed using Prism 7 software (Graphpad software Inc., United States), and significance was assigned at p < 0.05.

RESULTS


Viable Cell Counts

Six stains composed of four different serogroups with diverse origins were selected for viable cell count tests to verify the relationship between OD_{600} values and viable cell numbers. As shown in **Table 2**, the two stationary cultures acclimated to 37 and 4°C resulted in comparable numbers of viable cells, with no significant differences.

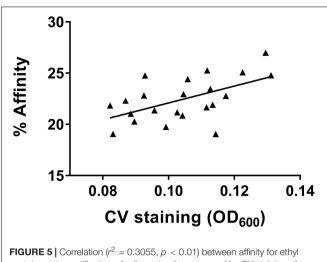

Evaluation of Adhesion and Biofilm Formation on a Polystyrene Surface BRT®

The ability of 22 L. monocytogenes strains to adhere to an abiotic surface was analyzed using BRT®. BFI, with a value ranging from 20 to 0, is associated with the extent of blockage of magnetic beads (Toner 4) by sessile bacterial cells at the bottom of polystyrene microplate wells. Therefore, differences in BFI are caused by varying abilities to adhere. All strains exhibited higher adhesion ability when exposed to cold shock by demonstrating lower BFI scores (**Figure 2**). Statistical differences (p < 0.05) in BFI values between cold-stressed and cold-adapted cells were observed for 19 strains in either of the two inocula (Figures 2A,B). Further tests were performed to verify whether this adhesion phenomenon was reversible. Cold-adapted cells were cultured at 37°C and re-exposed to a sudden temperature downshift (coldstressed cells²). Interestingly, the same response was observed for adhesion profiles (Figures 2C,D). No significant difference was observed for any strain between cells that were exposed to sudden cold shock for the first time (cold-stressed cells) and the second time (cold-stressed cells²), demonstrating that enhanced adhesion upon cold exposure represents a transient phenotype switch (Supplementary Figure 1).

When positive control cells were incubated at 37° C, all strains completely blocked the beads, resulting in a BFI of 0 for all inocula (data not shown).

turbidity of wells (B). Strains and serogroups are indicated on the X-axis, and data are presented as the mean \pm standard deviation. *p < 0.05.

MPA

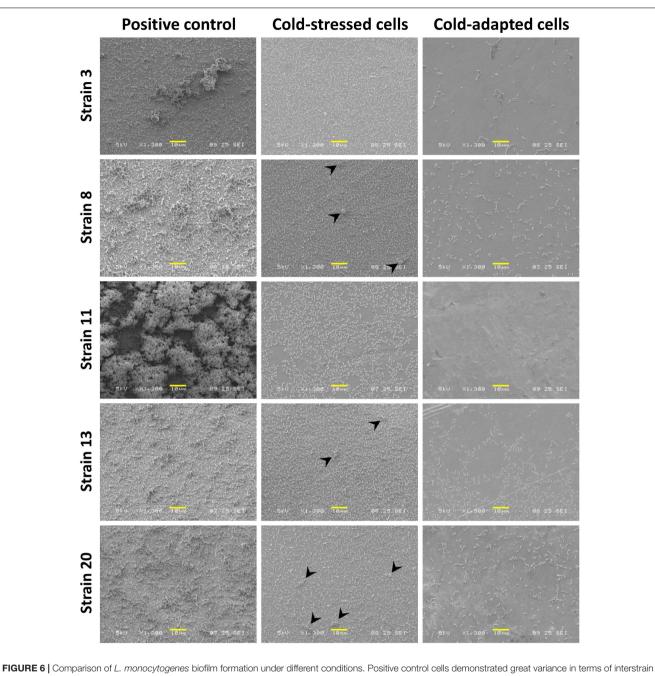

Microtiter plate assay was performed to assess sessile biomasses and total cell densities after incubation for 24 h at 4°C for coldstressed and cold-adapted conditions and at 37°C for positive control. Much greater biomass quantities were obtained by CV staining for the positive control than for cold-stressed or coldadapted cells (Supplementary Figure 2).

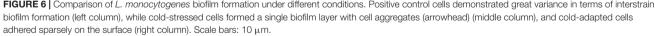
Cold-adapted cells showed overall higher total cell densities than cold-stressed cells; 13 of the 22 strains were statistically significant (p < 0.05, **Figure 3B**). Cold-stressed cells, however, resulted in more sessile bacterial communities than cold-adapted cells (no significance found) as quantified by CV staining (**Figure 3A**). The higher total cell densities obtained for coldadapted cells were primarily attributable to planktonic cells. Based on these findings, increased cell numbers in cultures did not result in bacterial adhesion, indicating that enhanced adhesion is a distinct feature of cold-stressed cells.

Cell Surface Physicochemical Properties

Positive control and cold-adapted cells, grown at 37 and 4°C until stationary phase, respectively, were prepared for the MATS test to compare the surface physicochemical properties of cells that acclimated to different temperatures. The MATS results obtained for all 22 *L. monocytogenes* grown at 37 and 4°C until stationary phase in BHI media are shown in Supplementary Figure 3.

As shown in **Figure 4**, the general affinity of the 22 *L. monocytogenes* for chloroform (an electron-acceptor solvent) was higher than the affinity for hexadecane (a non-polar solvent), regardless of the culture temperature, indicating the strong electron donor nature of these bacteria. Likewise, bacterial affinity for ethyl acetate (an electron-donating solvent) was lower than


FIGURE 5 | Correlation ($r^2 = 0.3055$, p < 0.01) between affinity for ethyl acetate and quantification of adherent cells, measured by CV staining of cold-adapted cells.


for decane (a nonpolar solvent), indicating that the electronaccepting nature of the bacteria grown at either temperature was weak. Affinity for hexadecane decreased from $49 \pm 14\%$ at 37° C to $32 \pm 15\%$ at 4° C (p < 0.01), demonstrating that cell surfaces became relatively more hydrophilic as cells adapted to cold temperature.

Relationships between the affinities for the four solvents and adhesion data obtained via two methods, CV staining and BRT, were evaluated using Pearson's correlation coefficient (r^2). A positive correlation was identified between the adhesion results obtained from CV staining and the affinity for ethyl acetate obtained from the MATS test for cold-adapted cells grown at 4°C ($r^2 = 0.3055$, p < 0.01) (**Figure 5**).

SEM Observation

Scanning electron microscopy images of cells grown under all three tested conditions (positive control, cold-stressed, and coldadapted cells) were obtained to analyze surface colonization patterns and biofilm structures as well as the morphologies of individual cells. Low to high magnifications were applied over several zones. There was greater variance in the maturity of biofilms among strains grown under positive control conditions (Figure 6, left column), showing that the biofilmforming capability of L. monocytogenes is strain-dependent. Conversely, under cold-stressed and cold-adapted conditions, the variance among strains was less obvious, primarily because no homogeneous mature biofilms were produced. However, coldstressed cells underwent surface colonization with cell aggregates (arrowhead) resulting from sessile cell division (Figure 6, middle column), while analysis of cold-adapted cells revealed the attachment of individual cells in the absence of noticeable cell clusters (Figure 6, right column). Extracellular matrix was observed at high magnification (X 9,000 and higher) among individual cells and between cells and the stainless-steel surface (Figure 7, red circle). Irregular cell sizes were observed under all conditions, but significant cell elongation was more

frequently noted among cold-stressed and cold-adapted cells (**Figure 7**, arrow). This result may be because positive control cells formed more complex biofilm structures that limited the distinction of individual cell morphologies. Similar to a previous report by Harvey et al., spatial colonization was observed, constituting a network of microcolonies (**Figures 7E,I**) (Harvey et al., 2007). Cells were often found in indented substrate surfaces resulting from scratches on the coupons (**Figure 7**, arrowhead).

DISCUSSION

Certain bacteria adapt to inhabit environments by assuming different forms that are favorable to survival, such as planktonic cells, sessile biofilm communities or spore formation. Biofilms of *L. monocytogenes* in food processing environments are of great concern for food contamination. *L. monocytogenes* adapts to the harsh environments employed by food processing facilities, such as antibacterial agents or refrigeration, and reports have

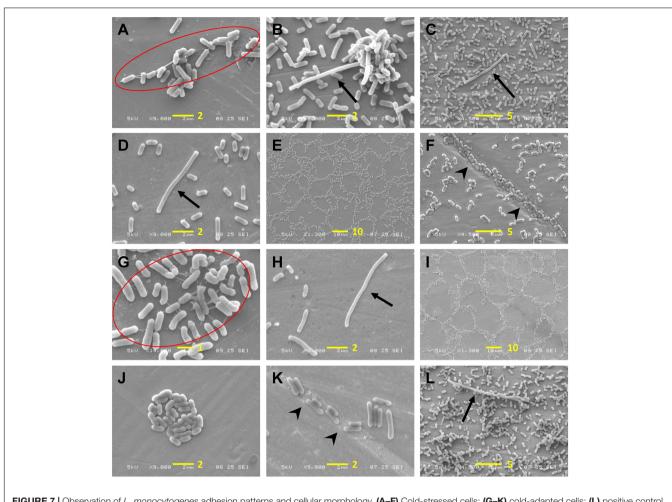


FIGURE 7 | Observation of *L. monocytogenes* adhesion patterns and cellular morphology. (A–F) Cold-stressed cells; (G–K) cold-adapted cells; (L) positive control cells. EPS are marked in red circles, arrows indicate elongated cells and arrowheads indicate cells in crevices. A scale bar (length in µm) is indicated in yellow in each figure.

demonstrated that exposing bacteria to sublethal stress leads to cross-protection or cross-adaptation to various stresses and lethal factors (Lou and Yousef, 1997; Lundén et al., 2003). Biofilm production by *L. monocytogenes* is stimulated to protect against various stressful conditions, making bacterial elimination a serious challenge at food processing facilities (Giaouris et al., 2014).

Significant variation in biofilm production under various conditions was observed for one *L. monocytogenes* strain, indicating that intra-strain phenotype changes are dependent on experimental settings (Nowak et al., 2015). Moreover, the interstrain variability of biofilm formation has been extensively studied with a focus on its relationships to serogroups or persistence in the food industry. However, a study employing 143 *L. monocytogenes* strains indicated that experimental settings such as temperature and culture media affect the comprehension of biofilm formation and its relationship to serotype or origin (Kadam et al., 2013). Recently, a study of 98 *L. monocytogenes* strains revealed no correlation between serological groups and biofilm production (Doijad et al., 2015).

Numerous methods and devices have been developed to detect or quantify biofilms, including staining-based quantification methods, visual identification by microscopy, viable and culturable cell counts, and devices to test bacterial adhesion (Azeredo et al., 2017). BRT® is a microbial adhesion test that is primarily used to assess the simultaneous phenotype switch from planktonic cells into sessile cells. In BRT®, microorganisms are added to microplate wells in planktonic form, some of which adhere to the bottoms of the wells during incubation and switch to a sessile form that hinders the magnetic beads attracted to the magnetic block. Results vary with experimental conditions that affect the process, including planktonic cell growth and adhesion to polystyrene microplates, as well as sessile cell growth. Recently, a new approach to BRT®, designated cBRT®, was developed using serial 10-fold dilutions of bacterial suspensions to better discriminate biofilm-forming abilities among strains (Di Domenico et al., 2016). However, in the current study, all 22 L. monocytogenes strains revealed homogenous adhesion behavior that was not discernible by cBRT® under the same experimental conditions, i.e., cold-adapted or cold-stressed conditions or incubation at 37°C. Nevertheless, cBRT[®] was sensitive for discriminating between cold-stressed and cold-adapted cells in terms of bacterial adhesion.

Cells undergo cold shock when subjected to a sudden downshift in temperature. Such a rapid environmental change induces modifications in bacterial cell surface proteins and lipid composition to maintain membrane fluidity homeostasis, which presumably facilitates adhesion as an adaptation strategy against adverse conditions. This behavior may be advantageous for bacterial survival in FPEs where cells might be exposed to sudden cold shock. The current study employed preculture temperatures of 37 and 4°C to compare differences in adhesion characteristics upon further exposure to 4°C. BRT® and MPA results revealed that cold-stressed cells (precultured at 37°C) are more efficient at forming biofilms, while cold-adapted cells (precultured at 4°C) favor growth in the planktonic state. L. monocytogenes cells entering the food processing chain are exposed to temperature downshifts, such as ambient temperature in outdoor food materials or optimal temperature in infected animals to refrigeration temperatures used during food processing or storage. When introduced to the food processing chain, L. monocytogenes adhesion to food contact surfaces is potentially fortified by cold shock, which will increase the chance of food product contamination. Once adapted to the cold, the bacteria in final food products will proliferate to hazardous levels during distribution and storage.

The heterogeneity of a population contributes to the adaptation of *L. monocytogenes* to sublethal conditions, accompanied by phenotypic and genetic changes (Abee et al., 2016). When cold-adapted cells were returned to 37° C and re-exposed to cold, they exhibited the same enhanced adhesion, which was indistinguishable by BRT[®] (Supplementary Figure 1), demonstrating that this transient trait was reacquired when cold stress was removed.

All 22 strains retained basic (electron-donating) properties (a higher affinity for chloroform than hexadecane), regardless of growth temperature, and became more hydrophilic with decreased temperature, as previously described (Chavant et al., 2002). The adhesion data obtained from CV staining of all 22 L. monocytogenes correlated best with cell affinity for ethyl acetate under cold-adapted conditions (Figure 5). This finding aligned with that of Briandet et al., who observed a linear correlation between listerial adhesion to stainless-steel and an affinity for ethyl acetate at different temperatures (37, 20, 15, and 8°C) in the presence of NaCl (Briandet et al., 1999). Physicochemical properties, including the hydrophobicity of bacterial cells versus that of a substratum, affect the interfacial interactions involved in bacterial attachment to abiotic surfaces. Nonetheless, this trait is negligible in the context of building a mature biofilm structure that is highly dependent on bacterial growth kinetics and EPS production, thus explaining the absence of an obvious relationship between cellular surface properties and biofilm formation at 37°C in the current study and in the literature (Cunliffe et al., 1999; Chmielewski and Frank, 2003).

Scanning electron microscopy observations supported the quantitative results obtained with CV staining and BRT[®]. **Figure 6** shows variable biofilm maturity among the strains. This

variability may be attributable to differential biofilm production capabilities, although divergent biofilm kinetics among strains are unable to be excluded. Some strains may have already begun to disperse, while others were still in the process of structuring mature biofilms. SEM observation confirmed the higher bacterial adhesion of cold-stressed cells, along with the formation of cellular aggregates, while cold-adapted cells were only able to form a single sparse layer of adherent cells. This finding aligns with the BRT[®] results, demonstrating that BRT[®] is applicable for testing the early step of biofilm formation. Moreover, our observations of cells that densely accumulated in the crevices and scratches of stainless-steel surfaces strongly support the thorough cleaning of food contact surfaces to eliminate bacteria, although this may also further damage surfaces and create additional niches for bacterial adhesion.

In the current study, enhanced adhesion of sudden coldstressed *L. monocytogenes* cells was observed for the first time. CV staining and SEM observation revealed that *L. monocytogenes* possesses dramatic interstrain variances in biofilm production, independent of origin or serotype. BRT[®] is shown to be a sensitive tool to discern the first layer of biofilm formation, facilitating the detection of increased adhesion of cold-stressed cells in the current study. Interestingly, the adhesion of cold-adapted cells correlated with an affinity for ethyl acetate. Further study of cold-stressed cells during cross-adaptation to other stress factors, such as dehydration or antimicrobial agents, will add to our understanding of the behavior of *L. monocytogenes* in the food processing industry.

AUTHOR CONTRIBUTIONS

B-HL conceived, designed, and conducted experiments, analyzed the results, and drafted the manuscript. All authors contributed to the experimental design and reviewed and approved the final manuscript.

FUNDING

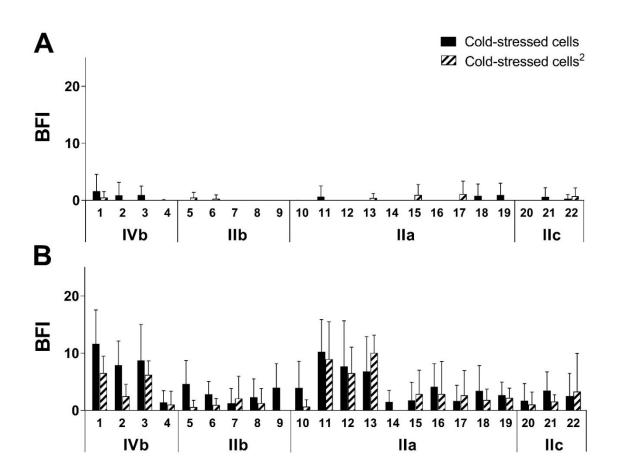
This project received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement N° 641984.

ACKNOWLEDGMENTS

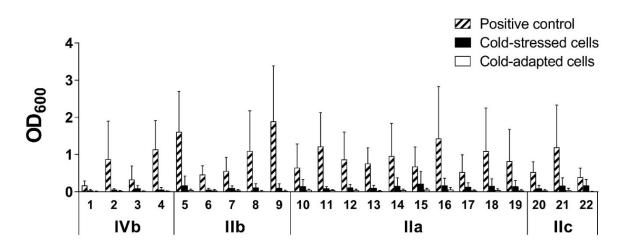
Our thanks to Brigitte Gaillard-Martinie for SEM sample preparation at INRA, Saint-Genès-Champanelle, and Christelle Blavignac for her assistance with SEM technologies at the Centre Imagerie Cellulaire Santé (Université Clermont Auvergne).

SUPPLEMENTARY MATERIAL

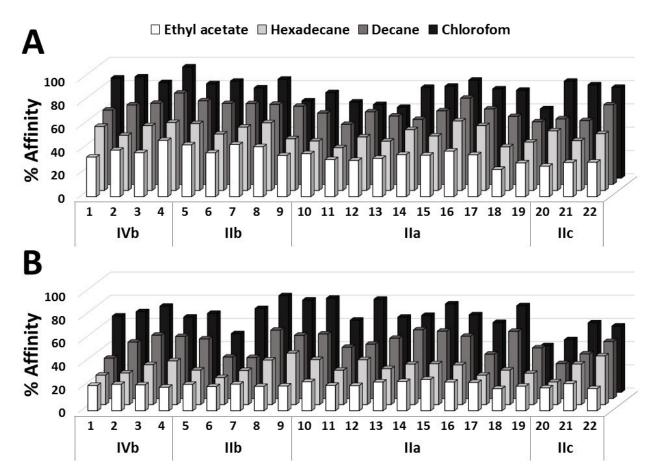
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2017.02221/full#supplementary-material


REFERENCES

- Abee, T., Koomen, J., Metselaar, K. I., Zwietering, M. H., and den Besten, H. M. W. (2016). Impact of pathogen population heterogeneity and stressresistant variants on food safety. *Annu. Rev. Food Sci. Technol.* 7, 439–456. doi: 10.1146/annurev-food-041715-033128
- Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., et al. (2017). Critical review on biofilm methods. *Crit. Rev. Microbiol.* 43, 313–351. doi: 10.1080/1040841X.2016.1208146
- Bellon-Fontaine, M.-N., Rault, J., and van Oss, C. J. (1996). Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. *Colloids Surf. B Biointerfaces* 7, 47–53. doi: 10.1016/0927-7765(96)01272-6
- Brauge, T., Sadovskaya, I., Faille, C., Benezech, T., Maes, E., Guerardel, Y., et al. (2016). Teichoic acid is the major polysaccharide present in the *Listeria monocytogenes* biofilm matrix. *FEMS Microbiol. Lett.* 363:fnv229. doi: 10.1093/ femsle/fnv229
- Briandet, R., Meylheuc, T., Maher, C., and Bellon-Fontaine, M. N. (1999). Listeria monocytogenes Scott A: cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. *Appl. Environ. Microbiol.* 65, 5328–5333.
- Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M., and Bernardi, T. (2007). A new device for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol. Methods 68, 605–612. doi: 10.1016/j.mimet.2006. 11.010
- Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.-N., and Hebraud, M. (2002). Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 68, 728–737. doi: 10.1128/AEM.68.2.728-737.2002
- Chmielewski, R. A. N., and Frank, J. F. (2003). Biofilm formation and control in food processing facilities. *Compr. Rev. Food Sci. Food Saf.* 2, 22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x
- Colagiorgi, A., Di Ciccio, P., Zanardi, E., Ghidini, S., and Ianieri, A. (2016). A look inside the *Listeria monocytogenes* biofilms extracellular matrix. *Microorganisms* 4:22. doi: 10.3390/microorganisms4030022
- Cunliffe, D., Smart, C. A., Alexander, C., and Vulfson, E. N. (1999). Bacterial adhesion at synthetic surfaces. *Appl. Environ. Microbiol.* 65, 4995–5002.
- Di Bonaventura, G., Piccolomini, R., Paludi, D., D'Orio, V., Vergara, A., Conter, M., et al. (2008). Influence of temperature on biofilm formation by *Listeria monocytogenes* on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. *J. Appl. Microbiol.* 104, 1552–1561. doi: 10.1111/j. 1365-2672.2007.03688.x
- Di Domenico, E. G., Toma, L., Provot, C., Ascenzioni, F., Sperduti, I., Prignano, G., et al. (2016). Development of an in vitro assay, based on the biofilm ring test[®], for rapid profiling of biofilm-growing bacteria. *Front. Microbiol.* 7:1429. doi: 10.3389/fmicb.2016.01429
- Doijad, S. P., Barbuddhe, S. B., Garg, S., Poharkar, K. V., Kalorey, D. R., Kurkure, N. V., et al. (2015). Biofilm-forming abilities of *Listeria monocytogenes* serotypes isolated from different sources. *PLOS ONE* 10:e0137046. doi: 10.1371/journal. pone.0137046
- Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C., and Martin, P. (2004). Differentiation of the major *Listeria monocytogenes* serovars by multiplex PCR. *J. Clin. Microbiol.* 42, 3819–3822. doi: 10.1128/JCM.42.8.3819-3822.2004
- Ferreira, V., Wiedmann, M., Teixeira, P., and Stasiewicz, M. J. (2014). Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J. Food Prot. 77, 150–170. doi: 10.1128/JCM.42.8.3819-3822.2004
- Garrett, T. R., Bhakoo, M., and Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. *Prog. Nat. Sci.* 18, 1049–1056. doi: 10.1016/j.pnsc.2008. 04.001
- Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., et al. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. *Front. Microbiol.* 6:841. doi: 10.3389/fmicb. 2015.00841


- Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., et al. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. *Meat Sci.* 97, 298–309. doi: 10.1016/j. meatsci.2013.05.023
- Harvey, J., Keenan, K. P., and Gilmour, A. (2007). Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol. 24, 380–392. doi: 10.1016/j.fm. 2006.06.006
- Jofré, A., Garriga, M., Aymerich, T., Pérez-Rodríguez, F., Valero, A., Carrasco, E., et al. (2016). Closing gaps for performing a risk assessment on *Listeria monocytogenes* in ready-to-eat (RTE) foods: activity 1, an extensive literature search and study selection with data extraction on *L. monocytogenes* in a wide range of RTE food. *EFSA Support. Publ.* 13:E1141. doi: 10.2903/sp.efsa.2016. EN-1141
- Kadam, S. R., den Besten, H. M. W., van der Veen, S., Zwietering, M. H., Moezelaar, R., and Abee, T. (2013). Diversity assessment of *Listeria monocytogenes* biofilm formation: impact of growth condition, serotype and strain origin. *Int. J. Food Microbiol.* 165, 259–264. doi: 10.1016/j.ijfoodmicro. 2013.05.025
- Liu, D., Lawrence, M. L., Ainsworth, A. J., and Austin, F. W. (2005). Comparative assessment of acid, alkali and salt tolerance in *Listeria monocytogenes* virulent and avirulent strains. *FEMS Microbiol. Lett.* 243, 373–378. doi: 10.1016/j.femsle. 2004.12.025
- Lou, Y., and Yousef, A. E. (1997). Adaptation to sublethal environmental stresses protects *Listeria monocytogenes* against lethal preservation factors. *Appl. Environ. Microbiol.* 63, 1252–1255.
- Lundén, J., Autio, T., Markkula, A., Hellström, S., and Korkeala, H. (2003). Adaptive and cross-adaptive responses of persistent and non-persistent *Listeria monocytogenes* strains to disinfectants. *Int. J. Food Microbiol.* 82, 265–272. doi: 10.1016/s0168-1605(02)00312-4
- Nilsson, R. E., Ross, T., and Bowman, J. P. (2011). Variability in biofilm production by *Listeria monocytogenes* correlated to strain origin and growth conditions. *Int. J. Food Microbiol.* 150, 14–24. doi: 10.1016/j.ijfoodmicro.2011. 07.012
- Nowak, J., Cruz, C. D., Palmer, J., Fletcher, G. C., and Flint, S. (2015). Biofilm formation of the *L. monocytogenes* strain 15G01 is influenced by changes in environmental conditions. *J. Microbiol. Methods* 119, 189–195. doi: 10.1016/j. mimet.2015.10.022
- Orsi, R. H., den Bakker, H. C., and Wiedmann, M. (2011). Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 301, 79–96. doi: 10.1016/j.ijmm.2010. 05.002
- Slama, R. B., Bekir, K., Miladi, H., Noumi, A., and Bakhrouf, A. (2012). Adhesive ability and biofilm metabolic activity of *Listeria monocytogenes* strains before and after cold stress. *Afr. J. Biotechnol.* 11, 12475–12482. doi: 10.5897/AJB11. 3939
- Tasara, T., and Stephan, R. (2006). Cold stress tolerance of *Listeria monocytogenes*: a review of molecular adaptive mechanisms and food safety implications. *J. Food Prot.* 69, 1473–1484. doi: 10.4315/0362-028x-69.6.1473
- Vongkamjan, K., Fuangpaiboon, J., Turner, M. P., and Vuddhakul, V. (2016). Various ready-to-eat products from retail stores linked to occurrence of diverse *Listeria monocytogenes* and *Listeria* spp. Isolates. J. Food Prot. 79, 239–245. doi: 10.4315/0362-028X.JFP-15-361

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Copyright © 2017 Lee, Hébraud and Bernardi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Supplementary Figure. 1. Recovery of cold shock-induced adherence is demonstrated by BRT[®]. Cold-stressed cells (exposed to cold shock for the first time) and cold-stressed cells² (exposed to cold shock for the second time) exhibit indistinguishable adhesion profiles. Initial inocula at OD_{600} of 0.5 (A) and 0.17 (B). Data are presented as the mean ± standard deviation.

Supplementary Figure. 2. Comparison of total biomass measured by CV staining. Data are shown as the mean ± standard deviation.

Supplementary Figure 3. Affinity (%) of 22 *L. monocytogenes* strains to solvents in stationary phase at 37°C (A) and 4°C (B). Data are shown as the mean of four measurements.

Chapter IV

Biofilm formation of Listeria monocytogenes strains under food processing environments and pan-genomewide association study

I Preface

Studies including ours (Chapter III) on biofilm formation in *L. monocytogenes* demonstrated high heterogeneity in the maturity of biofilms among strains (Di Bonaventura et al., 2008; Kadam et al., 2013; Nowak et al., 2017; Rodrigues et al., 2009). In the past, the phenotype diversity was evaluated in association with variables, mainly the phylogenetic position, such as lineages and serotypes. However, contradictory findings were observed which could be attributed to the inter-strain variability and inconsistent experimental settings (Borucki et al., 2003; Djordjevic et al., 2002; Doijad et al., 2015; Nilsson et al., 2011) implying the importance of diversifying a strain panel and experimental conditions for unbiased analysis.

The French Agency for Food, Environmental and Occupational Health & Safety (Anses), as the French national reference laboratory, has collected a great amount of *L. monocytogenes* isolates from diverse origins over the last two decades. They analysed the genetic diversity among 1,894 *L. monocytogenes* isolates from food products and FPE in France (Henri et al., 2016). Using PFGE and MLST subtyping approaches, the isolates unravelled a highly diversified clonal population structure. Furthermore, distribution frequencies of the genotypes were compared to select representative panels of prevalent and rare isolates for the present study. On top of this selection, persistent isolates were added, making up the complete list of three distinct groups, 19 persistent, 20 prevalent and 19 rare isolates exclusively from food and FPE. To obtain a comprehensive view of *L. monocytogenes* biofilm phenotypes using these isolates, we diversified the following factors: (i) Growth conditions mimicking environments that *L. monocytogenes* may encounter in food chain (ii) Analysis aspects from divergences of lineages, serogroups, MLST genotypes to isolate categories (persistent, prevalent, and rare) (iii)

Observation points of biofilm forming process, namely adhesion measured by BRT and total biomass by MPA. The results revealed that high biofilm productivity of clonal complex 26 was magnified at cold temperature. Moreover, importantly, the current study documented a nonlinear positive effect of nutrient deficiency and NaCl supplementation in mature biofilm production.

Furthermore, the total biomasses under different conditions were evaluated in relation to the genomic composition by pan-genome-wide association study (pan-GWAS) for the first time. Pan-GWAS assessed association of accessory genome contents with biofilm phenotypes converted into binary formats. Some difficulties were encountered in applying this tool. Firstly, interpreting the empirical observation of total biomass expressed in continuous values by MPA in binary format was not straightforward. In the current study, hierarchical clustering was applied for unbiased division of strains into strong and weak biofilm formers. Even though our study included numerous strains that showed a wide range of capacity in biofilm production, one cannot exclude the possibility that binary clustering may result in different outcome if the panel of strains expands to encompass more variations. Another difficulty was that differences of genes presence/absence rate between strong and weak biofilm formers were not always pronounced. It may be attributed to a complexity in biofilm formation and its steps that may occur simultaneously in a population of *L. monocytogenes* cells.

II Article

Biofilm Formation of *Listeria monocytogenes* Strains under Food Processing Environments and pan-Genome-Wide Association Study

Bo-Hyung Lee*, Sophie Cole, Stéphanie Badel, Laurent Guillier, Benjamin Felix, Nicolas Krezdorn, Michel Hébraud, Thierry Bernardi, Ibrahim Sultan, Pascal Piveteau*

Biofilm formation of *Listeria monocytogenes* strains under food processing environments and pan-genome-wide association study

Bo-Hyung Lee^{*1,2}, Sophie Cole², Stéphanie Badel², Laurent Guillier³, Benjamin Felix³, Nicolas Krezdorn⁴, Michel Hébraud⁵, Thierry Bernardi², Ibrahim Sultan⁶, Pascal Piveteau^{*7}

*: correspondence

1. Université Clermont Auvergne, École Doctorale des Sciences de la Vie, Santé, Agronomie, Environnement, Clermont-Ferrand, France

2. BioFilm Control SAS, rue Emile Duclaux, Biopôle Clermont Limagne, 63360 Saint-Beauzire, France

3. French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Maisons-Alfort, France

4. GenXPro GmbH, 60438 Frankfurt am Main, Germany

5. Université Clermont Auvergne, Institut National de la Recherche Agronomique (INRA), UMR MEDIS, F-63122 Saint-Genès Champanelle, France

6. MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France

7. Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France

Abstract

Concerns about food contamination by *Listeria monocytogenes* are on the rise with increasing consumption of ready-to-eat foods. Biofilm production in the food chain is presumed to be one of the ways that confer increased resistance and persistence to this pathogenic bacterium. In this study, a collection of isolates representing persistent, prevalent, and rarely detected *L. monocytogenes* in foods and food processing environments was evaluated for biofilm forming capacities including adhesion and total biomass production under diverse environmental conditions. Depending on the growth conditions, high variability was observed in total biomass within and among lineages, serotypes as well as genotypes but association of clonal complex 26 genotype with biofilm production was evidenced under cold temperature. In general, isolates revealed heterogenous relative biofilm formation and persistent or prevalent genotypes suggesting that biofilm production capacity may not be the main driver of *L. monocytogenes* persistence in food chains. Distinct extrinsic factors affected specific

steps of biofilm formation. Sudden nutrient deprivation enhanced cellular adhesion while a prolonged nutrient limitation impeded biofilm maturation. Salt addition exhibited a positive effect, moreover, nutrient limitation supplemented by salt significantly stimulated biofilm formation. Pan-genome-wide association study assessed genetic composition with regard to biofilm phenotypes for the first time. The number of reported genes varied depending on the growth conditions and the number of shared genes was low. However, a broad overview of the ontology contents revealed a similar pattern regardless of the conditions. Functional analysis showed that functions concerning surface proteins including internalins, and competence genes were highly enriched.

1. Introduction

Listeria monocytogenes is a psychrotolerant Gram-positive, rod shaped saprophytic bacterium. As a non-fastidious organism, it can tolerate a range of stressful conditions. Its resistance to high osmolarity was demonstrated by growth up to 13% NaCl and survival under 40% NaCl (Liu et al., 2005; Shabala et al., 2008). *L. monocytogenes* can grow at low temperatures (Junttila et al., 2008) and its minimal growth temperature is expected to be at -2°C (Augustin et al., 2005). It can withstand acidic or alkaline environments as well as low water activity levels (Liu et al., 2005; Nolan et al., 1992). Moreover, exposure to a stress factor provided cross-adaptation to subsequent exposure to other stresses (Begley et al., 2002; Bergholz et al., 2012).

L. monocytogenes inhabits a broad range of environments such as soil, silage, vegetation, sewage or river (Garrec et al., 2003; Vivant et al., 2013; Welshimer and Donker-Voet, 1971). The pathogenic bacterium is responsible for the foodborne, life-threatening disease listeriosis. In the European Union (EU) in 2017, a total of 2,480 confirmed invasive human listeriosis were reported by 28 member states, corresponding to an EU notification rate of 0.48 cases per 100,000 population and a fatality rate of 13.8% (EFSA and ECDC, 2018). As a foodborne pathogen, introduction of *L. monocytogenes* to food processing environments (FPE) imposes a huge burden not only to food premises but also to the whole society. Indeed, evidence suggests that FPE is the most likely source of contamination of *L. monocytogenes* in different types of foods (Pérez-Rodríguez et al., 2008) and growth of biofilms in FPE is considered to be one of the main sources of repeated food contaminations (Colagiorgi et al., 2017; Giaouris et al., 2014). Biofilms are the common form of bacterial development in nature represented by bacteria adhering to surfaces and growing in sessile communities. Materials widely used in FPE such as stainless steel, polypropylene, glass or rubber can support L. monocytogenes colonisation (Beresford et al., 2001; Chavant et al., 2002; Mafu et al., 1990). Because bacteria are embedded in self-produced extracellular polymeric matrix that confers higher resistance to external stress factors such as desiccation, nutrient deprivation, or disinfectant treatment (Bridier et al., 2011; Esbelin et al., 2018), it is a great challenge to eliminate biofilms in FPE. Despite an early belief that L. monocytogenes could only form monolayer biofilms, later studies evidenced various degrees of maturation in biofilms (Borucki et al., 2003; Guilbaud et al., 2015; Lee et al., 2017).

Pulsed-field gel electrophoresis (PFGE), the gold standard for the last two decades for epidemiology and intraspecific diversity analyses (Félix et al., 2014; Graves and Swaminathan, 2001), enabled identification of persistent isolates. In parallel, multi-locus sequence typing (MLST) has emerged as a key method to investigate the genomic relatedness among *L*.

monocytogenes isolates (Stessl et al., 2014). A prominent advantage of MLST is that it can be derived from whole genome sequence analysis and provides reproducible data across laboratories. High congruence between PFGE and MLST results allowed successful conversion of PFGE profiles into MLST data, thus enabling utilization of PFGE databases for investigation of population genetics and clonal structure of *L. monocytogenes* (Félix et al., 2018; Maury et al., 2016).

In the past, attempts to correlate biofilm phenotype to serotype, origin or persistence gave conflicting results depending on the studies and experimental conditions. Such comparisons can now be addressed at the level of the genome. Indeed, Genome-wide association study (GWAS) is a top-down approach that involves testing a large number of genetic variants in a population of individual organisms with a given phenotype. The application of GWAS in microbiology has slowly emerged (Falush, 2016; Falush and Bowden, 2006) and application of GWAS to *Campylobacter* successfully identified genetic factors responsible for adaptation to different host animals (Sheppard et al., 2013). While most association studies are investigating clinical phenotypes, GWAS dealing with food-related phenotypes was recently applied to *L. monocytogenes* traits associated to cold, salt, acid and desiccation stresses (Fritsch et al., 2019; Hingston et al., 2017).

A collection of 58 isolates was built to represent the diversity and frequency of detection of *L. monocytogenes* in the food industry. These isolates were selected from a panel of 1667 strains isolated from foods and food premises. Based on the distribution of PFGE pulsotypes, the most and least frequent pulsotypes were determined, from which 20 prevalent as well as 19 rare isolates were selected, respectively. Additionally, 19 persistent isolates were included in the strain collection in order to investigate the following questions: (i) Does high biofilm forming capacity underlies persistence as well as prevalence of specific genotypes in FPE and related food products (ii) How environmental conditions affect biofilm forming capacity among genotypes (iii) Can modules of genes be linked to biofilm formation. We evaluated the sessile growth at low temperature, under nutrition deprivation and exposure to salt, mimicking environmental conditions frequently encountered in food premises. To our knowledge, this is the first study that assessed adhesion capacity and biofilm formation at multiple levels including intergroups (persistent, prevalent, and rare isolates), lineages, serogroups, as well as genotypes. Pan-GWAS further highlighted genes that could affect the ability of *L. monocytogenes* to form biofilms under various conditions.

2. Materials and Methods

2.1. L. monocytogenes isolate collection, inoculum preparation and growth media0

Fifty-eight isolates were selected from the strain collection of Anses (French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France), in order to represent the genetic diversity of *L. monocytogenes* isolated from foods and FPE (Table 1). Based on a multiplex PCR assay (Doumith et al., 2004), these 58 isolates were typed into 4 serogroups, IIa (serotype 1/2a and 3a), IIb (serotype 1/2b, 3b, and 7), IIc (serotype 1/2c and 3c) and IVb (serotype 4b, 4ab, 4d, and 4e). They consisted of 43 lineage II strains (40 serogroup IIa and 3 serogroup IIc strains) and 15 lineage I strains (5 serogroup IIb and 10 serogroup IVb strains). The selection criteria were first of all the phylogenetic position of each isolate determined by its pulsotype and MLST clustering (Henri et al., 2016). The second criterion was the frequency of isolation of the genotypes. Three categories, prevalent, persistent and rare isolates were considered according to the frequency of detection of the genotypes. The group of prevalent strains was composed of 20 isolates from the 9 most dominant MLST clusters. Nineteen rare strains were selected from 15 minor clusters. Persistence was defined as isolates of the same pulsotype being isolated at least 3 times over an extended observation period (1 to 5 years) from the same food premise (A, B, C and D) in France or Norway. With these criteria, 19 isolates grouped within 4 MLST clonal complexes (CCs) were selected as persistent strains. As a whole, the strain collection was distributed into 27 different genotypes (CCs and sequence types, STs); 12 singletons, 9 genotypes represented by 2 isolates, 3 genotypes represented by 3 isolates, and 3 genotypes represented by 4, 7, and 8 isolates, respectively (Table 1). The genomes of 57 strains were available from a previous study (Henri et al., 2016).

A working stock was prepared in Brain-Heart Infusion (BHI) broth (Laboratorios Conda, Spain) with 8.3% glycerol (Sigma-Aldrich, France) and stored at -20°C. Bacteria were sub-cultured twice on BHI agar at 37°C. Overnight grown colonies were harvested and homogenized in BHI and 1:10 diluted BHI (dBHI). When required, 0.85% (w/v) NaCl (Sigma-Aldrich) was added to the growth medium.

2.2. Assessment of adhesion capacity: Biofilm Ring Test® (BRT)

The BRT assay (KitC004, BioFilm Control, France) was carried out in polystyrene 96-well microplates as described by Chavant *et al*.³⁵ with slight modifications.

Fresh overnight grown colonies on BHI agar plates were harvested and homogenized in dBHI. Absorbance (OD_{600}) was measured to calibrate initial inocula at an OD_{600} of 0.2 in BHI and dBHI broths, each containing magnetic beads (Toner4) at a final concentration of 10 μ l ml⁻¹.

According to the BRT technology, a series of inocula, from OD₆₀₀ of 0.2 to 0.0002, was prepared in order to work within the detection range of the system whatever the conditions tested in order to increase the range of detectable phenotypes. In a microplate, 200 μ l of each solution was transferred into triplicate wells. Negative controls composed of BHI or dBHI broths with magnetic beads were included in each plate in triplicate. For each strain, duplicated plates were prepared and incubated statically at 10 or 37°C for 5 h. After incubation, few drops of Liquid Contrast (inert and non-toxic white oil) were deposited in the wells and the plates were placed on the Block Test for 1 min to apply magnetic fields at the centre of each well. The bottom of the plates was scanned with the Plate Reader and analysed by BFC elements 3[®] software to obtain the numeric values of each well called the BioFilm Index (BFI) ranging from 0 to 20. With this measurement, absence of biofilm formation in a well results in high mobility of magnetic beads and a BFI around 20. In contrast, immobilization of beads by sessile cells results in a lower BFI or zero value.

At least three experiments were performed for each condition with independently grown bacterial cultures.

2.3. Biofilm quantification with Microtiter Plate Assay

The Microtiter Plate Assay (MPA) was performed as previously described by Lee *et al*. (Lee et al., 2017) with slight modifications. Inocula were prepared as described above. Briefly, overnight grown colonies were diluted to obtain OD₆₀₀ of 0.1 in each growth medium and 200 µl of bacterial solution was transferred in triplicate wells in 96-well microplates. Growth media were added as negative controls. The effect of 3 factors on biofilm formation was tested: nutrient availability (BHI or dBHI), salt content (0 or 0.85% (w/v) NaCl), and temperature (10 or 37°C). Microtiter plates were incubated statically for 24 h at 37°C or 10°C. Plates were inverted and the media and planktonic cells were removed by gently tapping off. To remove loosely attached bacteria, wells were washed twice with $300 \,\mu$ l of sterile saline solution (8.5 g NaCl per litre). Then biofilms were fixed with 300 μ l of 96% ethanol (v/v) (Sigma-Aldrich) for 20 min and air-dried completely at room temperature after removal of the ethanol. For staining bacterial biomass, 220 µl of a 0.1% (w/v) solution of crystal violet (CV, Merck KGaA, Germany) was added per well and the plates were incubated static for 30 min. Then the solution was removed by sharply tapping the plates upside down. Wells were washed 3 times with 300 µl of saline and air-dried completely before filling with 150 µl of 33% v/v acetic acid (Sigma-Aldrich). The plates were placed on a plate shaker with slight agitation for 10 min to completely dissolve CV and get homogenized solutions. The amount of destained CV was determined by reading OD₆₀₀ in a Microplate Reader (EL800, BioTek, USA).

At least three experiments were performed for each condition with independently grown bacterial cultures.

2.4. Scanning electron microscopy (SEM) of biofilms

Overnight grown cells were suspended to obtain an OD_{600} of 0.1 in 4 different growth conditions: 0 or 0.85% NaCl in BHI or dBHI broths at 37°C. Seven millilitres of each bacterial suspension were poured into a Petri dish (55-mm diameter) containing a flat stainless-steel coupon (AISI 304, mean roughness = 0.064, 2.5 cm X 1 cm). After 24 h incubation at 37°C under static conditions, coupons were gently washed twice with sterile saline solution. Sessile cells and biofilms were fixed on the coupons with a solution of 3% glutaraldehyde in 0.2 M cacodylate buffer (pH 7.4) then kept at 4°C for a minimum of one hour to overnight. Before dehydration steps, coupons were washed three times with cacodylate buffer for 15 min each. Coupons were dehydrated sing a graded ethanol series (70, 90, and 100%) three times, 15 min each and dehydrated further in a 50:50 mixture of ethanol:hexamethyldisilazane (HMDS, Delta microscopies, France) three times for 10 min each. Samples were immersed twice for 10 min each in pure HMDS followed by air-drying at room temperature and sputter-coated with gold (JFC-1300, JEOL, Japan) and observed with a scanning electron microscope (JEOL 6060LV, JEOL, Japan).

2.5. Pan-Genome-Wide Association Study

Total biomasses measured by MPA under 8 different growth conditions were classified into binary phenotypes, strong or weak biofilm formers. This clustering of strains was established based on OD values with function hclust in R version 3.4.2 with the complete linkage method for hierarchical clustering.

A pan-GWAS based on the accessory gene content of the 57 *L. monocytogenes* de novo assemblies was performed. First, draft genomes were obtained based on the SPAdes algorithm (Bankevich et al., 2012) after quality check of Illumina reads using FASTQC (Andrews, 2010). Then, whole genome annotation was carried out using Prokka (Seemann, 2014) with default parameters. Prokka uses the assemblies as input and produces GFF3-files, including sequences and annotations, which were used to extract the pangenome of the 57 *L. monocytogenes* isolates with the software Roary (Page et al., 2015). Finally, gene-based GWAS was performed using Scoary (Brynildsrud et al., 2016) by following the instructions provided on https://github.com/AdmiralenOla/Scoary. Scoary helped to assess presence/absence patterns of genes in binary phenotypes. The genes with significant association (p < 0.05) were reported. Percentage of strains between strong versus weak biofilm formers carrying each gene in the genomes was calculated. For example, % of a gene in strong biofilm formers was

determined as follows: (number of strains carrying the gene in their genomes among strong biofilm formers) X 100 / (total number of strains grouped into strong biofilm formers).

Information regarding gene name, protein name, accession number and Gene Ontology were retrieved from the Universal Protein Resource database (<u>https://www.uniprot.org/</u>). Sequence with no BLAST hit (0.79%) were excluded from further analysis. To obtain a visualized dataset on selected genes, Gene Ontology (GO) enrichment analysis was performed using PANTHER Version 14.0 (<u>http://pantherdb.org/</u>). Selected sequences were annotated according to *L. monocytogenes* EGDe genome (Refseq accession NC_003210.1) and compared to the functional classification retrieved from ListiList (<u>http://genolist.pasteur.fr/ListiList/</u>).

2.6. Phylogenetic analysis

A variant calling analysis was performed using iVARCall2 (Felten et al., 2017). Using this pipeline, paired-end reads were aligned against the reference genome EGDe to identify single-nucleotide polymorphisms (SNPs) and small insertions/deletions by local de novo assembly. Phylogenomic reconstruction based on core-genome SNPs was carried out with RAxML (Randomized Axelerated Maximum Likelihood) (Stamatakis, 2014). The phylogenetic inference was performed with bootstrap analysis and searching for the best-scoring Maximum Likelihood tree with General Time-Reversible model of substitution and the secondary structure 16-state model.

2.7. Statistical analyses

One-way analysis of variance (ANOVA) with Tukey's multiple comparison test was applied to determine statistically significant differences in the level of adhesion and biofilm production within lineages, serogroups, groups (persistent, prevalent, and rare) or genotypes. Dunnett's multiple comparison test was applied for testing the significance of changes in biofilm production caused by alteration of growth conditions (T°C or NaCl) in comparison to the standard BHI or dBHI condition. Multiple t-test was applied to assess the statistical significance of changes in adhesion measured by BRT. All differences are reported at a level of significance of 0.01 or 0.05.

3. Results

3.1. Environmental conditions affect biofilm production

Biofilm production by 58 strains was evaluated at 37° C, its optimal growth temperature, and 10° C, a low temperature close to that of FPE. For each temperature, 4 culture media were tested: BHI as a control, dBHI representing a nutrient-deprivation medium, and both media with addition of 0.85% (w/v) NaCl to assess impact of salt. Temperature played a major role in determining the total biomass; in general, biofilm production was more than 5 times greater at 37° C than at 10° C with the exception of dBHI broth in which the total biomass produced at both temperatures was similar (Figure 1; Table 2).

Similar trends upon changes in media composition were observed at both temperatures. Nutrient deficient condition (dBHI) induced a significant decrease in total biomass compared to BHI condition, notably the effect was more prominent at 37°C (Figure 1). In contrast, addition of 0.85% NaCl induced a significant increase in biofilm production under both nutrient rich (BHI + NaCl) and poor (dBHI + NaCl) conditions (Figure 1; Table 2). This effect was significantly stronger in nutrient poor condition than in nutrient rich condition. Supplementation of dBHI broth with NaCl resulted in 23.4 and 4.5 times higher total biomass at 37°C and 10°C, respectively while 1.7 times increase was observed in BHI broth at both temperatures. It is noticeable that the combination of two factors, addition of salt and deprivation of nutrient, exerted a nonlinearly positive effect on biofilm production. Approximate osmolarity, calculated based on the literature (Takahashi et al., 1981) and molarity of NaCl showed that addition of 0.85% NaCl to dBHI medium increased its osmolarity from 36 to 327 mOsm/L, i.e. comparable to that of BHI medium (360 mOsm/L). However, the bacteria produced significantly more biomass in dBHI + NaCl compared to that in BHI suggesting that the nutrient deprivation stimulates biofilm production provided the appropriate osmotic environment is supplied.

SEM observations of strain 13 (persistent group) showed several biofilm structures from monolayers of cells to mature 3-D biofilms according to environmental conditions (Figure 1B). These observations were in accordance with MPA biomasses quantifications (Table 2). Cells grown in BHI media uniformly colonized the surface with small cellular aggregates and addition of salt increased the volume and frequency of cell clusters. When deprived of nutrients (dBHI), the surface was only sparsely colonized with no visible aggregate. However, addition of salt in dBHI medium dramatically improved biofilm construction and dense, three-dimensional mature biofilms were observed.

3.2. Association of biofilm phenotypes with phylogenetic division

The associations between phylogenetic attributes and biofilm formation were evaluated (Figure 2). Lineage II strains were statistically more efficient than lineage I strains in producing biofilms under 3 (BHI, BHI + NaCl, and dBHI + NaCl at 37°C) out of 8 conditions. However, opposite results were observed after incubation in dBHI broth at both temperatures. No significant differences were observed under the other conditions tested. Comparative analysis at the level of serogroups revealed that, at 37°C, serogroup IVb strains produced significantly less biofilm than serogroup IIa and/or IIb strains under 3 conditions (BHI, BHI + NaCl, and dBHI + NaCl). On the contrary, IVb strains formed higher biofilms under dBHI medium at 37°C. These differences are concordant with the differences observed at lineage levels; for example, the significant differences between lineage I and II strains. However, some significant differences were also detected within lineage I, concurrently between serogroups IIb and IVb strains (BHI and BHI + NaCl at 37°C).

3.3. Intra- and Inter-genotype biofilm phenotype variations

The genotypes represented by at least 3 isolates (28 isolates in total) were selected to assess intra- and inter-genotypic variances. Intra-genotype variations were observed except for CC7 and CC26. At least two isolates within genotypes CC121, CC11, CC155, and CC9 showed statistically different biofilm phenotypes under one or more growth conditions (Supplementary Figure 1). Considering the inter-genotype variations, it was manifest that isolates from CC26 formed distinctively more biofilm than other CCs at 10°C (Figure 3). Multiple comparison test confirmed that CC26 formed statistically more biofilms than the other 5 genotypes under all 4 different conditions at 10°C while at 37°C differences were significant under only one condition (dBHI + NaCI) implying that the cold temperature capitalized the biofilm forming trait of genotype CC26.

3.4. Biofilm formation of persistent, prevalent, and rare isolates

To test the hypothesis whether higher biofilm forming capacity could underlie persistence or frequent isolation of specific genotypes, we evaluated the total biomass produced under diverse conditions among persistent (group 1, n=19), prevalent (group 2, n=20) and rare (group 3, n=19) isolates (Figure 4; Table 1). Group 1 strains showed higher biofilm formation only in BHI at 37°C while group 2 strains were not more efficient than others under any condition tested. Interestingly, biofilms produced by isolates of group 3 were significantly more abundant than biofilms produced by isolates of the other two groups under numerous conditions. These observations suggest that, under the conditions tested, biofilm production cannot discriminate persistence or distribution frequency of genotypes in foods and FPE.

3.5. Nutrient deficient stress induces higher adhesion

Adhesion is the first step of biofilm formation manifested by attachment of bacterial cells to biotic or abiotic surfaces. The adhesion capacity measured by BRT is computed as BFI, a parameter inversely proportional to the level of adhesion. The BFI values, measured in nutrient deprived cells (dBHI) were lower than that of control cells (BHI) demonstrating an enhanced adhesion upon exposure to nutrient starvation after 5 h (Figure 5A). The positive effect of nutrient starvation on adhesion was observed regardless of the incubation temperature. At 37°C, the first two high inoculums gave results out of range (BFI = 0). A nearly complete blockage of beads resulted from full coverage of sessile cells at the bottom of the plate. However, significant differences were observed between BHI and dBHI at only one lower inoculum (OD₆₀₀ of 0.002; app. 4E⁺⁰⁶ cells/mI). By contrast, at 10°C, the highest inoculum of OD₆₀₀ of 0.2 (app. 4E⁺⁰⁸ cells/mI) showed the impact of nutrient stress while no adhesion could be recorded with a lower inoculum.

To further examine the increased adhesion under low nutrient conditions, Δ BFI was calculated by subtracting BFI of cells incubated in dBHI broth from that of BHI broth. Δ BFI was compared among the 3 groups (persistent, prevalent, rare) as well as 4 serogroups and no significant differences was found (Figure 5B and C) indicating that the enhanced adhesion was a universal phenotype transition. Furthermore, BFI values collected from BHI and dBHI media were compared among the 6 genotypes represented by at least 3 isolates. No evidence of genotypespecific predisposition in adhesion characteristics could be recovered (Figure 5D). In summary, enhanced adhesion of *L. monocytogenes* was a global cellular response to hypoosmotic shock triggered by nutrient deprivation.

3.6.Phylogenetic analysis of relative biofilm productivity

The total biomasses of 57 isolates were displayed in colour scale with binary transformation into strong or weak biofilm formers under different growth conditions and grouped according to their phylogenetic positions (Figure 6). The same colour gradient scheme was applied to a range of MPA values obtained under each growth condition in order to reflect relative biofilm productivity. The result showed that biofilm productivity varied inconsistently within each isolate depending on growth conditions except for certain isolates. For example, isolates belonging to CC7 and CC26, which previously revealed homogenous intra-genotype traits under each condition (Supplementary Figure 1), manifested overall low and high biofilm productivities, respectively across all the conditions. On the other hand, high variations in biofilm productivity were observed between closely related strains, including isolates of the same genotypes.

By binary transformation, only 2 and 6 isolates were consistently classified as strong and weak biofilm formers, respectively regardless of the growth conditions.

3.7. Putative determinants of biofilm formation detected by pan-GWAS

Pan-GWAS identified genes whose presence or absence were significantly (p < 0.05) related to the binary biofilm phenotype in 57 strains. The sets of significant genes varied greatly according to the growth conditions. As temperature is the critical environmental signal for L. monocytogenes, the sets of genes were compared at each temperature. There were 283, 692, 551, and 674 genes in BHI, dBHI, BHI + NaCl, and dBHI + NaCl media at 37°C, respectively and 319, 676, 281, and 65 genes at 10°C, respectively (Figure 7A and 7B). Among the 1360 genes specifically identified at 37°C, only 50 genes (3.68%) were found in more than 3 conditions. In a similar way at 10°C, 59 genes (5.62%) were found in more than 3 conditions among 1050 genes specifically identified at 10°C. The lists of genes under each condition can be found in supplementary tables 1 to 8. Globally, considering all 8 conditions, 37% of the genes identified by pan-GWAS had no predicted protein function. In order to compare the occurrence of pan-GWAS-identified genes between weak and strong biofilm formers, the percentage of strains carrying the genes was calculated in the two categories (Supplementary Tables 1 to 8). Depending on the genes and conditions, the difference of occurrence between weak and strong categories varied from 15 to 63% and the overall average difference of occurrence on the full set of pan-GWAS genes was 29%.

PANTHER GO-Slim analysis was applied to investigate the distribution of genes under each condition. We found 34, 273, 122, and 286 genes at 37°C, and 80, 262, 46, and 10 genes at 10°C enriched in BHI, dBHI, BHI + NaCl, and dBHI + NaCl media, respectively. Among the GO category "molecular function", the most enriched classes were "catalytic activity" (GO:0003824) followed by "binding" (GO:0005488), and "transporter activity" (GO:0005215) (Figure 7C). In the category "biological process", the "metabolic process" (GO:0008152) class was overrepresented followed by "localization" (GO:0051179), "cellular component organization or biogenesis" (GO:0071840), and "biological regulation" (GO:0065007) classes (Figure 7D). In the "cellular component" category, the most prevalent class was "cell" (GO:0005623) followed by "protein-containing complex" (GO:0032991) and "membrane" (GO:0016020) classes (Figure 7E).

Because the enriched GO terms were similar regardless of the growth conditions, the whole list of genes identified by pan-GWAS was subjected to functional analysis. In total, 2105 genes (genes observed in several conditions were counted several times for enrichment purposes) were annotated to the genome of *L. monocytogenes* EGDe. Within each functional category, fold enrichment was calculated as % in identified genes / % in whole genome of *L.*

monocytogenes EGDe (Figure 8). Functional categories highly enriched belonged predominantly to "Cell envelop and cellular processes", for example "cell surface proteins" (3.39 fold-enriched), "soluble internalin" (2.03 fold-enriched), "transformation/competence" (3.00 fold-enriched) and "cell wall" (1.31 fold-enriched). In "Intermediary metabolism" category, "metabolism of phosphate" (1.58 fold-enriched) was overrepresented while "metabolism of nucleotides and nucleic acids" (0.22 fold-enriched) and "metabolism of lipids" (0.33 fold-enriched) were comparatively underrepresented. Among the other functional categories, "phage-related functions" (1.52 fold-enriched), "similar to unknown proteins from listeria" (2.00 fold-enriched) and "no similarity" (1.9 fold-enriched) were overrepresented. On the other hand, "protein synthesis" (0.09 fold-enriched) was underrepresented.

4. Discussion

Complex mechanisms regulate bacterial sessile growth and biofilm formation from adhesion to maturation and dispersal. Each step is affected by intrinsic and extrinsic factors. In this study, 58 *L. monocytogenes* strains isolated from food and FPE were evaluated for biofilm forming traits including adhesion and total biomass production. Under all conditions studied, all isolates adhered and developed as biofilms. Diverse growth conditions reflecting food and FPE such as changes in salt content, nutrient availability and temperature significantly affected biofilm production. Temperature was the most influencing factor for biofilm production as observed in previous studies (Di Bonaventura et al., 2008; Kadam et al., 2013; Rodrigues et al., 2009). Despite its capacity to survive and grow at low temperatures, growth rate of *L. monocytogenes* falls when temperatures decrease below optimal range (Murphy et al., 1996) which explains the significant differences between the total biomass obtained at optimal (37°C) and cold (10°C) temperatures during the 24 h of incubation. It needs to be investigated whether or not similar mature biofilms would be produced at 10°C if the incubation period was prolonged as shown for other strains (Chavant et al., 2002; Zameer et al., 2010).

In food industry, salt is the most widely applied natural preservative for foods especially in processed foods including RTE products (Intake et al., 2010). However, *L. monocytogenes* efficiently adapts to changes in water activity in surrounding environments (Sleator et al., 2003) and NaCl induces biofilm production. Indeed higher biomass was quantified when NaCl concentration increased from 0.5% to 2% at 22.5, 30 and 37°C in tryptic soy broth (TSB) containing 0.6% yeast extract (Pan et al., 2010). Similarly, in another study, addition of 2 to 5% NaCl in TSB caused a dramatic increase in aggregation of *L. monocytogenes* (Jensen et al., 2007). The present study demonstrated that addition of salt at saline concentration (0.85% NaCl) induced a significant increase in biofilm formation under both nutrient rich (BHI) and poor (dBHI) conditions. Besides, our results disclosed, for the first time, a dramatic nonlinear effect of salt addition and nutrient deprivation on biofilm production. Positive effect of NaCl on biofilm maturation was significantly intensified by nutrient deprivation.

L. monocytogenes isolates in FPE are likely to encounter nutrient deprivation or hypo-osmotic stress. To avoid cell lysis caused by massive influx of water into the cell when subjected to sudden hypo-osmotic shock, bacteria have evolved several mechanisms including mechanosensitive or stretch-activated channels that mediate efflux of cytoplasmic solutes and water channels such as aquaporins (Sleator and Hill, 2002). Our study found that when cells were exposed to sudden nutrient deprivation stress, the initial step of adhesion to microtiter plate was enhanced at both optimal (37°C) and cold (10°C) temperatures. This finding is in agreement with our previous study that demonstrated enhanced adhesion of *L.*

monocytogenes upon sudden cold stress (Lee et al., 2017). Both studies were aligned in the fact that the increase in adhesion upon sudden stresses was not related to serotype, origin or genotype of strains as previously reported in the literature (Kalmokoff et al., 2001). Physicochemical properties such as hydrophobic interactions and interfacial forces between a substratum and a bacterial cell influence cell attachment to a surface (Renner and Weibel, 2011). Our previous study found a correlation between cell surface properties and adhesion levels (Lee et al., 2017). Similarly, the sudden hypo-osmotic shock accompanied by nutrient stress could have induced alterations in cell surface properties resulting in increased adhesion as a stress response. However, the mechanisms behind this observation remain to be elucidated. Furthermore, the increased adhesion upon nutrient stress did not lead to the construction of mature biofilms suggesting that each step of biofilm formation is differently affected by environmental factors.

L. monocytogenes shows high intraspecific diversity. To date, studies that evaluated intraspecific diversity of biofilm phenotype in this species focused on associating phenotypes with genetic lineages, serotypes or origins. However, discrepancies among studies were reported. For example, conflicting results were reported on the association of lineages or serotypes with biofilm production (Borucki et al., 2003; Djordjevic et al., 2002; Doijad et al., 2015). These inconsistencies could be ascribed to differences of experimental setups (Kadam et al., 2013). Similarly, in the present study, some significant differences in biofilm production were observed among serotypes, though the associations were not consistent throughout the different growth conditions. Moreover, lineages seem to be a spurious indicator for biofilm formation in L. monocytogenes as both serogroup IIb and IVb belonging to lineage I, showed significant differences in biofilm formation under some conditions. The results suggest that these criteria may not reflect the actual diversity of biofilm formation in *L. monocytogenes*. Instead, more closely related isolates identified by molecular subtyping methods such as MLST could divulge stronger phenotype-genotype associations. Some studies on population genetics highlighted a distinct clonal structure of L. monocytogenes strains within distinct phylogenetic lineages (Bakker et al., 2010; Ragon et al., 2008). Interestingly, recent studies reported heterogeneous distribution of genotypes among a large panel of food and clinical isolates of L. monocytogenes (Maury et al., 2016; Painset et al., 2019). According to the studies, CC121 and CC9 accounted for most of food isolates, whereas CC1, CC2, CC4, and CC6 were highly associated with a clinical origin and higher virulence potentials in vivo. Similarly, associations between genotypes and stress tolerance traits in L. monocytogenes has been documented (Hingston et al., 2017) showing that genotype associations levelled out further associations at serotype level. In the current study, interestingly, three isolates of CC26 produced more biofilms than other CCs at 10°C. It is assumed that core genetic features of

CC26 have contributed to the exceptional behaviour of these isolates under cold stress resulting in higher biofilm production. By contrast, high intra-genotype variations observed in some CCs suggests that minor genetic variants within a genotype may impact biofilm phenotype.

In addition, our data suggest that high ability to adhere to surface or to produce sessile biomass may not be a prerequisite to persistence or prevalence of *L. monocytogenes* in FPE. Other traits associated with stress factors in food chain such as increased resistance to disinfectants or desiccation treatments need to be investigated to understand the characteristics of *L. monocytogenes* stratifying the current population structure. As a matter of fact, except for 8 isolates of CC7 (persistent subgroup 'D') which showed similar phenotypes, other persistent clones (subgroup 'A' 'B', and 'C') expressed biofilm phenotypes significantly different under some growth conditions. In the current study, persistence was defined when the same genotype was re-isolated at least 3 times from the same FPE or related food products over a timespan of more than 1 year. Apparently, there exists a limitation in discriminating different strains belonging to a same genotype defined by subtyping methods such as PFGE or MLST. Moreover, it is difficult to discriminate real persistent clones from non-persistent ones reintroduced into FPE regularly and supposed persistent clones could be mis-categorized as a sporadic strain on multiple sampling occasions (NicAogáin and O'Byrne, 2016).

The pan-GWAS analysis on total biomasses produced under various growth conditions identified a large number of genes from the accessory genome of 57 strains. Results depended on the experimental conditions and the combinations of nutrient stress, NaCl addition and temperature. Generally, the number of shared genes was low among different growth conditions due to high genomic variation. However, GO enrichment revealed that the distribution of modules of genes found by pan-GWAS was comparable regardless of the growth conditions suggesting that overall patterns of genes involved in biofilm production are homogeneous.

Several studies investigated putative biofilm determinants using transposon mutagenesis (Alonso et al., 2014; Chang et al., 2012; Piercey et al., 2016; Yong et al., 2012). Among the wide spectrum of functions reported in these studies, "cell wall component" (teichoic acid metabolism and peptidoglycan synthesis), "membrane proteins" (lipoprotein assembly), "flagella and motility", "cell signalling", "energy generation and intermediary metabolism", "biosynthesis" and "gene regulations" were the most prevalent ones. Genes encoding virulence related surface proteins such as internalins and cell wall anchor proteins were also found to be engaged in biofilm formation (Franciosa et al., 2009; Jordan et al., 2008; Popowska et al., 2017) and in cold adaptation (Fritsch et al., 2019). Similar findings were observed among

the genes identified by pan-GWAS in the current study. For example, functions including cell surface proteins, internalins and cell wall were overrepresented.

Interestingly, functional category "metabolism of phosphate" was enriched in the set of genes. Previously, phosphate-dependent biofilm production was suggested in *Pseudomonas fluorescens* (Navarro et al., 2011; Newell et al., 2011). Change of phosphate level in the surrounding environment modulated expression of the surface adhesin through a cyclic dimeric GMP (c-di-GMP) signaling pathway mediating the lifestyle switch between motile planktonic cells and biofilm formers. As an important second messenger, c-di-GMP plays a role in the complex regulation of broad bacterial behaviours including biofilm formation and exopolysaccharide synthesis in *L. monocytogenes* and in a wide variety of bacteria (Hengge et al., 2016; Köseoğlu et al., 2015; Valentini and Filloux, 2016). Phosphate is the incorporated form of phosphorous in nucleic acids and phospholipids which take up a substantial part of the cell. However, the effect of phosphate on specific phenotypes as well as phosphate metabolism has not been studied in depth.

Another highly enriched function was "transformation/competence". In *Streptococcus pneumoniae* biofilm maturation is dependent on allelic variants of *comC*, the gene encoding competence-stimulating peptide (Carrolo et al., 2014). Moreover, significantly higher competence induction and transformation efficiencies accompanied by upregulation of competence genes was described during sessile growth (Marks et al., 2012). In this regard, the exact role of extracellular DNA, an essential part of the matrix in *L. monocytogenes* biofilms (Harmsen et al., 2010), needs to be investigated.

However, a limitation of the pan-GWAS approach was a lack of straightforward associations of presence/absence of genes with strong or weak biofilm formers because occurrence between two binary traits was obscure in general (the mean difference in gene occurrence was about 29%). This may be explained by the difficulty to convert a linear trait into binary format which may have affected the results. Secondly, biofilm formation is a string of simultaneous processes engaging various steps as well as diverse physiological cellular states. The number of genes identified by pan-GWAS may reflect this complexity. Transcriptomics studies conducted on cells growing in biofilms pointed out time-dependent, differential gene expression patterns in *L. monocytogenes* and other bacteria (Stanley et al., 2003; Tirumalai and Prakash, 2012; Yamamoto et al., 2011). It supports the hypothesis that divergent modules of genes are involved in each step of biofilm formation. Thus, engagement of a gene in one step of biofilm formation might have been masked by its irrelevance during later steps which might affect pan-GWAS results.

5. Conclusion

This study is the first attempt to correlate biofilm traits of food-related L. monocytogenes isolates with diverse characteristics such as persistence and frequency of distribution of genotypes as well as genetic composition. Our results suggest that the ability of some isolates to be persistent or prevalent in FPE is not depending on the biofilm formation efficiency. The current distribution of genotypes in FPE and foods could be the result of their corresponding heterogeneous distribution in natural environments which, unfortunately, is difficult to investigate due to the lack of appropriate databases. Biofilm productivity exhibited profound inter- and intra-strain variations depending on growth conditions which resulted in inconsistent associations between biofilm formation and lineages or serotypes throughout the different growth conditions. Interestingly, we observed a temperature-dependent association of genotype with biofilm production asserting genotype as a better predictor of bacterial phenotypes. While salt addition enhanced biofilm production, nutrient deprivation impaired it. Importantly, a marked nonlinear effect of both treatments was documented for the first time in *L. monocytogenes*. Supplementation of NaCl in nutrient deprived cells significantly increased biofilm maturity regardless of temperature. Pan-GWAS was successfully applied on biofilm data and the module of genes were found to be comparable across different growth conditions in spite of the small number of shared genes. Cell surface proteins and transformation/competence related functions were highly enriched among the total list of identified genes. Further investigations on genes of unknown function that accounted for a third of all genes as well as a time-course transcriptome analysis will help decipher the complex mechanisms of the biofilm formation.

Author contributions

B-H.L. and P.P. conceived the project. B-H.L. designed the experiments and analysed and interpreted the data. S.B., M.H., and T.B. supervised the experiments concerning biofilm phenotypes conducted by S.C. and B-H.L. L.G. performed the phenotype clustering and the GWAS and B.F. selected the strains. N.K. performed annotation on EGDe and I.S. performed functional analysis. B-H.L. and P.P. wrote the manuscript and all authors reviewed and approved the final manuscript.

Funding

This project received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement N 641984.

Acknowledgments

We greatly acknowledge Sophie Roussel at INRA, Rennes, Michel-Yves Mistou at Anses, Maisons-Alfort, Taran Skjerdal at Norwegian Veterinary Institute, Oslo, and Carole Feurer at The French Pork and Pig Institute, Maisons-Alfort for kindly providing *L. monocytogenes* strains. We thank Pierre Nicolas at INRA, Jouy-en-Josas for providing functional classification. We thank Brigitte Gaillard-Martinie at INRA, Saint-Genès-Champanelle for SEM sample preparation, and Christelle Blavignac for her assistance with SEM technologies at the Centre Imagerie Cellulaire Santé, Université Clermont Auvergne.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. The paired-end reads of the strains used in the study are available under the ENA bio-projects (<u>https://www.ebi.ac.uk/ena/data/view/PRJEB15592</u> and http://www.ebi.ac.uk/ena/data/view/PRJEB32254).



Figure 1. Effect of various growth conditions on biofilm formation. (A) Total biomasses of all 58 isolates measured by MPA at 37°C and 10°C are plotted on the left and right Y-axes respectively. Whiskers extend to minimum and maximum values, and the horizontal line and the dot in the box represent the median and mean values, respectively. Statistical significance was assessed using One-way ANOVA and Dunnett's multiple comparison tests, *p < 0.01 compared to BHI medium, #p < 0.01 compared to dBHI medium. (B) Examples of SEM observation at low, middle, and high magnifications (row) for strain 13 (persistent group) biofilm formation at 37°C according to the growth conditions. Scale bars: 10 μ m.

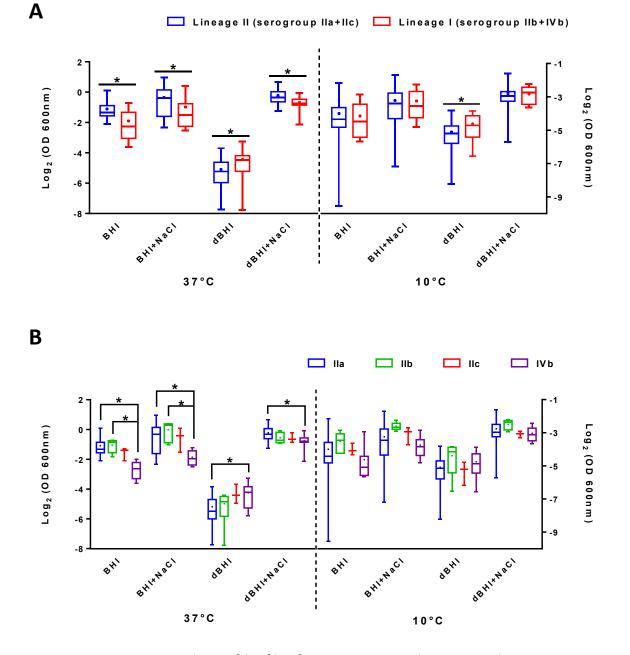


Figure 2. Comparative analysis of biofilm formation among lineages and serogroups. Data obtained from MPA are grouped by lineages (A) and serogroups (B). Total biomasses produced at 37°C and 10°C are plotted on left and right Y-axes, respectively. Whiskers extend to minimum and maximum values, and the horizontal line and the dot in the box represent the median and mean values, respectively. Data were analysed using One-way ANOVA and Turkey's multiple comparison tests, * p < 0.05.

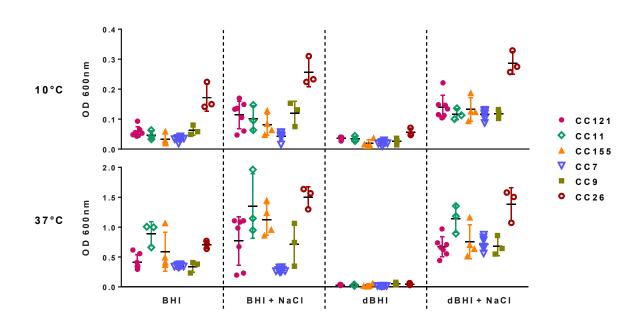


Figure 3. Inter- and intra-genotype variation in biofilm formation. Isolates are grouped according to their phylogenetic position and 6 genotypes comprising 28 *L. monocytogenes* isolates are shown; CC121 (n=7), CC11 (n=3), CC155 (n=4), CC7 (n=8), CC9 (n=3), and CC26 (n=3). Only CCs represented by at least 3 isolates are plotted. Upper and lower graphs show MPA results at 10°C and 37°C, respectively. Each dot represents one isolate; vertical lines indicate SD and horizontal bars the mean values. Data were analysed using One-way ANOVA and Turkey's multiple comparison tests, p < 0.05. CC26 formed statistically more biofilms than other genotypes in all media conditions at 10°C and dBHI + NaCl medium at 37°C.

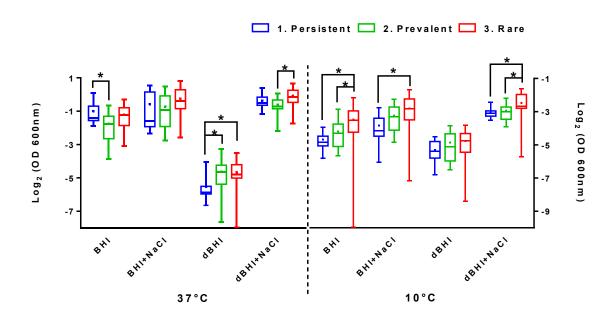


Figure4. Comparative analysis of biofilm formation among persistent (group 1), prevalent (group 2), and rare (group 3) isolates. Total biomasses measured by MPA at 37°C and 10°C are plotted on left and right Y-axes, respectively. Whiskers extend to minimum and maximum values, and the horizontal line and the dot in the box represent the median and mean values, respectively. Data were analysed using One-way ANOVA and Tukey's multiple comparisons test, *p < 0.05.

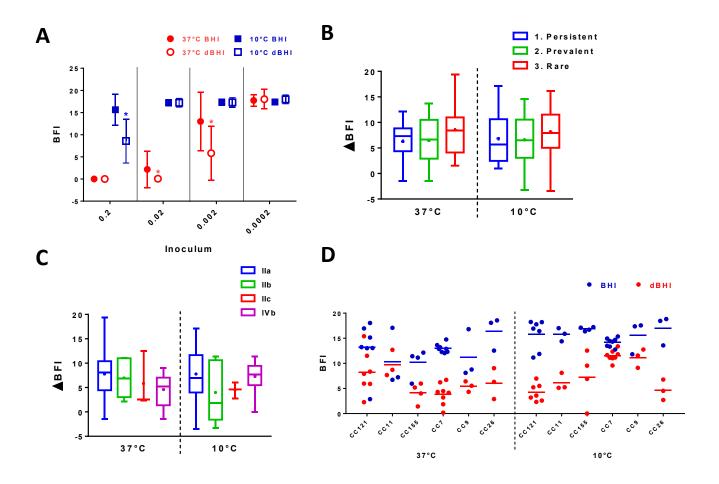


Figure 5. Enhanced adhesion *of L. monocytogenes* upon nutrient stress measured by BRT. (A) BRT results of all isolates under 4 different conditions (symbols) at different inoculum concentrations (X-axis). Data are presented as mean \pm SD and statistical significance was determined by multiple t-test, *p < 0.05 compared to BHI at each temperature. Delta BFI (Δ BFI) presented by groups (B) and serogroups (C). Whiskers extend to minimum and maximum values, and the horizontal line and the dot in the box represent the median and mean values, respectively. Data were analysed using One-way ANOVA and Tukey's multiple comparisons test, *p < 0.05. (D) BFI values under BHI and dBHI broths are shown for six genotypes containing more than 3 isolates. Each dot represents one isolate and horizontal bars the mean value. BRT results of cells inoculated at OD₆₀₀ of 0.002 were used for 37°C and 0.2 for 10°C (B-D).

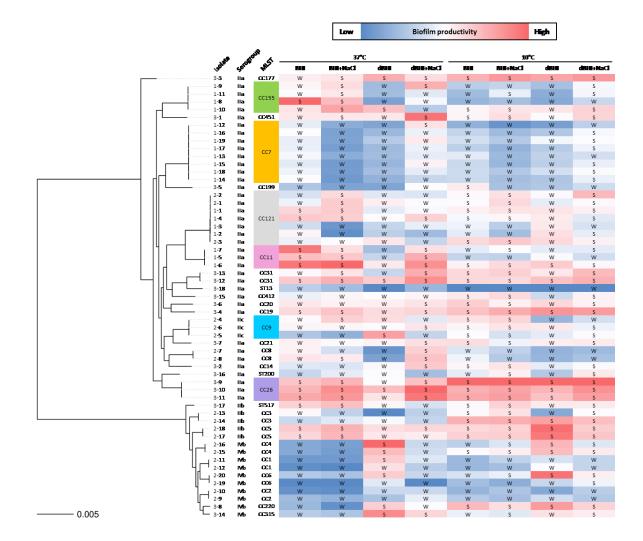
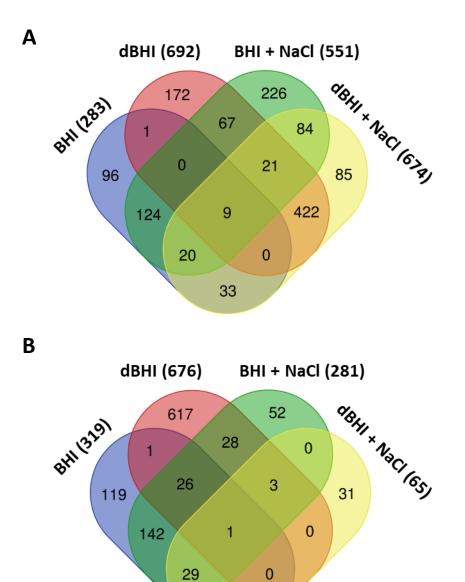



Figure 6. Phylogenetic tree of 57 *L. monocytogenes* isolates with biofilm phenotype. A colour scale is applied to MPA results within each growth condition to reflect relative biofilm productivity. The isolate names are shown as group numbers (1, persistent; 2, prevalent; 3, rare) hyphened with isolate numbers. Binary transformation of the isolates based on MPA results is indicated as S, strong and W, weak biofilm former.

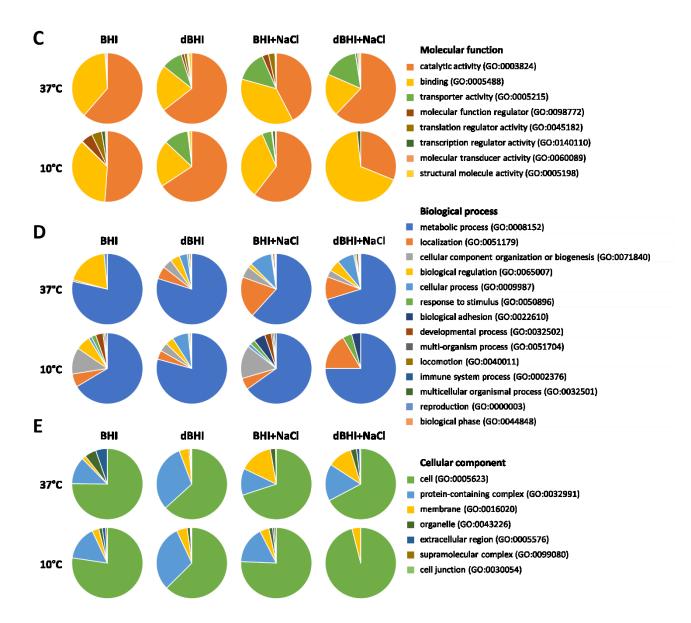
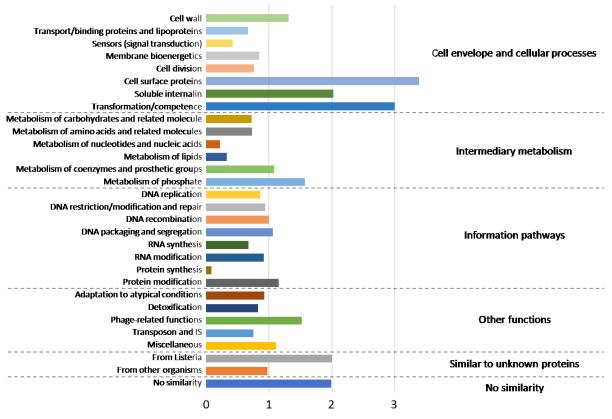



Figure 7. Genes identified by pan-GWAS and Gene Ontology (GO) analysis under different growth conditions. Venn diagrams show number of genes related to each condition at 37°C (A) and 10°C (B). PANTHER derived GO-slim categories for molecular function (C), biological process (D), and cellular component (E) are presented in pie charts.

Fold enrichment (% in sample / % in genome)

Figure 8. Functional enrichment analysis. Among the total list of genes identified by pan-GWAS, 2105 genes were annotated to *L. monocytogenes* EGDe and compared to the functional classification retrieved from ListiList (http://genolist.pasteur.fr/ListiList/). Fold enrichment of each functional category was performed as follow: Fold enrichment = % in annotated genes / % in whole genome of EGDe. Functional categories are presented in super- and subclass on the right and left of the figure, respectively.

Group	Subgroup†	Isolate	Origin	Detail	Serogroup¥	Lineage	MLST
	A	1	Food	Smoked-salmon	lla	Ш	CC121
Persistent		2	Food	Catering plate	lla	П	CC121
		3	FPE	Wipping of ground	lla	П	CC121
		4	FPE	Wipping of food contact surface	lla	П	CC121
	В	5	FPE	Food conveyor	lla	II	CC11
		6	FPE	Wipping of chain	lla	II	CC11
		7	FPE	chain bracket	lla	II	CC11
	С	8	FPE	Sewer	lla	II	CC155
		9	FPE	Before cleaning procedure	lla	П	CC155
		10	FPE	Sewer on floor	lla	П	CC155
		11	Food	Sandwich (ham and butter)	lla	П	CC155
		12	FPE	Factory environment	lla		CC7
		13	FPE	Factory environment	lla	II	CC7
	D	14	FPE	Slicer machine before use	lla	II	CC7
		15	FPE	Factory environment	lla	II	CC7
		16	FPE	Factory environment	lla	II	CC7
		17	FPE	Factory environment	lla	II	CC7
		18	FPE	Factory environment	lla	II	CC7
		19	FPE	Factory environment	lla	Ш	CC7
		1	Food	Sandwich (ham and cheese)	lla	II	CC121
		2	Food	Sliced tomato	lla	II	CC121
		3	Food	Ham	lla	П	CC121
		4	Food	Cheese (Gouda)	llc	П	CC9
		5	Food	Spinach	llc	II	CC9
		6	Food	Sausage (Merguez)	llc	II	CC9
		7	Food	Frozen onions	lla	II	CC8
		8	Food	Sausage meat	lla	П	CC8
		9	Food	Smoked-haddock	IVb	I	CC2
		10	Food	White chocolate mousse	IVb	I	CC2
Prevalent		11	Food	Grilled vegetables	IVb	I	CC1
		12	Food	Goat milk	IVb	I	CC1
		13	Food	Vacuum-packed goose breast fillet	IIb	I	CC3
		14	Food	Pastrami	IIb	I	CC3
		15	FPE	Rag for surface wipping	IVb	I	CC4
		16	Food	Red pepper	IVb	I	CC4
		17	Food	Salad (Piedmontese)	llb	I	CC5
		18	Food	Sausage meat with vegetable	IIb	I	CC5
		19	Food	Potatoes	IVb	I	CC6
		20	Food	Frozen tomatoes	IVb	I.	CC6

Table 1. L. monocytogenes strains used in this study (Henri et al., 2016).

	1	Food	Cheese (Munster)	lla	II	CC451
	2	Not Known	Not Known	lla	П	CC14
	3	Food	Cheese	lla	П	CC177
	4	Food	Salmon steak	lla	П	CC19
	5	Food	Cheese	lla	П	CC199
	6	Food	Cheese	lla	П	CC20
	7	Food	Cheese (Cantal)	lla	П	CC21
	8	Food	Salmon	IVb	I	CC220
	9	Food	Cheese	lla	П	CC26
Rare	10	Food	Cheese	lla	П	CC26
Nare	11	Food	Cheese	lla	П	CC26
	12	Food	Salad (rice, corn, pepper and ham)	lla	II	CC31
	13	FPE	Not known	lla	П	CC31
	14	Food	Sandwich (smoked-salmon and mimolette cheese)	IVb	I	CC315
	15	Food	Cheese	lla	П	CC412
	16	Food	Soy bean sprouts	lla	П	ST200
	17	Food	Cheese (Morbier)	IIb	I.	ST517
	18	Food	Not Known	lla	П	ST13
	19	Food	Duck liver (foie gras)	lla	II	ST13

+ Presumed persistent clones

Table 2. Impact of growth condition on biofilm production quantified by MPA. Total biomasses of 58 strains produced under 8 conditions are shown in means + SD, rounded to two decimal places.

	BHI (373.5†)	BHI + NaCl (664.4)	dBHI (37.4)	dBHI + NaCl (328.2)
37°C	0.41 + 0.21	0.71 + 0.44	0.03 + 0.02	0.79 + 0.30
10°C	0.06 + 0.04	0.11 + 0.06	0.03 + 0.02	0.14 + 0.06

⁺ Osmolarity is presented in parentheses, mOsm/L

References

- Alonso, A. N., Perry, K. J., Regeimbal, J. M., Regan, P. M., and Higgins, D. E. (2014). Identification of *Listeria monocytogenes* determinants required for biofilm formation. *PLoS ONE* 9. doi:10.1371/journal.pone.0113696.
- Andrews, S. (2010). FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- Augustin, J.-C., Zuliani, V., Cornu, M., and Guillier, L. (2005). Growth rate and growth probability of *Listeria monocytogenes* in dairy, meat and seafood products in suboptimal conditions. *J. Appl. Microbiol.* 99, 1019–1042. doi:10.1111/j.1365-2672.2005.02710.x.
- Bakker, H. C. den, Bundrant, B. N., Fortes, E. D., Orsi, R. H., and Wiedmann, M. (2010). A population genetics-based and phylogenetic approach to understanding the evolution of virulence in the genus *Listeria*. *Appl. Environ. Microbiol.* 76, 6085–6100. doi:10.1128/AEM.00447-10.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi:10.1089/cmb.2012.0021.
- Begley, M., Gahan, C. G. M., and Hill, C. (2002). Bile stress response in *Listeria monocytogenes* LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. *Appl. Environ. Microbiol.* 68, 6005–6012.
- Beresford, M. R., Andrew, P. W., and Shama, G. (2001). *Listeria monocytogenes* adheres to many materials found in food-processing environments. *J. Appl. Microbiol.* 90, 1000–1005.
- Bergholz, T. M., Bowen, B., Wiedmann, M., and Boor, K. J. (2012). Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses. Appl. Environ. Microbiol. 78, 2602–2612. doi:10.1128/AEM.07658-11.
- Borucki, M. K., Peppin, J. D., White, D., Loge, F., and Call, D. R. (2003). Variation in biofilm formation among strains of *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 69, 7336–7342.
- Bridier, A., Briandet, R., Thomas, V., and Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. *Biofouling* 27, 1017–1032. doi:10.1080/08927014.2011.626899.
- Brynildsrud, O., Bohlin, J., Scheffer, L., and Eldholm, V. (2016). Rapid scoring of genes in microbial pangenome-wide association studies with Scoary. *Genome Biol.* 17. doi:10.1186/s13059-016-1108-8.
- Carrolo, M., Pinto, F. R., Melo-Cristino, J., and Ramirez, M. (2014). Pherotype influences biofilm growth and recombination in *Streptococcus pneumoniae*. *PLOS ONE* 9, e92138. doi:10.1371/journal.pone.0092138.

- Chang, Y., Gu, W., Fischer, N., and McLandsborough, L. (2012). Identification of genes involved in *Listeria monocytogenes* biofilm formation by mariner-based transposon mutagenesis. *Appl. Microbiol. Biotechnol.* 93, 2051–2062. doi:10.1007/s00253-011-3719-z.
- Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M., and Bernardi, T. (2007). A new device for rapid evaluation of biofilm formation potential by bacteria. *J. Microbiol. Methods* 68, 605–612. doi:10.1016/j.mimet.2006.11.010.
- Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.-N., and Hebraud, M. (2002). *Listeria monocytogenes* LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. *Appl. Environ. Microbiol.* 68, 728–737. doi:10.1128/AEM.68.2.728-737.2002.
- Colagiorgi, A., Bruini, I., Di Ciccio, P. A., Zanardi, E., Ghidini, S., and Ianieri, A. (2017). *Listeria monocytogenes* biofilms in the wonderland of food industry. *Pathogens* 6. doi:10.3390/pathogens6030041.
- Di Bonaventura, G., Piccolomini, R., Paludi, D., D'Orio, V., Vergara, A., Conter, M., et al. (2008). Influence of temperature on biofilm formation by *Listeria monocytogenes* on various foodcontact surfaces: relationship with motility and cell surface hydrophobicity. *J. Appl. Microbiol.* 104, 1552–1561. doi:10.1111/j.1365-2672.2007.03688.x.
- Djordjevic, D., Wiedmann, M., and McLandsborough, L. A. (2002). Microtiter plate assay for assessment of *Listeria monocytogenes* biofilm formation. *Appl. Environ. Microbiol.* 68, 2950–2958.
- Doijad, S. P., Barbuddhe, S. B., Garg, S., Poharkar, K. V., Kalorey, D. R., Kurkure, N. V., et al. (2015). Biofilm-forming abilities of *Listeria monocytogenes* serotypes isolated from different sources. *PLOS ONE* 10, e0137046. doi:10.1371/journal.pone.0137046.
- Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C., and Martin, P. (2004). Differentiation of the major *Listeria monocytogenes* serovars by multiplex PCR. *J. Clin. Microbiol.* 42, 3819–3822. doi:10.1128/JCM.42.8.3819-3822.2004.
- EFSA, and ECDC (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. *EFSA J.* 16. doi:10.2903/j.efsa.2018.5500.
- Esbelin, J., Santos, T., and Hébraud, M. (2018). Desiccation: An environmental and food industry stress that bacteria commonly face. *Food Microbiol.* 69, 82–88. doi:10.1016/j.fm.2017.07.017.
- Falush, D. (2016). Bacterial genomics: Microbial GWAS coming of age. *Nat. Microbiol.* 1, 16059. doi:10.1038/nmicrobiol.2016.59.
- Falush, D., and Bowden, R. (2006). Genome-wide association mapping in bacteria? *Trends Microbiol.* 14, 353–355. doi:10.1016/j.tim.2006.06.003.

- Félix, B., Danan, C., Van Walle, I., Lailler, R., Texier, T., Lombard, B., et al. (2014). Building a molecular Listeria monocytogenes database to centralize and share PFGE typing data from food, environmental and animal strains throughout Europe. J. Microbiol. Methods 104, 1–8. doi:10.1016/j.mimet.2014.06.001.
- Félix, B., Feurer, C., Maillet, A., Guillier, L., Boscher, E., Kerouanton, A., et al. (2018). Population genetic structure of *Listeria monocytogenes* strains isolated from the pig and pork production chain in France. *Front. Microbiol.* 9. doi:10.3389/fmicb.2018.00684.
- Felten, A., Vila Nova, M., Durimel, K., Guillier, L., Mistou, M.-Y., and Radomski, N. (2017). First geneontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. *BMC Microbiol.* 17. doi:10.1186/s12866-017-1132-1.
- Franciosa, G., Maugliani, A., Scalfaro, C., Floridi, F., and Aureli, P. (2009). Expression of internalin A and biofilm formation among *Listeria monocytogenes* clinical isolates. *Int. J. Immunopathol. Pharmacol.* 22, 183–193. doi:10.1177/039463200902200121.
- Fritsch, L., Felten, A., Palma, F., Mariet, J.-F., Radomski, N., Mistou, M.-Y., et al. (2019). Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: Application to *L. monocytogenes'* ability to grow in cold conditions. *Int. J. Food Microbiol.* 291, 181–188. doi:10.1016/j.ijfoodmicro.2018.11.028.
- Garrec, N., Picard-Bonnaud, F., and Pourcher, A. M. (2003). Occurrence of *Listeria* sp. and *L. monocytogenes* in sewage sludge used for land application: effect of dewatering, liming and storage in tank on survival of Listeria species. *FEMS Immunol. Med. Microbiol.* 35, 275–283.
- Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., et al. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. *Meat Sci.* 97, 298–309. doi:10.1016/j.meatsci.2013.05.023.
- Graves, L. M., and Swaminathan, B. (2001). PulseNet standardized protocol for subtyping *Listeria monocytogenes* by macrorestriction and pulsed-field gel electrophoresis. *Int. J. Food Microbiol.* 65, 55–62.
- Guilbaud, M., Piveteau, P., Desvaux, M., Brisse, S., and Briandet, R. (2015). Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Appl. Environ. Microbiol. 81, 1813–1819. doi:10.1128/AEM.03173-14.
- Harmsen, M., Lappann, M., Knøchel, S., and Molin, S. (2010). Role of extracellular DNA during biofilm formation by *Listeria monocytogenes*. *Appl Env. Microbiol* 76, 2271–2279. doi:10.1128/AEM.02361-09.

- Hengge, R., Gründling, A., Jenal, U., Ryan, R., and Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. J. Bacteriol. 198, 15–26. doi:10.1128/JB.00331-15.
- Henri, C., Félix, B., Guillier, L., Leekitcharoenphon, P., Michelon, D., Mariet, J.-F., et al. (2016). Population genetic structure of *Listeria monocytogenes* strains determined by pulsed-field gel electrophoresis and multilocus sequence typing. *Appl. Environ. Microbiol.*, AEM.00583-16. doi:10.1128/AEM.00583-16.
- Hingston, P., Chen, J., Dhillon, B. K., Laing, C., Bertelli, C., Gannon, V., et al. (2017). Genotypes associated with *Listeria monocytogenes* isolates displaying impaired or enhanced tolerances to cold, salt, acid, or desiccation stress. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.00369.
- Intake, I. of M. (US) C. on S. to R. S., Henney, J. E., Taylor, C. L., and Boon, C. S. (2010). *Preservation and Physical Property Roles of Sodium in Foods*. National Academies Press (US) Available at: https://www.ncbi.nlm.nih.gov/books/NBK50952/.
- Jensen, A., Larsen, M. H., Ingmer, H., Vogel, B. F., and Gram, L. (2007). Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of *Listeria monocytogenes* strains. *J. Food Prot.* 70, 592–599.
- Jordan, S. J., Perni, S., Glenn, S., Fernandes, I., Barbosa, M., Sol, M., et al. (2008). *Listeria monocytogenes* biofilm-associated protein (BapL) may contribute to surface attachment of *L. monocytogenes* but is absent from many field isolates. *Appl. Environ. Microbiol.* 74, 5451–5456. doi:10.1128/AEM.02419-07.
- Junttila, J. R., Niemelä, S. I., and Hirn, J. (2008). Minimum growth temperatures of *Listeria monocytogenes* and non-haemolytic Listeria. *J. Appl. Bacteriol.* 65, 321–327. doi:10.1111/j.1365-2672.1988.tb01898.x.
- Kadam, S. R., den Besten, H. M. W., van der Veen, S., Zwietering, M. H., Moezelaar, R., and Abee, T. (2013). Diversity assessment of *Listeria monocytogenes* biofilm formation: impact of growth condition, serotype and strain origin. *Int. J. Food Microbiol.* 165, 259–264. doi:10.1016/j.ijfoodmicro.2013.05.025.
- Kalmokoff, M. L., Austin, J. W., Wan, X. D., Sanders, G., Banerjee, S., and Farber, J. M. (2001). Adsorption, attachment and biofilm formation among isolates of *Listeria monocytogenes* using model conditions. *J. Appl. Microbiol.* 91, 725–734.
- Köseoğlu, V. K., Heiss, C., Azadi, P., Topchiy, E., Güvener, Z. T., Lehmann, T. E., et al. (2015). *Listeria monocytogenes* exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMPdependent regulation. *Mol. Microbiol.* 96, 728–743. doi:10.1111/mmi.12966.
- Lee, B.-H., Hébraud, M., and Bernardi, T. (2017). Increased adhesion of *Listeria monocytogenes* strains to abiotic surfaces under cold stress. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.02221.

- Liu, D., Lawrence, M. L., Ainsworth, A. J., and Austin, F. W. (2005). Comparative assessment of acid, alkali and salt tolerance in *Listeria monocytogenes* virulent and avirulent strains. *FEMS Microbiol. Lett.* 243, 373–378. doi:10.1016/j.femsle.2004.12.025.
- Mafu, A. A., Roy, D., Goulet, J., and Magny, P. (1990). Attachment of *Listeria monocytogenes* to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. *J. Food Prot.* 53, 742–746. doi:10.4315/0362-028X-53.9.742.
- Marks, L. R., Reddinger, R. M., and Hakansson, A. P. (2012). High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in *Streptococcus pneumoniae*. *mBio* 3, e00200-12. doi:10.1128/mBio.00200-12.
- Maury, M. M., Tsai, Y.-H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., et al. (2016). Uncovering *Listeria monocytogenes* hypervirulence by harnessing its biodiversity. *Nat. Genet.* 48, 308–313. doi:10.1038/ng.3501.
- Murphy, P. M., Rea, M. C., and Harrington, O. (1996). Development of a predictive model for growth of *Listeria monocytogenes* in a skim milk medium and validation studies in a range of dairy products. *J. Appl. Bacteriol.* 80, 557–564. doi:10.1111/j.1365-2672.1996.tb03257.x.
- Navarro, M. V. A. S., Newell, P. D., Krasteva, P. V., Chatterjee, D., Madden, D. R., O'Toole, G. A., et al. (2011). Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. *PLoS Biol.* 9, e1000588. doi:10.1371/journal.pbio.1000588.
- Newell, P. D., Boyd, C. D., Sondermann, H., and O'Toole, G. A. (2011). A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. *PLoS Biol.* 9, e1000587. doi:10.1371/journal.pbio.1000587.
- NicAogáin, K., and O'Byrne, C. P. (2016). The role of stress and stress adaptations in determining the fate of the bacterial pathogen *Listeria monocytogenes* in the food chain. *Front. Microbiol.* 7. doi:10.3389/fmicb.2016.01865.
- Nolan, D. A., Chamblin, D. C., and Troller, J. A. (1992). Minimal water activity levels for growth and survival of *Listeria monocytogenes* and Listeria innocua. *Int. J. Food Microbiol.* 16, 323–335.
- Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., et al. (2015). Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* 31, 3691–3693. doi:10.1093/bioinformatics/btv421.
- Painset, A., Björkman, J. T., Kiil, K., Guillier, L., Mariet, J.-F., Félix, B., et al. (2019). LiSEQ whole-genome sequencing of a cross-sectional survey of *Listeria monocytogenes* in ready-to-eat foods and human clinical cases in Europe. *Microb. Genomics* 5. doi:10.1099/mgen.0.000257.
- Pan, Y., Breidt, F., and Gorski, L. (2010). Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by *Listeria monocytogenes* serotype 1/2a and 4b strains. *Appl. Environ. Microbiol.* 76, 1433–1441. doi:10.1128/AEM.02185-09.

- Pérez-Rodríguez, F., Valero, A., Carrasco, E., García, R. M., and Zurera, G. (2008). Understanding and modelling bacterial transfer to foods: a review. *Trends Food Sci. Technol.* 19, 131–144. doi:10.1016/j.tifs.2007.08.003.
- Piercey, M. J., Hingston, P. A., and Truelstrup Hansen, L. (2016). Genes involved in *Listeria* monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C. *Int. J. Food Microbiol.* 223, 63–74. doi:10.1016/j.ijfoodmicro.2016.02.009.
- Popowska, M., Krawczyk-Balska, A., Ostrowski, R., and Desvaux, M. (2017). InIL from *Listeria monocytogenes* is involved in biofilm formation and adhesion to mucin. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.00660.
- Prakash, S., and Tirumalai, P. S. (2012). Time-dependent gene expression pattern of *Listeria* monocytogenes J0161 in biofilms. *Adv. Genomics Genet.* 2, 1–18. doi:10.2147/AGG.S26335.
- Ragon, M., Wirth, T., Hollandt, F., Lavenir, R., Lecuit, M., Monnier, A. L., et al. (2008). A new perspective on *Listeria monocytogenes* evolution. *PLOS Pathog.* 4, e1000146. doi:10.1371/journal.ppat.1000146.
- Renner, L. D., and Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. *MRS Bull. Mater. Res. Soc.* 36, 347–355. doi:10.1557/mrs.2011.65.
- Rodrigues, D. A., Almeida, M. A., Teixeira, P. A., Oliveira, R. T., and Azeredo, J. C. (2009). Effect of batch and fed-batch growth modes on biofilm formation by *Listeria monocytogenes* at different temperatures. *Curr. Microbiol.* 59, 457–462. doi:10.1007/s00284-009-9460-5.
- Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30, 2068–2069. doi:10.1093/bioinformatics/btu153.
- Shabala, L., Lee, S. H., Cannesson, P., and Ross, T. (2008). Acid and NaCl limits to growth of *Listeria* monocytogenes and influence of sequence of inimical acid and NaCl levels on inactivation kinetics. J. Food Prot. 71, 1169–1177.
- Sheppard, S. K., Didelot, X., Meric, G., Torralbo, A., Jolley, K. A., Kelly, D. J., et al. (2013). Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. *Proc. Natl. Acad. Sci. U. S. A.* 110, 11923–11927. doi:10.1073/pnas.1305559110.
- Sleator, R. D., Gahan, C. G. M., and Hill, C. (2003). A postgenomic appraisal of osmotolerance in *Listeria* monocytogenes. Appl. Environ. Microbiol. 69, 1–9. doi:10.1128/AEM.69.1.1-9.2003.
- Sleator, R. D., and Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. *FEMS Microbiol. Rev.* 26, 49–71. doi:10.1111/j.1574-6976.2002.tb00598.x.
- Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30, 1312–1313. doi:10.1093/bioinformatics/btu033.

- Stanley, N. R., Britton, R. A., Grossman, A. D., and Lazazzera, B. A. (2003). Identification of catabolite repression as a physiological regulator of biofilm formation by *Bacillus subtilis* by use of DNA microarrays. J. Bacteriol. 185, 1951–1957. doi:10.1128/JB.185.6.1951-1957.2003.
- Stessl, B., Rückerl, I., and Wagner, M. (2014). Multilocus sequence typing (MLST) of *Listeria* monocytogenes. Methods Mol. Biol. Clifton NJ 1157, 73–83. doi:10.1007/978-1-4939-0703-8_6.
- Takahashi, T., Tadokoro, I., and Adachi, S. (1981). An L-form of Staphylococcus aureus adapted to a brain heart infusion medium without osmotic stabilizers. *Microbiol. Immunol.* 25, 871–886.
- Valentini, M., and Filloux, A. (2016). Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from *Pseudomonas aeruginosa* and Other Bacteria. *J. Biol. Chem.* 291, 12547–12555. doi:10.1074/jbc.R115.711507.
- Vivant, A.-L., Garmyn, D., and Piveteau, P. (2013). *Listeria monocytogenes*, a down-to-earth pathogen. *Front. Cell. Infect. Microbiol.* 3. doi:10.3389/fcimb.2013.00087.
- Welshimer, H. J., and Donker-Voet, J. (1971). *Listeria monocytogenes* in nature. *Appl. Microbiol.* 21, 516–519.
- Yamamoto, R., Noiri, Y., Yamaguchi, M., Asahi, Y., Maezono, H., and Ebisu, S. (2011). Time course of gene expression during *Porphyromonas gingivalis* strain ATCC 33277 biofilm formation. *Appl. Environ. Microbiol.* 77, 6733–6736. doi:10.1128/AEM.00746-11.
- Yong, O., Jing, L., Yuqing, D., Lauren V., B., and Min, C. (2012). Genome-wide screening of genes required for *Listeria monocytogenes* biofilm formation. *J. Biotech Res.* 4, 13–25.
- Zameer, F., Gopal, S., Krohne, G., and Kreft, J. (2010). Development of a biofilm model for *Listeria* monocytogenes EGD-e. World J. Microbiol. Biotechnol. 26, 1143–1147. doi:10.1007/s11274-009-0271-4

Supplementary materials for this article can be found at the end of the thesis.

Chapter V

Exploring Listeria monocytogenes transcriptomes in correlation with divergence of lineages and virulence measured in Galleria mellonella

I Preface

L. monocytogenes is a causative agent for listeriosis which affects the most vulnerable groups such as pregnant women and senior population with a high fatality rate (EFSA and ECDC, 2018; Schuchat et al., 1991). However, apart from the host susceptibility, intraspecific variation in virulence potential has been evidenced which contributes largely to the development of *L. monocytogenes* infection. Accumulated epidemiological data clearly demonstrate the difference in virulence potential between major phylogenetic lineage I and II which reflect the difference observed at serological level: serotype 4b strains of lineage I are more virulent (Orsi et al., 2011; Ward et al., 2008). Recent studies further disclosed the variation in virulent potential among certain subtypes of strains, namely MLST-derived clonal complexes (Maury et al., 2016 and 2017). This distinct imbalance of virulence phenotype between *L. monocytogenes* isolates have led to ample findings of virulence factors and virulence-associated genetic contents (Glaser et al., 2001; Radoshevich and Cossart, 2018). Furthermore, complex regulatory networks modulate the genes expression upon transition from saprophytic to intracellular lifestyle and *vice versa* (Chapter I.5.4 Virulence factors and their regulation).

A few studies revealed differential basal transcript patterns of conserved genomic elements between pathogenic and non-pathogenic strains implying that the fine-tuning of the transcriptional network may play a significant role in determining virulence (Severino et al., 2007; Wurtzel et al., 2012; Couto et al., 2016; Biller et al., 2010). To investigate the whole transcriptome profiles of *L. monocytogenes* from various aspects, the current study included 33 isolates with diverse characteristics and their transcript levels under optimal *in vitro* culture condition were analysed. Firstly, we described in detail the analytical approaches applied to

refine the datasets in order to remove experimental noise and improve statistical power. The results showed that basal transcript levels were highly heterogenous but arranged to some extent by transcriptional factors such as σ B, PrfA, and CodY which play important roles in virulence regulation. Secondly, using the refined large transcriptomes, we performed correlation analyses with respect to phylogenetic division, virulence-associated genotypes as well as *in vivo* virulence level measured in *G. mellonella*. The results revealed that transcript patterns support the evolutionary divergence of the isolates as well as the epidemiological evidence of virulence potential. Furthermore, the study was a pioneer in that it attempted to correlate the basal transcriptome profiles with large-scale *in vivo* study. We hope that this study will serve as guidance for future investigations that will integrate more concrete epidemiological and experimental data with other omics approaches in order to unveil the *L. monocytogenes* physiology including virulence.

II Article

Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence Measured in Galleria mellonella

Bo-Hyung Lee, Dominique Garmyn, Laurent Gal, Cyprien Guérin, Laurent Guillier, Alain Rico, Björn Rotter, Pierre Nicolas* and Pascal Piveteau*

Exploring *Listeria monocytogenes* transcriptomes in correlation with divergence of lineages and virulence measured in *Galleria mellonella*

Bo-Hyung Lee^{1,6}, Dominique Garmyn², Laurent Gal², Cyprien Guérin³, Laurent Guillier⁴, Alain Rico⁵, Björn Rotter⁶, Pierre Nicolas^{*3} and Pascal Piveteau^{*2}

*: co-correspondence, equal contribution

1. Université Clermont Auvergne, École Doctorale des Sciences de la Vie, Santé, Agronomie, Environnement, Clermont-Ferrand, France

2. Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France

3. MalAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France

4. French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Maisons-Alfort, France

5. Thermo Fisher Scientific, Villebon-sur-Yvette, France

6. GenXPro GmbH, 60438 Frankfurt am Main, Germany

Abstract

As for many opportunistic pathogens, virulence potential of *Listeria monocytogenes* has been reported to be highly heterogeneous between isolates and correlated, to some extent, with phylogeny and gene repertoires. In sharp contrast with copious data on intraspecies genome diversity, little is known about transcriptome diversity despite the role of complex genetic regulations in pathogenicity. The current study employed RNA sequencing to characterize the transcriptome profiles of 33 isolates under an optimal *in vitro* growth condition. Transcript levels of conserved single copy genes were comprehensively explored from several perspectives including phylogeny, in silico virulence category based on epidemiological MLST data, and virulence phenotype measured in *Galleria mellonella*. Comparison of baseline transcriptomes between isolates proved intrinsically more complex than genome comparison because of inherent plasticity of gene expression in response to the environmental conditions. We show that the relevance of correlation analyses and their statistical power can be enhanced by using Principal Component Analysis to remove a first level of irrelevant, highly coordinated changes linked to growth phase. Our results highlight the contribution of transcriptomes. Divergence

in the basal transcript levels of a substantial fraction of the transcriptome was observed between lineage I and II echoing previously reported epidemiological differences. Correlation analysis with *in vivo* virulence identified numerous sugar metabolism-related genes suggesting pathways that might play roles in the onset of infection in *G. mellonella*.

Importance

Listeria monocytogenes is a multifaceted bacterium able to proliferate in a wide range of environments from soil to mammalian host cells. The accumulated genomic data underscores the contribution of intraspecies variation in gene repertoire to differential adaptation strategies between strains, including infection and stress resistance. It seems very likely that the fine-tuning of the transcriptional regulatory network is also a key component of the phenotypic diversity, albeit more difficult to investigate than genome content. Some studies reported incongruity in basal transcriptome between isolates suggesting a putative relationship with phenotypes, but small isolate numbers hampered proper correlation analyses with respect to their characteristics. The present study is the embodiment of the promising approach that consists in analysing correlations between transcriptomes and various isolate characteristics. Statistically significant correlations were found with phylogenetic groups, epidemiological evidence of virulence potential, and virulence in *Galleria mellonella* larvae used as an *in vivo* model.

1. Introduction

The genus Listeria currently groups 20 species among which L. monocytogenes and L. ivanovii are considered pathogenic (Leclercq et al., 2019; Orsi and Wiedmann, 2016). L. monocytogenes is found in a wide range of habitats including soil, vegetation, water, and food processing environments and as a facultative intracellular pathogen in mammal and nonmammal hosts (Sauders et al., 2012; Vivant et al., 2013). This bacterium also stands as an important model to study host-pathogen interactions (Radoshevich and Cossart, 2018). In humans, L. monocytogenes is the causative agent of listeriosis, a foodborne disease resulting from ingestion of contaminated food products, especially ready-to-eat foods (Buchanan et al., 2017). Symptoms of listeriosis range from febrile gastroenteritis, if any, in healthy people to meningoencephalitis, and septicaemia with meningitis, high fatality rate in immunocompromised individuals. In pregnant women, perinatal infections can lead to miscarriage, stillbirth or premature birth (Charlier et al., 2017).

Isolates of *L. monocytogenes* are grouped in four phylogenetic lineages. Most isolates belong to lineage I (serotypes 4b, 1/2b, 3b, 4d, 4e, and 7) and lineage II (serotypes 1/2a, 1/2c, 3a and 3c) while lineages III and IV (serotypes 4a, 4c, and 4b) appear to be smaller groups. Overrepresentation of serotypes 1/2a, 1/2b, 1/2c, and 4b is observed from food and clinical isolates among which serotype 4b accounts for the majority of human listeriosis (Orsi et al., 2011; Ward et al., 2008). Additionally, Multilocus sequence typing (MLST) unravelled clonal structure (Ragon et al., 2008) and uneven distribution of clonal complexes (CCs) between clinical and food isolates in which hyper- and hypovirulent clones were further identified (Maury et al., 2016; Painset et al., 2019). The onset of infection relies on expression of virulence factors (Glaser et al., 2001), many of which are clustered in the *Listeria* pathogenicity islands (LIPIs), whose distribution is phylogenetically distinctive (Clayton et al., 2014; Maury et al., 2016; Vázquez-Boland et al., 2001).

In parallel to genome diversity studies, transcriptome profiling evidenced global transcriptional reshaping during infection and a large set of virulence-associated genes were identified (Camejo et al., 2009; Toledo-Arana et al., 2009). A complex network of transcription factors tightly coordinate virulence-related genes expression. PrfA, the master activator of virulence factors, the alternative sigma factor B (σ^{B}), the major regulator of stress responses, AgrA, the response regulator of the Agr system, and several non-coding RNAs are part of this regulatory network (Autret et al., 2003; Kazmierczak et al., 2003; Lebreton and Cossart, 2016; Nadon et al., 2002).

Importantly, several studies reported differential expression of conserved genes between pathogenic versus non-pathogenic isolates (Wurtzel et al., 2012; Severino et al., 2007; Couto

et al., 2016; Biller et al., 2010) which could reflect the contribution of the regulatory network to fine-tuning gene expression of virulent isolates straight after ingestion and in the gastrointestinal tract, therefore maximising their fitness in the host system (Gahan and Hill, 2014). However, as most studies were restricted to a limited number of strains, the weight of intraspecific diversity tended thus to be overlooked. To overcome this limitation, a collection of 91 phylogenetically divergent isolates from diverse origins were processed in *G. mellonella* virulence assay in order to compare their virulence potential. A subset of 33 isolates was then analysed by high-throughput RNA sequencing (RNA-seq) to explore transcriptome heterogeneity according to phylogenetic distance and virulence potential.

2. Material and Methods

2.1. Isolates collection and culture condition

A collection of 91 *L. monocytogenes* isolates from various origins, serogroups and genotypes were used in the current study (Table 1) (Henri et al., 2016; Olier et al., 2003). Each experiment was performed with freshly prepared cultures from a stock kept at -80°C in Brain Heart Infusion (BHI) broth (AES laboratoire, France) with 8.5% glycerol (Sigma-Aldrich, France). After overnight incubation on BHI agar (AES laboratoire, France) at 37°C, few colonies were suspended into BHI broth and grown overnight at 37°C. Consecutive subculture (16 h, 37°C) was performed to prepare stationary phase cells (mother culture) for infection. Cells were centrifuged (5,000 g, 5 min, room temperature) and pellets were washed twice with PBS. Washed cells were suspended in PBS and calibrated to obtain an optical density at 600 nm of 0.1. Part of the suspension was used for enumeration by serial dilutions in PBS and plating onto BHI agar to retrospectively determine the bacterial counts used for injection. Colony forming units (CFU) were counted after overnight incubation at 37°C.

2.2 Whole genome sequencing and Phylogenetic analysis

The genome of 15 isolates had been sequenced in a previous study (Henri et al., 2016). The paired-end reads of the strains used in the study are available under the ENA bio-projects as follows; PRJEB15592 (https://www.ebi.ac.uk/ena/data/view/PRJEB15592) and PRJEB32254 (http://www.ebi.ac.uk/ena/data/view/PRJEB32254).

We sequenced additional isolates for phylogenetic analysis. Genomic DNA was isolated from exponential cells harvested by centrifugation at 5,000g for 10 mins. Cells were washed twice with TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA in nuclease free water). Pelleted cells were resuspended in TE buffer and cell walls were disrupted by sonication using Bioruptor[®] (Diagenode). The cells were sonicated for 56 cycles of 30 s on and 30 s off at low frequency at 4°C with several spin-downs at intervals. Fragmented DNA was purified using Nucleospin[®] PCR cleanup kit (Macherey-Nagel) and its quality and size were confirmed on Labchip GX II bioanalyzer. End repair was performed followed by ligation of adapters (Illumina) and the final product was purified using MagSi-NGSPrep Plus (AmsBio). Concentration of each library was measured using Qubit[™] dsDNA HS Assay (Thermo Fisher Scientific) and pooled libraries were subjected to additional purification using MagSi-NGSPrep Plus. Sequencing was carried out on the Illumina NextSeq 500 platform (single-end, 1 X 75 bp per read). After quality control and trimming, *de novo* gene assembly was performed using SPAdes (Bankevich et al., 2012) for each genome library.

The 2,867 CDSs annotated in EGDe (GenBank accession No. NC_003210, length 2,944,528 bp) were mapped on the 33 assembled genomes to retrieve their pattern of presence/absence as well as all their allelic variants. For this purpose, we used "tblastn" version 2.6.0+ with options '-task tblastn -evalue 1e-10 -seg no' (Camacho et al., 2009) and cut-offs corresponding to 80% identity at the amino-acid sequence and minimum coverage of 80% of the query. This procedure identified a total of 2,456 conserved single copy genes whose amino-acid sequences were subjected to separate multiple sequence alignments using "muscle" version v3.8.31 with default parameters (Edgar, 2004). Custom Perl scripts were used for conversion to nucleotide sequences, concatenation, and gap removing. The resulting alignment of 2,241,553 bp containing 167,253 SNPs served for phylogenetic tree reconstruction using "Phyml" version 20120412 with default parameters (Guindon and Gascuel, 2003).

2.3. Galleria mellonella injection and virulence assay

G. mellonella larvae in their final instar stage were used (Sud Est Appats Sarl, Queige, France). Each larva was injected with 10 μ l (app. 1.6 X 10⁶ CFU) directly to the larval hemocoel via the last left proleg using ultra-fine (29 gauge) needle insulin syringes. Ten larvae were injected per isolate. After injection, larvae were incubated at 37°C and monitored for survival at daily intervals post-infection up to day 5. Larvae showing no movement in response to external stimuli such as shaking of the Petri dish and touching with a pipette tip were considered dead and the time necessary to kill more than or equal to 50% of larvae (LT50) was recorded. Every trial included 10 larvae injected with PBS as negative control in order to confirm their viability. Any experiment which resulted in more than 20% mortality in control larvae were excluded. Assays were repeated at least three times.

2.4. RNA extraction and DNase I treatment

Mother cultures (see above) were inoculated into fresh BHI broth and grown at 37°C for 5-6 h to reach exponential phase. RNAprotect (Qiagen) was immediately added and cultures were vortexed followed by incubation at room temperature for 5 min. The mixtures were pelleted by centrifugation (5,000g, 10 min, room temperature) and pellets were suspended in 5M Guanidine thiocyanate (Roth) lysis buffer with 10 μ l/ml 2-Mercaptoethanol (Sigma-Aldrich). To lyse cell walls, 0.5mm glass beads (Roth) were added and bacterial cells were homogenized using Tissulyser (Qiagen) at a frequency of 30⁻¹ for 6 min. After centrifugation (16,000g, 30 s, room temperature) supernatants were collected and RNA was purified using column-based RNA Clean & Concentrator-5 kit (Zymo Research). Quality of extracted RNA was assessed using Labchip GX II bioanalyzer (Perkin Elmer). To remove DNA contamination, total RNA was incubated with Baseline-Zero DNase (Epicentre) in the presence of RiboLock RNase inhibitor (40U/ μ l) (Thermo Fisher Scientific) for 30 min at 37°C followed by purification using RNA Clean

& Concentrator-5 kit. RNA concentration was measured using fluorescence-based Qubit[™] RNA HS Assay (Thermo Fisher Scientific).

2.5. Library preparation and sequencing

To enrich mRNA and remove ribosomal RNA (rRNA), total RNA was treated with Ribo-Zero rRNA removal kit (Illumina). Briefly, beads were washed twice and hybridized with probes at 68°C for 10 min. Five hundred ng of total RNA was added to the mixture and incubated at RT and 50°C for 5 min each. rRNA bound to the beads was separated from mRNA using a magnetic stand. Enriched mRNA was then purified with RNA Clean & Concentrator-5 kit and rRNA depletion was confirmed on Labchip GX II bioanalyzer (Perkin Elmer).

Preparation of cDNA fragment libraries was performed using the NEBNext[®] Ultra[™] II Directional RNA Library Prep Kit for Illumina[®] (Illumina) with slight modifications. Briefly, the enriched mRNA was fragmented for 15 min at 94°C and reverse transcribed to synthesize the first-strand cDNA followed by second strand cDNA synthesis. Double-stranded cDNA (ds cDNA) was purified using NucleoMag (Macherey nagel) SPRI selection. End repair was performed on the ds cDNA library followed by ligation of adapters. High fidelity PCR was performed using KAPA Hifi polymerase (Kapa Biosystems) and NEBNext Multiplex Oligos for Illumina (Dual Index Primers) to selectively enrich library fragments. The PCR products were purified twice using NucleoMag SPRI beads and the quality of the final library was assessed on Labchip GX II bioanalyzer. Indexed and purified libraries were sequenced on Illumina NextSeq 500 platform (paired-end, 2 X 75 bp per read).

2.6. Exploratory transcriptomic analysis

RNA-seq was performed in duplicate on a collection of 33 isolates with independently grown bacterial cells. Sequencing quality was assessed using FastQC, and Illumina adapter sequences and some low-quality base pairs were removed using "cutadapt" version 1.9 (Martin, 2011). Reads were further trimmed in 3' using "sickle" program version 1.33 with option -x and default values for all other parameters (implying Phred quality cut-off of 20). The cleaned reads were then mapped against the whole repertoire of allelic variants for the 2,867 CDSs annotated in EGDe found in the 33 genomes using "bowtie2" version 2.2.6 (Langmead and Salzberg, 2012) with options '-N 1 -L 16 -R 4' and converted to bam format using "samtools" version 1.9 (Li et al., 2009). Read counts on each allelic variant were obtained using "htseq-count" version 0.10.0 (Anders et al., 2015) with options '-s reverse --nonunique all -a 1'. Read counts associated with all allelic variants were summed up to obtain a single read count per gene per sample. Importantly, "bowtie2" as used here mapped each read on a single allelic variant ensuring that each read could not be counted more than once and "htseq-count"

options allowed to retrieve the reads that mapped equally well on several sequences as expected given the redundancy of the repertoire of allelic variants.

All subsequent analyses and graphical representations were conducted with R. Read counts were normalized with the function "estimateSizeFactors" provided in the R package "DESeq2" (Love et al., 2014) version 1.20.0 based on the behaviour of the 2,456 conserved single copy genes (option 'controlGenes') and expressed as rpkm (reads per kilo base per million mapped reads) using as library size the median number of reads aligned on conserved single copy genes. Expression levels were converted to log2-scale after adding a pseudo-count of 10 which corresponded approximately to the 10% quantile of rpkm values obtained for the conserved single copy genes. The RNA-seq datasets generated for this study can be found in the Gene Expression Omnibus GSE129537.

Principal Component Analysis (PCA) used function "prcomp" in R package "stats" on centered but non-scaled variables corresponding to the expression values in log2-scale, i.e. log2 (rpkm+10). Hierarchical clustering analyses were performed with function "hclust" in R package "stats" using average link aggregation method based on Pearson distance (1-r where r is the pairwise correlation coefficient). Pearson and Spearman's rank correlation coefficients (denoted r and ρ , respectively) as well as the p-values associated to the PCs presented in Fig. 5B and C were obtained with function "cor" in R. Heatmaps were drawn with function "heatmap.2" provided by R package "gplots". Quantiles corresponding to the values of ρ under the null hypothesis of no statistical association between transcript levels and isolate characteristics (lineage, Maury's classification of genotypes, and LT50) were obtained by 25,000 random permutations of isolate labels that preserved the correlation between biological replicates. Quantiles were converted to p-values of a two-sided test designed to reject the null hypothesis of random association by applying the transformation 1-2|x-0.5|. These p-values served to estimate false discovery rates (q-values) using R function "fdrtool" version 1.2.15 (Strimmer, 2008b).

The functional classification was downloaded from ListiList (http://genolist.pasteur.fr/ListiList/) which consists of 43 functional categories including 3 non-informative classes (unknown protein functions) for genes found in *L. monocytogenes* EGDe.

3.Result

3.1. Intraspecific virulence phenotype monitored in the G. mellonella virulence assay

The virulence of a collection of 91 isolates was assessed using *G. mellonella* virulence assay. To verify the relevance of the protocol, the bacterial loads used for assays of 63 isolates were compared. CFUs ranged from a minimum of 0.70×10^6 to a maximum of 2.37×10^6 with mean value 1.53×10^6 and standard deviation 0.35×10^6 . Grubb's test identified no outlier and D'Agostino-Pearson omnibus normality test did not reject normality (k2=0.711, p = 0.701) suggesting that the number of injected bacteria was comparable between isolates. Survival of larvae post-infection was monitored daily and the time (day) needed to kill more than 50% of the insects (LT50) was calculated. All isolates were capable of killing larvae but their observed LT50 varied greatly (Fig. 1). While1 isolate killed more than 50% of larvae within the first 24 h post-infection (LT50 of 1), 8 isolates did not reach 50% death by 5 days post-infection (LT50 > 5, encoded as 6). A majority of isolates (72.4%) showed LT50s of 2 to 3 days (37 and 28 isolates, respectively). The rest showed LT50s of 4 and 5 days (8 and 9 isolates, respectively).

The 89 isolates with known lineage were grouped according to their LT50 (Table 1). No significance (Fisher's exact test, p = 0.93) was observed implying no association between lineage and LT50 measured in *G. mellonella*. Similarly, no relation was found (p = 0.83) between LT50 values and epidemiological backgrounds (clinical, faecal or food-related samples).

A sub-collection of 33 isolates was selected to explore the diversity of transcriptomes of *L. monocytogenes* with respect to three isolates' classifications: lineage II versus lineage I, LT50 measured in *G. mellonella*, and CC-based virulence level. The latter, hereafter referred to as Maury's classification, establishes 3 CC-based virulence groups (hypo-virulent, intermediate or unknown, and hyper-virulent) based on a comprehensive analysis of population clonal structure in relation to isolates' origin and further *in vivo* assay confirmation (Maury et al, 2016). Figure 2 shows the 3 classifications superimposed onto a phylogenetic tree reconstructed after complete genome comparison of the 33 isolates. This representation highlights the tight connection between Maury's classification and lineage since all genotypes of hypervirulence (CC1, CC2, CC4 and CC6) were closely distributed in lineage I while those of hypovirulence (CC9 and CC121) were grouped in lineage II.

3.2. Exploratory analysis of RNA expression

3.2.1. Global variations in transcript expression and PCA analysis

A total of 66 transcriptome profiles were obtained from duplicated exponential cultures of 33 isolates grown at 37°C. Transcript levels of 2,456 conserved single copy genes demonstrated large variations across samples which delineated groups of genes with highly correlated expression profiles (left dendrogram in Fig. 3A). Intriguingly, transcriptome profiles were not always consistent between duplicates suggesting sources of variability that may complicate comparisons between isolates. To further investigate the patterns of variations, PCA was applied to project the 66 transcriptomes, each characterized by the levels of 2,456 transcripts, onto spaces of smaller dimensions. It revealed that coordinates of the samples on a single axis (the first of the PCA, hereafter referred to as PC1) was able to explain 48.4% of the total variance. Figure 3 shows that PC1 identified the existence of a continuum of transcriptome profiles that was not directly connected to the isolates' characteristics.

To understand the source of this heterogeneity, the genes which contributed the most to PC1 were checked for their functional category. Loading values for PC1 were calculated for each gene and 100 genes positioned at both extreme positive and negative ends of PC1 were examined for the distribution of functional categories (Fig. 4). Functions involved in exponential growth (e.g. 'Cell division', 'RNA synthesis' and 'Protein synthesis') were negatively linked with position on PC1. On the other hand, functions related to the transition to stationary phase were positively linked with position on PC1 (e.g. 'Intermediary metabolism', 'Adaptation to atypical conditions' and 'Detoxification'). In sum, PC1 represented transcriptome differences caused by transition from exponential to early stationary phase.

PC2 explained 11.2% of the total variance and other axes explained less than 10% fraction of variance. In total, 89.2% of variance were explained by 15 axes (Fig. 5A). Correlation analyses were performed to identify the contextual variables captured by the different PCs underlying heterogeneity. The coordinates of the two biological replicates (BR1 and BR2) were more consistent for some PCs than for others as reflected in the variation of the Pearson correlation coefficient (r) computed between the vectors of 33 coordinates available for each biological replicate (Fig. 5B). In particular, coordinates on PC2 exhibited little correlation between the two biological replicates (r=0.17) whereas the highest level of correlation was reached for PC3 (r=0.88). Computation of Spearman's rank correlation coefficient (ρ) served as a generic approach to assess relationships between coordinates on each PC and ordinal (LT50, Maury's classification) or binary (lineage, BR) covariates (Fig. 5C). Among the PCs, coordinates on PC3 and PC5 revealed the highest correlations with *in vivo* virulence (LT50) (ρ =0.26 and ρ =0.33, respectively). Concomitantly, Maury's classification of the genotypes exhibited positive correlations with PC1 (ρ =0.33) and PC5 (ρ =0.39), reflecting a trend for higher coordinates on these axes for samples corresponding to hypervirulent genotypes, and negative correlation

with PC4 (ρ =-0.47). The exact opposite pattern was observed with respect to the division between lineages I and II: PC1 (ρ =-0.31) and PC5 (ρ =-0.76) exhibited negative correlations reflecting a trend for lower coordinates for samples corresponding to lineage II, whereas PC4 exhibited positive correlation (ρ =0.46). This result was expected because of the aforementioned exclusive distribution of hyper- and hypovirulence genotypes in lineage I and II, respectively. Furthermore, in conjunction with the lower correlation between the coordinates of two biological replicates on PC2, it showed that PC2 tended to separate the two biological replicates (ρ =0.65), with a trend for higher coordinates for samples corresponding to the BR2.

Dissimilarity between BRs was further investigated by analysing the new transcriptome datasets generated by removing the variations captured by preceding PCs (Fig. 5D). The result revealed that jointly filtering out the variations captured by PC1 (reflecting transition of growth phases) and by PC2 (reflecting a difference between the two BRs) globally decreased the distance between the two transcriptome profiles (BRs) available for each isolate.

3.2.2. Construction of a new dataset with improved statistical power

Because large variations in transcriptome profiles related to transition of growth phase and systematic differences between BRs can mask more subtle variations associated with the characteristics of the isolates, a refined transcriptome dataset was generated by filtering out variations captured by PC1 and PC2 from the original dataset. Technically, this dataset consisted in the residuals of the PCA projection on the subspace formed by PC1 and PC2. This processing step increased reproducibility of the transcriptome profiles between biological replicates (Fig. 6A) as predicted by the Pearson correlation analysis (Fig. 5C). We also confirmed that it increased significantly the statistical power of some correlation analyses between transcript levels of individual genes and phenotypic values such as LT50 (Fig. 7). Namely, we examined the distribution of Spearman's rank correlation between each individual gene (i) and each of the three isolates characteristics (LT50, Maury's classification, and lineage number), denoted by c. This was done in terms of quantiles corresponding to the values of $\rho_{i,c}$ under the null hypothesis of no statistical association between transcript levels and covariate values such that departure from the uniform distribution is the landmark of the presence of statistically significant associations and can be directly used to estimate false discovery rates as summarized in q-values (Strimmer, 2008a). While no statistical association between gene and LT50 was found with the original data (lowest q-value 0.18; Supplementary Table 4), 25 genes were attributed q-values below 0.10 based on the new dataset. Not surprisingly given the correlation between PC1 (growth phase) and the two other characteristics (Maury's classification of genotypes and lineage number), filtering out the variations captured by PC1 and PC2 slightly decreased the number of statistically associations. However, we reasoned that statistical association between growth phase and Maury's classification (more advanced for hypervirulent genotypes) and lineage (less advanced for lineage II) could still be considered a confounding factor when pinpointing out associations between them and individual genes which also justifies to work with the new dataset. In sum, removing variations captured by PC1 and PC2 reduced protocol-driven noise and thereby increased statistical significance and biological relevance of correlations.

3.2.3. Comparison to known regulons

Genes were clustered according to the similarity in expression patterns based on the refined dataset (left dendrogram in Fig. 6A). Clusters of highly correlated genes (defined by average pairwise Pearson correlation greater than 0.6) were numbered according to their sizes. Summarizing for each gene the level of variability by the maximum log2-fold change between any pair of samples pinpointed 12 main clusters of genes with highly variable transcription levels (Fig 6B and Supplementary Table 4). Each of these clusters, contained at least 8 genes, half of these genes with maximum log2-fold change higher than 4. Taken together, they encompassed 11.5% (283 genes) of the core genome: 101 genes in cluster 1; 48 genes in cluster 3, 26 genes in cluster 4, and from 17 to 8 genes in the remaining clusters. The genecontent of these 12 clusters were investigated in details since they reflected the main components of transcriptome plasticity. Clustered genes were compared to previous knowledge of the regulation of 32 transcription factors in order to scrutinize the regulatory networks. Regulons of 8 transcription factors including 4 Sigma factors (Chaturongakul et al., 2011; Palmer et al., 2011), CtsR (Hu et al., 2007), CodY (Bennett et al., 2007), VirR (Mandin et al., 2005), and PrfA (Scortti et al., 2007) were collected from the literature and regulons of the 24 phylogenetically conserved transcription factors were retrieved from RegPrecise database http://regprecise.lbl.gov/RegPrecise/genome.jsp?genome_id=210). Potentially σ^{B} (34, regulated genes accounted for 86% of cluster 1 and 88% of cluster 4 which is consistent with the proximity of the two clusters in the hierarchical clustering tree (left dendrogram in Fig. 6A). At distance in the tree, cluster 30 and 45 also included 67% and 50% of genes previously linked to σ^{B} . In sum, 8 clusters contained 41% (130 genes) of the core genome genes previously reported as probable members of the σ^{B} regulon. Clusters 14, 45, 3, and 30 were dispersed throughout the tree and included 54%, 50%, 35%, and 22% of genes previously reported as regulated by CodY, respectively. Altogether, they accounted for 42% (30 genes) of the genes previously associated with CodY regulon. In cluster 26, 70% of the genes were probable members of the ArgR regulon which accounted for the whole list of genes linked to this transcription factor. Concurrently, 6 core PrfA virulon (plcB, actA, mpl, hly, pclA, and inlC) accounted for 75% of the genes of cluster 41 (Scortti et al., 2007). Log2 transcript levels of these core PrfA virulon genes are represented in Supplementary Figure 1. In total, taking into account other PrfA-regulated genes sparsely located in clusters 1, 4, and 7, 40% of the genes linked to PrfA were detected after clustering. Finally, 52 genes previously identified as virulence-related (Wurtzel et al., 2012) were highlighted in the heatmap (Fig. 6A). Their dispersed position implies heterogeneous expression patterns among samples.

3.2.4. Correlation with phylogeny and virulence potential based on genotypes and phenotypes

The refined dataset was further exploited to delineate set of genes whose transcript levels was correlated with lineage, Maury's classification, and experimental virulence phenotype (LT50). The number of genes whose expression levels were highly correlated ($|\rho| \ge 0.4$) with each of these characteristics was computed (Table 2).

A total of 473 genes and 222 genes correlated to lineage and Maury's classification, respectively (Supplementary Table 2 and 3). Among the 111 genes positively correlated with Maury's classification (higher transcript levels in more virulent CCs), 77% were overlapped in the set of 261 genes negatively correlated with lineages (higher transcript levels in lineage I). Similarly, 80% of the 111 genes negatively correlated with Maury's classification were present in the set of 212 genes positively correlated with lineage. As mentioned earlier, this high congruency is ascribable to the exclusive distribution of the hyper- and hypovirulent genotypes in lineages I and II, respectively. Only 7 and 3 of the genes known to be linked with virulence in *L. monocytogenes* (Wurtzel et al., 2012) were identified in the sets of lineage- and Maury's classification-associated genes, respectively. Heatmap representation of the transcription levels of the set of genes that were the most correlated to lineage and Maury's classification were able to discriminate the two lineages and were able to group together the isolates with similar virulence potential according to Maury's classification (Fig. 8A).

The sets of lineage- and Maury's classification-correlated genes were further examined in light of the functional categories (Fig. 9). Due to the overlap between lineage and Maury's classification of genotypes, the two correlation analyses tended to reveal similar enrichment patterns with respect to functional categories. Transcripts showing increased expression in lineage II ($\rho \ge 0.4$) were enriched (more than 1-fold enrichment) in functional categories 'Transformation/competence' and 'DNA recombination'. Categories 'Sensors (signal transduction)', 'Metabolism of phosphate' and 'Detoxification' exhibited the same trend, albeit to a lesser extent. In contrast, transcripts showing increased expression in lineage I ($\rho \le$ -0.4) were enriched in functional categories 'Soluble internalin' and 'RNA modification'. Of note, the functional categories 'Protein modification' and 'Protein folding' were more than 1fold enriched in both analyses, however, they were more highly enriched in genes with increased expression in lineage I. Additionally, Hypervirulence ($\rho \ge 0.4$) was correlated to 'Protein secretion', 'Cell division', 'Metabolism of lipids', 'Metabolism of coenzymes and prosthetic groups', 'Metabolism of phosphate', 'DNA packaging and segregation', and 'Similar to unknown proteins from *Listeria* '. Categories 'Metabolism of amino acids and related molecules' and 'Protein folding' were associated with hypovirulence ($\rho \le -0.4$).

<u>3.2.5. Transcripts whose expressions are correlated with virulence level measured in G.</u> <u>mellonella</u>

Because higher LT50 means lower virulence, negative p indicates positive correlation between in vivo virulence and transcript level. A total of 56 genes were identified ($|\rho| \ge 0.4$) of which 39 with $\rho \ge 0.4$ and 17 with $\rho \le -0.4$ (Fig. 8B). None of these genes (Table 3) were previously reported as directly virulence-associated (Wurtzel et al., 2012). Total 14 genes belonged to 'Cell envelope and cellular processes', 11 to 'Intermediary metabolism', 3 genes in 'Information pathways', 2 genes in 'Other functions'. For 26 genes of unknown function ('Similar to unknown proteins', and 'No similarity or information not available') online HHpred suite was used to search for possibly remote homology to known protein structures (Zimmermann et al., 2018). Diverse functions were predicted such as carbohydrate transport and metabolism (Imo0635, Imo0879, and Imo2832), defence mechanisms (Imo0375 and Imo1963), lipid metabolism (Imo1862 and Imo1863), histidine triad protein (Imo2216), energy production (Imo1050), translation and posttranslational modification (Imo2078 and Imo2127), and permease (*Imo0831*). In addition, the 56 genes were compared to the list of virulence genes from PATRIC database (https://www.patricbrc.org/) and two potential virulence factors: Imo0763, a serine/threonine phosphatases (Schauer et al., 2010) and Imo0540, a penicillinbinding protein (Guinane et al., 2006) were identified. The heatmap representation (Fig. 8B) roughly split the samples conforming to the PCA result which highlighted that lineages and LT50 were both correlated to PC5 (Fig. 5C).

Among the 56 genes, 3 operon structures were identified based on the published operon map (17). Full operons 064 (*Imo0372*, *Imo0373*, and *Imo0374*) and 224 (*Imo1389*, *Imo1390*, and *Imo1391*) as well as 2 out of 6 genes in operon 330 (*Imo1858* to *Imo1863*) were found in the list. Moreover, among genes previously not identified in operon structure, 4 sets of genes at close loci displayed similar expression patterns across samples: *Imo0034* and *Imo0035*; *Imo1147* and *Imo1149*; *Imo2567* and *Imo2568*; *Imo2836*, *Imo2838* and *Imo2839*.

4. Discussion

To date, all *L. monocytogenes* isolates are considered to be equally virulent by regulatory agencies, which, however, is contradicted by accumulating evidence (Fritsch et al., 2018; Maury et al., 2016). Virulence of *L. monocytogenes* is determined by its capacity to circumvent innate host barriers such as microbiota (Rahman et al., 2018; Zhang et al., 2017) and its ability to hijack host cell functions during its intracellular life cycle (Cossart, 2011; Radoshevich and Cossart, 2018). Numerous virulence attributes were discovered during the last few decades. The 9-kb chromosomal pathogenicity island (LIPI1) contains prfA, plcA, hly, mpl, actA, and plcB encoding the key virulence factors required for intracellular lifestyle (Vázquez-Boland et al., 2001). The aforementioned master virulence regulator PrfA coordinates expression of a set of genes in LIPI1 and at other loci, such as bsh (Dussurget et al., 2002), inIC (Gouin et al., 2010), and *hpt* (Chico-Calero et al., 2002). Additional pathogenicity islands (Cotter et al., 2008; Maury et al., 2016), antibiotic resistance plasmids (Hadorn et al., 1993; Poyart-Salmeron et al., 1990) and an internalin-carrying plasmid (den Bakker et al., 2012) were reported as extra virulence determinants. Moreover, reports on the direct and indirect involvement of several small noncoding RNAs in pathogenesis have increased in the last decade (Bécavin et al., 2014; Cerutti et al., 2017; Lebreton and Cossart, 2016; Toledo-Arana et al., 2009).

A range of molecular markers were proposed to approximate virulence potential of *L. monocytogenes* isolates (Maury et al., 2017; Olier et al., 2003; Port and Freitag, 2007) on the basis of genomic analysis. As an example, detection of point mutations in *inlA* was tested to predict non-invasive isolates (Rousseaux et al., 2004). Similarly, multiplex PCR detecting *inlA*, *inlC*, and *inlJ* as biomarkers was proposed to assess virulence potential (Liu et al., 2007). However, because of the high degree of intraspecific genetic diversity and the complex mechanisms leading to infection in host, estimating virulence by analysing a discrete number of genes may yield unsatisfactory results (Olier et al., 2005; Roberts et al., 2009). Moreover, a recent study showing epistatic control of fosfomycin resistance by *prfA* and *hpt* during infection supports complex genotype-phenotype associations (Scortti et al., 2018).

Transcriptional reshaping is the cornerstone of the transition from saprophytism to infection (Toledo-Arana et al., 2009). Interestingly, evidence suggests that assessment of *in vitro* basal transcription of some bacterial pathogenes could be informative of their level of virulence. For example, transcriptional profiling of methicillin-resistant and -susceptible cultures of *Staphylococcus pseudintermedius* identified differentially expressed genes such as surface proteins, toxins, and prophage genes that might contribute to virulence (Couto et al., 2016). In the current study, we produced a comprehensive transcriptome dataset from which basal transcription patterns were analysed in multiple aspects. Since exponentially grown cells in

BHI at 37°C were reported to be the closest to *L. monocytogenes in vivo* (Camejo et al., 2009), total RNA was extracted under this laboratory condition. Part of the core transcriptome variations was explained by slight differences in growth stage at time of harvest. This variation was captured by PC1 (48.4%) that discriminated samples according to the transition from exponential to early stationary phase. Functional analysis revealed that while transcript levels of genes involved in protein synthesis reflected exponential phase, those involved in carbohydrate metabolism could be linked to transition to early stationary phase. Indeed, transition from glycolysis to gluconeogenesis was reported as the most important metabolic rearrangement at the end of exponential growth in various organisms (Shimizu, 2013). Further systematic experimental noise between BRs was captured by PC2. Exclusion of these variations improved correlations and increased robustness of the conclusions drawn between transcript levels and covariates. Even though PC1 showed significant correlations with some covariates (Maury's classification and lineage), the improved statistical power of correlation analyses supported the rationale for using the new dataset. This approach of using PCA to filter noise is reminiscent to its well-established use in genome-wide association studies to search for disease markers. In this context, PCA serves to overcome potentially confounding effects of population stratification from geographical attributes by allowing to adjust genotypes and phenotypes using the main axes of variations (Price et al., 2006, 2010).

The statistical treatment unveiled significant correlations between large sets of genes with phylogenetic divergence. Among the most prominent differences in functional analysis 'Transformation/competence' and 'DNA recombination' were overrepresented in lineage II isolates. It supports the current evolutionary history of L. monocytogenes characterized by higher recombination potential in lineage II than lineage I isolates which may have promoted successful adaptation of lineage II isolates to diverse environments (Orsi et al., 2011). In contrast, functions related to pathogenicity were overrepresented in lineage I isolates. For instance, 'Soluble internalin' was enriched only in lineage I and functions related to posttranslational modifications, namely 'Protein modification' and 'Protein folding', were enriched more in lineage I than II isolates by 1.7- and 2.8-fold, respectively. Posttranslational modification is one of the crucial strategies employed by pathogens to modify activity of virulence factors as well as to modulate host cell pathways to their benefit (Ribet and Cossart, 2010). A previous study using macroarray compared transcriptomes of 6 isolates (2 lineage II and 4 lineage I) during late-exponential growth in defined medium supplemented with 1% glucose (Severino et al., 2007). The lack of overlap with the genes identified in the present study may be ascribed to differences in the experimental design and in statistical approaches. Technical variations in obtaining the expression values may also have contributed to the differences. Indeed, the current study used RNA-seq while previous study relied on a noisier technology. Moreover, investigating a larger collection of isolates allowed here to better capture intraspecific diversity.

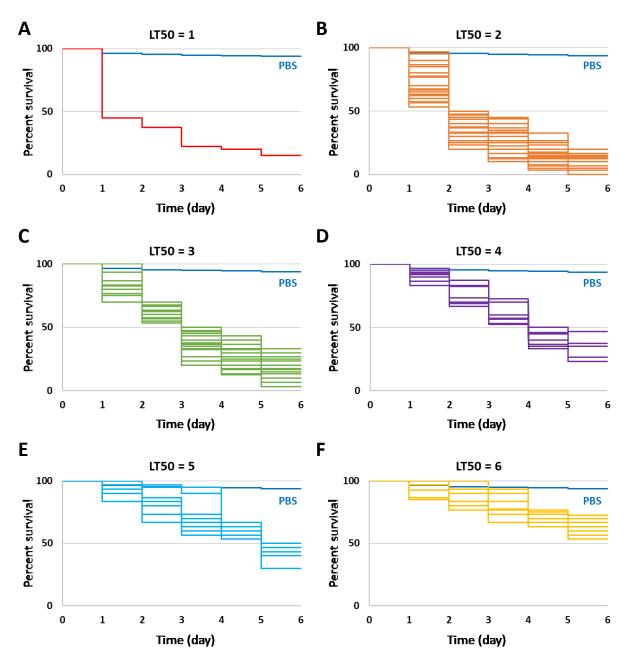
In spite of the high congruence between the set of transcripts correlated with lineage and Maury's classification of genotypes, functional analyses highlighted some differences. Genotype-specific features were mainly found in intermediary metabolisms: while 'Metabolism of lipids', 'Metabolism of coenzymes and prosthetic groups', and 'Metabolism of phosphate' were highly enriched in CC1, CC2, CC4 and CC6, 'Metabolism of amino acids and related molecules' was highly enriched in CC121 and CC9. It is tempting to suggest that these differences in basal metabolism may be linked to niche-specific adaptation strategies which led to the current distribution of these CCs from clinical and environmental sources.

In our data, isolates were clustered according to genes sharing similar transcription patterns. Interestingly, 64% of these clustered genes were found to belong to published lists of regulons, among which were the core PrfA virulon. Considering that the published lists that we analysed accounted for only 26% of the genes of *L. monocytogenes* EGDe, our clustering reflects the strong contribution of the known transcription factors to variability of gene expression during optimal growth.

The conserved innate immune response to microbial infections between insects and mammals as well as its cost efficiency and comparably lesser ethical concerns than with mammals makes G. mellonella an attractive in vivo model for evaluating virulence in bacteria (Scully and Bidochka, 2006; Tsai et al., 2016) and it was successfully applied to *L. monocytogenes* (Joyce and Gahan, 2010; Mukherjee et al., 2010). In the present study, Spearman correlation analysis identified 56 genes whose transcript levels were positively or negatively correlated with G. mellonella in vivo virulence. None of the obvious virulence factors were represented among them, confirming that transcription of virulence genes strictly restricted to host cell invasion are poor markers of virulence potential. Among the correlated genes were phosphatases that broadly modulate activity of pathogenic bacteria and promote their intracellular growth (Sajid et al., 2015). Similarly, lipid metabolism is important for intracellular lifecycle, for example, to make use of host lipids as energy sources and to modulate host immune responses (Rameshwaram et al., 2018). Recent studies found existence of several type II toxin-antitoxin systems in *L. monocytogenes* connected to stress conditions (Curtis et al., 2017; Kalani et al., 2018), though their role in virulence need further investigations. Two competence genes (Imo2189 and Imo1397) were positively correlated while one (Imo1346) was negatively correlated to virulence level. The Com system of L. monocytogenes is required to promote escape from phagosome during infection (Rabinovich et al., 2012). The exact role of these competence proteins in virulence requires to be explored in depth. One of the negatively correlated genes was Imo0540 which encodes a penicillin-binding protein. Although disruption of Imo0540 did not alter resistance to penicillin G and cephalosporins, insertion mutant led to virulence attenuation in vivo (Guinane et al., 2006). On the contrary, other penicillin-binding proteins were reported to induce attenuation of virulence in some bacterial pathogens (Beceiro et al., 2013; Rieux et al., 2001; Rudkin et al., 2012) even though antibiotic resistance is evolutionarily intertwined with bacterial virulence. Likewise, negative correlations between transcript levels of Imo0540 and Imo1963 (hypothetical lantibioticexporting membrane permease) and virulence in G. mellonella may suggest complex relationships between virulence and drug resistance. Other transcripts negatively correlated with virulence included genes involved in sugars transport (Imo0034, Imo0373, Imo0374, Imo1389, Imo1390, Imo1391, Imo2838, and Imo2839) and metabolism (Imo0035, Imo0372, Imo0557, Imo2836, Imo0635, Imo0879, and Imo2832). PrfA-mediated repression of virulence gene expression by specific carbohydrates is one of the subtle mechanisms that control the onset of infection (Aké et al., 2011; Milenbachs Lukowiak et al., 2004). Correspondingly, PrfA overexpression interferes with glucose uptake which resulted in impaired growth (Marr et al., 2006). In this regard, the current study showing lower basal transcript levels of those genes in more virulent isolates grown in nutrient rich BHI media suggests further connections between central metabolism and infection. Detailed investigations of bacterial metabolism during infection must be assessed to explore possible links between bacterial fitness and virulence potential.

As a whole, our data evidenced vast variations in virulence phenotype and transcriptome profiles. PCA successfully filtered noise from RNA-seq dataset and strengthened experimental reproducibility. Clustering of several regulons across samples featured the role of key transcription factors such as σ B, PrfA, and CodY in the observed transcriptome diversity. The phylogenetic position appeared as a major factor underlying transcriptome diversity since as much as 19% of the genes differentially transcribed correlated with lineage. This result documents a genome-wide physiological differentiation during evolution that parallels previously reported epidemiological differences. Although correlations between virulence determined in *G. mellonella* and transcriptomes were evidenced it is challenging to identify molecular markers whose transcript levels could predict virulence. We hope that the present study can help for the design of future analyses, at even more ambitious scale, that are needed to tackle the challenges of integrating epidemiological or experimental data on virulence with transcriptome data. Despite the high interest for this idea, it remains unclear at this stage if transcriptomics could become useful as a predictive tool for virulence that could be applied to large collections of isolates.

Author contributions


B-H.L., P.N., and P.P. conceived the project. L. Gal, D.G., and B-H.L. performed *in vivo* and *in vitro* experiments. C.G. processed the RNA-seq raw data. B-H.L. and P.N. performed analysis of the data and interpreted the results. L. Guillier provided isolates with genome sequences. A.R. and B.R. guided the RNA-seq libraries preparation carried out by B-H.L. B-H.L., P.N. and P.P. wrote the manuscript and all authors reviewed and approved the final manuscript.

Funding

This project received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement N 641984.

Acknowledgments

We greatly acknowledge Sophie Roussel at INRA, Rennes, Benjamin Felix and Michel-Yves Mistou at Anses, Maisons-Alfort, Taran Skjerdal at Norwegian Veterinary Institute, Oslo, and Carole Feurer at The French Pork and Pig Institute, Maisons-Alfort for kindly providing *L. monocytogenes* isolates. Special thanks to Nicolas Krezdorn in GenXPro for genome assembly.

Figures and Tables

Figure 1. Varying virulence levels of 91 *L. monocytogenes* isolates in *G. mellonella*. Isolates are grouped by post-infection incubation time (day) required to observe 50% or more death of larvae (LT50). Larvae injected with PBS served as negative controls. (A) to (E) show isolates with LT50 of days 1 to 5, respectively and (F) shows isolates that did not reach 50% death by day 5 post-infection (LT50 > 5).

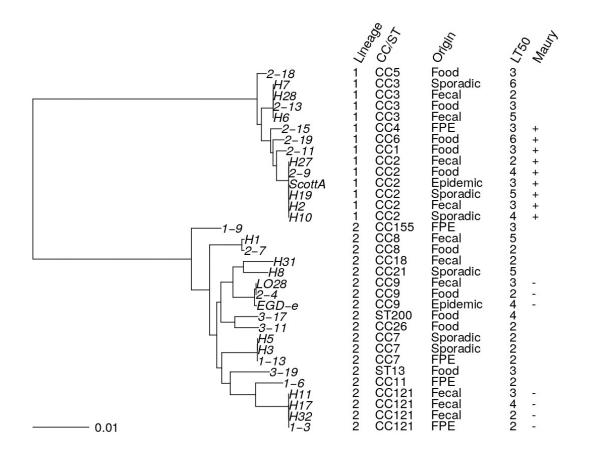
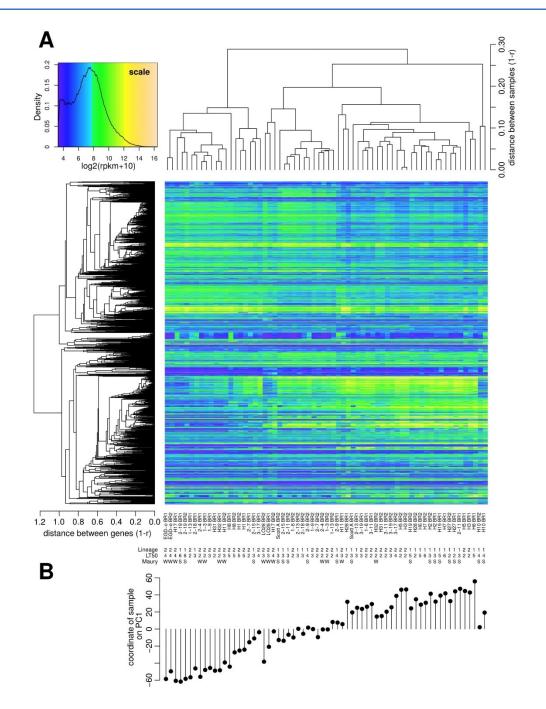
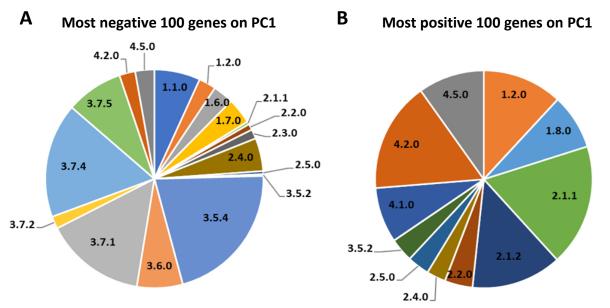
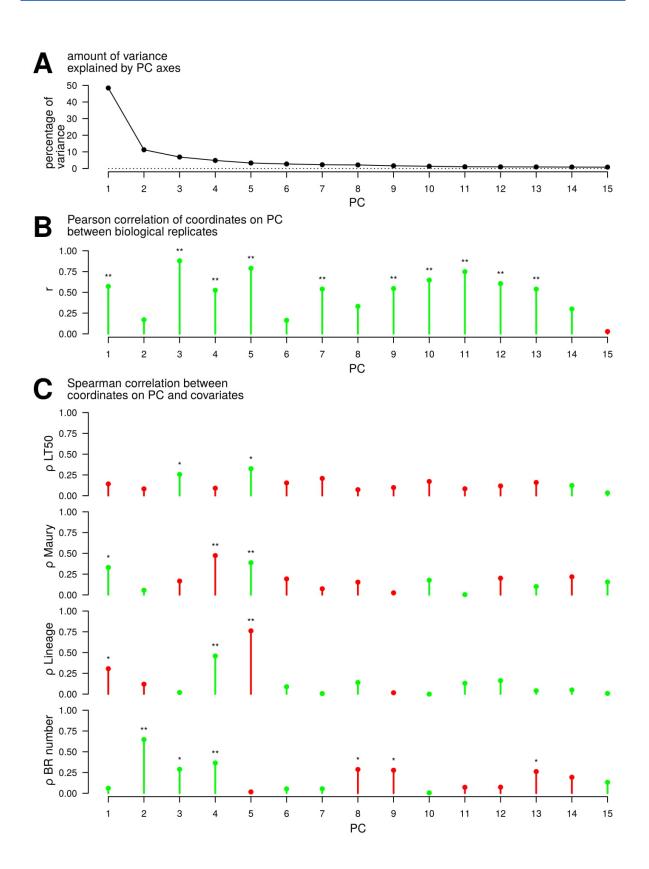


Figure 2. Phylogenetic tree reconstructed on the basis of whole-genome sequences for the 33 *L. monocytogenes* isolates selected for transcriptome profiling. Columns on the right side show lineage, MLST genotype (CC, clonal complex; ST, sequence type), origin, virulence level expressed as LT50 measured in *G. mellonella*, and Maury's classification (virulence-associated genotypes: +, hypervirulence; -, hypovirulence) (Maury et al., 2016). Branch length represents the expected number of substitutions per base.


Figure 3. High variability in the original transcriptome data. (A) Heatmap representation of transcript levels (rpkm) expressed in log2-scale for 2456 genes (row) and 66 samples (column). (B) Coordinates of samples on PC1 which accounts for 48.4% of the total variance reveals a continuum of transcriptome profiles. For the purpose of this representation, coordinates on PC1 served to reorder the samples to highlight the continuum of transcription profiles. This reordering is made possible by the fact that many different orderings are consistent with the structure imposed by the dendrogram shown in the upper part of the heatmap.

Code	Functional category description
------	---------------------------------

1.1.0	Cell envelope and cellular processes > Cell wall
1.2.0	Cell envelope and cellular processes > Transport/binding proteins and lipoproteins
1.6.0	Cell envelope and cellular processes > Protein secretion
1.7.0	Cell envelope and cellular processes > Cell division
1.8.0	Cell envelope and cellular processes > Cell surface proteins
2.1.1	Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways
2.1.2	Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways
2.2.0	Intermediary metabolism > Metabolism of amino acids and related molecules
2.3.0	Intermediary metabolism > Metabolism of nucleotides and nucleic acids
2.4.0	Intermediary metabolism > Metabolism of lipids
2.5.0	Intermediary metabolism > Metabolism of coenzymes and prosthetic groups
3.5.2	Information pathways > RNA synthesis > Regulation
3.5.4	Information pathways > RNA synthesis > Termination
3.6.0	Information pathways > RNA modification
3.7.1	Information pathways > Protein synthesis > Ribosomal proteins
3.7.2	Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases
3.7.4	Information pathways > Protein synthesis > Elongation
3.7.5	Information pathways > Protein synthesis > Termination
4.1.0	Other functions > Adaptation to atypical conditions
4.2.0	Other functions > Detoxification
4.5.0	Other functions > Miscellaneous

Figure 4. Principal component axis 1 (PC1) distinguishes variations arising from changes in growth stage. Distribution of functional categories among genes that contribute most to the PC1 is displayed in the pie chart. (A) Most negative 100 loading values and (B) most positive 100 loading values are selected and relative ratio (number in 100 genes / number in whole genome) of each functional category is calculated. Uninformative categories are excluded in the analysis.

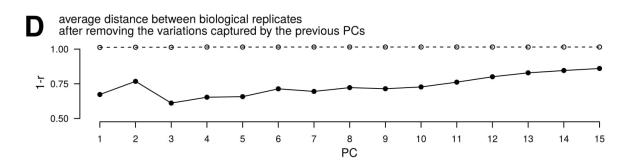
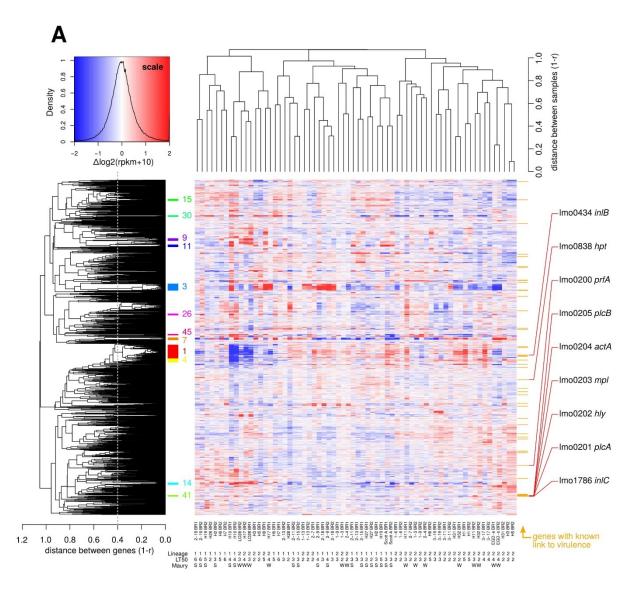



Figure 5. Principal components axes (PCs) explain relationships between transcriptomes and variables. (B) Variance in transcriptomes captured by each PC are expressed in percentage. The first two axes, PC1 and PC2 express 59.6% of total dataset inertia. (B) Pearson correlation coefficient (r) is measured between coordinates of biological replicates (BRs) on each PC. (C) Spearman correlations coefficient (ρ) is measured between coordinates on each PC and the original covariates as follows: virulence measured in G. mellonella ('LT50'), genotypes related to hyper- or hypovirulence ('Maury'), phylogenetic division ('lineage'), and sets of BR ('BR number'). Green and red colours indicate positive and negative correlations, respectively. (D) After eliminating the variations captured by preceding PCs, average distances between BR are calculated as '1-r' (r, Pearson correlation coefficient). For example, point PC3 on x-axis shows average distance after removing variations captured by PC1 and PC2. *, $p \le 0.05$; **, $p \le 0.005$.

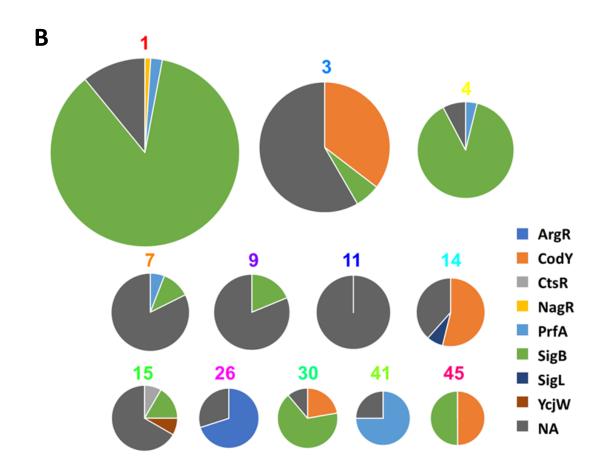


Figure 6. Analysis of the refined transcriptome dataset created by filtering out the variations captured by PC1 and PC2. (A) Heatmap representing transcript levels (rpkm) in log2-scale expresses for 2,456 genes (row) and 66 samples (column). Cut-off at Pearson correlation coefficient of 0.6 identifies 12 clusters with more than 8 genes and fold change \geq 4. The clusters are indicated in coloured bars with cluster identification numbers to the left of the dendrogram. Genes with known link to virulence (Wurtzel et al., 2012) are shown in the bars to the right of the heatmap and core PrfA virulon (Scortti et al., 2007) are indicated. (B) are indicated. (B) Relative abundance of regulons belonging to each cluster is expressed in the pie chart. Cluster number is marked on the top of each circle whose area is proportional to the number of genes composing the cluster. A complete list of the genes can be found in Supplementary Table 1. NA, information not available.

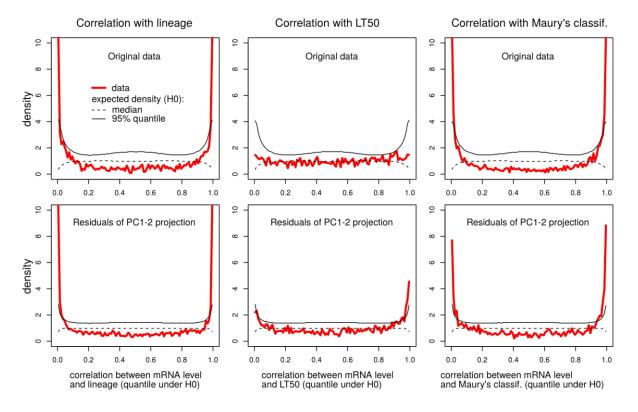
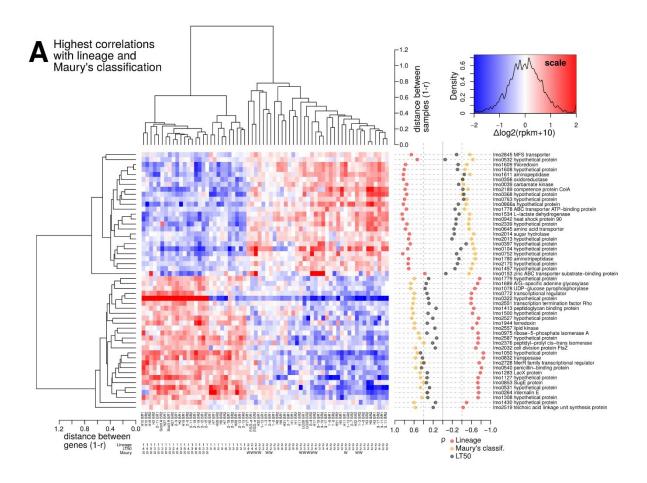



Figure 7. Impact of removing PC1 and PC2 on the correlation analysis between transcriptome profiles and isolate characteristics. For each correlation analysis, a plot shows the distribution of the Spearman correlation coefficients expressed in terms of quantile under the null hypothesis of no-association (i.e. random permutations of the isolate labels) such that deviation from the uniform reflects statistical significance, values near 0 correspond to negative correlations and near 1 to positive correlation. Distribution of the correlation coefficients for the actual dataset (red line) is plotted along with the median (50% quantile, dashed black line) and the 95% quantile (black line). Distribution of quantiles for the adjusted dataset (bottom row) reveals enhanced statistical power in Spearman correlation analysis compared to the original dataset (top row).

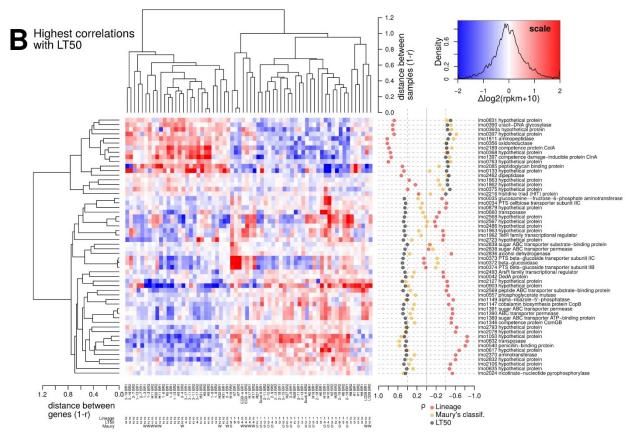


Figure 8. Highest correlation between transcript levels and covariates. (A) Transcripts corresponding to the 15 most extreme negative or positive ρ values with lineages (30 genes) and with Maury's classification of virulence genotypes (30 genes). Due to overlaps, the union between these sets resulted in 52 genes. The figure combines an heatmap representation of transcript levels in log2-scale, with a graphical representation of the Spearman correlation coefficients with each covariate as semi-transparent dots (red for lineage; orange for Maury's classification; black for LT50 measured in *G. mellonella*). (B) 56 transcripts corresponding to the highest correlations ($|\rho| \ge 0.4$) with virulence level determined in *G. mellonella* (LT50). Lists of the genes can be found in Table 3, Supplementary Table 2 and 3.

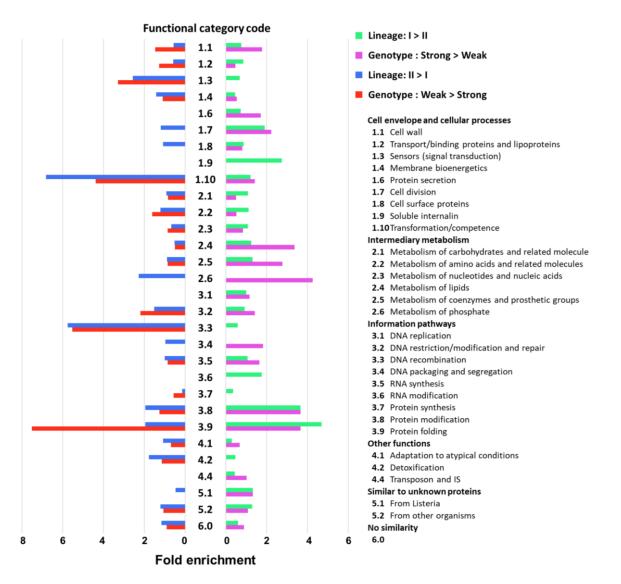


Figure 9. Functional classification of transcripts whose expression are correlated to division of lineages and Maury's classification. Among the lists of genes selected by Spearman's rank correlation analysis ($|\rho| \ge 0.4$), total 467 (99%) and 219 genes (99%) were designated to one of the categories, which is present in two higher hierarchies. Fold enrichment was calculated for each category as follows: Fold enrichment = % in annotated genes / % in whole genome of EGDe.

Isolate	Origin	MLST	Maury's classification §	LT50	Lineage *	RNA- seq **	Reference
H1	Fecal	CC8		5	II	yes	Olier et al., 2003
H2	Fecal	CC2	Strong	3	I	yes	Olier et al., 2003
H3	Sporadic	CC7	-	2	II	yes	Olier et al., 2003
H5	Sporadic	CC7		2	П	yes	Olier et al., 2003
H6	Fecal	CC3		5	I	yes	Olier et al., 2003
H7	Sporadic	CC3		6	I	yes	Olier et al., 2003
H8	Sporadic	CC21		5	II	yes	Olier et al., 2003
H9	Sporadic	CC88		2	I		Olier et al., 2003
H10	Sporadic	CC2	Strong	4	I	yes	Olier et al., 2003
H11	Fecal	CC121	Weak	3	II	yes	Olier et al., 2003
H13	Sporadic	CC7		2	II		Olier et al., 2003
H14	Sporadic	CC1	Strong	3	I		Olier et al., 2003
H15	Sporadic	CC8		3	II		Olier et al., 2003
H16	Sporadic	CC7		2	II		Olier et al., 2003
H17	Fecal	CC121	Weak	4	II	yes	Olier et al., 2003
H18	Sporadic	CC3		3	I		Olier et al., 2003
H19	Sporadic	CC2	Strong	4	I	yes	Olier et al., 2003
H21	Sporadic	CC1	Strong	2	I		Olier et al., 2003
H22	Sporadic	CC1	Strong	2	I		Olier et al., 2003
H23	Sporadic	NA †		2	NA		Olier et al., 2003
H24	Sporadic	CC6	Strong	3	I		Olier et al., 2003
H25	Sporadic	CC18		2	II		Olier et al., 2003
H27	Fecal	CC2	Strong	2	I	yes	Olier et al., 2003
H28	Fecal	CC3		2	I	yes	Olier et al., 2003
H31	Fecal	CC18		2	II	yes	Olier et al., 2003
H32	Fecal	CC121	Weak	2	II	yes	Olier et al., 2003
H34	Fecal	CC121	Weak	2	II		Olier et al., 2003
H35	Fecal	CC3		2	I		Olier et al., 2003
H36	Epidemic	CC1	Strong	2	I		Olier et al., 2003
H38	Fecal	CC37		2	II		Olier et al., 2003
LO28	Fecal	CC9	Weak	3	II	yes	Olier et al., 2003
Scott A	Epidemic	CC2	Strong	3	I	yes	Olier et al., 2003
EGD-e	Epidemic	CC9	Weak	4	II	yes	Olier et al., 2003
1-1	Food	CC121	Weak	3	II		Henri et al., 2016
1-2	Food	CC121	Weak	6	II		Henri et al., 2016
1-3	FPE ‡	CC121	Weak	2	II	yes	Henri et al., 2016
1-4	FPE	CC121	Weak	5	II		Henri et al., 2016
1-5	FPE	CC11		5	II		Henri et al., 2016
1-6	FPE	CC11		2	II	yes	Henri et al., 2016
1-7	FPE	CC11		6	II		Henri et al., 2016

Table 1. Characteristics of *L. monocytogenes* strains used in the study.

1-8	FPE	CC155		6	П		Henri et al., 2016
1-9	FPE	CC155		2		yes	Henri et al., 2016
1-10	FPE	CC155		6	Ш	/	Henri et al., 2016
1-11	Food	CC155		6	П		Henri et al., 2016
1-12	FPE	CC7		5	П		Henri et al., 2016
1-13	FPE	CC7		2	Ш	yes	Henri et al., 2016
1-14	FPE	CC7		4	П	,	Henri et al., 2016
1-15	FPE	CC7		2	П		Henri et al., 2016
1-16	FPE	CC7		5	П		Henri et al., 2016
1-17	FPE	CC7		3	П		Henri et al., 2016
1-18	FPE	CC7		2	П		Henri et al., 2016
1-19	FPE	CC7		3	П		Henri et al., 2016
2-1	Food	CC121	Weak	3	П		Henri et al., 2016
2-2	Food	CC121	Weak	3	П		Henri et al., 2016
2-3	Food	CC121	Weak	1	П		Henri et al., 2016
2-4	Food	CC9	Weak	2	П	yes	Henri et al., 2016
2-5	Food	CC9	Weak	3	П		Henri et al., 2016
2-6	Food	CC9	Weak	2	П		Henri et al., 2016
2-7	Food	CC8		2	П	yes	Henri et al., 2016
2-8	Food	CC8		2	П		Henri et al., 2016
2-9	Food	CC2	Strong	4	I	yes	Henri et al., 2016
2-10	Food	CC2	Strong	3	I		Henri et al., 2016
2-11	Food	CC1	Strong	3	I	yes	Henri et al., 2016
2-12	Food	CC1	Strong	2	I		Henri et al., 2016
2-13	Food	CC3		3	I	yes	Henri et al., 2016
2-14	Food	CC3		3	I		Henri et al., 2016
2-15	FPE	CC4	Strong	3	I	yes	Henri et al., 2016
2-16	Food	CC4	Strong	3	I		Henri et al., 2016
2-17	Food	CC5		2	I		Henri et al., 2016
2-18	Food	CC5		3	I	yes	Henri et al., 2016
2-19	Food	CC6	Strong	6	I	yes	Henri et al., 2016
2-20	Food	CC6	Strong	4	I		Henri et al., 2016
3-1	Food	CC451		2	П		Henri et al., 2016
3-2	NA	CC14		2	П		Henri et al., 2016
3-3	Food	CC177		2	П		Henri et al., 2016
3-4	Food	CC19		2	П		Henri et al., 2016
3-5	Food	CC199		2	П		Henri et al., 2016
3-6	Food	CC20		2	П		Henri et al., 2016
3-7	Food	CC21		3	П		Henri et al., 2016
3-8	Food	CC220		2	I		Henri et al., 2016
3-9	Food	CC26		3	П		Henri et al., 2016
3-10	Food	CC26		2	П		Henri et al., 2016
3-11	Food	CC26		1	П	yes	Henri et al., 2016
3-12	Food	CC31		2	П		Henri et al., 2016
3-13	FPE	CC31		3	П		Henri et al., 2016

Chapter V

3-14	Food	CC315	3	I		Henri et al., 2016
3-15	Food	CC412	3	II		Henri et al., 2016
3-16	Food	ST200	4	II	yes	Henri et al., 2016
3-17	Food	ST517	3	NA		Henri et al., 2016
3-18	Food	ST13	3	II	yes	Henri et al., 2016
3-19	Food	ST13	6	П		Henri et al., 2016

* Lineage was determined based on the online MLST database for *Listeria monocytogenes* (http://bigsdb.pasteur.fr/*Listeria* /)

** Isolates included in RNAseq are noted as 'yes'

§ Classification of genotypes into strong or weak virulence by Maury et al., 2016

+ Information not available

‡ Food processing environment

			Mau	ıry's		
	Line	age ^a	classifie	cation ^b	LT5	60 °
Correlation	Negative	Positive	Negative	Positive	Negative	Positive
Designation	Lineage_N	Lineage_P	Maury_N	Maury_P	LT50_N	LT50_P
Number of genes +	261	212	111	111	17	39
Mean p	-0.54	0.55	-0.48	0.48	-0.44	0.45
FDR ‡	0.01	0.01	0.04	0.03	0.18	0.15
Number of shared ge	nes					
Lineage_N	261	0	0	85	0	24
Lineage_P	0	212	89	0	13	0
Maury_N	0	89	111	0	11	0
Maury_P	85	0	0	111	0	9
LT50_N	0	13	11	0	17	0
LT50_P	24	0	0	9	0	39
Virulence genes *						
Number	1	6	3	0	0	0
p-value	0.04	0.45	0.50	0.17	1.00	1.00
Compared to Severin	o et al., 2007 *	*				
481 (Lineage II > I)	33	71				
462 (Lineage I > II)	73	22				

Table 2. Comparison of number of genes selected by Spearman correlation analysis with different variates (lineage, Maury's classification of genotypes, and in vivo virulence).

a Lineage II versus I in relation to transcript levels

b Hyper- versus hypovirulent genotypes (Maury et al., 2016) in relation to transcript levels

c Higher versus lower LT50 measured in G. mellonella in relation to transcripts levels

⁺ Genes having $|\rho| > 0.4$ (ρ , Spearman correlation coefficient)

[‡] False discovery rate (FDR) was calculated by averaging the local FDRs

* Compared to the previously identified virulence-related genes (Wurtzel et al., 2012)

** Compared to the previously identified differentially expressed genes (Severino et al., 2007) available in our transcriptomes

Table 3. List of genes whose transcript levels are correlated with virulence measured in *G. mellonella*.

Functional	Locus tag	Spe	arman cor	relation	Product				
classification §	Locus tag	Cor †	ρ value	p-value	HHpred ‡				
1. Cell	Cell wall								
envelope	lmo0540*	Ν	0.445	0.007	penicillin-binding protein				
and cellular	Cell envelope a	nd cellul	ar processe	es					
processes	lmo0034	Ν	0.438	0.003	PTS cellbiose transporter subunit IIC				
	lmo0373	Ν	0.492	0.001	PTS beta-glucoside transporter subunit IIC				
	lmo0374	Ν	0.494	0.001	PTS beta-glucoside transporter subunit IIB				
	lmo1389	Ν	0.443	0.003	sugar ABC transporter ATP-binding protein				
	lmo1390	Ν	0.494	0.001	ABC transporter permease				
	lmo1391	Ν	0.492	0.001	sugar ABC transporter permease				
	lmo2569	Ν	0.491	0.001	peptide ABC transporter substrate-binding protein				
	lmo2838	Ν	0.449	0.001	sugar ABC transporter permease				
	lmo2839	Ν	0.404	0.002	sugar ABC transporter substrate-binding protein				
	Cell surface proteins								
	lmo2085	Р	-0.448	0.006	peptidoglycan binding protein				
	Transformation/competence								
	lmo1346	Ν	0.433	0.001	comGB; competence protein ComGB				
	lmo1397	Р	-0.401	0.016	cinA; competence damage-inducible protein				
	lmo2189	Р	-0.421	0.012	CoiA; competence protein				
2.	Metabolism of	carbohy	drates and	related mo	lecule				
Intermediary metabolism	lmo0035	Ν	0.464	0.001	glucosaminefructose-6-phosphate aminotransferase				
	lmo0356	Р	-0.416	0.013	oxidoreductase				
	lmo0372	Ν	0.504	0.001	beta-glucosidase				
	lmo0557	Ν	0.401	0.006	phosphoglycerate mutase				
	lmo2836	Ν	0.469	0.000	alcohol dehydrogenase				
	Metabolism of	amino a	cids and rel	ated moled	cules				
	lmo1611	Р	-0.449	0.006	aminopeptidase				
	lmo2370	Ν	0.421	0.006	aminotransferase				
	lmo2462	Р	-0.466	0.001	dipeptidase				
	Metabolism of	coenzym	nes and pro	sthetic gro	ups				
	lmo1147	N	0.477	0.001	CopB; cobalamin biosynthesis protein				
	lmo1149	Ν	0.405	0.005	alpha-ribazole-5'-phosphatase				
	lmo2024	N	0.440	0.002	nadC; nicotinate-nucleotide pyrophosphorylas				
3.	DNA restriction	/modific	ation and r	repair					
Information	lmo0390	P	-0.436	0.004	uracil-DNA glycosylase				
pathways	RNA synthesis								

	lmo1962	Ν	0.449	0.002	TetR family transcriptional regulator
	lmo2493	Ν	0.452	0.001	ArsR family transcriptional regulator
4. Other	Transposon and	d IS			
functions	lmo0660	Ν	0.444	0.000	transposase
	lmo0832	Ν	0.425	0.010	transposase
5. Similar to	From <i>Listeria</i>				
unknown	lmo0617	Ν	0.423	0.007	hypothetical protein
proteins	[PF16729.5	99.2%]	DUF5067; D	omain of u	nknown function
	lmo2568	N	0.462	0.000	hypothetical protein
	[COG5294 9	99.9%] Y	xeA; Uncha	racterized p	protein YxeA, DUF1093 family (Function
	unknown)	-			
	From other org	anisms			
	lmo0042	Ν	0.437	0.001	DedA protein; Uncharacterized membrane protein
	[COG0586_9	99.8%] D	edA; Uncha	racterized i	membrane protein DedA, SNARE-associated
	domain (Fur	nction ur	iknown)		
	lmo0133	Р	-0.419	0.009	hypothetical protein
	[COG3592_9	98.2%] Y	dl; Unchara	acterized Fe	-S cluster protein Yjdl (Function unknown)
	lmo0397	Р	-0.488	0.003	hypothetical protein
	[cd08899_9	9.8%] SR	PBCC_CalC	_Aha1-like_	6; Putative hydrophobic ligand-binding SRPBCC
	domain of a	n unchai	acterized s	ubgroup of	CalC- and Aha1-like proteins
	lmo0635	Ν	0.414	0.003	hypothetical protein
		-			omutase or related phosphatase, HAD
		(Carboh			netabolism, General function prediction only)
	lmo0763*	Р	-0.438	0.007	Ser/Thr protein phosphatase family protein
		-	el; Predicte	ed phosphol	hydrolase, MPP superfamily (General function
	prediction o				
	lmo0831	Р	-0.502	0.001	hypothetical protein
		_			e (General function prediction only)
	lmo0879	Ν	0.453	0.003	hypothetical protein
			aU; L-ribulo	ose-5-phosp	ohate 3-epimerase UlaE (Carbohydrate transport
	and metabo	· · · ·			
	lmo0903	N	0.443	0.005	hypothetical protein
		-	hfA; Unchai	racterized C	OsmC-related protein (General function
	prediction o				
	lmo1050	N	0.463	0.006	hypothetical protein
		-			eductase RutF, flavin reductase (DIM6/NTAB)
	family (Ener				
	lmo1862	Р	-0.438	0.001	hypothetical protein
		-			like; Members of the SGNH-hydrolase
	superfamily				
	lmo1863	P	-0.437	0.003	hypothetical protein
	_			-	protein DegV (Lipid transport and metabolism)
	lmo1963	Ν	0.471	0.001	hypothetical protein

[COG4200_99.6%] EfiE; Predicted lantabiotic-exporting membrane pepmease, EfiE/EfiG/ABC2 family (Defense mechanisms) Imo2078 0.432 0.004 hypothetical protein Ν [COG0802 100%] TsaE; tRNA A37 threonylcarbamoyladenosine biosynthesis protein TsaE (Translation, ribosomal structure and biogenesis) 0.474 hypothetical protein Imo2106 Ν 0.000 [COG1408_100%] YaeI; Predicted phosphohydrolase, MPP superfamily (General function prediction only) lmo2127 0.001 hypothetical protein Ν 0.507 [COG1266 98.9%] YdiL; Membrane protease YdiL, CAAX protease family (Posttranslational modification, protein turnover, chaperones) Imo2216 -0.403 0.000 histidine triad (HIT) protein Ρ [COG0537 99.9%] Hit; Diadenosine tetraphosphate (Ap4A) hydrolase or other HIT family hydrolase (Nucleotide transport and metabolism, Carbohydrate transport and metabolism, General function prediction only) Imo2486 0.450 0.000 hypothetical protein Ν [PF13349.6_99.9%] DUF4097; Putative adhesin 0.484 0.002 hypothetical protein Imo2723 Ν [COG2153 99.8%] ElaA; Predicted N-acyltransferase, GNAT family (General function prediction only) 0.004 Imo2832 0.452 hypothetical protein Ν [COG1929 100%] GlxK; Glycerate kinase (Carbohydrate transport and metabolism) 6. No similarity or No information available Imo0375 Ρ -0.487 0.003 hypothetical protein [COG3077 90.9%] RelB; Antitoxin component of the RelBE or YafQ-DinJ toxin-antitoxin module (Defense mechanisms) Imo2567 0.480 0.000 hypothetical protein Ν [PF13314.6_86.3%] DUF4083; Domain of unknown function 0.005 hypothetical protein Imo2793 Ν 0.411 [PF17178.4 80.5%] MASE5; Membrane-associated sensor Imo0360a 0.005 hypothetical protein Ρ -0.438 [PF14143.6 78.3%] YrhC; YrhC-like protein (Function unknown) Imo0368 Ρ -0.441 0.008 hypothetical protein [KOG0142 99.8%] Isopentenyl pyrophosphate:dimethylallyl pyrophosphate isomerase (Secondary metabolites biosynthesis, transport and catabolism) § Functional classification for L. monocytogenes EGDe (http://genolist.pasteur.fr/ListiList/)

* Virulence factors identified from PATRIC (https://www.patricbrc.org/)

+ Correlation with virulence measured in G. mellonella. N, negative correlation; P, positive correlation

[‡] Homology detected by HHPred is expressed as: [Identifier_probability %] product (function)

Reference

- Aké, F. M. D., Joyet, P., Deutscher, J., and Milohanic, E. (2011). Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in *Listeria monocytogenes*. *Mol. Microbiol.* 81, 274–293. doi:10.1111/j.1365-2958.2011.07692.x.
- Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. *Bioinforma. Oxf. Engl.* 31, 166–169. doi:10.1093/bioinformatics/btu638.
- Autret, N., Raynaud, C., Dubail, I., Berche, P., and Charbit, A. (2003). Identification of the agr locus of *Listeria monocytogenes*: role in bacterial virulence. *Infect. Immun.* 71, 4463–4471. doi:10.1128/IAI.71.8.4463-4471.2003.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi:10.1089/cmb.2012.0021.
- Bécavin, C., Bouchier, C., Lechat, P., Archambaud, C., Creno, S., Gouin, E., et al. (2014). Comparison of widely used *Listeria monocytogenes* strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. *mBio* 5, e00969-00914. doi:10.1128/mBio.00969-14.
- Beceiro, A., Tomás, M., and Bou, G. (2013). Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? *Clin. Microbiol. Rev.* 26, 185–230. doi:10.1128/CMR.00059-12.
- Bennett, H. J., Pearce, D. M., Glenn, S., Taylor, C. M., Kuhn, M., Sonenshein, A. L., et al. (2007). Characterization of *relA* and *codY* mutants of *Listeria monocytogenes*: identification of the CodY regulon and its role in virulence. *Mol. Microbiol.* 63, 1453–1467. doi:10.1111/j.1365-2958.2007.05597.x.
- Biller, L., Davis, P. H., Tillack, M., Matthiesen, J., Lotter, H., Stanley, S. L., et al. (2010). Differences in the transcriptome signatures of two genetically related *Entamoeba histolytica* cell lines derived from the same isolate with different pathogenic properties. *BMC Genomics* 11, 63. doi:10.1186/1471-2164-11-63.
- Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., and Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75, 1–13. doi:10.1016/j.foodcont.2016.12.016.
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421. doi:10.1186/1471-2105-10-421.
- Camejo, A., Buchrieser, C., Couvé, E., Carvalho, F., Reis, O., Ferreira, P., et al. (2009). In vivo transcriptional profiling of *Listeria monocytogenes* and mutagenesis identify new virulence factors involved in infection. *PLOS Pathog.* 5, e1000449. doi:10.1371/journal.ppat.1000449.

- Cerutti, F., Mallet, L., Painset, A., Hoede, C., Moisan, A., Bécavin, C., et al. (2017). Unraveling the evolution and coevolution of small regulatory RNAs and coding genes in *Listeria*. *BMC Genomics* 18, 882. doi:10.1186/s12864-017-4242-0.
- Charlier, C., Perrodeau, É., Leclercq, A., Cazenave, B., Pilmis, B., Henry, B., et al. (2017). Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. *Lancet Infect. Dis.* 17, 510–519. doi:10.1016/S1473-3099(16)30521-7.
- Chaturongakul, S., Raengpradub, S., Palmer, M. E., Bergholz, T. M., Orsi, R. H., Hu, Y., et al. (2011).
 Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among
 PrfA, CtsR, HrcA, and the alternative sigma factors sigmaB, sigmaC, sigmaH, and sigmaL in
 Listeria monocytogenes. Appl. Environ. Microbiol. 77, 187–200. doi:10.1128/AEM.00952-10.
- Chico-Calero, I., Suárez, M., González-Zorn, B., Scortti, M., Slaghuis, J., Goebel, W., et al. (2002). Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in *Listeria*. *Proc. Natl. Acad. Sci. U. S. A.* 99, 431–436. doi:10.1073/pnas.012363899.
- Clayton, E. M., Daly, K. M., Guinane, C. M., Hill, C., Cotter, P. D., and Ross, P. R. (2014). Atypical *Listeria innocua* strains possess an intact LIPI-3. *BMC Microbiol.* 14, 58. doi:10.1186/1471-2180-14-58.
- Cossart, P. (2011). Illuminating the landscape of host–pathogen interactions with the bacterium *Listeria monocytogenes. Proc. Natl. Acad. Sci. U. S. A.* 108, 19484–19491. doi:10.1073/pnas.1112371108.
- Cotter, P. D., Draper, L. A., Lawton, E. M., Daly, K. M., Groeger, D. S., Casey, P. G., et al. (2008). Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I *Listeria* monocytogenes. *PLoS Pathog.* 4, e1000144. doi:10.1371/journal.ppat.1000144.
- Couto, N., Belas, A., Oliveira, M., Almeida, P., Clemente, C., and Pomba, C. (2016). Comparative RNAseq-based transcriptome analysis of the virulence characteristics of methicillin-resistant and susceptible *Staphylococcus pseudintermedius* strains isolated from small animals. *Antimicrob. Agents Chemother.* 60, 962–967. doi:10.1128/AAC.01907-15.
- Curtis, T. D., Takeuchi, I., Gram, L., and Knudsen, G. M. (2017). The influence of the toxin/antitoxin mazEF on growth and survival of *Listeria monocytogenes* under stress. *Toxins* 9. doi:10.3390/toxins9010031.
- den Bakker, H. C., Bowen, B. M., Rodriguez-Rivera, L. D., and Wiedmann, M. (2012). FSL J1-208, a virulent uncommon phylogenetic lineage IV *Listeria monocytogenes* strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. *Appl. Environ. Microbiol.* 78, 1876–1889. doi:10.1128/AEM.06969-11.
- Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P., et al. (2002). *Listeria monocytogenes* bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. *Mol. Microbiol.* 45, 1095–1106.

- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 32, 1792–1797. doi:10.1093/nar/gkh340.
- Fritsch, L., Guillier, L., and Augustin, J.-C. (2018). Next generation quantitative microbiological risk assessment: Refinement of the cold smoked salmon-related listeriosis risk model by integrating genomic data. *Microb. Risk Anal.* 10, 20–27. doi:10.1016/j.mran.2018.06.003.
- Gahan, C. G. M., and Hill, C. (2014). *Listeria monocytogenes*: survival and adaptation in the gastrointestinal tract. *Front. Cell. Infect. Microbiol.* 4. doi:10.3389/fcimb.2014.00009.
- Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., et al. (2001). Comparative genomics of *Listeria* species. *Science* 294, 849–852. doi:10.1126/science.1063447.
- Gouin, E., Adib-Conquy, M., Balestrino, D., Nahori, M.-A., Villiers, V., Colland, F., et al. (2010). The *Listeria monocytogenes* InIC protein interferes with innate immune responses by targeting the IκB kinase subunit IKKα. *Proc. Natl. Acad. Sci.* 107, 17333–17338. doi:10.1073/pnas.1007765107.
- Guinane, C. M., Cotter, P. D., Ross, R. P., and Hill, C. (2006). Contribution of penicillin-binding protein homologs to antibiotic resistance, cell morphology, and virulence of *Listeria monocytogenes* EGDe. Antimicrob. Agents Chemother. 50, 2824–2828. doi:10.1128/AAC.00167-06.
- Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst. Biol.* 52, 696–704.
- Hadorn, K., Hächler, H., Schaffner, A., and Kayser, F. H. (1993). Genetic characterization of plasmidencoded multiple antibiotic resistance in a strain of *Listeria monocytogenes* causing endocarditis. *Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol.* 12, 928–937.
- Henri, C., Félix, B., Guillier, L., Leekitcharoenphon, P., Michelon, D., Mariet, J.-F., et al. (2016). Population genetic structure of *Listeria monocytogenes* strains determined by pulsed-field gel electrophoresis and multilocus sequence typing. *Appl. Environ. Microbiol.*, AEM.00583-16. doi:10.1128/AEM.00583-16.
- Hu, Y., Raengpradub, S., Schwab, U., Loss, C., Orsi, R. H., Wiedmann, M., et al. (2007). Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in *Listeria monocytogenes*. *Appl. Environ. Microbiol.* 73, 7967–7980. doi:10.1128/AEM.01085-07.
- Joyce, S. A., and Gahan, C. G. M. (2010). Molecular pathogenesis of *Listeria monocytogenes* in the alternative model host Galleria mellonella. *Microbiol. Read. Engl.* 156, 3456–3468. doi:10.1099/mic.0.040782-0.
- Kalani, B. S., Irajian, G., Lotfollahi, L., Abdollahzadeh, E., and Razavi, S. (2018). Putative type II toxinantitoxin systems in *Listeria monocytogenes* isolated from clinical, food, and animal samples in Iran. *Microb. Pathog.* 122, 19–24. doi:10.1016/j.micpath.2018.06.003.

- Kazmierczak, M. J., Mithoe, S. C., Boor, K. J., and Wiedmann, M. (2003). *Listeria monocytogenes* σB regulates stress response and virulence functions. *J. Bacteriol.* 185, 5722–5734. doi:10.1128/JB.185.19.5722-5734.2003.
- Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat. Methods* 9, 357–359. doi:10.1038/nmeth.1923.
- Lebreton, A., and Cossart, P. (2016). RNA- and protein-mediated control of *Listeria monocytogenes* virulence gene expression. *RNA Biol.* 14, 460–470. doi:10.1080/15476286.2016.1189069.
- Leclercq, A., Moura, A., Vales, G., Tessaud-Rita, N., Aguilhon, C., and Lecuit, M. (2019). *Listeria thailandensis* sp. nov. *Int. J. Syst. Evol. Microbiol.* 69, 74–81. doi:10.1099/ijsem.0.003097.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinforma. Oxf. Engl.* 25, 2078–2079. doi:10.1093/bioinformatics/btp352.
- Liu, D., Lawrence, M. L., Austin, F. W., and Ainsworth, A. J. (2007). A multiplex PCR for species- and virulence-specific determination of *Listeria monocytogenes*. J. Microbiol. Methods 71, 133– 140. doi:10.1016/j.mimet.2007.08.007.
- Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 550. doi:10.1186/s13059-014-0550-8.
- Mandin, P., Fsihi, H., Dussurget, O., Vergassola, M., Milohanic, E., Toledo-Arana, A., et al. (2005). VirR, a response regulator critical for *Listeria monocytogenes* virulence. *Mol. Microbiol.* 57, 1367– 1380. doi:10.1111/j.1365-2958.2005.04776.x.
- Marr, A. K., Joseph, B., Mertins, S., Ecke, R., Müller-Altrock, S., and Goebel, W. (2006). Overexpression of PrfA leads to growth inhibition of *Listeria monocytogenes* in glucose-containing culture media by interfering with glucose uptake. *J. Bacteriol.* 188, 3887–3901. doi:10.1128/JB.01978-05.
- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*. doi:10.14806/ej.17.1.200.
- Maury, M. M., Chenal-Francisque, V., Bracq-Dieye, H., Han, L., Leclercq, A., Vales, G., et al. (2017). Spontaneous loss of virulence in natural populations of *Listeria monocytogenes*. *Infect. Immun.* 85, e00541-17. doi:10.1128/IAI.00541-17.
- Maury, M. M., Tsai, Y.-H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., et al. (2016).
 Uncovering *Listeria monocytogenes* hypervirulence by harnessing its biodiversity. *Nat. Genet.* 48, 308–313. doi:10.1038/ng.3501.
- Milenbachs Lukowiak, A., Mueller, K. J., Freitag, N. E., and Youngman, P. (2004). Deregulation of *Listeria* monocytogenes virulence gene expression by two distinct and semi-independent pathways. *Microbiol. Read. Engl.* 150, 321–333. doi:10.1099/mic.0.26718-0.

- Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A., and Chakraborty, T. (2010). *Galleria mellonella* as a model system for studying *Listeria* pathogenesis. *Appl. Environ. Microbiol.* 76, 310–317. doi:10.1128/AEM.01301-09.
- Nadon, C. A., Bowen, B. M., Wiedmann, M., and Boor, K. J. (2002). Sigma B contributes to PrfAmediated virulence in *Listeria monocytogenes*. *Infect. Immun.* 70, 3948–3952. doi:10.1128/IAI.70.7.3948-3952.2002.
- Novichkov, P. S., Kazakov, A. E., Ravcheev, D. A., Leyn, S. A., Kovaleva, G. Y., Sutormin, R. A., et al. (2013). RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria. *BMC Genomics* 14, 745. doi:10.1186/1471-2164-14-745.
- Olier, M., Garmyn, D., Rousseaux, S., Lemaître, J.-P., Piveteau, P., and Guzzo, J. (2005). Truncated internalin A and asymptomatic *Listeria monocytogenes* carriage: in vivo investigation by allelic exchange. *Infect. Immun.* 73, 644–648. doi:10.1128/IAI.73.1.644-648.2005.
- Olier, M., Pierre, F., Rousseaux, S., Lemaître, J.-P., Rousset, A., Piveteau, P., et al. (2003). Expression of truncated internalin A is involved in impaired internalization of some *Listeria monocytogenes* isolates carried asymptomatically by humans. *Infect. Immun.* 71, 1217–1224. doi:10.1128/IAI.71.3.1217-1224.2003.
- Orsi, R. H., den Bakker, H. C., and Wiedmann, M. (2011). *Listeria monocytogenes* lineages: Genomics, evolution, ecology, and phenotypic characteristics. *Int. J. Med. Microbiol. IJMM* 301, 79–96. doi:10.1016/j.ijmm.2010.05.002.
- Orsi, R. H., and Wiedmann, M. (2016). Characteristics and distribution of *Listeria* spp., including *Listeria* species newly described since 2009. *Appl. Microbiol. Biotechnol.* 100, 5273–5287. doi:10.1007/s00253-016-7552-2.
- Painset, A., Björkman, J. T., Kiil, K., Guillier, L., Mariet, J.-F., Félix, B., et al. (2019). LiSEQ whole-genome sequencing of a cross-sectional survey of *Listeria monocytogenes* in ready-to-eat foods and human clinical cases in Europe. *Microb. Genomics* 5. doi:10.1099/mgen.0.000257.
- Palmer, M. E., Chaturongakul, S., Wiedmann, M., and Boor, K. J. (2011). The *Listeria monocytogenes* σB regulon and its virulence-associated functions are inhibited by a small molecule. *mBio* 2. doi:10.1128/mBio.00241-11.
- Port, G. C., and Freitag, N. E. (2007). Identification of novel *Listeria monocytogenes* secreted virulence factors following mutational activation of the central virulence regulator, PrfA. *Infect. Immun.* 75, 5886–5897. doi:10.1128/IAI.00845-07.
- Poyart-Salmeron, C., Carlier, C., Trieu-Cuot, P., Courvalin, P., and Courtieu, A.-L. (1990). Transferable plasmid-mediated antibiotic resistance in *Listeria monocytogenes*. *The Lancet* 335, 1422–1426. doi:10.1016/0140-6736(90)91447-I.

- Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. *Nat. Genet.* 38, 904–909. doi:10.1038/ng1847.
- Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. (2010). New approaches to population stratification in genome-wide association studies. *Nat. Rev. Genet.* 11, 459–463. doi:10.1038/nrg2813.
- Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R., and Herskovits, A. A. (2012). Prophage excision activates *Listeria* competence genes that promote phagosomal escape and virulence. *Cell* 150, 792–802. doi:10.1016/j.cell.2012.06.036.
- Radoshevich, L., and Cossart, P. (2018). *Listeria monocytogenes*: towards a complete picture of its physiology and pathogenesis. *Nat. Rev. Microbiol.* 16, 32–46. doi:10.1038/nrmicro.2017.126.
- Ragon, M., Wirth, T., Hollandt, F., Lavenir, R., Lecuit, M., Monnier, A. L., et al. (2008). A New Perspective on *Listeria monocytogenes* Evolution. *PLOS Pathog.* 4, e1000146. doi:10.1371/journal.ppat.1000146.
- Rahman, A., Munther, D., Fazil, A., Smith, B., and Wu, J. (2018). Advancing risk assessment: mechanistic dose-response modelling of *Listeria monocytogenes* infection in human populations. *R. Soc. Open Sci.* 5, 180343. doi:10.1098/rsos.180343.
- Rameshwaram, N. R., Singh, P., Ghosh, S., and Mukhopadhyay, S. (2018). Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. *Future Microbiol.* 13, 1301–1328. doi:10.2217/fmb-2018-0013.
- Ribet, D., and Cossart, P. (2010). Post-translational modifications in host cells during bacterial infection. *FEBS Lett.* 584, 2748–2758. doi:10.1016/j.febslet.2010.05.012.
- Rieux, V., Carbon, C., and Azoulay-Dupuis, E. (2001). Complex relationship between acquisition of betalactam resistance and loss of virulence in *Streptococcus pneumoniae*. J. Infect. Dis. 184, 66–72. doi:10.1086/320992.
- Roberts, A. J., Williams, S. K., Wiedmann, M., and Nightingale, K. K. (2009). Some Listeria monocytogenes outbreak strains demonstrate significantly reduced invasion, inlA transcript levels, and swarming motility in vitro. Appl Env. Microbiol 75, 5647–5658. doi:10.1128/AEM.00367-09.
- Rousseaux, S., Olier, M., Lemaître, J. P., Piveteau, P., and Guzzo, J. (2004). Use of PCR-restriction fragment length polymorphism of *inlA* for rapid screening of *Listeria monocytogenes* strains deficient in the ability to invade Caco-2 cells. *Appl Env. Microbiol* 70, 2180–2185. doi:10.1128/AEM.70.4.2180-2185.2004.
- Rudkin, J. K., Edwards, A. M., Bowden, M. G., Brown, E. L., Pozzi, C., Waters, E. M., et al. (2012). Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant

Staphylococcus aureus by interfering with the agr quorum sensing system. *J. Infect. Dis.* 205, 798. doi:10.1093/infdis/jir845.

- Sajid, A., Arora, G., Singhal, A., Kalia, V. C., and Singh, Y. (2015). Protein phosphatases of pathogenic bacteria: role in physiology and virulence. *Annu. Rev. Microbiol.* 69, 527–547. doi:10.1146/annurev-micro-020415-111342.
- Sauders, B. D., Overdevest, J., Fortes, E., Windham, K., Schukken, Y., Lembo, A., et al. (2012). Diversity of *Listeria* species in urban and natural environments. *Appl. Environ. Microbiol.* 78, 4420–4433. doi:10.1128/AEM.00282-12.
- Schauer, K., Geginat, G., Liang, C., Goebel, W., Dandekar, T., and Fuchs, T. M. (2010). Deciphering the intracellular metabolism of *Listeria monocytogenes* by mutant screening and modelling. *BMC Genomics* 11, 573. doi:10.1186/1471-2164-11-573.
- Scortti, M., Han, L., Alvarez, S., Leclercq, A., Moura, A., Lecuit, M., et al. (2018). Epistatic control of intrinsic resistance by virulence genes in *Listeria . PLoS Genet.* 14. doi:10.1371/journal.pgen.1007525.
- Scortti, M., Monzó, H. J., Lacharme-Lora, L., Lewis, D. A., and Vázquez-Boland, J. A. (2007). The PrfA virulence regulon. *Microbes Infect.* 9, 1196–1207. doi:10.1016/j.micinf.2007.05.007.
- Scully, L. R., and Bidochka, M. J. (2006). Developing insect models for the study of current and emerging human pathogens. *FEMS Microbiol. Lett.* 263, 1–9. doi:10.1111/j.1574-6968.2006.00388.x.
- Severino, P., Dussurget, O., Vêncio, R. Z. N., Dumas, E., Garrido, P., Padilla, G., et al. (2007). Comparative transcriptome analysis of *Listeria monocytogenes* strains of the two major lineages reveals differences in virulence, cell wall, and stress response. *Appl Env. Microbiol* 73, 6078–6088. doi:10.1128/AEM.02730-06.
- Shimizu, K. (2013). Regulation systems of bacteria such as *Escherichia coli* in response to nutrient limitation and environmental stresses. *Metabolites* 4, 1–35. doi:10.3390/metabo4010001.
- Strimmer, K. (2008a). A unified approach to false discovery rate estimation. *BMC Bioinformatics* 9, 303. doi:10.1186/1471-2105-9-303.
- Strimmer, K. (2008b). fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. *Bioinforma. Oxf. Engl.* 24, 1461–1462. doi:10.1093/bioinformatics/btn209.
- Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., et al. (2009). The *Listeria* transcriptional landscape from saprophytism to virulence. *Nature* 459, 950–956. doi:10.1038/nature08080.
- Tsai, C. J.-Y., Loh, J. M. S., and Proft, T. (2016). *Galleria mellonella* infection models for the study of bacterial diseases and for antimicrobial drug testing. *Virulence* 7, 214–229. doi:10.1080/21505594.2015.1135289.

- Vázquez-Boland, J. A., Domínguez-Bernal, G., González-Zorn, B., Kreft, J., and Goebel, W. (2001). Pathogenicity islands and virulence evolution in *Listeria*. *Microbes Infect.* 3, 571–584.
- Vivant, A.-L., Garmyn, D., and Piveteau, P. (2013). *Listeria monocytogenes*, a down-to-earth pathogen. *Front. Cell. Infect. Microbiol.* 3. doi:10.3389/fcimb.2013.00087.
- Ward, T. J., Ducey, T. F., Usgaard, T., Dunn, K. A., and Bielawski, J. P. (2008). Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of *Listeria monocytogenes* isolates. *Appl. Environ. Microbiol.* 74, 7629–7642. doi:10.1128/AEM.01127-08.
- Wurtzel, O., Sesto, N., Mellin, J. R., Karunker, I., Edelheit, S., Bécavin, C., et al. (2012). Comparative transcriptomics of pathogenic and non-pathogenic *Listeria* species. *Mol. Syst. Biol.* 8, 583. doi:10.1038/msb.2012.11.
- Zhang, T., Abel, S., Abel zur Wiesch, P., Sasabe, J., Davis, B. M., Higgins, D. E., et al. (2017). Deciphering the landscape of host barriers to *Listeria monocytogenes* infection. *Proc. Natl. Acad. Sci. U. S. A.* 114, 6334–6339. doi:10.1073/pnas.1702077114.
- Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., et al. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. *J. Mol. Biol.* 430, 2237–2243. doi:10.1016/j.jmb.2017.12.007.

Supplementary materials for this article can be found at the end of the thesis.

Chapter VI

Conclusion and perspectives

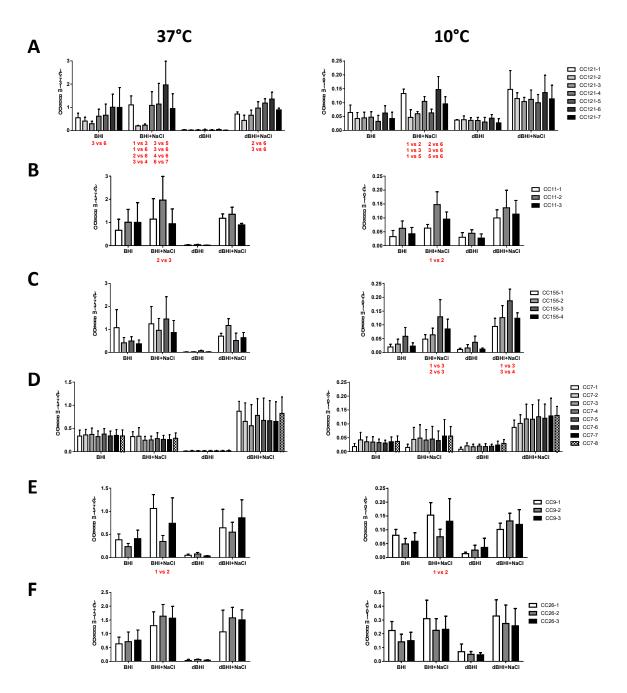
The current doctoral thesis focused on exploring the biofilm phenotypes and virulence characteristics of the foodborne pathogen *L. monocytogenes* from various perspectives using innovative approaches. Throughout the studies, a large number of isolates were included to reflect intraspecific variations.

Various conditions that L. monocytogenes may encounter in food industry were examined for their impact on biofilm formation. The different steps of biofilm formation were observed by BRT and MPA that featured adhesion and maturation steps which were further monitored by microscopic investigations. Regardless of serotype or origin of isolates, sudden cold shock induced cellular adhesion to abiotic surfaces as a transient phenotypic change. A mild but significant correlation was observed between affinity for ethyl acetate and cellular adhesion level acquired at 4°C suggesting that Lewis acid-base interaction was implicated in adhesion step. Similarly, sudden nutrient deprivation (or hypoosmotic shock), triggered by 10-fold dilution of BHI medium, induced bacterial adhesion irrespective of growth temperature. Physicochemical changes including rearrangement of cell membrane composition induced by hypoosmotic stress may have facilitated the bacterial adhesion to abiotic surfaces. The molecular pathways behind the unfavourable stimuli such as cold shock and nutrient stress need further investigation with regard to the bacterial adhesion and transition to sessile mode of life. However, prolonged nutrient deprivation impeded mature biofilm production. Addition of 0.85% NaCl stimulated biofilm production and surprisingly, it significantly intensified biofilm maturation of cells under nutrient-deprived condition. Appropriate salinity seems important for biofilm production since nutrient deficiency resulted in significant differences in mature biofilm production depending on the NaCl contents in growth media. To accurately determine the impact of salinity on biofilm production, growth kinetics under different conditions need to be taken into account when comparing biofilm phenotypes. Also, as environmental conditions differentially affected adhesion and maturation steps, it is necessary to investigate molecular background behind it at each point that represents well adhesion, maturation, and dispersal under various conditions to elucidate the complex mechanisms governing biofilm formation.

Pan-GWAS was applied for the first time to assess presence/absence profiles of genes in association with biofilm production which identified numerous genes. Even though the number of shared genes across the conditions was low due to high genomic variations, patterns of genes were comparable in terms of functions and processes of genetic products. Among the total list of genes functions including 'cell surface proteins', 'soluble internalin', 'transformation/competence', 'metabolism of phosphate', and 'phage-related functions' were more than 50% enriched. Cell surface proteins including internalins as adhesins are previously implicated in cellular adhesion and intercellular interaction during biofilm maturation. The extracellular DNA found in biofilm matrix of L. monocytogenes will need further investigation for their role in transformation during biofilm formation. Similarly, phage-related genes will need to be studied for their role in horizontal gene transfer. Comparing biofilm production at each step between a mutant lacking or overexpressing those genes and wildtype bacteria will uncover their role in biofilm formation. The application of GWAS and its derived approaches is of great value as a tool for screening determinants of bacterial characteristics in a heterogeneous species like L. monocytogenes. The presented results may expand to future studies that will integrate a larger panel of isolates with more genomic and phenotypic findings. Moreover, improvement of bioinformatic tools which will be able to utilize continuous numerical data such as optical densities from MPA instead of binary conversion of phenotypes will increase reliability of such metadata analysis.

The thesis work could not unravel biofilm phenotypes in association with bacterial characteristics such as persistence or prevalence. First of all, the conventional practice for determining persistent clones is doubted since some isolates belonging to the same persistent clone revealed significant variations in biofilm phenotypes. In the study isolates having the same genotype by PFGE or MLST subtyping method were recognized as persistent clones when they were recovered more than 3 times from the same FPE and related food products over the minimum 1 year of sampling period. However, in reality it is difficult to exclude isolates of the same genotype or even actual clones being re-introduced to the FPE at different times via raw materials or infected personnel. Moreover, it is debated whether a specific subtype persist in FPE or some isolates incidentally colonize specific niches in FPE being interpreted as persistent. In the latter case, research of L. monocytogenes behaviours in FPE will need to be redirected toward defining and exploring the niches specific for harbouring the bacterium which in turn will improve regulations and practices concerning food safety against L. monocytogenes contamination. Secondly, the frequency of genotypes in food isolates may simply reflect their distribution pattern in nature rather than being selected by certain bacterial characteristics that we attempted to discover. Accumulation and exchange of data regarding the L. monocytogenes in natural habitat especially in vegetation sites and domesticated animals for food sources will answer this question. Lastly, the experimental setups used in the present study for assessing biofilm phenotypes may not reflect well the actual conditions in FPE. Also, other FPE-related factors such as desiccation, disinfectant, or pH stresses need to be investigated with regard to bacterial adaptability and resistance and their impact on bacterial transition into a sessile lifestyle as well as a viable but nonculturable status which is of great concern in food safety.

Copious genomic data highlight the intraspecies variations in gene repertoire that underlies differential adaptation strategies between isolates, including infection and stress resistance to some extent. Moreover, an extensive transcriptional reshaping upon transition from extracellular to intracellular lifestyle evidences the importance of the fine-tuning of the transcriptional regulatory network for the bacterial fitness in the host system and the following onset of infection. Supporting this, some studies reported incongruity in basal transcriptome between isolates that featured characteristics of isolates such as virulence potentials in some pathogenic bacteria. In this regard investigating intraspecific transcriptomic diversity is tempting, however, is more difficult to perform than genomic analyses because L. monocytogenes readily alter transcriptome profiles in response to slight environmental changes. Moreover, the concept of deducing relationships between phenotypic observations and basal transcript levels is not yet well established. Therefore, the approach presented by the thesis work which explored the basal transcriptome heterogeneity with regard to virulence characteristics was unconventional and innovative. Also, we performed a high-throughput virulence assay using an alternative in vivo model, Galleria mellonella larvae to efficiently compare virulence potential among a large set of isolates.


Transcriptomic profiles of 33 distinctive isolates grown in BHI media until exponential phase were analysed in depth by using RNA sequencing. Importantly, the thesis demonstrated the application of Principal Component Analysis and subsequent analytic processes in detail which refined the metadata to strengthen experimental reproducibility and improve statistical power of correlation analyses with covariates. The baseline transcriptomes among isolates proved intrinsically more complex than genome comparison because of inherent plasticity of gene expression in response to the environmental conditions. Certain transcriptional factors with key roles in virulence such as oB, PrfA, and CodY contributed to the major variations in basal transcripts level. High diversity of transcriptomes between lineage I and II as well as hyper- and hypovirulent genotypes supported the evolutionary characteristics that parallels previously reported epidemiological differences. The results underscore the importance of transcriptomic plasticity in the physiology and pathogenesis of *L. monocytogenes*. Transcripts level of numerous genes related to sugar metabolism and transport found to be correlated with *in vivo* virulence potential suggesting the involvement of central metabolic pathways in

the infection in *G. mellonella* model system. In the thesis, the infection in *G. mellonella* was established by injecting bacterial suspension into haemolymph which is equal to blood in vertebrate. However, since the onset of *L. monocytogenes* infection in human is largely dependent on its survival in gastrointestinal track and invasion of intestinal epithelial cells, administration of the bacteria via oral gavage may improve the reliability of the *in vivo* virulence data. Additionally, accumulating epidemiologic data with detailed clinical descriptions can be employed in future analysis.

During the last decades the standard subtyping method for L. monocytogenes isolates moved from PFGE to MLST and the recent years witnessed the emergence and prospect of WGS as a tool for routine subtyping method due to its greater discriminatory power accompanied by decreasing cost. Implementation of WGS technique and standardized method for genotyping as the reference in research, clinical and public laboratories will capacitate rapid identification and tracking of a suspected isolate and facilitate efficient communication in case of a listeriosis outbreak. Also, it will enable more accurate detection of persistent, or at least recurrent, isolates in FPE which can be a potential threat for society. Indeed, as asserted by multinational outbreaks, an integrative global effort is inevitable for controlling L. monocytogenes as well as other hazardous microbes. In this regard, there is a need for researchers and stakeholders to develop a web-based platform for efficient storing and sharing of various information including metadata which will undoubtedly open a new era. As an early attempt, the thesis work generated invaluable phenotypic, genomic, and transcriptomic datasets and presented innovative approaches to disclose the complex mechanisms behind *L. monocytogenes* intraspecific heterogeneity. The upcoming innovative strategies and integration of other high-throughput omics approaches will continue to complete the understanding of physiology and pathogenesis of *L. monocytogenes*.

Chapter VII Supplementary materials

Chapter IV

Supplementary Figure 1. Intra-genotype comparison of biofilm formation. MPA results of isolates belonging to the same subtype are presented as mean + SD. Graphs on the left for 37°C and right for 10°C of (A) CC121, (B) CC11, (C) CC155, (D) CC7, (E) CC9, and (F) CC26. The number following the hyphen indicates the strains within each genotype in the legend. Data were analysed using One-way ANOVA and Tukey's multiple comparisons test. Pairs of strains showing significant differences are noted under each growth condition, p < 0.05.

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category †	% in weak biofilm formers	% in strong biofilm formers
group_1986	UPI00047C87C6			hypothetical protein	4.3.0	2.33	50.00
group_4801	A0A3A2R9E5		D3B46 07385	Uncharacterized protein		0.00	35.71
group_893	Q8Y802		lmo1117	Lmo1117 protein	6.0.0	60.47	7.14
group_5501	A0A392ZMB7		inlA_5	Internalin-A (LPXTG cell wall anchor domain-containing protein)		13.95	64.29
group 3614	UPI000BDFAB31		_	hypothetical protein		20.93	71.43
roup_3690	A0A393TFG3		AF876 00592	Uncharacterized protein		6.98	50.00
group_4887	A0A392Z6S3		ABY94 00615	Uncharacterized protein		6.98	50.00
group 2681	A0A3A2N2S0		D3B30 04480	DUF4274 domain-containing protein		6.98	50.00
group 4899	A0A393JAZ3		inlA 6	DUF5011 domain-containing protein (Internalin-A)		16.28	64.29
group_1913	A0A3A2RAJ4		AF237 14650	Uncharacterized protein		11.63	57.14
narA	Q8Y803		lmo1116	Lmo1116 protein	3.5.2	55.81	7.14
group_5936	A0A394SL40		AF237 14660	Uncharacterized protein		4.65	42.86
group_3668	A0A3A2JQP2		D3B79_08735	PBSX family phage terminase large subunit		4.65	42.86
group_474	A0A393CRL8		AF264_01650	Putative sulfate transporter (SulP family inorganic anion transporter)	1.2.0	44.19	0.00
group_3691	A0A3A2TPS8		D3B72_03010	DUF4274 domain-containing protein		9.30	50.00
group_5935	UPI0005C68DD0			hypothetical protein	4.3.0	0.00	28.57
group_3804	UPI0005DF0EE0		UF18_04880	Uncharacterized protein		0.00	28.57
group_5979	A0A393TCN4		AF828_02778	Uncharacterized protein		0.00	28.57
group_3849	UPI000C82ECAA		AE052_00662	Uncharacterized protein		0.00	28.57
group_513	A0A393M724		DN831_08165	Uncharacterized protein	6.0.0	0.00	28.57
group_6217	UPI00076181B6			hypothetical protein	6.0.0	0.00	28.57
in	A0A3A2JMV4		hin_1	DNA-invertase hin (Recombinase family protein)	4.3.0	16.28	57.14
roup_4197	UPI00098E3EF0			hypothetical protein		48.84	7.14
adB_2	A0A241SSP1		gadB	Glutamate decarboxylase (EC 4.1.1.15)	2.2.0	90.70	57.14
roup_3660	A0A0H3GIL3		LMRG_01530	Gp68		2.33	28.57
roup_5631	A0A3A2SG05		AF944_00595	Uncharacterized protein		2.33	28.57
roup_3808	A0A3A2SPJ1		AF944_00596	Uncharacterized protein		2.33	28.57
roup_5617	A0A394RIH7		AF239_05370	Uncharacterized protein		2.33	28.57
roup_5618	A0A394SSM4		AF240_05645	Uncharacterized protein		2.33	28.57
roup_1228	A0A2Z5C2Q2		RK57_10170	DUF917 domain-containing protein	5.2.0	97.67	71.43
roup_120	A0A3A2RM25		D3B79_08840	Uncharacterized protein	4.3.0	2.33	28.57
erC_2	A0A393N2F1		DOM71_15540	Site-specific integrase		2.33	28.57
group_672	A0A1B2LR20		pLM-C-273 00081	Uncharacterized protein		30.23	71.43

group 1807	UPI000BE00DE2		hypothetical protein		44.19	7.14
group_4344		lmo0332	Lmo0332 protein	6.0.0	55.81	14.29
group 904	A0A3A7P9G8	inlJ 10	Class 1 internalin InlL (Internalin-J)	1.8.0	34.88	0.00
group_2741	A0A3A2SDU8	D3B73 13335	SMI1/KNR4 family protein	6.0.0	34.88	0.00
mtlR 4	A0A3A8C544	mtlR 1	Transcriptional regulator MtlR	3.5.2	34.88	0.00
group_489	A0A393SSR6	AF245 00250	SMI1/KNR4 family protein	6.0.0	65.12	100.00
group_4686	A0A393MBE2	cas7i	Type I-B CRISPR-associated protein Cas7/Cst2/DevR		37.21	78.57
group_302	UPI000BE05055		hypothetical protein	5.1.0	62.79	21.43
group_2660	A0A3A7IMJ8	cas8a1	Type I-B CRISPR-associated protein Cas8b1/Cst1		37.21	78.57
group_6207	A0A3A7FSY6	DYZ81 02933	Uncharacterized protein		0.00	21.43
group_6204	A0A393NA30		Uncharacterized protein		0.00	21.43
group_6218	Q8Y4W6	lmo2313	Lmo2313 protein	4.3.0	0.00	21.43
group_6215	A0A393UIF1	DCT05_15210	DUF1837 domain-containing protein		0.00	21.43
group_5642	A0A3A7KKC0		DNA helicase (EC 3.6.4.12)		0.00	21.43
group_6211	A0A393N8B1	DCT13_10510	Uncharacterized protein		0.00	21.43
group 6210	A0A247D711	—	Associated protein		0.00	21.43
group 6212	A0A3A7FBG4	DCT05 15235	Uncharacterized protein		0.00	21.43
yjcD	UPI00093184AE	_	ATP-dependent helicase		0.00	21.43
group_6222	UPI0001B714EA	AF262 13565	Uncharacterized protein		0.00	21.43
group_6221	A0A393UC33	AEZ78 01333	N4-gp56 family major capsid protein		0.00	21.43
group_6223	UPI00086A6C7E	_	hypothetical protein		0.00	21.43
group_6224	A0A393MXG5	amid	Amidase (Putative amidase AmiD) (EC 3.5.1.4)		0.00	21.43
group_6225	A0A3A7FQS4	ydde	PhzF family phenazine biosynthesis protein (Putative isomerase YddE)	5.2.0	0.00	21.43
group_0225	AUASA/TQ54	yuue	(EC 5.1)	5.2.0	0.00	21.45
group_5639	UPI0006798459		SLATT domain-containing protein		0.00	21.43
group_5636	UPI000E722DA8	AF269_05195	Uncharacterized protein (Fragment)	5.1.0	0.00	21.43
group_5637	A0A3A7KQ90	AB922_01984	Uncharacterized protein		0.00	21.43
group_6220	A0A393UC43	D3B99_08750	DUF1064 domain-containing protein	4.3.0	0.00	21.43
group_5844	A0A392YQG8	AF844_02972	Uncharacterized protein	6.0.0	0.00	21.43
group_5841	A0A3A7BU98	D3B69_09415	Chorismate synthase	6.0.0	0.00	21.43
group_5840	A0A3A7BL13	D3B69_08805	ATP-binding protein		0.00	21.43
group_5843	A0A3A2R8P7	D3B69_09405	DUF5081 family protein	6.0.0	0.00	21.43
group_5842	A0A3A2NZC0	D3B69_09410	WXG100 family type VII secretion target	6.0.0	0.00	21.43
group_5242		DCT05_12755	Uncharacterized protein	6.0.0	0.00	21.43
group_5643	UPI000E74A098	AF269_05155	ATP-dependent endonuclease (Fragment)		0.00	21.43
bmrR	UPI0000F53E35	ARJ20_03215	MerR family transcriptional regulator	3.5.2	100.00	78.57
group_6208	A0A393VMB4	AF240_14725	Uncharacterized protein		0.00	21.43
group_5833	C6ZXJ8	purM	Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) (Phosphoribosyl-aminoimidazole synthetase)	2.3.0	0.00	21.43

group_3866 group 123	A0A3A2KPA5 A0A394WPT0	D3C41_12940 AF251_11515	DUF1642 domain-containing protein Uncharacterized protein	4.3.0 4.3.0	$0.00 \\ 0.00$	21.43 21.43
group_6214	A0A393UF83	 recF_2	ATP-dependent endonuclease (DNA replication and repair protein RecF)		0.00	21.43
group_5641 group_5640 spkB_1	UPI000BE0786D A0A3A8A402 UPI0009873B89	AB922_01980	hypothetical protein Nucleotidyltransferase pentapeptide repeat-containing protein	6.0.0	0.00 0.00 0.00	21.43 21.43 21.43
group_5653	A0A393VB96	AB922_02764	Uncharacterized protein	0.0.0	0.00	21.43
purM	C1KW66	purM	Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) (Phosphoribosyl-aminoimidazole synthetase)	2.3.0	100.00	78.57
group_1993	UPI000BE107B2		DEAD/DEAH box helicase		0.00	21.43
group_5638	A0A3A7E261	AB922_01982	XRE family transcriptional regulator		0.00	21.43
group_5835	A0A3A7QPE8	AF840_01803	Uncharacterized protein		0.00	21.43
group_5836	A0A3A2RH67	D3B69_08785	Appr-1-p processing protein		0.00	21.43
group_6216	A0A393VME7	xre_2	HTH-type transcriptional regulator Xre (Helix-turn-helix domain- containing protein)	3.5.2	0.00	21.43
group_6205	A0A3A7PK56	AB922_02136	Uncharacterized protein		0.00	21.43
group_504	UPI000BDE7A67		class 1 internalin InlI	1.8.0	0.00	21.43
group_6199	UPI000D735265		DUF1310 family protein	5.1.0	0.00	21.43
group_6202	A0A393WEP5	D3C41_12930	Uncharacterized protein	4.3.0	0.00	21.43
group_2705	A0A394RVL7	AF240_04685	DNA helicase (EC 3.6.4.12)		0.00	21.43
group_5838	A0A3A2NKZ5	D3B79_09090	Uncharacterized protein		0.00	21.43
group_5839	A0A3A2TU61	D3B69_08800	SIR2 family protein		0.00	21.43
group_6206	A0A393E6L1	DCT05_12765	DUF2481 domain-containing protein		0.00	21.43
group_5837	UPI00098E44F1	_	Appr-1-p processing protein		0.00	21.43
group_6203	UPI000BE0E517		pentapeptide repeat-containing protein	6.0.0	0.00	21.43
group_6200	A0A3A2TUU6	bmrr	MerR family transcriptional regulator (Multidrug-efflux transporter 1 regulator)	3.5.2	0.00	21.43
group_6201	A0A393UPN4	AFX94_02538	Uncharacterized protein		0.00	21.43
group_5509	A0A3A2KDS0	AF273_15200	Uncharacterized protein		18.60	57.14
group_3797	A0A3A2L4U9	AF238 14470	Uncharacterized protein		18.60	57.14
group_673	A0A394V0T8		Uncharacterized protein		32.56	71.43
group_4631	UPI00074D6448	LM901004_160002	Uncharacterized protein		32.56	71.43
ssb 4	UPI000BE1101C		hypothetical protein		32.56	71.43
	A0A3A2YAK1	cas5b	Type I-B CRISPR-associated protein Cas5		39.53	78.57
casl	UPI00092E4084	B0X19_02870	CRISPR-associated endonuclease Cas1		39.53	78.57
cas3	UPI00083D7946	_	CRISPR-associated helicase/endonuclease Cas3		39.53	78.57
cas2	A0A0E0UTU7	cas2	CRISPR-associated endoribonuclease Cas2 (EC 3.1)		39.53	78.57
group_2659	A0A3A7SZG9	cas6	CRISPR-associated endoribonuclease Cas6		39.53	78.57
8rsev						

group_481	A0A3A7DXN2	AB922_02752	Uncharacterized protein		6.98	35.71
group_5654	A0A394RQC8	AB922_02753	Ribonuclease BN		6.98	35.71
group_2049	A0A393T6R3	AF818_02839	Uncharacterized protein	4.3.0	6.98	35.71
group_1262	UPI000873C4F1		DUF1310 family protein	5.1.0	20.93	57.14
group_958	UPI00003CA3F3	AF262_13785	Uncharacterized protein		11.63	42.86
group_2733	A0A3A7T550	clpP1	ATP-dependent Clp protease proteolytic subunit		11.63	42.86
group_2178	A0A3A7KNB4	gadB_1	Glutamate decarboxylase (EC 4.1.1.15)	2.2.0	11.63	42.86
group_5457	A0A393UJV3	AF828_00146	Phage gp6-like head-tail connector protein		11.63	42.86
group_4888	A0A393CGK6	AF876_00589	Uncharacterized protein	5.1.0	11.63	42.86
group_5418	A0A393W8P8	AF847_02885	Uncharacterized protein	4.3.0	11.63	42.86
group 2710	UPI00003CA3EB	AE052_00030	DUF3954 domain-containing protein		11.63	42.86
group_5415	A0A394VMA7	AF239 12500	Uncharacterized protein		11.63	42.86
group_1934	A0A392XCY7	AF828_00150	Phage tail protein		11.63	42.86
group_5416	A0A394VX67	AF239_12505	Uncharacterized protein		11.63	42.86
group_2040	A0A3A7F101	AF264 14455	Ribonuclease (EC 3.1)	5.2.0	58.14	92.86
group_676	Q8Y496	ami –	Autolysin, amidase	1.8.0	69.77	100.00
group_2522	A0A3A2PCV4	comEC 1	ComE operon protein 3 (MBL fold metallo-hydrolase)	1.10.0	30.23	0.00
group_2647	A0A3A2YHL0	AF252 05590	ATP-dependent helicase (DEAD/DEAH box helicase)		30.23	0.00
group_131	A0A393RNT2		Uncharacterized protein	6.0.0	30.23	0.00
group_1298	Q8Y842	lmo1076	Lmo1076 protein	1.1.0	69.77	100.00
group_2523	A0A0B8QZ29	LmNIHS28 01111	ComE operon protein 3	1.10.0	72.09	100.00
group_1062	A0A393CV23	AF264 09920	Glycoside hydrolase family 65 protein	2.1.1	27.91	0.00
group 5799	UPI00092FB1F5	—	arsenic metallochaperone ArsD family protein		27.91	0.00
group 4465	Q8Y7Z7	lmo1122	Lmo1122 protein	5.1.0	51.16	14.29
group_2122	A0A3A2WTD5	AF264_12285	DUF4969 domain-containing protein	5.2.0	51.16	14.29
group_2594	Q8Y7Z5	lmo1124	Lmo1124 protein	5.1.0	51.16	14.29
group_2805	A0A3A7LSN2	AF818 02838	Uncharacterized protein		16.28	50.00
group_3818	A0A3A7FAB2	inlb 6	Internalin B (LPXTG cell wall anchor domain-containing protein)		4.65	28.57
group_5531	Q2V4W5	pCT0006	Site-specific recombinase, resolvase family		4.65	28.57
group_5704	UPI000E74C0A2	•	hypothetical protein	5.1.0	4.65	28.57
group_5549	A0A393VTF5	AF236 15595	Uncharacterized protein		4.65	28.57
group_5702	A0A393BLD4	AF840 02465	Cupin domain-containing protein		4.65	28.57
group_5584	UPI000E73B5A8	—	hypothetical protein		4.65	28.57
group_5586	A0A392WM50	AB922 00582	Uncharacterized protein		4.65	28.57
group_5582	A0A393RIL7	AB922 00586	Uncharacterized protein		4.65	28.57
licA_5	A0A3A6X849	lica_3	Lichenan-specific phosphotransferase enzyme IIA component (EC 2.7.1) (PTS lactose/cellobiose transporter subunit IIA))	4.65	28.57
group_5588	A0A3A7P0S6	AB922_00580	Uncharacterized protein		4.65	28.57
group_5589	UPI000BE0B2D8		plasmid replication protein		4.65	28.57

group_5566	A0A393QP03		AF236_15520	Uncharacterized protein	4.65	28.57
group_5562	A0A394RJT3		AB922_00606	Uncharacterized protein	4.65	28.57
group_5563	A0A393TGS3		AB922_00605	DUF87 domain-containing protein	4.65	28.57
group_5560	A0A393PMD5		AB922_00608	Uncharacterized protein	4.65	28.57
group_5561	A0A393VTG5		AB922_00607	Uncharacterized protein	4.65	28.57
group_5568	A0A393QVU4		AB922_00600	Uncharacterized protein	4.65	28.57
group_5569	A0A392WH96		AB922_00599	Uncharacterized protein	4.65	28.57
rsrIM	UPI00003CAA42		pLIS100090	DNA modification methylase	4.65	28.57
bacD	A0A3A6XBZ3		ddaf	ATP-grasp domain-containing protein (Dapdiamide A synthase) (EC 6.3.2.47)	4.65	28.57
group_5585	A0A3A7M9C2		AB922_00583	XRE family transcriptional regulator	4.65	28.57
group_5593	A0A393W756		AB922_00575	Restriction endonuclease	4.65	28.57
group_2737	A0A393FQK7		AF840_02461	Uncharacterized protein	4.65	28.57
group_5591	A0A393QQU6		AB922_00577	Uncharacterized protein	4.65	28.57
group_5594	A0A1X9VTW9	Leuconostoc mesenteroides	BSR26_10010	DNA methyltransferase	4.65	28.57
group 5587	UPI000EF5BA74			IS3 family transposase	4.65	28.57
group_5533	Q2V4W3		pCT0008	Cation-transporting ATPase E1-E2 family	4.65	28.57
group_5581	D7V1H8	Listeria grayi	HMPREF0556_plasm id12603	Uncharacterized protein	4.65	28.57
group_5575	A0A393NXT1		AB922_00593	Uncharacterized protein	4.65	28.57
group_5574	UPI000EF5AA7F			ImmA/IrrE family metallo-endopeptidase	4.65	28.57
group_3816	A0A393UXZ0		ARL28_13835	MFS transporter	4.65	28.57
group_5571	A0A3A7JXP8		AB922_00597	Restriction endonuclease	4.65	28.57
group_5570	A0A393QNC4		AB922_00598	Riboflavin synthase subunit alpha	4.65	28.57
group_5573	A0A3A7W8P2		AB922_00595	Uncharacterized protein	4.65	28.57
group_5572	A0A393SKE9		AF236_15490	Uncharacterized protein	4.65	28.57
group_5583	A0A3A7W8N1		AB922_00585	Uncharacterized protein	4.65	28.57
group_5579	A0A3A7ST51		AB922_00589	Uncharacterized protein	4.65	28.57
group_5534	UPI000931B2A1			transporter	4.65	28.57
group_5537	S5XI53			Pli0065	4.65	28.57
group_5580	UPI00003CAA45		AJN46_07220	Uncharacterized protein	4.65	28.57
group_5567	A0A393SB73		AB922_00601	Fructose 1,6-bisphosphatase	4.65	28.57
group_5564	A0A3A7VTB4		AB922_00604	Uncharacterized protein	4.65	28.57
gpmA_7	A0A3A7X7L3		pspB	Histidine phosphatase family protein (Putative phosphoserine phosphatase 2) (EC 3.1.3.3)	4.65	28.57
group_5578	A0A3A7K0H3		AB922_00590	Uncharacterized protein	4.65	28.57
nucH	A0A3A7QU08		nucH	Thermonuclease (EC 3.1.31.1)	4.65	28.57

ybbH_3	A0A393LHT2		ybbh_3	MurR/RpiR family transcriptional regulator (Putative HTH-type transcriptional regulator YbbH)		4.65	28.57
group 5700	A0A393I885		AFT78 13605	Uncharacterized protein		4.65	28.57
nanE_2	A0A3A7NDZ8		nanE_1	Putative N-acetylmannosamine-6-phosphate 2-epimerase (EC 5.1.3.9) (ManNAc-6-P epimerase)		4.65	28.57
tnsB	S5XPZ4			Putative transposase		4.65	28.57
group_5592	A0A3A7AMA0		AB922 00576	Site-specific DNA-methyltransferase		4.65	28.57
group 5697	A0A393V6K3		AF840 02454	DUF4127 family protein		4.65	28.57
group_3854	A0A3A7V0R5		AF951 02096	Uncharacterized protein	3.5.2	4.65	28.57
cwlO 1	A0A3A7JTC0		$cwlO \ \overline{2}$	Peptidoglycan DL-endopeptidase CwlO (EC 3.4)		4.65	28.57
group 3799	A0A3A7AUB6		AB922 00627	Uncharacterized protein		4.65	28.57
group_5548	A0A393I3M4		AB922 00620	Uncharacterized protein		4.65	28.57
group_5551	D7V1E8	Listeria grayi	HMPREF0556_plasm id12573	Uncharacterized protein		4.65	28.57
group_5540	A0A393VTE6		AB922_00629	Uncharacterized protein		4.65	28.57
group_5541	A0A3A7TQJ4		AB922_00628	Uncharacterized protein		4.65	28.57
group_5542	UPI000EF5635A			DUF3324 domain-containing protein		4.65	28.57
copY	A0A392WH77		сору	CopY/TcrY family copper transport repressor (Transcriptional repressor CopY)		4.65	28.57
group_5544	A0A3A7WL76		AB922_00624	Uncharacterized protein		4.65	28.57
group_5545	A0A3A7TAI8		AB922_00623	Uncharacterized protein		4.65	28.57
group_5546	A0A393QVS4		AB922_00622	Putative conjugal transfer protein (Type IV secretion protein)		4.65	28.57
group_5547	A0A3A7NVN4		AB922_00621	Uncharacterized protein		4.65	28.57
yigL	UPI00074D5656		LM701345_50019	Uncharacterized protein		4.65	28.57
group_5543	A0A393N4Q5		AB922_00625	Uncharacterized protein		4.65	28.57
licB_7	A0A3A7FKG5		cela_5	PTS sugar transporter subunit IIB (PTS system cellobiose-specific EIIB component) (EC 2.7.1.205)		4.65	28.57
rhlE	UPI000869703C			hypothetical protein		4.65	28.57
group_5550	UPI000D726E6E			hypothetical protein		4.65	28.57
group_3844	A0A0H3GMQ7		LMRG_01523	Gp45		4.65	28.57
group_5538	A0A393NZ28		AF236_15655	Uncharacterized protein		4.65	28.57
group_5559	A0A3A7MIR8		AB922_00609	Conjugal transfer protein TraG		4.65	28.57
group_5558	A0A393T254		AB922_00610	Uncharacterized protein		4.65	28.57
group_5557	A0A3A7NVP5		AB922_00611	Uncharacterized protein		4.65	28.57
group_5556	A0A393QNZ5		AB922_00612	Uncharacterized protein		4.65	28.57
group_5555	A0A3A7M9E3		AB922_00613	Uncharacterized protein		4.65	28.57
group_5554	A0A393N712		AB922_00614	Uncharacterized protein		4.65	28.57
group_5553	UPI000C86C85D		C1118_15230	Uncharacterized protein (Fragment)		4.65	28.57
group_5552	A0A393QP37		AB922_00616	Sodium:dicarboxylate symporter family protein		4.65	28.57
bin3	A0A3A7R6E9		bin3	DNA-invertase (Recombinase family protein)		4.65	28.57

group_5539	UPI0001B4211E	AB922_00630	Uncharacterized protein		4.65	28.57
group_5596	UPI000D729918	—	IS6 family transposase		4.65	28.57
group_5532	Q2V4W4	pCT0007	Cadmium efflux system accessory protein		4.65	28.57
group_5535	UPI000D73450A	-	DNA recombinase		4.65	28.57
group_5536	UPI000C86D6AB		IS6 family transposase		4.65	28.57
group_5924	A0A3A2Y1W1	AF828_02779	Uncharacterized protein		4.65	28.57
group_2739	A0A3A2S9A2	D3B73_14375	Uncharacterized protein		4.65	28.57
group_2736	A0A3A7VMA9	rizA	ATP-grasp domain-containing protein (L-arginine-specific L-amino acid ligase) (EC 6.3.2.48)		4.65	28.57
group_217	A0A3A7KP06	AE052_02425	Uncharacterized protein		4.65	28.57
group_6055	A0A3A7V312	AF951_00084	Uncharacterized protein		4.65	28.57
group_5508	A0A3A7W759	AF951_01101	Uncharacterized protein		34.88	71.43
group_1317	A0A1B2LR19	pLM-C-273_00082	Uncharacterized protein		34.88	71.43
group_494	A0A3A7W452	AF947_01400	Uncharacterized protein		34.88	71.43
group_1914	A0A1B2LR10	pLM-C-273_00079	Uncharacterized protein		34.88	71.43
group_1318	A0A1B2LR12	<i>pLM-C-273_00075</i>	Phage minor capsid protein 2		34.88	71.43
eccCa1	A0A393D7A8	essC	ESAT-6 secretion machinery protein EssC (Type VII secretion protein EssC)	5.2.0	48.84	14.29
group_2474	UPI000D72D1E5		DHA2 family efflux MFS transporter permease subunit	1.2.0	58.14	21.43
group_4470	A0A1D2IWI5	pduM	Microcompartment protein PduM	6.0.0	30.23	64.29
group_5453	A0A2A6A785	CDR86_09870	XRE family transcriptional regulator		9.30	35.71
group_5451	A0A2A6A6P5	CDR86_09885	Uncharacterized protein		9.30	35.71
group_5454	A0A2A6A617	CDR86_09865	Uncharacterized protein		9.30	35.71
group_5445	UPI00083E1BDA		hypothetical protein	6.0.0	9.30	35.71
group_3782	A0A2A6A6S9	CDR86_09890	MerR family transcriptional regulator		9.30	35.71
group_3783	A0A2A6A5V6	CDR86_09875	XRE family transcriptional regulator		9.30	35.71
group_3780	A0A3A7G6J0	AF847_01785	DUF3850 domain-containing protein		9.30	35.71
group_903	A0A3A2NUT3	inlJ_11	Internalin-J (Peptidoglycan-binding protein)	1.8.0	9.30	35.71
emrY	A0A3A8BX24	emrY	Putative multidrug resistance protein EmrY	1.2.0	44.19	78.57
group_311	A0A3A7W0T2	AF947_01398	Uncharacterized protein		37.21	71.43
group_1331	A0A394UA13	AF237_14675	Uncharacterized protein		37.21	71.43
group_2567	Q7AP83	lmo0320	Lmo0320 protein	1.8.0	37.21	71.43
group_2636	A0A1B2LR21	pLM-C-273_00076	Uncharacterized protein		37.21	71.43
group_5829	A0A3A2NRD8	D3B69_11250	SLATT domain-containing protein		2.33	21.43
traD	A0A3A8AEL8	traG	Conjugal transfer protein TraG		2.33	21.43
group_3721	UPI000E75D1DC	AF274_11855	PBSX family phage terminase large subunit	4.3.0	2.33	21.43
group_2744	UPI00086BB360		DUF1642 domain-containing protein	4.3.0	2.33	21.43
group_92	Q8Y4Z9	lmo2280	Protein gp23 [Bacteriophage A118]	4.3.0	2.33	21.43
group_795	A0A394ZJJ3	AF264_07275	VanZ family protein	5.2.0	97.67	78.57
-						

group_5996	UPI0008544E8C	AF973 04920	SAM-dependent methyltransferase		2.33	21.43
group_5201	A0A3A7FNT3	D3C41 12945	Uncharacterized protein		2.33	21.43
group_3829	A0A393T810	AF238 05420	Uncharacterized protein		2.33	21.43
group_4673	A0A2A6A8Y8	CDR86 05485	Uncharacterized protein		2.33	21.43
group_5890	UPI000E6CF39C	—	siphovirus Gp157 family protein		2.33	21.43
group_3867	A0A393UGI5	DCT05_12735	Uncharacterized protein		2.33	21.43
group_5665	A0A3A7G6E8	sirc	Bifunctional precorrin-2 dehydrogenase/sirohydrochlorin ferrochelatase (Precorrin-2 dehydrogenase) (EC 1.3.1.76)	2.5.0	2.33	21.43
group_122	A0A393VMD8	AF255_13120	Uncharacterized protein	4.3.0	2.33	21.43
group_121	A0A3A2SMD7	D3B75_07210	Uncharacterized protein	4.3.0	2.33	21.43
group_4815	UPI00083E20EE	—	hypothetical protein		2.33	21.43
group_5662	A0A3A7FE57	AF947_01444	Uncharacterized protein		2.33	21.43
group_3843	UPI0009801844	B0X19_13920	Uncharacterized protein	4.3.0	2.33	21.43
group_5889	A0A3A7GWW5	DYZ36_00768	Uncharacterized protein		2.33	21.43
group_5612	A0A393NK10	AB922_00245	Uncharacterized protein		2.33	21.43
group_962	A0A3A2KTR5	ssb	Single-stranded DNA-binding protein (SSB)	3.1.0	2.33	21.43
group_5241	A0A3A2Y2Q5	AFX76_02491	Uncharacterized protein	6.0.0	2.33	21.43
group_5125	UPI000E70CF52	AF274_11860	Terminase		2.33	21.43
group_379	A0A3A7RE78	inlJ_12	Internalin-J	1.8.0	2.33	21.43
dpnM	A0A394XMY4	AF274_05910	DNA adenine methylase	3.2.0	2.33	21.43
cwlK	A0A3A2RPP5	D3B77_10725	Alkaline phosphatase		2.33	21.43
group_2284	A0A3A2WY97	AF264_07280	Lmo1656 family SNX6-recruiting virulence factor	5.2.0	97.67	78.57
group_6209	A0A0H3GEB7	LMRG_01556	Gp27		2.33	21.43
group_5830	A0A3A2TSA1	D3B69_11245	Nucleotidyltransferase		2.33	21.43
group_3917	A0A0H3G8X1	LMRG_02492	Uncharacterized protein		39.53	7.14
group_2056	A0A3A6WUY8	AF251_14005	Uncharacterized protein		39.53	7.14
group_239	A0A392XPZ3	AF264_04535	Uncharacterized protein	5.1.0	79.07	50.00
group_1335	A0A3A2U4P7	AF236_08115	Phage baseplate upper protein	4.3.0	20.93	50.00
group_688	A0A3A7T3T4	cas1_2	CRISPR-associated endonuclease Cas1 (EC 3.1)		20.93	50.00
csbB	Q93RN0	mtrA	Dolichol-phosphate mannosyltransferase MtrA (Hypothetical glycosyl transferase)	1.1.0	74.42	100.00
group_1150	A0A394RBJ1	AF239 04485	Uncharacterized protein		25.58	0.00
tagH	UPI000BDFED64	—	teichoic acids export ABC transporter ATP-binding subunit TagH	1.1.0	74.42	100.00
rmlC	A0A1C7Q2S5	rfbC	dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) (Thymidine diphospho-4-keto-rhamnose 3,5-epimerase)	1.1.0	74.42	100.00
malP	Q8Y5E3	lmo2121	Lmo2121 protein	2.1.1	74.42	100.00
group_1153	A0A0E0UUS7	pncB	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	25.58	0.00

¥ Non L. monocytogenes species

† Description for each functional category code is presented below

[1.1.0] Cell envelope and cellular processes > Cell wall [1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins [1.3.0] Cell envelope and cellular processes > Sensors (signal transduction) [1.4.0] Cell envelope and cellular processes > Membrane bioenergetics [1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis [1.6.0] Cell envelope and cellular processes > Protein secretion [1.7.0] Cell envelope and cellular processes > Cell division [1.8.0] Cell envelope and cellular processes > Cell surface proteins [1.9.0] Cell envelope and cellular processes > Soluble internalin [1.10.0] Cell envelope and cellular processes > Transformation/competence [2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule [2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways [2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways [2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle [2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules [2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids [2.4.0] Intermediary metabolism > Metabolism of lipids [2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups [2.6.0] Intermediary metabolism > Metabolism of phosphate [3.1.0] Information pathways > DNA replication [3.2.0] Information pathways > DNA restriction/modification and repair [3.3.0] Information pathways > DNA recombination [3.4.0] Information pathways > DNA packaging and segregation [3.5.1] Information pathways > RNA synthesis > Initiation [3.5.2] Information pathways > RNA synthesis > Regulation [3.5.3] Information pathways > RNA synthesis > Elongation [3.5.4] Information pathways > RNA synthesis > Termination [3.6.0] Information pathways > RNA modification [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases [3.7.3] Information pathways > Protein synthesis > Initiation [3.7.4] Information pathways > Protein synthesis > Elongation [3.7.5] Information pathways > Protein synthesis > Termination [3.8.0] Information pathways > Protein modification [3.9.0] Information pathways > Protein folding [4.1.0] Other functions > Adaptation to atypical conditions [4.2.0] Other functions > Detoxification [4.3.0] Other functions > Phage-related functions [4.4.0] Other functions > Transposon and IS

[4.5.0] Other functions > Miscellaneous

[5.1.0] Similar to unknown proteins > From Listeria

[5.2.0] Similar to unknown proteins > From other organisms

[6.0.0] No similarity

GWAS name	Uniprot Entry	Gene name	Protein names	Functional category †	% in weak biofilm formers	% in strong biofilm formers
group_5020	A0A3A8BWY7	CFSAN002345_0022 55	Uncharacterized protein		2.17	45.45
group_5015	A0A3A2TJS8	AFX42_02310	Uncharacterized protein		0.00	36.36
clpP_1	A0A0B8R8I5	clpP	ATP-dependent Clp protease proteolytic subunit (EC 3.4.21.92) (Endopeptidase Clp)	4.1.0	100.00	63.64
group_5012	A0A3A2KHQ4	AFX42_02307	Uncharacterized protein		0.00	36.36
group_5013	UPI00074D6A4B	DLE78_04650	N-acetyltransferase		0.00	36.36
group_5010	UPI00074D6014	DLE78_04630	ATP-dependent Clp protease proteolytic subunit	4.1.0	0.00	36.36
group_5011	A0A393L9E6	AFX42_02305	Uncharacterized protein	6.0.0	0.00	36.36
group_5016	UPI000BE01261		hypothetical protein	6.0.0	0.00	36.36
group_5014	A0A3A7P6T3	AFX42_02309	Uncharacterized protein		0.00	36.36
group_1298	Q8Y842	lmo1076	Lmo1076 protein	1.1.0	86.96	36.36
group_2102	A0A3A7DM92	AF264_12825	NUDIX pyrophosphatase		13.04	63.64
group_4118	UPI000E6B7FBF		glycerol-3-phosphate cytidylyltransferase		8.70	54.55
tagB_2	A0A1D2ISQ5	CDR86_11250	Glycosyl transferase family 2	1.1.0	91.30	45.45
group_477	Q8Y9M5	lmo0501	Lmo0501 protein	3.5.2	91.30	45.45
group_4119	UPI000035D008	APS76_03080	CDP-glycerol glycerophosphotransferase family protein		8.70	54.55
tagD	A0A1C7PZ73	tagD [–]	Glycerol-3-phosphate cytidylyltransferase	1.1.0	91.30	45.45
tagF	A0A3A8BW41	tagF	Teichoic acid poly(Glycerol phosphate) polymerase (EC 2.7.8.12)		8.70	54.55
epsJ	A0A3A7GEL8	epsj	Glycosyltransferase family 2 protein (Putative glycosyltransferase EpsJ) (EC 2.4)		8.70	54.55
lytG_5	A0A3A8BW61	lytG_3	Exo-glucosaminidase LytG (EC 3.2.1)		8.70	54.55
pncB2	A0A0D8X9Q4	CDR86_11285	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	91.30	45.45
group_4426	Q8Y8H1	lmo0933	Lmo0933 protein	1.1.0	91.30	45.45
group_4049	A0A3A8BMB0	blaSE	Serine protease (EC 3.4.21)		8.70	54.55
gtaB	UPI000931810D		UTPglucose-1-phosphate uridylyltransferase GalU	1.1.0	91.30	45.45
ispD2_1	UPI0004D75A86	HT50_11035	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (Fragment)	2.1.0	91.30	45.45
group_3882	A0A3A6WVM4	AF241_14355	Uncharacterized protein	4.3.0	8.70	54.55
group_4238	A0A394Y3M2	AF264_00535	PH domain-containing protein		8.70	54.55
group_4030	A0A0B8R4F9	LmNIHS28_01899	Teichoic acid biosynthesis protein		8.70	54.55
group_3939	A0A0B8QQZ7	LmNIHS28_00261	Membrane protein		8.70	54.55
group_3938	Q9ZIC5	LmNIHS28_00260	Uncharacterized protein		8.70	54.55
group_4132	A0A3A2P6F9	AF241_04305	DUF5068 domain-containing protein		8.70	54.55
group_4131	A0A3A8BVC9	tagG [–]	Transport permease protein		8.70	54.55
group_1860	Q8YA42	lmo0322	Lmo0322 protein	5.2.0	91.30	45.45
group_4446	Q8Y839	lmo1079	Lmo1079 protein	5.2.0	91.30	45.45

group_1891	Q8Y7T3	lmo1188	Lmo1188 protein	6.0.0	91.30	45.45
group_4454	Q8Y831	tarJ	Ribulose-5-phosphate reductase (Ribulose-5-P reductase) (EC 1.1.1.405) (Ribitol-5-phosphate dehydrogenase)	2.1.0	91.30	45.45
group 3885	A0A393D4V0	AF264 14565	Pyruvyl-transferase		8.70	54.55
group_4672	UPI0009305ABB	—	GtrA family protein	1.1.0	91.30	45.45
group_4123	A0A0E1R4Q8	ispD2	Ribitol-5-phosphate cytidylyltransferase (EC 2.7.7.40)		8.70	54.55
group_2892	UPI0009B09F82	*	GW domain-containing glycosaminoglycan-binding protein	1.8.0	8.70	54.55
tagB 3	Q8Y830	tagB	TagB protein	1.1.0	91.30	45.45
group_2384	UPI000766C630	ERS409610_00158	Uncharacterized protein		8.70	54.55
ykoT	UPI000035CFFF	NT04LM_1735	Glycosyl transferase, group 2 family protein		8.70	54.55
sdpR	A0A3A8BPZ1	sdpR	Transcriptional repressor SdpR	3.5.2	8.70	54.55
group_965	UPI000D6455E8	DF273_02615	Uncharacterized protein (Fragment)		8.70	54.55
group_4237	A0A394YEX0	AF264_00540	Endonuclease (Endonuclease/exonuclease/phosphatase family protein)	5.2.0	8.70	54.55
gutB	A0A3A7GLG3	tarj	Ribulose-5-phosphate reductase (Ribulose-5-P reductase) (EC 1.1.1.405) (Ribitol-5-phosphate dehydrogenase)		8.70	54.55
group_4125	UPI000D66CEA1	DF274_15095	Uncharacterized protein (Fragment)		8.70	54.55
group_4124	A0A3A8BY01	gtaB	UTPglucose-1-phosphate uridylyltransferase (EC 2.7.7.9) (UDP-glucose pyrophosphorylase)		8.70	54.55
group_4126	A0A3A7GN59	tarl	CDP-glycerol:glycerophosphate glycerophosphotransferase (Teichoic acid poly(Ribitol-phosphate) polymerase) (EC 2.7.8)		8.70	54.55
group_4130	UPI000D66B0A6	tagH	Teichoic acids export ABC transporter ATP-binding subunit TagH (Fragment)		8.70	54.55
group_3562	Q8Y850	lmo1068	Lmo1068 protein	6.0.0	91.30	45.45
group_3954	UPI000E3C8303		cell wall teichoic acid glycosylation protein GtcA		8.70	54.55
group_3925	A0A3A8BY26	CFSAN002345_0014 36	Uncharacterized protein		8.70	54.55
group_3454	A0A0B8RAV3	LmNIHS28_01817	Uncharacterized protein		8.70	54.55
rffG	A0A1D2IST6	rfbB	dTDP-glucose 4,6-dehydratase (EC 4.2.1.46)	1.1.0	91.30	45.45
arnT	A0A3A7F315	arnt	Phospholipid carrier-dependent glycosyltransferase (Undecaprenyl phosphate-alpha- 4-amino-4-deoxy-L-arabinose arabinosyl transferase) (EC 2.4.2.43)		8.70	54.55
group_4127	A0A3A7GRB2	AF264_04425	Uncharacterized protein		8.70	54.55
rmlD	A0A1D2ISS6	rfbD	dTDP-4-dehydrorhamnose reductase (EC 1.1.1.133)	1.1.0	91.30	45.45
rmlA1	A0A0D8X3Y7	rfbA	Glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24)	1.1.0	91.30	45.45
epsJ_3	A0A3A8CCS3	epsJ_2	Putative glycosyltransferase EpsJ (EC 2.4)	1.1.0	91.30	45.45
epsJ_2	A0A3A7NTY9	epsJ_2	Glycosyltransferase (Putative glycosyltransferase EpsJ) (EC 2.4)	1.1.0	91.30	45.45
epsJ_1	Q8Y9M9	lmo0497	Lmo0497 protein	1.1.0	91.30	45.45
epsJ_4	A0A3A8BXQ8	epsJ_1	Putative glycosyltransferase EpsJ (EC 2.4)	1.1.0	91.30	45.45
group_511	A0A3A7GBM6	chia l	Chitinase (Chitinase A1) (EC 3.2.1.14)	2.1.1	15.22	63.64
lacE	A0A3A2WV58	lace	Permease IIC component		2.17	36.36
group_4998	A0A3A7BLW8	licr_6	HTH domain-containing protein (Putative licABCH operon regulator)		2.17	36.36
group_4997	A0A3A7J3I9	chbG	Carbohydrate deacetylase (EC 3.5.1)		2.17	36.36
group_3707	UPI00003CAC0A	AF251_12155	Uncharacterized protein		2.17	36.36

pagL	A0A3A7PIR9	pagL	6-phospho-alpha-glucosidase (EC 3.2.1)		2.17	36.36
lacF_6	A0A3A7PRS4	lacF_1	PTS lactose/cellobiose transporter subunit IIA (PTS system lactose-specific EIIA component) (EC 2.7.1.207)		2.17	36.36
licB_6	A0A3A7EDF1	cela_3	PTS sugar transporter subunit IIB (PTS system cellobiose-specific EIIB component) (EC 2.7.1.205)		2.17	36.36
csbB	Q93RN0	mtrA	Dolichol-phosphate mannosyltransferase MtrA (Hypothetical glycosyl transferase) (Hypothetical glycosyl transferaseglycosyl transferase)	1.1.0	89.13	45.45
group_2486	A0A3A7PTC4	AF251_01345	DNA double-strand break repair Rad50 ATPase		10.87	54.55
tagH	UPI000BDFED64		teichoic acids export ABC transporter ATP-binding subunit TagH	1.1.0	89.13	45.45
group_4194	A0A3A8BYI6	CFSAN002345_0011 97	Uncharacterized protein		10.87	54.55
group_4195	A0A0B8RHP3	LmNIHS28_01665	Uncharacterized protein		10.87	54.55
group_1153	A0A0E0UUS7	pncB	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	10.87	54.55
rmlC	A0A1C7Q2S5	rfbC	dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) (Thymidine diphospho-4-keto-rhamnose 3,5-epimerase)	1.1.0	89.13	45.45
group_1749	A0A2Z5C202	RK57_12045	Uncharacterized protein	6.0.0	10.87	54.55
malP	Q8Y5E3	lmo2121	Lmo2121 protein	2.1.1	89.13	45.45
chiA1	Q8YAL3	lmo0105	Lmo0105 protein	2.1.1	82.61	36.36
group_4056	A0A393JPV1	AF241_07740	Uncharacterized protein	6.0.0	6.52	45.45
group_2173	Q8Y4R2	lmo2372	Lmo2372 protein	1.2.0	93.48	54.55
group_3924	UPI0009B11300		GW domain-containing glycosaminoglycan-binding protein		6.52	45.45
group_396	UPI00086EB4E1		hypothetical protein		67.39	18.18
pdxT	Q71XR2	pdxT	Pyridoxal 5'-phosphate synthase subunit PdxT (EC 4.3.3.6) (Pdx2) (Pyridoxal 5'-phosphate synthase glutaminase subunit) (EC 3.5.1.2)	5.2.0	41.30	90.91
group_3706	UPI000771B0EF	cas9	Type II CRISPR RNA-guided endonuclease Cas9		0.00	27.27
group_1253	A0A0E1R3M0	BN389_02790	Uncharacterized protein		0.00	27.27
group_2019	A0A0E0URY6	LMM7_0171	Uncharacterized protein	6.0.0	34.78	81.82
group_1374	UPI000990612F		hypothetical protein	6.0.0	65.22	18.18
group_1062	A0A393CV23	AF264_09920	Glycoside hydrolase family 65 protein	2.1.1	13.04	54.55
group_3297	A0A394XZE5	AF264_03740	SMI1/KNR4 family protein	6.0.0	19.57	63.64
group_2913	A0A2Z5BYV4	RK57_05535	Uncharacterized protein	6.0.0	19.57	63.64
group_4150	A0A394XVS5	gata_l	Amidase (EC 3.5.1.4) (Glutamyl-tRNA(Gln) amidotransferase subunit A) (EC 6.3.5.7)	1.1.0	19.57	63.64
group_4142	A0A3A8BVY8	nfrA1_1	FMN reductase (NADPH) (EC 1.5.1.38)	1.4.0	19.57	63.64
group_4141	A0A3A8C3E2	yfkJ	Low molecular weight protein-tyrosine-phosphatase YfkJ (EC 3.1.3.48)		19.57	63.64
tagG	UPI000BE10CE8		ABC transporter permease	1.1.0	80.43	36.36
group_4664	Q8Y4K6	lmo2432	Lmo2432 protein	6.0.0	80.43	36.36
nfrA1_2	A0A3A8BZV6	nfrA1_1	FMN reductase (NADPH) (EC 1.5.1.38)	1.4.0	80.43	36.36
sttH	Q8Y9A3	lmo0629	Lmo0629 protein	5.2.0	80.43	36.36
tagB_1	A0A3A8BZ54	tarL_2	Teichoic acid ribitol-phosphate polymerase TarL (EC 2.7.8.14)	1.1.0	80.43	36.36
group_3621	Q8Y4Q9	lmo2375	Lmo2375 protein	6.0.0	80.43	36.36

yfkJ	Q8Y8G6	lmo0938	Lmo0938 protein	3.8.0	80.43	36.36
group_1295	Q8Y8G5	lmo0939	Lmo0939 protein	6.0.0	80.43	36.36
group_3764	A0A3A2PYQ0	AF255_08255	Uncharacterized protein	6.0.0	54.35	9.09
ytrB_3	A0A0E1R8M1	yhcG	Uncharacterized ABC transporter ATP-binding protein YhcG	1.2.0	8.70	45.45
hrtA_2	A0A0E1RFE7	hrtA	Putative hemin import ATP-binding protein HrtA (EC 3.6.3)	1.2.0	8.70	45.45
group_4931	A0A393UJY3	AB922_03066	Dihydroorotate dehydrogenase (Quinone)	5.1.0	8.70	45.45
inlA_13	A0A394XWP9	AF264_05160	Cell surface protein		4.35	36.36
group_194	A0A394YAU8	AF255_15365	Uncharacterized protein		73.91	27.27
group_3355	A0A3A8BXQ6	mhqA_2	Putative ring-cleaving dioxygenase MhqA (EC 1.13.11)	5.2.0	21.74	63.64
mhqA_2	Q8Y8Y4	lmo0758	Lmo0758 protein	5.2.0	78.26	36.36
group_745	Q8Y4R3	lmo2371	Lmo2371 protein	1.2.0	78.26	36.36
trxA_3	UPI000BDFC1FB		thioredoxin	1.4.0	78.26	36.36
group_3532	Q8Y9D1	lmo0601	Lmo0601 protein	1.8.0	84.78	45.45
group_3961	A0A0E0UZG3	LMM7_2508	Uncharacterized protein	6.0.0	15.22	54.55
group_3479	A0A3A8BLK1	CFSAN002345_0020 71	Uncharacterized protein		15.22	54.55
group_4198	W5U092	<i>lntA</i>	Nuclear-targeted protein A	6.0.0	15.22	54.55
group_676	Q8Y496	ami	Autolysin, amidase	1.8.0	84.78	45.45
group_4184	A0A394ZL82	AF264_02035	DUF4097 domain-containing protein	1.8.0	15.22	54.55
group_2446	Q8Y9C6	lmo0606	Lmo0606 protein	3.5.2	84.78	45.45
group_1275	Q8YA41	lmo0323	Lmo0323 protein	5.2.0	71.74	27.27
group_3711	A0A392WYQ6	AB922_00952	Glycosyltransferase		28.26	72.73
mgtB	A0A1D2IRU1	mgtA	Magnesium-translocating P-type ATPase	1.2.0	69.57	27.27
group_2548	UPI000874D6A9	-	polysaccharide deacetylase		69.57	27.27
group_1624	A0A3A7U6D9	ARK97_06545	ABC transporter permease	5.2.0	69.57	27.27
group_4156	A0A0B8QPW4	LmNIHS28_00567	Uncharacterized protein		10.87	45.45
group_1747	Q8Y8S5	lmo0819	Lmo0819 protein	6.0.0	89.13	54.55
group_1843	A0A1S7FP06	DC57_14095	6-phospho-beta-glucosidase	2.1.1	60.87	18.18
group_620	A0A0E0UTZ8	rarD [–]	Putative chloramphenicol resistance permease	5.2.0	50.00	90.91
group_4408	Q8Y8U3	lmo0800	Lmo0800 protein	5.2.0	50.00	9.09
group_2584	Q8Y8U2	lmo0801	Lmo0801 protein	1.8.0	50.00	9.09
group_4160	A0A0E1RAZ5	yqkB	Uncharacterized protein yqkB	5.2.0	50.00	90.91
group_138	UPI000D733290		hypothetical protein		17.39	54.55
group_3888	A0A0B8RBN9	LmNIHS28 00109	Uncharacterized protein	6.0.0	17.39	54.55
iscS_1	Q8Y713	lmo1513	Lmo1513 protein	2.5.0	82.61	45.45
group 3931	A0A2Z5BZG6	RK57 07490	Uncharacterized protein	6.0.0	17.39	54.55
group_1946	A0A0B8REH4	LmNIHS28 00150	Membrane protein		17.39	54.55
group_4099	UPI000D648E93	DF275 07015	Uncharacterized protein (Fragment)		17.39	54.55
group_1250	A0A1S7FP90	DC57_14415	Uncharacterized protein		17.39	54.55
group_2447	Q8Y9C6	lmo0606	Lmo0606 protein	3.5.2	17.39	54.55
group_5029	A0A3A7M840	wapA_2	tRNA(Glu)-specific nuclease WapA (EC 3.1)		2.17	27.27

group_5028	A0A3A2S117	AF251_01095	Uncharacterized protein		2.17	27.27
tipA	A0A3A2S5M2	tipa	HTH-type transcriptional activator TipA (MerR family DNA-binding transcriptional regulator) (MerR family transcriptional regulator)	3.5.2	97.83	72.73
group 5054	A0A394X1X5	AF241 10790	RNA-dependent DNA polymerase		2.17	27.27
group_5055	A0A0B8QVQ7		Uncharacterized protein	6.0.0	2.17	27.27
group_5053	A0A0B8R0D3	LmNIHS28_01546	Uncharacterized protein			27.27
gatZ	UPI000436C1E8	HR60 13125	Sugar-phosphate kinase	2.1.1		72.73
wapA_4	UPI000766B890	DLE78 09465	RHS repeat protein			27.27
wapA_1	UPI00098DDBEB	—	RHS repeat protein		2.17	27.27
group_5030	A0A3A7D2C0	AF251 01085	Uncharacterized protein		2.17	27.27
group_5023	A0A3A8BNT5	CFSAN002345_0022 52	Uncharacterized protein			27.27
group_1772	A0A3A7DAW7	yjjg_l	HAD family hydrolase (Pyrimidine 5'-nucleotidase YjjG) (EC 3.1.3.5)	5.2.0	97.83	72.73
group_5021	A0A3A2JJ17	AF251_01115	Uncharacterized protein			27.27
group_5119	A0A3A8BVS8	CFSAN002345_0017	Uncharacterized protein			27.27
group_5022	UPI000BE0260F	35	hypothetical protein		2.17	27.27
group_5022 group_5026	A0A3A7LWS8	AFX52 00217	Uncharacterized protein			27.27
group_5020 group_5024	A0A3A2RTQ9	AF251 01105	Uncharacterized protein			27.27
manP_4	UPI000434E433	HR60 13110	PTS fructose transporter subunit IIA	1.2.0		72.73
manP 3	A0A0E1R4Q4	frwC	Fructose-like permease IIC component 2 (EC 2.7.1.69)	1.2.0	97.83	72.73
manP 2	A0A0E1R3Y0	frwB 2	Fructose-like phosphotransferase enzyme IIB component 2 (EC 2.7.1.69)	1.2.0		72.73
licR_4	A0A393DPZ5	manR 2	PRD domain-containing protein (Transcriptional regulator ManR)	3.5.2		72.73
wapA_2	A0A3A7MMB4	wapA_3	tRNA(Glu)-specific nuclease WapA (EC 3.1)	0.0.12		27.27
group_728	A0A393CRH4	mgtA	Magnesium-translocating P-type ATPase (Magnesium-transporting ATPase, P-type 1) (EC 3.6.3.2)	1.2.0		72.73
group_2018	A0A3A7KBU5	AF844_02597	Uncharacterized protein	6.0.0	32.61	72.73
group_4350	P58495	lmo0363	Uncharacterized peptidase Lmo0363 (EC 3.4.21)	2.2.0	67.39	27.27
group_4351	Q8YA03	lmo0364	Lmo0364 protein	3.5.2	67.39	27.27
group_1623	A0A0B8QZI6	LmNIHS28_01291	ABC transporter permease	5.2.0		72.73
group_2675	A0A0H3GDV9	LMRG 01255	Uncharacterized protein		58.70	18.18
group_4816	A0A0E0UXP2	LMM7_2202	Uncharacterized protein		58.70	18.18
group_1963	UPI00098E7CD3	—	superoxide dismutase	6.0.0	58.70	18.18
group_1845	Q9EXF8	bglA	Beta-glucosidase (EC 3.2.1.21) (Glycoside hydrolase family 1 protein)	2.1.1	41.30	81.82
actA	Q6E9G6	actA	ActA (Actin nucleator protein ActA)	1.8.0	93.48	63.64
group_2832	A0A393FL10	AF264_13375	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	6.52	36.36
wapA	A0A0E1R9W5	wapA_2	Wall-associated protein		6.52	36.36
group_925	A0A0E0USB0	prs	Ribose-phosphate pyrophosphokinase (RPPK) (EC 2.7.6.1) (5-phospho-D-ribosyl alpha-1-diphosphate)		93.48	63.64
group_4930	UPI000BE0165D		actin assembly-inducing protein ActA	1.8.0	6.52	36.36
group_3771	A0A2A6A353	CDR86_14020	Uncharacterized protein		36.96	0.00

group_3773	A0A2A6A3R8	CDR86_14045	Uncharacterized protein		36.96	0.00
group_3870	A0A2A6A392	CDR86_14115	RNA polymerase subunit sigma		36.96	0.00
group_3775	A0A2A5ZJU3	CDR86_14055	Head-tail adaptor protein		36.96	0.00
group_3774	A0A2A5ZKW1	CDR86_14050	Uncharacterized protein		36.96	0.00
group_3776	A0A2A5ZK62	CDR86_14085	Terminase large subunit		36.96	0.00
group_5438	A0A2A6A383	CDR86_14065	Phage major capsid protein		36.96	0.00
group_5436	A0A2A6A494	CDR86_14040	Phage tail protein		36.96	0.00
group_5437	A0A2A6A2S9	CDR86_14060	Uncharacterized protein		36.96	0.00
group_2732	A0A393U4Y6	AF255_14330	DUF2974 domain-containing protein	6.0.0	36.96	0.00
group_5515	UPI000BE047C1		DUF1310 family protein	5.1.0	36.96	0.00
group_5452	A0A2A5ZM51	CDR86_09880	DUF771 domain-containing protein		36.96	0.00
group_5450	A0A3A2JSK3	AF847_01777	Uncharacterized protein		36.96	0.00
group_5455	A0A2A6A624	CDR86_09860	Uncharacterized protein		36.96	0.00
group_2724	A0A2A6A2X1	CDR86_14035	Uncharacterized protein		36.96	0.00
group_2723	A0A2A6A314	CDR86_14025	Phage tail protein		36.96	0.00
smc_5	A0A3A2L5G2	AF249_02565	Phage tail tape measure protein		36.96	0.00
group_1980	A0A392WP24	AF255_14340	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	36.96	0.00
group_5441	A0A2A6A2T7	CDR86_14110	Site-specific integrase		36.96	0.00
group_5440	A0A3A2Q1E8	AF847_01796	Phage portal protein		36.96	0.00
group_3781	A0A3A7A859	AF847_01778	Uncharacterized protein		36.96	0.00
group_2664	A0A392YE54	AF247_14605	Uncharacterized protein		36.96	0.00
Int-Tn	A0A2A6A695	CDR86_09855	Site-specific integrase		34.78	0.00
group_3777	A0A2A5ZK31	CDR86_14090	Phage terminase small subunit P27 family		34.78	0.00
group_2672	A0A3A7FGJ9	AF239_12510	Uncharacterized protein	4.3.0	34.78	0.00
group_2671	A0A393PJM9	AF828_02772	AP2 domain-containing protein	4.3.0	34.78	0.00
group_5439	A0A2A5ZKF2	CDR86_14070	HK97 family phage prohead protease		34.78	0.00
group_1346	A0A3A7FZC8	AF951_02536	Uncharacterized protein		34.78	0.00
group_746	A0A0B8R487	LmNIHS28_01552	ABC transporter permease	1.2.0	23.91	63.64
group_2646	Q8Y4H5	lmo2466	Lmo2466 protein	6.0.0	76.09	36.36
group_2223	A0A0B8R893	AJL15_12980	Transcriptional regulator	5.2.0	23.91	63.64
group_2786	A0A3A7GA62	AF264_14775	Uncharacterized protein	6.0.0	23.91	63.64
group_1443	Q8Y3Y2	lmo2697	Lmo2697 protein	5.2.0	76.09	36.36
group_1424	A0A1S7FQ19	DC57_01000	Uncharacterized protein	6.0.0	13.04	45.45
group_877	UPI000D65622D	DF271_11275	Uncharacterized protein (Fragment)	6.0.0	13.04	45.45
group_3930	A0A2Z5BZG2	RK57_07500	DUF1310 family protein	5.1.0	13.04	45.45
group_4176	A0A0B8RDT5	LmNIHS28_00904	Uncharacterized protein		13.04	45.45
group_4175	A0A3A6WQ80	AB922_01521	Uncharacterized protein		13.04	45.45
group_143	A0A3A2J7V9	AF247_01180	BspA family leucine-rich repeat surface protein	1.8.0	13.04	45.45
group_4612	Q8Y5J1	lmo2070	Lmo2070 protein	5.2.0	80.43	45.45
group_3197	A0A3A7EY63	AB922_02243	N-acetyltransferase	5.2.0	19.57	54.55
group_3196	Q720B7	LMOf2365_1322	UPF0291 protein LMOf2365_1322	5.2.0	19.57	54.55

group_4614	A0A2A5ZFW1	CDR86_01560	FeoB-associated Cys-rich membrane protein		80.43	45.45
licT_3	Q8Y3P6	bvrA	Transcription antiterminator	3.5.2	80.43	45.45
ulaB_2	A0A3A8BNH7	$ulaB_2$	Ascorbate-specific PTS system EIIB component (EC 2.7.1.194)	1.2.0	80.43	45.45
inlB_2	Q8Y9H9	lmo0549	Lmo0549 protein	1.9.0	80.43	45.45
manX_4	Q8YAU2	lmo0021	Lmo0021 protein	1.2.0	80.43	45.45
group_4516	Q8Y6P9	lmo1635	Lmo1635 protein	5.2.0	80.43	45.45
group_4517	Q8Y6P4	lmo1640	Lmo1640 protein	6.0.0	80.43	45.45
tpiA_1	Q8YA20	tpiA2	Probable triosephosphate isomerase 2 (TIM 2) (TPI 2) (EC 5.3.1.1) (Triose- phosphate isomerase 2)	2.1.2	80.43	45.45
group_4054	A0A394RA98	AF239_08275	HD domain-containing protein	5.2.0	19.57	54.55
group_4057	A0A3A7ML43	AF251_07735	2-methyl-6-phytyl-1,4-hydroquinone methyltransferase (EC 2.1.1.295) (Class I SAM dependent methyltransferase)	5.2.0	19.57	54.55
group_4050	A0A3A8BL21	thiN	Thiamine pyrophosphokinase (EC 2.7.6.2)	2.5.0	19.57	54.55
group_4053	A0A0B8R933	LmNIHS28_02291	Uncharacterized protein	6.0.0	19.57	54.55
group_4052	A0A2Z5BX03	RK57_02435	DUF1697 domain-containing protein	5.2.0	19.57	54.55
group_4059	A0A3A8BR73	fosX	Fosfomycin resistance protein FosX	4.1.0	19.57	54.55
group_4058	UPI0004366B26	HR60_00125	UPF0435 protein HR60_00125	5.2.0	19.57	54.55
group_820	A0A393CUI8	AF264_04565	Alpha/beta hydrolase	6.0.0	19.57	54.55
group_2626	Q8Y593	lmo2176	Lmo2176 protein	3.5.2	80.43	45.45
group_2627	Q8Y582	lmo2189	Lmo2189 protein	1.10.0	80.43	45.45
group_2629	Q8Y512	lmo2266	Lmo2266 protein	5.2.0	80.43	45.45
fruA_9	A0A3A8BML0	fruA_3	PTS system fructose-specific EIIABC component	1.2.0	19.57	54.55
glmS_1	A0A3A8C038	glmS_2	Glutaminefructose-6-phosphate aminotransferase isomerizing (EC 2.6.1.16)	2.1.1	80.43	45.45
group 3537	Q8Y973	lmo0660	Lmo0660 protein	4.4.0	80.43	45.45
group 3535	UPI000EF5BE8A		DUF975 family protein	5.2.0	80.43	45.45
group_3534	A0A3A8CFC5	speG 1	Spermidine N(1)-acetyltransferase (EC 2.3.1.57)	5.2.0	80.43	45.45
group_3539	Q8Y8Z5	lmo0747	Lmo0747 protein	6.0.0	80.43	45.45
ytnP	Q8Y6R9	lmo1614	Lmo1614 protein	5.2.0	80.43	45.45
addB	Q8Y510	addB	ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddB)	3.3.0	80.43	45.45
addA	Q8Y511	addA	ATP-dependent helicase/nuclease subunit A (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddA)	3.3.0	80.43	45.45
group_225	UPI0001D010DE	inlj_14	Internalin-J	1.8.0	19.57	54.55
group_3965	A0A3A7GK80	mggb	Bifunctional metallophosphatase/5'-nucleotidase (Mannosylglucosyl-3- phosphoglycerate phosphatase) (EC 3.1.3)	5.2.0	19.57	54.55
group_3966	A0A2Z5BYS6	RK57_05330	Crp/Fnr family transcriptional regulator		19.57	54.55
group_3963	A0A3A7G3T8	AF251_11130	Uncharacterized protein	6.0.0	19.57	54.55
group_3339	A0A393CSM1	AF264_03070	DUF3130 family protein (TIGR04197 family type VII secretion effector)		19.57	54.55
proC_2	A0A3A8C3U2	proC_1	Pyrroline-5-carboxylate reductase (EC 1.5.1.2)	2.2.0	80.43	45.45
sigW	Q8Y9U7	lmo0423	Lmo0423 protein	3.5.1	80.43	45.45

group 1244	A0A393CR87	AF264_00605	Ribonuclease P	5.1.0	19.57	54.55
group_4573	Q8Y6D7	lmo1750	Lmo1750 protein	5.2.0	80.43	45.45
group_4577	Q8Y6B2	lmo1779	Lmo1779 protein	6.0.0	80.43	45.45
group_4575	Q8Y6B4	lmo1777	Lmo1777 protein	5.2.0	80.43	45.45
group_4578	A0A3A8BJ82	azoR_2	FMN-dependent NADH-azoreductase (EC 1.7)	1.4.0	80.43	45.45
ybjG	Q8Y6R1	lmo1623	Lmo1623 protein	5.2.0	80.43	45.45
cbiE	A0A3A8C045	cbiE	Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289)	2.5.0	80.43	45.45
yjaB	A0A3A8BXM4	yjaB	Putative N-acetyltransferase YjaB (EC 2.3.1)	5.2.0	80.43	45.45
ulaC_3	A0A3A8BN71	$ulaC_3$	Ascorbate-specific PTS system EIIA component (EC 2.7.1.194)	1.2.0	80.43	45.45
group_4503	Q8Y760	lmo1443	Lmo1443 protein	5.2.0	80.43	45.45
group_4500	Q8Y785	lmo1410	Lmo1410 protein	6.0.0	80.43	45.45
group_4509	Q8Y6X6	lmo1555	Lmo1555 protein	2.5.0	80.43	45.45
group_4487	Q8Y7L2	lmo1265	Lmo1265 protein	1.2.0	80.43	45.45
group_4489	A0A1D2IPZ2	dprA	DNA-protecting protein DprA	3.8.0	80.43	45.45
group_3470	A0A392X3L4	AF241_00505	Superoxide dismutase	6.0.0	19.57	54.55
group_2916	A0A393D408	trxa_4	Thioredoxin (Thioredoxin 1)	1.4.0	19.57	54.55
group_5648	A0A0B8RAI5	LmNIHS28_01933	Cell surface protein		19.57	54.55
group_4374	Q8Y9B7	lmo0615	Lmo0615 protein	6.0.0	80.43	45.45
group_4375	Q8Y9B5	lmo0617	Lmo0617 protein	5.1.0	80.43	45.45
group_4472	Q8Y7Q8	lmo1214	Lmo1214 protein	6.0.0	80.43	45.45
group_1303	Q8Y7Z1	lmo1128	Lmo1128 protein	6.0.0	80.43	45.45
group_4090	A0A3A7N8T5	bioC	Class I SAM-dependent methyltransferase (Malonyl-[acyl-carrier protein] O- methyltransferase) (EC 2.1.1.197)	3.8.0	19.57	54.55
group_4093	C1L2K1	miaA	tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase)	3.6.0	19.57	54.55
group_4092	A0A0E1R7G6	ynbB	Uncharacterized protein ynbB	4.2.0	19.57	54.55
group_4095	C1L2I1	rnhB	Ribonuclease HII (RNase HII) (EC 3.1.26.4)	3.1.0	19.57	54.55
group_4094	A0A2Z5C362	dprA	DNA-protecting protein DprA		19.57	54.55
group_4096	A0A2Z5C3E4	RK57_14300	Uncharacterized protein	1.2.0	19.57	54.55
group_4623	Q8Y555	lmo2221	Lmo2221 protein	5.2.0	80.43	45.45
group_4152	A0A0E1R689	ysdA	Uncharacterized protein ysdA	5.2.0	19.57	54.55
group_4621	Q8Y592	lmo2177	Lmo2177 protein	5.2.0	80.43	45.45
group_4154	A0A1T1YQG4	DC57_11460	Transposase	4.4.0	19.57	54.55
sdrF	Q8Y5H7	lmo2085	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	80.43	45.45
sdrD	Q8Y479	lmo2576	Peptidoglycan anchored protein (LPXTG motif)	1.8.0	80.43	45.45
group_4252	A0A2Z5C1U4	RK57_09025	Uncharacterized protein	6.0.0	19.57	54.55
thiO	A0A3A8BP94	thiO	Glycine oxidase (EC 1.4.3.19)	2.2.0	80.43	45.45
thiN	A0A3A8BXM3	thiN	Thiamine pyrophosphokinase (EC 2.7.6.2)	2.5.0	80.43	45.45
group_4392	A0A3A8CAQ5	rbsR_1	Ribose operon repressor	3.5.2	80.43	45.45
group_4396	A0A3A8C7X5	bglF_2	PTS system beta-glucoside-specific EIIBCA component	1.2.0	80.43	45.45
thiF	Q8Y868	lmo1049	Lmo1049 protein	2.5.0	80.43	45.45

group_2703	A0A393RS60	inlK LmNIHS28 02243	Class 1 internalin InIK (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein	1.8.0	19.57 19.57	54.55 54.55
group_2701	A0A0B8RBH2 A0A394Y342	_	Internalin (Internalin-A) (LPXTG cell wall anchor domain-containing protein)	1.8.0	19.37 19.57	54.55 54.55
inlA_11 inlA_3	UPI000BDFD377	inla_4	Imol 136 family class 1 internalin	1.8.0	80.43	54.55 45.45
ulaA 2	Q8Y5T4	lmo1971	Lmo1971 protein	1.8.0	80.43 80.43	45.45 45.45
_	Q81314 Q8Y7I7	lmo1290	Lmo1971 protein	1.2.0	80.43 80.43	45.45 45.45
inlA_1	UPI000035D3A8	isdE	Heme ABC transporter substrate-binding protein IsdE	1.8.0	80.43 19.57	43.43 54.55
group_4024	A0A2Z5BZU3		ABC transporter ATP-binding protein	1.2.0	19.57	54.55 54.55
group_4025		RK57_04520	Uncharacterized protein	5.2.0	19.57	54.55 54.55
group_4026	A0A0D4CB02 A0A2Z5BZF4	AJL15_12175	TetR/AcrR family transcriptional regulator	3.2.0	19.37 19.57	54.55 54.55
group_4027		<i>RK57_04485</i>		520		
group_4020	A0A3A7JKS7	yhaO	Exonuclease SbcCD subunit D (Putative metallophosphoesterase YhaO)	5.2.0	19.57	54.55
group_4021	A0A0B8QRP4	LmNIHS28_01575	Uncharacterized protein	5.2.0	19.57	54.55
group_4022	A0A0B8RAU1	LmNIHS28_02204	Membrane protein	6.0.0	19.57	54.55
group_4023	UPI0001EBA5A3	NT04LM_3257	Heme uptake protein IsdC	1.8.0	19.57	54.55
albF	Q8Y797	lmo1393	Lmo1393 protein	2.2.0	80.43	45.45
group_3588	Q8Y7E0	lmo1343	Lmo1343 protein	1.10.0	80.43	45.45
group_2775	A0A393S3L9	AF264_15050	Uncharacterized protein	6.0.0	19.57	54.55
group_5614	A0A3A6XF35	addb	ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddB)	3.3.0	19.57	54.55
group_3927	A0A0B8RBU5	LmNIHS28_00179	RNA-binding protein	5.2.0	19.57	54.55
lutR_1	A0A3A8CF58	lutR_2	HTH-type transcriptional regulator LutR	3.5.2	80.43	45.45
group_3500	Q8Y451	lmo2604	Lmo2604 protein	5.2.0	80.43	45.45
macB_4	A0A3A8BUW4	yknY_2	Putative ABC transporter ATP-binding protein YknY (EC 3.6.3)		19.57	54.55
aguA_2	A0A0H3G891	aguA	Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase)	5.2.0	80.43	45.45
group_3306	A0A0B8QYA4	LmNIHS28_00502	Uncharacterized protein		19.57	54.55
group_662	Q8Y7Z0	lmo1129	Lmo1129 protein	5.2.0	80.43	45.45
group_3571	Q8Y7X3	lmo1146	Lmo1146 protein	5.2.0	80.43	45.45
group_4440	Q8Y855	lmo1063	Lmo1063 protein	1.2.0	80.43	45.45
ypdB	Q8Y8C4	lmo0984	Lmo0984 protein	3.5.2	80.43	45.45
group_4087	A0A2Z5BXN3	RK57_00065	Type II secretion system protein	1.10.0	19.57	54.55
lntA	Q8Y9T5	<i>lntA</i>	Listeria nuclear targeted protein A	6.0.0	80.43	45.45
group_2953	UPI0001B4220F	ARJ20_02020	LPXTG cell wall anchor domain-containing protein		19.57	54.55
group_4085	A0A0E0UWI3	LMM7_1468	Uncharacterized protein	5.2.0	19.57	54.55
group_4432	A0A0H3GJ44	LMRG_02074	Uncharacterized protein		80.43	45.45
group_4430	Q8Y8D8	lmo0966	Lmo0966 protein	5.2.0	80.43	45.45
group_2353	Q8VMX1		Putative Gp2		19.57	54.55
group_4088	A0A393RS12	AF264_05675	Competence protein ComG	1.10.0	19.57	54.55
group_4190	A0A3A7GJ00	inla_3	Internalin-A (Leucine-rich repeat domain-containing protein)	1.9.0	19.57	54.55
group_4191	A0A394Y4B3	AF264_01750	Transcriptional regulator	6.0.0	19.57	54.55
group_4219	A0A2Z5C2B1		GntR family transcriptional regulator		19.57	54.55
group_4218	A0A393CNN4		Uncharacterized protein		19.57	54.55

group_4216	UPI000035CDC6	BN389_04240	Uncharacterized protein		19.57	54.55
group_4215	A0A0B8R4Y8	LmNIHS28_01937	ATPase	5.2.0	19.57	54.55
group_4214	A0A2Z5C2C0	RK57_09950	Uncharacterized protein	6.0.0	19.57	54.55
group_4668	Q8Y4D7	comFC	ComFC protein	1.10.0	80.43	45.45
group_4669	Q8Y4D6	comFA	ComFA protein	1.10.0	80.43	45.45
pknB	A0A3A8C235	pknB	Serine/threonine-protein kinase PknB (EC 2.7.11.1)	3.8.0	80.43	45.45
hcnC	A0A3A7J837	hcnC	FAD-binding oxidoreductase (Hydrogen cyanide synthase subunit HcnC) (EC 1.4.99.5)	2.2.0	19.57	54.55
group_897	Q8Y7R0	lmo1212	Lmo1212 protein	5.2.0	80.43	45.45
group_3399	A0A0E1R5P0	yesJ	Uncharacterized N-acetyltransferase YesJ (EC 2.3.1)	5.2.0	19.57	54.55
adrA	A0A0E1REZ1	yhcK	Uncharacterized protein yhcK	5.2.0	19.57	54.55
group_4322	Q8Y3I4	lmo2852	Lmo2852 protein	5.2.0	80.43	45.45
group_4324	Q8YAT7	cutC	Copper homeostasis protein CutC	4.2.0	80.43	45.45
group_4068	A0A3A7T7A5	ytnP	MBL fold metallo-hydrolase (Putative quorum-quenching lactonase YtnP) (EC 3.1.1)	5.2.0	19.57	54.55
group 4069	C1KVN8	argC	N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) (EC 1.2.1.38)	2.2.0	19.57	54.55
ytrA_4	A0A3A8BN52	ytrA_3	HTH-type transcriptional repressor YtrA	3.5.2	80.43	45.45
rnhB	Q8Y7K4	rnhB	Ribonuclease HII (RNase HII) (EC 3.1.26.4)	3.1.0	80.43	45.45
group_4060	A0A3A2X1R4	AF264_07635	Uncharacterized protein	6.0.0	19.57	54.55
group_4061	A0A393RQY0	ybbh_2	MurR/RpiR family transcriptional regulator (Putative HTH-type transcriptional regulator YbbH)		19.57	54.55
group_4063	A0A0B8R8T3	LmNIHS28_01308	Permease		19.57	54.55
group_4064	UPI000035D1DA	SAMD00023519_011 57	Cell surface protein		19.57	54.55
group_4065	A0A2Z5BWP2	RK57 01585	Uncharacterized protein	6.0.0	19.57	54.55
group_4066	UPI0004352777	X846_1709	Uncharacterized protein	5.2.0	19.57	54.55
group_4067	A0A0E1R8B1	yodM	Putative lipid phosphate phosphatase yodM (EC 3.1.3)	5.2.0	19.57	54.55
group_4103	A0A3A7Z0I1	pduX	L-threonine kinase (EC 2.7.1.177) (Propanediol utilization protein)	5.2.0	19.57	54.55
group_4102	A0A0B8R3Z5	LmNIHS28_00732	DNA topology modulation protein	5.2.0	19.57	54.55
group_4101	A0A0B8QUW8	LmNIHS28_00730	Uncharacterized protein	6.0.0	19.57	54.55
group_4100	A0A1S7FLP7	DC57_09570	ABC transporter permease	5.2.0	19.57	54.55
group_4107	A0A3A8BV76	cobU	Bifunctional adenosylcobalamin biosynthesis protein CobU (EC 2.7.1.156)		19.57	54.55
group_4106	A0A2Z5C4I3	cobC	Alpha-ribazole phosphatase	2.5.0	19.57	54.55
group_4105	A0A0E1R5F1	eutJ	Ethanolamine utilization protein eutJ	2.1.1	19.57	54.55
group_4104	A0A2Z5C4F6	pduM	Microcompartment protein PduM	6.0.0	19.57	54.55
group_4034	A0A2Z5BZ37	RK57_04110	DeoR/GlpR transcriptional regulator	3.5.2	19.57	54.55
group_4108	A0A0B8R7E7	LmNIHS28_00778	Alpha-L-fucosidase	5.2.0	19.57	54.55
group_3612	Q8Y531	lmo2245	Lmo2245 protein	5.2.0	80.43	45.45
nagA_1	A0A3A7N225	nagA_1	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)	2.1.1	19.57	54.55
pduX	Q8Y7U9	lmo1170	Lmo1170 protein	5.2.0	80.43	45.45
cpnA	A0A3A8BW91	cpnA	Cyclopentanol dehydrogenase (EC 1.1.1.163)	2.1.1	19.57	54.55

group_3396	A0A392Y5A5	inlj_7	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain-containing protein)		19.57	54.55
group_3606	O8Y5F8	lmo2106	Lmo2106 protein	5.2.0	80.43	45.45
group_3541	Q8Y8Z4	lm02100 lm00748	Lmo2748 protein	6.0.0	80.43	45.45
mtlR 4	A0A3A8C544	mtlR 1	Transcriptional regulator MtlR	3.5.2	19.57	54.55
group_3977	UPI00043694BE	HR60 08380	Hydrolase	5.2.0	19.57	54.55
group_5777	011000+307+DL	11100_00500	ATP-dependent helicase/nuclease subunit A (EC 3.1) (EC 3.6.4.12) (ATP-	5.2.0	17.57	54.55
group_3979	A0A3A7GK99	adda	dependent helicase/nuclease AddA)	3.3.0	19.57	54.55
group_3978	A0A2Z5BY92	RK57_04995	DUF523 domain-containing protein	5.2.0	19.57	54.55
group_2127	Q8Y482	lmo2573	Zinc-type alcohol dehydrogenase-like protein	2.1.1	80.43	45.45
pleD	A0A3A8BW24	pleD	Response regulator PleD	5.2.0	80.43	45.45
argB	A0A1D2IV64	argB	Acetylglutamate kinase (EC 2.7.2.8) (N-acetyl-L-glutamate 5-phosphotransferase) (NAG kinase) (NAGK)	2.2.0	80.43	45.45
argC	Q8Y6U1	argC	N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) (EC 1.2.1.38)	2.2.0	80.43	45.45
argD	Q8Y6U4	argD	Acetylornithine aminotransferase (ACOAT) (EC 2.6.1.11)	2.2.0	80.43	45.45
glyS	Q8Y754	glyS	GlycinetRNA ligase beta subunit (EC 6.1.1.14) (Glycyl-tRNA synthetase beta subunit) (GlyRS)	3.7.2	80.43	45.45
group_1908	A0A1D2IZW1	nagA	N-acetylglucosamine-6-phosphate deacetylase	2.1.1	80.43	45.45
glmS_3	A0A3A8C081	glmS_2	Glutaminefructose-6-phosphate aminotransferase isomerizing (EC 2.6.1.16)	2.1.1	19.57	54.55
group_4569	Q8Y6H7	lmo1707	UPF0435 protein lmo1707	5.2.0	80.43	45.45
group_3624	Q8Y481	lmo2574	Lmo2574 protein	6.0.0	80.43	45.45
bglH_3	A0A3A8C1L2	bglH_2	Aryl-phospho-beta-D-glucosidase BglH (EC 3.2.1.86)	2.1.1	80.43	45.45
group_4703	A0A394ZKB6	inlj_1	Internalin-J (LPXTG cell wall anchor domain-containing protein) (Peptidoglycan- binding protein)	1.8.0	19.57	54.55
group 4318	Q8Y3P8	bvrC	BvrC protein	5.2.0	80.43	45.45
group_4494	Q8Y7H5	lmo1304	UPF0291 protein lmo1304	5.2.0	80.43	45.45
group 4497	UPI000BDF6015		DUF1033 family protein	5.2.0	80.43	45.45
group_4496	Q8Y7A8	lmo1380	Lmo1380 protein	6.0.0	80.43	45.45
group_4491	Q8Y7I1	lmo1297	Lmo1297 protein	4.2.0	80.43	45.45
group_4492	Q8Y7H8	lmo1301	Lmo1301 protein	5.2.0	80.43	45.45
group_4499	A0A1D2IVP2	fabG	3-oxoacyl-ACP reductase (EC 1.1.1.100)	2.4.0	80.43	45.45
xylF	Q8Y5F5	lmo2109	Lmo2109 protein	2.1.1	80.43	45.45
ydfG	Q8Y5S9	lmo1976	Lmo1976 protein	2.1.1	80.43	45.45
group_2269	A0A393RX26	AF264 07710	Uncharacterized protein	5.2.0	19.57	54.55
group_4402	A0A0E0UTV9	LMM7_0781	Uncharacterized protein	6.0.0	80.43	45.45
group_4369	Q8Y9K2	lmo0525	Lmo0525 protein	5.2.0	80.43	45.45
miaA	Q8Y7I3	miaA	tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase)	3.6.0	80.43	45.45
pgcA_1	Q8Y8N1	lmo0865	Lmo0865 protein	2.1.1	80.43	45.45
group_4149	A0A393JKC4	AF239 03205	Uncharacterized protein	6.0.0	19.57	54.55
U 1_		_				

group_4147	A0A2Z5C668	RK57_12295	TetR/AcrR family transcriptional regulator	6.0.0	19.57	54.55
group_4146	A0A393PPX4	AB922_01757	Uncharacterized protein	6.0.0	19.57	54.55
group_4144	A0A3A7GNS4	AF264_03680	Putative 3-methyladenine DNA glycosylase (EC 3.2.2)	3.2.0	19.57	54.55
group_1286	Q8Y945	lmo0695	Lmo0695 protein	6.0.0	80.43	45.45
group_4225	A0A1T1YI43	DC57_13835	Uncharacterized protein		19.57	54.55
group_1283	Q8Y9E3	lmo0587	Putative secreted protein	6.0.0	80.43	45.45
group_4223	A0A241SLD8	ltrA	Low temperature requirement protein A	4.1.0	19.57	54.55
group_4221	A0A0E1R4Z6	BN389_04160	Uncharacterized protein		19.57	54.55
group_4382	Q8Y981	lmo0652	Lmo0652 protein	5.2.0	80.43	45.45
group_4384	A0A1C7PWW5	CDR86_13880	Endonuclease III domain-containing protein	5.2.0	80.43	45.45
group_4228	A0A394ZC38	AB922_00937	N-acetyltransferase		19.57	54.55
dasR	Q8Y5T1	lmo1974	Lmo1974 protein	3.5.2	80.43	45.45
group_3083	A0A3A8BST8	gloC	Hydroxyacylglutathione hydrolase GloC (EC 3.1.2.6)	5.2.0	19.57	54.55
group_3461	A0A0E1R2S8	BN389_04180	Uncharacterized protein		19.57	54.55
group_3469	A0A394Y9C8	inlJ_15	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain-containing protein)	1.8.0	19.57	54.55
group_4032	UPI0009A4F8FD		alpha/beta hydrolase	2.1.1	19.57	54.55
group_4031	A0A3A8BNZ3	yvbK	Putative N-acetyltransferase YvbK (EC 2.3.1)	5.2.0	19.57	54.55
group_4037	A0A3A7D8F9	AF264_09645	CPBP family intramembrane metalloprotease	5.2.0	19.57	54.55
group_4036	A0A3A7GG31	sdrd	Cell surface protein (LPXTG cell wall anchor domain-containing protein) (Serine- aspartate repeat-containing protein D)	1.8.0	19.57	54.55
group_3936	A0A392WP35	AF251_13240	Bacteriocin-associated integral membrane family protein (DUF1430 domain- containing protein)	1.2.0	19.57	54.55
group 3935	A0A3A7PI73	AF251 13245	Lactococcin 972 family bacteriocin	6.0.0	19.57	54.55
group_4136	A0A3A8C5J2	ypdB	Transcriptional regulatory protein YpdB	3.5.2	19.57	54.55
group 3932	A0A2Z5C1E0	RK57 07485	Uncharacterized protein		19.57	54.55
yhaO	Q8Y554	lmo2222	Lmo2222 protein	5.2.0	80.43	45.45
group_1862	Q8Y9U9	lmo0421	Lmo0421 protein	1.7.0	80.43	45.45
group_1861	Q8YA24	lmo0341	Lmo0341 protein	5.2.0	80.43	45.45
group_3510	Q8YAM4	lmo0094	Lmo0094 protein	6.0.0	80.43	45.45
group_3513	P33383	lmo0206	Uncharacterized protein Lmo0206	6.0.0	80.43	45.45
fmnP	A0A3A8BXM0	fmnP	Riboflavin transporter	5.2.0	80.43	45.45
dnaK_1	Q8Y7V8	lmo1161	Lmo1161 protein	2.1.1	80.43	45.45
group_3948	A0A1T1YKC2	DC57_02040	Uncharacterized protein	5.2.0	19.57	54.55
group_3949	A0A393RP85	AF239_12775	Acetamidase	5.2.0	19.57	54.55
group_3940	A0A3A7GBK9	trpg	Aminodeoxychorismate/anthranilate synthase component II (Anthranilate synthase component 2) (EC 4.1.3.27)	2.2.0	19.57	54.55
group_3947	A0A0B8R180	LmNIHS28_00331	Uncharacterized protein	6.0.0	19.57	54.55
group_1307	Q8Y7E2	lmo1341	Lmo1341 protein	1.10.0	80.43	45.45
group_1305	Q8Y7Y4	lmo1135	Lmo1135 protein	6.0.0	80.43	45.45
group_3587	A0A1D2IQ28	rsgA	Small ribosomal subunit biogenesis GTPase RsgA (EC 3.6.1)	5.2.0	80.43	45.45
	-	-				

group 1301	Q8Y7Z4	lmo1125	Lmo1125 protein	5.2.0	80.43	45.45
group 3589	Q8Y784	lmo1411	Lmo1411 protein	5.2.0	80.43	45.45
group 4599	A0A3A8BP41	php 2	Phosphotriesterase homology protein	2.4.0	80.43	45.45
rpe_3	A0A1D2INB4	rpe	Ribulose-phosphate 3-epimerase	2.1.1	80.43	45.45
bag	A0A394ZRE6	AF264_02310	DUF975 domain-containing protein (DUF975 family protein)	5.2.0	19.57	54.55
crnA 2	A0A3A8BU09	$crnA \ 2$	Creatinine amidohydrolase (EC 3.5.2.10)	2.2.0	80.43	45.45
	UPI000CE9721B		Cell wall surface anchor protein	1.8.0	19.57	54.55
group_3887	A0A2Z5C1D2	RK57 08200	Crp/Fnr family transcriptional regulator	5.1.0	19.57	54.55
group 3886	A0A0B8QU91	LmNIHS28 00102	Uncharacterized protein	6.0.0	19.57	54.55
group_3883	A0A393UMT7	AB922 03025	Uncharacterized protein	6.0.0	19.57	54.55
group 4670	UPI00098E7F8A		hypothetical protein		80.43	45.45
			2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (EC			
group_3881	A0A3A8BR90	folK	2.7.6.3)	2.5.0	19.57	54.55
hisK	Q8Y9F8	hisJ	HisJ protein	2.2.0	80.43	45.45
group_4158	A0A3A7GM56	AF264_03080	Ribonuclease (EC 3.1)	5.1.0	19.57	54.55
group_4227	A0A2Z5C2F1	RK57_09645	LPXTG cell wall anchor domain-containing protein		19.57	54.55
comEA	A0A3A8BUN0	comEA	ComE operon protein 1	1.10.0	80.43	45.45
group_4048	A0A393S206	AB922_00453	Thioredoxin	1.4.0	19.57	54.55
group_4356	UPI00074D66E8	LM7424 90077	Uncharacterized protein	6.0.0	80.43	45.45
group_4355	Q8Y9X1	lmo0397	Lmo0397 protein	5.2.0	80.43	45.45
group_842	Q8Y8S6	lmo0818	Lmo0818 protein	1.2.0	80.43	45.45
group_4079	UPI00003CABCA	BN389_14870	Uncharacterized protein	6.0.0	19.57	54.55
group_4078	A0A3A2NXS6	comea	ComE operon protein 1 (ComEA family DNA-binding protein) (Competence protein ComEA)	1.10.0	19.57	54.55
group_4077	A0A3A8BV07	tylM1	dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N-dimethyltransferase (EC 2.1.1.235)	5.2.0	19.57	54.55
group_4076	A0A3A8BU71	iscS_2	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	19.57	54.55
group_4074	A0A3A8BU44	rne	Ribonuclease E (EC 3.1.26.12)	2.3.0	19.57	54.55
group_4073	A0A241SQE4	folC	Folylpolyglutamate synthase	2.5.0	19.57	54.55
group_4072	A0A3A8BUT3	CFSAN002345_0001 49	Uncharacterized protein	2.5.0	19.57	54.55
group_4071	Q71Z79	argD	Acetylornithine aminotransferase (ACOAT) (EC 2.6.1.11)	2.2.0	19.57	54.55
group_4070	Q71Z78	argB	Acetylglutamate kinase (EC 2.7.2.8) (N-acetyl-L-glutamate 5-phosphotransferase) (NAG kinase) (NAGK)	2.2.0	19.57	54.55
group_703	A0A3A8C0B4	atpG_1	ATP synthase gamma chain, sodium ion specific	1.4.0	80.43	45.45
group_4174	A0A392Y8U3	AF264_02300	GntR family transcriptional regulator	3.5.2	19.57	54.55
group_706	Q8YAN0	lmo0087	Lmo0087 protein	5.1.0	80.43	45.45
group_4170	A0A2Z5C307	RK57_11240	Crp/Fnr family transcriptional regulator		19.57	54.55
group_4171	A0A393D3V6	AF264_02350	Cell surface protein (LPXTG cell wall anchor domain-containing protein)		19.57	54.55
fgs	Q8Y6Y0	folC	FolC protein	2.5.0	80.43	45.45

group_417	79 A0A3A7PLI4	pknB	Serine/threonine protein kinase (Serine/threonine-protein kinase PknB) (EC 2.7.11.1)	3.8.0	19.57	54.55
group 113	37 Q8Y7E3	lmo1340	Lmo1340 protein	5.2.0	80.43	45.45
group_418	39 C1L0J0	hisE	Phosphoribosyl-ATP pyrophosphatase (PRA-PH) (EC 3.6.1.31)	2.2.0	19.57	54.55
group_418	38 C1L0J4	hisH	Imidazole glycerol phosphate synthase subunit HisH (EC 4.3.2.10) (IGP synthase glutaminase subunit) (EC 3.5.1.2)	2.2.0	19.57	54.55
group_440	00 Q8Y8Z3	lmo0749	Lmo0749 protein		80.43	45.45
group_418	33 A0A3A8CAW5	glpE_2	Thiosulfate sulfurtransferase GlpE (EC 2.8.1.1)	4.1.0	19.57	54.55
group_417			transposase		19.57	54.55
group_418	31 A0A3A7TYK7	speG_1	N-acetyltransferase (Spermidine N(1)-acetyltransferase) (EC 2.3.1.57)	5.2.0	19.57	54.55
group_418	30 A0A0B8RG88	LmNIHS28_00920	Uncharacterized protein	5.1.0	19.57	54.55
yxlG	Q8Y550	lmo2226	Lmo2226 protein	5.2.0	80.43	45.45
group 418	35 A0A393RUI1	AF264 01965	Uncharacterized protein	6.0.0	19.57	54.55
rpiB_3	G9G5K4	rpiB	Ribose-5-phosphate isomerase B	2.1.1	80.43	45.45
group_341	2 A0A393RT87	AF264 02105	Uncharacterized protein	6.0.0	19.57	54.55
polC 2	Q8Y7E7	lmo1336	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)	2.5.0	80.43	45.45
mngB_1	A0A255C9M1	CDR86 08635	Alpha-mannosidase	2.1.1	80.43	45.45
panC	Q8Y602	_ panC	Pantothenate synthetase (PS) (EC 6.3.2.1) (Pantoatebeta-alanine ligase) (Pantoate- activating enzyme)	2.5.0	80.43	45.45
group 414	48 A0A3A7F1F5	pgca 1	Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)	2.1.1	19.57	54.55
group_173	36 Q8Y8Q6	lmo0840	Lmo0840 protein	5.2.0	80.43	45.45
group_370		AF891 02052	Uncharacterized protein		19.57	54.55
group_331		AB922 01742	Uncharacterized protein		19.57	54.55
group 867		DC57_13950	Inorganic pyrophosphatase	2.6.0	80.43	45.45
hrtA_3	UPI00067846F2	—	ATP-binding cassette domain-containing protein		19.57	54.55
ecfA2	A0A0H3GF97	ecfA	Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3)	1.2.0	80.43	45.45
group_438	38 Q8Y917	lmo0725	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	80.43	45.45
group_238	30 A0A0E1R602	yjaB	Uncharacterized N-acetyltransferase YjaB (EC 2.3.1)	5.2.0	19.57	54.55
group_507	75 A0A3A8B0G1	levS	Cell invasion LPXTG protein Vip (Levansucrase) (EC 2.4.1.10)	1.8.0	19.57	54.55
group 257	77 Q8Y905	lmo0737	Lmo0737 protein	5.2.0	80.43	45.45
group_430)1 Q8Y452	lmo2603	Lmo2603 protein	5.2.0	80.43	45.45
group_220	08 A0A0B8RAD6	LmNIHS28 01888	Serine/threonine protein phosphatase	5.2.0	19.57	54.55
hisE	Q8Y9G7	hisE	Phosphoribosyl-ATP pyrophosphatase (PRA-PH) (EC 3.6.1.31)	2.2.0	80.43	45.45
group_466	57 Q8Y4F2	lmo2492	Lmo2492 protein	6.0.0	80.43	45.45
glcR	Q8Y5F7	lmo2107	Lmo2107 protein	3.5.2	80.43	45.45
inlJ_11	A0A393CQT2	inlj_6	Cell surface protein (Internalin-J)	1.8.0	19.57	54.55
_ group_419		s_ mta	HTH-type transcriptional activator mta (MerR family transcriptional regulator)	3.5.2	19.57	54.55
group_403	39 A0A3A8BN86	ubiG	Ubiquinone biosynthesis O-methyltransferase (EC 2.1.1.222)		19.57	54.55
group_450		lmo1461	Lmo1461 protein	6.0.0	80.43	45.45
0 1						

group 4419	Q8Y8M8	lmo0868	Lmo0868 protein	6.0.0	80.43	45.45
group 949	A0A0E1R447	manZ 2	Mannose permease IID component	1.2.0	80.43	45.45
group_4415	Q8Y8Q3	lmo0843	Lmo0843 protein	5.2.0	80.43	45.45
group_4417	Q8Y8P6	lmo0850	Lmo0850 protein	6.0.0	80.43	45.45
group 4229	A0A2Z5C0J8	RK57 09605	Triosephosphate isomerase (EC 5.3.1.1)	2.1.2	19.57	54.55
group 4411	Q8Y8R3	lmo0832	Lmo0832 protein	4.4.0	80.43	45.45
group 4213	A0A3A2LR66	inla 6	Internalin (Internalin-A) (LPXTG cell wall anchor domain-containing protein)	1.8.0	19.57	54.55
inlJ 6	Q8Y8R0	lmo0835	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	80.43	45.45
group_4182	A0A3A8BWT2	inlB 1	Internalin B	1.8.0	19.57	54.55
kdgA	A0A2A6A934	CDR86_00865	Aldolase	2.1.1	80.43	45.45
group_4187	A0A1S7FNB3	DC57_12750	Histidinol-phosphatase	2.2.0	19.57	54.55
group_3171	A0A0E1RCR1	yozG	Uncharacterized HTH-type transcriptional regulator YozG	5.2.0	19.57	54.55
yflN	Q8Y6A5	lmo1790	Lmo1790 protein	5.2.0	80.43	45.45
yneA	Q8Y7H6	yneA	Cell division suppressor protein YneA	5.2.0	80.43	45.45
cca	Q8Y5Z8	cca	CCA tRNA nucleotidyltransferase (EC 2.7.7.72)	3.6.0	80.43	45.45
group_3921	A0A1S7FGU9	DC57_00570	LD-carboxypeptidase	4.5.0	19.57	54.55
	10/110/100/			4.5.0	17.57	
nth_2	A0A3A7HTM1	nth_1	Endonuclease III (EC 4.2.99.18) (Endonuclease III domain-containing protein)	5.2.0	19.57	54.55
group_4047	C1KWK5	сса	CCA tRNA nucleotidyltransferase (EC 2.7.7.72)	3.6.0	19.57	54.55
group_4044	A0A393CLM7	AF264_09030	DUF5011 domain-containing protein		19.57	54.55
group_4045	A0A0E0UXG9	aroH	Chorismate mutase AroH (EC 5.4.99.5)	2.2.0	19.57	54.55
group_4042	A0A2Z5BZ76	<i>RK57_03415</i>	Uncharacterized protein	5.2.0	19.57	54.55
group_4043	A0A3A8BVH1	act	Methanol dehydrogenase activator (EC 3)	5.2.0	19.57	54.55
gdh	A0A3A8BLH6	gdh_2	Glucose 1-dehydrogenase (EC 1.1.1.47)	2.1.1	80.43	45.45
group_3922	A0A1S7FH11	cutC	Copper homeostasis protein CutC	4.2.0	19.57	54.55
cssS	Q8Y857	lmo1061	Histidine kinase (EC 2.7.13.3)	1.3.0	80.43	45.45
group_2610	Q8Y6G4	lmo1723	Lmo1723 protein	6.0.0	80.43	45.45
isdC	Q8Y585	hbpl	Hemin/hemoglobin-binding protein 1 (Hn/Hb-binding protein 1) (Cell wall protein Lmo2186)	1.8.0	80.43	45.45
group 3210	A0A393VWD9	AB922 02198	NUDIX domain-containing protein		19.57	54.55
group_3923	A0A2Z5BZQ8	RK57_07860	PTS fructose transporter subunit IIA	1.2.0	19.57	54.55
group_3219	A0A3A2WX84	cbie	Cobalt-precorrin-7 (C(5))-methyltransferase (Cobalt-precorrin-7 C(5)- methyltransferase) (EC 2.1.1.289)	2.5.0	19.57	54.55
nudF	Q8Y5U0	lmo1965	Lmo1965 protein	5.2.0	80.43	45.45
rne	Q8Y6Y8	lmo1543	Lmo1543 protein	2.3.0	80.43	45.45
group_3959	A0A394ZKW3	gbpa	Chitin-binding protein (GlcNAc-binding protein A)	2.1.1	19.57	54.55
group_3958	A0A2Z5BYZ7	RK57 05850	Uncharacterized protein	6.0.0	19.57	54.55
group_3951	A0A1T1YDG1	DC57 02225	Uncharacterized protein	6.0.0	19.57	54.55
group_3952	A0A3A2JZK0	AF239_12415	Zinc-type alcohol dehydrogenase-like protein	2.1.1	19.57	54.55
group 3957	A0A3A6WIB6	AF239 12100	Amidophosphoribosyltransferase (ComF family protein)	1.10.0	19.57	54.55
group_3956	A0A3A8BKJ7	comFA	ComF operon protein 1 (EC 3.6.4.12)	1.10.0	19.57	54.55

group_3593 group_4466 group_4584 phnA	Q8Y6N1 A0A3A7HYF6 Q8Y600 Q8Y778	lmo1653 DYZ90_00006 lmo1903 lmo1418	Putative cellsurface protein Uncharacterized protein Lmo1903 protein Lmo1418 protein	6.0.0 6.0.0 1.4.0 2.6.0	80.43 80.43 80.43 80.43	45.45 45.45 45.45 45.45
murQ	C1KVV7	murQ	N-acetylmuramic acid 6-phosphate etherase (MurNAc-6-P etherase) (EC 4.2.1.126)		19.57	54.55
group_3328 group_4386 rsgA_2 azoR1_1 group_4438 group_3028 group_3135 group_4138 group_4347 group_4346 inIA_8 group_4082 group_4080	A0A394Y0E1 A0A3A7EMK5 A0A0B8R6Z0 A0A3A8BPK0 Q8Y856 A0A2Z5BXF4 A0A0E1R796 A0A1S7FMA8 Q8YA09 Q8YA13 UPI00073B62EC A0A2Z5C055 A0A3A2XB09	AF264_03215 AE233_02029 rsgA azoR1 lm01062 RK57_03270 yteJ DC57_10750 lm00357 lm00353 AOB47_624c RK57_00410 glys	Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein Small ribosomal subunit biogenesis GTPase RsgA (EC 3.6.1) FMN-dependent NADH-azoreductase 1 (EC 1.7) Lmo1062 protein Riboflavin transporter Uncharacterized membrane protein yteJ Uncharacterized protein Lmo0357 protein Lmo0353 protein Internalin-like protein DUF2975 domain-containing protein GlycinetRNA ligase beta subunit (EC 6.1.1.14) (Glycyl-tRNA synthetase beta subunit) (GlyRS)	1.8.0 1.8.0 5.2.0 1.4.0 1.2.0 5.2.0 5.2.0 5.2.0 1.2.0 5.2.0 1.2.0 5.2.0 1.8.0	19.57 80.43 19.57 19.57 80.43 19.57 19.57 19.57 80.43 80.43 80.43 19.57 19.57	54.55 45.45 54.55 54.55 54.55 54.55 54.55 54.55 45.45 45.45 54.55 54.55 54.55
group_4081 group_4086 group_4035 group_4084 cobU group_3987	A0A0E0UW34 A0A0B8R1M7 A0A2Z5C1Q5 A0A3A7KDD8 A0A3A8BXJ5 A0A3A8BPP2	LMM7_1529 LmNIHS28_01991 RK57_04100 proC_1 cobU yxlG	Putative branched-chain amino acid export protein (BAAC homeostasis) Uncharacterized protein FeoB-associated Cys-rich membrane protein Pyrroline-5-carboxylate reductase (EC 1.5.1.2) Bifunctional adenosylcobalamin biosynthesis protein CobU (EC 2.7.1.156) Putative transmembrane protein YxlG	5.2.0 6.0.0 2.2.0 2.5.0 5.2.0	19.57 19.57 19.57 19.57 80.43 19.57	54.55 54.55 54.55 54.55 45.45 54.55
group_3984 group_3985 group_3983 group_3980 group_3981 group_4165 group_4167 group_4166	A0A3A8BNU1 UPI00086E8416 A0A0E1RA49 A0A0E1RA70 UPI0000F53EDE G9G5K0 A0A241SMW0 UPI00003CA86A	adaB yqjT yisK ARJ20_15280 A410_0767 ARJ20_09330	Methylated-DNAprotein-cysteine methyltransferase, inducible (EC 2.1.1.63) GntR family transcriptional regulator Uncharacterized protein yqjT Uncharacterized protein yisK GNAT family N-acetyltransferase Internalin protein Uncharacterized protein LPXTG cell wall anchor domain-containing protein	3.2.0 3.5.2 5.2.0 5.2.0 5.2.0 1.8.0 1.8.0 1.8.0	19.57 19.57 19.57 19.57 19.57 19.57 19.57 19.57	54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55
group_4161 group_4133 czcR group_4169 group_4168	A0A3A6WTN7 A0A0E1R4P0 A0A3A8CCY3 A0A1T1YRJ7 A0A0B8R2G1	ydde BN389_10880 czcR DC57_12265 LmNIHS28_00854	PhzF family phenazine biosynthesis protein (Putative isomerase YddE) (EC 5.1) Uncharacterized protein Transcriptional activator protein CzcR Carboxymuconolactone decarboxylase Flagellar hook protein	5.2.0 3.5.2 5.2.0 6.0.0	19.57 19.57 80.43 19.57 19.57	54.55 54.55 45.45 54.55 54.55

group_4038	A0A0B8R0U3	LmNIHS28_01736	TetR family transcriptional regulator		19.57	54.55
group_2864	A0A394XIB0	inlj_9	Cell wall anchor protein (Internalin-J) (LPXTG cell wall anchor domain-containing protein)	5	19.57	54.55
group 4371	Q8Y9I3	lmo0545	Lmo0545 protein	6.0.0	80.43	45.45
group_4137	A0A2Z5C2J4	RK57_12860	Teichoic acid D-Ala incorporation-associated protein DltX		19.57	54.55
group_4134	A0A3A7GGN8	thif	Molybdopterin biosynthesis protein MoeB (Sulfur carrier protein ThiS adenylyltransferase) (EC 2.7.7.73)	2.5.0	19.57	54.55
group_3408	A0A3A7C5V3	stth	Cysteine hydrolase (Streptothricin hydrolase) (EC 3.5.2.19)	5.2.0	19.57	54.55
hprA	Q8Y6K0	lmo1684	Lmo1684 protein	2.1.1	80.43	45.45
group_1192	A0A3A8C9D9	artQ_1	Arginine transport system permease protein ArtQ	1.2.0	19.57	54.55
yknZ_2	A0A393R639	yknZ_1	ABC transporter permease (FtsX-like permease family protein) (Putative ABC transporter permease YknZ)		19.57	54.55
mta	A0A3A8CEM4	mta	HTH-type transcriptional activator mta	3.5.2	80.43	45.45
yusV 2	Q8Y587	lmo2182	Lmo2182 protein	1.2.0	80.43	45.45
group_3710	UPI00074D523C	DLE78 10480	Uncharacterized protein		19.57	54.55
group_4091	B8DG24	yneA	Cell division suppressor protein YneA	5.2.0	19.57	54.55
group_4159	A0A3A7G936	AF264 03075	Ribonuclease P		19.57	54.55
cobC	A0A1D2IT42	cobC [–]	Alpha-ribazole phosphatase	2.5.0	80.43	45.45
group_4628	Q8Y518	lmo2260	Lmo2260 protein	5.2.0	80.43	45.45
yvbK	Q8Y5E7	lmo2117	Lmo2117 protein	5.2.0	80.43	45.45
inlJ_4	A0A1D2IXY9	CDR86_09540	Cell surface protein	1.8.0	80.43	45.45
mglA	A0A3A8C417	mglA	Galactose/methyl galactoside import ATP-binding protein MglA (EC 3.6.3.17)	1.2.0	80.43	45.45
fabG 3	A0A3A8BVY0	fabG 1	3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100)	2.4.0	19.57	54.55
inlJ 7	UPI000BDF441A	· _	LPXTG cell wall anchor domain-containing protein	1.8.0	80.43	45.45
inlJ [_] 1	Q8YAF4	lmo0175	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	80.43	45.45
group 4055	A0A2Z5BWW4	RK57 02265	Molybdate metabolism regulator	5.2.0	19.57	54.55
inlJ 8	UPI00043541E8	HR60 ⁻ 04430	Cell surface protein		19.57	54.55
	Q8Y578	lmo2197	Lmo2197 protein	6.0.0	80.43	45.45
group_2561	UPI000D72CB8D		IS3 family transposase	4.4.0	80.43	45.45
group_4151	A0A3A8BXI7	yabJ	2-iminobutanoate/2-iminopropanoate deaminase (EC 3.5.99.10)	5.2.0	19.57	54.55
group_2568	Q8Y9X8	ltrA	Low temperature requirement protein A	4.1.0	80.43	45.45
group_3567	Q8Y7Y2	lmo1137	Lmo1137 protein	6.0.0	80.43	45.45
argJ_1	Q8Y6U7	lmo1584	Lmo1584 protein	5.2.0	80.43	45.45
group_4335	A0A1D2J1W2	CDR86 05500	Internalin	1.8.0	80.43	45.45
group_4153	A0A3A7KR34	inlJ_12	Internalin-J (Peptidoglycan-binding protein)	1.8.0	19.57	54.55
group_4330	Q8YAN2	lmo0085	Lmo0085 protein	5.1.0	80.43	45.45
group 4331	Q8YAL4	lmo0104	Lmo0104 protein	6.0.0	80.43	45.45
uvrA 2	Q8Y4F6	uvrA	UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A)	3.2.0	80.43	45.45
adaB	Q8Y534	lmo2242	Lmo2242 protein	3.2.0	80.43	45.45
group_4157	UPI000939B687		hypothetical protein		19.57	54.55
~						

glpE	A0A3A8C167	glpE_l	Thiosulfate sulfurtransferase GlpE (EC 2.8.1.1)	4.1.0	80.43	45.45
group_4424	A0A1D2IWW8	CDR86_10445	Putative 3-methyladenine DNA glycosylase (EC 3.2.2)	3.2.0	80.43	45.45
group_3478	A0A0E1R3M5	inlA_2	Internalin-A	1.8.0	19.57	54.55
tylM1	A0A3A8BVR5	tylM1	dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N-dimethyltransferase (EC 2.1.1.235)	5.2.0	80.43	45.45
lolD	UPI000EF63221		ATP-binding cassette domain-containing protein	1.2.0	26.09	63.64
group_1261	Q8Y3N2	lmo2803	Lmo2803 protein	6.0.0	73.91	36.36
aroH	A0A1D2J080	aroH	Chorismate mutase AroH (EC 5.4.99.5)	2.2.0	73.91	36.36
dhaM_1	A0A0E1R9L3	dhaM	PTS-dependent dihydroxyacetone kinase,phosphotransferase subunit dhaM (EC 2.7.1)	5.2.0	26.09	63.64
group_689	A0A3A7UBE8	AF876 02227	Uncharacterized protein	1.2.0	73.91	36.36
group_5175	A0A3A7PGJ7		Uncharacterized protein		0.00	18.18
group_5177	UPI000BDF1D90	—	BspA family leucine-rich repeat surface protein	1.8.0	0.00	18.18
group_5009	A0A3A6XXK8	sirc	Precorrin-2 dehydrogenase (EC 1.3.1.76)	2.5.0	0.00	18.18
group_4992	A0A393IY47	D3B20_13165	Uncharacterized protein	5.2.0	0.00	18.18
group_4993	A0A3A7CLP1	D3B20_13150	Uncharacterized protein	6.0.0	0.00	18.18
group_3731	UPI000E6CAEA9	_	BspA family leucine-rich repeat surface protein	1.8.0	0.00	18.18
ppnK1_2	UPI000D738E8C		NAD kinase	5.2.0	0.00	18.18
group_5190	A0A3A7PES7	mshD	Mycothiol acetyltransferase (EC 2.3.1.189) (N-acetyltransferase)	5.2.0	0.00	18.18
group_5182	UPI000BE06427		DNA cytosine methyltransferase		0.00	18.18
group_5183	A0A3A2TIQ6	AFX42_02769	ATP-binding protein		0.00	18.18
group_5184	A0A3A7D5I0	AFX42_02768	Uncharacterized protein		0.00	18.18
group_5185	A0A3A7D4F3	AFX42_02327	DUF4435 domain-containing protein		0.00	18.18
group_5186	A0A3A2T1D5	recF_2	ABC transporter ATP-binding protein (DNA replication and repair protein RecF)		0.00	18.18
group_5187	A0A0E0UUJ4	LMM7 1122	Uncharacterized protein		0.00	18.18
group_5188	A0A3A7P6J7	AFX42_02324	Uncharacterized protein		0.00	18.18
group_5176	A0A393IIP4	AFX42_00806	Uncharacterized protein		0.00	18.18
glnQ_2	UPI000E71158B	AF253_04480	ABC transporter ATP-binding protein		8.70	36.36
group_4693	A0A3A7SXN9	AF247_04435	Streptolysin associated protein SagD		8.70	36.36
group_3641	A0A3A7DQS9	AF247_04430	Bacteriocin biosynthesis cyclodehydratase		8.70	36.36
group_3640	A0A394XKL8	AF241_04465	SagB/ThcOx family dehydrogenase		8.70	36.36
group_3639	A0A0B8QY40	LmNIHS28_00811	ABC transporter permease		8.70	36.36
licH_1	UPI000EFDE50F		6-phospho-beta-glucosidase	2.1.1	91.30	63.64
group_1798	UPI000EFDE50F		6-phospho-beta-glucosidase	2.1.1	8.70	36.36
group_4692	A0A0B8RFY9	LmNIHS28_00810	Uncharacterized protein		8.70	36.36
group_51	A0A393IDA4	DN830_06205	LPXTG cell wall anchor domain-containing protein	6.0.0	8.70	36.36
group_3499	UPI000D0B11C5	C7K50_14635	Uncharacterized protein		45.65	9.09
group_3501	Q8Y3Z3	lmo2686	Lmo2686 protein	6.0.0	71.74	36.36
bioC	Q8Y7H2	lmo1308	Lmo1308 protein	3.8.0	71.74	36.36
group_44	UPI00098E51FB		transcriptional regulator	3.5.2	28.26	63.64

group_876	A0A1D2IYH2	CDR86_08530	Uncharacterized protein	6.0.0	28.26	63.64
group_1323	A0A393NY83	AF252_05645	Terminase large subunit		65.22	27.27
group_1930	UPI000987417B	C7K67_12540	Uncharacterized protein		65.22	27.27
group_1936	UPI0001E38E7D	lmo4a_1264	hypothetical protein		65.22	27.27
group_911	A0A394UBA6	AF237_14510	Phage portal protein		65.22	27.27
group_2560	UPI000BE05954		hypothetical protein	5.1.0	34.78	72.73
group_1329	A0A393DYM6	AF840_02541	Uncharacterized protein		56.52	18.18
group_661	UPI00025485A0	AJZ74_02635	Uncharacterized protein	5.2.0	56.52	18.18
group_1955	UPI000BE0056E		pyridoxal 5'-phosphate synthase glutaminase subunit PdxT	5.2.0	56.52	18.18
tsf_2	D7PCG5		Uncharacterized protein		43.48	9.09
clpP1	A0A3A7GTR6	clpp1	ATP-dependent Clp protease proteolytic subunit		43.48	9.09
group_4295	D7PCG6	CDR86_14670	DUF2786 domain-containing protein		43.48	9.09
group_4294	UPI000E7385DC		hypothetical protein		43.48	9.09
chpS	D7PCG9	CDR86_14685	AbrB/MazE/SpoVT family DNA-binding domain-containing protein (Putative PemI like inhibitor)	-	43.48	9.09
mazF	D7PCH0	CDR86_14690	Putative PemK-like protein (Type II toxin-antitoxin system PemK/MazF family toxin)		43.48	9.09
group_4683	A0A393SKA6	AF239_00415	Uncharacterized protein	6.0.0	15.22	45.45
inlA_9	A0A3A2X399	D3B21_09430	LPXTG cell wall anchor domain-containing protein		15.22	45.45
group_366	A0A393SJQ0	AF264_04585	ABC transporter ATP-binding protein (Putative ABC transporter ATP-binding protein)	1.2.0	84.78	54.55
group_4041	A0A0E1R7D2	BN389_20230	Uncharacterized protein		15.22	45.45
group_1849	A0A3A7G8Z3	AF264_00205	ABC transporter ATP-binding protein (Putative ABC transporter ATP-binding protein)		15.22	45.45
group_197	A0A0H3G937	LMRG_02391	Uncharacterized protein	5.1.0	54.35	18.18
yjjG_2	A0A3A7DAW7	yjjg_l	HAD family hydrolase (Pyrimidine 5'-nucleotidase YjjG) (EC 3.1.3.5)	5.2.0	4.35	27.27
isfD	A0A3A7N465	AF239_02990	Putative oxidoreductase (EC 1) (SDR family NAD(P)-dependent oxidoreductase)		4.35	27.27
group_3708	A0A394R480	AF239_02995	MerR family transcriptional regulator (Putative HTH-type transcriptional regulator)		4.35	27.27
group_1939	A0A2A6A897	CDR86_05340	Phage tail protein		63.04	27.27
group_501	A0A394UQL1	AF258_00550	Internalin	1.8.0	63.04	27.27
nicS	A0A3A2WM62	AF239_07990	HTH-type transcriptional repressor (TetR/AcrR family transcriptional regulator)	3.5.2	36.96	72.73
group 2805	A0A3A7LSN2	AF818 02838	Uncharacterized protein		30.43	0.00
group_1355	UPI00083DFC0A	—	VRR-NUC domain-containing protein		30.43	0.00
group 684	UPI00070F78E1	ARD00 01562	Uncharacterized protein		30.43	0.00
- A -		1	*			

[†] Description for each functional category code is presented below

[1.1.0] Cell envelope and cellular processes > Cell wall

[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins

[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)

[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics [1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis [1.6.0] Cell envelope and cellular processes > Protein secretion [1.7.0] Cell envelope and cellular processes > Cell division [1.8.0] Cell envelope and cellular processes > Cell surface proteins [1.9.0] Cell envelope and cellular processes > Soluble internalin [1.10.0] Cell envelope and cellular processes > Transformation/competence [2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule [2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways [2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways [2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle [2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules [2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids [2.4.0] Intermediary metabolism > Metabolism of lipids [2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups [2.6.0] Intermediary metabolism > Metabolism of phosphate [3.1.0] Information pathways > DNA replication [3.2.0] Information pathways > DNA restriction/modification and repair [3.3.0] Information pathways > DNA recombination [3.4.0] Information pathways > DNA packaging and segregation [3.5.1] Information pathways > RNA synthesis > Initiation [3.5.2] Information pathways > RNA synthesis > Regulation [3.5.3] Information pathways > RNA synthesis > Elongation [3.5.4] Information pathways > RNA synthesis > Termination [3.6.0] Information pathways > RNA modification [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases [3.7.3] Information pathways > Protein synthesis > Initiation [3.7.4] Information pathways > Protein synthesis > Elongation [3.7.5] Information pathways > Protein synthesis > Termination [3.8.0] Information pathways > Protein modification [3.9.0] Information pathways > Protein folding [4.1.0] Other functions > Adaptation to atypical conditions [4.2.0] Other functions > Detoxification [4.3.0] Other functions > Phage-related functions [4.4.0] Other functions > Transposon and IS [4.5.0] Other functions > Miscellaneous [5.1.0] Similar to unknown proteins > From Listeria [5.2.0] Similar to unknown proteins > From other organisms [6.0.0] No similarity

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category †	% in weak biofilm formers	% in strong biofilm formers
group_3614	UPI000BDFAB31			hypothetical protein	1	9.09	66.67
eccCa1	A0A393D7A8		essC	ESAT-6 secretion machinery protein EssC (Type VII secretion protein EssC)	5.2.0	63.64	8.33
group_474	A0A393CRL8		AF264_01650	Putative sulfate transporter (SulP family inorganic anion transporter)	1.2.0	54.55	4.17
group_4197	UPI00098E3EF0			hypothetical protein		60.61	8.33
group_3636	A0A3A2YAK1		cas5b	Type I-B CRISPR-associated protein Cas5		27.27	79.17
cas1	UPI00092E4084		B0X19 02870	CRISPR-associated endonuclease Cas1		27.27	79.17
cas2	A0A0E0UTU7		cas2	CRISPR-associated endoribonuclease Cas2 (EC 3.1)		27.27	79.17
group_2659	A0A3A7SZG9		cas6	CRISPR-associated endoribonuclease Cas6		27.27	79.17
cas3	UPI00083D7946			CRISPR-associated helicase/endonuclease Cas3		27.27	79.17
group 311	A0A3A7W0T2		AF947 01398	Uncharacterized protein		24.24	75.00
group_1331	A0A394UA13		AF237 ⁻ 14675	Uncharacterized protein		24.24	75.00
group_1298	Q8Y842		lmo1076	Lmo1076 protein	1.1.0	60.61	100.00
group_1807	UPI000BE00DE2			hypothetical protein		54.55	8.33
group_2195	A0A393SL84		coia	Competence protein CoiA	1.10.0	60.61	12.50
group_2547	Q8Y403		lmo2675	Lmo2675 protein	6.0.0	39.39	87.50
group_4631	UPI00074D6448		LM901004_160002	Uncharacterized protein		21.21	70.83
group_673	A0A394V0T8		AF237_14690	Uncharacterized protein		21.21	70.83
group_4145	A0A3A7PI72		AF239_03595	Permease (Putative two-component membrane permease complex subunit)	5.2.0	66.67	16.67
group_4422	Q8Y8I2		lmo0920	Lmo0920 protein	5.2.0	33.33	83.33
group_4655	UPI0001698DDC		LMJG_02653	Uncharacterized protein		3.03	41.67
group_2733	A0A3A7T550		clpP1	ATP-dependent Clp protease proteolytic subunit		3.03	41.67
group_2710	UPI00003CA3EB		AE052_00030	DUF3954 domain-containing protein		3.03	41.67
group_2474	UPI000D72D1E5			DHA2 family efflux MFS transporter permease subunit	1.2.0	69.70	20.83
qacC	I7A797		<i>bcrB</i>	BcrB		0.00	33.33
slmA	I7B1B9		bcrA	BcrA		0.00	33.33
group_4280	S5XPK5			Glyoxalase family protein		0.00	33.33
group_4281	UPI00003CAA5B		M643_p00795	Transposon tn1546 resolvase		0.00	33.33
group_4282	UPI00003CAA5C			Putative resolvase		0.00	33.33
ebrB	I6ZWM1		bcrC	BcrC		0.00	33.33
marA	Q8Y803		lmo1116	Lmo1116 protein	3.5.2	63.64	16.67
group_4686	A0A393MBE2		cas7i	Type I-B CRISPR-associated protein Cas7/Cst2/DevR		27.27	75.00
group_2660	A0A3A7IMJ8		cas8a1	Type I-B CRISPR-associated protein Cas8b1/Cst1		27.27	75.00

Supplementar	y Table 3. List of genes associat	ed with biofilm production in	BHI media supplemented with 0).85% NaCl at 37°C after p	an-GWAS (p < 0.05).

group_1062	A0A393CV23	AF264_09920	Glycoside hydrolase family 65 protein	2.1.1	36.36	0.00
group_3613	A0A3A7UAN8	AF252_15405	Uncharacterized protein		6.06	45.83
group_672	A0A1B2LR20	pLM-C-273_00081	Uncharacterized protein		21.21	66.67
group_494	A0A3A7W452	AF947_01400	Uncharacterized protein		24.24	70.83
group_5508	A0A3A7W759	AF951_01101	Uncharacterized protein		24.24	70.83
group_1914	A0A1B2LR10	pLM-C-273_00079	Uncharacterized protein		24.24	70.83
group_1317	A0A1B2LR19	pLM-C-273_00082	Uncharacterized protein		24.24	70.83
group_1318	A0A1B2LR12	pLM-C-273_00075	Phage minor capsid protein 2		24.24	70.83
group_4796	A0A3A2TCH8	AF255_15040	IclR family transcriptional regulator		12.12	54.17
group_3620	A0A2A6AA80	CDR86_02685	Uncharacterized protein	4.3.0	12.12	54.17
group_3665	UPI000C84336F		DUF1829 domain-containing protein		3.03	37.50
group_2674	A0A2A6AA36	CDR86_02700	Uncharacterized protein		3.03	37.50
group_4632	A0A1B2LR07	<i>pLM-C-273_00077</i>	Uncharacterized protein		3.03	37.50
emrY	A0A3A8BX24	emrY	Putative multidrug resistance protein EmrY	1.2.0	33.33	79.17
group_893	Q8Y802	lmo1117	Lmo1117 protein	6.0.0	66.67	20.83
group_6123	A0A3A2UAF9	D3B62_10355	XRE family transcriptional regulator		0.00	29.17
group_6122	UPI000BE0AF1F		site-specific integrase		0.00	29.17
group_6121	A0A393IBI0	AF272_04760	Uncharacterized protein		0.00	29.17
group_6120	A0A3A7S6F1	AF272_04755	Uncharacterized protein		0.00	29.17
clpB_1	UPI000BE11C1D		ATP-dependent Clp protease ATP-binding subunit		0.00	29.17
group_6112	A0A3A6XLA1	AF856_02019	Uncharacterized protein	6.0.0	0.00	29.17
group_6119	A0A3A7SLG2	AF272_04750	Uncharacterized protein		0.00	29.17
traC	UPI000EF5BB8B		DUF1738 domain-containing protein		0.00	29.17
group_5610	S5XI77		Uncharacterized protein		0.00	29.17
group_5607	A0A393MDT4	AF862_02995	IS30 family transposase		0.00	29.17
group_5606	S5XPL2		Uncharacterized protein		0.00	29.17
group_5609	A0A393Q5K9	AB922_00255	Uncharacterized protein		0.00	29.17
qorB_1	S5Y6N6		Uncharacterized protein		0.00	29.17
ravA_1	UPI000EF57D53		AAA family ATPase		0.00	29.17
group_5845	UPI000CDB4CAA		hypothetical protein		0.00	29.17
group_5846	A0A3A6X0N4	AF856_03033	Uncharacterized protein		0.00	29.17
group_5834	UPI0005447E48	AF856_00972	Uncharacterized protein	2.5.0	0.00	29.17
csbB	Q93RN0	mtrA	Dolichol-phosphate mannosyltransferase MtrA (Hypothetical glycosyl transferase)	1.1.0	66.67	100.00
tagH	UPI000BDFED64		teichoic acids export ABC transporter ATP-binding subunit TagH	1.1.0	66.67	100.00
malP	Q8Y5E3	lmo2121	Lmo2121 protein	2.1.1	66.67	100.00
group_1153	A0A0E0UUS7	pncB	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	33.33	0.00
		-	dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) (Thymidine			
rmlC	A0A1C7Q2S5	rfbC	diphospho-4-keto-rhamnose 3,5-epimerase)	1.1.0	66.67	100.00
group_2636	A0A1B2LR21	pLM-C-273 00076	Uncharacterized protein		27.27	70.83
group_3520	Q8YA27	lmo0338	Lmo0338 protein	6.0.0	27.27	70.83

group_2567	Q7AP83	lmo0320	Lmo0320 protein	1.8.0	27.27	70.83
mtlR_4	A0A3A8C544	mtlR_1	Transcriptional regulator MtlR	3.5.2	42.42	4.17
group_904	A0A3A7P9G8	inlJ_10	Class 1 internalin InlL (Internalin-J)	1.8.0	42.42	4.17
group_2730	A0A392X2X8	AF238_14485	Uncharacterized protein		6.06	41.67
group_1319	UPI0008692819		sugar-phosphate nucleotidyltransferase		6.06	41.67
ssb_4	UPI000BE1101C		hypothetical protein		24.24	66.67
group_2597	A0A393F8Q4	D3B62_10335	Uncharacterized protein		12.12	50.00
group_1979	A0A0H3GEH2	LMRG_00323	Uncharacterized protein	6.0.0	36.36	79.17
group_473	A0A3A2JGS5	AF247_01515	Putative sulfate transporter (SulP family inorganic anion transporter)	1.2.0	36.36	79.17
group_3986	A0A3A8BQ69	yxlE	Negative regulatory protein YxlE		63.64	20.83
group_5451	A0A2A6A6P5	CDR86_09885	Uncharacterized protein		3.03	33.33
group_3780	A0A3A7G6J0	AF847_01785	DUF3850 domain-containing protein		3.03	33.33
group 903	A0A3A2NUT3	inlJ 11	Internalin-J (Peptidoglycan-binding protein)	1.8.0	3.03	33.33
group_5453	A0A2A6A785	CDR86 09870	XRE family transcriptional regulator		3.03	33.33
group_5454	A0A2A6A617	CDR86 09865	Uncharacterized protein		3.03	33.33
group_5445	UPI00083E1BDA	_	hypothetical protein	6.0.0	3.03	33.33
group_3782	A0A2A6A6S9	CDR86 09890	MerR family transcriptional regulator		3.03	33.33
group_3783	A0A2A6A5V6	CDR86 09875	XRE family transcriptional regulator		3.03	33.33
group_3454	A0A0B8RAV3		Uncharacterized protein		30.30	0.00
group_4119	UPI000035D008	APS76_03080	CDP-glycerol glycerophosphotransferase family protein		30.30	0.00
tagB_2	A0A1D2ISQ5	CDR86_11250	Glycosyl transferase family 2	1.1.0	69.70	100.00
group_1891	Q8Y7T3	lmo1188	Lmo1188 protein	6.0.0	69.70	100.00
tagD	A0A1C7PZ73	tagD	Glycerol-3-phosphate cytidylyltransferase	1.1.0	69.70	100.00
tagF	A0A3A8BW41	tagF	Teichoic acid poly(Glycerol phosphate) polymerase (EC 2.7.8.12)		30.30	0.00
epsJ	A0A3A7GEL8	epsj	Glycosyltransferase family 2 protein (Putative glycosyltransferase EpsJ) (EC 2.4)		30.30	0.00
lytG_5	A0A3A8BW61	lytG 3	Exo-glucosaminidase LytG (EC 3.2.1)		30.30	0.00
group_3925	A0A3A8BY26	CFSAN002345_0014 36	Uncharacterized protein		30.30	0.00
group_4118	UPI000E6B7FBF		glycerol-3-phosphate cytidylyltransferase		30.30	0.00
pncB2	A0A0D8X9Q4	CDR86_11285	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	69.70	100.00
gtaB	UPI000931810D	—	UTPglucose-1-phosphate uridylyltransferase GalU	1.1.0	69.70	100.00
nfrA1_1	A0A3A7H264	nfra1_2	FMN reductase (NADPH) (EC 1.5.1.38) (NADPH-dependent oxidoreductase)	1.4.0	69.70	100.00
			,			
ispD2_1	UPI0004D75A86	HT50_11035	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (Fragment)	2.1.0	69.70	100.00
group_965	UPI000D6455E8	DF273_02615	Uncharacterized protein (Fragment)		30.30	0.00
group_4030	A0A0B8R4F9		Teichoic acid biosynthesis protein		30.30	0.00
group_6291	UPI000BDFECA9	—	DUF262 domain-containing protein	5.2.0	30.30	0.00
group_3939	A0A0B8QQZ7	LmNIHS28_00261	Membrane protein		30.30	0.00

group 3938	O9ZIC5	LmNIHS28 00260	Uncharacterized protein		30.30	0.00
group_4132	A0A3A2P6F9	AF241_04305	DUF5068 domain-containing protein		30.30	0.00
group_4152		AI ² 41_04505	Teichoic acids export ABC transporter ATP-binding subunit TagH		50.50	
group_4130	UPI000D66B0A6	tagH	(Fragment)		30.30	0.00
group_4131	A0A3A8BVC9	tagG	Transport permease protein		30.30	0.00
group_1860	Q8YA42	lmo0322	Lmo0322 protein	5.2.0	69.70	100.00
group_4446	Q8Y839	lmo1079	Lmo1079 protein	5.2.0	69.70	100.00
group_477	Q8Y9M5	lmo0501	Lmo0501 protein	3.5.2	69.70	100.00
group_4454	Q8Y831	tarJ	Ribulose-5-phosphate reductase (Ribulose-5-P reductase) (EC 1.1.1.405) (Ribitol-5-phosphate dehydrogenase)	2.1.0	69.70	100.00
group_5994	A0A0H3GDM5	LMRG 00003	Uncharacterized protein	6.0.0	30.30	0.00
group_3885	A0A393D4V0	AF264 14565	Pyruvyl-transferase		30.30	0.00
group_3882	A0A3A6WVM4	AF241 14355	Uncharacterized protein	4.3.0	30.30	0.00
group_4672	UPI0009305ABB	—	GtrA family protein	1.1.0	69.70	100.00
group_4126	A0A3A7GN59	tarl	CDP-glycerol:glycerophosphate glycerophosphotransferase (Teichoic acid poly(Ribitol-phosphate) polymerase) (EC 2.7.8)		30.30	0.00
group_2892	UPI0009B09F82		GW domain-containing glycosaminoglycan-binding protein	1.8.0	30.30	0.00
group_3705	A0A3A7DYA1	AF249 03765	DUF1541 domain-containing protein		30.30	0.00
tagB 3	Q8Y830	tagB	TagB protein	1.1.0	69.70	100.00
group 2384	UPI000766C630	ERS409610 00158	Uncharacterized protein		30.30	0.00
ykoT	UPI000035CFFF	NT04LM 1735	Glycosyl transferase, group 2 family protein		30.30	0.00
sdpR	A0A3A8BPZ1	sdpR –	Transcriptional repressor SdpR	3.5.2	30.30	0.00
group_4237	A0A394YEX0	AF264_00540	Endonuclease (Endonuclease/exonuclease/phosphatase family protein)	5.2.0	30.30	0.00
group 4238	A0A394Y3M2	AF264 00535	PH domain-containing protein		30.30	0.00
group_4123	A0A0E1R4Q8	ispD2	Ribitol-5-phosphate cytidylyltransferase (EC 2.7.7.40)		30.30	0.00
	-	~r~r = =	Ribulose-5-phosphate reductase (Ribulose-5-P reductase) (EC 1.1.1.405)			
gutB	A0A3A7GLG3	tarj	(Ribitol-5-phosphate dehydrogenase)		30.30	0.00
group_4125	UPI000D66CEA1	DF274_15095	Uncharacterized protein (Fragment)		30.30	0.00
group_4124	A0A3A8BY01	gtaB	UTPglucose-1-phosphate uridylyltransferase (EC 2.7.7.9) (UDP-glucose pyrophosphorylase)		30.30	0.00
group_4127	A0A3A7GRB2	AF264_04425	Uncharacterized protein		30.30	0.00
group_4049	A0A3A8BMB0	blaSE	Serine protease (EC 3.4.21)		30.30	0.00
group_2752	A0A0H3GD86	LMRG_02933	Uncharacterized protein		30.30	0.00
group_3954	UPI000E3C8303		cell wall teichoic acid glycosylation protein GtcA		30.30	0.00
rffG	A0A1D2IST6	rfbB	dTDP-glucose 4,6-dehydratase (EC 4.2.1.46)	1.1.0	69.70	100.00
gltR_1	A0A0B8QZ17	LmNIHS28_01096	LysR family transcriptional regulator	3.5.2	69.70	100.00
			Phospholipid carrier-dependent glycosyltransferase (Undecaprenyl			
arnT	A0A3A7F315	arnt	phosphate-alpha-4-amino-4-deoxy-L-arabinose arabinosyl transferase) (EC 2.4.2.43)		30.30	0.00
group_3762	A0A142EC64	pA144_0007	Uncharacterized protein		30.30	0.00

rmlD	A0A1D2ISS6		rfbD	dTDP-4-dehydrorhamnose reductase (EC 1.1.1.133)	1.1.0	69.70	100.00
rmlA1	A0A0D8X3Y7		rfbA	Glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24)	1.1.0	69.70	100.00
group_3562	Q8Y850		lmo1068	Lmo1068 protein	6.0.0	69.70	100.00
epsJ_3	A0A3A8CCS3		epsJ 2	Putative glycosyltransferase EpsJ (EC 2.4)	1.1.0	69.70	100.00
epsJ_2	A0A3A7NTY9		$epsJ_2$	Glycosyltransferase (Putative glycosyltransferase EpsJ) (EC 2.4)	1.1.0	69.70	100.00
epsJ 1	Q8Y9M9		lmo0497	Lmo0497 protein	1.1.0	69.70	100.00
epsJ_4	A0A3A8BXQ8		epsJ_1	Putative glycosyltransferase EpsJ (EC 2.4)	1.1.0	69.70	100.00
group_4426	Q8Y8H1		lmo0933	Lmo0933 protein	1.1.0	69.70	100.00
group_749	Q8Y4S3		lmo2359	Lmo2359 protein	5.2.0	15.15	54.17
group_3667	UPI00074D6208		LM83088 160259	Uncharacterized protein		0.00	25.00
cwlO 1	A0A3A7JTC0		cwlO ₂	Peptidoglycan DL-endopeptidase CwlO (EC 3.4)		0.00	25.00
group 3799	A0A3A7AUB6		AB922 00627	Uncharacterized protein		0.00	25.00
group_5575	A0A393NXT1		AB922_00593	Uncharacterized protein		0.00	25.00
group_5574	UPI000EF5AA7F		—	ImmA/IrrE family metallo-endopeptidase		0.00	25.00
group_5571	A0A3A7JXP8		AB922_00597	Restriction endonuclease		0.00	25.00
group_5570	A0A393QNC4		AB922_00598	Riboflavin synthase subunit alpha		0.00	25.00
group_5573	A0A3A7W8P2		AB922 00595	Uncharacterized protein		0.00	25.00
group_5572	A0A393SKE9		AF236 15490	Uncharacterized protein		0.00	25.00
group_5579	A0A3A7ST51		AB922_00589	Uncharacterized protein		0.00	25.00
nucH	A0A3A7QU08		nucH	Thermonuclease (EC 3.1.31.1)		0.00	25.00
group_6021	A0A2A6AA27		CDR86_02650	Uncharacterized protein	4.3.0	0.00	25.00
group_5550	UPI000D726E6E		—	hypothetical protein		0.00	25.00
group_5589	UPI000BE0B2D8			plasmid replication protein		0.00	25.00
rsrIM	UPI00003CAA42		pLIS100090	DNA modification methylase		0.00	25.00
group_5548	A0A393I3M4		AB922_00620	Uncharacterized protein		0.00	25.00
group_5549	A0A393VTF5		AF236_15595	Uncharacterized protein		0.00	25.00
group_5540	A0A393VTE6		AB922_00629	Uncharacterized protein		0.00	25.00
group_5541	A0A3A7TQJ4		AB922_00628	Uncharacterized protein		0.00	25.00
group_5542	UPI000EF5635A			DUF3324 domain-containing protein		0.00	25.00
group_5543	A0A393N4Q5		AB922_00625	Uncharacterized protein		0.00	25.00
group_5544	A0A3A7WL76		AB922_00624	Uncharacterized protein		0.00	25.00
group_5545	A0A3A7TAI8		AB922_00623	Uncharacterized protein		0.00	25.00
group_5546	A0A393QVS4		AB922_00622	Putative conjugal transfer protein (Type IV secretion protein)		0.00	25.00
group_5547	A0A3A7NVN4		AB922_00621	Uncharacterized protein		0.00	25.00
group_5584	UPI000E73B5A8			hypothetical protein		0.00	25.00
group_5585	A0A3A7M9C2		AB922_00583	XRE family transcriptional regulator		0.00	25.00
group_5586	A0A392WM50		AB922_00582	Uncharacterized protein		0.00	25.00
group_5587	UPI000EF5BA74			IS3 family transposase		0.00	25.00
group_5580	UPI00003CAA45		AJN46_07220	Uncharacterized protein		0.00	25.00
group 5581	D7V1H8	Listeria grayi	HMPREF0556_plasm	Uncharacterized protein		0.00	25.00
5.00r_0001		8. ayı	id12603	P			

5500	101202DH 7		(0000 00505		0.00	25.00
group_5582	A0A393RIL7		AB922_00586	Uncharacterized protein	0.00	25.00
group_5583	A0A3A7W8N1		AB922_00585	Uncharacterized protein	0.00	25.00
group_5588	A0A3A7P0S6		AB922_00580	Uncharacterized protein	0.00	25.00
group_5578	A0A3A7K0H3		AB922_00590	Uncharacterized protein	0.00	25.00
copY	A0A392WH77		сору	CopY/TcrY family copper transport repressor (Transcriptional repressor CopY)	0.00	25.00
rhlE	UPI000869703C			hypothetical protein	0.00	25.00
group_5559	A0A3A7MIR8		AB922_00609	Conjugal transfer protein TraG	0.00	25.00
group_5558	A0A393T254		AB922_00610	Uncharacterized protein	0.00	25.00
group_5557	A0A3A7NVP5		AB922_00611	Uncharacterized protein	0.00	25.00
group_5556	A0A393QNZ5		AB922_00612	Uncharacterized protein	0.00	25.00
group_5555	A0A3A7M9E3		AB922_00613	Uncharacterized protein	0.00	25.00
group_5554	A0A393N712		AB922 00614	Uncharacterized protein	0.00	25.00
group_5553	UPI000C86C85D		CIII8 15230	Uncharacterized protein (Fragment)	0.00	25.00
group_5552	A0A393QP37		AB922 00616	Sodium:dicarboxylate symporter family protein	0.00	25.00
group_5551	D7V1E8	Listeria gravi	HMPREF0556_plasm id12573	Uncharacterized protein	0.00	25.00
group_5564	A0A3A7VTB4		AB922 00604	Uncharacterized protein	0.00	25.00
group_5562	A0A394RJT3		AB922 00606	Uncharacterized protein	0.00	25.00
group_5563	A0A393TGS3		AB922 00605	DUF87 domain-containing protein	0.00	25.00
group 5560	A0A393PMD5		AB922 00608	Uncharacterized protein	0.00	25.00
group_5561	A0A393VTG5		AB922 00607	Uncharacterized protein	0.00	25.00
group_5569	A0A392WH96		AB922 00599	Uncharacterized protein	0.00	25.00
group_5593	A0A393W756		AB922 00575	Restriction endonuclease	0.00	25.00
group_5592	A0A3A7AMA0		AB922 00576	Site-specific DNA-methyltransferase	0.00	25.00
group_5591	A0A393QQU6		AB922_00577	Uncharacterized protein	0.00	25.00
group_5596	UPI000D729918			IS6 family transposase	0.00	25.00
		Leuconostoc				
group_5594	A0A1X9VTW9	mesenteroides	BSR26_10010	DNA methyltransferase	0.00	25.00
group_5566	A0A393QP03		AF236_15520	Uncharacterized protein	0.00	25.00
group_5567	A0A393SB73		AB922_00601	Fructose 1,6-bisphosphatase	0.00	25.00
tnsB	S5XPZ4			Putative transposase	0.00	25.00
group_5568	A0A393QVU4		AB922_00600	Uncharacterized protein	0.00	25.00
group_5539	UPI0001B4211E		AB922 00630	Uncharacterized protein	0.00	25.00
group_5538	A0A393NZ28		AF236_15655	Uncharacterized protein	0.00	25.00
group_5531	Q2V4W5		pCT0006	Site-specific recombinase, resolvase family	0.00	25.00
group 5533	Q2V4W3		pCT0008	Cation-transporting ATPase E1-E2 family	0.00	25.00
group_5532	Q2V4W4		pCT0007	Cadmium efflux system accessory protein	0.00	25.00
group 5535	UPI000D73450A		-	DNA recombinase	0.00	25.00
group_5534	UPI000931B2A1			transporter	0.00	25.00

group_5537	S5XI53		Pli0065		0.00	25.00
group_5536	UPI000C86D6AB		IS6 family transposase		0.00	23.00 25.00
group_3330 group_2447	Q8Y9C6	lmo0606	Lmo0606 protein	3.5.2	39.39	4.17
group_3532	Q8Y9D1	lm00000 lm00601	Lmo0601 protein	1.8.0	63.64	95.83
group_3961	A0A0E0UZG3	LMM7 2508	Uncharacterized protein	6.0.0	36.36	4.17
group_3901 group_4198	W5U092	IntA	Nuclear-targeted protein A	6.0.0	36.36	4.17
group_4196 group_4184	A0A394ZL82	AF264_02035	DUF4097 domain-containing protein	1.8.0	36.36	4.17
group_2446	Q8Y9C6	lmo0606	Lmo0606 protein	3.5.2	63.64	95.83
group_2040	A0A3A7F101	AF264 14455	Ribonuclease (EC 3.1)	5.2.0	51.52	87.50
manZ 2	Q8YAT9	lmo0024	Lmo0024 protein	1.2.0	93.94	62.50
group_2709	A0A394THM9	AF251_11415	RNA polymerase subunit sigma-70 (Sigma-70 family RNA polymerase sigma factor)	1.2.0	6.06	37.50
group_1945	A0A3A2LWG0	AF238 14270	DUF2705 domain-containing protein		6.06	37.50
		—	LD-carboxypeptidase (Putative murein peptide carboxypeptidase) (EC			
group_5797	A0A3A7RAL1	ykfA	3.4.16)	4.5.0	6.06	37.50
group_671	UPI00098E2822		hypothetical protein		24.24	62.50
nifS	Q8Y5N5	lmo2022	Lmo2022 protein	2.5.0	24.24	62.50
group_3664	A0A3A2V097	AF255_15050	Uncharacterized protein	6.0.0	27.27	66.67
group_3618	A0A3A7RSE5	AF249_11800	Single-stranded DNA-binding protein		12.12	45.83
group_1898	A0A3A6XF63	AF847_02154	Uncharacterized protein		12.12	45.83
group_5501	A0A392ZMB7	inlA_5	Internalin-A (LPXTG cell wall anchor domain-containing protein)		12.12	45.83
yxlE	UPI000E759913	yxle	Negative regulatory protein YxIE	5.2.0	36.36	75.00
group_639	A0A3A7GLC4	zosa_l	Heavy metal translocating P-type ATPase (Zinc-transporting ATPase) (EC 3.6.3)	1.2.0	57.58	20.83
ytrB_3	A0A0E1R8M1	yhcG	Uncharacterized ABC transporter ATP-binding protein YhcG	1.2.0	27.27	0.00
group_3841	UPI000E6B9871		hypothetical protein		27.27	0.00
group_5915	A0A0H3G8Y5	LMRG_02330	Uncharacterized protein	6.0.0	27.27	0.00
group_397	A0A0B8R5D0	LmNIHS28_00068	Uncharacterized protein	5.1.0	72.73	100.00
group_5722	UPI0009853537		hypothetical protein		27.27	0.00
fosB	A0A0B8R4C4	LmNIHS28_00813	Glyoxalase	6.0.0	27.27	0.00
hrtA_2	A0A0E1RFE7	hrtA	Putative hemin import ATP-binding protein HrtA (EC 3.6.3)	1.2.0	27.27	0.00
group_2750	A0A0H3GCJ6	LMRG_02892	Uncharacterized protein		27.27	0.00
group_488	A0A3A7U2K0	AF856_02018	Carbohydrate deacetylase (EC 3.5.1) (ChbG/HpnK family deacetylase)	5.2.0	27.27	0.00
group_5916	A0A0H3GCY0	LMRG_02891	Uncharacterized protein		27.27	0.00
group_3668	A0A3A2JQP2	D3B79 08735	PBSX family phage terminase large subunit		3.03	29.17
group 445	Q8Y698	lmo1798	Lmo1798 protein	5.2.0	3.03	29.17
group_1986	UPI00047C87C6		hypothetical protein	4.3.0	3.03	29.17
group_5444	A0A3A2L9Q7	AF847_01784	Preprotein translocase subunit YajC		3.03	29.17
yfkN	UPI0000F3E6A2	LMRG_01845	Uncharacterized protein	5.2.0	30.30	66.67
group_3700	UPI000984B87F		hypothetical protein		33.33	4.17

group_401	A0A394XJ12	AF264 14015	Uncharacterized protein		33.33	4.17
group_5799	UPI00092FB1F5	_	arsenic metallochaperone ArsD family protein		33.33	4.17
group_5471	A0A3A7D900	AF847 03067	DUF3850 domain-containing protein		9.09	41.67
group 5473	A0A3A7YSL8	AF844 01551	Uncharacterized protein		9.09	41.67
group_5431	A0A2A6A227	CDR86 14950	Uncharacterized protein		9.09	41.67
group_5432	UPI00000CCA78	pLIS100300	ParA family protein		9.09	41.67
group_162	A0A394V460	essC	ESAT-6 secretion machinery protein EssC (Type VII secretion protein	5.2.0	9.09	41.67
		0550	EssC)	5.2.0		
group_5796	UPI0009301249		cytadherence accessory protein		9.09	41.67
group_3825	A0A393Q993	AF238_14460	Uncharacterized protein		9.09	41.67
group_3824	A0A3A2QTE1	AF238_14465	Uncharacterized protein		9.09	41.67
group_5831	UPI000E7682E3		Dna2/Cas4 domain-containing protein		9.09	41.67
group_68	Q8YA28	lmo0337	Lmo0337 protein	5.1.0	18.18	54.17
inlA_7	L7X106	inlA	Internalin A	1.8.0	54.55	87.50
group_2056	A0A3A6WUY8	AF251_14005	Uncharacterized protein		45.45	12.50
group_1699	A0A2Z5C4D1	RK57_13295	UPF0637 protein RK57_13295	5.2.0	45.45	12.50
group_3917	A0A0H3G8X1	LMRG_02492	Uncharacterized protein		45.45	12.50
group_178	UPI000BDFE765	AWK33_07760	hypothetical protein		0.00	20.83
group_6033	A0A3A7UW75	secB	Protein-export protein SecB		0.00	20.83
group_6032	A0A3A6X357	AF856_01589	Uncharacterized protein		0.00	20.83
group_318	A0A393P2S7	AF856_01561	DUF1064 domain-containing protein	4.3.0	0.00	20.83
group_6019	A0A2A6AAG8	CDR86_02670	XRE family transcriptional regulator		0.00	20.83
group_6018	A0A0B8RGQ4	CDR86_02675	Gp33 protein (XRE family transcriptional regulator)		0.00	20.83
group_4801	A0A3A2R9E5	D3B46_07385	Uncharacterized protein		0.00	20.83
group_6020	A0A2A6AAX3	CDR86_02665	Uncharacterized protein		0.00	20.83
group_66	UPI000930FC04		hypothetical protein	6.0.0	0.00	20.83
group_6051	A0A3A7TMP1	AF856_01566	Uncharacterized protein		0.00	20.83
group_6031	UPI00086B6770		hypothetical protein		0.00	20.83
group_1322	A0A1D2IMX9	CDR86_05480	Uncharacterized protein		6.06	33.33
group_693	UPI000479B88B		hypothetical protein		6.06	33.33
group_2657	A0A2Z5C560	RK57_09450	Endonuclease	5.2.0	6.06	33.33
gadB_2	A0A241SSP1	gadB	Glutamate decarboxylase (EC 4.1.1.15)	2.2.0	93.94	66.67
group_2635	A0A1B2LR14	pLM-C-273_00080	Uncharacterized protein		6.06	33.33
group_1951	A0A3A2UIX5	AF252_11530	Uncharacterized protein		6.06	33.33
group_2741	A0A3A2SDU8	D3B73 13335	SMI1/KNR4 family protein	6.0.0	39.39	8.33
chiA1	Q8YAL3	lmo0105	Lmo0105 protein	2.1.1	60.61	91.67
copB	UPI000E76FAAA		copper-translocating P-type ATPase		39.39	8.33
group_489	A0A393SSR6	AF245_00250	SMI1/KNR4 family protein	6.0.0	60.61	91.67
group_4056	A0A393JPV1	AF241_07740	Uncharacterized protein	6.0.0	24.24	0.00
group_4114	A0A2Z5C2X9	RK57 13530	Uncharacterized protein	5.1.0	24.24	0.00
		—	-			

group_6284	A0A0H3GFH8		LMRG_02220	Uncharacterized protein	6.0.0	24.24	0.00
group_6280	A0A3A7NSF4		AFX80_00023	Uncharacterized protein		24.24	0.00
group_6281	A0A3A7NH96		AFX80_00025	Uncharacterized protein		24.24	0.00
group_3875	A0A3A7Q520		AEZ78_00963	Uncharacterized protein		24.24	0.00
group_3924	UPI0009B11300			GW domain-containing glycosaminoglycan-binding protein		24.24	0.00
group_2173	Q8Y4R2		lmo2372	Lmo2372 protein	1.2.0	75.76	100.00
group_6273	A0A3A7UXE8		AF273_02455	Uncharacterized protein		24.24	0.00
group_6272	A0A3A7V8A6		AF252_02435	Sugar-phosphate nucleotidyltransferase		24.24	0.00
group_6271	UPI00053BE8EB		DSD43 08455	Uncharacterized protein		24.24	0.00
group_6270	UPI000678F014		KO07_03320	Uncharacterized protein		24.24	0.00
group 6277	A0A393A7N5		DOZ93 04605	Phage antirepressor		24.24	0.00
glnQ_2	UPI000E71158B		AF253 04480	ABC transporter ATP-binding protein		24.24	0.00
group_6265	UPI00076722D3		AXF25 01535	Uncharacterized protein		24.24	0.00
group 6263	UPI000507E686		AF821_01501	Uncharacterized protein		24.24	0.00
group_6279	A0A3A7NV98		AFX80_00020	Uncharacterized protein	4.3.0	24.24	0.00
group_4693	A0A3A7SXN9		AF247 04435	Streptolysin associated protein SagD		24.24	0.00
group_294	UPI000BE003A6		_	helicase SNF2		24.24	0.00
group 6276	A0A3A7EN18		AFX46 00136	XRE family transcriptional regulator		24.24	0.00
group_3878	A0A393A2Z5		DOZ93 04615	XRE family transcriptional regulator		24.24	0.00
group_3873	UPI0004D8BD21		ARJ20_16270	Uncharacterized protein		24.24	0.00
group_3876	UPI00074D51A1		LM800396_140057	Uncharacterized protein		24.24	0.00
group_3877	A0A3A7UV92		ID87_02058	Uncharacterized protein		24.24	0.00
group_3874	A0A0V7YCU8	Enterococcus faecium	AOY33_09325	Uncharacterized protein		24.24	0.00
group_1839	UPI000E75DD0C		DYZ86_01994	Uncharacterized protein	5.1.0	24.24	0.00
group_3641	A0A3A7DQS9		AF247_04430	Bacteriocin biosynthesis cyclodehydratase		24.24	0.00
group_3640	A0A394XKL8		AF241_04465	SagB/ThcOx family dehydrogenase		24.24	0.00
group_2760	UPI00086F2DD0			DUF1738 domain-containing protein		24.24	0.00
bcgIB	UPI0009850DB7		CJV36_12055	Uncharacterized protein		24.24	0.00
bcgIA	UPI00074D58A5		CJV36_12060	Adenine methyltransferase		24.24	0.00
group_938	Q8YAG9		lmo0157	Lmo0157 protein	3.2.0	24.24	0.00
group_6253	UPI000BE1046E			relaxase		24.24	0.00
group_6255	E6EXY6	Enterococcus faecalis TX0630	HMPREF9511_0168 3	Uncharacterized protein		24.24	0.00
group_6254	UPI00098E5223			plasmid mobilization relaxosome protein MobC		24.24	0.00
group_6256	UPI0004D69275		ARJ20_16365	LPXTG cell wall anchor domain-containing protein		24.24	0.00
group_6258	UPI000BE07A8C		—	CHAP domain-containing protein		24.24	0.00
group_3639	A0A0B8QY40		LmNIHS28_00811	ABC transporter permease		24.24	0.00
	-		—	· ·			

yofA	A0A393QJ60	yofA	HTH-type transcriptional regulator YofA (LysR family transcriptional regulator)		24.24	0.00
licH 1	UPI000EFDE50F		6-phospho-beta-glucosidase	2.1.1	75.76	100.00
	UPI000EFDE50F		6-phospho-beta-glucosidase	2.1.1	24.24	0.00
group_487	A0A3A7GDL7	AF264_00475	Carbohydrate deacetylase (EC 3.5.1) (ChbG/HpnK family deacetylase)	5.2.0	75.76	100.00
group_4692	A0A0B8RFY9	LmNIHS28 00810	Uncharacterized protein		24.24	0.00
group_6264	A0A0H3GD71	LMRG 02934	Uncharacterized protein		24.24	0.00
group_6266	A0A3A7MCD0	AF821_01506	Uncharacterized protein		24.24	0.00
group_6267	A0A0H3G912	LMRG 02574	GNAT family acetyltransferase		24.24	0.00
group_6260	Q2V4W9	pCT0002	Uncharacterized protein		24.24	0.00
group_6261	UPI00074D5B8B	LM800396_140058	Uncharacterized protein		24.24	0.00
group_6262	A0A3A7YC45	AF821_01500	Uncharacterized protein		24.24	0.00
group_6268	A0A3A7URE0	ID87_02064	Uncharacterized protein		24.24	0.00
mco	UPI000A1FFD33		copper oxidase		24.24	0.00
hsdM	A0A3A7RFF8	hsdM	SAM-dependent DNA methyltransferase (Type I restriction enzyme EcoKI M protein) (EC 2.1.1.72)		24.24	0.00
hsdR	A0A3A7Y0A7	hsdR	Type I restriction endonuclease subunit R (Type-1 restriction enzyme R protein) (EC 3.1.21.3)		24.24	0.00
group_4899	A0A393JAZ3	inlA 6	DUF5011 domain-containing protein (Internalin-A)		15.15	45.83
group 3797	A0A3A2L4U9	AF238 14470	Uncharacterized protein		15.15	45.83
group_5509	A0A3A2KDS0	AF273_15200	Uncharacterized protein		15.15	45.83
group_388	UPI0009870563	—	DnaD domain protein		15.15	45.83
group_4112	A0A0B8RBG4	LmNIHS28 00797	Uncharacterized protein	6.0.0	30.30	4.17
group 2486	A0A3A7PTC4	AF251 01345	DNA double-strand break repair Rad50 ATPase		30.30	4.17
group_4113	UPI0004311060	HR60 02825	Membrane protein		30.30	4.17
group_4194	A0A3A8BYI6		Uncharacterized protein		30.30	4.17
group_4195	A0A0B8RHP3	LmNIHS28 01665	Uncharacterized protein		30.30	4.17
group_1150	A0A394RBJ1	AF239 04485	Uncharacterized protein		30.30	4.17
group 3850	A0A0H3GHG8	LMRG_00005	Uncharacterized protein		30.30	4.17
group_4224	A0A3A7A655	AF241 00720	Peptidase (Putative peptidase) (EC 3.4.21)	2.2.0	30.30	4.17
group_2501	A0A394ZN44	AF264_00790	YafY family transcriptional regulator	3.5.2	30.30	4.17
tatAy	Q8YA04	tatA –	Sec-independent protein translocase protein TatA	5.2.0	69.70	95.83
group 5404	A0A142EC67	pA144_0010	Uncharacterized protein		30.30	4.17
group_2381	A0A394ZTP0	AF264 04540	Uncharacterized protein	5.1.0	30.30	4.17
group_2751	UPI0000F3E668	LMRG_00004	Uncharacterized protein	6.0.0	30.30	4.17
efeU	Q8YA02	lmo0365	Lmo0365 protein	5.2.0	69.70	95.83
efeM	Q8YA01	lmo0366	Lmo0366 protein	1.2.0	69.70	95.83
group_3761	A0A142EC65	pA144_0008	Uncharacterized protein		30.30	4.17

group_5405	A0A142EC66	pA144_0009	Uncharacterized protein		30.30	4.17
tatC2	Q8YA05	tatC	Sec-independent protein translocase protein TatC	5.2.0	69.70	95.83
group_6278	A0A393AES1	DOZ93_04600	Uncharacterized protein		21.21	0.00
group_295	UPI00042E7F14	ARK89_15370	Uncharacterized protein		21.21	0.00
wapA	A0A0E1R9W5	wapA_2	Wall-associated protein		21.21	0.00
group_6269	A0A3A7V3E1	immR_3	HTH-type transcriptional regulator ImmR		21.21	0.00
group_2069	A0A0H3GGP2	LMRG_02453	Mannose-specific PTS system IID component	1.2.0	9.09	37.50
group_5469	UPI00074D5C6E	DB955_12755	Uncharacterized protein		9.09	37.50
group_2747	A0A3A7GK30	dnax_1	DNA polymerase III subunit gamma/tau (EC 2.7.7.7)	3.1.0	42.42	12.50
cshA_1	UPI000E748D91	yfml	Putative ATP-dependent RNA helicase YfmL	3.6.0	42.42	12.50
group_590	A0A0B8R1T6	topA	DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I)	3.4.0	42.42	12.50
group_343	A0A393RXH2	uvra_1	UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A)	3.2.0	42.42	12.50
group_464	A0A393AUV1	ddrA	Diol dehydratase reactivase subunit alpha (Diol dehydratase-reactivating factor alpha subunit)	2.1.1	42.42	12.50
group 948	A0A3A8BZW0	manZ 2	PTS system mannose-specific EIID component	1.2.0	42.42	12.50
group_1046	A0A241ST46	arpJ	Amino acid ABC transporter, permease protein	1.2.0	42.42	12.50
bglF 4	Q8Y3P7	bvrB	Beta-glucoside-specific phosphotransferase enzyme II ABC component	1.2.0	57.58	87.50
ogn_i	201517	0110		1.2.0	57.50	07.50
group_276	A0A393UU69	inlJ_12	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)	1.8.0	42.42	12.50
group_3512	Q8XFU0	lmo0174 lmo0329 lmo0827	Lmo0174 protein (Lmo0329 protein) (Lmo0827 protein)		57.58	87.50
group_2141	A0A3A8BU08	ywtF	Putative transcriptional regulator YwtF	3.5.2	42.42	12.50
group_762	A0A0B8RIH2	LmNIHS28_02100	2-nitropropane dioxygenase	5.2.0	42.42	12.50
group_2444	A0A394ZP22	AF264_02070	ABC transporter ATP-binding protein (Putative ABC transporter ATP- binding protein)	1.2.0	42.42	12.50
group_1633	A0A3A8BTZ2	iscS 1	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	42.42	12.50
group_1698	Q8Y853	lmo1065	UPF0637 protein lmo1065	5.2.0	57.58	87.50
group_2638	A0A1D2J2T1	CDR86 02640	Uncharacterized protein	6.0.0	18.18	50.00
group 1919	A0A393FFS4	AF249 11805	Uncharacterized protein	4.3.0	18.18	50.00
group_1717 group_271	A0A393EUH1	AF249 11760	Uncharacterized protein	6.0.0	18.18	50.00
lolD	UPI000EF63221	AI ² 49_11/00	ATP-binding cassette domain-containing protein	1.2.0	45.45	16.67
group_3916	A0A3A7D3S5	AF251_14010	Uncharacterized protein	1.2.0	45.45	16.67
group_689	A0A3A7UBE8	AF876 02227	Uncharacterized protein	1.2.0	54.55	83.33
group_089	A0A5A/OBE8	AI'0/0_02227	M15 family peptidase (Peptidoglycan L-alanyl-D-glutamate	1.2.0	54.55	03.33
group_179	A0A3A6XDK1	cwlk_1	endopeptidase CwlK) (EC 3.4)		0.00	16.67
group_6128	A0A3A7DT48	ydag	General stress protein (General stress protein 26)	5.2.0	0.00	16.67
group_6127	A0A393PKW4	AF856_02681	Uncharacterized protein		0.00	16.67
group_6126	UPI000C184228	P734_13635	Uncharacterized protein		0.00	16.67
group_6125	A0A3A7YXF2	aroH_3	Chorismate mutase AroH (EC 5.4.99.5)	2.2.0	0.00	16.67

group_	_6124	A0A3A7Z5T3	rsbRD_1	RsbT co-antagonist protein RsbRD (STAS domain-containing protein)	3.5.2	0.00	16.67
dacA	1	A0A3A8C0D1	dacA 1	D-alanyl-D-alanine carboxypeptidase DacA (EC 3.4.16.4)	1.1.0	100.00	83.33
group		A0A3A6X160	AF856 00673	Uncharacterized protein		0.00	16.67
group	_	UPI0001975C76	AF856 01874	Uncharacterized protein	5.1.0	0.00	16.67
group_		A0A3A2QZK9	AF856 00674	Uncharacterized protein		0.00	16.67
group	_	A0A3A7SN42	AF856 01875	Uncharacterized protein		0.00	16.67
group_	_	UPI00083D8768	_	DEAD/DEAH box helicase		0.00	16.67
group	_	UPI000C86987A	DB955 06525	DUF3310 domain-containing protein		0.00	16.67
group_		A0A3A2R9S0	AF856 00671	Subtilase		0.00	16.67
rsbRD	_	A0A3A8C0Q6	rsbRD ⁻ I	RsbT co-antagonist protein RsbRD	3.5.2	100.00	83.33
group_	_	UPI000C82ECAA	AE052 00662	Uncharacterized protein		0.00	16.67
group_	_	UPI000BE0D727	DSD41 15835	Pentapeptide repeat-containing protein		0.00	16.67
pabB	_	A0A393CPU5	_ pabB	Aminodeoxychorismate synthase component 1 (Aminodeoxychorismate synthase component I) (EC 2.6.1.85)	2.2.0	100.00	83.33
group	3804	UPI0005DF0EE0	UF18_04880	Uncharacterized protein		0.00	16.67
group_	_5612	A0A393NK10	AB922_00245	Uncharacterized protein		0.00	16.67
bepR		A0A3A7D1L4	AF264_13415	TetR/AcrR family transcriptional regulator	3.5.2	100.00	83.33
group_	6109	A0A3A7IZB5	AF856_03129	Uncharacterized protein		0.00	16.67
feaR		A0A3A8C0I4	feaR	Transcriptional activator FeaR	3.5.2	100.00	83.33
sauU		A0A3A2S3I3	sauu	MFS transporter (Putative sulfoacetate transporter SauU)	1.2.0	100.00	83.33
group_	_4673	A0A2A6A8Y8	CDR86_05485	Uncharacterized protein		0.00	16.67
ftsH_2	2	A0A3A7DV86	ftsh_l	ATP-binding protein (ATP-dependent zinc metalloprotease FtsH) (EC 3.4.24)		0.00	16.67
ydaG		A0A394XK17	ydag	General stress protein (General stress protein 26)	5.2.0	100.00	83.33
group_	_3867	A0A393UGI5	DCT05_12735	Uncharacterized protein		0.00	16.67
group_	5979	A0A393TCN4	AF828_02778	Uncharacterized protein		0.00	16.67
group_	1984	UPI000771AA2D		hypothetical protein	6.0.0	0.00	16.67
traD		A0A3A8AEL8	traG	Conjugal transfer protein TraG		0.00	16.67
pabA_	2	A0A3A7DMV1	paba_2	Aminodeoxychorismate synthase component 2 (EC 2.6.1.85) (Aminodeoxychorismate/anthranilate synthase component II)	2.2.0	0.00	16.67
group_	_5935	UPI0005C68DD0		hypothetical protein	4.3.0	0.00	16.67
group_	_6217	UPI00076181B6		hypothetical protein	6.0.0	0.00	16.67
group_	6130	UPI00083CAFD8		aminodeoxychorismate synthase component I	2.2.0	0.00	16.67
group_	_6131	A0A3A6XIE2	daca_2	D-alanyl-D-alanine carboxypeptidase (D-alanyl-D-alanine carboxypeptidase DacA) (EC 3.4.16.4)		0.00	16.67
group_	_6133	A0A3A7DM63	fabg_3	3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100) (SDR family NAD(P)-dependent oxidoreductase)	2.1.1	0.00	16.67
group_	6134	A0A3A2QX50	sauu	MFS transporter (Putative sulfoacetate transporter SauU)	1.2.0	0.00	16.67
group_	6136	A0A3A6WQT3	AF856_02180	Uncharacterized protein		0.00	16.67
group_	6137	A0A393IRF0	D3B86_12220	Uncharacterized protein		0.00	16.67

group_6135	A0A3A7YZM5	feaR	Helix-turn-helix domain-containing protein (Transcriptional activator FeaR)	3.5.2	0.00	16.67
mtrR	A0A393NQA7	mtrr	HTH-type transcriptional regulator MtrR (TetR/AcrR family transcriptional regulator)	3.5.2	0.00	16.67
fabG_1	A0A3A7DKS1	fabg_2	3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100) (KR domain-containing protein) (SDR family NAD(P)-dependent oxidoreductase)	2.1.1	100.00	83.33
group_513	A0A393M724	DN831 08165	Uncharacterized protein	6.0.0	0.00	16.67
group_4099	UPI000D648E93	DF275_07015	Uncharacterized protein (Fragment)		36.36	8.33
iscS 1	Q8Y713	lmo1513	Lmo1513 protein	2.5.0	63.64	91.67
	A0A2Z5BZG6	RK57 07490	Uncharacterized protein	6.0.0	36.36	8.33
group_3888	A0A0B8RBN9	LmNIHS28 00109	Uncharacterized protein	6.0.0	36.36	8.33
efeN	Q8YA00	lmo0367	Deferrochelatase/peroxidase (EC 1.11.1)	5.2.0	63.64	91.67
group_511	A0A3A7GBM6	chial	Chitinase (Chitinase A1) (EC 3.2.1.14)	2.1.1	36.36	8.33
group_4477	A0A3A6ZKA9	AF947 02068	Uncharacterized protein		6.06	29.17
group_3741	A0A393MUK4	D3B04 11680	DUF3310 domain-containing protein		6.06	29.17
group_180	UPI000BDFE765	_	hypothetical protein		6.06	29.17
group_4649	A0A3A7T6Q6	AF249 11825	Uncharacterized protein	4.3.0	6.06	29.17
zosA	A0A3A7WV50	zosA	Heavy metal translocating P-type ATPase (Zinc-transporting ATPase) (EC 3.6.3)	1.2.0	48.48	79.17
group 4803	A0A3A7BSB1	AE233 02875	Peptide ABC transporter permease		24.24	54.17
ybiA	A0A0B8R4G2		Swarming motility protein YbiA		72.73	41.67
comK 1	UPI000BE018FA	—	competence protein ComK		30.30	62.50
group_155	A0A394UFW5	inlD	Class 1 internalin InID (Internalin-A)	1.8.0	30.30	62.50
group_131	A0A393RNT2	AF264 14030	Uncharacterized protein	6.0.0	33.33	8.33
group_2647	A0A3A2YHL0	AF252 05590	ATP-dependent helicase (DEAD/DEAH box helicase)		33.33	8.33
group_2522	A0A3A2PCV4	comEC 1	ComE operon protein 3 (MBL fold metallo-hydrolase)	1.10.0	33.33	8.33
group 676	Q8Y496	ami –	Autolysin, amidase	1.8.0	66.67	91.67
group_1332	UPI00057F741C	OJ14_05160	Uncharacterized protein		33.33	8.33
group_2102	A0A3A7DM92	AF264 12825	NUDIX pyrophosphatase		33.33	8.33
group 661	UPI00025485A0	AJZ74 02635	Uncharacterized protein	5.2.0	36.36	66.67
group 2488	UPI000869A2AF	_	HEAT repeat domain-containing protein		18.18	0.00
inlA 13	A0A394XWP9	AF264 05160	Cell surface protein		18.18	0.00
tkt 3	A0A0D8X574	CDR86 05070	Uncharacterized protein	5.2.0	18.18	0.00
	A0A0E1R3F0	BN389 04600	Uncharacterized protein		18.18	0.00
parC	A0A3A7I7R9	parc	DNA topoisomerase 4 subunit A (EC 5.99.1.3) (Topoisomerase IV subunit A)	3.4.0	81.82	100.00
group_846	A0A0B8R577	hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	18.18	0.00
group_966	A0A0B8QWB8	LmNIHS28_00166	Cell surface protein		18.18	0.00
group_1672	A0A0H3GJX6	– parC	DNA topoisomerase 4 subunit A (EC 5.99.1.3) (Topoisomerase IV subunit A)	3.4.0	18.18	0.00

group_3452	A0A0B8RG05	LmNIHS28_01809	Uncharacterized protein		18.18	0.00
group_5020	A0A3A8BWY7	<i>CFSAN002345_0022</i> 55	Uncharacterized protein		18.18	0.00
group_2662	A0A3A2JSN0	AF247_04460	Uncharacterized protein		18.18	0.00
group_3817	UPI00092E980C		uridine kinase		3.03	25.00
group_5820	A0A3A7GWE9	AF238_11110	Ig domain-containing protein		3.03	25.00
group_5891	A0A3A2WIZ3	AF944_02807	Uncharacterized protein		3.03	25.00
group_443	A0A3A6WGG5	AF264_08290	Poly(Glycerol-phosphate) alpha-glucosyltransferase	5.2.0	96.97	75.00
group_5449	A0A2A6A5P4	CDR86_09900	DUF2786 domain-containing protein		3.03	25.00
group_5448	UPI00092FD6C1		hypothetical protein		3.03	25.00
group_5447	UPI0003591FC5	DB944_02160	Uncharacterized protein	4.3.0	3.03	25.00
group_3655	A0A3A7VDZ7	AF239_11030	Phage repressor protein/antirepressor Ant		15.15	41.67
hin	A0A3A2JMV4	hin_1	DNA-invertase hin (Recombinase family protein)	4.3.0	15.15	41.67
group_3751	UPI000BE0CC15		plasmid replication protein		15.15	41.67
group_4521	Q8Y6I3	lmo1701	Lmo1701 protein	6.0.0	15.15	41.67
group_3784	A0A3A2KAA0	AF255_02365	DUF1398 domain-containing protein	6.0.0	15.15	41.67
group_1780	A0A0B8R2H7	LmNIHS28_00917	Phage envelope protein	6.0.0	84.85	58.33
group_1660	A0A3A8C6B9	mglA	Galactose/methyl galactoside import ATP-binding protein MglA (EC 3.6.3.17)	1.2.0	39.39	12.50
group_860	Q8Y9U8	lmo0422	Lmo0422 protein	5.2.0	60.61	87.50
group_4658	Q8Y4U3	lmo2339	Lmo2339 protein	5.2.0	60.61	87.50
group_261	A0A393F884	AF249_03970	Cell surface protein (LPXTG cell wall anchor domain-containing protein)	1.8.0	60.61	87.50
group_1613	UPI000986F629	D3C41_14375	DEAD/DEAH box helicase	3.6.0	60.61	87.50
atpG_1	A0A3A7I128	atpg_l	ATP synthase gamma chain, sodium ion specific (F0F1 ATP synthase subunit gamma)	1.4.0	39.39	12.50
group_1398	A0A393D0P2	aguA	Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase)	5.2.0	39.39	12.50
isdE 1	Q9EXG4	fufA	Heme ABC transporter substrate-binding protein IsdE (Lipoprotein)	1.2.0	60.61	87.50
	Q8Y599	lmo2170	Lmo2170 protein	5.2.0	60.61	87.50
ogt_2	Q8Y8B2	lmo0996	Methylated-DNAprotein-cysteine methyltransferase (EC 2.1.1.63) (O-6- methylguanine-DNA-alkyltransferase)	3.2.0	60.61	87.50
group_4262	UPI000C8207CA		replication and copy control-associated protein		39.39	12.50
group_4266	D7PCE1		Uncharacterized protein		39.39	12.50
group_1653	A0A1S7FKW2	DC57 08295	Alkaline phosphatase family protein	2.6.0	39.39	12.50
group_1657	A0A3A8BUI8	albF	Putative zinc protease AlbF (EC 3.4.24)	2.2.0	39.39	12.50
group_1837	A0A241SLH2	tkt	Transketolase (EC 2.2.1.1)	2.1.2	39.39	12.50
ywtF	A0A3A8BV30	ywtF	Putative transcriptional regulator YwtF	3.5.2	60.61	87.50
artQ_2	Q8Y527	arpJ	ArpJ protein	1.2.0	60.61	87.50
iscS_2	A0A3A8BUZ1	iscS_2	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	60.61	87.50

group_3165	A0A3A7MIL3	garB	Glutathione amide reductase (EC 1.8.1.16) (NAD(P)/FAD-dependent oxidoreductase)	4.1.0	39.39	12.50
group_2697	A0A3A7Q910	AF818_02415	Uncharacterized protein		39.39	12.50
group_4135	A0A3A2VNJ8	ogt	Methylated-DNAprotein-cysteine methyltransferase (EC 2.1.1.63) (O-6-methylguanine-DNA-alkyltransferase)	3.2.0	39.39	12.50
group_1560	A0A3A8BMS5	ydfG	NADP-dependent 3-hydroxy acid dehydrogenase YdfG (EC 1.1.1.381)	2.1.1	39.39	12.50
group_2769	A0A1D2IW42	CDR86_11860	ABC transporter permease	5.2.0	60.61	87.50
group_2119	A0A241STG7	cbiO	Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3)	1.2.0	39.39	12.50
group_4593	Q8Y5W2	lmo1943	Lmo1943 protein	5.2.0	60.61	87.50
group_1000	A0A3A7RII6	AE233_00940	SMI1/KNR4 family protein	5.2.0	60.61	87.50
fosX	Q8Y6I2	fosX	Fosfomycin resistance protein FosX	4.1.0	60.61	87.50
group_705	A0A2Z5C4I1	RK57 08210	Uncharacterized protein	5.1.0	39.39	12.50
group_1138	A0A394ZK64	AF264 05670	Uncharacterized protein	5.2.0	39.39	12.50
ddrA	A0A0E0UUN7	pduG ⁻	Putative diol dehydratase-reactivating factor large subunit	2.1.1	60.61	87.50
group 2575	Q8Y972	lmo0661	Lmo0661 protein	5.2.0	60.61	87.50
group_4665	Q8Y4J5	lmo2443	Lmo2443 protein	6.0.0	60.61	87.50
soj_1	UPI00093201BA		chromosome partitioning protein ParA		39.39	12.50
dnaX 1	A0A1D2IRD3	dnaX	DNA polymerase III subunit gamma/tau (EC 2.7.7.7)	3.1.0	60.61	87.50
group 4609	Q8Y5S4	lmo1981	Lmo1981 protein	5.2.0	60.61	87.50
group 4230	A0A1S7FP22	DC57 13960	Uncharacterized protein		39.39	12.50
topA	A0A1D2IVT6	topA –	DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I)	3.4.0	60.61	87.50
group 2445	Q8Y9C4	lmo0608	Lmo0608 protein	1.2.0	60.61	87.50
group_649	A0A393CN22	AF264 00975	Mannosylglycerate hydrolase (EC 3.2.1.170)	2.1.1	39.39	12.50
inlA 4	A0A1D2IYS1	CDR86 07930	Internalin	1.8.0	60.61	87.50
skfE	A0A3A8BUB3	skfE	SkfA peptide export ATP-binding protein SkfE (EC 3.6.3.25)	1.2.0	60.61	87.50
group_4348	A0A0H3GDS2	LMRG 00052	Uncharacterized protein		60.61	87.50
group_1735	A0A0E0UV76	LMM7_0870	Putative transcriptional regulator, MarR family	5.2.0	39.39	12.50
garB	A0A3A7P5T5	garB	Glutathione amide reductase (EC 1.8.1.16) (NAD(P)/FAD-dependent oxidoreductase)	4.1.0	60.61	87.50
xseA 2	A0A0E1R607	yqgN	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)	2.5.0	39.39	12.50
	D7PCE0	7.18	Transposase		39.39	12.50
inlJ_5	A0A3A8C0G4	inlJ 2	Internalin-J	1.8.0	60.61	87.50
inlJ 9	Q8Y591	lmo2178	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	60.61	87.50
group 4336	Q8YAA5	lmo0247	Lmo0247 protein	6.0.0	60.61	87.50
group_1550 group_4570	Q8Y6H1	lmo1715	Lmo1715 protein	5.2.0	9.09	33.33
group_1976	A0A392XCY7	AF828 00150	Phage tail protein	2.2.0	9.09	33.33
group_1934 group_2178	A0A3A7KNB4	gadB 1	Glutamate decarboxylase (EC 4.1.1.15)	2.2.0	9.09	33.33
group 5624	UPI000BE07ECD	Sun2_1	hypothetical protein	2.2.0	9.09	33.33
group 5457	A0A393UJV3	AF828 00146	Phage gp6-like head-tail connector protein		9.09	33.33
group_9797	110113730343	11 020_00170	That's goo like head-an connector protein		2.02	55.55

group 5416	A0A394VX67	AF239 12505	Uncharacterized protein		9.09	33.33
group_5418	A0A393W8P8	AF847_02885	Uncharacterized protein	4.3.0	9.09	33.33
group_3699	Q8Y4W9	lmo2310	Lmo2310 protein	6.0.0	9.09	33.33
group_3597	Q8Y6H2	lmo1714	Lmo1714 protein	5.2.0	9.09	33.33
group_4888	A0A393CGK6	AF876_00589	Uncharacterized protein	5.1.0	9.09	33.33
group_5415	A0A394VMA7	AF239_12500	Uncharacterized protein		9.09	33.33
group_2559	UPI000B54942D		DUF3130 family protein	5.1.0	18.18	45.83
group_697	A0A1T1YBY4	DC57_15090	Type VII secretion effector	5.1.0	81.82	54.17
group_770	A0A3A2WV59	feoB	Ferrous iron transport protein B	1.2.0	42.42	16.67
group_492	Q8Y7H3	lmo1307	Lmo1307 protein	6.0.0	57.58	83.33
blaSE	UPI0000F53A3E	HR75_01490	Peptidase		57.58	83.33
group_1421	A0A3A7HNU0	AB922_02876	DUF4918 domain-containing protein (DUF4918 family protein) (SMUG2 DNA glycosylase family protein)	6.0.0	42.42	16.67
group_746	A0A0B8R487	<i>LmNIHS28_01552</i>	ABC transporter permease	1.2.0	42.42	16.67
group_2612	A0A0H3GHY8	LMRG_02831	Uncharacterized protein	5.2.0	57.58	83.33

¥ Non L. monocytogenes species

† Description for each functional category code is presented below

[1.1.0] Cell envelope and cellular processes > Cell wall

[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins

[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)

[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics

[1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis

[1.6.0] Cell envelope and cellular processes > Protein secretion

[1.7.0] Cell envelope and cellular processes > Cell division

[1.8.0] Cell envelope and cellular processes > Cell surface proteins

[1.9.0] Cell envelope and cellular processes > Soluble internalin

[1.10.0] Cell envelope and cellular processes > Transformation/competence

[2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule

[2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways

[2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways

[2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle

[2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules

[2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids

[2.4.0] Intermediary metabolism > Metabolism of lipids

[2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups

[2.6.0] Intermediary metabolism > Metabolism of phosphate

[3.1.0] Information pathways > DNA replication

[3.2.0] Information pathways > DNA restriction/modification and repair

[3.3.0] Information pathways > DNA recombination

[3.4.0] Information pathways > DNA packaging and segregation

[3.5.1] Information pathways > RNA synthesis > Initiation

[3.5.2] Information pathways > RNA synthesis > Regulation

- [3.5.3] Information pathways > RNA synthesis > Elongation
- [3.5.4] Information pathways > RNA synthesis > Termination
- [3.6.0] Information pathways > RNA modification
- [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins
- [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases
- [3.7.3] Information pathways > Protein synthesis > Initiation
- [3.7.4] Information pathways > Protein synthesis > Elongation
- [3.7.5] Information pathways > Protein synthesis > Termination
- [3.8.0] Information pathways > Protein modification
- [3.9.0] Information pathways > Protein folding
- [4.1.0] Other functions > Adaptation to atypical conditions
- [4.2.0] Other functions > Detoxification
- [4.3.0] Other functions > Phage-related functions
- [4.4.0] Other functions > Transposon and IS
- [4.5.0] Other functions > Miscellaneous
- [5.1.0] Similar to unknown proteins > From Listeria
- [5.2.0] Similar to unknown proteins > From other organisms
- [6.0.0] No similarity

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category	% in weak biofilm	% in strong biofilm
					t t	formers	formers
group 1262	UPI000873C4F1			DUF1310 family protein	5.1.0	8.57	63.64
group_1202 group_3691	A0A3A2TPS8		D3B72 03010	DUF4274 domain-containing protein	5.1.0	2.86	45.45
trmK	A0A3A8BUD5		trmK	tRNA (Adenine(22)-N(1))-methyltransferase (EC 2.1.1.217)	5.2.0	97.14	59.09
group_2681	A0A3A2N2S0		D3B30_04480	DUF4274 domain-containing protein	0.2.0	2.86	40.91
group_5815	A0A3A6YNM7		trmk	tRNA (Adenine(22)-N(1))-methyltransferase (EC 2.1.1.217) (tRNA (Adenine(22)-N(1))-methyltransferase TrmK)	5.2.0	2.86	40.91
group_3690	A0A393TFG3		AF876_00592	Uncharacterized protein		2.86	40.91
group_3090 group_4887	A0A392Z6S3		ABY94 00615	Uncharacterized protein		2.86	40.91
group_3505	Q8Y3M7		lmo2808	Lmo2808 protein	5.1.0	5.71	45.45
folK	A0A3A7Q0D0		folK	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase (EC 2.7.6.3)	2.5.0	20.00	68.18
group_5820	A0A3A7GWE9		AF238 11110	Ig domain-containing protein		0.00	31.82
group_7000	A0A2Z5Z219	Lactococcus lactis	 E05_32090	Uncharacterized protein		11.43	54.55
group_1855	UPI000BDFDF92			DUF1310 family protein	5.1.0	11.43	54.55
ccpB_2	A0A3A8BWU9		ccpB_1	Catabolite control protein B	3.5.2	60.00	13.64
group_3504	Q8Y3N1		lmo2804	Lmo2804 protein	6.0.0	5.71	40.91
group_2195	A0A393SL84		coia	Competence protein CoiA	1.10.0	57.14	13.64
group_2547	Q8Y403		lmo2675	Lmo2675 protein	6.0.0	42.86	86.36
group_1222	Q8Y9J2		lmo0535	Lmo0535 protein	3.5.2	42.86	86.36
group_25	UPI000775813C			peptidase M15		0.00	27.27
group_3432	A0A3A2PDH0		hyuC	Hydantoin utilization protein C (Zn-dependent hydrolase)	2.2.0	54.29	13.64
group_4197	UPI00098E3EF0			hypothetical protein		54.29	13.64
hyuC	A0A3A8C8X7		hyuC	Hydantoin utilization protein C	2.2.0	45.71	86.36
group_3503	Q8Y3S8		lmo2753	Lmo2753 protein	6.0.0	45.71	86.36
group_4421	Q8Y8L6		lmo0881	Lmo0881 protein	6.0.0	45.71	86.36
group_3668	A0A3A2JQP2		D3B79_08735	PBSX family phage terminase large subunit		2.86	31.82
group_1699	A0A2Z5C4D1		RK57_13295	UPF0637 protein RK57_13295	5.2.0	45.71	9.09
group_2305	Q8Y718		lmo1508	Lmo1508 protein	1.3.0	48.57	86.36
iscS 1	Q8Y713		lmo1513	Lmo1513 protein	2.5.0	62.86	95.45
	A0A2Z5BZG6		RK57_07490	Uncharacterized protein	6.0.0	37.14	4.55
inlJ_10	UPI000987BEBC		_	LPXTG cell wall anchor domain-containing protein		37.14	4.55
	Q8Y9C6		lmo0606	Lmo0606 protein	3.5.2	37.14	4.55
group_5508	A0A3A7W759		AF951_01101	Uncharacterized protein		28.57	68.18
group_239	A0A392XPZ3		AF264_04535	Uncharacterized protein	5.1.0	85.71	50.00
sbcC	A0A3A7GZ22		sbcc	Nuclease SbcCD subunit C (SMC family ATPase)	3.3.0	74.29	36.36

Supplementary '	Table 4. List of genes associated	l with biofilm produc	ction in dBHI media supplemente	ed with 0.85% NaCl at 37°C after	pan-GWAS (p < 0.05).
11 /	8	1	11		1

group_3592	Q8Y6N6	lmo1648	Lmo1648 protein	6.0.0	25.71	63.64
group_4801	A0A3A2R9E5	D3B46_07385	Uncharacterized protein	(0 0	0.00	22.73
group_129	UPI00098CF0C0	D3B30_10910	Uncharacterized protein	6.0.0	0.00	22.73
group_1228	A0A2Z5C2Q2	<i>RK57_10170</i>	DUF917 domain-containing protein	5.2.0	100.00	77.27
dacA_2	A0A0B8QZU7	LmNIHS28_00259	D-alanyl-D-alanine carboxypeptidase	1.1.0	65.71	27.27
trpG	Q8Y3T2	lmo2749	Lmo2749 protein DNA polymerase III subunit gamma/tau (EC 2.7.7.7)	2.2.0	34.29	72.73
group_2747	A0A3A7GK30	dnax_1		3.1.0 3.6.0	42.86	9.09
cshA_1	UPI000E748D91	yfml	Putative ATP-dependent RNA helicase YfmL		42.86	9.09
group_590	A0A0B8R1T6	topA	DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I)	3.4.0	42.86	9.09
group_343	A0A393RXH2	uvra_1	UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A)	3.2.0	42.86	9.09
group_464	A0A393AUV1	ddrA	Diol dehydratase reactivase subunit alpha (Diol dehydratase-reactivating factor alpha subunit)	2.1.1	42.86	9.09
group 762	A0A0B8RIH2	LmNIHS28 02100	2-nitropropane dioxygenase	5.2.0	42.86	9.09
group_948	A0A3A8BZW0	manZ_2	PTS system mannose-specific EIID component	1.2.0	42.86	9.09
group_2444	A0A394ZP22	 AF264_02070	ABC transporter ATP-binding protein (Putative ABC transporter ATP- binding protein)	1.2.0	42.86	9.09
group_1046	A0A241ST46	arpJ	Amino acid ABC transporter, permease protein	1.2.0	42.86	9.09
bglF_4	Q8Y3P7	bvrB	Beta-glucoside-specific phosphotransferase enzyme II ABC component	1.2.0	57.14	90.91
group_276	A0A393UU69	inlJ_12	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)	1.8.0	42.86	9.09
group_3512	Q8XFU0	lmo0174 lmo0329 lmo0827	Lmo0174 protein (Lmo0329 protein) (Lmo0827 protein)		57.14	90.91
group_1633	A0A3A8BTZ2	iscS_1	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	42.86	9.09
group_1698	Q8Y853	lmo1065	UPF0637 protein lmo1065	5.2.0	57.14	90.91
group_2141	A0A3A8BU08	ywtF	Putative transcriptional regulator YwtF	3.5.2	42.86	9.09
inlJ_3	UPI000BE06EFB		LPXTG cell wall anchor domain-containing protein	1.8.0	57.14	90.91
fusA_1	A0A0B8R0X1	LmNIHS28_00357	Phosphotriesterase	2.4.0	25.71	0.00
fosB	A0A0B8R4C4	LmNIHS28_00813	Glyoxalase	6.0.0	25.71	0.00
group_1807	UPI000BE00DE2		hypothetical protein		48.57	13.64
group_2910	A0A394XQ43	AF264_11505	Uncharacterized protein		48.57	13.64
group_1969	A0A0E0V124	gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	48.57	13.64
inlJ 2	Q8Y3L4	inlJ	Internalin J	1.8.0	51.43	86.36
group 1298	Q8Y842	lmo1076	Lmo1076 protein	1.1.0	65.71	95.45
group_3961	A0A0E0UZG3	LMM7_2508	Uncharacterized protein	6.0.0	34.29	4.55
group_4198	W5U092	lntA –	Nuclear-targeted protein A	6.0.0	34.29	4.55
group_4109	A0A3A2WY61	AF264_04635	Bifunctional precorrin-2 dehydrogenase/sirohydrochlorin ferrochelatase		34.29	4.55
group_676	Q8Y496	ami	Autolysin, amidase	1.8.0	65.71	95.45

group 4184	A0A394ZL82	AF264 02035	DUF4097 domain-containing protein	1.8.0	34.29	4.55
group_2446	Q8Y9C6	lmo0606	Lmo0606 protein	3.5.2	65.71	95.45
group_3532	Q8Y9D1	lmo0601	Lmo0601 protein	1.8.0	65.71	95.45
group_2813	A0A0H3GCX1	LMRG 02847	Uncharacterized protein		77.14	40.91
group_3807	UPI0005ECD83E	VE88 14755	DNA-binding protein (Fragment)		2.86	27.27
group_3817	UPI00092E980C	—	uridine kinase		2.86	27.27
yicI_4	Q8Y4J2	lmo2446	Lmo2446 protein	2.1.1	45.71	81.82
eccCa1	A0A393D7A8	essC	ESAT-6 secretion machinery protein EssC (Type VII secretion protein EssC)	5.2.0	54.29	18.18
group_1623	A0A0B8QZI6	LmNIHS28_01291	ABC transporter permease	5.2.0	54.29	18.18
group_4631	UPI00074D6448	LM901004_160002	Uncharacterized protein		28.57	63.64
ssb_4	UPI000BE1101C		hypothetical protein		28.57	63.64
group_458	Q8Y6N9	lmo1645	Lmo1645 protein	3.3.0	28.57	63.64
group_1433	Q8Y3S7	lmo2754	Lmo2754 protein	1.1.0	37.14	72.73
ezrA	Q8Y6T8	ezrA	Septation ring formation regulator EzrA	1.7.0	37.14	72.73
inlA_10	Q723K6	inlA	Internalin A	1.8.0	51.43	18.18
phoR_2	A0A0E1R5Y8	yclK	Sensor histidine kinase yclK (EC 2.7.13.3)	1.3.0	51.43	18.18
yicI_3	A0A0B8RA88	LmNIHS28_01488	Glycosyl hydrolase family 31	2.1.1	51.43	18.18
group_1624	A0A3A7U6D9	ARK97_06545	ABC transporter permease	5.2.0	48.57	81.82
marA	Q8Y803	lmo1116	Lmo1116 protein	3.5.2	57.14	22.73
group_1398	A0A393D0P2	aguA	Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase)	5.2.0	40.00	9.09
group_1660	A0A3A8C6B9	mglA	Galactose/methyl galactoside import ATP-binding protein MglA (EC 3.6.3.17)	1.2.0	40.00	9.09
group_4390	Q8Y916	lmo0726	Hypothetical CDS	6.0.0	60.00	90.91
group_4658	Q8Y4U3	lmo2339	Lmo2339 protein	5.2.0	60.00	90.91
group_261	A0A393F884	AF249_03970	Cell surface protein (LPXTG cell wall anchor domain-containing protein)	1.8.0	60.00	90.91
atpG_1	A0A3A7I128	atpg_l	ATP synthase gamma chain, sodium ion specific (F0F1 ATP synthase subunit gamma)	1.4.0	40.00	9.09
isdE_1	Q9EXG4	fufA	Heme ABC transporter substrate-binding protein IsdE (Lipoprotein)	1.2.0	60.00	90.91
ddrA	A0A0E0UUN7	pduG	Putative diol dehydratase-reactivating factor large subunit	2.1.1	60.00	90.91
group_761	Q8Y599	lmo2170	Lmo2170 protein	5.2.0	60.00	90.91
group_1613	UPI000986F629	D3C41_14375	DEAD/DEAH box helicase	3.6.0	60.00	90.91
group_1653	A0A1S7FKW2	DC57_08295	Alkaline phosphatase family protein	2.6.0	40.00	9.09
group_1657	A0A3A8BUI8	albF	Putative zinc protease AlbF (EC 3.4.24)	2.2.0	40.00	9.09
ywtF	A0A3A8BV30	ywtF	Putative transcriptional regulator YwtF	3.5.2	60.00	90.91
artQ_2	Q8Y527	arpJ	ArpJ protein	1.2.0	60.00	90.91
iscS_2	A0A3A8BUZ1	iscS_2	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	60.00	90.91

group_1560	A0A3A8BMS5	ydfG	NADP-dependent 3-hydroxy acid dehydrogenase YdfG (EC 1.1.1.381)	2.1.1	40.00	9.09
group_2769	A0A1D2IW42	CDR86_11860	ABC transporter permease	5.2.0	60.00	90.91
group_2119	A0A241STG7	cbiO	Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3)	1.2.0	40.00	9.09
xseA_2	A0A0E1R607	yqgN	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)	2.5.0	40.00	9.09
group_1000	A0A3A7RII6	AE233_00940	SMI1/KNR4 family protein	5.2.0	60.00	90.91
group_3048	Q71YB4	panC	Pantothenate synthetase (PS) (EC 6.3.2.1) (Pantoatebeta-alanine ligase) (Pantoate-activating enzyme)	2.5.0	40.00	9.09
fosX	Q8Y6I2	fosX	Fosfomycin resistance protein FosX	4.1.0	60.00	90.91
group_705	A0A2Z5C4I1	RK57_08210	Uncharacterized protein	5.1.0	40.00	9.09
group_1138	A0A394ZK64	AF264_05670	Uncharacterized protein	5.2.0	40.00	9.09
tagB_1	A0A3A8BZ54	tarL_2	Teichoic acid ribitol-phosphate polymerase TarL (EC 2.7.8.14)	1.1.0	60.00	90.91
group_2575	Q8Y972	lmo0661	Lmo0661 protein	5.2.0	60.00	90.91
tagG	UPI000BE10CE8		ABC transporter permease	1.1.0	60.00	90.91
dnaX 1	A0A1D2IRD3	dnaX	DNA polymerase III subunit gamma/tau (EC 2.7.7.7)	3.1.0	60.00	90.91
group 4609	Q8Y5S4	lmo1981	Lmo1981 protein	5.2.0	60.00	90.91
inlJ 5	A0A3A8C0G4	inlJ 2	Internalin-J	1.8.0	60.00	90.91
topA	A0A1D2IVT6	topA	DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I)	3.4.0	60.00	90.91
group 649	A0A393CN22	AF264 00975	Mannosylglycerate hydrolase (EC 3.2.1.170)	2.1.1	40.00	9.09
group_2445	Q8Y9C4	lmo0608	Lmo0608 protein	1.2.0	60.00	90.91
skfE	A0A3A8BUB3	skfE	SkfA peptide export ATP-binding protein SkfE (EC 3.6.3.25)	1.2.0	60.00	90.91
group 4348	A0A0H3GDS2	LMRG 00052	Uncharacterized protein		60.00	90.91
group 1735	A0A0E0UV76	LMM7 ⁻ 0870	Putative transcriptional regulator, MarR family	5.2.0	40.00	9.09
inlJ 9	Q8Y591	lmo2178	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	60.00	90.91
	Q8YAA5	lmo0247	Lmo0247 protein	6.0.0	60.00	90.91
group_860	Q8Y9U8	lmo0422	Lmo0422 protein	5.2.0	60.00	90.91
manZ 2	Q8YAT9	lmo0024	Lmo0024 protein	1.2.0	91.43	63.64
	A0A3A2LWG0	AF238 14270	DUF2705 domain-containing protein		8.57	36.36
group_4641	A0A1D2J0K6	CDR86 15835	Uncharacterized protein		8.57	36.36
group_5797	A0A3A7RAL1	_ ykfA	LD-carboxypeptidase (Putative murein peptide carboxypeptidase) (EC 3.4.16)	4.5.0	8.57	36.36
group_4590	Q8Y5Z0	lmo1913	Lmo1913 protein	5.2.0	17.14	50.00
group 3040	A0A3A7GE33	AF264 08870	Glycoside transferase	5.2.0	82.86	50.00
group_4114	A0A2Z5C2X9	RK57 13530	Uncharacterized protein	5.1.0	22.86	0.00
glnQ_2	UPI000E71158B	AF253 04480	ABC transporter ATP-binding protein		22.86	0.00
group_4196	A0A1T1YRH0	DC57 13240	Uncharacterized protein		22.86	0.00
group_4693	A0A3A7SXN9	AF247 04435	Streptolysin associated protein SagD		22.86	0.00
group_4692	A0A0B8RFY9	LmNIHS28 00810	Uncharacterized protein		22.86	0.00
group 1839	UPI000E75DD0C	DYZ86 01994	Uncharacterized protein	5.1.0	22.86	0.00
group_3641	A0A3A7DQS9		Bacteriocin biosynthesis cyclodehydratase		22.86	0.00
C 1_		—				

group_3640	A0A394XKL8	AF241_04465	SagB/ThcOx family dehydrogenase		22.86	0.00
group_3639 group_2744	A0A0B8QY40 UPI00086BB360	LmNIHS28_00811	ABC transporter permease DUF1642 domain-containing protein	4.3.0	22.86 0.00	0.00 18.18
group_2744			Fructose-1,6-bisphosphatase class 3 (FBPase class 3) (EC 3.1.3.11) (D-		0.00	
fbp	C1L199	fbp	fructose-1,6-bisphosphatac class 5 (151 ase class 5) (LC 5.1.5.11) (D- fructose-1,6-bisphosphate 1-phosphohydrolase class 3)	2.1.2	100.00	81.82
group_3843	UPI0009801844	B0X19_13920	Uncharacterized protein	4.3.0	0.00	18.18
group_1196	A0A0B8R4M8	LmNIHS28_00555	Membrane protein	5.2.0	100.00	81.82
group 3867	A0A393UGI5	DCT05 12735	Uncharacterized protein		0.00	18.18
group_513	A0A393M724	DN831_08165	Uncharacterized protein	6.0.0	0.00	18.18
group_5935	UPI0005C68DD0	_	hypothetical protein	4.3.0	0.00	18.18
group_6217	UPI00076181B6		hypothetical protein	6.0.0	0.00	18.18
group_1062	A0A393CV23	AF264_09920	Glycoside hydrolase family 65 protein	2.1.1	31.43	4.55
group_4111	A0A3A8BWT7	mshD	Mycothiol acetyltransferase (EC 2.3.1.189)	5.2.0	31.43	4.55
inlA 9	A0A3A2X399	D3B21 09430	LPXTG cell wall anchor domain-containing protein		31.43	4.55
group_4702	A0A0E1R797	BN389_12760	Uncharacterized protein		31.43	4.55
group_4041	A0A0E1R7D2	BN389 20230	Uncharacterized protein		31.43	4.55
group_689	A0A3A7UBE8	AF876 02227	Uncharacterized protein	1.2.0	54.29	86.36
mnmG	A0A0E0V124	gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	54.29	86.36
group_1261	Q8Y3N2	lmo2803	Lmo2803 protein	6.0.0	54.29	86.36
aroH	A0A1D2J080	aroH	Chorismate mutase AroH (EC 5.4.99.5)	2.2.0	54.29	86.36
lolD	UPI000EF63221		ATP-binding cassette domain-containing protein	1.2.0	45.71	13.64
group_162	A0A394V460	essC	ESAT-6 secretion machinery protein EssC (Type VII secretion protein EssC)	5.2.0	11.43	40.91
group_3825	A0A393Q993	AF238 14460	Uncharacterized protein		11.43	40.91
group 3824	A0A3A2QTE1	AF238 14465	Uncharacterized protein		11.43	40.91
group_5796	UPI0009301249	—	cytadherence accessory protein		11.43	40.91
tsf_2	D7PCG5		Uncharacterized protein		48.57	18.18
clpP1	A0A3A7GTR6	clpp1	ATP-dependent Clp protease proteolytic subunit		48.57	18.18
group_4295	D7PCG6	CDR86_14670	DUF2786 domain-containing protein		48.57	18.18
group_4294	UPI000E7385DC	_	hypothetical protein		48.57	18.18
chpS	D7PCG9	CDR86_14685	AbrB/MazE/SpoVT family DNA-binding domain-containing protein (Putative PemI-like inhibitor)		48.57	18.18
mazF	D7PCH0	CDR86_14690	Putative PemK-like protein (Type II toxin-antitoxin system PemK/MazF family toxin)		48.57	18.18
group_3818	A0A3A7FAB2	inlb_6	Internalin B (LPXTG cell wall anchor domain-containing protein)		2.86	22.73
group_3816	A0A393UXZ0		MFS transporter		2.86	22.73
group_2745	A0A3A2QVJ3	AF238_09760	Uncharacterized protein		2.86	22.73
group_5750	A0A3A2YHC2	D3B05_03300	Uncharacterized protein		2.86	22.73
group_5697	A0A393V6K3	AF840_02454	DUF4127 family protein		2.86	22.73

gpmA_7	A0A3A7X7L3	pspB	Histidine phosphatase family protein (Putative phosphoserine phosphatase 2) (EC 3.1.3.3)	5	2.86	22.73
ybbH_3	A0A393LHT2	ybbh_3	MurR/RpiR family transcriptional regulator (Putative HTH-type transcriptional regulator YbbH)		2.86	22.73
group 3844	A0A0H3GMQ7	LMRG_01523	Gp45		2.86	22.73
bin3	A0A3A7R6E9	bin3	DNA-invertase (Recombinase family protein)		2.86	22.73
group_6055	A0A3A7V312	AF951_00084	Uncharacterized protein		2.86	22.73
group_2736	A0A3A7VMA9	rizA	ATP-grasp domain-containing protein (L-arginine-specific L-amino acid ligase) (EC 6.3.2.48)		2.86	22.73
group_2737	A0A393FQK7	AF840_02461	Uncharacterized protein		2.86	22.73
hhaIM	A0A3A2V7Q5	dcm	Cytosine-specific methyltransferase (EC 2.1.1.37)		2.86	22.73
nanE_2	A0A3A7NDZ8	nanE_1	Putative N-acetylmannosamine-6-phosphate 2-epimerase (EC 5.1.3.9) (ManNAc-6-P epimerase)		2.86	22.73
group_5924	A0A3A2Y1W1	AF828_02779	Uncharacterized protein		2.86	22.73
yigL	UPI00074D5656	LM701345_50019	Uncharacterized protein		2.86	22.73
group_700	A0A3A7G652	AF264_14680	Uncharacterized protein	4.3.0	97.14	77.27
sau3AIR	A0A3A7FE85	sau3air	Restriction endonuclease (Type-2 restriction enzyme Sau3AI) (EC 3.1.21.4)		2.86	22.73
group_5934	A0A394R6E5	AF238_05605	Phage holin		2.86	22.73
group_5748	A0A392X8J1	DNH64_05215	Uncharacterized protein	5.1.0	2.86	22.73
group_5749	A0A3A2N1D3	D3B05_03305	Glyoxalase/bleomycin resistance/dioxygenase family protein	6.0.0	2.86	22.73
group_1362	UPI000A61B5F8	AE233_00433	Uncharacterized protein		2.86	22.73
licA_5	A0A3A6X849	lica_3	Lichenan-specific phosphotransferase enzyme IIA component (EC 2.7.1 (PTS lactose/cellobiose transporter subunit IIA))	2.86	22.73
bacD	A0A3A6XBZ3	ddaf	ATP-grasp domain-containing protein (Dapdiamide A synthase) (EC 6.3.2.47)		2.86	22.73
group_217	A0A3A7KP06	AE052_02425	Uncharacterized protein		2.86	22.73
group_3854	A0A3A7V0R5	AF951_02096	Uncharacterized protein	3.5.2	2.86	22.73
licB_7	A0A3A7FKG5	cela_5	PTS sugar transporter subunit IIB (PTS system cellobiose-specific EIIB component) (EC 2.7.1.205)		2.86	22.73
group_5704	UPI000E74C0A2		hypothetical protein	5.1.0	2.86	22.73
group_5702	A0A393BLD4	AF840_02465	Cupin domain-containing protein		2.86	22.73
group_5700	A0A393I885	AFT78_13605	Uncharacterized protein		2.86	22.73
group_2739	A0A3A2S9A2	D3B73_14375	Uncharacterized protein		2.86	22.73
group_872	Q8YA59	lmo0302	Lmo0302 protein	6.0.0	45.71	77.27
group_494	A0A3A7W452	AF947_01400	Uncharacterized protein		31.43	63.64
group_1914	A0A1B2LR10	pLM-C-273_00079	Uncharacterized protein		31.43	63.64
group_1318	A0A1B2LR12	<i>pLM-C-273_00075</i>	Phage minor capsid protein 2		31.43	63.64
group_1317	A0A1B2LR19	pLM-C-273_00082	Uncharacterized protein		31.43	63.64
group_816	A0A1T1YP67	dbpA	ATP-dependent RNA helicase DbpA (EC 3.6.4.13)	3.5.3	60.00	27.27
group_1120	A0A393CTH8	ezrA	Septation ring formation regulator EzrA	1.7.0	60.00	27.27

yxlE	UPI000E759913	yxle	Negative regulatory protein YxlE	5.2.0	40.00	72.73
ybiA	A0A0B8R4G2	LmNIHS28_00503	Swarming motility protein YbiA		71.43	40.91
group_4612	Q8Y5J1	lmo2070	Lmo2070 protein	5.2.0	62.86	90.91
group 3197	A0A3A7EY63	AB922 02243	N-acetyltransferase	5.2.0	37.14	9.09
group_3196	Q720B7	LMOf2365 1322	UPF0291 protein LMOf2365 1322	5.2.0	37.14	9.09
group_4614	A0A2A5ZFW1	CDR86 01560	FeoB-associated Cys-rich membrane protein		62.86	90.91
licT_3	Q8Y3P6	bvrA	Transcription antiterminator	3.5.2	62.86	90.91
ulaB 2	A0A3A8BNH7	ulaB 2	Ascorbate-specific PTS system EIIB component (EC 2.7.1.194)	1.2.0	62.86	90.91
inlB ²	Q8Y9H9	lmo0549	Lmo0549 protein	1.9.0	62.86	90.91
manX 4	Q8YAU2	lmo0021	Lmo0021 protein	1.2.0	62.86	90.91
	A0A394RA98	AF239_08275	HD domain-containing protein	5.2.0	37.14	9.09
group_4057	A0A3A7ML43	 AF251_07735	2-methyl-6-phytyl-1,4-hydroquinone methyltransferase (EC 2.1.1.295) (Class I SAM-dependent methyltransferase)	5.2.0	37.14	9.09
group_4053	A0A0B8R933	LmNIHS28 02291	Uncharacterized protein	6.0.0	37.14	9.09
group_4052	A0A2Z5BX03	RK57_02435	DUF1697 domain-containing protein	5.2.0	37.14	9.09
group_2626	Q8Y593	lmo2176	Lmo2176 protein	3.5.2	62.86	90.91
group 2627	Q8Y582	lmo2189	Lmo2189 protein	1.10.0	62.86	90.91
group_2629	Q8Y512	lmo2266	Lmo2266 protein	5.2.0	62.86	90.91
group 3612	Q8Y531	lmo2245	Lmo2245 protein	5.2.0	62.86	90.91
group_4021	A0A0B8QRP4	LmNIHS28 01575	Uncharacterized protein	5.2.0	37.14	9.09
group_4219	A0A2Z5C2B1	RK57_09890	GntR family transcriptional regulator		37.14	9.09
glmS_1	A0A3A8C038	glmS_2	Glutaminefructose-6-phosphate aminotransferase isomerizing (EC 2.6.1.16)	2.1.1	62.86	90.91
group 3537	Q8Y973	lmo0660	Lmo0660 protein	4.4.0	62.86	90.91
group 3535	UPI000EF5BE8A		DUF975 family protein	5.2.0	62.86	90.91
group 3534	A0A3A8CFC5	speG 1	Spermidine N(1)-acetyltransferase (EC 2.3.1.57)	5.2.0	62.86	90.91
group_3539	Q8Y8Z5	lmo0747	Lmo0747 protein	6.0.0	62.86	90.91
ytnP	Q8Y6R9	lmo1614	Lmo1614 protein	5.2.0	62.86	90.91
addB	Q8Y510	addB	ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddB)	3.3.0	62.86	90.91
group_225	UPI0001D010DE	inlj_14	Internalin-J	1.8.0	37.14	9.09
group_3965	A0A3A7GK80	mggb	Bifunctional metallophosphatase/5'-nucleotidase (Mannosylglucosyl-3-phosphoglycerate phosphatase) (EC 3.1.3)	5.2.0	37.14	9.09
group_3966	A0A2Z5BYS6	RK57_05330	Crp/Fnr family transcriptional regulator		37.14	9.09
group_3963	A0A3A7G3T8	AF251_11130	Uncharacterized protein	6.0.0	37.14	9.09
proC_2	A0A3A8C3U2	proC_1	Pyrroline-5-carboxylate reductase (EC 1.5.1.2)	2.2.0	62.86	90.91
sigW	Q8Y9U7	lmo0423	Lmo0423 protein	3.5.1	62.86	90.91
group_1244	A0A393CR87	AF264_00605	Ribonuclease P	5.1.0	37.14	9.09
group_4573	Q8Y6D7	lmo1750	Lmo1750 protein	5.2.0	62.86	90.91
group_4577	Q8Y6B2	lmo1779	Lmo1779 protein	6.0.0	62.86	90.91
group_4575	Q8Y6B4	lmo1777	Lmo1777 protein	5.2.0	62.86	90.91
—						

group_4578	A0A3A8BJ82	azoR 2	FMN-dependent NADH-azoreductase (EC 1.7)	1.4.0	62.86	90.91
ybjG	Q8Y6R1	lmo1623	Lmo1623 protein	5.2.0	62.86	90.91
cbiE	A0A3A8C045	cbiE	Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289)	2.5.0	62.86	90.91
yjaB	A0A3A8BXM4	yjaB	Putative N-acetyltransferase YjaB (EC 2.3.1)	5.2.0	62.86	90.91
ulaC_3	A0A3A8BN71	$ulaC_3$	Ascorbate-specific PTS system EIIA component (EC 2.7.1.194)	1.2.0	62.86	90.91
	Q8Y751	lmo1461	Lmo1461 protein	6.0.0	62.86	90.91
group_4503	Q8Y760	lmo1443	Lmo1443 protein	5.2.0	62.86	90.91
group 4500	Q8Y785	lmo1410	Lmo1410 protein	6.0.0	62.86	90.91
group 4509	Q8Y6X6	lmo1555	Lmo1555 protein	2.5.0	62.86	90.91
group_4487	Q8Y7L2	lmo1265	Lmo1265 protein	1.2.0	62.86	90.91
mtlR_4	A0A3A8C544	mtlR_1	Transcriptional regulator MtlR	3.5.2	37.14	9.09
group_4489	A0A1D2IPZ2	dprA	DNA-protecting protein DprA	3.8.0	62.86	90.91
group_3028	A0A2Z5BXF4	RK57_03270	Riboflavin transporter	5.2.0	37.14	9.09
group_2916	A0A393D408	trxa_4	Thioredoxin (Thioredoxin 1)	1.4.0	37.14	9.09
group_4371	Q8Y9I3	lmo0545	Lmo0545 protein	6.0.0	62.86	90.91
group_4374	Q8Y9B7	lmo0615	Lmo0615 protein	6.0.0	62.86	90.91
group_4375	Q8Y9B5	lmo0617	Lmo0617 protein	5.1.0	62.86	90.91
group_4472	Q8Y7Q8	lmo1214	Lmo1214 protein	6.0.0	62.86	90.91
group_1303	Q8Y7Z1	lmo1128	Lmo1128 protein	6.0.0	62.86	90.91
group_4091	B8DG24	yneA	Cell division suppressor protein YneA	5.2.0	37.14	9.09
group_4090	A0A3A7N8T5	bioC	Class I SAM-dependent methyltransferase (Malonyl-[acyl-carrier protein] O-methyltransferase) (EC 2.1.1.197)	3.8.0	37.14	9.09
group_4093	C1L2K1	miaA	tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase)	3.6.0	37.14	9.09
group_4092	A0A0E1R7G6	ynbB	Uncharacterized protein ynbB	4.2.0	37.14	9.09
group_4095	C1L2I1	rnhB	Ribonuclease HII (RNase HII) (EC 3.1.26.4)	3.1.0	37.14	9.09
group_4094	A0A2Z5C362	dprA	DNA-protecting protein DprA		37.14	9.09
group_4096	A0A2Z5C3E4	RK57_14300	Uncharacterized protein	1.2.0	37.14	9.09
group_4622	Q8Y578	lmo2197	Lmo2197 protein	6.0.0	62.86	90.91
group_4623	Q8Y555	lmo2221	Lmo2221 protein	5.2.0	62.86	90.91
group_4621	Q8Y592	lmo2177	Lmo2177 protein	5.2.0	62.86	90.91
group_4154	A0A1T1YQG4	DC57_11460	Transposase	4.4.0	37.14	9.09
sdrF	Q8Y5H7	lmo2085	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	62.86	90.91
sdrD	Q8Y479	lmo2576	Peptidoglycan anchored protein (LPXTG motif)	1.8.0	62.86	90.91
group_4252	A0A2Z5C1U4	RK57_09025	Uncharacterized protein	6.0.0	37.14	9.09
thiO	A0A3A8BP94	thiO	Glycine oxidase (EC 1.4.3.19)	2.2.0	62.86	90.91
thiN	A0A3A8BXM3	thiN	Thiamine pyrophosphokinase (EC 2.7.6.2)	2.5.0	62.86	90.91
group_4392	A0A3A8CAQ5	rbsR_1	Ribose operon repressor	3.5.2	62.86	90.91
group_4396	A0A3A8C7X5	bglF_2	PTS system beta-glucoside-specific EIIBCA component	1.2.0	62.86	90.91
thiF	Q8Y868	lmo1049	Lmo1049 protein	2.5.0	62.86	90.91
group_3589	Q8Y784	lmo1411	Lmo1411 protein	5.2.0	62.86	90.91

group_2703	A0A393RS60	inlK	Class 1 internalin InlK (LPXTG cell wall anchor domain-containing protein)	1.8.0	37.14	9.09
group 4055	A0A2Z5BWW4	RK57 02265	Molybdate metabolism regulator	5.2.0	37.14	9.09
group_3470	A0A392X3L4	AF241 00505	Superoxide dismutase	6.0.0	37.14	9.09
inlA_11	A0A394Y342	inla_4	Internalin (Internalin-A) (LPXTG cell wall anchor domain-containing protein)	1.8.0	37.14	9.09
group 3478	A0A0E1R3M5	inlA 2	Internalin-A	1.8.0	37.14	9.09
inlA_3	UPI000BDFD377	—	lmo1136 family class 1 internalin	1.8.0	62.86	90.91
ulaA_2	Q8Y5T4	lmo1971	Lmo1971 protein	1.2.0	62.86	90.91
inlA_1	Q8Y7I7	lmo1290	Lmo1290 protein	1.8.0	62.86	90.91
group_4024	UPI000035D3A8	isdE	Heme ABC transporter substrate-binding protein IsdE	1.2.0	37.14	9.09
group_4026	A0A0D4CB02	AJL15_12175	Uncharacterized protein	5.2.0	37.14	9.09
group_4027	A0A2Z5BZF4	RK57_04485	TetR/AcrR family transcriptional regulator		37.14	9.09
group_4020	A0A3A7JKS7	yhaO	Exonuclease SbcCD subunit D (Putative metallophosphoesterase YhaO)	5.2.0	37.14	9.09
group_4022	A0A0B8RAU1	LmNIHS28 02204	Membrane protein	6.0.0	37.14	9.09
group_4023	UPI0001EBA5A3	NT04LM 3257	Heme uptake protein IsdC	1.8.0	37.14	9.09
group_3923	A0A2Z5BZQ8	RK57 07860	PTS fructose transporter subunit IIA	1.2.0	37.14	9.09
albF	Q8Y797	lmo1393	Lmo1393 protein	2.2.0	62.86	90.91
group 2775	A0A393S3L9	AF264 15050	Uncharacterized protein	6.0.0	37.14	9.09
group_3927	A0A0B8RBU5		RNA-binding protein	5.2.0	37.14	9.09
lutR 1	A0A3A8CF58	lutR 2	HTH-type transcriptional regulator LutR	3.5.2	62.86	90.91
group 3500	Q8Y451	lmo2604	Lmo2604 protein	5.2.0	62.86	90.91
macB_4	A0A3A8BUW4	yknY_2	Putative ABC transporter ATP-binding protein YknY (EC 3.6.3)		37.14	9.09
aguA_2	A0A0H3G891	aguA	Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase)	5.2.0	62.86	90.91
argB	A0A1D2IV64	argB	Acetylglutamate kinase (EC 2.7.2.8) (N-acetyl-L-glutamate 5- phosphotransferase) (NAG kinase) (NAGK)	2.2.0	62.86	90.91
tpiA_1	Q8YA20	tpiA2	Probable triosephosphate isomerase 2 (TIM 2) (TPI 2) (EC 5.3.1.1) (Triose-phosphate isomerase 2)	2.1.2	62.86	90.91
group 662	Q8Y7Z0	lmo1129	Lmo1129 protein	5.2.0	62.86	90.91
group_3571	Q8Y7X3	lmo1129	Lmo1146 protein	5.2.0	62.86	90.91
group_4050	A0A3A8BL21	thiN	Thiamine pyrophosphokinase (EC 2.7.6.2)	2.5.0	37.14	9.09
group_4440	Q8Y855	lmo1063	Lmo1063 protein	1.2.0	62.86	90.91
ypdB	Q8Y8C4	lmo1983	Lmo0984 protein	3.5.2	62.86	90.91
group 2953	UPI0001B4220F	ARJ20 02020	LPXTG cell wall anchor domain-containing protein	5.5.2	37.14	9.09
group_2955 group_4059	A0A3A8BR73	fosX	Fosfomycin resistance protein FosX	4.1.0	37.14	9.09
group 4085	A0A0E0UWI3	LMM7 1468	Uncharacterized protein	5.2.0	37.14	9.09
group_4058	UPI0004366B26	HR60 00125	UPF0435 protein HR60 00125	5.2.0	37.14	9.09
panC	Q8Y602	panC	Pantothenate synthetase (PS) (EC 6.3.2.1) (Pantoatebeta-alanine ligase) (Pantoate-activating enzyme)	2.5.0	62.86	90.91

4422	A0A0H3GJ44	LMDC 02074	II. Louistein landin		62.86	90.91
group_4432 group_4430	Q8Y8D8	LMRG_02074 lmo0966	Uncharacterized protein Lmo0966 protein	5.2.0	62.86 62.86	90.91 90.91
		AF255 07855	Uncharacterized protein	5.2.0	37.14	90.91 9.09
group_5435		lmo1062	Lmo1062 protein	1.2.0	62.86	9.09 90.91
group_4438	Q81850 Q8Y4F2	lmo2492	Lmo1002 protein	6.0.0	62.86	90.91 90.91
group_4667	Q814F2 A0A3A7GJ00		Internalin-A (Leucine-rich repeat domain-containing protein)	0.0.0 1.9.0	37.14	90.91 9.09
group_4190	A0A393CNN4	inla_3 AF240 00940	Uncharacterized protein	1.9.0	37.14	9.09 9.09
group_4218			Uncharacterized protein		37.14	9.09 9.09
group_4216	A0A0B8R4Y8	BN389_04240 LmNIHS28 01937	ATPase	5.2.0	37.14	9.09 9.09
group_4215	Q8Y4D7	comFC	ComFC protein	5.2.0 1.10.0	62.86	9.09 90.91
group_4668	Q8Y4D6	comFC comFA	ComFA protein	1.10.0	62.86	90.91 90.91
group_4669	A0A3A8C235		Serine/threonine-protein kinase PknB (EC 2.7.11.1)	3.8.0	62.86	90.91 90.91
pknB	A0A3A8C233	pknB	· · · · · · · · · · · · · · · · · · ·	3.8.0	02.80	90.91
hcnC	A0A3A7J837	hcnC	FAD-binding oxidoreductase (Hydrogen cyanide synthase subunit HcnC) (EC 1.4.99.5)	2.2.0	37.14	9.09
group_3399	A0A0E1R5P0	yesJ	Uncharacterized N-acetyltransferase YesJ (EC 2.3.1)	5.2.0	37.14	9.09
adrA	A0A0E1REZ1	yhcK	Uncharacterized protein yhcK	5.2.0	37.14	9.09
group_4322	Q8Y3I4	lmo2852	Lmo2852 protein	5.2.0	62.86	90.91
group_4324	Q8YAT7	cutC	Copper homeostasis protein CutC	4.2.0	62.86	90.91
group_4068	A0A3A7T7A5	ytnP	MBL fold metallo-hydrolase (Putative quorum-quenching lactonase YtnP) (EC 3.1.1)	5.2.0	37.14	9.09
cobU	A0A3A8BXJ5	cobU	Bifunctional adenosylcobalamin biosynthesis protein CobU (EC 2.7.1.156)	2.5.0	62.86	90.91
ytrA 4	A0A3A8BN52	ytrA 3	HTH-type transcriptional repressor YtrA	3.5.2	62.86	90.91
rnhB	Q8Y7K4	rnhB	Ribonuclease HII (RNase HII) (EC 3.1.26.4)	3.1.0	62.86	90.91
group_4060	A0A3A2X1R4	AF264_07635	Uncharacterized protein	6.0.0	37.14	9.09
group_4061	A0A393RQY0	ybbh_2	MurR/RpiR family transcriptional regulator (Putative HTH-type transcriptional regulator YbbH)		37.14	9.09
group_4063	A0A0B8R8T3	LmNIHS28 01308	Permease		37.14	9.09
group_4064	UPI000035D1DA	SAMD00023519_011 57	Cell surface protein		37.14	9.09
group_4065	A0A2Z5BWP2	RK57 01585	Uncharacterized protein	6.0.0	37.14	9.09
group_4066		X846 ⁻ 1709	Uncharacterized protein	5.2.0	37.14	9.09
group_4067	A0A0E1R8B1	yodM ⁻	Putative lipid phosphate phosphatase yodM (EC 3.1.3)	5.2.0	37.14	9.09
group_4103	A0A3A7Z0I1	pduX	L-threonine kinase (EC 2.7.1.177) (Propanediol utilization protein)	5.2.0	37.14	9.09
group_4102	A0A0B8R3Z5	LmNIHS28 00732	DNA topology modulation protein	5.2.0	37.14	9.09
group_4101	A0A0B8QUW8	LmNIHS28_00730	Uncharacterized protein	6.0.0	37.14	9.09
group_4107	A0A3A8BV76	cobU	Bifunctional adenosylcobalamin biosynthesis protein CobU (EC 2.7.1.156)		37.14	9.09
group_4106	A0A2Z5C4I3	cobC	Alpha-ribazole phosphatase	2.5.0	37.14	9.09
group 4105	A0A0E1R5F1	eutJ	Ethanolamine utilization protein eutJ	2.1.1	37.14	9.09
group_1103 group_4104	A0A2Z5C4F6	pduM	Microcompartment protein PduM	6.0.0	37.14	9.09
8		r		2.0.0	27.1.	

group 4108	A0A0B8R7E7	LmNIHS28 00778	Alpha-L-fucosidase	5.2.0	37.14	9.09
fruA 9	A0A3A8BML0	fruA 3	PTS system fructose-specific EIIABC component	1.2.0	37.14	9.09
nagA_1	A0A3A7N225	nagA_1	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)	2.1.1	37.14	9.09
cpnA	A0A3A8BW91	cpnA	Cyclopentanol dehydrogenase (EC 1.1.1.163)	2.1.1	37.14	9.09
group 4168	A0A0B8R2G1	LmNIHS28 00854	Flagellar hook protein	6.0.0	37.14	9.09
group_3606	Q8Y5F8	lmo2106	Lmo2106 protein	5.2.0	62.86	90.91
group_820	A0A393CUI8	AF264 04565	Alpha/beta hydrolase	6.0.0	37.14	9.09
group_3541	Q8Y8Z4	lmo0748	Lmo0748 protein	6.0.0	62.86	90.91
group_3977	UPI00043694BE	HR60_08380	Hydrolase	5.2.0	37.14	9.09
group_3979	A0A3A7GK99	adda	ATP-dependent helicase/nuclease subunit A (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddA)	3.3.0	37.14	9.09
group_3978	A0A2Z5BY92	RK57_04995	DUF523 domain-containing protein	5.2.0	37.14	9.09
group_2127	Q8Y482	lmo2573	Zinc-type alcohol dehydrogenase-like protein	2.1.1	62.86	90.91
pleD	A0A3A8BW24	pleD	Response regulator PleD	5.2.0	62.86	90.91
group_5614	A0A3A6XF35	addb	ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddB)	3.3.0	37.14	9.09
group_3306	A0A0B8QYA4	LmNIHS28 00502	Uncharacterized protein		37.14	9.09
	-	—				
argC	Q8Y6U1	argC	N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) (EC 1.2.1.38)	2.2.0	62.86	90.91
argD	Q8Y6U4	argD	Acetylornithine aminotransferase (ACOAT) (EC 2.6.1.11)	2.2.0	62.86	90.91
glyS	Q8Y754	glyS	GlycinetRNA ligase beta subunit (EC 6.1.1.14) (Glycyl-tRNA synthetase beta subunit) (GlyRS)	3.7.2	62.86	90.91
group_1908	A0A1D2IZW1	nagA	N-acetylglucosamine-6-phosphate deacetylase	2.1.1	62.86	90.91
glmS_3	A0A3A8C081	glmS_2	Glutaminefructose-6-phosphate aminotransferase isomerizing (EC 2.6.1.16)	2.1.1	37.14	9.09
group_4569	Q8Y6H7	lmo1707	UPF0435 protein lmo1707	5.2.0	62.86	90.91
group_3624	Q8Y481	lmo2574	Lmo2574 protein	6.0.0	62.86	90.91
bglH_3	A0A3A8C1L2	bglH_2	Aryl-phospho-beta-D-glucosidase BglH (EC 3.2.1.86)	2.1.1	62.86	90.91
group_4703	A0A394ZKB6	inlj_1	Internalin-J (LPXTG cell wall anchor domain-containing protein) (Peptidoglycan-binding protein)	1.8.0	37.14	9.09
group_4318	Q8Y3P8	bvrC	BvrC protein	5.2.0	62.86	90.91
group_4494	Q8Y7H5	lmo1304	UPF0291 protein lmo1304	5.2.0	62.86	90.91
group_4497	UPI000BDF6015		DUF1033 family protein	5.2.0	62.86	90.91
group_4496	Q8Y7A8	lmo1380	Lmo1380 protein	6.0.0	62.86	90.91
group_4491	Q8Y7I1	lmo1297	Lmo1297 protein	4.2.0	62.86	90.91
group_4492	Q8Y7H8	lmo1301	Lmo1301 protein	5.2.0	62.86	90.91
group_4499	A0A1D2IVP2	fabG	3-oxoacyl-ACP reductase (EC 1.1.1.100)	2.4.0	62.86	90.91
xylF	Q8Y5F5	lmo2109	Lmo2109 protein	2.1.1	62.86	90.91
group_4191	A0A394Y4B3	AF264_01750	Transcriptional regulator	6.0.0	37.14	9.09
group_2269	A0A393RX26	AF264_07710	Uncharacterized protein	5.2.0	37.14	9.09
group_4402	A0A0E0UTV9	LMM7_0781	Uncharacterized protein	6.0.0	62.86	90.91

group_4369	Q8Y9K2	lmo0525	Lmo0525 protein	5.2.0	62.86	90.91
miaA	Q8Y7I3	miaA	tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase)	3.6.0	62.86	90.91
addA	Q8Y511	addA	ATP-dependent helicase/nuclease subunit A (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddA)	3.3.0	62.86	90.91
group_4149	A0A393JKC4	AF239_03205	Uncharacterized protein	6.0.0	37.14	9.09
group_4148	A0A3A7F1F5	pgca_l	Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)	2.1.1	37.14	9.09
group_4147	A0A2Z5C668	RK57_12295	TetR/AcrR family transcriptional regulator	6.0.0	37.14	9.09
group_4146	A0A393PPX4	AB922_01757	Uncharacterized protein	6.0.0	37.14	9.09
group_4144	A0A3A7GNS4	AF264_03680	Putative 3-methyladenine DNA glycosylase (EC 3.2.2)	3.2.0	37.14	9.09
group_1286	Q8Y945	lmo0695	Lmo0695 protein	6.0.0	62.86	90.91
group_4225	A0A1T1YI43	DC57_13835	Uncharacterized protein		37.14	9.09
group_1283	Q8Y9E3	lmo0587	Putative secreted protein	6.0.0	62.86	90.91
group_4223	A0A241SLD8	ltrA	Low temperature requirement protein A	4.1.0	37.14	9.09
group_4221	A0A0E1R4Z6	BN389_04160	Uncharacterized protein		37.14	9.09
group_4382	Q8Y981	lmo0652	Lmo0652 protein	5.2.0	62.86	90.91
group_4384	A0A1C7PWW5	CDR86_13880	Endonuclease III domain-containing protein	5.2.0	62.86	90.91
group_4228	A0A394ZC38	AB922 00937	N-acetyltransferase		37.14	9.09
dasR	Q8Y5T1	lmo1974	Lmo1974 protein	3.5.2	62.86	90.91
group_3083	A0A3A8BST8	gloC	Hydroxyacylglutathione hydrolase GloC (EC 3.1.2.6)	5.2.0	37.14	9.09
group_3461	A0A0E1R2S8	BN389 04180	Uncharacterized protein		37.14	9.09
group_3469	A0A394Y9C8	inlJ_15	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)	1.8.0	37.14	9.09
group_4032	UPI0009A4F8FD		alpha/beta hydrolase	2.1.1	37.14	9.09
group_4031	A0A3A8BNZ3	yvbK	Putative N-acetyltransferase YvbK (EC 2.3.1)	5.2.0	37.14	9.09
group_4037	A0A3A7D8F9	AF264_09645	CPBP family intramembrane metalloprotease	5.2.0	37.14	9.09
group_4036	A0A3A7GG31	sdrd	Cell surface protein (LPXTG cell wall anchor domain-containing protein) (Serine-aspartate repeat-containing protein D)		37.14	9.09
group_4035	A0A2Z5C1Q5	RK57_04100	FeoB-associated Cys-rich membrane protein		37.14	9.09
group_4034	A0A2Z5BZ37	RK57_04110	DeoR/GlpR transcriptional regulator	3.5.2	37.14	9.09
group_3936	A0A392WP35	 AF251_13240	Bacteriocin-associated integral membrane family protein (DUF1430 domain-containing protein)	1.2.0	37.14	9.09
group_3935	A0A3A7PI73	AF251_13245	Lactococcin 972 family bacteriocin	6.0.0	37.14	9.09
group_4038	A0A0B8R0U3	LmNIHS28_01736	TetR family transcriptional regulator		37.14	9.09
group_4136	A0A3A8C5J2	ypdB	Transcriptional regulatory protein YpdB	3.5.2	37.14	9.09
group 3932	A0A2Z5C1E0	RK57 07485	Uncharacterized protein		37.14	9.09
yhaO	Q8Y554	lmo2222	Lmo2222 protein	5.2.0	62.86	90.91
group_1862	Q8Y9U9	lmo0421	Lmo0421 protein	1.7.0	62.86	90.91
group_1861	Q8YA24	lmo0341	Lmo0341 protein	5.2.0	62.86	90.91
group_3510	Q8YAM4	lmo0094	Lmo0094 protein	6.0.0	62.86	90.91
group_3513	P33383	lmo0206	Uncharacterized protein Lmo0206	6.0.0	62.86	90.91
			-			

fmnP	A0A3A8BXM0	fmnP	Riboflavin transporter	5.2.0	62.86	90.91
dnaK 1	Q8Y7V8	lmo1161	Lmo1161 protein	2.1.1	62.86	90.91
group 3948	A0A1T1YKC2	DC57 02040	Uncharacterized protein	5.2.0	37.14	9.09
group_3949	A0A393RP85	AF239 12775	Acetamidase	5.2.0	37.14	9.09
group_3940	A0A3A7GBK9	_ trpg	Aminodeoxychorismate/anthranilate synthase component II (Anthranilate synthase component 2) (EC 4.1.3.27)	2.2.0	37.14	9.09
group_3947	A0A0B8R180	LmNIHS28 00331	Uncharacterized protein	6.0.0	37.14	9.09
group 1307	Q8Y7E2	lmo1341	Lmo1341 protein	1.10.0	62.86	90.91
group_5648	A0A0B8RAI5	LmNIHS28 01933	Cell surface protein		37.14	9.09
group_3587	A0A1D2IQ28	rsgA	Small ribosomal subunit biogenesis GTPase RsgA (EC 3.6.1)	5.2.0	62.86	90.91
group_1301	Q8Y7Z4	lmo1125	Lmo1125 protein	5.2.0	62.86	90.91
group_3588	Q8Y7E0	lmo1343	Lmo1343 protein	1.10.0	62.86	90.91
group_4599	A0A3A8BP41	php_2	Phosphotriesterase homology protein	2.4.0	62.86	90.91
ydfG	Q8Y5S9	lmo1976	Lmo1976 protein	2.1.1	62.86	90.91
rpe_3	A0A1D2INB4	rpe	Ribulose-phosphate 3-epimerase	2.1.1	62.86	90.91
IntA	Q8Y9T5	ÎntA	Listeria nuclear targeted protein A	6.0.0	62.86	90.91
group_4047	C1KWK5	сса	CCA tRNA nucleotidyltransferase (EC 2.7.7.72)	3.6.0	37.14	9.09
bag	A0A394ZRE6	AF264_02310	DUF975 domain-containing protein (DUF975 family protein)	5.2.0	37.14	9.09
crnA_2	A0A3A8BU09	crnA_2	Creatinine amidohydrolase (EC 3.5.2.10)	2.2.0	62.86	90.91
group_1942	UPI000CE9721B	LMJF5203_01179	Cell wall surface anchor protein	1.8.0	37.14	9.09
group_3887	A0A2Z5C1D2	RK57_08200	Crp/Fnr family transcriptional regulator	5.1.0	37.14	9.09
group_3886	A0A0B8QU91	LmNIHS28_00102	Uncharacterized protein	6.0.0	37.14	9.09
group_3883	A0A393UMT7	AB922_03025	Uncharacterized protein	6.0.0	37.14	9.09
group_4670	UPI00098E7F8A	—	hypothetical protein		62.86	90.91
group_3881	A0A3A8BR90	folK	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (EC 2.7.6.3)	2.5.0	37.14	9.09
hisK	Q8Y9F8	hisJ	HisJ protein	2.2.0	62.86	90.91
group_4227	A0A2Z5C2F1	RK57_09645	LPXTG cell wall anchor domain-containing protein		37.14	9.09
group_1305	Q8Y7Y4	lmo1135	Lmo1135 protein	6.0.0	62.86	90.91
comEA	A0A3A8BUN0	comEA	ComE operon protein 1	1.10.0	62.86	90.91
group_4048	A0A393S206	AB922_00453	Thioredoxin	1.4.0	37.14	9.09
group_4356	UPI00074D66E8	LM7424_90077	Uncharacterized protein	6.0.0	62.86	90.91
group_4355	Q8Y9X1	lmo0397	Lmo0397 protein	5.2.0	62.86	90.91
group_4079	UPI00003CABCA	BN389_14870	Uncharacterized protein	6.0.0	37.14	9.09
group_4078	A0A3A2NXS6	comea	ComE operon protein 1 (ComEA family DNA-binding protein) (Competence protein ComEA)	1.10.0	37.14	9.09
group_4077	A0A3A8BV07	tylM1	dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N- dimethyltransferase (EC 2.1.1.235)	5.2.0	37.14	9.09
group_4076	A0A3A8BU71	iscS_2	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	37.14	9.09
group_4074	A0A3A8BU44	rne	Ribonuclease E (EC 3.1.26.12)	2.3.0	37.14	9.09
group_4073	A0A241SQE4	folC	Folylpolyglutamate synthase	2.5.0	37.14	9.09

		CFSAN002345 0001				
group_4072	A0A3A8BUT3	49	Uncharacterized protein	2.5.0	37.14	9.09
group_4071	Q71Z79	argD	Acetylornithine aminotransferase (ACOAT) (EC 2.6.1.11)	2.2.0	37.14	9.09
group_4070	Q71Z78	argB	Acetylglutamate kinase (EC 2.7.2.8) (N-acetyl-L-glutamate 5- phosphotransferase) (NAG kinase) (NAGK)	2.2.0	37.14	9.09
group_703	A0A3A8C0B4	$atpG_l$	ATP synthase gamma chain, sodium ion specific	1.4.0	62.86	90.91
group_706	Q8YAN0	lmo0087	Lmo0087 protein	5.1.0	62.86	90.91
group_4170	A0A2Z5C307	RK57_11240	Crp/Fnr family transcriptional regulator		37.14	9.09
fgs	Q8Y6Y0	folC	FolC protein	2.5.0	62.86	90.91
group_4179	A0A3A7PLI4	pknB	Serine/threonine protein kinase (Serine/threonine-protein kinase PknB) (EC 2.7.11.1)	3.8.0	37.14	9.09
group_1137	Q8Y7E3	lmo1340	Lmo1340 protein	5.2.0	62.86	90.91
group_4174	A0A392Y8U3	AF264_02300	GntR family transcriptional regulator	3.5.2	37.14	9.09
glcR	Q8Y5F7	lmo2107	Lmo2107 protein	3.5.2	62.86	90.91
group_4189	C1L0J0	hisE	Phosphoribosyl-ATP pyrophosphatase (PRA-PH) (EC 3.6.1.31)	2.2.0	37.14	9.09
group_4188	C1L0J4	hisH	Imidazole glycerol phosphate synthase subunit HisH (EC 4.3.2.10) (IGP synthase glutaminase subunit) (EC 3.5.1.2)	2.2.0	37.14	9.09
group_4400	Q8Y8Z3	lmo0749	Lmo0749 protein		62.86	90.91
group_4183	A0A3A8CAW5	glpE_2	Thiosulfate sulfurtransferase GlpE (EC 2.8.1.1)	4.1.0	37.14	9.09
group_4172	UPI000BE051DD		transposase		37.14	9.09
group_4181	A0A3A7TYK7	speG_1	N-acetyltransferase (Spermidine N(1)-acetyltransferase) (EC 2.3.1.57)	5.2.0	37.14	9.09
group_4181 group_4180	A0A3A7TYK7 A0A0B8RG88	speG_1 LmNIHS28_00920	N-acetyltransferase (Spermidine N(1)-acetyltransferase) (EC 2.3.1.57) Uncharacterized protein	5.2.0 5.1.0	37.14 37.14	9.09 9.09
group_4180	A0A0B8RG88	LmNIHS28_00920	Uncharacterized protein	5.1.0	37.14	9.09
group_4180 yxlG	A0A0B8RG88 Q8Y550	LmNIHS28_00920 lmo2226	Uncharacterized protein Lmo2226 protein	5.1.0 5.2.0 2.1.1	37.14 62.86	9.09 90.91
group_4180 yxlG rpiB_3	A0A0B8RG88 Q8Y550 G9G5K4	LmNIHS28_00920 lmo2226 rpiB	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B	5.1.0 5.2.0 2.1.1	37.14 62.86 62.86	9.09 90.91 90.91
group_4180 yxlG rpiB_3 group_4171	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6	LmNIHS28_00920 lmo2226 rpiB AF264_02350	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein)	5.1.0 5.2.0 2.1.1	37.1462.8662.8637.14	9.09 90.91 90.91 9.09
group_4180 yxlG rpiB_3 group_4171 group_3412	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein	5.1.0 5.2.0 2.1.1 6.0.0	37.1462.8662.8637.1437.14	9.09 90.91 90.91 9.09 9.09
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)	5.1.05.2.02.1.16.0.02.5.0	37.14 62.86 62.86 37.14 37.14 62.86	9.09 90.91 90.91 9.09 9.09 90.91
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1	37.14 62.86 62.86 37.14 37.14 62.86 62.86	9.09 90.91 90.91 9.09 9.09 90.91 90.91
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6 A0A3A2NVJ1	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86 37.14	9.09 90.91 90.91 9.09 9.09 90.91 90.91 90.91
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1 group_1736	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635 lmo0840	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein Lmo1684 protein	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86	9.09 90.91 90.91 9.09 9.09 90.91 90.91 90.91 90.91
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1 group_1736 group_3319	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6 A0A3A2NVJ1	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635 lmo0840 AB922_01742	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1 5.2.0	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86 37.14	9.09 90.91 90.91 9.09 9.09 90.91 90.91 90.91 90.91 9.09
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1 group_1736 group_3319 hprA	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6 A0A3A2NVJ1 Q8Y6K0 A0A0H3GF97 Q8VMX1	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635 lmo0840 AB922_01742 lmo1684 ecfA	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein Lmo1684 protein Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3) Putative Gp2	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1 5.2.0 2.1.1 1.2.0	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86 37.14 62.86 62.86 37.14	9.09 90.91 90.91 9.09 9.09 90.91 90.91 90.91 9.09 9.09
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1 group_1736 group_3319 hprA ecfA2	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6 A0A3A2NVJ1 Q8Y6K0 A0A0H3GF97	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635 lmo0840 AB922_01742 lmo1684	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein Lmo1684 protein Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3) Putative Gp2 Putative peptidoglycan bound protein (LPXTG motif)	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1 5.2.0 2.1.1	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86 37.14 62.86 62.86 62.86	9.09 90.91 90.91 9.09 9.09 90.91 90.91 90.91 90.91 90.91
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1 group_1736 group_3319 hprA ecfA2 group_2353	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6 A0A3A2NVJ1 Q8Y6K0 A0A0H3GF97 Q8VMX1 Q8Y917 A0A0E1R602	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635 lmo0840 AB922_01742 lmo1684 ecfA	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein Lmo1684 protein Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3) Putative Gp2 Putative peptidoglycan bound protein (LPXTG motif) Uncharacterized N-acetyltransferase YjaB (EC 2.3.1)	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1 5.2.0 2.1.1 1.2.0 1.8.0 5.2.0	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86 37.14 62.86 37.14 62.86 37.14	9.09 90.91 90.91 9.09 90.91 90.91 90.91 90.91 9.09 90.91 90.91 90.91
group_4180 yxlG rpiB_3 group_4171 group_3412 polC_2 pgcA_1 mngB_1 group_1736 group_3319 hprA ecfA2 group_2353 group_4388	A0A0B8RG88 Q8Y550 G9G5K4 A0A393D3V6 A0A393RT87 Q8Y7E7 Q8Y8N1 A0A255C9M1 Q8Y8Q6 A0A3A2NVJ1 Q8Y6K0 A0A0H3GF97 Q8VMX1 Q8Y917	LmNIHS28_00920 lmo2226 rpiB AF264_02350 AF264_02105 lmo1336 lmo0865 CDR86_08635 lmo0840 AB922_01742 lmo1684 ecfA lmo0725	Uncharacterized protein Lmo2226 protein Ribose-5-phosphate isomerase B Cell surface protein (LPXTG cell wall anchor domain-containing protein) Uncharacterized protein 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) Lmo0865 protein Alpha-mannosidase Lmo0840 protein Uncharacterized protein Lmo1684 protein Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3) Putative Gp2 Putative peptidoglycan bound protein (LPXTG motif)	5.1.0 5.2.0 2.1.1 6.0.0 2.5.0 2.1.1 2.1.1 5.2.0 2.1.1 1.2.0 1.8.0	37.14 62.86 62.86 37.14 37.14 62.86 62.86 62.86 62.86 37.14 62.86 37.14 62.86	9.09 90.91 90.91 9.09 90.91 90.91 90.91 90.91 9.09 90.91 90.91 90.91

group_4301	Q8Y452	lmo2603	Lmo2603 protein	5.2.0	62.86	90.91
group_2208	A0A0B8RAD6	LmNIHS28 01888	Serine/threonine protein phosphatase	5.2.0	37.14	9.09
hisE	Q8Y9G7	hisE	Phosphoribosyl-ATP pyrophosphatase (PRA-PH) (EC 3.6.1.31)	2.2.0	62.86	90.91
group 864	Q8Y9X3	lmo0395	Lmo0395 protein	4.2.0	62.86	90.91
inlJ 11	A0A393CQT2	inlj 6	Cell surface protein (Internalin-J)	1.8.0	37.14	9.09
group_4192	A0A394ZNT3	mta	HTH-type transcriptional activator mta (MerR family transcriptional regulator)	3.5.2	37.14	9.09
group_4039	A0A3A8BN86	ubiG	Ubiquinone biosynthesis O-methyltransferase (EC 2.1.1.222)		37.14	9.09
group_4419	Q8Y8M8	lmo0868	Lmo0868 protein	6.0.0	62.86	90.91
group_949	A0A0E1R447	$manZ_2$	Mannose permease IID component	1.2.0	62.86	90.91
group_4415	Q8Y8Q3	lmo0843	Lmo0843 protein	5.2.0	62.86	90.91
group_4417	Q8Y8P6	lmo0850	Lmo0850 protein	6.0.0	62.86	90.91
group_4229	A0A2Z5C0J8	RK57_09605	Triosephosphate isomerase (EC 5.3.1.1)	2.1.2	37.14	9.09
group_4411	Q8Y8R3	lmo0832	Lmo0832 protein	4.4.0	62.86	90.91
group_4214	A0A2Z5C2C0	RK57_09950	Uncharacterized protein	6.0.0	37.14	9.09
group_4213	A0A3A2LR66	inla_6	Internalin (Internalin-A) (LPXTG cell wall anchor domain-containing protein)	1.8.0	37.14	9.09
inlJ_6	Q8Y8R0	lmo0835	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	62.86	90.91
group_4182	A0A3A8BWT2	inlB_1	Internalin B	1.8.0	37.14	9.09
kdgA	A0A2A6A934	CDR86_00865	Aldolase	2.1.1	62.86	90.91
group_4187	A0A1S7FNB3	DC57_12750	Histidinol-phosphatase	2.2.0	37.14	9.09
group_3171	A0A0E1RCR1	yozG	Uncharacterized HTH-type transcriptional regulator YozG	5.2.0	37.14	9.09
yflN	Q8Y6A5	lmo1790	Lmo1790 protein	5.2.0	62.86	90.91
yneA	Q8Y7H6	yneA	Cell division suppressor protein YneA	5.2.0	62.86	90.91
cca	Q8Y5Z8	сса	CCA tRNA nucleotidyltransferase (EC 2.7.7.72)	3.6.0	62.86	90.91
group_3921	A0A1S7FGU9	DC57_00570	LD-carboxypeptidase	4.5.0	37.14	9.09
nth_2	A0A3A7HTM1	nth_l	Endonuclease III (EC 4.2.99.18) (Endonuclease III domain-containing protein)	5.2.0	37.14	9.09
group 4044	A0A393CLM7	AF264_09030	DUF5011 domain-containing protein		37.14	9.09
group_4045	A0A0E0UXG9	aroH	Chorismate mutase AroH (EC 5.4.99.5)	2.2.0	37.14	9.09
group 4042	A0A2Z5BZ76	RK57 03415	Uncharacterized protein	5.2.0	37.14	9.09
group_4043	A0A3A8BVH1	act	Methanol dehydrogenase activator (EC 3)	5.2.0	37.14	9.09
gdh	A0A3A8BLH6	gdh_2	Glucose 1-dehydrogenase (EC 1.1.1.47)	2.1.1	62.86	90.91
group_3922	A0A1S7FH11	cutC	Copper homeostasis protein CutC	4.2.0	37.14	9.09
cssS	Q8Y857	lmo1061	Histidine kinase (EC 2.7.13.3)	1.3.0	62.86	90.91
group_2610	Q8Y6G4	lmo1723	Lmo1723 protein	6.0.0	62.86	90.91
group_3210	A0A393VWD9	AB922_02198	NUDIX domain-containing protein		37.14	9.09
group_3219	A0A3A2WX84	cbie	Cobalt-precorrin-7 (C(5))-methyltransferase (Cobalt-precorrin-7 C(5)- methyltransferase) (EC 2.1.1.289)	2.5.0	37.14	9.09
nudF	Q8Y5U0	lmo1965	Lmo1965 protein	5.2.0	62.86	90.91
rne	Q8Y6Y8	lmo1543	Lmo1543 protein	2.3.0	62.86	90.91

group_3593	Q8Y6N1	lmo1653	Putative cellsurface protein	6.0.0	62.86	90.91
group_3959	A0A394ZKW3	gbpa	Chitin-binding protein (GlcNAc-binding protein A)	2.1.1	37.14	9.09
group_3958	A0A2Z5BYZ7	RK57_05850	Uncharacterized protein	6.0.0	37.14	9.09
group_3951	A0A1T1YDG1	DC57_02225	Uncharacterized protein	6.0.0	37.14	9.09
group_3952	A0A3A2JZK0	AF239_12415	Zinc-type alcohol dehydrogenase-like protein	2.1.1	37.14	9.09
group_3957	A0A3A6WIB6	AF239_12100	Amidophosphoribosyltransferase (ComF family protein)	1.10.0	37.14	9.09
group_3956	A0A3A8BKJ7	comFA	ComF operon protein 1 (EC 3.6.4.12)	1.10.0	37.14	9.09
group_3328	A0A394Y0E1	AF264_03215	Cell surface protein (LPXTG cell wall anchor domain-containing protein)	1.8.0	37.14	9.09
group_897	Q8Y7R0	lmo1212	Lmo1212 protein	5.2.0	62.86	90.91
group_4466	A0A3A7HYF6	DYZ90_00006	Uncharacterized protein	6.0.0	62.86	90.91
group_4335	A0A1D2J1W2	CDR86_05500	Internalin	1.8.0	62.86	90.91
group_4584	Q8Y600	lmo1903	Lmo1903 protein	1.4.0	62.86	90.91
phnA	Q8Y778	lmo1418	Lmo1418 protein	2.6.0	62.86	90.91
group_4516	Q8Y6P9	lmo1635	Lmo1635 protein	5.2.0	62.86	90.91
group_4517	Q8Y6P4	lmo1640	Lmo1640 protein	6.0.0	62.86	90.91
murQ	C1KVV7	murQ	N-acetylmuramic acid 6-phosphate etherase (MurNAc-6-P etherase) (EC 4.2.1.126)		37.14	9.09
group 4386	A0A3A7EMK5	AE233 02029	Uncharacterized protein	1.8.0	62.86	90.91
rsgA_2	A0A0B8R6Z0	rsgA –	Small ribosomal subunit biogenesis GTPase RsgA (EC 3.6.1)	5.2.0	37.14	9.09
azoR1 1	A0A3A8BPK0	azoR1	FMN-dependent NADH-azoreductase 1 (EC 1.7)	1.4.0	37.14	9.09
group_3135	A0A0E1R796	<i>vteJ</i>	Uncharacterized membrane protein yteJ	5.2.0	37.14	9.09
group_4138	A0A1S7FMA8	DC57 10750	Uncharacterized protein	5.2.0	37.14	9.09
group 4347	Q8YA09	lmo0357	Lmo0357 protein	1.2.0	62.86	90.91
group_4346	Q8YA13	lmo0353	Lmo0353 protein	5.2.0	62.86	90.91
inlA 8	UPI00073B62EC	AOB47 624c	Internalin-like protein	1.8.0	62.86	90.91
	A0A2Z5C055	RK57_00410	DUF2975 domain-containing protein		37.14	9.09
group_4080	A0A3A2XB09	glys	GlycinetRNA ligase beta subunit (EC 6.1.1.14) (Glycyl-tRNA synthetase beta subunit) (GlyRS)	3.7.2	37.14	9.09
group_4081	A0A0E0UW34	LMM7_1529	Putative branched-chain amino acid export protein (BAAC homeostasis)	5.2.0	37.14	9.09
group_4086	A0A0B8R1M7	LmNIHS28 01991	Uncharacterized protein	6.0.0	37.14	9.09
group_4087	A0A2Z5BXN3	RK57 00065	Type II secretion system protein	1.10.0	37.14	9.09
group_4084	A0A3A7KDD8	proC_1	Pyrroline-5-carboxylate reductase (EC 1.5.1.2)	2.2.0	37.14	9.09
group_4069	C1KVN8	argC	N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) (EC 1.2.1.38)	2.2.0	37.14	9.09
group_3987	A0A3A8BPP2	yxlG	Putative transmembrane protein YxlG	5.2.0	37.14	9.09
group_3984	A0A3A8BNU1	adaB	Methylated-DNAprotein-cysteine methyltransferase, inducible (EC 2.1.1.63)	3.2.0	37.14	9.09
group_3985	UPI00086E8416		GntR family transcriptional regulator	3.5.2	37.14	9.09
group_3983	A0A0E1RA49	yqjT	Uncharacterized protein yqjT	5.2.0	37.14	9.09
~ 1_		- 44				

group_3980	A0A0E1RA70	yisK	Uncharacterized protein yisK	5.2.0	37.14	9.09
group_3981	UPI0000F53EDE	ARJ20_15280	GNAT family N-acetyltransferase	5.2.0	37.14	9.09
group_4165	G9G5K0		Internalin protein	1.8.0	37.14	9.09
group_4167	A0A241SMW0	A410_0767	Uncharacterized protein	1.8.0	37.14	9.09
group_4166	UPI00003CA86A	ARJ20_09330	LPXTG cell wall anchor domain-containing protein	1.8.0	37.14	9.09
group_4161	A0A3A6WTN7	ydde	PhzF family phenazine biosynthesis protein (Putative isomerase YddE) (EC 5.1)	5.2.0	37.14	9.09
group_4133	A0A0E1R4P0	BN389 10880	Uncharacterized protein		37.14	9.09
czcR	A0A3A8CCY3	czcR	Transcriptional activator protein CzcR	3.5.2	62.86	90.91
group_4169	A0A1T1YRJ7	DC57_12265	Carboxymuconolactone decarboxylase	5.2.0	37.14	9.09
group_3396	A0A392Y5A5	inlj_7	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)		37.14	9.09
group_2864	A0A394XIB0	inlj_9	Cell wall anchor protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)		37.14	9.09
group_4137	A0A2Z5C2J4	RK57_12860	Teichoic acid D-Ala incorporation-associated protein DltX		37.14	9.09
group_4185	A0A393RUI1	AF264_01965	Uncharacterized protein	6.0.0	37.14	9.09
group_4134	A0A3A7GGN8	thif	Molybdopterin biosynthesis protein MoeB (Sulfur carrier protein ThiS adenylyltransferase) (EC 2.7.7.73)	2.5.0	37.14	9.09
group_3769	UPI000984CE83		hypothetical protein		37.14	9.09
group_3408	A0A3A7C5V3	stth	Cysteine hydrolase (Streptothricin hydrolase) (EC 3.5.2.19)	5.2.0	37.14	9.09
group_1192	A0A3A8C9D9	artQ 1	Arginine transport system permease protein ArtQ	1.2.0	37.14	9.09
group_4100	A0A1S7FLP7	DC57 09570	ABC transporter permease	5.2.0	37.14	9.09
yknZ_2	A0A393R639	yknZ_1	ABC transporter permease (FtsX-like permease family protein) (Putative ABC transporter permease YknZ)		37.14	9.09
mta	A0A3A8CEM4	mta	HTH-type transcriptional activator mta	3.5.2	62.86	90.91
yusV 2	Q8Y587	lmo2182	Lmo2182 protein	1.2.0	62.86	90.91
cobC	A0A1D2IT42	cobC	Alpha-ribazole phosphatase	2.5.0	62.86	90.91
group_4628	Q8Y518	lmo2260	Lmo2260 protein	5.2.0	62.86	90.91
yvbK	Q8Y5E7	lmo2117	Lmo2117 protein	5.2.0	62.86	90.91
inlJ_4	A0A1D2IXY9	CDR86_09540	Cell surface protein	1.8.0	62.86	90.91
mglA	A0A3A8C417	mglA	Galactose/methyl galactoside import ATP-binding protein MglA (EC 3.6.3.17)	1.2.0	62.86	90.91
fabG 3	A0A3A8BVY0	fabG_1	3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100)	2.4.0	37.14	9.09
inlJ_7	UPI000BDF441A	· _	LPXTG cell wall anchor domain-containing protein	1.8.0	62.86	90.91
inlJ ^{_1}	Q8YAF4	lmo0175	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	62.86	90.91
	A0A393RS12	AF264 05675	Competence protein ComG	1.10.0	37.14	9.09
inlJ_8	UPI00043541E8	HR60 04430	Cell surface protein		37.14	9.09
group_2561	UPI000D72CB8D		IS3 family transposase	4.4.0	62.86	90.91
isdC	Q8Y585	hbp1	Hemin/hemoglobin-binding protein 1 (Hn/Hb-binding protein 1) (Cell wall protein Lmo2186)	1.8.0	62.86	90.91
group_4151	A0A3A8BXI7	yabJ	2-iminobutanoate/2-iminopropanoate deaminase (EC 3.5.99.10)	5.2.0	37.14	9.09

group_2568	Q8Y9X8	<i>ltrA</i>	Low temperature requirement protein A	4.1.0	62.86	90.91
group_4152	A0A0E1R689	ysdA	Uncharacterized protein ysdA	5.2.0	37.14	9.09
group_3567	Q8Y7Y2	lmo1137	Lmo1137 protein	6.0.0	62.86	90.91
argJ_1	Q8Y6U7	lmo1584	Lmo1584 protein	5.2.0	62.86	90.91
group_4025	A0A2Z5BZU3	RK57_04520	ABC transporter ATP-binding protein	1.2.0	37.14	9.09
group_4153	A0A3A7KR34	inlJ_12	Internalin-J (Peptidoglycan-binding protein)	1.8.0	37.14	9.09
group_4330	Q8YAN2	lmo0085	Lmo0085 protein	5.1.0	62.86	90.91
group_4331	Q8YAL4	lmo0104	Lmo0104 protein	6.0.0	62.86	90.91
uvrA_2	Q8Y4F6	uvrA	UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A	A) 3.2.0	62.86	90.91
adaB	Q8Y534	lmo2242	Lmo2242 protein	3.2.0	62.86	90.91
pduX	Q8Y7U9	lmo1170	Lmo1170 protein	5.2.0	62.86	90.91
glpE	A0A3A8C167	glpE_1	Thiosulfate sulfurtransferase GlpE (EC 2.8.1.1)	4.1.0	62.86	90.91
group_4424	A0A1D2IWW8	CDR86_10445	Putative 3-methyladenine DNA glycosylase (EC 3.2.2)	3.2.0	62.86	90.91
tylM1	A0A3A8BVR5	tylM1	dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N- dimethyltransferase (EC 2.1.1.235)	5.2.0	62.86	90.91
group 1979	A0A0H3GEH2	LMRG 00323	Uncharacterized protein	6.0.0	42.86	72.73
group_1012	A0A0E1RAY4	lytG_4	Exo-glucosaminidase lytG (EC 3.2.1)	1.8.0	57.14	27.27
group_1902	Q8Y6T5	lmo1597	Lmo1597 protein	6.0.0	42.86	72.73
group_4145	A0A3A7PI72	AF239_03595	Permease (Putative two-component membrane permease complex subun	it) 5.2.0	57.14	27.27
group_380	Q8YA34	lmo0331	Lmo0331 protein	1.8.0	42.86	72.73
group_4513	A0A0H3GHA0	LMRG 02946	Uncharacterized protein		42.86	72.73
group_3986	A0A3A8BQ69	yxlE –	Negative regulatory protein YxlE		57.14	27.27
group_4422	Q8Y8I2	lmo0920	Lmo0920 protein	5.2.0	42.86	72.73
group_3797	A0A3A2L4U9	AF238 14470	Uncharacterized protein		17.14	45.45
group_5509	A0A3A2KDS0	AF273 15200	Uncharacterized protein		17.14	45.45
group_1918	A0A3A7H7K5	AF818 02937	Uncharacterized protein		8.57	31.82
group_951	A0A1S7FGJ9	DC57 00020	Terminase	4.3.0	20.00	0.00
fusA_2	A0A3A8BXI3	php	Phosphotriesterase homology protein	2.4.0	80.00	100.00
wapĂ	A0A0E1R9W5	wapA_2	Wall-associated protein		20.00	0.00
metN2	UPI000D5F7FE8		ATP-binding cassette domain-containing protein		20.00	0.00
group_4763	A0A3A7V582	AF247_13185	DUF2712 domain-containing protein		20.00	0.00
group_4766	A0A0B8R0W5	LmNIHS28_00352	Membrane protein		20.00	0.00
group_4765	A0A3A2JQ03	AF247_13175	Uncharacterized protein		20.00	0.00
group_4764	A0A0B8R164		Membrane protein		20.00	0.00
group_4768	A0A393LYV4	AF247_13160	Uncharacterized protein		20.00	0.00
	Q93RN0	mtrA	Dolichol-phosphate mannosyltransferase MtrA (Hypothetical glycosyl transferase)	1.1.0	71.43	95.45
csbB						
csbB group 4110	A0A1S7FLY5	DC57 10005	Uncharacterized protein	6.0.0	28.57	4.55

group_2486 tagH	A0A3A7PTC4 UPI000BDFED64	AF251_01345	DNA double-strand break repair Rad50 ATPase teichoic acids export ABC transporter ATP-binding subunit TagH	1.1.0	28.57 71.43	4.55 95.45
malP	Q8Y5E3	lmo2121	Lmo2121 protein	2.1.1	71.43	95.45 95.45
group_4194	A0A3A8BYI6	CFSAN002345_0011 97	Uncharacterized protein		28.57	4.55
group 1153	A0A0E0UUS7	pncB	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	28.57	4.55
group_230	A0A394ZCQ5	AF274_10260	Helix-turn-helix domain-containing protein (Transposase)	4.4.0	28.57	4.55
tatAy	Q8YA04	tatA	Sec-independent protein translocase protein TatA	5.2.0	71.43	95.45
group_4224	A0A3A7A655	AF241 00720	Peptidase (Putative peptidase) (EC 3.4.21)	2.2.0	28.57	4.55
group_2501	A0A394ZN44	AF264_00790	YafY family transcriptional regulator	3.5.2	28.57	4.55
group_4176	A0A0B8RDT5	LmNIHS28_00904	Uncharacterized protein		28.57	4.55
group_4175	A0A3A6WQ80	AB922_01521	Uncharacterized protein		28.57	4.55
group_2381	A0A394ZTP0	AF264_04540	Uncharacterized protein	5.1.0	28.57	4.55
group_4112	A0A0B8RBG4	LmNIHS28_00797	Uncharacterized protein	6.0.0	28.57	4.55
group_4195	A0A0B8RHP3	LmNIHS28_01665	Uncharacterized protein		28.57	4.55
efeU	Q8YA02	lmo0365	Lmo0365 protein	5.2.0	71.43	95.45
efeM	Q8YA01	lmo0366	Lmo0366 protein	1.2.0	71.43	95.45
rmlC	A0A1C7Q2S5	rfbC	dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) (Thymidine diphospho-4-keto-rhamnose 3,5-epimerase)	1.1.0	71.43	95.45
group_3251	A0A393RS34	AF264_04600	Uncharacterized protein	6.0.0	28.57	4.55
tatC2	Q8YA05	tatC	Sec-independent protein translocase protein TatC	5.2.0	71.43	95.45
group_770	A0A3A2WV59	feoB	Ferrous iron transport protein B	1.2.0	42.86	13.64
inlA_7	L7X106	inlA	Internalin A	1.8.0	57.14	86.36
group_940	A0A0B8REA6	LmNIHS28_00065	Uncharacterized protein		42.86	13.64
group_746	A0A0B8R487	<i>LmNIHS28_01552</i>	ABC transporter permease	1.2.0	42.86	13.64
feoB	A0A1D2IZV3	feoB	Ferrous iron transport protein B	1.2.0	60.00	86.36
	Ba	acillus				
group_4321		ermoamylov BT1A1_1387 rans	Uncharacterized protein		60.00	86.36
group_2732	A0A393U4Y6	AF255_14330	DUF2974 domain-containing protein	6.0.0	40.00	13.64
group_5515	UPI000BE047C1		DUF1310 family protein	5.1.0	40.00	13.64
group_1980	A0A392WP24	AF255_14340	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	40.00	13.64
group_745	Q8Y4R3	lmo2371	Lmo2371 protein	1.2.0	60.00	86.36
group_918	UPI0007666023	ERS409620_01314	Uncharacterized conserved protein		11.43	36.36
group_2730	A0A392X2X8	AF238_14485	Uncharacterized protein		11.43	36.36
group_2069	A0A0H3GGP2	LMRG_02453	Mannose-specific PTS system IID component	1.2.0	11.43	36.36
group_475	Q8Y9K3	lmo0524	Lmo0524 protein	1.2.0	11.43	36.36
group_5654	A0A394RQC8	AB922_02753	Ribonuclease BN		5.71	27.27
group_3511	Q8YAH5	lmo0151	Lmo0151 protein	6.0.0	5.71	27.27
group_1986	UPI00047C87C6		hypothetical protein	4.3.0	5.71	27.27
group_481	A0A3A7DXN2	AB922_02752	Uncharacterized protein		5.71	27.27

group_3525	Q8Y9Y8	<i>lmo0379</i>	Lmo0379 protein	6.0.0	54.29	81.82
oioC	Q8Y7H2 ocytogenes species	lmo1308	Lmo1308 protein	3.8.0	54.29	81.82
		egory code is presented below				
	velope and cellular pro					
		ocesses > Cen wan ocesses > Transport/binding proteins a	and linearistains			
-		ocesses > Sensors (signal transduction				
	• •	ocesses > Membrane bioenergetics)			
		ocesses > Mobility and chemotaxis				
		ocesses > Protein secretion				
		ocesses > Cell division				
		ocesses > Cell surface proteins				
	• •	ocesses > Soluble internalin				
		rocesses > Transformation/competenc	e			
	- ·	letabolism of carbohydrates and relate				
-	•	Ietabolism of carbohydrates and relate				
	•	•	d molecule > Main glycolytic pathways			
	-	letabolism of carbohydrates and relate				
-	•	letabolism of amino acids and related	•			
	•	letabolism of nucleotides and nucleic a				
2.4.0] Interme	ediary metabolism > M	letabolism of lipids				
2.5.0] Interme	ediary metabolism > M	letabolism of coenzymes and prostheti	c groups			
2.6.0] Interme	ediary metabolism > M	letabolism of phosphate				
3.1.0] Inform	ation pathways > DNA	replication				
3.2.0] Inform	ation pathways > DNA	A restriction/modification and repair				
3.3.0] Inform	ation pathways > DNA	recombination				
3.4.0] Inform	ation pathways > DNA	A packaging and segregation				
3.5.1] Inform	ation pathways > RNA	synthesis > Initiation				
	1 ·	A synthesis > Regulation				
		synthesis > Elongation				
	1 ·	synthesis > Termination				
-	ation pathways > RNA					
-		ein synthesis > Ribosomal proteins				
-		ein synthesis > Aminoacyl-tRNA synth	netases			
		ein synthesis > Initiation				
-		ein synthesis > Elongation				
	1 ·	ein synthesis > Termination				
	ation pathways > Prote					
	ation pathways > Prote	6				
	_	to atypical conditions				
4.2.0] Other f	unctions > Detoxificat	.10n				

[4.3.0] Other functions > Phage-related functions

- [4.4.0] Other functions > Transposon and IS
- [4.5.0] Other functions > Miscellaneous
- [5.1.0] Similar to unknown proteins > From Listeria
- [5.2.0] Similar to unknown proteins > From other organisms
- [6.0.0] No similarity

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category †	% in weak biofilm formers	% in strong biofilm formers
roup_4197	UPI00098E3EF0			hypothetical protein		66.67	13.33
roup_7000	A0A2Z5Z219	Lactococcus lactis	E05_32090	Uncharacterized protein		3.70	50.00
roup_3869	A0A394RPA7		AF242_15480	Uncharacterized protein		37.04	0.00
roup_3762	A0A142EC64		pA144_0007	Uncharacterized protein		37.04	0.00
roup_940	A0A0B8REA6		LmNIHS28_00065	Uncharacterized protein		55.56	10.00
roup_377	UPI00074D6BC6		LM83088_80034	Uncharacterized protein	5.2.0	62.96	16.67
roup_4590	Q8Y5Z0		lmo1913	Lmo1913 protein	5.2.0	7.41	50.00
roup_3040	A0A3A7GE33		AF264_08870	Glycoside transferase	5.2.0	92.59	50.00
roup_3986	A0A3A8BQ69		yxlE	Negative regulatory protein YxlE		70.37	23.33
roup_6240	A0A2H1SK93	Xanthomonas citri	С	C protein		33.33	0.00
roup_397	A0A0B8R5D0		LmNIHS28_00068	Uncharacterized protein	5.1.0	66.67	100.00
roup 1807	UPI000BE00DE2		_	hypothetical protein		59.26	13.33
roup_3733	A0A393N9I6		D3C41 12950	Uncharacterized protein		40.74	3.33
roup 5799	UPI00092FB1F5		—	arsenic metallochaperone ArsD family protein		40.74	3.33
roup 2657	A0A2Z5C560		RK57 09450	Endonuclease	5.2.0	0.00	33.33
roup_2742	A0A3A7TM14		AF856 01591	AP2 domain-containing protein	4.3.0	51.85	10.00
roup_6265	UPI00076722D3		AXF25_01535	Uncharacterized protein		29.63	0.00
roup_3877	A0A3A7UV92		ID87 02058	Uncharacterized protein		29.63	0.00
roup_6263	UPI000507E686		AF821 01501	Uncharacterized protein		29.63	0.00
roup_6279	A0A3A7NV98		AFX80_00020	Uncharacterized protein	4.3.0	29.63	0.00
roup_2757	A0A060UT12	Acidithiobacill us ferrivorans	F	Capsid protein F		29.63	0.00
cgIB	UPI0009850DB7		CJV36 12055	Uncharacterized protein		29.63	0.00
cgIA	UPI00074D58A5		CJV36 12060	Adenine methyltransferase		29.63	0.00
roup_6271	UPI00053BE8EB		DSD43 08455	Uncharacterized protein		29.63	0.00
roup_6276	A0A3A7EN18			XRE family transcriptional regulator		29.63	0.00
roup_6243	A0A060US63	Acidithiobacill us ferrivorans	G	Major spike protein G		29.63	0.00
roup_938	Q8YAG9		lmo0157	Lmo0157 protein	3.2.0	29.63	0.00
sdM	A0A3A7RFF8		hsdM	SAM-dependent DNA methyltransferase (Type I restriction enzyme EcoKI M protein) (EC 2.1.1.72)		29.63	0.00
roup_6273	A0A3A7UXE8		AF273_02455	Uncharacterized protein		29.63	0.00

group_6253	UPI000BE1046E			relaxase		29.63	0.00
group_6255	E6EXY6	Enterococcus faecalis TX0630	HMPREF9511_0168 3	Uncharacterized protein		29.63	0.00
group_6254	UPI00098E5223	1110000		plasmid mobilization relaxosome protein MobC		29.63	0.00
group_6256	UPI0004D69275		ARJ20_16365	LPXTG cell wall anchor domain-containing protein		29.63	0.00
group_6258	UPI000BE07A8C			CHAP domain-containing protein		29.63	0.00
group_3878	A0A393A2Z5		DOZ93_04615	XRE family transcriptional regulator		29.63	0.00
group_3876	UPI00074D51A1		LM800396_140057	Uncharacterized protein		29.63	0.00
group_3874	A0A0V7YCU8	Enterococcus faecium (Streptococcus faecium)	AOY33_09325	Uncharacterized protein		29.63	0.00
group 3875	A0A3A7Q520		AEZ78 00963	Uncharacterized protein		29.63	0.00
group 6264	A0A0H3GD71		LMRG_02934	Uncharacterized protein		29.63	0.00
group_6266	A0A3A7MCD0		AF821 01506	Uncharacterized protein		29.63	0.00
group_6267	A0A0H3G912		LMRG_02574	GNAT family acetyltransferase		29.63	0.00
group_6261	UPI00074D5B8B		LM800396_140058	Uncharacterized protein		29.63	0.00
group_6262	A0A3A7YC45		AF821_01500	Uncharacterized protein		29.63	0.00
group_6268	A0A3A7URE0		ID87_02064	Uncharacterized protein		29.63	0.00
hsdR	A0A3A7Y0A7		hsdR	Type I restriction endonuclease subunit R (Type-1 restriction enzyme R protein) (EC 3.1.21.3)		29.63	0.00
group 6260	Q2V4W9		pCT0002	Uncharacterized protein		29.63	0.00
group_6272	A0A3A7V8A6		AF252_02435	Sugar-phosphate nucleotidyltransferase		29.63	0.00
group_294	UPI000BE003A6			helicase SNF2		29.63	0.00
yofA	A0A393QJ60		yofA	HTH-type transcriptional regulator YofA (LysR family transcriptional regulator)		29.63	0.00
group 3873	UPI0004D8BD21		ARJ20 16270	Uncharacterized protein		29.63	0.00
group_6281	A0A3A7NH96		AFX80 00025	Uncharacterized protein		29.63	0.00
group_6284	A0A0H3GFH8		LMRG_02220	Uncharacterized protein	6.0.0	29.63	0.00
group_6270	UPI000678F014		KO07 03320	Uncharacterized protein		29.63	0.00
group_6277	A0A393A7N5		DOZ93_04605	Phage antirepressor		29.63	0.00
group_6280	A0A3A7NSF4		AFX80_00023	Uncharacterized protein		29.63	0.00
group_2760	UPI00086F2DD0			DUF1738 domain-containing protein		29.63	0.00
yxlE	UPI000E759913		vxle	Negative regulatory protein YxlE	5.2.0	29.63	73.33
group_5404	A0A142EC67		pA144 0010	Uncharacterized protein	-	37.04	3.33
group_3681	A0A3A7KXY9		AF818 02931	Uncharacterized protein		37.04	3.33
group_3864	A0A3A7IJW5		AB922 01480	Uncharacterized protein		37.04	3.33
group_3761	A0A142EC65		pA144 0008	Uncharacterized protein		37.04	3.33
0 1_1.01				1			

group 5405	A0A142EC66		pA144_0009	Uncharacterized protein		37.04	3.33
group_4329	Q8YAN5		lmo0082	Lmo0082 protein	6.0.0	0.00	30.00
group_4328	Q8YAN7		lmo0080	Lmo0080 protein	6.0.0	0.00	30.00
group_2557	UPI0009B0B9A0			hypothetical protein	6.0.0	0.00	30.00
group_2729	A0A392X2X8		AF238_14485	Uncharacterized protein		7.41	43.33
0 12				1			
group_6242	A0A2I2M4I9	Tenacibaculu m dicentrarchi	J	DNA-binding protein J		25.93	0.00
group_3871	A0A060UXK7	Acidithiobacill	Н	Minor spike protein H		25.93	0.00
group_3671	AUAUUUUUAK/	us ferrivorans	11	which spike protein in		25.75	0.00
group_6269	A0A3A7V3E1		immR_3	HTH-type transcriptional regulator ImmR		25.93	0.00
group_295	UPI00042E7F14		ARK89_15370	Uncharacterized protein		25.93	0.00
group_6278	A0A393AES1		DOZ93_04600	Uncharacterized protein		25.93	0.00
group_1987	A0A394RZ82		AF240_05480	Uncharacterized protein		40.74	6.67
group_2752	A0A0H3GD86		LMRG_02933	Uncharacterized protein		33.33	3.33
group_5994	A0A0H3GDM5		LMRG_00003	Uncharacterized protein	6.0.0	33.33	3.33
nfrA1_1	A0A3A7H264		nfra1_2	FMN reductase (NADPH) (EC 1.5.1.38) (NADPH-dependent	1.4.0	66.67	96.67
IIIIAI_I	A0A3A/11204		njru1_2	oxidoreductase)	1.4.0	00.07	90.07
gltR_1	A0A0B8QZ17		LmNIHS28_01096	LysR family transcriptional regulator	3.5.2	66.67	96.67
group_6291	UPI000BDFECA9			DUF262 domain-containing protein	5.2.0	33.33	3.33
group_2556	Q8YAP6		lmo0071	Lmo0071 protein	6.0.0	7.41	40.00
group_4470	A0A1D2IWI5		pduM	Microcompartment protein PduM	6.0.0	18.52	56.67
group_2195	A0A393SL84		coia	Competence protein CoiA	1.10.0	59.26	23.33
group_2547	Q8Y403		lmo2675	Lmo2675 protein	6.0.0	40.74	76.67
group_3636	A0A3A2YAK1		cas5b	Type I-B CRISPR-associated protein Cas5		29.63	66.67
cas1	UPI00092E4084		B0X19_02870	CRISPR-associated endonuclease Cas1		29.63	66.67
cas2	A0A0E0UTU7		cas2	CRISPR-associated endoribonuclease Cas2 (EC 3.1)		29.63	66.67
group_2659	A0A3A7SZG9		cas6	CRISPR-associated endoribonuclease Cas6		29.63	66.67
cas3	UPI00083D7946			CRISPR-associated helicase/endonuclease Cas3		29.63	66.67
group_1062	A0A393CV23		AF264_09920	Glycoside hydrolase family 65 protein	2.1.1	37.04	6.67
group_401	A0A394XJ12		AF264_14015	Uncharacterized protein		37.04	6.67
group_6040	A0A3A7RS18		AF818_02929	Uncharacterized protein		37.04	6.67
manC	A0A3A7I7R9		-	DNA topoisomerase 4 subunit A (EC 5.99.1.3) (Topoisomerase IV	3.4.0	77.78	100.00
parC	AUA3A/1/K9		parc	subunit A)	5.4.0	//./0	100.00
group 1672	A0A0H3GJX6		parC	DNA topoisomerase 4 subunit A (EC 5.99.1.3) (Topoisomerase IV	3.4.0	22.22	0.00
group_1672	AUAUII3UJAU		purc	subunit A)	5.4.0	22.22	0.00
ycjO_2	A0A3A7GFW1		AF264_13565	Transglutaminase family protein	6.0.0	22.22	0.00
group_846	A0A0B8R577		hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	22.22	0.00
tkt_3	A0A0D8X574		CDR86_05070	Uncharacterized protein	5.2.0	22.22	0.00
group_1855	UPI000BDFDF92			DUF1310 family protein	5.1.0	11.11	43.33

group_6011	A0A3A7NYZ5	AFX80_00022	Uncharacterized protein		29.63	3.33
group_5722	UPI0009853537		hypothetical protein		29.63	3.33
group_2750	A0A0H3GCJ6	LMRG_02892	Uncharacterized protein		29.63	3.33
group_1810	UPI000E6BA985	D3C26_06200	Uncharacterized protein		29.63	3.33
group_488	A0A3A7U2K0	AF856_02018	Carbohydrate deacetylase (EC 3.5.1) (ChbG/HpnK family deacetylase)	5.2.0	29.63	3.33
group_3812	A0A2A6AA43	CDR86_02440	N-acetyltransferase		29.63	3.33
group_5916	A0A0H3GCY0	LMRG_02891	Uncharacterized protein		29.63	3.33
group_5915	A0A0H3G8Y5	LMRG_02330	Uncharacterized protein	6.0.0	29.63	3.33
group_6074	A0A3A7NHD5	AFX80_00024	Uncharacterized protein		29.63	3.33
group_6283	A0A393KIZ1	AFX44_02360	Uncharacterized protein		29.63	3.33
group_3841	UPI000E6B9871		hypothetical protein		29.63	3.33
group_1884	UPI000E718624		hypothetical protein	5.2.0	29.63	3.33
group_474	A0A393CRL8	AF264_01650	Putative sulfate transporter (SulP family inorganic anion transporter)	1.2.0	51.85	16.67
group_3527	UPI000E751432		hypothetical protein		0.00	23.33
draG	Q8YAQ0	lmo0067	Lmo0067 protein	3.8.0	0.00	23.33
group_4268	A0A3A7G7B2	AB922_00990	Uncharacterized protein		7.41	36.67
group_4269	A0A2A5ZK54	CDR86_14750	Uncharacterized protein		7.41	36.67
group_3934	A0A0B8RC01	LmNIHS28_00239	Uncharacterized protein	6.0.0	92.59	63.33
group_4271	A0A2A5ZJX3	CDR86_14735	Uncharacterized protein		7.41	36.67
group_4270	A0A3A7G421	AB922_00993	Uncharacterized protein		7.41	36.67
group_3495	UPI000E72C99E		hypothetical protein		7.41	36.67
group_5655	UPI000BE0F385		hypothetical protein		40.74	10.00
group_3519	Q8YA40	lmo0324	Lmo0324 protein	6.0.0	3.70	30.00
group_4478	A0A1D2ISE5	CDR86_11995	Uncharacterized protein		3.70	30.00
immR_1	A0A394V9S3	AF261 05410	XRE family transcriptional regulator		3.70	30.00
nifS	Q8Y5N5	lmo2022	Lmo2022 protein	2.5.0	22.22	56.67
group_3827	A0A392XHQ2	pduM	Microcompartment protein PduM	6.0.0	51.85	20.00
group_1969	A0A0E0V124	gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	51.85	20.00
group_2660	A0A3A7IMJ8	cas8a1	Type I-B CRISPR-associated protein Cas8b1/Cst1		29.63	63.33
group 4686	A0A393MBE2	cas7i	Type I-B CRISPR-associated protein Cas7/Cst2/DevR		29.63	63.33
group_1346	A0A3A7FZC8	AF951 02536	Uncharacterized protein		44.44	13.33
tagB_1	A0A3A8BZ54	tarL_2	Teichoic acid ribitol-phosphate polymerase TarL (EC 2.7.8.14)	1.1.0	55.56	86.67
tagG	UPI000BE10CE8	_	ABC transporter permease	1.1.0	55.56	86.67
group_2684	A0A393U116	AF273 04990	XRE family transcriptional regulator		11.11	40.00
group_1396	A0A0H3GGU0	LMRG_02850	Uncharacterized protein		88.89	60.00
group 3915	A0A0H3G8X6	LMRG 02849	Uncharacterized protein		88.89	60.00
group_2751	UPI0000F3E668	LMRG_00004	Uncharacterized protein	6.0.0	33.33	6.67
		—	~			

csbB	Q93RN0	mtrA	Dolichol-phosphate mannosyltransferase MtrA (Hypothetical glycosyl transferase)	1.1.0	66.67	93.33
group_1153	A0A0E0UUS7	pncB	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	33.33	6.67
group_3850	A0A0H3GHG8	LMRG_00005	Uncharacterized protein		33.33	6.67
group_307	UPI00027E8422	D3B99_03045	Uncharacterized protein		33.33	6.67
group_6068	A0A3A7VX21	AF951_02474	Uncharacterized protein		33.33	6.67
tagH	UPI000BDFED64		teichoic acids export ABC transporter ATP-binding subunit TagH	1.1.0	66.67	93.33
malP	Q8Y5E3	lmo2121	Lmo2121 protein	2.1.1	66.67	93.33
rmlC	A0A1C7Q2S5	rfbC	dTDP-4-dehydrorhamnose 3,5-epimerase (EC 5.1.3.13) (Thymidine diphospho-4-keto-rhamnose 3,5-epimerase)	1.1.0	66.67	93.33
znuC_4	A0A3A7NPD6	znuC_2	ABC transporter ATP-binding protein (Zinc import ATP-binding protein ZnuC) (EC 3.6.3)		33.33	6.67
group_1990	A0A3A7UE98	AF951_02473	Uncharacterized protein		33.33	6.67
group_2474	UPI000D72D1E5		DHA2 family efflux MFS transporter permease subunit	1.2.0	66.67	33.33
group_1144	A0A0E1RCC6	yneQ	Uncharacterized protein yneQ	5.2.0	81.48	100.00
group_220	Q8Y3J2	lmo2843	Lmo2843 protein	6.0.0	81.48	100.00
group_1241	Q723T1	iolA	Malonate-semialdehyde dehydrogenase (MSA dehydrogenase) (EC 1.2.1.27)	2.1.1	18.52	0.00
hflX_1	Q8Y8Y0	hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	81.48	100.00
group_1798	UPI000EFDE50F		6-phospho-beta-glucosidase	2.1.1	25.93	3.33
group_487	A0A3A7GDL7	AF264_00475	Carbohydrate deacetylase (EC 3.5.1) (ChbG/HpnK family deacetylase)	5.2.0	74.07	96.67
group_151	С1КҮЈЗ	rpoB	DNA-directed RNA polymerase subunit beta (RNAP subunit beta) (EC 2.7.7.6) (RNA polymerase subunit beta) (Transcriptase subunit beta)	3.5.3	25.93	3.33
mco	UPI000A1FFD33		copper oxidase		25.93	3.33
group 2708	A0A2Z5C305	RK57 11985	RNA-directed DNA polymerase		25.93	3.33
licH 1	UPI000EFDE50F		6-phospho-beta-glucosidase	2.1.1	74.07	96.67
group_3917	A0A0H3G8X1	LMRG 02492	Uncharacterized protein		48.15	16.67
group 2056	A0A3A6WUY8	AF251 14005	Uncharacterized protein		48.15	16.67
group_4800	A0A394Y6H5	AF255 ⁻ 14190	Uncharacterized protein	6.0.0	7.41	33.33
group_3505	Q8Y3M7	lmo2808	Lmo2808 protein	5.1.0	7.41	33.33
group_1262	UPI000873C4F1		DUF1310 family protein	5.1.0	14.81	43.33
group_2559	UPI000B54942D		DUF3130 family protein	5.1.0	14.81	43.33
group 697	A0A1T1YBY4	DC57 15090	Type VII secretion effector	5.1.0	85.19	56.67
group_1151	UPI0008739F0D	_	antibiotic biosynthesis monooxygenase	5.2.0	100.00	80.00
group_150	C1KYJ3	rpoB	DNA-directed RNA polymerase subunit beta (RNAP subunit beta) (EC 2.7.7.6)	3.5.3	0.00	20.00
group_4297	D7PCG3		Uncharacterized protein		0.00	20.00
group_4299	D7PCG1		CRISPR-associated Cas5 family protein		0.00	20.00
group_4298	D7PCG2		Uncharacterized protein		0.00	20.00
~ · · -			*			

700	A0A3A7G652	AF264 14680	Uncharacterized protein	4.3.0	100.00	80.00
group_700 hhaIM	A0A3A2V7Q5	dcm	Cytosine-specific methyltransferase (EC 2.1.1.37)	4.5.0	0.00	20.00
group_4462		lmo1094	Lmo1094 protein	5.2.0	0.00	20.00
	-	11101094	hypothetical protein	5.2.0	0.00	20.00
group_4257 group_4250		AFT78 15980	IS3 family transposase		0.00	20.00
		AF178_15980	Uncharacterized protein		0.00	20.00
group_4258	b D/PCF3		Restriction endonuclease (Type-2 restriction enzyme Sau3AI) (EC		0.00	20.00
sau3AIR	A0A3A7FE85	sau3air	3.1.21.4)		0.00	20.00
group_4300			Uncharacterized protein		0.00	20.00
group_4253	3 D7PCF8		Uncharacterized protein		0.00	20.00
group_876	A0A1D2IYH2	CDR86_08530	Uncharacterized protein	6.0.0	18.52	50.00
group_80	Q8YAQ1	lmo0066	Lmo0066 protein	4.5.0	18.52	50.00
group_1298	8 Q8Y842	lmo1076	Lmo1076 protein	1.1.0	62.96	90.00
group_2563	3 Q8YAA1	lmo0253	Lmo0253 protein	4.2.0	3.70	26.67
group_161	A0A1D2IS76	essC	Type VII secretion protein EssC	5.2.0	18.52	46.67
blaI	A0A3A8BYR2	blaI	Penicillinase repressor	3.5.2	18.52	46.67
group_2564	4 Q8YAA0	lmo0254	Lmo0254 protein	6.0.0	18.52	46.67
group_3506	6 Q8YAQ2	lmo0065	Lmo0065 protein	6.0.0	18.52	46.67
group_717	A0A0B8R8Y8	LmNIHS28_00262	Multidrug ABC transporter permease	1.2.0	81.48	53.33
group_3520	0 Q8YA27	lmo0338	Lmo0338 protein	6.0.0	29.63	60.00
group_2567	7 Q7AP83	lmo0320	Lmo0320 protein	1.8.0	29.63	60.00
group_94	UPI00083E5C54	AF252_11575	Class I SAM-dependent methyltransferase (Fragment)		40.74	13.33
copB	UPI000E76FAAA		copper-translocating P-type ATPase		40.74	13.33
group_3800	6 A0A3A2LE02	AEZ78_01356	Uncharacterized protein		40.74	13.33
group_70	UPI0001D010FD	AF264_00610	Uncharacterized protein	5.1.0	59.26	30.00
group_2550	0 A0A3A2SL16	licT_2	PRD domain-containing protein (Transcription antiterminator LicT)	3.5.2	59.26	30.00
emrY	A0A3A8BX24	emrY	Putative multidrug resistance protein EmrY	1.2.0	37.04	66.67
group 1233	3 A0A0B8R4N6	LmNIHS28 01797	Uncharacterized protein	6.0.0	62.96	33.33
group 1860	0 Q8YA42	lmo0322	Lmo0322 protein	5.2.0	70.37	93.33
group_4446	6 Q8Y839	lmo1079	Lmo1079 protein	5.2.0	70.37	93.33
group_4123	3 A0A0E1R4Q8	ispD2	Ribitol-5-phosphate cytidylyltransferase (EC 2.7.7.40)		29.63	6.67
group_477	Q8Y9M5	lmo0501	Lmo0501 protein	3.5.2	70.37	93.33
group_4125	5 UPI000D66CEA1	DF274_15095	Uncharacterized protein (Fragment)		29.63	6.67
group_4124		gtaB	UTPglucose-1-phosphate uridylyltransferase (EC 2.7.7.9) (UDP-gluc pyrophosphorylase)	ose	29.63	6.67
group 4127	7 A0A3A7GRB2	AF264 04425	Uncharacterized protein		29.63	6.67
group_4049		blaSE	Serine protease (EC 3.4.21)		29.63	6.67
group_4454		tarJ	Ribulose-5-phosphate reductase (Ribulose-5-P reductase) (EC 1.1.1.40 (Ribitol-5-phosphate dehydrogenase)	5) 2.1.0	70.37	93.33
group 4119	9 UPI000035D008	APS76_03080	CDP-glycerol glycerophosphotransferase family protein		29.63	6.67
group_3810		—	DUF4352 domain-containing protein		29.63	6.67

tagB_2	A0A1D2ISQ5	CDR86_11250	Glycosyl transferase family 2	1.1.0	70.37	93.33
group_6039	A0A393Q6N1	AF951_01447	Uncharacterized protein		29.63	6.67
pncB2	A0A0D8X9Q4	CDR86_11285	Nicotinate phosphoribosyltransferase (EC 6.3.4.21)	5.2.0	70.37	93.33
group_3954	UPI000E3C8303		cell wall teichoic acid glycosylation protein GtcA		29.63	6.67
group_3454	A0A0B8RAV3	LmNIHS28_01817	Uncharacterized protein		29.63	6.67
group_3882	A0A3A6WVM4	AF241_14355	Uncharacterized protein	4.3.0	29.63	6.67
group_4672	UPI0009305ABB		GtrA family protein	1.1.0	70.37	93.33
gutB	A0A3A7GLG3	tarj	Ribulose-5-phosphate reductase (Ribulose-5-P reductase) (EC 1.1.1.405) (Ribitol-5-phosphate dehydrogenase)		29.63	6.67
gtaB	UPI000931810D		UTPglucose-1-phosphate uridylyltransferase GalU	1.1.0	70.37	93.33
group_4677	A0A393QPI9	AF238_05485	VRR-NUC domain-containing protein		29.63	6.67
group_1891	Q8Y7T3	lmo1188	Lmo1188 protein	6.0.0	70.37	93.33
group_4126	A0A3A7GN59	tarl	CDP-glycerol:glycerophosphate glycerophosphotransferase (Teichoic acid poly(Ribitol-phosphate) polymerase) (EC 2.7.8)		29.63	6.67
ispD2_1	UPI0004D75A86	HT50_11035	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (Fragment)	2.1.0	70.37	93.33
group_2892	UPI0009B09F82		GW domain-containing glycosaminoglycan-binding protein	1.8.0	29.63	6.67
tagD	A0A1C7PZ73	tagD	Glycerol-3-phosphate cytidylyltransferase	1.1.0	70.37	93.33
epsJ	A0A3A7GEL8	epsj	Glycosyltransferase family 2 protein (Putative glycosyltransferase EpsJ) (EC 2.4)		29.63	6.67
lytG 5	A0A3A8BW61	lytG 3	Exo-glucosaminidase LytG (EC 3.2.1)		29.63	6.67
group 4131	A0A3A8BVC9	tagG	Transport permease protein		29.63	6.67
group_3705	A0A3A7DYA1	AF249 03765	DUF1541 domain-containing protein		29.63	6.67
0 1-		—	Phospholipid carrier-dependent glycosyltransferase (Undecaprenyl			
arnT	A0A3A7F315	arnt	phosphate-alpha-4-amino-4-deoxy-L-arabinose arabinosyl transferase) (EC 2.4.2.43)		29.63	6.67
rmlD	A0A1D2ISS6	rfbD	dTDP-4-dehydrorhamnose reductase (EC 1.1.1.133)	1.1.0	70.37	93.33
tagB_3	Q8Y830	tagB	TagB protein	1.1.0	70.37	93.33
epsJ_1	Q8Y9M9	lmo0497	Lmo0497 protein	1.1.0	70.37	93.33
ykoT	UPI000035CFFF	NT04LM 1735	Glycosyl transferase, group 2 family protein		29.63	6.67
tagF	A0A3A8BW41	tagF –	Teichoic acid poly(Glycerol phosphate) polymerase (EC 2.7.8.12)		29.63	6.67
group_3925	A0A3A8BY26	CFSAN002345_0014 36	Uncharacterized protein		29.63	6.67
rmlA1	A0A0D8X3Y7	rfbA	Glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24)	1.1.0	70.37	93.33
group_3562	Q8Y850	lmo1068	Lmo1068 protein	6.0.0	70.37	93.33
rffG	A0A1D2IST6	rfbB	dTDP-glucose 4,6-dehydratase (EC 4.2.1.46)	1.1.0	70.37	93.33
group_2384	UPI000766C630		Uncharacterized protein		29.63	6.67
group_4237	A0A394YEX0	AF264_00540	Endonuclease (Endonuclease/exonuclease/phosphatase family protein)	5.2.0	29.63	6.67
group_4030	A0A0B8R4F9	LmNIHS28 01899	Teichoic acid biosynthesis protein		29.63	6.67
group_3939	A0A0B8QQZ7	LmNIHS28_00261	Membrane protein		29.63	6.67
0 1			1			-

group 3938	Q9ZIC5	LmNIHS28 00260	Uncharacterized protein		29.63	6.67
group_4132	A0A3A2P6F9	AF241_04305	DUF5068 domain-containing protein		29.63	6.67
group_4130	UPI000D66B0A6	_ tagH	Teichoic acids export ABC transporter ATP-binding subunit TagH (Fragment)		29.63	6.67
group_4238	A0A394Y3M2	AF264_00535	PH domain-containing protein		29.63	6.67
epsJ_3	A0A3A8CCS3	epsJ_2	Putative glycosyltransferase EpsJ (EC 2.4)	1.1.0	70.37	93.33
epsJ_2	A0A3A7NTY9	epsJ_2	Glycosyltransferase (Putative glycosyltransferase EpsJ) (EC 2.4)	1.1.0	70.37	93.33
group 965	UPI000D6455E8	DF273 02615	Uncharacterized protein (Fragment)		29.63	6.67
epsJ_4	A0A3A8BXQ8	epsJ_1	Putative glycosyltransferase EpsJ (EC 2.4)	1.1.0	70.37	93.33
sdpR	A0A3A8BPZ1	sdpR	Transcriptional repressor SdpR	3.5.2	29.63	6.67
group_4426	Q8Y8H1	lmo0933	Lmo0933 protein	1.1.0	70.37	93.33
group_4118	UPI000E6B7FBF		glycerol-3-phosphate cytidylyltransferase		29.63	6.67
group_3885	A0A393D4V0	AF264_14565	Pyruvyl-transferase		29.63	6.67
group 5438	A0A2A6A383	CDR86 14065	Phage major capsid protein		44.44	16.67
group_5436	A0A2A6A494	CDR86_14040	Phage tail protein		44.44	16.67
group_5437	A0A2A6A2S9	CDR86_14060	Uncharacterized protein		44.44	16.67
group_5450	A0A3A2JSK3	AF847 01777	Uncharacterized protein		44.44	16.67
group_5455	A0A2A6A624	CDR86 09860	Uncharacterized protein		44.44	16.67
group_5440	A0A3A2Q1E8	AF847_01796	Phage portal protein		44.44	16.67
group_2724	A0A2A6A2X1	CDR86 14035	Uncharacterized protein		44.44	16.67
group_3870	A0A2A6A392	CDR86 ⁻ 14115	RNA polymerase subunit sigma		44.44	16.67
group_2723	A0A2A6A314	CDR86_14025	Phage tail protein		44.44	16.67
group 3781	A0A3A7A859	AF847 01778	Uncharacterized protein		44.44	16.67
group_5441	A0A2A6A2T7	CDR86 14110	Site-specific integrase		44.44	16.67
group_3775	A0A2A5ZJU3	CDR86 14055	Head-tail adaptor protein		44.44	16.67
smc_5	A0A3A2L5G2	AF249_02565	Phage tail tape measure protein		44.44	16.67
group 3773	A0A2A6A3R8	CDR86 14045	Uncharacterized protein		44.44	16.67
group_3774	A0A2A5ZKW1	CDR86 14050	Uncharacterized protein		44.44	16.67
group_3776	A0A2A5ZK62	CDR86_14085	Terminase large subunit		44.44	16.67
group_5452	A0A2A5ZM51	CDR86_09880	DUF771 domain-containing protein		44.44	16.67
group_2698	A0A3A2JNT0	D3C46 16425	Uncharacterized protein		44.44	16.67
group_3771	A0A2A6A353	CDR86_14020	Uncharacterized protein		44.44	16.67
group_2597	A0A393F8Q4	D3B62 10335	Uncharacterized protein		14.81	40.00
group_132	UPI00086E3AD4	—	hypothetical protein		7.41	30.00
group_4242	A0A0B8QZ13	LmNIHS28_01086	Uncharacterized protein	6.0.0	92.59	70.00
group_3647	A0A393KDI4	AF247 14610	Uncharacterized protein		7.41	30.00
group_2691	A0A2A6A8L3	CDR86_05350	Uncharacterized protein		7.41	30.00
group_3504	Q8Y3N1	lmo2804	Lmo2804 protein	6.0.0	7.41	30.00
group_4200	A0A3A2WRU5	AF241_01120	Uncharacterized protein		14.81	0.00
group_4201	UPI00098E5B68	DOV17 10730	Uncharacterized protein		14.81	0.00
group_4202	A0A0B8RHX0		Uncharacterized protein		14.81	0.00
		—				

group_4203	A0A0B8R119		LmNIHS28 01806	Uncharacterized protein		14.81	0.00
group 4205	A0A0B8RA54		LmNIHS28_01808	Uncharacterized protein		14.81	0.00
group 4205	UPI000873BE8A		Lmi(111520_01000	hypothetical protein		14.81	0.00
group 4200	A0A0B8RAJ2		LmNIHS28 01807	Uncharacterized protein		14.81	0.00
group_4199	A0A0B8RG01		LmNIHS28_01807	Uncharacterized protein		14.81	0.00
group_41)	A0A0B8QZH0		LmNIHS28_01804	Uncharacterized protein		14.81	0.00
araR	A0A0B8Q2110 A0A3A8C7S0		araR	Arabinose metabolism transcriptional repressor	3.5.2	85.19	100.00
group_2942	A0A3A7F258		AF258 10415	DUF87 domain-containing protein	5.5.2	14.81	0.00
group_2742	A0A3A/1230		_	Dor 67 domain-containing protein		14.01	0.00
group_6241	A0A060USR2	Acidithiobacill us ferrivorans	D	Scaffolding protein D		14.81	0.00
group 1809	UPI00073B1B95		AN945 2724c	Uncharacterized protein		14.81	0.00
group_2489	UPI000254880C		AJZ74 11435	PBS lyase		14.81	0.00
group 3545	A0A3A7QRH6		AF249 03255	Glycoside hydrolase family 125 protein	5.2.0	85.19	100.00
group_6259	UPI000B8EE202		—	hypothetical protein		14.81	0.00
group_147	UPI00098E3A42			BspA family leucine-rich repeat surface protein	1.8.0	14.81	0.00
group 3549	Q8Y8X1		lmo0771	Lmo0771 protein	6.0.0	85.19	100.00
group_3872	UPI000B8EE202			hypothetical protein		14.81	0.00
group_4163	A0A0E0UTX3		LMM7 0796	Uncharacterized protein	6.0.0	14.81	0.00
group_4210	A0A0B8RA58		LmNIHS28 01813	Uncharacterized protein		14.81	0.00
ugpA	A0A3A8CAJ6		ugpA	sn-glycerol-3-phosphate transport system permease protein UgpA	1.2.0	85.19	100.00
iolA	A0A1D2IYM0		mmsA	Malonate-semialdehyde dehydrogenase (MSA dehydrogenase) (EC 1.2.1.27)	2.1.1	85.19	100.00
ugpB	Q8Y8X4		lmo0768	Lmo0768 protein	1.2.0	85.19	100.00
group_606	A0A2Z5C4G3		RK57_13575	MerR family transcriptional regulator	3.5.2	14.81	0.00
		Candidatus					
group_2702	A0A0S4KTT7	Nitrospira	NITINOP_1625	Uncharacterized protein		14.81	0.00
2704		inopinata		X71 1X7 C 11		14.01	0.00
group_2794	UPI00098D5DEC		AEV(C 02002	XkdX family protein	(0 0	14.81	0.00
group_1214	UPI000E72BE72		AFX66_02803	Uncharacterized protein	6.0.0	14.81	0.00
group_2796	A0A394ZCH8		AF274_11785	Phage tail family protein		14.81	0.00
group_5108	A0A2Z5C608		<i>RK57_11975</i>	Uncharacterized protein		14.81	0.00
group_4207	A0A0B8RHX3		LmNIHS28_01810	Membrane protein		14.81	0.00
group_4208	A0A394XPH6		AF241_01080	Uncharacterized protein	1.2.0	14.81	0.00
araQ_4	Q8Y8X5		lmo0767	Lmo0767 protein	1.2.0	85.19	100.00
group_2795	UPI0004D43DC4		CJ756_11065	Uncharacterized protein		14.81	0.00
group_5107	UPI000D654808		DF278_15490	Transcriptional regulator (Fragment)		14.81	0.00
group_4209	A0A0B8R4P7		LmNIHS28_01812	Uncharacterized protein		14.81	0.00
lptB	A0A3A7JHL1		natA_1	ABC transporter ATP-binding protein NatA (ATP-binding cassette domain-containing protein) (DUF4162 domain-containing protein)	1.2.0	85.19	100.00
group_1873	Q8Y8X3		lmo0769	Lmo0769 protein	2.1.1	85.19	100.00

group_195	A0A0E1R2K1	BN389_01650	Uncharacterized protein		22.22	3.33
group_3895	A0A394QVX1	AF241_14025	Uncharacterized protein	4.3.0	22.22	3.33
group_14	A0A0F5Z6U3	UQ68_03245	Holin	4.3.0	22.22	3.33
mnmG	A0A0E0V124	gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	51.85	80.00
group_2040	A0A3A7F101	AF264_14455	Ribonuclease (EC 3.1)	5.2.0	51.85	80.00
group_3916	A0A3A7D3S5	AF251_14010	Uncharacterized protein		48.15	20.00
group_3700	UPI000984B87F		hypothetical protein		33.33	10.00
group_3858	A0A0H3GDJ9	LMRG_02591	Uncharacterized protein		33.33	10.00

¥ Non L. monocytogenes species

 \dagger Description for each functional category code is presented below

[1.1.0] Cell envelope and cellular processes > Cell wall

[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins

[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)

[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics

[1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis

[1.6.0] Cell envelope and cellular processes > Protein secretion

[1.7.0] Cell envelope and cellular processes > Cell division

[1.8.0] Cell envelope and cellular processes > Cell surface proteins

[1.9.0] Cell envelope and cellular processes > Soluble internalin

[1.10.0] Cell envelope and cellular processes > Transformation/competence

[2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule

[2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways

[2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways

[2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle

[2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules

[2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids

[2.4.0] Intermediary metabolism > Metabolism of lipids

[2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups

[2.6.0] Intermediary metabolism > Metabolism of phosphate

[3.1.0] Information pathways > DNA replication

[3.2.0] Information pathways > DNA restriction/modification and repair

[3.3.0] Information pathways > DNA recombination

[3.4.0] Information pathways > DNA packaging and segregation

[3.5.1] Information pathways > RNA synthesis > Initiation

[3.5.2] Information pathways > RNA synthesis > Regulation

[3.5.3] Information pathways > RNA synthesis > Elongation

[3.5.4] Information pathways > RNA synthesis > Termination

[3.6.0] Information pathways > RNA modification

[3.7.1] Information pathways > Protein synthesis > Ribosomal proteins

[3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases

- [3.7.3] Information pathways > Protein synthesis > Initiation
- [3.7.4] Information pathways > Protein synthesis > Elongation
- [3.7.5] Information pathways > Protein synthesis > Termination
- [3.8.0] Information pathways > Protein modification
- [3.9.0] Information pathways > Protein folding
- [4.1.0] Other functions > Adaptation to atypical conditions
- [4.2.0] Other functions > Detoxification
- [4.3.0] Other functions > Phage-related functions
- [4.4.0] Other functions > Transposon and IS
- [4.5.0] Other functions > Miscellaneous
- [5.1.0] Similar to unknown proteins > From Listeria
- [5.2.0] Similar to unknown proteins > From other organisms
- [6.0.0] No similarity

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category	weak biofilm	% in strong biofilm
2(27	1010101005		CD D04 05 (20		Ť	formers	formers
group_3627	A0A2A6A9Q5		CDR86_05420	Uncharacterized protein		67.44	7.14
group_1972	A0A1D2IW59		CDR86_05425	Uncharacterized protein		65.12	7.14
group_194	A0A394YAU8		AF255_15365	Uncharacterized protein		79.07	21.43
group_4801	A0A3A2R9E5		D3B46_07385	Uncharacterized protein		0.00	35.71
elpP1	A0A3A7GTR6		clpp1	ATP-dependent Clp protease proteolytic subunit		48.84	0.00
group_1969	A0A0E0V124		gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	46.51	0.00
group_1323	A0A393NY83		AF252_05645	Terminase large subunit		69.77	21.43
group_1930	UPI000987417B		C7K67_12540	Uncharacterized protein		69.77	21.43
group_1936	UPI0001E38E7D		lmo4a_1264	hypothetical protein		69.77	21.43
group_911	A0A394UBA6		AF237_14510	Phage portal protein		69.77	21.43
group_396	UPI00086EB4E1			hypothetical protein		69.77	21.43
nnmG	A0A0E0V124		gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	55.81	100.00
group_877	UPI000D65622D		DF271_11275	Uncharacterized protein (Fragment)	6.0.0	9.30	50.00
roup_143	A0A3A2J7V9		AF247 01180	BspA family leucine-rich repeat surface protein	1.8.0	9.30	50.00
group_3728	UPI00087574F4		CKA04 00075	DUF4274 domain-containing protein		0.00	28.57
group 3729	A0A3A7CPM3		AFX42_02321	Uncharacterized protein		0.00	28.57
group_5173	A0A2Z5C0M4		RK57 09705	Peptidase	2.2.0	0.00	28.57
group 5174	A0A3A2SNR2		D3B74 12110	YafY family transcriptional regulator	3.5.2	0.00	28.57
group_3730	A0A393IN51		AFX42_02319	Uncharacterized protein	6.0.0	0.00	28.57
group_5189	A0A3A7P9Y2		AFX42 02323	Uncharacterized protein		0.00	28.57
group_876	A0A1D2IYH2		CDR86 08530	Uncharacterized protein	6.0.0	23.26	71.43
group_1275	Q8YA41		$lmo032\overline{3}$	Lmo0323 protein	5.2.0	74.42	28.57
group_620	A0A0E0UTZ8		rarD	Putative chloramphenicol resistance permease	5.2.0	46.51	92.86
group_4408	Q8Y8U3		lmo0800	Lmo0800 protein	5.2.0	53.49	7.14
group 2584	Q8Y8U2		lmo0801	Lmo0801 protein	1.8.0	53.49	7.14
group_4160	A0A0E1RAZ5		yqkB	Uncharacterized protein yqkB	5.2.0	46.51	92.86
bpA	A0A1B2LR36		pLM-C-273 00100	Protein involved in cell division		51.16	7.14
group_1422	A0A3A2RW22		AF251 13400	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	32.56	78.57
roup_1939	A0A2A6A897		CDR86 05340	Phage tail protein		67.44	21.43
group_1374	UPI000990612F		_	hypothetical protein	6.0.0	67.44	21.43
group_4931	A0A393UJY3		AB922 03066	Dihydroorotate dehydrogenase (Quinone)	5.1.0	6.98	42.86
group_1423	A0A393L0Q4		AF264 13385	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	39.53	85.71
group_4273	UPI0008759A67			XRE family transcriptional regulator	-	48.84	7.14
group 2656	UPI000766639A		ERS409650 01636	Uncharacterized protein		48.84	7.14

Supplementary Table 6. List of genes associated with biofilm production in dBHI media at 10° C after pan-GWAS (p < 0.05).

group_4683	A0A393SKA6	AF239 00415	Uncharacterized protein	6.0.0	11.63	50.00
group_475	Q8Y9K3	lmo0524	Lmo0524 protein	1.2.0	11.63	50.00
group_609	A0A1S7FLU5	DC57 10100	Uncharacterized protein	6.0.0	88.37	50.00
group_2732	A0A393U4Y6	AF255_14330	DUF2974 domain-containing protein	6.0.0	39.53	0.00
group_5515	UPI000BE047C1	—	DUF1310 family protein	5.1.0	39.53	0.00
group 1980	A0A392WP24	AF255 14340	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	39.53	0.00
group_1927	A0A393EP38	DPM34 15090	HNH endonuclease		58.14	14.29
group_2538	D7PCF0	—	Putative transposase		37.21	0.00
group_913	A0A394RXF7	AF236 05635	Uncharacterized protein		65.12	21.43
actA	Q6E9G6	actA –	ActA (Actin nucleator protein ActA)	1.8.0	95.35	64.29
group_925	A0A0E0USB0	prs	Ribose-phosphate pyrophosphokinase (RPPK) (EC 2.7.6.1) (5-phospho-D ribosyl alpha-1-diphosphate)	na na	95.35	64.29
group_4930	UPI000BE0165D		actin assembly-inducing protein ActA	1.8.0	4.65	35.71
mgtB	A0A1D2IRU1	mgtA	Magnesium-translocating P-type ATPase	1.2.0	72.09	28.57
group_2548	UPI000874D6A9	0	polysaccharide deacetylase		72.09	28.57
group_2657	A0A2Z5C560	RK57 09450	Endonuclease	5.2.0	9.30	42.86
group 1932	A0A393D0P3	AF261 15130	Phage major capsid protein		46.51	7.14
group_2542	UPI000BE0CF3F	—	hypothetical protein		46.51	7.14
group 4274	A0A142EC60	pA144 0003	Uncharacterized protein		46.51	7.14
group 2650	A0A3A7NB70	AF818 02916	Uncharacterized protein		46.51	7.14
group_2655	UPI00070C5611	—	hypothetical protein		46.51	7.14
group_1858	A0A3A7Q0D0	folK	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase (EC 2.7.6.3)	2.5.0	46.51	7.14
group_1923	A0A393FBY8	AF252_05580	Uncharacterized protein		46.51	7.14
group_1228	A0A2Z5C2Q2	RK57_10170	DUF917 domain-containing protein	5.2.0	97.67	71.43
group_3707	UPI00003CAC0A	AF251_12155	Uncharacterized protein		2.33	28.57
group_728	A0A393CRH4	mgtA	Magnesium-translocating P-type ATPase (Magnesium-transporting ATPase, P-type 1) (EC 3.6.3.2)	1.2.0	30.23	71.43
group_1269	UPI00083DD376		hypothetical protein	6.0.0	69.77	28.57
group_1894	A0A3A6ZFF6	AE052_00014	Uncharacterized protein		44.19	7.14
group_4475	A0A0E0UVZ2	LMM7_1248	Uncharacterized protein		44.19	7.14
group_2731	A0A0H3GJX1	LMRG_01889	Uncharacterized protein	5.1.0	44.19	7.14
group_919	UPI00093013A0		A-kinase anchor protein 11	6.0.0	55.81	14.29
group_622	A0A0B8R4R4	rarD	EamA family transporter (Permease)	5.2.0	55.81	14.29
group_4344	Q8YA33	lmo0332	Lmo0332 protein	6.0.0	55.81	14.29
group_5435	A0A3A2KJM7	AF255_07855	Uncharacterized protein		34.88	0.00
group_904	A0A3A7P9G8	inlJ_10	Class 1 internalin InlL (Internalin-J)	1.8.0	34.88	0.00
group_3769	UPI000984CE83		hypothetical protein		34.88	0.00
group_1843	A0A1S7FP06	DC57_14095	6-phospho-beta-glucosidase	2.1.1	62.79	21.43
group_5843	A0A3A2R8P7	D3B69_09405	DUF5081 family protein	6.0.0	0.00	21.43
group_5842	A0A3A2NZC0	D3B69_09410	WXG100 family type VII secretion target	6.0.0	0.00	21.43

purM	C1KW66	purM	Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) (AIR synthase) (AIRS) (Phosphoribosyl-aminoimidazole synthetase)	2.3.0	100.00	78.57
group 506	A0A393UJW4	AB922 03046	Alpha-amylase	6.0.0	0.00	21.43
group_360	UPI000CDB419D	CXR83_06020	Cell surface protein	1.8.0	0.00	21.43
group_5844	A0A392YQG8	AF844 02972	Uncharacterized protein	6.0.0	0.00	21.43
group_5841	A0A3A7BU98	D3B69 09415	Chorismate synthase	6.0.0	0.00	21.43
group 5840	A0A3A7BL13	D3B69 08805	ATP-binding protein		0.00	21.43
group_3763	A0A3A7Q2Y8	D3C16_05975	Restriction endonuclease subunit S		0.00	21.43
group_5838	A0A3A2NKZ5	D3B79_09090	Uncharacterized protein		0.00	21.43
group_5839	A0A3A2TU61	D3B69_08800	SIR2 family protein		0.00	21.43
group_5835	A0A3A7QPE8	AF840 01803	Uncharacterized protein		0.00	21.43
group 5836	A0A3A2RH67	D3B69 08785	Appr-1-p processing protein		0.00	21.43
group_5837	UPI00098E44F1	—	Appr-1-p processing protein		0.00	21.43
			Phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1) (AIR			
group_5833	C6ZXJ8	purM	synthase) (AIRS) (Phosphoribosyl-aminoimidazole synthetase)	2.3.0	0.00	21.43
group 1943	A0A394VD49	AF261 05405	ImmA/IrrE family metallo-endopeptidase		32.56	0.00
tnpR	D7PCF4	—	Putative resolvase		53.49	14.29
cadA	UPI0009305248		cadmium-translocating P-type ATPase	1.2.0	53.49	14.29
group_1343	A0A394ZJX3	AF243 05235	DNA-binding protein		53.49	14.29
hin 2	UPI000BE029CD	—	recombinase family protein		53.49	14.29
	D7PCH4	CDR86 15050	DDE transposase (Transposase)		53.49	14.29
group 1295	Q8Y8G5	lmo0939	Lmo0939 protein	6.0.0	81.40	42.86
group_4664	Q8Y4K6	lmo2432	Lmo2432 protein	6.0.0	81.40	42.86
nfrA1 2	A0A3A8BZV6	nfrAl l	FMN reductase (NADPH) (EC 1.5.1.38)	1.4.0	81.40	42.86
accB	A0A1D2IQ93	accB	Biotin carboxyl carrier protein of acetyl-CoA carboxylase	2.4.0	81.40	42.86
sttH	Q8Y9A3	lmo0629	Lmo0629 protein	5.2.0	81.40	42.86
yfkJ	Q8Y8G6	lmo0938	Lmo0938 protein	3.8.0	81.40	42.86
group_3621	Q8Y4Q9	lmo2375	Lmo2375 protein	6.0.0	81.40	42.86
group_3297	A0A394XZE5	AF264 03740	SMI1/KNR4 family protein	6.0.0	18.60	57.14
group_2913	A0A2Z5BYV4	RK57_05535	Uncharacterized protein	6.0.0	18.60	57.14
group_4150	A0A394XVS5	gata_l	Amidase (EC 3.5.1.4) (Glutamyl-tRNA(Gln) amidotransferase subunit A) (EC 6.3.5.7)	1.1.0	18.60	57.14
group_4142	A0A3A8BVY8	nfrA1_1	FMN reductase (NADPH) (EC 1.5.1.38)	1.4.0	18.60	57.14
group_4141	A0A3A8C3E2	yfkJ	Low molecular weight protein-tyrosine-phosphatase YfkJ (EC 3.1.3.48)		18.60	57.14
group 3187	A0A393RR72	accB	Biotin carboxyl carrier protein of acetyl-CoA carboxylase	2.4.0	18.60	57.14
group_2560	UPI000BE05954		hypothetical protein	5.1.0	32.56	71.43
group_1845	Q9EXF8	bglA	Beta-glucosidase (EC 3.2.1.21) (Glycoside hydrolase family 1 protein)	2.1.1	39.53	78.57
		-			CO 47	01.42
group_665	A0A394VEJ2	AF261_05390	Site-specific integrase		60.47	21.43
group_1963	UPI00098E7CD3		superoxide dismutase	6.0.0	60.47	21.43

group_3668	A0A3A2JQP2	D3B79_08735	PBSX family phage terminase large subunit		6.98	35.71
group_1875	Q8Y8S0	lmo0824	Lmo0824 protein	6.0.0	79.07	42.86
mhqA_2	Q8Y8Y4	lmo0758	Lmo0758 protein	5.2.0	79.07	42.86
group_4155	A0A3A2X5P1	AF264_03135	Winged helix DNA-binding domain-containing protein	6.0.0	20.93	57.14
group_2658	A0A2Z5C293	RK57 09780	Uncharacterized protein	6.0.0	20.93	57.14
trxA 3	UPI000BDFC1FB	—	thioredoxin	1.4.0	79.07	42.86
group_745	Q8Y4R3	lmo2371	Lmo2371 protein	1.2.0	79.07	42.86
group_3355	A0A3A8BXQ6	mhqA_2	Putative ring-cleaving dioxygenase MhqA (EC 1.13.11)	5.2.0	20.93	57.14
group_4176	A0A0B8RDT5	LmNIHS28_00904	Uncharacterized protein		11.63	42.86
group_4175	A0A3A6WQ80	AB922 01521	Uncharacterized protein		11.63	42.86
group_1749	A0A2Z5C202	RK57 12045	Uncharacterized protein	6.0.0	11.63	42.86
group_3501	Q8Y3Z3	lmo2686	Lmo2686 protein	6.0.0	74.42	35.71
group_2648	A0A394T3U8	AF252_05595	DUF669 domain-containing protein		41.86	7.14
group_3626	A0A3A2TXX4	AF238_05490	Uncharacterized protein		41.86	7.14
group_3962	A0A393CS61	inlB 2	Internalin B (Lmo2445 family class 3 internalin)	1.8.0	23.26	57.14
kdpC	Q8Y3Z8	kdpC	Potassium-transporting ATPase KdpC subunit	1.2.0	76.74	42.86
group_2223	A0A0B8R893	AJL15_12980	Transcriptional regulator	5.2.0	23.26	57.14
group_4666	A0A0H3GN16	LMRG_01803	Internalin	1.8.0	76.74	42.86
group_2646	Q8Y4H5	lmo2466	Lmo2466 protein	6.0.0	76.74	42.86
group_3946	C1KZN4	<i>kdpC</i>	Potassium-transporting ATPase KdpC subunit	1.2.0	23.26	57.14
group_746	A0A0B8R487	LmNIHS28_01552	ABC transporter permease	1.2.0	23.26	57.14
group_2612	A0A0H3GHY8	LMRG_02831	Uncharacterized protein	5.2.0	76.74	42.86
group_1443	Q8Y3Y2	lmo2697	Lmo2697 protein	5.2.0	76.74	42.86
group_2647	A0A3A2YHL0	AF252_05590	ATP-dependent helicase (DEAD/DEAH box helicase)		30.23	0.00
group_5469	UPI00074D5C6E	DB955_12755	Uncharacterized protein		27.91	0.00
group_5799	UPI00092FB1F5		arsenic metallochaperone ArsD family protein		27.91	0.00
group_2594	Q8Y7Z5	lmo1124	Lmo1124 protein	5.1.0	51.16	14.29
group_4465	Q8Y7Z7	lmo1122	Lmo1122 protein	5.1.0	51.16	14.29
group_3888	A0A0B8RBN9	LmNIHS28_00109	Uncharacterized protein	6.0.0	16.28	50.00
group_1946	A0A0B8REH4	LmNIHS28_00150	Membrane protein		16.28	50.00
group_4099	UPI000D648E93	DF275_07015	Uncharacterized protein (Fragment)		16.28	50.00
inlJ_10	UPI000987BEBC		LPXTG cell wall anchor domain-containing protein		16.28	50.00
group_1250	A0A1S7FP90	DC57_14415	Uncharacterized protein		16.28	50.00
group_3727	A0A3A2TE22	int-tn	Site-specific integrase (Transposase)		4.65	28.57
group_5179	A0A393N0K8	AB922_01353	Putative type I restriction enzymeP M protein (EC 2.1.1.72) (Type I restriction-modification system subunit M)		4.65	28.57
group_5178	A0A3A2PDJ1	D3B74_06000	Type I restriction endonuclease subunit R		4.65	28.57
group_3648	UPI000EF5AE28		DUF1310 family protein		4.65	28.57
group_569	A0A1S7FIY4	DC57_04745	Phosphotransferase family protein	5.2.0	95.35	71.43
group_5020	A0A3A8BWY7	CFSAN002345_0022 55	Uncharacterized protein		4.65	28.57

group_50	A0A3A2LQV6	AFX52_01641	LPXTG cell wall anchor domain-containing protein	6.0.0	4.65	28.57
group_1933	A0A3A2P3J3	D3B70_02255	Phage tail protein		48.84	14.29
group_4259	A0A393F3Q7	AB922_00274	Uncharacterized protein		48.84	14.29
clpC_2	UPI000930EE1D		ATP-dependent Clp protease ATP-binding subunit		48.84	14.29
group_125	A0A3A7AAN2	AF247_14620	Uncharacterized protein	6.0.0	48.84	14.29
group_3490	UPI000931EA20		ParA family protein		48.84	14.29
pdxT	Q71XR2	pdxT	Pyridoxal 5'-phosphate synthase subunit PdxT (EC 4.3.3.6) (Pdx2) (Pyridoxal 5'-phosphate synthase glutaminase subunit) (EC 3.5.1.2)	5.2.0	41.86	78.57
group_399	A0A393LD96	AF247_14630	Uncharacterized protein		69.77	35.71
group_5074	A0A3A7JEW8	AF844_02399	Uncharacterized protein		9.30	35.71
group_2053	UPI000D65D056	DF275_03155	Uncharacterized protein (Fragment)		9.30	35.71
group_2054	A0A394XJ48	AF264_14055	Uncharacterized protein		9.30	35.71
group_3649	A0A3A7V9B4	AF247_13985	DUF2974 domain-containing protein	6.0.0	9.30	35.71
group_3912	A0A3A7LWM6	AF251_14090	Uncharacterized protein		9.30	35.71
group_926	A0A0E0USB0	prs	Ribose-phosphate pyrophosphokinase (RPPK) (EC 2.7.6.1) (5-phospho-D-ribosyl alpha-1-diphosphate)	na	9.30	35.71
group_2811	A0A394TF27	AF251_14070	Uncharacterized protein		9.30	35.71
group_3913	A0A392YE30	AF251 14085	Uncharacterized protein		9.30	35.71
group_197	A0A0H3G937	LMRG_02391	Uncharacterized protein	5.1.0	55.81	21.43
dinB_3	D7PCE7	—	Putative DNA-directed DNA polymerase		62.79	28.57
group_3569	Q8Y7Y0	lmo1139	Lmo1139 protein	6.0.0	62.79	28.57
group_4612	Q8Y5J1	lmo2070	Lmo2070 protein	5.2.0	81.40	50.00
group_3197	A0A3A7EY63	AB922 02243	N-acetyltransferase	5.2.0	18.60	50.00
group 3196	Q720B7	LMOf2365 1322	UPF0291 protein LMOf2365_1322	5.2.0	18.60	50.00
group_4614	A0A2A5ZFW1	CDR86 01560	FeoB-associated Cys-rich membrane protein		81.40	50.00
licT_3	Q8Y3P6	bvrA	Transcription antiterminator	3.5.2	81.40	50.00
inlB ²	Q8Y9H9	lmo0549	Lmo0549 protein	1.9.0	81.40	50.00
$man X_4$	Q8YAU2	lmo0021	Lmo0021 protein	1.2.0	81.40	50.00
tpiA_1	Q8YA20	tpiA2	Probable triosephosphate isomerase 2 (TIM 2) (TPI 2) (EC 5.3.1.1) (Triose-phosphate isomerase 2)	2.1.2	81.40	50.00
group_4054	A0A394RA98	AF239_08275	HD domain-containing protein	5.2.0	18.60	50.00
group_4057	A0A3A7ML43		2-methyl-6-phytyl-1,4-hydroquinone methyltransferase (EC 2.1.1.295) (Class I SAM-dependent methyltransferase)	5.2.0	18.60	50.00
group_4050	A0A3A8BL21	thiN	Thiamine pyrophosphokinase (EC 2.7.6.2)	2.5.0	18.60	50.00
group_4053	A0A0B8R933	LmNIHS28 02291	Uncharacterized protein	6.0.0	18.60	50.00
group_4052	A0A2Z5BX03	RK57_02435	DUF1697 domain-containing protein	5.2.0	18.60	50.00
group_4059	A0A3A8BR73	fosX	Fosfomycin resistance protein FosX	4.1.0	18.60	50.00
group_4058	UPI0004366B26	HR60_00125	UPF0435 protein HR60 00125	5.2.0	18.60	50.00
group_820	A0A393CUI8	AF264_04565	Alpha/beta hydrolase	6.0.0	18.60	50.00
group_2626	Q8Y593	lmo2176	Lmo2176 protein	3.5.2	81.40	50.00
group 2627	Q8Y582	lmo2189	Lmo2189 protein	1.10.0	81.40	50.00
5 1 -	•				-	

group 2629	Q8Y512	lmo2266	Lmo2266 protein	5.2.0	81.40	50.00
group_3612	Q8Y531	lmo2245	Lmo2245 protein	5.2.0	81.40	50.00
glmS_3	A0A3A8C081	glmS_2	Glutaminefructose-6-phosphate aminotransferase isomerizing (EC 2.6.1.16)	2.1.1	18.60	50.00
glmS_1	A0A3A8C038	glmS_2	Glutaminefructose-6-phosphate aminotransferase isomerizing (EC 2.6.1.16)	2.1.1	81.40	50.00
group_3537	Q8Y973	lmo0660	Lmo0660 protein	4.4.0	81.40	50.00
group_3535	UPI000EF5BE8A		DUF975 family protein	5.2.0	81.40	50.00
group_3534	A0A3A8CFC5	speG_l	Spermidine N(1)-acetyltransferase (EC 2.3.1.57)	5.2.0	81.40	50.00
group_3539	Q8Y8Z5	lmo0747	Lmo0747 protein	6.0.0	81.40	50.00
ulaB_2	A0A3A8BNH7	ulaB_2	Ascorbate-specific PTS system EIIB component (EC 2.7.1.194)	1.2.0	81.40	50.00
ytnP	Q8Y6R9	lmo1614	Lmo1614 protein	5.2.0	81.40	50.00
addB	Q8Y510	addB	ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddB)	3.3.0	81.40	50.00
addA	Q8Y511	addA	ATP-dependent helicase/nuclease subunit A (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddA)	3.3.0	81.40	50.00
group_225	UPI0001D010DE	inlj_14	Internalin-J	1.8.0	18.60	50.00
group_3965	A0A3A7GK80	mggb	Bifunctional metallophosphatase/5'-nucleotidase (Mannosylglucosyl-3- phosphoglycerate phosphatase) (EC 3.1.3)	5.2.0	18.60	50.00
group_3963	A0A3A7G3T8	AF251_11130	Uncharacterized protein	6.0.0	18.60	50.00
group_3339	A0A393CSM1	AF264_03070	DUF3130 family protein (TIGR04197 family type VII secretion effector)		18.60	50.00
proC_2	A0A3A8C3U2	proC_1	Pyrroline-5-carboxylate reductase (EC 1.5.1.2)	2.2.0	81.40	50.00
proC_2 sigW	A0A3A8C3U2 Q8Y9U7	proC_1 lmo0423	Pyrroline-5-carboxylate reductase (EC 1.5.1.2) Lmo0423 protein	2.2.0 3.5.1	81.40 81.40	50.00 50.00
		· —				
sigW	Q8Y9U7	lmo0423	Lmo0423 protein	3.5.1	81.40	50.00
sigW group_1244	Q8Y9U7 A0A393CR87	lmo0423 AF264_00605	Lmo0423 protein Ribonuclease P	3.5.1 5.1.0	81.40 18.60	50.00 50.00
sigW group_1244 group_4573	Q8Y9U7 A0A393CR87 Q8Y6D7	lmo0423 AF264_00605 lmo1750	Lmo0423 protein Ribonuclease P Lmo1750 protein	3.5.1 5.1.0 5.2.0	81.40 18.60 81.40	50.00 50.00 50.00
sigW group_1244 group_4573 group_4577	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2	Imo0423 AF264_00605 Imo1750 Imo1779	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein	3.5.1 5.1.0 5.2.0 6.0.0	81.40 18.60 81.40 81.40	50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4	lmo0423 AF264_00605 lmo1750 lmo1779 lmo1777	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein	3.5.1 5.1.0 5.2.0 6.0.0 5.2.0	81.40 18.60 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1777 Imo1623	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein	3.5.1 5.1.0 5.2.0 6.0.0 5.2.0 5.2.0	81.40 18.60 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289)	3.5.1 5.1.0 5.2.0 6.0.0 5.2.0 5.2.0 5.2.0 2.5.0	81.40 18.60 81.40 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1)	3.5.1 5.1.0 5.2.0 6.0.0 5.2.0 5.2.0 5.2.0 5.2.0 5.2.0	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194)	3.5.1 5.1.0 5.2.0 6.0.0 5.2.0 5.2.0 5.2.0 5.2.0 5.2.0 1.2.0	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760 Q8Y785	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1443 protein Lmo1410 protein	3.5.1 5.1.0 5.2.0 6.0.0 5.2.0 5.2.0 5.2.0 5.2.0 1.2.0 6.0.0 5.2.0 6.0.0	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500 group_4509	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760 Q8Y785 Q8Y6X6	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461 Imo1443	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1443 protein Lmo1443 protein Lmo1410 protein Lmo1555 protein	$\begin{array}{c} 3.5.1 \\ 5.1.0 \\ 5.2.0 \\ 6.0.0 \\ 5.2.0 \\ 5.2.0 \\ 5.2.0 \\ 5.2.0 \\ 1.2.0 \\ 6.0.0 \\ 5.2.0 \\ 6.0.0 \\ 2.5.0 \end{array}$	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760 Q8Y785 Q8Y666 A0A1D2IPZ2	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461 Imo1443 Imo1410	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1443 protein Lmo1410 protein Lmo1410 protein Lmo1555 protein DNA-protecting protein DprA	$\begin{array}{c} 3.5.1 \\ 5.1.0 \\ 5.2.0 \\ 6.0.0 \\ 5.2.0 \\ 5.2.0 \\ 2.5.0 \\ 5.2.0 \\ 1.2.0 \\ 6.0.0 \\ 5.2.0 \\ 6.0.0 \\ 2.5.0 \\ 3.8.0 \end{array}$	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500 group_4509 group_4489 group_3028	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760 Q8Y785 Q8Y6X6 A0A1D2IPZ2 A0A2Z5BXF4	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461 Imo1443 Imo1410 Imo1555 dprA RK57_03270	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1443 protein Lmo1443 protein Lmo1410 protein Lmo1555 protein DNA-protecting protein DprA Riboflavin transporter	$\begin{array}{c} 3.5.1 \\ 5.1.0 \\ 5.2.0 \\ 6.0.0 \\ 5.2.0 \\ 5.2.0 \\ 2.5.0 \\ 5.2.0 \\ 1.2.0 \\ 6.0.0 \\ 5.2.0 \\ 6.0.0 \\ 2.5.0 \\ 3.8.0 \\ 5.2.0 \end{array}$	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 18.60	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500 group_4509 group_4489 group_3028 group_2916	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760 Q8Y785 Q8Y606 Q8Y785 Q8Y6X6 A0A1D2IPZ2 A0A2Z5BXF4 A0A393D408	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461 Imo1443 Imo1410 Imo1555 dprA RK57_03270 trxa_4	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1443 protein Lmo1443 protein Lmo1555 protein DNA-protecting protein DprA Riboflavin transporter Thioredoxin (Thioredoxin 1)	$\begin{array}{c} 3.5.1 \\ 5.1.0 \\ 5.2.0 \\ 6.0.0 \\ 5.2.0 \\ 5.2.0 \\ 2.5.0 \\ 5.2.0 \\ 1.2.0 \\ 6.0.0 \\ 5.2.0 \\ 6.0.0 \\ 2.5.0 \\ 3.8.0 \\ 5.2.0 \\ 1.4.0 \end{array}$	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 18.60 18.60	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sigW group_1244 group_4573 group_4577 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500 group_4509 group_489 group_3028 group_2916 group_4371	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y750 Q8Y760 Q8Y785 Q8Y6X6 A0A1D2IPZ2 A0A2Z5BXF4 A0A393D408 Q8Y9I3	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461 Imo1443 Imo1410 Imo1555 dprA RK57_03270	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1461 protein Lmo1443 protein Lmo1410 protein Lmo1555 protein DNA-protecting protein DprA Riboflavin transporter Thioredoxin (Thioredoxin 1) Lmo0545 protein	$\begin{array}{c} 3.5.1 \\ 5.1.0 \\ 5.2.0 \\ 6.0.0 \\ 5.2.0 \\ 5.2.0 \\ 2.5.0 \\ 5.2.0 \\ 1.2.0 \\ 6.0.0 \\ 5.2.0 \\ 6.0.0 \\ 2.5.0 \\ 3.8.0 \\ 5.2.0 \\ 1.4.0 \\ 6.0.0 \end{array}$	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40	50.00 5
sigW group_1244 group_4573 group_4577 group_4575 ybjG cbiE yjaB ulaC_3 group_4504 group_4503 group_4500 group_4509 group_4489 group_3028 group_2916	Q8Y9U7 A0A393CR87 Q8Y6D7 Q8Y6B2 Q8Y6B4 Q8Y6R1 A0A3A8C045 A0A3A8BXM4 A0A3A8BN71 Q8Y751 Q8Y760 Q8Y785 Q8Y606 Q8Y785 Q8Y6X6 A0A1D2IPZ2 A0A2Z5BXF4 A0A393D408	Imo0423 AF264_00605 Imo1750 Imo1779 Imo1623 cbiE yjaB ulaC_3 Imo1461 Imo1443 Imo1410 Imo1555 dprA RK57_03270 trxa_4	Lmo0423 protein Ribonuclease P Lmo1750 protein Lmo1779 protein Lmo1777 protein Lmo1623 protein Cobalt-precorrin-7 C(5)-methyltransferase (EC 2.1.1.289) Putative N-acetyltransferase YjaB (EC 2.3.1) Ascorbate-specific PTS system EIIA component (EC 2.7.1.194) Lmo1461 protein Lmo1443 protein Lmo1443 protein Lmo1555 protein DNA-protecting protein DprA Riboflavin transporter Thioredoxin (Thioredoxin 1)	$\begin{array}{c} 3.5.1 \\ 5.1.0 \\ 5.2.0 \\ 6.0.0 \\ 5.2.0 \\ 5.2.0 \\ 2.5.0 \\ 5.2.0 \\ 1.2.0 \\ 6.0.0 \\ 5.2.0 \\ 6.0.0 \\ 2.5.0 \\ 3.8.0 \\ 5.2.0 \\ 1.4.0 \end{array}$	81.40 18.60 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 81.40 18.60 18.60	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

group 4375	Q8Y9B5	lmo0617	Lmo0617 protein	5.1.0	81.40	50.00
group 4472	Q8Y7Q8	lmo1214	Lmolo17 protein	6.0.0	81.40	50.00
group 1303	Q8Y7Z1	lmo1128	Lmo1128 protein	6.0.0	81.40	50.00
group_4090	A0A3A7N8T5	bioC	Class I SAM-dependent methyltransferase (Malonyl-[acyl-carrier protein] O-methyltransferase) (EC 2.1.1.197)	3.8.0	18.60	50.00
group_4093	C1L2K1	miaA	tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase)	3.6.0	18.60	50.00
group_4092	A0A0E1R7G6	ynbB	Uncharacterized protein ynbB	4.2.0	18.60	50.00
group_4095	C1L2I1	rnhB	Ribonuclease HII (RNase HII) (EC 3.1.26.4)	3.1.0	18.60	50.00
group_4094	A0A2Z5C362	dprA	DNA-protecting protein DprA		18.60	50.00
group_4096	A0A2Z5C3E4	RK57_14300	Uncharacterized protein	1.2.0	18.60	50.00
group_4623	Q8Y555	lmo2221	Lmo2221 protein	5.2.0	81.40	50.00
group_4152	A0A0E1R689	ysdA	Uncharacterized protein ysdA	5.2.0	18.60	50.00
group_4621	Q8Y592	lmo2177	Lmo2177 protein	5.2.0	81.40	50.00
group_4154	A0A1T1YQG4	DC57_11460	Transposase	4.4.0	18.60	50.00
group_4252	A0A2Z5C1U4	RK57_09025	Uncharacterized protein	6.0.0	18.60	50.00
thiO	A0A3A8BP94	thiO	Glycine oxidase (EC 1.4.3.19)	2.2.0	81.40	50.00
group_4392	A0A3A8CAQ5	rbsR_1	Ribose operon repressor	3.5.2	81.40	50.00
group_4396	A0A3A8C7X5	bglF_2	PTS system beta-glucoside-specific EIIBCA component	1.2.0	81.40	50.00
thiF	Q8Y868	lmo1049	Lmo1049 protein	2.5.0	81.40	50.00
group_3589	Q8Y784	lmo1411	Lmo1411 protein	5.2.0	81.40	50.00
group_2703	A0A393RS60	inlK	Class 1 internalin InIK (LPXTG cell wall anchor domain-containing protein)	1.8.0	18.60	50.00
group_3979	A0A3A7GK99	adda	ATP-dependent helicase/nuclease subunit A (EC 3.1) (EC 3.6.4.12) (ATP-dependent helicase/nuclease AddA)	3.3.0	18.60	50.00
group_3470	A0A392X3L4	AF241_00505	Superoxide dismutase	6.0.0	18.60	50.00
inlA_11	A0A394Y342	inla_4	Internalin (Internalin-A) (LPXTG cell wall anchor domain-containing protein)	1.8.0	18.60	50.00
group 3478	A0A0E1R3M5	inlA 2	Internalin-A	1.8.0	18.60	50.00
inlA 3	UPI000BDFD377	_	lmo1136 family class 1 internalin	1.8.0	81.40	50.00
ulaA_2	Q8Y5T4	lmo1971	Lmo1971 protein	1.2.0	81.40	50.00
inlA_1	Q8Y7I7	lmo1290	Lmo1290 protein	1.8.0	81.40	50.00
group_4024	UPI000035D3A8	isdE	Heme ABC transporter substrate-binding protein IsdE	1.2.0	18.60	50.00
group_4025	A0A2Z5BZU3	RK57_04520	ABC transporter ATP-binding protein	1.2.0	18.60	50.00
group_4026	A0A0D4CB02	AJL15_12175	Uncharacterized protein	5.2.0	18.60	50.00
group_4027	A0A2Z5BZF4	RK57_04485	TetR/AcrR family transcriptional regulator		18.60	50.00
group_4020	A0A3A7JKS7	yhaO	Exonuclease SbcCD subunit D (Putative metallophosphoesterase YhaO)	5.2.0	18.60	50.00
group_4021	A0A0B8QRP4	LmNIHS28 01575	Uncharacterized protein	5.2.0	18.60	50.00
group 4022	A0A0B8RAU1	LmNIHS28 02204	Membrane protein	6.0.0	18.60	50.00
group_4023	UPI0001EBA5A3	NT04LM_3257	Heme uptake protein IsdC	1.8.0	18.60	50.00
			A A		-	

group_3923	A0A2Z5BZQ8 Q8Y797	RK57_07860	PTS fructose transporter subunit IIA	1.2.0	18.60 81.40	50.00 50.00
albF group_5614	Q81/97 A0A3A6XF35	lmo1393 addb	Lmo1393 protein ATP-dependent helicase/deoxyribonuclease subunit B (EC 3.1) (EC	2.2.0 3.3.0	81.40 18.60	50.00
			3.6.4.12) (ATP-dependent helicase/nuclease AddB)			50.00
group_3927	A0A0B8RBU5	LmNIHS28_00179	RNA-binding protein	5.2.0	18.60	50.00
lutR_1	A0A3A8CF58	lutR_2	HTH-type transcriptional regulator LutR	3.5.2	81.40	50.00
group_3500	Q8Y451	lmo2604	Lmo2604 protein	5.2.0	81.40	50.00
macB_4	A0A3A8BUW4	yknY_2	Putative ABC transporter ATP-binding protein YknY (EC 3.6.3)		18.60	50.00
aguA_2	A0A0H3G891	aguA	Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase)	5.2.0	81.40	50.00
argB	A0A1D2IV64	argB	Acetylglutamate kinase (EC 2.7.2.8) (N-acetyl-L-glutamate 5- phosphotransferase) (NAG kinase) (NAGK)	2.2.0	81.40	50.00
group_4055	A0A2Z5BWW4	RK57_02265	Molybdate metabolism regulator	5.2.0	18.60	50.00
group_662	Q8Y7Z0	lmo1129	Lmo1129 protein	5.2.0	81.40	50.00
group_3571	Q8Y7X3	lmo1146	Lmo1146 protein	5.2.0	81.40	50.00
group_4440	Q8Y855	lmo1063	Lmo1063 protein	1.2.0	81.40	50.00
ypdB	Q8Y8C4	lmo0984	Lmo0984 protein	3.5.2	81.40	50.00
group_2953	UPI0001B4220F	ARJ20_02020	LPXTG cell wall anchor domain-containing protein		18.60	50.00
group_4085	A0A0E0UWI3	LMM7_1468	Uncharacterized protein	5.2.0	18.60	50.00
panC	Q8Y602	panC	Pantothenate synthetase (PS) (EC 6.3.2.1) (Pantoatebeta-alanine ligase) (Pantoate-activating enzyme)	2.5.0	81.40	50.00
group_4432	A0A0H3GJ44	LMRG_02074	Uncharacterized protein		81.40	50.00
group_4430	Q8Y8D8	lmo0966	Lmo0966 protein	5.2.0	81.40	50.00
group_2353	Q8VMX1		Putative Gp2		18.60	50.00
group_4438	Q8Y856	lmo1062	Lmo1062 protein	1.2.0	81.40	50.00
group_4667	Q8Y4F2	lmo2492	Lmo2492 protein	6.0.0	81.40	50.00
group_4190	A0A3A7GJ00	inla_3	Internalin-A (Leucine-rich repeat domain-containing protein)	1.9.0	18.60	50.00
group_4219	A0A2Z5C2B1	RK57_09890	GntR family transcriptional regulator		18.60	50.00
group_4218	A0A393CNN4	AF240_00940	Uncharacterized protein		18.60	50.00
group_4216	UPI000035CDC6	BN389_04240	Uncharacterized protein		18.60	50.00
group_4215	A0A0B8R4Y8	LmNIHS28_01937	ATPase	5.2.0	18.60	50.00
group_2775	A0A393S3L9	AF264_15050	Uncharacterized protein	6.0.0	18.60	50.00
group_4213	A0A3A2LR66	inla_6	Internalin (Internalin-A) (LPXTG cell wall anchor domain-containing protein)	1.8.0	18.60	50.00
group_4668	Q8Y4D7	comFC	ComFC protein	1.10.0	81.40	50.00
group_4669	Q8Y4D6	comFA	ComFA protein	1.10.0	81.40	50.00
pknB	A0A3A8C235	pknB	Serine/threonine-protein kinase PknB (EC 2.7.11.1)	3.8.0	81.40	50.00
henC	A0A3A7J837	hcnC	FAD-binding oxidoreductase (Hydrogen cyanide synthase subunit HcnC) (EC 1.4.99.5)	2.2.0	18.60	50.00
group 4168	A0A0B8R2G1	LmNIHS28 00854	Flagellar hook protein	6.0.0	18.60	50.00
group_897	Q8Y7R0	lmo1212	Lmo1212 protein	5.2.0	81.40	50.00
	-		•			

group_4167		A410_0767	Uncharacterized protein	1.8.0	18.60	50.00
adrA	A0A0E1REZ1	yhcK	Uncharacterized protein yhcK	5.2.0	18.60	50.00
group_4322	2 Q8Y3I4	lmo2852	Lmo2852 protein	5.2.0	81.40	50.00
group_4324	4 Q8YAT7	cutC	Copper homeostasis protein CutC	4.2.0	81.40	50.00
group_4068	3 A0A3A7T7A5	ytnP	MBL fold metallo-hydrolase (Putative quorum-quenching lactonase YtnP) (EC 3.1.1)) 5.2.0	18.60	50.00
cobU	A0A3A8BXJ5	cobU	Bifunctional adenosylcobalamin biosynthesis protein CobU (EC 2.7.1.156)	2.5.0	81.40	50.00
ytrA_4	A0A3A8BN52	ytrA_3	HTH-type transcriptional repressor YtrA	3.5.2	81.40	50.00
rnhB	Q8Y7K4	rnhB	Ribonuclease HII (RNase HII) (EC 3.1.26.4)	3.1.0	81.40	50.00
group_4060	A0A3A2X1R4	AF264_07635	Uncharacterized protein	6.0.0	18.60	50.00
group_4061	A0A393RQY0	ybbh_2	MurR/RpiR family transcriptional regulator (Putative HTH-type transcriptional regulator YbbH)		18.60	50.00
group_4063	3 A0A0B8R8T3	LmNIHS28 01308	Permease		18.60	50.00
group_4064		SAMD00023519_011 57	Cell surface protein		18.60	50.00
group 4065	5 A0A2Z5BWP2	RK57 01585	Uncharacterized protein	6.0.0	18.60	50.00
group_4066		X846 ⁻ 1709	Uncharacterized protein	5.2.0	18.60	50.00
group_4067		vodM	Putative lipid phosphate phosphatase yodM (EC 3.1.3)	5.2.0	18.60	50.00
group_4103		pduX	L-threonine kinase (EC 2.7.1.177) (Propanediol utilization protein)	5.2.0	18.60	50.00
group_4102		LmNIHS28 00732	DNA topology modulation protein	5.2.0	18.60	50.00
group_4101		LmNIHS28_00730	Uncharacterized protein	6.0.0	18.60	50.00
group_4100		DC57_09570	ABC transporter permease	5.2.0	18.60	50.00
group_4107		cobU	Bifunctional adenosylcobalamin biosynthesis protein CobU (EC 2.7.1.156)		18.60	50.00
group_4106	5 A0A2Z5C4I3	cobC	Alpha-ribazole phosphatase	2.5.0	18.60	50.00
group_4105	5 A0A0E1R5F1	eutJ	Ethanolamine utilization protein eutJ	2.1.1	18.60	50.00
cobC	A0A1D2IT42	cobC	Alpha-ribazole phosphatase	2.5.0	81.40	50.00
group_4108	3 A0A0B8R7E7	LmNIHS28 00778	Alpha-L-fucosidase	5.2.0	18.60	50.00
fruA 9	A0A3A8BML0	fruA 3	PTS system fructose-specific EIIABC component	1.2.0	18.60	50.00
nagA_1	A0A3A7N225	nagA 1	N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)	2.1.1	18.60	50.00
pduX	Q8Y7U9	lm01170	Lmo1170 protein	5.2.0	81.40	50.00
cpnA	A0A3A8BW91	cpnA	Cyclopentanol dehydrogenase (EC 1.1.1.163)	2.1.1	18.60	50.00
group_3606	5 Q8Y5F8	lmo2106	Lmo2106 protein	5.2.0	81.40	50.00
group_3541	-	lmo0748	Lmo0748 protein	6.0.0	81.40	50.00
group_3977	-	HR60 08380	Hydrolase	5.2.0	18.60	50.00
group_3978		RK57_04995	DUF523 domain-containing protein	5.2.0	18.60	50.00
group 2127		lmo2573	Zinc-type alcohol dehydrogenase-like protein	2.1.1	81.40	50.00
pleD	A0A3A8BW24	pleD	Response regulator PleD	5.2.0	81.40	50.00
•		*				

ugDQ8Y6U4argDAcetylemidine aminotransferse (CACAT) (FC 2.6.1.1)2.208.1405.000gbyQ8Y754gbSghtea-aRNA ligase beta submit (EC 6.1.1.14) (Glycyl-RNA appen 2000000000000000000000000000000000000	argC	Q8Y6U1	argC	N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) (EC 1.2.1.38) (N acetyl-glutamate semialdehyde dehydrogenase) (NAGSA dehydrogenase)	2.2.0	81.40	50.00
gyp Q81794 gyp synthetase beta submit) (GPRs) 1.1.2 81.40 30.00 group_1388 A0A1D32/TVI $nagA$ Nacetylglucoxamine-6-phoxphate deacetylase 2.1.1 81.40 50.00 group_388 A0A0B8QU91 $Lm/NIIS28_00102$ Uncharacterized protein 60.0 81.60 50.00 group_4590 Q8Y6H7 $Im0707$ UPF0435 protein Imo1707 5.2.0 81.40 50.00 group_4502 Q8Y481 $Im02707$ UPF0435 protein Imo1707 5.2.0 81.40 50.00 group_4703 A0A34XCIL2 bgH_2 Aryl-phospho-beta-D-glucocidase BgH (EC 3.2.1.86) 2.1.1 81.40 50.00 group_4104 Q8Y3P8 bvrC BvrC protein 5.2.0 81.40 50.00 group_4494 Q8Y7H5 Im01304 UPF0291 protein Imo1304 52.0 81.40 50.00 group_4494 Q8Y7H8 Im01380 Lmo1302 protein 52.0 81.40 50.00 group_4492 Q8Y7H8 Im01207 Lmo1301 protein 52.0 <t< td=""><td>argD</td><td>Q8Y6U4</td><td>argD</td><td>-</td><td>2.2.0</td><td>81.40</td><td>50.00</td></t<>	argD	Q8Y6U4	argD	-	2.2.0	81.40	50.00
group_1886 ADADBSQU91 Lm/HK328_00102 Uncharacterized protein 6.0.0 18.60 50.00 group_1569 Q8Y6H7 Imol707 UPF0435 protein Imol707 5.2.0 81.40 50.00 group_3624 Q8Y481 Imol2774 Lm2574 protein 6.0.0 81.40 50.00 group_4703 A0A394ZKB6 inf_1 (Peridoglycan-binding protein) 1.8.0 1.8.0 1.8.0 1.8.0 1.8.0 50.00 group_4103 A0A394ZKB6 inf_1 (Peridoglycan-binding protein) 1.8.0 1.8.0 50.00 group_4149 Q8Y3P8 bnrC BvrC protein Ino 1304 UPF0291 protein Ino 1304 5.2.0 81.40 50.00 group_4149 Q8Y7115 Imol 1300 Lmol 3307 protein 5.2.0 81.40 50.00 group_4149 Q8Y7118 Imol 207 Lmol 307 protein 5.2.0 81.40 50.00 group_4149 Q8Y7118 Imol 207 Lmol 307 protein 2.1.1 81.40 50.00 group_4149 Q8Y718 Imo	glyS	Q8Y754	glyS		3.7.2	81.40	50.00
group_4569 Q8Y6H7 Imol 707 UPF0435 protein Imol 707 5.2.0 81.40 50.00 group_4624 Q8Y481 Imo2574 Lmo2574 protein 6.0.0 81.40 50.00 group_4703 A0A3A8C1L2 bgHL_3 Aryl-phospho-beta-D-glucosidasc BgH (EC 3.2.1.86) 21.11 81.40 50.00 group_4101 Q8Y3P8 bvr C Bvr C protein 52.0 81.40 50.00 group_4131 Q8Y3P8 bvr C Bvr C protein 52.0 81.40 50.00 group_4494 Q8Y7115 Imo1304 UPF0231 protein Imo1304 52.0 81.40 50.00 group_4490 Q8Y711 Imo1301 Lmo1304 protein 52.0 81.40 50.00 group_4492 Q8Y718 Imo1301 Lmo1304 protein 52.0 81.40 50.00 group_4492 Q8Y718 Imo1301 Lmo1304 protein 52.0 81.40 50.00 group_4492 Q8Y718 Imo2109 Lmo2109 protein 52.0 81.40 50.00 gr	group_1908	A0A1D2IZW1	nagA	N-acetylglucosamine-6-phosphate deacetylase	2.1.1	81.40	50.00
	group_3886	A0A0B8QU91	LmNIHS28_00102	Uncharacterized protein	6.0.0	18.60	50.00
$bgH1_3$ A0A3A8C1L2 $bgH1_2$ Aryl-phospho-beta-D-glucosidase BgH1 (EC 3.2.1.86)2.1.181.4050.00group_4703A0A394ZKB6 $inlj_1$ Internalin-J (LPXTG cell wall anchor domain-containing protein)1.8.018.6050.00group_4718Q8Y378 bvC BvCRvC protein5.2.081.4050.00group_4494Q8Y7115 $lmo1304$ DUF1033 family protein5.2.081.4050.00group_4496Q8Y718 $lmo1304$ Lmo1380 protein6.0.081.4050.00group_4499Q8Y711 $lmo1297$ Lmo1297 protein5.2.081.4050.00group_4499Q8Y718 $lmo1301$ Lmo1301 protein5.2.081.4050.00group_4499Q8Y718 $lmo1301$ Lmo1301 protein5.2.081.4050.00group_449A0A1D21VP2fabG3-oxoacyi-ACP roductas (EC 1.1.1.100)24.081.4050.00group_449A0A1D21VP2fabG	group_4569	Q8Y6H7	lmo1707	UPF0435 protein lmo1707	5.2.0	81.40	50.00
bg/H_3A0A3A8CIL2bg/H_2Art/-phospho-beta-Deplocoidase Bg/H (FC 3.2.1.8)2.1.181.4050.00group_4703A0A394ZKB6inf/_1Internalin-J (LPXTG cell wall anchor domain-containing protein)1.801.8050.00group_4318Q8Y378bvrCBvrC protein52.081.4050.00group_4497UP1000BDF6015DUF1033 family protein52.081.4050.00group_4496Q8Y711Imol304Lmol30452.081.4050.00group_4490Q8Y711Imol297Lmol30452.081.4050.00group_4492Q8Y718Imol301Lmol301 protein52.081.4050.00group_4492Q8Y718Imol301Lmol301 protein2.1.181.4050.00group_4492Q8Y55Imol206Lmo2109 protein2.1.181.4050.00group_4292Q8Y55Imol207Lmo209 protein2.1.181.4050.00group_2492Q8Y55Imol207Lmo2109 protein2.1.181.4050.00group_4402A0A60UTV9IMM7_0731Uncharacterized protein5.2.088.4050.00group_446Q8Y713midMo525Imo6525 protein5.2.081.4050.00group_444A0A3A7FIF5gge_1Imo865Lmo6865 protein5.2.081.6050.00group_444A0A3A7FIF5gge_1Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)2.1.181.6050.00group_4144A0A3A7FIF	group_3624	Q8Y481	lmo2574	Lmo2574 protein	6.0.0	81.40	50.00
group_4703A03.9942AB6 inl_2I (Peptidoglycan-binding protein)1.8.018.0050.00group_4318Q8Y3P8 bvC BvC protein52.081.4050.00group_4490Q8Y7H5 $lmol 304$ UPF0291 protein lmol 30452.081.4050.00group_4490Q8Y7A8 $lmol 304$ UPF0291 protein lmol 30452.081.4050.00group_4491Q8Y7A8 $lmol 330$ Lmol 306 protein6.0.081.4050.00group_4491Q8Y711 $lmol 301$ Lmol 297 protein52.081.4050.00group_4499A0A1D2IVP2 <i>fabG</i> $3-xxaeyl-ACP$ reductase (EC 1.1.1.100)2.4.081.4050.00group_449Q8Y555 <i>lmol 200</i> Lmol 200 protein2.1.181.4050.00group_2269A0A393RX26 $AF264$.07710Uncharacterized protein52.018.6050.00group_4369Q8Y713 <i>miaA</i> tmob525Imol 525 protein52.081.4050.00group_4148A0A3A7F1F5 $pgca_1$ Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)2.1.181.4050.00group_4144A0A3A7GNS4 $AF264$.0757Uncharacterized protein3.6.081.4050.00group_4144A0A3A7GNS4 $AF264$.0757Uncharacterized protein2.1.181.6050.00group_4144A0A3A7GNS4 $AF264$.03680Putative 3-methyladenine DNA glycosylase (EC 3.2.2)3.2.018.6050.00group_4144A0A3A7GNS4 $AF264$.		A0A3A8C1L2	bglH_2	Aryl-phospho-beta-D-glucosidase BglH (EC 3.2.1.86)	2.1.1	81.40	50.00
	group_4703	A0A394ZKB6	inlj_1	· · · · · · · · · · · · · · · · · · ·	1.8.0	18.60	50.00
group 4444 Q8Y7H5 Imo 1304 UPF0291 protein Imo 1304 5.2.0 81.40 50.00 group 4496 Q8Y7A8 Imo 1380 Lmo 1380 protein 6.0.0 81.40 50.00 group 4496 Q8Y718 Imo 1380 Lmo 1380 protein 6.0.0 81.40 50.00 group 4492 Q8Y7H8 Imo 1207 Lmo 1301 protein 5.2.0 81.40 50.00 group 4499 Q8Y7H8 Imo 1207 Lmo 1301 protein 5.2.0 81.40 50.00 group 4499 Q8Y7H8 Imo 2109 Lmo 1301 protein 5.2.0 81.40 50.00 group 2496 Q8Y5P5 Imo 2109 Lmo 2109 protein 2.1.1 81.40 50.00 group 2402 A0A0E0UTV9 LMM7_0781 Uncharacterized protein 5.2.0 81.40 50.00 group 4369 Q8Y7H3 miaA diphosphate:tRNA dimethylallytransferase (EC 2.5.1.75) (Dimethylallyt 52.0 81.40 50.00 group 4148 A0A3A7F1F5 pgca 1 mco855 protein 52.0 81.40 <t< td=""><td>group_4318</td><td>Q8Y3P8</td><td>bvrC</td><td>BvrC protein</td><td>5.2.0</td><td>81.40</td><td>50.00</td></t<>	group_4318	Q8Y3P8	bvrC	BvrC protein	5.2.0	81.40	50.00
group_4496 Q8Y7A8 Imol 380 Lmol 380 protein 6.0.0 81.40 50.00 group_4491 Q8Y711 Imol 297 Lmol 297 protein 4.2.0 81.40 50.00 group_4492 Q8Y7118 Imol 301 Lmol 301 protein 52.0 81.40 50.00 group_4499 A0A ID2IVP2 fabG 3-xoxacyl-ACP reductase (EC 1.1.1.100) 2.4.0 81.40 50.00 xylF Q8Y5F5 Imol 976 Lmol 197 protein 2.1.1 81.40 50.00 group_4269 A0A 393RX26 AF264_07710 Uncharacterized protein 5.0 81.40 50.00 group_4369 Q8Y7L3 Imol 975 Lmo0235 Lmo0525 protein 6.0.0 81.40 50.00 group_4484 A0A 0E0UTV9 LMM7_0781 Uncharacterized protein 5.0.0 81.40 50.00 group_4484 A08A 37F1F5 pgca_1 Phospho-sugar mutase (Phospholgucomutase) (EC 5.4.2.2) 21.1 81.40 50.00 group_4144 A0A3A7F1F5 pgca_1 Phospho-sugar mutase (Phospholgucomu		Q8Y7H5	lmo1304	UPF0291 protein lmo1304	5.2.0	81.40	50.00
group_4496 Q8Y7A8 Imol 380 Lmol 380 protein 6.0.0 81.40 50.00 group_4491 Q8Y711 Imol 297 Lmol 297 protein 4.2.0 81.40 50.00 group_4492 Q8Y71B Imol 301 Lmol 301 protein 2.0 81.40 50.00 group_4499 A0A ID2IVP2 fabG 3-oxoacyl-ACP reductase (EC 1.1.1.100) 2.4.0 81.40 50.00 xyIF Q8Y5F5 Imol 2109 Lmo2109 protein 2.1.1 81.40 50.00 group_2269 A0A393RX26 AF264_07710 Uncharacterized protein 5.2.0 18.60 50.00 group_4309 Q8YR2 Imo0525 Lmo0525 protein 5.2.0 81.40 50.00 group_4144 A0A3A7FIF5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 21.1 81.40 50.00 group_4144 A0A3A7FIF5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 21.1 81.40 50.00 group_4144 A0A3A7GIF4 AB922_01757 Uncharacterized protein	group 4497	UPI000BDF6015		DUF1033 family protein	5.2.0	81.40	50.00
group_4491 Q8Y711 Imo1297 Lmo1297 protein 4.2.0 81.40 50.00 group_4492 Q8Y7H8 Imo1301 Lmo1301 protein 5.2.0 81.40 50.00 group_4499 A0A1D2IVP2 fabG 3-coxacyl-ACP reductase (EC 1.1.1.00) 2.4.0 81.40 50.00 ydfG Q8Y5S5 Imo2109 Lmo2109 protein 2.1.1 81.40 50.00 group_2029 A0A393RX26 AF264_07710 Uncharacterized protein 5.2.0 18.60 50.00 group_4369 Q8Y9K2 Imo0525 Lmo0525 protein 5.2.0 81.40 50.00 group_4148 A0A337F1F5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 2.1.1 81.40 50.00 group_4144 A0A337F1F5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 2.1.1 8.60 8.60 8.60 group_4144 A0A337F1F5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 2.1.1 18.60 50.00 group_4144 A0A337GNS4 AF264_		Q8Y7A8	lmo1380	Lmo1380 protein	6.0.0	81.40	50.00
group_4492 Q8Y7H8 Imo1301 Lmo1301 protein 5.2.0 81.40 50.00 group_4499 AOA1D21VP2 fabG 3-xxacqV-ACP reductase (EC 1.1.1.100) 2.4.0 81.40 50.00 xylF Q8Y5F5 Imo2109 Lmo1976 Emo1976 21.11 81.40 50.00 group_2269 AOA393RX26 AF264_07710 Uncharacterized protein 52.0 18.60 50.00 group_4369 Q8Y9K2 Imo525 Lmo1925 protein 52.0 81.40 50.00 group_4369 Q8Y713 miaA ftNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl 60.00 81.40 50.00 group_4148 AOA37F1F5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 21.1 81.60 50.00 group_4144 AOA37GNS4 AF264_03680 Putative 3-methyladenine DNA glycosylase (EC 3.2.2) 21.1 81.40 50.00 group_4148 AOA37F1F5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 21.11 18.60 50.00 group_4144 A		Q8Y7I1	lmo1297		4.2.0	81.40	50.00
group_4499 $A0A1D2IVP2$ $fabG$ $3-oxoacyl-ACP$ reductase (EC 1.1.1.100) $2.4.0$ 81.40 50.00 xylFQ8Y5F5 $lmo2109$ Lmo2109 protein $2.1.1$ 81.40 50.00 ydfGQ8Y5S9 $lmo1976$ Lmo2109 protein $2.1.1$ 81.40 50.00 group_2269A0A393RX26 $AF264_107710$ Uncharacterized protein $5.2.0$ 81.40 50.00 group_4369Q8Y9K2 $lmo0525$ Lmo0525 protein $5.2.0$ 81.40 50.00 group_414Q8Y713 $miaA$ $rRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyldiphosphate:tRNA dimethylallyltransferase)3.6.081.4050.00pgeA_1Q8Y8N1lmo0865Lmo0865 protein2.1.181.4050.00group_4148A0A3A7F1F5pgca_1Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)2.1.181.6050.00group_4144A0A3A7GNS4AF264_03680Putative 3-methyladenine DNA glycosylase (EC 3.2.2)3.2.018.6050.00group_4144A0A3A7GNS4AF264_03680Putative 3-methyladenine DNA glycosylase (EC 3.2.2)3.2.018.6050.00group_4225A0A1T1YH3DC57_13835Uncharacterized protein6.0.081.4050.00group_4225A0A241SLD8lmA0657Lmo0659 protein6.0.081.4050.00group_4225A0A241SLD8lmA0657Lmo0659 protein6.0.081.4050.00group_4223A0A241SLD$		Q8Y7H8	lmo1301		5.2.0	81.40	50.00
xylFQ8Y5F5 $lmo2109$ Lmo2109 protein2.1.181.4050.00ydfGQ8Y5S9 $lmo1976$ Lmo1976 protein2.1.181.4050.00group_2269A0A393RX26 $AF264_07710$ Uncharacterized protein5.2.018.6050.00group_4402A0A0E0UTV9LMM7_0781Uncharacterized protein5.2.081.4050.00group_4369Q8Y9K2 $lmo0525$ Lmo0525 protein5.2.081.4050.00miaAQ8Y713 $miaA$ $diphosphate:tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyldiphosphate:tRNA dimethylallyltransferase)3.6.081.4050.00group_4148A0A3A7FIF5pgca_1Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)2.1.181.6050.00group_4147A0A225C668RK57_12295TetRAcrR family transcriptional regulator6.0.018.6050.00group_4144A0A3A7GINS4AF264_0380Putative 3-methyladenine DNA glycosylase (EC 3.2.2)3.2.018.6050.00group_1286Q8Y945lmo0857Lmo0695 protein6.0.081.4050.00group_4225A0A1TIYI43DC57_13835Uncharacterized protein6.0.081.4050.00group_423Q8Y9E3lmo0857Putative secreted protein6.0.081.4050.00group_423A0A24ISLD8lrALow temperature requirement protein A4.1.018.6050.00group_4348A0A1TIYI43DC57_13835Uncharacterized protein6.0.0<$	group 4499	A0A1D2IVP2	fabG	3-oxoacyl-ACP reductase (EC 1.1.1.100)	2.4.0	81.40	50.00
ydfGQ8Y5S9Imo1976Lmo1976 protein2.1.181.4050.00group_2269A0A393RX26 $AF264_07710$ Uncharacterized protein5.2.018.6050.00group_4402A0A0E0UTV9 $LMM7_0781$ Uncharacterized protein60.081.4050.00group_4369Q8Y9K2Imo0525Lmo0525 protein5.2.081.4050.00miaAQ8Y713miaAtRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase)3.6.081.4050.00group_4148A0A3A7F1F5pgca_1Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)2.1.181.6050.00group_4146A0A339PX4AB922_01757Uncharacterized protein6.0.018.6050.00group_4144A0A3A7GNS4AF264_03680Putative 3-methyladenine DNA glycosylase (EC 3.2.2)3.2.018.6050.00group_1286Q8Y945Imo0695Uncharacterized protein6.0.081.4050.00group_4223A0A241SLD8IrrALow temperature requirement protein A4.1.018.6050.00group_4382Q8Y9E3Imo0587Putative secreted protein6.0.081.4050.00group_4384A0A1C7PWW5CDR86_1380Uncharacterized protein6.0.081.4050.00group_4384A0A1XTISLBIrrALow temperature requirement protein A4.1.018.6050.00group_4384A0A2XSCA84BN38_04160Uncharacterized protein6.0.081.40t			-	- · · · · · · · · · · · · · · · · · · ·	2.1.1	81.40	50.00
group-4402A0A0E0UTV9 $LMM7_0781$ Uncharacterized protein6.0.0 81.40 50.00 group-4369Q8Y9K2 $lmo0525$ Lmo0525 protein $5.2.0$ 81.40 50.00 miaAQ8Y7I3 $miaA$ $tRNA$ dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase) $3.6.0$ 81.40 50.00 pgcA_1Q8Y8N1 $lmo0865$ Lmo0865 protein $2.1.1$ 81.40 50.00 group-4148A0A3A7F1F5 $pgca_1$ Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) $2.1.1$ 81.60 50.00 group-4147A0A2Z5C668 $RK57_12295$ TetR/AcrR family transcriptional regulator $6.0.0$ 18.60 50.00 group-4144A0A3A7GNS4 $AF264_03680$ Putative 3-methyladenine DNA glycosylase (EC 3.2.2) $3.2.0$ 18.60 50.00 group-1286Q8Y945 $lmo0695$ Lmo0695 protein $6.0.0$ 81.40 50.00 group-1283Q8Y9E3 $lmo0537$ Putative secreted protein $6.0.0$ 81.40 50.00 group-4221A0A0E1R4Z6 $BN389_04160$ Uncharacterized protein $6.0.0$ 81.40 50.00 group-4382Q8Y981 $lmo0652$ Lmo0652 protein 81.40 50.00 group-4384A0A1C7PWW5 $CDR86_13880$ Endonuclease III domain-containing protein $5.2.0$ 81.40 50.00 group-4228A0A3241SLD8 $ltrA$ $Lmo0652$ protein $5.2.0$ 81.40 50.00 group-4384A0A1C7PWW5		Q8Y5S9	lmo1976		2.1.1	81.40	50.00
group_4402A0A0E0UTV9LMM7_0781Uncharacterized protein $6.0.0$ 81.40 50.00 group_4369Q8Y9K2lmo0525Lmo0525 protein $5.2.0$ 81.40 50.00 miaAQ8Y713miaA RNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase) $3.6.0$ 81.40 50.00 pgcA_1Q8Y8N1lmo0865Lmo0865 protein $2.1.1$ 81.40 50.00 group_4148A0A3A7F1F5pgca_1Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) $2.1.1$ 18.60 50.00 group_4146A0A33PPX4AB922_01757Uncharacterized protein $6.0.0$ 18.60 50.00 group_4144A0A3A7GNS4AF264_03680Putative 3-methyladenine DNA glycosylase (EC 3.2.2) $3.2.0$ 18.60 50.00 group_1286Q8Y945lmo0695Lmo0695 protein $6.0.0$ 81.40 50.00 group_4223A0A1T1Y143DC57_13835Uncharacterized protein $6.0.0$ 81.40 50.00 group_4224A0A241SLD8ltrALmo0587Putative secreted protein A $4.1.0$ 18.60 50.00 group_4384A0A1C7PWW5CDR86_13880Endonuclease III domain-containing protein $5.2.0$ 81.40 50.00 group_4384A0A1C7PWW5CDR86_13880Endonuclease III domain-containing protein $5.2.0$ 81.40 50.00 group_4228A0A394ZC38AB922_00937N-acetyltransferase 18.60 50.00	group 2269	A0A393RX26	AF264 07710	Uncharacterized protein	5.2.0	18.60	50.00
group_4369 Q8Y9K2 Im00525 Lm00525 protein 5.2.0 81.40 50.00 miaA Q8Y7I3 miaA tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl diphosphate:tRNA dimethylallyltransferase) 3.6.0 81.40 50.00 pgcA_1 Q8Y8N1 Im00865 Lm00865 protein 2.1.1 81.40 50.00 group_4148 A0A3A7FIF5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 2.1.1 18.60 50.00 group_4144 A0A33A7FIF5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 2.1.1 18.60 50.00 group_4144 A0A33A7GNS4 AF264_03680 Putative 3-methyladenine DNA glycosylase (EC 3.2.2) 3.2.0 18.60 50.00 group_4126 Q8Y945 Im00695 Lm00695 protein 6.0.0 81.40 50.00 group_4223 A0A1T1Y143 DC57_13835 Uncharacterized protein 18.60 50.00 group_4223 A0A241SLD8 ItrA Low temperature requirement protein A 4.10 18.60 50.00 group_4384		A0A0E0UTV9		*	6.0.0	81.40	50.00
miaA Q8Y713 miaA tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl) 3.6.0 81.40 50.00 pgcA_1 Q8Y8N1 lmo0865 Lmo0865 protein 2.1.1 81.40 50.00 group_4148 A0A3A7F1F5 pgca_1 Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2) 2.1.1 18.60 50.00 group_4147 A0A2Z5C668 RK57_12295 TetR/AcrR family transcriptional regulator 6.0.0 18.60 50.00 group_4146 A0A339PX4 AB922_01757 Uncharacterized protein 6.0.0 18.60 50.00 group_4144 A0A3A7GNS4 AF264_03680 Putative 3-methyladenine DNA glycosylase (EC 3.2.2) 3.2.0 18.60 50.00 group_1286 Q8Y945 Imo0695 Lmo0695 protein 6.0.0 81.40 50.00 group_1283 Q8Y9E3 Imo0587 Uncharacterized protein 18.60 50.00 group_4223 A0A21ISLD8 Imo0587 Uncharacterized protein A 18.60 50.00 group_4221 A0A0E1R4Z6 BN38_04160 Uncharacteriz		Q8Y9K2	—	•	5.2.0	81.40	50.00
group_4148A0A3A7F1F5pgca_1Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)2.1.118.6050.00group_4147A0A2Z5C668RK57_12295TetR/AcrR family transcriptional regulator6.0.018.6050.00group_4146A0A393PPX4AB922_01757Uncharacterized protein6.0.018.6050.00group_4144A0A3A7GNS4AF264_03680Putative 3-methyladenine DNA glycosylase (EC 3.2.2)3.2.018.6050.00group_1286Q8Y945Imo0695Lmo0695 protein6.0.081.4050.00group_1283Q8Y9E3Imo0587Putative secreted protein6.0.081.4050.00group_4221A0A0E1R4Z6BN389_04160Uncharacterized protein18.6050.00group_4382Q8Y981Imo0652Lmo0652 protein5.2.081.4050.00group_4228A0A304ZC38AB922_00937N-acetyltransferase5.2.081.4050.00		-	miaA	tRNA dimethylallyltransferase (EC 2.5.1.75) (Dimethylallyl	3.6.0		
group_4147 A0A2Z5C668 RK57_12295 TetR/AcrR family transcriptional regulator 6.0.0 18.60 50.00 group_4146 A0A393PPX4 AB922_01757 Uncharacterized protein 6.0.0 18.60 50.00 group_4144 A0A3A7GNS4 AF264_03680 Putative 3-methyladenine DNA glycosylase (EC 3.2.2) 3.2.0 18.60 50.00 group_1286 Q8Y945 Im00695 Lmo0695 protein 6.0.0 81.40 50.00 group_4225 A0A1T1YI43 DC57_13835 Uncharacterized protein 18.60 50.00 group_4223 A0A241SLD8 Im00587 Putative secreted protein 4.1.0 18.60 50.00 group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 Im00652 Lm00652 protein 18.60 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00	pgcA_1	Q8Y8N1	lmo0865	Lmo0865 protein	2.1.1	81.40	50.00
group_4146 A0A393PPX4 AB922_01757 Uncharacterized protein 6.0.0 18.60 50.00 group_4144 A0A3A7GNS4 AF264_03680 Putative 3-methyladenine DNA glycosylase (EC 3.2.2) 3.2.0 18.60 50.00 group_1286 Q8Y945 Imo0695 Lmo0695 protein 6.0.0 81.40 50.00 group_4225 A0A1T1YI43 DC57_13835 Uncharacterized protein 18.60 50.00 group_4223 Q8Y9E3 Imo0587 Putative secreted protein 6.0.0 81.40 50.00 group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 Imo0652 Lmo0652 protein 18.60 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00	group_4148	A0A3A7F1F5	pgca_l	Phospho-sugar mutase (Phosphoglucomutase) (EC 5.4.2.2)	2.1.1	18.60	50.00
group_4144 A0A3A7GNS4 AF264_03680 Putative 3-methyladenine DNA glycosylase (EC 3.2.2) 3.2.0 18.60 50.00 group_1286 Q8Y945 lmo0695 Lmo0695 protein 6.0.0 81.40 50.00 group_4225 A0A1T1YI43 DC57_13835 Uncharacterized protein 18.60 50.00 group_1283 Q8Y9E3 lmo0587 Putative secreted protein 6.0.0 81.40 50.00 group_4221 A0A0241SLD8 ltrA Low temperature requirement protein A 4.1.0 18.60 50.00 group_4382 Q8Y981 lmo0652 Lmo0652 protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 52.0 81.40 50.00	group_4147	A0A2Z5C668	<i>RK57_12295</i>	TetR/AcrR family transcriptional regulator	6.0.0	18.60	50.00
group_1286 Q8Y945 Imo0695 Lmo0695 protein 6.0.0 81.40 50.00 group_4225 A0A1T1YI43 DC57_13835 Uncharacterized protein 18.60 50.00 group_1283 Q8Y9E3 Imo0587 Putative secreted protein 6.0.0 81.40 50.00 group_4223 A0A241SLD8 ItrA Low temperature requirement protein A 4.1.0 18.60 50.00 group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 Imo0652 Lmo0652 protein 5.2.0 81.40 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00	group_4146	A0A393PPX4	AB922_01757	Uncharacterized protein	6.0.0	18.60	50.00
group_4225 A0A1T1YI43 DC57_13835 Uncharacterized protein 18.60 50.00 group_1283 Q8Y9E3 lm00587 Putative secreted protein 6.0.0 81.40 50.00 group_4223 A0A241SLD8 ltrA Low temperature requirement protein A 4.1.0 18.60 50.00 group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 lm0652 Lm00652 protein 5.2.0 81.40 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00	group_4144	A0A3A7GNS4	AF264_03680	Putative 3-methyladenine DNA glycosylase (EC 3.2.2)	3.2.0	18.60	50.00
group_1283 Q8Y9E3 Imo0587 Putative secreted protein 6.0.0 81.40 50.00 group_4223 A0A241SLD8 ItrA Low temperature requirement protein A 4.1.0 18.60 50.00 group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 Imo0652 Lmo0652 protein 5.2.0 81.40 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00	group_1286	Q8Y945	lmo0695	Lmo0695 protein	6.0.0	81.40	50.00
group_1283 Q8Y9E3 lm00587 Putative secreted protein 6.0.0 81.40 50.00 group_4223 A0A241SLD8 ltrA Low temperature requirement protein A 4.1.0 18.60 50.00 group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 lm00552 Lm00652 protein 5.2.0 81.40 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00	group_4225	A0A1T1YI43	DC57_13835	Uncharacterized protein		18.60	50.00
group_4221 A0A0E1R4Z6 BN389_04160 Uncharacterized protein 18.60 50.00 group_4382 Q8Y981 lmo0652 Lmo0652 protein 5.2.0 81.40 50.00 group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00		Q8Y9E3	lmo0587	Putative secreted protein	6.0.0	81.40	50.00
group_4382 Q8Y981 <i>lmo0652</i> Lmo0652 protein 5.2.0 81.40 50.00 group_4384 A0A1C7PWW5 <i>CDR86_13880</i> Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 <i>AB922_00937</i> N-acetyltransferase 18.60 50.00	group_4223	A0A241SLD8	ltrA	Low temperature requirement protein A	4.1.0	18.60	50.00
group_4384 A0A1C7PWW5 CDR86_13880 Endonuclease III domain-containing protein 5.2.0 81.40 50.00 group_4228 A0A394ZC38 AB922_00937 N-acetyltransferase 18.60 50.00		A0A0E1R4Z6	BN389_04160	Uncharacterized protein		18.60	50.00
group_4228 A0A394ZC38 <i>AB922_00937</i> N-acetyltransferase 18.60 50.00	group_4382	Q8Y981	lmo0652	Lmo0652 protein	5.2.0	81.40	50.00
group_4228 A0A394ZC38 <i>AB922_00937</i> N-acetyltransferase 18.60 50.00	group_4384	A0A1C7PWW5	CDR86_13880	Endonuclease III domain-containing protein	5.2.0	81.40	50.00
	group_4228	A0A394ZC38	AB922_00937	N-acetyltransferase		18.60	50.00
		Q8Y5T1	lmo1974	Lmo1974 protein	3.5.2	81.40	50.00

group 3083	A0A3A8BST8	gloC	Hydroxyacylglutathione hydrolase GloC (EC 3.1.2.6)	5.2.0	18.60	50.00
group_3461	A0A0E1R2S8	BN389 04180	Uncharacterized protein	0.210	18.60	50.00
group_3469	A0A394Y9C8	inlJ_15	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)	1.8.0	18.60	50.00
group 4032	UPI0009A4F8FD		alpha/beta hydrolase	2.1.1	18.60	50.00
group_4031	A0A3A8BNZ3	vvbK	Putative N-acetyltransferase YvbK (EC 2.3.1)	5.2.0	18.60	50.00
group_4037	A0A3A7D8F9	AF264 09645	CPBP family intramembrane metalloprotease	5.2.0	18.60	50.00
group_4036	A0A3A7GG31	sdrd	Cell surface protein (LPXTG cell wall anchor domain-containing protein) (Serine-aspartate repeat-containing protein D)	1.8.0	18.60	50.00
group_4035	A0A2Z5C1Q5	RK57_04100	FeoB-associated Cys-rich membrane protein		18.60	50.00
group_4034	A0A2Z5BZ37	RK57_04110	DeoR/GlpR transcriptional regulator	3.5.2	18.60	50.00
group_3936	A0A392WP35	AF251_13240	Bacteriocin-associated integral membrane family protein (DUF1430 domain-containing protein)	1.2.0	18.60	50.00
group_4038	A0A0B8R0U3	LmNIHS28_01736	TetR family transcriptional regulator		18.60	50.00
group_4136	A0A3A8C5J2	ypdB	Transcriptional regulatory protein YpdB	3.5.2	18.60	50.00
group_3932	A0A2Z5C1E0	RK57_07485	Uncharacterized protein		18.60	50.00
group_4134	A0A3A7GGN8	thif	Molybdopterin biosynthesis protein MoeB (Sulfur carrier protein ThiS adenylyltransferase) (EC 2.7.7.73)	2.5.0	18.60	50.00
yhaO	Q8Y554	lmo2222	Lmo2222 protein	5.2.0	81.40	50.00
group_3966	A0A2Z5BYS6	RK57_05330	Crp/Fnr family transcriptional regulator		18.60	50.00
group_1862	Q8Y9U9	lmo0421	Lmo0421 protein	1.7.0	81.40	50.00
group_1861	Q8YA24	lmo0341	Lmo0341 protein	5.2.0	81.40	50.00
group_3510	Q8YAM4	lmo0094	Lmo0094 protein	6.0.0	81.40	50.00
group_3513	P33383	lmo0206	Uncharacterized protein Lmo0206	6.0.0	81.40	50.00
fmnP	A0A3A8BXM0	fmnP	Riboflavin transporter	5.2.0	81.40	50.00
group_4091	B8DG24	yneA	Cell division suppressor protein YneA	5.2.0	18.60	50.00
dnaK_1	Q8Y7V8	lmo1161	Lmo1161 protein	2.1.1	81.40	50.00
group_3948	A0A1T1YKC2	DC57_02040	Uncharacterized protein	5.2.0	18.60	50.00
group_3949	A0A393RP85	AF239_12775	Acetamidase	5.2.0	18.60	50.00
group_3940	A0A3A7GBK9	trpg	Aminodeoxychorismate/anthranilate synthase component II (Anthranilate synthase component 2) (EC 4.1.3.27)	2.2.0	18.60	50.00
group_3947	A0A0B8R180	LmNIHS28_00331	Uncharacterized protein	6.0.0	18.60	50.00
group_1307	Q8Y7E2	lmo1341	Lmo1341 protein	1.10.0	81.40	50.00
group_5648	A0A0B8RAI5	LmNIHS28_01933	Cell surface protein		18.60	50.00
group_3587	A0A1D2IQ28	rsgA	Small ribosomal subunit biogenesis GTPase RsgA (EC 3.6.1)	5.2.0	81.40	50.00
group_1301	Q8Y7Z4	lmo1125	Lmo1125 protein	5.2.0	81.40	50.00
group_3588	Q8Y7E0	lmo1343	Lmo1343 protein	1.10.0	81.40	50.00
group_4599	A0A3A8BP41	php_2	Phosphotriesterase homology protein	2.4.0	81.40	50.00
group_4356	UPI00074D66E8	LM7424_90077	Uncharacterized protein	6.0.0	81.40	50.00
inlJ_11	A0A393CQT2	inlj_6	Cell surface protein (Internalin-J)	1.8.0	18.60	50.00
lntA	Q8Y9T5	<i>lntA</i>	Listeria nuclear targeted protein A	6.0.0	81.40	50.00

bag	A0A394ZRE6	AF264_02310	DUF975 domain-containing protein (DUF975 family protein)	5.2.0	18.60	50.00
crnA_2	A0A3A8BU09	crnA_2	Creatinine amidohydrolase (EC 3.5.2.10)	2.2.0	81.40	50.00
group_1942	UPI000CE9721B	LMJF5203_01179	Cell wall surface anchor protein	1.8.0	18.60	50.00
group_3887	A0A2Z5C1D2	RK57_08200	Crp/Fnr family transcriptional regulator	5.1.0	18.60	50.00
hisE	Q8Y9G7	hisE	Phosphoribosyl-ATP pyrophosphatase (PRA-PH) (EC 3.6.1.31)	2.2.0	81.40	50.00
group_3883	A0A393UMT7	AB922_03025	Uncharacterized protein	6.0.0	18.60	50.00
group_4670	UPI00098E7F8A		hypothetical protein		81.40	50.00
group_3881	A0A3A8BR90	folK	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (EC 2.7.6.3)	2.5.0	18.60	50.00
hisK	Q8Y9F8	hisJ	HisJ protein	2.2.0	81.40	50.00
group_4227	A0A2Z5C2F1	RK57_09645	LPXTG cell wall anchor domain-containing protein		18.60	50.00
group_1305	Q8Y7Y4	lmo1135	Lmo1135 protein	6.0.0	81.40	50.00
group_4079	UPI00003CABCA	BN389 14870	Uncharacterized protein	6.0.0	18.60	50.00
comEA	A0A3A8BUN0	comEA	ComE operon protein 1	1.10.0	81.40	50.00
group 4159	A0A3A7G936	AF264 03075	Ribonuclease P		18.60	50.00
group_4048	A0A393S206	AB922_00453	Thioredoxin	1.4.0	18.60	50.00
rpe_3	A0A1D2INB4	rpe	Ribulose-phosphate 3-epimerase	2.1.1	81.40	50.00
group_4355	Q8Y9X1	lmo0397	Lmo0397 protein	5.2.0	81.40	50.00
group_4578	A0A3A8BJ82	azoR 2	FMN-dependent NADH-azoreductase (EC 1.7)	1.4.0	81.40	50.00
group_842	Q8Y8S6	lmo0818	Lmo0818 protein	1.2.0	81.40	50.00
group_4078	A0A3A2NXS6	comea	ComE operon protein 1 (ComEA family DNA-binding protein) (Competence protein ComEA)	1.10.0	18.60	50.00
group_4077	A0A3A8BV07	tylM1	dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N- dimethyltransferase (EC 2.1.1.235)	5.2.0	18.60	50.00
group_4076	A0A3A8BU71	iscS_2	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	18.60	50.00
group_4074	A0A3A8BU44	rne	Ribonuclease E (EC 3.1.26.12)	2.3.0	18.60	50.00
group_4073	A0A241SQE4	folC	Folylpolyglutamate synthase	2.5.0	18.60	50.00
group_4072	A0A3A8BUT3	CFSAN002345_0001 49	Uncharacterized protein	2.5.0	18.60	50.00
group_4071	Q71Z79	argD	Acetylornithine aminotransferase (ACOAT) (EC 2.6.1.11)	2.2.0	18.60	50.00
group_4070	Q71Z78	argB	Acetylglutamate kinase (EC 2.7.2.8) (N-acetyl-L-glutamate 5- phosphotransferase) (NAG kinase) (NAGK)	2.2.0	18.60	50.00
group_703	A0A3A8C0B4	atpG_1	ATP synthase gamma chain, sodium ion specific	1.4.0	81.40	50.00
group_4174	A0A392Y8U3	AF264_02300	GntR family transcriptional regulator	3.5.2	18.60	50.00
group_706	Q8YAN0	lmo0087	Lmo0087 protein	5.1.0	81.40	50.00
group_4170	A0A2Z5C307	RK57 11240	Crp/Fnr family transcriptional regulator		18.60	50.00
group_4171	A0A393D3V6	 AF264_02350	Cell surface protein (LPXTG cell wall anchor domain-containing protein)		18.60	50.00
fgs	Q8Y6Y0	folC	FolC protein	2.5.0	81.40	50.00
group_4179	A0A3A7PLI4	pknB	Serine/threonine protein kinase (Serine/threonine-protein kinase PknB) (EC 2.7.11.1)	3.8.0	18.60	50.00

group_1137	Q8Y7E3	lmo1340	Lmo1340 protein	5.2.0 3.5.2	81.40	50.00
glcR	Q8Y5F7	lmo2107 hisE	Lmo2107 protein	3.3.2 2.2.0	81.40 18.60	50.00 50.00
group_4189	C1L0J0	hisE	Phosphoribosyl-ATP pyrophosphatase (PRA-PH) (EC 3.6.1.31) Imidazole glycerol phosphate synthase subunit HisH (EC 4.3.2.10) (IGP			
group_4188	C1L0J4	hisH	synthase glutaminase subunit) (EC 3.5.1.2)	2.2.0	18.60	50.00
group_4400	Q8Y8Z3	lmo0749	Lmo0749 protein	na	81.40	50.00
group_4183	A0A3A8CAW5	glpE_2	Thiosulfate sulfurtransferase GlpE (EC 2.8.1.1)	4.1.0	18.60	50.00
group_4172	UPI000BE051DD		transposase		18.60	50.00
group_4181	A0A3A7TYK7	speG_1	N-acetyltransferase (Spermidine N(1)-acetyltransferase) (EC 2.3.1.57)	5.2.0	18.60	50.00
group_4180	A0A0B8RG88	LmNIHS28_00920	Uncharacterized protein	5.1.0	18.60	50.00
yxlG	Q8Y550	lmo2226	Lmo2226 protein	5.2.0	81.40	50.00
group_4185	A0A393RUI1	AF264_01965	Uncharacterized protein	6.0.0	18.60	50.00
rpiB_3	G9G5K4	rpiB	Ribose-5-phosphate isomerase B	2.1.1	81.40	50.00
group_3412	A0A393RT87	AF264_02105	Uncharacterized protein	6.0.0	18.60	50.00
polC_2	Q8Y7E7	lmo1336	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)	2.5.0	81.40	50.00
mngB_1	A0A255C9M1	CDR86_08635	Alpha-mannosidase	2.1.1	81.40	50.00
group_4149	A0A393JKC4	AF239_03205	Uncharacterized protein	6.0.0	18.60	50.00
group_1736	Q8Y8Q6	lmo0840	Lmo0840 protein	5.2.0	81.40	50.00
group_3319	A0A3A2NVJ1	AB922_01742	Uncharacterized protein		18.60	50.00
hrtA_3	UPI00067846F2		ATP-binding cassette domain-containing protein		18.60	50.00
ecfA2	A0A0H3GF97	ecfA	Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3)	1.2.0	81.40	50.00
group_4388	Q8Y917	lmo0725	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	81.40	50.00
group_2380	A0A0E1R602	yjaB	Uncharacterized N-acetyltransferase YjaB (EC 2.3.1)	5.2.0	18.60	50.00
group_5075	A0A3A8B0G1	levS	Cell invasion LPXTG protein Vip (Levansucrase) (EC 2.4.1.10)	1.8.0	18.60	50.00
group_2577	Q8Y905	lmo0737	Lmo0737 protein	5.2.0	81.40	50.00
group_4301	Q8Y452	lmo2603	Lmo2603 protein	5.2.0	81.40	50.00
group_2208	A0A0B8RAD6	LmNIHS28_01888	Serine/threonine protein phosphatase	5.2.0	18.60	50.00
group_4191	A0A394Y4B3	AF264_01750	Transcriptional regulator	6.0.0	18.60	50.00
group_3396	A0A392Y5A5	inlj_7	Cell surface protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)		18.60	50.00
group_4192	A0A394ZNT3	mta	HTH-type transcriptional activator mta (MerR family transcriptional regulator)	3.5.2	18.60	50.00
group_4039	A0A3A8BN86	ubiG	Ubiquinone biosynthesis O-methyltransferase (EC 2.1.1.222)		18.60	50.00
group_4419	Q8Y8M8	lmo0868	Lmo0868 protein	6.0.0	81.40	50.00
group_949	A0A0E1R447	manZ_2	Mannose permease IID component	1.2.0	81.40	50.00
group_4415	Q8Y8Q3	lmo0843	Lmo0843 protein	5.2.0	81.40	50.00
group_4417	Q8Y8P6	lmo0850	Lmo0850 protein	6.0.0	81.40	50.00
group_4229	A0A2Z5C0J8	RK57_09605	Triosephosphate isomerase (EC 5.3.1.1)	2.1.2	18.60	50.00
group_4411	Q8Y8R3	lmo0832	Lmo0832 protein	4.4.0	81.40	50.00

group_4214	A0A2Z5C2C0	RK57_09950	Uncharacterized protein	6.0.0	18.60	50.00
mglA	A0A3A8C417	mglA	Galactose/methyl galactoside import ATP-binding protein MgIA (EC 3.6.3.17)	1.2.0	81.40	50.00
inlJ 6	Q8Y8R0	lmo0835	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	81.40	50.00
	A0A3A8BWT2	inlB 1	Internalin B	1.8.0	18.60	50.00
kdgA	A0A2A6A934	CDR86 00865	Aldolase	2.1.1	81.40	50.00
group_4187	A0A1S7FNB3	DC57 12750	Histidinol-phosphatase	2.2.0	18.60	50.00
group_3171	A0A0E1RCR1	yozG ⁻	Uncharacterized HTH-type transcriptional regulator YozG	5.2.0	18.60	50.00
yflN	Q8Y6A5	lmo1790	Lmo1790 protein	5.2.0	81.40	50.00
yneA	Q8Y7H6	yneA	Cell division suppressor protein YneA	5.2.0	81.40	50.00
cca	Q8Y5Z8	сса	CCA tRNA nucleotidyltransferase (EC 2.7.7.72)	3.6.0	81.40	50.00
group_3921	A0A1S7FGU9	DC57_00570	LD-carboxypeptidase	4.5.0	18.60	50.00
nth_2	A0A3A7HTM1	nth_1	Endonuclease III (EC 4.2.99.18) (Endonuclease III domain-containing protein)	5.2.0	18.60	50.00
group_4047	C1KWK5	сса	CCA tRNA nucleotidyltransferase (EC 2.7.7.72)	3.6.0	18.60	50.00
group_4044	A0A393CLM7	AF264 09030	DUF5011 domain-containing protein		18.60	50.00
group_4045	A0A0E0UXG9	aroH	Chorismate mutase AroH (EC 5.4.99.5)	2.2.0	18.60	50.00
group_4042	A0A2Z5BZ76	RK57_03415	Uncharacterized protein	5.2.0	18.60	50.00
group_4043	A0A3A8BVH1	act	Methanol dehydrogenase activator (EC 3)	5.2.0	18.60	50.00
gdh	A0A3A8BLH6	gdh 2	Glucose 1-dehydrogenase (EC 1.1.1.47)	2.1.1	81.40	50.00
group_3922	A0A1S7FH11	cutC	Copper homeostasis protein CutC	4.2.0	18.60	50.00
cssS	Q8Y857	lmo1061	Histidine kinase (EC 2.7.13.3)	1.3.0	81.40	50.00
group 2610	Q8Y6G4	lmo1723	Lmo1723 protein	6.0.0	81.40	50.00
group_3210	A0A393VWD9	AB922_02198	NUDIX domain-containing protein		18.60	50.00
group_3219	A0A3A2WX84	- cbie	Cobalt-precorrin-7 (C(5))-methyltransferase (Cobalt-precorrin-7 C(5)- methyltransferase) (EC 2.1.1.289)	2.5.0	18.60	50.00
group_3981	UPI0000F53EDE	ARJ20_15280	GNAT family N-acetyltransferase	5.2.0	18.60	50.00
group_1492	A0A393D637	AF264 11325	Uncharacterized protein	6.0.0	18.60	50.00
thiN	A0A3A8BXM3	thiN	Thiamine pyrophosphokinase (EC 2.7.6.2)	2.5.0	81.40	50.00
nudF	Q8Y5U0	lmo1965	Lmo1965 protein	5.2.0	81.40	50.00
rne	Q8Y6Y8	lmo1543	Lmo1543 protein	2.3.0	81.40	50.00
group_4157	UPI000939B687		hypothetical protein		18.60	50.00
group_3959	A0A394ZKW3	gbpa	Chitin-binding protein (GlcNAc-binding protein A)	2.1.1	18.60	50.00
group_3958	A0A2Z5BYZ7	RK57_05850	Uncharacterized protein	6.0.0	18.60	50.00
group_2568	Q8Y9X8	ltrA	Low temperature requirement protein A	4.1.0	81.40	50.00
group_4487	Q8Y7L2	lmo1265	Lmo1265 protein	1.2.0	81.40	50.00
group_3951	A0A1T1YDG1	DC57_02225	Uncharacterized protein	6.0.0	18.60	50.00
group_3952	A0A3A2JZK0	AF239_12415	Zinc-type alcohol dehydrogenase-like protein	2.1.1	18.60	50.00
group_3957	A0A3A6WIB6	AF239_12100	Amidophosphoribosyltransferase (ComF family protein)	1.10.0	18.60	50.00
group_3593	Q8Y6N1	lmo1653	Putative cellsurface protein	6.0.0	81.40	50.00
group_4466	A0A3A7HYF6	DYZ90_00006	Uncharacterized protein	6.0.0	81.40	50.00
—						

group_4584 phnA	Q8Y600 Q8Y778	lmo1903 lmo1418	Lmo1903 protein Lmo1418 protein	1.4.0 2.6.0	81.40 81.40	50.00 50.00
group_3956	A0A3A8BKJ7	comFA	ComF operon protein 1 (EC 3.6.4.12)	1.10.0	18.60	50.00
murQ	C1KVV7	murQ	N-acetylmuramic acid 6-phosphate etherase (MurNAc-6-P etherase) (EC 4.2.1.126)		18.60	50.00
group_3328	A0A394Y0E1	AF264_03215	Cell surface protein (LPXTG cell wall anchor domain-containing protein)	1.8.0	18.60	50.00
group_4516	Q8Y6P9	lmo1635	Lmo1635 protein	5.2.0	81.40	50.00
group_4517	Q8Y6P4	lmo1640	Lmo1640 protein	6.0.0	81.40	50.00
group_4386	A0A3A7EMK5	AE233_02029	Uncharacterized protein	1.8.0	81.40	50.00
rsgA_2	A0A0B8R6Z0	rsgA	Small ribosomal subunit biogenesis GTPase RsgA (EC 3.6.1)	5.2.0	18.60	50.00
azoR1_1	A0A3A8BPK0	azoR1	FMN-dependent NADH-azoreductase 1 (EC 1.7)	1.4.0	18.60	50.00
group_3135	A0A0E1R796	yteJ	Uncharacterized membrane protein yteJ	5.2.0	18.60	50.00
group_3306	A0A0B8QYA4	LmNIHS28_00502	Uncharacterized protein		18.60	50.00
group_4138	A0A1S7FMA8	DC57 10750	Uncharacterized protein	5.2.0	18.60	50.00
group_4347	Q8YA09	lmo0357	Lmo0357 protein	1.2.0	81.40	50.00
group_4346	Q8YA13	lmo0353	Lmo0353 protein	5.2.0	81.40	50.00
inlA_8	UPI00073B62EC	AOB47 624c	Internalin-like protein	1.8.0	81.40	50.00
group_4082	A0A2Z5C055	RK57_00410	DUF2975 domain-containing protein		18.60	50.00
group_4080	A0A3A2XB09		GlycinetRNA ligase beta subunit (EC 6.1.1.14) (Glycyl-tRNA synthetase beta subunit) (GlyRS)	3.7.2	18.60	50.00
group_4081	A0A0E0UW34	LMM7_1529	Putative branched-chain amino acid export protein (BAAC homeostasis)	5.2.0	18.60	50.00
group_4086	A0A0B8R1M7	LmNIHS28_01991	Uncharacterized protein	6.0.0	18.60	50.00
group_4087	A0A2Z5BXN3	RK57_00065	Type II secretion system protein	1.10.0	18.60	50.00
group_4084	A0A3A7KDD8	proC_1	Pyrroline-5-carboxylate reductase (EC 1.5.1.2)	2.2.0	18.60	50.00
group_4069	C1KVN8	argC	N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) (EC 1.2.1.38)	2.2.0	18.60	50.00
group_3987	A0A3A8BPP2	yxlG	Putative transmembrane protein YxIG	5.2.0	18.60	50.00
group_3984	A0A3A8BNU1	adaB	Methylated-DNAprotein-cysteine methyltransferase, inducible (EC 2.1.1.63)	3.2.0	18.60	50.00
group 3985	UPI00086E8416		GntR family transcriptional regulator	3.5.2	18.60	50.00
group_3983	A0A0E1RA49	yqjT	Uncharacterized protein yqjT	5.2.0	18.60	50.00
group_3980	A0A0E1RA70	yisK	Uncharacterized protein yisK	5.2.0	18.60	50.00
group_4165	G9G5K0		Internalin protein	1.8.0	18.60	50.00
group_3399	A0A0E1R5P0	yesJ	Uncharacterized N-acetyltransferase YesJ (EC 2.3.1)	5.2.0	18.60	50.00
group_4166	UPI00003CA86A	ARJ20_09330	LPXTG cell wall anchor domain-containing protein	1.8.0	18.60	50.00
group_4161	A0A3A6WTN7	_ ydde	PhzF family phenazine biosynthesis protein (Putative isomerase YddE) (EC 5.1)	5.2.0	18.60	50.00
group_4133	A0A0E1R4P0	BN389 10880	Uncharacterized protein		18.60	50.00
czcR	A0A3A8CCY3	czcR	Transcriptional activator protein CzcR	3.5.2	81.40	50.00
			- •			

group_4169	A0A1T1YRJ7	DC57_12265	Carboxymuconolactone decarboxylase	5.2.0	18.60	50.00
group_3935	A0A3A7PI73	AF251_13245	Lactococcin 972 family bacteriocin	6.0.0	18.60	50.00
group_2864	A0A394XIB0	inlj_9	Cell wall anchor protein (Internalin-J) (LPXTG cell wall anchor domain- containing protein)		18.60	50.00
group_4137	A0A2Z5C2J4	RK57_12860	Teichoic acid D-Ala incorporation-associated protein DltX		18.60	50.00
group_3408	A0A3A7C5V3	stth	Cysteine hydrolase (Streptothricin hydrolase) (EC 3.5.2.19)	5.2.0	18.60	50.00
hprA	Q8Y6K0	lmo1684	Lmo1684 protein	2.1.1	81.40	50.00
group_1192	A0A3A8C9D9	artQ_1	Arginine transport system permease protein ArtQ	1.2.0	18.60	50.00
yknZ_2	A0A393R639	yknZ_1	ABC transporter permease (FtsX-like permease family protein) (Putative ABC transporter permease YknZ)		18.60	50.00
mta	A0A3A8CEM4	mta	HTH-type transcriptional activator mta	3.5.2	81.40	50.00
yusV_2	Q8Y587	lmo2182	Lmo2182 protein	1.2.0	81.40	50.00
group_4158	A0A3A7GM56	AF264 03080	Ribonuclease (EC 3.1)	5.1.0	18.60	50.00
group_4104	A0A2Z5C4F6	pduM ⁻	Microcompartment protein PduM	6.0.0	18.60	50.00
group_4628	Q8Y518	lmo2260	Lmo2260 protein	5.2.0	81.40	50.00
yvbK	Q8Y5E7	lmo2117	Lmo2117 protein	5.2.0	81.40	50.00
inlJ_4	A0A1D2IXY9	CDR86 09540	Cell surface protein	1.8.0	81.40	50.00
fabG 3	A0A3A8BVY0	fabG 1	3-oxoacyl-[acyl-carrier-protein] reductase FabG (EC 1.1.1.100)	2.4.0	18.60	50.00
inlJ_7	UPI000BDF441A	· _	LPXTG cell wall anchor domain-containing protein	1.8.0	81.40	50.00
inlJ [_] 1	Q8YAF4	lmo0175	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	81.40	50.00
	A0A393RS12	AF264 05675	Competence protein ComG	1.10.0	18.60	50.00
inlJ_8	UPI00043541E8	HR60 04430	Cell surface protein		18.60	50.00
	Q8Y578	lmo2197	Lmo2197 protein	6.0.0	81.40	50.00
group_2561	UPI000D72CB8D		IS3 family transposase	4.4.0	81.40	50.00
isdC	Q8Y585	hbp1	Hemin/hemoglobin-binding protein 1 (Hn/Hb-binding protein 1) (Cell wall protein Lmo2186)	1.8.0	81.40	50.00
group 4151	A0A3A8BXI7	yabJ	2-iminobutanoate/2-iminopropanoate deaminase (EC 3.5.99.10)	5.2.0	18.60	50.00
group_4424	A0A1D2IWW8	CDR86_10445	Putative 3-methyladenine DNA glycosylase (EC 3.2.2)	3.2.0	81.40	50.00
group_3567	Q8Y7Y2	lmo1137	Lmo1137 protein	6.0.0	81.40	50.00
argJ 1	Q8Y6U7	lmo1584	Lmo1584 protein	5.2.0	81.40	50.00
group_4335	A0A1D2J1W2	CDR86 05500	Internalin	1.8.0	81.40	50.00
group 4153	A0A3A7KR34	inlJ 12	Internalin-J (Peptidoglycan-binding protein)	1.8.0	18.60	50.00
group_4330	Q8YAN2	lmo0085	Lmo0085 protein	5.1.0	81.40	50.00
group_4331	Q8YAL4	lmo0104	Lmo0104 protein	6.0.0	81.40	50.00
uvrA_2	Q8Y4F6	uvrA	UvrABC system protein A (UvrA protein) (Excinuclease ABC subunit A)	3.2.0	81.40	50.00
sdrF	Q8Y5H7	lmo2085	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	81.40	50.00
adaB	Q8Y534	lmo2242	Lmo2242 protein	3.2.0	81.40	50.00
sdrD	Q8Y479	lmo2576	Peptidoglycan anchored protein (LPXTG motif)	1.8.0	81.40	50.00
glpE	A0A3A8C167	glpE_1	Thiosulfate sulfurtransferase GlpE (EC 2.8.1.1)	4.1.0	81.40	50.00

tylM1	A0A3A8BVR5	tylM1	dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose N,N-	5.2.0	81.40	50.00
-		0,000	dimethyltransferase (EC 2.1.1.235)	0.210		
group_3663	UPI000CDA2F7B		hypothetical protein		2.33	21.43
group_4685	A0A393UMR2	AB922_01315	RNA-directed DNA polymerase (Reverse transcriptase)		2.33	21.43
group_5156	A0A393UMR0	AB922_02994	Uncharacterized protein		2.33	21.43
group_5829	A0A3A2NRD8	D3B69_11250	SLATT domain-containing protein		2.33	21.43
clpP_1	A0A0B8R8I5	clpP	ATP-dependent Clp protease proteolytic subunit (EC 3.4.21.92) (Endopeptidase Clp)	4.1.0	97.67	78.57
gatZ	UPI000436C1E8	HR60_13125	Sugar-phosphate kinase	2.1.1	97.67	78.57
group_5158	A0A393T090	AF251_00420	DUF1433 domain-containing protein	6.0.0	2.33	21.43
group_1772	A0A3A7DAW7	yjjg_l	HAD family hydrolase (Pyrimidine 5'-nucleotidase YjjG) (EC 3.1.3.5)	5.2.0	97.67	78.57
group_5119	A0A3A8BVS8	CFSAN002345_0017 35	Uncharacterized protein		2.33	21.43
group_5013	UPI00074D6A4B	DLE78_04650	N-acetyltransferase		2.33	21.43
group_5012	A0A3A2KHQ4	AFX42_02307	Uncharacterized protein		2.33	21.43
group_5010	UPI00074D6014	DLE78_04630	ATP-dependent Clp protease proteolytic subunit	4.1.0	2.33	21.43
group_5011	A0A393L9E6	AFX42_02305	Uncharacterized protein	6.0.0	2.33	21.43
group_5016	UPI000BE01261		hypothetical protein	6.0.0	2.33	21.43
group_5014	A0A3A7P6T3	AFX42_02309	Uncharacterized protein		2.33	21.43
group_5015	A0A3A2TJS8	AFX42_02310	Uncharacterized protein		2.33	21.43
group_5662	A0A3A7FE57	AF947_01444	Uncharacterized protein		2.33	21.43
manP_4	UPI000434E433	HR60_13110	PTS fructose transporter subunit IIA	1.2.0	97.67	78.57
manP_3	A0A0E1R4Q4	frwC	Fructose-like permease IIC component 2 (EC 2.7.1.69)	1.2.0	97.67	78.57
manP_2	A0A0E1R3Y0	frwB_2	Fructose-like phosphotransferase enzyme IIB component 2 (EC 2.7.1.69)	1.2.0	97.67	78.57
licR_4	A0A393DPZ5	manR_2	PRD domain-containing protein (Transcriptional regulator ManR)	3.5.2	97.67	78.57
group_5830	A0A3A2TSA1	D3B69_11245	Nucleotidyltransferase		2.33	21.43
group_2721	A0A142ECB6	pA144_0059	Uncharacterized protein		39.53	7.14
group_940	A0A0B8REA6	LmNIHS28_00065	Uncharacterized protein		39.53	7.14
group_3748	A0A142ECB7	pA144_0060	Uncharacterized protein		39.53	7.14
group_3773	A0A2A6A3R8	CDR86_14045	Uncharacterized protein		37.21	7.14
group_3771	A0A2A6A353	CDR86_14020	Uncharacterized protein		37.21	7.14
group_3775	A0A2A5ZJU3	CDR86_14055	Head-tail adaptor protein		37.21	7.14
group_3774	A0A2A5ZKW1	CDR86_14050	Uncharacterized protein		37.21	7.14
group_3776	A0A2A5ZK62	CDR86_14085	Terminase large subunit		37.21	7.14
group_5436	A0A2A6A494	CDR86_14040	Phage tail protein		37.21	7.14
group_2742	A0A3A7TM14	AF856_01591	AP2 domain-containing protein	4.3.0	37.21	7.14
group_2637	UPI00042EC15D	AF237_14680	PBSX family phage terminase large subunit		37.21	7.14
group_3870	A0A2A6A392	CDR86_14115	RNA polymerase subunit sigma		37.21	7.14
group_5452	A0A2A5ZM51	CDR86_09880	DUF771 domain-containing protein		37.21	7.14

group_5450	A0A3A2JSK3	AF847 01777	Uncharacterized protein		37.21	7.14
group 5455	A0A2A6A624	CDR86 09860	Uncharacterized protein		37.21	7.14
group_2724	A0A2A6A2X1	CDR86 14035	Uncharacterized protein		37.21	7.14
group 5438	A0A2A6A383	CDR86 14065	Phage major capsid protein		37.21	7.14
smc 5	A0A3A2L5G2	AF249 02565	Phage tail tape measure protein		37.21	7.14
	A0A2A6A314	CDR86 14025	Phage tail protein		37.21	7.14
group_5441	A0A2A6A2T7	CDR86_14110	Site-specific integrase		37.21	7.14
group_3781	A0A3A7A859	AF847_01778	Uncharacterized protein		37.21	7.14
group_3787	UPI000737C4C4	—	hypothetical protein		37.21	7.14
group_5440	A0A3A2Q1E8	AF847 01796	Phage portal protein		37.21	7.14
group_5437	A0A2A6A2S9	CDR86 14060	Uncharacterized protein		37.21	7.14
group_176	A0A3A6WMA8	dape	ArgE/DapE family deacylase (EC 3.5.1.18) (Succinyl-diaminopimelate desuccinylase)	2.2.0	20.93	50.00
group_4390	Q8Y916	lmo0726	Hypothetical CDS	6.0.0	79.07	50.00
group_1660	A0A3A8C6B9	mglA	Galactose/methyl galactoside import ATP-binding protein MglA (EC 3.6.3.17)	1.2.0	20.93	50.00
group_860	Q8Y9U8	lmo0422	Lmo0422 protein	5.2.0	79.07	50.00
group_4658	Q8Y4U3	lmo2339	Lmo2339 protein	5.2.0	79.07	50.00
group_261	A0A393F884	AF249_03970	Cell surface protein (LPXTG cell wall anchor domain-containing protein)	1.8.0	79.07	50.00
inlA_4	A0A1D2IYS1	CDR86_07930	Internalin	1.8.0	79.07	50.00
group_1613	UPI000986F629	D3C41_14375	DEAD/DEAH box helicase	3.6.0	79.07	50.00
atpG_1	A0A3A7I128	atpg_l	ATP synthase gamma chain, sodium ion specific (F0F1 ATP synthase subunit gamma)	1.4.0	20.93	50.00
group_1398	A0A393D0P2	aguA	Putative agmatine deiminase (EC 3.5.3.12) (Agmatine iminohydrolase)	5.2.0	20.93	50.00
isdE 1	Q9EXG4	fufA	Heme ABC transporter substrate-binding protein IsdE (Lipoprotein)	1.2.0	79.07	50.00
	Q8Y4J5	lmo2443	Lmo2443 protein	6.0.0	79.07	50.00
group_761	Q8Y599	lmo2170	Lmo2170 protein	5.2.0	79.07	50.00
group_3112	A0A393SNY1	AF264_07545	Dehydrogenase	2.1.1	20.93	50.00
ogt_2	Q8Y8B2	 lmo0996	Methylated-DNAprotein-cysteine methyltransferase (EC 2.1.1.63) (O-6- methylguanine-DNA-alkyltransferase)	3.2.0	79.07	50.00
dapE	A0A1D2IZ09	CDR86 07935	Succinyl-diaminopimelate desuccinylase	2.2.0	79.07	50.00
group_1653	A0A1S7FKW2	DC57 08295	Alkaline phosphatase family protein	2.6.0	20.93	50.00
group_239	A0A392XPZ3	AF264_04535	Uncharacterized protein	5.1.0	79.07	50.00
group_2013	A0A3A7BSY5	inlj_16	Internalin-J (LPXTG cell wall anchor domain-containing protein) (Peptidoglycan-binding protein)	1.8.0	20.93	50.00
artQ_1	A0A3A8BYD6	artQ_1	Arginine transport system permease protein ArtQ	1.2.0	79.07	50.00
group_3165	A0A3A7MIL3	≈_ garB	Glutathione amide reductase (EC 1.8.1.16) (NAD(P)/FAD-dependent oxidoreductase)	4.1.0	20.93	50.00

group_4135	A0A3A2VNJ8	ogt	Methylated-DNAprotein-cysteine methyltransferase (EC 2.1.1.63) (O-6- methylguanine-DNA-alkyltransferase)	3.2.0	20.93	50.00
group_1560	A0A3A8BMS5	ydfG	NADP-dependent 3-hydroxy acid dehydrogenase YdfG (EC 1.1.1.381)	2.1.1	20.93	50.00
group_2769	A0A1D2IW42	CDR86_11860	ABC transporter permease	5.2.0	79.07	50.00
group_2119	A0A241STG7	cbiO	Energy-coupling factor transporter ATP-binding protein EcfA (ECF transporter A component EcfA) (EC 3.6.3)	1.2.0	20.93	50.00
group_4593	Q8Y5W2	lmo1943	Lmo1943 protein	5.2.0	79.07	50.00
ywtF	A0A3A8BV30	ywtF	Putative transcriptional regulator YwtF	3.5.2	79.07	50.00
group_1000	A0A3A7RII6	AE233_00940	SMI1/KNR4 family protein	5.2.0	79.07	50.00
group_3048	Q71YB4	panC	Pantothenate synthetase (PS) (EC 6.3.2.1) (Pantoatebeta-alanine ligase) (Pantoate-activating enzyme)	2.5.0	20.93	50.00
fosX	Q8Y6I2	fosX	Fosfomycin resistance protein FosX	4.1.0	79.07	50.00
group_705	A0A2Z5C4I1	RK57_08210	Uncharacterized protein	5.1.0	20.93	50.00
group_1735	A0A0E0UV76	LMM7_0870	Putative transcriptional regulator, MarR family	5.2.0	20.93	50.00
artQ_2	Q8Y527	arpJ	ArpJ protein	1.2.0	79.07	50.00
ddrA	A0A0E0UUN7	pduG	Putative diol dehydratase-reactivating factor large subunit	2.1.1	79.07	50.00
group_1138	A0A394ZK64	AF264_05670	Uncharacterized protein	5.2.0	20.93	50.00
group_2575	Q8Y972	lmo0661	Lmo0661 protein	5.2.0	79.07	50.00
dnaX_1	A0A1D2IRD3	dnaX	DNA polymerase III subunit gamma/tau (EC 2.7.7.7)	3.1.0	79.07	50.00
group_4609	Q8Y5S4	lmo1981	Lmo1981 protein	5.2.0	79.07	50.00
topA	A0A1D2IVT6	<i>topA</i>	DNA topoisomerase 1 (EC 5.99.1.2) (DNA topoisomerase I)	3.4.0	79.07	50.00
group_2445	Q8Y9C4	lmo0608	Lmo0608 protein	1.2.0	79.07	50.00
group_649	A0A393CN22	AF264_00975	Mannosylglycerate hydrolase (EC 3.2.1.170)	2.1.1	20.93	50.00
skfE	A0A3A8BUB3	skfE	SkfA peptide export ATP-binding protein SkfE (EC 3.6.3.25)	1.2.0	79.07	50.00
group_4348	A0A0H3GDS2	LMRG_00052	Uncharacterized protein		79.07	50.00
garB	A0A3A7P5T5	garB	Glutathione amide reductase (EC 1.8.1.16) (NAD(P)/FAD-dependent oxidoreductase)	4.1.0	79.07	50.00
iscS 2	A0A3A8BUZ1	iscS 2	Cysteine desulfurase IscS (EC 2.8.1.7)	2.5.0	79.07	50.00
xseA_2	A0A0E1R607	yqgN	5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2)	2.5.0	20.93	50.00
inlJ_5	A0A3A8C0G4	inlJ_2	Internalin-J	1.8.0	79.07	50.00
inlJ_9	Q8Y591	lmo2178	Putative peptidoglycan bound protein (LPXTG motif)	1.8.0	79.07	50.00
group 4336	Q8YAA5	lmo0247	Lmo0247 protein	6.0.0	79.07	50.00
group_1657	A0A3A8BUI8	albF	Putative zinc protease AlbF (EC 3.4.24)	2.2.0	20.93	50.00
group_251	Q8Y9P7	lmo0477	Putative secreted protein	5.2.0	74.42	42.86
sirC	Q8Y7X8	lmo1141	Lmo1141 protein	2.5.0	74.42	42.86
dhaM_1	A0A0E1R9L3	dhaM	PTS-dependent dihydroxyacetone kinase,phosphotransferase subunit dhaM (EC 2.7.1)	5.2.0	25.58	57.14
group_3681	A0A3A7KXY9	AF818_02931	Uncharacterized protein		25.58	0.00
group_3864	A0A3A7IJW5	AB922_01480	Uncharacterized protein		25.58	0.00
group_4242	A0A0B8QZ13		Uncharacterized protein	6.0.0	74.42	100.00

¥ Non L. monocytogenes species † Description for each functional category code is presented below [1.1.0] Cell envelope and cellular processes > Cell wall [1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins [1.3.0] Cell envelope and cellular processes > Sensors (signal transduction) [1.4.0] Cell envelope and cellular processes > Membrane bioenergetics [1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis [1.6.0] Cell envelope and cellular processes > Protein secretion [1.7.0] Cell envelope and cellular processes > Cell division [1.8.0] Cell envelope and cellular processes > Cell surface proteins [1.9.0] Cell envelope and cellular processes > Soluble internalin [1.10.0] Cell envelope and cellular processes > Transformation/competence [2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule [2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways [2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways [2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle [2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules [2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids [2.4.0] Intermediary metabolism > Metabolism of lipids [2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups [2.6.0] Intermediary metabolism > Metabolism of phosphate [3.1.0] Information pathways > DNA replication [3.2.0] Information pathways > DNA restriction/modification and repair [3.3.0] Information pathways > DNA recombination [3.4.0] Information pathways > DNA packaging and segregation [3.5.1] Information pathways > RNA synthesis > Initiation [3.5.2] Information pathways > RNA synthesis > Regulation [3.5.3] Information pathways > RNA synthesis > Elongation [3.5.4] Information pathways > RNA synthesis > Termination [3.6.0] Information pathways > RNA modification [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases [3.7.3] Information pathways > Protein synthesis > Initiation [3.7.4] Information pathways > Protein synthesis > Elongation [3.7.5] Information pathways > Protein synthesis > Termination [3.8.0] Information pathways > Protein modification [3.9.0] Information pathways > Protein folding [4.1.0] Other functions > Adaptation to atypical conditions [4.2.0] Other functions > Detoxification [4.3.0] Other functions > Phage-related functions [4.4.0] Other functions > Transposon and IS

[4.5.0] Other functions > Miscellaneous

[5.1.0] Similar to unknown proteins > From Listeria

[5.2.0] Similar to unknown proteins > From other organisms

[6.0.0] No similarity

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category †	% in weak biofilm formers	% in strong biofilm formers
group_5799	UPI00092FB1F5			arsenic metallochaperone ArsD family protein	1	54.55	0.00
group_4197	UPI00098E3EF0			hypothetical protein		77.27	14.29
group_3762	A0A142EC64		pA144 0007	Uncharacterized protein		45.45	0.00
group_1807	UPI000BE00DE2		r ···_···	hypothetical protein		68.18	14.29
group_1810	UPI000E6BA985		D3C26 06200	Uncharacterized protein		40.91	0.00
group_940	A0A0B8REA6		LmNIHS28 00065	Uncharacterized protein		63.64	11.43
group_876	A0A1D2IYH2		CDR86 08530	Uncharacterized protein	6.0.0	4.55	54.29
group 5404	A0A142EC67		pA144 0010	Uncharacterized protein		45.45	2.86
group_3761	A0A142EC65		pA144_0008	Uncharacterized protein		45.45	2.86
group_5405	A0A142EC66		pA144_0009	Uncharacterized protein		45.45	2.86
group_6265	UPI00076722D3		AXF25 01535	Uncharacterized protein		36.36	0.00
bcgIA	UPI00074D58A5		CJV36 ⁻ 12060	Adenine methyltransferase		36.36	0.00
group_6263	UPI000507E686		AF821 01501	Uncharacterized protein		36.36	0.00
group 6279	A0A3A7NV98		AFX80_00020	Uncharacterized protein	4.3.0	36.36	0.00
group_6273	A0A3A7UXE8		AF273_02455	Uncharacterized protein		36.36	0.00
bcgIB	UPI0009850DB7		CJV36 12055	Uncharacterized protein		36.36	0.00
group 6271	UPI00053BE8EB		DSD43 08455	Uncharacterized protein		36.36	0.00
group_6276	A0A3A7EN18		AFX46_00136	XRE family transcriptional regulator		36.36	0.00
group_938	Q8YAG9		lmo0157	Lmo0157 protein	3.2.0	36.36	0.00
hsdM	A0A3A7RFF8		hsdM	SAM-dependent DNA methyltransferase (Type I restriction enzyme EcoKI M protein) (EC 2.1.1.72)		36.36	0.00
group_6253	UPI000BE1046E			relaxase		36.36	0.00
group_6255	E6EXY6	Enterococcus faecalis TX0630	HMPREF9511_0168 3	Uncharacterized protein		36.36	0.00
group_6254	UPI00098E5223			plasmid mobilization relaxosome protein MobC		36.36	0.00
group_6256	UPI0004D69275		ARJ20 16365	LPXTG cell wall anchor domain-containing protein		36.36	0.00
group 6258	UPI000BE07A8C			CHAP domain-containing protein		36.36	0.00
group_3878	A0A393A2Z5		DOZ93_04615	XRE family transcriptional regulator		36.36	0.00
group_3876	UPI00074D51A1		_ LM800396_140057	Uncharacterized protein		36.36	0.00
group_3874	A0A0V7YCU8	Enterococcus faecium	AOY33_09325	Uncharacterized protein		36.36	0.00
group_3875	A0A3A7Q520	juecium	AEZ78 00963	Uncharacterized protein		36.36	0.00
group_5875 group_6264	A0A3A7Q320 A0A0H3GD71		LMRG 02934	Uncharacterized protein		36.36	0.00
g10up_0204	A0A0H3GD/1 A0A3A7MCD0		AF821 01506	Uncharacterized protein		36.36	0.00

Supplementar	y Table 7. List of	f genes associated w	ith biofilm	production in BH	I media supplemented	with 0.85% NaCl at 10°C after	pan-GWAS (p < 0.05).

group_6267	A0A0H3G912	LMRG_02574	GNAT family acetyltransferase		36.36	0.00
group_6260	Q2V4W9	pCT0002	Uncharacterized protein		36.36	0.00
group_6261	UPI00074D5B8B	LM800396_140058	Uncharacterized protein		36.36	0.00
group 6262	A0A3A7YC45	AF821 01500	Uncharacterized protein		36.36	0.00
group_6268	A0A3A7URE0	ID87_02064	Uncharacterized protein		36.36	0.00
hsdR	A0A3A7Y0A7	– hsdR	Type I restriction endonuclease subunit R (Type-1 restriction enzyme R protein) (EC 3.1.21.3)		36.36	0.00
yofA	A0A393QJ60	yofA	HTH-type transcriptional regulator YofA (LysR family transcriptional regulator)		36.36	0.00
group_294	UPI000BE003A6		helicase SNF2		36.36	0.00
group_3877	A0A3A7UV92	ID87_02058	Uncharacterized protein		36.36	0.00
group_6284	A0A0H3GFH8	LMRG_02220	Uncharacterized protein	6.0.0	36.36	0.00
group_6280	A0A3A7NSF4	AFX80_00023	Uncharacterized protein		36.36	0.00
group_6281	A0A3A7NH96	AFX80_00025	Uncharacterized protein		36.36	0.00
group_3873	UPI0004D8BD21	ARJ20_16270	Uncharacterized protein		36.36	0.00
group_6272	A0A3A7V8A6	AF252_02435	Sugar-phosphate nucleotidyltransferase		36.36	0.00
group_6270	UPI000678F014	KO07_03320	Uncharacterized protein		36.36	0.00
group_6277	A0A393A7N5	DOZ93_04605	Phage antirepressor		36.36	0.00
group_2760	UPI00086F2DD0		DUF1738 domain-containing protein		36.36	0.00
group_2742	A0A3A7TM14	AF856_01591	AP2 domain-containing protein	4.3.0	59.09	11.43
copB	UPI000E76FAAA		copper-translocating P-type ATPase		54.55	8.57
group_2752	A0A0H3GD86	LMRG_02933	Uncharacterized protein		40.91	2.86
group_5994	A0A0H3GDM5	LMRG_00003	Uncharacterized protein	6.0.0	40.91	2.86
group_3869	A0A394RPA7	AF242_15480	Uncharacterized protein		40.91	2.86
group_6291	UPI000BDFECA9		DUF262 domain-containing protein	5.2.0	40.91	2.86
group_3827	A0A392XHQ2	pduM	Microcompartment protein PduM	6.0.0	63.64	17.14
group_6269	A0A3A7V3E1	immR_3	HTH-type transcriptional regulator ImmR		31.82	0.00
group_295	UPI00042E7F14	ARK89_15370	Uncharacterized protein		31.82	0.00
group_6278	A0A393AES1	DOZ93_04600	Uncharacterized protein		31.82	0.00
group_5722	UPI0009853537		hypothetical protein		36.36	2.86
group_2750	A0A0H3GCJ6	LMRG_02892	Uncharacterized protein		36.36	2.86
group_488	A0A3A7U2K0	AF856_02018	Carbohydrate deacetylase (EC 3.5.1) (ChbG/HpnK family deacetylase)	5.2.0	36.36	2.86
group_3812	A0A2A6AA43	CDR86_02440	N-acetyltransferase		36.36	2.86
group_5916	A0A0H3GCY0	LMRG_02891	Uncharacterized protein		36.36	2.86
group_5915	A0A0H3G8Y5	LMRG_02330	Uncharacterized protein	6.0.0	36.36	2.86
group_397	A0A0B8R5D0		Uncharacterized protein	5.1.0	63.64	97.14
group_6074	A0A3A7NHD5	AFX80_00024	Uncharacterized protein		36.36	2.86
group_1884	UPI000E718624	—	hypothetical protein	5.2.0	36.36	2.86
group_3841	UPI000E6B9871		hypothetical protein		36.36	2.86

(011			151/00 00022	TT 1		26.26	2.06
group_6011	A0A3A7NYZ5		AFX80_00022	Uncharacterized protein		36.36	2.86
group_6283	A0A393KIZ1		AFX44_02360	Uncharacterized protein		36.36	2.86
group_6240	A0A2H1SK93	Xanthomonas citri	С	C protein		36.36	2.86
group_194	A0A394YAU8		AF255_15365	Uncharacterized protein		90.91	48.57
npr	UPI000D735513		—	oxidoreductase		63.64	20.00
group_1990	A0A3A7UE98		AF951 02473	Uncharacterized protein		40.91	5.71
group_2751	UPI0000F3E668		LMRG_00004	Uncharacterized protein	6.0.0	40.91	5.71
group_3681	A0A3A7KXY9		AF818_02931	Uncharacterized protein		40.91	5.71
znuC_4	A0A3A7NPD6			ABC transporter ATP-binding protein (Zinc import ATP-binding protein ZnuC) (EC 3.6.3)		40.91	5.71
group 6068	A0A3A7VX21		AF951 02474	Uncharacterized protein		40.91	5.71
group_3850	A0A0H3GHG8		LMRG_00005	Uncharacterized protein		40.91	5.71
group_3864	A0A3A7IJW5		AB922_01480	Uncharacterized protein		40.91	5.71
hin_1	A0A1D2IUR0		CDR86 15065	Transposon DNA-invertase		50.00	11.43
parC	A0A3A7I7R9		_ parc	DNA topoisomerase 4 subunit A (EC 5.99.1.3) (Topoisomerase IV subunit A)	3.4.0	72.73	100.00
group_1672	A0A0H3GJX6		parC	DNA topoisomerase 4 subunit A (EC 5.99.1.3) (Topoisomerase IV subunit A)	3.4.0	27.27	0.00
group_846	A0A0B8R577		hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	27.27	0.00
tkt_3	A0A0D8X574		CDR86 05070	Uncharacterized protein	5.2.0	27.27	0.00
	A0A393U2U6		codB _	Cytosine permease	1.2.0	54.55	14.29
group_4897	A0A0H3GA10		LMRG 02887	Uncharacterized protein		54.55	14.29
group_4896	A0A0H3GHU1		LMRG_00151	Uncharacterized protein		54.55	14.29
group_4470	A0A1D2IWI5		pduM ⁻	Microcompartment protein PduM	6.0.0	13.64	54.29
group_229	Q8Y9Q9		lmo0464	Lmo0464 protein	4.4.0	27.27	68.57
group_2757	A0A060UT12	Acidithiobacill us ferrivorans		Capsid protein F		31.82	2.86
group_487	A0A3A7GDL7		AF264_00475	Carbohydrate deacetylase (EC 3.5.1) (ChbG/HpnK family deacetylase)	5.2.0	68.18	97.14
group_6243	A0A060US63	Acidithiobacill us ferrivorans	G	Major spike protein G		31.82	2.86
mco	UPI000A1FFD33			copper oxidase		31.82	2.86
				DNA-directed RNA polymerase subunit beta (RNAP subunit beta) (EC			
group_151	C1KYJ3		rpoB	2.7.7.6)	3.5.3	31.82	2.86
group_1969	A0A0E0V124		gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	59.09	20.00
gbuC_1	A0A142ECE5		CDR86_15760	Glycine betaine ABC transporter glycine betaine-binding protein (Glycine/betaine ABC transporter substrate-binding protein)		59.09	20.00

group_2545	UPI000BDFF9DB		hypothetical protein		59.09	20.00
group_377	UPI00074D6BC6	LM83088 80034	Uncharacterized protein	5.2.0	63.64	22.86
group 3519	Q8YA40	lmo0324	Lmo0324 protein	6.0.0	0.00	28.57
group 2657	A0A2Z5C560	RK57 09450	Endonuclease	5.2.0	0.00	28.57
group_2556	Q8YAP6	lmo0071	Lmo0071 protein	6.0.0	4.55	37.14
group_1843	A0A1S7FP06	DC57_14095	6-phospho-beta-glucosidase	2.1.1	77.27	37.14
codB	A0A3A7YB48	codB	Cytosine permease	1.2.0	50.00	85.71
group 1346	A0A3A7FZC8	AF951 02536	Uncharacterized protein	1.2.0	50.00	14.29
group_1144	A0A0E1RCC6	yneQ	Uncharacterized protein yneQ	5.2.0	77.27	100.00
			Malonate-semialdehyde dehydrogenase (MSA dehydrogenase) (EC			
group_1241	Q723T1	iolA	1.2.1.27)	2.1.1	22.73	0.00
hflX 1	Q8Y8Y0	hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	77.27	100.00
group_401	A0A394XJ12	AF264_14015	Uncharacterized protein		40.91	8.57
group_3733	A0A393N9I6	D3C41 12950	Uncharacterized protein		40.91	8.57
group_3700	UPI000984B87F	—	hypothetical protein		40.91	8.57
group_3858	A0A0H3GDJ9	LMRG 02591	Uncharacterized protein		40.91	8.57
group 6040	A0A3A7RS18	AF818_02929	Uncharacterized protein		40.91	8.57
group_2721	A0A142ECB6	pA144_0059	Uncharacterized protein		54.55	17.14
group_3748	A0A142ECB7	pA144_0060	Uncharacterized protein		54.55	17.14
group_3040	A0A3A7GE33	AF264 08870	Glycoside transferase	5.2.0	90.91	57.14
group 4590	Q8Y5Z0	lmo1913	Lmo1913 protein	5.2.0	9.09	42.86
group_6039	A0A393Q6N1	AF951_01447	Uncharacterized protein		36.36	5.71
group_3810	UPI000679072E	—	DUF4352 domain-containing protein		36.36	5.71
gltR_1	A0A0B8QZ17	LmNIHS28 01096	LysR family transcriptional regulator	3.5.2	63.64	94.29
group_4677	A0A393QPI9	AF238_05485	VRR-NUC domain-containing protein		36.36	5.71
nfrA1 1	A0A3A7H264	nfra1_2	FMN reductase (NADPH) (EC 1.5.1.38) (NADPH-dependent	1.4.0	63.64	94.29
-			oxidoreductase)			
group_3705	A0A3A7DYA1	AF249_03765	DUF1541 domain-containing protein		36.36	5.71
group_4329	Q8YAN5	lmo0082	Lmo0082 protein	6.0.0	0.00	25.71
group_4328	Q8YAN7	lmo0080	Lmo0080 protein	6.0.0	0.00	25.71
group_2557	UPI0009B0B9A0		hypothetical protein	6.0.0	0.00	25.71
group_5655	UPI000BE0F385		hypothetical protein		45.45	11.43
group_2040	A0A3A7F101	AF264_14455	Ribonuclease (EC 3.1)	5.2.0	45.45	80.00
mnmG	A0A0E0V124	gidA	tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG (Glucose-inhibited division protein A)	1.7.0	45.45	80.00
group_474	A0A393CRL8	AF264_01650	Putative sulfate transporter (SulP family inorganic anion transporter)	1.2.0	54.55	20.00
zosA_1	T1YRD8	cadA	Heavy metal translocating P-type ATPase (Heavy metal-transporting ATPase Pli0048-like protein)		54.55	20.00
group_14	A0A0F5Z6U3	UQ68_03245	Holin	4.3.0	27.27	2.86

group_6242	A0A2I2M4I9	Tenacibaculu m dicentrarch		DNA-binding protein J		27.27	2.86
group_3871	A0A060UXK7	Acidithiobacii us ferrivorans	^I H	Minor spike protein H		27.27	2.86
nifS	Q8Y5N5		lmo2022	Lmo2022 protein	2.5.0	18.18	54.29
group_3446	A0A394Y6J8		AF243 01275	Uncharacterized protein	6.0.0	36.36	71.43
group_5435	A0A3A2KJM7		AF255 07855	Uncharacterized protein		45.45	14.29
group 1977	A0A3A7MNP5		ssbA 1	Single-stranded DNA-binding protein (SSB)	3.1.0	45.45	14.29
group_5443	A0A2A6A333		CDR86 14125	Uncharacterized protein		45.45	14.29
group_5442	A0A2A6A373		CDR86 14120	Uncharacterized protein		45.45	14.29
group_3806	A0A3A2LE02		AEZ78 01356	Uncharacterized protein		45.45	14.29
group 94	UPI00083E5C54		AF252 11575	Class I SAM-dependent methyltransferase (Fragment)		45.45	14.29
group_3778	A0A2A6A3S0		CDR86 14100	Uncharacterized protein		45.45	14.29
group_3769	UPI000984CE83		—	hypothetical protein		45.45	14.29
group_3779	A0A3A2R2K3		AF847 01792	Uncharacterized protein		45.45	14.29
group_3636	A0A3A2YAK1		cas5b	Type I-B CRISPR-associated protein Cas5		27.27	62.86
group_1963	UPI00098E7CD3			superoxide dismutase	6.0.0	72.73	37.14
casl	UPI00092E4084		B0X19 02870	CRISPR-associated endonuclease Cas1		27.27	62.86
cas3	UPI00083D7946		—	CRISPR-associated helicase/endonuclease Cas3		27.27	62.86
group_1845	Q9EXF8		bglA	Beta-glucosidase (EC 3.2.1.21) (Glycoside hydrolase family 1 protein)	2.1.1	27.27	62.86
cas2	A0A0E0UTU7		cas2	CRISPR-associated endoribonuclease Cas2 (EC 3.1)		27.27	62.86
group 2659	A0A3A7SZG9		cas6	CRISPR-associated endoribonuclease Cas6		27.27	62.86
group 1422	A0A3A2RW22		AF251 13400	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	22.73	57.14
group_1374	UPI000990612F		—	hypothetical protein	6.0.0	77.27	42.86
group_1855	UPI000BDFDF92			DUF1310 family protein	5.1.0	9.09	40.00
group_7000	A0A2Z5Z219	Lactococcus lactis	E05_32090	Uncharacterized protein		9.09	40.00
group 3809	A0A3A7AEP5	naens	DYZ48 00767	Uncharacterized protein		36.36	8.57
group_307	UPI00027E8422		D3B99 03045	Uncharacterized protein		36.36	8.57
group_3773	A0A2A6A3R8		CDR86 14045	Uncharacterized protein		50.00	17.14
group_5438	A0A2A6A383		CDR86 14065	Phage major capsid protein		50.00	17.14
group_5436	A0A2A6A494		CDR86 14040	Phage tail protein		50.00	17.14
group_5437	A0A2A6A2S9		CDR86 14060	Uncharacterized protein		50.00	17.14
group_5450	A0A3A2JSK3		AF847 01777	Uncharacterized protein		50.00	17.14
group_2743	A0A3A2VA08		D3B30 06385	Cysteine desulfurase	2.5.0	50.00	17.14
group_5441	A0A2A6A2T7		CDR86 14110	Site-specific integrase	2.0.0	50.00	17.14
group_5440	A0A3A2Q1E8		AF847 01796	Phage portal protein		50.00	17.14
group 2732	A0A393U4Y6		AF255 14330	DUF2974 domain-containing protein	6.0.0	50.00	17.14
5.0 mp_2, 52			11 200_1 1000	2 ci 2), i demain containing protoni	0.0.0	20.00	1 / 1 1

group_2724	A0A2A6A2X1	CDR86 14035	Uncharacterized protein		50.00	17.14
group_3870	A0A2A6A392	CDR86 14115	RNA polymerase subunit sigma		50.00	17.14
group_3781	A0A3A7A859	AF847 01778	Uncharacterized protein		50.00	17.14
smc_5	A0A3A2L5G2	AF249_02565	Phage tail tape measure protein		50.00	17.14
group 3776	A0A2A5ZK62	CDR86 14085	Terminase large subunit		50.00	17.14
group_3771	A0A2A6A353	CDR86 14020	Uncharacterized protein		50.00	17.14
group_1980	A0A392WP24	AF255 14340	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	50.00	17.14
group_3775	A0A2A5ZJU3	CDR86 14055	Head-tail adaptor protein	01110	50.00	17.14
group_3774	A0A2A5ZKW1	CDR86 14050	Uncharacterized protein		50.00	17.14
group_2723	A0A2A6A314	CDR86 14025	Phage tail protein		50.00	17.14
group_5515	UPI000BE047C1	021100_17020	DUF1310 family protein	5.1.0	50.00	17.14
group 5452	A0A2A5ZM51	CDR86 09880	DUF771 domain-containing protein	5.11.0	50.00	17.14
group 5455	A0A2A6A624	CDR86 09860	Uncharacterized protein		50.00	17.14
group_2698	A0A3A2JNT0	D3C46 16425	Uncharacterized protein		50.00	17.14
group_2000 group_893	Q8Y802	lmo1117	Lmo1117 protein	6.0.0	68.18	34.29
group_1233	A0A0B8R4N6	LmNIHS28_01797	Uncharacterized protein	6.0.0	68.18	34.29
group_1255	A0A393IDA4	DN830 06205	LPXTG cell wall anchor domain-containing protein	6.0.0	0.00	22.86
group_4200	A0A3A2WRU5	AF241 01120	Uncharacterized protein	0.0.0	18.18	0.00
group_4200	UPI00098E5B68	DOV17_10730	Uncharacterized protein		18.18	0.00
group_4202	A0A0B8RHX0	LmNIHS28 01805	Uncharacterized protein		18.18	0.00
group_4203	A0A0B8R119	LmNIHS28_01806	Uncharacterized protein		18.18	0.00
group_4204	A0A0B8RAJ2	LmNIHS28 01807	Uncharacterized protein		18.18	0.00
group 4205	A0A0B8RA54	LmNIHS28 01808	Uncharacterized protein		18.18	0.00
group_4206	UPI000873BE8A	201000	hypothetical protein		18.18	0.00
araQ_4	Q8Y8X5	lmo0767	Lmo0767 protein	1.2.0	81.82	100.00
group_4199	A0A0B8RG01	LmNIHS28_01804	Uncharacterized protein	1.2.0	18.18	0.00
group_4211	A0A0B8QZH0	LmNIHS28 01814	Uncharacterized protein		18.18	0.00
group_4210	A0A0B8RA58	LmNIHS28 01813	Uncharacterized protein		18.18	0.00
ugpB	Q8Y8X4	lmo0768	Lmo0768 protein	1.2.0	81.82	100.00
group_4207	A0A0B8RHX3	LmNIHS28 01810	Membrane protein	1.2.0	18.18	0.00
araR	A0A3A8C7S0	araR	Arabinose metabolism transcriptional repressor	3.5.2	81.82	100.00
group_1809	UPI00073B1B95	AN945_2724c	Uncharacterized protein	5.5.2	18.18	0.00
group_2489	UPI000254880C	AJZ74 11435	PBS lyase		18.18	0.00
group_3545	A0A3A7QRH6	AF249_03255	Glycoside hydrolase family 125 protein	5.2.0	81.82	100.00
group_6259	UPI000B8EE202		hypothetical protein	0.2.0	18.18	0.00
group_3549	Q8Y8X1	lmo0771	Lmo0771 protein	6.0.0	81.82	100.00
group_4163	A0A0E0UTX3	LMM7 0796	Uncharacterized protein	6.0.0	18.18	0.00
ugpA	A0A3A8CAJ6	ugpA	sn-glycerol-3-phosphate transport system permease protein UgpA	1.2.0	81.82	100.00
			Malonate-semialdehyde dehydrogenase (MSA dehydrogenase) (EC			
iolA	A0A1D2IYM0	mmsA	1.2.1.27)	2.1.1	81.82	100.00
group_4208	A0A394XPH6	AF241 01080	Uncharacterized protein		18.18	0.00
0 1			1			*

group 1214	UPI000E72BE72	AFX66 02803	Uncharacterized protein	6.0.0	18.18	0.00
group_4209	A0A0B8R4P7		Uncharacterized protein		18.18	0.00
lptB	A0A3A7JHL1	 natA_1	ABC transporter ATP-binding protein NatA (ATP-binding cassette domain-containing protein) (DUF4162 domain-containing protein)	1.2.0	81.82	100.00
group_1873	Q8Y8X3	lmo0769	Lmo0769 protein	2.1.1	81.82	100.00
group_609	A0A1S7FLU5	DC57_10100	Uncharacterized protein	6.0.0	95.45	68.57
group_1332	UPI00057F741C	OJ14_05160	Uncharacterized protein		40.91	11.43
group_1987	A0A394RZ82	AF240_05480	Uncharacterized protein		40.91	11.43
group_3528	Q8Y9P6	lmo0478	Putative secreted protein	5.2.0	54.55	22.86
group_3917	A0A0H3G8X1	LMRG_02492	Uncharacterized protein		50.00	20.00
group_2056	A0A3A6WUY8	AF251_14005	Uncharacterized protein		50.00	20.00
group_4273	UPI0008759A67		XRE family transcriptional regulator		59.09	25.71
group_2656	UPI000766639A	ERS409650_01636	Uncharacterized protein		59.09	25.71
group_1260	S5XI65		Transposase Pli0049		22.73	2.86
group_692	A0A3A7SVH6	AFX76_01934	Transcriptional regulator		22.73	2.86
group_396	UPI00086EB4E1		hypothetical protein		77.27	45.71
group_2560	UPI000BE05954		hypothetical protein	5.1.0	22.73	54.29
group_312	UPI00083CE8C5		DNA primase		63.64	31.43
group_1232	A0A0B8R4N6	LmNIHS28_01797	Uncharacterized protein	6.0.0	36.36	68.57
group_1343	A0A394ZJX3	AF243_05235	DNA-binding protein		63.64	31.43
group_4686	A0A393MBE2	cas7i	Type I-B CRISPR-associated protein Cas7/Cst2/DevR		27.27	60.00
group_2660	A0A3A7IMJ8	cas8a1	Type I-B CRISPR-associated protein Cas8b1/Cst1		27.27	60.00
group_2547	Q8Y403	lmo2675	Lmo2675 protein	6.0.0	40.91	71.43
group_1933	A0A3A2P3J3	D3B70_02255	Phage tail protein		59.09	28.57
ibpA	A0A1B2LR36	pLM-C-273_00100	Protein involved in cell division		59.09	28.57
group_2195	A0A393SL84	coia	Competence protein CoiA	1.10.0	59.09	28.57
group_1396	A0A0H3GGU0	LMRG_02850	Uncharacterized protein		90.91	62.86
group_2729	A0A392X2X8	AF238_14485	Uncharacterized protein		9.09	37.14
group_3915	A0A0H3G8X6	LMRG_02849	Uncharacterized protein		90.91	62.86
group_2684	A0A393U116	AF273_04990	XRE family transcriptional regulator		9.09	37.14
group_3822	A0A3A2WJJ9	AE233_01825	SMI1/KNR4 family protein		40.91	14.29
inlJ_13	UPI00098DF5C5		hypothetical protein	1.8.0	59.09	85.71
group_3679	UPI00074D6382	CJV36_07565	Uncharacterized protein		40.91	14.29
group_2474	UPI000D72D1E5		DHA2 family efflux MFS transporter permease subunit	1.2.0	68.18	37.14
group_1423	A0A393L0Q4	AF264_13385	DUF1310 domain-containing protein (DUF1310 family protein)	5.1.0	31.82	62.86
dinB_3	D7PCE7		Putative DNA-directed DNA polymerase		72.73	42.86
group_2567	Q7AP83	lmo0320	Lmo0320 protein	1.8.0	27.27	57.14
Int-Tn	A0A2A6A695	CDR86_09855	Site-specific integrase		45.45	17.14
group_5439	A0A2A5ZKF2	CDR86_14070	HK97 family phage prohead protease		45.45	17.14
group_1497	A0A1D2IPP6	CDR86_15840	Uncharacterized protein		45.45	17.14
group_3616	A0A3A7VZK0	AF947_03065	DUF1642 domain-containing protein	4.3.0	45.45	17.14

group_1837	A0A241SLH2	tkt	Transketolase (EC 2.2.1.1)	2.1.2	45.45	17.14
smc_3	A0A393FG10	D3B68_15130	Phage tail tape measure protein		45.45	17.14
group_3777	A0A2A5ZK31	CDR86_14090	Phage terminase small subunit P27 family		45.45	17.14
group_2697	A0A3A7Q910	AF818_02415	Uncharacterized protein		45.45	17.14
group_4230	A0A1S7FP22	DC57_13960	Uncharacterized protein		45.45	17.14
group_13	A0A0H3GF06	LMRG_01553	Phage holin	4.3.0	31.82	8.57
group_3527	UPI000E751432		hypothetical protein		0.00	20.00
group_4377	UPI00076678C4	ERS409627_00120	Preprotein translocase subunit SecB		0.00	20.00
group_4379	A0A1D2INM9	CDR86_13980	Uncharacterized protein		0.00	20.00
group_4378	Q8Y995	lmo0638	Lmo0638 protein	6.0.0	0.00	20.00
draG	Q8YAQ0	lmo0067	Lmo0067 protein	3.8.0	0.00	20.00
group_143	A0A3A2J7V9	AF247_01180	BspA family leucine-rich repeat surface protein	1.8.0	4.55	28.57
group_877	UPI000D65622D	DF271_11275	Uncharacterized protein (Fragment)	6.0.0	4.55	28.57
group_3647	A0A393KDI4	AF247_14610	Uncharacterized protein		4.55	28.57
group_3691	A0A3A2TPS8	D3B72_03010	DUF4274 domain-containing protein		4.55	28.57
group_697	A0A1T1YBY4	DC57_15090	Type VII secretion effector	5.1.0	86.36	60.00
group_2559	UPI000B54942D		DUF3130 family protein	5.1.0	13.64	40.00
group_2658	A0A2Z5C293	RK57_09780	Uncharacterized protein	6.0.0	13.64	40.00
group_2664	A0A392YE54	AF247_14605	Uncharacterized protein		13.64	40.00
group_1313	A0A3A7QYQ0	AF249_11635	Uncharacterized protein		36.36	11.43
group_4802	A0A0H3GNH6	LMRG_02134	Uncharacterized protein	6.0.0	36.36	11.43
group_920	A0A3A2NXX2	D3B69_00475	LPXTG cell wall anchor domain-containing protein		50.00	22.86
group_2648	A0A394T3U8	AF252_05595	DUF669 domain-containing protein		50.00	22.86
group_3626	A0A3A2TXX4	AF238_05490	Uncharacterized protein		50.00	22.86
group_3916	A0A3A7D3S5	AF251_14010	Uncharacterized protein		50.00	22.86
group_80	Q8YAQ1	lmo0066	Lmo0066 protein	4.5.0	18.18	45.71
group_241	A0A393CUH9	AF264_04515	DUF3130 family protein (TIGR04197 family type VII secretion effector)		81.82	54.29
group_679	A0A393MQP5	AF237_14490	Phage head-tail adapter protein		54.55	25.71
group_2655	UPI00070C5611		hypothetical protein		54.55	25.71
group_4274	A0A142EC60	pA144_0003	Uncharacterized protein		54.55	25.71
group_3633	UPI00074D6868	LM801457_60030	Phage protein		54.55	25.71
group_1932	A0A393D0P3	AF261_15130	Phage major capsid protein		54.55	25.71
group_681	A0A394U433	AF237_14485	Uncharacterized protein		54.55	25.71
group_4678	UPI00074D6276	LM7423_400013	Uncharacterized protein		54.55	25.71

¥ Non *L. monocytogenes* species † Description for each functional category code is presented below

[1.1.0] Cell envelope and cellular processes > Cell wall

[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)

[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics

[1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis [1.6.0] Cell envelope and cellular processes > Protein secretion [1.7.0] Cell envelope and cellular processes > Cell division [1.8.0] Cell envelope and cellular processes > Cell surface proteins [1.9.0] Cell envelope and cellular processes > Soluble internalin [1.10.0] Cell envelope and cellular processes > Transformation/competence [2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule [2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways [2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways [2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle [2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules [2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids [2.4.0] Intermediary metabolism > Metabolism of lipids [2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups [2.6.0] Intermediary metabolism > Metabolism of phosphate [3.1.0] Information pathways > DNA replication [3.2.0] Information pathways > DNA restriction/modification and repair [3.3.0] Information pathways > DNA recombination [3.4.0] Information pathways > DNA packaging and segregation [3.5.1] Information pathways > RNA synthesis > Initiation [3.5.2] Information pathways > RNA synthesis > Regulation [3.5.3] Information pathways > RNA synthesis > Elongation [3.5.4] Information pathways > RNA synthesis > Termination [3.6.0] Information pathways > RNA modification [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases [3.7.3] Information pathways > Protein synthesis > Initiation [3.7.4] Information pathways > Protein synthesis > Elongation [3.7.5] Information pathways > Protein synthesis > Termination [3.8.0] Information pathways > Protein modification [3.9.0] Information pathways > Protein folding [4.1.0] Other functions > Adaptation to atypical conditions [4.2.0] Other functions > Detoxification [4.3.0] Other functions > Phage-related functions [4.4.0] Other functions > Transposon and IS [4.5.0] Other functions > Miscellaneous [5.1.0] Similar to unknown proteins > From Listeria [5.2.0] Similar to unknown proteins > From other organisms [6.0.0] No similarity

GWAS name	Uniprot Entry	Organism ¥	Gene name	Protein names	Function al category †	% in weak biofilm formers	% in strong biofilm formers
group_1915	A0A394U8V3		AF237_14705	Uncharacterized protein		35.71	2.33
group 4208	A0A394XPH6		AF241 01080	Uncharacterized protein		28.57	0.00
group_4209	A0A0B8R4P7		LmNIHS28_01812	Uncharacterized protein		28.57	0.00
group_4200	A0A3A2WRU5		AF241_01120	Uncharacterized protein		28.57	0.00
group_4201	UPI00098E5B68		DOV17 10730	Uncharacterized protein		28.57	0.00
group_4202	A0A0B8RHX0			Uncharacterized protein		28.57	0.00
group_4203	A0A0B8R119		LmNIHS28_01806	Uncharacterized protein		28.57	0.00
group_4204	A0A0B8RAJ2		LmNIHS28_01807	Uncharacterized protein		28.57	0.00
group_4205	A0A0B8RA54		LmNIHS28_01808	Uncharacterized protein		28.57	0.00
group_4206	UPI000873BE8A		—	hypothetical protein		28.57	0.00
roup_4207	A0A0B8RHX3		LmNIHS28 01810	Membrane protein		28.57	0.00
roup_3545	A0A3A7QRH6		AF249 03255	Glycoside hydrolase family 125 protein	5.2.0	71.43	100.00
roup_4163	A0A0E0UTX3		LMM7 ⁰⁷⁹⁶	Uncharacterized protein	6.0.0	28.57	0.00
roup_4210	A0A0B8RA58			Uncharacterized protein		28.57	0.00
roup_3549	Q8Y8X1		lmo0771	Lmo0771 protein	6.0.0	71.43	100.00
roup_2489	UPI000254880C		AJZ74 11435	PBS lyase		28.57	0.00
olA	A0A1D2IYM0		mmsA	Malonate-semialdehyde dehydrogenase (MSA dehydrogenase) (EC 1.2.1.27)	2.1.1	71.43	100.00
raR	A0A3A8C7S0		araR	Arabinose metabolism transcriptional repressor	3.5.2	71.43	100.00
raQ 4	Q8Y8X5		lmo0767	Lmo0767 protein	1.2.0	71.43	100.00
roup_4211	A0A0B8QZH0		LmNIHS28 01814	Uncharacterized protein		28.57	0.00
gpÅ	A0A3A8CAJ6		ugpA –	sn-glycerol-3-phosphate transport system permease protein UgpA	1.2.0	71.43	100.00
roup_4199	A0A0B8RG01		LmNIHS28 01804	Uncharacterized protein		28.57	0.00
gpB	Q8Y8X4		lmo0768	Lmo0768 protein	1.2.0	71.43	100.00
roup_1873	Q8Y8X3		lmo0769	Lmo0769 protein	2.1.1	71.43	100.00
roup_4648	A0A393Q5I5		AF238_11265	Uncharacterized protein	4.3.0	35.71	4.65
roup_1916	UPI000C83A576		—	hypothetical protein		35.71	4.65
roup_4197	UPI00098E3EF0			hypothetical protein		71.43	27.91
roup 2640	UPI000771882E			hypothetical protein		42.86	9.30
roup_1920	UPI000B68876C		CEQ29 000650	Uncharacterized protein		50.00	13.95
roup_3007	A0A0E1R7X6		BN389_20550	Uncharacterized protein		28.57	2.33
flX_1	Q8Y8Y0		hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	71.43	97.67
roup_3582	UPI000D72A586		<i>y</i>	XRE family transcriptional regulator		28.57	2.33
roup_1241	Q723T1		iolA	Malonate-semialdehyde dehydrogenase (MSA dehydrogenase) (EC 1.2.1.27)	2.1.1	28.57	2.33
acC 2	Q8Y4U5		fruB	Tagatose-6-phosphate kinase (EC 2.7.1.144)	2.1.1	28.57	2.33

group_4651	A0A241SSP0		A410_2479	Uncharacterized protein		28.57	2.33
group_4650	A0A3A2YIH6		AE052_02493	Uncharacterized protein		28.57	2.33
group_876	A0A1D2IYH2		CDR86_08530	Uncharacterized protein	6.0.0	7.14	44.19
group_194	A0A394YAU8		AF255_15365	Uncharacterized protein		92.86	55.81
group_5793	A0A3A7RNF5		AF238_14525	Uncharacterized protein		21.43	0.00
group_5794	A0A394V4F9		AF238_14520	Uncharacterized protein		21.43	0.00
group_5823	A0A393P7G5		ssbA_2	Single-stranded DNA-binding protein (SSB)	3.1.0	21.43	0.00
group_3581	A0A3A7YDK2		AF821_00725	ImmA/IrrE family metallo-endopeptidase		35.71	6.98
group_1150			AF239_04485	Uncharacterized protein		42.86	11.63
group_2638	A0A1D2J2T1		CDR86_02640	Uncharacterized protein	6.0.0	57.14	23.26
group_1919	A0A393FFS4		AF249_11805	Uncharacterized protein	4.3.0	57.14	23.26
group_2488	UPI000869A2AF			HEAT repeat domain-containing protein		28.57	4.65
group_4354	A0A0E0UTH3		LMM7_0407	Uncharacterized protein	6.0.0	71.43	95.35
group_4212	A0A0E1R3F0		BN389_04600	Uncharacterized protein		28.57	4.65
group_2641	A0A394UVY7		AEZ78_03023	Uncharacterized protein	4.3.0	28.57	4.65
group_3452	A0A0B8RG05		LmNIHS28_01809	Uncharacterized protein		28.57	4.65
group_846	A0A0B8R577		hflX	GTPase HflX (GTP-binding protein HflX)	4.5.0	28.57	4.65
group_4474	A0A2A6A4V8		CDR86_11955	Uncharacterized protein		35.71	9.30
group_1810	UPI000E6BA985		D3C26_06200	Uncharacterized protein		35.71	9.30
group_180	UPI000BDFE765			hypothetical protein		35.71	9.30
group_226	UPI000CD94099		inlJ_17	Internalin-J	1.8.0	21.43	2.33
group_2185	A0A241SS83		fruB	Tagatose-6-phosphate kinase (EC 2.7.1.144)	2.1.1	78.57	97.67
group_1809	UPI00073B1B95		AN945_2724c	Uncharacterized protein		21.43	2.33
group_907	A0A3A7F8U2		DYZ75_01282	Uncharacterized protein	3.5.2	21.43	2.33
group_3832	A0A3A2XE84		AF238_11270	Uncharacterized protein		21.43	2.33
		Candidatus					
group_2702	A0A0S4KTT7	Nitrospira	NITINOP_1625	Uncharacterized protein		21.43	2.33
		inopinata					
group_664	A0A394VEJ2		AF261_05390	Site-specific integrase		21.43	2.33
group_388	UPI0009870563			DnaD domain protein		50.00	20.93
group_877	UPI000D65622D		DF271_11275	Uncharacterized protein (Fragment)	6.0.0	0.00	25.58
group_2178	A0A3A7KNB4		gadB_1	Glutamate decarboxylase (EC 4.1.1.15)	2.2.0	0.00	25.58
group_143	A0A3A2J7V9		AF247_01180	BspA family leucine-rich repeat surface protein	1.8.0	0.00	25.58
VAT T							

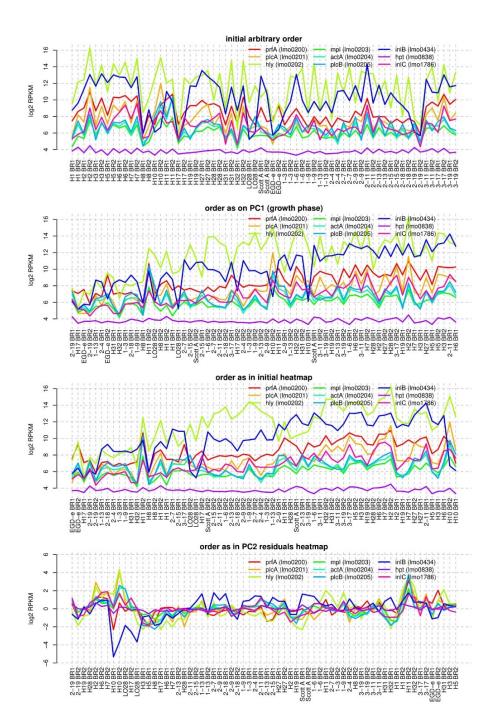
¥ Non L. monocytogenes species

† Description for each functional category code is presented below

[1.1.0] Cell envelope and cellular processes > Cell wall

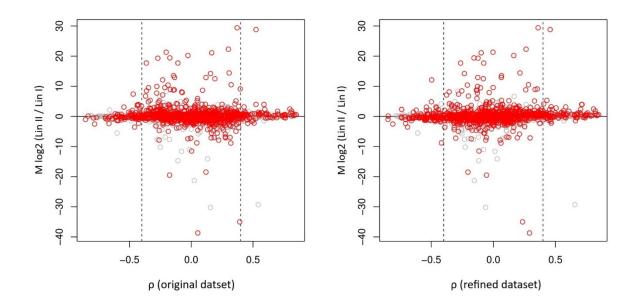
[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins

[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)


[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics

[1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis

[1.6.0] Cell envelope and cellular processes > Protein secretion


[1.7.0] Cell envelope and cellular processes > Cell division [1.8.0] Cell envelope and cellular processes > Cell surface proteins [1.9.0] Cell envelope and cellular processes > Soluble internalin [1.10.0] Cell envelope and cellular processes > Transformation/competence [2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule [2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways [2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways [2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle [2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules [2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids [2.4.0] Intermediary metabolism > Metabolism of lipids [2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups [2.6.0] Intermediary metabolism > Metabolism of phosphate [3.1.0] Information pathways > DNA replication [3.2.0] Information pathways > DNA restriction/modification and repair [3.3.0] Information pathways > DNA recombination [3.4.0] Information pathways > DNA packaging and segregation [3.5.1] Information pathways > RNA synthesis > Initiation [3.5.2] Information pathways > RNA synthesis > Regulation [3.5.3] Information pathways > RNA synthesis > Elongation [3.5.4] Information pathways > RNA synthesis > Termination [3.6.0] Information pathways > RNA modification [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases [3.7.3] Information pathways > Protein synthesis > Initiation [3.7.4] Information pathways > Protein synthesis > Elongation [3.7.5] Information pathways > Protein synthesis > Termination [3.8.0] Information pathways > Protein modification [3.9.0] Information pathways > Protein folding [4.1.0] Other functions > Adaptation to atypical conditions [4.2.0] Other functions > Detoxification [4.3.0] Other functions > Phage-related functions [4.4.0] Other functions > Transposon and IS [4.5.0] Other functions > Miscellaneous [5.1.0] Similar to unknown proteins > From Listeria [5.2.0] Similar to unknown proteins > From other organisms [6.0.0] No similarity

Chapter V

Supplementary Figure 1. Comparison of transcript levels of core PrfA virulon. Levels of transcripts are expressed in log2 values from original and refined datasets. Samples are arranged in arbitrary order (first graph), ordered as expressed in principal component axis 1 (second graph), and ordered as shown in Figure 3A (third graph) from original dataset. Last graph shows transcript patterns from the improved dataset by removing variations captured by PC1 and PC2 with samples ordered as shown in Figure 6A.

In a previous study, differential expression of 1,034 genes discriminated lineages among 6 *L. monocytogenes* isolates (Severino et al., 2007) of which 943 genes were included in the list of 2,456 conserved single copy genes whose expression levels were analysed here. They decomposed into 462 genes with higher expression in lineage I as represented by four isolates (one of serotype 1/2b and three of serotype 4b) and 481 genes with higher expression in lineage II as represented by two isolates (both of serotype 1/2a). These lists of genes were compared to those established in the current study and the congruency between the results of the two analyses was found to be limited (Supplementary Fig. 2). Among the 261 genes whose expression was the most specific of lineage I in this study ($\rho \le -0.4$), only 73 (28%) were included in the list of 462 reported by the previous study. Similarly, among the 222 genes found here as most specific of lineage II ($\rho \ge 0.4$), 71 (32%) were included in the list of 481 reported by the previous study. For some genes a contradiction was found between the two studies, this concerned 13% of the genes with $\rho \le -0.4$ and 10% of the genes with $\rho \ge 0.4$ (details can be found in Table 2).

Supplementary Figure 2. Comparison of transcript pattern of genes between lineage I and II to the data from Severino et al. (2007). X-axis showing p value from the present correlation analysis is compared to y-axis showing M value, log2 (lineage II / lineage I), from Severino et al. Graphs on left used original transcriptomes and right refined transcriptomes (residual of PC1 and PC2). Differentially expressed genes according to Severino et al. are expressed in red circle.

Cluster 1			ster 1			Cluster 3			
Locus tag	Regulator	Locus tag	Regulator	Locus tag	Regulator	Locus tag	Regulator	Locus tag	Regulator
lmo0019	PrfA	lmo0894	SigB	lmo2387	SigB	lmo0675	NA	lmo0717	NA
lmo0043	SigB	lmo0895	SigB	lmo2389	SigB	lmo0676	SigB	lmo0718	NA
lmo0169	SigB	lmo0896	SigB	lmo2434	SigB	lmo0677	NA	lmo0723	SigB
lmo0170	SigB	lmo0913	SigB	lmo2454	SigB	lmo0678	NA	lmo0724	SigB
lmo0274	SigB	lmo0929	SigB	lmo2463	SigB	lmo0679	NA	lmo1699	NA
lmo0405	SigB	lmo0937	SigB	lmo2484	SigB	lmo0680	NA	lmo1700	NA
lmo0406	SigB	lmo0994	SigB	lmo2485	SigB	lmo0681	NA		
lmo0407	SigB	lmo0995	SigB	lmo2494	SigB	lmo0682	NA		
lmo0408	SigB	lmo1027	SigB	lmo2495	NA	lmo0683	NA		
lmo0434	PrfA	lmo1028	SigB	lmo2570	SigB	lmo0684	NA		
lmo0439	SigB	lmo1140	SigB	lmo2571	SigB	lmo0685	NA		
lmo0524	SigB	lmo1241	SigB	lmo2572	SigB	lmo0686	CodY		
lmo0539	SigB	lmo1261	SigB	lmo2573	SigB	lmo0687	CodY		
lmo0554	SigB	lmo1295	SigB	lmo2602	SigB	lmo0688	NA		
lmo0555	SigB	lmo1340	SigB	lmo2603	SigB	lmo0689	CodY		
lmo0579	SigB	lmo1421	SigB	lmo2724	SigB	lmo0690	CodY		
lmo0580	SigB	lmo1422	SigB	lmo2748	SigB	lmo0691	NA		
lmo0593	SigB	lmo1432	SigB		<u> </u>	lmo0692	NA		
lmo0602	SigB	lmo1433	SigB			lmo0693	NA		
lmo0610	SigB	lmo1452	NA			lmo0694	NA		
lmo0626	SigB	lmo1453	SigB			lmo0695	NA		
lmo0628	SigB	lmo1454	SigB			lmo0696	NA		
lmo0629	SigB	lmo1526	SigB			lmo0697	NA		
lmo0642	NA*	lmo1601	SigB			lmo0698	NA		
lmo0648	SigB	lmo1602	SigB			lmo0699	CodY		
lmo0649	SigB	lmo1694	SigB			lmo0700	NA		
lmo0650	SigB	lmo1708	NA			lmo0701	CodY		
lmo0651	SigB	lmo1830	SigB			lmo0702	CodY		
lmo0654	SigB	lmo1883	NagR			lmo0703	NA		
lmo0655	SigB	lmo1911	NA			lmo0704	NA		
lmo0669	SigB	lmo1912	NA			lmo0705	NA		
lmo0670	SigB	lmo1913	NA			lmo0706	NA		
lmo0722	SigB	lmo1914	NA			lmo0707	CodY		
lmo0722	SigB	lmo2092	NA			lmo0708	CodY		
lmo0782	SigB	lmo2130	SigB			lmo0709	CodY		
lmo0783	SigB	lmo2130	SigB			lmo0710	CodY		
lmo0784	SigB	lmo2152 lmo2157	SigB			lm00711	CodY		
lmo0794	SigB	lmo2157 lmo2158	SigB			lm00711 lm00712	CodY		
lmo0820	NA	lm02138 lm02174	SigB			lm00712 lm00713	CodY		
lm00820 lm00821	NA	lm02174 lm02213	SigB			lm00713 lm00714	CodY		
lm00821 lm00869	NA SigB	lm02213 lm02230				lm00714 lm00715	CodY		
lm00809 lm00870	SigB SigB	lm02230 lm02231	SigB SigB			lm00715 lm00716	CodY		
	on not availa		SigB			11100/10	COUI		

Supplementary Table 1. List of genes in 12 clusters and corresponding transcription factors

*information not available

Cluster 4		Cluster 7		Clus	Cluster 9		ter 11	Cluster 14	
Locus tag	Regulator	Locus tag	Regulator						
lmo0133	SigB	lmo0113	NA	lmo1152	SigB	lmo1149	NA	lmo0643	NA
lmo0134	SigB	lmo0114	NA	lmo1153	NA	lmo1171	NA	lmo2065	NA
lmo0265	SigB	lmo0115	NA	lmo1154	SigB	lmo1174	NA	lmo2066	NA
lmo0321	SigB	lmo0116	NA	lmo1155	NA	lmo1175	NA	lmo2659	CodY
lmo0515	SigB	lmo0117	NA	lmo1156	NA	lmo1176	NA	lmo2660	CodY
lmo0584	SigB	lmo0118	SigB	lmo1157	NA	lmo1177	NA	lmo2661	CodY
lmo0911	SigB	lmo0119	PrfA	lmo1158	NA	lmo1178	NA	lmo2662	CodY
lmo0953	SigB	lmo0120	NA	lmo1160	NA	lmo1179	NA	lmo2663	CodY
lmo1267	NA	lmo0121	NA	lmo1161	NA	lmo1181	NA	lmo2664	CodY
lmo1375	SigB	lmo0122	SigB	lmo1162	NA	lmo1182	NA	lmo2665	SigL
lmo1376	SigB	lmo0123	NA	lmo1163	NA	lmo1183	NA	lmo2666	CodY
lmo1788	SigB	lmo0124	NA	lmo1164	NA	lmo1184	NA	lmo2667	NA
lmo1789	SigB	lmo0125	NA	lmo1165	NA	lmo1185	NA	lmo2668	NA
lmo1790	SigB	lmo0126	NA	lmo1166	NA	lmo1186	NA		
lmo1931	NA	lmo0127	NA	lmo1167	NA	lmo1187	NA		
lmo1932	SigB	lmo0128	NA	lmo1168	SigB				
lmo1933	SigB	lmo0129	NA						
lmo2067	PrfA								
lmo2085	SigB								
lmo2391	SigB								
lmo2398	SigB								
lmo2670	SigB								

lmo2671

lmo2672

lmo2673

lmo2674

SigB

SigB

SigB SigB

Cluster 15		Cluster 26		Clus	Cluster 30		ter 41	Cluster 45	
Locus tag	Regulator	Locus tag	Regulator	Locus tag	Regulator	Locus tag	Regulator	Locus tag	Regulator
lmo0264	NA	lmo1587	ArgR	lmo0343	SigB	lmo0201	PrfA	lmo1997	CodY
lmo0481	NA	lmo1588	ArgR	lmo0344	CodY	lmo0202	PrfA	lmo1998	CodY
lmo0527	NA	lmo1589	ArgR	lmo0345	CodY	lmo0203	PrfA	lmo1999	CodY
lmo0528	NA	lmo1590	ArgR	lmo0346	SigB	lmo0204	PrfA	lmo2000	SigB
lmo0529	SigB	lmo1591	ArgR	lmo0347	SigB	lmo0205	PrfA	lmo2001	CodY
lmo0530	NA	lmo2090	ArgR	lmo0348	SigB	lmo0206	NA	lmo2002	SigB
lmo0531	CtsR	lmo2091	ArgR	lmo0349	SigB	lmo0207	NA	lmo2003	SigB
lmo1505	NA	lmo2250	NA	lmo0350	NA	lmo1786	PrfA	lmo2004	SigB
lmo1506	NA	lmo2251	NA	lmo0351	SigB				
lmo2831	NA	lmo2252	NA						
lmo2832	SigB								
lmo2833	YcjW								

Locus tag	Product	Coefficient	q-value	Functiona
Locus tag	110uuct	Ť	q-value	category
lmo1050	hypothetical protein	-0.85	0.000	5.2.0
lmo0832	transposase	-0.85	0.000	4.4.0
mo0540	penicillin-binding protein	-0.81	0.000	1.1.0
mo1283	LacX protein	-0.79	0.000	5.2.0
lmo1779	hypothetical protein	-0.77	0.000	6.0.0
lmo2728	MerR family transcriptional regulator	-0.76	0.000	3.5.2
lmo0264	internalin E	-0.75	0.000	1.8.0
lmo2527	hypothetical protein	-0.75	0.000	5.2.0
lmo2587	hypothetical protein	-0.74	0.000	5.2.0
lmo0531	hypothetical protein	-0.74	0.000	6.0.0
lmo1127	hypothetical protein	-0.74	0.000	6.0.0
lmo1308	hypothetical protein	-0.74	0.000	3.8.0
lmo0975	ribose-5-phosphate isomerase A	-0.74	0.000	2.1.1
lmo2376	peptidyl-prolyl cis-trans isomerase	-0.74	0.000	3.9.0
lmo0853	SugE protein	-0.73	0.000	3.9.0
lmo1826	DNA-directed RNA polymerase subunit omega	-0.73	0.000	5.2.0
lmo1689	A/G-specific adenine glycosylase	-0.73	0.000	3.2.0
lmo1817	hypothetical protein	-0.72	0.000	2.5.0
lmo0852	TetR family transcriptional regulator	-0.71	0.000	3.5.2
lmo1944	ferredoxin	-0.71	0.000	1.4.0
mo1243	hypothetical protein	-0.71	0.000	5.2.0
lmo1274	polypeptide deformylase	-0.71	0.000	3.8.0
mo0530	hypothetical protein	-0.71	0.000	5.2.0
lmo2366	DeoR family transcriptional regulator	-0.71	0.000	3.5.2
mo1312	hypothetical protein	-0.70	0.000	6.0.0
mo2117	hypothetical protein	-0.70	0.000	5.2.0
mo0839	tetracycline resistance protein	-0.70	0.000	1.2.0
lmo2032	cell division protein FtsZ	-0.69	0.000	1.7.0
lmo1217	endo-1,4-beta-glucanase and to aminopeptidase	-0.69	0.000	2.2.0
lmo0618	protein kinase	-0.69	0.000	3.8.0
lmo0652	hypothetical protein	-0.68	0.000	5.2.0
lmo0617	hypothetical protein	-0.68	0.000	5.1.0
lmo2729	hypothetical protein	-0.68	0.000	5.2.0
lmo0529	glucosaminyltransferase	-0.68	0.000	2.1.1
mo0528	hypothetical protein	-0.67	0.000	1.8.0
mo1078	UDP-glucose pyrophosphorylase	-0.67	0.000	1.1.0
mo1126	hypothetical protein	-0.67	0.000	5.2.0
mo2833	maltose phosphorylase	-0.66	0.000	2.1.1
lmo2334	transcriptional regulator	-0.66	0.000	3.5.2
mo0187	hypothetical protein	-0.66	0.000	5.2.0
mo1347	competence protein ComGA	-0.66	0.000	1.10.0
1 0 (0)		0.65		

-0.65

-0.65

-0.65

-0.65

-0.65

-0.64

0.000

0.000

0.000

0.000

0.000

0.000

5.2.0

6.0.0

5.2.0

1.8.0

3.8.0

5.2.0

lmo0629

lmo1056

lmo1213

lmo1413

lmo1800

lmo1258

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

peptidoglycan binding protein

protein-tyrosine phosphatase

Supplementary Table 2. List of genes whose transcript levels are correlated with phylogenetic divergence (lineage II versus I)

lmo0213	peptidyl-tRNA hydrolase	-0.64	0.000	3.7.5
lmo1670	hypothetical protein	-0.63	0.000	5.2.0
lmo0158	hypothetical protein	-0.63	0.000	5.2.0
lmo2793	hypothetical protein	-0.63	0.000	6.0.0
lmo1218	rRNA methylase	-0.63	0.000	3.6.0
lmo2523	single-strand DNA-binding protein	-0.63	0.000	3.1.0
lmo2377	multidrug transporter	-0.62	0.000	1.2.0
lmo1500	hypothetical protein	-0.62	0.000	5.2.0
lmo2019	isoleucyl-tRNA synthetase	-0.62	0.000	3.7.2
lmo2557	lipid kinase	-0.62	0.000	5.2.0
lmo1282	hypothetical protein	-0.61	0.000	5.2.0
lmo0854	SugE protein	-0.61	0.000	3.9.0
lmo1049	molybdopterin biosynthesis protein MoeB	-0.61	0.000	2.5.0
lmo2370	aminotransferase	-0.61	0.000	2.2.0
lmo2750	para-aminobenzoate synthase subunit I	-0.61	0.000	2.2.0
lmo2078	hypothetical protein	-0.61	0.000	5.2.0
lmo2832	hypothetical protein	-0.61	0.000	5.2.0
lmo0772	transcriptional regulator	-0.60	0.000	3.5.2
lmo0800	hypothetical protein	-0.60	0.000	5.2.0
lmo1505	ABC transporter ATP-binding protein	-0.60	0.000	1.2.0
lmo1485	hypothetical protein	-0.60	0.000	5.2.0
lmo0322	hypothetical protein	-0.59	0.000	5.2.0
lmo0522	transmembrane protein	-0.59	0.000	6.0.0
lmo2092	glycine betaine transporter BetL	-0.59	0.000	1.2.0
lmo2551	transcription termination factor Rho	-0.59	0.000	3.5.4
lmo1525	recombination protein RecJ	-0.58	0.000	3.3.0
lmo1929 lmo1877	formyl-tetrahydrofolate synthetase	-0.58	0.000	2.5.0
lmo1005	3-hydroxyisobutyrate dehydrogenase	-0.58	0.000	2.4.0
lmo1005 lmo1965	hypothetical protein	-0.58	0.000	5.2.0
lmo1935	protein-tyrosine/serine phosphatase	-0.58	0.000	3.8.0
lmo1935 lmo1946	acyl-CoA hydrolase	-0.58	0.000	2.4.0
lmo1940	transcriptional regulator	-0.58	0.000	3.5.2
lm00322 lm02070	hypothetical protein	-0.58	0.000	5.2.0
lmo2070 lmo0623	hypothetical protein	-0.58	0.000	5.1.0
lm00023	ABC transporter ATP-binding proteins	-0.58	0.000	1.2.0
lmo1223 lmo2338	aminopeptidase	-0.58	0.000	2.2.0
lmo2558 lmo1506	transporter	-0.57	0.000	1.2.0
lmo1500	hypothetical protein	-0.57	0.000	5.2.0
lmo1373 lmo2201	3-oxoacyl-ACP synthase	-0.56	0.000	2.4.0
lmo2201 lmo1332	GTPase EngC	-0.30 -0.56	0.000	5.2.0
lmo1332 lmo1149	alpha-ribazole-5'-phosphatase	-0.30 -0.56	0.000	2.5.0
lm01149 lm00406	hypothetical protein	-0.30 -0.56	0.000	5.2.0
lm00400 lm00628	•••	-0.30 -0.56	0.001	5.1.0
	hypothetical protein			
lmo1309	hypothetical protein	-0.56	0.000	5.2.0
lmo2239	hypothetical protein	-0.56	0.000	5.2.0
lmo1880	RNase HI	-0.55	0.000	3.1.0
lmo2560	DNA-directed RNA polymerase subunit delta	-0.55	0.001	3.5.3
lmo1587	ornithine carbamoyltransferase	-0.55	0.000	2.2.0
lmo1281	hypothetical protein	-0.55	0.000	5.2.0
lmo2706	hypothetical protein	-0.55	0.001	6.0.0
lmo0485	hypothetical protein	-0.55	0.001	5.2.0

lmo2427	7 cell division protein FtsW	-0.55	0.001	1.7.0
lmo2005	5 oxidoreductase	-0.55	0.000	2.1.1
lmo1214	4 hypothetical protein	-0.54	0.002	6.0.0
lmo1390	ABC transporter permease	-0.54	0.000	1.2.0
lmo1299	9 glutamine synthetase	-0.54	0.000	2.2.0
lmo2715	5 ABC transporter ATP-binding protein	-0.54	0.000	1.2.0
lmo0610) internalin	-0.54	0.001	1.8.0
lmo0755	5 hypothetical protein	-0.54	0.000	5.2.0
lmo1761	sodium-dependent transporter	-0.54	0.001	1.2.0
lmo2024	<i>nicotinate-nucleotide pyrophosphorylase</i>	-0.54	0.000	2.5.0
lmo2641	heptaprenyl diphosphate synthase subunit II	-0.54	0.001	2.5.0
lmo1391	sugar ABC transporter permease	-0.54	0.000	1.2.0
lmo2207	7 hypothetical protein	-0.54	0.000	5.2.0
lmo0840) hypothetical protein	-0.53	0.000	5.2.0
lmo2021	hypothetical protein	-0.53	0.000	5.2.0
lmo1978	glucose-6-phosphate 1-dehydrogenase	-0.53	0.000	2.1.1
lmo2079	hypothetical protein	-0.53	0.002	5.1.0
lmo0008	3 cardiolipin synthase	-0.53	0.000	2.4.0
lmo1358	8 hypothetical protein	-0.53	0.001	5.2.0
lmo1908	8 hypothetical protein	-0.53	0.000	5.2.0
lmo1921	hypothetical protein	-0.53	0.000	5.2.0
lmo2400) acetyltransferase	-0.53	0.000	2.2.0
lmo0664	acetyl transferase	-0.52	0.000	2.1.1
lmo1319	prolyl-tRNA synthetase	-0.52	0.000	3.7.2
lmo0161	hypothetical protein	-0.52	0.003	5.2.0
lmo2388		-0.52	0.002	5.2.0
lmo0095	5 hypothetical protein	-0.52	0.001	5.1.0
lmo0549	0 internalin	-0.52	0.001	1.9.0
lmo2836	alcohol dehydrogenase	-0.52	0.000	2.1.1
lmo1346	6 competence protein ComGB	-0.52	0.000	1.10.0
lmo1389	sugar ABC transporter ATP-binding protein	-0.52	0.001	1.2.0
lmo0216	6 hypothetical protein	-0.51	0.002	5.2.0
lmo0526	6 transcriptional regulator	-0.51	0.001	3.5.2
lmo1939	cytidylate kinase	-0.51	0.000	2.3.0
lmo1653	3 cellsurface protein	-0.51	0.003	6.0.0
lmo2583		-0.51	0.002	3.5.2
lmo0003		-0.51	0.001	5.2.0
lmo1697	7 hypothetical protein	-0.51	0.001	5.2.0
lmo0481	hypothetical protein	-0.51	0.003	5.2.0
lmo1813	B phosphoglycerate dehydrogenase	-0.51	0.000	2.2.0
lmo0184	4 oligo-1,6-glucosidase	-0.50	0.004	2.1.1
lmo0948		-0.50	0.000	3.5.2
lmo1310		-0.50	0.000	5.2.0
lmo1682		-0.50	0.000	1.2.0
lmo2025	-	-0.50	0.003	2.5.0
lmo2106		-0.50	0.004	5.2.0
lmo1430		-0.50	0.003	5.2.0
lmo1770		-0.50	0.001	2.3.0
lmo0267		-0.49	0.001	5.2.0
lmo0991		-0.49	0.000	5.2.0
lmo1477		-0.49	0.000	2.1.1

lmo2424	thioredoxin	-0.49	0.001	1.4.0
lmo1729	beta-glucosidase	-0.49	0.001	2.1.1
lmo0455	hypothetical protein	-0.49	0.003	5.2.0
lmo1000	phytoene dehydrogenase	-0.49	0.000	2.1.1
lmo2033	cell division protein FtsA	-0.48	0.001	1.7.0
lmo0083	MerR family transcriptional regulator	-0.48	0.005	3.5.2
lmo0457	hypothetical protein	-0.48	0.005	5.2.0
lmo0756	ABC transporter ATP-binding protein	-0.48	0.000	1.2.0
lmo1259	gamma-glutamyl phosphate reductase	-0.48	0.004	2.2.0
lmo1668	hypothetical protein	-0.48	0.000	5.2.0
lmo0194	ABC transporter ATP-binding protein	-0.48	0.004	1.2.0
lmo0635	hypothetical protein	-0.48	0.001	5.2.0
lmo0733	transcriptional regulator	-0.48	0.002	3.5.2
lmo1573	acetyl-CoA carboxylase subunit beta	-0.48	0.003	2.4.0
lmo1688	enoyl-ACP reductase	-0.48	0.003	2.1.1
lmo1851	carboxy-terminal processing proteinase	-0.48	0.002	2.2.0
lmo1249	hypothetical protein	-0.48	0.005	5.1.0
lmo1738	amino acid ABC transporter substrate-binding protein	-0.48	0.008	1.2.0
lmo0487	hypothetical protein	-0.48	0.005	5.2.0
lmo2705	hypothetical protein	-0.48	0.006	5.2.0
lmo1868	hypothetical protein	-0.47	0.000	5.2.0
lmo2831	phosphoglucomutase	-0.47	0.008	2.1.1
lmo0928	3-methyladenine DNA glycosylase	-0.47	0.004	3.2.0
lmo2582	histidine kinase	-0.47	0.004	1.3.0
lmo2857	hypothetical protein	-0.47	0.006	na
lmo0458	hydantoinase	-0.47	0.008	2.2.0
lmo0612	MarR family transcriptional evidence	-0.47	0.000	3.5.2
lmo0883	hypothetical protein	-0.47	0.005	5.2.0
lmo0937	hypothetical protein	-0.47	0.002	6.0.0
lmo1781	hypothetical protein	-0.47	0.003	5.2.0
lmo2537	UDP-N-acetylglucosamine 2-epimerase	-0.47	0.005	2.1.1
lmo1435	dihydrodipicolinate synthase	-0.47	0.004	2.2.0
lmo2780	PTS cellbiose transporter subunit IIA	-0.47	0.002	1.2.0
lmo2707	hypothetical protein	-0.47	0.007	6.0.0
lmo2737	LacI family transcriptional regulator	-0.47	0.004	3.5.2
lmo0199	ribose-phosphate pyrophosphokinase	-0.47	0.004	na
lmo2634	hypothetical protein	-0.47	0.005	5.2.0
lmo1147	cobalamin biosynthesis protein CopB	-0.46	0.006	2.5.0
lmo0491	3-dehydroquinate dehydratase	-0.46	0.007	2.2.0
lmo1446	metal (zinc) transport protein (ABC transporter permease)	-0.46	0.004	1.2.0
lmo2023	L-aspartate oxidase	-0.46	0.001	2.5.0
lmo2593	MerR family transcriptional regulator	-0.46	0.007	3.5.2
lmo0084	oxidoreductase	-0.46	0.010	2.1.1
lmo1919	hypothetical protein	-0.46	0.002	5.2.0
lmo0557	phosphoglycerate mutase	-0.46	0.005	2.1.2
lmo1434	hypothetical protein	-0.46	0.003	5.2.0
lmo1701	hypothetical protein	-0.46	0.006	6.0.0
lmo2393	hypothetical protein	-0.46	0.007	5.2.0
lmo2716	ABC transporter	-0.46	0.003	1.2.0
lmo0613	oxidoreductase	-0.46	0.000	2.1.1
lmo1667	L-lactate dehydrogenase	-0.45	0.001	2.1.0

lmo0405	phosphate transporter	-0.45	0.007	1.2.0
lmo1576	hypothetical protein	-0.45	0.009	5.2.0
lmo0511	hypothetical protein	-0.45	0.008	5.2.0
lmo0653	hypothetical protein	-0.45	0.004	5.2.0
lmo0156	hypothetical protein	-0.45	0.001	5.1.0
lmo0622	hypothetical protein	-0.45	0.003	6.0.0
lmo0637	hypothetical protein	-0.45	0.009	3.6.0
lmo0198	bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase	-0.45	0.011	1.1.0
lmo0556	phosphoglycerate mutase	-0.44	0.008	2.1.2
lmo0835	peptidoglycan binding protein	-0.44	0.002	1.8.0
lmo0935	rRNA methylase	-0.44	0.003	3.6.0
lmo0982	peptidase	-0.44	0.004	2.1.1
lmo1445	ZurR family transcriptional regulator	-0.44	0.003	3.5.2
lmo1869	hypothetical protein	-0.44	0.001	5.2.0
lmo1419	hypothetical protein	-0.44	0.003	5.2.0
lmo2658	acyltransferase	-0.44	0.004	2.2.0
lmo0903	hypothetical protein	-0.44	0.014	5.2.0
lmo1827	guanylate kinase	-0.44	0.007	2.3.0
lmo2038	UDP-N-acetylmuramoylalanyl-D-glutamate2,6-diaminopimelate ligase	-0.44	0.001	1.1.0
lmo2392	hypothetical protein	-0.44	0.009	5.2.0
lmo2217	hypothetical protein	-0.44	0.001	5.2.0
lmo2796	transcriptional regulator	-0.44	0.002	3.5.2
lmo2657	deoxyguanosinetriphosphate triphosphohydrolase	-0.44	0.007	2.3.0
lmo0407	hypothetical protein	-0.43	0.009	5.2.0
lmo0983	glutathione peroxidase	-0.43	0.004	4.1.0
lmo1232	recombination and DNA strand exchange inhibitor protein	-0.43	0.004	3.2.0
lmo2062	copper transporter	-0.43	0.002	1.2.0
lmo1336	5-formyltetrahydrofolate cyclo-ligase	-0.43	0.002	2.5.0
lmo2127	hypothetical protein	-0.43	0.013	5.2.0
lmo0655	phosphoprotein phosphatase	-0.43	0.011	3.8.0
lmo1566	isocitrate dehydrogenase	-0.43	0.011	2.1.3
lmo1500	adenine phosphoribosyltransferase	-0.42	0.012	2.3.0
lmo1524 lmo2519	teichoic acid linkage unit synthesis protein	-0.42	0.009	1.1.0
lmo2319 lmo2164	AraC family transcriptional regulator	-0.42	0.003	3.5.2
lmo2428	cell division protein FtsW	-0.42	0.003	1.7.0
lmo2420 lmo0026	copper homeostasis protein CutC	-0.42	0.007	4.2.0
lm00020	glutamine synthetase repressor	-0.42	0.007	3.5.2
lmo1298 lmo2744	Crp/Fnr family transcriptional regulator	-0.42	0.000	3.5.2
lmo2262	hypothetical protein	-0.42	0.000	5.2.0
lm02202 lm00844	hypothetical protein	-0.42	0.000	5.2.0
lm00844 lm01025	hypothetical protein	-0.42	0.003	5.2.0
lmo1025 lmo1096	GMP synthase	-0.42	0.002	2.3.0
lmo1030	amino acid transporter	-0.42	0.001	1.2.0
lmo1527	preprotein translocase SecDF	-0.42	0.005	1.6.0
lmo1327 lmo0034	PTS cellbiose transporter subunit IIC	-0.42 -0.42	0.003	1.0.0
lmo0034 lmo1567	citrate synthase	-0.42 -0.42	0.011	2.1.3
lmo1507 lmo1698	-	-0.42 -0.41	0.007	2.1.5 3.8.0
	ribosomal-protein-alanine N-acetyltransferase			
lmo2569 lmo2712	peptide ABC transporter substrate-binding protein gluconate kinase	-0.41 -0.41	0.014 0.001	1.2.0
lmo2712 lmo0947	-	-0.41 -0.41	0.001	2.1.1 1.2.0
1110094/	hypothetical protein	-0.41	0.005	1.2.0

lmo1047	molybdenum cofactor biosynthesis protein A	-0.41	0.015	2.5.0
lmo2151	hypothetical protein	-0.41	0.006	5.2.0
lmo0346	triosephosphate isomerase	-0.41	0.012	2.1.2
lmo1619	D-amino acid aminotransferase	-0.41	0.008	2.2.0
lmo1739	amino acid ABC transporter ATP-binding protein	-0.41	0.018	1.2.0
lmo1512	tRNA-specific 2-thiouridylase	-0.41	0.006	3.6.0
lmo1730	sugar ABC transporter substrate-binding protein	-0.41	0.014	1.2.0
lmo2089	lipase	-0.40	0.016	2.4.0
lmo0879	hypothetical protein	-0.40	0.018	5.2.0
lmo2592	aldo/keto reductase	-0.40	0.020	2.1.1
lmo1224	hypothetical protein	-0.40	0.003	5.2.0
lmo0077	hypothetical protein	0.40	0.022	5.2.0
lmo0659	transcriptional regulator	0.40	0.009	3.5.2
lmo0443	LytR family transcriptional regulator	0.40	0.011	3.5.2
lmo2503	cardiolipin synthase	0.40	0.011	2.4.0
lmo1545	septum formation inhibitor MinC	0.40	0.006	1.7.0
lmo0090	ATP synthase F0F1 subunit alpha	0.40	0.000	1.4.0
lmo0742	ABC transporter ATP-binding protein	0.41	0.0012	1.2.0
lmo1376	6-phosphogluconate dehydrogenase	0.41	0.001	2.1.1
lmo1370	16S ribosomal RNA methyltransferase RsmE	0.41	0.015	5.2.0
lmo1470 lmo0449	hypothetical protein	0.41	0.010	5.1.0
lmo0449 lmo0871	hypothetical protein	0.41	0.003	5.2.0
lm00371	GntR family transcriptional regulator	0.41	0.004	3.5.2
lmo1242	hypothetical protein	0.41	0.019	5.2.0
lmo1242 lmo1638	hypothetical protein	0.41	0.007	5.2.0
lmo1038 lmo0507	PTS galactitol transporter subunit IIB	0.41	0.020	1.2.0
lmo0307 lmo0744		0.41	0.011	1.2.0
lm00744 lm01208	ABC transporter ATP-binding protein	0.41	0.008	2.5.0
lmo1208 lmo1399	cobyric acid synthase CbiP			
	phosphodiesterase	0.41	0.008	5.2.0
lmo0911	hypothetical protein	0.42	0.016	5.2.0
lmo1436	aspartate kinase	0.42	0.012	2.2.0
lmo0031	LacI family transcription regulator	0.42	0.007	3.5.2
lmo1227	uracil-DNA glycosylase	0.42	0.004	3.2.0
lmo1510	hypothetical protein	0.42	0.004	5.2.0
lmo2355	multidrug resistance protein	0.42	0.013	1.2.0
lmo0728	riboflavin kinase / FAD synthase	0.42	0.011	2.5.0
lmo1532	Holliday junction DNA helicase RuvB	0.42	0.011	3.3.0
lmo2701	hypothetical protein	0.42	0.009	5.2.0
lmo0510	hypothetical protein	0.43	0.008	6.0.0
lmo0743	hypothetical protein	0.43	0.003	6.0.0
lmo1032	transketolase	0.43	0.006	2.1.1
lmo1031	hypothetical protein	0.43	0.006	5.2.0
lmo0858	LacI family transcriptional regulator	0.43	0.001	3.5.2
lmo2364	hypothetical protein	0.43	0.005	6.0.0
lmo1257	hypothetical protein	0.43	0.015	6.0.0
lmo1897	aspartate aminotransferase	0.43	0.001	2.2.0
lmo2173	sigma-54-dependent transcriptional regulator	0.43	0.004	3.5.2
lmo2577	hypothetical protein	0.43	0.006	5.2.0
lmo2166	hypothetical protein	0.43	0.004	5.1.0
lmo0546	NAD(P)-dependent oxidoreductase	0.43	0.012	1.4.0
lmo1033	transketolase	0.43	0.007	2.1.1

lmo1488	nicotinic acid mononucleotide adenylyltransferase	0.44	0.008	5.2.0
lmo2544	thymidine kinase	0.44	0.002	2.3.0
lmo2264	hypothetical protein	0.44	0.007	5.2.0
lmo0508	PTS galactitol transporter subunit IIC	0.44	0.004	1.2.0
lmo0217	DivIC protein	0.44	0.001	1.7.0
lmo2703	hypothetical protein	0.44	0.010	5.2.0
lmo2820	amino-terminal domain-containing protein	0.44	0.006	3.5.2
lmo1841	hypothetical protein	0.45	0.002	6.0.0
lmo0616	glycerophosphoryl diester phosphodiesterase	0.45	0.004	2.1.1
lmo0764	lipoate-protein ligase	0.45	0.009	3.8.0
lmo1790	hypothetical protein	0.45	0.009	5.2.0
lmo2502	hypothetical protein	0.45	0.001	5.2.0
lmo1949	hypothetical protein	0.45	0.005	5.2.0
lmo0999	hypothetical protein	0.45	0.005	6.0.0
lmo2266	hypothetical protein	0.45	0.006	5.2.0
lmo2490	CsbA protein	0.45	0.005	5.2.0
lmo1563	dephospho-CoA kinase	0.46	0.004	5.2.0
lmo2445	internalin	0.46	0.004	1.8.0
lmo0727	glucosaminefructose-6-phosphate aminotransferase	0.46	0.000	2.1.1
lmo1484	competence protein ComEA	0.46	0.005	1.10.0
lmo1509	exodeoxyribonuclease V	0.46	0.001	3.3.0
lmo1821	phosphoprotein phosphatase	0.46	0.006	3.8.0
lmo0572	hypothetical protein	0.46	0.004	6.0.0
lmo2083	hypothetical protein	0.46	0.007	5.2.0
lmo2303	hypothetical protein	0.46	0.001	5.2.0
lmo0520	transcriptional regulator	0.46	0.005	3.5.2
lmo1721	transcriptional regulator	0.46	0.003	3.5.2
lmo1721	hypothetical protein	0.46	0.003	5.2.0
lmo2398	hypothetical protein	0.40	0.010	4.1.0
lmo1343	competence protein ComGE	0.47	0.003	1.10.0
lmo1545 lmo2504	cell wall-binding protein	0.47	0.009	1.8.0
lmo2304 lmo0317	phosphomethylpyrimidine kinase	0.47	0.003	2.5.0
lmo0600	hypothetical protein	0.47	0.000	5.2.0
lm00000 lm01341	competence protein ComG	0.47	0.000	1.10.0
lmo1341 lmo1873	dihydrofolate reductase	0.47	0.000	2.5.0
lmo1344	competence protein ComGD	0.47	0.000	1.10.0
lmo1344 lmo0133	hypothetical protein	0.47	0.000	5.2.0
lmo0133 lmo1743	hypothetical protein	0.47	0.008	6.0.0
lmo1743 lmo2049	hypothetical protein	0.47	0.004	5.2.0
lmo2049 lmo0321	hypothetical protein	0.47	0.000	5.2.0
lm00521 lm02580	ABC transporter ATP-binding protein	0.47	0.008	1.2.0
lmo2380 lmo2190	adaptor protein	0.47		1.2.0
lmo2190 lmo0953		0.48	0.002	6.0.0
	hypothetical protein		0.003	
lmo2178	peptidoglycan binding protein	0.48	0.008	1.8.0
lmo1584	hypothetical protein	0.48	0.000	5.2.0
lmo2143	hypothetical protein	0.48	0.002	2.1.1
lmo2444	glycosidase	0.48	0.004	2.1.1
lmo1408	hypothetical protein	0.49	0.001	5.2.0
lmo2245	hypothetical protein	0.49	0.001	5.2.0
lmo1012	N-acyl-L-amino acid amidohydrolase	0.49	0.000	2.2.0
lmo0036	putrescine carbamoyltransferase	0.50	0.003	2.2.0

lmo2672	AraC family transcriptional regulator	0.50	0.002	3.5.2
lmo0212	hypothetical protein	0.50	0.001	6.0.0
lmo2085	peptidoglycan binding protein	0.51	0.007	1.8.0
lmo2255	hypothetical protein	0.51	0.000	6.0.0
lmo2564	4-oxalocrotonate isomerase	0.51	0.002	2.1.1
lmo0029	hypothetical protein	0.51	0.000	5.2.0
lmo1593	iron-sulfur cofactor synthesis protein NifS	0.51	0.000	2.5.0
lmo1626	hypothetical protein	0.51	0.001	6.0.0
lmo0385	IolC protein	0.52	0.001	2.1.1
lmo1742	adenine deaminase	0.52	0.000	2.3.0
lmo2010	two-component response regulator	0.52	0.000	3.5.2
lmo0415	endo-1,4-beta-xylanase	0.52	0.000	2.1.1
lmo2525	rod shape-determining protein MreB	0.52	0.002	1.1.0
lmo0845	hypothetical protein	0.52	0.000	5.2.0
lmo0959	undacaprenyl-phosphate N-acetylglucosaminyltransferase	0.52	0.002	1.1.0
lmo1339	glucose kinase	0.52	0.000	2.1.1
lmo1398	recombinase A	0.52	0.000	3.3.0
lmo1336	hypothetical protein	0.53	0.000	5.2.0
lmo1679	cystathionine beta-lyase	0.53	0.002	2.2.0
lmo2462	dipeptidase	0.53	0.001	2.2.0
lmo1645	ATP-dependent dsDNA exonuclease SbcC	0.53	0.001	3.3.0
lmo1045	carboxyphosphonoenolpyruvate phosphonomutase	0.53	0.001	2.1.1
lmo0073	hypothetical protein	0.53	0.001	6.0.0
lmo0332	thiamine-phosphate pyrophosphorylase	0.55	0.001	2.5.0
lmo1860	methionine sulfoxide reductase A	0.54	0.001	3.8.0
lmo1000 lmo0082	hypothetical protein	0.54	0.001	6.0.0
lm00082 lm02268	ATP-dependent deoxyribonuclease subunit B	0.54	0.001	3.3.0
lmo2208 lmo1013	hypothetical protein	0.54	0.002	5.2.0
lmo1013 lmo1874	thymidylate synthase	0.55	0.002	2.3.0
lmo1874 lmo1956	Fur family transcriptional regulator	0.55	0.000	3.5.2
lmo1930 lmo2385	hypothetical protein	0.55	0.000	5.2.0
	potassium-transporting ATPase subunit C	0.55	0.000	
lmo2680		0.56		1.2.0
lmo1342 lmo2767	competence protein ComGF hypothetical protein	0.56	0.000 0.000	1.10.0 5.2.0
		0.36		
lmo1135	hypothetical protein		0.000	6.0.0
lmo2267	ATP-dependent deoxyribonuclease subunit A	0.56	0.001	3.3.0
lmo1400	N-acetyltransferase histidine kinase	0.57	0.000	4.2.0
lmo2679		0.57	0.000	1.3.0
lmo1267	trigger factor	0.57	0.000	3.9.0
lmo1744	hypothetical protein	0.57	0.000	5.2.0
lmo1411	hypothetical protein	0.57	0.000	5.2.0
lmo2055	hypothetical protein	0.57	0.000	5.2.0
lmo0900	hypothetical protein	0.58	0.000	5.2.0
lmo0829	pyruvate-flavodoxin oxidoreductase	0.58	0.000	1.4.0
lmo1639	DNA-3-methyladenine glycosidase	0.58	0.002	3.2.0
lmo2356	hypothetical protein	0.58	0.000	6.0.0
lmo0930	hypothetical protein	0.58	0.000	5.2.0
lmo2067	bile acid hydrolase	0.58	0.000	4.2.0
lmo1996	DeoR family transcriptional regulator	0.58	0.000	3.5.2
lmo1460	DNA repair protein RecO	0.59	0.001	3.3.0
lmo2471	NADPH dehydrogenase	0.59	0.000	1.4.0

lmo1461	hypothetical protein	0.59	0.000	6.0.0
lmo2171	MFS transporter	0.59	0.000	1.2.0
lmo0516	encapsulation protein CapA	0.60	0.000	1.1.0
lmo1607	phenylalanyl-tRNA synthetase subunit beta	0.60	0.000	na
lmo1678	bifunctional homocysteine S-methyltransferase/5,10-methylenetetrahydrofolate reductase	0.60	0.000	2.2.0
lmo0872	antibiotic resistance protein	0.60	0.000	1.2.0
lmo0571	methyltransferase	0.60	0.000	3.2.0
lmo1514	recombination factor protein RarA	0.60	0.000	5.2.0
lmo0383	methylmalonate-semialdehyde dehydrogenase	0.61	0.000	2.1.1
lmo1386	DNA translocase	0.61	0.000	3.4.0
lmo1401	hypothetical protein	0.61	0.000	5.2.0
lmo0386	IolD protein	0.61	0.000	2.1.1
lmo1681	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	0.62	0.000	2.2.0
lmo2671	hypothetical protein	0.62	0.000	6.0.0
lmo0037	amino acid transporter	0.62	0.000	1.2.0
lmo2016	cold-shock protein	0.62	0.000	4.1.0
lmo1745	two-component response regulator	0.63	0.000	3.5.2
lmo0419	hypothetical protein	0.63	0.000	5.2.0
lmo1483	competence protein ComEB	0.65	0.000	1.10.0
lmo1535	hypothetical protein	0.65	0.000	5.2.0
lmo0038	agmatine deiminase	0.65	0.000	5.2.0
lmo2222	hypothetical protein	0.65	0.000	5.2.0
lmo2845	MFS transporter	0.66	0.000	1.2.0
lmo2011	two-component sensor histidine kinase	0.66	0.000	1.3.0
lmo2425	glycine cleavage system protein H	0.66	0.000	2.2.0
lmo2670	hypothetical protein	0.66	0.000	5.2.0
lmo0614	hypothetical protein	0.67	0.000	5.2.0
lmo2540	phosphatase	0.67	0.000	2.6.0
lmo0396	pyrroline-5-carboxylate reductase	0.67	0.000	2.2.0
lmo0160	peptidoglycan binding protein	0.67	0.000	1.8.0
lmo0451	hypothetical protein	0.67	0.000	6.0.0
lmo0831	hypothetical protein	0.68	0.000	5.2.0
lmo0397	hypothetical protein	0.68	0.000	5.2.0
lmo2043	MFS transporter	0.68	0.000	5.2.0
lmo2146	LysR family transcriptional regulator	0.69	0.000	3.5.2
lmo2014	sugar hydrolase	0.70	0.000	2.1.1
lmo1533	Holliday junction DNA helicase RuvA	0.70	0.000	3.3.0
lmo2501	two-component response phosphate regulator	0.70	0.000	3.5.2
lmo0360a	hypothetical protein	0.70	0.000	na
lmo0931	lipoate protein ligase A	0.70	0.000	2.4.0
lmo2709	hypothetical protein	0.70	0.000	6.0.0
lmo0390	uracil-DNA glycosylase	0.71	0.000	3.2.0
lmo1875	ABC transporter ATP-binding protein	0.71	0.000	1.2.0
lmo1457	hypothetical protein	0.71	0.000	5.2.0
lmo1780	aminotripeptidase	0.71	0.000	2.2.0
lmo2013	hypothetical protein	0.71	0.000	5.2.0
lmo2170	hypothetical protein	0.72	0.000	5.2.0
lmo0104	hypothetical protein	0.73	0.000	6.0.0
lmo1397	competence damage-inducible protein CinA	0.74	0.000	1.10.0
lmo2500	two-component sensor histidine kinase	0.74	0.000	1.3.0

lmo2541	tRNA threonylcarbamoyladenosine biosynthesis protein	0.74	0.000	3.7.3					
lmo0941	hypothetical protein	0.74	0.000	5.2.0					
lmo1846	multidrug transporter	0.75	0.000	5.2.0					
lmo0603	hypothetical protein	0.75	0.000	6.0.0					
lmo1950	hypothetical protein	0.75	0.000	5.2.0					
lmo2339	hypothetical protein	0.75	0.000	5.2.0					
lmo0039	carbamate kinase	0.75	0.000	2.2.0					
lmo0368	hypothetical protein	0.75	0.000	na					
lmo1778	ABC transporter ATP-binding protein	0.76	0.000	1.2.0					
lmo1609	thioredoxin	0.78	0.000	1.4.0					
lmo0645	amino acid transporter	0.78	0.000	1.2.0					
lmo2189	competence protein CoiA	0.79	0.000	1.10.0					
lmo0763	Ser/Thr protein phosphatase family protein	0.80	0.000	5.2.0					
lmo1608	hypothetical protein	0.81	0.000	5.2.0					
lmo0356	oxidoreductase	0.82	0.000	2.1.1					
lmo0866a	hypothetical protein	0.82	0.000	na					
lmo1611	aminopeptidase	0.82	0.000	2.2.0					
lmo0942	heat shock protein 90	0.83	0.000	4.1.0					
lmo0752	hypothetical protein	0.84	0.000	4.2.0					
lmo1534	L-lactate dehydrogenase	0.85	0.000	2.1.1					
† Spearman	† Spearman correlation coefficient								
‡ Functional classification is retrieved from ListiList (http://genolist.pasteur.fr/ListiList/).									
Description for each functional category code is presented below;									

[1.1.0] Cell envelope and cellular processes > Cell wall

[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins

[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)

[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics

[1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis

[1.6.0] Cell envelope and cellular processes > Protein secretion

[1.7.0] Cell envelope and cellular processes > Cell division

[1.8.0] Cell envelope and cellular processes > Cell surface proteins

[1.9.0] Cell envelope and cellular processes > Soluble internalin

[1.10.0] Cell envelope and cellular processes > Transformation/competence

[2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule

[2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways

[2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways

[2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle

[2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules

[2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids

[2.4.0] Intermediary metabolism > Metabolism of lipids

[2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups

[2.6.0] Intermediary metabolism > Metabolism of phosphate

[3.1.0] Information pathways > DNA replication

[3.2.0] Information pathways > DNA restriction/modification and repair

[3.3.0] Information pathways > DNA recombination

[3.4.0] Information pathways > DNA packaging and segregation

[3.5.1] Information pathways > RNA synthesis > Initiation

[3.5.2] Information pathways > RNA synthesis > Regulation

[3.5.3] Information pathways > RNA synthesis > Elongation

[3.5.4] Information pathways > RNA synthesis > Termination

[3.6.0] Information pathways > RNA modification

- [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins
- [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases
- [3.7.3] Information pathways > Protein synthesis > Initiation
- [3.7.4] Information pathways > Protein synthesis > Elongation
- [3.7.5] Information pathways > Protein synthesis > Termination
- [3.8.0] Information pathways > Protein modification
- [3.9.0] Information pathways > Protein folding
- [4.1.0] Other functions > Adaptation to atypical conditions
- [4.2.0] Other functions > Detoxification
- [4.3.0] Other functions > Phage-related functions
- [4.4.0] Other functions > Transposon and IS
- [4.5.0] Other functions > Miscellaneous
- [5.1.0] Similar to unknown proteins > From Listeria
- [5.2.0] Similar to unknown proteins > From other organisms
- [6.0.0] No similarity
- [na] No information available

Coefficient Functional q-value Locus tag Product † category ‡ lmo0752 -0.68 0.000 4.2.0 hypothetical protein lmo1780 aminotripeptidase -0.68 0.0002.2.0 lmo0104 -0.65 0.000 6.0.0 hypothetical protein lmo2014 sugar hydrolase -0.65 0.0002.1.1 -0.63 lmo0532 hypothetical protein 0.000 6.0.0 lmo0397 -0.62 0.000 5.2.0 hypothetical protein lmo2170 -0.62 0.000 5.2.0 hypothetical protein lmo2013 hypothetical protein -0.60 0.0005.2.0 lmo1457 hypothetical protein -0.59 0.000 5.2.0 lmo1611 aminopeptidase -0.57 0.008 2.2.0 lmo2845 MFS transporter -0.57 0.005 1.2.0 lmo1534 -0.56 0.006 2.1.1 L-lactate dehydrogenase lmo0942 heat shock protein 90 -0.55 0.006 4.1.0 lmo0645 amino acid transporter -0.55 0.011 1.2.0 lmo0153 -0.55 0.0001.2.0 zinc ABC transporter substrate-binding protein lmo2549 wall teichoic acid glycosylation protein GtcA -0.55 0.006 1.1.0 lmo0396 -0.54 0.008 2.2.0 pyrroline-5-carboxylate reductase lmo2339 -0.54 0.009 5.2.0 hypothetical protein lmo2011 two-component sensor histidine kinase -0.54 0.0001.3.0 -0.53 lmo2189 competence protein CoiA 0.013 1.10.0 lmo2146 LysR family transcriptional regulator -0.53 0.006 3.5.2 5.2.0 lmo0941 hypothetical protein -0.52 0.007 lmo0360a hypothetical protein -0.52 0.011 na lmo1257 hypothetical protein -0.52 0.010 6.0.0 lmo1135 hypothetical protein -0.52 0.005 6.0.0 lmo2171 -0.51 0.009 1.2.0 MFS transporter lmo0212 -0.51 6.0.0 hypothetical protein 0.000 lmo1744 hypothetical protein -0.51 0.007 5.2.0 lmo0390 uracil-DNA glycosylase -0.51 0.008 3.2.0 lmo1551 folyl-polyglutamate synthetase -0.51 0.003 2.5.0 lmo0763 -0.50 0.014 5.2.0 Ser/Thr protein phosphatase family protein lmo1609 -0.50 0.015 1.4.0 thioredoxin lmo1950 hypothetical protein -0.50 0.011 5.2.0 endo-1,4-beta-xylanase lmo0415 0.007 -0.49 2.1.1lmo1470 16S ribosomal RNA methyltransferase RsmE -0.490.008 5.2.0 lmo0866a -0.49 0.017 hypothetical protein na lmo1875 ABC transporter ATP-binding protein -0.49 0.021 1.2.0 lmo0358 PTS fructose transporter subunit IIBC -0.49 0.015 1.2.0 lmo1679 cystathionine beta-lyase -0.480.011 2.2.0 lmo1397 competence damage-inducible protein CinA -0.48 0.020 1.10.0 lmo2444 -0.48 0.014 2.1.1 glycosidase lmo2500 two-component sensor histidine kinase -0.48 0.012 1.3.0 lmo1504 alanyl-tRNA synthetase -0.48 0.009 3.7.2 lmo2553 -0.48 0.0005.2.0 hypothetical protein lmo2068 molecular chaperone GroEL -0.480.005 3.9.0 lmo1533 -0.47 3.3.0 Holliday junction DNA helicase RuvA 0.021 lmo0981 -0.47 0.009 1.2.0 transporter

Supplementary Table 3. List of genes whose transcript levels are correlated with genotype classification with regard to virulence (hypo-versus hypervirulence)

lmo1471	ribosomal protein L11 methyltransferase	-0.47	0.008	3.8.0
lmo1411	hypothetical protein	-0.47	0.013	5.2.0
lmo2069	co-chaperonin GroES	-0.47	0.006	3.9.0
lmo1535	hypothetical protein	-0.47	0.015	5.2.0
lmo0419	hypothetical protein	-0.47	0.012	5.2.0
lmo2268	ATP-dependent deoxyribonuclease subunit B	-0.47	0.022	3.3.0
lmo1681	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	-0.46	0.022	2.2.0
lmo1742	adenine deaminase	-0.46	0.011	2.3.0
lmo2442	hypothetical protein	-0.46	0.003	5.2.0
lmo1608	hypothetical protein	-0.46	0.025	5.2.0
lmo2425	glycine cleavage system protein H	-0.46	0.009	2.2.0
lmo1874	thymidylate synthase	-0.46	0.014	2.3.0
lmo1242	hypothetical protein	-0.46	0.011	5.2.0
lmo0931	lipoate protein ligase A	-0.46	0.018	2.4.0
lmo1519	aspartyl-tRNA synthetase	-0.46	0.008	3.7.2
lmo2501	two-component response phosphate regulator	-0.46	0.015	3.5.2
lmo1846	multidrug transporter	-0.46	0.025	5.2.0
lmo1778	ABC transporter ATP-binding protein	-0.46	0.021	1.2.0
lmo0510	hypothetical protein	-0.46	0.014	6.0.0
lmo1678	bifunctional homocysteine S-methyltransferase/5,10-methylenetetrahydrofolate reductase	-0.45	0.012	2.2.0
lmo2043	MFS transporter	-0.45	0.024	5.2.0
lmo0451	hypothetical protein	-0.45	0.024	6.0.0
lmo2222	hypothetical protein	-0.45	0.024	5.2.0
lmo0829	pyruvate-flavodoxin oxidoreductase	-0.45	0.011	1.4.0
lmo1460	DNA repair protein RecO	-0.44	0.034	3.3.0
lmo0959	undacaprenyl-phosphate N-acetylglucosaminyltransferase	-0.44	0.023	1.1.0
lmo0039	carbamate kinase	-0.44	0.026	2.2.0
lmo0136	peptide ABC transporter permease	-0.43	0.003	1.2.0
lmo1745	two-component response regulator	-0.43	0.029	3.5.2
lmo2462	dipeptidase	-0.43	0.018	2.2.0
lmo0498	5-phosphate isomerase	-0.43	0.022	2.1.1
lmo2267	ATP-dependent deoxyribonuclease subunit A	-0.43	0.029	3.3.0
lmo0317	phosphomethylpyrimidine kinase	-0.43	0.017	2.5.0
lmo0614	hypothetical protein	-0.43	0.029	5.2.0
lmo0900	hypothetical protein	-0.43	0.022	5.2.0
lmo0831	hypothetical protein	-0.42	0.034	5.2.0
lmo0571	methyltransferase	-0.42	0.020	3.2.0
lmo2373	PTS beta-glucoside transporter subunit IIB	-0.42	0.032	1.2.0
lmo0371	GntR family transcriptional regulator	-0.42	0.038	3.5.2
lmo1170	PduX protein	-0.42	0.021	5.2.0
lmo0833	transcriptional regulator	-0.42	0.009	3.5.2
lmo2172	propionate CoA-transferase	-0.42	0.018	2.1.1
lmo0383	methylmalonate-semialdehyde dehydrogenase	-0.42	0.029	2.1.1
lmo1639	DNA-3-methyladenine glycosidase	-0.42	0.043	3.2.0
lmo1037	PTS glucose transporter subunit IIA	-0.42	0.028	1.2.0
lmo1017 lmo0370	hypothetical protein	-0.42	0.020	5.2.0
lmo0356	oxidoreductase	-0.42	0.045	2.1.1
lmo2767	hypothetical protein	-0.41	0.036	5.2.0
lmo2167	hypothetical protein	-0.41	0.005	5.2.0
lmo1743	hypothetical protein	-0.41	0.031	6.0.0
	· · · ·		-	-

lmo2083	hypothetical protein	-0.41	0.040	5.2.0
lmo0516	encapsulation protein CapA	-0.41	0.018	1.1.0
lmo0368	hypothetical protein	-0.41	0.051	na
lmo1483	competence protein ComEB	-0.41	0.027	1.10.0
lmo0318	thiamine-phosphate pyrophosphorylase	-0.41	0.037	2.5.0
lmo0872	antibiotic resistance protein	-0.41	0.036	1.2.0
lmo2709	hypothetical protein	-0.41	0.034	6.0.0
lmo2580	ABC transporter ATP-binding protein	-0.41	0.006	1.2.0
lmo1996	DeoR family transcriptional regulator	-0.40	0.024	3.5.2
lmo0508	PTS galactitol transporter subunit IIC	-0.40	0.027	1.2.0
lmo0154	zinc ABC transporter ATP-binding protein	-0.40	0.022	1.2.0
lmo2010	two-component response regulator	-0.40	0.028	3.5.2
lmo2525	rod shape-determining protein MreB	-0.40	0.036	1.1.0
lmo0357	PTS sugar transporter subunit IIA	-0.40	0.018	1.2.0
lmo2814	TetR family transcriptional regulator	0.40	0.031	3.5.2
lmo0853	SugE protein	0.40	0.035	3.9.0
lmo1445	ZurR family transcriptional regulator	0.40	0.021	3.5.2
lmo0617	hypothetical protein	0.40	0.045	5.1.0
lmo0733	transcriptional regulator	0.40	0.033	3.5.2
lmo0622	hypothetical protein	0.40	0.018	6.0.0
lmo0970	enoyl-ACP reductase	0.41	0.030	2.4.0
lmo1573	acetyl-CoA carboxylase subunit beta	0.41	0.026	2.4.0
lmo2201	3-oxoacyl-ACP synthase	0.41	0.020	2.4.0
lmo0480	transcriptional regulator	0.41	0.029	3.5.2
lmo0187	hypothetical protein	0.41	0.023	5.2.0
lmo1599	catabolite control protein A	0.41	0.033	3.5.2
lmo1377	formyl-tetrahydrofolate synthetase	0.41	0.024	2.5.0
lmo1677 lmo0623	hypothetical protein	0.41	0.013	5.1.0
lm00023	preprotein translocase SecDF	0.41	0.013	1.6.0
lmo1327 lmo1827	guanylate kinase	0.41	0.020	2.3.0
lmo1027 lmo1908	hypothetical protein	0.41	0.022	5.2.0
lmo1308 lmo2729	hypothetical protein	0.41	0.022	5.2.0
lmo2025	quinolinate synthetase	0.41	0.024	2.5.0
lmo2023 lmo0724	hypothetical protein	0.42	0.035	5.2.0
lm00724 lm01247	hypothetical protein	0.42	0.010	5.1.0
lm01247 lm01447	metal (zinc) transport protein(ABC transporter ATP-binding protein)	0.42	0.013	1.2.0
lmo1447 lmo0613	oxidoreductase	0.42	0.020	2.1.1
lm00013 lm02023		0.42		
lmo2023 lmo0305	L-aspartate oxidase L-allo-threonine aldolase	0.42	0.013	2.5.0
	NAD-dependent deacetylase		0.025	2.2.0
lmo2739		0.42	0.030	3.5.2
lmo0529	glucosaminyltransferase	0.42	0.033	2.1.1
lmo2078	hypothetical protein	0.43	0.024	5.2.0
lmo2092	glycine betaine transporter BetL	0.43	0.030	1.2.0
lmo1946	acyl-CoA hydrolase	0.43	0.015	2.4.0
lmo0612	MarR family transcriptional evidence	0.43	0.000	3.5.2
lmo1939	cytidylate kinase	0.43	0.009	2.3.0
lmo1149	alpha-ribazole-5'-phosphatase	0.43	0.020	2.5.0
lmo2793	hypothetical protein	0.43	0.018	6.0.0
lmo1308	hypothetical protein	0.43	0.029	3.8.0
lmo1485	hypothetical protein	0.43	0.019	5.2.0
lmo1812	L-serine dehydratase	0.44	0.015	2.2.0

lmo2641	heptaprenyl diphosphate synthase subunit II	0.44	0.026	2.5.0
lmo0755	hypothetical protein	0.44	0.007	5.2.0
lmo2523	single-strand DNA-binding protein	0.44	0.015	3.1.0
lmo2480	acetyltransferase	0.44	0.013	2.1.1
lmo1486	hypothetical protein	0.44	0.015	5.2.0
lmo2058	heme O oxygenase	0.44	0.024	2.5.0
lmo1446	metal (zinc) transport protein (ABC transporter permease)	0.44	0.015	1.2.0
lmo1005	3-hydroxyisobutyrate dehydrogenase	0.44	0.009	2.4.0
lmo0223	cysteine synthase	0.44	0.018	2.2.0
lmo2127	hypothetical protein	0.44	0.026	5.2.0
lmo1214	hypothetical protein	0.44	0.028	6.0.0
lmo1274	polypeptide deformylase	0.44	0.016	3.8.0
lmo2366	DeoR family transcriptional regulator	0.44	0.026	3.5.2
lmo1347	competence protein ComGA	0.45	0.021	1.10.0
lmo2728	MerR family transcriptional regulator	0.45	0.024	3.5.2
lmo0530	hypothetical protein	0.45	0.025	5.2.0
lmo1761	sodium-dependent transporter	0.45	0.020	1.2.0
lmo0983	glutathione peroxidase	0.45	0.011	4.1.0
lmo1890	hypothetical protein	0.45	0.012	5.2.0
lmo1878	manganese transport transcriptional regulator	0.46	0.005	3.5.2
lmo0528	hypothetical protein	0.46	0.023	1.8.0
lmo1127	hypothetical protein	0.46	0.025	6.0.0
lmo0531	hypothetical protein	0.47	0.022	6.0.0
lmo1419	hypothetical protein	0.47	0.005	5.2.0
lmo1283	LacX protein	0.47	0.027	5.2.0
lmo0522	transcriptional regulator	0.47	0.014	3.5.2
lmo1817	hypothetical protein	0.47	0.022	2.5.0
lmo0928	3-methyladenine DNA glycosylase	0.47	0.016	3.2.0
lmo0653	hypothetical protein	0.48	0.012	5.2.0
lmo1275	DNA topoisomerase I	0.48	0.004	3.4.0
lmo2377	multidrug transporter	0.48	0.015	1.2.0
lmo1212	hypothetical protein	0.48	0.012	5.2.0
lmo2587	hypothetical protein	0.48	0.015	5.2.0
lmo1670	hypothetical protein	0.48	0.015	5.2.0
lmo1291	acyltransferase	0.48	0.015	1.1.0
lmo1701	hypothetical protein	0.48	0.011	6.0.0
lmo1826	DNA-directed RNA polymerase subunit omega	0.48	0.019	5.2.0
lmo1312	hypothetical protein	0.48	0.009	6.0.0
lmo2033	cell division protein FtsA	0.48	0.008	1.7.0
lmo1049	molybdopterin biosynthesis protein MoeB	0.48	0.016	2.5.0
lmo0527	transmembrane protein	0.48	0.009	6.0.0
lmo2024	nicotinate-nucleotide pyrophosphorylase	0.48	0.009	2.5.0
lmo0003	hypothetical protein	0.49	0.008	5.2.0
lmo1870	alkaline phosphatase	0.49	0.010	2.6.0
lmo1644	helicase SNF2	0.49	0.014	3.5.3
lmo1688	enoyl-ACP reductase	0.49	0.006	2.1.1
lmo1371	dihydrolipoamide dehydrogenase	0.50	0.003	2.4.0
lmo2520	O-succinylbenzoate-CoA synthase	0.50	0.000	2.5.0
lmo0975	ribose-5-phosphate isomerase A	0.50	0.007	2.1.1
lmo2719	hypothetical protein	0.51	0.003	5.2.0
lmo0839	tetracycline resistance protein	0.51	0.009	1.2.0

lmo0652	hypothetical protein	0.52	0.009	5.2.0
lmo1800	protein-tyrosine phosphatase	0.52	0.007	3.8.0
lmo1050	hypothetical protein	0.53	0.010	5.2.0
lmo1213	hypothetical protein	0.54	0.003	5.2.0
lmo1370	butyrate kinase	0.56	0.000	2.4.0
lmo0540	penicillin-binding protein	0.56	0.009	1.1.0
lmo1089	glycerol-3-phosphate cytidylyltransferase	0.56	0.005	1.1.0
lmo2117	hypothetical protein	0.57	0.000	5.2.0
lmo2032	cell division protein FtsZ	0.57	0.005	1.7.0
lmo0832	transposase	0.57	0.005	4.4.0
lmo2519	teichoic acid linkage unit synthesis protein	0.57	0.000	1.1.0
lmo1944	ferredoxin	0.59	0.003	1.4.0
lmo1779	hypothetical protein	0.59	0.000	6.0.0
lmo2557	lipid kinase	0.59	0.000	5.2.0
lmo0772	transcriptional regulator	0.59	0.000	3.5.2
lmo1430	hypothetical protein	0.60	0.000	5.2.0
lmo0322	hypothetical protein	0.61	0.000	5.2.0
lmo1500	hypothetical protein	0.62	0.000	5.2.0
lmo2551	transcription termination factor Rho	0.62	0.000	3.5.4
lmo1413	peptidoglycan binding protein	0.64	0.000	1.8.0
lmo2527	hypothetical protein	0.65	0.000	5.2.0
lmo1689	A/G-specific adenine glycosylase	0.67	0.000	3.2.0
lmo1078	UDP-glucose pyrophosphorylase	0.67	0.000	1.1.0
† Spearmar	n correlation coefficient			

‡ Functional classification is retrieved from ListiList (http://genolist.pasteur.fr/ListiList/).

Description for each functional category code is presented below;

[1.1.0] Cell envelope and cellular processes > Cell wall

[1.2.0] Cell envelope and cellular processes > Transport/binding proteins and lipoproteins

[1.3.0] Cell envelope and cellular processes > Sensors (signal transduction)

[1.4.0] Cell envelope and cellular processes > Membrane bioenergetics

[1.5.0] Cell envelope and cellular processes > Mobility and chemotaxis

[1.6.0] Cell envelope and cellular processes > Protein secretion

[1.7.0] Cell envelope and cellular processes > Cell division

[1.8.0] Cell envelope and cellular processes > Cell surface proteins

[1.9.0] Cell envelope and cellular processes > Soluble internalin

[1.10.0] Cell envelope and cellular processes > Transformation/competence

[2.1.0] Intermediary metabolism > Metabolism of carbohydrates and related molecule

[2.1.1] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Specific pathways

[2.1.2] Intermediary metabolism > Metabolism of carbohydrates and related molecule > Main glycolytic pathways

[2.1.3] Intermediary metabolism > Metabolism of carbohydrates and related molecule > TCA cycle

[2.2.0] Intermediary metabolism > Metabolism of amino acids and related molecules

[2.3.0] Intermediary metabolism > Metabolism of nucleotides and nucleic acids

[2.4.0] Intermediary metabolism > Metabolism of lipids

[2.5.0] Intermediary metabolism > Metabolism of coenzymes and prosthetic groups

[2.6.0] Intermediary metabolism > Metabolism of phosphate

[3.1.0] Information pathways > DNA replication

[3.2.0] Information pathways > DNA restriction/modification and repair

[3.3.0] Information pathways > DNA recombination

[3.4.0] Information pathways > DNA packaging and segregation

[3.5.1] Information pathways > RNA synthesis > Initiation

[3.5.2] Information pathways > RNA synthesis > Regulation

- [3.5.3] Information pathways > RNA synthesis > Elongation
- [3.5.4] Information pathways > RNA synthesis > Termination
- [3.6.0] Information pathways > RNA modification
- [3.7.1] Information pathways > Protein synthesis > Ribosomal proteins
- [3.7.2] Information pathways > Protein synthesis > Aminoacyl-tRNA synthetases
- [3.7.3] Information pathways > Protein synthesis > Initiation
- [3.7.4] Information pathways > Protein synthesis > Elongation
- [3.7.5] Information pathways > Protein synthesis > Termination
- [3.8.0] Information pathways > Protein modification
- [3.9.0] Information pathways > Protein folding
- [4.1.0] Other functions > Adaptation to atypical conditions
- [4.2.0] Other functions > Detoxification
- [4.3.0] Other functions > Phage-related functions
- [4.4.0] Other functions > Transposon and IS
- [4.5.0] Other functions > Miscellaneous
- [5.1.0] Similar to unknown proteins > From Listeria
- [5.2.0] Similar to unknown proteins > From other organisms
- [6.0.0] No similarity
- [na] No information available

Supplementary Table 4. Comparison of q-values in Spearman's rank correlation analyses between original and refined datasets

Locus tag product Origi Refin Origi Refin Origi Refin Origi Refin nal ed nal ed			Lir	eage	Maury's		LT50	
Ind ed nal ed nad ed nad	Locustor	product				-	Origi	Refin
inc0002 DSA polymerase III subuni bela 0.19 0.11 0.13 0.14 0.74 0.24 inc0003 bypothetical protein 0.37 0.00 0.33 0.01 0.76 0.55 inc0004 bypothetical protein 0.24 0.39 0.12 0.45 0.80 0.81 inc0007 DXA gyrase subuni B 0.17 0.44 0.13 0.44 0.30 0.40 0.69 0.88 inc00007 DXA gyrase subuni A 0.02 0.02 0.05 0.87 0.46 0.48 0.43 0.89 0.67 inc00007 pxraymase subuni A 0.02 0.22 0.50 0.83 0.69 0.85 0.64 0.35 0.64 0.83 0.89 0.65 1.64 0.10 0.36 0.91 0.47 0.18 0.43 0.89 0.65 1.64 1.60001 0.36 0.84 0.64 0.64 0.60 0.83 0.80 0.84 0.60 0.84 0.60 0.84 <td< th=""><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		-						
ime0003 bypolatical protein 0.12 0.01 0.76 0.35 ime00005 recombination protein F 0.12 0.38 0.02 0.43 0.80 0.88 ime0006 DNA gyrase subunit B 0.17 0.44 0.13 0.48 0.80 0.88 ime0006 DNA gyrase subunit A 0.02 0.05 0.18 0.87 0.46 ime0007 DNA gyrase subunit A 0.02 0.05 0.18 0.48 0.87 0.48 0.87 0.48 0.87 0.48 0.87 0.48 0.87 0.48 0.87 0.48 0.87 0.44 0.04 0.36 0.64 0.48 0.87 0.44 0.03 0.82 0.64 0.38 0.87 0.44 0.33 0.88 0.69 0.44 0.36 0.84 0.54 1.63 1.63 1.63 1.63 0.54 1.64 1.61 1.62 0.8 0.80 0.84 0.54 1.64 1.64 1.61 1.64 1.	lmo0001							
bm0004 İxpochetical protein 0.12 0.38 0.02 0.43 0.80 0.58 bm0005 recombination protein F 0.24 0.38 0.02 0.55 0.61 bm0006 DNA gyrase subunit A 0.02 0.02 0.05 0.04 0.05 0.64 0.38 0.02 0.05 0.04 0.05 0.64 0.83 0.04 0.05 0.64 0.05 0.85 0.64 0.05 0.85 0.65 0.05								
bm00005 recombination protein F 0.24 0.39 0.12 0.55 0.87 0.641 bm00007 DNA gyrase subunit A 0.17 0.44 0.13 0.48 0.90 0.40 bm00005 gyrase subunit A 0.02 0.02 0.05 0.15 0.45 0.17 0.40 0.40 0.50 0.43 0.50 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43 0.44 0.45 0.55								
Inad006 DNA gyrase subunit A 0.17 0.44 0.00 0.05 0.18 0.46 Inad007 DNA gyrase subunit A 0.02 0.02 0.05 0.19 0.87 0.46 Inad0008 cardiolipin synthase 0.01 0.00 0.04 0.43 0.89 0.55 Inad011 mevalonate diphosphate decarboxylase 0.17 0.40 0.04 0.36 0.91 0.48 0.83 0.88 0.69 Inad011 AA3-600 quinol oxidase subunit I 0.043 0.17 0.40 0.40 0.80 0.54 1.60 0.44 0.80 0.54 1.60 0.44 0.80 0.54 1.60 0.44 0.40 0.80 0.54 1.60 1.60 0.80 0.54 1.60 1.60 0.44 0.40 0.40 0.80 0.54 1.60 1.60 0.44 0.40 0.40 0.50 1.60 1.60 0.53 0.48 0.40 0.50 1.60 1.60 1.60 1.60								
Introd007 DNA grass submit A 0.02 0.02 0.02 0.01 0.04 0.05 0.06 0.04 0.05 0.06 0.08 0.06 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.05 0.05 0.010 0.02 0.08 0.03 0.08 0.03 0.08 0.03 0.08 0.01 0.43 0.88 0.64 1m00011 mevalonate kinase 0.14 0.41 0.01 0.04 0.14 0.01								
Inn0000 cardiolipin synthase 0.01 0.00 0.04 0.05 0.48 Inn0010 mevalonate kinase 0.10 0.42 0.44 0.48 0.89 0.57 Inn0011 mevalonate kinase 0.17 0.40 0.40 0.38 0.67 Inn0012 mevalonate kinase 0.17 0.40 0.40 0.38 0.89 0.55 Inn0011 AA3-600 quinol oxidase subumi I 0.03 0.17 0.10 0.88 0.80 0.44 Inn0016 AA3-600 quinol oxidase subumi II 0.03 0.12 0.10 0.08 0.85 0.68 Inn0016 quinol oxidase aab-600 subuni IV 0.03 0.08 0.41 0.01 0.22 0.84 0.81 Inn0017 capsule biosynthesis protein 0.24 0.38 0.07 0.48 0.82 0.52 Inn0012 PTS fructose transporter subuni IIA 0.27 0.34 0.09 0.48 0.80 0.35 0.88 0.50 Inn0022 P								
Inn0000 spermidine actyltransferase 0.12 0.42 0.42 0.80 0.47 Inn0011 mevalonate kinase 0.17 0.40 0.80 0.35 0.55 Inn0011 Ax3-600 quinol oxidase subunit II 0.03 0.17 0.10 0.80 0.83 0.88 0.69 Inn0014 Ax3-600 quinol oxidase subunit II 0.03 0.11 0.01 0.30 0.88 0.69 Inn0017 CA3-600 quinol oxidase subunit II 0.03 0.12 0.10 0.10 0.11 0.02 0.88 0.69 Inn0017 capsule biosynthesis protein CapA 0.10 0.41 0.01 0.41 0.02 0.88 0.80 Inn0012 CHK Rainly transpriptional regulator 0.19 0.44 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.84 0.76 0.49 0.80 0.75 0.70 0.13 0.44 0.75 0.53 0.70 0.13 0.44 0.86 0.50 0.56 0.50								
Inn0010 micvalonate kimse 0.40 0.80 0.12 0.80 0.55 Inn0011 mevalonate diphosphate decarboxylase 0.16 0.17 0.40 0.04 0.36 0.91 0.47 Inn0013 AA3-600 quinol oxidase subunit II 0.03 0.17 0.08 0.83 0.68 0.68 0.54 Inn0014 AA3-600 quinol oxidase subunit II 0.03 0.08 0.00 0.09 0.76 0.49 Inn0015 AA3-600 quinol oxidase subunit II 0.03 0.08 0.00 0.08 0.50 0.68 Inn0016 quinol oxidase au3-600 subunit IV 0.03 0.02 0.11 0.02 0.48 0.74 0.29 Inn0012 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.45 0.88 0.39 Inn0012 PTS fructose transporter subunit IIA 0.27 0.34 0.00 0.00 0.00 0.01 0.11 0.48 0.58 Inn0012 PTS fructose transporter subunit IIA 0.20 0.2								
imo0011 mevalonate diphosphate decarboxylase 0.17 0.40 0.04 0.36 0.01 0.08 0.35 0.88 0.69 imo0012 AA3-600 quinol oxidase subunit II 0.03 0.17 0.01 0.08 0.35 0.68 0.65 0.64 imo0014 AA3-600 quinol oxidase subunit II 0.03 0.12 0.01 0.02 0.08 0.85 0.64 imo0017 capsule biosynthesis protein CapA 0.10 0.11 0.02 0.84 0.52 imo0012 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.48 0.88 0.50 imo0022 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.48 0.88 0.39 imo0022 PTS fructose transporter subunit IID 0.07 0.13 0.84 0.36 imo0023 physhohetical protein 0.00 0.00 0.01 0.01 0.04 0.79 0.3 0.84 0.80 imo0023 physhohetical protein 0.02								
hmo0012 mevalonate kinase 0.36 0.08 0.33 0.88 0.69 hmo0013 AA3-600 quinol oxidase subunit II 0.03 0.17 0.01 0.08 0.83 0.64 hmo0015 AA3-600 quinol oxidase subunit II 0.01 0.01 0.09 0.76 0.49 hmo0017 capsule biosynthesis protein CapA 0.10 0.01 0.02 0.16 0.82 0.58 hmo0017 capsule biosynthesis protein CapA 0.10 0.01 0.01 0.38 0.07 0.48 0.88 0.51 hmo0018 beta-glucosidase 0.02 0.11 0.02 0.22 0.84 0.48 0.88 0.39 hmo0021 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.45 0.88 0.39 hmo0022 PTS fructose transporter subunit IID 0.07 0.13 0.03 0.26 0.45 0.38 0.47 hmo0025 phosphoheptose isomerase 0.12 0.40 0.40 0.79 0.22								
hmo0013 AA3-600 quinol oxidase subuni I 0.03 0.17 0.01 0.08 0.85 0.64 hmo0014 AA3-600 quinol oxidase subuni II 0.03 0.12 0.01 0.99 0.76 0.49 hmo0016 quinol oxidase subuni IIV 0.03 0.02 0.16 0.82 0.58 hmo0017 expaule hiosynthesis protein CapA 0.10 0.41 0.01 0.22 0.84 0.52 hmo0019 hypothetical protein 0.24 0.38 0.07 0.48 0.74 0.29 hmo0020 Graft Amily transcriptional regulator 0.19 0.34 0.05 0.33 0.84 0.40 hmo0022 PTS fructose transporter subunit IIB 0.30 0.30 0.09 0.45 0.88 0.39 hmo023 phosphohetpotes isomerase 0.12 0.40 0.02 2.77 0.20 0.26 hmo023 phosphohetpotesis isomerase 0.12 0.40 0.02 2.7 0.20 0.26 hmo023 phosphohetpotesis isomerase 0.12 0.40 0.02 2.7 0.20 0.26 hmo02								
Imo0014 AA3-600 quinol oxidase subunit II 0.04 0.11 0.02 0.08 0.80 0.54 Imo0015 AA3-600 quinol oxidase subunit III 0.03 0.08 0.01 0.01 0.00 0.02 0.16 0.82 0.58 Imo0017 capsule biosynthesis protein CapA 0.10 0.11 0.02 0.22 0.84 0.52 Imo0018 beta-glucosidase 0.02 0.11 0.02 0.22 0.84 0.32 Imo0020 GRR family transcriptional regulator 0.19 0.44 0.88 0.39 Im00022 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.45 0.88 0.39 Im00023 PTS fructose transporter subunit IIC 0.20 0.20 0.21 0.22 0.22 0.22 Im0025 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.32 0.26 0.85 0.36 Im0025 phosphoheptose isomerase 0.12 0.40 0.02 0.21 0.22 0.26 Im0026 coper homcostasis protein CutC 0.01								
<i>imo00115</i> AA3-600 quinol oxidase subunit II 0.03 0.12 0.01 0.09 0.76 0.49 <i>imo0016</i> quinol oxidase aa3-600 subunit IV 0.03 0.01 0.41 0.01 0.30 0.85 0.68 0.02 0.16 0.82 0.58 0.05 0.68 0.02 0.11 0.02 0.22 0.84 0.52 0.88 0.07 0.48 0.74 0.29 <i>imo0019</i> bypothetical protein 0.24 0.34 0.05 0.53 0.84 0.40 <i>imo0021</i> PTS fructose transporter subunit IIB 0.30 0.30 0.09 0.48 0.88 0.39 <i>imo0022</i> PTS fructose transporter subunit IID 0.07 0.13 0.03 0.26 0.85 0.36 <i>imo0023</i> phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.92 0.26 <i>imo0024</i> PTS manose transporter subunit IIABC 0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.27 0.22 0.22 0.26 0.27 0.25 0.71 0.41		-						
Imo0016 quinol oxidase aa3-600 subunit IV 0.03 0.08 0.02 0.16 0.82 0.58 Imo0017 capsule biosynthesis protein CapA 0.10 0.41 0.01 0.34 0.02 0.21 0.02 0.22 0.84 0.52 Imo0019 hypothetical protein 0.24 0.38 0.07 0.48 0.88 0.39 Imo0022 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.45 0.88 0.39 Im00023 PTS fructose transporter subunit IID 0.07 0.13 0.03 0.02 0.27 0.32 0.26 0.85 0.36 Im00025 phosphocheptose isomerase 0.12 0.01 0.01 0.04 0.07 0.13 0.04 0.02 0.27 0.92 0.26 Im00025 phosphocheptose isomerase 0.12 0.01 0.01 0.01 0.01 0.04 0.79 0.28 Im00026 phypothetical protein 0.02 0.10 0.41 0.66 <		1						
Imo0017 capsule biosynthesis protein CapA 0.10 0.41 0.01 0.30 0.85 0.68 Imo0018 beta-glucosidase 0.02 0.11 0.02 0.84 0.52 Imo0020 GntR family transcriptional regulator 0.19 0.34 0.05 0.53 0.84 0.40 Imo0021 PTS fructose transporter subunit IIB 0.30 0.30 0.00 0.45 0.88 0.50 Im00023 PTS fructose transporter subunit IIC 0.20 0.35 0.07 0.31 0.84 0.36 Im00024 PTS fructose transporter subunit IIC 0.20 0.27 0.26 0.85 0.36 Im00025 Popsphoehptoes isomerase 0.12 0.40 0.02 0.27 0.22 0.26 0.85 0.36 Im00025 PTS beta-glucoside transporter subunit IIABC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Imo0018 beta-glucosidase 0.02 0.11 0.02 0.22 0.84 0.52 Imo0019 hypothetical protein 0.24 0.38 0.07 0.48 0.74 0.29 Imo0021 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.48 0.88 0.39 Imo0022 PTS fructose transporter subunit IIC 0.20 0.35 0.07 0.31 0.84 0.48 Imo0023 PTS mannose transporter subunit IID 0.07 0.13 0.03 0.26 0.85 0.36 Im00025 phosphoheptose isomerase 0.12 0.40 0.02 0.24 0.92 0.62 Im00026 PTS beta-glucoside transporter subunit IIABC 0.10 0.01 0.01 0.77 0.78 0.81 Im00031 Lacl family transcription regulator 0.10 0.01 0.17 0.78 0.28 Im00033 typothetical protein 0.03 0.02 0.01 0.17 0.78 0.47 Im00033 tal fami		1						
Imo0019 hypoThetical protein 0.24 0.38 0.07 0.48 0.74 0.29 Imo0020 Gratk family transcriptional regulator 0.19 0.34 0.05 0.33 0.84 0.48 0.88 0.39 Imo0022 PTS fructose transporter subunit IIB 0.30 0.30 0.09 0.45 0.88 0.30 Imo0023 PTS fructose transporter subunit IIC 0.20 0.35 0.07 0.31 0.48 0.88 0.30 Imo0025 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.92 0.26 Imo0026 copper homeostasis protein CutC 0.01 0.01 0.01 0.04 0.79 0.28 Imo0027 PTS beta-glucoside transporter subunit IIABC 0.10 0.01 0.11 0.74 0.41 Imo0031 hypothetical protein 0.10 0.00 0.00 0.07 0.11 0.74 0.20 Imo0032 xylose repressor 0.00 0.00 0.01 0.03 0.02								
Imo0020 GritR family transcriptional regulator 0.19 0.34 0.05 0.53 0.84 0.40 Imo0021 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.48 0.88 0.39 Imo0023 PTS fructose transporter subunit IIC 0.20 0.35 0.07 0.31 0.84 0.36 Imo0024 PTS manose transporter subunit IID 0.01 0.01 0.04 0.02 0.26 0.85 0.36 Imo0025 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.92 0.26 Imo0027 PTS beta-glucoside transporter subunit IIABC 0.01 0.01 0.01 0.04 0.79 0.28 Imo0031 hypothetical protein 0.00 0.00 0.01 0.17 0.83 0.47 Imo0032 xylose repressor 0.00 0.00 0.01 0.17 0.83 0.47 Imo0033 guucosaminefructose-6-phosphate aminotransferase 0.01 0.01 0.02 0.24 0.66 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		•						
Imm0021 PTS fructose transporter subunit IIA 0.27 0.34 0.09 0.48 0.88 0.39 Imm0022 PTS fructose transporter subunit IIB 0.30 0.00 0.09 0.45 0.88 0.30 Imm0023 PTS fructose transporter subunit IID 0.07 0.13 0.03 0.26 0.85 0.36 Imm0025 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.28 0.26 0.85 0.36 Imm0025 copper homeostasis protein CutC 0.01 0.01 0.01 0.04 0.79 0.28 Imm0023 hypothetical protein 0.00 0.00 0.07 0.11 0.74 0.41 Imm0030 hypothetical protein 0.10 0.01 0.17 0.78 0.41 Imm0031 kale family transcription regulator 0.10 0.01 0.17 0.78 0.41 Imm0033 caldguenase 0.03 0.02 0.25 0.71 0.15 Imm0033 guecosamine-fructose-6-phosphate aminotransferase 0.01 0.00 0.24 0.66 0.09 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Imo0022 PTS fructose transporter subunit IIB 0.30 0.30 0.30 0.09 0.45 0.88 0.50 Imo0023 PTS fructose transporter subunit IID 0.07 0.31 0.03 0.26 0.85 0.36 Imo0026 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.92 0.26 Imo0026 copper homeostasis protein CutC 0.01 0.01 0.04 0.79 0.28 Imo0026 hypothetical protein 0.00 0.00 0.07 0.11 0.74 0.41 Imo0030 hypothetical protein 0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.11 0.74 0.41 Imo0031 Lacl family transcription regulator 0.10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.21 0.06 0.02 0.24 0.26 0.09 0.03 0.03 0.02 0.25 0.71 0.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Imo0023 PTS fructose transporter subunit IIC 0.20 0.35 0.07 0.31 0.84 0.36 Imo0024 PTS mannose transporter subunit IID 0.07 0.13 0.03 0.26 0.85 0.36 Imo0025 phosphoheptose isomerase 0.11 0.40 0.02 0.27 0.92 0.26 Imo0027 PTS beta-glucoside transporter subunit IIABC 0.01 0.01 0.01 0.01 0.01 0.11 0.74 0.41 Imo0039 hypothetical protein 0.14 0.06 0.17 0.17 0.88 0.47 Imo0031 Lacl family transcription regulator 0.10 0.01 0.01 0.16 0.74 0.20 Imo0033 glucosaminefructose-6-phosphate aminotransferase 0.03 0.02 0.24 0.66 0.09 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.01 0.01 0.02 0.24 0.66 0.09 Imo0035 glucosamine-fructose-6-phosphate aminotransferase 0.01 0.01 0.02 <		-						
Imo0024 PTS mannose transporter subunit IID 0.07 0.13 0.03 0.26 0.85 0.36 Imo0025 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.92 0.62 Imo0027 PTS beta glucoside transporter subunit IIABC 0.01 0.01 0.01 0.04 0.79 0.28 Imo0029 hypothetical protein 0.00 0.07 0.11 0.74 0.41 Imo0030 hypothetical protein 0.10 0.01 0.01 0.17 0.18 0.91 Imo0033 endoglucanase 0.03 0.02 0.21 0.71 0.83 0.71 Imo0034 PTS cellbiose transporter subunit IIC 0.01 0.01 0.01 0.02 0.24 0.66 0.13 Imo0033 endoglucanase 0.01 0.04 0.02 0.24 0.66 0.09 Imo0034 PTS cellbiose transporter subunit IIC 0.01 0.01 0.01 0.01 0.02 0.44 0.66 0.09 Imo0035 glucosamine-fructose-6-phosphate aminotransferase 0.01 0.01 0.		-						
Imo0025 phosphoheptose isomerase 0.12 0.40 0.02 0.27 0.92 0.26 Imo0026 copper homeostasis protein CutC 0.01 0.01 0.01 0.04 0.79 0.28 Imo0027 PTS beta-glucoside transporter subunit IIABC 0.00 0.00 0.01 0.11 0.74 0.41 Imo0030 hypothetical protein 0.14 0.06 0.17 0.17 0.83 0.47 Imo0031 Lacl family transcription regulator 0.00 0.00 0.02 0.01 0.16 0.74 0.40 Imo0033 endoglucanase 0.03 0.03 0.02 0.25 0.71 0.15 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.28 0.00 0.29 0.66 0.09 Imo0037 amino acid transporter ubors 0.03 0.02 0.02 0.66 0.09 Imo0038 agmatine deiminase 0.26 0.09 0.85 0.43 Imo0037 atima acid transporter <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Imo0026 copper homeostasis protein CutC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.22 0.22 0.62 Imo0027 PTS beta-glucoside transporter subunit IIABC 0.00 0.00 0.00 0.01 0.11 0.74 0.41 Imo0031 Lacl family transcription regulator 0.10 0.11 0.17 0.83 0.47 Imo0032 xylose repressor 0.00 0.00 0.02 0.01 0.16 0.74 0.20 Imo0033 endoglucanase 0.03 0.02 0.01 0.01 0.03 0.22 0.71 0.15 Imo0034 PTS cellbiose transporter subunit IIC 0.01 0.01 0.03 0.24 0.66 0.19 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.01 0.01 0.02 0.24 0.66 0.09 Imo0035 gurantine deiminase 0.05 0.00 0.28 0.10 0.76 0.30 Imo0044 agm		-						
Imo0027 PTS beta-glucoside transporter subunit IIABC 0.10 0.39 0.02 0.24 0.92 0.62 Imo0029 hypothetical protein 0.00 0.00 0.07 0.11 0.74 0.41 Imo0030 hypothetical protein 0.14 0.06 0.17 0.18 0.47 Imo0031 Lacl family transcription regulator 0.10 0.01 0.01 0.08 0.91 0.60 Imo0033 endoglucanase 0.03 0.03 0.02 0.25 0.71 0.15 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.01 0.01 0.03 0.41 0.66 0.13 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.05 0.00 0.29 0.66 0.99 Imo0038 agmatine deiminase 0.15 0.00 0.28 0.00 0.29 0.68 0.43 Imo0039 carbamatyltransferase 0.15 0.00 0.28 0.10 0.76 0.30 Imo0039 car								
Imo0029 hypothetical protein 0.00 0.00 0.07 0.11 0.74 0.41 Imo0030 hypothetical protein 0.14 0.06 0.17 0.17 0.83 0.47 Imo0031 Lacl family transcription regulator 0.10 0.01 0.17 0.08 0.91 0.60 Imo0032 sylose repressor 0.00 0.02 0.01 0.16 0.74 0.20 Imo0033 endoglucanase 0.03 0.03 0.02 0.25 0.71 0.15 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.01 0.01 0.03 0.41 0.66 0.09 Imo0033 amino acid transporter 0.05 0.00 0.26 0.09 0.85 0.43 Imo0033 agmatine deiminase 0.15 0.00 0.26 0.09 0.85 0.43 Imo0034 agmatine deiminase 0.15 0.00 0.26 0.03 0.10 0.76 0.30 Imo0040 agmatine deiminase								
Imo0030 hypothetical protein 0.14 0.06 0.17 0.17 0.83 0.47 Imo0031 Lacl family transcription regulator 0.10 0.01 0.17 0.08 0.91 0.60 Imo0032 xylose repressor 0.00 0.02 0.01 0.16 0.74 0.20 Imo0033 endoglucanase 0.03 0.03 0.02 0.25 0.71 0.15 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.01 0.04 0.02 0.24 0.66 0.09 Imo0037 armino acid transporter 0.05 0.00 0.22 0.06 0.92 0.68 Imo0037 armino acid transporter 0.05 0.00 0.26 0.09 0.30 0.72 0.22 Imo0037 argmatine deiminase 0.30 0.49 0.13 0.48 0.86 0.66 Imo0040 agmatine deiminase 0.30 0.49 0.13 0.48 0.86 0.66 Imo0041 hypothetical								
Imo0031 Lacl family transcription regulator 0.10 0.01 0.17 0.08 0.91 0.60 Imo0032 xylose repressor 0.00 0.02 0.01 0.16 0.74 0.20 Imo0033 endoglucanase 0.03 0.03 0.02 0.25 0.71 0.15 Imo0035 glucosamine-fructose-6-phosphate aminotransferase 0.01 0.04 0.02 0.24 0.66 0.09 Imo0037 amino acid transporter 0.05 0.00 0.26 0.09 0.85 0.43 Imo0038 agmatine deiminase 0.15 0.00 0.26 0.09 0.85 0.43 Imo0034 agmatine deiminase 0.16 0.17 0.08 0.17 0.08 0.91 0.66 0.03 Imo0037 aim deiminase 0.16 0.01 0.10 0.22 0.28 0.30 Imo0038 agmatine deiminase 0.30 0.49 0.13 0.48 0.86 0.66 Imo0041 hypoth								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Imo0033 endoglucanase 0.03 0.03 0.02 0.25 0.71 0.15 Imo0034 PTS cellbiose transporter subunit IIC 0.01 0.01 0.03 0.41 0.66 0.13 Imo0035 glucosaminefructose-6-phosphate aminotransferase 0.01 0.04 0.02 0.24 0.66 0.09 Imo0036 putrescine carbamoyltransferase 0.28 0.00 0.29 0.66 0.92 0.68 Imo0037 amino acid transporter 0.05 0.00 0.26 0.09 0.85 0.43 Imo0036 carbamate kinase 0.07 0.00 0.26 0.09 0.85 0.43 Imo0040 agmatine deiminase 0.07 0.00 0.26 0.09 0.85 0.43 Imo0041 hypothetical protein 0.15 0.00 0.26 0.09 0.72 0.23 Imo0042 DedA protein 0.20 0.01 0.01 0.21 0.88 0.56 Imo0043 arginine deiminase 0.15 0.50 0.66 0.66 0.09 0.74 0.10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
lmo0035glucosaminefructose-6-phosphate aminotransferase 0.01 0.04 0.02 0.24 0.66 0.09 $lmo0036$ putrescine carbamoyltransferase 0.28 0.00 0.29 0.06 0.92 0.68 $lmo0037$ amino acid transporter 0.05 0.00 0.26 0.09 0.85 0.43 $lmo0038$ agmatine deiminase 0.15 0.00 0.28 0.10 0.76 0.30 $lmo0039$ carbamate kinase 0.07 0.00 0.26 0.03 0.72 0.23 $lmo0040$ agmatine deiminase 0.30 0.49 0.13 0.48 0.86 0.66 $lmo0041$ hypothetical protein 0.00 0.01 0.01 0.21 0.88 0.56 $lmo0043$ arginine deiminase 0.15 0.50 0.06 0.46 0.75 0.33 $lmo0043$ arginine deiminase 0.15 0.50 0.06 0.46 0.75 0.33 $lmo0043$ arginine deiminase 0.15 0.50 0.06 0.46 0.75 0.33 $lmo0043$ arginine deiminase 0.16 0.01 0.14 0.91 0.66 $lmo0043$ single-strand binding protein 0.04 0.32 0.02 0.26 0.91 0.66 $lmo0045$ single-strand binding protein S18 0.09 0.44 0.13 0.00 0.33 0.75 0.40 $lmo0051$ response regulator 0.12 0.12 0.24 <		-						
lm00036putrescine carbamoyltransferase 0.28 0.00 0.29 0.06 0.92 0.68 $lm0037$ amino acid transporter 0.05 0.00 0.26 0.09 0.85 0.43 $lm0038$ agmatine deiminase 0.15 0.00 0.28 0.10 0.76 0.30 $lm0039$ carbamate kinase 0.07 0.00 0.26 0.03 0.72 0.23 $lm00040$ agmatine deiminase 0.30 0.49 0.13 0.48 0.86 0.66 $lm0041$ hypothetical protein 0.00 0.01 0.01 0.21 0.88 0.56 $lm0043$ arginine deiminase 0.35 0.03 0.09 0.74 0.13 $lm0043$ arginine deiminase 0.15 0.50 0.06 0.46 0.75 0.33 $lm0044$ $30S$ ribosomal protein S6 0.05 0.16 0.01 0.14 0.91 0.60 $lm0045$ single-strand binding protein 0.04 0.32 0.02 0.26 0.91 0.66 $lm0047$ hypothetical protein 0.04 0.13 0.00 0.33 0.75 0.40 $lm00051$ response regulator 0.12 0.12 0.24 0.37 0.83 0.53 $lm00053$ sobornal protein L9 0.40 0.50 0.29 0.52 0.85 0.54 $lm00054$ replicative DNA helicase 0.33 0.03 0.09 0.37 0.89 0.55								
Imo0037amino acid transporter0.050.000.260.090.850.43Imo0038agmatine deiminase0.150.000.280.100.760.30Imo0039carbamate kinase0.070.000.260.030.720.23Imo0040agmatine deiminase0.300.490.130.480.860.66Imo0041hypothetical protein0.020.000.010.010.210.880.56Imo0043arginine deiminase0.150.500.060.460.750.33Imo004430S ribosomal protein S60.050.160.010.140.910.60Imo0045single-strand binding protein0.040.320.020.260.910.66Imo004630S ribosomal protein S180.090.420.030.360.910.65Imo0047hypothetical protein0.040.130.000.030.750.40Imo0051response regulator0.120.120.240.370.830.53Imo055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.070.150.060.020.720.28Imo0057hypothetical protein0.070.150.060.070.720.28Imo0056heat shoc		• • • •						
lmo0038agmatine deiminase0.150.000.280.100.760.30 $lm0039$ carbamate kinase0.070.000.260.030.720.23 $lm0040$ agmatine deiminase0.300.490.130.480.860.66 $lm0041$ hypothetical protein0.000.010.010.210.880.56 $lm0042$ DedA protein0.250.030.090.090.740.10 $lm0043$ arginine deiminase0.150.500.060.460.750.33 $lm0044$ 30S ribosomal protein S60.050.160.010.140.910.60 $lm0045$ single-strand binding protein0.040.320.020.260.910.66 $lm0046$ 30S ribosomal protein S180.090.420.030.360.910.65 $lm00048$ sensor histidine kinase AgrB0.090.140.080.190.900.69 $lm0051$ response regulator0.120.120.240.370.830.53 $lm0053$ 50S ribosomal protein L90.400.500.290.520.850.53 $lm0054$ replicative DNA helicase0.180.190.240.480.740.38 $lm0055$ adenylosuccinate synthetase0.330.030.090.370.890.55 $lm0056$ heat shock protein0.070.150.060.200.720.28 $lm0057$		- · · · · · · · · · · · · · · · · · · ·						
Imo0039carbamate kinase0.070.000.260.030.720.23Imo0040agmatine deiminase0.300.490.130.480.860.66Imo0041hypothetical protein0.000.010.010.210.880.56Imo0042DedA protein0.250.030.090.090.740.10Imo0043arginine deiminase0.150.500.060.460.750.33Imo004430S ribosomal protein S60.050.160.010.140.910.60Imo0045single-strand binding protein0.040.320.020.260.910.66Imo004630S ribosomal protein S180.090.420.030.360.910.65Imo0047hypothetical protein0.040.130.000.030.750.40Imo0048sensor histidine kinase AgrB0.090.140.080.190.69Imo055hypothetical protein0.390.260.260.520.850.53Imo055sols ribosomal protein L90.400.500.290.520.850.54Imo055adenylosuccinate synthetase0.330.030.090.370.890.55Imo056heat shock protein0.070.150.060.200.720.28Imo057hypothetical protein0.070.150.060.200.720.28Imo057hypothetical protein0.07		-						
Imo0040agmatine deiminase0.300.490.130.480.860.66Imo0041hypothetical protein0.000.010.010.210.880.56Imo0042DedA protein0.250.030.090.090.740.10Imo043arginine deiminase0.150.500.060.460.750.33Imo04430S ribosomal protein S60.050.160.010.140.910.60Imo045single-strand binding protein0.040.320.020.260.910.66Imo04630S ribosomal protein S180.090.420.030.360.910.65Imo047hypothetical protein0.040.130.000.030.750.40Imo048sensor histidine kinase AgrB0.090.140.080.190.900.69Imo055hypothetical protein0.390.260.260.520.850.53Imo055stribosomal protein L90.400.500.290.520.850.54Imo055adenylosuccinate synthetase0.330.030.090.370.890.55Imo056heat shock protein0.070.150.060.200.720.28Imo057hypothetical protein0.070.150.060.200.720.28Imo056heat shock protein0.010.030.020.100.720.28Imo057hypothetical protein <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
lmo0041hypothetical protein 0.00 0.01 0.21 0.88 0.56 $lmo0042$ DedA protein 0.25 0.03 0.09 0.09 0.74 0.10 $lmo0043$ arginine deiminase 0.15 0.50 0.06 0.46 0.75 0.33 $lmo0044$ 30S ribosomal protein S6 0.05 0.16 0.01 0.14 0.91 0.60 $lmo0045$ single-strand binding protein 0.04 0.32 0.02 0.26 0.91 0.66 $lmo0046$ 30S ribosomal protein S18 0.09 0.42 0.03 0.36 0.91 0.65 $lmo0047$ hypothetical protein 0.04 0.13 0.00 0.03 0.75 0.40 $lmo0047$ hypothetical protein 0.04 0.13 0.00 0.03 0.75 0.40 $lmo0047$ hypothetical protein 0.04 0.13 0.00 0.03 0.75 0.40 $lmo0051$ response regulator 0.12 0.12 0.24 0.37 0.83 0.53 $lmo0052$ hypothetical protein L9 0.40 0.50 0.29 0.52 0.85 0.54 $lmo0054$ replicative DNA helicase 0.33 0.03 0.09 0.37 0.89 0.55 $lmo0056$ heat shock protein 0.07 0.15 0.06 0.20 0.72 0.28 $lmo0056$ heat shock protein 0.07 0.15 0.06 0.20 0.72 0.28 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
lmo0042DedA protein0.250.030.090.0740.10 $lmo0043$ arginine deiminase0.150.500.060.460.750.33 $lmo0044$ 30S ribosomal protein S60.050.160.010.140.910.60 $lmo0045$ single-strand binding protein0.040.320.020.260.910.66 $lmo0046$ 30S ribosomal protein S180.090.420.030.360.910.65 $lmo0047$ hypothetical protein0.040.130.000.030.750.40 $lmo0048$ sensor histidine kinase AgrB0.090.140.080.190.900.69 $lmo0051$ response regulator0.120.120.240.370.830.53 $lmo0052$ hypothetical protein L90.400.500.290.520.850.54 $lmo0054$ replicative DNA helicase0.330.030.090.370.890.55 $lmo0055$ adenylosuccinate synthetase0.330.030.090.370.890.55 $lmo0056$ heat shock protein0.070.150.060.200.720.28 $lmo0057$ hypothetical protein0.010.030.020.100.720.23		· ·						
lmo0043arginine deiminase0.150.500.060.460.750.33 $lmo0044$ 30S ribosomal protein S60.050.160.010.140.910.60 $lmo0045$ single-strand binding protein0.040.320.020.260.910.66 $lmo0046$ 30S ribosomal protein S180.090.420.030.360.910.65 $lmo0047$ hypothetical protein0.040.130.000.030.750.40 $lmo0048$ sensor histidine kinase AgrB0.090.140.080.190.900.69 $lmo0051$ response regulator0.120.120.240.370.830.53 $lmo0053$ 50S ribosomal protein L90.400.500.290.520.850.54 $lmo0055$ adenylosuccinate synthetase0.330.030.090.370.890.55 $lmo0056$ heat shock protein0.070.150.060.200.720.28 $lmo0057$ hypothetical protein0.010.030.020.100.720.23								
Imo004430S ribosomal protein S60.050.160.010.140.910.60Imo0045single-strand binding protein0.040.320.020.260.910.66Imo004630S ribosomal protein S180.090.420.030.360.910.65Imo0047hypothetical protein0.040.130.000.030.750.40Imo0048sensor histidine kinase AgrB0.090.140.080.190.900.69Imo0051response regulator0.120.120.240.370.830.53Imo0052hypothetical protein L90.400.500.290.520.850.54Imo0054replicative DNA helicase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.28		•						
Imo0045single-strand binding protein0.040.320.020.260.910.66Imo004630S ribosomal protein S180.090.420.030.360.910.65Imo0047hypothetical protein0.040.130.000.030.750.40Imo0048sensor histidine kinase AgrB0.090.140.080.190.900.69Imo0051response regulator0.120.120.240.370.830.53Imo0052hypothetical protein0.390.260.260.520.850.53Imo005350S ribosomal protein L90.400.500.290.520.850.54Imo0055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23		•						
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Imo0047hypothetical protein0.040.130.000.030.750.40Imo0048sensor histidine kinase AgrB0.090.140.080.190.900.69Imo0051response regulator0.120.120.240.370.830.53Imo0052hypothetical protein0.390.260.260.520.850.53Imo005350S ribosomal protein L90.400.500.290.520.850.54Imo0054replicative DNA helicase0.180.190.240.480.740.38Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23								
Imo0048sensor histidine kinase AgrB0.090.140.080.190.900.69Imo0051response regulator0.120.120.240.370.830.53Imo0052hypothetical protein0.390.260.260.520.850.53Imo005350S ribosomal protein L90.400.500.290.520.850.54Imo0054replicative DNA helicase0.180.190.240.480.740.38Imo0055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23		-						
Imo0051response regulator0.120.120.240.370.830.53Imo0052hypothetical protein0.390.260.260.520.850.53Imo005350S ribosomal protein L90.400.500.290.520.850.54Imo0054replicative DNA helicase0.180.190.240.480.740.38Imo0055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23								
Imo0052hypothetical protein0.390.260.260.520.850.53Imo005350S ribosomal protein L90.400.500.290.520.850.54Imo0054replicative DNA helicase0.180.190.240.480.740.38Imo0055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23								
Imo005350S ribosomal protein L90.400.500.290.520.850.54Imo0054replicative DNA helicase0.180.190.240.480.740.38Imo0055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23								
Imo0054 replicative DNA helicase 0.18 0.19 0.24 0.48 0.74 0.38 Imo0055 adenylosuccinate synthetase 0.33 0.03 0.09 0.37 0.89 0.55 Imo0056 heat shock protein 0.07 0.15 0.06 0.20 0.72 0.28 Imo0057 hypothetical protein 0.01 0.03 0.02 0.10 0.72 0.23								
Imo0055adenylosuccinate synthetase0.330.030.090.370.890.55Imo0056heat shock protein0.070.150.060.200.720.28Imo0057hypothetical protein0.010.030.020.100.720.23								
Imo0056 heat shock protein 0.07 0.15 0.06 0.20 0.72 0.28 Imo0057 hypothetical protein 0.01 0.03 0.02 0.10 0.72 0.23		•						
<i>lmo0057</i> hypothetical protein 0.01 0.03 0.02 0.10 0.72 0.23								
<i>Imo0059</i> hypothetical protein 0.18 0.44 0.05 0.36 0.92 0.69								
	lmo0059	hypothetical protein	0.18	0.44	0.05	0.36	0.92	0.69

1 00.00				~ ~ -			
lmo0060	hypothetical protein	0.14	0.34	0.05	0.20	0.92	0.49
lmo0075	carboxyphosphonoenolpyruvate phosphonomutase	0.01	0.00	0.04	0.10	0.75	0.37
lmo0076	O6-methylguanine-DNA methyltransferase	0.20	0.18	0.24	0.54	0.77	0.42
lmo0077	hypothetical protein	0.06	0.02	0.27	0.46	0.69	0.33
lmo0078	phosphoglycerate dehydrogenase	0.03	0.25	0.03	0.52	0.87	0.17
lmo0082	hypothetical protein	0.00	0.00	0.02	0.16	0.68	0.20
lmo0083	MerR family transcriptional regulator	0.01	0.01	0.08	0.35	0.76	0.27
lmo0084	oxidoreductase	0.02	0.01	0.16	0.44	0.73	0.38
lmo0085	hypothetical protein	0.10	0.10	0.16	0.29	0.86	0.49
lmo0087	hypothetical protein	0.32	0.44	0.17	0.55	0.87	0.52
lmo0088	ATP synthase subunit C	0.26	0.35	0.26	0.41	0.82	0.52
lmo0089	ATP synthase subunit delta	0.12	0.01	0.29	0.26	0.74	0.23
lmo0090	ATP synthase F0F1 subunit alpha	0.23	0.01	0.24	0.32	0.70	0.21
lmo0091	ATP synthase subunit gamma	0.22	0.02	0.32	0.17	0.70	0.21
lmo0092	ATP synthase F0F1 subunit beta	0.11	0.02	0.30	0.34	0.64	0.20
lmo0093	ATP synthase subunit epsilon	0.14	0.18	0.16	0.47	0.92	0.65
lmo0094	hypothetical protein	0.28	0.41	0.11	0.16	0.83	0.42
lmo0095	hypothetical protein	0.00	0.00	0.02	0.10	0.90	0.47
lmo0096	PTS mannose transporter subunit IIAB	0.39	0.25	0.16	0.48	0.90	0.58
lmo0097	PTS mannose transporter subunit IIC	0.42	0.17	0.21	0.55	0.91	0.61
lmo0098	PTS mannose transporter subunit IID	0.31	0.11	0.27	0.54	0.88	0.64
lmo0099	hypothetical protein	0.33	0.36	0.08	0.46	0.92	0.41
lmo0100	hypothetical protein	0.13	0.44	0.01	0.18	0.73	0.45
lmo0101	transcriptional regulator	0.11	0.32	0.01	0.25	0.91	0.65
lmo0102	hypothetical protein	0.13	0.43	0.00	0.04	0.88	0.41
lmo0103	NADH oxidase	0.23	0.45	0.01	0.07	0.91	0.52
lmo0104	hypothetical protein	0.00	0.00	0.00	0.00	0.56	0.20
lmo0107	ABC transporter ATP-binding protein	0.28	0.31	0.10	0.20	0.61	0.17
lmo0109	AraC family transcriptional regulator	0.11	0.41	0.01	0.34	0.89	0.39
lmo0110	lipase	0.13	0.36	0.01	0.33	0.90	0.57
lmo0111	hypothetical protein	0.09	0.32	0.07	0.45	0.92	0.56
lmo0112	Fnr/Crp family transcriptional regulator	0.17	0.06	0.23	0.44	0.92	0.65
lmo0113	hypothetical protein	0.25	0.09	0.19	0.08	0.88	0.58
lmo0114	repressor C1	0.36	0.04	0.26	0.05	0.88	0.67
lmo0115	hypothetical protein	0.32	0.21	0.24	0.19	0.86	0.57
lmo0116	hypothetical protein	0.42	0.31	0.31	0.28	0.88	0.59
lmo0117	antigen B	0.34	0.21	0.25	0.18	0.91	0.68
lmo0118	antigen A	0.32	0.22	0.25	0.20	0.90	0.66
lmo0119	hypothetical protein	0.35	0.26	0.25	0.23	0.92	0.67
lmo0120	hypothetical protein	0.29	0.23	0.21	0.22	0.92	0.69
lmo0120	phage tail protein	0.32	0.22	0.24	0.22	0.92	0.69
lmo0121	hypothetical protein	0.36	0.27	0.26	0.27	0.92	0.69
lmo0122 lmo0123	hypothetical protein	0.33	0.27	0.25	0.27	0.93	0.70
lmo0125 lmo0124	hypothetical protein	0.34	0.23	0.23	0.20	0.92	0.70
lmo0125	hypothetical protein	0.34	0.25	0.25	0.22	0.92	0.66
lmo0125 lmo0126	hypothetical protein	0.35	0.23	0.29	0.22	0.92	0.69
lm00120 lm00127	hypothetical protein	0.38	0.23	0.29	0.25	0.92	0.67
lmo0127 lmo0128	hypothetical protein	0.30	0.27	0.29	0.23	0.92	0.66
lm00120 lm00129	N-acetylmuramoyl-L-alanine amidase	0.43	0.31	0.20	0.26	0.92	0.65
lm00129 lm00130	5'-nucleotidase	0.43	0.31	0.13	0.20	0.92	0.03
lm00130 lm00131	hypothetical protein	0.27	0.44	0.13	0.12	0.03	0.22
lm00131 lm00132	inosine 5-monophosphate dehydrogenase	0.18	0.37	0.24	0.12	0.91	0.69
		0.01	0.22				
lmo0133	hypothetical protein			0.11	0.47	0.64	0.16
lmo0134	hypothetical protein	0.39	0.04	0.09	0.51	0.67	0.18
lmo0135	peptide ABC transporter substrate-binding protein	0.01	0.10	0.01	0.12	0.67	0.36
lmo0136	peptide ABC transporter permease	0.02	0.06	0.00	0.00	0.72	0.56
lmo0137	peptide ABC transporter permease	0.04	0.14	0.00	0.01	0.68	0.52
lmo0139	hypothetical protein	0.39	0.45	0.24	0.24	0.92	0.64
lmo0152	peptide ABC transporter substrate-binding protein	0.02	0.28	0.06	0.49	0.70	0.52
lmo0153	zinc ABC transporter substrate-binding protein	0.00	0.02	0.00	0.00	0.90	0.61
lmo0154	zinc ABC transporter ATP-binding protein	0.02	0.08	0.00	0.02	0.82	0.46

lmo0155	zinc ABC transporter permease	0.09	0.21	0.00	0.04	0.67	0.27
lmo0156	hypothetical protein	0.01	0.00	0.10	0.05	0.74	0.36
lmo0157	ATP-dependent helicase	0.11	0.05	0.21	0.53	0.89	0.56
lmo0158	hypothetical protein	0.04	0.00	0.32	0.14	0.74	0.36
lmo0160	peptidoglycan binding protein	0.00	0.00	0.02	0.09	0.70	0.30
lmo0161	hypothetical protein	0.00	0.00	0.02	0.36	0.89	0.29
lmo0162	DNA polymerase III subunit delta'	0.07	0.05	0.03	0.13	0.92	0.59
lmo0163	hypothetical protein	0.14	0.44	0.07	0.50	0.88	0.61
lmo0164	DNA replication initiation control protein YabA	0.18	0.31	0.11	0.36	0.74	0.48
lmo0165	hypothetical protein	0.06	0.47	0.02	0.25	0.75	0.43
lmo0166	GIY-YIG nuclease	0.02	0.12	0.01	0.07	0.84	0.67
lmo0167	hypothetical protein	0.01	0.00	0.00	0.00	0.83	0.70
lmo0168 lmo0169	AbrB family transcriptional regulator	0.37 0.08	0.11 0.39	0.27 0.03	0.18 0.40	0.70 0.83	0.33 0.43
lm00109 lm00170	glucose transporter hypothetical protein	0.08	0.39	0.03	0.40	0.85	0.43
lm00170 lm00175	peptidoglycan-binding protein	0.08	0.28	0.02	0.10	0.81	0.40
lm00175 lm00176	glucose transporter	0.22	0.10	0.23	0.27	0.00	0.23
lm00170 lm00177	methionyl-tRNA synthetase	0.01	0.03	0.01	0.03	0.92	0.50
lm00177 lm00178	xylose repressor	0.16	0.15	0.01	0.02	0.81	0.32
lmo0179	sugar ABC transporter permease	0.09	0.40	0.15	0.29	0.80	0.33
lmo0179 lmo0180	sugar ABC transporter permease	0.18	0.22	0.09	0.51	0.69	0.40
lmo0180	alpha-glucosidase	0.14	0.10	0.22	0.55	0.74	0.51
lmo0182	alpha-glucosidase	0.18	0.05	0.31	0.51	0.68	0.46
lmo0184	oligo-16-glucosidase	0.02	0.00	0.24	0.39	0.58	0.23
lmo0185	hypothetical protein	0.35	0.10	0.16	0.21	0.89	0.58
lmo0186	hypothetical protein	0.24	0.15	0.08	0.45	0.91	0.59
lmo0187	hypothetical protein	0.11	0.00	0.25	0.03	0.78	0.35
lmo0188	dimethyladenosine transferase	0.21	0.30	0.08	0.44	0.90	0.67
lmo0189	Veg protein	0.08	0.32	0.02	0.19	0.86	0.66
lmo0191	phospho-beta-glucosidase	0.16	0.35	0.30	0.17	0.86	0.62
lmo0192	PurR family transcriptional regulator	0.25	0.34	0.05	0.21	0.89	0.69
lmo0193	hypothetical protein	0.31	0.04	0.10	0.54	0.75	0.40
lmo0194	ABC transporter ATP-binding protein	0.17	0.00	0.18	0.34	0.71	0.31
lmo0195	ABC transporter permease	0.32	0.02	0.08	0.53	0.59	0.20
lmo0196	regulatory protein SpoVG	0.23	0.48	0.26	0.23	0.89	0.50
lmo0197	regulatory protein SpoVG	0.22	0.22	0.09	0.15	0.87	0.56
lmo0198	bifunctional N-acetylglucosamine-1-phosphate	0.40	0.01	0.12	0.25	0.92	0.66
	uridyltransferase/glucosamine-1-phosphate acetyltransferase						0.00
lmo0199	ribose-phosphate pyrophosphokinase	0.42	0.00	0.18	0.13	0.88	0.47
lmo0200	listeriolysin positive regulatory protein	0.20	0.38	0.21	0.22	0.90	0.29
lmo0201	phosphatidylinositol-specific phospholipase c	0.12	0.49	0.06	0.41	0.91	0.52
lmo0202	listeriolysin O precursor	0.16	0.04	0.05	0.28	0.74	0.63
lmo0203	Zinc metalloproteinase precursor	0.12	0.33	0.11	0.55	0.85	0.48
lmo0204	actin-assembly inducing protein precursor	0.18	0.31	0.16	0.46	0.92	0.69
lmo0205	phospholipase C	0.11	0.16	0.15	0.39	0.90	0.58
lmo0206	hypothetical protein	0.16	0.47	0.02	0.23	0.78	0.38
lmo0207	hypothetical protein	0.05	0.24	0.03	0.21	0.91	0.37
lmo0208	hypothetical protein	0.04	0.06	0.08	0.36	0.90	0.57
lmo0209	hypothetical protein	0.12	0.07	0.21	0.36	0.91	0.63
lmo0210 lmo0211	L-lactate dehydrogenase 50S ribosomal protein L25	0.08 0.09	0.23 0.20	$\begin{array}{c} 0.08 \\ 0.06 \end{array}$	0.44 0.10	0.86 0.81	0.39 0.54
lm00211 lm00212	hypothetical protein	0.09	0.20	0.00	0.10	0.81	0.54
lm00212 lm00213	peptidyl-tRNA hydrolase	0.02	0.00	0.01	0.00	0.91	0.08
lm00213 lm00214	transcription-repair coupling factor	0.00	0.00	0.03	0.03	0.75	0.21
lm00214 lm00215	hypothetical protein	0.14	0.38	0.01	0.18	0.75	0.55
lm00215 lm00216	hypothetical protein	0.10	0.48	0.02	0.12	0.70	0.38
lm00210 lm00217	DivIC protein	0.07	0.00	0.23	0.10	0.59	0.22
lm00218	hypothetical protein	0.13	0.00	0.23	0.31	0.91	0.22
lmo0210 lmo0219	hypothetical protein	0.35	0.01	0.14	0.09	0.90	0.65
lmo0220	cell division protein FtsH	0.33	0.03	0.18	0.09	0.85	0.66
lmo0221	pantothenate kinase	0.10	0.10	0.06	0.21	0.70	0.16
			-		-		-

lmo0222	heat shock protein 33	0.32	0.20	0.12	0.47	0.84	0.37
lmo0223	cysteine synthase	0.33	0.03	0.16	0.02	0.58	0.23
lmo0224	dihydropteroate synthases	0.07	0.16	0.24	0.48	0.85	0.32
lmo0225	dihydroneopterin aldolase	0.31	0.31	0.13	0.33	0.90	0.68
lmo0226	78-dihydro-6-hydroxymethylpterin pyrophosphokinase	0.01	0.08	0.01	0.14	0.88	0.61
lmo0227	hypothetical protein	0.02	0.02	0.01	0.04	0.91	0.69
lmo0228	lysyl-tRNA synthetase	0.04	0.28	0.01	0.07	0.80	0.53
lmo0229	CtsR family transcriptional regulator	0.07	0.24	0.10	0.55	0.87	0.59
lmo0230	hypothetical protein	0.13	0.47	0.11	0.48	0.83	0.63
lmo0231	ATP:guanido phosphotransferase	0.06	0.34	0.05	0.55	0.87	0.69
lmo0232	endopeptidase Clp ATP-binding chain C	0.12	0.45	0.08	0.32	0.88	0.59
lmo0233	DNA repair protein RadA	0.12	0.23	0.02	0.12	0.92	0.67
lmo02333	hypothetical protein	0.42	0.43	0.22	0.48	0.75	0.45
lmo0234	hypothetical protein	0.32	0.16	0.30	0.12	0.73	0.44
lmo0235	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	0.42	0.02	0.26	0.02	0.62	0.30
lmo0236	2-C-methyl-D-erythritol 24-cyclodiphosphate synthase	0.25	0.14	0.19	0.16	0.61	0.28
lmo0237	glutamyl-tRNA synthetase	0.02	0.10	0.02	0.24	0.75	0.66
lmo0238	serine O-acetyltransferase	0.01	0.11	0.02	0.43	0.92	0.67
lmo0239	cysteinyl-tRNA synthetase	0.09	0.46	0.12	0.33	0.74	0.56
lmo0240	hypothetical protein	0.05	0.42	0.10	0.41	0.74	0.70
lmo0241	hypothetical protein	0.01	0.20	0.04	0.51	0.80	0.60
lmo0242	hypothetical protein	0.03	0.47	0.07	0.38	0.75	0.69
lmo0243	RNA polymerase factor sigma-70	0.01	0.10	0.03	0.55	0.83	0.54
lmo0244	50S ribosomal protein L33 type II	0.21	0.42	0.18	0.24	0.92	0.55
lmo0245	preprotein translocase subunit SecE	0.21	0.47	0.18	0.17	0.92	0.62
lmo0246	transcription antitermination protein NusG	0.17	0.44	0.06	0.54	0.92	0.70
lmo0247	hypothetical protein	0.10	0.35	0.02	0.19	0.89	0.62
lmo0248	50S ribosomal protein L11	0.10	0.32	0.01	0.11	0.88	0.53
lmo0249	50S ribosomal protein L1	0.10	0.28	0.01	0.10	0.83	0.53
lmo0250	50S ribosomal protein L10	0.10	0.22	0.06	0.19	0.88	0.63
lmo0251	50S ribosomal protein L7/L12	0.04	0.07	0.03	0.10	0.90	0.55
lmo0256	hypothetical protein	0.15	0.04	0.11	0.55	0.74	0.30
lmo0257	hypothetical protein	0.37	0.44	0.26	0.49	0.81	0.53
lmo0258	DNA-directed RNA polymerase subunit beta	0.31	0.10	0.14	0.25	0.72	0.35
lmo0259	DNA-directed RNA polymerase subunit beta'	0.14	0.36	0.05	0.37	0.71	0.41
lmo0260	hypothetical protein	0.26	0.03	0.11	0.12	0.89	0.65
lmo0261	phospho-beta-glucosidase	0.05	0.43	0.02	0.41	0.91	0.26
lmo0264	internalin E	0.00	0.00	0.02	0.10	0.87	0.24
lmo0265	succinyl-diaminopimelate desuccinylase	0.28	0.03	0.13	0.17	0.72	0.20
lmo0266	transcriptional regulator	0.08	0.45	0.15	0.11	0.87	0.58
lmo0267	hypothetical protein	0.00	0.00	0.01	0.26	0.89	0.18
lmo0268	phosphoglycerate mutase	0.00	0.02	0.03	0.36	0.85	0.24
lmo0269	transporter	0.02	0.08	0.06	0.36	0.70	0.16
lmo0270	hypothetical protein	0.00	0.01	0.02	0.15	0.88	0.33
lmo0271	phospho-beta-glucosidase	0.01	0.03	0.01	0.18	0.91	0.32
lmo0272	hypothetical protein	0.41	0.04	0.18	0.13	0.89	0.65
lmo0273	hypothetical protein	0.12	0.26	0.03	0.21	0.82	0.38
lmo0274	hypothetical protein	0.03	0.11	0.02	0.23	0.90	0.46
lmo0276	hypothetical protein	0.15	0.38	0.09	0.44	0.60	0.27
lmo0277	oxidoreductase	0.34	0.02	0.10	0.23	0.85	0.50
lmo0278	sugar ABC transporter ATP-binding protein	0.18	0.48	0.13	0.38	0.73	0.32
lmo0279	anaerobic ribonucleoside triphosphate reductase	0.33	0.43	0.26	0.26	0.78	0.32
lmo0280	anaerobic ribonucleotide reductase activator protein	0.28	0.39	0.25	0.42	0.89	0.40
lmo0281	hypothetical protein	0.01	0.05	0.02	0.48	0.92	0.36
lmo0282	hypothetical protein	0.18	0.09	0.14	0.16	0.60	0.26
lmo0283	ABC transporter permease	0.06	0.37	0.02	0.41	0.71	0.24
lmo0284	ABC transporter ATP-binding protein	0.04	0.24	0.05	0.50	0.75	0.34
lmo0285	lipoprotein	0.03	0.16	0.04	0.49	0.87	0.44
lmo0286	aminotransferase	0.13	0.43	0.04	0.29	0.90	0.64
lmo0287	two-component response regulator	0.35	0.07	0.30	0.12	0.88	0.51
lmo0288	two-component sensor histidine kinase	0.01	0.01	0.01	0.08	0.91	0.40

lmo0289	hypothetical protein	0.00	0.06	0.01	0.34	0.74	0.57
lmo0290	hypothetical protein	0.05	0.28	0.03	0.23	0.62	0.30
lmo0291	hypothetical protein	0.13	0.25	0.04	0.54	0.74	0.31
lmo0292	heat-shock protein htrA serine protease	0.07	0.45	0.02	0.43	0.80	0.62
lmo0293	rRNA large subunit methyltransferase	0.01	0.09	0.00	0.05	0.75	0.19
lmo0296	hypothetical protein	0.07	0.04	0.30	0.42	0.84	0.52
lmo0297	transcriptional antiterminator BglG	0.11	0.21	0.05	0.29	0.88	0.47
lmo0298	PTS beta-glucoside transporter subunit IIC	0.35	0.10	0.25	0.09	0.67	0.28
lmo0299	PTS beta-glucoside transporter subunit IIB	0.29	0.18	0.23	0.17	0.65	0.27
lmo0300	phospho-beta-galactosidase	0.41	0.07	0.29	0.07	0.60	0.21
lmo0301	PTS beta-glucoside transporter subunit IIA	0.43	0.07	0.32	0.07	0.61	0.27
lmo0305	L-allo-threonine aldolase	0.01	0.03	0.00	0.03	0.88	0.35
lmo0314	hypothetical protein	0.22	0.31	0.03	0.09	0.89	0.65
lmo0315	thiamin biosynthesis protein	0.37	0.47	0.27	0.47	0.75	0.39
lmo0316	hydroxyethylthiazole kinase	0.39	0.34	0.27	0.23	0.75	0.31
lmo0317	phosphomethylpyrimidine kinase	0.06	0.00	0.07	0.02	0.89	0.59
lmo0318	thiamine-phosphate pyrophosphorylase	0.02	0.00	0.07	0.04	0.76	0.40
lmo0319	phospho-beta-glucosidase	0.14	0.35	0.10	0.52	0.88	0.66
lmo0321	hypothetical protein	0.29	0.01	0.15	0.38	0.69	0.19
lmo0322	hypothetical protein	0.00	0.00	0.00	0.00	0.76	0.25
lmo0334	hypothetical protein	0.27	0.06	0.21	0.08	0.76	0.50
lmo0343	translaldolase	0.01	0.03	0.01	0.18	0.91	0.28
lmo0344	short chain dehydrogenase	0.01	0.03	0.01	0.19	0.92	0.25
lmo0345	sugar-phosphate isomerase	0.01	0.01	0.01	0.16	0.91	0.24
lmo0346	triosephosphate isomerase	0.00	0.01	0.01	0.13	0.92	0.23
lmo0347	dihydroxyacetone kinase	0.00	0.02	0.01	0.14	0.92	0.24
lmo0348	dihydroxyacetone kinase	0.01	0.06	0.01	0.25	0.92	0.23
lmo0349	hypothetical protein	0.01	0.03	0.01	0.26	0.92	0.23
lmo0350	hypothetical protein	0.01	0.03	0.01	0.22	0.92	0.24
lmo0351	phosphotransferase mannnose-specific family component IIA	0.02	0.16	0.02	0.35	0.91	0.32
lmo0352	DeoR family transcriptional regulator	0.04	0.19	0.05	0.50	0.91	0.21
lmo0353	hypothetical protein	0.13	0.24	0.04	0.47	0.91	0.52
lmo0354	fatty-acidCoA ligase	0.00	0.02	0.01	0.07	0.88	0.57
lmo0355	fumarate reductase subunit A	0.13	0.42	0.05	0.43	0.87	0.55
lmo0356	oxidoreductase	0.00	0.00	0.01	0.05	0.50	0.18
lmo0357	PTS sugar transporter subunit IIA	0.35	0.01	0.24	0.02	0.75	0.48
lmo0358	PTS fructose transporter subunit IIBC	0.32	0.20	0.22	0.02	0.90	0.67
lmo0359	D-fructose-16-biphosphate aldolase	0.09	0.36	0.13	0.13	0.92	0.58
lmo0360	DeoR family transcriptional regulator	0.24	0.28	0.16	0.21	0.89	0.25
lmo0360a	hypothetical protein	0.00	0.00	0.00	0.01	0.58	0.15
lmo0368	hypothetical protein	0.00	0.00	0.01	0.05	0.57	0.16
lmo0369	hypothetical protein	0.04	0.05	0.01	0.06	0.86	0.51
lmo0370	hypothetical protein	0.00	0.00	0.00	0.02	0.86	0.53
lmo0371	GntR family transcriptional regulator	0.03	0.02	0.03	0.04	0.91	0.67
lmo0372	beta-glucosidase	0.17	0.43	0.19	0.18	0.70	0.09
lmo0373	PTS beta-glucoside transporter subunit IIC	0.20	0.42	0.20	0.21	0.70	0.10
lmo0374	PTS beta-glucoside transporter subunit IIB	0.14	0.48	0.15	0.24	0.72	0.09
lmo0375	hypothetical protein	0.35	0.03	0.18	0.08	0.50	0.12
lmo0376	transcriptional regulator	0.03	0.24	0.01	0.17	0.92	0.64
lmo0377	hypothetical protein	0.09	0.40	0.02	0.40	0.73	0.57
lmo0382	transcriptional regulator	0.33	0.28	0.20	0.40	0.92	0.65
lmo0383	methylmalonate-semialdehyde dehydrogenase	0.33	0.00	0.25	0.03	0.76	0.56
lmo0384	IolB protein	0.39	0.01	0.14	0.13	0.75	0.54
lmo0385	IolC protein	0.42	0.00	0.17	0.07	0.74	0.42
lmo0386	IolD protein	0.34	0.00	0.26	0.04	0.74	0.42
lmo0387	hypothetical protein	0.08	0.49	0.06	0.49	0.86	0.58
lmo0388	hypothetical protein	0.25	0.30	0.17	0.31	0.00	0.68
lm00389	low temperature requirement protein A	0.23	0.01	0.01	0.20	0.90	0.08
lm00390	uracil-DNA glycosylase	0.00	0.01	0.01	0.20	0.60	0.14
lm00390 lm00391	hypothetical protein	0.00	0.32	0.00	0.34	0.00	0.30
lm00391 lm00392	hypothetical protein	0.04	0.52	0.05	0.21	0.92	0.30
11100374	njpometicu protein	0.05	0.50	0.05	0.21	0.71	0.70

lmo0393	hypothetical protein	0.05	0.43	0.05	0.16	0.91	0.51
lmo0394	P60 protein	0.17	0.47	0.08	0.42	0.90	0.56
lmo0395	blasticidin S-acetyltransferase	0.41	0.26	0.22	0.47	0.92	0.68
lmo0396	pyrroline-5-carboxylate reductase	0.16	0.00	0.22	0.01	0.69	0.35
lmo0397	hypothetical protein	0.05	0.00	0.05	0.00	0.40	0.13
lmo0398	PTS sugar transporter subunit IIA	0.08	0.31	0.07	0.29	0.79	0.59
lmo0399	PTS fructose transporter subunit IIB	0.05	0.48	0.04	0.36	0.82	0.69
lmo0400	PTS fructose transporter subunit IIC	0.06	0.49	0.04	0.42	0.82	0.68
lmo0401	alpha-mannosidase	0.09	0.30	0.06	0.27	0.76	0.55
lmo0402	transcriptional antiterminator BglG	0.16	0.09	0.09	0.17	0.72	0.41
lmo0403	hypothetical protein	0.11	0.06	0.17	0.28	0.60	0.18
lmo0404	hypothetical protein	0.20	0.27	0.20	0.52	0.72	0.23
lmo0405 lmo0406	phosphate transporter	0.01 0.01	0.01 0.00	0.02 0.02	0.09 0.04	0.89 0.91	0.55 0.36
lm00400 lm00407	hypothetical protein hypothetical protein	0.01	0.00	0.02	0.04	0.91	0.36
lm00407 lm00408	hypothetical protein	0.03	0.01	0.05	0.17	0.91	0.50
lm00408 lm00412	hypothetical protein	0.12	0.44	0.03	0.48	0.89	0.55
lm00412 lm00413	hypothetical protein	0.13	0.39	0.03	0.27	0.76	0.50
lm00413 lm00414	hypothetical protein	0.28	0.03	0.19	0.24	0.80	0.00
lm00414 lm00415	endo-14-beta-xylanase	0.00	0.00	0.00	0.19	0.01	0.30
lm00415 lm00416	transcriptional regulator	0.00	0.00	0.00	0.01	0.95	0.48
lm00417	hypothetical protein	0.01	0.07	0.05	0.23	0.88	0.24
lmo0418	hypothetical protein	0.36	0.38	0.31	0.47	0.00	0.66
lmo0419	hypothetical protein	0.00	0.00	0.00	0.01	0.90	0.35
lmo0420	hypothetical protein	0.00	0.00	0.00	0.08	0.83	0.21
lmo0424	glucose uptake protein	0.01	0.05	0.01	0.06	0.88	0.57
lmo0425	transcriptional antiterminator BglG	0.08	0.49	0.03	0.47	0.87	0.64
lmo0426	PTS fructose transporter subunit IIA	0.06	0.35	0.03	0.36	0.90	0.67
lmo0427	PTS fructose transporter subunit IIB	0.07	0.36	0.03	0.36	0.88	0.69
lmo0428	PTS fructose transporter subunit IIC	0.13	0.34	0.06	0.49	0.86	0.62
lmo0429	sugar hydrolase	0.14	0.29	0.05	0.46	0.85	0.62
lmo0430	LysR family transcriptional regulator	0.02	0.05	0.10	0.41	0.79	0.45
lmo0431	acetyltransferase	0.36	0.23	0.21	0.30	0.87	0.59
lmo0432	oxidoreductase	0.33	0.36	0.22	0.34	0.89	0.67
lmo0434	internalin B	0.12	0.46	0.04	0.46	0.71	0.19
lmo0436	hypothetical protein	0.03	0.18	0.01	0.14	0.90	0.35
lmo0437	hypothetical protein	0.39	0.07	0.13	0.31	0.91	0.60
lmo0438	hypothetical protein	0.25	0.19	0.32	0.45	0.81	0.52
lmo0439	hypothetical protein	0.25	0.26	0.08	0.52	0.73	0.33
lmo0441	D-alanyl-D-alanine carboxypeptidase	0.12	0.34	0.06	0.34	0.65	0.22
lmo0442	hypothetical protein	0.04	0.12	0.09	0.41	0.86	0.62
lmo0443	LytR family transcriptional regulator	0.00	0.01	0.01	0.06	0.71	0.23
lmo0449	hypothetical protein	0.00	0.00	0.01	0.03	0.62	0.15
lmo0450	hypothetical protein	0.01	0.10	0.02	0.31	0.90	0.60
lmo0451	hypothetical protein	0.00	0.00	0.00	0.02	0.76	0.42
lmo0452	hypothetical protein	0.10	0.41	0.02	0.31	0.85	0.48
lmo0453	hypothetical protein	0.37 0.29	0.05	0.17	0.18	0.91	0.55
lmo0454	hypothetical protein	0.29	0.03 0.00	0.32 0.22	0.12	0.82 0.45	0.32 0.20
lmo0455 lmo0456	hypothetical protein permease	0.03	0.00	0.22	0.12 0.51	0.43	0.20
lm00430 lm00457	hypothetical protein	0.23	0.08	0.12	0.31	0.71	0.51
lm00457 lm00458	hydantoinase	0.03	0.00	0.24	0.24	0.55	0.18
lm00438 lm00480	transcriptional regulator	0.07	0.01	0.03	0.29	0.85	0.27
lm00480 lm00481	hypothetical protein	0.00	0.13	0.03	0.05	0.85	0.33
lm00481 lm00482	ribosomal RNA large subunit methyltransferase N	0.00	0.00	0.01	0.09	0.87	0.58
lm00482 lm00483	hypothetical protein	0.05	0.05	0.02	0.20	0.92	0.67
lm00485 lm00484	heme-degrading monooxygenase IsdG	0.15	0.24	0.15	0.20	0.92	0.56
lmo0485	hypothetical protein	0.00	0.00	0.02	0.11	0.03	0.69
lmo0486	50S ribosomal protein L32	0.15	0.03	0.02	0.48	0.87	0.57
lmo0487	hypothetical protein	0.00	0.01	0.08	0.42	0.80	0.25
lmo0488	LysR family transcriptional regulator	0.14	0.33	0.09	0.19	0.90	0.60
	·						

lmo0489	NADH:flavin oxidoreductase	0.02	0.27	0.01	0.15	0.85	0.65
lmo0490	shikimate 5-dehydrogenase	0.38	0.10	0.32	0.20	0.74	0.60
lmo0491	3-dehydroquinate dehydratase	0.13	0.01	0.28	0.15	0.71	0.40
lmo0494	hypothetical protein	0.14	0.03	0.30	0.21	0.61	0.20
lmo0495	hypothetical protein	0.39	0.21	0.09	0.53	0.89	0.59
lmo0496	hypothetical protein	0.08	0.42	0.07	0.31	0.82	0.65
lmo0498	5-phosphate isomerase	0.42	0.02	0.30	0.02	0.84	0.67
lmo0499	ribulose-5-phosphate 3 epimerase	0.40	0.04	0.31	0.04	0.91	0.42
lmo0500	transaldolase	0.42	0.02	0.29	0.03	0.92	0.36
lmo0502	sugar-phosphate isomerase	0.19	0.21	0.11	0.18	0.91	0.28
lmo0503	PTS fructose transporter subunit IIA	0.11	0.38	0.06	0.35	0.92	0.24
lmo0504	hypothetical protein	0.17	0.22	0.09	0.23	0.92	0.24
lmo0505	ribulose-5-phosphate 3-epimerase	0.08	0.47	0.06	0.39	0.91	0.23
lmo0506	sorbitol dehydrogenase	0.20	0.27	0.16	0.17	0.90	0.20
lmo0507	PTS galactitol transporter subunit IIB	0.34	0.01	0.31	0.05	0.85	0.63
lmo0508	PTS galactitol transporter subunit IIC	0.43	0.00	0.29	0.03	0.92	0.59
lmo0509	phosphoribosyl pyrophosphate synthetase	0.00	0.02	0.01	0.10	0.89	0.41
lmo0510	hypothetical protein	0.02	0.01	0.01	0.01	0.91	0.63
lmo0511	hypothetical protein	0.02	0.01	0.24	0.55	0.69	0.24
lmo0512	hypothetical protein	0.17	0.19	0.30	0.49	0.91	0.61
lmo0513	hypothetical protein	0.09	0.07	0.08	0.10	0.77	0.34
lmo0514	internalin	0.25	0.27	0.26	0.06	0.92	0.65
lmo0515	hypothetical protein	0.11	0.19	0.05	0.38	0.75	0.38
lmo0516	encapsulation protein CapA	0.00	0.00	0.01	0.02	0.72	0.31
lmo0517	phosphoglycerate mutase	0.14	0.34	0.04	0.34	0.88	0.59
lmo0518	hypothetical protein	0.03	0.14	0.00	0.02	0.92	0.52
lmo0519	multidrug resistance protein	0.26	0.16	0.09	0.42	0.88	0.66
lmo0520	transcriptional regulator	0.12	0.00	0.14	0.07	0.87	0.51
lmo0521	6-phospho-beta-glucosidase	0.10	0.25	0.06	0.27	0.92	0.45
lmo0522	transcriptional regulator	0.01	0.00	0.03	0.01	0.84	0.40
lmo0523	hypothetical protein	0.21	0.24	0.07	0.37	0.88	0.56
lmo0524	sulfate transporter	0.09	0.36	0.03	0.32	0.82	0.50
lmo0526	transcriptional regulator	0.00	0.00	0.03	0.25	0.83	0.32
lmo0527	transmembrane protein	0.00	0.00	0.01	0.01	0.87	0.47
lmo0528	hypothetical protein	0.00	0.00	0.01	0.02	0.74	0.37
lmo0529	glucosaminyltransferase	0.00	0.00	0.01	0.03	0.71	0.37
lmo0530	hypothetical protein	0.00	0.00	0.00	0.02	0.62	0.31
lmo0531	hypothetical protein	0.00	0.00	0.00	0.02	0.62	0.29
lmo0532	hypothetical protein	0.00	0.00	0.00	0.00	0.91	0.63
lmo0533	hypothetical protein	0.09	0.50	0.01	0.19	0.79	0.69
lmo0534	hypothetical protein	0.08	0.45	0.01	0.26	0.75	0.56
lmo0535	LacI family transcriptional regulator	0.03	0.34	0.01	0.38	0.91	0.44
lmo0536	6-phospho-beta-glucosidase	0.03	0.27	0.02	0.31	0.92	0.32
lmo0537	allantoate amidohydrolase	0.09	0.26	0.12	0.55	0.87	0.40
lmo0538	N-acyl-L-amino acid amidohydrolase	0.08	0.47	0.08	0.43	0.91	0.56
lmo0539	tagatose 16-diphosphate aldolase	0.06	0.41	0.04	0.47	0.77	0.36
lmo0540	penicillin-binding protein	0.00	0.00	0.00	0.01	0.67	0.16
lmo0541	ABC transporter substrate-binding protein	0.07	0.10	0.12	0.30	0.74	0.34
lmo0542	PTS sorbitol transporter subunit IIA	0.18	0.05	0.27	0.44	0.88	0.50
lmo0543	PTS sorbitol transporter subunit IIBC	0.37	0.19	0.09	0.54	0.91	0.63
lmo0544	PTS sorbitol transporter subunit IIC	0.38	0.03	0.19	0.27	0.86	0.47
lmo0545	hypothetical protein	0.29	0.02	0.22	0.22	0.75	0.37
lmo0546	NAD(P)-dependent oxidoreductase	0.36	0.01	0.29	0.08	0.79	0.36
lmo0547	DeoR family transcriptional regulator	0.06	0.02	0.11	0.12	0.75	0.53
lmo0548	hypothetical protein	0.29	0.42	0.11	0.48	0.91	0.62
lmo0549	internalin	0.00	0.00	0.01	0.07	0.79	0.43
lmo0550	pepdidoglycan-bound protein	0.28	0.47	0.17	0.51	0.91	0.66
lmo0551	hypothetical protein	0.06	0.16	0.06	0.47	0.87	0.65
lmo0552	hypothetical protein	0.06	0.09	0.10	0.48	0.89	0.64
lmo0553	hypothetical protein	0.08	0.31	0.07	0.07	0.85	0.64
lmo0554	NADH-dependent butanol dehydrogenase	0.06	0.18	0.02	0.13	0.82	0.50

lmo0555	di-tripeptide transporter	0.06	0.04	0.02	0.04	0.78	0.53
lmo0556	phosphoglycerate mutase	0.00	0.01	0.02	0.14	0.72	0.17
lmo0557	phosphoglycerate mutase	0.00	0.00	0.02	0.17	0.61	0.15
lmo0558	hypothetical protein	0.42	0.50	0.21	0.33	0.90	0.69
lmo0559	hypothetical protein	0.05	0.18	0.02	0.22	0.87	0.50
lmo0560	glutamate dehydrogenase	0.02	0.04	0.02	0.08	0.71	0.22
lmo0561	phosphoribosyl-ATP pyrophosphatase	0.32	0.45	0.02	0.28	0.76	0.60
lm00562	phosphoribosyl-AMP cyclohydrolase	0.32	0.45	0.10	0.28	0.70	0.00
lm00562 lm00563							
1000505	imidazole glycerol phosphate synthase subunit HisF	0.15	0.29	0.02	0.07	0.93	0.63
lmo0564	1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase	0.15	0.07	0.11	0.10	0.83	0.36
lmo0565	imidazole glycerol phosphate synthase subunit HisH	0.07	0.06	0.08	0.13	0.85	0.44
lmo0566	imidazoleglycerol-phosphate dehydratase	0.16	0.29	0.05	0.17	0.91	0.44
lmo0567	histidinol dehydrogenase	0.07	0.25	0.03	0.19	0.92	0.45
lmo0568	ATP phosphoribosyltransferase	0.25	0.16	0.24	0.49	0.90	0.66
lmo0569	ATP phosphoribosyltransferase	0.33	0.49	0.07	0.28	0.76	0.37
lmo0570	histidinol-phosphatase	0.03	0.04	0.01	0.05	0.91	0.59
lmo0571	methyltransferase	0.00	0.00	0.00	0.02	0.74	0.19
lmo0572	hypothetical protein	0.00	0.00	0.00	0.02	0.92	0.34
lm00572 lm00573	hypothetical protein	0.00	0.30	0.00	0.49	0.76	0.42
		0.02	0.10		0.49	0.92	0.42
lmo0574	beta-glucosidase			0.04			
lmo0575	GntR family transcriptional regulator	0.15	0.45	0.15	0.34	0.91	0.38
lmo0577	hypothetical protein	0.15	0.30	0.03	0.49	0.88	0.66
lmo0578	hypothetical protein	0.12	0.45	0.02	0.31	0.92	0.50
lmo0579	hypothetical protein	0.04	0.08	0.04	0.33	0.84	0.65
lmo0580	hypothetical protein	0.07	0.34	0.06	0.54	0.81	0.61
lmo0581	hypothetical protein	0.12	0.48	0.14	0.39	0.81	0.69
lmo0582	invasion associated secreted endopeptidase	0.15	0.23	0.07	0.19	0.83	0.52
lmo0583	preprotein translocase subunit SecA	0.28	0.14	0.32	0.31	0.91	0.60
lmo0584	hypothetical protein	0.23	0.03	0.08	0.26	0.74	0.36
lmo0585	secreted protein	0.10	0.20	0.04	0.19	0.92	0.53
lmo0586	hypothetical protein	0.04	0.13	0.02	0.17	0.90	0.56
lmo0587	secreted protein	0.18	0.50	0.06	0.35	0.92	0.66
lmo0588	DNA photolyase	0.16	0.06	0.20	0.15	0.74	0.42
lmo0589	hypothetical protein	0.13	0.24	0.08	0.28	0.88	0.62
lmo0590	hypothetical protein		0.25	0.05	0.22	0.86	0.51
lmo0591	hypothetical protein	0.41	0.41	0.25	0.42	0.76	0.41
lmo0592	hypothetical protein	0.36	0.49	0.20	0.43	0.86	0.61
lmo0592 lmo0593	formate transporter	0.06	0.20	0.05	0.31	0.80	0.49
lmo0594	homoserine O-acetyltransferase	0.34	0.20	0.05	0.11	0.80	0.53
lmo0595	O-acetylhomoserine sulfhydrylase	0.40	0.15	0.29	0.09	0.92	0.54
lmo0597	Crp/Fnr family transcriptional regulator	0.39	0.44	0.22	0.33	0.66	0.24
lmo0597a	hypothetical protein	0.25	0.34	0.07	0.52	0.78	0.49
lmo0599	hypothetical protein	0.01	0.03	0.04	0.34	0.91	0.56
lmo0600	hypothetical protein	0.00	0.00	0.01	0.16	0.91	0.55
lmo0601	cell surface protein	0.30	0.10	0.23	0.23	0.58	0.22
lmo0602	transcripitonal regulator	0.13	0.40	0.04	0.48	0.71	0.21
lmo0603	hypothetical protein	0.00	0.00	0.03	0.07	0.75	0.32
lmo0604	hypothetical protein	0.26	0.38	0.32	0.40	0.88	0.52
lmo0605	hypothetical protein	0.13	0.34	0.04	0.53	0.75	0.46
lmo0606	MarR family transcriptional regulator	0.35	0.12	0.14	0.47	0.60	0.29
lmo0607	ABC transporter ATP-binding protein	0.22	0.50	0.05	0.29	0.74	0.43
lmo0608	ABC transporter ATP-binding protein	0.21	0.06	0.26	0.38	0.72	0.33
lmo0609	phage shock protein E	0.03	0.02	0.08	0.05	0.92	0.47
lmo0610	internalin	0.00	0.00	0.00	0.09	0.91	0.58
lm00010 lm00611	azoreductase	0.35	0.08	0.01	0.11	0.91	0.30
lm00011 lm00612	MarR family transcriptional evidence	0.00	0.00	0.00	0.00	0.87	0.52
lm00012 lm00613	oxidoreductase	0.00	0.00	0.00	0.00	0.91	0.52
lm00013 lm00614	hypothetical protein	0.00	0.00	0.00	0.00	0.87	0.39
		0.00	0.00	0.01		0.85	0.45
lmo0615	hypothetical protein	0.02	0.22	0.08	0.31	0.91	0.01

lmo0616	glycerophosphoryl diester phosphodiesterase	0.00	0.00	0.03	0.15	0.90	0.66
lmo0617	hypothetical protein	0.00	0.00	0.01	0.05	0.57	0.16
lmo0618	protein kinase	0.00	0.00	0.00	0.06	0.89	0.29
lmo0619	hypothetical protein	0.06	0.08	0.27	0.52	0.86	0.54
lmo0620	hypothetical protein	0.36	0.39	0.29	0.42	0.83	0.40
lmo0621	hypothetical protein	0.32	0.43	0.15	0.27	0.92	0.62
lmo0622	hypothetical protein	0.00	0.00	0.00	0.02	0.89	0.69
lmo0623	hypothetical protein	0.00	0.00	0.00	0.01	0.92	0.54
lmo0624	hypothetical protein	0.04	0.46	0.05	0.26	0.90	0.53
lmo0625	hypothetical protein	0.09	0.33	0.08	0.12	0.90	0.55
lmo0626	hypothetical protein	0.06	0.13	0.08	0.49	0.89	0.60
lmo0627	pepdidoglycan bound protein	0.41	0.15	0.22	0.41	0.92	0.70
lmo0628	hypothetical protein	0.01	0.00	0.02	0.14	0.89	0.38
lmo0629	hypothetical protein	0.01	0.00	0.01	0.06	0.91	0.22
lmo0635	hypothetical protein	0.31	0.00	0.09	0.10	0.76	0.13
lmo0636	hypothetical protein	0.25	0.07	0.17	0.48	0.74	0.35
lmo0637	hypothetical protein	0.11	0.01	0.32	0.20	0.57	0.22
lmo0639	transcripitonal regulator	0.02	0.08	0.02	0.20	0.88	0.24
lmo0640	oxidoreductase	0.02	0.36	0.02	0.42	0.92	0.43
lmo0641	heavy metal-transporting ATPase	0.06	0.09	0.03	0.08	0.85	0.57
lmo0642	hypothetical protein	0.05	0.16	0.02	0.15	0.91	0.58
lmo0643	transaldolase	0.04	0.34	0.02	0.34	0.91	0.20
lmo0644	hypothetical protein	0.29	0.04	0.11	0.18	0.89	0.59
lmo0645	amino acid transporter	0.00	0.00	0.00	0.01	0.89	0.36
lmo0646	hypothetical protein	0.24	0.44	0.09	0.37	0.71	0.28
lmo0647	hypothetical protein	0.09	0.28	0.05	0.25	0.82	0.58
lmo0648	hypothetical protein	0.10	0.14	0.05	0.27	0.80	0.68
lmo0649	transcriptional regulator	0.12	0.29	0.07	0.44	0.86	0.64
lmo0650	hypothetical protein	0.12	0.35	0.07	0.37	0.82	0.59
lmo0651	transcriptional regulator	0.27	0.38	0.12	0.54	0.72	0.31
lmo0652	hypothetical protein	0.00	0.00	0.00	0.01	0.86	0.40
lmo0653	hypothetical protein	0.01	0.00	0.00	0.01	0.81	0.61
lmo0654	hypothetical protein	0.03	0.24	0.02	0.19	0.83	0.61
lmo0655	phosphoprotein phosphatase	0.00	0.01	0.01	0.09	0.89	0.66
lmo0656	hypothetical protein	0.42	0.06	0.32	0.05	0.92	0.63
lmo0657	hypothetical protein	0.01	0.02	0.02	0.26	0.91	0.21
lmo0658	hypothetical protein	0.01	0.06	0.02	0.22	0.80	0.22
lmo0659	transcriptional regulator	0.03	0.01	0.10	0.12	0.76	0.44
lmo0660	transposase	0.00	0.06	0.01	0.42	0.69	0.08
lmo0661	hypothetical protein	0.01	0.04	0.03	0.20	0.90	0.39
lmo0662	phosphomethylpyrimidine kinase	0.42	0.04	0.18	0.18	0.91	0.65
lmo0663	hypothetical protein	0.42	0.03	0.25	0.04	0.92	0.64
lmo0664	acetyl transferase	0.00	0.00	0.05	0.09	0.86	0.33
lmo0665	hypothetical protein	0.01	0.04	0.00	0.04	0.91	0.55
lmo0666	hypothetical protein	0.12	0.42	0.01	0.18	0.92	0.67
lmo0669	oxidoreductase	0.31	0.20	0.11	0.49	0.74	0.22
lmo0670	hypothetical protein	0.37	0.06	0.20	0.33	0.67	0.19
lmo0671	hypothetical protein	0.21	0.37	0.14	0.44	0.79	0.53
lmo0672	hypothetical protein	0.01	0.04	0.04	0.45	0.85	0.23
lmo0673	hypothetical protein	0.36	0.45	0.10	0.43	0.92	0.67
lmo0674	hypothetical protein	0.34	0.35	0.08	0.43	0.92	0.64
lmo0675	hypothetical protein	0.35	0.31	0.21	0.16	0.84	0.50
lmo0676	flagellar biosynthesis protein Flip	0.35	0.32	0.16	0.13	0.85	0.51
lmo0677	flagellar biosynthesis protein FliQ	0.38	0.22	0.15	0.15	0.80	0.49
lmo0678	flagellar biosynthesis protein FliR	0.26	0.31	0.26	0.14	0.88	0.62
lmo0679	flagellar biosynthesis protein FlhB	0.17	0.37	0.31	0.19	0.90	0.67
lmo0680	flagellar biosynthesis protein FlhA	0.21	0.48	0.20	0.23	0.92	0.69
lmo0681	flagellar biosynthesis regulator FlhF	0.42	0.44	0.10	0.19	0.89	0.62
lmo0682	flagellar basal body rod protein FlgG	0.08	0.02	0.04	0.04	0.71	0.37
lmo0683	chemotaxis protein CheR	0.20	0.06	0.08	0.09	0.80	0.52
lmo0684	hypothetical protein	0.08	0.03	0.03	0.05	0.70	0.38

lmo0685	flagellar motor protein MotA	0.10	0.04	0.05	0.08	0.71	0.37
lmo0686	flagellar motor rotation MotB	0.12	0.02	0.05	0.05	0.73	0.42
lmo0687	hypothetical protein	0.31	0.19	0.10	0.12	0.75	0.50
lmo0688	hypothetical protein	0.17	0.05	0.06	0.06	0.74	0.41
lmo0689	chemotaxis protein CheV	0.37	0.29	0.09	0.13	0.89	0.66
lmo0690	flagellin	0.06	0.11	0.07	0.27	0.77	0.39
lmo0691	chemotaxis response regulator CheY	0.36	0.39	0.18	0.18	0.80	0.51
lmo0692	two-component sensor histidine kinase CheA	0.39	0.46	0.15	0.21	0.83	0.57
lmo0693	flagellar motor switch protein FliY	0.40	0.42	0.13	0.17	0.88	0.69
lmo0694	hypothetical protein	0.37	0.37	0.15	0.12	0.87	0.65
lmo0695	hypothetical protein	0.41	0.27	0.16	0.11	0.83	0.60
lmo0696	flagellar basal body rod modification protein	0.42	0.36	0.10	0.11	0.86	0.57
lmo0697	flagellar hook protein FlgE	0.41	0.42	0.13	0.17	0.85	0.61
lmo0698	flagellar motor switch protein	0.37	0.41	0.19	0.19	0.88	0.68
lmo0699	flagellar motor switch protein FliM	0.41	0.37	0.15	0.16	0.89	0.68
lmo0700	flagellar motor switch protein FliY	0.36	0.41	0.18	0.17	0.87	0.64
lmo0701	hypothetical protein	0.38	0.33	0.20	0.18	0.86	0.63
lmo0702	hypothetical protein	0.35	0.26	0.07	0.08	0.82	0.58
lmo0703	hypothetical protein	0.37	0.50	0.15	0.21	0.88	0.68
lmo0704	hypothetical protein	0.42	0.46	0.11	0.16	0.84	0.65
lmo0705	flagellar hook-associated protein FlgK	0.41	0.48	0.11	0.18	0.84	0.64
lmo0706	flagellar hook-associated protein FlgL	0.41	0.41	0.09	0.12	0.85	0.63
lmo0707	flagellar capping protein FliD	0.35	0.44	0.15	0.16	0.85	0.60
lmo0708	flagellar protein	0.42	0.35	0.11	0.15	0.80	0.60
lmo0709	hypothetical protein	0.40	0.33	0.08	0.12	0.78	0.56
lmo0710	flagellar basal-body rod protein FlgB	0.19	0.17	0.04	0.07	0.81	0.63
lmo0711	flagellar basal body rod protein FlgC	0.31	0.30	0.06	0.12	0.80	0.63
lmo0712	flagellar hook-basal body protein FliE	0.42	0.35	0.19	0.28	0.89	0.64
lmo0713	flagellar MS-ring protein FliF	0.41	0.24	0.16	0.12	0.81	0.63
lmo0714	flagellar motor switch protein FliG	0.41	0.31	0.18	0.18	0.86	0.66
lmo0715	flagellar assembly protein H	0.32	0.19	0.10	0.13	0.82	0.61
lmo0716	flagellum-specific ATP synthase	0.41 0.42	0.26 0.23	0.14	0.14 0.11	0.82	0.60
lmo0717	transglycosylase	0.42	0.23	0.16	0.11	0.80 0.82	0.55 0.59
lmo0718 lmo0719	hypothetical protein	0.37	0.31	0.16 0.16	0.12	0.82	0.39
lm00719 lm00720	hypothetical protein hypothetical protein	0.18	0.31	0.10	0.11	0.90	0.33
lm00720 lm00721	fibronectin-binding protein	0.23	0.24	0.20	0.10	0.90	0.34
lm00721 lm00722	pyruvate oxidase	0.41	0.24	0.10	0.00	0.69	0.42
lm00722 lm00723	metyl-accepting chemotaxis protein	0.34	0.30	0.08	0.30	0.09	0.29
lm00723 lm00724	hypothetical protein	0.20	0.33	0.04	0.08	0.91	0.00
lm00724 lm00727	glucosaminefructose-6-phosphate aminotransferase	0.00	0.02	0.01	0.01	0.85	0.65
lm00728	riboflavin kinase / FAD synthase	0.16	0.00	0.00	0.01	0.61	0.05
lm00720 lm00729	hypothetical protein	0.02	0.01	0.02	0.12	0.83	0.69
lmo0729 lmo0730	hypothetical protein	0.02	0.04	0.02	0.12	0.85	0.51
lmo0731	hypothetical protein	0.28	0.35	0.03	0.20	0.72	0.65
lmo0733	transcriptional regulator	0.00	0.00	0.03	0.03	0.82	0.00
lmo0755 lmo0740	transcriptional regulator	0.12	0.42	0.01	0.34	0.82	0.20
lmo0741	GntR family transcriptional regulator	0.03	0.12	0.01	0.10	0.70	0.23
lmo0742	ABC transporter ATP-binding protein	0.00	0.00	0.01	0.02	0.60	0.23
lmo0743	hypothetical protein	0.00	0.00	0.01	0.19	0.69	0.23
lmo0744	ABC transporter ATP-binding protein	0.05	0.01	0.22	0.19	0.63	0.23
lmo0745	hypothetical protein	0.01	0.01	0.09	0.21	0.74	0.38
lmo0752	hypothetical protein	0.00	0.00	0.00	0.00	0.73	0.29
lmo0753	Crp/Fnr family transcriptional regulator	0.19	0.24	0.19	0.36	0.72	0.57
lmo0754	hypothetical protein	0.05	0.05	0.15	0.30	0.68	0.49
lmo0755	hypothetical protein	0.00	0.00	0.00	0.01	0.81	0.38
lmo0756	ABC transporter ATP-binding protein	0.00	0.00	0.06	0.01	0.76	0.42
lmo0757	hypothetical protein	0.42	0.00	0.11	0.48	0.90	0.35
lmo0758	hypothetical protein	0.12	0.04	0.11	0.07	0.70	0.26
lmo0760	hypothetical protein	0.19	0.01	0.11	0.03	0.72	0.20
lmo0762	ATP/GTP-binding protein	0.01	0.12	0.04	0.40	0.92	0.60
-							-

lmo0763	Ser/Thr protein phosphatase family protein	0.00	0.00	0.00	0.01	0.66	0.16
lmo0764	lipoate-protein ligase	0.00	0.01	0.01	0.10	0.90	0.22
lmo0772	transcriptional regulator	0.01	0.00	0.01	0.00	0.75	0.21
lmo0773	alcohol dehydrogenase	0.37	0.33	0.15	0.31	0.88	0.53
lmo0774	hypothetical protein	0.17	0.00	0.28	0.07	0.72	0.42
lmo0775	hypothetical protein	0.27	0.00	0.19	0.17	0.85	0.68
lmo0776	transcriptional regulator	0.01	0.03	0.01	0.11	0.72	0.16
lmo0777	hypothetical protein	0.20	0.30	0.06	0.18	0.92	0.59
lmo0778	hypothetical protein	0.38	0.35	0.18	0.43	0.90	0.60
lmo0779	hypothetical protein	0.22	0.01	0.26	0.34	0.49	0.21
lmo0781	PTS mannose transporter subunit IID	0.01	0.04	0.01	0.10	0.87	0.67
lmo0782	PTS mannose transporter subunit IIC	0.03	0.10	0.02	0.14	0.86	0.64
lmo0783	PTS mannose transporter subunit IIB	0.09	0.30	0.03	0.27	0.85	0.55
lmo0784	PTS mannose transporter subunit IIB	0.08	0.30	0.03	0.26	0.85	0.56
lmo0786	ACP phosphodiesterase	0.03	0.10	0.01	0.07	0.74	0.37
lmo0787	amino acid transporter	0.40	0.02	0.29	0.07	0.74	0.34
lmo0788	hypothetical protein	0.06	0.33	0.02	0.24	0.86	0.62
lmo0790	transcriptional regulator	0.01	0.07	0.28	0.32	0.76	0.28
lmo0791	hypothetical protein	0.23	0.35	0.06	0.46	0.92	0.64
lmo0793	hypothetical protein	0.19	0.44	0.04	0.36	0.87	0.67
lmo0794	hypothetical protein	0.05	0.26	0.04	0.36	0.79	0.51
lmo0795	hypothetical protein	0.34	0.21	0.05	0.47	0.89	0.67
lmo0796	hypothetical protein	0.15	0.48	0.03	0.37	0.69	0.22
lmo0797	hypothetical protein	0.30	0.22	0.12	0.45	0.92	0.40
lmo0798	lysine-specific permease	0.12	0.47	0.05	0.47	0.60	0.22
lmo0799	hypothetical protein	0.01	0.01	0.04	0.17	0.89	0.45
lmo0800	hypothetical protein	0.00	0.00	0.00	0.07	0.91	0.18
lmo0802	hypothetical protein	0.39	0.21	0.08	0.53	0.78	0.21
lmo0803	Na+/H+ antiporter	0.41	0.35	0.28	0.24	0.74	0.44
lmo0806	transcriptional regulator	0.12	0.48	0.04	0.41	0.59	0.19
lmo0807	spermidine/putrescine ABC transporter ATP-binding protein	0.07	0.33	0.01	0.13	0.69	0.23
lmo0808	spermidine/putrescine ABC transporter permease	0.04	0.15	0.01	0.15	0.74	0.52
lmo0809	spermidine/putrescine ABC transporter permease	0.00	0.02	0.01	0.09	0.84	0.61
lmo0810	spermidine/putrescine ABC transporter substrate-binding protein	0.02	0.09	0.02	0.14	0.73	0.53
lmo0811	carbonic anhydrase	0.22	0.39	0.31	0.49	0.84	0.59
lmo0812	hypothetical protein	0.22	0.02	0.06	0.20	0.58	0.16
lmo0813	fructokinase	0.35	0.20	0.20	0.22	0.90	0.61
lmo0814	oxidoreductase	0.05	0.28	0.01	0.12	0.86	0.67
lmo0817	PhnB protein	0.39	0.25	0.11	0.51	0.68	0.40
lmo0818	cation-transporting ATPase	0.14	0.32	0.02	0.19	0.75	0.41
lmo0819	hypothetical protein	0.10	0.43	0.01	0.08	0.74	0.44
lmo0820	acetyltransferase	0.27	0.29	0.13	0.24	0.77	0.39
lmo0821	hypothetical protein	0.28	0.47	0.27	0.39	0.71	0.26
lmo0822	transcriptional regulator	0.22	0.02	0.06	0.36	0.71	0.45
lmo0823	oxidoreductase	0.14	0.26	0.04	0.11	0.76	0.34
lmo0824	hypothetical protein	0.08	0.47	0.04	0.49	0.92	0.56
lmo0825	3-hydroxy-3-methylglutaryl-CoA reductase	0.04	0.18	0.04	0.35	0.80	0.32
lmo0826	transporter	0.17	0.05	0.14	0.11	0.74	0.55
lmo0829	pyruvate-flavodoxin oxidoreductase	0.10	0.00	0.19	0.01	0.75	0.37
lmo0830	fructose-16-bisphosphatase	0.43	0.29	0.28	0.20	0.88	0.60
lmo0831	hypothetical protein	0.00	0.00	0.00	0.03	0.67	0.09
lmo0832	transposase	0.00	0.00	0.00	0.00	0.69	0.17
lmo0833	transcriptional regulator	0.03	0.05	0.01	0.01	0.92	0.58
lmo0834	hypothetical protein	0.12	0.44	0.02	0.40	0.82	0.64
lmo0835	peptidoglycan binding protein	0.03	0.00	0.19	0.14	0.61	0.24
lmo0836	phosphate-starvation-inducible protein PsiE	0.01	0.05	0.01	0.07	0.90	0.48
lmo0837	hypothetical protein	0.03	0.08	0.01	0.04	0.93	0.20
lmo0838	sugar:phosphate antiporter	0.05	0.06	0.03	0.13	0.78	0.44
lmo0839	tetracycline resistance protein	0.00	0.00	0.00	0.01	0.69	0.22
lmo0840	hypothetical protein	0.00	0.00	0.06	0.33	0.80	0.30
lmo0841	calcium-transporting ATPase	0.34	0.25	0.23	0.32	0.77	0.21

lmo0843	hypothetical protein	0.17	0.28	0.03	0.13	0.71	0.21
lmo0844	hypothetical protein	0.00	0.00	0.04	0.28	0.85	0.37
lmo0845	hypothetical protein	0.00	0.00	0.02	0.07	0.80	0.40
lmo0846	excinuclease ABC subunit C	0.29	0.38	0.07	0.47	0.91	0.63
lmo0847	glutamine ABC transporter	0.18	0.11	0.03	0.54	0.66	0.27
lmo0848	amino acid ABC transporter ATP-binding protein	0.17	0.24	0.03	0.35	0.67	0.36
lmo0850	hypothetical protein	0.01	0.12	0.01	0.21	0.84	0.65
lmo0851	hypothetical protein	0.14	0.44	0.06	0.12	0.90	0.47
lmo0852	TetR family transcriptional regulator	0.00	0.00	0.02	0.05	0.52	0.20
lmo0853	SugE protein	0.00	0.00	0.03	0.04	0.48	0.21
lmo0854	SugE protein	0.00	0.00	0.06	0.09	0.60	0.31
lmo0855	D-alanyl-alanine synthetase A	0.03	0.07	0.02	0.23	0.90	0.56
lmo0856	UDP-N-acetylmuramoylalanyl-D-glutamyl-2 6-diamino pimelate-D- alanyl-D-alanyl ligase	0.03	0.34	0.01	0.28	0.82	0.54
lmo0857	carboxylesterase	0.15	0.45	0.04	0.36	0.92	0.64
lmo0858	LacI family transcriptional regulator	0.36	0.00	0.16	0.03	0.89	0.60
lmo0860	sugar ABC transporter permease	0.10	0.17	0.02	0.12	0.81	0.22
lmo0861	sugar ABC transporter permease	0.14	0.27	0.02	0.07	0.81	0.23
lmo0862	oligo-16-glucosidase	0.14	0.18	0.02	0.07	0.82	0.22
lmo0863	hypothetical protein	0.21	0.30	0.04	0.16	0.69	0.22
lmo0864	hypothetical protein	0.15	0.23	0.02	0.13	0.73	0.19
lmo0865	phosphomannomutase	0.23	0.28	0.04	0.16	0.76	0.37
lmo0866	ATP-dependent RNA helicase	0.25	0.07	0.10	0.25	0.92	0.68
lmo0866a	hypothetical protein	0.00	0.00	0.02	0.02	0.65	0.23
lmo0867	hypothetical protein	0.19	0.23	0.07	0.48	0.90	0.64
lmo0868	hypothetical protein	0.01	0.01	0.01	0.03	0.92	0.64
lmo0869	hypothetical protein	0.05	0.12	0.01	0.47	0.80	0.66
lmo0870	hypothetical protein	0.08	0.31	0.06	0.53	0.79	0.62
lmo0871	hypothetical protein	0.32	0.00	0.28	0.06	0.68	0.02
lmo0872	antibiotic resistance protein	0.00	0.00	0.02	0.00	0.64	0.45
lm00872 lm00873	transcriptional regulator	0.00	0.00	0.02	0.32	0.73	0.27
lm00875 lm00874	PTS sugar transporter subunit IIA	0.39	0.27	0.20	0.32	0.73	0.20
lm00874 lm00875	PTS beta-glucoside transporter subunit IIB	0.23	0.40	0.00	0.57	0.73	0.10
	• •	0.10	0.30				
lmo0876	PTS sugar transporter subunit IIC			0.05	0.25	0.76	0.18
lmo0877	glucosamine-6-phosphate isomerase	0.09	0.14	0.06	0.38	0.75	0.20
lmo0878	oxidoreductase	0.07	0.15	0.06	0.40	0.76	0.16
lmo0879	hypothetical protein	0.02	0.02	0.07	0.36	0.71	0.13
lmo0881	hypothetical protein	0.14	0.35	0.21	0.20	0.75	0.22
lmo0882	hypothetical protein	0.14	0.17	0.22	0.42	0.74	0.39
lmo0883	hypothetical protein	0.01	0.00	0.15	0.18	0.40	0.17
lmo0884	protoporphyrinogen oxidase	0.02	0.15	0.01	0.18	0.87	0.16
lmo0885	4'-phosphopantetheinyl transferase	0.01	0.12	0.01	0.25	0.93	0.25
lmo0886	alanine racemase	0.03	0.43	0.03	0.45	0.92	0.24
lmo0887	hypothetical protein	0.26	0.31	0.28	0.54	0.88	0.65
lmo0889	positive regulator of sigma-B activity	0.40	0.25	0.27	0.25	0.92	0.70
lmo0890	negative regulation of sigma-B activity	0.30	0.28	0.17	0.30	0.90	0.70
lmo0891	positive regulation of sigma-B activity	0.25	0.30	0.16	0.33	0.88	0.70
lmo0894	serine-protein kinase RsbW	0.40	0.17	0.30	0.32	0.93	0.60
lmo0895	RNA polymerase sigma factor SigB	0.24	0.45	0.28	0.41	0.72	0.27
lmo0896	indirect negative regulation of sigma B dependant gene expression (serine phosphatase)	0.12	0.30	0.26	0.51	0.62	0.17
lmo0897	transporter	0.10	0.43	0.04	0.53	0.82	0.60
lmo0898	hypothetical protein	0.06	0.44	0.02	0.36	0.92	0.31
lmo0899	hypothetical protein	0.41	0.04	0.02	0.10	0.92	0.68
lmo0900	hypothetical protein	0.07	0.00	0.12	0.02	0.55	0.18
lm00900 lm00901	PTS cellbiose transporter subunit IIC	0.07	0.16	0.12	0.16	0.73	0.16
lm00902	GntR family transcriptional regulator	0.05	0.37	0.05	0.51	0.91	0.20
lm00902 lm00903	hypothetical protein	0.03	0.01	0.05	0.07	0.91	0.55
lm00903 lm00904	hypothetical protein	0.03	0.01	0.05	0.07	0.42	0.15
lm00904 lm00905	hypothetical protein	0.31	0.19	0.07	0.40	0.61	0.30
lm00905 lm00906	glutathione reductase	0.12	0.23	0.03	0.33	0.02	0.20
11100700	Standholle leanense	0.03	0.55	0.05	0.70	0.71	0.29

lmo0907	phosphoglycerate mutase	0.01	0.03	0.01	0.11	0.89	0.67
lmo0908	hypothetical protein	0.22	0.32	0.15	0.29	0.92	0.59
lmo0909	GntR family transcriptional regulator	0.15	0.18	0.07	0.31	0.89	0.65
lmo0910	hypothetical protein	0.23	0.07	0.11	0.22	0.83	0.54
lmo0911	hypothetical protein	0.28	0.02	0.11	0.18	0.78	0.57
lmo0912	formate transporter	0.14	0.41	0.09	0.42	0.87	0.69
lmo0913	succinate semialdehyde dehydrogenase	0.10	0.49	0.03	0.38	0.71	0.20
lmo0914	PTS sugar transporter subunit IIB	0.09	0.36	0.08	0.33	0.85	0.61
lmo0915	PTS sugar transporter subunit IIC	0.11	0.24	0.09	0.26	0.81	0.53
lmo0916	PTS sugar transporter subunit IIA	0.11	0.28	0.08	0.27	0.81	0.53
lmo0917	beta-glucosidase	0.11	0.27	0.09	0.22	0.79	0.54
lmo0918	transcription antiterminator BglG	0.14	0.14	0.11	0.21	0.74	0.39
lmo0919	antibiotic ABC transporter ATP-binding protein	0.40	0.13	0.08	0.53	0.92	0.63
lmo0920	hypothetical protein	0.11	0.29	0.03	0.09	0.91	0.32
lmo0921	hypothetical protein	0.09	0.45	0.02	0.26	0.90	0.66
lmo0922	ADC transmission ATD his diag matching	0.06 0.17	0.09 0.11	0.10	0.51	0.77	0.22
lmo0923	ABC transporter ATP-binding protein	0.17		0.10	0.19	0.74	0.52
lmo0925 lmo0926	hypothetical protein TetR family transcriptional regulator	0.15	0.15 0.37	0.05 0.03	0.30 0.49	0.85 0.90	0.63 0.53
lm00920 lm00927		0.07	0.37	0.03	0.49	0.90	0.55
lm00927 lm00928	hypothetical protein 3-methyladenine DNA glycosylase	0.14	0.04	0.14	0.03	0.92	0.68
lm00928 lm00929		0.00	0.00	0.00	0.02	0.88	0.01
lm00929 lm00930	sortase hypothetical protein	0.08	0.27	0.05	0.13	0.74	0.40
lm00930 lm00931	lipoate protein ligase A	0.02	0.00	0.00	0.04	0.69	0.24
lm00931 lm00932	hypothetical protein	0.00	0.00	0.02	0.02	0.69	0.21
lm00932 lm00934	hypothetical protein	0.42	0.03	0.27	0.03	0.01	0.24
lm00934 lm00935	rRNA methylase	0.31	0.12	0.10	0.38	0.76	0.17
lmo0935 lmo0936	nitroflavin reductase	0.29	0.00	0.10	0.14	0.70	0.20
lmo0937	hypothetical protein	0.00	0.00	0.01	0.05	0.86	0.21
lmo0938	protein-tyrosine-phosphatase	0.00	0.00	0.01	0.05	0.00	0.70
lmo0939	hypothetical protein	0.00	0.03	0.01	0.32	0.91	0.59
lmo0941	hypothetical protein	0.00	0.00	0.00	0.01	0.91	0.41
lmo0942	heat shock protein 90	0.00	0.00	0.00	0.01	0.81	0.30
lmo0943	non-heme iron-binding ferritin	0.22	0.16	0.04	0.41	0.85	0.62
lmo0944	hypothetical protein	0.09	0.31	0.05	0.38	0.59	0.20
lmo0945	competence protein ComEC	0.39	0.26	0.14	0.51	0.91	0.69
lmo0946	hypothetical protein	0.20	0.48	0.06	0.33	0.92	0.60
lmo0947	hypothetical protein	0.33	0.00	0.16	0.29	0.62	0.30
lmo0948	transcriptional regulator	0.06	0.00	0.24	0.10	0.62	0.25
lmo0949	hypothetical protein	0.16	0.27	0.29	0.53	0.91	0.57
lmo0950	hypothetical protein	0.06	0.17	0.05	0.53	0.88	0.34
lmo0951	hypothetical protein	0.21	0.48	0.17	0.36	0.78	0.54
lmo0952	hypothetical protein	0.10	0.40	0.03	0.42	0.86	0.50
lmo0953	hypothetical protein	0.40	0.00	0.14	0.22	0.60	0.21
lmo0954	hypothetical protein	0.05	0.49	0.09	0.28	0.89	0.39
lmo0955	hypothetical protein	0.05	0.47	0.07	0.35	0.91	0.38
lmo0956	N-acetylglucosamine-6P-phosphate deacetylase	0.07	0.13	0.01	0.11	0.74	0.50
lmo0957	glucosamine-6-phosphate isomerase	0.07	0.07	0.01	0.06	0.74	0.55
lmo0958	GntR family transcirptional regulator	0.06	0.05	0.01	0.05	0.73	0.50
lmo0959	undacaprenyl-phosphate N-acetylglucosaminyltransferase	0.00	0.00	0.00	0.02	0.79	0.39
lmo0960	protease	0.01	0.04	0.01	0.07	0.86	0.58
lmo0961	protease	0.00	0.05	0.02	0.16	0.90	0.64
lmo0962	LemA protein	0.39	0.30	0.19	0.41	0.69	0.38
lmo0963	heat shock protein HtpX	0.05	0.06	0.03	0.09	0.87	0.68
lmo0964	hypothetical protein	0.20	0.06	0.06	0.40	0.74	0.40
lmo0965	hypothetical protein	0.12	0.29	0.07	0.39	0.90	0.42
lmo0966	hypothetical protein	0.02	0.22	0.04	0.49	0.89	0.65
lmo0967	hypothetical protein	0.37	0.21	0.10	0.43	0.77	0.60
lmo0968	inorganic polyphosphate/ATP-NAD kinase	0.10	0.05	0.29	0.50	0.82	0.58
lmo0969	ribosomal large subunit pseudouridine synthetase	0.22	0.47	0.31	0.36	0.90	0.67
lmo0970	enoyl-ACP reductase	0.23	0.03	0.17	0.03	0.75	0.29

	DltD protein for D-alanine esterification of lipoteichoic acid and wall						
lmo0971	teichoic acid	0.21	0.38	0.17	0.49	0.88	0.67
lmo0972	D-alaninepoly(phosphoribitol) ligase subunit 2	0.34	0.50	0.28	0.49	0.87	0.63
1 0073	DltB protein for D-alanine esterification of lipoteichoic acid and wall						
lmo0973	teichoic acid	0.42	0.48	0.27	0.45	0.91	0.67
lmo0974	D-alaninepoly(phosphoribitol) ligase subunit 1	0.23	0.44	0.13	0.45	0.90	0.69
lmo0975	ribose-5-phosphate isomerase A	0.00	0.00	0.00	0.01	0.72	0.21
lmo0976	hypothetical protein	0.03	0.04	0.01	0.02	0.74	0.49
lmo0977	hypothetical protein	0.12	0.29	0.02	0.10	0.70	0.35
lmo0978	branched-chain amino acid aminotransferase	0.42	0.04	0.25	0.12	0.71	0.33
lmo0979	daunorubicin resistance ATP-binding protein	0.31	0.12	0.32	0.26	0.92	0.70
lmo0980	ABC transporter permease	0.25	0.03	0.31	0.12	0.91	0.69
lmo0981	transporter	0.01	0.01	0.00	0.01	0.92	0.42
lmo0982	peptidase	0.01	0.00	0.01	0.03	0.89	0.48
lmo0983	glutathione peroxidase	0.01	0.00	0.01	0.01	0.91	0.50
lmo0984	hypothetical protein	0.02	0.26	0.02	0.38	0.91	0.52
lmo0985	hypothetical protein	0.00 0.11	0.05 0.46	0.01	0.18	0.92 0.92	0.57
lmo0986 lmo0987	antibiotic ABC transporter ATP-binding protein CylB protein	0.11	0.40	0.04 0.15	0.54 0.12	0.92	0.64 0.63
lm00987 lm00988	peptide chain release factor 3	0.11	0.03	0.13	0.12	0.91	0.03
lm00988 lm00989	MarR family transcriptional regulator	0.00	0.21	0.02	0.20	0.91	0.65
lm00989 lm00991	hypothetical protein	0.32	0.00	0.20	0.37	0.84	0.65
lm00991 lm00992	hypothetical protein	0.30	0.00	0.20	0.03	0.88	0.37
lmo0992 lmo0993	Na+-transporting ATP synthase subunit J	0.12	0.13	0.06	0.05	0.90	0.57
lmo09994	hypothetical protein	0.04	0.40	0.00	0.42	0.77	0.30
lmo0995	hypothetical protein	0.37	0.37	0.05	0.38	0.65	0.26
lmo0996	methylated-DNA-protein-cysteine methyltransferase	0.37	0.37	0.03	0.10	0.90	0.66
lmo0997	ATP-dependent protease	0.05	0.44	0.10	0.22	0.91	0.51
lmo0998	hypothetical protein	0.26	0.22	0.08	0.51	0.90	0.58
lmo0999	hypothetical protein	0.02	0.00	0.03	0.12	0.87	0.47
lmo1000	phytoene dehydrogenase	0.01	0.00	0.05	0.10	0.92	0.52
lmo1001	hypothetical protein	0.31	0.47	0.32	0.54	0.75	0.45
lmo1002	phosphocarrier protein HPr	0.39	0.20	0.26	0.48	0.79	0.59
lmo1003	phosphotransferase system enzyme I	0.27	0.06	0.27	0.38	0.70	0.51
lmo1005	3-hydroxyisobutyrate dehydrogenase	0.13	0.00	0.21	0.01	0.81	0.38
lmo1006	aminotransferase	0.20	0.43	0.08	0.53	0.90	0.52
lmo1007	hypothetical protein			0.24	0.54	0.86	0.61
lmo1008	hypothetical protein	0.10	0.01	0.27	0.12	0.92	0.67
lmo1009	hypothetical protein	0.01	0.11	0.02	0.18	0.74	0.50
lmo1010	LysR family transcriptional regulator	0.01	0.05	0.01	0.08	0.73	0.46
lmo1011	tetrahydrodipicolinate succinylase	0.28	0.33	0.14	0.42	0.92	0.62
lmo1012	N-acyl-L-amino acid amidohydrolase	0.00	0.00	0.00	0.02	0.77	0.31
lmo1013	hypothetical protein	0.00	0.00	0.01	0.09	0.92	0.32
lmo1014	glycine/betaine ABC transporter ATP-binding protein	0.17	0.48	0.03	0.23	0.92	0.40
lmo1015	glycine/betaine ABC transporter permease	0.22	0.30	0.04	0.44	0.87	0.58
lmo1016	glycine/betaine ABC transporter substrate-binding protein	0.07	0.22	0.01	0.09	0.89	0.40
lmo1017	PTS glucose transporter subunit IIA	0.01	0.05	0.00	0.03	0.87	0.37
lmo1018	copper homeostasis protein CutC	0.31 0.28	0.09 0.50	0.10	0.25	0.78 0.66	0.66
lmo1019 lmo1020	hypothetical protein	0.28	0.30	0.09 0.19	0.36 0.44	0.85	0.33
lm01020 lm01021	hypothetical protein two-component sensor histidine kinase	0.24	0.27	0.19	0.44	0.85	0.57 0.65
lmo1021 lmo1022	two-component sensor institutine kinase two-component response regulator	0.39	0.47	0.07	0.25	0.85	0.65
lmo1022 lmo1023	potassium transporter	0.25	0.43	0.28	0.38	0.79	0.45
lm01023 lm01025	hypothetical protein	0.23	0.17	0.02	0.02	0.80	0.45
lmo1025 lmo1026	LytR protein	0.32	0.00	0.09	0.07	0.75	0.19
lmo1020 lmo1027	hypothetical protein	0.05	0.45	0.00	0.40	0.75	0.24
lmo1027 lmo1028	hypothetical protein	0.03	0.16	0.05	0.13	0.87	0.27
lmo1020	hypothetical protein	0.01	0.01	0.05	0.05	0.73	0.33
lmo1029	LacI family transcriptional regulator	0.34	0.48	0.17	0.47	0.70	0.35
lmo1031	hypothetical protein	0.26	0.01	0.33	0.08	0.80	0.61
lmo1032	transketolase	0.24	0.01	0.31	0.07	0.79	0.60

lmo1033	transketolase	0.33	0.01	0.25	0.09	0.83	0.62
lmo1034	glycerol kinase	0.32	0.06	0.12	0.18	0.90	0.63
lmo1035	PTS beta-glucoside transporter subunit IIABC	0.43	0.03	0.19	0.12	0.91	0.53
lmo1036	hypothetical protein	0.37	0.03	0.26	0.12	0.90	0.58
lmo1037	hypothetical protein	0.38	0.25	0.23	0.37	0.90	0.59
lmo1038	hypothetical protein	0.36	0.27	0.08	0.33	0.90	0.57
lmo1039	ABC transporter ATP-binding protein	0.33	0.37	0.09	0.41	0.91	0.62
lmo1040	molybdenum ABC transporter permease	0.22	0.49	0.09	0.39	0.91	0.52
lmo1041	molybdate ABC transporter substrate-binding protein	0.03	0.07	0.02	0.19	0.89	0.43
lmo1042	molybdopterin biosynthesis protein MoeA	0.05	0.46	0.02	0.27	0.91	0.52
lmo1043	molybdopterin-guanine dinucleotide biosynthesis MobB	0.04	0.46	0.02	0.29	0.92	0.56
lmo1044	molybdopterin converting factor subunit 2	0.07	0.40	0.02	0.41	0.92	0.63
lmo1045	molybdopterin converting factor subunit 1	0.01	0.04	0.01	0.11	0.92	0.43
lmo1046	molybdenum cofactor biosynthesis protein MoaC	0.01	0.06	0.01	0.11	0.91	0.37
lmo1047	molybdenum cofactor biosynthesis protein A	0.01	0.01	0.01	0.09	0.91	0.31
lmo1048	molybdenum cofactor biosynthesis protein B	0.10	0.27	0.04	0.53	0.88	0.59
lmo1049	molybdopterin biosynthesis protein MoeB	0.00	0.00	0.01	0.02	0.93	0.17
lmo1050	hypothetical protein	0.00	0.00	0.00	0.01	0.57	0.15
lmo1051	peptide deformylase	0.01	0.11	0.02	0.39	0.91	0.38
lmo1052	pyruvate dehydrogenase subunit E1 alpha	0.04	0.41	0.05	0.50	0.74	0.50
lmo1053	pyruvate dehydrogenase subunit E1 beta	0.14	0.25	0.05	0.54	0.70	0.32
lmo1054	dihydrolipoamide acetyltransferase	0.09	0.45	0.06	0.51	0.83	0.56
lmo1055	dihydrolipoamide dehydrogenase	0.22	0.13	0.14	0.21	0.79	0.35
lmo1056	hypothetical protein	0.00	0.00	0.04	0.07	0.90	0.50
lmo1057	L-lactate dehydrogenase	0.01	0.01	0.01	0.07	0.81	0.56
lmo1058	hypothetical protein	0.01	0.12	0.01	0.32	0.85	0.70
lmo1059	hypothetical protein	0.01	0.05	0.01	0.10	0.87	0.70
lmo1064	transporter	0.09	0.34	0.05	0.52	0.91	0.69
lmo1065	hypothetical protein	0.26	0.29	0.15	0.32	0.87	0.50
lmo1066	myo-inositol-1(or 4)-monophosphatase	0.29	0.25	0.06	0.49	0.90	0.66
lmo1067	GTP-binding elongation factor	0.41	0.01	0.15	0.25	0.91	0.69
lmo1069	hypothetical protein	0.23	0.06	0.12	0.11	0.72	0.29
lmo1070	hypothetical protein	0.26	0.37	0.06	0.47	0.89	0.68
lmo1071	cell division protein FtsW	0.06	0.04	0.03	0.33	0.91	0.38
lmo1072	pyruvate carboxylase	0.16	0.09	0.08	0.19	0.83	0.70
lmo1073	metal ABC transporter substrate-binding protein	0.08	0.28	0.02	0.50	0.74	0.44
lmo1074	teichoic acid translocation permease TagG	0.16	0.09	0.06	0.34	0.79	0.32
lmo1075	teichoic acid ABC transporter ATP-binding protein	0.03	0.13	0.01	0.03	0.84	0.67
lmo1078	UDP-glucose pyrophosphorylase	0.13	0.00	0.14	0.00	0.88	0.19
lmo1089	glycerol-3-phosphate cytidylyltransferase	0.15	0.08	0.02	0.00	0.80	0.57
lmo1092	nicotinate phosphoribosyltransferase	0.31	0.42	0.21	0.24	0.60	0.18
lmo1093	NAD synthetase	0.16	0.06	0.10	0.10	0.89	0.56
lmo1094	hypothetical protein	0.16	0.04	0.10	0.09	0.92	0.63
lmo1095	PTS cellbiose transporter subunit IIB	0.40	0.15	0.31	0.23	0.74	0.39
lmo1096	GMP synthase	0.36	0.00	0.22	0.02	0.77	0.51
lmo1126	hypothetical protein	0.00	0.00	0.01	0.05	0.68	0.19
lmo1127	hypothetical protein	0.00	0.00	0.01	0.02	0.73	0.23
lmo1128	hypothetical protein	0.19	0.18	0.13	0.26	0.92	0.67
lmo1129	hypothetical protein	0.10	0.15	0.05	0.17	0.91	0.62
lmo1131	ABC transporter ATP-binding protein	0.03	0.37	0.07	0.51	0.89	0.34
lmo1132	ABC transporter ATP-binding protein	0.08	0.47	0.20	0.26	0.91	0.37
lmo1133	hypothetical protein	0.21	0.36	0.25	0.29	0.90	0.61
lmo1135	hypothetical protein	0.00	0.00	0.01	0.00	0.60	0.21
lmo1137	hypothetical protein ATD dependent Cla protecce protectivity suburit	0.34	0.19	0.22	0.27	0.70	0.43
lmo1138	ATP-dependent Clp protease proteolytic subunit	0.01	0.18	0.05	0.53	0.92	0.43
lmo1140	hypothetical protein	0.24	0.11	0.10	0.43	0.69	0.21
lmo1142	PduS protein	0.10	0.47	0.03	0.31	0.87	0.33
lmo1143	PduT protein	0.34	0.18	0.08	0.55	0.88	0.55
lmo1144 lmo1145	PduU protein	0.04	0.24	0.06	0.46	0.76	0.25
lmo1145 lmo1146	PduV protein hypothetical protein	0.13 0.04	0.42 0.19	$\begin{array}{c} 0.08\\ 0.05\end{array}$	0.49 0.37	0.87 0.73	0.39 0.20
11101140	nypotietical protein	0.04	0.17	0.05	0.57	0.75	0.20

lmo1147	cobalamin biosynthesis protein CopB	0.00	0.01	0.01	0.14	0.62	0.09
lmo1148	cobalamin (5'-phosphatase) synthetase	0.01	0.04	0.02	0.21	0.70	0.20
lmo1149	alpha-ribazole-5'-phosphatase	0.00	0.00	0.00	0.02	0.66	0.15
lmo1150	transcriptional regulator PocR	0.12	0.34	0.03	0.33	0.90	0.36
lmo1152	PduB protein	0.40	0.34	0.30	0.36	0.84	0.38
lmo1153	propanediol dehydratase subunit alpha	0.42	0.34	0.32	0.42	0.90	0.41
lmo1154	diol dehydratase subunit gamma	0.43	0.46	0.15	0.34	0.87	0.28
lmo1155	diol dehydratase subunit gamma	0.36	0.45	0.28	0.40	0.89	0.43
lmo1156	diol dehydratase-reactivating factor large subunit	0.41	0.36	0.21	0.48	0.81	0.33
lmo1157	diol dehydratase-reactivating factor small subunit	0.32	0.29	0.32	0.44	0.91	0.56
lmo1158	PduK protein	0.37	0.40	0.28	0.40	0.84	0.32
lmo1160	PduL protein	0.33	0.41	0.33	0.40	0.91	0.54
lmo1161	ethanolamine utilization protein EutJ	0.36	0.27	0.29	0.31	0.92	0.41
lmo1162	hypothetical protein	0.32	0.33	0.22	0.36	0.91	0.56
lmo1163	carbon dioxide concentrating mechanism protein	0.37	0.40	0.18	0.18	0.92	0.58
lmo1164	ATP:cob(I)alamin adenosyltransferase PduO	0.24	0.50	0.19	0.54	0.86	0.36
lmo1165	ethanolamine utilization protein EutE	0.06	0.32	0.10	0.55	0.79	0.21
lmo1166	NADPH-dependent butanol dehydrogenase	0.30	0.42	0.31	0.28	0.89	0.48
lmo1167	glycerol uptake facilitator protein	0.42	0.41	0.26	0.29	0.86	0.41
lmo1168	acetate kinase	0.15	0.27	0.01	0.05	0.86	0.56
lmo1169	threonine-phosphate decarboxylase	0.32	0.04	0.07	0.37	0.78	0.39
lmo1170	PduX protein	0.03	0.18	0.00	0.02	0.81	0.59
lmo1171	NADPH-dependent butanol dehydrogenase	0.01	0.08	0.01	0.15	0.82	0.29
lmo1172	two-component response regulator	0.03	0.14	0.01	0.12	0.87	0.29
lmo1172	two-component response regulator	0.02	0.07	0.01	0.07	0.85	0.25
lmo1174	ethanolamine utilization protein EutA	0.02	0.26	0.01	0.36	0.86	0.20
lmo1174 lmo1175	ethanolamine ammonia-lyase large subunit	0.05	0.20	0.01	0.22	0.80	0.39
lmo1175 lmo1176	ethanolamine ammonia-lyase small subunit	0.05	0.24	0.01	0.22	0.92	0.39
lm01170 lm01177	carboxysome structural protein EutL	0.03	0.24	0.01	0.21	0.91	0.39
lmo1177 lmo1178	carboxysome structural protein	0.13	0.27	0.04	0.21	0.84	0.30
lmo1178 lmo1179	alcohol dehydrogenase	0.08	0.32	0.03	0.27	0.92	0.47
lmo1179 lmo1181	cobalamin adenosyl transferase	0.08	0.23	0.02	0.17	0.92	0.47
lm01181 lm01182	PduL protein	0.08	0.22	0.02	0.22	0.85	0.34
	-	0.14	0.23		0.28	0.80	0.35
lmo1183	hypothetical protein			0.02			
lmo1184	carbon dioxide concentrating mechanism protein	0.02	0.14 0.11	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	0.18 0.22	0.92 0.88	0.50 0.31
lmo1185	PduT protein	0.01					
lmo1186	ethanolamine utilization protein EutH	0.12	0.25	0.04	0.23	0.70	0.23
lmo1187	ethanolamine utilization protein EutQ	0.14	0.34	0.06	0.36	0.92	0.66
lmo1189	transcriptional regulator	0.23	0.12	0.10	0.29	0.92	0.61
lmo1190	hypothetical protein	0.30	0.12	0.11	0.39	0.90	0.63
lmo1191	cobyrinic acid ac-diamide synthase	0.13	0.36	0.07	0.54	0.91	0.42
lmo1192	cobalamin biosynthesis protein	0.30	0.41	0.14	0.52	0.85	0.38
lmo1193	cobalt-precorrin-8X methylmutase	0.18	0.44	0.13	0.48	0.74	0.29
lmo1194	cobalt-precorrin-6A synthase	0.17	0.48	0.09	0.49	0.76	0.31
lmo1195	cobalt-precorrin-6Y C(5)-methyltransferase	0.08	0.34	0.07	0.45	0.75	0.23
lmo1196	cobalt-precorrin-6Y C(15)-methyltransferase	0.17	0.48	0.11	0.52	0.82	0.40
lmo1197	precorrin-3 methylase	0.08	0.24	0.12	0.49	0.72	0.20
lmo1198	cobalamin biosynthesis protein CbiG	0.05	0.21	0.08	0.40	0.75	0.30
lmo1199	precorrin-3B C17-methyltransferase	0.04	0.15	0.10	0.45	0.73	0.28
lmo1200	cobalamin biosynthesis protein CbiJ	0.09	0.19	0.06	0.24	0.75	0.30
lmo1201	uroporphyrinogen-III methyltransferase/uroporphyrinogen-III synthase	0.11	0.19	0.09	0.31	0.72	0.23
lmo1202	cobalt chelatase	0.22	0.36	0.15	0.40	0.72	0.33
lmo1203	cobalt-precorrin-2 C(20)-methyltransferase	0.10	0.16	0.11	0.27	0.57	0.17
lmo1204	cobalamin biosynthesis protein CbiM	0.38	0.42	0.18	0.38	0.74	0.31
lmo1205	cobalamin biosynthesis protein CbiN	0.40	0.46	0.19	0.39	0.83	0.54
lmo1206	cobalamin biosynthesis protein CbiQ	0.32	0.40	0.21	0.37	0.81	0.51
lmo1207	cobalt transporter ATP-binding protein CbiO	0.15	0.09	0.31	0.46	0.92	0.69
lmo1208	cobyric acid synthase CbiP	0.20	0.01	0.32	0.21	0.64	0.31
lmo1209	hypothetical protein	0.14	0.01	0.32	0.26	0.69	0.32
lmo1210	hypothetical protein	0.16	0.27	0.05	0.52	0.87	0.69
	~1 I		·			2.	

lmo1211	hypothetical protein	0.15	0.23	0.06	0.45	0.87	0.56
lmo1212	hypothetical protein	0.01	0.02	0.00	0.01	0.90	0.55
lmo1213	hypothetical protein	0.00	0.00	0.00	0.00	0.78	0.24
lmo1214	hypothetical protein	0.00	0.00	0.00	0.03	0.80	0.22
lmo1215	N-acetylmuramoyl-L-alanine amidase	0.23	0.44	0.12	0.47	0.90	0.29
lmo1216	N-acetylmuramoyl-L-alanine amidase	0.34	0.14	0.09	0.54	0.91	0.40
lmo1217	endo-14-beta-glucanase and to aminopeptidase	0.00	0.00	0.14	0.17	0.64	0.30
lmo1218	rRNA methylase	0.01	0.00	0.27	0.28	0.67	0.33
lmo1219	hypothetical protein	0.09	0.46	0.07	0.46	0.88	0.69
lmo1220	hypothetical protein	0.14	0.19	0.06	0.39	0.73	0.36
lmo1221	phenylalanyl-tRNA synthetase subunit alpha	0.15	0.19	0.03	0.54	0.80	0.45
lmo1222	phenylalanyl-tRNA synthetase subunit beta	0.23	0.02	0.04	0.53	0.68	0.37
lmo1223	ABC transporter ATP-binding proteins	0.00	0.00	0.01	0.03	0.84	0.52
lmo1224	hypothetical protein	0.25	0.00	0.27	0.18	0.73	0.63
lmo1225	MarR family transcriptional regulator	0.10	0.16	0.10	0.27	0.84	0.58
lmo1226	transporter	0.38	0.24	0.12	0.48	0.75	0.36
lmo1227	uracil-DNA glycosylase	0.04	0.00	0.10	0.06	0.88	0.46
lmo1228	ribonuclease HIII	0.12	0.33	0.04	0.48	0.91	0.67
lmo1229	hypothetical protein	0.28	0.29	0.11	0.54	0.61	0.33
lmo1230	hypothetical protein	0.14	0.31	0.05	0.14	0.68	0.30
lmo1231	DNA polymerase beta	0.40	0.06	0.30	0.10	0.89	0.52
lmo1232	recombination and DNA strand exchange inhibitor protein	0.39	0.00	0.17	0.13	0.89	0.67
lmo1233	thioredoxin	0.37	0.20	0.14	0.53	0.55	0.22
lmo1234	excinuclease ABC subunit C	0.11	0.29	0.03	0.37	0.72	0.23
lmo1235	aspartate kinase	0.13	0.19	0.06	0.24	0.74	0.19
lmo1236	hypothetical protein	0.04	0.10	0.07	0.20	0.91	0.46
lmo1237	glutamate racemase	0.06	0.10	0.03	0.30	0.88	0.40
lmo1238	ribonuclease PH	0.15	0.44	0.09	0.28	0.92	0.66
lmo1239	nucleoside-triphosphatase	0.20	0.08	0.14	0.09	0.89	0.49
lmo1240	hypothetical protein	0.05	0.40	0.05	0.44	0.90	0.56
lmo1241	hypothetical protein	0.16	0.39	0.05	0.50	0.72	0.26
lmo1242	hypothetical protein	0.01	0.01	0.00	0.01	0.59	0.23
lmo1243	hypothetical protein	0.00	0.00	0.01	0.06	0.89	0.45
lmo1244	phosphoglycerate mutase	0.29	0.24	0.27	0.19	0.82	0.66
lmo1245	hypothetical protein	0.16	0.04	0.17	0.09	0.90	0.67
lmo1246	ATP-dependent RNA helicase	0.35	0.06	0.20	0.02	0.90	0.63
lmo1247	hypothetical protein	0.40	0.07	0.23	0.01	0.88	0.40
lmo1248	hypothetical protein	0.02	0.18	0.01	0.09	0.92	0.52
lmo1249	hypothetical protein	0.06	0.00	0.21	0.12	0.90	0.63
lmo1250	antibiotic resistance protein	0.41	0.06	0.15	0.30	0.92	0.57
lmo1251	Fnr/Crp family transcriptional regulator	0.03	0.17	0.01	0.15	0.89	0.30
lmo1252	hypothetical protein	0.32	0.48	0.25	0.46	0.60	0.13
lmo1253	GntR family transcriptional regulator	0.42	0.08	0.30	0.14	0.80	0.58
lmo1254	alphaalpha-phosphotrehalase	0.10	0.48	0.03	0.44	0.88	0.43
lmo1255	PTS trehalose transporter subunit IIBC	0.10	0.44	0.04	0.50	0.90	0.50
lmo1257	hypothetical protein	0.37	0.02	0.30	0.01	0.65	0.23
lmo1258	hypothetical protein	0.00	0.00	0.01	0.08	0.92	0.20
lmo1259	gamma-glutamyl phosphate reductase	0.22	0.00	0.31	0.10	0.74	0.41
lmo1260	gamma-glutamyl kinase	0.13	0.41	0.06	0.53	0.91	0.48
lmo1261	hypothetical protein	0.03	0.09	0.01	0.07	0.88	0.61
lmo1262	transcriptional regulator	0.30	0.25	0.14	0.36	0.90	0.48
lmo1263	transcriptional regulator	0.30	0.47	0.22	0.53	0.61	0.23
lmo1264	hypothetical protein	0.04	0.03	0.16	0.33	0.61	0.22
lmo1265	hypothetical protein	0.03	0.05	0.09	0.32	0.86	0.52
lmo1266	hypothetical protein	0.09	0.14	0.02	0.07	0.86	0.51
lmo1267	trigger factor	0.00	0.00	0.01	0.12	0.86	0.24
lmo1268	ATP-dependent protease ATP-binding subunit ClpX	0.01	0.01	0.03	0.12	0.71	0.39
lmo1269	type I signal peptidase	0.22	0.02	0.30	0.13	0.81	0.48
lmo1270	type I signal peptidase	0.23	0.01	0.22	0.04	0.78	0.41
lmo1271	type I signal peptidase	0.21	0.34	0.13	0.25	0.87	0.26
lmo1272	ribosomal biogenesis GTPase	0.20	0.32	0.10	0.32	0.89	0.21

lmo1273	ribonuclease HII	0.15	0.39	0.07	0.50	0.92	0.25
lmo1274	polypeptide deformylase	0.00	0.00	0.00	0.02	0.64	0.19
lmo1275	DNA topoisomerase I	0.28	0.03	0.17	0.00	0.84	0.47
lmo1276	tRNA (uracil-5-)-methyltransferase Gid	0.13	0.32	0.05	0.54	0.75	0.51
lmo1277	integrase/recombinase	0.01	0.01	0.04	0.32	0.88	0.23
lmo1278	ATP-dependent protease peptidase subunit	0.12	0.38	0.09	0.46	0.72	0.48
lmo1279	ATP-dependent protease ATP-binding subunit HslU	0.06	0.48	0.03	0.35	0.75	0.47
lmo1280	transcriptional repressor CodY	0.28	0.16	0.14	0.39	0.77	0.65
lmo1281	hypothetical protein	0.00	0.00	0.00	0.04	0.92	0.30
lmo1282	hypothetical protein	0.00	0.00	0.01	0.08	0.89	0.38
lmo1283	LacX protein	0.00	0.00	0.01	0.03	0.74	0.24
lmo1284	hypothetical protein	0.15	0.07	0.10	0.27	0.87	0.49
lmo1285	hypothetical protein	0.25	0.06	0.13	0.20	0.71	0.50
lmo1286	DNA topoisomerase IV subunit B	0.15	0.19	0.03	0.52	0.89	0.67
lmo1287	DNA topoisomerase IV subunit A	0.06	0.39	0.01	0.16	0.83	0.69
lmo1288	S-ribosylhomocysteinase	0.17	0.33	0.15	0.48	0.93	0.41
lmo1290	internalin	0.03	0.15	0.07	0.48	0.76	0.43
lmo1291	acyltransferase	0.18	0.07	0.08	0.01	0.85	0.67
lmo1292	glycerophosphodiester phosphodiesterase	0.03	0.10	0.03	0.17	0.90	0.70
lmo1293	glycerol-3-phosphate dehydrogenase	0.10	0.27	0.04	0.45	0.75	0.32
lmo1294	tRNA delta(2)-isopentenylpyrophosphate transferase	0.21	0.27	0.11	0.52	0.90	0.60
lmo1295	host factor-1 protein	0.08	0.28	0.03	0.18	0.87	0.62
lmo1296	hypothetical protein	0.17	0.14	0.05	0.47	0.86	0.56
lmo1297	aluminum resistance protein	0.22	0.05	0.10	0.28	0.75	0.35
lmo1298	glutamine synthetase repressor	0.10	0.01	0.25	0.08	0.78	0.29
lmo1299	glutamine synthetase	0.11	0.00	0.19	0.02	0.78	0.31
lmo1301	hypothetical protein	0.15	0.23	0.12	0.15	0.91	0.58
lmo1302	LexA family transcriptional regulator	0.05	0.35	0.05	0.37	0.92	0.36
lmo1303	cell division suppressor	0.30	0.30	0.24	0.30	0.90	0.67
lmo1304	hypothetical protein	0.02	0.01	0.04	0.13	0.67	0.28
lmo1305	transketolase	0.16	0.33	0.16	0.37	0.91	0.52
lmo1306	hypothetical protein	0.35	0.03	0.03	0.51	0.62	0.19
lmo1308	hypothetical protein	0.06	0.00	0.27	0.03	0.55	0.23
lmo1309	hypothetical protein	0.17	0.00	0.31	0.08	0.65	0.39
lmo1310	hypothetical protein	0.12	0.00	0.24	0.05	0.61	0.39
lmo1312	hypothetical protein	0.00	0.00	0.00	0.01	0.73	0.37
lmo1313	uridylate kinase	0.10	0.48	0.03	0.53	0.87	0.38
lmo1314	ribosome recycling factor	0.08	0.48	0.04	0.48	0.81	0.47
lmo1315	UDP pyrophosphate synthase	0.39	0.01	0.17	0.07	0.85	0.18
lmo1316	phosphatidate cytidylyltransferase	0.30	0.03	0.19	0.04	0.88	0.37
lmo1317	1-deoxy-D-xylulose 5-phosphate reductoisomerase	0.24	0.03	0.10	0.18	0.74	0.19
lmo1318	hypothetical protein	0.21	0.03	0.10	0.07	0.75	0.19
lmo1319	prolyl-tRNA synthetase	0.38	0.00	0.12	0.07	0.60	0.20
lmo1320	DNA polymerase III PolC	0.38	0.03	0.07	0.45	0.60	0.34
lmo1321	hypothetical protein	0.23	0.07	0.10	0.10	0.85	0.51
lmo1322	transcription elongation factor NusA	0.13	0.35	0.06	0.41	0.88	0.63
lmo1323	hypothetical protein	0.09	0.48	0.05	0.54	0.88	0.61
lmo1324	hypothetical protein	0.06	0.41	0.03	0.51	0.84	0.67
lmo1325	translation initiation factor IF-2	0.08	0.42	0.03	0.54	0.77	0.61
lmo1326	hypothetical protein	0.17	0.21	0.06	0.49	0.74	0.48
lmo1327	ribosome-binding factor A	0.16	0.19	0.06	0.54	0.73	0.46
lmo1328	tRNA pseudouridine synthase B	0.03	0.37	0.02	0.55	0.85	0.68
lmo1329	riboflavin kinase	0.12	0.40	0.13	0.28	0.91	0.61
lmo1330	30S ribosomal protein S15	0.26	0.40	0.07	0.38	0.92	0.68
lmo1331	polynucleotide phosphorylase	0.14	0.45	0.10	0.26	0.86	0.41
lmo1332	GTPase EngC	0.00	0.00	0.01	0.19	0.92	0.37
lmo1333	hypothetical protein	0.03	0.06	0.01	0.10	0.92	0.65
lmo1333a	hypothetical protein	0.14	0.23	0.02	0.08	0.91	0.54
lmo1334	hypothetical protein	0.13	0.24	0.02	0.12	0.92	0.67
lmo1335	50S ribosomal protein L33	0.13	0.35	0.10	0.27	0.86	0.43
lmo1336	5-formyltetrahydrofolate cyclo-ligase	0.25	0.00	0.31	0.04	0.90	0.45

1 1005	• • • • •		0.40	0.00		0.00	0.46
lmo1337	hypothetical protein	0.20	0.42	0.26	0.22	0.88	0.46
lmo1338	hypothetical protein	0.04	0.28	0.06	0.48	0.92	0.53
lmo1339	glucose kinase	0.00	0.00	0.00	0.07	0.91	0.46
lmo1340	hypothetical protein	0.10	0.28	0.07	0.52	0.85	0.48
lmo1341	competence protein ComG	0.08	0.00	0.21	0.07	0.86	0.52
lmo1342	competence protein ComGF	0.12	0.00	0.33	0.08	0.88	0.52
lmo1343	competence protein ComGE	0.10	0.00	0.24	0.14	0.75	0.35
lmo1344	competence protein ComGD	0.24	0.01	0.28	0.17	0.91	0.57
lmo1345	competence protein ComGC	0.19	0.25	0.15	0.36	0.80	0.45
lmo1346	competence protein ComGB	0.00	0.00	0.10	0.12	0.35	0.09
lmo1347	competence protein ComGA	0.00	0.00	0.01	0.02	0.61	0.21
lmo1348	glycine cleavage system aminomethyltransferase T	0.12	0.50	0.01	0.12	0.85	0.57
lmo1349	glycine dehydrogenase subunit 1	0.17	0.47	0.01	0.11	0.84	0.63
lmo1350	glycine dehydrogenase subunit 2	0.22	0.41	0.01	0.14	0.82	0.60
lmo1351	hypothetical protein	0.17	0.07	0.03	0.50	0.81	0.31
lmo1352	hypothetical protein	0.11	0.46	0.02	0.34	0.91	0.59
lmo1353	hypothetical protein	0.14	0.42	0.06	0.50	0.93	0.64
lmo1354	aminopeptidase P	0.14	0.38	0.08	0.51	0.76	0.37
lmo1355	elongation factor P	0.14	0.34	0.05	0.53	0.92	0.69
lmo1356	acetyl-CoA carboxylase subunit (biotin carboxyl carrier subunit)	0.40	0.01	0.27	0.05	0.92	0.48
lmo1357	acetyl-CoA carboxylase biotin carboxylase subunit	0.30	0.03	0.17	0.08	0.85	0.49
lmo1358	hypothetical protein	0.36	0.00	0.26	0.05	0.78	0.50
lmo1359	transcription antitermination protein NusB	0.41	0.01	0.24	0.08	0.80	0.58
lmo1360	bifunctional 510-methylene-tetrahydrofolate dehydrogenase/ 510- methylene-tetrahydrofolate cyclohydrolase	0.09	0.41	0.04	0.53	0.73	0.36
lmo1361	exodeoxyribonuclease VII large subunit	0.05	0.47	0.01	0.31	0.75	0.49
lmo1362	exodeoxyribonuclease VII small subunit	0.03	0.20	0.01	0.23	0.75	0.49
lmo1362 lmo1363	geranyltranstransferase	0.03	0.20	0.01	0.25	0.85	0.00
lmo1363 lmo1364	cold-shock protein	0.18	0.13	0.00	0.33	0.75	0.55
		0.37	0.49	0.17	0.37	0.00	
lmo1365	1-deoxy-D-xylulose-5-phosphate synthase	0.13	0.43			0.91	0.48 0.18
lmo1366	hypothetical protein	0.02	0.02	0.04	0.44		
lmo1367	arginine repressor ArgR			0.03	0.44	0.92	0.27
lmo1368	DNA repair protein	0.40	0.15	0.12	0.55	0.93	0.56
lmo1369	phosphotransbutyrylase	0.18	0.10	0.09	0.12	0.92	0.51
lmo1370	butyrate kinase	0.25	0.03	0.10	0.00	0.89	0.53
lmo1371	dihydrolipoamide dehydrogenase	0.09	0.02	0.03	0.00	0.84	0.33
lmo1372	branched-chain alpha-keto acid dehydrogenase subunit E1	0.30	0.09	0.14	0.05	0.75	0.45
lmo1373	branched-chain alpha-keto acid dehydrogenase subunit E1	0.36	0.09	0.21	0.07	0.71	0.35
lmo1374	branched-chain alpha-keto acid dehydrogenase subunit E2	0.33	0.32	0.29	0.24	0.73	0.58
lmo1375	aminotripeptidase	0.39	0.25	0.06	0.36	0.80	0.55
lmo1376	6-phosphogluconate dehydrogenase	0.02	0.02	0.08	0.45	0.79	0.19
lmo1377	two-component response regulator	0.05	0.38	0.01	0.17	0.92	0.30
lmo1378	two-component sensor histidine kinase	0.17	0.48	0.02	0.21	0.90	0.47
lmo1379	sporulation protein SpoJ	0.09	0.37	0.04	0.52	0.90	0.64
lmo1380	hypothetical protein	0.09	0.36	0.05	0.44	0.85	0.60
lmo1381	acylphosphatase	0.05	0.32	0.04	0.55	0.90	0.36
lmo1382	hypothetical protein	0.22	0.18	0.07	0.40	0.60	0.23
lmo1383	isopentenyl pyrophosphate isomerase	0.10	0.00	0.26	0.15	0.39	0.16
lmo1384	hypothetical protein	0.24	0.36	0.18	0.37	0.87	0.63
lmo1385	hypothetical protein	0.07	0.08	0.31	0.55	0.75	0.39
lmo1386	DNA translocase	0.00	0.00	0.01	0.09	0.83	0.43
lmo1387	pyrroline-5-carboxylate reductase	0.12	0.20	0.26	0.55	0.87	0.67
lmo1388	CD4+ T cell-stimulating antigen lipoprotein	0.18	0.42	0.32	0.28	0.84	0.44
lmo1389	sugar ABC transporter ATP-binding protein	0.00	0.00	0.01	0.09	0.68	0.12
lmo1390	ABC transporter permease	0.00	0.00	0.00	0.07	0.60	0.09
lmo1391	sugar ABC transporter permease	0.00	0.00	0.01	0.11	0.58	0.09
lmo1392	peptidase	0.34	0.20	0.22	0.06	0.86	0.61
lmo1393	peptidase	0.42	0.42	0.23	0.18	0.91	0.69
lmo1394	3-ketoacyl-ACP reductase	0.41	0.49	0.11	0.10	0.87	0.50
lmo1395	hypothetical protein	0.24	0.46	0.30	0.11	0.87	0.33
lmo1396	phosphatidylglycerophosphate synthase	0.09	0.41	0.03	0.49	0.92	0.38

lmo1397	competence damage-inducible protein CinA	0.00	0.00	0.01	0.02	0.60	0.19
lmo1398	recombinase A	0.02	0.00	0.07	0.05	0.68	0.38
lmo1399	phosphodiesterase	0.13	0.01	0.21	0.34	0.48	0.16
lmo1400	N-acetyltransferase	0.00	0.00	0.00	0.05	0.81	0.22
lmo1401	hypothetical protein	0.00	0.00	0.00	0.03	0.85	0.16
lmo1402	hypothetical protein	0.01	0.01	0.02	0.28	0.92	0.35
lmo1403	DNA mismatch repair protein MutS	0.04	0.31	0.05	0.52	0.91	0.57
lmo1404	DNA mismatch repair protein	0.17	0.38	0.11	0.45	0.67	0.43
lmo1405	anti-terminator regulatory protein	0.09	0.49	0.06	0.49	0.70	0.50
lmo1406	pyruvate formate-lyase	0.08	0.40	0.03	0.31	0.91	0.45
lmo1407	pyruvate-formate lyase activating enzyme	0.05	0.25	0.02	0.28	0.91	0.42
lmo1408	hypothetical protein	0.38	0.00	0.25	0.04	0.62	0.24
lmo1409	multidrug transporter	0.21	0.19	0.06	0.48	0.86	0.59
lmo1411	hypothetical protein	0.01	0.00	0.00	0.01	0.92	0.64
lmo1413	peptidoglycan binding protein	0.01	0.00	0.01	0.00	0.74	0.48
lmo1414	acetyl-CoA:acetyltransferase	0.35	0.16	0.01	0.45	0.43	0.10
lmo1415	hydroxy-3-methylglutaryl-CoA synthase	0.25	0.41	0.19	0.41	0.60	0.12
lmo1416	hypothetical protein	0.02	0.28	0.05	0.49	0.81	0.20
lmo1417	hypothetical protein	0.02	0.20	0.03	0.35	0.83	0.55
lmo1418	hypothetical protein	0.02	0.21	0.02	0.18	0.89	0.51
lm01418 lm01419	hypothetical protein	0.17	0.29	0.12	0.18	0.89	0.50
lm01419 lm01420		0.41	0.00	0.29	0.00	0.91	0.30
	UDP-N-acetylenolpyruvoylglucosamine reductase	0.33	0.18	0.27	0.08		0.33
lmo1421	glycine/betaine ABC transporter ATP-binding protein					0.79	
lmo1422	glycine/betaine ABC transporter permease	0.41	0.28	0.10	0.06	0.86	0.47
lmo1423	hypothetical protein	0.05	0.39	0.04	0.53	0.83	0.65
lmo1424	manganese transporter	0.26	0.46	0.20	0.55	0.68	0.24
lmo1425	glycine/betaine ABC transporter permease	0.16	0.34	0.05	0.28	0.88	0.53
lmo1426	glycine/betaine ABC transporter substrate-binding protein	0.10	0.21	0.03	0.19	0.86	0.51
lmo1427	glycine/betaine ABC transporter permease	0.13	0.33	0.02	0.20	0.81	0.36
lmo1428	glycine/betaine ABC transporter ATP-binding protein	0.03	0.20	0.01	0.12	0.91	0.50
lmo1430	hypothetical protein	0.05	0.00	0.02	0.00	0.81	0.47
lmo1431	ABC transporter ATP-binding protein	0.31	0.03	0.16	0.07	0.90	0.59
lmo1432	hypothetical protein	0.07	0.16	0.02	0.10	0.74	0.36
lmo1433	glutathione reductase	0.09	0.38	0.03	0.24	0.75	0.40
lmo1434	hypothetical protein	0.01	0.00	0.01	0.05	0.72	0.28
lmo1435	dihydrodipicolinate synthase	0.02	0.00	0.02	0.04	0.75	0.23
lmo1436	aspartate kinase	0.00	0.01	0.04	0.43	0.91	0.57
lmo1437	aspartate-semialdehyde dehydrogenase	0.01	0.05	0.09	0.50	0.92	0.64
lmo1438	penicillin-binding protein	0.34	0.17	0.19	0.07	0.92	0.58
lmo1439	superoxide dismutase	0.01	0.05	0.00	0.05	0.82	0.41
lmo1440	hypothetical protein	0.13	0.17	0.07	0.45	0.91	0.68
lmo1441	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase	0.40	0.42	0.12	0.24	0.58	0.24
lmo1442	transporter	0.22	0.48	0.17	0.06	0.78	0.41
lmo1443	hypothetical protein	0.01	0.06	0.12	0.38	0.88	0.32
lmo1444	foldase	0.40	0.17	0.16	0.42	0.91	0.56
lmo1445	ZurR family transcriptional regulator	0.24	0.00	0.24	0.02	0.89	0.41
lmo1446	metal (zinc) transport protein (ABC transporter permease)	0.24	0.00	0.17	0.01	0.90	0.64
lmo1447	metal (zinc) transport protein(ABC transporter ATP-binding protein)	0.24	0.04	0.12	0.03	0.84	0.65
lmo1448	manganese-dependent inorganic pyrophosphatase	0.03	0.14	0.04	0.52	0.92	0.36
lmo1449	endonuclease IV	0.03	0.13	0.18	0.02	0.92	0.67
lmo1450	DEAD/DEAH box helicase	0.24	0.42	0.18	0.12	0.88	0.41
lm01450 lm01451	4-hydroxy-3-methylbut-2-enyl diphosphate reductase	0.22	0.42	0.18	0.12	0.88	0.41
lmo1451 lmo1452	hypothetical protein	0.23	0.21	0.21	0.31	0.92	0.69
		0.18	0.23				
lmo1453	hypothetical protein RNA nelymorese sigma factor RnoD			0.09	0.14	0.88	0.65
lmo1454	RNA polymerase sigma factor RpoD	0.06	0.38	0.03	0.33	0.82	0.70
lmo1455	DNA primase	0.01	0.05	0.01	0.16	0.86	0.46
lmo1456	hypothetical protein	0.28	0.08	0.13	0.24	0.85	0.67
lmo1457	hypothetical protein	0.00	0.00	0.01	0.00	0.89	0.28
lmo1458	glycyl-tRNA synthetase subunit beta	0.09	0.37	0.04	0.12	0.75	0.65
lmo1459	glycyl-tRNA synthetase subunit alpha	0.21	0.11	0.07	0.53	0.72	0.53

lmo1460	DNA repair protein RecO	0.13	0.00	0.17	0.03	0.62	0.32
lmo1461	hypothetical protein	0.01	0.00	0.10	0.09	0.60	0.26
lmo1462	GTP-binding protein Era	0.22	0.06	0.16	0.13	0.90	0.64
lmo1463	cytidine deaminase	0.34	0.30	0.26	0.24	0.87	0.41
lmo1464	diacylglycerol kinase	0.31	0.45	0.07	0.13	0.58	0.16
lmo1465	metalloprotease	0.17	0.22	0.16	0.33	0.60	0.20
lmo1466	hypothetical protein	0.34	0.27	0.02	0.21	0.56	0.20
lmo1468	hypothetical protein	0.29	0.38	0.32	0.53	0.71	0.32
lmo1469	30S ribosomal protein S21	0.20	0.36	0.21	0.49	0.72	0.28
lmo1470	16S ribosomal RNA methyltransferase RsmE	0.01	0.02	0.01	0.01	0.76	0.67
lmo1471	ribosomal protein L11 methyltransferase	0.01	0.04	0.00	0.01	0.80	0.67
lmo1472	molecular chaperone DnaJ	0.32	0.40	0.05	0.21	0.76	0.57
lmo1473	molecular chaperone DnaK	0.35	0.41	0.18	0.14	0.75	0.35
lmo1474	heat shock protein GrpE	0.06	0.16	0.22	0.41	0.71	0.27
lmo1475	heat-inducible transcription repressor	0.00	0.31	0.12	0.06	0.85	0.27
lmo1475 lmo1476	coproporphyrinogen III oxidase	0.03	0.01	0.12	0.37	0.85	0.18
lmo1477	oxidoreductase	0.00	0.01	0.05	0.02	0.72	0.16
lm01477 lm01478		0.00	0.00	0.01	0.02	0.88	0.50
	MerR family transcriptional regulator	0.02					
lmo1479	GTP-binding protein LepA		0.39	0.06	0.54	0.90	0.56
lmo1480	30S ribosomal protein S20	0.11	0.45	0.03	0.45	0.92	0.67
lmo1481	DNA polymerase III subunit delta	0.18	0.36	0.08	0.16	0.92	0.46
lmo1482	competence protein ComEC	0.33	0.03	0.14	0.37	0.81	0.47
lmo1483	competence protein ComEB	0.00	0.00	0.01	0.03	0.92	0.37
lmo1484	competence protein ComEA	0.00	0.01	0.02	0.11	0.92	0.66
lmo1485	hypothetical protein	0.25	0.00	0.29	0.02	0.78	0.27
lmo1486	hypothetical protein	0.30	0.02	0.22	0.01	0.87	0.56
lmo1487	hypothetical protein	0.09	0.49	0.15	0.22	0.91	0.58
lmo1488	nicotinic acid mononucleotide adenylyltransferase	0.00	0.01	0.01	0.18	0.92	0.35
lmo1489	hypothetical protein	0.03	0.23	0.02	0.39	0.89	0.54
lmo1490	shikimate 5-dehydrogenase	0.03	0.11	0.02	0.28	0.90	0.42
lmo1491	GTP-binding protein	0.03	0.11	0.04	0.44	0.92	0.53
lmo1492	hypothetical protein	0.17	0.43	0.13	0.26	0.91	0.52
lmo1493	oligopeptidase	0.34	0.44	0.12	0.32	0.81	0.51
lmo1494	5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase	0.07	0.35	0.13	0.32	0.88	0.60
lmo1495	hypothetical protein	0.39	0.25	0.28	0.10	0.74	0.40
lmo1496	transcription elongation factor GreA	0.40	0.02	0.21	0.07	0.88	0.23
lmo1497	uridine kinase	0.08	0.42	0.02	0.48	0.81	0.30
lmo1498	O-methyltransferase	0.22	0.16	0.06	0.32	0.79	0.20
lmo1499	hypothetical protein	0.12	0.39	0.10	0.36	0.90	0.52
lmo1500	hypothetical protein	0.25	0.00	0.24	0.00	0.83	0.23
lmo1501	hypothetical protein	0.04	0.19	0.02	0.32	0.05	0.25
lmo1502	Holliday junction resolvase	0.12	0.35	0.02	0.42	0.88	0.60
lmo1502 lmo1503	hypothetical protein	0.12	0.14	0.05	0.42	0.88	0.66
lmo1505 lmo1504	alanyl-tRNA synthetase	0.01	0.02	0.07	0.25	0.88	0.63
lmo1505	ABC transporter ATP-binding protein	0.01	0.02	0.00	0.01	0.84	0.03
lmo1505 lmo1506		0.00					
	transporter		0.00	0.02	0.11	0.61	0.20
lmo1507	response regulator	0.00	0.00	0.01	0.08	0.89	0.53
lmo1508	histidine kinase	0.02	0.23	0.01	0.32	0.91	0.64
lmo1509	exodeoxyribonuclease V	0.00	0.00	0.01	0.11	0.90	0.50
lmo1510	hypothetical protein	0.00	0.00	0.01	0.18	0.90	0.54
lmo1512	tRNA-specific 2-thiouridylase	0.40	0.01	0.23	0.06	0.80	0.40
lmo1513	iron-sulfur cofactor synthesis protein	0.27	0.09	0.13	0.10	0.89	0.64
lmo1514	recombination factor protein RarA	0.04	0.00	0.23	0.12	0.59	0.29
lmo1516	ammonium transporter NrgA	0.08	0.02	0.26	0.10	0.85	0.54
lmo1517	nitrogen regulatory PII protein	0.40	0.14	0.20	0.23	0.91	0.66
lmo1518	hypothetical protein	0.03	0.08	0.15	0.42	0.85	0.20
lmo1519	aspartyl-tRNA synthetase	0.00	0.02	0.00	0.01	0.84	0.66
lmo1520	histidyl-tRNA synthetase	0.01	0.10	0.00	0.08	0.76	0.65
lmo1521	N-acetylmuramoyl-L-alanine amidase	0.39	0.32	0.09	0.41	0.92	0.58
lmo1522	D-tyrosyl-tRNA(Tyr) deacylase	0.14	0.05	0.04	0.02	0.71	0.36
lmo1523	(p)ppGpp synthetase	0.19	0.30	0.29	0.21	0.92	0.65

lmo1524	adenine phosphoribosyltransferase	0.26	0.01	0.07	0.23	0.81	0.34
lmo1525	recombination protein RecJ	0.18	0.00	0.32	0.07	0.82	0.37
lmo1526	hypothetical protein	0.12	0.49	0.04	0.40	0.67	0.21
lmo1527	preprotein translocase SecDF	0.25	0.01	0.17	0.02	0.73	0.25
lmo1528	hypothetical protein	0.42	0.01	0.27	0.03	0.91	0.58
lmo1529	hypothetical protein	0.16	0.32	0.09	0.34	0.84	0.67
lmo1530	queuine tRNA-ribosyltransferase	0.08	0.27	0.04	0.49	0.90	0.68
lmo1531	S-adenosylmethionine:tRNA ribosyltransferase-isomerase	0.03	0.16	0.02	0.46	0.84	0.64
lmo1532	Holliday junction DNA helicase RuvB	0.01	0.01	0.01	0.21	0.88	0.70
lmo1533	Holliday junction DNA helicase RuvA	0.00	0.00	0.00	0.021	0.92	0.51
lmo1535 lmo1534	L-lactate dehydrogenase	0.00	0.00	0.00	0.02	0.70	0.22
		0.00	0.00		0.01	0.70	0.22
lmo1535	hypothetical protein			0.01			
lmo1536	prephenate dehydratase	0.08	0.47	0.03	0.48	0.90	0.58
lmo1537	GTPase ObgE	0.05	0.22	0.06	0.48	0.90	0.41
lmo1538	glycerol kinase	0.10	0.25	0.03	0.48	0.74	0.25
lmo1539	glycerol transporter	0.15	0.01	0.04	0.27	0.72	0.21
lmo1540	50S ribosomal protein L27	0.28	0.33	0.04	0.40	0.76	0.39
lmo1541	hypothetical protein	0.23	0.38	0.03	0.31	0.78	0.49
lmo1542	50S ribosomal protein L21	0.18	0.49	0.03	0.29	0.85	0.63
lmo1543	ribonuclease G	0.02	0.11	0.01	0.26	0.81	0.54
lmo1544	septum formation inhibitor MinD	0.02	0.07	0.03	0.37	0.91	0.65
lmo1545	septum formation inhibitor MinC	0.01	0.01	0.01	0.13	0.91	0.63
lmo1546	cell-shape determining protein MreD	0.12	0.28	0.07	0.14	0.75	0.19
lmo1547	rod shape-determining protein MreC	0.18	0.11	0.11	0.07	0.82	0.32
lmo1548	rod shape-determining protein MreB	0.29	0.23	0.16	0.14	0.86	0.32
lmo1550	competence protein ComC	0.03	0.32	0.01	0.46	0.92	0.32
lmo1551	folyl-polyglutamate synthetase	0.03	0.01	0.01	0.00	0.92	0.63
lmo1551 lmo1552		0.01	0.01	0.00	0.00	0.80	0.65
	valyl-tRNA synthetase						
lmo1553	glutamate-1-semialdehyde aminotransferase	0.18	0.22	0.10	0.24	0.72	0.37
lmo1554	delta-aminolevulinic acid dehydratase	0.29	0.06	0.20	0.10	0.75	0.40
lmo1555	uroporphyrinogen-III synthase	0.28	0.10	0.23	0.07	0.86	0.61
lmo1556	porphobilinogen deaminase	0.37	0.05	0.30	0.02	0.92	0.67
lmo1557	glutamyl-tRNA reductase	0.33	0.28	0.30	0.04	0.85	0.52
lmo1558	GTP-binding protein EngB	0.24	0.40	0.17	0.14	0.89	0.54
lmo1559	threonyl-tRNA synthetase	0.08	0.42	0.02	0.48	0.90	0.49
lmo1560	primosomal protein DnaI	0.10	0.13	0.10	0.31	0.76	0.44
lmo1561	chromosome replication initiation / membrane attachment protein DnaB	0.22	0.27	0.22	0.29	0.75	0.44
11101301	chromosome representation mitiation / memorane attachment protein DhaB	0.22	0.27	0.22	0.29	0.75	0.44
lmo1562	transcriptional regulator NrdR	0.38	0.06	0.31	0.10	0.74	0.37
lmo1563	dephospho-CoA kinase	0.13	0.00	0.29	0.11	0.83	0.27
lmo1564	formamidopyrimidine-DNA glycosylase	0.41	0.03	0.15	0.35	0.77	0.23
lmo1565	DNA polymerase I	0.10	0.42	0.03	0.30	0.81	0.40
lmo1566	isocitrate dehydrogenase	0.00	0.01	0.00	0.05	0.92	0.66
lmo1567	citrate synthase	0.00	0.01	0.00	0.05	0.91	0.59
lmo1568	hypothetical protein	0.00	0.01	0.00	0.05	0.91	0.59
lmo1569	FxsA	0.00	0.01	0.01	0.00	0.75	0.58
lmo1570	pyruvate kinase	0.26	0.29	0.17	0.26	0.74	0.39
lmo1571	6-phosphofructokinase	0.40	0.02	0.14	0.22	0.73	0.51
lmo1572	acetyl-CoA carboxylase carboxyltransferase subunit alpha	0.16	0.19	0.11	0.16	0.78	0.62
lmo1573	acetyl-CoA carboxylase subunit beta	0.33	0.00	0.18	0.03	0.74	0.23
lmo1574	DNA polymerase III subunit alpha	0.03	0.46	0.02	0.53	0.74	0.35
lmo1575	hypothetical protein	0.00	0.00	0.01	0.06	0.86	0.50
lmo1576	hypothetical protein	0.00	0.01	0.01	0.15	0.90	0.47
lmo1577	metal-dependent hydrolase	0.01	0.10	0.03	0.40	0.90	0.69
lmo1578	X-Pro dipeptidase	0.01	0.03	0.04	0.48	0.91	0.68
lmo1579	alanine dehydrogenase	0.13	0.24	0.04	0.45	0.85	0.59
lmo1580	hypothetical protein	0.08	0.47	0.04	0.49	0.84	0.56
lmo1581	acetate kinase	0.06	0.34	0.07	0.34	0.76	0.30
lmo1582	hypothetical protein	0.13	0.34	0.15	0.32	0.87	0.52
lmo1583	thiol peroxidase	0.31	0.03	0.26	0.30	0.46	0.22
lmo1584	hypothetical protein	0.00	0.00	0.01	0.16	0.89	0.45
	71 ····· [· · ····	5.00	2.00			2.07	

lmo15		inorganic polyphosphate/ATP-NAD kinase	0.08	0.06	0.26	0.51	0.90	0.58
lmo15		ornithine carbamoyltransferase	0.00	0.00	0.01	0.08	0.81	0.47
lmo15	88	acetylornithine aminotransferase	0.02	0.01	0.11	0.28	0.91	0.67
lmo15	89	acetylglutamate kinase	0.37	0.24	0.20	0.45	0.92	0.69
lmo15	90	bifunctional ornithine acetyltransferase/N-acetylglutamate synthase	0.39	0.25	0.19	0.43	0.91	0.62
lmo15	91	N-acetyl-gamma-glutamyl-phosphate reductase	0.24	0.16	0.09	0.43	0.90	0.69
lmo15	92	thiamine biosynthesis protein ThiI	0.09	0.26	0.03	0.49	0.74	0.23
lmo15		iron-sulfur cofactor synthesis protein NifS	0.01	0.00	0.01	0.07	0.91	0.68
lmo15		septation ring formation regulator EzrA	0.10	0.14	0.23	0.38	0.91	0.70
lmo15		hypothetical protein	0.23	0.23	0.18	0.19	0.84	0.56
lmo15		30S ribosomal protein S4	0.25	0.29	0.10	0.19	0.85	0.58
		-	0.03	0.23		0.21		0.38
lmo15		tyrosyl-tRNA synthetase			0.05		0.64	
lmo15	99	catabolite control protein A	0.38	0.33	0.05	0.02	0.91	0.65
lmo16	00	bifunctional 3-deoxy-7-phosphoheptulonate synthase/chorismate mutase	0.09	0.35	0.03	0.26	0.92	0.51
lmo16	01	general stress protein	0.05	0.17	0.06	0.47	0.84	0.65
lmo16	02	hypothetical protein	0.07	0.35	0.08	0.35	0.82	0.60
lmo16	03	aminopeptidase	0.18	0.27	0.03	0.42	0.75	0.51
lmo16	04	2-cys peroxiredoxin	0.02	0.13	0.05	0.49	0.82	0.44
lmo16	05	UDP-N-acetylmuramateL-alanine ligase	0.38	0.41	0.09	0.22	0.81	0.52
lmo16	06	DNA translocase	0.30	0.42	0.04	0.22	0.74	0.49
lmo16	07	phenylalanyl-tRNA synthetase subunit beta	0.00	0.00	0.02	0.15	0.77	0.31
lmo16		hypothetical protein	0.00	0.00	0.01	0.02	0.70	0.26
lmo16		thioredoxin	0.00	0.00	0.00	0.01	0.67	0.23
lmo16		aminopeptidase	0.00	0.00	0.00	0.01	0.49	0.15
lmo16		hypothetical protein	0.00	0.31	0.00	0.47	0.92	0.15
lmo16		hypothetical protein	0.09	0.24	0.03	0.17	0.92	0.23
lmo16		hypothetical protein	0.09	0.02	0.03	0.21	0.90	0.50
		tRNA (guanine-N(7)-)-methyltransferase	0.20	0.30	0.10	0.17	0.89	0.54
		hypothetical protein	0.10	0.18	0.06	0.49	0.90	0.60
lmo16		multidrug transporter	0.15	0.43	0.05	0.40	0.92	0.52
lmo16		MarR family transcriptional regulator	0.10	0.49	0.03	0.33	0.90	0.38
lmo16		D-amino acid aminotransferase	0.14	0.01	0.18	0.41	0.73	0.40
lmo16.		dipeptidase PepV	0.10	0.01	0.32	0.52	0.65	0.42
lmo16.		hypothetical protein	0.01	0.01	0.02	0.16	0.74	0.21
lmo16.		hypothetical protein	0.04	0.15	0.04	0.43	0.75	0.32
lmo16.	23	hypothetical protein	0.20	0.28	0.28	0.04	0.71	0.36
lmo16.	24	transporter	0.06	0.18	0.19	0.25	0.91	0.60
lmo16.	25	transporter	0.00	0.02	0.00	0.08	0.93	0.40
lmo16.	26	hypothetical protein	0.00	0.00	0.00	0.07	0.83	0.30
lmo16.	27	tryptophan synthase subunit alpha	0.36	0.43	0.21	0.20	0.85	0.64
lmo16.	28	tryptophan synthase subunit beta	0.20	0.16	0.12	0.05	0.89	0.64
lmo16.	29	N-(5'-phosphoribosyl)anthranilate isomerase	0.26	0.28	0.29	0.26	0.84	0.57
lmo16.	30	indole-3-glycerol phosphate synthase	0.11	0.02	0.17	0.11	0.89	0.69
lmo16.		anthranilate phosphoribosyltransferase	0.37	0.23	0.26	0.38	0.89	0.59
lmo16.		anthranilate synthase subunit beta	0.31	0.22	0.30	0.32	0.84	0.52
lmo16.		anthranilate synthase subunit alpha	0.19	0.21	0.27	0.34	0.79	0.42
lmo16.		bifunctional acetaldehyde-CoA/alcohol dehydrogenase	0.24	0.46	0.07	0.24	0.85	0.58
lmo16.		hypothetical protein	0.24	0.04	0.31	0.11	0.03	0.66
lmo16.		ABC transporter ATP-binding protein	0.26	0.04	0.14	0.11	0.92	0.00
			0.20	0.08			0.75	0.23
lmo16.		hypothetical protein			0.10	0.14		
lmo16.		hypothetical protein	0.01	0.02	0.03	0.13	0.87	0.64
lmo16.		DNA-3-methyladenine glycosidase	0.00	0.00	0.01	0.04	0.79	0.54
lmo16		hypothetical protein	0.06	0.07	0.02	0.10	0.82	0.61
lmo16		aconitate hydratase	0.10	0.29	0.06	0.34	0.89	0.58
lmo16		sigma factor regulator	0.01	0.02	0.22	0.51	0.84	0.36
lmo16		hypothetical protein	0.34	0.40	0.07	0.05	0.90	0.68
lmo16		helicase SNF2	0.15	0.29	0.29	0.01	0.85	0.64
lmo16		ATP-dependent dsDNA exonuclease SbcC	0.00	0.00	0.02	0.14	0.92	0.30
lmo16	46	exonuclease SbcD	0.10	0.04	0.30	0.35	0.62	0.21

lmo1647	1-acylglycerol-3-phosphate O-acyltransferase	0.12	0.21	0.05	0.28	0.92	0.63
lmo1649	hypothetical protein	0.39	0.08	0.16	0.30	0.91	0.65
lmo1650	hypothetical protein	0.29	0.15	0.27	0.06	0.78	0.27
lmo1651	ABC transporter ATP-binding protein	0.05	0.43	0.03	0.39	0.71	0.21
lmo1652	ABC transporter ATP-binding protein	0.10	0.38	0.03	0.50	0.74	0.21
lmo1653	cellsurface protein	0.04	0.00	0.07	0.05	0.60	0.20
lmo1654	cell surface protein	0.22	0.06	0.31	0.26	0.68	0.27
lmo1657	elongation factor Ts	0.16	0.09	0.04	0.33	0.85	0.49
lmo1658	30S ribosomal protein S2	0.15	0.50	0.06	0.53	0.92	0.47
lmo1660	leucyl-tRNA synthetase	0.06	0.49	0.02	0.31	0.80	0.67
lmo1661	hypothetical protein	0.06	0.32	0.12	0.46	0.92	0.62
lmo1662	hypothetical protein	0.09	0.35	0.08	0.33	0.83	0.54
lmo1663	asparagine synthetase	0.09	0.46	0.03	0.50	0.88	0.53
lmo1664	S-adenosylmethionine synthetase	0.32	0.28	0.09	0.48	0.58	0.13
lmo1665	hypothetical protein	0.02	0.02	0.02	0.18	0.76	0.14
lmo1667	L-lactate dehydrogenase	0.00	0.00	0.01	0.07	0.73	0.21
lmo1668	hypothetical protein	0.00	0.00	0.01	0.08	0.86	0.23
lmo1669	hypothetical protein	0.16	0.21	0.09	0.09	0.92	0.68
lmo1670	hypothetical protein	0.00	0.00	0.01	0.02	0.88	0.61
lmo1671	ABC transporter	0.38	0.23	0.31	0.30	0.90	0.63
lmo1672	O-succinylbenzoic acidCoA ligase	0.02	0.16	0.01	0.20	0.85	0.69
lmo1673	naphthoate synthase	0.15	0.47	0.16	0.45	0.90	0.61
lmo1674	prolyl aminopetidase	0.33	0.28	0.25	0.31	0.87	0.62
	2-succinyl-5-enolpyruvyl-6-hydroxy-3- cyclohexene-1-carboxylate						
lmo1675	synthase	0.42	0.41	0.25	0.23	0.88	0.61
lmo1676	menaquinone-specific isochorismate synthase	0.42	0.49	0.21	0.14	0.70	0.35
lmo1677	14-dihydroxy-2-naphthoate octaprenyltransferase	0.42	0.20	0.15	0.11	0.92	0.59
	bifunctional homocysteine S-methyltransferase/510-	0.24	0.20	0.15		0.72	0.57
lmo1678	methylenetetrahydrofolate reductase	0.00	0.00	0.02	0.01	0.75	0.30
lmo1679	cystathionine beta-lyase	0.02	0.00	0.02	0.01	0.85	0.40
111010/9	5-methyltetrahydropteroyltriglutamate homocysteine S-	0.02	0.00	0.02	0.01	0.85	0.40
lmo1681	methyltransferase	0.00	0.00	0.01	0.02	0.83	0.43
lmo1682	•	0.07	0.00	0.24	0.07	0.61	0.35
lmo1682 lmo1683	transporter	0.07	0.00	0.24	0.07	0.01	0.35
	Fur family transcriptional regulator						
lmo1684	glycerate dehydrogenase	0.08	0.38	0.04	0.37	0.89	0.51
lmo1685	glutamate-1-semialdehyde aminotransferase	0.04	0.25	0.01	0.19	0.86	0.61
lmo1686	hypothetical protein	0.24		0.04	0.17	0.75	0.57
lmo1687	hypothetical protein	0.23	0.30	0.05	0.51	0.58	0.22
lmo1688	enoyl-ACP reductase	0.25	0.00	0.18	0.01	0.73	0.31
lmo1689	A/G-specific adenine glycosylase	0.09	0.00	0.11	0.00	0.76	0.21
lmo1690	hypothetical protein	0.12	0.16	0.09	0.16	0.77	0.62
lmo1691	deoxyuridine triphosphate nucleotidohydrolase	0.29	0.12	0.31	0.25	0.91	0.69
lmo1692	hypothetical protein	0.28	0.34	0.19	0.45	0.91	0.62
lmo1693	recombination regulator RecX	0.22	0.49	0.25	0.44	0.73	0.52
lmo1694	CDP-abequose synthase	0.11	0.30	0.03	0.53	0.79	0.31
lmo1695	hypothetical protein	0.10	0.24	0.20	0.34	0.86	0.66
lmo1696	hypothetical protein	0.37	0.32	0.26	0.33	0.90	0.64
lmo1697	hypothetical protein	0.37	0.00	0.21	0.12	0.79	0.44
lmo1698	ribosomal-protein-alanine N-acetyltransferase	0.00	0.01	0.02	0.18	0.87	0.47
lmo1699	chemotaxis protein	0.18	0.06	0.10	0.10	0.73	0.41
lmo1700	hypothetical protein	0.24	0.11	0.10	0.07	0.75	0.48
lmo1701	hypothetical protein	0.01	0.01	0.00	0.01	0.89	0.53
lmo1702	glutathione transferase	0.08	0.19	0.01	0.06	0.92	0.59
lmo1703	RNA methyltransferase	0.13	0.15	0.02	0.51	0.87	0.40
lmo1704	hypothetical protein	0.12	0.26	0.03	0.54	0.86	0.65
lmo1705	deoxyguanosine kinase/deoxyadenosine kinase	0.18	0.46	0.07	0.50	0.91	0.47
lmo1706	transporter	0.25	0.22	0.05	0.47	0.70	0.27
lmo1707	hypothetical protein	0.42	0.02	0.17	0.18	0.82	0.28
lmo1708	aminoglycoside N3'-acetyltransferase	0.08	0.40	0.02	0.26	0.71	0.41
lmo1709	methionine aminopeptidase	0.13	0.39	0.08	0.53	0.91	0.53
lmo1710	flavodoxin	0.20	0.18	0.11	0.17	0.83	0.54

lmo1711	aminopeptidase	0.36	0.23	0.17	0.26	0.88	0.66
lmo1712	multidrug resistance protein	0.00	0.03	0.02	0.42	0.77	0.66
lmo1713	rod shape-determining protein MreB	0.24	0.08	0.21	0.18	0.76	0.34
lmo1715	hypothetical protein	0.23	0.09	0.16	0.15	0.92	0.70
lmo1716	transcriptional regulator	0.39	0.17	0.19	0.43	0.91	0.58
lmo1718	hypothetical protein	0.06	0.03	0.04	0.09	0.77	0.58
lmo1720	PTS lichenan transporter subunit IIB	0.08	0.03	0.11	0.13	0.86	0.62
lmo1721	transcriptional regulator	0.11	0.00	0.25	0.27	0.62	0.33
lmo1722	ATP-dependent RNA helicase	0.12	0.17	0.03	0.12	0.85	0.30
lmo1726	hypothetical protein	0.02	0.07	0.01	0.09	0.89	0.61
lmo1727	LacI family transcriptional regulator	0.12	0.32	0.01	0.28	0.87	0.70
lmo1728	cellobiose phosphorylase	0.12	0.02	0.00	0.20	0.93	0.70
lmo1728 lmo1729	beta-glucosidase	0.02	0.01	0.01	0.07	0.93	0.21
	•				0.00	0.92	0.17
lmo1730	sugar ABC transporter substrate-binding protein	0.01	0.01	0.02			
lmo1731	sugar ABC transporter permease	0.02	0.11	0.02	0.16	0.90	0.33
lmo1732	sugar ABC transporter permease	0.02	0.10	0.02	0.15	0.90	0.31
lmo1733	glutamate synthase subunit beta	0.30	0.36	0.28	0.23	0.91	0.51
lmo1734	glutamate synthase large subunit	0.13	0.48	0.06	0.41	0.88	0.62
lmo1735	transcription activator of glutamate synthase operon GltC	0.01	0.06	0.00	0.04	0.92	0.39
lmo1736	hypothetical protein	0.01	0.02	0.01	0.15	0.92	0.55
lmo1737	glycerol dehydrogenase	0.15	0.40	0.13	0.50	0.92	0.63
lmo1738	amino acid ABC transporter substrate-binding protein	0.14	0.01	0.28	0.25	0.84	0.60
lmo1739	amino acid ABC transporter ATP-binding protein	0.22	0.02	0.15	0.32	0.88	0.64
lmo1740	amino acid ABC transporter permease	0.30	0.07	0.13	0.49	0.85	0.56
lmo1741	histidine kinase	0.06	0.41	0.01	0.12	0.60	0.26
lmo1742	adenine deaminase	0.00	0.00	0.00	0.01	0.91	0.67
lmo1743	hypothetical protein	0.00	0.00	0.00	0.03	0.89	0.56
lmo1744	hypothetical protein	0.00	0.00	0.00	0.01	0.91	0.69
lmo1745	two-component response regulator	0.00	0.00	0.00	0.03	0.92	0.60
lmo1746	ABC transporter permease	0.04	0.00	0.00	0.50	0.72	0.31
lmo1747	ABC transporter ATP-binding protein	0.04	0.10	0.03	0.33	0.72	0.55
lmo1748	hypothetical protein	0.32	0.10	0.02	0.35	0.88	0.55
lmo1748 lmo1749	shikimate kinase	0.52	0.45	0.07	0.37	0.88	0.38
lmo1749 lmo1750	hypothetical protein	0.01	0.02	0.07	0.51	0.93	0.18
lm01750 lm01751		0.19	0.10		0.32		
lmo1751 lmo1752	hypothetical protein		0.03	0.01	0.10	0.91	0.37 0.57
	hypothetical protein	0.04		0.02		0.91	
lmo1753	lipid kinase	0.11	0.08	0.06	0.35	0.89	0.46
lmo1754	aspartyl/glutamyl-tRNA amidotransferase subunit B	0.18	0.15	0.06	0.52	0.65	0.31
lmo1755	aspartyl/glutamyl-tRNA amidotransferase subunit A	0.13	0.10	0.04	0.41	0.61	0.15
lmo1756	aspartyl/glutamyl-tRNA amidotransferase subunit C	0.07	0.50	0.03	0.40	0.63	0.17
lmo1757	hypothetical protein	0.24	0.08	0.09	0.32	0.61	0.22
lmo1758	NAD-dependent DNA ligase LigA	0.07	0.36	0.04	0.34	0.65	0.21
lmo1759	ATP-dependent DNA helicase	0.08	0.43	0.04	0.53	0.72	0.29
lmo1760	geranylgeranylglyceryl phosphate synthase-like protein	0.00	0.01	0.01	0.09	0.87	0.25
lmo1761	sodium-dependent transporter	0.38	0.00	0.26	0.02	0.82	0.48
lmo1762	hypothetical protein	0.40	0.49	0.28	0.49	0.88	0.40
lmo1763	hypothetical protein	0.42	0.42	0.19	0.54	0.83	0.29
lmo1764	phosphoribosylamineglycine ligase	0.01	0.06	0.01	0.08	0.91	0.28
1	bifunctional phosphoribosylaminoimidazolecarboxamide	0.00	0.02	0.01	0.00	0.01	0.20
lmo1765	formyltransferase/IMP cyclohydrolase	0.00	0.02	0.01	0.09	0.91	0.29
lmo1766	phosphoribosylglycinamide formyltransferase	0.07	0.32	0.04	0.55	0.86	0.61
lmo1767	phosphoribosylaminoimidazole synthetase	0.14	0.27	0.03	0.47	0.75	0.69
lmo1768	amidophosphoribosyltransferase	0.31	0.26	0.15	0.46	0.75	0.63
lmo1769	phosphoribosylformylglycinamidine synthase II	0.23	0.27	0.05	0.46	0.77	0.66
lmo1770	phosphoribosylformylglycinamidine synthase I	0.07	0.00	0.05	0.16	0.76	0.52
lmo1771	phosphoribosylformylglycinamidine synthase rubunit PurS	0.37	0.00	0.09	0.55	0.70	0.52
lmo1772	phosphoribosylaminoimidazole-succinocarboxamide synthase	0.13	0.06	0.09	0.33	0.87	0.62
lmo1773	adenylosuccinate lyase	0.13	0.00	0.21	0.24	0.73	0.02
lm01773 lm01774	phosphoribosylaminoimidazole carboxylase ATPase subunit	0.32	0.43	0.07	0.19	0.73	0.39
lm01774 lm01775	phosphoribosylaminoimidazole carboxylase catalytic subunit	0.39	0.18	0.10	0.44	0.38	0.23
lm01775 lm01776	hypothetical protein	0.34	0.49	0.12	0.30	0.92	0.67
11101//0	nypometical protein	0.02	0.05	0.00	0.38	0.09	0.54

lmo1777	hypothetical protein	0.36	0.12	0.13	0.51	0.81	0.65
lmo1778	ABC transporter ATP-binding protein	0.00	0.00	0.00	0.02	0.86	0.31
lmo1779	hypothetical protein	0.00	0.00	0.00	0.00	0.74	0.28
lmo1780	aminotripeptidase	0.00	0.00	0.00	0.00	0.71	0.22
lmo1781	hypothetical protein	0.00	0.00	0.00	0.07	0.90	0.30
lmo1782	3'-exo-deoxyribonuclease	0.00	0.03	0.02	0.19	0.80	0.49
lmo1783	50S ribosomal protein L20	0.15	0.38	0.03	0.20	0.86	0.65
lmo1784	50S ribosomal protein L35	0.11	0.42	0.02	0.22	0.90	0.63
lmo1785	translation initiation factor IF-3	0.15	0.49	0.03	0.28	0.91	0.68
lmo1786	internalin C	0.07	0.45	0.12	0.08	0.90	0.62
lmo1787	50S ribosomal protein L19	0.25	0.40	0.05	0.33	0.81	0.49
lmo1788	transcriptional regulator	0.30	0.05	0.08	0.46	0.72	0.30
lmo1789	hypothetical protein	0.34	0.02	0.09	0.37	0.69	0.22
lmo1790	hypothetical protein	0.39	0.01	0.11	0.31	0.65	0.18
lmo1791	hypothetical protein	0.12	0.22	0.03	0.52	0.75	0.37
lmo1792	tRNA (guanine-N(1)-)-methyltransferase	0.10	0.43	0.03	0.45	0.78	0.50
lmo1793	16S rRNA-processing protein RimM	0.26	0.18	0.14	0.33	0.83	0.46
lmo1794	hypothetical protein	0.17	0.26	0.12	0.31	0.87	0.56
lmo1795	hypothetical protein	0.23	0.03	0.09	0.17	0.74	0.52
lmo1796	hypothetical protein	0.16	0.43	0.03	0.25	0.92	0.67
lmo1797	30S ribosomal protein S16	0.19	0.43	0.05	0.28	0.91	0.70
lmo1798	hypothetical protein	0.34	0.25	0.17	0.03	0.75	0.52
lmo1800	protein-tyrosine phosphatase	0.00	0.00	0.00	0.01	0.76	0.30
lmo1801	signal recognition particle protein Ffh	0.03	0.11	0.00	0.05	0.88	0.62
lmo1802	DNA-binding protein	0.39	0.37	0.03	0.14	0.92	0.56
lmo1803	cell division protein FtsY	0.03	0.18	0.01	0.02	0.73	0.52
lmo1804	chromosome condensation protein Smc	0.05	0.33	0.01	0.07	0.72	0.37
lmo1805	ribonuclease III	0.25	0.13	0.04	0.55	0.75	0.24
lmo1806	acyl carrier protein	0.10	0.41	0.02	0.35	0.82	0.68
lmo1807	3-ketoacyl-ACP reductase	0.05	0.42	0.02	0.24	0.81	0.63
lmo1808	ACP S-malonyltransferase	0.05	0.33	0.02	0.29	0.83	0.65
lmo1809	glycerol-3-phosphate acyltransferase PlsX	0.06	0.33	0.03	0.48	0.82	0.56
lmo1810	fatty acid biosynthesis transcriptional regulator	0.12	0.48	0.05	0.55	0.87	0.51
lmo1811	ATP-dependent DNA helicase RecG	0.38	0.03	0.26	0.07	0.61	0.24
lmo1812	L-serine dehydratase	0.24	0.07	0.08	0.02	0.69	0.37
lmo1813	phosphoglycerate dehydrogenase	0.09	0.00	0.18	0.03	0.69	0.37
lmo1815	hypothetical protein	0.41	0.12	0.18	0.20	0.90	0.47
lmo1816	50S ribosomal protein L28	0.10	0.40	0.03	0.28	0.92	0.70
lmo1817	hypothetical protein	0.17	0.00	0.32	0.02	0.61	0.36
lmo1818	ribulose-phosphate 3-epimerase	0.07	0.30	0.12	0.49	0.84	0.61
lmo1819	ribosome-associated GTPase	0.03	0.10	0.08	0.35	0.90	0.38
lmo1820	serine/threonine protein kinase	0.02	0.05	0.06	0.29	0.85	0.55
lmo1821	phosphoprotein phosphatase	0.00	0.01	0.01	0.19	0.92	0.24
lmo1822	RNA-binding Sun protein	0.01	0.08	0.06	0.47	0.83	0.59
lmo1823	methionyl-tRNA formyltransferase	0.01	0.05	0.07	0.44	0.87	0.51
lmo1824	primosome assembly protein PriA	0.20	0.24	0.15	0.36	0.92	0.59
lmo1825	pantothenate metabolism flavoprotein	0.22	0.18	0.04	0.48	0.89	0.66
lmo1826	DNA-directed RNA polymerase subunit omega	0.32	0.00	0.22	0.02	0.76	0.21
lmo1827	guanylate kinase	0.25	0.01	0.10	0.03	0.82	0.20
lmo1828	hypothetical protein	0.23	0.18	0.11	0.15	0.83	0.23
lmo1829	fibronectin-binding proteins	0.26	0.48	0.27	0.19	0.80	0.29
lmo1830	short-chain dehydrogenase	0.09	0.49	0.06	0.45	0.77	0.32
lmo1831	orotate phosphoribosyltransferase	0.38	0.05	0.13	0.46	0.71	0.50
lmo1832	orotidine 5'-phosphate decarboxylase	0.19	0.41	0.06	0.31	0.75	0.64
lmo1833	dihydroorotate dehydrogenase	0.01	0.10	0.02	0.12	0.92	0.57
lmo1834	dihydroorotate dehydrogenase electron transfer subunit	0.00	0.03	0.00	0.04	0.92	0.62
lmo1835	carbamoyl-phosphate synthetase	0.21	0.42	0.04	0.37	0.72	0.45
lmo1836	carbamoyl phosphate synthase small subunit	0.09	0.32	0.09	0.41	0.84	0.57
lmo1837	dihydroorotase	0.03	0.25	0.02	0.22	0.85	0.66
lmo1838	aspartate carbamoyltransferase	0.20	0.20	0.25	0.47	0.75	0.45
lmo1839	uracil permease	0.11	0.48	0.04	0.52	0.88	0.53

1 1040	bifunctional pyrimidine regulatory protein PyrR uracil	0.11	0.46	0.02	0.40	0.96	0.40
lmo1840	phosphoribosyltransferase	0.11	0.46	0.03	0.49	0.86	0.49
lmo1841	hypothetical protein	0.00	0.00	0.02	0.12	0.71	0.28
lmo1842	hypothetical protein	0.36	0.07	0.12	0.36	0.90	0.57
lmo1843	hypothetical protein	0.04	0.05	0.02	0.22	0.90	0.68
lmo1844	lipoprotein signal peptidase	0.04	0.07	0.02	0.29	0.92	0.62
lmo1845	hypothetical protein	0.10	0.37	0.03	0.55	0.81	0.55
lmo1846	multidrug transporter	0.00	0.00	0.00	0.02	0.89	0.40
lmo1847	metal ABC transporter	0.14	0.35	0.07	0.29	0.92	0.64
lmo1848	metal ABC transporter permease	0.11	0.39	0.08	0.46	0.89	0.54
lmo1849	metal ABC transporter ATP-binding protein	0.05	0.14	0.04	0.19	0.87	0.49
lmo1850	MarR family transcriptional regulator	0.20	0.05	0.07	0.20	0.85	0.31
lmo1851	carboxy-terminal processing proteinase	0.41	0.00	0.21	0.03	0.87	0.37
lmo1852	mercury-binding protein	0.31	0.09	0.17	0.40	0.74	0.46
lmo1853	heavy metal-transporting ATPase	0.00	0.24	0.01	0.38	0.92	0.51
lmo1854	hypothetical protein	0.23	0.01	0.26	0.07	0.91	0.53
lmo1855	D-alanyl-D-alanine carboxypeptidase	0.00	0.02	0.02	0.26	0.87	0.63
lmo1856	purine nucleoside phosphorylase	0.02	0.10	0.06	0.44	0.86	0.63
lmo1857	hypothetical protein	0.10	0.42	0.12	0.47	0.67	0.26
lmo1858	dehydrogenase	0.27	0.12	0.23	0.09	0.61	0.19
lmo1860	methionine sulfoxide reductase A	0.06	0.00	0.28	0.14	0.72	0.35
lmo1861	hypothetical protein	0.34	0.21	0.32	0.30	0.72	0.26
lmo1862	hypothetical protein	0.09	0.12	0.03	0.11	0.40	0.10
lmo1863	hypothetical protein	0.37	0.03	0.27	0.16	0.39	0.13
lmo1864	hemolysin	0.30	0.08	0.26	0.35	0.60	0.24
lmo1865	hypothetical protein	0.32	0.45	0.05	0.32	0.89	0.53
lmo1866	hypothetical protein	0.22	0.42	0.04	0.21	0.73	0.36
lmo1867	pyruvate phosphate dikinase	0.12	0.05	0.11	0.08	0.83	0.55
lmo1868	hypothetical protein	0.00	0.00	0.01	0.05	0.85	0.40
lmo1869	hypothetical protein	0.00	0.00	0.01	0.06	0.75	0.31
lmo1870	alkaline phosphatase	0.20	0.02	0.07	0.01	0.74	0.32
lmo1871	phosphoglucomutase	0.03	0.09	0.18	0.52	0.88	0.57
lmo1872	methyltransferase	0.14	0.32	0.03	0.43	0.82	0.25
lmo1873	dihydrofolate reductase	0.00	0.00	0.01	0.07	0.86	0.54
lmo1874	thymidylate synthase	0.00	0.00	0.00	0.01	0.90	0.47
lmo1875	ABC transporter ATP-binding protein	0.00	0.00	0.01	0.02	0.91	0.37
lmo1877	formyl-tetrahydrofolate synthetase	0.00	0.00	0.00	0.03	0.82	0.29
lmo1878	manganese transport transcriptional regulator	0.02	0.01	0.02	0.00	0.88	0.70
lmo1879	cold-shock protein	0.09	0.46	0.05	0.44	0.92	0.53
lmo1880	RNase HI	0.00	0.00	0.02	0.06	0.82	0.29
lmo1881	5'-3' exonuclease	0.03	0.02	0.02	0.06	0.75	0.25
lmo1882	30S ribosomal protein S14	0.17	0.14	0.06	0.13	0.70	0.35
lmo1883	chitinase	0.03	0.12	0.02	0.16	0.89	0.65
lmo1884	xanthine permease	0.07	0.42	0.03	0.53	0.75	0.57
lmo1885	xanthine phosphoribosyltransferase	0.23	0.19	0.19	0.53	0.66	0.28
lmo1886	carboxypeptidase	0.35	0.20	0.27	0.22	0.87	0.63
lmo1887	hypothetical protein	0.01	0.06	0.01	0.08	0.85	0.54
lmo1888	hypothetical protein	0.12	0.06	0.04	0.29	0.81	0.51
lmo1889	hypothetical protein	0.09	0.31	0.01	0.08	0.71	0.36
lmo1890	hypothetical protein	0.03	0.04	0.01	0.01	0.72	0.37
lmo1891	Holliday junction-specific endonuclease	0.18	0.47	0.09	0.46	0.89	0.34
lmo1892	penicillin-binding protein 2A	0.31	0.00	0.09	0.07	0.75	0.19
lmo1893	hypothetical protein	0.40	0.11	0.20	0.30	0.75	0.59
lmo1894	endonuclease III (DNA repair)	0.37	0.03	0.24	0.22	0.72	0.46
lmo1895	chromosome replication initiation protein	0.41	0.03	0.23	0.12	0.73	0.52
lmo1896	asparaginyl-tRNA synthetase	0.15	0.25	0.04	0.49	0.68	0.25
lmo1897	aspartate aminotransferase	0.00	0.00	0.01	0.08	0.83	0.57
lmo1898	hypothetical protein	0.04	0.22	0.03	0.45	0.77	0.60
lmc 1000	bifunctional ATP-dependent DNA helicase/DNA polymerase III subunit	0.14	0.41	0.00	0.43	0.75	0.52
lmo1899	epsilon	0.14	0.41	0.09	0.43	0.75	0.53
lmo1900	aspartate alpha-decarboxylase	0.33	0.42	0.25	0.49	0.87	0.55

lmo1901	pantoatebeta-alanine ligase	0.34	0.41	0.17	0.48	0.91	0.66
lmo1902	3-methyl-2-oxobutanoate hydroxymethyltransferase	0.18	0.01	0.32	0.30	0.73	0.57
lmo1903	thioredoxin	0.18	0.01	0.31	0.15	0.59	0.31
lmo1904	transcriptional regulator	0.20	0.47	0.22	0.50	0.87	0.46
lmo1905	tRNA CCA-pyrophosphorylase	0.15	0.36	0.14	0.51	0.89	0.45
lmo1906	methylglyoxal synthase	0.12	0.28	0.11	0.44	0.85	0.35
lmo1907	dihydrodipicolinate reductase	0.36	0.47	0.20	0.47	0.92	0.57
lmo1908	hypothetical protein	0.04	0.00	0.09	0.02	0.54	0.17
lmo1909	hypothetical protein	0.05	0.07	0.04	0.28	0.89	0.43
lmo1910	oxidoreductase	0.09	0.36	0.04	0.41	0.91	0.49
lmo1911	histidine kinase	0.19	0.46	0.12	0.46	0.83	0.46
lmo1912	histidine kinase	0.15	0.31	0.03	0.12	0.75	0.45
lmo1912	hypothetical protein	0.15	0.31	0.03	0.12	0.81	0.43
lmo1913 lmo1914	hypothetical protein	0.13	0.32	0.03	0.09	0.81	0.40
		0.11	0.22	0.02	0.09	0.75	0.40
lmo1915	malate dehydrogenase	0.11	0.19				0.40
lmo1916	peptidase			0.01	0.20	0.92	
lmo1917	pyruvate formate-lyase	0.36	0.38	0.17	0.54	0.88	0.57
lmo1918	hypothetical protein	0.17	0.47	0.04	0.38	0.92	0.62
lmo1919	hypothetical protein	0.00	0.00	0.01	0.09	0.88	0.51
lmo1920	hypothetical protein	0.42	0.23	0.08	0.51	0.81	0.54
lmo1921	hypothetical protein	0.00	0.00	0.03	0.11	0.91	0.44
lmo1922	hypothetical protein	0.15	0.42	0.04	0.42	0.87	0.23
lmo1923	3-phosphoshikimate 1-carboxyvinyltransferase	0.01	0.06	0.01	0.08	0.89	0.36
lmo1924	prephenate dehydrogenase	0.01	0.23	0.00	0.08	0.82	0.50
lmo1925	histidinol-phosphate aminotransferase	0.03	0.43	0.01	0.32	0.80	0.42
lmo1926	chorismate mutase	0.38	0.02	0.20	0.11	0.82	0.67
lmo1927	3-dehydroquinate synthase	0.09	0.27	0.03	0.52	0.90	0.35
lmo1928	chorismate synthase	0.05	0.27	0.02	0.21	0.90	0.41
lmo1929	nucleoside diphosphate kinase	0.14	0.07	0.08	0.15	0.89	0.66
lmo1930	heptaprenyl diphosphate synthase subunit II	0.41	0.46	0.17	0.29	0.74	0.37
lmo1931	ubiquinone/menaquinone biosynthesis methyltransferase	0.06	0.01	0.28	0.30	0.64	0.22
lmo1932	heptaprenyl diphosphate synthase subunit I	0.00	0.01	0.20	0.30	0.62	0.22
lmo1932 lmo1933	GTP cyclohydrolase I	0.20	0.01	0.20	0.49	0.62	0.22
lmo1933 lmo1934		0.43	0.08	0.12	0.49	0.02	0.20
lmo1934 lmo1935	DNA-binding protein HU						
	protein-tyrosine/serine phosphatase	0.00	0.00	0.02	0.07	0.60	0.22
lmo1936	NAD(P)H-dependent glycerol-3-phosphate dehydrogenase	0.09	0.37	0.02	0.20	0.88	0.67
lmo1937	GTP-binding protein EngA	0.14	0.18	0.03	0.49	0.89	0.65
lmo1938	30S ribosomal protein S1	0.35	0.16	0.32	0.32	0.92	0.60
lmo1939	cytidylate kinase	0.00	0.00	0.02	0.01	0.61	0.27
lmo1940	asparaginase	0.14	0.06	0.09	0.09	0.85	0.51
lmo1941	hypothetical protein	0.01	0.00	0.01	0.30	0.92	0.44
lmo1942	ATP-dependent DNA helicase	0.05	0.22	0.07	0.35	0.84	0.49
lmo1943	hypothetical protein	0.31	0.41	0.31	0.55	0.76	0.41
lmo1944	ferredoxin	0.00	0.00	0.00	0.00	0.73	0.22
lmo1945	hypothetical protein	0.29	0.12	0.28	0.32	0.83	0.38
lmo1946	acyl-CoA hydrolase	0.08	0.00	0.14	0.01	0.70	0.30
lmo1947	two-component sensor histidine kinas	0.15	0.04	0.09	0.04	0.82	0.53
lmo1948	two-component response regulator ResD	0.18	0.22	0.06	0.10	0.92	0.52
lmo1949	hypothetical protein	0.00	0.01	0.01	0.05	0.85	0.56
lmo1950	hypothetical protein	0.00	0.00	0.00	0.01	0.91	0.34
lmo1951	segregation and condensation protein A	0.01	0.15	0.01	0.26	0.87	0.55
lmo1952	diaminopimelate decarboxylase	0.08	0.49	0.02	0.33	0.84	0.49
lmo1952	purine nucleoside phosphorylase	0.00	0.42	0.02	0.49	0.86	0.40
lmo1955 lmo1954	phosphopentomutase	0.29	0.42	0.10	0.49	0.80	0.40
lmo1954 lmo1955	integrase/recombinase	0.22	0.49	0.10	0.49	0.91	0.55
lmo1956	Fur family transcriptional regulator	0.00	0.00	0.01	0.14	0.91	0.66
lmo1957	ferrichrome ABC transporter permease	0.08	0.34	0.05	0.44	0.83	0.64
lmo1958	ferrichrome ABC transporter permease	0.30	0.39	0.24	0.35	0.86	0.66
lmo1959	ferrichrome-binding protein	0.25	0.44	0.08	0.50	0.92	0.53
lmo1960	ferrichrome ABC transporter ATP-binding protein	0.04	0.12	0.07	0.32	0.88	0.50
lmo1961	oxidoreductase	0.02	0.13	0.05	0.36	0.91	0.50

lmo1962	TetR family transcriptional regulator	0.00	0.03	0.02	0.36	0.74	0.12
lmo1963	hypothetical protein	0.01	0.04	0.02	0.28	0.72	0.09
lmo1965	hypothetical protein	0.00	0.00	0.01	0.06	0.79	0.20
lmo1966	hypothetical protein	0.01	0.05	0.01	0.35	0.88	0.15
lmo1967	toxic ion resistance protein	0.02	0.11	0.02	0.38	0.87	0.19
lmo1975	DNA polymerase IV	0.13	0.11	0.06	0.11	0.85	0.59
lmo1976	oxidoreductase	0.04	0.13	0.06	0.52	0.92	0.52
lmo1977	hypothetical protein	0.33	0.11	0.17	0.15	0.92	0.51
lmo1978	glucose-6-phosphate 1-dehydrogenase	0.00	0.00	0.03	0.03	0.85	0.40
lmo1979	hypothetical protein	0.37	0.31	0.13	0.33	0.71	0.33
lmo1980	hypothetical protein	0.34	0.42	0.32	0.39	0.85	0.60
lmo1981	hypothetical protein	0.06	0.06	0.08	0.24	0.92	0.66
lmo1982	hypothetical protein	0.01	0.01	0.01	0.07	0.91	0.45
lmo1983	dihydroxy-acid dehydratase	0.09	0.38 0.37	0.07	0.48	0.88	0.43
lmo1984 lmo1985	acetolactate synthase	0.29 0.21	0.37	0.13 0.08	0.52 0.50	0.90 0.91	$0.47 \\ 0.47$
lmo1985 lmo1986	acetolactate synthase small subunit ketol-acid reductoisomerase	0.21	0.48	0.08	0.30	0.91	0.47
lmo1980 lmo1987	2-isopropylmalate synthase	0.09	0.29	0.07	0.44	0.91	0.02
lmo1987 lmo1988	3-isopropylmalate dehydrogenase	0.20	0.40	0.10	0.33	0.89	0.40
lmo1988 lmo1989	isopropylmalate isomerase large subunit	0.30	0.45	0.23	0.44	0.84	0.30
lmo1989 lmo1990	isopropylmalate isomerase small subunit	0.20	0.33	0.10	0.55	0.88	0.42
lmo1990 lmo1991	threonine dehydratase	0.25	0.38	0.18	0.54	0.85	0.50
lmo1992	alpha-acetolactate decarboxylase	0.15	0.03	0.15	0.16	0.92	0.05
lmo1992 lmo1993	pyrimidine-nucleoside phosphorylase	0.01	0.30	0.01	0.42	0.90	0.58
lmo1995 lmo1994	LacI family transcriptional regulator	0.20	0.40	0.31	0.50	0.88	0.61
lmo1995	deoxyribose-phosphate aldolase	0.07	0.24	0.08	0.38	0.89	0.64
lmo1996	DeoR family transcriptional regulator	0.00	0.00	0.00	0.02	0.67	0.20
lmo1997	PTS mannose transporter subunit IIA	0.14	0.46	0.14	0.30	0.93	0.55
lmo1998	opine catabolism protein	0.16	0.40	0.15	0.26	0.92	0.52
lmo1999	hypothetical protein	0.12	0.46	0.13	0.29	0.91	0.42
lmo2000	PTS mannose transporter subunit IID	0.13	0.42	0.13	0.26	0.92	0.40
lmo2001	PTS mannose transporter subunit IIC	0.11	0.44	0.09	0.31	0.91	0.33
lmo2002	PTS mannose transporter subunit IIB	0.11	0.40	0.08	0.23	0.91	0.26
lmo2003	GntR family transcriptional regulator	0.17	0.23	0.11	0.18	0.92	0.35
lmo2004	GntR family transcriptional regulator	0.19	0.27	0.13	0.25	0.92	0.40
lmo2005	oxidoreductase	0.00	0.00	0.02	0.16	0.90	0.55
lmo2006	acetolactate synthase	0.25	0.37	0.17	0.40	0.83	0.59
lmo2007	hypothetical protein	0.05	0.05	0.06	0.13	0.88	0.67
lmo2008	ABC transporter permease	0.03	0.06	0.06	0.18	0.74	0.49
lmo2009	sugar ABC transporter permease	0.09	0.25	0.10	0.41	0.75	0.45
lmo2010	two-component response regulator	0.00	0.00	0.01	0.03	0.92	0.65
lmo2011	two-component sensor histidine kinase	0.00	0.00	0.00	0.00	0.74	0.34
lmo2012	hypothetical protein	0.06	0.14	0.05	0.15	0.81	0.59
lmo2013	hypothetical protein	0.00	0.00	0.03	0.00	0.89	0.40
lmo2014	sugar hydrolase	0.01	0.00	0.02	0.00	0.73	0.33
lmo2015	alpha-mannosidase	0.03	0.04	0.03	0.10	0.92	0.50
lmo2016	cold-shock protein	0.04	0.00	0.28	0.05	0.55	0.21
lmo2017	hypothetical protein	0.01	0.06	0.00	0.06	0.90	0.63
lmo2018	diaminopimelate epimerase	0.03	0.39	0.01	0.28	0.89	0.64
lmo2019	isoleucyl-tRNA synthetase	0.27	0.00	0.18	0.16	0.60	0.26
lmo2020	chemotaxis protein CheY	0.19	0.47	0.15	0.32	0.93	0.69
lmo2021	hypothetical protein	0.00	0.00	0.02	0.08	0.88	0.39
lmo2022	carbon-sulfur lyase	0.03 0.06	0.12 0.00	0.08 0.05	0.45 0.01	$\begin{array}{c} 0.80\\ 0.40\end{array}$	0.58 0.16
lmo2023 lmo2024	L-aspartate oxidase nicotinate-nucleotide pyrophosphorylase	0.06	0.00	0.05	0.01	0.40	0.16
lmo2024 lmo2025	quinolinate synthetase	0.02	0.00	0.03	0.01	0.39	0.11 0.44
lmo2023 lmo2028	hypothetical protein	0.03	0.00	0.03	0.03	0.75	0.44
lm02028 lm02029	hypothetical protein	0.00	0.02	0.01	0.08	0.89	0.58
lm02029 lm02030	hypothetical protein	0.02	0.00	0.01	0.03	0.92	0.67
lmo2030 lmo2031	hypothetical protein	0.10	0.32	0.01	0.08	0.91	0.68
lmo2031 lmo2032	cell division protein FtsZ	0.00	0.00	0.02	0.00	0.03	0.00
	r	2.00					

lmo2033	cell division protein FtsA	0.01	0.00	0.01	0.01	0.91	0.69
lmo2034	cell division protein FtsQ	0.00	0.01	0.01	0.06	0.79	0.64
lmo2035	UDP-diphospho-muramoylpentapeptide beta-N-	0.01	0.02	0.01	0.08	0.81	0.66
1 2026	acetylglucosaminyltransferase	0.15	0.00	0.02	0.40	0.64	0.16
lmo2036	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase	0.15	0.08	0.03	0.49	0.64	0.16
lmo2037	phospho-N-acetylmuramoyl-pentapeptide- transferase	0.01	0.01	0.01	0.16	0.89	0.61
lmo2038	UDP-N-acetylmuramoylalanyl-D-glutamate2 6-diaminopimelate	0.29	0.00	0.12	0.04	0.75	0.22
lmo2039	ligase penicillin-binding protein 2B	0.10	0.29	0.04	0.49	0.81	0.59
lmo2039 lmo2040	cell division protein FtsL	0.10	0.29	0.04	0.12	0.81	0.39
lmo2041	S-adenosyl-methyltransferase MraW	0.32	0.22	0.18	0.12	0.88	0.69
lmo2042	cell division protein MraZ	0.09	0.13	0.09	0.12	0.89	0.69
lmo2043	MFS transporter	0.00	0.00	0.01	0.02	0.89	0.45
lmo2044	peptide ABC transporter substrate-binding protein	0.13	0.01	0.28	0.11	0.76	0.32
lmo2045	hypothetical protein	0.02	0.25	0.02	0.49	0.89	0.52
lmo2046	2-dehydropantoate 2-reductase	0.00	0.02	0.00	0.14	0.88	0.41
lmo2047	50S ribosomal protein L32	0.20	0.42	0.04	0.29	0.84	0.59
lmo2048	hypothetical protein	0.36	0.05	0.06	0.53	0.90	0.57
lmo2049	hypothetical protein	0.00	0.01	0.01	0.08	0.86	0.35
lmo2050	excinuclease ABC subunit A	0.20	0.29	0.01	0.22	0.80	0.66
lmo2051	hypothetical protein	0.29	0.13	0.10	0.35	0.91	0.63
lmo2052	phosphopantetheine adenylyltransferase	0.12	0.39	0.05	0.48	0.86	0.32
lmo2053	hypothetical protein	0.28	0.28	0.07	0.53	0.91	0.61
lmo2054	hypothetical protein	0.36	0.05	0.10	0.34	0.69	0.52
lmo2055	hypothetical protein	0.13	0.00	0.31	0.06	0.77	0.68
lmo2056	hypothetical protein	0.37	0.05	0.13	0.28	0.92	0.60
lmo2057	protoheme IX farnesyltransferase	0.09	0.20	0.03	0.45	0.59	0.16
lmo2058	heme O oxygenase	0.42	0.03	0.31	0.02	0.91	0.69
lmo2059	potassium channel protein	0.01	0.01	0.01	0.09	0.91	0.62
lmo2060	hypothetical protein	0.22	0.23	0.20	0.11	0.92	0.51
lmo2061	hypothetical protein	0.38	0.08	0.29	0.07	0.91	0.48
lmo2062	copper transporter	0.05	0.00	0.11	0.04	0.82	0.55
lmo2063	hypothetical protein	0.07	0.40	0.02	0.55	0.88	0.49
lmo2064	large-conductance mechanosensitive channel protein	0.06	0.03	0.08	0.14	0.66	0.22
lmo2065	hypothetical protein	0.12	0.13	0.05	0.21	0.82	0.65
lmo2066	hypothetical protein	0.13	0.07	0.05	0.17	0.82	0.68
lmo2067	bile acid hydrolase	0.36	0.00	0.16	0.14	0.68	0.20
lmo2068	molecular chaperone GroEL	0.37	0.10	0.14	0.00	0.91	0.68
lmo2069	co-chaperonin GroES	0.35	0.09	0.12	0.01	0.91	0.63
lmo2070	hypothetical protein	0.31	0.00	0.23	0.06	0.83	0.32
lmo2071	hypothetical protein	0.42	0.00	0.21	0.03	0.87	0.59
lmo2073	ABC transporter ATP-binding protein	0.05	0.14	0.15	0.44	0.92	0.65
lmo2075	DNA-binding/iron metalloprotein/AP endonuclease	0.22	0.48	0.27	0.33	0.83	0.70
lmo2076	alanine acetyltransferase	0.17	0.08	0.30	0.26	0.71	0.36
lmo2077	glycoprotease	0.05	0.09	0.06	0.15	0.88	0.40
lmo2078	hypothetical protein	0.00	0.00	0.02	0.02	0.59	0.14
lmo2079	hypothetical protein	0.27	0.00	0.17	0.11	0.75	0.55
lmo2080	hypothetical protein	0.06	0.29	0.02	0.38	0.87	0.53
lmo2081	camphor resistance protein CrcB	0.31	0.17	0.18	0.25	0.79	0.43
lmo2082	camphor resistance protein CrcB	0.40	0.13	0.23	0.32	0.80	0.39
lmo2083	hypothetical protein	0.01	0.01	0.02	0.04	0.91	0.59
lmo2085	peptidoglycan binding protein	0.38	0.01	0.19	0.16	0.61	0.15
lmo2086	hypothetical protein	0.16	0.23	0.22	0.37	0.69	0.25
lmo2087	hypothetical protein	0.00	0.03	0.02	0.16	0.65	0.26
lmo2088	transcriptional regulator	0.01	0.07	0.07	0.36	0.74	0.33
lmo2089	lipase	0.02	0.02	0.05	0.33	0.92	0.54
lmo2090	argininosuccinate synthase	0.40	0.36	0.13	0.35	0.90	0.68
lmo2091	argininosuccinate lyase	0.41	0.44	0.15	0.32	0.91	0.67
lmo2092	glycine betaine transporter BetL	0.00	0.00	0.01	0.03	0.87	0.54
lmo2093	hypothetical protein	0.06	0.41	0.07	0.45	0.92	0.23
lmo2094	L-fuculose-phosphate aldolase	0.08	0.48	0.11	0.45	0.92	0.22

		.			~		
lmo2095	phosphofructokinase	0.05	0.39	0.10	0.44	0.92	0.20
lmo2096	PTS galacticol transporter subunit IIC	0.05	0.36	0.08	0.52	0.93	0.18
lmo2097	PTS galacticol transporter subunit IIB	0.05	0.30	0.08	0.54	0.91	0.15
lmo2098	PTS galacticol transporter subunit IIA	0.07	0.40	0.09	0.52	0.92	0.19
lmo2099	transcriptional antiterminator	0.07	0.37	0.09	0.54	0.91	0.19
lmo2100	GntR family transcriptional regulator	0.35	0.13	0.10	0.41	0.83	0.51
lmo2101	pyridoxal biosynthesis lyase PdxS	0.37	0.13	0.14	0.45	0.61	0.36
lmo2102	glutamine amidotransferase subunit PdxT	0.37	0.29	0.08	0.53	0.63	0.37
lmo2103	phosphotransacetylase	0.38	0.43	0.30	0.51	0.75	0.39
lmo2104	hypothetical protein	0.26	0.24	0.21	0.52	0.74	0.38
lmo2104a	hypothetical protein	0.12	0.25	0.32	0.49	0.71	0.29
lmo2105	ferrous iron transport protein B	0.23	0.26	0.22	0.46	0.76	0.39
lmo2106	hypothetical protein	0.00	0.00	0.01	0.06	0.48	0.08
lmo2107	DeoR family transcriptional regulator	0.09	0.34	0.12	0.34	0.81	0.24
lmo2108	N-acetylglucosamine-6-phosphate deacetylase	0.16	0.44	0.15	0.30	0.88	0.27
lmo2109	hydrolase	0.06	0.13	0.11	0.44	0.78	0.18
lmo2110	mannnose-6 phospate isomerase	0.12	0.10	0.08	0.10	0.85	0.57
lmo2111	nitroreductase	0.14	0.41	0.15	0.34	0.86	0.54
lmo2112	hypothetical protein	0.23	0.37	0.15	0.30	0.91	0.46
lmo2113	heme peroxidase	0.22	0.41	0.07	0.47	0.91	0.63
lmo2114	ABC transporter ATP-binding protein	0.14	0.35	0.14	0.47	0.91	0.68
lmo2115	ABC transporter permease	0.08	0.23	0.11	0.48	0.90	0.68
lmo2116	hypothetical protein	0.38	0.06	0.18	0.17	0.91	0.65
lmo2117	hypothetical protein	0.00	0.00	0.00	0.00	0.89	0.55
lmo2118	phosphoglucosamine mutase	0.12	0.48	0.07	0.29	0.90	0.42
lmo2119	hypothetical protein	0.13	0.46	0.00	0.05	0.92	0.59
lmo2120	hypothetical protein	0.11	0.47	0.00	0.04	0.85	0.61
lmo2121	maltose phosphorylase	0.24	0.08	0.06	0.33	0.86	0.56
lmo2122	maltodextrose utilization protein MalA	0.20	0.14	0.05	0.38	0.77	0.69
lmo2123	sugar ABC transporter permease	0.17	0.25	0.03	0.53	0.86	0.64
lmo2124	sugar ABC transporter permease	0.25	0.07	0.06	0.32	0.79	0.68
lmo2125	sugar ABC transporter substrate-binding protein	0.29	0.01	0.09	0.13	0.75	0.60
lmo2126	maltogenic amylase	0.40	0.33	0.06	0.54	0.88	0.42
lmo2127	hypothetical protein	0.11	0.01	0.06	0.03	0.60	0.09
lmo2128	LacI family transcriptional regulator	0.06	0.14	0.02	0.31	0.91	0.52
lmo2129	hypothetical protein	0.01	0.16	0.01	0.26	0.88	0.19
lmo2130	hypothetical protein	0.04	0.11	0.02	0.14	0.88	0.69
lmo2131	hypothetical protein	0.17	0.36	0.04	0.44	0.90	0.65
lmo2132	hypothetical protein	0.11	0.44	0.09	0.48	0.83	0.60
lmo2133	fructose-16-biphosphate aldolase type II	0.27	0.37	0.13	0.46	0.92	0.61
lmo2134	fructose-16-biphosphate aldolase type II	0.19	0.44	0.11	0.48	0.92	0.67
lmo2135	PTS fructose transporter subunit IIC	0.29	0.33	0.07	0.38	0.91	0.59
lmo2136	PTS fructose transporter subunit IIB	0.17	0.33	0.03	0.16	0.83	0.25
lmo2137	PTS fructose transporter subunit IIA	0.30	0.41	0.15	0.55	0.89	0.50
lmo2138	transcriptional regulator	0.15	0.32	0.04	0.44	0.91	0.33
lmo2139	ABC transporter ATP-binding protein	0.14	0.44	0.03	0.21	0.88	0.67
lmo2140	ABC transporter permease	0.04	0.11	0.01	0.03	0.92	0.58
lmo2141	hypothetical protein	0.03	0.08	0.01	0.03	0.89	0.67
lmo2142	hypothetical protein	0.38	0.27	0.25	0.36	0.72	0.37
lmo2143	hypothetical protein	0.42	0.00	0.23	0.03	0.82	0.40
lmo2144	GntR family transcriptional regulator	0.08	0.20	0.06	0.31	0.89	0.52
lmo2145	hypothetical protein	0.15	0.29	0.07	0.32	0.91	0.46
lmo2146	LysR family transcriptional regulator	0.00	0.00	0.00	0.01	0.92	0.58
lmo2147	hypothetical protein	0.33	0.46	0.30	0.33	0.84	0.54
lmo2148	hypothetical protein	0.01	0.03	0.01	0.10	0.91	0.39
lmo2149	hypothetical protein	0.02	0.03	0.02	0.19	0.76	0.30
lmo2150	hypothetical protein	0.10	0.29	0.05	0.26	0.89	0.57
lmo2151	hypothetical protein	0.14	0.01	0.20	0.08	0.78	0.53
lmo2152	thioredoxin	0.10	0.38	0.01	0.10	0.83	0.57
lmo2153	flavodoxin	0.22	0.44	0.10	0.31	0.74	0.47
lmo2154	ribonucleotide-diphosphate reductase subunit beta	0.05	0.14	0.02	0.10	0.80	0.46
	• •						

lmo2155	ribonucleotide-diphosphate reductase subunit alpha	0.02	0.05	0.02	0.08	0.71	0.33
lmo2156	hypothetical protein	0.24	0.09	0.27	0.41	0.89	0.66
lmo2157	hypothetical protein	0.10	0.45	0.02	0.39	0.75	0.31
lmo2158	hypothetical protein	0.09	0.46	0.04	0.46	0.74	0.23
lmo2159	oxidoreductase	0.37	0.05	0.26	0.22	0.93	0.51
lmo2160	hypothetical protein	0.40	0.10	0.18	0.39	0.92	0.41
lmo2161	hypothetical protein	0.41	0.09	0.24	0.32	0.92	0.48
lmo2162	hypothetical protein	0.42	0.09	0.22	0.31	0.92	0.47
lmo2163	oxidoreductase	0.42	0.08	0.23	0.28	0.92	0.45
lmo2164	AraC family transcriptional regulator	0.00	0.00	0.02	0.22	0.90	0.59
lmo2165	Crp/Fnr family transcriptional regulator	0.02	0.09	0.02	0.33	0.91	0.62
lmo2166	hypothetical protein	0.01	0.00	0.05	0.26	0.75	0.46
lmo2167	hypothetical protein	0.22	0.49	0.11	0.31	0.87	0.64
lmo2168	glyoxalase	0.37	0.45	0.09	0.41	0.74	0.37
lmo2169	hypothetical protein	0.18	0.20	0.05	0.14	0.88	0.59
lmo2170	hypothetical protein	0.00	0.00	0.00	0.00	0.00	0.22
lmo2171	MFS transporter	0.00	0.00	0.00	0.00	0.86	0.22
lmo2171 lmo2172	propionate CoA-transferase	0.00	0.00	0.00	0.01	0.80	0.34
lm02172 lm02173		0.00	0.01	0.00	0.02	0.90	0.40
	sigma-54-dependent transcriptional regulator						
lmo2174	hypothetical protein	0.07	0.08	0.04	0.19	0.85	0.61
lmo2175	3-ketoacyl-ACP reductase	0.02	0.29	0.01	0.34	0.90	0.13
lmo2177	hypothetical protein	0.01	0.00	0.14	0.25	0.81	0.43
lmo2178	peptidoglycan binding protein	0.29	0.01	0.13	0.41	0.65	0.23
lmo2179	peptidoglycan binding protein	0.00	0.01	0.01	0.04	0.92	0.60
lmo2180	hypothetical protein	0.31	0.45	0.11	0.34	0.89	0.54
lmo2181	hypothetical protein	0.31	0.50	0.12	0.39	0.92	0.63
lmo2182	ferrichrome ABC transporter ATP-binding protein	0.14	0.25	0.04	0.17	0.89	0.52
lmo2183	ferrichrome ABC transporter permease	0.06	0.11	0.04	0.15	0.86	0.51
lmo2184	ferrichrome ABC transporter substrate-binding protein	0.11	0.13	0.09	0.22	0.82	0.49
lmo2185	hypothetical protein	0.24	0.27	0.20	0.36	0.83	0.51
lmo2186	hypothetical protein	0.36	0.36	0.28	0.44	0.90	0.62
lmo2187	hypothetical protein	0.09	0.10	0.11	0.29	0.58	0.17
lmo2188	oligoendopeptidase	0.10	0.40	0.03	0.31	0.88	0.52
lmo2189	competence protein CoiA	0.00	0.00	0.00	0.01	0.58	0.18
lmo2190	adaptor protein	0.27	0.00	0.09	0.07	0.74	0.26
lmo2191	ArsC family transcriptional regulator	0.07	0.44	0.02	0.36	0.70	0.31
lmo2192	peptide ABC transporter ATP-binding protein	0.12	0.27	0.02	0.17	0.75	0.61
lmo2193	peptide ABC transporter ATP-binding protein	0.05	0.35	0.01	0.03	0.74	0.68
lmo2194	peptide ABC transporter permease	0.05	0.39	0.01	0.11	0.83	0.69
lmo2195	peptide ABC transporter permease	0.04	0.37	0.02	0.23	0.87	0.57
lmo2196	hypothetical protein	0.17	0.40	0.02	0.16	0.62	0.36
lmo2197	hypothetical protein	0.35	0.01	0.14	0.19	0.86	0.52
lmo2198	tryptophanyl-tRNA synthetase	0.20	0.11	0.07	0.49	0.84	0.60
lmo2199	hypothetical protein	0.40	0.04	0.20	0.18	0.56	0.22
lmo2200	MarR family transcriptional regulator	0.38	0.04	0.20	0.16	0.44	0.22
lmo2200	3-oxoacyl-ACP synthase	0.30	0.00	0.23	0.04	0.77	0.20
lm02201 lm02202	3-oxoacyl-ACP synthase	0.23	0.00	0.11	0.14	0.92	0.29
lm02202 lm02203	N-acetylmuramoyl-L-alanine amidase	0.25	0.04	0.11	0.14	0.92	0.64
	• •	0.13	0.13		0.41	0.92	0.59
lmo2204	hypothetical protein			0.04			
lmo2205	phosphoglyceromutase	0.04	0.32	0.03	0.47	0.90	0.35
lmo2206	Clp protease subunit B	0.03	0.31	0.09	0.20	0.92	0.40
lmo2207	hypothetical protein	0.00	0.00	0.00	0.02	0.82	0.24
lmo2208	hypothetical protein	0.39	0.03	0.19	0.17	0.92	0.67
lmo2209	hypothetical protein	0.20	0.36	0.02	0.10	0.81	0.37
lmo2210	hypothetical protein	0.07	0.40	0.16	0.28	0.73	0.59
lmo2211	ferrochelatase	0.30	0.02	0.30	0.15	0.80	0.47
lmo2212	uroporphyrinogen decarboxylase	0.35	0.03	0.31	0.08	0.92	0.63
lmo2213	hypothetical protein	0.10	0.29	0.05	0.48	0.79	0.35
lmo2214	ABC transporter permease	0.10	0.05	0.14	0.21	0.75	0.36
lmo2215	ABC transporter ATP-binding protein	0.21	0.44	0.19	0.45	0.88	0.53
lmo2216	histidine triad (HIT) protein	0.17	0.14	0.08	0.38	0.56	0.06

lmo2217	hypothetical protein	0.00	0.00	0.01	0.17	0.78	0.68
lmo2218	hypothetical protein	0.15	0.47	0.03	0.32	0.92	0.55
lmo2219	foldase	0.37	0.09	0.18	0.18	0.84	0.41
lmo2220	3'-5' exoribonuclease	0.15	0.03	0.09	0.04	0.91	0.56
lmo2221	hypothetical protein	0.07	0.11	0.08	0.25	0.88	0.68
lmo2222	hypothetical protein	0.00	0.00	0.00	0.02	0.74	0.37
lmo2223	hypothetical protein	0.27	0.02	0.22	0.27	0.89	0.47
lmo2225	fumarate hydratase	0.03	0.12	0.07	0.48	0.86	0.31
lmo2226	hypothetical protein	0.05	0.11	0.20	0.45	0.74	0.20
lmo2227	ABC transporter ATP-binding protein	0.04	0.05	0.15	0.53	0.74	0.20
lmo2228	hypothetical protein	0.07	0.11	0.15	0.53	0.74	0.20
lmo2229	penicillin-binding protein	0.09	0.20	0.01	0.09	0.92	0.67
lmo2230	arsenate reductase	0.05	0.40	0.04	0.51	0.84	0.49
lmo2231	hypothetical protein	0.23	0.38	0.07	0.53	0.78	0.38
lmo2232	hypothetical protein	0.11	0.19	0.22	0.49	0.40	0.12
lmo2233	LysR family transcriptional regulator	0.15	0.31	0.15	0.47	0.67	0.21
lmo2234	hypothetical protein	0.23	0.43	0.11	0.45	0.84	0.45
lmo2235	NADH oxidase	0.37	0.33	0.15	0.55	0.90	0.65
lmo2236	shikimate 5-dehydrogenase	0.30	0.42	0.26	0.43	0.83	0.60
lmo2237	MFS transporter permease	0.17	0.37	0.30	0.46	0.83	0.62
lmo2238	MFS transporter	0.41	0.31	0.21	0.30	0.71	0.23
lmo2239	hypothetical protein	0.00	0.00	0.01	0.03	0.74	0.15
lmo2240	ABC transporter ATP-binding protein	0.08	0.03	0.19	0.14	0.80	0.14
lmo2241	GntR family transcriptional regulator	0.03	0.00	0.12	0.08	0.79	0.16
lmo2242	O6-methylguanine-DNA methyltransferase	0.00	0.03	0.01	0.36	0.92	0.47
lmo2243	AraC family transcriptional regulator	0.23	0.45	0.03	0.28	0.86	0.49
lmo2244	ribosomal large subunit pseudouridine synthase	0.20	0.38	0.06	0.54	0.90	0.59
lmo2245	hypothetical protein	0.00	0.00	0.00	0.02	0.87	0.41
lmo2246	hypothetical protein	0.03	0.08	0.06	0.16	0.90	0.70
lmo2247	oxidoreductase	0.37	0.29	0.13	0.09	0.84	0.52
lmo2248	hypothetical protein	0.37	0.08	0.08	0.48	0.88	0.63
lmo2249	low-affinity inorganic phosphate transporter	0.38	0.06	0.06	0.52	0.85	0.57
lmo2250	amino acid ABC transporter permease	0.15	0.50	0.00	0.14	0.05	0.64
lmo2250 lmo2251	amino acid ABC transporter ATP-binding protein	0.19	0.45	0.01	0.25	0.88	0.68
lmo2251 lmo2252	aspartate aminotransferase	0.02	0.12	0.02	0.25	0.00	0.56
lmo2252 lmo2253	phosphoglucomutase	0.02	0.12	0.00	0.00	0.91	0.62
lm02255 lm02254	hypothetical protein	0.01	0.11	0.04	0.16	0.80	0.02
lm02254 lm02255	hypothetical protein	0.04	0.00	0.01	0.10	0.76	0.50
lm02255 lm02256	hypothetical protein	0.01	0.00	0.03	0.00	0.70	0.51
lm02250 lm02257	hypothetical protein	0.02	0.16	0.02	0.27	0.89	0.59
lm02258	hypothetical protein	0.19	0.36	0.00	0.30	0.89	0.38
lmo2259	PTS beta-glucoside transporter subunit IIA	0.12	0.30	0.17	0.45	0.73	0.21
lmo2259 lmo2261	hypothetical protein	0.04	0.33	0.24	0.33	0.74	0.31
lm02261 lm02262	hypothetical protein	0.04	0.17	0.07	0.32	0.92	0.42
lm02262 lm02263	hypothetical protein	0.00	0.00	0.02	0.09	0.52	0.30
lm02203 lm02264		0.41	0.19	0.11	0.40	0.34	0.15
lm02264 lm02265	hypothetical protein hypothetical protein	0.02	0.01		0.00	0.89	0.59
		0.41	0.20	0.26	0.15	0.92	0.59
lmo2266	hypothetical protein			0.07			
lmo2267	ATP-dependent deoxyribonuclease subunit A	0.02	0.00	0.05	0.03	0.89	0.45
lmo2268	ATP-dependent deoxyribonuclease subunit B	0.02	0.00	0.03	0.02	0.80	0.41
lmo2269	hypothetical protein	0.37	0.02	0.13	0.25	0.68	0.23
lmo2334	transcriptional regulator	0.00	0.00	0.01	0.07	0.88	0.19
lmo2335	PTS fructose transporter subunit IIABC	0.39	0.41	0.30	0.53	0.84	0.58
lmo2337	DeoR family transcriptional regulator	0.32	0.39	0.29	0.51	0.86	0.55
lmo2338	aminopeptidase	0.00	0.00	0.01	0.07	0.91	0.37
lmo2339	hypothetical protein	0.00	0.00	0.02	0.01	0.71	0.28
lmo2340	hypothetical protein	0.08	0.37	0.04	0.48	0.92	0.63
lmo2341	sugar kinase	0.11	0.46	0.05	0.50	0.92	0.66
lmo2342	16S pseudouridylate synthase	0.09	0.44	0.05	0.50	0.90	0.66
lmo2343	nitrilotriacetate monooxygenase	0.16	0.40	0.08	0.35	0.90	0.50
lmo2344	hypothetical protein	0.05	0.21	0.07	0.37	0.90	0.52

1 22.45		0.12	0.46	0.14	0.55	0.02	0.64
lmo2345	hypothetical protein	0.13	0.46	0.14	0.55	0.92	0.64
lmo2346	amino acid ABC transporter ATP-binding protein	0.22	0.49	0.20	0.52	0.92	0.54
lmo2347	amino acid ABC transporter permease	0.10	0.46	0.06	0.46	0.92	0.52
lmo2348	amino acid ABC transporter permease	0.16	0.48	0.10	0.52	0.91	0.66
lmo2349	amino acid ABC transporter substrate-binding protein	0.06	0.24	0.04	0.28	0.89	0.50
lmo2350	hypothetical protein	0.06	0.26	0.01	0.11	0.92	0.56
lmo2351	FMN reductase	0.20	0.40	0.14	0.44	0.92	0.59
lmo2352	LysR family transcriptional regulator	0.01	0.06	0.03	0.31	0.89	0.68
lmo2353	Na+/H+ antiporter	0.03	0.32	0.01	0.22	0.74	0.48
lmo2354	hypothetical protein	0.02	0.33	0.02	0.35	0.84	0.64
lmo2355	multidrug resistance protein	0.01	0.01	0.01	0.13	0.92	0.55
lmo2356	hypothetical protein	0.00	0.00	0.05	0.07	0.74	0.40
lmo2357	hypothetical protein	0.18	0.22	0.05	0.55	0.66	0.14
lmo2358	N-acetylglucosamine-6-phosphate isomerase	0.34	0.04	0.10	0.35	0.60	0.16
lmo2359	hypothetical protein	0.01	0.04	0.03	0.35	0.79	0.59
lmo2360	transmembrane protein	0.09	0.37	0.01	0.09	0.89	0.65
lmo2361	hypothetical protein	0.12	0.45	0.01	0.09	0.91	0.60
lmo2362	amino acid antiporter	0.38	0.36	0.08	0.45	0.74	0.56
lmo2363	glutamate decarboxylase	0.32	0.48	0.07	0.39	0.79	0.64
lmo2364	hypothetical protein	0.00	0.01	0.02	0.07	0.88	0.54
lmo2366	DeoR family transcriptional regulator	0.00	0.00	0.00	0.03	0.88	0.27
lmo2367	glucose-6-phosphate isomerase	0.32	0.16	0.02	0.31	0.66	0.40
lmo2368	hypothetical protein	0.10	0.02	0.08	0.04	0.62	0.28
lmo2369	general stress protein 13	0.40	0.47	0.02	0.10	0.90	0.67
lmo2370	aminotransferase	0.00	0.00	0.01	0.16	0.91	0.15
lmo2371	ABC transporter permease	0.00	0.03	0.07	0.18	0.74	0.43
lmo2372	ABC transporter ATP-binding protein	0.12	0.09	0.07	0.22	0.81	0.59
lmo2373	PTS beta-glucoside transporter subunit IIB	0.12	0.09	0.15	0.03	0.75	0.37
lmo2374	aspartate kinase	0.10	0.35	0.06	0.48	0.91	0.47
lmo2374 lmo2376	peptidyl-prolyl cis-trans isomerase	0.00	0.00	0.00	0.48	0.91	0.38
lmo2377 lmo2377	multidrug transporter	0.00	0.00	0.02	0.05	0.70	0.38
		0.12	0.00		0.01		0.23
lmo2378	monovalent cation/H+ antiporter subunit A	0.20		0.12		0.87	
lmo2379	monovalent cation/H+ antiporter subunit B		0.29	0.28	0.36	0.93	0.49
lmo2380	monovalent cation/H+ antiporter subunit C	0.17	0.02	0.13	0.08	0.86	0.62
lmo2381	monovalent cation/H+ antiporter subunit D	0.30	0.36	0.23	0.48	0.93	0.53
lmo2382	monovalent cation/H+ antiporter subunit E	0.10	0.06	0.12	0.12	0.89	0.60
lmo2383	monovalent cation/H+ antiporter subunit F	0.05	0.01	0.12	0.18	0.90	0.49
lmo2384	monovalent cation/H+ antiporter subunit G	0.35	0.31	0.29	0.40	0.74	0.57
lmo2385	hypothetical protein	0.01	0.00	0.10	0.08	0.86	0.59
lmo2386	hypothetical protein	0.09	0.42	0.03	0.38	0.80	0.45
lmo2387	hypothetical protein	0.07	0.16	0.03	0.14	0.81	0.61
lmo2388	hypothetical protein	0.00	0.00	0.01	0.10	0.75	0.23
lmo2389	NADH dehydrogenase	0.01	0.05	0.01	0.09	0.74	0.48
lmo2390	hypothetical thioredoxine reductase	0.24	0.42	0.09	0.49	0.68	0.41
lmo2391	hypothetical protein	0.18	0.04	0.10	0.18	0.74	0.26
lmo2392	hypothetical protein	0.00	0.01	0.02	0.23	0.92	0.35
lmo2393	hypothetical protein	0.00	0.01	0.01	0.14	0.92	0.30
lmo2397	NifU protein	0.07	0.41	0.05	0.55	0.70	0.38
lmo2398	hypothetical protein	0.40	0.01	0.12	0.30	0.62	0.20
lmo2399	hypothetical protein	0.08	0.26	0.06	0.43	0.73	0.53
lmo2400	acetyltransferase	0.00	0.00	0.00	0.04	0.92	0.50
lmo2401	hypothetical protein	0.29	0.27	0.04	0.36	0.73	0.44
lmo2402	hypothetical protein	0.09	0.50	0.06	0.53	0.88	0.69
lmo2403	hypothetical protein	0.34	0.01	0.12	0.12	0.73	0.47
lmo2404	hypothetical protein	0.38	0.04	0.07	0.55	0.90	0.56
lmo2405	hypothetical protein	0.29	0.06	0.14	0.54	0.90	0.58
lmo2406	hypothetical protein	0.11	0.19	0.07	0.18	0.87	0.66
lmo2411	hypothetical protein	0.05	0.10	0.07	0.18	0.74	0.57
lmo2412	hypothetical protein	0.06	0.20	0.05	0.24	0.72	0.50
lmo2413	aminotransferase	0.00	0.20	0.03	0.24	0.72	0.56
lm02413 lm02414	aminotransferase	0.03	0.20	0.08	0.53	0.75	0.50
11102717		0.07	0.15	0.17	0.55	0.07	0.07

lmo2415	ABC transporter ATP-binding protein	0.20	0.35	0.26	0.36	0.74	0.40
lmo2416	hypothetical protein	0.30	0.38	0.14	0.45	0.88	0.56
lmo2417	ABC transporter substrate-binding protein	0.42	0.02	0.18	0.14	0.55	0.25
lmo2418	ABC transporter permease	0.04	0.30	0.05	0.50	0.75	0.44
lmo2419	ABC transporter ATP-binding protein	0.19	0.50	0.11	0.41	0.86	0.43
lmo2420	hypothetical protein	0.03	0.30	0.01	0.23	0.88	0.70
lmo2421	two-component sensor histidine kinase	0.03	0.05	0.03	0.24	0.88	0.29
lmo2422	two-component response regulator	0.12	0.15	0.05	0.26	0.74	0.22
lmo2423	hypothetical protein	0.10	0.39	0.02	0.32	0.92	0.69
lmo2424	thioredoxin	0.01	0.00	0.03	0.05	0.77	0.21
lmo2425	glycine cleavage system protein H	0.11	0.00	0.29	0.01	0.65	0.22
lmo2426	hypothetical protein	0.34	0.01	0.17	0.14	0.74	0.54
lmo2427	cell division protein FtsW	0.28	0.00	0.16	0.22	0.62	0.18
lmo2428	cell division protein FtsW	0.35	0.00	0.14	0.05	0.86	0.20
lmo2429	ferrichrome ABC transporter ATP-binding protein	0.34	0.06	0.12	0.31	0.77	0.66
lmo2430	ferrichrome ABC transporter permease	0.15	0.43	0.16	0.31	0.89	0.68
lmo2431	ferrichrome ABC transporter substrate-binding protein	0.22	0.24	0.28	0.46	0.72	0.34
lmo2432	hypothetical protein	0.14	0.18	0.17	0.06	0.86	0.61
lmo2433	acetylesterase	0.04	0.36	0.07	0.54	0.73	0.47
lmo2434	glutamate decarboxylase	0.08	0.46	0.02	0.32	0.84	0.54
lmo2435	hypothetical protein	0.15	0.50	0.08	0.49	0.90	0.66
lmo2436	transcription antiterminator	0.04	0.25	0.01	0.12	0.88	0.66
lmo2437	hypothetical protein	0.18	0.24	0.12	0.32	0.84	0.61
lmo2438	hypothetical protein	0.03	0.10	0.02	0.26	0.78	0.21
lmo2439	hypothetical protein	0.32	0.39	0.24	0.55	0.91	0.60
lmo2440	hypothetical protein	0.16	0.48	0.12	0.38	0.89	0.42
lmo2441	transcriptional regulator	0.07	0.23	0.07	0.46	0.92	0.44
lmo2442	hypothetical protein	0.00	0.01	0.00	0.00	0.75	0.33
lmo2443	hypothetical protein	0.13	0.28	0.04	0.55	0.89	0.53
lmo2444	glycosidase	0.07	0.00	0.07	0.01	0.80	0.31
lmo2445	internalin	0.03	0.00	0.09	0.09	0.77	0.41
lmo2447	transcriptional regulator	0.19	0.41	0.29	0.27	0.75	0.63
lmo2448	SsrA-binding protein	0.40	0.46	0.23	0.47	0.91	0.55
lmo2449	exoribonuclease RNase-R	0.42	0.45	0.16	0.38	0.91	0.57
lmo2450	carboxylesterase	0.01	0.16	0.03	0.40	0.78	0.36
lmo2451	preprotein translocase subunit SecG	0.36	0.29	0.22	0.49	0.92	0.67
lmo2452	carboxylesterase	0.03	0.49	0.07	0.24	0.79	0.59
lmo2453	epoxide hydrolase	0.11	0.10	0.06	0.13	0.85	0.66
lmo2454	hypothetical protein	0.03	0.44	0.03	0.36	0.82	0.54
lmo2455	phosphopyruvate hydratase	0.41	0.37	0.09	0.09	0.85	0.63
lmo2456	phosphoglyceromutase	0.43	0.30	0.09	0.19	0.80	0.61
lmo2457	triosephosphate isomerase	0.43	0.29	0.10	0.21	0.81	0.62
lmo2458	phosphoglycerate kinase	0.37	0.22	0.15	0.34	0.79	0.58
lmo2459	glyceraldehyde-3-phosphate dehydrogenase	0.26	0.30	0.20	0.24	0.92	0.70
lmo2460	transcriptional regulator	0.16	0.04	0.23	0.25	0.49	0.22
lmo2461	RNA polymerase factor sigma-54	0.23	0.10	0.10	0.25	0.84	0.68
lmo2462	dipeptidase	0.05	0.00	0.13	0.02	0.40	0.00
lmo2463	multidrug transporter	0.34	0.22	0.13	0.48	0.70	0.22
lmo2464	transcriptional regulator	0.02	0.14	0.02	0.40	0.75	0.22
lmo2465	hypothetical protein	0.02	0.28	0.02	0.24	0.90	0.25
lmo2467	chitin-binding protein	0.00	0.28	0.04	0.35	0.90	0.55
lm02407 lm02468	ATP-dependent Clp protease proteolytic subunit	0.03	0.30	0.08	0.43	0.92	0.55
lm02408 lm02469		0.03	0.30	0.03	0.43	0.88	0.55
	amino acid transporter internalin	0.19	0.04	0.12	0.06	0.74	
lmo2470 lmo2471		0.01	0.02				0.42
lmo2471	NADPH dehydrogenase			0.33	0.12	0.82	0.39
lmo2472	hypothetical protein	0.25	0.04	0.17	0.43	0.74	0.35
lmo2473	hypothetical protein	0.04	0.20	0.03	0.16	0.74	0.51
lmo2474	hypothetical protein	0.01	0.12	0.01	0.11	0.90	0.67
lmo2475	phosphoglucomutase	0.04	0.24	0.01	0.12	0.75	0.61
lmo2476	aldose 1-epimerase	0.16	0.07	0.23	0.20	0.74	0.40
lmo2477	UDP-glucose 4-epimerase	0.14	0.27	0.16	0.36	0.82	0.46

lmo2478	thioredoxin reductase	0.01	0.02	0.00	0.01	0.72	0.48
lmo2479	hypothetical protein	0.23	0.47	0.08	0.45	0.75	0.45
lmo2480	acetyltransferase	0.25	0.09	0.28	0.01	0.82	0.30
lmo2481	pyrophosphatase PpaX	0.11	0.49	0.11	0.24	0.83	0.47
lmo2482	prolipoprotein diacylglyceryl transferase	0.04	0.03	0.07	0.46	0.91	0.68
lmo2483	HPr kinase/phosphorylase	0.06	0.01	0.06	0.25	0.87	0.58
lmo2484	hypothetical protein	0.04	0.10	0.02	0.15	0.89	0.60
lmo2485	hypothetical protein	0.15	0.38	0.05	0.49	0.84	0.67
lmo2486	hypothetical protein	0.09	0.16	0.18	0.55	0.47	0.08
lmo2487	hypothetical protein	0.06	0.23	0.18	0.46	0.61	0.12
lmo2488	excinuclease ABC subunit A	0.09	0.14	0.02	0.05	0.91	0.66
lmo2489	excinuclease ABC subunit B	0.16	0.17	0.08	0.15	0.86	0.52
lmo2490	CsbA protein	0.00	0.01	0.01	0.10	0.81	0.38
lmo2491	hypothetical protein	0.01	0.01	0.01	0.16	0.87	0.48
lmo2492	hypothetical protein	0.02	0.06	0.01	0.10	0.92	0.64
lmo2493	ArsR family transcriptional regulator	0.04	0.02	0.11	0.11	0.57	0.09
lmo2494	PhoU family transcriptional regulator	0.09	0.43	0.04	0.35	0.81	0.60
lmo2495	phosphate ABC transporter ATP-binding protein	0.07	0.35	0.03	0.30	0.82	0.66
lmo2496	phosphate ABC transporter ATP-binding protein	0.37	0.11	0.31	0.12	0.74	0.39
lmo2497	phosphate ABC transporter permease	0.40	0.04	0.25	0.26	0.83	0.55
lmo2498	phosphate ABC transporter permease	0.36	0.06	0.30	0.13	0.79	0.51
lmo2499	phosphate ABC transporter substrate-binding protein	0.39	0.01	0.24	0.13	0.82	0.53
lmo2500	two-component sensor histidine kinase	0.00	0.00	0.01	0.01	0.86	0.31
lmo2501	two-component response phosphate regulator	0.00	0.00	0.01	0.02	0.75	0.36
lmo2502	hypothetical protein	0.00	0.00	0.01	0.23	0.90	0.20
lmo2503	cardiolipin synthase	0.02	0.01	0.03	0.24	0.90	0.48
lmo2504	cell wall-binding protein	0.01	0.01	0.08	0.31	0.60	0.21
lmo2505	peptidoglycan lytic protein P45	0.12	0.34	0.00	0.39	0.84	0.21
lmo2506	cell division protein FtsX	0.32	0.09	0.20	0.14	0.86	0.35
lmo2507	cell division protein FtsE	0.32	0.09	0.20	0.14	0.00	0.35
lmo2508	hypothetical protein	0.00	0.04	0.01	0.06	0.85	0.68
lmo2508 lmo2509	peptide chain release factor 2	0.00	0.13	0.01	0.00	0.85	0.08
lmo2510	preprote in translocase subunit SecA	0.02	0.13	0.01	0.10	0.61	0.35
lmo2510 lmo2511		0.28	0.09	0.15	0.30	0.83	0.20
lmo2511 lmo2512	hypothetical protein	0.11	0.07		0.12		0.03
	competence protein ComFC		0.21	$0.04 \\ 0.02$	0.51	0.64 0.90	0.27
lmo2513	competence protein comFA	0.16					
lmo2514	hypothetical protein	0.03	0.24	0.01	0.19	0.65	0.23
lmo2515	two-component response regulator DegU	0.01	0.03	0.01	0.08	0.72	0.31
lmo2516	hypothetical protein	0.18	0.32	0.04	0.48	0.73	0.16
lmo2517	hypothetical protein	0.12	0.42	0.03	0.42	0.74	0.22
lmo2518	LytR family transcriptional regulator	0.18	0.43	0.06	0.50	0.91	0.52
lmo2519	teichoic acid linkage unit synthesis protein	0.39	0.01	0.27	0.00	0.78	0.37
lmo2520	O-succinylbenzoate-CoA synthase	0.10	0.01	0.03	0.00	0.72	0.29
lmo2521	polyglycerol phosphate biosynthesis protein TagA	0.40	0.31	0.05	0.21	0.77	0.47
lmo2522	cell wall-binding protein	0.41	0.18	0.08	0.45	0.88	0.53
lmo2523	single-strand DNA-binding protein	0.00	0.00	0.03	0.02	0.39	0.16
lmo2524	(3R)-hydroxymyristoyl-ACP dehydratase	0.01	0.02	0.01	0.10	0.76	0.33
lmo2525	rod shape-determining protein MreB	0.01	0.00	0.01	0.04	0.90	0.64
lmo2526	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	0.33	0.06	0.21	0.07	0.87	0.49
lmo2527	hypothetical protein	0.00	0.00	0.00	0.00	0.89	0.39
lmo2528	ATP synthase F0F1 subunit epsilon	0.08	0.32	0.04	0.09	0.85	0.58
lmo2529	ATP synthase F0F1 subunit beta	0.03	0.08	0.02	0.07	0.88	0.40
lmo2530	ATP synthase F0F1 subunit gamma	0.11	0.41	0.06	0.41	0.84	0.61
lmo2531	ATP synthase F0F1 subunit alpha	0.13	0.32	0.06	0.52	0.85	0.50
lmo2532	ATP synthase F0F1 subunit delta	0.10	0.39	0.04	0.49	0.89	0.40
lmo2533	ATP synthase F0F1 subunit B	0.07	0.46	0.06	0.54	0.90	0.30
lmo2534	ATP synthase F0F1 subunit C	0.21	0.20	0.09	0.42	0.88	0.37
lmo2535	ATP synthase F0F1 subunit A	0.01	0.18	0.04	0.41	0.90	0.20
lmo2536	ATP synthase subunit I	0.12	0.35	0.13	0.39	0.85	0.54
lmo2536a	hypothetical protein	0.11	0.48	0.05	0.44	0.82	0.64
lmo2537	UDP-N-acetylglucosamine 2-epimerase	0.36	0.01	0.06	0.37	0.74	0.37
	-						

lmo2538	uracil phosphoribosyltransferase	0.05	0.44	0.01	0.21	0.81	0.34
lmo2539	serine hydroxymethyltransferase	0.27	0.21	0.09	0.46	0.73	0.52
lmo2540	phosphatase	0.00	0.00	0.12	0.23	0.66	0.27
lmo2541	tRNA threonylcarbamoyladenosine biosynthesis protein	0.00	0.00	0.13	0.13	0.52	0.20
lmo2542	protoporphyrinogen oxidase	0.01	0.03	0.01	0.12	0.72	0.33
lmo2543	peptide chain release factor 1	0.03	0.37	0.04	0.44	0.73	0.25
lmo2544	thymidine kinase	0.01	0.00	0.01	0.07	0.91	0.65
lmo2545	homoserine kinase	0.01	0.17	0.02	0.46	0.88	0.52
lmo2546	threonine synthase	0.02	0.20	0.02	0.40	0.88	0.60
lmo2547	homoserine dehydrogenase	0.04	0.32	0.02	0.37	0.91	0.55
lmo2548	50S ribosomal protein L31	0.11	0.35	0.02	0.18	0.89	0.67
lmo2549	wall teichoic acid glycosylation protein GtcA	0.00	0.04	0.00	0.01	0.91	0.63
lmo2551	transcription termination factor Rho	0.40	0.00	0.31	0.00	0.74	0.27
lmo2552	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	0.17	0.21	0.09	0.22	0.85	0.39
lmo2553	hypothetical protein	0.01	0.03	0.00	0.00	0.89	0.52
lmo2554	galactosyltransferase	0.05	0.40	0.01	0.25	0.90	0.54
lmo2555	N-acetylglucosaminyl-phosphatidylinositol biosynthesis protein	0.09	0.45	0.05	0.47	0.89	0.69
lmo2556	fructose-16-bisphosphate aldolase	$\begin{array}{c} 0.08 \\ 0.00 \end{array}$	0.33	0.01	0.10	0.87	0.26
lmo2557	lipid kinase CTP synthetase	0.00	0.00	0.00	0.00	0.92	0.43
lmo2559		0.12	0.23 0.00	0.05	0.41	0.86	0.57
lmo2560	DNA-directed RNA polymerase subunit delta	0.39	0.00	0.13	0.21 0.38	0.63 0.65	0.20 0.20
lmo2561 lmo2562	arginyl-tRNA synthetase	0.18	0.03	0.06 0.03	0.58	0.03	0.20
	hypothetical protein	0.19	0.12		0.32	0.70	0.52
lmo2563 lmo2564	hypothetical protein 4-oxalocrotonate isomerase	0.10	0.11	0.07 0.15	0.17	0.70	0.24
lm02565		0.08	0.00	0.13	0.04	0.90	0.05
lm02565 lm02566	hypothetical protein hypothetical protein	0.07	0.28	0.03	0.32	0.08	0.20
lmo2567	hypothetical protein	0.02	0.21	0.02	0.57	0.81	0.00
lmo2568	hypothetical protein	0.13	0.19	0.25	0.55	0.18	0.00
lmo2569	peptide ABC transporter substrate-binding protein	0.08	0.13	0.23	0.07	0.37	0.08
lmo2570	hypothetical protein	0.01	0.32	0.02	0.39	0.80	0.38
lmo2571	nicotinamidase	0.14	0.32	0.05	0.52	0.00	0.28
lmo2572	dihydrofolate reductase subunit A	0.18	0.19	0.00	0.44	0.75	0.26
lmo2573	zinc-binding dehydrogenase	0.17	0.22	0.07	0.43	0.75	0.30
lmo2574	hypothetical protein	0.08	0.36	0.06	0.15	0.88	0.63
lmo2575	cation transporter	0.31	0.31	0.31	0.44	0.65	0.24
lmo2577	hypothetical protein	0.00	0.01	0.00	0.04	0.75	0.33
lmo2578	hypothetical protein	0.15	0.40	0.04	0.44	0.92	0.70
lmo2579	hypothetical protein	0.38	0.22	0.04	0.34	0.70	0.27
lmo2580	ABC transporter ATP-binding protein	0.25	0.00	0.30	0.01	0.74	0.62
lmo2581	hypothetical protein	0.38	0.01	0.29	0.04	0.85	0.68
lmo2582	histidine kinase	0.00	0.00	0.01	0.07	0.74	0.21
lmo2583	DNA-binding response regulator	0.00	0.00	0.01	0.09	0.76	0.20
lmo2584	formate dehydrogenase accessory protein	0.01	0.03	0.01	0.12	0.85	0.19
lmo2585	hypothetical protein	0.01	0.03	0.01	0.10	0.90	0.18
lmo2586	formate dehydrogenase subunit alpha	0.04	0.32	0.01	0.19	0.92	0.21
lmo2587	hypothetical protein	0.00	0.00	0.01	0.02	0.82	0.52
lmo2588	multidrug transporter	0.35	0.48	0.25	0.53	0.85	0.58
lmo2590	ATP-binding protein	0.38	0.18	0.10	0.45	0.92	0.61
lmo2591	N-acetylmuramoyl-L-alanine amidase	0.04	0.38	0.02	0.45	0.74	0.50
lmo2592	aldo/keto reductase	0.01	0.02	0.12	0.53	0.75	0.33
lmo2593	MerR family transcriptional regulator	0.00	0.01	0.07	0.54	0.74	0.24
lmo2596	30S ribosomal protein S9	0.03	0.05	0.01	0.06	0.91	0.57
lmo2597	50S ribosomal protein L13	0.06	0.27	0.02	0.11	0.88	0.62
lmo2598	tRNA pseudouridine synthase A	0.14	0.42	0.09	0.43	0.69	0.41
lmo2599	hypothetical protein	0.14	0.48	0.18	0.30	0.73	0.48
lmo2600	cobalt ABC transporter ATP-binding subunit	0.09	0.11	0.04	0.09	0.74	0.41
lmo2601	cobalt ABC transporter ATP-binding protein	0.00	0.03	0.01	0.08	0.68	0.21
lmo2602	hypothetical protein	0.01	0.08	0.01	0.24	0.90	0.66
lmo2603	hypothetical protein	0.02	0.12	0.02	0.26	0.89	0.68
lmo2605	50S ribosomal protein L17	0.10	0.43	0.04	0.27	0.81	0.69

lmo2606	DNA-directed RNA polymerase subunit alpha	0.12	0.46	0.05	0.27	0.75	0.65
lmo2607	30S ribosomal protein S11	0.11	0.47	0.07	0.52	0.76	0.62
lmo2608	30S ribosomal protein S13	0.11	0.41	0.06	0.51	0.72	0.37
lmo2609	50S ribosomal protein L36	0.09	0.35	0.03	0.47	0.74	0.43
lmo2610	translation initiation factor IF-1	0.10	0.40	0.03	0.51	0.80	0.44
lmo2611	adenylate kinase	0.08	0.41	0.06	0.28	0.71	0.34
lmo2612	preprotein translocase subunit SecY	0.08	0.38	0.07	0.31	0.71	0.42
lmo2613	50S ribosomal protein L15	0.05	0.36	0.02	0.18	0.70	0.41
lmo2614	50S ribosomal protein L30	0.04	0.21	0.01	0.10	0.75	0.56
lmo2615	30S ribosomal protein S5	0.04	0.25	0.01	0.10	0.71	0.39
lmo2616	50S ribosomal protein L18	0.06	0.32	0.01	0.14	0.72	0.40
lmo2617	50S ribosomal protein L6	0.05	0.29	0.01	0.11	0.71	0.37
lmo2618	30S ribosomal protein S8	0.06	0.43	0.01	0.17	0.70	0.33
lmo2619	30S ribosomal protein S14	0.00	0.28	0.01	0.19	0.76	0.55
lmo2620	50S ribosomal protein L5	0.04	0.20	0.01	0.17	0.76	0.58
lm02020 lm02621	50S ribosomal protein L24	0.05	0.43	0.01	0.27	0.70	0.28
lm02021 lm02622	-	0.10	0.43	0.02	0.27	0.70	0.28
	50S ribosomal protein L14		0.48				
lmo2623	30S ribosomal protein S17	0.05		0.02	0.22	0.79	0.63
lmo2624	50S ribosomal protein L29	0.08	0.47	0.02	0.20	0.73	0.37
lmo2625	50S ribosomal protein L16	0.08	0.50	0.02	0.23	0.74	0.37
lmo2626	30S ribosomal protein S3	0.08	0.47	0.02	0.30	0.74	0.33
lmo2627	50S ribosomal protein L22	0.09	0.40	0.02	0.33	0.74	0.31
lmo2628	30S ribosomal protein S19	0.08	0.45	0.02	0.25	0.74	0.27
lmo2629	50S ribosomal protein L2	0.09	0.37	0.02	0.36	0.75	0.34
lmo2630	50S ribosomal protein L23	0.10	0.34	0.02	0.45	0.78	0.37
lmo2631	50S ribosomal protein L4	0.09	0.35	0.02	0.50	0.82	0.40
lmo2632	50S ribosomal protein L3	0.08	0.44	0.01	0.33	0.84	0.39
lmo2633	30S ribosomal protein S10	0.08	0.48	0.01	0.20	0.87	0.40
lmo2634	hypothetical protein	0.39	0.00	0.14	0.23	0.66	0.21
lmo2635	14-dihydroxy-2-naphthoate octaprenyltransferase	0.10	0.39	0.02	0.34	0.86	0.68
lmo2636	hypothetical protein	0.09	0.43	0.02	0.18	0.89	0.53
lmo2637	hypothetical protein	0.34	0.05	0.25	0.06	0.90	0.68
lmo2638	NADH dehydrogenase	0.13	0.15	0.19	0.41	0.89	0.66
lmo2639	hypothetical protein	0.35	0.16	0.25	0.16	0.85	0.52
lmo2640	hypothetical protein	0.29	0.03	0.21	0.07	0.83	0.50
lmo2641	heptaprenyl diphosphate synthase subunit II	0.26	0.00	0.25	0.03	0.71	0.33
lmo2642	hypothetical protein	0.20	0.23	0.10	0.40	0.74	
lmo2643	hypothetical protein	0.12	0.29	0.09	0.44	0.92	0.47
lmo2644a	hypothetical protein	0.08	0.27	0.06	0.45	0.84	0.58
lmo2646	hypothetical protein	0.09	0.28	0.07	0.45	0.86	0.59
lmo2647	creatinine amidohydrolase	0.08	0.25	0.06	0.44	0.87	0.59
lmo2648	phosphotriesterase	0.00	0.25	0.00	0.44	0.89	0.62
lmo2649	PTS system ascorbate transporter subunit IIC	0.05	0.25	0.07	0.48	0.89	0.62
lm02049 lm02650	MFS transporter	0.05	0.15	0.04	0.43	0.89	0.69
lm02050 lm02651	PTS mannitol transporter subunit IIA	0.11	0.34	0.00	0.53	0.91	0.67
			0.37				
lmo2652	transcriptional antiterminator	0.08		0.06	0.35	0.89	0.59
lmo2653	elongation factor Tu	0.11	0.33	0.03	0.08	0.75	0.69
lmo2654	elongation factor G	0.05	0.24	0.01	0.08	0.86	0.60
lmo2655	30S ribosomal protein S7	0.05	0.27	0.01	0.21	0.87	0.64
lmo2656	30S ribosomal protein S12	0.05	0.28	0.01	0.25	0.90	0.54
lmo2657	deoxyguanosinetriphosphate triphosphohydrolase	0.00	0.01	0.01	0.12	0.88	0.48
lmo2658	acyltransferase	0.00	0.00	0.00	0.05	0.92	0.60
lmo2659	ribulose-phosphate 3-epimerase	0.06	0.35	0.05	0.30	0.90	0.31
lmo2660	transketolase	0.03	0.47	0.03	0.40	0.91	0.28
lmo2661	ribulose-5-phosphate 3-epimerase	0.02	0.48	0.02	0.36	0.91	0.32
lmo2662	ribose 5-phosphate epimerase	0.06	0.24	0.04	0.23	0.89	0.49
lmo2663	polyol dehydrogenase	0.04	0.37	0.02	0.39	0.89	0.37
lmo2664	sorbitol dehydrogenase	0.03	0.46	0.02	0.47	0.90	0.35
lmo2665	PTS galacticol transporter subunit IIC	0.03	0.46	0.02	0.45	0.90	0.32
lmo2666	PTS galacticol transporter subunit IIB	0.03	0.42	0.02	0.37	0.91	0.33
lmo2667	PTS galacticol transporter subunit IIA	0.03	0.42	0.02	0.38	0.91	0.28

1 0 ((0		0 0 -		0.00		0.00	
lmo2668	transcriptional antiterminator BglG	0.05	0.32	0.03	0.33	0.88	0.34
lmo2669	hypothetical protein	0.30	0.32	0.12	0.41	0.92	0.65
lmo2670	hypothetical protein	0.34	0.00	0.17	0.10	0.69	0.20
lmo2671	hypothetical protein	0.35	0.00	0.18	0.12	0.71	0.25
lmo2672	AraC family transcriptional regulator	0.39	0.00	0.11	0.17	0.73	0.35
lmo2673	hypothetical protein	0.12	0.08	0.08	0.15	0.80	0.42
lmo2674	ribose-5-phosphate isomerase B	0.16	0.04	0.09	0.08	0.81	0.69
lmo2675	hypothetical protein	0.20	0.07	0.13	0.11	0.85	0.56
lmo2676	DNA polymerase IV	0.18	0.05	0.16	0.13	0.86	0.60
lmo2677	esterase	0.41 0.22	0.03 0.08	0.07	0.54	0.83	0.54
lmo2678	XRE family transcriptional regulator	0.22	0.08	0.04	0.47 0.08	0.83	0.65
lmo2679 lmo2680	histidine kinase	0.34	0.00	0.10 0.21	0.08	0.75 0.75	0.38 0.52
lmo2080 lmo2681	potassium-transporting ATPase subunit C potassium-transporting ATPase subunit B	0.38	0.00	0.21	0.03	0.73	0.52
lm02081 lm02682	potassium-transporting ATPase subunit A	0.08	0.00	0.13	0.09	0.92	0.62
lm02082 lm02683	PTS cellbiose transporter subunit IIB	0.04	0.01	0.10	0.08	0.91	0.00
lm02085 lm02687	cell division protein FtsW	0.02	0.39	0.08	0.37	0.82	0.40
lm02087 lm02688	cell division protein FtsW	0.23	0.39	0.22	0.35	0.75	0.57
lm02088 lm02689	magnesium-translocating P-type ATPase	0.20	0.50	0.19	0.20	0.73	0.30
lm02009 lm02690	TetR family transcriptional regulator	0.12	0.08	0.19	0.33	0.73	0.68
lm02090 lm02691	autolysin	0.01	0.08	0.20	0.10	0.92	0.67
lm02091 lm02692	hypothetical protein	0.01	0.04	0.01	0.10	0.85	0.07
lmo2693	thymidylate kinase	0.12	0.24	0.10	0.10	0.91	0.45
lmo2694	lysine decarboxylase	0.05	0.24	0.02	0.33	0.91	0.03
lm02094 lm02695	dihydroxyacetone kinase subunit DhaK	0.03	0.16	0.02	0.33	0.76	0.32
lmo2696	dihydroxyacetone kinase	0.00	0.30	0.03	0.35	0.80	0.35
lmo2697	PTS mannose transporter subunit IIA	0.03	0.05	0.05	0.40	0.00	0.23
lmo2698	RpiR family transcriptional regulator	0.00	0.02	0.02	0.24	0.90	0.25
lmo2699	hypothetical protein	0.09	0.50	0.02	0.44	0.90	0.31
lmo2700	aldo/keto reductase	0.16	0.22	0.04	0.18	0.84	0.57
lmo2701	hypothetical protein	0.00	0.01	0.00	0.05	0.91	0.50
lmo2702	recombination protein RecR	0.15	0.42	0.04	0.36	0.92	0.60
lmo2703	hypothetical protein	0.00	0.01	0.01	0.08	0.60	0.21
lmo2704	DNA polymerase III subunit gamma/tau	0.01	0.03	0.01	0.04	0.83	0.45
lmo2705	hypothetical protein	0.01	0.01	0.01	0.14	0.88	0.48
lmo2706	hypothetical protein	0.00	0.00	0.01	0.16	0.90	0.46
lmo2707	hypothetical protein	0.00	0.01	0.01	0.29	0.90	0.47
lmo2708	PTS cellbiose transporter subunit IIC	0.04	0.18	0.05	0.23	0.86	0.53
lmo2709	hypothetical protein	0.07	0.00	0.26	0.03	0.62	0.25
lmo2710	hypothetical protein	0.38	0.10	0.08	0.51	0.90	0.59
lmo2712	gluconate kinase	0.01	0.00	0.06	0.08	0.88	0.48
lmo2713	internalin	0.03	0.30	0.05	0.44	0.75	0.65
lmo2714	pepdidoglycan bound protein	0.01	0.12	0.03	0.51	0.86	0.57
lmo2715	ABC transporter ATP-binding protein	0.24	0.00	0.30	0.05	0.56	0.20
lmo2716	ABC transporter	0.31	0.00	0.32	0.04	0.59	0.21
lmo2717	cytochrome D ubiquinol oxidase subunit II	0.21	0.39	0.25	0.21	0.80	0.65
lmo2718	cytochrome D ubiquinol oxidase subunit I	0.34	0.20	0.24	0.03	0.75	0.51
lmo2719	hypothetical protein	0.42	0.13	0.11	0.00	0.92	0.66
lmo2720	acetate-CoA ligase	0.22	0.11	0.12	0.15	0.92	0.61
lmo2721	6-phosphogluconolactonase	0.38	0.17	0.26	0.05	0.92	0.60
lmo2722	MerR family transcripitonal regulator	0.08	0.06	0.07	0.16	0.46	0.15
lmo2723	hypothetical protein	0.07	0.05	0.07	0.11	0.40	0.12
lmo2724	hypothetical protein	0.05	0.21	0.03	0.24	0.87	0.59
lmo2725	hypothetical protein	0.10	0.29	0.07	0.35	0.74	0.43
lmo2726	MarR family transcriptional regulator	0.23	0.37	0.09	0.48	0.71	0.23
lmo2727	hypothetical protein	0.33	0.31	0.15	0.18	0.82	0.54
lmo2728	MerR family transcriptional regulator	0.00	0.00	0.00	0.02	0.73	0.18
lmo2729	hypothetical protein	0.00	0.00	0.00	0.02	0.75	0.18
lmo2730	phosphatase	0.14	0.43	0.13	0.31	0.89	0.67
lmo2731	RpiR family transcriptional regulator	0.28	0.23	0.26	0.13	0.92	0.69
lmo2732	hypothetical protein	0.25	0.44	0.16	0.55	0.89	0.37

lmo2733	PTS fructose transporter subunit IIABC	0.12	0.50	0.05	0.55	0.92	0.42
lmo2734	sugar hydrolase	0.12	0.47	0.04	0.47	0.91	0.65
lmo2735	sucrose phosphorylase	0.26	0.11	0.06	0.50	0.89	0.58
lmo2736	hypothetical protein	0.36	0.02	0.15	0.28	0.75	0.30
lmo2737	LacI family transcriptional regulator	0.06	0.00	0.12	0.08	0.83	0.44
lmo2738	hemolysin	0.15	0.44	0.02	0.17	0.57	0.19
lmo2739	NAD-dependent deacetylase	0.04	0.08	0.01	0.03	0.86	0.57
lmo2740	hypothetical protein	0.06	0.11	0.01	0.08	0.81	0.53
lmo2741	multidrug transporter	0.04	0.07	0.01	0.09	0.89	0.68
lmo2742	hypothetical protein	0.02	0.28	0.01	0.15	0.92	0.40
lmo2744	Crp/Fnr family transcriptional regulator	0.37	0.01	0.14	0.29	0.92	0.53
lmo2745	ABC transporter ATP-binding protein	0.11	0.33	0.05	0.29	0.74	0.55
lm02745 lm02746		0.11	0.33	0.03	0.28	0.92	0.34
	hypothetical protein						
lmo2747	seryl-tRNA synthetase	0.16	0.15	0.20	0.38	0.81	0.37
lmo2748	hypothetical protein	0.28	0.09	0.11	0.31	0.74	0.23
lmo2749	glutamine amidotransferase	0.31	0.10	0.16	0.20	0.91	0.66
lmo2750	para-aminobenzoate synthase subunit I	0.12	0.00	0.29	0.06	0.62	0.23
lmo2752	ABC transporter ATP-binding protein	0.27	0.08	0.19	0.51	0.89	0.67
lmo2754	D-alanyl-D-alanine carboxypeptidase	0.11	0.31	0.02	0.09	0.90	0.61
lmo2755	CoA-transferase	0.04	0.20	0.05	0.29	0.89	0.69
lmo2756	DNA topoisomerase III	0.25	0.06	0.16	0.52	0.61	0.32
lmo2757	ATP-dependent DNA helicase	0.14	0.19	0.04	0.09	0.88	0.59
lmo2758	inosine-monophosphate dehydrogenase	0.05	0.33	0.01	0.06	0.91	0.65
lmo2759	hypothetical protein	0.09	0.47	0.07	0.34	0.91	0.56
lmo2760a	hypothetical protein	0.13	0.35	0.02	0.42	0.90	0.65
lmo2762	PTS cellbiose transporter subunit IIB	0.20	0.39	0.16	0.26	0.91	0.54
lmo2763	PTS cellbiose transporter subunit IIC	0.20	0.33	0.10	0.20	0.89	0.54
lmo2764	ROK family transcriptional regulator	0.23	0.35	0.20	0.23	0.89	0.58
		0.23	0.30			0.91	
lmo2766	RpiR family transcriptional regulator			0.01	0.11		0.69
lmo2767	hypothetical protein	0.00	0.00	0.00	0.04	0.91	0.52
lmo2769	ABC transporter ATP-binding protein	0.01	0.00	0.02	0.04	0.63	0.27
lmo2770	bifunctional glutamatecysteine ligase/glutathione synthetase	0.18	0.26	0.04	0.08	0.67	0.33
lmo2771	beta-glucosidase	0.04	0.02	0.01	0.03	0.86	0.53
lmo2772	PTS beta-glucoside transporter subunit IIABC	0.10	0.15	0.03	0.10	0.92	0.65
lmo2773	transcriptional antiterminator	0.17	0.42	0.03	0.25	0.90	0.63
lmo2777	multidrug transporter	0.08	0.47	0.06	0.48	0.84	0.59
lmo2779	GTP-binding protein EngD	0.15	0.38	0.04	0.34	0.92	0.67
lmo2780	PTS cellbiose transporter subunit IIA	0.00	0.00	0.02	0.23	0.87	0.52
lmo2781	beta-glucosidase	0.00	0.01	0.02	0.42	0.91	0.44
lmo2782	PTS cellbiose transporter subunit IIB	0.00	0.01	0.03	0.31	0.79	0.33
lmo2783	PTS cellbiose transporter subunit IIC	0.02	0.18	0.03	0.55	0.91	0.57
lmo2784	transcriptional antiterminator	0.02	0.18	0.05	0.45	0.92	0.18
lmo2785	catalase	0.16	0.17	0.14	0.26	0.85	0.55
lmo2789	hypothetical protein	0.03	0.14	0.05	0.35	0.92	0.64
lmo2790	partition protein ParB homolg	0.15	0.39	0.11	0.39	0.92	0.49
lmo2791	partition protein ParA-like protein	0.02	0.15	0.07	0.50	0.92	0.37
lmo2792	hypothetical protein	0.02	0.10	0.07	0.08	0.91	0.70
lmo2792 lmo2793		0.09	0.10	0.05	0.08		0.15
	hypothetical protein					0.61	
lmo2794	NA-binding protein Sp00J	0.01	0.04	0.01	0.05	0.91	0.70
lmo2795	RpiR family transcription regulator	0.01	0.09	0.01	0.26	0.90	0.54
lmo2796	transcriptional regulator	0.00	0.00	0.01	0.06	0.92	0.20
lmo2797	PTS mannitol transporter subunit IIA	0.00	0.02	0.01	0.10	0.93	0.31
lmo2798	phosphatase	0.00	0.00	0.00	0.06	0.93	0.36
lmo2799	PTS mannitol transporter subunit IIBC	0.01	0.02	0.01	0.11	0.90	0.69
lmo2800	dehydrogenase	0.01	0.07	0.01	0.12	0.82	0.54
lmo2801	N-acetylmannosamine-6-phosphate 2-epimerase	0.03	0.20	0.02	0.27	0.74	0.40
lmo2802	16S rRNA methyltransferase GidB	0.17	0.46	0.12	0.49	0.89	0.44
lmo2810	tRNA uridine 5-carboxymethylaminomethyl modification enzyme GidA	0.04	0.40	0.01	0.25	0.71	0.27
lmo2811	tRNA modification GTPase TrmE	0.21	0.40	0.03	0.50	0.74	0.30
lmo2812	D-alanyl-D-alanine carboxypeptidase	0.20	0.04	0.20	0.13	0.74	0.46
lmo2812 lmo2814	TetR family transcriptional regulator	0.20	0.04	0.20	0.03	0.71	0.30
11102017		5.01	0.02	0.01	0.05	5.71	0.20

lmo2815	3-ketoacyl-ACP reductase	0.02	0.02	0.04	0.10	0.74	0.33
lmo2816	MFS transporter	0.01	0.05	0.00	0.04	0.91	0.59
lmo2817	peptidase	0.02	0.22	0.01	0.30	0.90	0.47
lmo2818	MFS transporter	0.01	0.04	0.01	0.11	0.90	0.58
lmo2819	carboxypeptidase	0.01	0.08	0.01	0.21	0.88	0.65
lmo2820	amino-terminal domain-containing protein	0.01	0.01	0.15	0.33	0.90	0.52
lmo2821	internalin	0.01	0.02	0.02	0.09	0.86	0.54
lmo2822	hypothetical protein	0.35	0.35	0.11	0.31	0.84	0.58
lmo2823	sporulation protein SpoOJ	0.24	0.47	0.03	0.26	0.91	0.65
lmo2824	D-3-phosphoglycerate dehydrogenase	0.05	0.33	0.03	0.51	0.88	0.58
lmo2825	phosphoserine aminotransferase	0.12	0.40	0.05	0.52	0.76	0.67
lmo2826	MFS transporter	0.39	0.46	0.02	0.08	0.75	0.40
lmo2827	MarR family transcriptional regulator	0.22	0.25	0.05	0.15	0.75	0.42
lmo2828	hypothetical protein	0.20	0.28	0.31	0.04	0.92	0.48
lmo2829	nitroreductase	0.41	0.34	0.09	0.39	0.87	0.49
lmo2830	thioredoxin	0.06	0.48	0.03	0.47	0.87	0.57
lmo2831	phosphoglucomutase	0.00	0.01	0.02	0.17	0.68	0.19
lmo2832	hypothetical protein	0.00	0.00	0.01	0.10	0.60	0.14
lmo2833	maltose phosphorylase	0.00	0.00	0.01	0.08	0.76	0.28
lmo2834	oxidoreductase	0.01	0.01	0.02	0.18	0.75	0.29
lmo2835	xylose isomerase	0.02	0.00	0.01	0.08	0.87	0.34
lmo2836	alcohol dehydrogenase	0.00	0.00	0.00	0.04	0.78	0.07
lmo2837	sugar ABC transporter permease	0.01	0.01	0.01	0.24	0.75	0.10
lmo2838	sugar ABC transporter permease	0.14	0.44	0.16	0.31	0.72	0.09
lmo2839	sugar ABC transporter substrate-binding protein	0.12	0.38	0.10	0.45	0.81	0.11
lmo2840	sucrose phosphorylase	0.10	0.29	0.11	0.42	0.72	0.18
lmo2841	sucrose phosphorylase	0.31	0.43	0.23	0.50	0.74	0.37
lmo2842	LacI family transcriptional regulator	0.05	0.07	0.06	0.15	0.73	0.35
lmo2843	hypothetical protein	0.29	0.23	0.15	0.35	0.58	0.31
lmo2844	hypothetical protein	0.02	0.11	0.09	0.49	0.91	0.70
lmo2845	MFS transporter	0.00	0.00	0.00	0.00	0.89	0.25
lmo2846	hypothetical protein	0.04	0.04	0.03	0.20	0.92	0.46
lmo2847	rhamnulose-1-phosphate aldolase	0.07	0.29	0.03	0.47	0.91	0.25
lmo2848	L-rhamnose isomerase	0.14	0.44	0.06	0.52	0.90	0.55
lmo2849	rhamnulokinase	0.18	0.44	0.06	0.55	0.91	0.66
lmo2850	sugar transporter	0.25	0.30	0.12	0.30	0.89	0.67
lmo2851	AraC family transcriptional regulator	0.25	0.01	0.08	0.21	0.88	0.68
lmo2852	hypothetical protein	0.39	0.05	0.22	0.14	0.59	0.09
lmo2853	hypothetical protein	0.03	0.23	0.03	0.40	0.87	0.66
lmo2854	sporulation protein SpoJ	0.29	0.09	0.12	0.26	0.76	0.47
lmo2855	ribonuclease P	0.37	0.11	0.22	0.09	0.87	0.55
lmo2856	50S ribosomal protein L34	0.11	0.50	0.06	0.53	0.92	0.69
lmo2857	hypothetical protein	0.03	0.01	0.14	0.18	0.88	0.46
			-		-		

ABSTRACT

Listeria monocytogenes is a multifaceted foodborne pathogen characterized by its adaptability in adverse conditions and proliferation in a wide range of environments from soil to mammalian host cells. The genetic heterogeneity in L. monocytogenes is reflected on its diversified clonal structure which correlates, to some extent, with phenotypic traits such as virulence or stress resistance. The thesis investigated two most prominent phenotypes, biofilm formation and virulence potential, from various perspectives using state-of-the art technologies. Throughout the studies, large panels of isolates were used to represent the intraspecific diversity. Unfavourable stimuli such as cold shock and nutrient deprivation induced bacterial adhesion step. Addition of NaCl to growth cultures stimulated biofilm production and, surprisingly, it significantly intensified biofilm maturation of nutrient-deprived cells. High degree of variation in relative biofilm productivity was observed among serotypes, genotypes, as well as isolates across culture conditions, however, certain genotype (clonal complex 26) revealed distinctively higher biofilm production under cold temperature (10°C) suggesting an association of genotype with biofilm phenotype. Pan-GWAS identified a number of genes among which those implicated in functions such as 'transformation/competence', 'phage-related genes', and 'metabolism of phosphate' will need further investigations for their roles in biofilm formation. RNA sequencing analysis revealed high intraspecific heterogeneity in basal transcriptome profiles that featured the role of regulatory network including certain transcriptional factors with key roles in virulence such as oB, PrfA, and CodY. The transcriptomic plasticity between lineage I and II as well as hyper- and hypovirulent genotypes supported the evolutionary and epidemiological characteristics of L. monocytogenes. Moreover, the central metabolic pathway was implicated in the infection in Galleria mellonella model system. Conclusively, the thesis explored intraspecific diversity in L. monocytogenes and resulted in ample phenotypic, genomic, and transcriptomic findings. With the integrative omics approach in listeriology, the present work will contribute to unveiling the physiology and pathogenesis of the bacterium.

Keywords: Listeria monocytogenes, biofilm, virulence, genomics, transcriptomics, intraspecific diversity

Étude à haut débit du biofilm et de la virulence de *Listeria monocytogenes* en utilisant des approches innovantes

RÉSUMÉ

Listeria monocytogenes est un pathogène d'origine alimentaire à multiples facettes caractérisé par sa capacité d'adaptation dans des conditions défavorables et par sa prolifération dans une vaste gamme d'environnements, du sol aux cellules hôtes des mammifères. L'hétérogénéité génétique de L. monocytogenes se reflète dans sa structure clonale diversifiée, ce qui corrèle, dans une certaine mesure, avec des traits phénotypiques tels que la virulence ou la résistance au stress. La thèse portait sur deux phénotypes les plus éminents, la formation d'un biofilm et le potentiel de virulence, sous différents angles et à l'aide des technologies les plus récentes. Tout au long des études, des grands panels d'isolats ont été utilisés pour représenter la diversité intraspécifique. Stimulants défavorables tels que le choc froid et la privation d'éléments nutritifs induits par l'étape d'adhésion bactérienne. L'ajout de NaCl aux cultures de croissance a stimulé la production de biofilm et, de manière surprenante, il a considérablement intensifié la maturation du biofilm de cellules privées de nutriments. Un degré élevé de variation de la productivité relative du biofilm a été observé parmi les sérotypes, les génotypes, de même que les isolats selon les conditions de culture. Cependant, un certain génotype (complexe clonal 26) a révélé de manière caractéristique une production de biofilm plus élevée à froid (10°C), suggérant une association du génotype avec le phénotype du biofilm. Pan-GWAS a identifié un certain nombre de gènes parmi lesquels ceux impliqués dans des fonctions telles que la 'transformation/compétence', les 'gènes liés aux phages' et le 'métabolisme du phosphate' devront faire l'objet d'études plus approfondies sur leur rôle dans la formation du biofilm. L'analyse du séquençage de l'ARN a révélé une grande hétérogénéité intraspécifique dans les profils de transcriptome basal qui mettaient en évidence le rôle du réseau de régulation, y compris certains facteurs transcriptionnels avec des rôles clés dans la virulence tels que σB, PrfA, et CodY. La plasticité transcriptomique entre les lignées I et II ainsi que les génotypes hyper et hypovirulents ont confirmé les caractéristiques évolutives et épidémiologiques de L. monocytogenes. De plus, la voie métabolique centrale a été impliquée dans l'infection dans le système modèle de Galleria mellonella. En conclusion, la thèse a exploré la diversité intraspécifique de L. monocytogenes et a donné lieu à de nombreux résultats phénotypiques, génomiques et transcriptomiques. Grâce à l'approche intégrative des omiques en listeriologie, le présent travail contribuera à dévoiler la physiologie et la pathogenèse de la bactérie.

Mots-clés : Listeria monocytogenes, biofilm, virulence, génomique, transcriptomique, diversité intraspécifique.