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1.1. Human Immunodeficiency Virus Type 1 (HIV-1) 

1.1.1. Overview 

uman immunodeficiency virus (HIV) causes Acquired Immunodeficiency 

Syndrome (AIDS) that impairs the individual’s immune system during the 

lifetime. Since the beginning of the epidemic in early 1980’s, more than 70 million people have 

been infected, and a toll of 35 million people have died with HIV, that currently represents the 

fourth leading cause of death worldwide and has been projected to become the third leading 

cause by 2030 (UNAIDS and WHO). The rising epidemics led to a large influx of attention 

and funding among the scientific and medical community. For example, the US federal agency 

has spent an all-time maximum of 25 billion dollars only in 2015, 19 billion dollars in 2016  

and an estimated 26 billion will be required in response to HIV in 2020. 

1.1.2. Origin Timeline 

The causative effect of HIV in humans was first detected in United States of America 

in early 1980’s. The patients diagnosed showed infections and rare malignancies. In 1983, 

Institut Pasteur, Paris became the first laboratory to isolate the lymphoadenopathy associated 

virus (LAV) (then termed name for HIV) from a culture derived from a lymph node biopsy 

sample of a patient with generalized lymphadenopathy (Barre-Sinoussi et al., 1983). Later in 

2008, the Nobel Prize in Physiology and Medicine was awarded to Françoise Barré-Sinoussi 

and Luc Montagnier for this discovery. Their research led to the first diagnostic ELISA test for 

HIV infections that FDA allowed to sell commercially in 1985. Later, CD4 cell surface 

molecule was identified as the main receptors, and CXC- chemokine receptor 4 (CXCR4) and 

CC-chemokine receptor 5 (CCR5) as co-receptors for HIV. By the end of twentieth century, 

researchers gained insight into the life cycle of HIV, identifying targets of antiretroviral drugs. 

In 1989, AZT became the first commercially available drug that prevents HIV transfer from 

infected mother to child. Within next decade, combination antiretroviral therapy appeared and 

in 2009, doctors cured a HIV-infected patient from Berlin. However, the situation worsened 

with the discovery of the drug-resistant property of HIV virus that notably arises because of 

the error prone nature of its reverse transcription and the recombination occurring between the 

viruses. 

1.1.3. Classification and Transmission  

HIV is classified as a lentivirus that belongs to the family of the retroviruses. In general, 

retroviruses are spherical particles, enveloping a RNA genome, that infect the vertebrates. HIV 

H 
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structure is similar to that of the Simian Immunodeficiency Virus (SIV), another lentivirus. 

Lentiviruses have the ability to infect dividing as well as non-dividing cells, ultimately causing 

neurological and immunological disorders. 

Two types of HIV viruses, HIV-1 and HIV-2 were identified (Clavel et al., 1986; 

Guyader et al., 1987). They have similar gene organization, but their genome differs by about 

55%. HIV-1 is more diverse, infectious and transmissible than HIV-2. They differ also 

geographically as HIV-1, which is widely spread, is mostly reported in North America, central 

Africa, Europe and Asia. HIV-2 is mainly localized in west Africa. HIV-1 and HIV-2 resemble 

to the strains of SIV in chimpanzees and sooty mangabeys, respectively. Hence, the virus might 

have cross transitioned during some point from primates to humans. HIV-2 infected areas are 

mostly being replaced by HIV-1 because the viral loads of HIV-2 is lesser than HIV-1, with a 

lower transmission rate and a nearly complete absence of mother to child transmission.  

HIV-1 stains are further divided into four lineages, M (major), N (non M or non O), O 

(outliner) and P (new type) (Tebit and Arts, 2011). The group M is widely spread across the 

world and thus is largely studied. The other three groups represent less than 1 percent. Group 

M is further branched into nine subtypes (A-D, F-H, J, K) and more than 40 Circulating 

Recombinant Forms (CRFs) that were generated when multiple subtypes infected the same 

populations. HIV-2 exists in only eight distinct lineages, (A-H) in which only A and B have 

been identified in humans (Sharp and Hahn, 2011).  

1.1.4. Structural Organization 

HIV-1 forms a spherical, membrane enveloped virion, 100–150 nm in diameter, which 

contains two copies of single-stranded positive sense RNA genome (Ganser-Pornillos et al., 

2012). The mature HIV-1 particle has several spikes on its lipid bilayer membrane that are 

composed of Envelope proteins (Env) (Checkley et al., 2011), which are trimers of Surface 

protein (SU, gp120) and Transmembrane protein (TM, gp41) . A canonically structured capsid 

membrane is formed of approximately 1500–2000 copies of Capsid protein (CA, p24), with an 

outer coating of 2000 copies of Matrix protein (MA, p17) separating it from the envelope 

membrane (Niedrig et al., 1994). The capsid membrane serves as a core that encloses two 

copies of unspliced viral RNA genome, coated with 2000 copies of Nucleocapsid protein 

(NCp7), 10–12 copies of tRNA3
Lys (Isel et al., 2010), as well as with Protease (PR), Reverse 

transcriptase (RT) and Integrase (IN). The immature virus is characterized by a thick layer of 

uncleaved Gag polyprotein that lies within the virion membrane. After proteolytic processing 
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of the Gag polyproteins, the specific structures of the mature viral particles are generated 

(Ganser-Pornillos et al., 2008).  

 

Figure 1. Schematic representation of HIV-1 virion. 

1.1.5. Genomic Organization 

The viral genome of HIV-1 is single stranded positive sense RNA of 9,200 nucleotides 

long that exists in a dimer form within mature viral particles. The genomic RNA (gRNA) has 

100–200 adenine residues at its 3’ end while at the 5’ end it has capping of trimethylguanosine 

(TMG) (Yedavalli and Jeang, 2010). The gRNA is poorly structured with several folding 

domains or motifs. These motifs form serval mismatches, bulges and hairpins. The gRNA has 

nine Open Reading Frames (ORFs) (Figure 2): gag, pol, env, tat, rev, vpr, vif, vpu and nef.  The 

gag, pol, env encodes for three polyproteins that are Gag, Pol and Env; tat and rev encode Tat 

and Rev regulatory proteins; and vpr, vif, vpu, nef encode Vpr, Vif, Vpu and Nef accessory 

proteins, respectively. The proteolytic cleavage of Gag polyprotein further give rise to MA 

(Matrix protein), CA (Capsid protein), NC (Nucleocapsid protein), and p6; while Env proteins 

gives SU (Surface protein, gp120) and TM (Transmembrane protein, gp41), all these proteins 

are considered as structural components of HIV-1 particle. The three Pol proteins: PR 

(Protease), RT (Reverse Transcriptase), and IN (Integrase), provide essential enzymatic 

functions and encapsulated within the particle. HIV-1 encodes six additional proteins, often 

called accessory proteins, three of which (Vif, Vpr, and Nef) found in the viral particle. Two 

other accessory proteins, Tat and Rev, provide essential gene regulatory functions, and the last 

protein, Vpu, indirectly assists in assembly of the virion. The gRNA is divided into two regions, 

the coding region that codes for proteins and the non-coding region that plays crucial role in 

structural organization. 
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Figure 2. Genomic organization of HIV-1. The open reading frames are shown in shaded 

rectangles and the black lines corresponds to the connections between domain in 

polyprotein. Adapted from (Watts et al., 2009). 

The Untranslated Region (UTR) of retrovirus gRNA is present on both 5’ and 3’ end. 

It comprises a number of folded sequences that play an important role in dimerization,  genome 

packaging, and translation  (Abbink et al., 2005a; Boeras et al., 2017; Wilkinson et al., 2008). 

The 5’UTR exists in two conformations that are in equilibrium: one that promotes the 

translation of Gag gene by Internal Ribosome Entry Segment (IRES) mechanism (Brasey et 

al., 2003); and second is dimmer promoting conformation (Abbink et al., 2005b; Keane and 

Summers, 2016).   
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Figure 3. Secondary structure of HIV‐1 5′‐UTR in monomer (a) and dimer‐promoting (b) 

conformations (Top section). The schematic diagram showing the formation of dimer 

conformer from monomer conformer (Below section). Adapted from (Keane et al., 

2015). 

The UTR is composed of: 

A. The R region  

The R region (repeat) is a 98 nucleotides region present at both ends of the HIV-1 

gRNA. It is further sub-divided into two regions. 

• Transactivator Region (TAR): This region consists of nucleotides from +1 to +59 in 

the HIV-1 UTR. Having a highly structured hairpin form, TAR is required for viral 

expression. The structural integrity of this region is critical for TAT activation 

(Heinicke et al., 2009; Wang et al., 1993).  Moreover, TAR serves as a binding site for 

several cellular binding proteins, that regulate the basal expression of HIV-1 UTR 

(Henriet et al., 2005; Wang et al., 1993). 

• poly(A): The  poly(A) signal contains a polyadenylation signal, the cleavage site and 

part of the GU-rich downstream element (Edmonds, 2002; Klasens et al., 1999; Sükösd 

et al., 2015) 

B. U5 Region 

The U5 region has 83 nucleotides and represents the first part of the gRNA to be retro-

transcribed. This region also contains the 18-nucleotide primer binding site (PBS) region which 

is present at the 3’ end of the U5 region. The role of PBS is crucial as it anneals to tRNALys3, 

initiating reverse transcription (Sleiman et al., 2012). 

C. ψ-site  

The psi-site (ψ-site) is a 120 nt region, present between the PBS and the start codon. It 

has four stem loop motifs (SL1–SL4) that plays a crucial role in genome recognition and gRNA 

dimerization. Selective packaging of HIV-1 gRNA requires all four cis-elements (Lever et al., 

1989; Lever, 2007; Pak et al., 2017).  

• SL1:  The structure of SL1 consists of an upper stem that has  GC-rich loop and a lower 

stem having an intervening bulge which is highly conserved and required for packaging 

(Chung et al., 2010; Laughrea and Jetté, 1994) (Figure 4a). The eleven-nucleotide upper 

stem has a six-nucleotide palindromic sequence, usually GCGCGC (e.g., in the Lai 
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isolate) and GUGCAC (e.g., in the Mal isolate) that facilitates dimerization among two 

gRNAs (Lodmell et al., 2000). In addition, the portion having a GAAG bulge and the 

four nucleotide stem are mostly conserved among different HIV isolates (Mujeeb et al., 

2007a). The function of SL1 is to ensure effective packaging by promoting dimer 

formation, through “kissing complex” interaction (Kieken et al., 2006), that facilitates 

the packaging of two copies of genome during virus assembly (Berkowitz et al., 1996; 

Lawrence et al., 2003; Lu et al., 2011) (Figure 4b,c). The importance of SL1 motif 

towards assuring effective packaging is assessed by introduction of mutations that 

resulted in a large decrease in packaging efficiency (Amarasinghe et al., 2000; McBride 

and Panganiban, 1997). 

 

Figure 4. Stem loop structure of SL1(a). Proposed model for dimerization b) “pre-initiation 

model”, where the bases at the end of the stem mediates the primary interaction of 

DLS dimer formation and after the two molecules are sufficiently proximal, DIS 

interaction occurs. c) “Finalization model”, after interaction with DIS, two DLSs start 

to “melt” together by the viral nucleocapsid protein to form an extended duplex 

(Sakuragi et al., 2016) 

• SL2: The SL2 region is a 19-nucleotide sequence that exists in the form of a hairpin 

(Amarasinghe et al., 2000). It has a tetraloop and a long stem with a single nucleotide 

bulge. SL2 loop contains the Splice Donor (SD) sequence that is required for the spliced 

mRNAs production. (Bazzi et al., 2012; Cruceanu et al., 2006b). SL2 plays an important 

role in genome packaging (McBride and Panganiban, 1997), by interacting with the NC 

domain of Gag (Amarasinghe et al., 2000; Belfetmi et al., 2016).  
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• SL3 is a 20-nucleotide hairpin having a tetraloop and a perfect double helix stem 

(Pappalardo et al., 1998). The loop of SL3 belongs to the A-family and is quite flexible. 

The structure of SL3 is highly conserved among the different strains of HIV-1 and its 

interaction with the NC domain of Gag during virus assembly is crucial for gRNA 

selection (Abd El-Wahab et al., 2014; Lever, 2007; Tanwar et al., 2017). Moreover, 

SL3 by itself is sufficient to drive the gRNA selection (Abd El-Wahab et al., 2014; 

Athavale et al., 2010; Belfetmi et al., 2016; Paoletti et al., 2002). Detailed discussion 

on SL3 is presented in section 4.3 of this thesis. 

• SL4 or AUG: SL4 hairpin contains a stem with G-U pairs and a GAGA tetraloop 

(Kerwood et al., 2001). The SL4 tetraloop adopts a conformation similar to a classical 

GNRA form (Jucker et al., 1996) and the stem is quite unstable due to G-U pairs. The 

SL4 tetraloop participates in long range RNA-RNA interaction with the U5 element 

that connects polyA and PBS stem-loop (Abbink and Berkhout, 2003; Damgaard et al., 

2004; Jucker et al., 1996; Lu et al., 2011; Watts et al., 2009). 

D. U3 region 

The U3 region at the 3’ end of gRNA is required for the regulation of transcription of 

the proviral DNA into viral RNA by the transcription machinery of the host cell (Calzado et 

al., 2004; Gaynor, 1992; Sgarbanti et al., 2002). The U3 region includes: 

• The PPT (Poly Purine Tract) and PPTC (Poly Purine Tract Central): They are the 

purine rich domains of the gRNA that are resistant to RNase H activity. The PPT is 

present upstream of U3 sequence of 3’UTR of proviral genome, whereas the PPTC 

sequence is present in the ORF of the Pol gene (Charneau et al., 1992; Pollom et al., 

2013; Rausch and Le Grice, 2004). Their resistance towards RNase H activity of reverse 

transcription is instrumental because these sequences serve as primers for the synthesis 

of the plus-strand DNA.  

• Rev Response Element (RRE): it is a ~ 350 nucleotide-long sequence that contains 

several stem-loops and bulges (Watts et al., 2009). It binds with Rev protein to 

overcome the intron surveillance mechanism and facilitate the nucleo-cytoplasmic 

export of the mRNAs corresponding to the viral genome (Bartel et al., 1991; Rausch 

and le Grice, 2015; Sherpa et al., 2015). 
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1.1.6. Viral Proteins 

The viral proteins are encoded from nine ORF that are in the coding sequence of gRNA.  

Gag gene encodes for 55 kDa Gag polyprotein precursor (Pr55Gag) that upon cleavage 

by protease (PR, p12) generates the MA, CA, NC and p6 protein.  

Pol gene together with Gag gene code for a 160 kDa GagPol polyprotein precursor 

(Pr160GagPol) that upon cleavage by PR results in all the three HIV-1 enzymes, namely PR 

(cleaved by auto-processing), RT and IN. The production of GagPol arises due to a -1 frame 

shift in the translation frame which occurs approximately 5% of the time. (Karn and Stoltzfus, 

2012)  

Env gene encodes for a 160 kDa Env polyprotein precursor (gp160) that upon cleavage 

by a cellular furin-type protease in the Golgi, results in the synthesis of gp120 and gp41 

glycoproteins.  

In addition, the HIV-1 genome also encodes for regulatory proteins (Tat, Rev) and 

accessory (Vpr, Vif, Vpu, Nef) proteins. Figure 5 represents the 3D structures of functional 

domain of all the HIV-1 proteins. 
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Figure 5. Functional domains of HIV proteins. Cartoon representations of HIV proteins 

(matrix, capsid, nucleocapsid, p6, protease, RT, integrase, Vif, Vpu, Vpx, Tat, Vpr, 

Rev, GP120, GP41, and Nef). In each panel, the protein domains involved with HIV 
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pairwise protein interactions are marked accordingly. Surface representations 

indicate protein interaction interfaces. The five small molecules shown in green 

correspond to protein inhibitors such as the capsid inhibitor PF-3450074 (503) (B), 

the protease inhibitor darunavir (E), the nucleoside analogue reverse transcriptase 

inhibitor zidovudine (AZT) (F), the nonnucleoside analogue reverse transcriptase 

inhibitor nevirapine (NVP) (F), and the integrase inhibitor raltegravir (G). Adapted 

from (Li and De Clercq, 2016) 

Based on the structural and functional characteristics, the HIV-1 viral protein are 

classified in following sections: 

A. Structural Proteins 

• Matrix Protein (MA): The 17 kDa and 132 amino acid MA protein consists of 5 α-helices; 

two short α-helical stretches; and a three-stranded mixed β-sheet (Verli et al., 2007; 

Zeinolabediny et al., 2017).  Its N-terminal myristate group and basic residues located 

within the first 50 amino acids are involved in membrane targeting residues (Alfadhli and 

Barklis, 2014; Tedbury and Freed, 2015). The MA proteins assemble into trimers that are 

required for viral assembly. Other than targeting the Gag and GagPol to the plasma 

membrane,  MA also accommodates the cytoplasmic tail of the full length Env glycoprotein 

and incorporate it into the viral particles (Frankel and Young, 1998; Ganser-Pornillos et al., 

2012) 

• Capsid Protein (CA): It consists of two domains: N’-terminal domain NTD and C’-

terminal domain CTD, that are linked together via a flexible linker. The 3D structure of 

NTD shows seven α-helices while the CTD has four α-helices (Gamble et al., 1997; Gitti 

et al., 1996; Pornillos et al., 2011). The CTD domain promote efficient viral assembly 

through CA dimerization and Gag oligomerization (Gamble et al., 1997), while the NTD 

domain participate in viral uncoating, through association with cyclophilin A (Luban, 

2012). Moreover, CA protects the gRNA from cellular immune factors and ensures  that 

RT is close enough to gRNA, in order to perform the reverse transcription (Campbell and 

Hope, 2015; Freed, 1998). 

• Nucleocapsid Protein (NC): NC is a 7 kDa, 55 amino acid protein that has two highly 

conserved CCHC zinc finger motifs which are connected by a basic linker (RAPRKKG). 

The NC protein exerts many functions throughout the virus life cycle, mainly through its 
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nucleic acid chaperone activity (Darlix et al., 2007, 2014, 2011). The properties and 

functions of NC are discussed in detail in section 1.2. 

• p6: It is a 6 kDa, 52 amino acid protein that has two helices connected by a flexible linker. 

One of the role of p6 is to bind and recruit Vpr (Votteler and Sundquist, 2013). Moreover 

the two late domains of p6 are responsible for recruitment of the cellular ESCRT 

(endosomal sorting complex required for transport) machinery that enables viral budding 

(Freed, 1998; Votteler and Sundquist, 2013). 

B. Enzymatic Proteins 

• Protease (PR): PR is a 6 kDa, 99 amino acid protein that exists in a homodimer form. The 

N- and C- terminal domains are arranged in a four-stranded antiparallel β-sheet, one loop 

and one helix (Navia et al., 1989). The catalysis site is highly conserved and comprises of 

amino acids Asp25-Thr26-Gly27 (Wlodawer et al., 1989). Protease is generated due to self-

catalysis from Pr160Gag-pol and is responsible for the cleavage of Gag and GagPol 

polyprotein. This cleavage of Gag and GagPol by PR is necessary to form mature viral 

particle (Sundquist and Kräusslich, 2012). 

• Reverse Transcriptase (RT): RT is a heterodimer of two subunits p66 and p51. The p66 

subunit is a 66 kDa, 560 amino acid that has a catalytic function while the p51 domain is a 

51 kDa, 440 amino acid domain that has structural function (Esnouf et al., 1995; Hsiou et 

al., 1996; Rodgers et al., 1995). The RNase H domain of RT cleaves the RNA portion of 

the RNA-DNA hybrids generated during reverse transcription (Das and Arnold, 2013; Hu 

and Hughes, 2012). RT also possess RNA-dependent and DNA-dependent polymerase 

activities and actively catalyze the reverse transcription process by synthesizing double 

strand DNA starting from a single stranded gRNA. 

• Integrase (IN): It is a 32 kDa, 288 amino acid  protein that has three domains: the N-

terminal domain (NTD), the catalytic core domain and the C-terminal domain (CTD) (Cai 

et al., 1997; Dyda et al., 1994; Hare et al., 2010; Lodi et al., 1995). The role of IN is to 

insert the proviral DNA into the host cell DNA, by performing 3’ end processing activity 

(cleavage of two nucleotides from the two 3’ ends of the viral DNA) and strand transfer 

activity (Lesbats et al., 2016; Lusic and Siliciano, 2017).  
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C. Envelope Proteins 

• Surface Glycoproteins (SU or gp120): It is a 515 amino acid highly glycosylated protein 

that is located at the surface of the viral particle. Structurally it has ten segments, five of 

them are conserved domains (C1–C5) and the rest are variable loops (V1–V5). It has three 

structural units, the inner unit that has two α-helices, five-stranded β-sandwichs and loops; 

the outer domain that has stacked barrel; and the bridging domain that has four-stranded β-

sheets (Kwong et al., 1998; Pancera et al., 2010). The role of gp120 during the viral 

infection is to interact with the CD4 receptors of the target cell (Checkley et al., 2011; 

Haqqani and Tilton, 2013).  

• Transmembrane Protein (TM or gp41):  It is a 345-amino acid glycosylated protein that 

exists in a trimer form. It has a N-terminal ectodomain, a transmembrane domain, and a C-

terminal cytoplasmic tail that orient themselves in antiparallel  helices to form a trimer 

(Chan et al., 1997; Weissenhorn et al., 1997). The gp41 is involved in the fusion of virion 

membrane and plasma membrane during viral entry (Haqqani and Tilton, 2013). 

D. Regulatory Proteins 

• Trans activator of Transcription (Tat):  It is a 9-11 kDa protein that exist either as an 86 

amino acid or a 101 amino acid form. It has six regions: region I between 1–21 amino acid, 

region II between 22–37 which is Cys rich: region III between 38–48 amino acid which 

forms the core of the protein, region IV  between 49–59 amino acids that is mostly occupied 

by basic amino acids, region V  between 60–72 amino acids which is Gln rich region and 

region VI is between 73–101 amino acid which forms the C’-terminal of the Tat (Bayer et 

al., 1995; Peloponese  Jr. et al., 2000). The main role of Tat is to promote efficient 

transcription of the viral genome (Johri et al., 2011). 

• Regulator of Virion Expression (Rev):  Rev is a 13 kDa, 116 amino acid protein with two 

domains, the N’-terminal domain having two α-helices and a loop, and the disordered C’-

terminal domain. The NTD has nuclear localization signal, RNA binding domain and Rev 

multimerization domain. On the other hand the CTD domain has a Leu-rich motif needed 

for nuclear export (Daugherty et al., 2010; DiMattia et al., 2010). Rev facilitates the nuclear 

export of single-spliced and unspliced RNAs by binding to their RRE element (Pollard and 

Malim, 1998; Sherpa et al., 2015). 
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E. Accessory Proteins 

• Viral Protein R (Vpr): It is a 14 kDa, 96 amino acid protein having three α-helices and 

flexible N’- and C’- terminal domains which tend to multimerize (Morellet et al., 2003). 

The N’- terminal domain of Vpr take part in G2 phase cell cycle arrest and apoptosis 

(Guenzel et al., 2014). While the C’-terminal domain functions in virion incorporation, 

nuclear localization and Vpr oligomerization (Freed, 1998; Ganser-Pornillos et al., 2012).  

• Viral Infectivity Factor (Vif): It is a 23 kDa, 96 amino acid protein that has three domains: 

a highly ordered N’-terminal domain, the central domain having Zn fingers motifs, and the 

disordered C’-terminal domain (Barraud et al., 2008). Vif play protective role against a 

cellular deaminase APOBEC3 (A3G and A3F). A3G halts viral progression as it mutates 

C to U residues during reverse transcription. Moreover, Vif also show nucleic acid 

chaperoning activity during virion assembly (Ennifar et al., 2007; J G Levin et al., 2010; 

Sleiman et al., 2014). 

• Viral Protein U (Vpu): It is a 16 kDa, 81 amino acid protein that bind to internal membrane 

of the cell. It has two domains, N’-terminal domain which span through the membrane and 

C’-terminal domain which is present inside the cytoplasm (Zhang et al., 2015). The role of 

Vpu is to degrade CD4 receptors complexed with Env protein. Vpu also promote budding 

of the virus particle from the infected cell (Gonzalez, 2015).   

• Negative Regulatory Factor (Nef): It is a 27–35 kDa, 206 amino acid protein with three 

domains: the N’-terminal domain, the core and the C’-terminal domain (Arold et al., 1997; 

Grzesiek et al., 1997). The role of Nef is to degrade the cell receptors, like CD4, CD28 and 

CxCR4 receptors. This in turn promote incorporation of Env protein into virion. It is also 

responsible for degradation of histocompatibility complex I and II on antigen presenting 

cells, and in recognition of infected cells by the immune system (Pereira and daSilva, 2016).   

1.1.7. Replication Cycle of HIV-1 

The life cycle of the HIV virus can be divided in two major phases, the early phase and 

the late phase. 

1.1.7.1. Early Phase 

Infection of the cell by HIV-1 particle start with protein-protein interaction on their 

surface (Figure 6). The CD4 receptors of the cell binds to HIV-1 gp120 surface glycoproteins. 

This interaction induce conformational change in CD4 receptors, which in turn promote the 
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interaction with the co-receptors i.e. chemokine receptors 5 (CCR5) chemokine receptor 4 

(CXCR4) present on the surface of the target cell (Dean et al., 1996; Feng et al., 1999). Then, 

the conformational change in gp41 further promote its hydrophobic N’-terminal domain to 

cross into the plasma membrane and reach the cytoplasm of the cell target (Archin et al., 2014; 

Dr. Rainer Seitz, 2016). This step marks the completion of fusion between the cell membrane 

and viral envelope. 

 

Figure 6. Early phase of the HIV-1 viral life cycle. Env, envelope glycoprotein; MA, matrix 

protein; CA, capsid protein; NC, nucleocapsid protein; RTC, reverse transcription 

complex; NPC nuclear pore complex; PIC, pre-integration complex. Adapted from 

(Campbell and Hope, 2015). 

Fusion of the cell and virion membranes results in the translocation of the viral capsid 

inside the cytoplasm. Reverse transcription begins in cytoplasm and convert single strand 

gRNA to double strand DNA. The steps of reverse transcription are discussed in section 1.2.3. 

During reverse transcription, the Reverse Transcription Complex RTC transform into pre-

integration complex (PIC) for its migration to nucleus through nucleoporin embedded in the 

nuclear membrane. The disassembly of capsid as well as migration of RTC/PIC into nucleus 

are still debated (Campbell and Hope, 2015). 
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Figure 7. Integration of vDNA into the host chromosome is the final step of early infection. 

Adapted from (Thomas and Gorelick, 2008) 

Integration of viral DNA into host genome performed by IN enzyme include two main 

steps (Figure 7). First step occurs in the cytoplasm, where IN binds to two specifically 

recognized nucleotides at 3’ end of the UTR. Due to its endonuclease activity, these two 

nucleotides were removed creating a sticky end. This step is called as 3’ processing. The second 

step occurs in nucleus where IN catalyze the insertion of 3’ end processed viral DNA in to the 

host DNA (Campbell and Hope, 2015). 

1.1.7.2. Late Phase 

The late phase begins with transcription of viral DNA by the cellular transcription 

enzyme RNA polymerase II (Figure 8). Transcription starts from the R region at the 5’ end of 

UTR and Tat protein promotes the elongation. The transcription gives mRNAs with multiple 

splicing degrees that includes: unspliced, incompletely spliced and spliced mRNAs. Unspliced 

mRNA is used as gRNA (9 kb) which encodes both Gag and GagPol proteins. Incompletely 

spliced mRNAs (4 kb) encodes Env, Vpu, Vif, and Vpr proteins. Interaction between RRE and 

Rev protein facilitate transportation of unspliced and incompletely spliced mRNAs to the 

cytoplasm. The completely spliced mRNA has the simplest transfer mechanism as it is directly 

transferred to the cytoplasm (Karn and Stoltzfus, 2012; Pollard and Malim, 1998). 
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Figure 8. Late phase of the HIV-1 viral life cycle. Env, envelope glycoprotein; MA, matrix 

protein; CA, capsid protein; NC, nucleocapsid protein; ESCRT, endosomal sorting 

complex required for transport; ALIX, ALG2-interacting protein X; RER, rough 

endoplasmic reticulum. Adapted from (Freed, 2015). 

Either free or membrane bound ribosomes execute the translation of mRNA in the cell. 

Translation of Env gene occur at the rough endoplasmic reticulum (Checkley et al., 2011). The 

unspliced mRNA encodes for Gag and GagPol polyproteins which further give rise to 

structural, functional and enzymatic proteins of the virus.  

The assembly of viral particles starts with two important events that occurs in close 

time lapse of each other. First is the Gag oligomerization on gRNA and the second is the 

dimerization of the gRNA that is crucial for selection and packaging (Muriaux and Darlix, 

2010; Paillart et al., 2004). Out of the pool of mRNAs in the cytoplasm, the Gag proteins select 

two unspliced gRNA. The dimerization of gRNA occurs through a series of correlated events 

happening at the 5’ UTR (D’Souza and Summers, 2005). Dimerization of two gRNA strands 

begins with NC-promoted annealing of SL1 sequences (Bernacchi et al., 2017; Grigorov et al., 

2007; Lu et al., 2011). Due to this specific recognition between SL sequences in gRNA and 

NC as a domain of Gag, two competent gRNAs are selected for packaging. On the other hand, 



Bibliographic Review – HIV 

 

27 

 

Gag oligomers are responsible for trafficking the gRNA-Gag complex to plasma membrane 

(El Meshri et al., 2015). The number of Gag oligomers on gRNA increases as the Gag-gRNA 

complex moves closer to plasma membrane (Kutluay and Bieniasz, 2010; Mailler et al., 2016). 

At the plasma membrane, MA protein of the Gag domain interacts with negatively charged 

lipids, and notably with phosphatidylinositol-(4,5)-biphosphate (PIP2) phospholipids (Ono et 

al., 2004; Saad et al., 2006). This starts the formation of the immature virion (Briggs et al., 

2009).  

Budding of viral particle require p6 and NC domain of the Gag protein, which interact 

with the cellular endosomal sorting complex required for transport (ESCRT) machinery. This 

recruitment process requires two-specific domains of p6, PTAP and YPXL domains, that binds 

to TSG101 (a tumor susceptibility gene 101) and ALIX (a ALG2-interacting protein X), 

respectively. The interaction of NC with Bro domain of ALIX facilitates the binding of Gag to 

ALIX. Later, ESCRT-I and ALIX interacts with ESCRT-III and AAA ATPase vacuolar protein 

sorting 4 (VPS4), respectively, which are required for membrane fission and virion release 

(Freed, 2015; Sundquist and Kräusslich, 2012). 

 

Figure 9 Organization of the immature and mature HIV-1 virions. Schematic structural model 

of full length HIV-1 Gag (a). Individual domains are in different colors and are 

labeled on the left. Schematic model and images of the immature virion (b, d) and 

mature virion (c, e). Adapted from (Ganser-Pornillos et al., 2008) 

Maturation of the virion particle begins after it is released from the infected cell. An 

immature virion particle has radially aligned Gag molecules with the N’-terminal MA domain 
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being bound to the inner viral membrane and the C’-terminal of NC domain stretched towards 

the core of the virion. Transformation into the mature particle requires catalysis from the PR 

enzymes which are released from auto-processing of GagPol. PR cleaves the Gag and GagPol 

polyproteins to release MA, CA, NC, p6, PR, IN, and RT. As a result, the morphology inside 

the virion particle changes, giving rise to a conical shaped capsid (Freed, 2015; Ganser-

Pornillos et al., 2012; Sundquist and Kräusslich, 2012).  

1.1.8. Antiretroviral Therapy (ART) 

The ever-increasing understanding on HIV-1 life-cycle is beneficial for antiviral drug 

development. Till date, FDA approved 28 drugs are in market that belongs to distinct classes. 

These drugs are classified based on their molecular mechanisms and resistance profiles: (1) 

nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs), (2) non–nucleoside 

reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), 

(5) fusion inhibitors, and (6) coreceptor antagonists.  

a) Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs/NtRTIs) 

These were the first classes of drugs approved by FDA. Before enacting their antiviral 

effect, NRTIs require host cell entry and phosphorylation by cellular kinases (Mitsuya et al., 

1985). NRTIs are 2’-deoxynucleosides analogues that lack 3’-hydroxyl at the sugar moiety. 

Reverse transcriptase is unable to differentiate between NRTIs and dNTPs, and thus they are 

taken up and incorporated in the nucleic acid chain. Due to lack of 3’-hydroxyl at the sugar 

moiety, it is unable to build the 3’-5’-phosphodiester bond that occurs between two natural 

dNTPs in the classical DNA synthesis. This results in termination of the growing viral DNA 

chain (Arts and Hazuda, 2012). Currently, there are eight FDA-approved NRTIs: abacavir 

(ABC, Ziagen), didanosine (ddI, Videx), emtricitabine (FTC, Emtriva), lamivudine (3TC, 

Epivir), stavudine (d4T, Zerit), zalcitabine (ddC, Hivid), zidovudine (AZT, Retrovir) and 

Tenofovir disoprovil fumarate (TDF, Viread). Two mechanisms mediate resistance to NRTIs: 

removal of NRTIs from the 3′-end of the nascent chain through an ATP-dependent 

pyrophosphorolysis and reversal of chain termination (Boyer et al., 2001). 

b) Non–Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

NNRTIs are the backbone of ART because they show unique antiviral activity, high 

specificity and low toxicity that makes them a frequent choice for first-line therapy (Li et al., 

2014). NNRTIs inhibit HIV-1 RT binding as it binds at the allosteric sites and changes the 
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spatial conformations for the substrate binding site. This eventually reduces the polymerase 

activity. The well-known structure of the hydrophobic pocket of RT allowed to tailor the design 

for substituting NNRTIs. The so-called NNRTI-binding pocket consists of hydrophobic 

residues (Y181, Y188, F227, W229, and Y232), and hydrophilic residues such as (K101, K103, 

S105, D192, and E224) of p66 and p51 subunit (Arts and Hazuda, 2012). Currently, there are 

five approved NNRTIs: etravirine, delavirdine, efavirenz, nevirapine and rilpivirine. NNRTI 

resistance generally results from the substitutions of  L100, K101, K103, E138, V179, Y181, 

and Y188 amino acids in the NNRTI-binding pocket of RT (Rodgers et al., 1995).   

c) Integrase Inhibitors 

They are recently developed interfacial inhibitor drugs targeting intasome which consist 

of  catalytic site for one IN polypeptide, the vDNA, and the two catalytic magnesium cations 

(Arts and Hazuda, 2012; Métifiot et al., 2013). Since 2007, FDA has approved three integrase 

inhibitors: Raltegravir, Elvitegravir, Dolutegravir. Resistance to Raltegravir is associated with 

different pathways or sets of mutations in the integrase at Y143, N155, or Q148 residues that 

reduce the susceptibility to Raltegravir (Arts and Hazuda, 2012; Fransen et al., 2009) 

d) Protease Inhibitors 

The role of HIV-1 protease is to cleave the Gag and GagPol polyproteins precursors 

during virion maturation. Thus, to prevent the transformation of immature virion into mature 

virion, the activity of protease is targeted by protease inhibitors. Ten protease inhibitors are 

currently approved: amprenavir (APV, Agenerase), atazanavir (ATZ, Reyataz), darunavir 

(TMC114, Prezista), fosamprenavir (Lexiva), indinavir (IDV, Crixivan), lopinavir (LPV), 

nelfinavir (NFV, Viracept), ritonavir (RTV, Norvir), saquinavir (SQV, Fortovase/Invirase), 

and tipranavir (TPV, Aptivus). More than 20 substitutions are associated with resistance of 

protease inhibitors (Arts and Hazuda, 2012; Rhee et al., 2010). Other pathways for resistance 

are based on mutations at the protease cleavage site in Gag and GagPol proteins. (Anderson et 

al., 2009; Fun et al., 2012) 

e) Entry Inhibitors 

Entry inhibitors target the interactions of gp120 with CD4 receptors and gp120 with 

coreceptors (CCR5 and CXCR4). Entry inhibitors are divided into two categories: Fusion 

inhibitors and small CCR5 antagonists. Fusion inhibitors: The two domains of gp41 interact 

each other to promote the fusion process. Thus, fusion inhibitors are designed, as synthetic 
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peptides that mimic the C’-helices of gp41 and disrupts the intermolecular interactions of the 

virus protein. Enfuvirtide, a 36 amino acid drug is the only FDA approved drug available as a 

fusion inhibitor. Resistance to fusion inhibitors appeared due to mutations in the amino-

terminal heptad repeat region of gp41 (Rimsky et al., 1998). Small CCR5 antagonists are 

allosteric inhibitors that binds to the hydrophobic pockets within the transmembrane helices of 

CCR5 (Dhami et al., 2009). They stabilize the conformation of CCR5, preventing its 

recognition. Three antagonists (VCV, MVC, and Aplaviroc) have been shown to inhibit virus 

replication (Dorr et al., 2005). Binding of CCR5 coreceptors to gp41 can also be inhibited with 

natural chemokines that compete for binding. Natural ligands of CCR5, like MIP-1α, MIP-1β, 

RANTES (and its derivatives: Met-RANTES, AOP-RANTES, PSC-RANTES and 5P12-

RANTES), have been tested for their antiviral activity. 

f) Combinational Therapy 

The ability of HIV-1 subtype to overcome drug resistance through mutation allowed 

clinicians to use instead of one drug, a combination of several drugs. These drugs may belong 

to same class or different classes of anti-retrovirals. A Highly Active Anti-Retroviral Therapy 

(HAART) is administered with combination of three drugs in which atleast two drugs should 

have two different targets. Although HAART is not a cure, but it has helped in prolongation of 

patient’s life expectancy.  
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1.2. Structure-Function Relationship of Nucleocapsid 

Protein 

1.2.1. Introduction 

Generated by proteolytic cleavage of the 55 kDa Gag precursor, there exists 1500–2000 

copies of mature HIV-1 nucleocapsid protein NCp7 (NC) surrounding the viral genome. 

Multiple steps of proteolytic cleavage of the Gag, as shown in Figure 10, generate first a 71 

amino acid intermediate (p9) containing NC (p7) and spacer peptide 2, and further a 55 amino 

acid mature form of NC (p7) (Thomas and Gorelick, 2008).  

 

Figure 10 Proteolytic processing of HIV-1 Gag by PR (Thomas and Gorelick, 2008). 

NC is a 55 amino acid, small (5–7 kD) retroviral protein consisting of a highly basic N-

terminal region and two strictly conserved CX2CX4 HX4 C (CCHC) Zinc finger (ZF) motifs 

connected by a basic linker (Berg, 1986; Mély et al., 1996; Rice et al., 1995; Summers et al., 

1990) (Figure 11). The ZF motifs contain conservatively substituted hydrophobic and aromatic 

residues that forms a hydrophobic cleft on the surfaces of both the knuckles which plays crucial 

roles in binding to nucleic acids (NA) (specifically and non-specifically). Consequently, NC 

displays multifunctional roles during several steps of HIV-1 virus life cycle that are basically 

driven by its nucleic acids chaperoning properties (Darlix et al., 2011). It means that NC 

effectively remodels the NA so that the most thermodynamically stable conformations are 

gained. Such remodeling are achieved through certain properties of NC namely, (i) nucleic acid 

aggregation; (ii) duplex destabilization; (iii) rapid on-off kinetics. Nucleic acid aggregation is 

mainly driven by the basic residues while the duplex destabilization is largely administered 

through ZFs. 
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Figure 11 Amino acid sequence of HIV-1 NC(1–55). The zinc coordinating residues shown 

in red and the basic residues highlighted in blue. Adapted from (Levin et al., 2005). 

1.2.2. Nucleic Acid Chaperoning of NC 

NC has the ability to bind specifically and nonspecifically to nearly any NA sequence.  

However, the binding affinies varies with the nature, sequence and folding of the interacting 

sequences. Interestingly, through nonspecific low affinity interaction, NC is able to bind nearly 

any 5–8 nucleotide sequence due to its basic nature (Vuilleumier et al., 1999). Consequently, 

this binding mode is majorly defined in virus, where due to the small core, the concentration 

of NC and the relevant NAs are in millimolar range. Therefore, an extensive coating of 1500–

2000 copies of NC can be achieved ensuring its protection against cellular nucleases (Darlix et 

al., 2011).   
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Figure 12 Three-dimensional structure representations of free HIV-1 NC and bound to various 

RNA and DNA molecules. For the sake of clarity, only the major structural 

determinants of NC are shown here. The NC protein backbone is shown as a green 

tube and the two zinc atoms coordinated by the CCHC tetrad in each zinc finger are 

indicated as white spheres. Key hydrophobic interactions taking place between NC 

and the NA are highlighted here. In addition, the hydrophobic residues contacting the 

nucleic acid are illustrated as spheres. The F16 and W37 aromatic residues are in 

magenta and red, respectively, while other residues in ZF1 (V13, T24, A25) and ZF2 

(Q45, M46) are in orange. The two nucleotides with the tightest hydrophobic 

interaction with the protein side chains are 2G residues in blue and yellow in (b) NC-

SL3 RNA complex (De Guzman, 1998), T and G in (c) NC-(–)PBS_DNA complex 

(Sarah Bourbigot et al., 2008), and (d) NC-mini cTAR_DNA complex (Bazzi et al., 

2011). Relative to free NC (a) (Morellet et al., 1998)), note that the hydrophobic 

interface is reorganized in the NC–NA complexes (b–d). In (b) the two guanines in 

blue and yellow are deeply inserted within the hydrophobic pocket formed by the zinc 

fingers. In (c) and (d), one guanine (G in yellow) is inserted in the ZF2 hydrophobic 

pocket while the thymine (T in blue) is on the exterior of the hydrophobic pocket. 

Also note that the T24, V13 andA25 residues are in close contact with the double 

stranded part of (–)PBS_DNA in (c), while there is no such contact in the NC-SL3 

RNA complex in (b). Adopted from (Darlix et al., 2014) 

NC exhibits also sequence specific binding to numerous defined single strand NA 

containing unpaired guanine residues (Levin et al., 2005). RNA apical loops with GNG 

sequences (De Guzman, 1998) and DNA apical loops with TG, GNG and TNG sequences 

(Avilov et al., 2012; Sarah Bourbigot et al., 2008; Vuilleumier et al., 1999) display high binding 

affinity for NC. The reason behind this strong binding was inferred from the resolved 3D 

structure of NC-NA complexes that demonstrated an active involvement of both the zinc 

fingers (Figure 12). The two ZFs are not functionally equivalent (Gorelick et al., 1993),  ZF1 

being more critical than ZF2 for the nucleic acid chaperone activity (Zargarian et al., 2014). 

But the specific binding of NC to these sequences are largely mediated through the hydrophobic 

platform formed at the top of two ZFs by the V13, F16, T24, A25, W37, Q45 and M46 residues. 

Importantly, all solved structures demonstrate that guanine binds deeply into the ZF1 and ZF2 

hydrophobic pockets and stacks extensively with W37. While F16 in ZF1 stacks with guanines 

(in case where two guanines are available in NA sequences) or stacks partly with thymine or 

cytosine residues that remain outside of the hydrophobic pocket of ZF.  Thus, such specific and 
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strong binding properties of NC result in recognition of target Stem loop (SL) ψ-encapsidation 

signal of genomic RNA among a large excess of cellular RNAs during virus assembly. 

These interesting internal dynamics of NC protein that is essential for NA recognition 

through W37-G interaction has been studied in section 4.2 and 4.3 of results and discussion. 

Section 4.2 focuses on comprehending the kinetics of NC-promoted annealing of (–)PBS with 

its complementary (+)PBS during the reverse transcription step of HIV-1  life cycle. Whereas, 

the section 4.3 investigate the orientation of ZF1 and ZF2 along the NA chain in NC-RNA and 

NC-DNA complexes of SL3 and (–)PBS model. 

1.2.3. Role of NC During HIV-1 Reverse Transcription 

When a mature HIV-1 virion infects a susceptible target cell, interactions of the 

envelope glycoproteins with the coreceptors on the surface of the cell bring about a fusion of 

the two membranes of the host cell and the virion. This fusion introduces the contents of the 

virion into the cytoplasm of the cell, setting the stage for reverse transcription. Reverse 

transcription is a multistep process that leads to the synthesis of linear double stranded DNA 

copy from the single stranded viral RNA genome that is finally integrated to the host 

chromosomes (Herschhorn and Hizi, 2010). This process is an early phase event occurring in 

the cytoplasm of the cell and catalyzed by the virus encoded transcriptase (RT) enzyme. The 

sequential steps of reverse transcription are shown in Figure 13.  

The multistep process begins with the annealing of a specific cellular tRNA to the 

primer binding site (PBS) and the role of NC at every step is discussed. 

A. Initiation 

Step 1: “tRNA primer placement” this step includes the hybridization of the 3’ end of 

18 nt cellular tRNALys primer to the complementary primer binding site present at the 5’ end 

of the viral genome. This reaction is catalyzed by the NC domain in Gag (Cen et al., 1999; 

Feng et al., 1999) or NCp7 in its mature form (De Rocquigny et al., 1992; Saadatmand and 

Kleiman, 2012; Seif et al., 2015; Sleiman et al., 2012). The intrinsic dynamics of NC plays a 

dual role as the basic amino acids bring the complementary tRNA and PBS sequences together, 

whereas the two zinc fingers are responsible for destabilizing the organized viral RNA genome 

(Levin et al., 2005). There has been several studies suggesting the role of Gag and NC during 

the annealing of tRNA (Campbell and Rein, 1999; Cen et al., 1999). A two step annealing 

process was suggested in which the initial annealing is promoted by Gag while the final 
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primer/template remodeling is promoted by mature NC (Feng et al., 1999; Seif et al., 2015; 

Sleiman et al., 2013).   

Step 2: RT catalyzes the synthesis of primer and extends it to 5’ end of the vRNA to 

form minus-strand strong-stop DNA (–)ssDNA. This (–)ssDNA contained the unique 5’ 

genomic sequence (U5) and R regions. The RNase activity of RT degrades the vRNA sequence 

that has already been reverse transcribed.  

 

Figure 13 Schematic representation of reverse transcription (Sarah Bourbigot et al., 2008). 

B. Minus strand transfer 

Step 3: In order to extend this small (–)ssDNA in a full length (–)ssDNA copy of the 

viral RNA genome the “minus strand transfer” step is essential. This transfer is facilitated by 

the annealing of R region of short (–)ssDNA to the complementary R region at the  3’ end of 

the genome. Both TAR and polyA sequences are imperfect SLs having several conserved 

bulges, mismatches and internal double-stranded segments (Bazzi et al., 2011; Godet et al., 

2006; Mougel et al., 2009). The role of NC is significant during annealing of cTAR TAR 
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sequences as it chaperones the NA and dramatically accelerates the annealing by 3,000-fold 

(Guo et al., 2000, 1998; Lapadat-Tapolsky et al., 1995; Vo et al., 2009, 2006; You and 

McHenry, 1994).  The annealing of cTAR-TAR in the presence or absence of NC proceeds 

through a two-step reaction mechanism (via intermediate complex). In the absence of NC, the 

annealing intermediate of the kissing pathway is a loop–loop kissing complex involving six 

base-pairs (Kanevsky et al., 2011). Interestingly, the NC-assisted pathway can proceed through 

multiple pathways depending on the solution concentration and substrate used. At high 

concentrations of NC, the dominant zippering pathway involves annealing through the 3’ and 

5’ ends of the stem-loop (Zeng et al., 2007). The reaction pathway is likely selected based on 

the available reactive intermediates which require least base pair melting before annealing 

(Kanevsky et al., 2005; Vo et al., 2009, 2006).  

Step 4. In continuation of the minus strand transfer, elongation of (–)ssDNA and RNase 

degradation continues except for the PPT sequences that are RNase resistant.  

Step 5. RT synthesizes the (+)ssDNA that is initiated from the PPT sequence. 

Thereafter, the RNase activity of RT degrades the tRNA and PPT primer regions from (–

)ssDNA and (+)ssDNA, respectively.  

C. Plus strand transfer 

 Step 6. Plus strand transfer is supported by annealing of the 18 nt PBS region of (–

)DNA  (or also called as (–)PBS) and the 3’ end of PBS region of (+)DNA.  

Step 7, 8. Thereafter, RT resumes the formation and circularization of the DNA, 

resulting in linear double strand (ds) DNA strands. Annealing of short and stable (–)PBS and 

(+)PBS SLs is facilitated by NC. NMR resolved  structure of Δ(–)PBS (truncated (–)PBS 

without the overhangs) and NC(12–55) proves crucial in comprehending the pivotal role of NC 

in successfully destabilizing and stretching the 5’-CTG-3’ NA in the loops thus making them 

available as an intermediate for annealing reaction (Sarah Bourbigot et al., 2008) (Figure 14). 

The 3D structure of NC-(–)PBS complex demonstrated the interaction of hydrophobic residues 

of ZF1, namely Val13, Phe16, Thr24, and Ala25, with the C5 and T6 bases, while the Trp37, 

Gln45, and Met46 residues of the second zinc finger interact with the G7 base. These 

interactions drive the T6 and G7 bases to the exterior of the loop, making them competent for 

annealing with (+)PBS loop.  
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Figure 14 NMR resolved structure of Δ(–)PBS (a), and complex with NC(12–55) (b). 

Taking an insight into the annealing of (–)/(+)PBS reveals that the reaction proceeds 

through two different pathways (Figure 15). In the absence of NC, the nucleation occurs 

through the single strand overhangs of (+)PBS and spontaneously results in duplex formation. 

However, in the presence of NC the nucleation occurs via loop-loop interaction and the reaction 

kinetics is increased by 60-fold (Ramalanjaona et al., 2007). Moreover, NC mutants (SSHS) 

with unfolded ZFs were able to increase the annealing kinetics but were unable to modify the 

annealing pathway, clearly highlighting the need of the hydrophobic plateau at the top of ZF 

for specific loop-loop interaction.  

 

Figure 15 Proposed (–)/(+)PBS annealing pathways. Adapted from (Julien Godet et al., 2011) 
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1.2.4. Role of NC Domain of Gag in Viral Assembly 

Assembly of HIV-1 particles requires selection of two copies of genomic RNA (gRNA) 

(Nikolaitchik et al., 2013) by the Gag polyprotein that contains all the signals and domains 

which orchestrate this process from the nucleation step to virus release by budding (Kutluay 

and Bieniasz, 2010; Muriaux and Darlix, 2010; Sundquist and Kräusslich, 2012). However, the 

mechanism implemented by Gag for selection of gRNA amidst large excess of cellular and 

spliced viral RNA is still unknown. Gag likely uses its NC domain to bind in nanomolar affinity 

to the psi specific region of gRNA (Cimarelli and Darlix, 2002; Lever, 2007; Muriaux and 

Darlix, 2010). The psi region corresponds to the SL1, SL2, SL3 and SL4 sequences present at 

the 5’ end of gRNA, and each SL sequence plays a crucial role in assembly. This nucleation 

event can certainly favor Gag-Gag interaction  on dimeric RNA (Bernacchi et al., 2017; 

Cimarelli and Darlix, 2002). This is supported by the recent series of works presented by the 

Group of J.C. Paillart and R. Marquet in which the binding affinity of Gag  to gRNA has been 

shown to be 10-fold stronger than to spliced RNA sequences (Abd El-Wahab et al., 2014; 

Houzet et al., 2007) (Figure 16).  Due to the long-range interaction of NC and MA domains of 

Gag to the upstream and downstream of the psi region, SL1 is optimally exposed to Gag 

recognition. Moreover, SL1 was shown to be the only SL that binds with high affinity, that was 

surprising outcome since prior to this study SL3 was considered as the main packaging signal 

(Aldovini and Young, 1990; Lever, 2007).  

 

Figure 16 Encapsidation signal (SL1-3) and Gag induced activity changes on them. Adapted 

(Abd El-Wahab et al., 2014) 

1.2.4.1. NC Promoted RNA Dimerization 

The Dimer initiation site in gRNA is a highly conserved and stable sequence of SL1. 

The process of dimer formation is characterized as a two step mechanism. The dimerization 
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begins via annealing of the auto complementary apical loop to form a metastable complex via 

loop-loop kissing mechanism. NC protein facilitates by refolding the NA in the stem thus 

resulting in its melting (Figure 17) (Muriaux et al., 1996, 1995; Shubsda et al., 2002; Yuan et 

al., 2003). By destabilizing the intramolecular base pairing, NC shifts the thermodynamics of 

the metastable kissing complex toward the stable dimer (Paillart et al., 2004; Rist and Marino, 

2002; Weixlbaumer et al., 2004). Both RNA-RNA interaction and NC-promoted annealing of 

SL1 dimers are crucial steps required for dimerization, efficient packaging, viral maturation 

and, as a consequence, optimal viral infectivity (Mujeeb et al., 2007b).  

 

Figure 17 NC mediated Dimerization. (Muriaux et al., 1996) 

1.2.4.2. NC - SL3 Recognition 

The 3D structure of NC bound to SL3 recognition element was solved by group of M.F. 

Summers in 1998 (Figure 12b) (De Guzman, 1998). Later, the group of P. Borer investigated 

the role of NC in specific recognition of SL3 motif of gRNA for encapsidation. The folding of 

SL3 GGAG tetraloop is quite flexible. As a result, the G10 and G12 residues are in unstacked 

orientations while the G9 and A11 residues are tightly constrained in the minor grove. In NC-

SL3 structure, the N1H and C6O of unstacked 5’ end G10 and 3’ end G12 make hydrogen 

bonds with the N terminal W37 of ZF2 and the C-terminal F16 of ZF1, respectively. 

Meanwhile, A11 residue is in the exterior of the loop establishing hydrophobic contacts with 

the protein. Sequence specific binding of NC to SL3 tetra-loop was shown to lose its affinity 

by a factor 15–120 if A11 residue was replaced by any of the U, G or C residues (Paoletti et 

al., 2002). NC binds with SL3 in 1:1 binding stoichiometry. Their binding affinities were 

determined at several salt concentrations, but 100–200 mM of salt concentrations were 

preferred as the  binding stoichiometry remained conserved (Athavale et al., 2010; Warui and 

Baranger, 2012). In recent work from the Group of J. Mak, first time a thermodynamic 
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investigation (binding affinity) of different domains of Gag protein, namely Gag, GagΔP6, 

GagΔCA, p15 and NCp7, were established with their interaction with SL3 and mutant 

sequences (Tanwar et al., 2017). They demonstrated specific interaction between Gag and 

Adenosine containing RNA motifs; and oligomerization of Gag; altogether they were found to 

be energetically favorable reactions that facilitate virion particle formation.  

1.2.4.3. Gag-Gag oligomerization and trafficking to plasma membrane 

Gag-Gag oligomerization and its interaction with the plasma membrane initiates step 

towards formation of virus particle. Biophysical studies have reported that oligomerization of 

Gag is facilitated  by its NC domain (El Meshri et al., 2015; Ott et al., 2009). The NC-RNA 

scaffold formation is likely a support for assembling of Gag molecules. Moreover, in recent 

work it has also been identified that the ribosomal protein RPL7 contribute in Gag 

oligomerization process by interaction with NC domain of Gag (Mekdad et al., 2016).  

Binding of Gag to the plasma membrane is also thought to be driven by the interaction 

of NC with the lipids of plasma membrane (Kempf et al., 2015). Several works have 

highlighted the fact that by mutations in zinc finger of NC result in unsuccessful 

oligomerization and its trafficking to the plasma membrane (Cimarelli et al., 2000; Dawson 

and Yu, 1998; Robert J. Gorelick et al., 1999; Kafaie et al., 2008). 
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1.3. Fluorescence and Nucleic Acids 

1.3.1. Introduction to Fluorescence 

Fluorescence is a form of luminescence with an emission of a photon from an excited 

state (S1) to the ground state (So). The process of fluorescence can be illustrated using the 

Jablonski diagram (Figure 18). 

 

Figure 18. Jablonski diagram. 

An organic molecule is generally found in its lowest electronic singlet state or ground 

state (So). It stays in its ground state until it is excited with an energy higher than the energy 

barrier between the ground and excited state. With an energy higher than the threshold energy, 

it absorbs the photons (absorption) to reach the excited state (Sn with n ≥ 1) within 10-15 s, 

generating Franck Condon states. Subsequently, through vibrational relaxation the 

vibrationally excited molecule is quickly reduced (10-12–10-10 s) to the lowest vibrational state 

through collision with the solvent molecules, generating a stokes shift. The molecules in the S1 

state decay to the ground state through two processes, either fluorescence or phosphorescence. 

When the molecule from the S1 state decays to the S0 state, by emitting a photon (of lower 

energy than absorbed), this radiative process (kr) is termed as fluorescence. Along with it, some 

part of energy is lost in form of heat that accounts for non-radiative processes. When the 

molecule is in S1 state, there is another probability that results in Intersystem crossing (kISC) of 

the molecule from S1 to T1 state, by changing the spin of an electron. Again, the molecule 

undergoes vibrational relaxation to the lower vibrational state in T1 and thereafter, it reaches 

the ground state by emitting a photon and this process is called as phosphorescence. However, 

phosphorescence does almost never happen at room temperature, due to the much higher 
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probability of the molecule to go back to the ground state though non-radiative processes, that 

include molecular collisions, photoinduced electron transfer, bond rotation or vibration. 

The characteristic fluorescence of a fluorophore is measured in terms of quantum yield 

(Φ), which is the ratio of the number of photons emitted to the number of photons absorbed. 

The maximum value of quantum yield is close to unity, but generally, its value is lower due to 

the non-radiative losses. Thus, the quantum yield takes in to account both radiative and non-

radiative decay constant.  

𝜙𝑓 =
𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
       (1) 

kr is the rate constant for fluorescence emission and knr is the sum of non-radiative rate 

constants. The relative quantum yield is determined by using the following equation. 

𝜙𝑓 =  𝜙𝑟𝑒𝑓  (
𝐴𝑏𝑠 𝑆𝑡𝑑

𝜆  ×  𝐼𝑛𝑡𝑔. 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑥

𝐴𝑏𝑠𝑥
𝜆  × 𝐼𝑛𝑡𝑔. 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑡𝑑

) (
𝜂𝑥

𝜂𝑆𝑡𝑑
)      (2) 

𝜙𝑟𝑒𝑓 is the fluorescence quantum yield of the reference, 𝐴𝑏𝑠 𝑆𝑡𝑑
𝜆  and 𝐴𝑏𝑠𝑥

𝜆 are the 

absorbance of the standard and the sample at the characteristic wavelength, Intg Intensityx and 

Intg Intensitystd are the integral intensities of the fluorescence spectra, while 𝜂𝑥 and 𝜂𝑆𝑡𝑑 are 

the refractive indexes. 

Fluorophores are also compared in terms of their brightness, which is the product of 

their fluorescence quantum yield and absorption coefficient (usually at the absorption 

maximum)  

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =  𝜙𝑓 × 𝜀(𝜆)      (3) 

Fluorescence lifetime is another characteristic parameter that is used to describe a 

fluorophore. Fluorescence lifetime is the average time spent by the molecule in the excited state 

before coming to back to the ground state. Fluorescence lifetime is a parameter that is mostly 

unaffected by inner filter effects, static quenching and variations in the fluorophore 

concentration. 

𝜏𝑓 =
1

𝑘𝑟 + 𝑘𝑛𝑟
      (4) 
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The fluorescence properties of the molecule can also be related to its absorbance by 

means of the radiative rate constant, kr, and the absorption coefficient, and can be expressed 

with the Strickler-Berg equation (Strickler and Berg, 1962) 

𝑘𝑟 = 2.880 × 10−9𝜂2
𝑔𝑚

𝑔𝑛
 < 𝜗𝑓

−3 >−1 ∫ 𝜀(𝜗)𝑑 𝑙𝑛𝜗      (5) 

where gm and gn are the degeneracies of the ground (m) and upper (n) electronic state, 

η is the refractive index of the medium and 𝜗𝑓
  is the wavenumber of emission. This equation 

is applicable for strong, broad-banded transitions in molecules. 

The fluorescence intensity of a fluorophore can decrease as the excited molecules 

depopulate via radiation less processes, resulting from either static or collisional quenching. 

Collisional quenching occurs when an excited fluorophore interacts with quenching molecules 

or groups that deactivate the fluorophore. The intensity changes due to dynamic quenching can 

be fitted to the Stern-Volmer equation.  

𝐹0

𝐹
= 1 + 𝐾[𝑄] = 1 + 𝑘𝑞𝜏0[𝑄]       (6) 

where K is the Stern-Volmer quenching constant, kq is the bimolecular quenching 

constant, 𝜏0 is the unquenched lifetime, and [𝑄] is the quencher concentration. Typically, 

dynamic quenching results in a linear dependency on the quencher concentration. The 

bimolecular quenching constant represents the extent by which the fluorophore is affected by 

the quencher. If the fluorophore is well accessible to the quencher, a large value of kq is 

expected. Various molecules are utilized as quenchers such as oxygen, halogens, amines, and 

electron-deficient molecules like acrylamide.  However, if the Stern-Volmer plot is not linear, 

this suggests the presence of static quenching, due to formation of non-fluorescent ground state 

complex or a quencher being in close vicinity to the fluorophore. Quenching experiments have 

been used to study accessibility of Trp residues in proteins, conformational and dynamic 

properties of proteins (Alemán et al., 2014), microdomains in membranes (Silvius and Nabi, 

2006), and RNA folding dynamics. 

Resonance energy transfer (RET) is another process that occurs in the excited state. 

This process involves non-radiative transfer of the excited state energy of the donor 

chromophore to an acceptor chromophore. Various mechanisms facilitate this energy transfer 

such as Dexter mechanism (electron exchange) and Förster mechanism. Dexter mechanism 

operates when the donor and acceptor are in short distance and requires an intermolecular 
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orbital overlap. On the other hand, the Förster mechanism operates at larger distances and 

requires an overlap of the emission spectrum of the donor with the absorption spectra of the 

acceptor, this is known as FRET. The extent of energy transfer is calculated based on the 

distance between the donor and acceptor, and also on the extent of their spectral overlap. The 

rate of energy transfer kT(r) is given by  

𝑘𝑇(𝑟) =
1

𝜏𝐷
(

𝑅0

𝑟
)

6

       (7) 

where the Förster distance is (R0), r is the distance between the donor (D) and acceptor 

(A) and 𝜏𝐷 is the lifetime of the donor in the absence of energy transfer. The efficiency of 

energy transfer for a single donor–acceptor pair at a fixed distance is 

𝐸 =
𝑅0

6

𝑅0
6 + 𝑟6

        (8) 

The exquisite capability of FRET  has been widely exploited in studying protein 

folding, protein-protein interaction and cellular signaling events in living cells (Ma et al., 2017; 

Michalet et al., 2006; Prinz et al., 2008; Schmid and Birbach, 2007; Schuler and Eaton, 2008). 

FRET has also been used to illustrate folding and dynamics of RNA (Bernat and Disney, 2015; 

Chung et al., 2017; Li et al., 2008; Xu et al., 2016). 

ESIPT (excited state intramolecular proton transfer) is a process of proton transfer 

between a proton acceptor and a proton donor group in the same photoexcited molecule 

(Chevalier et al., 2013; Demchenko et al., 2013; Sengupta and Kasha, 1979). This is a 

commonly found process that is associated with ratiometric probes such as 3-

hydroxychromones (3HC). It is an excited state process that changes the structure of the 

excited-state fluorophore, typically an enol form that converts into a keto form. Specific to 

3HC, the absorption of light changes its electron distribution in a 3-OH group and carbonyl 

group (Figure 19). A tautomer excited form T* has a lower energy than a normal excited state 

N* form. This favors the proton transfer from N* to T*, in a picosecond timescale. After 

generation of the N* and T* forms, both the excited state tautomers undergo relaxation to 

ground state, and back proton transfer (BPT) leads to the reconversion to the normal ground 

state (T → N).  

The rate and equilibrium of ESIPT is dependent on the proton energy transfer barrier 

and the energy difference between the normal (N*) and tautomer (T*) forms of the excited 
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molecule. This equilibrium between the N* and T* form can be influenced by the solvent 

molecules that may favor one of the tautomers. ESIPT chromophores exhibit a large stokes 

shift. The two tautomer forms are thus well separated and provide a large spectral window 

convenient for spectroscopic measurements. However, 3HC may exhibit low fluorescence 

emission, depending on the charge and microenvironment of the fluorophore as well as the 

exposure to water. ESIPT has been used for a large range of applications, including the 

fabrication of optoelectronics solid state emitters (Padalkar and Seki, 2016), investigation of 

protein interactions and lipid membrane dynamics among many others (Klymchenko, 2017; 

Matos et al., 2010; Shvadchak et al., 2017; Zamotaiev et al., 2011). 

 

Figure 19. Representation of ESIPT reaction in 3HC. 

1.3.2. Introduction to Nucleic Acids 

1.3.2.1. Nucleic Acid Structures 

DeoxyriboNucleic Acid (DNA) and and RiboNucleic Acid (RNA) are the two major 

types of nucleic acids. They are natural macromolecular polymers composed of 

deoxynucleotides or nucleotides as the building monomers. A (deoxy)nucleotide is a 

(deoxy)nucleoside attached to one or more phosphates. The phosphate is the connecting unit 

of DNA and RNA polymers. A nucleoside itself is composed of a sugar and a nucleobase. 

Numbering of the base and (deoxy)ribose is recalled in Figure 20. The carbon and nitrogen of 

the base ring are numbered normally (1, 2, 3 ...) while those of the (deoxy)ribose, are identified 

by the prime exponent (1', 2', 3 '...). For DNA, the sugar is the 2’-deoxyribose connected with 

one of the four canonical nucleobases (Figure 20b). Nucleobases are planar aromatic 

heterocycles divided into two groups: purines for adenine (A) and guanine (G); and pyrimidines 

for thymine (T) and cytosine (C) (Figure 20a). Epigenetic marks such as 5-methylcytosine and 
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5-hydroxymethylcytosine are also found into DNA. In RNA the sugar keeps the hydroxyl 

group at the 2’ position of the ribose. RNA is mainly composed of A, G, C and uracil (U) 

instead of T but can contain also some minor nucleosides as for instance cytosine, pseudo-

uridine and modified nucleosides (e.g. N6-methyladenine). The N9 of purines and N1 of 

pyrimidines link the nucleobase to the pentose at position C1’. This position is commonly 

called the anomeric position. Its configuration is beta, meaning that both the nucleobase and 

the CH2OH at C-4’ are on the same side and above the sugar plane. 

 

Figure 20. a) Structures of purine and pyrimidine nucleobases. b) Structure of ribose and 

deoxyribose sugar. c) Linear structure of the DNA fragment 5’-GACT 

Phosphate diester linkages at the 3’ and 5’ hydroxyls of the (deoxy)nucleoside sugars 

give rise to the DNA/RNA linear chain. The primary structure of DNA/RNA consists of a linear 

sequence of (deoxy)nucleotides. Sequences are presented from the 5' to 3' and are determined 

by a series of letters designing the nucleobase composition (e.g. GACT and GACU for DNA 

and RNA, respectively) (Figure 20c). 

The secondary structure of DNA/RNA is the result of non-covalent interactions 

between bases. In DNA double helix, the two strands of DNA are held together by specific 

hydrogen bonds as defined by Watson-Crick (Watson, J. D.; Crick, 1953): A base pairs with T 

(A•T), and G with C (G•C). The two base pairs are almost identical in dimensions. A•T has 

two hydrogen bonds while G•C has three hydrogen bonds (Figure 21a). The additional 

hydrogen bond imparts extra stability to the G•C base pair. The free energy  of both base pairs 
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in aqueous solution is −4.3 and −5.8 kcal/mol for A•T and G•C base pairs, respectively (Stofer 

et al., 1999). Base stacking are additional non-covalent interactions contributing to DNA/RNA 

folding. In water, these hydrophobic and electrostatic interactions between adjacent bases are 

major contributors to the double strand stability.  

 

Figure 21. Watson–Crick hydrogen bonding: (a) A•T and G•C; Hoogsteen hydrogen bonding: 

A•T and G•C base pairs (b). 

RNA can fold between complementarity sequences as for DNA. DNA/RNA can fold 

into various non-canonical secondary structures including triplex, G-quadruplex, i-

motif, cruciform, Holliday junction, hairpin, and other non-canonical DNA/RNA forms. These 

structures involve one to four strands of nucleic acids stepping away from the traditional 

Watson-Crick base pairing, non-Watson-Crick base pairs can also be observed. Karl Hoogsteen 

described in 1963 the first example of a base pair involving a different edge of the adenine in 

interactions with thymine: the N6 and N7 atoms instead of the N1 and N6 atoms of the Watson-

Crick base pair (Figure 21b). Later G was found to similarly base pair with a protonated C. 

These two base pairs were defined as the Hoogsteen base pairs. Since this seminal work, 

various other modes of pairing were discovered and listed. Non Watson-Crick base pairing are 

commonly involved in RNA folding and account for about 40% of structured RNA (Leontis 

and Westhof, 2001) 

Folding of the linear chain(s) into a 3-D shape defines the tertiary structure of the 

nucleic acids and brings a supplementary degree of complexity. The different forms adopted 
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by DNA originate mainly from the orientation of the base with respect to the sugar (anti or syn) 

and the conformation of the sugar (C2’-endo or C3'-endo) (Figure 22a) (Saenger, 1984). The 

anti conformation is the most stable conformation and allows the base to establish Watson-

Crick hydrogen bonds with the complementary base. On the other hand, the syn orientation of 

the base is required to establish Hoogsteen interactions and other non-canonical interactions. 

For purine nucleoside, the syn conformation is energetically close to the anti conformation and 

equilibrates quickly with the anti conformation at room temperature in solution. By contrast, 

the syn conformation is unfavorable for pyrimidine bases because of steric contacts between 

the O2 atom of the base and the CH2-OH group of the sugar. 

 

Figure 22. Anti- and syn- conformation of the nucleoside. B) C3'-endo and C2'-endo 

conformations of the pentose. 

The two types of sugar pucker most commonly found in nucleic acids are the C3'-endo 

and C2'-endo conformations (Figure 22b). They are defined when the C3' and C2' are placed 

upwards of the mean plane of the sugar ring. C3'-endo is the sugar conformation prevalent in 

RNA double helix while C2'-endo is the one in canonical B double stranded DNA. The shorter 

phosphate-phosphate distance of C3′-endo compared to C3’-exo results in a more compact 

double helix (Figure 22). 

The tertiary arrangement of a DNA helix is of threefold and defines the A, B and Z 

DNA forms (Table 1 and Figure 23). They are classical examples to illustrate structural 

polymorphism of DNA. They differ in all the structural parameters: 
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a. Handedness - right or left 

b. Length of the helix turn 

c. Axis and diameter of the helix  

d. Number of base pairs per turn 

e. Depth of the grooves 

f. Intrastrand phosphate-phosphate distance 

 

Figure 23. Representative double-helical structures of A, B and Z DNAs. 

The most common form under physiological conditions is form B. The two chains run 

in antiparallel direction around a common axis to form a right-handed helix. The purine and 

pyrimidine bases of both polynucleotide chains face towards the inner core of the helix, while 

the sugar and phosphate groups are on the outside of the coil. The propeller has 10 nucleotides 

per turn, all of C2'-endo / Anti conformations. The bases are located in a plane perpendicular 

to the axis of the DNA helix. Two deep grooves are distinguished as major and minor. 

Form A is sometimes observed in some regions of DNA especially in presence of high 

concentration of Mg2+ or under dehydrating conditions. It has physiological functions and is 

observed in several DNA / protein complexes. It has 11 nucleotides per turn of the helix, all 

conformations are C3'-endo / Anti. Compared to B DNA, it is shorter and wider than B DNA, 

the major groove being narrower and deeper while the minor one is broader and shallow. 

As for the Z-shape, for zigzag, Z DNA is observed in DNA sequences rich in G•C base 

pairs. Its biological function is unclear. The unstable Z-DNA form prevails at high salt 

concentrations and in the presence of polyvalent metal ions. Z-DNA has a left handed helix 

and a single deep groove resulting from the alternation of purine (C3'-endo / syn) and 

pyrimidine (C2'-endo / anti) nucleotides (Shing and Carter, 2011). The Z helix is more 

elongated and narrower than A and B helixes.  
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Table 1. Average structural parameter for the 3 helical forms of DNA. 

Parameter A-DNA B-DNA Z-DNA 

Helix handedness right right Left 

Residues per turn 11 10.5 12 

Rotation per residue (°) 32.7 36 -10, -50 

Axial rise [Å] 2.9 3.4 -3.9, -3.5 

Helix pitch (°) 32 34 45 

Base pair inclination (°) 12 2.4 -6.2 

Diameter of helix [Å] 23 20 18 

Base orientation dA,dT,dC 

dG 

anti  

anti 

anti 

anti 

anti 

syn 

Sugar pucker dA,dT,dC 

dG 

C3'-endo 

C3'-endo 

C2'-endo 

C2'-endo 

C2'-endo 

C3'-endo 

Intrastrand phosphate-

phosphate distance [Å]  

dA,dT,dC 

dG 

5.9 

5.9 

7.0 

7.0 

7.0 

5.9 

 

The quaternary structure is basically the high-level organization of DNA into 

chromosomes. 

1.3.2.2. Non-canonical structure of nucleic acids 

A number of non-canonical structures of DNA/RNA were reported. Polymorphism of 

DNA (Figure 24) extend from a simple mismatch to more complicated structures like 

quadraplexes and iMotifs, that take part in cellular processes like replication, transcription, 

recombination and repair. Some of these structures are highlighted below.    

Cruciform structure formation requires regular inverted repeats of 6 or more 

nucleotides in the DNA sequence. Formation of cruciform is dependent on various factors like 

activation energy, salt concentration and temperature. They are involved in DNA supercoiling, 

positioning of the nucleosomes, replication and regulation of gene expression (Brázda et al., 

2011).  

Hairpin arise from single-strand DNA or RNA sequences having complementary 

sequences at the two ends of the sequence, which hybridize to form the stem, while the non-

hybridizing residues in the middle of the sequences form the loop. Depending on the salt 

concentration, sugar moiety and oligomer concentration, they can exist in equilibrium with a 

duplex structure. Hence, they are molded either like a cruciform structure is formed or from a 

single strand DNA (ssDNA) which is produced during various cellular process like replication 

(Bikard et al., 2010). Thermodynamically, hairpins with long stems are genetically unstable, 

and play crucial roles in gene expression, recombination and transcription.  
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Figure 24. Bouquet of non-canonical structures. Adapted from (Kaushik et al., 2016) 

Bubble and Bulges appear in DNA duplexes in the form of unpaired nucleotides on 

one strand. They are located within one strand or on both strands (internal loop) or at a junction. 

These structures are prone to protein interactions. Moreover, they appear in bent DNA to 

release the strain and thereby enhance the process of wrapping DNA around histones 

(Grinevich et al., 2015). 

Bending is required to achieve the structural compactness of DNA/RNA. The 

formation of bends is driven through protein binding or specific sequences. DNA packaging 

into the nucleosomes require 147 base pairs of DNA wrapped around a histone octamer and it 

is achieved through DNA bending (Crick and Klug, 1975).  

Triplex is formed when a single strand triplex forming oligonucleotide (TFO) 

recognizes an oligopurine•oligopyrimidine duplex and binds itself along the axis in a specific 

manner through Hoogsteen or reverse Hoogsteen hydrogen bonds (Felsenfeld et al., 1957). 

However, the formation of triplexes is dependent on factors such as the length of the 

oligonucleotide, base composition, divalent cation, pH and temperature. 

iMotifs are four stranded, cytosine rich, DNA secondary structures that are comprised 

of two parallel-stranded DNA duplexes held together in an antiparallel orientation by 
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intercalated, cytosine–cytosine+ base pairs (Day et al., 2014). These structures are stabilized by 

acidic pH and are used in the field of nanotechnology as pH switches.   

Guanine quadruplexes, discovered in 1962 by Gellert et al, are formed based on the 

cyclic arrangement of G-tetrads through Hoogsteen hydrogen bonding (Gellert et al., 1962; 

Kaushik et al., 2016). These are highly stable structures due to the stacking of the hydrophobic 

quartets upon one another, hydrogen bonding within each quartet and coordination of 

monovalent counterions (Na+, K+) (Kaushik et al., 2016). The classification of H-quadruplexes 

can be based on its trans stoichiometry (uni-, bi- and tetramolecular), orientation (parallel, anti-

parallel and mixed), shapes (chair or basket) and loops (lateral, propeller, diagonal, V-shaped) 

(Karsisiotis et al., 2013). 

1.3.3. Fluorescence Nucleobase Analogues 

The naturally occurring nucleobases are practically non-emissive in neutral aqueous 

conditions, having a fluorescence quantum yield less than 3×10-4 along with a sub-picosecond 

excited state lifetime (Leonard and Tolman, 1975; Sinkeldam et al., 2010). It is not surprising, 

because Nature preserves the genetic material by making them non-reactive, thus even if the 

bases are photoexcited they rapidly decay to ground state (Serrano-Andrés et al., 2006).  

Thus, in order to fluorescently monitor biomolecular interactions involving nucleic 

acids, a reporter fluorophore has to be introduced in nucleic acids either by covalently attaching 

a fluorophore to nucleobases or designing a fluorescent nucleobase. A timeline displaying the 

developments made in fluorescent nucleobase analogues is presented in Figure 25. Fluorescent 

labeling of nucleic bases can be achieved through external or internal modifications. Modifying 

nucleic acids by covalently attaching fluorophores to the backbone at the end of or within an 

oligonucleotide sequence, but outside the actual base stack, is referred to external modification 

(Wilhelmsson, 2010). The attached external fluorophores such as fluorescein and rhodamine 

derivatives, Alexa dyes and Cy dyes have very high molar absorptivities and high fluorescence 

quantum yield. Consequently, the obtained photostable and highly bright fluorescent nucleic 

acids are useful in gel electrophoresis experiments and different microscopy techniques. 

Internal modification relates to the covalent attachment of a fluorophore replacing a specific 

nucleobase. These planar aromatic fluorophores are called fluorescent nucleobase analogues 

(Wilhelmsson, 2010; Wilson and Kool, 2006). These fluorophores are meant to preserve the 

DNA/RNA structure whereas, they may or not have the possibility to establish a Watson-crick 

base pairing. Fluorescent nucleobase analogues are used at specific positions in order to track 
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preferential binding sites of biomolecules. In comparison to external modification, these 

fluorophores are less bright, have the possibility of being environment sensitive, and are prone 

to change the folding of DNA/RNA structure. Different classes of fluorescent nucleoside 

analogues are described below. 

 

Figure 25. Timeline of fluorescent nucleobase development. In 1969, Stryer reported the first 

canonical fluorescent nucleobases, featuring 2Ap and formycin; in 1972, Leonard 

synthesized the first non-canonical fluorescent nucleobase, etheno-dA. The 

fluorescent nucleobase family gradually expanded during the following two decades, 

including m5K reported in 1990 by McLaughlin and pteridines by Hawkins in 1995. 

C-glycosidic nucleobases with hydrocarbon fluorophores directly attached to the 

sugar were first reported by Kool in 1996. Since 2000, the number of fluorescent 

nucleobases has increased markedly, featuring notable examples such as BPP by 

Saito and Okamoto, tC by Wilhelmsson, dUPhen (Hocek) and thieno-appended 

analogues of Tor. Dozens of non-canonical nucleobases have been introduced since 

2010. Adapted from (Xu et al., 2017). 

Chromophoric base analogues are fluorescent analogues that replace natural 

nucleobases by polycyclic aromatic hydrocarbons (PAH) which do not form Watson-Crick 

base pairs (Figure 26). On the bright side, they have close to unity fluorescence quantum yield 

and an isolated absorption band (> 345 nm) facilitating selective excitation in the presence of 

the natural nucleobases (Wilson and Kool, 2006). The applications of such fluorophores are 

well defined, such as PAH that has been used to investigate enzyme-substrate recognition 

(Wilson and Kool, 2006). The photophysics of the probe is sensitive to the neighboring bases 

and pH, hence depending on the environment, different quantum yield is obtained. Another 

example is the coumarin 120-containing nucleoside analogues that are designed to pair with an 
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abasic site in DNA (Sakata et al., 2011; Sen et al., 2005). They have been used to explore the 

DNA dynamics (Andreatta et al., 2005; Berg et al., 2008) and electron transfer in DNA 

(Grigorenko and Leumann, 2008; Properties, 2009).  

 

Figure 26. Selected examples of chromophoric base analogues, where R is 2′-deoxyribose. 

Pteridines are the naturally occurring and widely used fluorophore that are mostly 

developed by the Hawkins and co-workers (Hawkins, 2008a, 2001) (Figure 27). They absorb 

in the blue region (300 nm) and emit in the visible region (~430 nm), also have an intense 

fluorescence quantum yield (0.39–0.88). The most prominent G (3-MI and 6-MI) and A (6-

MAP and DMAP) analogues are shown in Figure 27. These are environment sensitive probe, 

hence when incorporated in oligonucleotide they show varying quantum yield which is 

dependent on the nature of the neighboring residues. The drawback of these residues is that 

they slightly hampers the stability of the oligonucleotide duplex structure which was observed 

due to the deviation in melting temperature of the duplex structures (Hawkins, 2001). Pteridines 

are successfully utilized for several applications such as, single molecule detection purpose (3-

MI) (Hawkins, 2008b); to study the mechanism of the RecA-mediated DNA strand exchange 

(6-MI) (Roca and Singleton, 2003); premelting transition studies of DNA A-tracts (Augustyn 

et al., 2006) and as a probe for base flipping by DNA photolyase (Wilhelmsson, 2010; Yang 

and Stanley, 2006). 

 

Figure 27. Selected examples of pteridines (R ) 2′-deoxyribose or ribose). (MI = methyl 

isoxanthopterin; DMAP = dimethylaminopteridine) 
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Nucleosides containing expanded nucleobases are obtained by adding aromatic rings 

onto the purines or pyrimidines, which results in an extended conjugation with natural 

nucleobases (Figure 28). Having an expanded structure basically does not impair the hydrogen 

bonding face of the nucleobase, but the increased size of the nucleobase might obstruct the 

resulting oligonucleotide. The most beneficial aspect is the improvement of the photophysical 

properties. With the expanded base, the absorption becomes red-shifted compared to their 

natural counterpart and so does the emission band. This also results in favorable increment in 

quantum yield and brightness. One of the crucial fluorophore that proved useful for single 

nucleotide polymorphism (SNP) analysis was developed by Saito and co-workers (Okamoto et 

al., 2003a), and was called base discriminating fluorescent nucleoside. These probes were 

either having an extended base or an expanded base. Benzopyridopyrimidine (BPP) and 

naphthopyridopyrimidine (NPP) are examples of cytosine analogues that forms wobble base 

pairs with A, and Watson-Crick base pair with G, and can report SNP with a respectable 

quantum yield of ~ 0.1–0.3 (Okamoto et al., 2003a). Later Saito and co-worker synthesized 

analogues of pyrimidine-discriminating fluorescent nucleotides (Okamoto et al., 2003a; 

Sinkeldam et al., 2010).  

 

Figure 28. Expanded nucleobase analogues (R = 2′-deoxyribose). 

Nucleosides containing extended nucleobases are obtained by extending purines and 

pyrimidines by conjugating them with known fluorescent moieties (Figure 29). The resulting 

chromophores possess enhanced photophysical properties resembling to the parent 

fluorophore. Basically, the two partners, purine/pyrimidyne and fluorophore, are joined 

together via non-conjugating linkers.  As an example of such system, a xanthene-type 

fluorophore was attached to dideoxynucleotides using an ethynyl linker, and was used for 

sequencing application (Thoresen et al., 2003; Whitcombe et al., 1999). In addition to the 

fluorophore-nucleobase linkage, they have also a quencher-nucleobase linkage that has been 

developed for molecular beacon and sequencing application (McKeen et al., 2003; Seela et al., 

2001). Another application to monitor SNP with extended nucleosides has been shown by 

Hocek and co-workers (Vrábel et al., 2007). They used a system in which the pyrimidine and 
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purine analogues were conjugated with bipyridine, terpyridine, and phenanthroline moieties 

using phenyl and ethynyl linkages (Vrábel et al., 2008).  

Recently, A. Burger and coworkers developed 2-thienyl-3-hydroxychromone (3HCnt), an 

extended fluorescent nucleobase analogue that comes from the family of 3-hydroxychromones 

(Figure 29). 3HCnt  acts as a universal nucleoside analogue able to substitute any of the natural 

nucleobases (Dziuba et al., 2012). 3HCnt is up to 50-fold brighter than 2Ap and exhibits a dual 

emission as a result of an excited-state intramolecular proton transfer (ESIPT) reaction 

(Demchenko et al., 2013; Sengupta and Kasha, 1979) between the initially excited normal form 

(N*) and its tautomer (T*). The ratio between the two bands is sensitive to the polarity and H-

bond donor ability of the probe microenvironment. The photophysical properties of this probe 

as substituted in oligonucleotides are discussed in section 4.2 of results and discussion. 

 

Figure 29. Extended nucleobase analogues (R = 2′-deoxyribose). 

Isomorphic Nucleobases are the most advantageous fluorescent nucleobases, but they 

are difficult to design. They are heterocyclic compounds resembling to their native 

nucleobases; structurally in shape and size, and functionally in Watson-Crick base pairing. The 

clear advantage of these analogues is their structural similarity to natural nucleosides that 

portray minimal perturbation upon substitution.   

Since last five decades, 2-Aminopurine (2Ap) has become the most widely used 

fluorescent nucleoside, and is thus regarded as the ‘Gold standard’ (Ward et al., 1969). It is an 

analogue of adenine, with enhanced photophysical properties. As a free probe it has isolated 
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absorption (303 nm), minimal sensitivity to pH change and a high quantum yield of 0.68 in 

water (Ward et al., 1969). Upon incorporation in oligonucleotides, it is quenched through 

neighboring residues, resulting in a strong drop in quantum yield (0.02–0.1). 2Ap establishes 

stable Watson-crick base pairs with T/U and in some cases with C (Nordlund et al., 1989; 

Sowers et al., 2000, 1987). The quenching of 2Ap’s fluorescence upon incorporation in 

oligonucleotides has been exploited to develop a number of fluorescence based assays. 

Theoretical and experimental approaches have investigated the origin of its unique 

photophysical properties (Jean and Hall, 2002; Lobsiger et al., 2014; Nir et al., 2001; Serrano-

Andrés et al., 2006) 

 

Figure 30. Unnatural base pairs: (a) s–y, (b) s–z, (c) v–y, (d) v–z, and (e) the AP–T base pair. 

2-amino-6-(2-thienyl)purine (s) and 2-oxopyridine (y), 2-amino-6-(2-

thiazolyl)purine (v) and y, and s and imidazolin-2-one (z) (Mitsui et al., 2007).  

A unique application of 2Ap derivatives was demonstrated by Hirao and co-worker 

who designed (Figure 30) (Hirao et al., 2002; Kimoto et al., 2007; Morohashi et al., 2012) 

purine analogues, like 2-amino-6-(2-thienyl)purine (s) and 2-amino-6-(2-thiazolyl)purine (y), 

that form an unnatural base pair. The photophysical characterization of 2-amino-6-(2-

thienyl)purine as substituted in oligonucleotide have been discussed in section 8 of Appendix. 

These derivatives of 2Ap have red-shifted absorption band in comparison to 2Ap (∼355 nm), 
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and a strong emission (Φ ≈ 0.4) in the visible range (∼450 nm) (Mitsui et al., 2007). These 

unnatural base pairs are an expansion to the genetic alphabets which  provide platform for the 

site-specific, enzymatic incorporation of extra, functional components into nucleic acids (Hirao 

et al., 2012). Functionalized unnatural base pairs having fluorescent dyes are successfully 

incorporated into the nucleic acids by polymerase. Furthermore, a modified unnatural base pair 

with a combination of fluorophore-quencher have been developed for their function in PCR 

amplification and their applications as sensing and diagnostic tools (Kimoto et al., 2011).   

 

Figure 31. Emissive RNA Alphabet. Adapted from (Shin et al., 2011). 

The main limitation with 2Ap and their derivatives is their low quantum yield when 

incorporated in oligonucleotides. Tor and coworkers succeeded to overcome this limitation by 

designing a series of thieno-appended analogues (Shin et al., 2011) (Figure 31). Our interest 

was focused on the guanine analogue, called as Thieno[3,4-d]-guanosine (thG). As a free probe, 

in comparison to 2Ap, it exhibits a slightly lower quantum yield of 0.48, but an improved red-

shifted absorption maximum and an emission centered around 460 nm. When incorporated in 

oligonucleotides, thG was found to perfectly replace G residues and form stable Watson-Crick 

base pairs. In addition, thG shows high quantum yields and rather simple fluorescence decays 

(Sholokh et al., 2015). thG can be incorporated in oligonucleotides either by solid phase 

synthesis or enzymatic syntheses. The T7 RNA polymerase can initiate and maintain the 

transcription mechanism with thG nucleobases, which results in the formation of fully modified 

and highly emissive RNA transcripts in which all the natural guanosines are replaced by the 

thG analogue (McCoy et al., 2014). Tor and co-workers also designed further improved 

isomorphic nucleoside analogues  derived from the isothiazolo[4,3- d]pyrimidine (tzX, X= 

nucleobase) core that has a basic nitrogen corresponding to N7 of the purine core (Rovira et 

al., 2015). They are even closer to the native nucleobases and appear useful for monitoring 
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biomolecular interactions that depend upon the basicity and coordinating ability of this basic 

nitrogen. However, in comparison to the thG-analogues, the tzG-analogues have somewhat 

weaker photophysical properties, having more blue-shifted absorption and emission profile, 

and somewhat lower quantum yields. The tzG-analogues were notably used to monitor the 

deamination activity of adenosine deaminase. 

1.3.4. Emerging Applications of Fluorescent Nucleobase Analogues 

Fluorescent nucleobase analogues have been employed in a large number of chemical, 

structural, biophysical and biochemical implementations, including single nucleotide 

polymorphism detection (Okamoto et al., 2003b, 2003c), microenvironment monitoring 

(Brauns et al., 1999; Jeong et al., 2009), and monitoring structural and morphological changes 

(Börjesson et al., 2009; Godde et al., 2000; Hwang et al., 2005), as well as enzyme activity 

(Kirk et al., 2001; Raney et al., 1994; Sandin et al., 2009; Xu et al., 2017). A recent example 

illustrating the potency of the fluorescent nucleobases is the application of thA to monitor the 

activity of adenosine-to-inosine RNA editing adenosine deaminase acting on RNA (ADAR) 

enzymes (McCoy et al., 2014; Rovira et al., 2015; Xu et al., 2017). As this fluorescent 

nucleobase fits into the enzyme pocket, it is not only able to monitor the deamination process 

but also to probe the enzyme editing site (Rovira et al., 2015; Xu et al., 2017). 

 

Figure 32. Kinetic and thermodynamic investigation of the effects of mercury on DNA 

metabolism. The fluorescent thymine can chelate mercury with another thymine ring 

and link DNA strands. This can be used to probe mercury metabolism in vivo and to 
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study the effects of mercury on DNA status. k1, strand displacement rate constant;k-1, 

reverse reaction rate constant. Adapted from (Xu et al., 2017) 

Application of fluorescent nucleobase analogues are now observing a drift from in vitro 

towards in vivo applications. As negatively charged nucleobases are not taken up by the cells, 

they have to be tailored into neutral nucleosides. For example, the recently developed 

fluorescent thymidine analogue DMAT has been used to monitor in real-time the mercury-

induced DNA metabolism in vivo (Schmidt et al., 2016) (Figure 32). The kinetic and 

thermodynamic parameters of Hg binding to T-T mismatches were monitored through 

fluorescent sensitive DMAT-A base pairs positioned few base pairs away. In another example, 

two fluorescence nucleoside analogue (uridine-furan and etheno-cytidine) were used as tools 

to study in vivo nucleoside transporter-related activity (Claudio-Montero et al., 2015). Human 

concentrative nucleoside transporters (hCNTs) transport most of the nucleoside derived drugs 

across the plasma membrane thus they are of important interest for predicting drug sensitivity. 

Both the fluorescent nucleoside analogues showed high binding affinity to the hCNTs and thus 

allowed visualization of transporters, through confocal microscopy and flow cytometry, in 

living cells and prediction of nucleoside-derived drug sensitivity. 
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The objective of this research work is to characterize and target the interaction of HIV-

1 nucleocapsid protein (NC) with its target nucleic acids (NA) using fluorescence nucleobase 

analogues as a tool to monitor these biomolecular interactions. Among the HIV proteins, the 

NC is projected a potential target for drug development because of its several key functions in 

the whole viral life cycle and its mutation intolerant nature. Due to the nucleic acid chaperoning 

property of NC, it effectively remodels the NA so that the most thermodynamically stable 

conformations are gained. NC exhibits also sequence specific binding to numerous defined 

single strand NA containing unpaired guanine residues that involve a dynamic interaction 

between the F16 residue of ZF1 and the W37 residue of ZF2 with unpaired guanines. Although, 

the structural and mechanistic aspects of these interactions have gained advances, its dynamics 

aspects are difficult to understand due to limitation of suitable tools. 

In this context, the primary objective of the research work was to characterize the NC 

promoted annealing of (–)PBS with (+)PBS sequences as it plays critical role in the second 

strand transfer during reverse transcription. Till now, using fluorescence-based approach, vital 

insights have been gained into the annealing pathways, but they were not successful in 

providing the complete information regarding the rate constants associated with the reaction 

pathways. This is because the probes were either insensitive to the annealing of the loops or 

the poor brightness. Herein, we use new fluorescent nucleobase analogues in order to determine 

the full set of kinetic rate constants.  

Second objective of the work is to target a unique interaction where NC binds in 

opposite direction to the nucleic acid chain in NC-RNA complexes as compared to NC-DNA 

complexes. Critical analysis of the 3D resolved structure made across several complexes of NC 

with nucleic acids sequences highlighted the role of sugar moiety to pivot the NC’s binding 

direction. Herein, we use fluorescence based approach in order to observe whether the NC’s 

opposite binding direction also follows within the RNA and DNA variant of the same nucleic 

acid model sequence (PBS and SL3). thG was site specifically incorporated by replacing the 

key residue in (–)PBS (G7) and SL3 (G10 and G12) sequences. Binding affinity of NC to each 

labeled and non-labeled ODNs were determined by using ITC and fluorescence titration. NC 

induced conformational changes in the probe were monitored through fluorescence lifetime 

changes. MD simulations provided structural insight in the binding mode adopted by NC for 

RNA and DNA.  
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Third objective is to participate in the high throughput screening of NC inhibitors and 

determine their IC50 through NCinh assay and to develop a site-specific assay for screening 

inhibitors able to compete with NC for its specific binding sites. This work is performed within 

the THINPAD (Targeting the HIV-1 Nucleocapsid Protein to fight Antiretroviral Drug 

Resistance) consortium that is organized from leading scientists in the field of NC. This project is 

supported by The European Union’s Seventh Framework Programme (FP7) for Research and 

Innovation. 
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3. Materials and Methods 
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The reagents used in this work are of spectroscopic grade and purchased from Sigma-

Aaldrich, Fluka, Carl Roth and Fischer scientific unless mentioned otherwise. Mass spectra 

were recorded on Bruker HCT Ultra and Agilent Technologies Accurate-Mass Q-TOF LC/MS 

6520 mass spectrometers. 

3.1. Fluorescent Nucleobase Analogues 

2-Aminopurine (2Ap): Free 2Ap and 2Ap-substituted in ODN were synthesized and 

purified by IBA GmbH Nucleic Acids Product Supply (Germany). 

2-Amino-6-(2-thienyl)purine (s): The deoxyribonuceleoside s was synthesized by the 

research group of Hirao, RIKEN, Japan (Fujiwara et al., 2001) (Figure 33)  

 

Figure 33 Chemical structures of A: Adenine, 2Ap: 2-Aminopurine and s: 2-Amino-6-(2-

thienyl)purine. 

Thienoguanosine (thG): Thienoguanosine was synthesized by the group of Prof. 

Yitzhak Tor (UCSD) as previously described (Shin et al., 2011; Sholokh et al., 2015) (Figure 

34).  

 

Figure 34 Chemical structures of G: Guanine; and the tautomers of Thienoguanine thG-H1 

and thG-H3. 
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3.2. Peptides  

A. General Synthesis Method 

The fundamental principle of this technique involves the incorporation of N-a-amino 

acids into a peptide of any desired sequence with one end of the sequence remaining attached 

to a solid support matrix. While the peptide is being synthesized usually by stepwise methods, 

all soluble reagents can be removed from the peptide-solid support matrix by filtration and 

washed away at the end of each coupling step. After the desired sequence of amino acids has 

been obtained, the peptide can be removed from the polymeric support. 

- Synthesis 

Solid state peptide synthesis was performed on a 433a peptide synthesizer (ABI, Foster 

city, CA). The synthesis was performed at a 0.1 mmole scale using the standard side-chain 

protected 9-fluorenylmethoxycarbonyl (Fmoc) amino acids and HBTU/HOBt coupling 

protocol. Fmoc-Asn(trt)-Wang resin LL (100–200 mesh) was used as a solid support. 

Deprotection steps were performed by piperidine and automatically controlled by UV 

absorbance at 301 nm. At the end of the synthesis, the peptidylresin was isolated, and washed 

with NMP, methanol and dichloromethane.  

- Cleavage and Deprotection 

Cleavage of the peptidylresin and deprotection were performed for 2 hours using 20 

mL trifluoroacetic acid (TFA) solution containing water (5%, v/v), phenol (1%, v/v), 

thioanisole (5%, v/v), triisopropylsilane (2.5%, v/v) and ethanedithiol (2.5%, v/v). The peptide 

was precipitated using ice-cold diethyl ether and pelleted by centrifugation. The pellet was air 

dried for about 15 min, solubilized with aqueous TFA (0.05%, v/v) and lyophilized.  

- Purification 

Purification by HPLC was carried out on a C18 column (NucleosilVarioPrep 100A, 

5μm; 250Х10) in water/acetonitrile mixture containing 0.05% TFA. The labeled peptide was 

monitored at 230 nm and 370 nm (M3HFaa dye absorption). After purification, the fractions 

containing the pure peptide were combined and lyophilized. 

B. Preparation of Zn-bound NC Peptides 

The lyophilized peptides were dissolved in MilliQ water, at a concentration of 

approximatively 1 mg/mL. The concentration of stock solution was calculated by using the 
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extinction coefficient of ε280 = 5700 M-1cm-1.  As cysteines are rapidly oxidized, it is suggested 

to quickly estimate the concentration of peptide and then add 2.5 molar equivalents of ZnSO4 

to the stock solution. Later pH was raised to its final value by adding buffer. The stock solution 

was aliquoted (15 µL) in a low binding eppendorfs and stored at -20 °C. 

C. Protein Activity Test 

To check the activity of prepared peptide, we used cTAR sequence, a 55 nucleotide 

DNA hairpin, whose 5’ and 3’ ends are fluorescently labeled with Rhodamine6G and Dabcyl 

respectively. NC has the ability to destabilize the cTAR structure (Beltz et al., 2003; Bernacchi 

et al., 2002). In absence of NC, the cTAR hairpin induces a strong fluorescence quenching of 

the Rh6G emission by the Dabcyl group. When NC is added in 10-fold excess, it melts the 

bottom of the cTAR stem, thereby increasing the distance between the two fluorophores and 

increasing the fluorescence emission of Rh6G. Based on this destabilization mechanism, it is 

observed that after interaction with NC, fluorescence of Rh6G increases by 6-7 times. 

3.3. Oligonucleotides  

Oligonucleotides used: (–)PBS_DNA, (–)PBS_RNA, (+)PBS_DNA, (+)PBS_RNA, 

2Ap6(–)PBS DNA, 2Ap7(–)PBS DNA, SL3_RNA, SL3_DNA were synthesized and purified 

by IBA GmbH Nucleic Acids Product Supply (Germany) (Figure 35). Their stock solutions 

were prepared in MQ water and concentrations were calculated from their absorbance using 

the molar extinction coefficients at 260 nm provided by the supplier. 

 

Figure 35 Oligonucleotides used in the thesis. 

The (–)PBS oligonucleotides site specifically substituted by s at position 6 and 7 were 

synthesized with an Applied Biosystems 392 DNA synthesizer. The DNA fragments were 

purified with a Gilson HPLC system, using an analytical column (Synchropac RPP, 250 x 4.6 

mm, Eichrom Technologies). The detailed protocol is described in (Hikida et al., 2010; Mitsui 

et al., 2007) (Figure 36).  
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Figure 36 (–)PBS with s and 2Ap substituted at positions 6 and 7. 

thG- substituted RNA and DNA copies of (–)PBS and SL3 sequences were synthesized 

by group of Prof. Tor (UCSD) as described in (Sholokh et al., 2015)(Figure 37). 

 

Figure 37 Oligonucleotides used in the thesis. 

Double stranded oligonucleotides were prepared by the heat-cooling method, with 

water bath heating at 90 °C for 3 mins for concentrated solution of oligonucleotide and its 

complementary sequence in the ratio of 1:3 and then, cooling down to room temperature for 

45–60 mins. 
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3.4. UV/Vis Absorption and Fluorescence Spectroscopy. 

UV spectrophotometry uses the absorbance of the light by an analyte at a certain 

wavelength to determine the analyte concentration. The component diagram of a typical 

spectrophotometer is shown below Figure 38.  

 

Figure 38 UV/Vis diagram. 

Light from source (visible region: Tungsten lamp; UV region: Hydrogen/Deuterium 

lamp) of UV and/or visible gets separated into the component wavelengths by a prism or a 

diffraction grating. Each monochromatic beam in turn splits into two equal intensity beams by 

the half mirror. One beam, passes through the sample solution (I) whereas the other passes 

through the reference solvent cuvette (Io). The intensities of both beams are measured by the 

detector. Absorbance was determined using the beer lambert equation: 

𝐴 = −𝑙𝑜𝑔10 (
𝐼𝑜

𝐼
) =  𝜀𝑐𝑙        (9) 

where A is the absorbance of light through a material of path length l and concentration 

c; ε is the extinction coefficient of the absorbing material, I0 and I correspond to the intensities 

of the incident and transmitted light. Absorption spectra were recorded on a Cary 400 or 4000 

UV-visible spectrophotometer (Varian).  

 Thermal Denaturation Experiment 

Melting temperatures were determined by measuring absorbance changes at 260 nm as 

a function of temperature using a Varian Cary 400 spectrophotometer equipped with a Peltier 

temperature controller. Absorbance was recorded in the forward and backward directions from 

20 to 80 or 90 °C at a rate of 0.5 °C/min. Prior to the melting experiment, the double stranded 
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ODNs were prepared. Thermal denaturation experiments were performed either in 25 mM 

TRIS-HCl, 30 mM NaCl, 0.2 mM MgCl2 pH 7.5, or in 10 mM cacodylate buffer, 150 mM 

NaCl pH 7.5. To avoid the evaporation of the samples they were overlaid with mineral oil 

(Sigma-Aldrich). Melting temperatures were determined from the first derivative of thermal 

denaturation curves 

The excitation spectrum is defined as the fluorescent intensity measured as a function 

of excitation wavelength at a constant emission wavelength; the emission spectrum is the 

fluorescent intensity measured as a function of emission wavelength at a constant excitation 

wavelength (So and Dong, 2002). A typical fluorometer includes a light source (Xenon lamp), 

a specimen chamber with integrated optical components, and high sensitivity detectors. The 

optical paths of the excitation and the detection light paths are along the orthogonal axis. The 

orthogonal arrangement ensures minimal leakage of excitation light into the detection side. The 

component diagram shown below illustrates the principle of a fluorimeter Figure 39.  

 

Figure 39 Fluorescence spectrofluorometer block diagram. 

Fluorescence spectra were recorded on a FluoroMax 3 or 4 spectrofluorimeter (Horiba) 

equipped with a thermostated cell compartment at 20 ± 0.5 °C. Fluorescence spectra were 

corrected for Raman scattering, lamp fluctuations and instrumental wavelength dependent bias. 

Quantum yield of s- and thG-labeled sequences were calculated using quinine sulphate in 0.5 

M sulphuric acid (Ф = 0.546) (Melhuish, 1961) or free 2-Aminopurine nucleoside (0.68)(Ward 

et al., 1969). Equation used for calculation fluorescence quantum yield  

𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑌𝑖𝑒𝑙𝑑 =  𝐹. 𝑄. 𝑌.𝑆𝑡𝑑  (
𝐴𝑏𝑠 𝑆𝑡𝑑

𝜆  ×  𝐼𝑛𝑡𝑔. 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑥

𝐴𝑏𝑠𝑥
𝜆  × 𝐼𝑛𝑡𝑔. 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑡𝑑

) (
𝜂𝑥

𝜂𝑆𝑡𝑑
) 
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Where, F.Q.Y.Std is the fluorescence quantum yield of the reference, 𝐴𝑏𝑠 𝑆𝑡𝑑
𝜆  and 𝐴𝑏𝑠𝑥

𝜆 

is the absorbance of the standard and the sample at the characteristic wavelength, Intg Intensityx 

and Intg Intensitystd is the integral intensity of the fluorescence spectra curves, while 𝜂𝑥 and 

𝜂𝑆𝑡𝑑 are the refractive index of the solution and the standard. All the fittings were carried using 

origin 8.6.  

Photodegradation experiments 

Photodegradation experiments of thG nucleoside and thG substituted in ODN were 

carried out in dark quartz micro-cuvettes with 50 μL. To check the photostability, the solutions 

of thG in 25 mM TRIS-HCl buffer (pH=7.5), 30 mM NaCl and 0.2 mM MgCl2 were 

continuously illuminated at 325, 350, 360, 370 or 380 nm during 2000 s. The samples were 

illuminated using the xenon lamp of a FluoroMax 4 spectrofluorimeter. Excitation and 

emission slits were of 8 nm (or mentioned specifically Ex 1 nm and Em 29 nm). The emission 

signal was detected as a function of time.  

Binding affinities 

To determine the affinity of the labeled ODNs for the peptide, fixed amounts of labeled 

ODN (1 µM) were titrated with increasing concentrations of NC(1–55) or NC(11–55). 

Excitation wavelength for thG10SL_RNA, thG12SL_RNA and thG10SL_DNA was at 345 nm 

and thG12SL_DNA was excited at 360 nm. The binding data were fitted with the help of the 

Scatchard equation: 

𝐼 =  𝐼𝑜 −  
(𝐼𝑜 −  𝐼𝑡)

𝑁
× {

[1 + (𝑃𝑡 + 𝑛𝑁𝑡)𝐾𝑎] − √[1 + (𝑃𝑡 + 𝑛𝑁𝑡)𝐾𝑎]2 − 4𝑃𝑡𝑛𝑁𝑡𝐾𝑎
2

2𝐾𝑎
}       (10) 

where I and It are the signal at a given and a saturating peptide concentration, 

respectively, I0 is the signal in the absence of peptide, Nt is the total ODN concentration, Pt is 

the total concentration of peptide, Ka is the apparent affinity constant, and n is the number of 

binding sites. Noticeably, the apparent dissociation constant Kd = Ka
-1. 

Anisotropy titrations were performed on the same instrument. Excitation wavelength 

for thG10SL_RNA, thG12SL_RNA and thG10SL_DNA was at 345 nm and emission was 

collected at 475 nm. For thG10SL_DNA, excitation was at 360 nm and emission was collected 

at 475 nm. Anisotropy values were obtained by averaging 10 measurements. The affinity of 

the labeled ODNs for the peptide was calculated by titrating fixed amounts of labeled ODN (1 
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µM) with increasing concentrations of NC. The affinity constants were determined by fitting 

the fluorescence anisotropy changes to the following equation: 

𝑟 =   
𝑣𝑅𝑟𝑡 − 𝑟𝑑(𝑣 − 1)

1 + 𝑅𝑣 − 𝑣
        (11) 

where r and rt are the anisotropy values at a given and a saturating NC concentration 

respectively, and rd is the anisotropy in the absence of protein. R is the ratio of the QYs of the 

bound to free forms, Ka is the apparent affinity constant,  is the fraction of bound NC 

calculated as follows: 

𝑣 =  {
(𝐾𝑎

−1 + 𝑛𝐿𝑡 + 𝑃𝑡) − √(𝐾𝑎
−1 + 𝑛𝐿𝑡 + 𝑃𝑡)2 − 4𝑛𝑃𝑡𝐿𝑡

2𝐿𝑡
}        (12) 

where Pt and Lt are the concentrations of NC and ODN, respectively, and n is the 

number of NC proteins bound per ODN 

Deconvolution of Spectrum  

As the emission spectrum of the red-shifted tautomer can be obtained at excitation 

wavelengths > 350 nm, the emission spectrum of the blue-shifted isomer in protic solvents was 

extracted from the emission spectrum recorded at λex = 283 nm, by subtracting the emission 

spectrum of the red-shifted tautomer normalized at wavelengths > 525 nm. The individual 

absorption spectra of the two tautomers were deduced from the absorption spectrum of thG, by 

normalizing the excitation spectra at wavelengths (> 350 nm) where only the red-shifted form 

absorbs. 

3.5. Time Correlated Single Photon Counting 

Time-resolved fluorescence measurements were performed with the time-correlated 

single-photon counting technique. Excitation pulses at 315 nm with a repetition rate of 4 MHz 

were generated by a pulse-picked frequency-tripled Ti-sapphire laser (Tsunami, Spectra 

Physics) pumped by a Millenia X laser (Spectra Physics) (Bernacchi et al., 2002; Godet et al., 

2013). The fluorescence emission was collected through a polarizer set at magic angle and a 

16 nm band-pass monochromator (Jobin Yvon) at 370 nm for 2Ap and s fluorophores. The 

fluorescence emission was collected at 500 or 550 nm in order to collect emission only from 

thG-H1 tautomer. Single-photon events were detected with a micro-channel plate 

photomultiplier (Hamamatsu) coupled to a pulse pre-amplifier HFAC (Becker-Hickl GmbH) 

and recorded on a time-correlated single photon counting board SPC-130 (Becker-Hickl 
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GmbH). The instrumental response function (IRF) recorded with a polished aluminum reflector 

was characterized by a ~ 50 ps full-width at half-maximum. The mean lifetime <> was 

calculated from the individual fluorescence lifetimes (𝜏𝑖) and their relative amplitudes (𝛼𝑖) 

according to: 

< 𝜏 >= ∑ 𝛼𝑖  𝜏𝑖            (13)    

The population of dark species (𝛼0) were calculated by: 

𝛼0 = 1 − 𝜏𝑓𝑟𝑒𝑒 (𝜏𝑂𝐷𝑁 × 𝑅𝑚)        (14)⁄  

where, 𝜏𝑓𝑟𝑒𝑒 is the lifetime of the free nucleoside, 𝜏𝑂𝐷𝑁 is the measured mean lifetime 

of the probe within the ODN and 𝑅𝑚 is the ratio of their corresponding quantum yields. The 

amplitudes of the fluorescent populations 𝛼𝑖𝑐αic were recalculated according to 

𝛼𝑖𝑐 = 𝛼𝑖 × (1 − 𝛼0)       (15)  

Time-resolved intensity data were fitted using the maximum entropy method (Pulse 5 

software) (Brochon, 1994; Livesey and Brochon, 1987). In all cases, the 2 values were close 

to 1, indicating an optimal fit. The component diagram of TCSPC is shown below Figure 40: 

 

Figure 40 Schematic diagram of TCSPC. 
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3.6. Kinetic Measurements 

The stopped-flow technique is a kinetic method of analysis, designed to rapidly mix 

samples and reagents when using reactions with fast kinetics. Sample and reagents are loaded 

into two syringes (Figure 41), and precisely measured volumes are dispensed by the action of 

a syringe drive. The two solutions are rapidly mixed in a mixing chamber before flowing 

through an observation cell. The flow of sample and reagent is stopped by applying back 

pressure with the stopping syringe. The back pressure completes the mixing, and after that, the 

reaction is monitored spectrophotometrically. The dead time for the mixing of the sample and 

the reagent and initiation of the kinetics typically takes around 0.5 - 3 ms. 

 

Figure 41 Schematic diagram of Stopped flow. 

The kinetic curves were fitted using the following bi-exponential function:  

𝐼(𝑡) = 𝐼𝑓 − (𝐼𝑓 −  𝐼0)(𝑎 exp(−𝑘𝑜𝑏𝑠1(𝑡 − 𝑡0)) + (1 − 𝑎) exp(−𝑘𝑜𝑏𝑠2(𝑡 − 𝑡0)))           (16) 

where I0 and If are the initial and final intensities of thG7(–)PBS, respectively; a is the 

relative amplitude of the fast component; t0 is the dead time; and kobs1 and ko.bs2 are the apparent 

pseudo-first order rate constants.  

Assuming a two-step model, the kinetic rate constants were then determined from the 

dependence of kobs1,2 on the (+)PBS concentration according to:  

𝑘𝑜𝑏𝑠1 =  𝑘1[(+)PBS] +  𝑘−1            (17) 
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𝑘𝑜𝑏𝑠2 = (𝑘𝑓𝐾𝑚[(+)PBS])/(1 + 𝐾𝑚[(+)PBS]) + 𝑘−𝑓             (18) 

where k1 and k-1 are the kinetic rate constants for the formation and dissociation of the 

intermediate complex (IC); Km is the equilibrium constant (k1/k-1) for the formation of the IC ; 

while kf and k-f are the forward and backward rate constants for the conversion of the IC into 

the final duplex. 

A numerical approach using the Dynafit software (Kuzmič, 2009, 1996) was used to 

confirm the kinetic rate constants obtained using the analytical approach and to determine the 

intensities of the intermediate products formed in the (−)/(+)PBS annealing reaction. A typical 

script for the thG7(–)/(+)PBS system in the absence of NC is presented below: 

[task] 
   task = fit  ;  simulate | design 
   data = progress  ;  progress | rates | equilibria | generic 
[mechanism] 
   A + B <===> AB   :   k1  k-1 
   AB ===> C  :   kf  
[constants] 
  k1   = 8500  ?  
  k-1   = 0.003 ?  
  kf =  3.5e-4  ?  
[concentrations]    
[responses]    
[progress] 
   directory C:\Users\Rajhans\Desktop\DynaFit4\PBS6 
   extension txt 
  file     1000nM 
  concentration   A = 100e-9 , B = 1000e-9 
  responses  A = 0.18e+6  , AB = 0.4e+6 ? , C = 0.4e+6     
  file     2000nM 
  concentration   A = 100e-9 , B = 2000e-9 
  responses  A = 0.18e+6  , AB = 0.4e+6 ?  , C = 0.4e+6  
  file     3000nM 
  concentration   A = 100e-9 , B = 3000e-9 
  responses  A = 0.18e+6   , AB = 0.4e+6 ?  , C = 0.4e+6   
  file     4000nM 
  concentration   A = 100e-9 , B = 4000e-9 
  responses  A = 0.18e+6  , AB = 0.4e+6 ?  , C = 0.4e+6 
  file     5000nM 
  concentration   A = 100e-9 , B = 5000e-9 
  responses  A = 0.18e+6  , AB = 0.4e+6 ?  , C = 0.4e+6  
  file     6000nM 
  concentration   A = 100e-9 , B = 6000e-9 
  responses  A = 0.18e+6  , AB = 0.4e+6 ?   , C = 0.4e+6   
[output] 
   directory ./FP/out_rtpt 
[end] 
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3.7. Isothermal Titration Calorimetry (ITC) 

ITC is a label free technique that determines the binding affinity and the thermodynamic 

parameters in a single experiment. It has two chambers: a reference chamber and a reaction 

chamber that are connected to the heat sensing device. It directly measures the heat released or 

absorbed during a gradual titration of the ligand into the sample cell containing the biomolecule 

of interest. The component set up of an ITC instrument is shown below. 

 

Figure 42 Isothermal calorimetry. 

Measuring heat transfer during binding enables determination of binding constants 

(Kd), reaction stoichiometry (n), enthalpy (∆H) and entropy (ΔS). Using the relation: 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆            (19) 

∆𝐺 = 𝑅𝑇 ln 𝐾𝑑              (20) 

R is the universal gas constant 8.31447 J·K-1·mol-1 and T is the temperature in Kelvin. 

The binding parameters of NC for native and labeled (–)PBS sequences in 50 mM 

HEPES, pH 7.5, 30 mM NaCl and 0.2 MgCl2 were determined using NanoITC 

microcalorimeter. The heat of reaction was measured at 20 °C for 25 injections of 2.5 µL NC 

into 300 µL of oligonucleotide sequences. The syringe mixing speed was 310 rpm. The heat of 
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dilution was obtained by titrating the NC into a cell of buffer and was subtracted from the raw 

data. Binding curves were analyzed by non-linear least-squares fitting of the baseline-corrected 

ITC data to appropriate binding models, using origin 8.6 program. 

3.8. Molecular Dynamics (MD) 

The NMR structure of SL3 was retrieved from the protein data bank under the PDB ID 

1BN0, while the structure of its complex with the NC was coded 1A1T (De Guzman, 1998; 

Pappalardo et al., 1998). In both cases, the first NMR model was used as starting structure in 

MD simulations. According to prior studies (Sholokh et al., 2016), MD simulations were 

performed with Amber14 program (ff14SB force field) (D.A. Case, 2015), on molecular 

species included in a rectilinear box of TIP3P-type water molecules, and for each system up to 

500 ns of unrestrained MD trajectories were produced in the NPT ensemble to monitor 

structural and energetic changes due G replacement with thG in position 10 or 12 of SL3. The 

thG-H1 isomer was considered in this analysis. 

For each system, the whole simulation consisted of the following consecutive steps: i) 

the solvent including water and counterions was energy minimized for 500 steps by the steepest 

descent algorithm (SD), followed by 1500 steps by the conjugate gradient algorithm (CG) 

while keeping the solute as frozen (ibelly flag); ii) the whole system was then energy minimized 

for 1000 steps by the SD, and 4000 steps by the CG; iii) the temperature was increased from 0 

to 300 K in 100 ps using the Langevin thermostat in the NVT ensemble; iv) density was 

equilibrated in the NPT ensemble in 100 ps using the Berendsen barostat; iv) unrestrained MD 

trajectories were finally produced for 500 ns in the NPT ensemble. MD analysis has been 

performed by the cpptraj script and the MMPBSA.py python program of Amber14.  
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4.1. CHAPTER 1: Photophysical 

Investigation of Fluorescent Nucleobase 

Analogues. 

 

 

 

 

 

4.1.1. Publication 1: Tautomers Of A Fluorescent G Surrogate and 

Their Distinct Photophysics Provide Additional Information 

Channels. 

In search of a fluorescent nucleoside analogue that provides minimal structural and 

functional perturbation, we came across a set of newly synthesized  purine (thA, thG) and 

pyrimidines (thU, thC) fluorescent analogues that were derived from a single heterocyclic core 

of thieno[3,4-d]-pyrimidine by the partner group of Yitzhak Tor (Shin et al., 2011). They 

demonstrated that these analogues, as a free probe and substituted in short oligonucleotide 

sequences, showed structural isomorphicity to G and high fluorescence quantum yield. This 

urged us to utilize thG as a tool for investigating the mechanisms of (–)PBS and (+)PBS 

annealing and protein-nucleic acids interactions. Prior to this, we characterized the 

photophysical properties of thG as a free probe and substituted at G7 residue of (–)PBS.  

In-depth photophysical characterization of thG nucleoside (Publication 1), showed that 

in buffer solution thG exists in two ground state tautomers with significantly shifted absorption 

and emission wavelength maxima but with similar quantum yields (0.49 ± 0.03) (Publication 

1, Figure 1). Through TD-DFT calculations, the two tautomers were identified as thG-H1 (red 



Results and Discussions - Chapter 1 

 

82 

 

shifted) and thG-H3 (blue shifted). Absorption spectra of thG-H1 resembled with absorption 

spectra of thG nucleoside in 1,4-dioxane. Using the extinction coefficient of thG in 1,4-dioxane, 

we deduced the molar extinction coefficient and proportion of thG-H3 tautomer. This helped us 

to deduce that the proportions and molar extinction coefficients of both tautomers in buffer 

were similar. By examining the photostability of thG tautomers, the thG-H1 tautomer was found 

more photostable than the thG-H3 tautomer (Publication 1, Figure S2). Moreover, the 

equilibrium between the two thG tautomers was found to be dependent on the hydrogen-bond 

donor ability of the solvent.  

Using quantum mechanical calculation (in collaboration with Roberto Improta), the 

tautomers were identified as thG-H1 and thG -H3 (keto-amino) tautomers (Publication 1, Figure 

3). thG-H1 was found to be dominant in gas phase and 1,4-dioxane. In water, its energy was 

found to be only 0.11 eV higher than thG-H3, which was assigned to the blue shifted tautomer. 

Using TD-DFT calculation the computed absorption and emission spectra for both tautomers 

confirmed that thG-H1 and thG-H3 were responsible of the photophysical features of thG. 

We then examined the ground state equilibrium between the tautomers of dthG (deoxy-

thG) as substituted at position 7 (G7 residue) of (–)PBS. In single stranded (–)PBS, the 

photophysical characterization of dthG appeared similar to thG nucleoside in buffer revealing 

the existence of both tautomers. However, when the dthG7(–)PBS was annealed with its 

complementary (+)PBS, the equilibrium shifted completely towards dthG-H1 tautomer. 

Comparing the emission spectra of matched and mismatched (–)/(+)PBS duplex revealed that 

thG-H3 tautomer is absent in matched duplex while its distribution increased depending on 

opposite base (T<G<A). Thus, the relative emission of the two dthG tautomers was found highly 

sensitive to nature of opposite base and can be used to detect single nucleotide polymorphisms. 

In addition, investigating the response of both tautomers in dthG7(–)PBS upon interaction with 

NC(11–55) protein, revealed that dthG-H1 is more sensitive towards protein binding. 

Further, molecular dynamic (MD) simulations were performed on NMR structure of 

Δ(–)PBS to compare the unbiased MD trajectories and thermodynamic parameters for dG and 

dthG. They showed no difference in the behavior of dG and dthG in Δ(–)PBS. In the duplex 

structure, as substituted in matched (–)/(+)PBS, thG-H1 (three hydrogen bonds) behaves similar 

to dG and is comparatively more stable than thG-H3 (two hydrogen bonds). In addition, MD 

simulations showed that the two tautomers were mainly in anti-conformation in both stem-loop 

and duplex structures. 
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Tautomers of a Fluorescent G Surrogate and Their Distinct
Photophysics Provide Additional Information Channels
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Abstract: Thienoguanosine (thG) is an isomorphic nucleoside
analogue acting as a faithful fluorescent substitute of G, with
respectable quantum yield in oligonucleotides. Photophysical
analysis of thG reveals the existence of two ground-state
tautomers with significantly shifted absorption and emission
wavelengths, and high quantum yield in buffer. Using (TD)-
DFT calculations, the tautomers were identified as the H1 and
H3 keto-amino tautomers. When incorporated into the loop of
(¢)PBS, the (¢)DNA copy of the HIV-1 primer binding site,
both tautomers are observed and show differential sensitivity to
protein binding. The red-shifted H1 tautomer is strongly
favored in matched (¢)/(++)PBS duplexes, while the relative
emission of the H3 tautomer can be used to detect single
nucleotide polymorphisms. These tautomers and their distinct
environmental sensitivity provide unprecedented information
channels for analyzing G residues in oligonucleotides and their
complexes.

The structure, acid-base features, and tautomeric equilibria
of the canonical and non-canonical nucleobases found in
nucleic acids have been the subject of intense investigation for
decades.[1] While the role of minor tautomers in mutagenesis
has been one of the primary foci,[2] recent observations
suggest that such isomeric nucleobases also play key roles in
regular nucleic acid structure and function.[3] As the popula-
tion of distinct tautomeric forms is impacted by their micro-

environment, this added level of complexity also provides
opportunities to further advance our understanding of nucleic
acid structure and dynamics.

In this context, emissive nucleoside analogues, which have
become powerful biophysical tools,[4] provide unique pros-
pects. A tautomerizable nucleoside analogue, where the
tautomers would have distinct absorption and emission
spectra, could be instrumental for investigating the micro-
environment of a nucleobase with greater insight compared to
tautomerically stable probes. Herein we analyze the photo-
physics of thienoguanosine, thG, a highly useful G surrogate,[5]

and identify two environmentally sensitive ground-state
tautomeric forms (Figure 1) which display distinct absorption
and emission spectra. The equilibrium between the two
tautomers is mainly governed by the hydrogen-bond donor
properties of the solvent. Their observed sensitivity to the
microenvironment was rationalized by ab initio calculations.

Figure 1. Structures of guanosine (G) and the two emissive tautomers
of thienoguanosine (thG–H1 and thG–H3). (d)Rib= d-ribose or
2’-deoxy-d-ribose.
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By exploring single- and double-stranded thG-containing
oligonucleotides, as well as DNA–protein complexes, we
illustrate that this probe provides compelling biophysical
information and greater insight compared to monochromatic
or ratiometric fluorescent nucleosides.

The emission spectra of either thG or dthG in water and
methanol are surprisingly complex.[5a,b] Excitation at both l =

360 and 380 nm gives a similar emission spectrum (Figure 2a,
orange) centered at l = 468 nm. When the excitation energy is
progressively increased, a blue-shifted emission with a max-
imum at l = 400 nm appears and becomes dominant for
excitation below l = 300 nm (Figure 2a, magenta and blue).
The simplest interpretation is that thG exhibits two ground-
state species with shifted emission spectra. This hypothesis is
supported by recording excitation spectra for various emis-
sion wavelengths (see Figure S1 in the Supporting Informa-
tion). Since sample purity was rigorously maintained, the two
ground-state species likely correspond to two tautomers,
differing by their excitation and emission spectra. This
conclusion is highly likely, since tautomers have also been
observed for guanosine itself.[6]

Spectral deconvolution yields well separated emission and
absorption spectra of the individual tautomers in buffer
(Figure 2b,c). Thus, by judiciously selecting the excitation and
emission wavelengths, each tautomer can be individually
excited and observed. The fluorescence quantum yield (QY)
is found to be constant (0.49� 0.03) over a large range of
excitation wavelengths (l = 290–375 nm) and close to earlier
reported values,[5a,c] thus indicating that the two forms possess
similar QY values. The individual absorption spectrum of the
red-shifted form (Figure 2c) is very similar to the spectra of
thG and dthG in 1,4-dioxane.[5a,b] By using the molar extinction
coefficient of thG in 1,4-dioxane (e333 = 4530m¢1 cm¢1),[5a] it is
possible to calculate the concentration of the red-shifted
tautomer in buffer and deduce the proportion (44%) and the
molar extinction coefficient (e313� 4600m¢1 cm¢1) of the blue-
shifted tautomer. Importantly, the red-shifted tautomer,
excited at l = 350–380 nm, is highly photostable (see Fig-
ure S2). In contrast, extended illumination at higher energies
(e.g., l = 325 nm), where both tautomers absorb, show con-
tinuously diminished emission, thus suggesting that the blue-

shifted tautomer is less photostable and that the two
tautomers are equilibrating.

The spectroscopic properties of thG were comparatively
characterized in various solvents (see Table S1). In methanol,
ethanol, and n-butanol (see Figures S3 and S4) spectra
comparable to those in buffer are obtained, thus indicating
that thG also exists in the two tautomeric forms in these
solvents. In all other tested solvents, the emission spectra are
independent on the excitation wavelength and indicate that
only the red-shifted tautomer is present (see Figure S3c). Its
emission maximum correlates well with the empirical polarity
index ET(30) of the solvent (see Figure S5). Interestingly,
although N,N-dimethylformamide, acetonitrile, and methanol
are all rather polar [ET(30) > 43 kcalmol¢1, e> 32], the blue-
shifted tautomer is seen only in methanol, thus strongly
suggesting hydrogen-bonding stabilization. This proposal is
further substantiated by the deconvoluted absorption spectra
in polar protic solvents (see Figure S6), as they show that the
relative concentration of the blue-shifted isomer linearly
increases with solvent proticity (see Figure S6d and
Table S1). Thus, the equilibrium between the two thG
tautomers is dependent on the hydrogen-bond donor ability
of the solvent.

To assist in identifying the two emissive isomers, the
ground-state energy minima of five hypothetical thG tauto-
mers were optimized (Figure 3) in the gas phase, 1,4-dioxane,
and water at the DFT level, by using PBE0 and M052X
functionals and including solvent effects with the Polarizable
Continuum Model (PCM; see Tables S2 and S3). The keto-
amino thG–H1 tautomer (Figure 3a) appears largely domi-
nant over the other tautomers (Figures 3b–e), with the
exception of water where it is only 0.11 eV more stable than

Figure 2. Absorption and emission spectra of thG in TRIS-HCl buffer 25 mm, pH 7.5, 30 mm NaCl, 0.2 mm MgCl2. a) Absorption (green dashed
line) and emission spectra of thG at different excitation wavelengths: l = 283 nm (magenta line); l = 298 nm (blue); l =320 nm (green);
l = 345 nm (black); and l=360 nm (orange). The emission spectra were normalized at their maxima. The normalized emission spectrum at
lexc =380 nm fully overlaps that at lexc =360 nm and is not shown. b) Deconvoluted emission spectrum of thG, obtained at lex = 283 nm.
c) Deconvolution of the absorption spectrum of thG (black line) in its two ground-state forms (colors as in b).

Figure 3. Schematic drawing of the thG tautomers which have been
calculated: a) keto-amino thG–H1, b) keto-amino thG–H3, c) enol-
amino, d) keto-imino, and e) enol-imino.
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thG–H3, when including only bulk solvent effects. Therefore,
the two thG keto-amino tautomers, analogous to the most
stable tautomer of guanine in solution,[7] are likely populated
in water.

Independent of the inclusion of one solvent molecule in
the computational model (see Figures S7 and S8, and
Table S2), the thG–H1 tautomer appears as the main contrib-
utor to the observed spectroscopic properties of thG in 1,4-
dioxane and is therefore assigned to the red-shifted isomer.[8]

The thG–H1 and thG–H3 tautomers are found to be almost
isoenergetic in water when solute–solvent hydrogen bonds
are considered (see Figure S7 and Table S2). These data
suggest that both tautomers likely contribute to the spectro-
scopic properties of thG in water and that the blue-shifted
isomer corresponds to the thG–H3 tautomer. The computed
energy difference between the two tautomers (< 0.05 eV, that
is, < 400 cm¢1) is beyond the expected accuracy of our
method, thus explaining why the molar fraction of the thG–
H3 tautomer (see Table S2) does not perfectly match with the
experimental value (0.44).[9] The computed vertical absorp-
tion and emission energies (see Table S4)[10] indicate that,
independent of the functional, the lowest-energy transition in
water for both tautomers corresponds to a bright pp* S0!S1

transition attributed to a HOMO!LUMO excitation.[11]

Interestingly, small differences in the shape of the frontier
orbitals involved in the electronic transition (see Figure S9)
result in fairly large differences
in the computed vertical excita-
tion energy, so that the absorp-
tion maximum of the thG–H1
tautomer in water is red-shifted
by 30–40 nm, with respect to
that of thG–H3. The absorption
maxima predicted for the two
forms, namely l = 330~ 350 nm
(depending on the solvation
model) for thG–H1 and l =

300~ 310 nm for thG–H3, are
very close to the experimental
ones (see Figures S10a, 2c and
Table S1).[12] TD-DFT excited-
state geometry optimizations
(employing either PBE0 or
M052X) predict a stable S1 min-
imum for both tautomers in all
examined solvents.[13] This S1

minimum is characterized by
a fairly large oscillator strength,
of about 80% of the value
computed for absorption. This
minimum contrasts guanosine,
for which the same functionals
predict a barrierless decay to S0,
through an effective conical
intersection.[14] Both thG tauto-
mers therefore show promising
electronic features with poten-
tially robust emissive states. The
computed emission wavelengths

of l = 448 and 383 nm for the thG–H1 and thG–H3 tautomers,
respectively,[15] (see Figure S10b), are in good agreement with
the spectroscopic data in buffer (Figure 2b). Moreover, by
weighting the contribution of the different tautomers with
a simple Boltzmann equation, the computed fluorescence
spectra (see Figure S10b) are consistent with the experimen-
tal ones. Taken together, PCM/(TD)DFT calculations indi-
cate that the thG–H1 and thG–H3 tautomers are responsible of
the observed photophysical features of thG.

To examine the ground-state equilibrium between the
tautomers of thG in oligonucleotides, the DNA equivalent of
the 18-mer primer binding site of HIV-1 was selected as
a biologically relevant model (see Figure S11). It forms
a stem-loop of known three-dimensional structure [16] and is
involved in the second strand transfer of HIV-1 reverse
transcription.[17] Deoxy-thG (dthG), which exhibits spectro-
scopic properties very similar to thG,[5b,c] substitutes the dG7
residue in the loop [labeled dthG7(¢)PBS; Figure 4a inset].
Comparing the emission spectra at various excitation wave-
lengths clearly shows that both dthG tautomers are present in
the (¢)PBS loop (Figure 4a). In contrast, when dthG7(¢)PBS
is annealed to its complementary (++)PBS strand (see Fig-
ure S11), forming the dthG7(¢)/(++)PBS duplex (Figure 4c,
inset), the normalized emission spectra obtained at different
excitation wavelengths all overlap, thus indicating that the
dthG–H1 tautomer is predominant in the double-stranded

Figure 4. Emission spectra of dthG7(¢)PBS (a, b) and dthG7(¢)/(++)PBS duplexes (c, d). a) Emission
spectra of dthG7(¢)PBS recorded at different excitation wavelengths: l = 298 nm (blue), l = 320 nm
(green), l =345 nm (black), l = 360 nm (orange), and 380 nm (red). Inset: structure of dthG7(¢)PBS, the
G7 residue (red) is replaced by dthG. b) Emission spectra of dthG7(¢)PBS in the absence (black) and in
the presence of 1 to 6 equivalents of NC(11-55) protein (red to violet) at l=320 nm excitation
wavelength. c) Emission spectra of the matched dthG7(¢)/(++)PBS duplex at the same excitation
wavelengths as in (a). Inset: structure of dthG7(¢)/(++)PBS duplex. In mismatched duplexes, the C
residue in green is replaced by a A, G or T. (d) Emission of the matched and mismatched dthG7-labeled
(¢)/(++)PBS duplexes at l= 310 nm excitation wavelength. The base opposite to dthG is C (black, native
duplex), T (blue), G (red), or A (green). Inset: zoom of the blue part of the spectra. The buffer was as in
Figure 2.
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form (Figure 4c). Although not attributed to the two tau-
tomers disclosed here, a similar switch from a two-band to
a single-band emission was previously observed upon tran-
sition from single- to double-stranded structures in model thG-
and dthG-labeled sequences,[5a,b] thus indicating that the
tautomeric shift reported here is not unique for (¢)PBS.

Distinct behavior was seen for mismatched duplexes
between dthG7(¢)PBS and complementary (++)PBS oligonu-
cleotides, where dthG was placed opposite A, T, or G
(Figure 4d). In contrast to the fully complementary duplex,
where the dthG–H3 tautomer is nearly absent, its relative
contribution as estimated by the ratio of the fluorescence
intensities at l = 375 and 550 nm, I375/I550, increases by a factor
of three and five in the mismatched duplexes with opposite
dG and dA, respectively (see Table S5). For the mismatched
duplex with opposite dT, the difference with the matched
duplex is marginal, but the two duplexes can be easily
discriminated by the twofold difference in their quantum
yield (see Table S5). This difference likely results both from
a change in polarity (as suggested by the changes in the
positions of the dthG–H1 emission maximum; see Table S5)
and in the quenching by the flanking nucleobases, as a result
of the different geometries adopted by dthG and its neighbors
in the two duplexes. The relative emission of the two dthG
tautomers and the dthG quantum yield are therefore highly
sensitive to the nature of the opposite base and can thus be
used in combination to detect single nucleotide polymorph-
isms.

To further illustrate the potential applications of the two
spectrally distinct dthG tautomers when in oligonucleotides,
we investigated their response to binding of the HIV-
1 nucleocapsid NC(11-55) peptide to the (¢)PBS loop.[16b]

Titration with NC(11-55) protein resulted in a strong increase
of the dthG–H1 peak of dthG7(¢)PBS, but only a marginal
increase in the dthG–H3 peak (shift in the H3/H1 emission
ratio from 1.1 to 0.8), thus indicating that the relative emission
of the two tautomers is sensitive to protein binding (Fig-
ure 4b). As NC(11-55) was reported to direct the G7 base
toward the exterior of the loop[16b] and restrict its collisions
with the neighboring bases,[18] it appears that the dthG–H1
tautomer is more sensitive than dthG–H3 to these changes.

To shed light on the biophysical observations, molecular
dynamics (MD) simulations using the ff12SB AMBER force
field were performed on the NMR structure of DP(¢)PBS
DNA,[16b] a truncated form of (¢)PBS lacking the 3’ overhang
(see Figure S11). Analysis of MD trajectories (0.2 ms of
unbiased MD trajectory production) and thermodynamic
parameters unequivocally shows that there are no differences
in the behavior of either dG or the two dthG tautomers in two
representative DP(¢)PBS structures (see Figures S12, S13a,b,
and S14). In contrast, analysis of local motion within the
Watson–Crick base pair established by either dG or dthG at
position 7 in the (¢)/(++)PBS DNA duplex clearly shows that
dthG–H1 has the same behavior as dG, whereas dthG–H3 pairs
with the counterpart dC with lower stability (see Fig-
ure S13d). A local structural analysis of MD trajectories
further confirms that dthG–H1 forms the three canonical
hydrogen-bonds with dC as observed for guanine (Fig-
ure S15a,b), while dthG–H3 contacts dC in multiple non-

canonical complexes (see Figures S15c and S16). Overall, and
consistently with experimental observations, the replacement
of dG with dthG–H3 in the (¢)/(++)PBS DNA duplex is
noticeably less favorable than the replacement with dthG–H1,
from a thermodynamic and conformational viewpoint.[19]

Finally, MD simulations reveal that the two tautomers are
mainly in the anti-conformation in both the stem-loop and the
duplex (see Table S6).

In summary, through a careful analysis of its spectroscopic
properties as a free nucleoside and when incorporated into
oligonucleotides, thienoguanosine thG was observed to exhibit
two ground-state tautomers with significantly shifted absorp-
tion and emission spectra. Quantum mechanical calculations
unambiguously identified the two tautomers as being the
keto-amino tautomers, thG–H1 and thG–H3. MD studies
further suggested thG–H1 behaves similarly to its native
counterpart in both the single- and double-stranded struc-
tures studied here, whereas the thG–H3 tautomer behaves
comparably to G only in the loop of a stem-loop DNA. When
incorporated into double-stranded sequences, thG–H3 tauto-
merizes to the favorable and benign thG–H1 tautomer, which
forms a stable Watson–Crick base pair. The ratio of the two
tautomers and their relative emission were found to be highly
sensitive to the nucleic acid strandedness, to the nature of the
opposite base in DNA duplexes, as well as to protein binding.
The tautomerism of the isomorphic thG, which is associated
with distinct and highly emissive states, thus constitutes
a highly useful additional channel of information that
provides an unprecedented window into features of substi-
tuted G residues in oligonucleotides.
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1. Materials 

Thienoguanosine (thG) and 2ʹ-deoxy-thienoguanosine (dthG)-labeled ()PBS DNA were 

synthesized as previously described by Shin et al.[1] and Sholokh et al.,[2] respectively. Stock 

solutions of thG were prepared in spectroscopic grade DMSO. The complementary native and 

mismatched (+)PBS DNA were purchased from IBA Nucleic Acids Product Supply 

(Germany). dthG-labeled duplexes ()/(+)PBS were prepared by hybridization of dthG7()PBS 

and (+)PBS samples (concentration ratio 1:3), denatured at 85 °C for 3 min and then slowly 

cooled down to the room temperature. NC(11-55) peptide was synthesized on a Applied 

Biosystems A433 peptide synthesizer, as described by de Rocquigny[3] and prepared using 2.2 

equivalents of Zn(II). All experiments with aqueous solutions were done in 25 mM TRIS-HCl 

buffer (pH=7.5), 30 mM NaCl and 0.2 mM MgCl2. 
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2. Spectroscopic measurements 

Spectroscopic grade solvents were used for absorption and fluorescence spectroscopy 

measurements. Absorption spectra were recorded on a Cary 4000 UV-visible 

spectrophotometer (Varian). Fluorescence excitation and emission spectra were recorded on a 

FluoroMax 4 spectrofluorimeter (Jobin Yvon) equipped with a thermostated cell compartment 

at 20 ± 0.5 °C. Fluorescence spectra were corrected for Raman scattering, lamp fluctuations 

and instrumental wavelength-dependent bias. thG concentration in the various solvents was 6 

µM, with a final DMSO concentration of 0.1 v/v %. Photostability measurements were 

performed in cuvettes with 50 µL total volume under continuous illumination at 325, 350, 

360, 370 or 380 nm during 2000 s. 

Deconvolution procedure 

As the emission spectrum of the red-shifted tautomer can be obtained at excitation 

wavelengths > 350 nm, the emission spectrum of the blue-shifted isomer in protic solvents 

was extracted from the emission spectrum recorded at ex = 283 nm, by subtracting the 

emission spectrum of the red-shifted tautomer normalized at wavelengths > 525 nm. The 

individual absorption spectra of the two tautomers were deduced from the absorption 

spectrum of thG, by normalizing the excitation spectra at wavelengths (> 350 nm) where only 

the red-shifted form absorbs.  
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Figure S1. Excitation spectra of thG in TRIS-HCl buffer (25 mM, pH=7.5, 30 mM NaCl, 0.2 

mM MgCl2) at different emission wavelengths: 550 nm (black line), 500 nm (red), 450 nm 

(blue), 400 nm (magenta), 375 nm (green). A maximum at 334 nm is observed when emission 

is recorded in the 500–550 nm range, and the excitation maximum is progressively blue-

shifted down to 313 nm, for shorter wavelength emission. 

 

Figure S2. Photostability of the thG ground-state tautomers in buffer. Kinetics at different 

excitation and emission wavelengths, respectively: 325 and 400 nm (black); 325 and 525 nm 

(red); 350 and 525 nm (blue); 360 and 525 nm (magenta); 370 and 525 nm (green); 380 and 

525 nm (dark blue). Concentration of thG was 1 µM.  
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Table S1. Photophysical Properties of thG in Buffer and Organic Solvents [a] 

Solvent ET(30) ε α  𝜆𝑎𝑏𝑠 𝜆 𝑒𝑚
325 𝜆𝑒𝑚

380 

Buffer  63.1 78.35 1.17 0.18 322 454 468 

Methanol 55.4 32.61 0.93 0.62 326 458 459 

Ethanol 51.9 24.85 0.83 0.77 329 458 458 

n-Butanol 49.7 17.33 0.79 0.88 330 457 457 

2-Methyl-2-butanol 41.0 5.82 0.28 0.93 335 446 445 

N,N-dimethylformamide 43.2 37.21 0.00 0.69 338 440 440 

Acetonitrile 45.6 35.68 0.19 0.31 330 432 432 

Ethyl acetate 38.1 5.98 0.00 0.45 331 426 427 

1,4-Dioxane 36.0 2.20 0.00 0.37 330 424 426 

[a] ET(30) is the empiric polarity index[4] reported in kcal mol–1; ε is the dielectric constant at 

298 K; α is the Kamlet-Taft solvent hydrogen bond acidity; β is the Kamlet-Taft solvent 

hydrogen bond basicity;[5] λabs is the absorption maxima in nm; 𝜆 𝑒𝑚
325 and 𝜆 𝑒𝑚

380 are the 

fluorescence emission maxima at 325 nm and 380 nm excitation wavelengths, respectively, 

reported in nm. TRIS-HCl buffer 25 mM, pH=7.5, 30 mM NaCl, 0.2 mM MgCl2 was used. 

 

Figure S3. Normalized emission spectra of thG in various solvents. (a) Buffer (black), 

methanol (red), ethanol (blue), n-butanol (green), 2-methyl-2-butanol (magenta), λex = 325 

nm; (b) Emission spectra in the same solvents as in (a), but with λex = 380 nm; (c) Emission 

spectra in 1,4-dioxane (black), N,N-dimethylformamide (red), ethyl acetate (blue), acetonitrile 
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(magenta), λex = 325 nm; superimposed normalized thG emission spectra in 1,4-dioxane 

obtained at λex = 380 nm (orange dash).  

 

Figure S4. Deconvolution of the emission spectra of thG nucleoside in buffer (a), methanol 

(b), ethanol (c), and n-butanol (d). Excitation wavelength was 325 nm. 

 

Figure S5. Dependence of the Stokes shift of the red-shifted tautomer on the empiric polarity 

index ET(30) (symbols). The red line represents the linear fit to the data with a slope of 0.12  

0.01 and an intercept of 2.4  0.6, R2 = 0.90. The ET(30) values of the solvents are given in 
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Table S1. The Stokes shift was calculated from the absorption and emission maxima, after 

correction of the emission spectra according to: Intensity (ῡ) = Intensity (λ) × λ2.[6] 

 

Figure S6. Deconvolution of the absorption spectra of thG in methanol (a), ethanol (b) and n-

butanol (c) (black line) in its two ground state forms. Absorption spectra of the blue-shifted 

(blue dashed line) and red-shifted (red dashed line) forms. (d) Dependence of the 

concentration ratio of the two forms on the Kamlet-Taft’s hydrogen bond acidity α. The 

straight line which was fitted to the experimental points shows a slope of 1.08 ± 0.08 and an 

intercept of -0.51 ± 0.08, R2 = 0.98. 

3. Quantum chemical calculations 

The analysis is based on Density Functional Theory (DFT) and on its time dependent 

extension (TD-DFT), by using two different functionals, PBE0[7] and M052X.[8] PBE0 is a 

parameter-free functional, which accurately describes the bright states of guanine[9] and of 

other nucleobases,[10] providing vertical excitation and emission energies within ∼0.15 eV of 

the corresponding experimental absorption maxima. Since PBE0 might overestimate the 

stability of charge transfer (CT) transitions[11] and to avoid any possible artifacts due to small 
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contribution of solute–solvent CT excitations, we have verified the results by using M052X 

functional, which is particularly effective for the treatment of non-bonding interactions and is 

not biased by the traditional failure of TD-DFT in describing CT states.[12] 

Geometry optimizations have been performed at the less computationally demanding 6-

31G(d) level, refining the vertical absorption νA and emission energies νE by single-point 

calculations employing more extended 6-31+G(d,p) and 6-311+G(2d,2p) basis sets. 

 

Table S2. Relative Energy (in eV) of the thG-H3 Tautomer with respect to the thG-H1 

Tautomer (taken as 0) Computed at the PCM/DFT/6-311+G(2d,2p) Level by Using Different 

Basis Sets and Geometries Optimized at the PCM/DFT/6-31G(d) Level [a]  

 PBE0 M052X 

 Gas phase 

6-31G(d) 0.441 (0.411) 0.439 (0.400) 

6-311+G(2d,2p) 0.399 0.396 

 Dioxane (PCM) 

6-31G(d) 0.349 (0.318) 0.345 (0.331) 

6-311+G(2d,2p) 0.297 0.292 

 Dioxane (PCM + 1 Dioxane) 

6-31G(d) 0.321 (0.299) 0.291 (0.226) 

6-311+G(2d,2p) 0.277 0.250 

 Water (PCM) 

6-31G(d) 0.199 (0.160) 0.181 (0.186) 

6-311+G(2d,2p) 0.114 0.103 

 Water (PCM+ 2H2O) 

6-31G(d) 0.214 (0.124) 0.179 (0.088) 

6-311+G(2d,2p) 0.067 0.054 

 Water (PCM + 6H2O) 

6-31G(d) 0.138 (0.141)  0.105 (0.141) 
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6-311+G(2d,2p) 0.049 [b] 0.023 [c] 

[a]  The values obtained by including vibrational corrections are in parentheses. At 300 K, the 

calculated molar fraction of the thG-H3 tautomer in water is 0.13[ b] and 0.29 [c]. 

Table S3. Relative Energy (in eV) of the Different thG Tautomers Computed at the 

PCM/PBE0/level by Using Different Basis Sets and Geometries Optimized at the 

PCM/PBE0/6-31G(d) Level [a] 

 thG-H3 Enol-amino Keto-imino Enol-imino 

 Gas Phase 

6-31G(d) 0.44 (0.41) 0.33 (0.33) 0.31 (0.31) 0.83 (0.83) 

6-31+G(d,p) 0.43 0.25 0.31 0.75 

6-311+G(2d,2p) 0.40 0.24 0.29 0.72 

 Dioxane (only PCM) 

6-31G(d) 0.35 (0.32) 0.39 (0.38) 0.31 (0.29) 0.85 (0.86) 

6-31+G(d,p) 0.32 0.32 0.29 0.78 

6-311+G(2d,2p) 0.30 0.31 0.27 0.75 

 Water (only PCM) 

6-31G(d) 0.20 (0.16) 0.46 (0.45) 0.32 (0.35) 0.89 (0.91) 

6-31+G(d,p) 0.13 0.41 0.30 0.82 

6-311+G(2d,2p) 0.11 0.39 0.29 0.79 

[a] The values obtained by including vibrational corrections are in parentheses. The 

energy of the thG-H1 tautomer is taken as 0. 

Bulk solvent effects on the electronic states are accounted for with the polarizable 

continuum model (PCM).[13] The excitation and emission energies, νA and νE, are computed 

with the “standard” linear response (LR) implementation of PCM/TD-DFT, which has been 

also used in the excited-state geometry optimizations.[14] To verify the effect of the explicit 

inclusion of solute–solvent interaction on the optical properties of thG, we have included six 
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H2O (Figure S7a, b) or one dioxane (Figure S7c) molecule. In the excited-state geometry, the 

first solvation shell was fully optimized, i.e., was treated like solute degrees of freedom. 

 

Figure S7. Computational models used to study the absorption and emission spectrum of the 

thG-H1 and thG-H3 tautomers in water (with six water molecules of the first solvation shell) (a 

and b, respectively) and thG-H1 in dioxane, with one explicit dioxane molecule (c). 

In order to support the solidity of our computational analysis in water, we checked that 

our prediction do not qualitatively depend on the number of water molecules explicitly 

included in the computational model. In Table S2, we report the data obtained when only two 

water molecules, namely those H-bonded to the carbonyl group, are included in our model. In 

comparison with the calculations using six water molecules, the minimal model with two 

molecules of water already accounts for ~70% of the difference with respect to pure PCM 

calculations. Thus, the inclusion of only two water molecules, whose presence in the first 

solvation shell is extremely likely, is sufficient to provide similar stabilities for thG-H3 and 

thG-H1 tautomers.  

Furthermore, analysis of solute-solvent H-bond interactions performed by G, dthG-H1 or 

dthG-H3 within the context of the ()PBS molecule (Figure S12 structure #10, solvent 

exposed base) clearly confirmed that the solvation shell used in QM calculations may reflect 

the solvation shell observed in the DNA environment. Indeed, analysis of the solvation shell 

issuing from the MD simulations in the ()PBS molecule shows the existence of an average of 
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3.5 and 2.8 H-bonds between the solvent molecules and the dthG-H1 and dthG-H3 

tautomers, respectively (Figure S8). Considering that the thresholds for the definition of the 

solute-solvent H-bonds are rather strict (distance between the heavy atoms < 3 Å and angle > 

135° (CPPTRAJ default values, see Roe et al. [15]) and that our QM calculation shows that 2 

solute-solvent hydrogen bonds are sufficient to get the stability of the two tautomers very 

close, we can infer that the conclusions provided by QM calculations on the isolated bases 

apply also to the study of dthG in a DNA environment, such as in ()PBS.  

 

Figure S8. Average number of H-bonds calculated along MD trajectories for dthG-H1 and 

dthG-H3 in (–)PBS. 

Finally, to further confirm the relevance of the computational approaches used for thG, 

we applied them to 9-methyl-guanine for which estimates based on alternative solvation 

models (MD/FEP) are available. For 9-methyl-guanine•5H2O, including bulk solvent effect at 

the PCM level, the keto-amino (G-H1) was found to be more stable in aqueous solution than 

the enol (G-OH)  tautomer by 7.1 kcal/mol according to PCM/PBE0/6-

311+G(2d,2p)//PCM/PBE0/6-31G(d) calculations and by 6.2 kcal/mol according to 

PCM/M052X/6-311+G(2d,2p)//PCM/M052X/6-31G(d) calculations. Both values are very 

close to the estimates (5.7 - 7.5 kcal/mol) obtained by computational methods adopting 

MD/TI approaches to compute hydration energy. [16] 
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Table S4. Vertical Absorption and Emission Wavelengths Computed for the thG-H1 and thG-

H3 Tautomers at the PCM/TD-DFT/6-311+G(2d,2p) Level in Different Solvents and 

Solvation Models by Using M052X and PBE0 Functionals [a]  

thG-H1 tautomer thG-H3 tautomer 

PBE0 M052X PBE0 M052X 

Abs Em Abs Em Abs Em Abs Em 

Gas phase 

317 

(0.08) 

406 

(0.06) 

288 

(0.11) 

368 

(0.08) 

286 

(0.11) 

340 

(0.08) [b] 

261 

(0.15) 

330 

(0.09) [b] 

Dioxane (PCM) 

325 

(0.10) 

416 

(0.08) 

292 

(0.14) 

376 

(0.11) 

292 

(0.14) 

352 

(0.11) 

267 

(0.19) 

323 

(0.16) 

Dioxane (PCM + 1 Dioxane) 

330 

(0.11) 

418 

(0.08) 

295 

(0.15) 

378 

(0.11) 

293 

(0.13) 

353 

(0.12) 

269 

(0.20) 

332 

(0.14) 

Water (PCM) 

331 

(0.09) 

422 

(0.08) 

296 

(0.16) 

381 

(0.11) 

299 

(0.12) 

362 

(0.10) 

273 

(0.16) 

333 

(0.13) 

Water (PCM + 6H2O) 

350 

(0.08) 

448 

(0.07) 

308 

(0.12) 

402 

(0.10) 

309 

(0.10) 

383 

(0.08) 

279 

(0.14) 

349 

(0.11) 

[a] Oscillator strengths are given in parentheses. Geometry optimizations are at the PCM/TD-

DFT/6-31G(d) level. [b] 6-31+G(d,p) optimized geometries were used. 
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Figure S9. Frontier orbitals involved in the S0 S1 transition of the thG-H1 and thG-H3 

tautomers.  

 

Figure S10. Absorption (a) and emission (b) spectra of the thG-H1 (red) and thG-H3 (blue) 

tautomers.  The individual spectra and their sum weighted for their molar fraction were 

computed at PCM/TD-PBE0/6-311+G(2d,2p)/PCM/ PBE0/6-31G(d) level. The transitions 

have been convoluted by a phenomenological Gaussian with a HWHM of 0.25 eV. 
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Figure S11. Structures of the primer binding site (PBS) oligonucleotides used in this study. 

Table S5. Spectroscopic Parameters and Free Energy of Binding of dthG-containing Matched 

and Mismatched Duplexes [a] 

Opposite 

base to dthG7 

I375/I550 QYH1 λem
max (H1) ΔGH1 ΔGH3 

dC 0.13 ± 0.02 0.20 [b] 461 ± 1 -71 ± 1 -58 ± 1 

dT 0.14 ± 0.01 0.38 [b] 467 ± 1 -59 ± 1 -48 ± 1 

dG 0.35 ± 0.01 - 462 ± 1 -54 ± 1 -53 ± 1 

dA 0.65 ± 0.03 - 454 ± 1 -52.5 ± 0.8 -50 ± 1 

 

[a]Fluorescence emission spectra of dthG-containing matched and mismatched duplexes were 

recorded at 310 nm excitation wavelength; I375/I550 is the ratio of emission intensities at 375 

and 550 nm; QYH1 is the fluorescence quantum yield of the dthG-H1 tautomer; λem
max(H1) (in 

nm) is the fluorescence emission maxima of the dthG-H1 tautomer; ΔGH1/H3 is the free energy 

of binding (kcal/mol) of (+)PBS to ()PBS where dG7 was substituted by dthG-H1 or dthG-H3 

tautomer estimated using Molecular Mechanics Poisson-Boltzmann Surface Area approach 

along MD trajectories. The I375/I550 and λem
max(H1) values are the means from three 

experiments. [b] Values reported in [2].    
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4. Molecular Dynamics simulations 

4.1 Molecular dynamics simulations using the AMBER force field 

The family of ΔP()PBS DNA NMR structures[17] was provided by Nelly Morellet 

(personal communication). Two of these structures, namely structures #1 and #10, were 

selected as representative examples where the nucleobase at position 7 in the loop was in a π-

π stacked or solvent-exposed conformation, respectively (Figure S12). The ()/(+)PBS duplex 

structure was built with the Nucleic Acid Builder (NAB) molecular manipulation language, 

and the dG nucleotide at position 7 was manually replaced with dthG-H1 or dthG-H3.[18] For 

both dthG tautomers, bond lengths and partial charges were obtained by full geometry 

optimization at the DFT level, using the B3LYP functional in conjunction with the 6-

311++G(d,p) basis set. The remaining parameters were taken from the Amber ff12SB force 

field[19] which adds novel torsional parameters for backbone and side chain torsions to the 

ff99SB force field for proteins, and includes the torsional modifications already validated in 

the ff99bsc0 force field for nucleic acids. Each macromolecular system investigated by MD 

was solvated by a cubic box of TIP3P-typed water[20] buffering 8 Å from the molecular 

surface and the total charge was neutralized by the addition of Na+ counter ions. Water 

molecules were energy minimized for 500 steps using the Steepest Descent algorithm (SD) 

and a further 1500 steps using the Conjugate Gradient algorithm (CG), while keeping the 

solute as fixed. Removing the constraints, the solvated solute was energy minimized for 1000 

steps using the SD and 4000 steps using the CG before being heated at constant volume from 

0 to 300 K over 100 ps and using the Langevin thermostat. A density equilibration was carried 

out at constant pressure (NPT ensemble) for 100 ps, before running the production of 

unbiased MD trajectories for 200 ns. The frame with the lowest Root Mean Square Deviation 

(RMSD) with respect to the average structure of each system was extracted and used for 
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graphical representations of ()/(+)PBS DNA, while the representative structure of the most 

populated cluster of ΔP()PBS DNA trajectories was selected for graphical representation. 

The binding free energy between ()PBS and (+)PBS DNA was estimated by means of the 

Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach implemented 

in Amber12.[21] All MD simulations were performed with Amber12 on two Nvidia K20 

GPUs.[19b]  

 

Figure S12. Superimposition of representative structures of the most populated clusters 

extrapolated from MD trajectories of ΔP()PBS single-stranded DNA. Representative 

structures from MD simulations of structure #1 (a) and structure #10 (b). The nucleotide at 

position 7 highlighted by a black arrow is shown as sticks. ΔP()PBS DNA bearing dG at 

position 7 is in green, that bearing dthG-H1 is in cyan and that bearing dthG-H3 is in yellow. 

MD simulations of single-stranded ΔP()PBS DNA. The introduction of dthG-H1 or -H3 at 

position 7 in the single-stranded loop of the ΔP()PBS does not affect the overall 

conformation of the oligomer (Figure S13a, b).  The total energy of each ΔP()PBS system 

was nearly constant in both structures #1 and #10 during MD simulations, whereas structure 

#1 proved to be thermodynamically more stable than #10 (compare Figure S14a and b). 

Moreover, we checked whether the dthG tautomers could influence the conformational 
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population of ΔP()PBS DNA. MD trajectories of the single-stranded loop of wild-type 

ΔP()PBS and ΔP()PBS bearing dthG-H1 or dthG-H3 at position 7 were clustered. Results 

clearly show that in all MD simulations one cluster of loop conformations is predominant, 

occurring between 45 and 73% of MD frames (Figure S12). Notably, the conformation of the 

nucleoside at position 7 is highly comparable in the representative structures of the 

predominant cluster of wild-type ΔP()PBS and the two dthG-bearing systems, thus 

suggesting that dG replacement with dthG-H1 or dthG-H3 in single stranded ΔP()PBS does 

not alter the conformational preferences of ΔP()PBS.   

 

Figure S13. RMSD variation of ()PBS and ()/(+)PBS duplex. (a-b) RMSD variation of the 

single-stranded ()PBS DNA structure #1 (a) and structure #10 (b) along 200 ns of unbiased 

MD trajectories. In black: unmodified ()PBS having dG at position 7; in red: dthG7()PBS 

bearing dthG-H1 tautomer at position 7; in green: dthG7()PBS bearing dthG-H3 tautomer at 

position 7. (c-d) RMSD variation of the whole ()/(+)PBS DNA duplex (c) and the dG (or 

dthG)-C Watson-Crick base pair at position 7 (d) along 200 ns of unbiased MD trajectories. 

Color codes for c-d are the same as for a-b. 
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Figure S14. Total energy of the NMR-based structure #1 (a) and structure #10 (b) of 

ΔP()PBS DNA along 200 ns of unbiased MD simulation, bearing dG (black line), dthG-H1 

tautomer (red line) or dthG-H3 tautomer (green line) at position 7.  

 MD simulations of ()/(+)PBS DNA duplex. In the ()/(+)PBS DNA duplex, the dG base at 

position 7 was kept unchanged or was replaced with dthG-H1 or dthG-H3, and each duplex 

was investigated by means of 200 ns of unbiased MD simulations. Analysis of RMSD along 

each MD trajectory unequivocally shows that replacing dG with dthG-H1 or dthG-H3 does not 

impact the overall geometry of the DNA duplex (Figure S13c). To further investigate the 

effects of replacing dG with dthG on the stability of the duplex, the free energy of binding of 

()PBS to (+)PBS in the duplex was estimated using MM-PBSA approach along MD 

trajectories. In line with the conformational findings described above and in comparison with 

the wild type ()/(+)PBS (∆G = 71 ± 1 kcal mol-1), the introduction of dthG-H1 does not 

affect the stability of the DNA duplex (∆G = 71.3 ± 0.8 kcal mol-1), whereas the replacement 

of dG at position 7 with dthG-H3 induces a significant change (∆G = 57.9 ± 0.8 kcal mol-1). 
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This thermodynamic effect is probably due to the inability of dthG-H3 to establish canonical 

H-bond interactions with the opposite dC nucleobase in the duplex.  

 

Figure S15. Structure of the base pair involving dG (a), dthG-H1 tautomer (b), and dthG-H3 

tautomer (c) in the ()/(+)PBS DNA duplex. Frames corresponding to the most representative 

structures of unbiased MD trajectories are shown. H-bond interactions are shown as grey 

dashed lines. Distances for direct and water-bridged H-bonds between bases are reported (in 

Å). 



S19 
 

 

Figure S16. Four clusters of the dthG-H3 tautomer in various base-pair conformations with 

the opposite dC nucleobase. The most populated and stable cluster is shown in Figure S15c. 

H-bond interactions are showed as grey dashed lines. The distances of direct and water-

bridged H-bonds between dthG and dC are shown. 

Syn-anti conformation of the two dthG tautomers 

To investigate the conformation adopted by the two dthG tautomers, the dihedral angle at the 

glycosidic bond was measured in MD simulations for the nucleotide at position 7 (dG, dthG-

H1, or dthG-H3) of the (–)/(+)PBS duplex and the single stranded (–)PBS. Dihedral angle 

values comprised between -90° and +90° were assigned to the anti conformation of the 

nucleotide, whereas values comprised between -180° and -90° or +90° and +180° were 

assigned to the syn conformation. Results of this analysis (Table S6) unequivocally show that 

the preferential conformation of these nucleotides is the anti, particularly for dG, and dthG-H1 

in both (–)/(+)PBS and (–)PBS systems. For dthG-H3, a slightly lower abundance of the anti 

nucleotide was observed in the (–)/(+)PBS duplex, whereas a more important variation was 
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observed in single stranded (–)PBS. In (–)PBS, the NH at position 3 of dthG-H3 can establish 

H-bond interactions with the phosphate group, which likely enhances the abundance of the 

syn conformation with respect to dG, and dthG-H1. 

Table S6. Percentage of the syn or anti conformation of dG, dthG-H1, or dthG-H3 in 

MD simulations of (–)/(+)PBS and (–)PBS 

 (–)/(+)PBS (–)PBS 

 anti (%) syn (%) anti (%) syn (%) 

dG 92.5 7.5 89.4 10.6 

dthG-H1 94.3 5.7 91.3 8.7 

dthG-H3 87.5 12.5 63.2 36.8 

 

Thus, our data strongly suggest that the anti conformation is preferred for dthG-H1 and 

dthG-H3 in the systems investigated in this work.   

 

4.2 Molecular dynamics simulations using the CHARMM force field 

Structure Preparation: To build the initial structures of the wild-type ΔP()PBS and 

ΔP()PBS bearing dthG-H1 or dthG-H3 at position 7, common heavy atom positions were 

retained from the experimental structures and the remaining heavy atoms were placed using 

the tools present in the CHARMM program.[22] The topology and parameters for the dthG 

tautomers were constructed based on similarity to groups and parameters existing in the 

CHARMM27 all-atom nucleic acid force field.[23] An initial energy minimization consisting 

of 1000 steps using the Steepest Descent method followed by 1000 steps of the Adapted Basis 

Newton-Raphson minimization method was realized in order to eliminate strong steric 

contacts prior to system solvation. 
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All-atom MD simulations set-up: Molecular dynamics simulations of the nucleic acids 

were done using the all-atom force field CHARMM27.[23] The system preparation and the 

analysis were done using the CHARMM program, while the simulations themselves were 

done using the NAMD program.[22] Periodic boundary conditions were used and the long-

range electrostatic interactions were treated with the Particle Mesh Ewald (PME) 

algorithm.[24] All hydrogen-covalent bonds were constrained using the SHAKE algorithm[25] 

and an atom-based switching function with a cutoff of 12 Å was applied to the van der Waals 

non-bonded interactions. A 2 fs integration time step was used for all simulations. The water 

molecules were initially relaxed around a harmonically-constrained DNA by 5000 steps of 

Conjugate Gradient (CG) energy minimization, followed by 10000 steps without constraints. 

Subsequently, a molecular dynamics-based heating to 300 K over the course of 600 ps with 

the DNA harmonically constrained was done, followed by an equilibration phase, where the 

harmonic constraints were gradually removed over the course of 6 ns (the constraints were 

reduced every 500 ps). Pressure control was introduced during equilibration using a 

Berendsen piston[26] with a relaxation time of 400 fs and a rescaling of the atomic positions 

every 4 fs. The temperature was maintained using Langevin dynamics with a damping 

coefficient of 1 ps-1 applied to each atom. Finally, a 50-ns production simulation was 

performed in the isothermal–isobaric (NPT) ensemble at 1 bar and 300 K.  

Simulations of the wild-type ΔP()PBS, as well as the dthG-H1- and dthG-H3-labelled 

ΔP()PBS, were run for 50 ns. The analysis included the calculation of the RMSD in order to 

quantify the structural behavior of the different tautomers. The same protocol was applied to 

the ()/(+)PBS DNA duplex constructed with the same tautomers. 

ΔP()PBS Simulation Results: The overall structure of the  ΔP()PBS was reoriented 

over the backbone of bases 5-9 and the RMSD calculations of the base 7, which was dG, 

dthG-H1 or dthG-H3 tautomer (excluding the main chain), were performed. Average RMSDs at 
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the end of the simulations were: wild-type = 0.9 Å, dthG-H1=0.9 Å and dthG-H3=1.0 Å. The 

RMSD values show for the three constructs that there is no significant preference for the 

conformation of the base and that both tautomers can be present in the single-stranded 

ΔP()PBS. 

()/(+)PBS Simulation Results: RMSD calculations were done in order to assess the 

structural deformation introduced by the substitution of dG7 by either dthG-H1 or dthG-H3 

tautomers. From the simulations, the RMSDs were calculated in the same manner that is 

superposition over bases 5–9 and the calculation of the RMSD of base 7. An average RMSD 

was calculated over the final segment of the simulation yielding the following values for the 

three constructs:  0.5 Å for the wild-type, 0.6 Å for the dthG-H1 and 0.7 Å for the dthG-H3 

tautomer in the final part of the trajectory.  

While all the RMSDs are relatively small, the dthG-H3 tautomer shows the largest 

deviation from the wild-type, which is qualitatively consistent with what was observed in the 

simulations done using the Amber force field.  While the results do not contradict each other, 

the structural perturbations observed in the Amber force field simulations are somewhat 

larger, likely due to differences in the force fields.  

When examining average energy minimized structures obtained from the end of the 

simulations, it was interesting to note that the dthG-H3 took on a non-canonical conformation 

in its base pairing with dC similar to that of Figure S16d, in contrast to dG and dthG-H1, 

which displayed a canonical H-bond network.  

Further analysis was carried out using an MM-PBSA approach for free energy 

decomposition. We employed a protocol based on the MM-PBSA method described by 

Lafont et al,[27] which has proven to yield an accurate description of binding energetics. We 

looked at the by-base contribution to the binding energy. Individual contributions of each base 

to the complex formation were estimated.  From the analysis, the wild-type dG7 and dthG-H1 
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tautomer make larger contributions to binding, –3.8 ± 1.5 and –3.5 ± 0.7 kcal mol-1, 

respectively, than the dthG-H3 tautomer which contributed –1.1 ± 0.6 kcal mol-1. This 

suggests that the alternative dthG-H3 tautomer contributes less to the total binding free energy, 

in full line with the results presented in the main text, where the AMBER force field was 

used.  

The results presented here confirm that the dthG-H1 tautomer mimics very well the dG 

base in both single-stranded and double-stranded DNA. The dthG-H3 tautomer does not show 

any distinct structural dynamics characteristic in the single-stranded DNA, but exhibits a non-

canonical hydrogen bonding pattern in its base pairing with dC, so that it contributes less to 

the overall free energy of duplex formation than either the wild-type dG or the dthG-H1 

tautomer.  
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4.1.2. Identifying the Fluorescence Lifetimes of thG Tautomers 

We further determined the fluorescence lifetimes of thG tautomers in polar protic 

solvents (Water, methanol, ethanol) and apolar aprotic solvents (1,4 Dioxane and DMSO). All 

measurements were performed by exciting at 315 nm and emission was collected at emission 

wavelengths between 350 nm - 550 nm. 

 

Figure 43. Deconvoluted a) absorption spectra, and b) emission spectra (excited at 315 nm), 

representing thG-H1 and thG-H3 tautomers for thG nucleoside in buffer. c) Decay 

associated spectra obtained from time resolved fluorescence spectroscopy 

Analysis of the lifetime decay at each collected emission wavelength of thG in buffer, 

showed that the average lifetimes varies from 13.3 ns (350 nm) to 19.9 ns (550 nm) (Figure 

43). When decay associated spectra (DAS) were compared with deconvoluted emission 

spectra, the 13.3 ns and 19.9 ns lifetimes were attributed to thG-H3 and thG-H1 tautomers, 

respectively. In the overlap region from 400 to 500 nm, we observed lifetime contribution from 

both the tautomers. Notably, QY of both the tautomers at different excitation wavelengths 

appears similar while the average lifetime changes from 13.3 ns to 19.9 ns with increasing 

emission wavelength. This suggests that both the radiative and non-radiative constants 

associated with them are different. Similarly, we performed the lifetime analysis of thG in other 

solvents of different polarity and proticity, namely methanol, ethanol, DMSO, and 1,4-

Dioxane. Lifetimes and quantum yield of thG in these solvents were summarized in Table 2. In 

particular, the lifetime distribution of thG in methanol and ethanol also showed presence of a 

unstable <100 ps lifetime component that presently could not be assigned to any of the 

tautomers. Confirmation on existence of this short lifetime component is under investigation 

and it may likely represents to a fast-excited state process. 



Results and Discussions - Chapter 1 

 

85 

 

Table 2. Fluorescence quantum yield and lifetimes thG in various solvents. 

 Solvent QY thG-H1, τ (ns) thG-H3, τ (ns) 

Polar protic 

Water 0.5 19.9 13.3 

Methanol 0.5 14.7 8.2 

Ethanol 0.4 14.7 6.2 

Polar Aprotic DMSO 0.5 16.2 - 

Apolar Aprotic 1,4-Dioxane 0.5 14.8 - 

 

4.1.3. Photostability of thG as substituted in (–)PBS 

Prior to study of the annealing kinetics of thG as substituted in (–)PBS, we investigated 

its photostability in free and substituted form. Initial investigation of the free probe revealed 

that the thG-H1 tautomer is comparatively more photostable than thG-H3 (Figure 44). Further, 

we examined the photobleaching of dthG as substituted in single stranded (–)PBS and (–

)/(+)PBS duplex (Figure 45).  

 

Figure 44. Photostability of the thG ground-state tautomers in buffer. Kinetics at different 

excitation and emission wavelengths, respectively: 325 and 400 nm (black); 325 and 

525 nm (red); 350 and 525 nm (blue); 360 and 525 nm (magenta); 370 and 525 nm 

(green); 380 and 525 nm (dark blue). Concentration of thG was 1 µM. 

The emission of thG-H1 can selectively be followed by exciting it from 350 nm to 400 

nm. Meanwhile, at lower excitation wavelength < 350 nm both tautomers are observed. So, we 

decided to follow the photobleaching of thG-H1 by exciting at 325 & 360 nm whereas, 

collecting the emission at 525 nm. 
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As substituted in (–)PBS, a very sharp rate of photobleaching was observed at excitation 

of 325 nm as compared with 360 nm. In contrast, in duplex strands we observed comparable 

photobleaching at both excitation wavelengths leading to ~ 20% fluorescence loss in one hour 

This difference can be explained by the fact that in duplex (–)/(+)PBS only the thG-H1 tautomer 

is present, so that at both excitation wavelengths, we observe similar decays. In contrast, either 

for free thG or thG-labeled in (–)PBS, both tautomers are present. As the thG-H3 tautomer is 

much more sensitive than the thG-H1, we see a much faster decrease at 325 nm excitation 

wavelengths where both tautomers are excited than at 360 nm, where only the H1 tautomer 

absorbs light. Therefore, for the annealing kinetic reactions, the ~ 20% loss of fluorescence 

within one hour at 360 nm excitation wavelength appears as a limiting factor. 

 

Figure 45. Photostability of thG nucleoside, dthG(–)PBS and dthG(–)/(+)PBS excited at 325 

nm & 360 nm and the emission collected at 525 nm. thG nucleoside: 325 nm (Black), 

360 nm (Red), dthG7(–)PBS: 325 nm (Blue), 360 nm (Magenta), dthG7(–)/(+)PBS: 

325 nm (Green), 360 nm (Cyan). Concentration of thG in all samples 1µM. 

4.1.3.1. Photobleaching During dthG7(–)(+)PBS Annealing Reaction. 

We recorded the annealing kinetics of dthG7(–)/(+)PBS for three hours and compared 

it to the photobleaching kinetics of pre-prepared duplex as shown in Figure 46. The pre-

prepared duplex was formed by heat annealing at 90°C for 3 mins and then cooling for 45 mins. 

For the annealing kinetic trace of dthG7 (–)/(+)PBS (instant mix), we observed an initial 

increase in fluorescence followed by a continuous decrease. In contrast, as the pre-prepared 

duplex is already formed, we only observe the decrease in fluorescence representing the 

photobleaching of the duplex. The temporal shift in the two kinetic traces is a consequence of 

the time needed to form the duplex (instant mix). Moreover, the final saturating fluorescence 

levels obtained from both samples ends up at same level at the end of long acquisition, 
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confirming that the second phase of the annealing kinetics trace is due to photobleaching of 

dthG7(–)/(+)PBS. 

 

Figure 46. Fluorescence traces of dthG7(–)/(+)PBS obtained through  annealing kinetics 

(Instant mix) and photobleaching of pre-formed duplex (Heat cool). Concentration of 

dthG(–)PBS 0.3µM and (+)PBS 3µM. 

4.1.3.2. Approaches to Minimize Photobleaching: 

1. Interval Scan: In order to reduce the exposure of dthG7(–)/(+)PBS, we recorded the 

annealing kinetics in a different way. First, we used a continuous kinetic scan till 200 

seconds to catch the fast initial phase of annealing and then recorded the emission 

spectra with a time difference of 250 seconds. This kinetic trace was further compared 

to the continuous kinetic scan (Figure 47). We observed that by decreasing the exposure 

time, we reduced the bleaching effect confirming that the probe is sensitive to 

illumination in duplex form. Nevertheless, the fluorescence decrease is still significant, 

so that this approach cannot be used to extract the kinetic constants. 
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Figure 47. Interval scan and continuous can of dthG7(–)/(+)PBS. The annealing kinetics were 

performed using 0.3 µM thG7(–)PBS with 3µM (+)PBS for 3600 seconds. 

2. Chemical Approach: To prolong the fluorescence in microscopy experiments, we use 

oxygen scavenging reagents that prevent oxidation of chemical structures. We used 

GLOX (glucose oxidase) reagents to investigate the effect of oxidation on free thG 

probe. We used 0.5 mg/ml gluocose oxidase, 40 µg/ml catalase and 10% glucose in 

TRIS buffer. Figure 48 shows the photobleaching of thG probe in TRIS buffer (black) 

and in presence of GLOX (red) reagents, excited at 360 nm. It appears that in presence 

of GLOX reagents the stability of thG is further decreased, indicating that this approach 

cannot be used to extract the kinetic constants.    

 

Figure 48. Photobleaching of 1 µM thG nucleoside in TRIS buffer( black) and in presence of 

GLOX reagents (red). Excitation 360 nm and emission 525 nm. 

3. Reducing Excitation Intensity: Photobleaching can also be reduced by decreasing the 

excitation intensity. Lowering the excitation slits of the spectrophotometer reduces the 
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area of the excitation beam, so that lesser molecules within cuvette are excited and 

quickly replaced due to diffusion. To compensate for the reduced signal strength of 

sample from low excitation intensity, increasing the emission slits allows to detect more 

emitted photons. We monitored the annealing of thG7(–)/(+)PBS under these 

parameters, 1 nm (excitation) and 29 nm (emission) (Figure 49), and observed a 

significant decrease of photobleaching, that allows to monitor the annealing kinetics.  

 

Figure 49. Annealing kinetics performed using 0.3 µM thG7(–)PBS with 3µM (+)PBS with 

reduced excitation slits (1 nm). 

This photostability investigation shows that the dthG probe as substituted in duplex (–

)/(+)PBS undergoes photochemical reaction leading to its fluorescence quenching. In order to 

successfully monitor the annealing reaction, the excitation intensity of the spectrophotometer 

was reduced to minimum that significantly lowered the rate of photobleaching. 
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4.1.4.  Publication 2: Conquering 2‑Aminopurine’s Deficiencies: 

Highly Emissive Isomorphic Guanosine Surrogate Faithfully 

Monitors Guanosine Conformation and Dynamics in DNA 

After establishing the ground rules to selectively maneuver the emission of both the 

tautomers as substituted at position 7 of (–)PBS stem-loop and its duplex (–)/(+)PBS, we 

compared its photophysics with 2-Aminopurine (2Ap), the “Gold standard” in the fluorescent 

nucleoside analogues. Publication 2 highlights this comparison by differentiating the ability of 

both probes in providing relevant structural and dynamic information on G7 residue of (–)PBS, 

together in its single and double-stranded structure.  

The effect on these probes on the thermodynamic stability of (–)PBS and (–)/(+)PBS 

structures, was monitored through the melting temperatures (Publication 2, Table1). It revealed 

that replacement of G7 by dthG has minimal impact on the stability of stem-loop Similarly, 

identical melting temperatures of native (−)/(+)PBS and dthG7(−)/(+)PBS indicate that dthG 

also perfectly substitutes for dG in the duplex by establishing a stable W-C base pair. In 2Ap 

labeled stem-loop sequences the melting temperature of d2Ap7(–)PBS was relatively similar 

to its native counterpart. But in the duplex structure, there was a deviation of 7 °C for d2Ap-C 

mismatch and 5 °C for the d2Ap-dT match. 

Comparing the emission profiles prove interesting as the QY of dthG7(–)/(+)PBS 

duplex was 2-fold higher than that of dthG7(–)PBS and 10-fold higher than d2Ap7(–

)/T12(+)PBS (Publication 2, Table1). These differences show that the strong fluorescence 

quenching of dAp which occurs due to stacking with adjacent neighboring residues, was 

minimal for dthG. 

The effect of static and dynamic quenching could also be seen on the lifetime 

parameters of d2Ap- and dthG7- labeled (–)PBS. In comparison to the four lifetime decay 

components of d2Ap7(–)PBS, dthG7(–)PBS was only fitted with three components (Publication 

2, Table1). In contrast to d2Ap7(–)PBS having 48 % of dark species, dthG7(–)PBS shows less 

than 10 % of these species, indicating that all dthG conformations can be monitored. These 

differences are even more striking in (–)/(+)PBS duplex, where d2Ap7(–)/T12(+)PBS showed 

four discrete lifetime components and a total of  98 % species having lifetime less than 0.5 ns, 

while dthG7(–)/(+)PBS has only two lifetime components with marginal amount of dark 

species. 
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Lastly, by time-resolved anisotropy measurements, we observed two rotational 

correlation times for d2Ap7(–)PBS. The short 290 ps component likely represents the local 

rotation of the solvent-exposed extrahelical conformation (Publication 2, Table2, Figure S7) 

while, the longer correlation time of 1.9 ns represents a combination of segmental and tumbling 

motion of the loop. The anisotropy decay of dthG7(–)PBS exhibits only one component of 2.4 

ns that matches with the theoretical correlation time of a folded loop. This indicates that the 

conformation of dthG, associated with 12.3 ns lifetime, is rigidly held in (−)PBS loop and only 

the tumbling of the entire (–)PBS is perceived. Consequently, the biomolecular quenching 

constant, kq, observed for dthG7(–)PBS in iodine quenching experiment was found to be more 

than one order of magnitude lower than for free dthG nucleoside. In contrast, the kq value for 

d2Ap7(–)PBS was observed to be only two-fold lower than for the free probe confirming its 

extrahelical positioning. In duplex structures, both dthG7(–)/(+)PBS and d2Ap7(–)/T12(+)PBS 

show a single correlation time of 8.1 and 2.4 ns which represents the tumbling motion and 

segmental motion of the duplex, respectively. 

Altogether these results showed that compared to d2Ap, conformations of dthG 

represent closer resemblance to native dG residue. In addition, dthG7(–)PBS shows higher 

fluorescence quantum yield and simpler lifetime decay with lesser dark species in both single-

stranded and double-stranded forms. Importantly, thG7(–)PBS showed stable Watson-Crick 

base pairing and two-fold higher fluorescence emission upon duplex formation, this serves as 

a perfect tool for monitoring annealing kinetics. Conclusively, this publication clearly 

illustrates that dthG can faithfully substitute a key G7 residue in this HIV-1 construct, providing 

reliable information on its conformations and dynamics in both the (−)PBS stem loop and 

(−)/(+)PBS duplex.  
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ABSTRACT: The archetypical fluorescent nucleoside
analog, 2-aminopurine (2Ap), has been used in countless
assays, though it suffers from very low quantum yield,
especially when included in double strands, and from the
fact that its residual emission frequently does not represent
biologically relevant conformations. To conquer 2Ap’s
deficiencies, deoxythienoguanosine (dthG) was recently
developed. Here, steady-state and time-resolved fluores-
cence spectroscopy was used to compare the ability of 2Ap
and dthG, to substitute and provide relevant structural and
dynamical information on a key G residue in the (−) DNA
copy of the HIV-1 primer binding site, (−)PBS, both in its
stem loop conformation and in the corresponding
(−)/(+)PBS duplex. In contrast to 2Ap, this fluorescent
nucleoside when included in (−)PBS or (−)/(+)PBS
duplex fully preserves their stability and exhibits a
respectable quantum yield and a simple fluorescence
decay, with marginal amounts of dark species. In further
contrast to 2Ap, the fluorescently detected dthG species
reflect the predominantly populated G conformers, which
allows exploring their relevant dynamics. Being able to
perfectly substitute G residues, dthG will transform nucleic
acid biophysics by allowing, for the first time, to selectively
and faithfully monitor the conformations and dynamics of
a given G residue in a DNA sequence.

For almost five decades, 2-aminopurine (2Ap, 1) has been
the fluorescent nucleoside of choice for the community

interested in nucleic acid structure, dynamics and recognition.1

Despite its isomerized base-pairing face, numerous fluores-
cence-based assays have used this isomorphic nucleoside analog
as an emissive replacement for adenosine and guanosine
(Figure 1), due to its small footprint, high emission quantum
yield (QY = 0.68), and availability.1a,2 However, challenges have
been recognized, including 2-Ap’s propensity to mispair with C
and its tendency to perturb the dynamics and structure of
DNA.3 Additionally, 2-Ap’s strong emission quenching upon
incorporation into single-stranded and particularly double-

stranded oligonucleotides (ODNs) has been commonly
observed.2b,4 What appears to have been largely neglected is
that the residual emission observed for such DNA and RNA
constructs, although sufficient for numerous biophysical
applications, frequently does not represent biologically relevant
conformations of the native nucleoside replaced. The structural
and dynamics information thus gathered might not actually
reflect the behavior of the native system of interest. Here we
demonstrate that this is indeed the case for the primer binding
site (PBS) of the human immunodeficiency virus type 1 (HIV-
1), and present 2-aminothieno[3,4-d]pyrimidin-4(3H)-one-7-β-
D-2′-deoxyribofuranoside5 (deoxythienoguanosine, dthG) (2) as
a truly faithful emissive and responsive surrogate for G in
single- and double-stranded ODNs, which actually reproduces
the structural context and dynamics of the parent native
nucleoside.
The PBS DNA sequence is an 18-mer stem-loop ODN of

known 3D structure,6 which is involved in the second strand
transfer of HIV-1 reverse transcription (Figure 2).7 This strand
transfer, relying on the annealing of (−)PBS with its
complementary (+)PBS sequence,8 is required for completing
the viral DNA synthesis. To compare the ability of d2Ap and
dthG to provide structural and dynamic information on the
stem-loop and the corresponding perfect and mismatched
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Figure 1. Structure of d2Ap (1), dthG (2), and the naturally occurring
purines (R = 2′-deoxy-D-ribose).
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duplexes, we substitute the critical G7 loop residue with the
two emissive deoxynucleosides and thoroughly analyze the
biophysical and photophysical features of all constructs (see
Supporting Information for synthetic and additional exper-
imental details).
Thermal denaturation experiments reveal that replacement of

G7 by dthG has a minimal impact on the stability of the (−)PBS
stem-loop (50 ± 1 and 51 ± 1 °C, respectively) (Table 1).
Similarly, the identical melting temperature of the native and
the dthG7(−)/(+)PBS duplexes (67 ± 1 and 67 ± 2 °C,
respectively) indicate that dthG also perfectly substitutes for dG
in the duplex. Additionally, replacement of the pairing C12 by
T in (+)PBS, forming a dthG-dT mismatch, results in a 6 °C
decrease in the Tm, in excellent agreement with the ΔTm = −7
°C observed for the corresponding dG-dT mismatch.5b While
substitution by d2Ap only slightly affects the stability of the
(−)PBS stem-loop, it decreases the stability of the (−)/(+)PBS
duplex by 7 °C, likely due to the formation of an unstable
d2Ap-dC mismatch.9 Notably, the “perfect duplex” d2Ap7(−)/
T12(+)PBS is still 5 °C less stable than the native or the
dthG7(−)/(+)PBS duplex, indicating that in contrast to dthG,
d2Ap does not faultlessly substitute for dG in this context.
The free dthG nucleoside (2) emits in the blue with a QY of

0.46 ± 0.02 in buffer (Figure 3 and Table 1). When
incorporated into position 7 in the (−)PBS loop, the QY
drops to 0.10 ± 0.01, but increases 2-fold upon hybridization to
its perfect complement to form dthG7(−)/(+)PBS (Table 1).
In sharp contrast to dthG, the near UV emission of d2Ap (1) is

severely quenched upon incorporation into ODNs, with 8-fold
decrease for the stem-loop, and above 50-fold decrease upon
forming the d2Ap7(−)/T12(+)PBS duplex (Table 1).
Although displaying a significantly higher QY as a free
nucleoside, its short emission wavelength and dramatic
quenching in ODNs makes 2Ap a rather inferior emissive
surrogate for G. The high QY of dthG in duplexes constitutes,
therefore, an obvious asset over d2Ap for monitoring the single
to double strand transition and for characterizing the dynamic
properties of the substituted base, as discussed below.
Moreover, while nearly no wavelength shift is observed for
d2Ap in its distinct states, shifts of 5 and 12 nm were observed
in the emission maxima of dthG7(−)PBS and dthG7(−)/
(+)PBS, respectively (Figure 3), as compared to the free
nucleoside 2. This dthG’s responsiveness provides an additional
spectroscopic handle for monitoring the biomolecular environ-
ment of this surrogate nucleoside.
While the two emissive nucleosides exhibit a single

exponential decay, the corresponding modified ODNs display
a more complex behavior (Table 1). Four decay components
are observed for d2Ap7(−)PBS, indicating a large conforma-
tional heterogeneity of d2Ap in this loop position, as already
described for other positions in the loop.10 The three short
lifetimes (τ1−τ3) likely correspond to conformations where
dynamic fluctuations of the loop facilitate dynamic quenching
of d2Ap by its neighbors, through a charge transfer
mechanism11 or relaxation into a low-lying nonemissive
electronic state.12 The long-lived lifetime (τ4 = 7.4 ns), being
close to that of the free nucleoside, likely corresponds to a

Figure 2. DNA sequence of the HIV-1 primer binding site (−)PBS
shown as a single strand (middle), stem loop (top), and duplex with
(+)PBS (bottom). Also shown are the site-specifically modified
sequences containing d2Ap and dthG.

Table 1. Time-Resolved Fluorescence Parameters of d2Ap- and dthG-Labeled ODNsa

Tm QY τ1 α1 τ2 α2 τ3 α3 τ4 α4 ⟨τ⟩ α0

d2Ap 0.68b 10.2 1 10.2
d2Ap7(−)PBS 48 ± 1 0.08 0.15 0.16 0.66 0.10 2.6 0.15 7.4 0.11 2.4 0.48
d2Ap7(−)/T12(+)PBS 62 ± 1 0.013 0.18 0.20 0.44 0.27 1.4 0.01 5.2 0.01 0.4 0.51
dthG 0.46 19.6 1 19.6
dthG7(−)PBS 51 ± 1 0.10 0.5 0.32 2.8 0.40 12.3 0.28 4.7 <0.1
dthG7(−)/(+)PBS 67 ± 2 0.20 1.1 0.17 11.3 0.83 9.6 <0.1
dthG7(−)/T12(+)PBS 61 ± 1 0.38 0.8 0.07 3.9 0.09 28.2 0.57 22.3 0.27

aTm is the melting temperature (°C), QY is the fluorescence quantum yield, τi are the fluorescence lifetimes (ns), and αi are their amplitudes. The
amplitude α0 of the dark species as well as the amplitudes αi were calculated as described in the Supporting Information. ⟨τ⟩ is the mean fluorescence
lifetime (ns). Excitation and emission wavelengths were 315 and 370 nm for d2Ap and 315 and 500 nm for dthG. SDs for the lifetimes and
amplitudes are <20%. SDs for QY are <10%. bData from ref 1a.

Figure 3. Emission spectra of (a) dthG- and (b) d2Ap-labeled (−)PBS
sequences. Emission spectra of (a) dthG free nucleoside (black),
dthG7(−)PBS (red), dthG7(−)/(+)PBS (blue), and dthG7(−)/T12-
(+)PBS (green); (b) d2Ap free nucleoside (black), d2Ap7(−)PBS
(red), and d2Ap7(−)/T12(+)PBS (blue). Excitation was at 380 nm
for dthG and 315 nm for d2Ap. Nucleoside and ODN concentration
was 6 μM for dthG and 4 μM for d2Ap in 25 mM TRIS-HCl buffer
(pH 7.5), 30 mM NaCl, and 0.2 mM MgCl2.
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conformation where d2Ap is extrahelical and distant from
potential quenchers.2b,13 Since the difference in the mean
lifetime of d2Ap7(−)PBS as compared to the free d2Ap is
markedly smaller than the difference seen for the QY (4.3- vs
8.5-fold), nonemissive “dark species”, with lifetimes shorter
than the detection limit of our setup (∼30 ps), are
present.10,11,14 This population, resulting from either static
quenching or very fast dynamic quenching, represents a total of
48% (calculated from eq (1) in the Supporting Information).
Only three components are needed to fit the intensity decay

of dthG7(−)PBS (Table 1). The long lifetime is close to the
component measured for the free nucleoside in methanol (12.3
vs 13.7 ns),5b reflecting a minimally quenched dthG in the less
polar environment of the (−)PBS loop.15 The two other
components are markedly shorter (0.5 and 2.8 ns), suggesting
that they correspond to conformations where dthG is
dynamically quenched by its neighboring nucleobases, likely
through mechanisms comparable to those of d2Ap.
In contrast to d2Ap, however, comparison of the QY and

mean lifetimes of dthG7(−)PBS with those of the free
nucleoside reveals that the two evolve in parallel. Dark species
are therefore negligible (<10%), which is a distinctive advantage
over d2Ap, since all conformations of dthG in (−)PBS can
therefore be monitored by the time-resolved measurements.
Differences between d2Ap and dthG become more

pronounced in the (−)/(+)PBS duplex. The decay of d2Ap
in d2Ap7(−)/T12(+)PBS is best fitted with four discrete
lifetime components, ranging from 0.18 to 5.2 ns (Table 1).
When comparing the duplex to the stem loop, a dramatic
decrease in the amplitudes associated with the two long-lived
lifetimes τ3 and τ4 is seen. A total of 98% of the species and thus
of the d2Ap conformations in the d2Ap-labeled duplex exhibit
lifetimes shorter than 0.5 ns, explaining its extremely low QY.
These commonly observed features,2b,13a,16 which severely limit
the use of 2Ap in duplexes, likely originate from the
destabilization induced by 2Ap in its own base pair and its
immediate adjacent base pairs.3 In line with the key role of
conformational motions of DNA bases in charge transfer based
quenching mechanisms,17 the resulting increased dynamics
likely favor efficient 2Ap quenching by its neighbors, explaining
the multiple and mainly short-lived fluorescence lifetimes
observed for 2Ap in double-stranded DNA.
In sharp contrast to the complex decay of d2Ap7(−)/

T12(+)PBS, the decay of the corresponding dthG7(−)/(+)PBS
duplex appears very simple, being characterized by only two
lifetimes (1.1 and 11.3 ns) and a marginal fraction of dark
species. This indicates that in contrast to d2Ap, dthG adopts
better defined conformations, due to its ability to form a stable
Watson−Crick base pair with C.18 Thus, we attribute the major
conformation (>80%) associated with the 11.3 ns component
to the paired dthG in the rather apolar environment created by
the stacked base pairs within the duplex.15 This interpretation is
further supported by the mismatched duplex dthG7(−)/
T12(+)PBS, where the three lifetimes (0.8, 3.9, and 28.2 ns)
and the significant amount of dark species (27%) reflect a
greater conformational heterogeneity of dthG, as expected from
the reduced constraints imposed by the dthG-dT mismatch
compared to the Watson−Crick dthG-dC base pair. Similarly,
the dramatic increase in the long-lived lifetime value (28.2 vs
11.3 ns, respectively), which is comparable to the lifetime value
of dthG in water, suggests higher accessibility to water, as a
result of the lesser constraints imposed by the dthG-dT
mismatch in the duplex.

To further cement the picture painted above, we performed
time-resolved anisotropy to provide information about the
local, segmental and global motions of the labeled ODNs, as
well as KI quenching experiments to quantitatively assess the
solvent exposure of the emissive nucleosides within the ODNs
(Table 2 and Figure S7). The free nucleosides d2Ap and dthG
exhibit single rotational correlation times of 80 and 120 ps,
respectively. Two correlation times were observed for
d2Ap7(−)PBS. The short one (θ1 = 290 ps) likely describes
the local rotation of the solvent-exposed extrahelical d2Ap
conformation, associated with the long-lived lifetime τ4 = 7.4
ns, which contributes to more than 60% of the labeled ODN
emission (as calculated by α4τ4/⟨τ⟩). This conclusion is further
substantiated by the very high bimolecular quenching constant,
kq, observed for d2Ap7(−)PBS in iodide quenching experi-
ments (Table 2). Indeed, this kq value being only 2-fold lower
than that of the free d2Ap nucleotide, unambiguously confirms
that this extrahelical conformation is highly accessible to the
solvent. The long correlation time (θ2 = 1.9 ns) observed for
d2Ap7(−)PBS was significantly shorter than the theoretical
correlation time (2.5 ns) calculated for the tumbling of a sphere
representing the stem-loop structure. Therefore, this θ2 = 1.9 ns
component may correspond to a combination of the (−)PBS
tumbling motion and a segmental motion, likely associated with
the loop.10 In contrast, the anisotropy decay of dthG7(−)PBS is
adequately fitted to only one component (2.4 ns) that matches
with the theoretical correlation time of the folded ODN. This
indicates that the conformations of dthG, associated with the
12.3 ns lifetime, are rigidly held in the (−)PBS loop and only
the tumbling of the entire ODN is perceived. This behavior is
fully consistent with the NMR structure of (−)PBS, showing
that the G7 residue is directed toward the loop interior and well
constrained by its neighbors.6b The internal orientation of dthG
with poor solvent accessibility is further supported by the low
kq value observed with dthG7(−)PBS, that was more than 1
order of magnitude lower than that of the free nucleoside.
Thus, time-resolved anisotropy and iodide quenching data
confirm that dthG mimics the native G residue much more
closely than d2Ap in the stem loop.
The anisotropy decay of d2Ap7(−)/T12(+)PBS could be

fitted with a single component (2.7 ns) that is much shorter
than the theoretical correlation time (9.6 ns) calculated for the
tumbling motion of this duplex.19 This likely reflects the
segmental motions associated with the partially stacked d2Ap
conformations that dominate the emission of d2Ap7(−)/

Table 2. Fluorescence Anisotropy Decay Parameters and
Quenching Constantsa

θ1 β1 θ2 β2 kq

d2Ap 0.08b 1.00 6.7
d2Ap7(−)PBS 0.29 0.52 1.9 0.48 3.5
d2Ap7(−)/T12(+)PBS 2.7 1.00 <10−3

dthG 0.12 1.00 1.3
dthG7(−)PBS 2.4 1.00 0.09
dthG7(−)/(+)PBS 8.1 1.00 <10−3

dthG7(−)/T12(+)PBS 8.4 1.00 <10−3

aθi are the rotational correlation times (in ns) and βi their amplitudes.
The reported values are the means from three experiments. SDs for θi
and βi are <20%. kq is the bimolecular quenching rate constant for the
quenching by iodide (in 109 M−1 s−1). The kq values are the means
from two experiments. SDs are <10% for this parameter. bData from
ref 10.
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T12(+)PBS. In contrast, the anisotropy decay of the dthG7(−)/
(+)PBS, while also displaying a single correlation time, matches
well with the theoretical correlation time of the tumbling
duplex. This absence of segmental motion is fully consistent
with the attribution of the dominant 11.3 ns lifetime
component to the dthG-dC base pair in its optimally stacked
configuration. In this highly stable configuration, only the
tumbling motion could be detected. Interestingly, a single
correlation time (8.4 ns) describing the overall tumbling of the
duplex was also observed for dthG7(−)/T12(+)PBS, indicating
that the major dthG conformation associated with the 28.2 ns
lifetime component is probably not extrahelical. Thus, in line
with the high stability (>100 ms) of internal G-C base pairs and
the absence of intrahelical dynamics (in the μs−ms range) in
the central part of duplexes,3,20 our data indicate that only dthG
but not 2Ap can be used to obtain relevant information on the
oligonucleotide dynamics and size. Noticeably, for both d2Ap7-
and dthG7-labeled duplexes, the kq values are at least 3 orders of
magnitude below those of the free nucleosides, suggesting that
the emissive nucleosides predominantly adopt an intrahelical
conformation.
Taken together, our data clearly illustrate that dthG can

faithfully substitute a key G residue in this HIV-1 construct,
providing reliable information on its conformations and
dynamics in both the (−)PBS stem loop and (−)/(+)PBS
duplex. Particularly beneficial are dthG’s reliable base pairing
and its high emission QY, which is maintained in single- and
double-stranded ODNs. As a result, and in sharp contrast to the
corresponding d2Ap labeled ODNs, the species detected by
dthG fluorescence techniques, actually reflect the predominantly
populated conformers as determined by other means, such as
NMR. These features make this new emissive analog a perfect
tool to faithfully monitor the conformations and dynamics of G
residues in oligonucleotides. This will undoubtedly open a new
era with the promise of properly addressing unsolved problems
in nucleic acid biophysics.
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Meĺy, Y. Nucleic Acids Res. 2013, 41, 5036.
(15) (a) Klymchenko, A. S.; Shvadchak, V. V.; Yushchenko, D. A.;
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1. Synthesis 

Reagents were purchased from Sigma-Aldrich, Fluka, TCI, Acros and Synchem, Inc. 

(Elk Grove, IL), and were used without further purification unless otherwise specified. 

Solvents were purchased from Sigma-Aldrich and Fisher Scientific, and dried by 

standard techniques. NMR solvents were purchased from Cambridge Isotope 

Laboratories (Andover, MA). All reactions were monitored with analytical TLC (Merck 

Kieselgel 60 F254). All experiments involving air and/or moisture sensitive 

compounds were carried out under an argon atmosphere. Column chromatography 

was carried out with silica gel particle size 40-63 µm by CombiFlash® Rf 200 

(Teledyne Isco). NMR spectra were obtained on Varian Mercury 400 MHz, Varian VX 

500 MHz and Jeol ECA 500 spectrometers. Mass spectra were obtained on an 
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Agilent 6230 HR-ESI-TOF MS at the Molecular Mass Spectrometry Facility at the 

UCSD Chemistry and Biochemistry Department. Modified oligonucleotide (ODN) was 

quantified by Shimadzu UV 2450 at 70 °C. MALDI-TOF spectra were recorded on a 

PE Biosystems Voyager-DE STR MALDI-TOF spectrometer in negative-ion, delayed-

extraction mode. 

1.1. dthGphosphoramidite synthesis 

 

Figure S1. dthG-phosphoramidite synthesisa 

a Reagents and conditions: (a) TIPDSiCl2, Py, 89%; (b) PhOC(S)Cl, DMAP, Py, 78%; 

(c) Bu3SnH, AIBN, toluene, 110 °C, 75%; (d) TEA•3HF, THF, 0 °C~RT, 94%; (e) 

DMTrCl, Py, 50 %; (f) 2-cyanoethyl N,N-diisopropylchlorophophoramidite, iPr2NEt, 

DCM, 0 °C~RT, 56 %. 

Synthesis of O3’,5’-TIPDS-O2’-PTC-N2-DMF-thG (4)  

3 (0.22, 0.62 mmol), as prepared previously reported,1 was co-evaporated with dry 

pyridine (2 × 3 mL) and dissolved in dry Py (4 mL). TIPDSCl2 (0.20 mL, 0.62 mL) was 

added to the solution dropwise at 0 °C and stirred at RT for 16 hours. All volatiles 
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were evaporated and the residue was partitioned between DCM (50 mL) and 

saturated aq. NaHCO3 (50 mL). The aq. layer was extracted with DCM (2 × 10 mL) 

and combined organic layer was dried over Na2SO4 then evaporated. The residue 

was purified by column chromatography with 0~10 % gradient MeOH in DCM to 

afford an off-white solid. Yield 0.32 g, 89 %. 1H NMR (400 MHz, CDCl3) δ 8.70 (s, 

1H), 8.15 (s, 1H), 8.12 (s, 1H), 5.60 (d, J = 3.3 Hz, 1H), 4.48 (t, J = 6.2 Hz, 1H), 4.27 

– 4.20 (m, 1H), 4.12 – 3.96 (m, 3H), 3.17 (s, 3H), 3.07 (s, 3H), 1.14 – 0.98 (m, 28H); 

ESI-MS calculated for C26H45N4O6SSi2 [M+H]+597.26, found 597.19; ESI-HRMS 

calculated for C26H45N4O6SSi2 [M+H]+597.2593, found 597.2591. 

The intermediate (0.22 g, 0.37 mmol) was co-evaporated with dry Py (2 × 4 mL) and 

dissolved in Py/ACN (2 mL/6 mL). DMAP (93 mg, 0.76 mmol) and O-phenyl 

chlorothionoformate (PTCCl, 76 µL, 0.56 mmol) were successively added to the 

solution and stirred for 16 hour at RT. All volatiles were evaporated, the residue was 

dissolved in DCM (20 mL), washed with saturated aq. NaHCO3 (20 mL), dried over 

Na2SO4 then evaporated. The residue was purified by column chromatography with 

0~1.5 % gradient MeOH in DCM to afford a yellow solid. Yield 0.21 g, 78 %. 1H NMR 

(500 MHz, CDCl3) δ 8.78 (s, 1H), 8.60 (s, 1H), 8.11 (s, 1H), 7.46 – 7.37 (m, 2H), 7.33 

– 7.27 (m, 1H), 7.15 – 7.08 (m, 2H), 6.48 (d, J = 4.4 Hz, 1H), 4.58 (dd, J = 8.8, 4.7 

Hz, 1H), 4.20 – 3.94 (m, 4H), 3.08 (s, 3H), 3.05 (s, 3H), 1.10 – 1.05 (m, 14H), 1.05 – 

0.99 (m, 14H); 13C NMR (126 MHz, CDCl3) δ 194.29, 158.45, 153.46, 129.60, 

129.49, 127.84, 126.72, 125.67, 125.52, 121.89, 121.22, 86.95, 81.44, 78.10, 70.90, 

61.00, 41.38, 35.19, 29.84, 17.61, 17.49, 17.45, 17.36, 17.34, 17.28, 17.25, 17.17, 

13.53, 13.19, 12.99, 12.91; ESI-MS calculated for C33H49N4O7S2Si2 [M+H]+733.26, 

found 733.22; ESI-HRMS calculated for C33H49N4O7S2Si2 [M+H]+733.2576, found 

733.2573 
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Synthesis of O3’,5’-TIPDS-2’-deoxy-N2-DMF-thG (5) 

A solution of 4 (0.20 g, 0.27 mmol), Bu3SnH (0.22 mL, 0.81 mmol) and AIBN (22 mg, 

0.14 mmol) in freshly distilled toluene over sodium (5 mL) was degased with argon 

bubbling for 20 min at RT, and then the mixture was heated at 110 °C for 2 hours. 

Solvent was evaporated and residue was dissolved in DCM (20 mL), washed with 

saturated aq. NaHCO3 (20 mL), dried over Na2SO4 then evaporated. The residue 

was purified by column chromatography with 0~2 % gradient MeOH in DCM to afford 

a yellow foam. Yield 0.12 g, 75 %. 1H NMR (500 MHz, CDCl3) δ 8.70 (s, 1H), 8.50 (s, 

1H), 8.10 (s, 1H), 5.87 (s, 1H), 4.64 – 4.53 (m, 1H), 4.13 – 4.05 (m, 1H), 3.92 – 3.82 

(m, 3H), 3.19 (s, 3H), 3.08 (s, 3H), 2.49 (s, 1H), 2.43 – 2.23 (m, 1H), 1.69 – 1.59 (m, 

1H), 1.18 – 0.98 (m, 28H); 13C NMR (126 MHz, CDCl3) δ 159.41, 157.98, 153.97, 

131.34, 129.50, 125.45, 121.25, 86.09, 76.59, 73.61, 72.11, 63.66, 43.00, 41.55, 

17.71, 17.67, 17.61, 17.57, 17.44, 17.28, 17.21, 17.13, 13.59, 13.48, 13.09, 12.69; 

ESI-HRMS calculated for C26H45N4O5SSi2 [M+H]+581.2644, found 581.2645. 

Synthesis of 2’-deoxy-N2-DMF-thG (6)  

To a solution of 5 (0.11 g, 0.19 mmol) in dry THF (2 mL) was added TEA•3HF (0.14 

mL, 0.86 mmol) dropwise at 0 °C then was stirred for 7 hours at RT. All volatiles were 

evaporated and the residue was purified by column chromatography with 0~10 % 

gradient MeOH in DCM to afford an off-white foam. Yield 60 mg, 94 %. 1H NMR (500 

MHz, CDCl3) δ 8.82 (s, 1H), 8.48 (s, 1H), 8.05 (s, 1H), 5.56 (dd, J = 11.1, 5.4 Hz, 

1H), 4.85 (s, 1H), 4.59 (d, J = 5.1 Hz, 1H), 4.13 (d, J = 1.0 Hz, 1H), 3.86 (dd, J = 

12.0, 2.7 Hz, 1H), 3.71 (d, J = 11.7 Hz, 1H), 3.14 (s, 3H), 3.03 (s, 3H), 2.70 (td, J = 

13.1, 5.2 Hz, 1H), 2.57 (s, 1H), 2.21 (dd, J = 13.2, 5.5 Hz, 1H); 13C NMR (126 MHz, 

CDCl3) δ 159.52, 158.16, 154.63, 146.20, 127.78, 126.30, 124.50, 88.31, 75.57, 

75.27, 63.80, 43.52, 41.30, 35.04; ESI-MS calculated for C14H19N4O4S [M+H]+339.11, 
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found 399.19; ESI-HRMS calculated for C14H19N4O4S [M+H]+339.1122, found 

339.1125. 

 

Synthesis of O5’-DMT-2’-deoxy-N2-DMF-thG (7)  

6 (59 mg, 0.17 mmol) was coevaporated with dry Py (2 × 2 mL) and was dissolved in 

dry Py (1 mL). DMTrCl (69 mg, 0.20 mmol) was added to the solution at RT, and was 

stirred for 16 hours. The reaction was quenched by addition of MeOH (1 mL) and 

evaporated. The residue was purified by column chromatography with 0~2 % 

gradient MeOH in DCM with 1 % Py to afford an off-white foam. Yield 54 mg, 50 %. 

1H NMR (500 MHz, CDCl3) δ 8.84 (s, 1H), 8.57 (s, 1H), 8.03 (s, 1H), 7.45 – 7.37 (m, 

2H), 7.37 – 7.24 (m, 4H), 7.24 – 7.04 (m, 3H), 6.73 (d, J = 8.4 Hz, 4H), 5.91 (dd, J = 

9.9, 5.2 Hz, 1H), 4.42 (d, J = 5.4 Hz, 1H), 4.01 (dd, J = 6.6, 4.5 Hz, 1H), 3.69 (s, 3H), 

3.69 (s, 3H), 3.20 (qd, J = 9.9, 4.7 Hz, 2H), 3.02 (s, 3H), 2.93 (s, 3H), 2.52 (s, 1H), 

2.33 (dd, J = 13.1, 5.2 Hz, 1H), 2.18 (ddd, J = 13.1, 10.5, 5.8 Hz, 1H); 13C NMR (126 

MHz, CDCl3) δ 159.82, 158.49, 158.48, 157.92, 154.00, 146.49, 144.93, 136.14, 

136.06, 130.85, 130.20, 130.18, 129.10, 128.55, 128.29, 127.92, 126.85, 125.33, 

125.23, 113.19, 86.35, 86.24, 74.81, 73.14, 64.48, 55.32, 43.97, 41.35, 35.12; ESI-

MS calculated for C35H37N4O6S [M+H]+641.24, found 640.86; ESI-HRMS calculated 

for C35H37N4O6S [M+H]+641.2428, found 641.2426 

Synthesis of O3’-(2-Cyanoethyldiisopropylphosphoramidite)-O5’-DMT-2’-deoxy-

N
2-DMF-thG (8)  

7 (49 mg, 76 µmol) was coevaporated with dry Py (2 × 1 mL) and dried under high 

vacuum overnight then dissolved in dry DCM (1 mL). DIPEA (53 µL, 0.30 mmol) and 

2-cyanoethyl N,N-diisopropylchlorophosphoramidite (25 µL, 0.11 mmol) were 
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successively added to the solution at 0 °C and the mixture was stirred at RT for 2 

hours. All volatiles were evaporated and the residue was purified by column 

chromatography with 0~2 % gradient MeOH in DCM with 1 % Py to afford a white 

foam. Yield 36 mg, 56 %. 1H NMR (500 MHz, CDCl3) δ 8.70 (s, 1H), 8.69 (s, 2H), 

8.17 – 8.15 (m, 2H), 8.11 (s, 1H), 8.11 (s, 1H), 7.52 – 7.45 (m, 4H), 7.41 – 7.33 (m, 

8H), 7.32 – 7.23 (m, 4H), 7.23 – 7.16 (m, 2H), 6.85 – 6.75 (m, 8H), 5.99 – 5.91 (m, 

2H), 4.64 – 4.53 (m, 2H), 4.24 – 4.17 (m, 2H), 4.17 – 4.09 (m, 1H), 3.91 – 3.82 (m, 

1H), 3.82 – 3.76 (m, 18H), 3.76 – 3.67 (m, 2H), 3.67 – 3.43 (m, 5H), 3.40 – 3.30 (m, 

2H), 3.27 – 3.12 (m, 7H), 3.08 (s, 6H), 2.81 – 2.72 (m, 2H), 2.62 (t, J = 6.5 Hz, 2H), 

2.56 (dd, J = 13.3, 5.1 Hz, 1H), 2.46 (dd, J = 12.1, 5.7 Hz, 3H), 2.37 – 2.20 (m, 2H), 

1.30 – 1.23 (m, 9H), 1.19 – 1.14 (m, 9H), 1.05 (d, J = 6.8 Hz, 6H); 31P NMR (202 

MHz, CDCl3) δ 148.58, 148.29; ESI-MS calculated for C44H54N6O7PS [M+H]+841.35, 

found 840.86; ESI-HRMS calculated for C44H54N6O7PS [M+H]+841.3507, found 

841.3503. 

1.2. Synthesis of non-labeled and dthG/d2Ap-labeled ODNs 

Non-modified (-)PBS, (+)PBS, T12(+)PBS and d2Ap7(-)PBS were synthesized and 

purified by IBA GmbH Nucleic Acids Product Supply (Germany).  For dthG7(-)PBS, 

solid-phase ODN synthesis was performed on an Expedite 8909 synthesizer using 

commercially available reagents and phosphoramidites (Glen Research). The 

modified phosphoramidite was chemically synthesized as described above and 

incorporated into ODN with coupling efficiency comparable to the commercially 

available phosphoramidites. The solution of the modified phosphoramidite was dried 

for 16 hours over molecular sieve 3A (dried for 2 days at 300 °C under high vacuum) 

and was filtered using syringe filterright before use. ODNs were synthesized (with 

trityl-off) on a 500 Å CPG solid support column (1 µmol scale). Cleavage from the 
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solid support and deprotection were accomplished with AMA (ammonium 

hydroxide/methylamine in water = 1/1) at 65 °C for 30 min. The oligonucleotides were 

purified by 20 % preparative polyacrylamide gel electrophoresis (PAGE) using the 

crush and soak method; the desired band was cut out, pulverized, extracted with 50 

mM TEAA (pH 7.0) for 12 hours (while shaking) and decanted. The buffer containing 

the purified ODN was lyophilized and the residue was taken up in 0.2 M TEAB (pH 

7.0) buffer and desalted on a Sep-pak C-18 (Waters). The ODNs were eluted with 40 

% acetonitrile in water. The dthG containing (-)PBS DNA was>98 % pure as 

determined by analytical high resolution PAGE. The purified ODN was quantified by 

UV absorbance at 260 nm at 70 °C with the following extinction coefficients (M-1cm-1): 

dCMP, 7050; dTMP, 8840; dGMP, 12010; dAMP, 15200; and dthG, 5500, and 

confirmed by MALDI-TOF mass spectrometry: calculated M 5483.52, found 5482.70 

[M-H]+. 

2. UV/visible absorption and steady-state fluorescence measurements. 

Spectroscopic grade solvents were used for absorption and fluorescence 

spectroscopy. To determine the concentrations, extinction coefficients of 4150 M-1cm-

1 at 321 nm and 157280 M-1cm-1 at 260 nm for dthG and dthG7(–)PBS, respectively 

and 6800 M-1cm-1 at 303 nm and 143550 M-1cm-1 at 260 nm for d2Ap and d2Ap7(–

)PBS, respectively, were used. All experiments were performed in 25 mM TRIS-HCl 

(pH = 7.5), 30 mMNaCl, 0.2 mM MgCl2 at 20 °C. 

Absorption spectra were recorded on a Cary 4000 UV-visible spectrophotometer 

(Varian). Fluorescence spectra were recorded on a FluoroMax 4 spectrofluorimeter 

(JobinYvon) equipped with a thermostated cell compartment at 20±0.5 °C. 

Fluorescence spectra were corrected for Raman scattering, lamp fluctuations and 

instrumental wavelength-dependent bias. QY of dthG- and d2Ap-labeled ODNs were 
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calculated using quinine sulfate in 0.5 M sulfuric acid (QY=0.546),2 and free 2Ap 

deoxyriboside (QY=0.68)3 as references, respectively. Excitation wavelength was 

380 nm for dthG and 315 nm for d2Ap. Melting temperatures were determined by 

measuring absorbance changes at 260 nm as a function of the temperature using a 

Varian Cary 400 spectrophotometer equipped with a Peltier temperature controller. 

Absorbance was recorded in the forward and backward directions from 20 to 80 °C at 

a rate of 0.5 °C/min. Prior to the melting experiment, (+)PBS and (–)PBS samples 

were denatured at 90 °C for 3 min and then slowly cooled down to allow their 

annealing. For melting experiments, the complementary ODNs were at 1 µM in 25 

mM TRIS (pH = 7.5), 30 mM NaCl and 0.2 mM MgCl2. Melting temperatures were 

determined from the first derivative of thermal denaturation curves. 

3. Time-resolved fluorescence intensity decays 

Time-resolved fluorescence measurements were performed with the time-correlated 

single-photon counting technique. Excitation pulses at 315 nm with a repetition rate 

of 4 MHz were generated by a pulse-picked frequency-tripled Ti-sapphire laser 

(Tsunami, Spectra Physics) pumped by a Millenia X laser (Spectra Physics).4 The 

fluorescence emission was collected at 500 nm through a polarizer set at magic 

angle and a 16 mm band-pass monochromator (Jobin Yvon). The single-photon 

events were detected with a micro-channel plate photomultiplier (Hamamatsu) 

coupled to a pulse pre-amplifier HFAC (Becker-Hickl GmbH) and recorded on a time 

correlated single photon counting board SPC-130 (Becker-Hickl GmbH). The 

instrumental response function (IRF) recorded with a polished aluminum reflector 

was characterized by a ≈ 50 ps full-width at half-maximum. The mean lifetime <τ> 

was calculated from the individual fluorescence lifetimes (τi) and their relative 
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amplitudes (αi)  according to . The population of dark species (α0) 

was calculated by: 

 (1), 

where τfree is the lifetime of the free nucleoside, τODN is the measured mean lifetime of 

the probe within the ODN and Rm is the ratio of their corresponding QYs. The 

amplitudes of the fluorescent populations αic were recalculated according to 

. Time-resolved intensity data were fitted using the maximum 

entropy method (Pulse 5 software).5 In all cases, the χ2 values were close to 1, 

indicating an optimal fit. 

4. Time-resolved fluorescence anisotropy decays 

Time-resolved fluorescence anisotropy was obtained from the fluorescence decay 

curves recorded in directions parallel Iǁ and perpendicular I⊥ alternatively, to the 

excitation beam polarization and was analyzed by:  

 (2), 

where βi are the amplitudes of the rotational correlation times θi, r0 is the initial 

anisotropy, and G is the geometry factor at the emission wavelength, determined in 

an independent experiment. Time-resolved anisotropy data were fitted using the 

maximum entropy method (Pulse 5 software) or according to a non-linear least-

square analysis using an iterative reconvolution method (software provided by G. 

Krishnamoorthy). The r0 values were found to be 0.32-0.33 for the 2Ap-containing 

sequences, while those (r0) for the dthG-containing sequences were 0.23-0.25. In all 

cases, the χ2 values were close to 1, indicating an optimal fit. 



S11 

 

0 5 10 15

-0.1

0.0

0.1

0.2

0.3

0.4

r(
t)

Time (ns)
0 5 10 15

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
e
s
id
u
a
l

Time (ns)

 

 

Figure S2. Anisotropy decay and corresponding residual plot for d2Ap7(-)PBS.The 

continuous line in the left panel corresponds to the fit of the data with the parameters 

in Table 2. Excitation wavelength was at 315 nm. 

0 5 10 15
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

r(
t)

Time (ns) 0 5 10 15
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
e
s
id
u
a
l

Time (ns)

 

 

Figure S3. Anisotropy decay and corresponding residual plot for d2Ap7(-

)/T12(+)PBS.The continuous line in the left panel corresponds to the fit of the data 

with the parameters in Table 2. Excitation wavelength was at 315 nm. 
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Figure S4. Anisotropy decay and corresponding residual plot for dthG7(-)PBS.The 

continuous line in the left panel corresponds to the fit of the data with the parameters 

in Table 2. Excitation wavelength was at 315 nm. 
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Figure S5. Anisotropy decay and corresponding residual plot for dthG7(-)/(+)PBS.The 

continuous line in the left panel corresponds to the fit of the data with the parameters 

in Table 2. Excitation wavelength was at 315 nm. 
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Figure S6. Anisotropy decay and corresponding residual plot for dthG7(-

)/T12(+)PBS.The continuous line in the left panel corresponds to the fit of the data 

with the parameters in Table 2. Excitation wavelength was at 315 nm. 

 

5. Quenching measurements 

Fluorescence quenching by potassium iodide (KI) was carried out by adding aliquots 

of a concentrated aqueous stock of KI to the labeled ODNs. Na2S2O3 was added to 

the KI stock solution to prevent its oxidation. Fluorescence intensity was corrected for 

dilution. The change in fluorescence intensity as a function of quencher concentration 

was fitted by the Stern-Volmer equation: 

 (3), 

where F and F0 are the intensities in the presence and absence of quencher, 

respectively, kq is the diffusion-controlled quenching rate, and τ0 is the lifetime in the 

absence of the quencher. 
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Figure S7. Stern-Volmer plots for KI quenching of dthG (black squares), dthG7(-)PBS 

(red disks), d2Ap (blue triangles), and d2Ap7(-)PBS (magenta circles). Black lines 

represent their linear fits. 
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4.2. CHAPTER 2: Fluorescent Nucleobase 

Analogues as a Tool for Characterizing 

Dynamics of Nucleocapsid Protein 

Promoted Annealing of (–)/(+)PBS.  

 

 

 

 

 

4.2.1. Publication 3: Environment-Sensitive Fluorescent Nucleoside 

Analogues for Surveying Dynamic Interconversion of Nucleic 

Acid Structures. 

In this work, we used two versatile environment-sensitive fluorescent nucleobases 

3HCnt at position 9 and thG at position 7 into the (–)PBS loop to directly monitor the role of 

the loops and to recover for the first time the whole set of kinetic rate constants governing 

(+)/(–)PBS annealing both in the absence and the presence of NC(11–55), NC(1–55) or 

(SSHS)2NC(11–55) (Publication 3, Figure 9). 3HCnt  acts as a universal nucleoside analogue 

able to substitute any of the natural nucleobases (Dziuba et al., 2012) and importantly, it has 

recently been shown to preserve the intercalation and stacking with the surrounding bases in a 

DNA helix (Zargarian et al., 2017). thG has already been shown to perfectly substitute the single 

G residue at position 7 in (–)PBS loop and exhibit a two-fold increase in quantum yield when 

the (–)PBS stem-loop in converted into the (+)/(–)PBS duplex. Its competence has surpassed 

over 2-Aminopurine’s restraints by faithfully substituting a key G7 residue in (–)PBS, 

providing reliable information on its conformations and dynamics in both the (−)PBS stem loop 
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and (−)/(+)PBS duplex (Sholokh et al., 2015).Our data show that the 3HCnt nucleobase can 

sensitively monitor at nearly all positions, the binding of NC(11–55) and the stem-loop to 

duplex conversion. We evaluated the photophysical protease of 3HCnt by substituting it at 

different positions within (–)PBS. As 3HCnt at position 9 marginally affects the affinity for 

NC(11–55) and shows a high sensitivity to the binding of NC(11–55) and formation of the 

duplex, this position was further selected for monitoring the (+)/(–)PBS annealing reaction.  

In absence of NC, (+)/(–)PBS annealing is governed by a two-step pathway nucleated 

via the overhangs (Figure 9a, upper pathway). We evidenced also for both probes a large 

fluorescence increase associated with the formation of the IC, that clearly indicated the 

existence of loop-loop contacts in the IC that were never seen before. These contacts are 

probably the driving force for the slow annealing reaction observed when ΔP()PBS was 

substituted for PBS. In comparison to the reaction in the absence of peptide, (SSHS)2NC(11–

55) induces a two orders of magnitude increase of all three kinetic parameters (k1, k-1 and kf) 

suggesting the efficient electrostatic attraction between the complementary strands permitted 

by the high charge density and flexibility of this mutant, as well as by its ability to rapidly bind 

and dissociate from the ODNs. Our data showed that 3HCnt but not thG could be used to 

monitor the NC-promoted annealing reaction. As in the absence of NC, the full set of kinetic 

parameters could be retrieved, giving a clearer picture on the mechanism by which NC(11–55) 

promotes the annealing reaction. The formation of a loop/loop IC is thought to result from the 

specific interaction of the NC(1–55) or NC(11–55) hydrophobic platform, which solvent-

exposes the nucleobases of both (–)PBS and (+)PBS loops, making them competent for 

annealing. This solvent exposure of the loop nucleobases induced is fully supported by the 

large increase in the 3HCnt and thG fluorescence on binding of both proteins. 
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Environmentally-Sensitive Fluorescent Nucleoside Analogues for 

Surveying Dynamic Interconversions of Nucleic Acid Structures  

Marianna Sholokh,[a,c] Rajhans Sharma,[a] Natalia Grytsyk,[a] Lyes Zaghzi,[a] Viktoriia Y. Postupalenko,[a] 

Dmytro Dziuba,[b] Nicolas P.F. Barthes,[b] Benoît Y. Michel,[b] Christian Boudier,[a] Olga A. 

Zaporozhets,[c] Yitzhak Tor,[d] Alain Burger[b] and Yves Mély*[a] 

Abstract: Nucleic acids are characterized by a variety of dynamically 

interconverting structures that play a major role in transcriptional and 

translational regulation as well as recombination and repair. To 

monitor these interconversions, FRET-based techniques can be used, 

but require two fluorophores that are typically large and can alter the 

DNA/RNA structure and protein binding.  Additionally, events that do 

not alter the donor/acceptor distance and/or angular relationship are 

frequently left undetected. A more benign approach relies on 

fluorescent nucleobases that can substitute their native counterparts 

with minimal perturbation, such as the recently developed 2-thienyl-3-

hydroxychromone (3HCnt) and thienoguanosine (thG). To 

demonstrate the potency of 3HCnt and thG in deciphering 

interconversion mechanisms, we used the conversion of the (–)DNA 

copy of the HIV-1 primer binding site (–)PBS stem-loop into 

(+)/(–)PBS duplex, as a model system. When incorporated into the 

(–)PBS loop, the two probes were found to be highly sensitive to the 

individual steps both in the absence and the presence of a nucleic 

acid chaperone, providing the first complete mechanistic description 

of this critical process in HIV-1 replication. The combination of the two 

distinct probes appears to be instrumental for characterizing structural 

transitions of nucleic acids under various stimuli. 

Introduction 

Structural polymorphism is a key characteristic of nucleic acids. 

Beyond the canonical B-DNA and A-RNA, nucleic acids can fold 

into diverse and more complex structures such as triplexes, G-

quadruplexes, i-motifs, cruciforms, Holliday junctions, hairpins, 

and other alternative forms.[1] These non-canonical structures can 

be formed from single and/or double stranded nucleic acid 

sequences and can frequently dynamically interconvert. For 

instance, a Holliday junction is a branched DNA or RNA structure 

composed of four double-stranded arms joined together that may 

exist in a variety of forms and play a central role in genetic 

recombination.[2] Another illustrative example is found in G/C rich 

promoters and telomeric regions in DNAs. Dissociation of a G/C-

rich double stranded DNA produces two single G- and C-rich 

strands, which can fold into a G-quadruplex and an i-motif, 

respectively.[3] Alternatively, a single stranded DNA/RNA 

sequence that contains complementary sequences separated by 

three or more nucleotides can fold into a stem-loop (hairpin). 

Hairpins may be produced during DNA repair, lagging-strand 

synthesis, transcription, rolling-circle replication and reverse 

transcription.[1] 

Non canonical structures are thought to take part in major cellular 

processes such as transcriptional and translational regulation, 

recombination, repair or viral infections.[1] Though substantial 

progress has been made in our understanding of their 

physiological significance and dysfunctions in a variety of human 

diseases, major mechanistic questions remain unanswered. 

Elucidating the dynamics, conformational changes and 

interconversion of nucleic acids is needed not only for unraveling 

their molecular mechanisms and cellular functions, but also for 

proposing new strategic therapeutic approaches and structure-

specific targets. Elucidating these structural transitions is 

challenging, however, because many of these non-canonical 

structures are transient and unstable, and their interconversions 

depend on a multitude of factors, including base composition, salt 

concentration and solvation, as well as small and large ligands 

and superhelical stress.  

X-ray crystallography and cryo-electron microscopy are 

invaluable tools to access 3D structures but are inherently limited 

to the solid state. Spectroscopic techniques, as NMR and 

fluorescence spectroscopy, are complementary methods able to 

shed light on the dynamics and structures of nucleic acids in 

solution. Fluorescence spectroscopy is appealing due to its high 

sensitivity and exquisite spatio-temporal resolution. In nucleic 

acids, the interconversions are mainly monitored using Förster 

Resonance Energy Transfer (FRET) experiments in which the 

oligonucleotides (ODN) are labeled with a donor and acceptor 

pair. Because FRET efficiency depends on the distance and 

angular relationship between the donor and acceptor, FRET 

techniques are well suited to analyze global conformational 

transitions in nucleic acids. For instance, they were employed to 

characterize the dynamics and interconversion between different 

conformations of Holliday junctions and G-quadruplexes.[4,5] 

However, they failed to detect DNA/RNA changes that do not 

significantly impact the distance between the donor and acceptor. 

Moreover, FRET-based experiments require two chromophores 
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and the commonly used ones tend to be bulky (fluorescein, 

cyanines, rhodamines, Alexas, etc.), and can alter the DNA/RNA 

structure and the binding of proteins and ligands. The use of 

DNA/RNA site-specifically labeled with fluorescent nucleobase 

analogues that are environmentally sensitive[6,7] is an attractive 

alternative that can give additional insights compared to FRET 

experiments. These fluorescent probes should minimally disturb 

the DNA/RNA structure and function, and should respond 

sensitively and site selectively to different molecular events 

occurring during the interconversion process.  

2-aminopurine (2AP), an isomer of adenine, was for a long time 

the gold standard of fluorescent nucleoside analogues.[6–8] 2AP 

absorbs in the red edge of the nucleic acid/protein absorption 

domain and thus can be selectively excited. It exhibits high 

quantum yield in water and fluoresces with relatively large Stokes 

shift.[9] However, it is strongly quenched in DNA and RNA 

oligonucleotides[10] and also locally perturbs the structure and 

dynamics of the modified nucleic acid.[11] As a consequence, its 

residual fluorescence in ODNs may reflect the structural and 

dynamic information of minor or non-biologically relevant 

conformers.[12] Quenching, structural disturbance or poor 

environment sensitivity are common drawbacks of fluorescent 

nucleobase mimics. These severe limitations have stimulated 

over the two past decades the design of new fluorescent 

nucleoside surrogates that minimally perturb the labeled nucleic 

acids and show improved brightness and site-specific responses 

to intermolecular interactions and conformational changes.[13,14] 

According to their chemical structure, these fluorescent 

nucleoside analogues can be classified in two major families: 

nucleobase mimics possessing base pairing properties and non-

canonical nucleobases lacking the H-bonding face. Among them, 

we have selected a recently developed representative from each 

category with improved properties for surveying dynamic 

interconversions of nucleic acid structures. 

2-thienyl-3-hydroxychromone (3HCnt, Figure1) is a recently 

developed heterocycle that acts as a universal nucleobase.[15,16] 

3HCnt exhibits a dual emission due to an excited-state 

intramolecular proton transfer (ESIPT) reaction between the 

initially excited normal (N*) and its tautomeric state (T*). The ratio 

between the two bands is sensitive to the polarity and the H-bond 

donor ability of the probe’s microenvironment. This chromophore 

is up to 50-fold brighter than 2AP with minimal perturbation of the 

duplex structure.[17] 3HCnt has been used to monitor the local 

conformational changes of a single-stranded ODN upon binding 

of an HIV-1 protein[15] and the conformational changes in DNA 

associated to Endonuclease VIII processing.[18] 

Another recently introduced nucleobase is thienoguanine (thG, 

Figure1), an isomorphic guanine surrogate,[19] which remains 

highly emissive when incorporated into single- and double-

stranded ODNs.[20] thG has been shown to faithfully substitute a 

key G residue in the (–)DNA copy of the HIV-1 primer binding site 

(−)PBS. Finally, both 3HCnt and thG were introduced into 

hemimethylated DNAs and successfully used to monitor the 

flipping of a neighbor methylcytosine as the result of the binding 

of ubiquitin-like containing PHD and RING finger domains 1 

(UHRF1) that plays a key role in the replication of the DNA 

methylation pattern.[21]  

To demonstrate the utility of both 3HCnt and thG, we used the 

annealing process of the (–)PBS stem-loop into the (+)/(–)PBS 

duplex as a model system (Figure 1a).  This pathway was 

previously examined using a PBS sequence labeled at its 5' and 

3' ends with rhodamine 6G (Rh6G) and Dabcyl, respectively.[22] 

The (+)/(–)PBS hybridization was found to proceed 

spontaneously through the flexible single-stranded overhangs, 

while it was promoted through a loop-loop kissing mechanism by 

the HIV-1 nucleocapsid protein (NC), acting as a nucleic acid 

chaperone.[22–24] However, due to the insensitivity of the FRET 

pair to the initial steps of the annealing reaction, only one rate 

constant could be extracted from the kinetic measurements[22,23] 

and a complete kinetic picture of the two pathways remains 

missing. When either 3HCnt or thG were inserted into the (–)PBS 

loop, the two  probes were found to be highly responsive, 

providing the first complete mechanistic description of the 

(+)/(–)PBS annealing reaction, which is a key step occurring 

during the early stage of HIV infection.[25] 

 

Figure 1. Structure of the 3HCnt and thG nucleobases (R = 2'-deoxyribose) and 

sequences of the PBS oligonucleotides (a and b), and NC peptides (c) used in 

this study. The residues replaced by 3HCnt or thG in the oligonucleotides are 

shown in red. The N-terminal domain (green) is missing in the truncated NC(11–

55) mutant. In the (SSHS)2NC(11–55) mutant, the SSHS residues (red) that 

replace the naturally occurring CCHC residues are unable to bind zinc. 

Results and Discussion 

Characterization of the thermodynamic, binding and 

spectroscopic properties of the thG-and 3HCnt-labeled 

oligonucleotides  

To demonstrate the utility of thG and 3HCnt for deciphering the 

mechanism of the spontaneous and NC-promoted (+)/(–)PBS 

annealing processes, our first objective was to identify the best 

labeling position within the (–)PBS loop. Ideally, the emissive 

nucleoside should exhibit a respectable quantum yield within the 

oligonucleotide and be responsive to NC binding and duplex 

formation, but should not alter the binding to NC or the structure 

of the duplex with (+)PBS. thG has previously been shown to 

perfectly substitute the G residue at position 7 in (–)PBS loop and 

exhibit a two-fold increase in quantum yield when the (–)PBS 

stem-loop is converted into the (+)/(–)PBS duplex.[20,26] Thus, this 
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position appears as a good candidate for shedding light on the 

mechanisms of the (–)PBS stem-loop conversion into the 

(+)/(–)PBS duplex. 

To identify the best labeling position for the 3HCnt nucleobase, 

we used the ΔP(–)PBS stem-loop sequence (Figure 1), whose 3D 

structure in both free and NC-bound forms has been solved by 

NMR and whose binding properties have been previoulsy 

characterized.[27]  The ΔP(–)PBS sequence was labeled by 3HCnt 

at positions 7, 8, 9 or 10 in the loop (Figure 1), with labeling at 

position 2 in the stem serving as a control. To assess the effect of 

3HCnt on the stability of the duplexes with the complementary 

ΔP(+)PBS sequence, thermal denaturation experiments were 

performed (Figure S1, Table S1 in Supplementary Information). 

With the exception of position 10, the melting temperatures 

differed only by ± 2°C from that of the non-labeled P(+)/(–)PBS 

duplex, suggesting that the 3HCnt nucleobase only moderately 

perturbs the duplexes, in line with the behavior of 3HCnt as a 

universal nucleobase and its limited effect on the structure of 

duplexes.[15,17] 

Next, we characterized the absorption and fluorescence 

properties of the 3HCnt-labeled ΔP(–)PBS stem-loops. All 3HCnt-

labeled ODNs showed absorption maxima at 372–375 nm (Table 

S2), being 5–8 nm red-shifted as compared with the free 

chromophore in buffer,[16] in line with its stacking interactions with 

the neighboring bases.[17,28,29] Each labeled 3HCnt-ΔP(–)PBS 

sequence displayed a two-band emission spectrum characteristic 

for 3-hydroxychromone (3HC) derivatives (Figure 2a). While the 

emission maxima of the N* band (434–437 nm) were similar to 

that of the free probe (440 nm), a 30–37 nm red-shift was 

observed for the T* band (Table S2), indicating that the 

chromophore is partially desolvated through stacking interactions. 

 

Figure 2. Spectroscopic properties of the ΔP(–)PBS sequences labeled by 

3HCnt at different positions. (a) Fluorescence spectra were recorded for 2 µM 

ΔP(–)PBS labeled by 3HCnt at position 2 (black line), 7 (red), 8 (magenta), 9 

(blue) and 10 (green). All spectra were normalized at the T* band. (b) N*/T* ratio 

and (c) fluorescence quantum yield of the 3HCnt-labeled ΔP(–)PBS sequences. 

The 3HCnt-labeled sequences at 2 µM were either in the form of stem-loops in 

the absence (red bars) or the presence of 8 µM NC(11–55)  (blue bars) or in the 

form of duplexes with the complementary ΔP(+)PBS sequence (green bars). 

Buffer: 10 mM phosphate buffer, 30 mM NaCl, pH = 6.5. Excitation was at 360 

nm. 

This conclusion was further substantiated by the low values of the 

N*/T* ratios (0.07–0.19, Figure 2b), indicating a low polarity 

environment of the chromophore in all 3HCnt-labeled 

sequences.[15] Noticeably, the emission spectrum of 3HCnt-

8ΔP(–)PBS showed an additional band between the N* and T* 

bands, with an emission maximum close to 475 nm. Such an 

additional band has already been observed with other 3HC 

derivatives and is attributed to the anionic form of the probe, 

where the 3-OH group is deprotonated.[30–32] The values of the 

fluorescence quantum yield (QYs) at position 2, 8, 9 and 10 were 

rather low (0.4–3.4%) (Figure 2c and Table S2), due to the 

neighboring G and C residues, which are efficient quenchers of 

3HCnt fluorescence.[15] A much higher QY value (12%) was 

observed for 3HCnt at position 7, because the two flanking T 

residues do not quench efficiently the 3HCnt fluorescence. 

To investigate the fluorescence changes induced upon NC 

binding, we used the truncated NC(11–55) peptide, whose 

structure with ΔP(–)PBS has been solved.[27] This peptide retains 

the zinc finger domain responsible of the specific nucleic acid 

binding and destabilizing properties of NC.[25,33–38] Upon addition 

of NC(11–55) at saturating concentration (Figure 2 and Figure S2 

and Table S2), the values of the N*/T* ratios and QYs of 3HCnt 

were found to increase at all positions, confirming that NC(11–55) 

binds all along the (–)PBS loop as well as at the 5' end of the 

stem.[27] At positions 7 and 8, the increase in the N*/T* ratio is 

consistent with NMR data[27] showing that NC(11–55) bound to its 

preferential binding site at the 5' end of the loop stretches the loop 

and exposes the bases to the solvent. Similarly, the increased 

solvent exposure of bases 9 and 10 is probably caused by 

NC(11–55) binding at its second site at the 3'-end of the loop.[27] 

As reported for other 3HC-based fluorophores,[39,40] the NC(11–

55)-induced increase in the QY of 3HCnt is likely due to restricted 

rotation and co-planarization of the chromophore. This restricted 

motion is fully in line with the NC(11–55)-induced restriction in the 

local motion of nucleobases, previously evidenced with 2AP-

labeled (–)PBS sequences.[23] 

To determine whether 3HCnt alters the binding of NC(11–55) to 

ΔP(–)PBS, competition experiments measuring the relative 

affinity of NC(11–55) for labeled ΔP(–)PBS versus non-labeled 

ΔP(–)PBS, were performed.[41] To this end, NC(11–55) was mixed 

with equimolar concentrations of labeled and non-labeled 

ΔP(–)PBS. If 3HCnt does not modify the binding of NC(11–55) to 

ΔP(–)PBS, the peptide should be equally distributed between 

non-labeled and labeled ΔP(–)PBS. This was found to be the case 

for 3HCnt-8ΔP(–)PBS and 3HCnt-9ΔP(–)PBS (Figure 3 and 

Figure S3), indicating that substitutions at positions 8 and 9 

marginally alter the affinity of the ODN for the peptide. In contrast, 

a substantial preference of NC(11–55) for the non-labeled 

sequence was observed when 3HCnt was replacing G7, 

indicating that 3HCnt decreases by at least 3-fold the affinity for 

the protein, likely due to the key role of G7 in the binding 

process.[27,42]  An opposite effect was observed when C10 was 

replaced by 3HCnt, suggesting an about two-fold increase in 

ΔP(–)PBS affinity for the peptide. Notably, the rather low binding 

observed with 3HCnt-2ΔP(–)PBS is likely a consequence of the 

low affinity of the NC(11–55) peptide for the stem, so that this 

binding site is easily depopulated in the presence of the 

competing non-labeled sequence. 

Finally, we investigated the changes in the fluorescence 

properties of the labeled ΔP(–)PBS sequences on conversion 

from the stem-loop to the extended duplex (Figure S4). Duplex 

formation was accompanied by a decrease in the N*/T* ratio 

(Figure 2b) and a substantial increase in the QY (Figure 2c) at 
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nearly all positions. The observed drop of the N*/T* ratio is in line 

with the expected environmental polarity decrease upon 3HCnt. 

Similarly, the observed QY increase is likely a consequence of the 

diminished rotation between the thienyl and 3HC moieties upon 

intercalation of 3HCnt. The minimal changes in the N*/T* ratio and 

QY of 3HCnt at position 10 are probably due to its tight stacking 

with its neighboring G11 in the ΔP(–)PBS stem-loop,[27] so duplex 

formation only marginally changes its exposure to solvent and its 

planarity.  

 

Figure 3. Binding competition experiments. Fluorescence spectra of 2 µM 

3HCnt-9ΔP(–)PBS (a) and 3HCnt-7ΔP(–)PBS (b) were recorded in the absence 

(black line) or in the presence of NC (11–55) added at a ratio 1:1 (red). To this 

mixture, one equivalent of non-labeled ΔP(‒)PBS (blue) was added.  (c) 

Fraction of NC(11–55) protein bound to labeled ΔP(–)PBS after addition of non-

labeled ΔP(–)PBS. A fraction of 50% corresponds to an equal distribution of 

NC(11–55) between labeled and non-labeled ΔP(–)PBS. Buffer was as in 

Figure 2. Excitation wavelength was 360 nm. 

Taken together, our data show that the 3HCnt nucleobase can 

sensitively monitor the binding of NC(11–55) and the stem-loop to 

duplex conversion at most positions. As 3HCnt at position 9 

marginally affects the affinity for NC(11–55) and shows a high 

sensitivity to the binding of NC(11–55) and formation of the duplex, 

this position was further selected for monitoring the (+)/(–)PBS 

annealing reaction. In comparison to 2AP that is almost non-

emissive in double-stranded DNA, the QY of thG or 3HCnt 

increases upon duplex formation, reaching values above 10%. 

This key advantage over 2AP is beneficial as it facilitates the real 

time monitoring of the (+)/(–)PBS annealing reaction at much 

lower concentrations. 

 

Real-time monitoring of (–)PBS stem-loop conversion into 

(+)/(–)PBS duplex 

Annealing of (–)PBS with (+)PBS in the absence of NC: To 

monitor the annealing kinetics of (–)PBS with (+)PBS, we 

switched from the truncated ΔP(–)PBS to the full-length (–)PBS 

to  take into account the contributions of the overhangs. As the 

stem-loop to duplex conversion was found to provide a larger QY 

increase with 3HCnt at position 9 (6-fold) than for thG at position 

7 (2-fold), we first used the labeled 3HCnt-9(–)PBS sequence to 

monitor the annealing kinetics. By mixing this sequence with the 

complementary non-labeled (+)PBS in pseudo first-order 

conditions, we could follow the formation of the extended 

(+)/(–)PBS duplex in real-time through the fluorescence increase 

displayed by 3HCnt  (Figure 4a). 

 

Figure 4. Kinetics of 3HCnt-9(–)PBS annealing with (+)PBS in the absence of 

NC. (a) Kinetic traces of 0.05 µM 3HCnt-9(–)PBS with (+)PBS concentrations 

of 0.5 µM (black), 1 µM (red), 2 µM (blue), 3 µM (green), 4 µM (magenta) and 5 

µM (light green), respectively. The kinetic curves were fitted to equation 1 to 

recover the kobs1,2 values. Dependence of the observed kinetic rate constants 

kobs1 (b) and kobs2 (c) as a function of (+)PBS concentration. The kobs1,2 values 

are the means for two experiments. The red lines in (b) and (c) correspond to 

the fit of the data points (black squares) to equations 2 and 3, respectively. 

Excitation and emission wavelengths were 360 and 540 nm. Buffer was as in 

Figure 2. 

The kinetic traces of (+)/(–)PBS annealing (Figure 4a) could be 

appropriately fitted with equation (1). The observed rate constants 

kobs1 and kobs2 obtained from the fits were found to show 

respectively, a linear (Figure 4b) and hyperbolic dependence 

(Figure 4c) on the (+)PBS concentration, in consistency with a 

two-step model where an intermediate complex (IC) is further 

converted through a rate-limiting step into an extended duplex 

(ED)[22,23]: 

 

This model is characterized by k1 and k-1, the kinetic rate 

constants for the formation and dissociation of the IC, and by kf 

and k-f, the forward and backward rate constants for the 

conversion of the IC into the final duplex. The fit of the kobs1 (Figure 

4b) and kobs2 (Figure 4c) dependence on the (+)PBS concentration 

to equation 2 and 3, respectively gave the k1, k-1, Km, kf  and k-f 

values reported in Table 1. Notably, the Km value was consistent 

with the value obtained from the k1/k-1 ratio, highlighting the 

internal consistency of our data and the appropriate selection of 

the kinetic model. Additionally, a negligibly small value was 

obtained for k-f, indicating that the conversion of the IC into the ED 

is nearly irreversible, as expected from the high stability of the ED.  

To support the results of the analytical calculations, we used the 

Dynafit numerical solving software,[43,44] which makes no 

assumption on the relative values of the rate constants in the 

selected kinetic model. The kinetic rate constants obtained by 

Dynafit and the analytical approach corresponded perfectly 

(Table1), improving the confidence in the values obtained. In 

addition, the numerical approach revealed that the fluorescence 

intensity of the IC was about 70% of the ED, so that it corresponds 

to a QY of 9.1%. This clearly suggests that the loops also interact 

with one another in the IC, in contrast to the previously proposed 

model where the interaction was limited to the overhangs.[23] To 

further evaluate the contribution of the overhangs to the 

(+)/(–)PBS annealing, we monitored the annealing kinetics using 

3HCnt-9ΔP(–)PBS and ΔP(+)PBS, where the overhangs were 

missing (Figure 1).  
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Table 1. Kinetic parameters of the annealing of 3HCnt-9(–)PBS with (+)PBS in the absence and presence of NC derivatives. 

Protein Probe Approach k1  (M-1s-1×10-3) [a] k-1 (s-1 × 103) [a] kf  (s-1 × 104) [a] 
k1/k-1 (Km) (M-1 × 

10-6) 

- 

3HCnt 

Analytical 3.5 ± 0.2 1.4 ± 0.2 3.5 ± 0.1 2.5 (2.5) 

Numerical 4.5 ± 0.4 1.1 ± 0.1 3.0 ± 0.1 4.1 

thG Numerical 11 ± 1 2.3 ± 0.4 2.4 ± 0.1 4.8 

NC(1–55) 3HCnt 

Analytical 230 ± 4 20 ± 1 930 ± 200 11.5 

Numerical 220 ± 10 41 ± 10 940 ± 30 5.4 

NC(11–55) 3HCnt 

Analytical 75 ± 5 20 ± 9 90 ± 3 3.7 (0.9) 

Numerical 75 ± 5 54 ± 1 70 ± 1 1.4 

(SSHS)2NC(11–55) 3HCnt Numerical 470 ± 80 210 ± 20 1000 ± 400 2.2 

[a] k1 and k-1 are the kinetic rate constants for the formation and dissociation of the IC; Km is the equilibrium constant for IC formation calculated from the k1/k-1 

ratio or equation 3 (in brackets); kf is the forward rate constant for the conversion of the IC into the final duplex. For the analytical approach, the reported rate 

constant values are given as mean ± standard error of the mean for three experiments. For the Dynafit approach, the reported values and their errors were 

calculated from the least-squares fit of experimental data using the Levenberg-Marquardt algorithm as implemented by Reich.[45] 

 

The kobs1 and kobs2 values of the ΔP(–)/ΔP(+)PBS kinetic trace 

(Figure S5) were one order of magnitude smaller than for 

(+)/(–)PBS, confirming that the overhangs play a pivotal role in the 

annealing reaction.  

Our approach, using a fluorescence nucleobase surrogate, 

appears far superior to the previous one based on the double 

labeling of (–)PBS at its 5' and 3' ends by the 

rhodamine6G/Dabcyl FRET pair,[22,23] where only a single kinetic 

parameter (k = 3.8 × 103 M-1  s-1) could be recovered. Moreover, 

as this k value is in reasonable agreement with the product (k1/k-

1)×kf = 1.2 × 103 M-1   s-1, this further indicates that the two 

approaches consistently describe the annealing reaction. 

To substantiate the results obtained with 3HCnt-9(–)PBS and 

further validate the effectiveness of the tested nucleoside 

surrogates in deciphering the mechanisms of nucleic acid 

transitions, we monitored the same annealing kinetics by using 
thG7(–)PBS (Figure 5).  Fit of the kinetic traces by DynaFIT 

provided k1, k-1 and kf values in good agreement with the values 

obtained using 3HCnt (Table 1). In addition, the value of the 

product (k1/k-1)×kf  = 1.1 × 103 M-1s-1 corresponds to that obtained 

with the 3HCnt-labeled (–)PBS and the k value of the doubly 

labeled (–)PBS,[22] indicating that all three approaches are 

consistent. Noticeably, the fluorescence intensity of the IC was 

almost identical to the ED one, indicating that thG’s 

microenvironment was similar in the IC and ED context, 

confirming an interaction between the loops in the IC. This close 

similarity of IC and ED fluorescence intensities also readily 

explains the observed kinetic curves. At high concentrations of 

(+)PBS, well above the Kd value (Kd = k-1/k1 = 0.2 µM) of the IC, 

the rapid reach of the fluorescence plateau is due to the fast and 

nearly total conversion of the free (–)PBS into the IC. The 

subsequent conversion of the IC into ED being spectroscopically 

silent, no further increase in fluorescence can be observed. At 

lower (+)PBS concentration, only a fraction of the free (–)PBS is 

converted to IC according to the mass action law, so that a smaller 

initial increase in fluorescence is observed. Then, the subsequent 

slower fluorescence increase is the result of the slow conversion 

of the IC to ED, that progressively shifts the thG7(–)PBS from its 

free form toward the ED.  

 

Figure 5. Annealing kinetic traces of thG7(–)PBS with (+)PBS and their fit using 

Dynafit. The kinetic traces (thick lines) were recorded by stopped-flow technique 

with 0.1 µM thG7(–)PBS and either 1 µM (black), 2 µM (red), 3 µM (blue), 4 µM 

(magenta), 5 µM (green), 6 µM (navy), 7 µM (violet), 8 µM (purple) or 9 µM 

(brown) (+)PBS, respectively. The kinetic traces were fitted by Dynafit (thin 

lines) with the parameters given in Table 1. Excitation wavelength was 360 nm. 

Buffer 25 mM TRIS, 30 mM NaCl and 0.2 mM MgCl2. 

Taken together, both 3HCnt and thG were highly capable of 

monitoring nucleic acid conversions, allowing us for the first time 
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to determine the full set of kinetic rate constants of the (+)/(–)PBS 

annealing reaction and to evidence that the IC is nucleated both 

through the overhangs and the loops.  

Annealing of (–)PBS with (+)PBS promoted by NC(11–55): We 

next investigated the (+)/(–)PBS annealing kinetics in the 

presence of NC(11–55). Using the labeled 3HCnt-9(–)PBS 

sequence, a nearly two-fold increase in fluorescence was found 

to accompany the NC(11–55)-promoted annealing reaction. The 

fluorescence plateau was reached much faster than in the 

absence of NC (compare Figure 6a to Figure 4a), confirming the 

ability of NC(11–55) to promote annealing of complementary 

strands.[22,23,46–49] The kobs1 and kobs2 values were obtained by 

stopped-flow (Figure 6b) and steady-state (Figure 6a) monitoring 

of the annealing reactions.  

 

Figure 6. Kinetics of (+)/(–)PBS annealing in the presence of NC(11–55). (a) 

Kinetic traces monitored by steady-state spectroscopy of 0.05 µM 3HCnt-

9(–)PBS with 0.5 µM (black), 1 µM (red), 2 µM (blue), 3 µM (green), 4 µM 

(orange) and 5 µM (magenta) (+)PBS, respectively. (b) Stopped-flow kinetic 

traces of 0.1 µM 3HCnt-9(–)PBS with 1 µM (black), 2 µM (red), 4 µM (blue), 6 

µM (green), 8 µM (orange) and 10 µM (magenta) (+)PBS, respectively. NC(11–

55) was added at a 3:1 peptide:ODN ratio. Buffer was as in Figure 2. Excitation 

wavelength was 360 nm. Dependence of the observed kinetic rate constants 

kobs1 (c) and kobs2 (d) as a function of (+)PBS concentration. The kobs1 and kobs2 

values were obtained respectively, from the fits of the curves in (a) and (b) to 

equation 1. The kobs1,2 values are the means +/- standard deviation for two 

experiments. Red lines in c) and d) correspond to the fit of the data points (black 

squares) to equations 2 and 3, respectively. 

As in the absence of NC(11–55), the linear (Figure 6c) and 

hyperbolic (Figure 6d) dependence of the kobs1 and kobs2 values, 

respectively, on the (+)PBS concentration indicated a two-step 

annealing reaction. The k1 and k-1 values were found to be 20- and 

14-fold faster, respectively, than in the absence of the protein 

(Table 1). Moreover, the kf value was 26-fold larger than in the 

absence of peptide. Noticeably, the consistency of the Km values 

calculated from the k1/k-1 ratio or from equation 3, as well as the 

very similar values for all parameters obtained by using Dynafit 

(Table 1), further enhanced the confidence in the model and the 

data. The fluorescence intensity of the IC was found to be 87% of 

the value observed for the ED, confirming the involvement of the 

loops in the NC-promoted (+)/(–)PBS annealing reaction.[22,23] 

Finally, the product (k1/k-1)×kf = 1.0 × 104 M-1s-1 is in good 

agreement with the single kinetic parameter k = 1.8 × 104 M-1s-1 

obtained by using (–)PBS species doubly labeled by Rh6G and 

Dabcyl,[22] confirming the suitability of 3HCnt for monitoring the 

annealing reaction.  

The annealing kinetics with the truncated 3HCnt-9ΔP(–)PBS and 

ΔP(+)PBS ODNs in the presence of NC(11–55) added at a 3:1 

ratio (Figure 7a, red curve) was almost superimposable with that 

obtained for the full-length (+)/(–)PBS (Figure 7a, black curve). 

This  suggests that in contrast to the peptide-free conditions, the 

NC(11–55)-promoted annealing reaction is mediated through a 

loop-loop mechanism.[22,23] 

 

Figure 7. Role of the PBS overhangs in the NC(11–55)- (a), NC(1–55)- (b) and 

(SSHS)2NC(11–55)- (c) promoted (+)/(–)PBS annealing. In (a) and (c), 0.1 µM 

3HCnt-9(–)PBS (black) or 3HCnt-9ΔP(–)PBS (red) were reacted with 6 µM 

(+)PBS or ΔP(+)PBS in the presence of respectively, NC(11–55) and 

(SSHS)2NC(11–55) added at a peptide:ODN ratio 3:1. In (b), 0.1 µM 3HCnt-

9(–)PBS (black) or 3HCnt-9ΔP(–)PBS (red) were reacted with 1 µM (+)PBS or 

ΔP(+)PBS in the presence of NC(1–55) added at a peptide:ODN ratio 1:1. The 

kinetic parameters for the various progress curves are given in Table S3. 

Excitation wavelength was 360 nm. Buffer was as in Figure 2. 

Next, we used thG7(–)PBS to characterize the NC(11–55)-

promoted (+)/(–)PBS annealing mechanism. As NC(11–55) 

binding to thG7(–)PBS and conversion of thG7(–)PBS into the 

duplex provided nearly the same fluorescence increase, no 

significant change in fluorescence was observed when NC(11–

55)-coated thG7(–)PBS was mixed with (+)PBS (Figure S6). This 

prevented us from monitoring the annealing reaction and 

confirming the values of the different parameters obtained by 

using the 3HCnt-9(–)PBS sequence. 

Taken together, our data showed that 3HCnt but not thG could be 

used to monitor the NC-promoted annealing reaction using 

fluorescence intensity measurements. As in the absence of NC, 

the full set of kinetic parameters could be retrieved, giving a 

clearer picture on the mechanism by which NC(11–55) promotes 

the annealing reaction. 

Annealing of 3HCnt-9(–)PBS with (+)PBS promoted by NC(1–55) 

and (SSHS)2NC(11–55): To further assess the ability of 3HCnt to 

decipher the kinetic mechanisms of the conversion of the (–)PBS 

stem-loop into the (+)/(–)PBS duplex, we analyzed the annealing 

kinetics of 3HCnt-9(–)PBS with (+)PBS promoted by the full-

length NC(1–55) and the (SSHS)2NC(11–55) mutant.  
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The full-length NC(1–55) was added at a 1:1 ratio to limit the 

NC(1–55)-induced aggregation of ODNs.[23] The stopped-flow 

kinetic traces (Figure 8a) were much faster than with NC(11–55). 

Interestingly, the kobs1 values showed a linear dependence on the 

(+)PBS concentrations (Figure 8b), while the kobs2 values were 

nearly constant, suggesting that a plateau has been reached in 

the expected hyperbolic dependence on the (+)PBS 

concentration (Figure 8c). From equation 3 and the (+)PBS 

concentration range, this suggests that Km >> 106 M-1 and thus, 

that the plateau value (0.093) corresponds to the kf value. Using 

Dynafit and assuming a two-step reaction scheme, values of k1, 

k-1 and kf were obtained (Table 1). Both the agreement of k1 and 

k-1 values with the fitted values of the dependence of kobs1 on 

(+)PBS concentration (Figure 8b) and the match of the kf value 

with the plateau value of Figure 8c enhanced the confidence in 

the obtained values and the selected binding scheme. Moreover, 

the high Km value (5.4  106 M-1) calculated from the k1/k-1 ratio is 

consistent with the rapid reach of the plateau observed in Figure 

8c. The product (k1/k-1)×kf = 5.0 × 105 M-1s-1 is in line with the k 

value of 1.8 × 105 M-1s-1 obtained using doubly labeled (–)PBS 

species,[22] confirming the consistency of the obtained rate 

constants. Interestingly, the kinetics of the NC(1–55)-promoted 

annealing of 3HCnt-9ΔP(–)PBS/ΔP(+)PBS and 3HCnt-

9(+)/(–)PBS are very similar (Figure 7b and Table S3), indicating 

that the annealing reaction is mainly promoted through the PBS 

loops and that the overhangs play only a minor role in this reaction.  

Lastly, we investigated the promotion of 3HCnt-9(+)/(–)PBS 

annealing kinetics by the (SSHS)2NC(11–55) mutant (Figure 1). 

This mutant peptide, which does not bind zinc and remains 

unfolded, is thought to promote nucleic acid annealing through a 

different pathway compared to NC(1–55) and NC(11–55).[47,50,51] 

The stopped-flow kinetic traces (Figure S7) were adequately fitted 

with Dynafit, assuming a two-step reaction. The (SSHS)2NC(11–

55) peptide was found to efficiently promote the association of the 

IC and its conversion into the ED, as can be seen from the k1 and 

kf values in Table 1. Moreover, the fluorescence intensity of the 

IC was found to be 95% of the value observed for the ED, 

indicating that the loops are involved in the IC formation. 

Furthermore, the product (k1/k-1)×kf = 2.2 × 105 M-1s-1 is consistent 

with the k value (1 × 105 M-1s-1) reported for the doubly labeled 

(–)PBS species,[23] giving credit to the selected two-step model 

and the values of the rate constants. Finally, a large decrease in 

both kobs1 and kobs2 values was observed when ΔP(–)PBS was 

substituted for PBS (Figure 7c and Table S3), indicating that the 

PBS overhangs play a key role in the (SSHS)2NC(11–55)-

promoted annealing process and that this peptide uses  the same 

pathway as in the absence of NC.[23]  

 

Figure 8. Kinetics of (+)/(–)PBS annealing in the presence of NC(1–55). (a) 

Stopped-flow kinetic traces of the NC(1–55)-promoted annealing of 0.1 µM 

3HCnt-9(–)PBS with different concentrations of (+)PBS: 1 µM (black), 2 µM (red), 

3 µM (green), 4 µM (blue), and 5 µM (magenta), respectively. NC(1–55) was 

added at a 1:1 peptide:ODN ratio. The progress curves were fitted with equation 

1 and the kobs1,2 values given in panels (b) and (c). Dependence of the observed 

kinetic rate constants kobs1 (b) and kobs2 (c) as a function of (+)PBS concentration 

in the presence of NC(1–55). The kobs1,2 were obtained from the fits of the 

progress curves in panel (a) to equation 1. The red line in (b) corresponds to 

the fit of the data points (black squares) to equation 2 with k1 = 2.3  105 M-1s-1 

and k-1 = 0.02 s-1. The red line in (c) indicates the mean value (0.093 s-1) of kobs2. 

Excitation wavelength was 360 nm. Buffer was as in Figure 2. 

Taken together, our data with the different NCp7 variants show 

that 3HCnt at position 9 can confidently disclose the mechanism 

of (–)PBS conversion into (+)/(–)PBS duplex and recover the 

associated rate constant values. 

Discussion 

Here we used two versatile environmentally sensitive fluorescent 

nucleobase analogs, 3HCnt at position 9 and thG at position 7 of 

the (–)PBS loop, to directly monitor the role of the loops in 

(+)/(–)PBS annealing both in the absence and the presence of 

NC(11–55), NC(1–55) or (SSHS)2C(11–55) (Figure 9). This 

allowed us to recover for the first time the entire set of kinetic rate 

constants governing these processes and to quantify the effects 

of all NC variants on each step.  

 

Figure 9. Proposed mechanism for (+)/(–)PBS annealing in the absence and 

the presence of NC derivatives, as revealed by the use of 3HCnt- and thG-

labeled oligonucleotides. The nucleobases of the (+) and (–)PBS strands are 

shown in blue and red, respectively. In the absence of peptide or in the presence 

of 3 equivalents of (SSHS)2NC(11–55) (upper pathway), an intermediate 

complex is initiated through annealing of the (–)PBS and (+)PBS overhangs (a). 

Due to the high flexibility of the loops and their close proximity, the loops can 

base pair rapidly, which further stabilizes the intermediate complex (b) and 

facilitates the conversion into the extended duplex (c). In contrast, through a 

specific binding to the PBS loops, both NC(1–55) and NC(11–55) (magenta 

clouds) expose the nucleotides of PBS loops to the solvent (d), which allows the 

formation of a loop-loop kissing complex (e). Moreover, both NC(1–55) and 

NC(11–55) destabilize the stem (e), which facilitates the conversion of the loop-
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loop intermediate into the final duplex (c). The kinetic rate constants associated 

to these pathways are given in Table 1. 

We found that without NC, (+)/(–)PBS annealing was governed by 

a two-step pathway, nucleating via the overhangs (Figure 9, upper 

pathway). The large fluorescence increase associated with the 

formation of the IC for both probes evidenced the existence of 

loop-loop contacts in the IC that have never been reported before. 

These contacts were likely the cause for the slow annealing 

reaction observed when ΔP(–)PBS was substituted for PBS 

(Figure S5). They likely consisted of Watson-Crick base pairs 

formed between the complementary loops as a result of their high 

flexibility.[27,42] In support of this hypothesis, molecular dynamics 

calculations have recently shown that ΔP(–)PBS can adopt 

conformations where the loop nucleobases are projected into the 

solvent[12] (Figure 9a). As these minor conformations are transient, 

the probability of productive collisions is low, which explains the 

slow ΔP(+)/ΔP(–)PBS annealing reaction. In contrast, the single-

stranded PBS overhangs being unfolded expose their 

nucleobases and are thus prone to productive collisions (Figure 

9a), explaining the faster IC formation with PBS as compared to 

ΔP(–)PBS. In the (+)/(–)PBS IC, the annealing of the overhangs 

likely holds the complementary loops in close proximity (Fig. 9a). 

As a result of this proximity and the fast interconversion between 

loop conformations,[12] the complementary loops can base pair 

rapidly (Figure 9b), which stabilizes the IC and thus favors the 

conversion into the ED (Figure 9c) by preventing the IC 

dissociation.  

The (SSHS)2NC(11–55) mutant was found to strongly promote 

the conversion of (–)PBS into the (+)/(–)PBS duplex, through the 

same pathway as in the absence of peptide (Figure 9, upper 

pathway). In comparison to the reaction in the absence of peptide, 

(SSHS)2NC(11–55) induces a two orders of magnitude increase 

of all three kinetic parameters (k1, k-1 and kf). The increase in k1 

and kf values can be rationalized by the efficient electrostatic 

attraction between the complementary strands permitted by the 

high charge density and flexibility of this mutant, as well as by its 

ability to rapidly bind and dissociate from the ODNs.[37,51] The 

large increase in the IC dissociation rate k-1 may be a collateral 

effect of the strong attraction between the strands induced by the 

peptide. Indeed, this nucleic acid aggregation effect may not only 

favor productive IC but also nonspecific and unstable ICs that 

cannot convert into ED and thus, readily dissociate. In contrast, in 

the absence of peptide an IC can likely form only if all four 

nucleobases of the overhangs anneal together, as at least three 

to four subsequent base pairs are required for stable duplex 

nucleation.[47,52,53] This is a low probability event, but it generates 

a specific and more stable IC, prone to convert into the ED. 

Both NC(1–55) and NC(11–55) were found to direct (+)/(–)PBS 

annealing  through a loop/loop pathway (Figure 9, lower pathway), 

that is nearly independent of the PBS overhangs. The formation 

of a loop/loop IC is thought to result from the specific interaction 

with the NC(1–55) or NC(11–55) hydrophobic platform, which 

solvent-exposes the nucleobases of both (–)PBS and (+)PBS 

loops (Figure 9d), making them competent for annealing.[23,27] 

This solvent exposure of the loop nucleobases is fully supported 

by the large increase in the 3HCnt and thG fluorescence on 

binding of both proteins and  further substantiated by the increase 

of the N*/T* intensity ratio of 3HCnt. Together with the 

electrostatic attraction between the strands permitted by the high 

charge density of NC(11–55) and NC(1–55), this exposure of the 

loop nucleobases readily explains the efficient annealing of the 

loops (Figure 9e), evidenced by the increase by one and two 

orders of magnitude, respectively, in the k1 value in respect to the 

same reaction in the absence of a protein. The lower activity of 

NC(11–55) as compared to NC(1–55) can be attributed to its 

lower electrostatic strand attraction capability due to the lack of 

the highly positively charged N-terminal domain.[37] It can also be 

explained by its approximately 10-fold lower affinity for nucleic 

acids as compared to NC(1–55),[25,37,50,54,55] so that NC(11–55) is 

more shortly bound to the PBS loop than NC(1–55), decreasing 

the probability of finding the proper base pairing required for IC 

nucleation. We also observed a 26- and 170-fold increase in the 

kf value for NC(11–55) and NC(1–55), respectively, as compared 

to the reaction in the absence of protein. This can be rationalized 

by their ability to destabilize the upper[27] and lower base pair[24,56] 

of the (–)PBS stem (Figure 9e), and thus favor the invasion by the 

complementary (+)PBS species. Finally, the one to two orders of 

magnitude increase in the IC dissociation rate constant k-1 

promoted by NC(11–55) and NC(1–55) as compared with the 

reaction in the absence of any protein, can be explained by the 

nucleic acid destabilization associated with the folded zinc 

fingers.[51,54,57–59] Though this effect is too small to dissociate long 

duplexes such as the ED, it can efficiently dissociate the five base 

pairs stretch between the loops in the IC. The increased 

destabilizing activity of NC(1–55) as compared to NC(11–55) was 

already described[37,59] and attributed to the destabilizing property 

of the N-terminal domain of NC[23,37,54] and/or to its higher affinity 

as compared to NC(11–55), which increases the probability for 

the folded zinc fingers to dissociate the IC through a prolonged 

contact with the ODNs.  

Interestingly, the k1 and kf values (Table 1) were about 7-fold 

higher with (SSHS)2NC(11–55) as compared to NC(11–55) 

(Figure 9a and b). This is likely related to the high flexibility of the 

former, which ensures an efficient neutralization of the ODN 

negative charges by its positively charged basic amino acids. 

Noticeably, the nonspecific electrostatic-driven effect of the 

(SSHS)2NC(11–55) mutant has a stronger effect on the annealing 

rate constants than the specific destabilizing activity of NC, which 

confirms that the notions of efficiency and specificity in the 

promotion of (+)/(–)PBS annealing are disconnected.[23] 

Both 3HCnt-9(–)PBS and thG7(–)PBS were found to be superior 

to Rh6G-5’-(–)PBS-3’-Dabcyl for deciphering the mechanism of 

(–)PBS stem-loop conversion into the (+)/(–)PBS duplex. The 

main reason is that IC formation both in the pathway through the 

loops and the pathway through the overhangs does not induce a 

significant change in the distance between the 5’ and 3’ ends of 

the doubly labeled species. As a result, IC formation does not 

yield any change in FRET, and only its conversion into the ED can 

be monitored, explaining that only a single overall kinetic constant 

can be obtained. In contrast, as loop-loop interactions are 

observed in both pathways, a substantial fluorescence increase 

of 3HCnt and thG inserted in the loop accompanies the IC 

formation, so that the kinetic rate constants of both the IC 
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formation and conversion into ED steps can be extracted. The two 

probes were found also superior to 2Ap, which exhibits very low 

quantum yields in both (–)PBS stem-loop and (+)/(–)PBS 

duplex.[23] Therefore, higher concentrations of at least an order of 

magnitude would be required with 2Ap-labeled (–)PBS, which 

would lead to kinetics too fast to resolve. 

Since we obtained the same kinetic rate constants using two 

different probes with different structural and photophysical 

features, located at two different positions of (–)PBS, confidence 

in the data obtained is elevated. As 3HCnt is an universal 

nucleobase and as thG can replace any G residue, it is in principle 

possible to site-specifically monitor the annealing process at 

nearly any position of (–)PBS. However, as illustrated in Figure 2 

and Figure 3 for 3HCnt, it is necessary to carefully select the 

positions in the oligonucleotide where the fluorescent nucleobase 

minimally disturbs the system, displays a significant quantum 

yield and provides a large amplitude response to the process 

under study. 3HCnt and thG appear complementary with respect 

to these criteria, at least within the system investigated here. 

While thG was shown to exhibit a good quantum yield and 

perfectly substitute G at position 7, it gave similar fluorescence 

changes on NC binding and duplex formation, so that only the 

annealing in the absence of NC could be investigated. In contrast, 

3HCnt fulfilled well all criteria at position 9, but exhibited low QY 

and/or perturbed NC binding at several other positions. Thus, 

having both fluorescent nucleobases increases the likelihood of 

finding appropriate positions that permit faithful extraction of the 

kinetic rate constants of a given structural transition in a nucleic 

acid sequence.  

 

Conclusions 

The combination of 3HCnt and thG appears well complementary 

to FRET approaches for monitoring and characterizing a large 

number of structural transitions under various environmental 

stimuli. FRET approaches are invaluable for monitoring large 

structural transitions, such as for instance between different 

conformations of Holliday junctions and G-quadruplexes.[4,5] Due 

to the dependence of FRET on the distance and/or orientation of 

the FRET donor-acceptor pair, the FRET approach can give 

unique information on the geometry of the initial and final species. 

On such systems, the approach with the environmentally-

sensitive fluorescent nucleobases described here could be helpful 

for confirming and completing the description of the mechanism 

of these transitions. By selectively monitoring structural changes 

at defined locations, these nucleobases can provide key 

information on intermediate species and the involvement of their 

close neighbors in the structural transitions. Our approach will 

even be more useful in systems where transitions induce only 

local structural changes, as for instance the single step branch 

migration of a DNA Holliday junction, which implies the disruption 

of two base pairs on opposite arms, rotation around, and pairing 

to form two new terminal base pairs.[2] Finally, it should be 

mentioned that our approach is not limited to thG and 3HCnt. A 

number of other fluorescent nucleobases[13,14] that minimally 

perturb the labeled nucleic acids and exhibit improved brightness 

and site-specific responses to structural changes can likely be 

used for the same purpose. The choice of the most appropriate 

fluorescent nucleobase will probably depend on the chosen 

system, but because of the wide variety of chemical classes of 

fluorescent nucleobases and labeling methods, it is expected that 

the dynamics of almost all types of structural transitions in nucleic 

acids could be solved. 

Experimental Section 

All solvents and chemicals were purchased from Sigma-Aldrich Chemical 

Company. Non-labeled ΔP(–)PBS, ΔP(+)PBS, (–)PBS DNA, and (+)PBS 

DNA were purchased from IBA GmbH (Germany). Concentrations of 

ODNs were calculated from their absorbance using the molar extinction 

coefficients at 260 nm provided by the supplier. NC(1–55), NC(11–55) and 

(SSHS)2NC(11–55) were synthesized by solid-phase peptide synthesis, 

as described in.[60] An extinction coefficient ε280 = 5700 M-1cm-1 was used 

to determine their concentrations by absorption. NC stock solutions were 

prepared with 2.0 eq Zn(II) in: a) 10 mM phosphate buffer, 30 mM NaCl 

(pH = 6.5) for 3HCnt-labeled sequences and, b) 25 mM TRIS, 30 mM NaCl 

and 0.2 mM MgCl2 for thG-labeled sequences (pH 7.5) 

Synthesis and preparation of the labeled ODNs 

The 3HCnt nucleobase was synthesized as described in.[15] Then, using 

solid-support ODN synthesis, 3HCnt was selectively introduced at position 

2, 7, 8, 9 or 10 in the ΔP(–)PBS DNA sequences. For the kinetic 

measurements, 3HCnt was introduced at position 9 of (–)PBS DNA. thG 

nucleobase and thG-substituted at position 7 in (–)PBS were synthesized 

as described previously.[20] Lyophilized labeled ODNs were dissolved in 

deionized water and their concentrations were determined by absorption 

spectroscopy using the molar extinction coefficients at 260 nm calculated 

by using the ODN calculator 

(http://biotools.nubic.northwestern.edu/OligoCalc.html) and taking into 

account the molar  absorption coefficient of 3HCnt (ε260 = 12000 M-1cm-1) 

and thG (ε260 = 4150 M-1cm-1). The double stranded ODNs were prepared 

by mixing the labeled sequences with their non-labeled complementary 

sequences at a 1:3 molar ratio in PCR tubes (200 µL size), annealing them 

for 3 min at 85°C in a water bath and then, slowly cooling them down to 

room temperature. 

Spectroscopic measurements 

Absorption spectra were recorded on a Cary 4000 UV-visible 

spectrophotometer (Varian). Fluorescence spectra were recorded on a 

FluoroMax4 spectrofluorimeter (Horiba) equipped with a thermostated cell 

compartment at 20 ± 0.5 °C. Fluorescence spectra were corrected for 

Raman scattering, lamp fluctuations and instrumental wavelength-

dependent bias. Excitation wavelength was 360 nm for the 3HCnt 

fluorophore. For quantum yield (QY) measurements, free 2-thienyl-3-

hydroxychromone fluorophore in phosphate buffer (QY = 0.046)[16] or 

quinine sulfate in 0.5 M H2SO4 (QY = 0.546)[61] was used as a reference. 

All spectroscopic measurements for 3HCnt-labeled sequences were 

performed in 10 mM phosphate buffer (pH 6.5), 30 mM NaCl, at 20 °C. A 

pH value of 6.5 was chosen to limit the deprotonation of the 3-OH group 

of the 3HCnt fluorophore. Spectroscopic measurements for thG-labeled 

sequences were performed in 25 mM TRIS, 30 mM NaCl and 0.2 mM 

MgCl2 (pH 7.5) at 20°C. 

Competition experiments 

http://biotools.nubic.northwestern.edu/OligoCalc.html
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To determine the relative affinity of the labeled ODNs comparatively to the 

non-labeled ODNs for NC(11–55), competition experiments were 

performed. To this end, 2 µM of 3HCnt-labeled ΔP(–)PBS was mixed with 

2 µM of NC(11–55), and then with 2 µM of the non-labeled ΔP(–)PBS. The 

distribution expressed in % of NC(11–55) between the two sequences was 

calculated by: (I2-I0)/(I1-I0)100, where I0 is the initial fluorescence intensity 

of 3HCnt-ΔP(–)PBS, while I1 and I2 are the fluorescence intensities after 

addition of NC(11–55) and the non-labeled sequence, respectively. If the 

peptide has an equal affinity for the labeled and non-labeled ΔP(–)PBS 

sequences, the calculated parameter should be close to 50%. Preferential 

affinity to one of the sequences will result in deviations from this value. 

Excitation wavelength was 360 nm.   

Thermal denaturation experiments 

Melting temperatures were determined by measuring the absorbance 

changes at 260 nm as a function of the temperature using a Varian Cary 

400 spectrophotometer equipped with a Peltier temperature controller. 

Absorbance was recorded in the forward and backward directions from 20 

to 90°C at a rate of 0.5°C/min. Prior to the melting experiment, the double 

stranded ODNs were prepared by mixing two complementary sequences 

(labeled and non-labeled) at equimolar concentrations (1 µM) in a PCR 

tube (200 µL size), heated for 3 min at 85°C in the water bath and slowly 

cooled down to room temperature. Thermal denaturation experiments 

were performed in 10 mM cacodylate buffer, 150 mM NaCl, pH 7.0. To 

avoid evaporation, the samples were overlaid with mineral oil (Sigma-

Aldrich). Melting temperatures were determined from the first derivative of 

the thermal denaturation curves. 

Kinetic measurements 

 Kinetic measurements were performed under pseudo-first-order 

conditions by mixing 50 or 100 nM of 3HCnt-9(–)PBS DNA or 3HCnt-

9ΔP(–)PBS DNA with a 10- to 100-fold molar excess of non-labeled 

(+)PBS DNA or ΔP(+)PBS, respectively. Kinetic measurements with thG-

labeled sequences were performed by mixing 100 or 300 nM of 
thG7(–)PBS with (+)PBS in pseudo-first order conditions. The experiments 

were performed either in the absence or in the presence of NC(11–55) or 

(SSHS)2NC(11–55) added at a 3:1 ratio to each complementary ODN or 

NC(1–55) added at a 1:1 ratio prior to the start of the annealing reaction. 

Measurements were performed using a Fluoromax 4 spectrofluorometer 

or a stopped-flow instrument (SFM-3, Bio-Logic) with 2.8 ms dead time.[62] 

For the steady-state fluorescence experiments, excitation and emission 

wavelengths for 3HCnt-labeled sequences were 360 and 540 nm, 

respectively. For thG-labeled sequences, the excitation was at 360 nm and 

emission was collected at 500 nm. For the stopped-flow experiments with 

3HCnt-labeled sequences, excitation wavelength was 365 nm and 

fluorescence emission was detected above 500 nm through a cutoff filter 

(Wratten N°12, Kodak). For thG-labeled sequences, excitation was at 355 

nm and fluorescence emission was detected above 420 nm through a 

Kodak cutoff filter.  

The kinetic curves were fitted using the following bi-exponential function: 

𝐼(𝑡) = 𝐼𝑓 −  (𝐼𝑓 − 𝐼0)[𝑎 exp(−𝑘𝑜𝑏𝑠1(𝑡 − 𝑡0)) + (1 − 𝑎) exp(−𝑘𝑜𝑏𝑠2(𝑡 − 𝑡0))]

  (1) 

where I0 and If are the initial and final intensities of 3HCnt-9(–)PBS or 

3HCnt-9ΔP(–)PBS, respectively; a is the relative amplitude of the fast 

component; t0 is the dead time; and kobs1 and kobs2 are the apparent 

pseudo-first order rate constants.  

Assuming a two-step model, the kinetic rate constants were then 

determined from the dependence of kobs1,2 on the (+)PBS concentration 

according to:  

𝑘𝑜𝑏𝑠1 =  𝑘1[(+)PBS] + 𝑘−1   (2) 

𝑘𝑜𝑏𝑠2 = (𝑘𝑓𝐾𝑚[(+)PBS])/(1 + 𝐾𝑚[(+)PBS]) + 𝑘−𝑓   (3) 

where k1 and k-1 are the kinetic rate constants for the formation and 

dissociation of the intermediate complex (IC); Km is the equilibrium 

constant (k1/k-1) for the formation of the IC ; while kf  and k-f are the forward 

and backward rate constants for the conversion of the IC into the final 

duplex. 

A numerical approach using the Dynafit software[43,44] was used to confirm 

the kinetic rate constants obtained through the analytical approach and to 

determine the intensities of the intermediate products formed in the 

(+)/(–)PBS annealing reaction. DynaFit performs a least-squares fit of 

experimental data using the classic Levenberg-Marquardt algorithm as 

implemented by Reich.[45] 
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Melting temperatures of the native and 3HCnt-labeled ΔP(–)/ΔP(+)PBS duplexes 
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Figure S1 Normalized thermal denaturation curves of the non-labeled and 3HCnt-labeled ΔP(–

)/ΔP(+)PBS duplexes. The absorbance was recorded in the forward and backward directions from 

20 to 90 °C at a rate of 0.5 °C/min. The concentration of ODNs was 1 µM in 10 mM cacodylate 

buffer, 150 mM NaCl (pH 7.0). 

 

 

 

 

Table S1. Melting temperatures of the PBS duplexes a 

Sample Tm  (°C) 

ΔP(–)PBS/ΔP(+)PBS 56 ± 1 

3HCnt-2ΔP(–)PBS/ΔP(+)PBS 58 ± 2 

3HCnt-7ΔP(–)PBS/ΔP(+)PBS 54 ± 1 

3HCnt-8ΔP(–)PBS/ΔP(+)PBS 56 ± 1 

3HCnt-9ΔP(–)PBS/ΔP(+)PBS 55 ± 2 

3HCnt-10ΔP(–)PBS/ΔP(+)PBS 44 ± 2 

a The melting temperatures, Tm, are expressed as mean ± 
standard error of the mean for at least two experiments. 

 

 



 

Spectroscopic properties of the 3HCnt-labeled ΔP(–)PBS derivatives 

Table S2. Spectroscopic properties of the 3HCnt-labeled ΔP(–)PBS derivatives in their free form, 

and  in complex with NC(11–55) peptide and in duplex with ΔP(+)PBS a  

 λABS (nm) λN* (nm) λT* (nm) N*/T* 

 

QY (%) 

3HCnt-2ΔP(–)PBS 373 436 545 0.19 0.4 

+ NC(11–55) 373 432 547 0.19 1.7 

+ ΔP(+)PBS 375 436 544 0.17 0.5 

3HCnt-7ΔP(–)PBS 372 437 545 0.08 12.0 

+ NC(11–55) 372 435 550 0.15 16.0 

+ ΔP(+)PBS 373 431 544 0.04 31.0 

3HCnt-8ΔP(–)PBS  375 434 548 0.11 1.9 

+ NC(11–55) 373 436 547 0.17 9.9 

+ ΔP(+)PBS 375 432 546 0.05 3.0 

3HCnt-9ΔP(–)PBS  373 436 552 0.12 2.6 

+ NC(11–55) 373 436 546 0.25 6.1 

+ ΔP(+)PBS 374 435 545 0.04 13.0 

3HCnt-10ΔP(–)PBS  373 434 549 0.07 3.4 

+ NC(11–55) 373 435 549 0.14 3.7 

+ ΔP(+)PBS 372 432 546 0.08 2.7 

aλABS, λN*, λT* are the maxima of the absorption band, and the N* and T* emission 
bands, respectively; N*/T* is the intensity ratio of the two emission bands measured 
at the peak maxima; QY is the fluorescence quantum yield. The reported data are the 
mean of n ≥ 2 experiments. Standard deviations are < 15% for N*/T* and QY values. 
Excitation wavelength was 360 nm. Experiments were performed in 10 mM 
phosphate buffer (pH 6.5), 30 mM NaCl at 20°C. 

 

 

 

 

 

 

 



Fluorescence spectra of 3HCnt-labeled ΔP(–)PBS derivatives in the presence of increasing NC(11–

55) concentrations   

 

 

Figure S2 Fluorescence emission spectra of labeled 3HCnt-ΔP(–)PBS in the absence and in the 

presence of NC(11–55) added at 1:1; 1:2; 1:3 and 1:4 ODN : peptide ratios. Concentrations of 

labeled ODNs were 2 µM. Excitation wavelength was 360 nm. Experiments were performed in 10 

mM phosphate buffer (pH  6.5), 30 mM NaCl at 20°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Binding competition experiments 

 

 

Figure S3 Binding competition experiments. Fluorescence spectra of the labeled 3HCnt-ΔP(–)PBS 

ODNs (2 µM) were recorded in the absence (black line) or in the presence of NC (11–55) added 

at a 1:1 ratio (red). To this mixture, one equivalent of non-labeled ΔP(–)PBS (blue) was added. 

Excitation wavelength was 360 nm. Experiments were performed in 10 mM phosphate buffer (pH  

6.5), 30 mM NaCl at 20°C. 

 

 

 

  



Fluorescence spectra of 3HCnt-labeled ΔP(+)/(–)PBS duplexes 

 

Figure S4. Fluorescence spectra of labeled 3HCnt-ΔP(–)PBS derivatives in their stem-loop and 

extended duplex forms. The duplexes were obtained by heating at 85°C a mixture of 2 µM 3HCnt-

ΔP(–)PBS with ΔP(+)PBS added at 1:3 molar ratio, and then cooling down to room temperature. 

Excitation wavelength was 360 nm. Experiments were performed in 10 mM phosphate buffer (pH 

6.5), 30 mM NaCl at 20°C. 

 

(+)/(–)PBS annealing kinetics 

 

Figure S5. Annealing kinetics of 0.05 µM 3HCnt-9ΔP(–)PBS with 5 µM ΔP(+)PBS. The kinetic trace 

was fitted using equation (1). The fluorescence intensity at the end of the reaction was estimated 



from the corresponding heat-annealed ΔP(–)/ΔP(+)PBS duplex. Calculated kobs1 and kobs2 values 

are 8×10-4 s-1 and 6×10-5 s-1, respectively. The reported values are the means +/- standard 

deviations for two experiments. Excitation and emission wavelengths were 360 and 540 nm, 

respectively. Buffer was 10 mM phosphate (pH 6.5), 30 mM NaCl at 20°C. 

 

Kinetics of (+)/(–)PBS annealing in the presence of NC derivatives 

 

Figure S6. Annealing kinetic traces of thG7(–)PBS with (+)PBS in the presence of NC(11–55). Kinetic 

traces monitored by steady-state spectroscopy of 0.3 µM thG7(–)PBS with 1 µM (black), 3 µM 

(red), 5 µM (blue), and 7 µM (magenta) (+)PBS, respectively. NC(11–55) was added at a 3-fold 

excess over the PBS concentrations. 

 

Table S3. Observed rate constants for the 3HCnt-9(+)/(–)PBS and 3HCnt-9P(+)/(–)PBS annealing 

promoted by NC(11–55), NC(1–55) and (SSHS)2NC(11–55).a 

 NC(11–55) NC(1–55) (SSHS)2NC(11–55) 

ODN rate cst (s-1)  a  a  a 

PBS full 
length 

kobs1 0.39 1 0.63 0.45 1.1 0.64 

kobs2 - 0.082 0.021 

P(–)PBS kobs1 0.53 1 0.41 0.24 0.31 0.29 

kobs2 - 0.083 9×10-5 
a The progress curves in Figure 6 were fitted with a mono exponential function for 
NC(11–55) as explained in the main text, or with equation (1) for NC(1–55) and 
(SSHS)2NC(11–55).  

 

 



  

Figure S7. Stopped-flow kinetic traces of the (SSHS)2NC(11–55)-promoted annealing of 3HCnt-9(–)PBS 

with (+)PBS and their fit using Dynafit. The kinetic traces (thick lines) were recorded with 0.1 µM 3HCnt-

9(–)PBS and either 1 µM (black), 2 µM (red), 4 µM (blue), 6 µM (magenta), 8 µM (green) or 10 µM (navy) 

(+)PBS, respectively. (SSHS)2NC(11–55) was added at a 3:1 peptide:ODN ratio. The fitted curves (thin 

lines) to the kinetic traces provided the k1 , k-1 and kf  values given in Table 1. Buffer was 10 mM phosphate 

buffer (pH 6.5), 30 mM NaCl at 20°C. 
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4.3. CHAPTER 3: Investigating the Role of 

Sugar Deoxyribose in Binding Polarity 

of HIV-1 Nucleocapsid Protein. 

 

 

 

 

 

4.3.1. Introduction 

The human immunodeficiency virus type 1 nucleocapsid protein (NC) is a small, basic 

protein with highly conserved zinc binding CX2CX4HX4C (CCHC) motifs called zinc fingers 

(ZFs) that are flanked by basic residues (Campbell and Rein, 1999; Gorelick et al., 1993; 

Lapadat-Tapolsky et al., 1995; Levin et al., 2005). Alongside it has a poorly folded highly basic 

N-terminal region and a basic flexible linker region separating the two ZFs. The ZF motifs 

contain conservatively substituted hydrophobic and aromatic residues that form a hydrophobic 

platform on the surface of both the knuckles. Interaction of NC with nucleic acids forms the 

basis of its crucial role played during the replication cycle, which notably includes selective 

packaging of unspliced viral genomic RNA and chaperoning of nucleic acid strands during 

reverse transcription (Amarasinghe et al., 2000; Darlix et al., 2007; Godet and Mély, 2010; 

Judith G Levin et al., 2010; Levin et al., 2005; Muriaux and Darlix, 2010; Thomas and 

Gorelick, 2008). The nucleic acid chaperone activity of NC allows it to remodel and rearrange 

the nucleic acids into their most stable conformations (Beltz et al., 2003). This activity results 

from the rapid on/off kinetics of NC binding to nucleic acids and its ability to favor nucleic 

acid aggregation/annealing and duplex destabilization (Cruceanu et al., 2006a, 2006b; Godet 

and Mély, 2010; Judith G Levin et al., 2010). NC can bind specifically or non-specifically to 
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any RNA or DNA (Darlix et al., 2011). At low degree of occupancy (1:1000 nt), NC mainly 

binds with high affinity to specific sequences. At higher occupancy degrees (1:15 nt to 1:7 nt), 

NC rearranges their conformation to promote annealing or duplex formation (Sarah Bourbigot 

et al., 2008; Lapadat-Tapolsky et al., 1995). At very high occupancy (1:5 nt to 1:1 nt) NC 

condenses and aggregates the nucleic acids. Non-specific binding results mainly from the 

interaction with the basic N-terminal residues, whereas, specific interactions are driven through 

the hydrophobic ZFs residues (Beltz et al., 2003; Julien Godet et al., 2011; Kanevsky et al., 

2011; Lapadat-Tapolsky et al., 1995).  

3D structure analysis of NC-Oligonucleotide (NC-ODN) complexes has shown that NC 

binds preferentially to unpaired guanine residues in loop or bulge regions (Amarasinghe et al., 

2000; Darlix et al., 2011; Pappalardo et al., 1998). More specifically, NC was shown to bind 

with high affinity to GNG (N = A, U, T, or C) sequences of RNA (Amarasinghe et al., 2000; 

De Guzman, 1998), and TG, GNG and TNG sequences of DNA (Avilov et al., 2012; Sarah 

Bourbigot et al., 2008; Vuilleumier et al., 1999). In all NC-ODNs structures, guanine binds 

deeply into the ZF1 and ZF2 hydrophobic plateau. The hydrophobic platform of NC formed of 

the residues V13, F16, T24, A25, W37, Q45 and M46, undergoes important structural changes 

upon binding with ODNs sequences. Specific binding is thought to involve a dynamic 

interaction between the F16 residue of ZF1 and the W37 residue of ZF2 with unpaired guanines 

in the internal or apical loops or in single-stranded domains distributed among the RNA 

genome and its DNA copies. As observed for NC complexes with RNA (SL1, SL3) or DNA 

(PBS, mini-cTAR) sequences, ZF2 (having W37) recognizes an unpaired guanine. In DNA 

sequences, ZF1 interacts with the stem and destabilize it (as seen with (–)PBS, mini-cTAR) 

(Beltz et al., 2003; Sarah Bourbigot et al., 2008; Ramalanjaona et al., 2007). In RNAs, ZF1 

contributes to specific binding by interacting with the second guanine of the GNG sequence 

(as seen with SL1, SL3)(De Guzman, 1998; Pappalardo et al., 1998).  

An additional important difference that has been emphasized  from the high resolution 

structures of NC-DNA complexes (Bazzi et al., 2011; Sarah Bourbigot et al., 2008; Vuilleumier 

et al., 1999) and NC-RNA complexes (Amarasinghe et al., 2000; De Guzman, 1998; Spriggs 

et al., 2008) is the different binding polarity of NC on the NA sequence. In NC-DNA 

complexes, NC binds parallel to the 5’-3’ direction of the NA chain, while in NC-RNA 

complexes, NC binds in the opposite direction (3’-5’). The sugar moiety (ribose or deoxy 

ribose) is responsible for the orientation of NC. Comparing the contacts established between 

NC-DNA and NC-RNA complexes, there exist differences at the level of hydrophobic contacts 
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made through the sugar bases. Hydrophobic contacts are seen for NC-DNA complexes in 

which the hydrophobic residues (F16, T24, W37, Q45 and M46) of NC interact with the C1’ 

and C2’ carbon atoms. However, the hydrophobic contacts are missing in NC-RNA complexes. 

Instead, O4’, C4’ and C5’ of G10 and A11 sugars are in close contact with F16. Noteworthy, 

more residues of NC are involved in DNA than in RNA binding. These characteristic contacts 

are the basis for having a different binding polarity of NC to RNA or DNA sequences.  

As the binding polarity rule of NC to NAs was deduced from a limited number of 

different sequences, our work was to further investigate this polarity by comparing the binding 

modes adopted by NC while interacting with the RNA and DNA versions of the minus strand 

primer binding site (–)PBS and the ψ-Stem loop SL3 sequences. Firstly, we review here the 

NMR determined structures of (–)PBS and SL3 alone; complexed with NC; and their respective 

binding affinities. 

4.3.1.1. (–)PBS Binding and Destabilization by Nucleocapsid Protein 

The structure of the 18-nucleotide (–)PBS has been determined both free in solution 

(Johnson et al., 2000) and bound specifically to NC protein (Sarah Bourbigot et al., 2008). The 

free (–)PBS oligonucleotide in solution exists in a monomeric form, which has also been 

observed for several other stem-loop structure like SL1, SL2 and SL3 sequences (Amarasinghe 

et al., 2000; De Guzman, 1998; Pappalardo et al., 1998). The stem residues G1, C3, C4, and 

C5 form Watson-Crick base pairs with residues C14, G13, G12, and G11, respectively, and 

exhibit an overall B-helical structure (Johnson et al., 2000). However, the position of T2 residue 

relative to the rest of the stem is conformationally mobile as it is looped out of the stem and 

forms a bulge. The nucleotides T6, G7, T8, T9, and C10 in the loop forms a partially ordered 

penta-loop. The first nucleotide of the penta-loop, T6, stacks on C5 but this is not the case for 

the last nucleotide as there is no evidence of C10 stacking with T11. The nucleobase G7 along 

with T8 point towards the stems, whereas T9 points across the loop towards base T6 (Johnson 

et al., 2000). Interestingly, in spite of their limited number of base-pairs (four), the 

thermodynamic stabilities of (–)PBS and (+)PBS are comparable to that of cTAR DNA, which 

contains about 20 bp (Beltz et al., 2003; Egelé et al., 2004; Sholokh et al., 2015). This structural 

stability of (–)PBS internal hairpin likely accounts for its inefficient annealing in the absence 

of NCs (Guo et al., 2000; Wu et al., 1999). 

The structures of free Δ(–)PBS and complexed with NC(12–55) was solved by 

Bourbigot et al. (Sarah Bourbigot et al., 2008). The structure of complex was solved by 
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replacing NCp7 with the truncated NC(12–55) that has been shown to have similar chaperone 

activity (Beltz et al., 2003; Godet et al., 2006). Instead of full of length (–)PBS, a truncated Δ(–

)PBS sequence (deleted of the single strand overhang) was used (Sarah Bourbigot et al., 2008) 

to reduce the number of bound NC(12–55) molecules (Egelé et al., 2004). The NMR data 

showed that the V13, F16, T24, A25, W37, Q45, and M46 residues of NC(12–55) are involved 

in the binding to ΔP(−)PBS. The V13, F16, T24, and A25 residues of ZF1 were found to 

interact with the C5 and T6 bases, and the W37, Q45, and M46 residues of ZF2 interact with 

the G7 base (Sarah Bourbigot et al., 2008). These interactions elongate the phosphodiester 

backbone and stretch the entire loop, thus pulling T6 and G7 out of the loop (Sarah Bourbigot 

et al., 2008). 

The nucleobases 5’-C5T6G7-3’ of (–)PBS act as a preferential binding site for the NC 

protein. ZF2 interacts with the T6 and G7 residues and forces the N-terminal ZF1 to interact 

with the C5 residue that is paired with G11 on the stem. This interaction alters the C5-G11 base 

pair but does not melt it. NC initiates the destabilization of the stem-loop structure but the 

melting of (–)PBS probably needs the presence of the complementary sequence (+)PBS (Sarah 

Bourbigot et al., 2008). The second binding site for NC on (–)PBS was identified at the 5’-

C10G11G12-3’ segment, but its structure was not solved. In our buffer conditions, 25 mM Tris–

HCl (pH 7.5), 30 mM NaCl, 0.2 mM MgCl2, NC(12–55) binds the high affinity 5’-C5T6G7-3’ 

and low affinity 5’-C10G11G12-3’ binding sites with binding constants of 0.083 µM and 0.90 

µM, respectively (Sarah Bourbigot et al., 2008; Egelé et al., 2004). 

The role of the deoxyribose sugar of (–)PBS is to establish hydrophobic contacts from 

its carbon C1’ and C2’ atoms of sugar rings with the hydrophobic residues (F16, T24, W37, 

Q45 and M46) of NC. Interestingly, in comparison to the carbon C1’ and C2’ atoms, the C3’ 

and C4’ atoms of the deoxyribose sugar rings have lesser hydrophobics contacts. Contacts are 

observed between (i) F16 and C2’ of T6, (ii) M46 and C2’ of G7, and (iii) W37 and O4’ and 

C1’ of G7 (Bazzi et al., 2011; Sarah Bourbigot et al., 2008; Morellet et al., 1998). This network 

of interactions indicate that the ‘side’ of the deoxyribose sugar bearing C1’ and C2’ atoms is 

positioned in close proximity with the protein residues while the other ‘side’ with C4’ and C5’ 

atoms is directed towards the outside of the complex (Bazzi et al., 2011). A similar pattern of 

hydrophobic contacts has also been identified  with the C1’ and C2’ atoms of the deoxyribose 

sugar of mini-cTAR and NC hydrophobic residues (Bazzi et al., 2011; Tolstorukov et al., 2004; 

Zargarian et al., 2009). 
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4.3.1.2. SL3 Recognition by Nucleocapsid Protein 

Structural studies have reported the folding of SL3 hairpin alone (Pappalardo et al., 

1998) and complexed with NC protein (De Guzman, 1998). The 3D structure of SL3 shows 

that the stem has a A-type structure and the tetra-loop 5’-G9G10A11G12-3’ is rather flexible 

(Pappalardo et al., 1998). On superimposition of all NMR structures, the base-pairs of the stem 

stack nicely, but there are variations occurring at the ends. The flexible nature of the tetra-loop 

allows the nucleobase G10 and G12 to be in unstacked orientation. Importantly, the G12 

residue is exposed out of the loop and is entirely solvent exposed. The nucleobase G9 and G11 

are tightly constrained even without having strong stacking with their neighboring residues and 

extend into the minor groove (Pappalardo et al., 1998). The first base-pair of the loop C8-G13 

is also tightly constrained (Pappalardo et al., 1998). Due to its flexible nature, the tetraloop can 

bind NC with minimal energy requirements. 

The 3D structure of NC(1–55) bound to SL3 RNA shows an interaction of NC 

hydrophobic residues to the G10 and G12 residues of the flexible SL3 tetraloop. The G12 

residue interacts specifically with the V13, F16, I24, and A25 residues of ZF1, whereas the 

G10 residue interacts with the hydrophobic cleft formed by the W37, Q45, and M46 side chains 

of the ZF2 (De Guzman, 1998). The A11 residue is exposed to the solvent establishing contacts 

with the protein surface. In the stem part, A8 residue makes hydrophobic contacts with A25, 

F16, and N17 groups of the ZF1 knuckle and forms a hydrogen bond with the side-chain of 

R32 (De Guzman, 1998). Thus, in contrast to NC-(–)PBS, where ZF1 interacts with the stem 

to destabilize it, both ZFs in the NC-SL3 complex bind to the exposed guanines of the loop and 

thus do not interact strongly with the stem. In addition, the NC-SL3 complex is stabilized by 

electrostatic interactions of the highly conserved K3, R7, R10 and K11 residues with the 

phosphodiester backbone of the RNA stem. Another conserved N5 residue of the NC protein 

is the only residue that forms a specific hydrogen bonding contact with the 2’Hydroxy of the 

G10 residue of RNA. 

NC binds to SL3 RNA in a 1:1 complex. Its binding affinity has been determined using 

ITC (Amarasinghe et al., 2000; Tanwar et al., 2017), gel electrophoresis (Shubsda et al., 2000), 

surface plasmon resonance (Druillennec et al., 1999; Fisher et al., 1998) and fluorescence 

(Athavale et al., 2010; Paoletti et al., 2002; Shubsda et al., 2002). The binding affinity is highly 

dependent on the nature and concentration of the salt (Athavale et al., 2010). Most studies were 

performed at 150 mM to 200 mM, where problems of aggregation and increase in binding 

stoichiometry are limited. Similarly, regarding the nature of salt, using Mg2+ ion has been 
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shown to stabilizes the backbone of the helix thus disfavoring the protein binding site. 

Considering these parameters, NCp7 binds to SL3 with a binding affinity of 28–48 nM 

(Athavale et al., 2010; Tanwar et al., 2017).  

The binding parameters were also determined for the DNA variant of SL3 (Vuilleumier 

et al., 1999) through a fluorescence titration monitoring the quenching of the intrinsic 

fluorescence of W37 residue upon its stacking with a guanine residue of SL3_DNA (at 100 

mM NaCl concentration). Binding constants of 1000 nM and 70 nM were observed for NC(12–

55) and NC(1-72), respectively, evidencing the role of the basic terminal side chain of NC in 

binding with SL3 DNA. The strong W37 fluorescence quenching is in line with an interaction 

with a guanine residue, but it needs to be confirmed that the quenching results from a specific 

interaction with the G10 and/or G12 residues. Binding affinities were also measured with 

mutants of SL3 DNA in which G10 and G12 residues were omitted. Significant decrease in 

affinity was observed for mutants with A9AAG12, A9GAA12 and A9AAA12 sequences, 

confirming an interaction with both the G10 and G12 residues of the SL3 DNA similar to SL3 

RNA.  
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Figure 50. Structures of the oligonucleotides and peptides used in this study. 

In this work, we aimed to provide further insight into the role of the sugar on the W37-

G recognition in both NC-DNA and NC-RNA complexes. To achieve this aim, we site-

specifically incorporated fluorescent nucleobase analogue thienoguanosine (thG) (Deoxyribose 

or ribose) (Shin et al., 2011) within the DNA and RNA copies of (–)PBS and SL3. Previous 

work (Sholokh et al., 2015) has shown that thG can faithfully substitute the G7 residue in (–

)PBS, providing reliable information on the conformations and dynamics of the G residue in 
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both the (–)PBS stem loop and (–)/(+)PBS duplex. Consequently, G7 residue is an ideal 

position in (–)PBS to have thG substituted in both of its DNA [thG7(–)PBS_DNA] and RNA 

[thG7(–)PBS_RNA] copies for monitoring the interaction of this residue with NC. Similarly, 

we selected two positions in SL3, position 10 and 12 and substitute them with thG in their 

respective DNA [thG10SL3_DNA & thG12SL3_DNA] and RNA [thG10SL3_RNA & 

thG12SL3_RNA] copies. Using ITC, we found that for the non-labeled sequences, NC binds 

with similar affinity to both the DNA and RNA copies of (–)PBS. A similar trend was also 

observed for thG-labeled DNA and RNA copies of (–)PBS, suggesting that substitution by thG 

does not affect the binding process and NC possesses similar binding affinity for DNA and 

RNA copies of (–)PBS. Interestingly, the photophysical investigation of both the thG-labeled 

sequences showed more than a two-fold increase in quantum yield associated with a parallel 

change in lifetimes distribution upon NC interaction showing that the thG7 conformational 

changes due to its binding with NC appear similar in both DNA and RNA copies of (–)PBS. 

Investigation of NC binding to non-labeled SL3 sequences again showed similar binding 

constants to both of its DNA and RNA copies. However, NC-induced fluorescence changes are 

observed only for thG10SL3_RNA and not for thG12SL3_RNA, suggesting that W37-thG10 

interaction led to larger conformational changes than the F16-thG12 interaction. The absence 

of thG fluorescence change for both positions 10 and 12 in the NC-SL3_DNA complex 

suggesting that the conformations of thG are already solvent exposed and not sensitive to NC 

binding. Interestingly, thG substitution in SL3_DNA induces a decrease in the binding affinity 

at both positions 10 and 12, indicating that both positions are effectively involved in NC 

binding. Molecular dynamic calculations evidence that substitution of thG in (–)PBS and SL3 

is energetically favorable and mimics the conformation of native guanine residues.  

4.3.2. Results and Discussions 

4.3.2.1. NC-PBS Complex 

4.3.2.1.1. Photophysical Characterization of thG-labeled (–)PBS. 

Photophysical characterization of free thG nucleoside and as substituted at G7 residue 

of (–)PBS DNA (thG7(–)PBS_DNA) (Sholokh et al., 2016, 2015) has showed the presence of 

two ground state keto-amino tautomer identified as, thG-H1 and thG-H3. In free thG nucleoside, 

both tautomers are in equilibrium and have significantly shifted absorption and emission 

spectrum. When incorporated in (–)PBS, both tautomers are observed, but in duplex (–

)/(+)PBS, the thG-H1 tautomer is favored.  
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Foremost task is to map the distribution of both thG tautomers in site-specifically labeled 

DNA and RNA copy of (–)PBS sequences. Both tautomers in thG7(–)PBS_DNA can be 

evidenced by progressively exciting from 380 nm to 283 nm (Figure 51a). Excitation at higher 

wavelengths (λex = 360 to 380 nm) shows a single band red shifted emission centered at 468 

nm. While gradually exciting at wavelengths below 360 nm, a blue shifted emission shoulder 

centered at 400 nm appears. This shoulder increases progressively and becomes dominant at 

excitations below 320 nm. On deconvolution (Figure 51c) of thG(–)PBS_DNA emission 

spectrum (λex = 298 nm), the emission maxima (468 and 400 nm) matched with those obtained 

previously from the deconvoluted emission spectra of thG nucleoside in buffer (Sholokh et al., 

2016), which corresponds to the emission from thG-H1 and thG-H3 tautomers, respectively. 

This is also supported by the excitation spectra (Figure 51e) of thG7(–)PBS_DNA at different 

emission wavelengths. From the normalized emission and excitation spectra, it becomes clear 

that both tautomers are excited at wavelengths below 360 nm. Whereas, for excitations above 

360 nm only thG-H1 tautomer is selectively excited.  
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Figure 51. Spectral profile of thG7(–)PBS_DNA (a,c & e) and thG7(–)PBS_RNA (b,d & f). 

Emission spectra (a, b) at different excitation wavelengths: λex = 283 nm (black line); 

λex = 298 nm (red); λex = 325 nm (blue); λex = 345 nm (magenta); λex = 360 nm (green) 

and λex = 380 nm (navy). Emission spectra were normalized at their maxima. 

Deconvoluted emission spectrum (c, d) obtained at λex = 325 nm. Normalized 

excitation spectra (e, f) at different emission wavelengths: 550 nm (black line), 500 

nm (red), 450 nm (blue), 400 nm (magenta). 

Next, we investigated the photophysics of thG substituted at G7 residue of (–

)PBS_RNA. Similar to its DNA counterpart, thG7(–)PBS_RNA absorbs in the blue region 

having a similar absorption maxima (324 nm). Exciting at lower energy wavelength (λex = 360 

to 380 nm) showed a single band emission centered at 466 nm (Figure 51b), likely 

corresponding to thG-H1 tautomer. And at lower wavelengths (below 360 nm), we observed 

also contribution from thG-H3 tautomer. Spectral deconvolution (Figure 51d) shows the 

emission of both tautomers with maxima at 400 and 460 nm, respectively. This conclusion is 

also supported from the normalized excitation spectra (Figure 51f) obtained at different 
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emission wavelengths. Therefore, similar to thG7(–)PBS_DNA, the thG-H1 tautomer of thG7(–

)PBS_RNA can selectively be excited at wavelengths above 360 nm. For excitation below 360 

nm, both tautomers are excited. 

Table 3. Time-Resolved Fluorescence Parameters of thG labeled ODNsa. 

 QY τ1(ns) α1 τ2(ns) α2 τ3(ns) α3 <τ>(ns) 

thG7(–)PBS_DNA 0.10 0.39 0.18 3.0 0.61 13.3 0.21 4.7 

+NC 0.18 0.57 0.22 4.2 0.34 17.0 0.44 9.1 

thG7(–)PBS_RNA 0.06 0.47 0.49 3.0 0.32 12.7 0.19 3.6 

+NC 0.15 0.56 0.36 3.9 0.30 17.3 0.34 7.2 
aQY is the fluorescence quantum yield, τ i are the fluorescence lifetimes (ns),  and α i are 

their amplitudes. <τ>  is the mean fluorescence lifetime (ns). Excitation and emission 

wavelengths were 315 and 500 nm. SDs for the lifetimes and amplitudes are <20%. SDs for QY 

are <10%. 

We then investigated the heterogeneity of thG as substituted in DNA and RNA variants 

of (–)PBS using time-resolved fluorescence spectroscopy (Table 3). The lifetime decays of 

thG7(–)PBS_DNA were fitted with three exponentials and the lifetime components are in good 

agreement with the earlier reported values (Sholokh et al., 2015). The long-lived lifetime (13 

ns) is close to that of the free probe in methanol and is thus, thought to correspond to a thG 

conformation that is minimally quenched in the less polar environment of (–)PBS loop 

(Sholokh et al., 2015). The two short lifetime components 0.39 ns and 3.0 ns likely represent 

conformations of thG that are dynamically quenched by the neighboring residues. The 

fluorescence quantum yield of thG7(–)PBS is largely reduced as compared to the free probe 

(Shin et al., 2011), confirming  the strong fluorescence quenching from the neighboring 

residues.   

The lifetime decays of thG7(–)PBS_RNA are found to be triexponential. Interestingly, 

the lifetime components are similar to the DNA copy of thG7(–)PBS with a long-lived lifetime 

(12.7 ns) indicating a minimally quenched conformation of thG7(–)PBS_RNA in a less polar 

environment and two short lifetimes of 0.47 ns and 3.0 ns, possibly representing thG 

conformations stacked with neighboring residues. The two times lower fluorescence quantum 

yield of thG7(–)PBS_RNA as compared to thG7(–)PBS_DNA can be explained by the larger 

contribution from the weakly emitting species (1). Altogether, the lifetime distribution of thG7 
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in RNA and DNA copies of (–)PBS strongly suggests comparable conformations of thG7 in 

respect with its neighboring residues (T6-T8), but with a different distribution.  

4.3.2.1.2. Binding of NC(11–55) with (–)PBS  

Isothermal titration calorimetry 

We use Isothermal titration calorimetry (ITC) to characterize NC(11–55) binding with 

labeled and non-labeled (–)PBS ODNs. Application of ITC is extensively used (Ball and 

Maechling, 2009; Crane-Robinson et al., 2009; Freisz et al., 2012) to determine the complete 

set of binding thermodynamics that includes, dissociation constant (Kd), enthalpy change (ΔH), 

entropy change (ΔS) and the stoichiometry (n), between two molecules in a single solution 

based experiment. Typical ITC experiment is based on the sequential addition of a ligand from 

the syringe to a thermostated cell (containing ODN) that is capable of sensing the heat release 

or absorbed during the mixing. Hence, it directly measures millimolar to nanomolar affinities 

between the molecules. 

Table 4. ITC analysis of (–)PBS and NC(11–55) binding. 

 
Kd 

(µM) 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔS 

(cal/mol*

K) 

n 

(–)PBS_DNA 0.38 -3.08 -5.51 -8.60 18.80 1.0 

thG7(–)PBS_DNA 0.44 -0.59 -7.92 -8.52 27.05 1.8 

(–)PBS_RNA 0.92 -3.68 -4.40 -8.09 15.02 0.9 

thG7(–)PBS_RNA 1.12 -1.52 -6.45 -7.98 22.02 1.0 

Calculated (Kd) dissociation constant, (ΔH) binding enthalpy, ( -TΔS) binding entropy 

(ΔG), Gibb’s Free Energy and (n) stoichiometry from ITC binding curves fitted to an 

independent model.  

We first characterized the binding parameters of NC(11–55) with non-labeled (–

)PBS_DNA and (–)PBS_RNA (Figure 52, Table 4). Small aliquots (2.5 µL of 150 µM) of 

NC(11–55) are injected to the cell containing ODN (7 µM). This order of titration is used since 

the reverse titration (ODN into protein) led to aggregation of protein-ODN complex in the cell 

as judged by abnormal signal and baseline drift. Mixing NC(11–55) to (–)PBS DNA and RNA 

is energetically favorable (ΔG < 0). Both interactions show a favorable entropy variation, 

suggesting that the interaction is driven by the displacement or release of counter ions and 

water molecules (Velkov, 2009). We obtained 1:1 binding stoichiometry for both (–)PBS DNA 

and RNA, in variance with the 1:3 (ODN:peptide) stoichiometry reported previously for (–
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)PBS DNA (Sarah Bourbigot et al., 2008; Égelé et al., 2005). This discrepancy is probably due 

to the limited heat exchange that accompany the formation of the NC-(–)PBS ODNs complexes 

and that prevent the observation of all three binding sites. 

 

(–)PBS DNA RNA 

Wild 

type 

  

thG7 

  

Figure 52. ITC titration of non-labeled and labeled (–)PBS DNA and RNA by NC(11–55). 

150 µM of NC(11–55) in the syringe was added to 7 µM ODNs in the cell. The 

continuous line represents the best fit of the binding curves. Buffer: 50 mM Hepes, 

30 mM NaCl, 0.2 mM MgCl2 (pH 7.5). 

A model of independent binding sites was used to fit the heat release signal. 

Interestingly, the binding affinities calculated for (–)PBS_DNA (Kd = 0.38 µM ) and (–

)PBS_RNA (Kd = 0.98 µM ) upon interaction with NC(11–55) did not differ significantly. The 
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binding affinity between (–)PBS_DNA and NC(11–55) is in good agreement with the earlier 

reported values for NC(12–55) binding with Δ(–)PBS_DNA (Kd = 0.4 µM) (Sarah Bourbigot 

et al., 2008) and (–)PBS_DNA (Kd = 2 µM) (Egelé et al., 2004), thus giving confidence in our 

approach. Altogether, ITC data suggest that binding affinity of NC(11–55) to (–)PBS is poorly 

dependent on the sugar nature. 

After benchmarking the binding affinities with wild type (–)PBS DNA and RNA, we 

performed ITC measurements with thG-labeled ODN to evaluate if substituting the G7 residue 

of (–)PBS by thG affects the overall binding affinity to NC(11–55). The interaction of thG7(–

)PBS_DNA and (–)PBS_RNA with NC(11–55) showed a significantly lower heat release in 

comparison to their non-labeled counterparts, but compensated by an increased entropy 

contribution. The decrease in heat release suggests that the key contact established by G7 is 

not reproduced by thG. From the close similarity of the structures of G and thG, it may have 

speculated that the key contact (likely a H bond) could be established by the N7 atom that is 

missing in thG. Due to poor heat release, the binding affinity with thG7(–)PBS_DNA was 

difficult to determine. The obtained binding constant for thG7(–)PBS_RNA (Kd = 1.1 µM) is 

comparable to non-labeled NC-(–)PBS_RNA complex. In all, through ITC measurements with 

labeled (–)PBS, we evidenced that substitution of G7 residue with thG does only moderately 

perturb the NC-(–)PBS complex formation.  

 Fluorescence titration 

Now though we know that NC binds to both DNA and RNA copy of (–)PBS, it would 

be interesting to further investigate and compare the extent with which NC induces 

conformational and dynamic changes in the loop of both the (–)PBS sequences. These 

conformational changes in (–)PBS loop upon NC interaction were followed through the 

fluorescence of site-specifically incorporated thG at position 7 of (–)PBS. We titrated thG7(–

)PBS_DNA and thG7(–)PBS_RNA with increasing concentrations of NC(11–55) (Figure 53) 

and observed a slight blue shift (3–4 nm) in the emission maxima. At saturating NC(11–55) 

concentration, we observed a 1.8 and 3.2 fold increase in fluorescence of thG7(–)PBS_DNA 

and thG7(–)PBS_RNA, respectively. The data was fitted with Scatchard equation to determine 

an apparent binding constant Kd that was found to be similar for both ODNs, 4.6 ± 0.7 µM 

(n=1), (DNA) and 5.6 ± 0.6 µM (n=1) (RNA). These binding constants differ by a factor 3 to 

10 from the affinities calculated through ITC experiments, suggesting that the binding site 

associated with heat release differs from the binding site(s) giving a change in thG fluorescence.  
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Figure 53. Binding curves of NC(11–55) with thG7(–)PBS_DNA (black) and thG7(–

)PBS_RNA (red). Oligonucleotide concentration was 1 µM in 50 mM Hepes, NaCl 

30 mM, MgCl2 0.2 mM, pH 7.5. Solid lines correspond to the fit of the experimental 

points with equation (10). 

For both thG7(–)PBS_DNA and thG7(–)PBS_RNA, the time-resolved intensity decays 

revealed that the increase in quantum yield of both thG labeled ODNs is mainly due to the 

significant increase of the 3 lifetime (from 13 ns to 17 ns) and its associated population (Table 

3). The increase in lifetime from 13 ns (a value close to that in methanol) to 17 ns (a value close 

to that in water) suggests that NC exposes thG to the solvent. For thG7(–)PBS_DNA, the 

available NMR structure of the complex with NC (Sarah Bourbigot et al., 2008) evidences the 

ability of NC to stretch the (–)PBS loop and expose the T6 and G7 residues towards the exterior 

of the loop. As for thG7(–)PBS_RNA, we observed similar changes in the fluorescence 

lifetimes, this indicates that NC also exposes the thG7 to the solvent. Interestingly, the lifetimes 

and the associated amplitudes are very similar for both ODNs in complex with NC, indicating 

a similar mechanism of NC on both ODNs, with an exposure of the G7 residue to the solvent.  

Molecular modelling 

Next, we use the molecular dynamics (MD) approach to investigate the possible 

structural consequence of the introduction of thG in position 7 of (–)PBS_DNA. Molecular 

modelling is an added tool to provide greater insight into the structural determinants involved 

in the interactions between NC and nucleic acids. In earlier studies (Mori et al., 2010a), 

unrestrained molecular dynamics on the NMR structure of (–)PBS DNA and NC complex has 

been useful in determining the network of hydrophobic and hydrogen bond interactions that 
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stabilize the complex. As the NMR structure of NC complex with (–)PBS_RNA is not yet 

resolved, our molecular modeling results will be confined to (–)PBS_DNA.  

Both tautomers of the thG probe, namely thG-H1 and thG-H3, were inserted in position 

7 of the (–)PBS_DNA to replace the G nucleotide that is stacked over the key W37 in multiple 

experimental structures. Starting from the MD-refined NC-(–)PBS_DNA structure generated 

in a prior work (Mori et al., 2010a), 500 ns of unrestrained MD simulations were performed 

using the protocols described in materials and methods, upon replacing G7 with thG isomers. 

 

Figure 54. thG does not impair the binding of PBS to the hydrophobic platform of NC. 

Representative snapshots from MD trajectories showing A) the binding of thG-H1 

within the hydrophobic platform of NC, stacked over the W37 residue and H-bonded 

to M46, W37, and G35 (two H-bonds), and B) the binding of thG-H3 within the 

hydrophobic platform, stacked over the W37 residue and H-bonded to M46, W37, 

and G35 (a single H-bond). thG-H1 is colored green and thG-H3 is colored cyan. The 

probe and the W37 residues are shown as sticks. H-bonds are shown as black dashed 

lines. 
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Figure 55. Schematic representation of the binding site for the central guanosine G7 of the (–

)PBS_DNA. Hydrogen bonds are displayed as dashed blue lines (Mori et al., 2010b) 

Results clearly show that, despite the expected global structural differences due to the 

large flexibility of the NC protein, thG-H1 and -H3 do not affect the overall binding of the (–

)PBS_DNA to NC, at least from a conformational standpoint (Figure 54A and Figure 54B, 

respectively). While thG-H1 behaves as an efficient guanine-mimetic, establishing the same 

bonds with NC as the native G (Figure 55), the thG-H3 tautomer also fits into the hydrophobic 

platform of NC and establishes H-bond interactions with key residues (Figure 54B). However, 

thG-H3 is unable to establish the H-bond with the backbone of G35, which is persistently 

observed with G or thG-H1. From a conformational standpoint, the RMSD plots (Figure 56) 

show that both systems achieved geometric convergence during MD time, but this convergence 

was slower with thG-H3 and is accompanied by larger conformational fluctuations. 
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Figure 56. RMSD deviation of the NC-(–)PBS complex bearing thG-H1 (top panel) or thG-H3 

(bottom panel) during MD simulation time. 

Finally, the thermodynamic effect of thG insertion in position 7 of (–)PBS complexed 

to the NC was estimated along MD trajectories by means of the Molecular Mechanics Poisson-

Boltzmann Surface Area (MM-PBSA) approach. Results of Table 5 suggest that (–)PBS 

bearing thG-H1 binds tighter to NC as compared to (–)PBS bearing thG-H3. In summary, thG-

H1 is the preferred tautomer for binding to the hydrophobic pocket of the NC, when replaced 

to G7 in the (–)PBS structure as it is accompanied by a lower free energy of binding (Table 5). 

Table 5. Theoretical affinity of (–)PBS for the NC estimated in studied systems 

System 
ΔG binding MMPBSA 

(kcal/mol) ± SEM 

ΔG binding MMGBSA 

(kcal/mol) ± SEM 

NC-thG7-H1(–)PBS  -45.67 ± 1.73 -87.29 ± 2.1 

NC-thG7-H3(–)PBS -30.43 ± 1.52 -74.68 ± 1.64 
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Large contribution of thG-H3 in thG7(–)PBS_DNA; difference in binding contacts; and, 

low theoretical binding affinity with NC compared to thG-H1 and native G, explains the 

deviation in experimental binding affinity of thG labeled PBS_DNA from native PBS_DNA.   

4.3.2.2. NC-SL3 complex 

4.3.2.2.1. Photophysical characterization of thG labeled SL3 

Photophysical characterization was performed to reveal the distribution of thG 

tautomers as substituted at position 10 and 12 of SL3 DNA and RNA. All the four ODNs show 

an absorption maximum around 324 nm. The emission profile (Figure 57) of each thG labeled 

ODN was obtained by exciting at different wavelengths, from 380 nm to 298 nm. For all labeled 

SL3 ODNs, except for thG12SL3_DNA, a single emission peak centered (Figure 57a,c,d) at 

464 nm is observed, indicating that the emission is dominated by the thG-H1 tautomer. When 

excited at lower wavelength (< 325 nm) a minor hump (<10 %) in the emission spectrum is 

observed, indicating the presence of a small amount of the thG-H3 tautomer. This is confirmed 

by recording the excitation spectra (Figure 58a,c,d), which showed a blue shift in excitation 

maximum, when recorded at 400 nm emission wavelength. In contrast, the emission (Figure 

57b) and excitation (Figure 58b) spectra of thG12SL3_DNA clearly show that both thG-H1 and 

thG-H3 tautomers are significantly populated in this case.  

 

Figure 57. Emission spectra of thG10SL3_DNA & thG12SL3_DNA (a, b) and thG10SL3_RNA 

& thG12SL3_RNA (c, d). Emission spectra were recorded at different excitation 
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wavelengths: λex = 298 nm (black line); λex = 325 nm (red); λex = 345 nm (blue); λex = 

370 nm (magenta); λex = 380nm (green). 

 

Figure 58. Excitation spectra of thG10SL3_DNA & thG12SL3_DNA (a, b) and 

thG10SL3_RNA & thG12SL3_RNA (c, d). Excitation spectra recorded at different 

emission wavelengths: λem = 550 nm (black line); λem = 500 nm (red); λem = 450 nm 

(blue); λem = 400 nm (magenta). 

The thG-labeled SL3 RNAs show high fluorescence quantum yields (0.23 and 0.33, 

Table 6). The large quantum yields of thG at both positions 10 and 12 of SL3 RNA indicate that 

thG is only weakly quenched by its neighboring bases. The time-resolved intensity decays of 

thG-labeled SL3_RNAs show multiexponential decays that are best fitted with three discrete 

lifetime components (Table 6). In both labeled ODNs the lifetime components vary from 0.3 

ns to 25 ns and the majority of the population (> 70 %) is distributed along the long-lived 

lifetime. The amplitude of the quenched species in thG10SL3_RNA (0.4 and 1.8 ns) is 22 % 

while for thG12SL3_RNA (0.33 ns) the percentage reduces to 8 %, evidencing that larger 

populations of thG experience collisional quenching at position 10. The long-lived lifetime 

component of thG10SL3_RNA (16.3 ns) is in between the lifetime of thG nucleoside in water 

(19.9 ns) and in methanol (13 ns) (Shin et al., 2011), while the 25 ns component seen for 

thG12SL3_RNA, is even higher than the lifetime of thG in water. Such a high lifetime value 

was already reported for a thG residue in a mismatched duplex (28 ns) and may be explained 

by an increase in the value of the radiative rate constant as compared to the free nucleoside in 
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water. Our lifetime data are consistent with the NMR structure (Pappalardo et al., 1998) of 

SL3_RNA, showing that thG at position 12 is largely solvent exposed while thG at position 10 

may interact with the neighboring bases in a less polar environment.  

Table 6. Photophysical parameters of thG labeled at position 10 of SL3 DNA and RNA. 

 QY τ1(ns) α1 τ2(ns) α2 τ3(ns) α3 <τ>(ns) 

thG10SL3_DNA 0.27 - - 0.8 0.31 22.6 0.69 15.8 

thG12SL3_DNA 0.26 - - 3.6 0.17 16.4 0.83 14.2 

         

thG10SL3_RNA 0.23 0.3 0.04 1.8 0.18 16.3 0.78 13.0 

+NC 0.31 0.7 0.19 5.3 0.18 22.6 0.63 15.2 

thG12SL3_RNA 0.33 0.4 0.08 9.2 0.21 24.9 0.71 19.6 
aQY is the fluorescence quantum yield, τ i are the fluorescence lifetimes (ns),  and α i are 

their amplitudes. <τ> is the mean fluorescence lifetime (ns). Excitation and emission 

wavelengths were 315 and 500 nm. SDs for the lifetimes and amplitudes are <20%. SDs for QY 

are <10%. 

The picture is somewhat different for the thG-labeled SL3_DNAs. At both positions, 

we obtained high and similar quantum yields (~ 0.26). Interestingly, only two components were 

needed to fit the intensity decay of the thG-labeled SL3_DNAs. The values of the long-lived 

lifetime were inverted as compared to SL3_RNA, because it was 16.4 ns at position 12 and 

22.6 ns at position 10. This suggests that the folding of the SL3 loop may be different in the 

DNA as compared to the RNA, leading to different environments at position 10 and 12. We 

observed a larger contribution of fluorescently quenched species for thG10SL3_DNA than for 

thG12SL3_DNA, suggesting that thG experiences more collisional quenching with its 

neighboring residues at position 10 as compared to position 12. 

4.3.2.2.1. Binding of NC(1–55) with SL3 

Next, we investigated the interaction of NC and SL3 ODNs and for that we shifted from 

NC(11–55) to NC(1–55) and increased salt to 150 mM. We used wild-type NC, because the N- 

terminal chain of NC has shown direct effect on binding parameters (Didier et al., 2009; 

Vuilleumier et al., 1999). Moreover, the majority of previous studies (Amarasinghe et al., 2000; 

De Guzman, 1998; Paoletti et al., 2002; Pappalardo et al., 1998; Tanwar et al., 2017) have been 

carried out with full length NC at high salt concentration (> 100 mM) to avoid non-specific 

interaction, that artificially increases the  binding stoichiometry (Athavale et al., 2010; Shubsda 

et al., 2000). 
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Isothermal calorimetry 

We performed ITC measurements for the binding of native and labeled SL3 ODNs to 

NC(1–55) in order to determine the binding parameters and the effect of thG substitution on the 

NC-SL3 interaction (Figure 59). Binding of NC(1–55) to both the native DNA and RNA 

variants of SL3 is exothermic (ΔH < 0) (Table 7). Comparative to the interaction of unmodified 

NC-PBS (DNA or RNA) (ΔH ~ 3.1 kcal/mol), the interaction between NC-SL3 (ΔH ~ 1.7 

kcal/mol) is characterized with lower heat release. However, the enthalpic penalties (-1.75 & -

1.00 kcal/mol) are subsided with higher entropic variations (-8.05 & -8.87 kcal/mol) suggesting 

that the interaction is driven by release of ordered counter ions and water molecules.  A 1:1 

binding stoichiometry was observed for both SL3 RNA and DNA, in agreement with the 

previously reported 1:1 stoichiometry of NC with SL3_RNA (Vuilleumier et al., 1999) and 

SL3_DNA (De Guzman, 1998). The calculated binding affinities of NC(1–55) for SL3_DNA 

(48 nM) and SL3_RNA (43 nM) did not differ significantly and are in good agreement with 

the previously reported values (Athavale et al., 2010; Tanwar et al., 2017).  

SL3 DNA RNA 

Wild 

type 
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thG10 

  

thG12 

  

Figure 59. Binding parameters of NC(1–55) with non-labeled and labeled SL3 DNA and 

RNA. 100-150 µM of NC(11–55) in the syringe was added to 6-8 µM of ODNS in 

the cell. The continuous line represents the best fit to the binding curves. Buffer: 50 

mM Hepes, 150 mM NaCl, 1 mM MgCl2 (pH 7.5). 

Next, we performed the ITC experiments for interaction of thG labeled SL3 ODNs and 

NC(1–55). Unfortunately, mixing of NC(1–55) into the thG labeled SL3 ODNs only led to a 

weak exothermic signal (ΔH < 1 kcal/mol), that could not be fitted using a single binding 

model. However, we manage to extract some information with thG12SL3_RNA that shows 

binding parameters comparable to the native SL3_RNA. The loss of heat signal with thG 

substituted SL3 ODNs is similar to that seen for thG substituted (–)PBS ODNs. The calculated 

binding affinities for SL3 DNA (Kd = 48.4 nM), SL3_RNA (Kd = 42.7 nM) and 

thG12SL3_RNA (Kd = 66 nM) did not differ significantly. In addition, we observed a 1:1 

binding stoichiometry between thG12SL3_RNA and NC(1–55),  which is similar to the native 
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counterpart. Altogether, ITC measurements evidenced the binding of NC to SL3 is independent 

of the sugar moiety. Moreover, the native NC-SL3 interaction is rightly mimicked by the thG-

labeled SL3 sequences. At this point, it cannot be confirmed if the binding polarity of NC is 

opposite for DNA and RNA. Further information on this point can be obtained by using the 

fluorescence of thG to follow the conformation and dynamic changes on NC interaction. 

Table 7. ITC titration of SL3 to NC(11–55). 

 

 

Kd 

(nM) 

ΔH 

(kcal/mol) 

-TΔS 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔS 

(cal/mol*K) 
n 

SL3_DNA 48.4 -1.75 -8.05 -9.81 27.4 1.0 

thG10SL3_DNA N.D. 

thG12SL3_DNA N.D. 

SL3_RNA 42.7 -1.00 -8.87 -9.88 30.29 1.0 

thG10SL3_RNA N.D. 

thG12SL3_RNA 66.1 -1.78 -7.84 -9.63 26.78 1.1 

 N.D. means not determined due to low signal.  

Fluorescence Titration 

Binding affinities and NC-induced conformational changes in the loop of thG-labeled 

SL3 ODNs were then investigated through fluorescence titration and fluorescence lifetime 

measurements. We titrated all the labeled SL3 RNA and DNA ODNs with NC(1–55) and 

monitored the fluorescence changes. Except for thG10SL3_RNA, we did not observe any 

change in fluorescence for thG-labeled SL3 ODNs upon NC(1–55) addition. At saturating 

concentrations of NC(1–55), we recorded a 1.3-fold increase in fluorescence of 

thG10SL3_RNA (Figure 60). The titration data was fitted with the help of Scatchard equation 

(Equation 10) that yielded a 1:1 binding stoichiometry. The calculated binding affinity (310 ± 

20 nM) differs by a factor of six from the affinities obtained through ITC measurements, 

probably as the result of the replacement of G7 by thG.  
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Figure 60. Binding curve of NC(1–55) with thG10SL3_RNA. Oligonucleotide concentration 

was 1 µM in 50 mM Hepes, NaCl 150 mM, MgCl2 1 mM in pH 7.5. Solid line 

corresponds to the fit of the experimental points with Equation 10. 

Time resolved intensity decays showed an increase in the average fluorescence 

lifetimes of thG10SL3_RNA upon addition of NC(1–55). The increase in fluorescence quantum 

yield of thG10SL3_RNA upon addition of NC(1–55) was mainly due to the increase of the 

long-lived τ3 lifetime component from 16 ns (a value close to that in methanol) to 22 ns (a value 

close to that in water), suggesting that NC exposes thG10 to the solvent. This solvent exposed 

(22 ns) lifetime component is comparable to the long lived (24.7 ns) lifetime component of 

thG12SL3_RNA in absence of NC. As the long-lived lifetime of thG12SL3_RNA is already 

high in the absence of NC, this may readily explain why NC cannot further increase its value 

and thus that NC has no effect on the QY of thG12 in this case. 

To determine the binding constants for thG-labeled SL3 ODN that did not show 

fluorescence change upon NC(1–55) addition, we changed our approach and performed 

fluorescence anisotropy titration (Figure 61). Fluorescence anisotropy (Figure 61a) changes for 

thG-labeled SL3_DNA upon NC(1–55) addition suggest weak binding affinities (Kd > 10 µM). 

As much better affinity constants were reported when the binding of NC to SL3 DNA was 

monitored through the W37 residue of NC (Vuilleumier et al., 1999), substitution of G10 and 

G12 residues by thG appears in this is case highly detrimental for binding. This could also 

explain why we do not observe heat release through ITC measurements.  

On the other hand, using a 1:1 binding stoichiometry, the calculated binding affinity of 

NC to thG10SL3_RNA through anisotropy titration (Kd = 340 ± 70 nM) was found to be 

comparable to the affinity obtained from fluorescence intensity titration (Kd = 340 nM) 
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experiments but six times less than from ITC measurements (Figure 61b black). The binding 

affinity of thG12SL3_RNA (Kd = 2600 ± 100 nM) was found to be 7 times less favorable than 

the affinity of thG10SL3_RNA, suggesting that replacement of G by thG is more detrimental 

for binding at position 12 than 10. To further gain insight into the structure of NC-SL3 (only 

RNA) complex, we used molecular dynamics approach. 

 

Figure 61. Binding curves of NC(1–55) with thG-labeled SL3 DNA (a) and RNA (b). 

Anisotropy titration curves for thG-labeled SL3 at position 10 (black) and position 12 

(red). Oligonucleotide concentration was 1 µM in 50 mM Hepes, NaCl 150 mM, 

MgCl2 1 mM in pH 7.5. Solid lines correspond to the fit of the experimental points 

with Scatchard equation for anisotropy titration (Equation 12). 

Molecular dynamics  

Using molecular dynamics, we further investigated the possible structural 

consequences of the introduction of thG probe in position 10 or 12 of SL3_RNA. In particular, 

the effect of G replacement with the thG-H1 conformer was investigated both in SL3 alone in 

water and in its complex with NC. The most representative conformations of SL3 in the wild-

type form, bearing thG-H1 in position 10 or 12 are superimposed in Figure 62A and, overall, 

are comparable to each other. Interestingly, the introduction of the thG probe in position 10 

does not seem to affect the conformational landscape of SL3 (Figure 62B) and the nucleobase 

occupies the same position towards the solvent as in the wild type system (Figure 62B). 

Though, introduction of thG-H1 in position 12 does not impact the overall conformation of the 

phosphate backbone, it is projected towards the solvent in a conformation that is different from 

that of the nucleobase G (Figure 62C). This difference results from the fact that thG-H1 is 

mainly in an anti conformation, in contrast with the syn conformation of G12 in the wild type 

system and establishes H-bond interactions with the phosphate backbone near the 5’ terminal 
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end. This difference in conformation may well explain the lower affinity of the thG12-labeled 

SL3 as compared to its native counterpart. The high solvent exposure of thG12 is also in line 

with the high value of the long-lived fluorescence lifetime (24 ns). 

 

Figure 62. Representative conformation of SL3 wild-type, and incorporating thG-H1 in 

position 10 or in position 12. A) Superimposition of the most representative 

conformation of SL3 wt (green) SL3 with thG-H1 in 10 (cyan) and SL3 with thG-H1 

in 12 (magenta). B) Superimposition of SL3 wt and SL3 with thG-H1 in 10: the 

nucleotides in position 10 are showed as sticks. C) Overimposition of SL3 wt and 

SL3 with thG-H1 in 12: the nucleotides in position 12 are showed as sticks. 

From an energy standpoint, the introduction of thG-H1 in position 10 or in position 12 

does not significantly modify the total energy of the SL3 system, as underlined in Figure 63.  

 

Figure 63. Plot of the total energy of the SL3 wild-type (A, black line), the SL3 bearing thG-

H1 in position 10 (B, red line), and SL3 bearing thG-H1 in position 12 (C, green line) 

along MD simulation. 

Comparison between the three SL3 systems in complex with NC reveals that 

introduction of thG-H1 in position 10 or 12 of SL3 does not impair significantly the structure 
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of the complexes. After 500 ns of MD simulations, all complexes are stable and at the geometric 

convergence (data not shown). Moreover, though the overall structures of the systems slightly 

differ from each other (particularly when comparing wildtype NC-SL3_RNA with NC-

thG12SL3, a behavior that may be attributable to the intrinsic flexibility of the NC), the local 

effect due to the replacement of G with thG-H1 is negligible (Figure 64). This is further 

confirmed by the estimation of the binding affinity through the MM-PBSA methods, which 

highlights a highly comparable binding energy of SL3 to NC in all the three cases (Table 8), in 

variance with the affinity differences observed experimentally. Figure 64 shows the local 

environment in the positions where G was replaced by thG-H1, and offers the possibility to 

compare the behavior of the wild-type SL3 (top panels, Figure 64A, and Figure 64C) with that 

of the SL3 bearing thG-H1 in position 10 (Figure 64B) or in position 12 (Figure 64D). 

 

Figure 64. Analysis of the local environment surrounding positions 10 and 12 in the SL3/NC 

complexes studied herein. NC and SL3 are showed as cartoon, residues and 

nucleotides within 5 Å from the nucleotide in position 10 or 12 are showed as lines, 

while NC residues contacted by the nucleotide in position 10 or 12 are showed as 

sticks. Polar contacts are highlighted by black dashed lines. The wild-type NC-SL3 

system (A and C) is colored green, the NC-thG10 SL3 (B) is colored cyan, while the 

NC-thG12 SL3 (D) is colored magenta. 
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In more details, G and thG-H1 in position 10 are stacked over the indole side chain of 

the key residue W37, and establish the same network of H-bond interactions that involves NC 

residues G35, W37 and M46, in agreement with literature data (De Guzman et al., 1998). An 

additional intramolecular H-bond is established with the flanking nucleobase A11 (Figure 64A-

B). This analysis suggests that introduction of thG in position 10 should not significantly affect 

the binding properties of SL3 to the NC. Similar to the native G (Figure 65), thG12 is stacked 

to the phenyl ring of F16 and H-bonded to K14 and A25. The sugar moiety of G12 establishes 

an additional H-bond with the side chain of Q9, whereas thG-H1 at position 12 contacts the 

backbone of V13. Although there is small difference in the interaction pattern, the local affinity 

of G12 and thG in this position should be comparable. Contrary to the natural G12, combining 

the differences in orientation (anti) shown on substituting of thG12 in SL3_RNA and later in 

terms of binding contacts made with NC, it infers the poor binding affinity obtained through 

experimentally approach. 

 

Figure 65. Schematic representation of the binding site for the central guanosine G10 of the 

SL3_RNA hydrogen bonds are displayed as dashed blue lines (Mori et al., 2010b) 

This conclusion was substantiated by the theoretical affinity of SL3 to NC in these 

systems estimated by the MM-PBSA approach. Results of Table 8 suggest that the SL3 affinity 

for NC is preserved when thG is inserted in position 10 or in position 12, even though a higher 

affinity was experimentally measured for the wild-type SL3 system as compared to the thG-

labeled SL3 derivatives.  
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Table 8. Theoretical affinity of SL3 for the NC estimated in studied systems 

System 
ΔG binding MMPBSA 

(kcal/mol) ± SEM 

ΔG binding MMGBSA 

(kcal/mol) ± SEM 

SL3/NC -61 ± 1.2 123 ± 2 

NC- thG10SL3 -59 ± 1.3 122 ± 2.5 

NC-thG12SL3 -57.8 ± 1.3 119.5 ± 1.5 

 

Next, the thG-H3 conformation was inserted in two different positions of free SL3, 

namely 10 and 12. At both positions, the introduction of thG-H3 has limited impact on the total 

energy of the system, that is comparable to the total energy calculated for wildtype SL3 and 

bearing thG-H1 (data not shown). thG-H3 in position 12 did not impact on the overall structure 

of SL3, as described in Figure 67. The main difference between thG-H1 and thG-H3 in position 

12 is the conformation of the thG nucleotide that is in a syn and less solvent-exposed structure 

in thG-H3 compared to the anti form observed preferentially in thG-H1. Apparently, 

conformations of thG-H3 resembles closer to the natural G12 residue but the experimental 

approach (Figure 66c,d) shows that the equilibrium between the two tautomers majorly favors 

the thG-H1 along with a minor contribution from thG-H3. Further, this contribution pattern is 

also seen in the complex of thG12SL3_RNA with NC which confirms that thG-H3 participates 

in the binding and probably with a binding mode different than thG-H1 it would affect the 

overall binding affinity. 
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Figure 66. Normalized excitation (a,c) and emission (b,d) spectrum of thG10 (a,b) and thG12 

(c,d) labeled SL3_RNA complexed with NC. Excitation spectra recorded at different 

emission wavelengths: λem = 550 nm (black line); λem = 500 nm (red); λem = 450 nm 

(blue); λem = 400 nm (magenta). Emission spectra were recorded at different 

excitation wavelengths: λex = 315 nm (black line); λem = 345 nm (red); λem = 360 nm 

(blue). 

 

Figure 67. Introduction of of thG-H3 in position 12 of SL3. A) structural superimposition of 

SL3 bearing thG-H1 (cyan) and thG-H3 (green). B) representative structure of SL3 

bearing thG-H3 in position 12. 
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When thG-H3 was inserted in position 10 of free SL3, the system evolved in two slightly 

different conformational states, namely conformations A and B, which are however not too 

different from each other as well as from the wild type SL3 and thG-H1-labeled SL3. As shown 

in Figure 68, and compared to the thG-H1 tautomer, thG-H3 can exist in the syn and anti forms, 

thus giving rise to the abovementioned conformational states. As expected, the syn form 

(conformation A, Figure 68A) is slightly different from the wild type SL3 or SL3 bearing thG-

H1, compared to the anti form (conformation B, Figure 68B). Similar to observation made at 

position 12, experimental approach (Figure 66a,b) evidence that at position 10 a minor 

contribution from thG-H3 exists as substituted in SL3_RNA and its complex with NC.  

 

Figure 68. Introduction of thG-H3 in position 10 of SL3. A) structural superimposition of SL3 

bearing thG-H1 (cyan) and thG-H3 conformation A (green). B) structural 

superimposition of SL3 bearing thG-H1 (cyan) and thG-H3 conformation B (green). 

Looking at the two conformations in deeper details reveals that, in conformation A, thG-

H3 is stacked with the two flanking bases, namely G9 and A11 (Figure 69A). In contrast, in 

conformation B it is stacked only to the G9 thus exposing the other edge of the probe to the 

solvent (Figure 69B). This solvent exposed conformation may represent the 16.3 ns long lived 

lifetime of thG10SL3_RNA. In comparison to the conformation diversity seen at position12 

among both the thG tautomers, position 10 displays relatively lesser complications. Therefore, 

it could correlate with the fact that binding affinity of NC to thG10SL3_RNA is closer to the 

native SL3_RNA and poorly stated for thG12SL3_RNA.  
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Figure 69. Different conformations of thG-H3 in position 10 of SL3. A) details of 

conformation A with thG-H3 in a syn form are showed. B) details of conformation B 

with thG-H3 in an anti form are showed. thG-H3 is shown as sticks; nucleotides 

stacked to thG-H3 base are labeled. 

Docking of thG-H1 and thG-H3 to the binding site of NC 

 In order to provide further support to the binding conformations of thG-H1 and -H3 

within the hydrophobic pocket observed via MD, molecular docking studies were conducted. 

To this end, the MD-refined structures of the NC in complex with SL3_RNA or PBS_DNA 

(Mori et al., 2010b) were used as rigid receptor in molecular docking, which was performed 

with GOLD and FRED programs (Jones et al., 1997; McGann, 2012, 2011; Verdonk et al., 

2003). The thG base was sketched de novo, and as a preliminary approach docking is performed 

in absence of the sugar moiety that was replaced with a methyl group for the sake of simplicity. 

Docking results summarized in Figure 70 are rather consistent with MD observations (Figure 

64) and previous computational studies (Mori et al., 2011).  
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Figure 70. thG behaves as guanine-mimetic within the hydrophobic pocket of the NC. The 

predicted binding mode of thG-H1 and thG-H3 within the NC structure relaxed in 

complex with PBS_DNA (A,B) or SL3_RNA (C,D) is shown. The thG nucleosides 

(thG-H1 and thG-H3) and W37 are showed as sticks. The best docking pose predicted 

by GOLD and FRED are showed. In panel B), the pose not consistent with other 

predictions (that shifted right in the picture) was calculated by GOLD. In all panels, 

the protein is colored green and showed as lines and cartoon; the molecules are 

colored cyan. H-bond interactions are highlighted by black dashed lines, residues H-

bonded by the ligands are labeled. 

Docking simulations showed that both the thG tautomers forms binding contacts within 

the hydrophobic plateau of NC for PBS_DNA (Figure 70A,B) and SL3_RNA (Figure 70C,D) 

that are similar to contacts shown earlier using MD observation. However, an exception is 

observed for thG-H3 within NC-PBS_DNA complex (Figure 54B) in which thG-H3 makes one 

H-bond less than thG-H1 to the Gly35 backbone. This difference in H-bond networking is 

expected to provide a weaker affinity for thG-H3 within the NC plateau compared to thG-H1. 

As shown in Table 9, this hypothesis is consistent with, and supported by, score analysis of 

binding poses. For both programs, and towards both NC conformations used herein, thG-H1 

shows a higher affinity for NC than thG-H3. Although theoretically, these data support the 

preference of thG-H1 tautomer with respect to the thG-H3 in binding to the NC. 
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Table 9. Docking scores of thG-H1 and -H3 

 
FRED (ChemGauss4)*  GOLD (ChemScore)** 

NC-DNA NC-RNA  NC-DNA NC-RNA 

thG-H1 -8.24 -7.87  26.78 30.33 

thG-H3 -6.59 -5.97  23.42 25.05 

* the lower the score, the higher the affinity  

** the higher the score, the higher the affinity  

4.3.3. Conclusions 

In this work, we aimed to provide insight in an interesting mode of interaction adapted 

by HIV-1 NC protein to specifically bind with RNA and DNA sequences in opposite direction. 

Critical analysis of the 3D resolved structure made across several complexes of NC with 

nucleic acid sequences highlighted the role of sugar moiety to pivot the NC’s binding direction. 

Herein, we used a fluorescence-based approach in order to observe whether the NC’s opposite 

binding direction also follows within the RNA and DNA variant of the same nucleic acid 

sequence (namely (–)PBS and SL3). To monitor the interaction with NC, we incorporated 

thienoguanosine (thG) by replacing key residues of (–)PBS (G7) and SL3 (G10 and G12) in 

their DNA and RNA variants.  

Firstly, we identified and mapped the distribution of thG tautomers as substituted in 

DNA and RNA copies of (–)PBS and SL3 ODNs. This proves instrumental in selectively 

exciting the thG-H1 tautomer and following its fluorescence change upon interaction with NC. 

Substitution of thG in (–)PBS and SL3 provides crucial information on folding of their loop as 

the NMR structures of (–)PBS_RNA and SL3_DNA are not resolved. In (–)PBS, it strongly 

suggests comparable conformational arrangement of thG7 with its neighboring residues (T6-

T8) and it is highly probable that both the DNA and RNA variants of (–)PBS structures have 

similar penta-nucleotide loop folding. In SL3_RNA, thG10 residue is partially stacked with 

neighboring bases while thG12 residue is largely solvent exposed, in line with the NMR and 

MD calculation results. However, in SL3_DNA it appears that the tetra-loop may be more 

rigid, and both the residues thG10 and thG12 are mostly solvent exposed. 

MD calculation showed that both the thG tautomers within PBS_DNA mimic the 

conformations of the natural G7 residue and form similar binding contacts with NC. On an 

energetic standpoint, the substitution preserves the (–)PBS_DNA-NC interaction as they do not 

modify the total energy of the system. We observed differences in orientation (syn-anti form) 
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of thGH1 and thGH3 tautomers at position 12 and 10, respectively. These changes in orientation 

of thG tautomers affect the binding interaction with NC, as differences in binding contacts were 

observed in comparison to native G residue. Hence, we observed a lower binding affinity than 

for the non-labeled SL3_RNA-NC complexes.  

NC binds to labeled and non-labeled RNA and DNA copies of (–)PBS with similar 

binding affinities as shown by ITC titration. Fluorescence titrations also revealed similar 

binding affinities among RNA and DNA variants of thG labeled (–)PBS but they were found to 

be 3- to 10-fold weaker than the value through ITC titration. These differences in binding 

affinities showed that the binding site associated with heat release differs from the binding 

sites(s) giving a change in thG fluorescence. Interestingly, the photophysical investigation of 

thG-labeled sequences showed a two-fold increase in quantum yield associated with a parallel 

change in lifetimes distribution upon NC interaction. This suggests that the thG conformational 

changes due to its stacking with Trp37 appear similar in both DNA and RNA copies of (–)PBS. 

However, for thG-labeled SL3 ODNs, NC induced conformational changes in the loop could 

not be compared as we observed a fluorescence change only for thG10SL3_RNA. 

The ITC titrations of NC to RNA and DNA variants of SL3 ODNs also display similar 

binding affinity. However, as all thG-labeled SL3 ODNs failed to produce sufficient heat 

exchange, it limited us to accurately determine their binding affinity. As NC has a single 

binding site for SL3_RNA, it becomes clear that modifying the preferential binding site 

significantly alters the thermodynamic parameters, which is contrary to NC-PBS interaction 

that has three binding sites. Although thG is an isomorph of guanosine, it is likely that the N7 

atom which is missing in thG, may play a role in affecting the heat exchange. Although we used 

fluorescence titration to determine the binding affinity but other than thG10SL_RNA, none of 

the other labeled ODNs displayed fluorescence change upon NC addition. As for 

thG12SL3_RNA, MD simulation evidenced that thG12 residue is completely solvent exposed. 

For both the thG labeled SL3_DNA, the high fluorescence lifetime strongly indicates that in the 

SL3 penta-loop both the G10 and G12 residues are also solvent exposed. 

Altogether, we confirmed that the interaction of the Trp37 residue with guanines was 

critical for the formation of complexes with both RNA and DNA variants of PBS and SL3. 

This work also accords with our earlier observations, which showed that NC shows similar 

binding affinity towards shortest pentanucleotide 5’-A1CGCC5-3’ in their  RNA and DNA 

variants (Morellet et al., 1998) At least with NC-PBS complex, we report that NC likely adapts 
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similar binding mode during the interaction.  As shown earlier with (–)PBS model sequence 

(Sholokh et al., 2015), this work also presents a specimen in which thG as substituted at position 

10 and 12 of SL3_RNA is able to faithfully mimic the conformations of native guanosine and 

preserves its interaction with NC.  
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4.4. CHAPTER 4: Screening the Inhibitors 

of Nucleocapsid Protein 

 

 

 

 

 

4.4.1. Introduction 

Highly active anti-retroviral therapy (HAART) is effectively employed to treat patients 

diagnosed with HIV/AIDS. The treatment of HIV was revolutionized in the beginning of 1990s 

by the development of inhibitors targeting reverse transcriptase and protease enzymes. Initially, 

HIV treatment was administered as a monotherapy. However, later on, HAART administered 

a combination or cocktail of drugs comprising three antiretroviral agents targeting two distinct 

enzymes. In comparison to monotherapy, combinational therapy proved beneficial as there 

have been observed reduction in morbidity and mortality of HIV-infected patient. Drug 

resistance resulted as HIV is prone to mutate under pharmacological pressure. Briefly, 1 to 10 

mutations appear in the viral genome due to the highly error prone reverse transcription 

process. This generation of mutated species tend to develop low susceptibility towards 

antiretroviral agents. Nevertheless, several approaches were developed to tackle mutated drug 

resistant viral proteins (Ghosh et al., 2012; Kuritzkes, 2011) or to target viral structures that 

bind with host cellular proteins having a low tendency to mutate (Kellam, 2006) or to target 

host cell factors catalyzing the virus replication cycle (Garbelli et al., 2011; Maga et al., 2013).  

Among all HIV proteins, the nucleocapsid protein is of particular interest because, 
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• It is highly conserved in diverse HIV subtypes and play an important role in the virus 

replication cycle (Darlix et al., 2016, 2011; Levin et al., 2005; Thomas and Gorelick, 

2008) 

• Point mutations in NC results into fully non-infectious viruses (Aldovini and Young, 

1990; Demene et al., 1994; Dorfman et al., 1993; R J Gorelick et al., 1999) 

• NC exhibits nucleic acid chaperoning activity that assist reverse transcriptase and 

integrase enzymes during reverse transcription and integration, respectively (Darlix et 

al., 2016, 2011) 

Therefore, NC appears as a key target for developing inhibitors that may be able to alter 

several key processes during HIV lifecycle. Therefore, the THINPAD (Targeting the HIV-1 

Nucleocapsid Protein to fight Antiretroviral Drug Resistance) consortium was organized from 

leading scientists in the field of NC and was supported by The European Union’s Seventh 

Framework Programme (FP7) for Research and Innovation.  

4.4.2. THINPAD  

4.4.2.1. General Objectives of the THINPAD Project 

• To develop potential NC inhibitors (NCIs) from discovery to preclinical trials. 

• To tackle the appearance of possible drug resistance. 

• To execute pharmacokinetics and ADMET investigations to optimize the NCIs till the 

evaluation of its preclinical efficacy. 

4.4.2.2. The Partners of THINPAD 

Partner 1. University of Siena, Siena, Italy (research groups of Prof. Maurizio Botta 

and Dr. Maurizio Zazzi) 

Partner 2. IDIBAPS (Consorci Institut D’Investigacions Biomèdiques August Pi I 

Sunyer), Barcelona, Spain (research group of Prof. Jose M Gatell ) 

Partner 3. University of Strasbourg, Strasbourg, France (research group of Prof. Yves 

Mély) 

Partner 4. IRBM Science Park, Rome, Italy 

Partner 5. ViroStatics Srl, Alghero, Italy 
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4.4.2.3. Organisation of the Project 

The organisational platform is briefly shown in Figure 71.  

 

Figure 71. Schematic representation of THINPAD project organization. 

4.4.2.4. Role of our Laboratory 

Our laboratory has been assigned to test compounds via an in vitro assay and to 

determine the mechanism of action of the potential hits (WP3 in Figure 71). Our primary assay 

(NCinh) was based on the NC destabilization activity on the cTAR stem-loop sequence. cTAR 

is the complementary sequence of TAR, the trans activator response element.  

My role:  

• To participate in the high throughput screening of compounds and determine their IC50 

through NC inh assay.  

• To develop a site-specific assay for screening inhibitors that are able to compete with 

NCp7 for its specific binding sites. 
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4.4.3. NCinh assay 

 

 

Figure 72. Scheme of NCinh assay. 

Molecules selected by in silico screening were tested in the NCinh assay for their ability 

to inhibit the NC-nucleic acid chaperone activity through a highly specific high throughput 

screening assay. In this assay, we monitored the destabilizing activity of NC(11–55) on a cTAR 

oligonucleotide labeled at its 5’ and 3’ ends by Alexa488 and Dabcyl, respectively. In absence 

of NC, the cTAR hairpin induces a strong fluorescence quenching of the Alexa488 emission 

by the Dabcyl group. When NC is added in 10-fold excess, it melts the bottom of the cTAR 

stem, thereby increasing the distance between the two fluorophores and increasing the 

fluorescence emission of Alexa488 (Figure 72). Similar results have been reported earlier from 

our group by using Rhodamine instead of Alexa488 (Shvadchak et al., 2009). The 

destabilization activity of NC to cTAR is very sensitive to the zinc-bound finger motifs, as 

upon zinc ejection (through EDTA) the destabilizing activity of NC disappears. Therefore, NC 

inhibitors are expected to prevent the NC-induced destabilization of cTAR and thus, reverse 

the NC-induced increase in cTAR fluorescence. Compounds active in the destabilization test 

are further examined for their IC50 values, by adding increasing concentrations of the selected 

compounds to the pre-formed NC(11–55)-cTAR complex. 

Using NCinh assay the Hit-to-lead optimization of inhibitor’s IC50 are shown in Figure 

73. Starting from the parent compound having an IC50 of 167 µM, we screened 208 analogues, 

107 were positive and 101 negative. Among the positove compounds we succeed to achieve 

IC50 less than 10 µM and for the best analogues an IC50 of 1.5 µM. 
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Figure 73. Optimization of the most active series of inhibitors discovered by THINPAD 

project. 

4.4.4. Site Specific Binding Assay 

Our group has also worked on developing an additional assay to monitor the 

competition of NCIs to the specific binding of NC(11–55) to the primer binding site DNA (–

)PBS. NC(11–55) binds preferentially at the 5’ end of the loop (5-CTG-7) (Sarah Bourbigot et 

al., 2008; J Godet et al., 2011)which induces the flipping of the G7 residue from the crowded 

inner environment of the loop toward the solvent. In order to observe the mechanism of 

interaction, 2-Aminopurine (2Ap), a fluorescent adenine mimic, was first used to substitute the 

G7 residue. However, 2Ap had major drawbacks namely a low quantum yields as well as a 

limited ability to conservatively substitute a G residue. To overcome these limits, a newly 

synthesized analogue of guanosine, thieno [3,4-d]–deoxyguanosine (thG), was used as an 

alternate for 2Ap. Unlike 2Ap, it was found to perfectly mimic the G7 residue in the loop. 

Moreover, the quantum yields of thG in (–)PBS [thG(–)PBS = 0.10] and in (–)/(+)PBS [thG(–

)/(+)PBS = 0.20] were significantly higher as compared to 2Ap [2Ap7(–)PBS = 0.08, and 

2Ap7(–)/(+)PBS = 0.01, respectively]. In addition, both the large number of fluorescence 

lifetimes and the strong contribution of the dark species in 2Ap was an obstacle for time-

resolved fluorescence measurements. This was clearly avoided with thG, where lesser lifetime 

components and no dark species were observed.  Interestingly, interaction of thG(–)PBS with 

NC(11–55) provided a 1.6 times increase in quantum yield that could be used to identify  hits 

that are able to inhibit the selective binding of NCp7 to (–)PBS, and thus, the NCp7-promoted 

(–)/(+)PBS annealing in the second strand transfer (J Godet et al., 2011). 
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To validate our assay, we selected a few compounds: A05, D04, D05 and WDO that 

were identified through the NCinh assay. The validation of the assay required a few critical 

steps.  

• To determine the emission and absorption profile of the inhibitor (autofluorescence).  

• To test if the inhibitors interact with free thG7(–)PBS. 

• To optimize the added concentration of the inhibitor in order to avoid aggregation. 

We obtained autofluorescence spectrum of each A05, D04, D05 by exciting their 1 µM 

and 10 µM concentration solution at wavelength 370 nm. These emission spectrum were then 

compared to the emission spectrum obtained by exciting complex of NC-thG7(–)PBS 

(concentration ratio NC:PBS 1:4). Their respective comparison showed D04 (Figure 74c) and 

D05 (Figure 74e) to be highly emissive at these concentrations and thus cannot be used further 

for titration with NC-thG7(–)PBS. However, A05 (Figure 74a) at 1 µM was found to be least 

emissive and was further used for titration.  
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Figure 74. Comparison of autofluorescence spectra (a,c,e) of 1 µM (black) and 10 µM (blue) 

concentration of A05 (a); D04 (c); D05 (e) with emission spectra of NC(11–55)-

thG7(–)PBS complex (blue dotted line). Comparison of absorption spectra of 1 µM 

(black) concentration of A05 (b); D04 (c); D05 (f); with absorption spectra of NC(11–

55)-thG7(–)PBS complex (blue dotted line). Buffer 25 mM TRIS, 30 mM NaCl, 0.2 

mM MgCl2. Excitation wavelength 370 nm. 

To observe activity of A05, we titrated it to NC-thG7(–)PBS complex (Figure 75). 

Firstly, we added 4 equivalents of NC(11–55) to thG7(–)PBS that resulted in 1.8 fold increase 

in its fluorescence. Further, upon addition of 1µM A05 to NC-thG7(–)PBS complex, the 

fluorescence intensity increased to more than two-fold (Figure 75, blue line).  
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Figure 75. Fluorescent based activity test for 1 µM A05 on thG7(–)PBS/NC complex. 

This behavior of A05 stand contrary to its activity observed in NCinh assay. To reason 

this behavior we followed the A05 interaction with thG7(–)PBS in absence of NC. Addition of 

A05 at 1 µM increased thG7(–)PBS emission by 2-fold, suggesting that A05 interacts with thG 

in the (–)PBS motif (Figure 76). 

 

Figure 76. Spectrum of thG7(–)PBS in the absence (black) and the presence of 1 µM A05 

(red). Excitation wavelength 370 nm. 

 

Figure 77. Activity of WDO on NC-thG7(–)PBS complex recorded after certain time interval. 
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Next, we tried WDO, a NCI acting as a zinc ejector. As usual, the NC-thG7(–)PBS 

complex was added with 20 µM of WDO and the fluorescence was recorded after every 10 

mins. As seen from Figure 77, the fluorescence intensity decreases with time that confirms 

WDO activity. Additional experiments will be needed in order to optimize the concentration 

of WDO (and other compounds) in a way to avoid possibility of aggregation and enhanced 

sensitivity. The positive activity of WDO shows that this assay can be used for screening of 

inhibitors, provided inhibitors are non-emissive and non-interaction with thG. Nevertheless, this 

work is in perspectives for further development.  

4.4.5. Conclusions 

The primary task while participating within THINPAD consortium, was to screen 

inhibitors of HIV-1 nucleocapsid protein using NCinh assay.The inhibitors were examined by 

determining their IC50 values. Hit-to-lead optimization resulted in discovery of positive 

compounds with IC50 less than 10 µM. In addition to the NCinh assay, a new assay was 

developed in order to monitor the competition of NCIs to the specific binding of NC(11–55) to 

the (–)PBS. A site specifically incorporated fluorescent nucleoside analogues, thG, substituting 

G7 residue of (–)PBS was used as substrate for NCI and NC interaction. Validation of assay 

was performed by using inhibitors that were found active in NCinh assay. As a control, assay 

was found to be functional while examined with WDO, showing that this assay can be used for 

screening of compounds, provided inhibitors are non-emissive and non-interactive.  
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The aim of this thesis work was to characterize and target the dynamic tryptophan-

guanine recognition during the interaction of HIV-1 nucleocapsid protein (NC) with target 

nucleic acid sequences. Among the numerous roles played by NC in HIV-1 life cycle, we 

focused on chaperoning of nucleic acid strands during reverse transcription and selective 

packaging of unspliced viral genomic RNA. We used fluorescence nucleobases base analogue 

as a tool for studying various aspects of RNA and DNA such as their structure, dynamics and 

interactions with NC protein. The primary task was to select a suitable fluorescent nucleobase 

analogue that can effectively report the biomolecular interaction. Photophysical 

characterization of different types of fluorescent base analogues as free probe and substituted 

in ODN and their sensitivity to peptide-ODN were examined. These fluorescent nucleobase 

analogues include isomorphic probes: 2-Aminopurine (2Ap), 2-Amino-6-(2-thienyl)purine (s) 

(analogue of Adenine) and thieno deoxyguanosine (thG7) (analogue of guanine), and extended 

probe: 2-thenyl,3-hydroxychromone derivative (3HCnt). The selected probe was used to i) 

monitor the annealing kinetics of (–)/(+)PBS in order to determine the full set of kinetic rate 

constants, and ii) to understand the differences in the binding modes adopted by NC towards 

RNA and DNA sequences. 

First work included selection of a suitable probe for monitoring the annealing kinetics 

of (–)/(+)PBS. We investigated the photophysical properties of s labeled at positions 6 and 7 

of (–)PBS and compared them to the respective 2Ap-labeled sequences. At both 6 and 7 

positions, we observed notably higher fluorescent quantum yield of s labeled sequences for 

both the (–)PBS stem-loop and its duplex (–)/(+)PBS. Moreover, the time-resolved 

fluorescence properties of s are characterized by a lower amount of dark species along with a 

higher average lifetime as compared to 2Ap. Interaction of s6(–)PBS with NC provided a two-

fold higher increase in fluorescence quantum yield as compared to 2Ap6(–)PBS, showing its 

better sensitivity towards interaction with protein. However, no change in fluorescence 

quantum yield was observed on NC binding when s was at position 7, so that this probe is 

inadequate for monitoring the specific interaction of this position with Trp37. Due to the 

limited improvement of s over 2Ap, its use was discontinued.  

Next, we characterized the photophysics of thG both as a free nucleoside and included 

in (–)PBS. The photophysical analysis of free thG nucleoside in different solvent revealed the 

existence of two ground state tautomer and their structures were identified using TD-DFT 

calculation as keto-amino tautomer: thGH1 and thG-H3, differing by the position of the 

protonated nitrogen atom. The equilibrium between the two tautomers were observed 
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differently across various solvent, as both tautomers were observed in water and protic 

solvents, the thG-H1 tautomer was largely dominant in H-acceptor solvents. We also identified 

the lifetimes and quantum yield associated with each tautomer in different solvents, in order to 

better understand the microenvironment sensitivity of the label when substituted in different 

model sequences. When thG was substituted in (–)PBS, contribution from both the tautomers 

were observed. In contrast, Watson-Crick base-pairing in (–)/(+)PBS duplexes strongly favors 

the thG-H1 tautomer. Molecular dynamics further showed on the basis of conformational and 

energetic stability, that thG-H1 behaves similarly to its native counterpart in both the single- 

and double-stranded structures. The ratio of the two tautomers and their relative emission were 

found to be highly sensitive to the nucleic acids, to the nature of the opposite base in DNA 

duplexes as well as to protein binding. However, a long lived lifetimes component of thG7(–

)/T12(+)PBS duplex (24 ns) (thG-T mismatch) was found to be much higher than the longest 

lifetime of  free thG nucleoside in any solvent (19.9 ns, buffer). Thus, further photophysical 

investigation will be required in the direction to examine the role of neighboring adjacent 

residue and opposite base on the fluorescence lifetimes of thG as substitute in (–)PBS duplex. 

We performed a comparative photophysical investigation of thG and 2Ap substituted at 

position 7 in (–)PBS model. In contrast to 2Ap, substitution of thG was found to fully preserve 

the Watson-Crick base pairing in the (–)/(+)PBS duplex, thus serving as perfect surrogate of 

Guanosine residue. In addition, it show much higher fluorescent quantum yield and simpler 

fluorescence decay than 2Ap in both (–)PBS stem-loop and its duplex (–)/(+)PBS. Therefore, 

thG appears much superior than 2Ap in substituting G residues. Interaction with NC(11–55) 

resulted in a two-fold increase in emission of thG7(–)PBS, highlighting its sensitivity towards 

reporting the conformational changes of the NC-(–)PBS interaction.  

Next, we proceed with thG7(–)PBS to monitor (–)/(+)PBS annealing in absence and 

presence of NC protein. In parallel, we also investigated the annealing kinetics of (–)PBS with 

(+)PBS by substituting the T9 residue of (–)PBS by 2-thienyl-3-hydroxychromone (3HCnt). In 

the absence of NC, the kinetic rate constants obtained separately from the two probes were 

found to be similar. It was confirmed that the reaction proceeds through a two-step mechanism 

with the formation of an intermediate complex (IC). The fluorescence intensity of the IC was 

found to be about 80 % of that of the extended duplex (ED) suggesting that the interaction 

proceeds not only from the overhang but also involves a loop-loop interaction. In presence of 

NC, the kinetic traces of thG-labeled (–)PBS reach the final plateau much more rapidly than in 

its absence, notably through a facilitated formation of the IC, illustrating the NC chaperone 
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activity. This limited us to obtain the kinetic rate constants. Nevertheless, the kinetics rate 

constants were determined by 3HCnt-labeled (–)PBS. Using fluorescent nucleobase analogues 

as site specifically incorporated at two different position in (–)PBS allows for the first time to 

get the whole set of kinetic rate constants of the annealing reaction with (+)PBS.  

In the next work we investigated the role of sugar in NC-RNA and NC-DNA 

interactions. We examined the interaction of NC with DNA and RNA variants of non-labeled 

and thG-labeled (–)PBS and SL3 sequences. Firstly, through photophysical analysis we 

compared the folding of loop in RNA and DNA variants of (–)PBS and SL3 sequences. In (–

)PBS, we observed that both the DNA and RNA variants have similar penta-nucleotide loop 

folding. In SL3_RNA, thG10 residue is partially stacked with neighboring bases while thG12 

residue is largely solvent exposed, that is in line with the NMR and MD calculation. However, 

for SL3_DNA it appears that the tetra-loop is rigid, and both the thG10 and thG12 residues are 

mostly solvent exposed. Further, we determined the binding affinity using ITC and 

fluorescence titration. They revealed that NC binds to RNA and DNA copies of labeled and 

non-labeled (–)PBS with similar binding affinities. Interestingly, the photophysical 

investigation of thG-labeled (–)PBS sequences showed a two-fold increase in quantum yield 

associated with a parallel change in lifetimes distribution upon NC interaction. This suggests 

that the thG conformational changes due to its stacking with Trp37 appear similar in both DNA 

and RNA copies of (–)PBS. However, we only observed NC-induced fluorescence change for 

thG at position 10 of SL3_RNA, in line with its stacking with Trp37 of NC. In contrast, the 

absence of changes in the fluorescence properties of thG at position 12 in the NC-SL3_RNA 

complex, suggests that its interaction with Phe16 is too limited to perturb its photophysical 

properties. The absence of thG fluorescence changes in both positions 10 and 12 in the NC-

SL3_DNA complex suggests that none of the positions may be involved in key interactions 

with NC. It may be speculated that in this case, NC binds to another part of the loop. We 

confirmed that the interaction of the Trp37 residue with guanines was critical for the formation 

of complexes with both RNA and DNA variants of PBS and SL3. This work is in progress and 

it would be needed to resolve the NMR structure of the PBS_RNA and SL3_DNA complexed 

with NC to confirm the change in orientation of the NC and characterize the binding contacts 

formed by sugar moiety.   

Lastly, while participating within THINPAD project, the inhibitors of NC protein were 

screened using NCinh assay and their activity were examined by determining IC50 values. 

Starting from parent inhibitor having a IC50 of 170 µM, Hit-to-lead optimization resulted in 
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discovery of positive compounds with IC50 less than 10 µM and the best inhibitor has IC50 of 

1.5 µM. In addition, taking into consideration the site specific binding of NC, we developed a 

NC inhibition assay using site-specifically labeled thG at position 7 of (–)PBS. The highly 

active compounds from NCinh assay were tested to validate the assay. The positive activity of 

WDO, as a control, showed that this assay can be used for screening of inhibitors, provided 

inhibitors are non-emissive and non-interacting with thG. Nevertheless, this work is in 

perspectives for further development. 
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We identified the lifetimes of both the thG tautomers through lifetime analysis of free 

probe in buffer. In less polar solvents (methanol, ethanol), we observed an additional short and 

unstable lifetime component (<100 ps) besides two long-lived lifetime components 

representing thG-H1 and thG-H3 tautomers. We found a growth component when lifetimes are 

collected at longer emission wavelengths (> 500 nm). This rise lifetime component was 

matching with the short lifetime component observed at the blue emission band. This indicated 

that some excited state reaction/conversion happens when one of the form is excited. It was 

difficult to assign this short lifetime component as no evidence of other tautomers was found 

in steady state spectra. We have not seen this kind of short lifetime in any other solvents except 

in the above mentioned polar protic solvents. However, we could not determine this third short 

lifetime component in more polar protic medium, aqueous solution. We speculated that the 

reason for the missing short lifetime component may be due to its ultrafast behavior below the 

time resolution of our instrumental setup (< 70 ps). Thus, femtosecond up-conversion should 

be used to identify short-lived lifetimes component of thG probe in buffer and other solvents. 

To identify the possibility of proton transfer reaction occurring in ground state or excited state, 

the photophysics of thG tautomer should be explored at different pH using steady state and time 

resolved spectroscopy. All these results together in exploring the microenvironment sensitivity 

of free thG nucleoside will help us better explain the behavior of thG as substituted in ODNs. 

Importantly, the unexplained huge variation in lifetimes (11 ns to 28 ns) of thG7(–)PBS 

depending on its opposite base will be benefitted. In addition, photophysical investigation will 

be required to examine the role of neighboring adjacent residues and opposite base on the 

fluorescence lifetimes of thG as substituted in single stranded (–)PBS, in its double stranded, 

and mismatched duplexes. To facilitate better understanding of the experimental results, 

quantum mechanical calculations will be performed to find the possible reasons for radiative 

and non-radiative decay channels of thG in different media and in ODNs. We investigated the 

interaction of NC to RNA and DNA variants of (–)PBS and SL3. We were able to support the 

experimental results through molecular dynamic simulations that used the available NMR 

resolved structures of NC complexed with (–)PBS_DNA and SL3_RNA. Molecular dynamic 

simulations helped in characterizing the binding contacts established by NC towards its labeled 

and non-labeled ODNs. However, in order to confirm the change in orientation of NC, NMR 

structures of (–)PBS_RNA and SL3_DNA complexed with NC should be resolved. In this way 

we will be able to compare the orientation of NC and its binding contacts with sugar moieties 

(ribose and deoxyribose) within both (–)PBS and SL3 complexes, and thus, better interpret our 

fluorescence and ITC data. 
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Caractérisation et ciblage de la reconnaissance dynamique de Trp37-G lors 

de l’interaction de la protéine NCp7 de HIV-1 avec des acides nucléiques. 

Introduction 

Le contrôle de l’infection du VIH par la tri-thérapie a réussi à faire baisser le taux de la 

charge virale jusqu’à un niveau indétectable. Cependant, pour cause de mutations, des sous-

types résistants du VIH-1 apparaissent au cours des essais cliniques. Des médicaments ciblant 

les protéines les plus conservées du VIH-1 sont donc requis pour surmonter cette 

résistance. Parmi les protéines du VIH, la protéine de la nucléocapside (NCp7) est considérée 

comme une cible potentielle pour le développement de médicaments en raison de ses fonctions 

pléiotropes tout au long du cycle viral et de son caractère réfractaire aux mutations. Exprimé 

en tant que domaine de la polyprotéine Gag et ensuite clivée par la protéase du VIH, la NCp7 

est une protéine basique qui contient un ou deux motifs hautement conservés CX2CX2HX4C 

(CHCC) appelés doigts de zinc (ZFs) qui lient Zn avec une affinité de l’ordre du 

picomolaire. La structure 3D des protéines NC natives a été résolue par résonance magnétique 

nucléaire (RMN) (Figure 78a). Le domaine de la NC sous ses diverses formes (NC15, NCp9, 

Gag, NCp7) joue de nombreux rôles au cours du cycle de réplication du virus. Cela inclut 

notamment l’encapsidation sélective de l’ARN génomique viral non épissé et le chaperonnage 

des brins d’acide nucléique au cours de la transcriptase inverse. En utilisant la même technique 

de RMN, la structure de NC avec des séquences d’ARN et d’ADN a été résolue (Figure 78). En 

comparant les structures des complexes ainsi résolus, certaines caractéristiques communes ont 

été mises en évidence. La liaison de NC aux acides nucléiques (NA) est régie par des 

interactions électrostatiques, hydrophobes et hydrogène. Des changements structuraux 

importants surviennent au niveau du plateau hydrophobe de NC comprenant les résidus V13, 

F16, T24, A25, W37, Q45 et M46. Par ailleurs, dans les complexes tant avec l’ARN que 

l’ADN, l’activité chaperonne de l’acide nucléique implique une interaction dynamique entre le 

résidu W37 de ZF2 et des guanines non appariées dans les motifs TG, UG, TGG ou GXG 

présents dans les boucles internes ou apicales ou dans les domaines simples brins de l’ARN 

génomique et ses copies d’ADN.  

Une telle interaction est critique lors du second saut de brin de la transcription inverse 

où NC déstabilise la boucle du brin négatif du site d’initiation de la transcription inverse (–

)PBS et induit son hybridation avec le brin complémentaire (+)PBS. L’interaction avec le 

domaine en doigt de zinc de NCp7 mène à l’étirement et à la déstabilisation de la boucle (Figure 
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78b). Les nucléobases de la boucle sont exposées, ce qui permet d’initier leur hybridation avec 

les nucléobases complémentaires de la boucle de (+)PBS. Le mécanisme d’hybridation a été 

étudié par marquage fluorescent des extrémités du (+)PBS (fluorophore-inhibiteur) ou en 

substituant l’une des nucléobases naturelles de la boucle par un analogue fluorescent de 

nucléoside, la 2-aminopurine (2Ap). Il a été démontré qu’en absence de NC, l’hybridation (–

)/(+)PBS procède via les extrémités protrudentes, alors que la réaction induite par NC 

s’effectue via une réaction boucle-boucle. Dans les deux cas, il a été proposé que la réaction 

d’hybridation implique deux voies distinctes, avec une étape de pré-équilibre rapide conduisant 

à un complexe intermédiaire (IC) partiellement hybridé, suivi d’une conversion cinétiquement 

limitante vers le duplex étendu (ED). Bien que ces études donnent un aperçu essentiel sur les 

voies d’hybridation, elles ne sont pas parvenues à procurer une information complète 

concernant les constantes de vitesse associées à ces réactions. Les résultats basés sur le (+)PBS 

doublement marqué ont été insensibles à l’hybridation des boucles, alors que la faible brillance 

de 2Ap a nécessité une forte concentration en acides nucléiques conduisant à des cinétiques 

trop rapides pour être résolues. Ainsi, l’un des objectifs de ma recherche fût de mesurer les 

cinétiques d’hybridation de (–)/(+)PBS à l’aide de nouveaux analogues fluorescents de 

nucléosides afin de déterminer l’ensemble des constantes cinétiques. 

 

Figure 78 Structures tridimensionnelles de la NC de VIH-1 sous forme libre ou sous forme 

liée à différentes séquences d’ARN et d’ADN. Le squelette de la protéine NC est 

présenté en vert et les deux atomes de zinc liés par la tétrade CCHC dans chaque doigt 
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de zinc sont indiqués par des sphères blanches. Les résidus hydrophobes de la NC 

libre (a) et les résidus en contact avec les acides nucléiques sont également 

représentés par des sphères. Les résidus aromatiques F16 et W37 sont en magenta et 

rouge, respectivement, alors que les autres résidus hydrophobes de ZF1 (V13, T24, 

A25) et ZF2 (Q45, M46) sont en orange. Les deux nucléotides en interaction étroite 

avec les chaînes latérales de la protéine sont en bleu et jaune en (b) : (complexe NC-

SL3 ARN, en (c) : (complexe NC-(–)PBS ADN) et en (d) : (complexe NC-mini TAR 

ADN). 

L’interaction dynamique de NC avec les acides nucléiques joue également un rôle clé 

lors de l’encapsidation du génome viral dans la phase tardive du cycle viral du VIH. En tant 

que domaine de Gag, NC interagit avec les motifs SL1, SL2 et SL3 de la séquence 

d’encapsidation ψ de l’ARN génomique. Parmi ces motifs, SL3 présente un intérêt particulier 

en raison de sa structure hautement conservée dans les souches de VIH-1 et de sa capacité à 

gouverner la reconnaissance et l’encapsidation. Une distinction importante entre les complexes 

NC-ARN et NC-ADN réside dans l’orientation opposée de ZF1 et ZF2 le long de l’acide 

nucléique dans les complexes NC-ARN comparés aux complexes NC-ADN. Il a été proposé 

que le sucre joue un rôle clé dans la détermination de cette orientation. Dans les complexes 

ADN-NC, les atomes C1' et C2' du sucre forment des contacts hydrophobes avec les résidus 

hydrophobes (T24, F16, Q45, M46, W37) de NC. Au contraire, dans les complexes NC-ARN, 

les atomes O4', C4' et C5' des sucres sont en contact étroit avec Phe16, alors que les atomes 

C2' portant un groupement OH, sont loin des résidus protéiques. Ainsi, en raison de l’hydroxyle 

supplémentaire à la position C2' des riboses comparé aux déoxyriboses, les contacts 

hydrophobes des sucres avec la protéine diffèrent fortement dans les deux types de complexes. 

Le deuxième objectif de ma thèse fût de mieux comprendre les différences dans les modes de 

liaison adoptées par NC pour les séquences d’ARN et d’ADN. À cette fin, nous avons 

caractérisé comparativement l’interaction de NC avec les séquences d’ADN et d’ARN de PBS, 

ainsi qu’avec les versions ADN et ARN de SL3. 

Résultats et discussion 

Afin de suivre les processus dynamiques sur une échelle de temps s’étendant de la 

picoseconde à l’heure, les techniques basées sur la fluorescence sont fortement 

adaptées. Toutefois, ces techniques reposent sur la disponibilité de sondes fluorescentes à 

même de suivre ces interactions avec sensibilité et sélectivité sans les perturber. Etant 

fluorescent, le Trp37 était un candidat idéal à cette fin. Malheureusement, son empilement avec 
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les Gs inhibe presque totalement sa fluorescence, de sorte que peu d’informations peuvent être 

extraites concernant le processus de reconnaissance et sa dynamique. Une autre alternative 

aurait été de suivre les résidus G, mais ceux-ci ne sont pas fluorescents. En recherchant de 

meilleurs substituts que la 2Ap, nous avons testé deux nucléotides fluorescents isomorphes 

récemment développés, la 2-Amino-6-(thiényl-2) purine (s) et la thiéno-désoxyguanosine 

(dthG ou thG pour le sucre ribose) qui ont été spécifiquement incorporés dans la séquence (–

)PBS de l’ADN. En premier, nous avons étudié les propriétés photophysiques de s marqué en 

positions 6 et 7 de (–)PBS et nous les avons comparées aux mêmes séquences marquées par la 

2Ap. Aux deux positions 6 et 7, nous avons observé un rendement quantique plus élevé des 

séquences de la tige-boucle de (–)PBS et de son duplex (–)/(+)PBS marquées par s. En outre, 

les propriétés de fluorescence résolue en temps de s, en comparaison avec 2Ap, sont 

caractérisées par une quantité moindre d’espèces noires et une durée de vie moyenne plus 

élevée. L’interaction de s6(–)PBS avec NCp7 entraine une augmentation du rendement 

quantique de fluorescence d’un facteur 2 par rapport à 2Ap6(–)PBS, montrant une meilleure 

sensibilité envers l’interaction avec les protéines. Cependant, aucune modification du 

rendement quantique  n’a été observée lors de la liaison de NCp7 pour s en position 7, de sorte 

que cette sonde se révèle insuffisante pour étudier l’interaction spécifique de cette position avec 

le Trp37. Etant donné le progrès limité de s par rapport à 2Ap, son utilisation a été abandonnée. 

Dans l’étape suivante, nous avons étudié la photophysique de thG sous deux formes, 

comme nucléoside libre ou incorporé dans la séquence (–)PBS. L’analyse photophysique 

de thG libre dans différents solvants a révélé l’existence de deux tautomères à l’état 

fondamental présentant un déplacement significatif des spectres d’absorption et 

d’émission. Par des calculs DFT-TD, les structures de ces deux formes ont été identifiées 

comme tautomères céto-énoliques : thG-H1 et thG-H3. Alors que les deux tautomères ont été 

observés dans l’eau et les solvants protiques, le tautomère thG-H1 dominait largement dans des 

solvants apolaires. En outre, nous avons également déterminé les durées de vie et les 

rendements quantiques associés à chaque tautomère dans différents solvants, afin de mieux 

comprendre la sensibilité au microenvironnement du marqueur une fois substitué dans des 

acides nucléiques. Incorporé en position 7 dans (–)PBS, les deux tautomères de thG peuvent 

être observés. Par contre, l’appariement Watson-Crick dans les duplexes (–)/(+)PBS favorise 

fortement le tautomère thG-H1. L’existence de ces tautomères et leur sensibilité à leur 

microenvironnement procure ainsi un canal d’information très utile pour étudier de manière 
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site-sélective les propriétés d’un résidu G substitué dans un oligonucléotide. Ces données ont 

été publiées dans Angewandte Chemie. 

Nous avons ensuite effectué une étude comparative de la photophysique de thG et de 

2Ap substitués en position 7 de la séquence (–)PBS. Nous avons observé que thG n’affecte pas 

le repliement de la boucle et que, contrairement à 2Ap, il préserve l’appariement des bases 

Watson-Crick dans le duplex (–)/(+)PBS, servant ainsi de parfait substitut au résidu 

Guanosine. En outre, il présente un rendement quantique de fluorescence beaucoup plus élevé 

et un déclin de fluorescence plus simple que la 2Ap, dans la tige-boucle (–)PBS comme dans 

le duplex (–)/(+)PBS. Nous pouvons donc affirmer que thG s’avère bien meilleur que 2Ap en 

vue de substituer des résidus G. Ces résultats ont été publiés dans la revue J Am Chem Soc. Par 

ailleurs, l’interaction avec NC(11–55)  entraîne une augmentation de l’émission de thG7(–)PBS 

d’un facteur 2, ce qui souligne sa sensibilité aux changements de conformation lors de 

l’interaction NC/(–)PBS. En raison de sa parfaite analogie avec G et son extrême sensibilité à 

l’environnement, thG apparaît comme un outil idéal pour suivre fidèlement l’interaction 

dynamique de la boucle (–)PBS avec NC et l’hybridation (–)/(+)PBS en absence et en présence 

de la protéine NC.  

En l’absence de NC, les cinétiques d’hybridation (–)/(+)PBS ont été traitées à l’aide 

d’une approche numérique avec le logiciel DynaFit pour obtenir les constantes de vitesse. Il a 

été confirmé que la réaction procède par un mécanisme en deux étapes impliquant la formation 

d’un complexe intermédiaire (IC). L’intensité de fluorescence de l’IC s’est révélée être environ 

80 % de celle du duplex étendu (ED). Ceci suggère que la formation de l’IC découle non 

seulement de l’interaction des extrémités protrudentes, mais également d’une interaction 

boucle-boucle. En présence de la NC, les cinétiques atteignent le plateau final beaucoup plus 

rapidement qu’en son absence, notamment par une formation accélérée de l’IC, illustrant 

l’activité chaperonne de NC. En parallèle, nous avons aussi étudié la cinétique d’hybridation 

de (–)PBS avec le (+)PBS en substituant le résidu T9 de (–)PBS  par la base azotée 2-thiényl-

3-hydroxychromone (3HCnt). Les mécanismes des réactions (+)/(–) PBS obtenus en absence 

et en présence de NC en suivant les sondes 3HCnt et thG se sont révélés très consistants.  

Afin d’approfondir le rôle du sucre dans les interactions NC-ADN et NC-ARN, nous 

avons étudié l’interaction de NC avec les versions ADN et ARN de (–)PBS et SL3. Notre 

première tâche fût d’obtenir les constantes de liaison respectives des différents complexes par 

titration en calorimétrie isotherme (ITC) et titration en fluorescence avec les séquences 
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ADN_(–)PBS et ARN_(–)PBS marquées par thG en position 7 et SL3_ADN et SL3_ARN 

marquées en position 10 et 12. Nous avons observé que pour les séquences non marquées, NC 

se lie avec une affinité légèrement supérieure à la copie ADN de (–)PBS par rapport à son 

homologue ARN. Une tendance similaire a aussi été observée pour les copies ADN et ARN 

marquées par thG, ce qui suggère que la substitution par thG n’affecte pas le processus de 

liaison. Fait intéressant, l’étude photophysique des séquences marquées avec thG a montré une 

augmentation d’un facteur 2 du rendement quantique associée à une modification de la 

distribution des durées de vie lors de l’interaction avec la NC. Ceci suggère que les 

changements de conformation de thG dus à son empilement avec Trp37 paraissent identiques 

dans les copies ARN et ADN de (–)PBS. L’étude de l’interaction de NC avec les séquences 

SL3 non marquées montre une légère préférence pour la séquence d’ARN. Pour les séquences 

SL3 marquées avec thG, les mesures ITC suggèrent que le remplacement de G par thG affecte 

quelque peu le processus de liaison avec NC. Enfin, nous n’avons observé de changements de 

fluorescence induit par NC que pour thG en position 10 de l’ARN SL3, en accord avec son 

empilement avec le Trp37 de NC. Au contraire, la non-modification des propriétés de 

fluorescence de thG pour le complexe ARN/NC-SL3 marqué en position 12 suggère que son 

interaction avec Phe16 est trop limitée pour perturber ses propriétés photophysiques. De même, 

la non-modification de fluorescence de thG dans le complexe NC-SL3 ADN marqué en 

positions 10 et 12 suggère qu’aucune de ces deux positions ne semble être critique pour 

l’interaction avec NC. On peut spéculer que dans ce cas, NC se lie à une autre partie de la 

boucle. Afin de caractériser davantage les modes de liaison adoptés par NC sur les séquences 

ARN et ADN de (–)PBS et SL3, des études de dynamique moléculaire (MD) sont en 

cours. Cela devrait, combiné avec nos données de fluorescence, nous permettre de mieux 

comprendre le rôle de l’interaction Trp-G dans la formation des différents complexes. 
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A Brighter 2-Aminopurine Derivative to Investigate Protein-

Nucleic Acid Interaction 

1. Abstract 

2-Amonopurine (2Ap) has been widely used for almost five decades but its underlying 

drawback of poor emission fluorescence observed as substituted in oligonucleotide sequence 

compel us to quest for other isomorphic fluorophore that can serve in not only adopting the 

natural conformation of adenine but also report biomolecular interaction. Herein, we describe 

the photophysical characterization of a newly synthesized adenine analogue, 2-Amino-6-(2-

thienyl)purine (s), and compare its properties with 2Ap, when substituted in single and double 

strand of  primer binding site (–)PBS of HIV-1. Both the isomorphs were compared at two 

different positions by site specifically incorporating at T6 and G7 residues of (–)PBS. We 

further compared the interaction of (–)PBS with HIV-1 nucleocapsid protein, which is shown 

to promote the annealing of (–)PBS with complementary (+)PBS sequence during reverse 

transcription of HIV-1 life cycle. At both the positions, we found that s- and 2Ap- substitution 

in (–)PBS to equally preserves the stability and represent comparable photophysical properties 

both in single and duplex strand. At position 6, as compared to 2Ap6(–)PBS, s6(–)PBS showed 

better sensitivity towards binding with NC but poor fluorescence emission when hybridized 

with complementary (+)PBS. At position 7, fluorescence from s7(–)PBS was found insensitive 

towards binding with NC, whereas  in duplex form slighty better fluorescence was seen 

comparable to 2Ap7(–)PBS,   

2. Introduction 

Synthetic fluorescent nucleobase analogues are predominantly used for in vitro 

characterization of biomolecular interactions, as the major components in living systems are 

inherently non-emissive. The need to develop fluorescent nucleoside analogues arise due to the 

extremely low fluorescent quantum yield of natural nucleobases (~ 10-4) along with picosecond 

order of lifetimes (Peon and Zewail, 2001). The key attribute of fluorescent isomorphs is the 

ability to mimic structurally and functionally their natural counterparts. Since last five decades, 

2-Aminopurine (2Ap) has served as an ideal fluorescent nucleobase analogue finding its 

application in molecular becon based assays (Martí et al., 2006), helicase activity (Raney et al., 

1994), base flipping (Nakano et al., 2005), abasic site structure/dynamics (Rachofsky et al., 

2001; Stivers, 1998), interaction of DNA with RNA polymerase (Huang et al., 1997), G 
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quadruplex structure and ligand binding (Kimura et al., 2007). These application are brought 

forward because of 2Ap’s ability to form Watson-Crickbase pair with T/U, high quantum yield 

(Ф = 0.68 in water), absorption band (303 nm), minimal sensitivity to pH change, and its 

noteworthy sensitivity to environment polarity (Ward et al., 1969).  

 

Figure 79. Structure of deoxyribo Adenine (A), 2-Amino purine (2Ap) and 2-Amino-6-(2-

thienyl)purine (s). 

The photophysical properties of any fluorescent nucleobase analogue incorporated in 

DNA or RNA are hampered by two key reasons, one arising due to the stacking of neighboring 

bases and second, by duplex formation with complimentary strands (Holz et al., 1998; Liu and 

Martin, 2001; Purohit et al., 2003). Likewise, photophysical properties of 2Ap showed 

drawbacks where its quantum yield decreases to minimum (< 0.01) when incorporated in 

nucleic acid sequences. Although this makes it useful in developing assays, but importantly it 

displays poor sensitivity towards duplex formation or upon interaction with protein. Moreover, 

its fluorescence does not represent faithfully the actual conformation of the substituted 

residues. To overcome these limitation, Hirao and co-workers synthesized 2-Amino-6-(2-

thienyl)purine (s) (Hikida et al., 2010; Hirao et al., 2006) (Figure 79), a derivative of 2Ap 

having an additional thienyl ring, showed a red shifted absorption (355 nm) and strong emission 

(Ф = 0.41 in water) profile (Mitsui et al., 2007).  



Appendix 

 

159 

 

 

Figure 80. Substitution made on DNA sequence of HIV-1 primer binding site replacing T6 

residue with s [s6(–)PBS] and 2Ap [2Ap6(–)PBS]. Similarly, at position G7 by s 

[s7(–)PBS] and 2Ap [2Ap7(–)PBS]. 

In HIV-1 virus life cycle, second strand transfer require annealing of minus stranded 

primer binding site (–)PBS, a 18-mer nucleic base Stem loop (SL) sequence, with its 

complimentary (+)PBS which is chaperoned by the nucleocapsid protein (NC) (S Bourbigot et 

al., 2008). NC is a 55 amino acid protein which destabilizes the loop of (–)PBS by flipping the 

thymine (T6) and guanine (G7) residues towards exterior environment and thus making them 

available for annealing with complementary (+)PBS sequence. This annealing mechanism was 

previously examined using the PBS sequences labeled at its 5' and 3' ends, by  rhodamine 6G 

(Rh6G) and Dabcyl, a fluorescence quencher, respectively (Ramalanjaona et al., 2007) but it 

was limited as the PBS species doubly labeled by Rh6G and Dabcyl were insensitive to the 

annealing of the loops. Another approach was made using labeled PBS loop with the 2Ap 

(Julien Godet et al., 2011), but this also provided limited information due to the poor brightness 

of 2Ap (Guest et al., 1991; Jones and Neely, 2015; Nag et al., 2006; Stivers, 1998). These 

approaches revealed a single rate constant from kinetic measurement, thus a complete picture 

showing all the rate constants could be extracted due to limitation of probes. 

In order to find a better replacement of 2Ap to monitor annealing kinetics, herein, we 

compared the photophysical properties of s and 2Ap as substituted at T6 and G7 residues of (–

)PBS (Figure 80) and its duplex structure (–)/(+)PBS, and its sensitivity upon interaction with 

NC. As a free probe, s (Ф=0.41) has a lower quantum yield than 2Ap (Ф=0.68), but as 

substituted in single strand (–)PBS and duplex (–)/(+)PBS, we observed improved quantum 

yields for s than 2Ap labeled sequences. Moreover, it exhibits simpler lifetime decays with 

relatively lower amount of dark species than that of 2Ap. However, as substituted at position 

6, fluorescence of s-labeled (–)PBS was quenched due to stacking with neighboring residues, 
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which is comparable 2Ap. In addition at position 7, s-labeled (–)PBS showed insensitivity 

towards binding with NC.  

3. Results and Discussion 

3.1. Thermodynamic Stability 

We examined the thermodynamic stability of non-labeled and labeled (–)PBS in single 

stranded and duplex structure by determining their melting temperatures. This require 

monitoring the absorbance at 260 nm over varying temperature (20-90 °C) (Table 10). In stem 

loop sequences, at position 6, we observed similar melting temperatures for s6- and 2Ap-

labeled (–)PBS (49 °C) with their native non-labeled (50 °C) counterpart. At position 7, small 

deviation of 1-2 °C was seen for s7(–)PBS and 2Ap7(–)PBS (50 °C and 48 °C respectively) as 

compared to the non-labeled (–)PBS. Thus at both the position we observe that substitution of 

s does not disturb the thermodynamics stability of the (–)PBS hairpin.  

Table 10. Melting temperatures of single and double stranded labeled ODN measured at 

260nm. The concentration of ODNs was 1µM in 20 mM Cacodylate buffer with 

150mM NaCl. 

ODN Tm (°C) 

(–)PBS 50±1 

s6(–)PBS 49±1 

s7(–)PBS 50±1 

2Ap6(–)PBS 49±1 

2Ap7(–)PBS 48±1 

(–)/(+)PBS 68±1 

s6(–)/(+)PBS 67±1 

s7(–)/(+)PBS 60±1 

2Ap6(–)/(+)PBS 66±1 

2Ap7(–)/(+)PBS 60±1 

 

In duplex form, both s6(–)/(+)PBS and 2Ap6(–)/(+)PBS (67 °C and 66 °C respectively) 

showed a minor 1-2 °C deviation in melting temperature compared to non-labeled (–)/(–)PBS 

(68 °C) suggesting the formation of stable duplex. However, the effect of mismatch formation 

with complimentary C residue on the stability of duplex can be seen from melting temperatures 



Appendix 

 

161 

 

of both the s7(–)/(+)PBS and 2Ap7(–)/(+)PBS, that deviated from non-labeled (–)/(+)PBS by 

a difference of 8 °C. The variability in thermal stability of 2Ap7(–)/(+)PBS arise due to the 

2Ap-C base pair which is stabilized by two hydrogen bonds instead of three (Goodman and 

Ratliff, 1983). And with likely the same reason, s7-C mismatch results in the deviation of 

melting temperatures compared (–)PBS. 

3.2. Photophysical Characterization of s and 2Ap labeled (–)PBS 

Sequences 

Photophysical characterization of s and 2Ap as a free probe, as well as substituted at 

position 6 and 7 of single and double stranded (–)PBS are listed in Table S1 and Figure 81. As 

s being a 2Ap derivative with an additional thienyl group, it results in slightly different 

photophysical properties. As a free nucleoside, s showed larger stokes shift with an absorption 

(348 nm) and emission maxima (434 nm) shifted to longer wavelength relative to 2Ap (305 

nm, 365 nm). This structural modification also affected the fluorescence quantum yield of free 

probe s (0.41) which is lower than that of 2Ap (0.68).  

As substituted in single stranded (–)PBS sequence, at position 6 they both possess a 

fairly comparable and low quantum yield (0.02). Poor quantum yields for both the probes 

results from effective quenching due to the stacking with neighboring G residue (S Bourbigot 

et al., 2008; Julien Godet et al., 2011). It was confirmed as at position 7, the quantum yield of 

s7(–)PBS and 2Ap7(–)PBS gained 9-fold and 4-fold, respectively, as compared to their 

respective position 6 quantum yield.  Moreover, s7(–)PBS (0.18)  has more than two-fold 

higher quantum yield as compared to 2Ap7(–)PBS (0.08).  

 

Figure 81. Steady state fluorescence emission of s6(–)PBS (3 µM, black) , s6(–)/(+)PBS (3 

µM red), s7(–)PBS (1 µM, blue) and s7(–)/(+)PBS (1 µM, pink). 
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In (–)/(+)PBS duplex form, at position 6, we observed poor quantum yield for both the 

s and 2Ap labeled (–)PBS (0.006) suggesting effective quenching due stacking with 

neighboring bases. While at position 7, fivefold higher quantum yield is obtained for s7(–

)/(+)PBS (0.10) as compared to 2Ap7(–)/(+)PBS (0.02). A relatively higher quantum yield of 

s-labeled than 2Ap-labeled (–)PBS at position 7 for both single and duplex form suggest that 

the additional thienyl group is believed to protect s from quenching from neighboring nucleic 

acid residues. Especially, in duplex form it appears that due to s7-C mismatch, s7 residue skips 

the conventional stacking and likely to be solvent exposed. Based on these results as substituted 

at G7 residue, s can be considered as a slightly better probe for monitoring annealing reactions. 

Table 11. Photophysical parameters of 2Ap and s labeled (–)PBS. 

 QY α0 τ1(ns) α1 τ2(ns) α2 τ3(ns) α3 τ4(ns) α4 <τ>(ns) 

s6(–)PBS 0.028 0.48 0.20 0.38 1.4 0.07 3.9 0.07 - - 0.81 

+ NC 0.094 0.23 0.36 0.32 1.9 0.28 4.5 0.17 - - 1.84 

s6(–)/(+)PBS 0.006 0.70 0.11 0.26 0.6 0.02 3.6 0.02 - - 0.30 

            

s7(–)PBS 0.18 0.14 0.41 0.15 - - 3.7 0.71 - - 3.14 

+ NC 0.18 0.10 0.36 0.22 - - 3.8 0.68 - - 3.02 

s7(–)/(+)PBS 0.10 0.36 0.56 0.08 - - 2.6 0.56 - - 2.33 

            

2Ap6(–)PBS 0.02 0.85 0.08 0.08 0.62 0.02 3.5 0.02 8.0 0.03 2.04 

+ NC 0.04 0.77 0.18 0.10 1.01 0.05 3.5 0.04 8.2 0.05 2.56 

2Ap6(–)/(+)PBS 0.006 0.79 0.08 0.17 0.48 0.02 2.2 0.01 5.1 0.01 0.43 

            

2Ap7(–)PBS 0.08 0.47 0.14 0.22 0.72 0.07 2.5 0.13 7.2 0.11 2.27 

+ NC 0.14 0.38 0.29 0.25 - - 2.2 0.15 7.5 0.22 3.36 

2Ap7(–)/(+)PBS 0.02 0.84 0.25 0.07 0.80 0.03 2.3 0.03 6.3 0.03 1.83 

τ i  are the fluorescence lifetimes  (ns) ,  α i  their amplitudes. The amplitude αo  of the dark 

species,  as well as the amplitudes of the various lifetimes were calculated as described in the 

Material and Methods section. <τ>  is the mean fluorescence lifetime  (ns). Excitation and 

emission wavelengths were 315 and 370 nm for 2Ap substituted sequences; 350 and 450 nm for 

s substituted sequences, respectively. SDs for the lifetimes and amplitudes are <20%.  SDs for  

QY is < 10 %.  

Next, we investigated the heterogeneity of the s- and 2Ap-labeled (–)PBS sequences 

using time-resolved fluorescence spectroscopy (Table 11 and Figure 82). At position 6 for s-
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labeled (–)PBS sequence, the lifetime decay was fitted with three exponential, suggesting that 

s6- experience three conformational states. Total contribution from the short-lived lifetime 

components (τ1 and τ2) and dark species (αo) attribute more than 90 percent. Such effective 

dynamic quenching by neighboring residues has previously been reported for 2Ap6(–)PBS, 

where the quenching arise through charge transfer mechanism (Fiebig et al., 2002; J Godet et 

al., 2011; Larsen et al., 2001; O’Neill and Barton, 2002; Wan et al., 2000). With likely the same 

mechanism, the dynamic quenching was observed for s6- by its neighbor residues and also 

results in poor fluorescence quantum yield. The lifetime decay of 2Ap6(–)PBS was quite 

complex with presence of four discrete lifetime components. The lifetime components are in 

good agreement with the earlier reported values (J Godet et al., 2011). Similar to s6(–)PBS, 

majority of 2Ap6(–)PBS population (~ 97%) comprising short-lived lifetime components (τ1, 

τ2 and τ3) and dark species (αo) represents the dynamically quenched conformations.  

 

Figure 82. Normalized lifetime decay of s6(–)PBS (black), s6(–)/(+)PBS (red), s7(–)PBS 

(blue) and s7(–)/(+)PBS (magenta). 

In duplex form, at position 6, the average lifetimes for both the s- and 2Ap-labeled (–

)PBS sequences reduces to minimum, 0.30 ns and 0.43 ns, respectively. The effect of 

quenching through neighboring residues become stronger as the total contribution from 

quenched species (dark species and short-lived lifetime species) increased to ~ 98 percent and 

significant decrease in the contribution from long-lived lifetimes. This further explained the 

poor quantum yield obtained for both the s- and 2Ap-labeled (–)PBS in duplex form. 

At position 7, within stem loop sequences an improvement in lifetime distribution was 

seen for both s7(–)PBS and 2Ap7(–)PBS as compared to position 6. We observed only two 

lifetime components for s7(–)PBS compared to four components of 2Ap7(–)PBS, suggesting 
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better conformational stability for s-labeled (–)PBS. The three short-lived lifetimes of 2Ap7(–

)PBS represents the dynamically quenched conformations while the long-lived lifetimes 

component (8 ns) represents conformation this extrahelical placed away from the quencher 

(Fiebig et al., 2002; Larsen et al., 2001; O’Neill and Barton, 2002; Wan et al., 2000). The 

lifetimes distribution of 2Ap7(–)PBS appeared similar to the previously reported values 

showing the reproducibility of the work (Sholokh et al., 2015).  It is very probable that the two 

short-lifetime components of s7(–)PBS represents the dynamically quenched conformation 

arising due to the flexibility of loop. Altogether, s7(–)/(+)PBS showed two conformations 

lesser than 2Ap7(–)/(+)PBS, and hence slightly better average lifetime.   

3.3. Interaction of NC on the Dynamics of s- and 2Ap- labeled (–)PBS 

To investigate the dynamic changes occurring in the stem loop of (–)PBS upon 

interaction with NC, we examined the binding parameters of s- and 2Ap- labeled (–)PBS 

sequences upon NC addition. Instead of full length NC, we used truncated NC(11–55) peptide 

as the missing basic N-terminal domain is responsible for the nucleic acid aggregation 

properties (Stoylov et al., 1997). Nevertheless, NC(11–55) still possess the zinc finger domain 

that is required for specific nucleic acid binding and destabilizing properties of NC (Cruceanu 

et al., 2006b; Darlix et al., 2007, 2011; Judith G Levin et al., 2010; Levin et al., 2005; Thomas 

and Gorelick, 2008; Tisné et al., 2004). 

Conformational changes occurring in the loop of (–)PBS upon interaction with NC were 

followed through the fluorescence changes arising in s- and 2Ap-labeled (–)PBS. At position 

6, binding of NC to s6(–)PBS and 2Ap6(–)PBS did not modify their wavelength of 

fluorescence emission maxima, but  increased the fluorescence emission by three-fold and two-

fold, respectively. These changes in fluorescence of s6(–)PBS and 2Ap6(–)PBS are in line with 

the chaperoning activity of NC that exposes T6 residues to the exterior solvent thus reducing 

the level of quenching from neighboring residues without changing the environment (J Godet 

et al., 2011). Further, the lifetime analysis revealed that the increase in quantum yield of s6(–

)PBS arise mainly from the decreased population of dark species which was benefitted largely 

by long-lived lifetime component (τ3). Parallel changes in the fluorescence lifetime of 2Ap6(–

)PBS were observed as compared to s6(–)PBS. However, a higher average fluorescence 

lifetime is seen for 2Ap6(–)PBS as its long-lived lifetime (τ4) is significantly higher than that 

of s6(–)PBS (τ3), thus benefitting more from the decrease in dark species. These changes in 

lifetime of s6(–)PBS and 2Ap6(–)PBS suggests that NC disrupts the stacking of 2Ap and s 
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with its neighboring residues, which is in line with the NMR resolved structure of NC with (–

)PBS (S Bourbigot et al., 2008). 

 

Figure 83. Fluorescence titration of s6(–)PBS (left) and s7(–)PBS (right) with NC(11–55) 

At position 7, contrarily, s7(–)PBS does not show fluorescence change upon interaction 

with NC(11–55) (Figure 83). This could possibly arise either due to the loss of key Trp37-G 

recognition or due to absence of a strong quencher in the vicinity, thereby binding of NC(11–

55) was unable to modify its fluorescence. However, we observed a two fold increase in its 

quantum yield of 2Ap7(–)PBS  upon interaction with NC which was also seen with the increase 

in mean lifetime arising mainly due to decrease in population of dark species. 

4. Conclusions 

In this study, we investigated the photophysical characteristics of a newly developed 

fluorescent nucleobase analogues s which was site specifically substituted at position T6 and 

G7 residue of (–)PBS in HIV-1 model, and further compared it to 2Ap labeled sequences at 

similar position. The photophysical properties were compared in both stem loop (–)PBS and a 

duplex form of (–)PBS. We also examined the sensitivity conformational changes arising in s 

at both the positions of (–)PBS upon binding with NC(11–55). 

The substitution of s at both the positions in (–)PBS stem loop conserves the stability 

of the loop as the melting temperature remains similar to the native sequences. Whereas, in 

duplex structures both the s7(–)/(+)PBS and 2Ap7(–)/(+)PBS shows deviation in melting 

temperature as compared to native (–)/(+)PBS, due to unstable W-C base pairing arising for s-

C mismatch. Twice higher fluorescence quantum yield is obtained for s7(–)PBS in comparison 

to 2Ap7(–)PBS, even though the quantum yield of free probe s is lower than 2Ap. Moreover 

in duplex structures, s7(–)/(+)PBS is a better substitute than 2Ap7(–)/(+)PBS due to fivefold 
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higher quantum yield. Consequently, we have simple fluorescence lifetime decay and lesser 

amount of dark species for s labeled sequences with comparatively lesser lifetime component, 

suggesting the ability of s to adopt stable conformation in single and duplex structures. 

Especially, more than threefold increase in fluorescence of s6(–)PBS on NC(11–55) interaction 

makes it worthy to be used as a successful probe for establishment of fluorescence assay. 

However, at position 6, duplex of s6(–)/(+)PBS shows poor fluorescence emission comparable 

to 2Ap. In addition at position, s7(–)PBS is insensitive towards binding with NC protein. Thus, 

s cannot be used a suitable probe to monitor annealing kinetics.  

Supplementary Information  

Table 12. Spectral parameters for s and 2Ap probes in free from and when incorporated in 

single and double stranded PBS. 

ODN λabs (nm) λem (nm) Φ1 

sa 348 434 0.41 

s6(–)PBS 353 434 0.028 

s7(–)PBS 353 434 0.18 

s6(–)/(+)PBS 357 428 0.006 

s7(–)/(+)PBS 357 436 0.10 

2Ap6 304 365 0.68 

2Ap6(–)PBS 313 365 0.024 

2Ap7(–)PBS 313 365 0.07 

2Ap6(–)/(+)PBS 317 365 0.006 

2Ap7(–)/(+)PBS 317 365 0.02 
1standard deviation in quantum yield is less than 10% 
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Caractérisation et ciblage de la reconnaissance 
dynamique de Trp37-G lors de l’interaction de la protéine 

NCp7 de HIV-1 avec des acides nucléiques 

 

 

Résumé 

La protéine de la nucléocapside (NC) possède un rôle important dans le cycle de viral du VIH-1 grâce à sa 

propriété chaperone des acides nucléiques (NA) qui implique la reconnaissance de son résidu Trp37 avec un 

résidu Guanine de l'acide nucléique cible. Nous avons caractérisé cette reconnaissance dynamique Trp37-G 

en utilisant des séquences impliquées dans la transcription inverse et l'assemblage de l'ARN génomique. En 

utilisant les analogues nucléosidiques fluorescents thienoguanosine et 2-thiényl-3-hydroxychromone, nous 

avons déterminé l'ensemble des constantes de vitesse cinétiques du mécanisme d’hybridation de la séquence 

(-)PBS avec (+)PBS en absence et en présence de NC. Nous avons également étudié le rôle du NA sucre dans 

les complexes NC-ARN et NC-ADN, puisque la protéine NC se lie avec la polarité opposée aux séquences 

d'ADN et d'ARN. Nous avons confirmé que l'interaction du résidu Trp37 avec les amino-acides de type guanines 

était critique lors de la formation des complexes avec les deux mutants d’ARN et d’ADN de PBS et de SL3. 

Enfin, nous avons réalisé un criblage de potentiels inhibiteurs de la protéine NC et examiné les touches 

identifiées à partir d’un test basé sur la fluorescence de la sonde thG. 

Mots-clés : VIH-1, nucléocapside protéine, analogues fluorescents, thiéoguanosine, PBS, SL3, acides 

nucléiques dynamique, fluorescence, protéine - acides nucléiques interaction 

Résumé en anglais 

Nucleocapsid protein (NC) plays crucial roles in HIV-1 life cycle through its nucleic acid (NA) chaperoning 

property that involves recognition of its Trp37 residue with a Guanine residue of the target nucleic acid. Herein, 

we characterized this dynamic Trp-G recognition with sequences involved in reverse transcription and genomic 

RNA packaging. Using the fluorescent thienoguanosine (thG) and 2-thienyl-3-hydroxychromone (3HCnt) 

nucleoside analogues, we determined the whole set of kinetic rate constants for annealing of (-)PBS with (+)PBS 

in the absence and presence of NC. We also investigated the role of NA sugar in NC-RNA and NC-DNA 

complexes, as NC binds with opposite polarity to DNA and RNA sequences. We confirmed that the interaction 

of the Trp37 residue with guanines was critical for the formation of complexes with both RNA and DNA variants 

of PBS and SL3. Finally, we performed screening of NC inhibitors and tested the selected hits on a thG-based 

assay. 

Key words: HIV-1, nucleocapsid protein, fluorescent nucleobase analogues, thieoguanosine, primer binding 

site, SL3, nucleic acid dynamics, fluorescence spectroscopy, protein-nucleic acids interaction. 
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