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Résumé

Le traitement des données massives, communément connu sous l’appellation “Big
Data”, constitue l’un des principaux défis scientifiques de la communauté STIC.
Plusieurs domaines, à savoir économique, industriel ou scientifique, produisent des
données hétérogènes acquises selon des protocoles technologiques multi-modales.
Traiter indépendamment chaque ensemble de données mesurées est clairement une
approche réductrice et insatisfaisante. En faisant cela, des “relations cachées” ou des
inter-corrélations entre les données peuvent être totalement ignorées.
Les représentations tensorielles ont reçu une attention particulière dans ce sens en
raison de leur capacité à extraire de données hétérogènes et volumineuses une infor-
mation physiquement interprétable confinée á un sous-espace de dimension réduite.
Dans ce cas, les données peuvent être organisées selon un tableau à D dimensions,
aussi appelé tenseur d’ordre D.
Dans ce contexte, le but de ce travail est que certaines propriétés soient présentes:
(i) avoir des algorithmes de factorisation stables (ne souffrant pas de probème de
convergence), (ii) avoir un faible coût de stockage (c’est-à-dire que le nombre de
paramètres libres doit être linéaire en D), et (iii) avoir un formalisme sous forme de
graphe permettant une visualisation mentale simple mais rigoureuse des décompo-
sitions tensorielles de tenseurs d’ordre élevé, soit pour D > 3.
Par conséquent, nous nous appuyons sur la décomposition en train de tenseurs (TT)
pour élaborer de nouveaux algorithmes de factorisation TT, et des nouvelles équiv-
alences en termes de modélisation tensorielle, permettant une nouvelle stratégie de
réduction de dimensionnalité et d’optimisation de critère des moindres carrés cou-
plés pour l’estimation des paramètres d’intérêts nommé JIRAFE. Aussi, un nouveau
cadre hiérarchique pour les décompositions TT des tenseurs Big data est proposé.
Ces travaux d’ordre méthodologique ont eu des applications dans le contexte de
l’analyse spectrale multidimensionelle et des systèmes de télécommunications à re-
lais.
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Abstract

Massive and heterogeneous data processing and analysis have been clearly identi-
fied by the scientific community as key problems in several application areas. It was
popularized under the generic terms of “data science” or “big data”. Processing
large volumes of data, extracting their hidden patterns, while performing prediction
and inference tasks has become crucial in economy, industry and science.
Treating independently each set of measured data is clearly a reductive approach. By
doing that, “hidden relationships” or inter-correlations between the datasets may
be totally missed. Tensor decompositions have received a particular attention re-
cently due to their capability to handle a variety of mining tasks applied to massive
datasets, being a pertinent framework taking into account the heterogeneity and
multi-modality of the data. In this case, data can be arranged as a D-dimensional
array, also referred to as a D-order tensor.
In this context, the purpose of my thesis is that the following properties are present:
(i) having a stable factorization algorithms (not suffering from convergence prob-
lems), (ii) having a low storage cost (i.e., the number of free parameters must be
linear in D), and (iii) having a formalism in the form of a graph allowing a simple
but rigorous mental visualization of tensor decompositions of tensors of high order,
i.e., for D > 3.
Therefore, we rely on the tensor train decomposition (TT) to develop new TT fac-
torization algorithms, and new equivalences in terms of tensor modeling, allowing
a new strategy of dimensionality reduction and criterion optimization of coupled
least squares for the estimation of parameters named JIRAFE for Joint dImensional-
ity Reduction And Factor rEtrieval. Moreover, a new hierarchical framework for the
TT decomposition of big data tensors is proposed.
This methodological work has had applications in the context of multidimensional
spectral analysis and relay telecommunications systems.
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Résumé étendu

Introduction

Le traitement des données massives, communément connu sous l’appellation “Big
Data”, constitue l’un des principaux défis scientifiques de la communauté STIC.
Plusieurs domaines, à savoir économique, industriel ou scientifique, produisent des
données hétégorènes. Traiter indépendamment chaque ensemble de données mesurées
est clairement une approche réductrice. En faisant cela, des “relations cachées”
ou des inter-corrélations entre les données peuvent être totalement manquées. Les
représentations tensorielles ont reçu une attention particulière dans ce sens en raison
de leur capacité de représenter à la fois des données hétégorènes et volumineuses.
Dans ce cas, les données peuvent être organisées dans un tableau de D dimen-
sions, aussi appelé tenseur d’ordre D. Dans ce contexte, certaines propriétés sont
souhaitées: (i) des algorithmes de décomposition stables et évolutifs (c’est-à-dire
qui s’adapte avec l’ordre et dimensions du tenseur), (ii) un faible coût de stockage
(c’est-à-dire que le nombre de paramètres doit être linéaire en D), et (iii) un formal-
isme graphique adéquat permettant une visualisation simple mais rigoureuse pour
les décompositions tensorielles où D > 3. Notez que pour un tenseur d’ordre D et
de dimension N× · · ·×N, le coût de stockage O(ND) croît de manière exponentielle
avec l’ordre D. Ce problème est appelé “la malédiction de la dimensionalité" [106].
Dans la littérature, deux décompositions sont populaires, la décomposition canon-
ique polyadique [63, 61, 25, 44, 137] (CPD) et la décomposition de Tucker [142]. Ces
deux décompositions ont plusieurs applications dans les télécommunications [128,
3], le traitement d’antennes [127], le radar [110], la compression des données [148],
etc. Dans la section suivante nous parlerons des avantages et des inconvénients
de ces méthodes, surtout pour des ordres/dimensions très élevés. Après nous ex-
poserons quelques alternatives pour certains de ces problèmes.

Position du problème

La CPD

La CPD est la décomposition d’un tenseur X ∈ CN1×···×NQ d’ordre D et de rang
canonique R comme sommation de R tenseurs de rang canonique égale à 1.

X =
R

∑
r=1

sr (P1(:, r) ◦ . . . ◦ PD(:, r))︸ ︷︷ ︸
X r

avec rankX r = 1

Pd de dimension Nd × R est la matrice facteur du mode d, R correspond au nombre
minimum de tenseurs de rang 1 requis pour un recouvrement parfait de X . Cette
décomposition est très compacte, et a un coût de stockage O(R · N · D), où N =
max{N1, · · · , ND}. Sur la figure 1 on représente la CPD d’un tenseur d’ordre 3 et de
rang R.
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Pour décomposer un tenseur X d’ordre D sous la forme CPD, on doit retrouver les

FIGURE 1: CPD d’un tenseur ordre 3 et de rang R.

facteurs Pd qui minimisent

min
P1,··· ,PD

∥∥∥∥X
Nd×

N1 ···ND
Nd

− Pd ·
(

PD � · · ·Pd+1 � Pd−1 � · · · � P1

)T
∥∥∥∥2

F
(1)

C’est un problème d’optimisation non linéaire. Bro et al. [22] ont proposé l’algorithme
ALS pour alternating least squares. Ils ont proposé de remplacer le problème de eq. (1)
par D problèmes d’optimisation:

P(t)
d = min

Pd

∥∥∥∥X
Nd×

N1 ···ND
Nd

− Pd

(
P(t−1)

D � · · ·P(t−1)
d+1 � P(t)

d−1 � · · · � P(t)
1

)T
∥∥∥∥2

F

Ce problème est facile à implémenter, mais reste un algorithme itératif qui a une
convergence lente [118, 74], qui devient de plus en plus difficile quand l’ordre D
augmente [21], avec une complexité computationelle qui est exponentielle en D. En
outre, sans aucune contrainte, le problème de récupération du rang R est NP-difficile
[62], et du recouvrement des facteurs est mal posé [41, 77]. Finalement, on doit avoir
un formalisme graphique simple qui va nous permettre de visualiser des tenseurs
d’ordre D > 3.

La décomposition de Tucker

La deuxième approche est la décomposition de Tucker. Ça permet de décomposer
un tenseur X ∈ RN1×···×NQ d’ordre D et de dimension N1 × · · · × ND sous forme
d’un autre tenseur compressé G de même ordre, appelé tenseur coeur, de dimension
R1 × · · · × RD, multiplié par une matrice facteur Fd sur chaque mode d. Nous avons
donc

X =
R1,...,RD

∑
r1,...,rD=1

G(r1, . . . , rD)
(

F1(:, r1) ◦ F2(:, r2) ◦ . . . ◦ FD(:, rD)
)

Les facteurs Fd ont une dimension Nd × Rd, d’où la notion du rang multilinéaire
(R1, · · · , RD). La coût de stockage dans ce cas est O(R · N · D + RD), où R =
max{R1, · · · , RD}.
De Lathauwer [89] a proposé d’ajouter une contrainte d’orthonormalité sur les fac-
teurs Fd, c’est la décomposition HOSVD pour Higher-order SVD, nous avons donc

G = X ×1 FT
1 ×2 FT

2 ×3 . . .×D FT
D
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L’avantage de cette décomposition est qu’elle est basée sur un algorithme HOSVD
[89] stable(c’est-à-dire non-itératif). Mais, malheureusement G n’est généralement
pas parcimonieux, donc nous avons un coût de stockage qui est exponentiel en D.
Cette décomposition, à l’inverse de la SVD, n’est pas révélatrice du rang canonique,
et en plus n’est pas optimale pour un rang multilinénaire donné.
Pour résumer: (i) la CPD est une décomposition compacte, mais qui n’a pas un
algorithme stable de décomposition, et (ii) la décomposition de Tucker/HOSVD est
stable pour la décomposition, mais a un coût de stockage exponentiel en D. L’idéal
est d’avoir une décomposition stable avec un coût de stockage linéaire en D. Dans
la section suivante, on va présenter une décomposition qui a les deux propriétés
souhaitées.

Solution alternative: La décomposition Tensor Train

Dans cette section, nous exposerons les réseaux de tenseurs, en particulier la dé-
composition Tensor Train (TTD) [104]. L’idée de cette décomposition est de trans-
former le tenseur d’origine X d’ordre D > 3 en un ensemble de tenseurs Gd d’ordre
3. La décomposition d’un tenseur X ∈ CN1×···×NQ d’ordre D avec des rangs TT
(R1, · · · , RD−1) est exprimée comme

X (i1, i2, · · · , iD) =
R1,··· ,RD−1

∑
r1,··· ,rD−1=1

G1(i1, r1)G2(r1, i2, r2)G3(r2, i3, r3) · · ·

· · ·GD−1(rD−2, iD−1, rD−1)GD(rD−1, iD)

Ou d’une manière plus compacte

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 · · · ×1

D−1 GD−1 ×1
D GD. (2)

Graphiquement, et pour avoir une vision conceptuelle de la TTD, nous représentons
dans la figure 2, la TTD d’un tenseur d’ordre D.
Notez que le coût de stockage de la TTD est O((D− 2) ·N ·R2), où R = max{R1, · · · , RD−1}.

FIGURE 2: La décomposition TT d’un tenseur d’ordre D.

En plus, cette décomposition se base sur un algorithme stable appelé TT-SVD [104].
Cet algorithme calcule les TT-coeurs Gd en extrayant de manière séquentielle les
sous-espaces dominants (grâce à des SVD tronquées) des dépliements matriciels
du tenseur d’origine. Dans la figure 3, nous illustrons l’algorithme TT-SVD pour
un tenseur d’ordre 4. À chaque étape, le tenseur original est redimensionné en
une matrice ayant un mode dans une dimension et une combinaison des modes
restants dans l’autre dimension, de sorte à générer un TT-coeur après l’application
d’une SVD. Notez que les matrices Ud contiennent les vecteurs singuliers gauches,



xxvi

et les matrices Vd contiennent les valeurs singulieres ainsi que les vecteurs singuliers
droits. Les TT-coeurs Gd sont ensuite obtenus après un redimensionnement des ma-
trices Ud.
L’avantage de la TTD est la stabilité de l’algorithme de décomposition, et le coût de
stockage qui est linéaire en D. Néanmoins, l’algorithme TT-SVD reste un algorithme
séquentiel qui n’est pas forcément adapté pour les Big Data, d’où la nécessité de pro-
poser un nouveau algorithme évolutif pour la TTD. En plus, nous essayons dans nos
recherches de tirer profit des propriétés de la TTD pour les décompositions usuelles
CPD et Tucker, en établissant des relations d’équivalence entre ces modèles. Dans la
section suivante, nous présenterons deux résultats dans ce sens.

FIGURE 3: L’algorithme TT-SVD appilqué à un tenseur d’ordre 4.

Résultats

Un nouveau algorithme hiérarchique: TT-HSVD

L’algorithme TT-HSVD, pour TT hierarchical SVD, qu’on propose est un algorithme
hiérarchique pour la TTD. C’est un algorithme adapté pour les Big Data, qui donne
les mêmes résultats algébriques que l’algorithme TT-SVD, en plus du fait qu’il est
adapté pour une architecture parallèle, et est moins complexe. La différence avec
l’algorithme TT-SVD est la manière de faire le dépliement des matrices. En ef-
fet, le TT-SVD redimensionne le tenseur d’origine en une matrice ayant un mode



xxvii

dans une dimension et une combinaison des modes restants dans l’autre dimen-
sion. Ici, pour le TT-HSVD, nous permetons d’avoir des dépliements en des ma-
trices ayant une combinaison de plusieurs modes sur les deux dimensions de la
matrice. Dans la figure 4, nous illustrons l’algorithme TT-HSVD pour un tenseur
d’ordre 4. À l’inverse de l’algorithme TT-SVD, le premier dépliement choisit pour
l’algorithme TT-HSVD est la matrice X2 de dimension N1N2× N3N4. Nous pouvons
voir qu’après l’application de la SVD sur cette matrice on obtient 2 matrices U2, con-
tenant les vecteurs singuliers gauches, et V2, contenant les vecteurs singuliers droits
et les valeurs singulieres, qui peuvent chacune être traiter séparḿent.

D’après les résultats algébriques obtenus, nous avons trouvé que si nous avons

FIGURE 4: L’algorithme TT-HSVD appilqué à un tenseur d’ordre 4.

un tenseur X d’ordre D qui suit un modèle TT de la forme eq. (2) et de rangs TT
(R1, · · · , RD−1), les deux algorithmes TT-SVD et TT-HSVD vont estimer les mêmes
rangs TT, équivalents aux vrais rangs, et des TT-coeurs équivalents aux vrais TT-
coeurs à des matrices de changement de base près. D’où les 2 résultats suivants:

Ĝseq
1 = G1P1

Ĝseq
d = P−1

d−1 ×
1
2 Gd ×1

3 Pd, (2 ≤ d ≤ D− 1)

Ĝseq
D = P−1

D−1GD.



xxviii

et

Ĝhrl
1 = G1Q1

Ĝhrl
d = Q−1

d−1 ×
1
2 Gd ×1

3 Qd, (2 ≤ d ≤ D− 1)

Ĝhrl
D = Q−1

D−1GD.

Où Pd et Qd sont des matrices de changement de base, de dimension Rd×Rd. Graphique-
ment, Nous pouvons combiner les TT-coeurs estimés par les algorithmes TT-SVD et
TT-HSVD tel que les figures 5 et 6 respectivement.

Donc après cette analyse que nous avions faite pour les deux algorithmes, Nous

FIGURE 5: Combinaison des TT-coeurs estimés d’une manière
séquentielle.

FIGURE 6: Combinaison des TT-coeurs estimés d’une manière hiérar-
chique.

pouvons voir que les deux algorithmes vont estimer le même tenseur d’origine
après la simplification des matrices de changement de base. Avec l’avantage que
le TT-HSVD peut être implémenté dans une architécture parallèle, et en plus nous
avons trouvé que la complexité computationelle du TT-SVD est κseq = O(RND) +

O(R2N(D−1)) + O(R2N(D−2)) + · · · + O(R2N2), alors que le TT-HSVD a une com-
plexité κhrl = O(RND) + O(R2N

D
2 ) + O(R2N

D
4 ) + · · ·+ O(R2N2) pour un tenseur

d’ordre D et de dimension N × · · · × N. Donc un gain computationelle très impor-
tant quand nous avons un tenseur d’ordre très élevé.
Nous donnons dans le tableau 1, quelques résultats de simulations obtenus. Nous
pouvons voir que nous avons un gain très important du TT-HSVD par rapport à
TT-SVD, qui augmente significativement avec les dimensions. En particulier, pour
D = 10, l’agorithme TT-SVD n’a pas pu calculer la décomposition vu la taille de
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la première matrice de dépliement qui est de taille 4× 49, ce qui demande la créa-
tion d’une matrice de vecteurs singuliers droite de taille 49 × 49 pour la SVD, ce qui
dépasse les capacités du calculateur. D’autres résultats de simulations peuvent être
trouver dans le papier [157]

TABLE 1: Comparaison du temps de calcul des deux algorithmes
(D = 8, R = 3).

Les dimensions du tenseur N = 9 N = 10 N = 11 N = 12 N = 13
TT-SVD 5.9 13.3 29 88.1 −
TT-HSVD 1.9 4 8.3 17.3 43.9
Gain 3.1 3.3 3.5 5.1 ∞

Équivalence entre CPD/Tucker et TTD: les décompositions CPD-Train et
Tucker-Train

Un autre volet de nos recherches vise à tirer profit de la TTD, qui n’est pas très util-
isée par la communauté traitement du signal, pour proposer de nouvelles méthodes
d’estimation des paramètres d’interêt des décompositions CPD et Tucker/HOSVD,
qui sont les plus connues et utilisées par la communauté. En effet, nous avons établit
des relations d’équivalence des décompositions CPD et Tucker avec la TTD. Dans les
sections suivantes, les deux équivalence Tucker-Train et CPD-Train seront présentés.

Tucker-Train

Une équivalence algébrique a été établit entre le modèle de Tucker et la TTD. En
termes de résultats, nous avons trouvé qu’un tenseur d’ordre D suivant un mod-
èle de Tucker peut être exprimé sous forme d’un train de tenseurs d’ordre 3 suiv-
ant aussi un modèle de Tucker et ayant chacun une structure connue. Ce modèle a
été appelé Tucker-Train. En plus de l’équivalence algébrique, nous avons trouvé la
structure des TT-coeurs résultants de l’algorithme TT-SVD ou TT-HSVD, leur rang
multilinéaire et des facteurs communs entre ces tenseurs. L’avantage de cette équiv-
alence est de pouvoir retrouver les paramètres d’intérêts d’un modèle Tucker d’ordre
très elevé à partir des TT-coeurs qui sont d’ordre 3. À partir de cette réduction de
dimensionnalité, des gains en complexité computationnelle ont été trouvé.

CPD-Train

Pareil que le modèle de Tucker. Nous avons trouvé qu’un tenseur suivant une CPD
d’ordre D et de rang canonique R est équivalent à un train de tenseurs CPD d’ordre
3 et de rang canonique R aussi. Nous avons trouvé aussi la structure des TT-coeurs
résultants des algorithmes de décomposition. En effet, les TT-coeurs ont une struc-
ture CPD de rang canonique R où les facteurs du modèle initial sont les seconds
facteurs des TT-coeurs avec des matrices de changement de base Md communes de
dimension R× R entre les TT-coeurs. Mathématiquement, nous avons les relations
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suivantes:

G1 = P1M−1
1 ,

Gd = I3,R ×1 Md−1 ×2 Pd ×3 M−T
d , 2 ≤ d ≤ D− 1

GD = MD−1PT
D

Graphiquement, nous representons dans la figure 7 la structure des TT-coeurs ré-
sultants de la TTD d’un tenseur CPD de rang canonique R. Comme application

FIGURE 7: CPD d’ordre 3 du dème coeur TT.

de ce résultat est le recouvrement des facteurs Pd à partir des TT-coeurs en utilisant
plusieurs méthodes. Un exemple de méthode de recouvrement est donné dans Algo.
1. Un résultat des simulations est donné dans le Tableau 2, où on compare le temps

Algorithm 1 Réduction de dimensionnalité et recouvrement des facteurs CPD en se
basant sur le modèle CPD-train

Entrée: Tenseur X d’ordre D et de rang canonique R.
Sortie: Facteurs CPD estimés: P̂1, · · · , P̂D.

1: Reduction de dimensionnalité: (Estimation des TT-coeurs)

[G1,G2, · · · ,GD−1, GD] = TT-SVD(X , R).

2: Recouvrement des facteurs CPD:

[M̂1, P̂2, M̂−T
2 ] = Tri-ALS(G2, R).

3: for d = 3 · · ·Q− 1 do
4: [P̂d, M̂−T

d ] = Bi-ALS(Gd, M̂d−1, R)
5: end for
6: P̂1 = G1M̂1, et P̂D = GT

DM̂−T
D−1

de calcul de notre méthode avec l’algorithme ALS pour un tenseur CPD d’ordre
D = 8 et de rang R = 3, en variant les dimensions.
Les papiers [156, 157] présente plus de résultats de simulations par rapports au
temps de calcul et robustesse de la méthode proposée. D’autres algorithmes adaptés
au modèle CPD-Train et traitant plusieurs cas de modèle ont fait sujet de l’article
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TABLE 2: Comparaison du temps de calcul pour R = 3, D = 8.

Dimensions Algo. 1 ALS Gain
N = 4 0, 79 (s) 19, 26 (s) 24, 37
N = 5 0, 91 (s) 114, 16 (s) 125, 45
N = 6 1, 31 (s) 431, 95 (s) 329, 73

[157], à savoir des algorithmes semi-itératifs et non-itératifs pour les modèles CPD
dans un cas général, et un algorithme parallèle pour les modèles CPDs avec des
facteurs ayant une structure Toeplitz.

Conclusion

Le travail décrit dans cette thèse porte sur le fléau de la dimensionnalité et le défi
consistait à reformuler un tenseur d’ordre élevé en un ensemble de tenseurs d’ordre
inférieur. En particulier, l’objectif était de proposer de nouvelles méthodes de traite-
ment tensoriel adaptées aux tenseurs Big Data, avec les avantages d’être robustes,
évolutives et avec la possibilité d’execution parallèle. Parmi tous les réseaux de
tenseurs existants, le train des tenseurs, en raison de sa simplicité, s’est rélévé être
un bon modèle pour résoudre ce problème.
Le modèle de train des tenseurs est exploité dans ce travail pour proposer de nou-
veaux résultats d’équivalence entre les décompositions tensorielles usuelles et mod-
èle en train des tenseurs. En effet, un nouveau estimateur appelé JIRAFE, pour la
réduction de dimensionnalit{e et l’estimation conjointe des facteurs, est proposé. Il
s’agit d’un schéma en deux étapes consistant à diviser le tenseur d’ordre supérieur
en une collection de plusieurs tenseurs d’ordre inférieur, et ensuite de l’étape d’estimation
des facteurs grâce à une nouvelle stratégie d’optimisation.
Nous avons également proposé un nouveau algorithme hiérarchique, appelé TT-
HSVD, qui permet de récupérer simultanément les cœurs et les rangs TT d’une
manière hiérarchique, afin de faire face à la complexité calculatoire élevée de l’algorithme
de l’état de l’art, à savoir le TT-SVD. Cet algorithme est bien adapté aux tenseurs Big
Data et constitue une bonne alternative à l’algorithme TT-SVD pour traiter le prob-
lème de la malédiction de la dimensionnalité.
Ces deux résultats fondamentaux ont eu des applications dans le contexte de l’analyse
spectrale multidimensionnelle et des systèmes de télécommunication à relais.
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Chapter 1

Introduction

1.1 Context of study and motivation

Tensors are multidimensional data arrays that allow to treat several “modalities”
of data dependently. Doing otherwise, hidden relationships or inter-correlations
between the modes may be totally missed, which is clearly a reductive approach.
In this last decade, tensor decompositions interest has been expanded to different
fields, e.g., signal processing, numerical linear algebra, data mining, graph analysis
and more. This interest for tensor decompositions is justified by the fact that this
concept allows to decompose high-order tensors into physically interpretable and
meaningful lower-order factors usually under mild conditions without the need to
add constraints of the decompositions, which is a real advantage over matrix mod-
els. This puts tensor decompositions and multi-linear algebra as logical extensions of
the matrices and linear algebra. However, this generalization to the high-order ten-
sors is not straightforward since multiple definitions in the matrix case are not the
same for tensors, as for example, the rank definition, where different non-equivalent
rank definitions exist in the tensor case, each corresponding to a different tensor
model unlike the matrix case.
In practice, measurements are usually corrupted by noise, and a best low rank ap-
proximations are wanted. Unfortunaltely, these approximations are generally ill-
posed. This ill-posedness results in the stability [92] (non existence of closed-form
solution) of the numerical computation of some tensor decompositions, such as the
Canonical Polyadic decomposition [63, 61, 25]. Other tensor decompositions can be
computationally based on the Singular Value Decomposition (SVD) and provide sta-
ble (i.e., non-iterative) decomposition algorithms, and also provide the best/optimal
approximations regarding their matricized versions thank to the Eckart-Young the-
orem, but without the guarantee of optimality at the tensor level, such as the High-
order SVD (HOSVD) [89, 5]. This last representation may also suffer from a huge
computational and memory resources need. This is due to the fact that the com-
putational complexity and the storage cost grow exponentially in the number of
dimensions of the heterogeneous data, also known as the order. This has been iden-
tified as the Curse of dimensionality.
Recently, a new scheme of tensor decompositions has been proposed, namely tensor
networks [28], with the aim to break the curse of dimensionality [106] by decom-
posing high-order tensors into distributed sparesly interconnected cores of lower-
order. This principle allows to develop more sophisticated tensor models with the
ability of performing distributed computing and capturing multiple interactions
and couplings, instead of the standard tensor decompositions. These tools found
applications in very large-scale problems in scientific computing, such as super-
compression, tensor completion, blind source separation, and machine learning,
to mention a few. of Multiple tensor networks exist, e.g., Hierarchical Tucker [59],
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which is an alternative to the Tucker decomposition where the core tensor is re-
placed by lower-order tensors resulting in a network where some cores are directly
connected with factor matrices. Different configurations of networks may exists for
a given high-order tensor.
One of the simplest networks is the Tensor Train (TT) decomposition [105]. This
decomposition can be considered as a special case of the Hierarchical Tucker one,
where all the tensors of the underlying networks are aligned (i.e., no cycles exist in
the representation), and where the leaf matrices are all equal to the identity. The two
main advantages of this decomposition are its compactness, its storage cost that is
linear in the order, and its computation, since it relies on a stable (i.e., non-iterative)
SVD-based algorithm called the TT-SVD algorithm [105]. However, the TT-SVD can
still be computationally an expensive algorithm when dealing with big data tensors,
since it is a sequential algorithm. Moreover, the tensor train decomposition is still
not widely used by the signal processing community in the estimation problems.
The goal of this thesis is to take advantage of the assets of the tensor train decom-
position to be able to propose new estimation schemes for the problems usually
modeled by the classical tensor models, especially for high-order tensors. Also, the
goal would be to improve the big data tensor processing by developing some new
scalable and hierarchical schemes adapted for high-order tensor decompositions. In
this thesis, the equivalence between the classical tensor decompositions and the ten-
sor train decomposition is investigated, while emphasizing the core tensors structure
and the relations between the different notions of ranks, to see if some new TT-based
estimation schemes are possible. Also, the parallelization of the TT computation is
studied, with the aim to apply it to some realistic applications naturally modeled
with the tensor train decomposition.

1.2 Achieved results

The results obtained in this thesis can be divided in two parts. Both parts have
methodological and application results. In the following, we will give a brief sum-
mary about each part.

• In the first part, we provide results on the equivalence between both the CPD
and the TD, and the TT decomposition for an estimation purpose [157, 156].
These results are constructive and focused on the TT-ranks and TT-cores struc-
ture when the TT-SVD algorithm is apllied to a CPD or a TD. From a method-
ological perspective, this result allows to propose a new estimation scheme
for high-order tensors, called JIRAFE for Joint dImensionality Reduction And
Factor rEtrieval. Several JIRAFE-based algorithms are proposed in this part
having advantages in terms of storage cost, computational complexity, algo-
rithmic stability, and factor estimation robustness to noise. Also some results
on the partial and full uniqueness [161] are given in the case where JIRAFE is
considered for factors having linear dependencies.
Regarding the applications of these results. Since these results can be applied
to any high-order CPD-based problems, we choose to apply JIRAFE to the mul-
tidimensional harmonic retrieval (MHR) problem. The classic MHR problem
was reformulated under a Vandermonde based TT format [158]. The TT-cores
structure is provided, explained and exploited in the context of a sequential
optimization strategy of a sum of coupled LS problems. Finally, a new rectifi-
cation strategy for Vandermonde factors is given. In this application, JIRAFE
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showed advantages in terms of flexibility, robustness to noise, computational
cost and automatic pairing of the parameters with respect to the tensor order.
A second application of JIRAFE was the decomposition of MIMO channels
[160]. In this application, we use the JIRAFE framework to find the transmit
and receive spatial signatures as well as the complex path loss from a new
extented channel tensor model.

• In the second part and from a methodological perspective, a new TT-based
hierarchical framework [155] for big data tensors was proposed. This new al-
gorithm is called TT-HSVD for Tensor Train Hierarchical SVD. This algorithm
delivers simultaneously the TT-cores and the TT-ranks in a hierarchical way by
considering a new reshaping strategy different from that of the state-of-the-art
TT-SVD algorithm. This reshaping strategy allows to parallelize and deal with
smaller matrices in the computation of the TT-cores. An algebraic analysis of
the two algorithms shows that both, the TT-SVD and the TT-HSVD, compute
the same TT-ranks and TT-core tensors up to a specific bases. This algorithm
can be considered in all the applications needing a TT decomposition instead
of the TT-SVD, including in JIRAFE.
As an application, this framework is applied to MIMO-OFDM relaying sys-
tems [159], allowing a joint channel and symbol estimation.

1.3 Manuscript structure

The presented document relies mainly on the three following chapters.

• Chapter 2 is dedicated to the state-of-the-art. We first recall some tensor-related
basic definitions and lemmas which are required for the understanding of the
manuscript and the proofs development. Then, tensor decompositions existing
in the literature will be exposed, namely the CPD, the TD, and the HOSVD.
After that, the curse of dimensionality is discussed and the TT decomposition
will be defined as a solution to break the curse of dimensionality.

• Chapter 3 is divided to four main sections. The first methodological section
details the JIRAFE principle. In this section both CPD-TT and TD-TT equiva-
lences are exposed, and the JIRAFE-based algorithms are given for both cases.
The second section discusses the JIRAFE principle in the case of PARALIND
tensors. Uniqueness conditions in the case of TT-PARALIND are given and
discussed in this section. The two remaining sections are applications. The
third one presentes a new Vandermonde-based tensor train representation for
the multidimensional harmonic retrieval problem. It is an application of JI-
RAFE in the case of structured high-order CPD. Finally, an application for
the decomposition of MIMO channel tensors. In this last section, the CPD-
TT equivalence is reformulated with respect to the structure of the channel
tensor. The TT-cores structure in this case change giving the fact that the rank
factor assumptions are different compared to those of the first section, and a
JIRAFE-based algorithm is proposed.

• Chapter 4 detailes the new TT-based hierarchical framework for big data ten-
sors. In this section, a parallel algorithm for the computation of the TT-cores
is proposed, called TT-HSVD. This algorithm compute the same TT-ranks and
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TT-cores up to specific bases as the TT-SVD algorithm. TT-HSVD has the abil-
ity to allow a parallel processing and has a less computational complexity com-
pared to the TT-SVD. Also, a new graph-based representation using patterns
is detailed in this section. An application of this framework can be the MIMO-
OFDM relaying systems that is exposed in the second section of this chapter.
In this second section, we propose a new TT-based receiver allowing a joint
channels and symbol estimation.

The conclusions and prospects of this work are given in Chapter 5.
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Chapter 2

State-of-the-art and Problem setup

2.1 Tensor-related algebraic background

In this part, we will give all the basic and necessary definitions in relation with ten-
sors that will be useful for the understanding and the proof of theoremes later in the
manuscript.

Definition 1. A Q-order tensor X of size I1× · · · × IQ is an element of the finite-dimension
real vector space RI1×···×IQ . It is uniquely defined by the set of its coordinatesXi1,··· ,iQ , where
1 ≤ iq ≤ Iq for 1 ≤ q ≤ Q.

Below, one gives the definitions of the different products that will be used in the
sequel

Definition 2. The outer product of three vectors a (I × 1), b (J × 1) and c (K × 1) is an
I × J × K three-way tensor a ◦ b ◦ c with elements (a ◦ b ◦ c)i,j,k = aibjck.
Note that for the case of two vectors we have a ◦ b = abT.

Definition 3. Let A and B be two matrices of size, respectively, I × J and K × L, the
Kronecker product A⊗ B of size (IK)× (JL) is given by

A⊗ B =

 a11B a12B · · ·
a21B a22B · · ·

...
...

. . .



Definition 4. The Khatri-Rao product A�B is a subset of columns from A⊗B, it contains
the product of any column of A with only the corresponding column of B instead of the in-
teraction with all columns. It is a product between two matrices of same number of columns.
Let A = [a1 a2 · · · aR] and B = [b1 b2 · · · bR], the Khatri-Rao product of A and B is
defined as

A� B = [a1 ⊗ b1 a2 ⊗ b2 · · · aR ⊗ bR].

Another important notion in the tensor representations is the n-mode product.

Definition 5. The n-mode product of a tensor X of size I1 × I2 × · · · × IN with a matrix
A of size J× In is denoted by X ×n A and is of size I1× · · · × In−1× J× In+1× · · · × IN .
And we have

(X ×n A)i1···in−1 jin+1···iN =
IN

∑
in=1

xi1i2···iN ujin .

This product has the following properties:
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• X ×m A×n B = X ×n B×m A (m 6= n).

• X ×n A×n B = X ×n (BA).

Definition 6. The contraction product×p
q between two tensors A and B of size N1× · · · ×

NQ and M1 × · · · ×MP, where Nq = Mp, is a tensor of order Q + P− 2 such as [28]

[A×p
q B]n1,...,nq−1,nq+1,...,nQ,m1,...,mp−1,mp+1,...,mP

=
Nq

∑
k=1

[A]n1,...,nq−1,k,nq+1,...,nQ [B]m1,...,mp−1,k,mp+1,...,mP .

Using the outer product definition, we can define a rank-one tensor as follows.

Definition 7. As the rank-1 matrix, and regarding the outer product definition, a Q-order
rank-1 tensor X is defined as the outer product of N vectors, i.e., X = a1 ◦ a2 ◦ · · · ◦ aQ.

We now introduce some standard lemmas and definitions that will be useful in
the sequel, especially for the proofs of our main Theorems.

Definition 8. Let R ≤ N. If matrices A and B of size N × R span the same R-dimensional
column space, then it exists a nonsingular R × R matrix M, usually called a change-of-
basis matrix, such as

B = AM or equivalently BM−1 = A.

In this case, we have the following equality in terms of orthogonal projectors

BB† = AMM−1A† = AA†.

Lemma 1. Let A and B be two matrices of respective sizes I × J and K × J, where I ≥ J,
and K ≥ J. The Khatri-Rao product of both matrices does not decrease the rank [131]:

rank(A� B) ≥ max{rank(A), rank(B)},

which implies that, if A or B have full rank, A� B also has full rank, i.e.,

rank(A) = rank(B) = J ⇒ rank(A� B) = J.

In tensor-based data processing, it is standard to unfold a tensor into matrices.
We refer to Eq. (5) in [50], for a general matrix unfolding formula, also called tensor

reshaping. The q-th generalized unfolding X(q), of size (
q

∏
s=1

Ns)× (
Q
∏

s=q+1
Ns), of the

tensor X ∈ RN1×N2×···×NQ using the native reshape function of the MATLAB software,
is defined by:

X(q) = reshape

(
X ;

q

∏
s=1

Ns,
Q

∏
s=q+1

Ns

)
.

Another type of reshaping is the tensor unfolding, that transforms the tensor X ∈
RN1×N2×···×NQ into a 3-order tensor X q of size (N1 · · ·Nq−1) × Nq × (Nq+1 · · ·NQ)
where:

X q = reshape

(
X ;

q−1

∏
s=1

Ns, Nq,
Q

∏
s=q+1

Ns

)
.
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The last transformation is the square matrix tensorization, that transforms a square
matrix I ∈ RN×N , with N = N1N2, to a 3-order tensor according to:

T = reshape (I; N1, N2, N) , (2.1)

or,

T̄ = reshape (I; N, N1, N2) , (2.2)

where T ∈ RN1×N2×N and T̄ ∈ RN×N1×N2 . These two last reshapings will be used in
Theorem 1 to define a one-to-one mapping between an identity matrix and a sparse
tensor filled with binary values.

In this work, factor graph representations will be intensively used. In a fac-
tor graph, a node can be a vector, a matrix or a tensor as illustrated in Fig. 2.1-
(a), (b), (c). The edge encodes the dimension of the node. The order of the node is
given by the number of edges. In Fig. 2.1-(d), the ×1

3 product of two 3-order tensors
with a common dimension is illustrated.

FIGURE 2.1: (a) Vector x of size I1 × 1, (b) matrix X of size I1 × I2, (c)
3-order tensor X of size I1 × I2 × I3, (d) ×1

3 product of two 3-order
tensors.

2.2 Standard tensor decompositions and low rank tensor ap-
proximation

In this section, we will recall the standard tensor decompositions, namely the Canon-
ical polyadic decomposition (CPD), Tucker decomposition (TD) and high-order SVD
(HOSVD), and discuss some their drawbacks regarding the computation and the
storage cost before presenting the new tensor network paradigm in the next section.

2.2.1 CPD

In the literature [57, 79, 73, 130], two decompositions are popular, sharing a com-
mon goal, i.e., to decompose a tensor X into a D-order core tensor G and D factor
matrices. Due to the diagonality of the core tensor, the CPD [63, 61, 25] extends the
definition of rank used in linear algebra to multilinear algebra. Indeed, the canonical
rank of a tensor X is defined as the smallest number R of rank-1 tensors necessary
to yield X in a linear combination. As a consequence, the number of free parameters
(as well as the storage cost) of the CPD grows linearly with the tensor order D.



10 Chapter 2. State-of-the-art and Problem setup

Definition 9. A Q-order tensor of size N1 × . . . × NQ belonging to the family of rank-R
CPD admits the following decomposition:

X = IQ,R ×1 P1 ×2 P2 ×3 . . .×Q PQ (2.3)

where the q-th factor Pq is of size Nq × R, 1 ≤ q ≤ Q. The q-mode unfolded matrix
unfoldqX , of size Nq × N1···NQ

Nq
, is given by:

unfoldqX = Pq · (PQ � · · · � Pq+1 � Pq−1 � · · · � P1)
T.

Unfortunately, without any additional structural assumptions [93, 153, 114, 111,
19], the problems of the recovery of (i) the canonical rank is NP-hard [62] and (ii)
the factor matrices is ill-posed [42, 78]. This means that (i) there is no guarantee on
the existence of a low-rank approximation of a tensor by means of its rank-R CPD
and (ii) a stable and efficient algorithm to compute the factor matrices may not exist,
or it performs poorly when dealing with big data tensors.
Below is an important lemma in relation to CPD that will be used in the sequel.

Lemma 2. For the CPD (2.3), the q-th reshaping, denoted by X(q), of size (N1 · · ·Nq) ×
(Nq+1 · · ·NQ), admits the following expression:

X(q) = reshape(X ; N1 · · ·Nq, Nq+1 . . . NQ)

= (Pq � · · · � P1) · (PQ � · · · � Pq+1)
T.

2.2.2 Tucker decomposition

The Tucker decomposition was proposed in [142]. It decomposes a tensor into a core
tensor of same order, multiplied by a factor matrix along each mode. It can be seen
as a generalization of the CPD [63, 61, 25].

Definition 10. A Q-order tensor of size N1× . . .×NQ that follows a Tucker decomposition
can be written as:

X = C ×1 F1 ×2 F2 ×3 . . .×Q FQ (2.4)

where Fq is of size Nq × Tq, 1 ≤ q ≤ Q, and C is the core tensor of size T1 × . . . ×
TQ. The multilinear rank [38] of the tensor X is defined as the Q-uplet {T1, · · · , TQ},
such that T1 × · · · × TQ is the minimal possible size of the core tensor C. The storage cost
of a Tucker decomposition is O(QNT + TQ), where N = max{N1, · · · , NQ}, and T =
max{T1, · · · , TQ}.

2.2.3 HOSVD

The TD/HOSVD [89, 5] is the second approach for decomposing a high-order ten-
sor. In the case of the HOSVD, the D factor matrices are obtained from a low-rank
approximation of the unfolding matrices of the tensor, which is possible by means
of the SVD, under orthonormality constraint on the factor matrices. Unfortunately,
this orthonormality constraint implies that the core tensor G is generally not diago-
nal. Two remarks can be made at this point. First, unlike the SVD [53], the HOSVD
is a multilinear rank-revealing decomposition [10] but does not reveal the canonical
rank. Second, the storage cost associated with the computation of the core tensor
grows exponentially with the order D of the data tensor. From this brief panorama,
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we can conclude that the CPD and the HOSVD are not the appropriate solutions to
deal with high-order big data tensors, and more efficient decompositions should be
considered.

Definition 11. The HOSVD [38, 5] is a special case of the Tucker decomposition (2.4),
where the factors Fq are column-orthonormal. Generally, the HOSVD is not optimal in
terms of low rank approximation, but it relies on the stable (i.e., non-iterative), SVD-based
algorithm. In the real case, the core tensor can be expressed as

C = X ×1 FT
1 ×2 FT

2 ×3 . . .×Q FT
Q

Note that the core tensor C obeys to the “all-orthogonality” property [38].

Lemma 3. The q-th generalized unfolding, denoted by X(q), of a tensor X that follows (2.4),
of size (N1 · · ·Nq)× (Nq+1 · · ·NQ), admits the following expression:

X(q) = reshape(X ; N1 · · ·Nq, Nq+1 . . . NQ)

= (Fq ⊗ · · · ⊗ F1) ·C(q) · (FQ ⊗ · · · ⊗ Fq+1)
T,

where C(q) = reshape(C; T1 · · · Tq, Tq+1 . . . TQ).

2.2.4 Low rank tensor approximation

Low rank tensor approximation is one of the major challenges in the information
scientific community, see for instance [130, 32]. It is useful to extract relevant infor-
mation confined into a small dimensional subspace from a massive volume of data
while reducing the computational cost. In the matrix case, the approximation of a
full rank matrix by a (fixed) low rank matrix is a well posed problem. The famous
Eckart-Young theorem [45] provides both theoretical guarantees on the existence of
a solution and a convenient way to compute it. Specifically, the set of low rank
matrices is closed and the best low rank approximation (in the sense of the Frobe-
nius norm) is obtained via the truncated Singular Value Decomposition (SVD). This
fundamental result is at the origin of the Principal Component Analysis (PCA) [53],
for instance. PCA is based on the decomposition of a set of observations into a set of
uncorrelated variables. When the measurements are naturally modeled according to
more than two axes of variations, i.e., in the case of high-order tensors, the problem
of obtaining a low rank approximation faces a number of practical and fundamen-
tal difficulties. Indeed, even if some aspects of tensor algebra can be considered
as mature, several algebraic concepts such as decomposition uniqueness, rank de-
termination, or the notions of singular values and eigenvalues remain challenging
research topics [9, 39]. To illustrate these conceptual difficulties and without being
too exhaustive, we will address the non-uniqueness of the rank through the descrip-
tion of the canonical rank and of the multilinear rank.
A natural generalization to high-order tensors of the usual concept of matrix rank
leads to the canonical polyadic decomposition (CPD) [63, 61, 25, 44, 137]. The canon-
ical rank of a Q-order tensor is equal to the minimal number, say R, of rank-one ten-
sors that must be linearly combined to reach a perfect recovery of the initial tensor.
A rank-one tensor of order Q is given by the outer product of Q vectors. In the con-
text of massive data processing and analysis, this decomposition and its variants [28,
31] are attractive in terms of compactness thanks to the minimality constraint on R.
In addition, the CPD has remarkable uniqueness properties [137] and involves only
QNR free parameters for a Q-order rank-R tensor of size N× . . .×N. Unfortunately,
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unlike the matrix case, the set of tensors with low (tensorial) rank is not closed [62].
This singularity implies that the problem of computing the CPD is mathematically
ill-posed. The consequence is that its numerical computation remains non trivial
and is usually done using suboptimal iterative algorithms [92]. Note that this prob-
lem can sometimes be avoided by exploiting some natural hidden structures in the
physical model [133], or by considering some constraints such as the coherence con-
straint as in [124].
The Tucker decomposition and the HOSVD (High-Order SVD) [38, 142] are two
popular decompositions being an alternative to the CPD. In this case, the notion
of canonical rank is no longer relevant and a new rank definition has to be intro-
duced. Specifically, the multilinear rank of a tensor is defined as the set of Q positive
integers : {T1, . . . , TQ} where each Tq is the usual (in the matrix sense) rank of the q-
th mode unfolding of this tensor. Its practical construction is algebraic, non-iterative
and optimal in the sense of the Eckart-Young theorem, applied to each matrix un-
folding. This approach became popular because it can be computed in real time
or adaptively, using very standard algebraic methods [17]. However, a low (mul-
tilinear) rank tensor based on the HOSVD is generally not optimal regarding the
approximation in the Frobenius norm sense. In other words, there is no general-
ization of the Eckart-Young theorem for tensors of order strictly greater than two.
This decomposition has a poor compactness property compared to the CPD. For a
multilinear rank {T, . . . , T}, the number of free parameters is about QNT + TQ for
a Q-order tensor of size N× . . .× N, and therefore grows exponentially with the or-
der Q. In the context of the massive data processing, this decomposition is irrelevant
and cannot break the curse of dimensionality [106]. Indeed, a generally not sparse
core tensor must be stored in the Tucker/HOSVD decomposition, leading to a term
in TQ.

2.3 Problem setup

2.3.1 The curse of dimensionality and tensor networks

One of the main challenges in high-order Q tensor processing is the curse of dimen-
sionality. This problem has been identified by Oseledets and Tyrtyshnikov in [106]
and it refers to the fact that the storage cost and the complexity of processing re-
quired to solve high-order tensor problems both grow exponentially with the order
Q. This is the case of the HOSVD where the core tensor is generally not sparse and
requires a storage cost exponential in Q. However, this is not the case for the CPD
which has a storage cost linear in Q, but its computing is mathematically ill-posed
which results in a non trivial numerical computation, usually done by iterative algo-
rithms. Unfortunately, these techniques may require several iterations to converge
[118, 74], and convergence is increasingly difficult when the order of the tensor in-
creases [21] and it is not even guaranteed [92]. This puts us in a dilemma regarding
the use of state-of-the-art methods when we are dealing with high-order tensors.
This dilemma/limitation can be presented by the following table.

storage cost w.r.t. Q stability
CPD linear NO

TD/HOSVD EXPONENTIAL yes

This means that, in one hand, the CPD is a very compact decomposition, but has
some numerical computation issues, and in the other hand, the TD/HOSVD is a
stable (i.e., non-iterative) decomposition that relies on a SVD-based algorithm, but
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its storage cost and computational complexity remains a big issue.
To alleviate this problems, different new properties are desired:

• Stable (i.e., non-iterative) algorithms.

• Low storage cost, i.e., number of free parameters linear in Q.

• Formalism allowing a simple but rigorous representation of high-order ten-
sors.

Recently, a new paradigm for dimensionality reduction has been proposed [28],
therein referred to as tensor networks (TNs). The main idea of TNs [7, 31] is to split
a high-order (D > 3) tensor into a product set of lower-order tensors represented
as a factor graph. Factor graphs allow visualizing the factorization of multi-variate
or multi-linear functions (the nodes) and their dependencies (the edges) [90]. The
graph formalism is useful in the big data context [125].

In this context, higher-order tensor networks give us the opportunity to de-
velop more sophisticated models performing distributed computing and captur-
ing multiple interactions and couplings, instead of standard pairwise interactions.
In other words, to discover hidden components within multiway data the analysis
tools should account for intrinsic multi-dimensional distributed patterns present in
the data. Tensor network diagrams are very useful not only in visualizing tensor de-
compositions, but also in their different transformations/reshapings and graphical
illustrations of mathematical (multilinear) operations. In general, tensor networks
can be considered as a generalization and extension of standard tensor decomposi-
tions and are promising tools for the analysis of big data due to their extremely good
compression abilities and distributed and parallel processing.

Particularly, the Tensor Train (TT) decomposition [105, 103, 57] is one the simplest
tensor networks. It represents a D-order tensor by a product set of D 3-order tensors.
Each 3-order tensor is associated to a node of the graph and is connected to its left
and right “neighbors” encoded in a one-to-one directional edge [102]. The storage
cost with respect to the order D has the same linear behavior [105] for the CPD and
the TT decomposition. Moreover, the TT decomposition has a stable (non-iterative)
SVD-based algorithm [105], even for large tensors. Therefore, the TT decomposition
helps to break the curse of dimensionality [106], as it can be seen as a special case of
the hierarchical/tree Tucker (HT) decomposition [56, 57, 144, 132, 106]. Note that the
HT and the TT decompositions allow to represent a D-order tensor of size I× · · · × I
with a storage cost of O(DIR + DR3) and O(DIR2), respectively [55, 28], where R
is the rank of the considered decomposition. The use of the TT decomposition is
motivated by its applicability in a number of interesting problems, such as super-
compression [72], tensor completion [81], blind source separation [13], fast SVD of
large scale matrices [91], for linear diffusion operators [71], and in machine learning
[130], to mention a few.

2.3.2 Graph-based illustrations of TNs

Fig. 2.2-(a) gives the graph-based representation of a Tucker decomposition of a
6-order tensor. Its graph-based decompositions are given in Fig(s). 2.2-(b). The de-
composition of the initial tensor is not unique since we have several possible graph-
based configurations depending on the tensor order and the number of connected
nodes. In the literature, the graph on the right of Fig. 2.2-(b) is viewed as a Tensor



14 Chapter 2. State-of-the-art and Problem setup

Network (TN), also called Hierarchical Tucker (HT) decomposition [59]. This is due
to the property that a TN can be alternatively represented as a tree (see Fig. 2.2-(c))
where the nodes are called leafs. The graph-based representation on the left of Fig.
2.2-(b) is viewed as a train of tensors with non-identity leafs. We call a Tensor Train
(TT) decomposition [106, 105] if all the leafs are associated with an identity matrix
except the first and last ones. The TT decomposition is one of the simplest and com-
pact TN, and it is a special case of the HT decomposition [144, 56, 57]. Hereafter, we
give the definition of the TT decomposition, and its graph-based representation is
illustrated in Fig. 2.3.

FIGURE 2.2: (a) Graph-based Tucker decomposition of a 6-order ten-
sor, (b) TT-based (left) and TN-based (right) decompositions, (c) HT

decomposition.

2.3.3 TT decomposition and tensor reshaping

Definition 12. The TT decomposition [105] with TT-ranks (R1, . . . , RD−1) of a tensor X ∈
RI1×I2×···×ID into D 3-order TT-core tensors denoted by {G1, . . . ,GD} is given by

X (i1, i2, · · · , iD) = G1(:, i1, :)G2(:, i2, :) · · ·GD(:, iD, :)

=
R1,··· ,RD−1

∑
r1,··· ,rD−1=1

G1(i1, r1)G2(r1, i2, r2) · · ·

· · ·GD−1(rD−2, iD−1, rD−1)GD(rD−1, iD).
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where Gd(:, id, :) is a Rd−1 × Rd matrix with the “boundary conditions”R0 = RD = 1.
Finally, collecting all the entries1, we have

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 · · · ×1

D−1 GD−1 ×1
D GD. (2.5)

FIGURE 2.3: TT decomposition of a D-order tensor.

In tensor-based data processing, it is standard to unfold a tensor into matrices.
We refer to Eq. (5) in [48], for a general matrix unfolding formula, also called tensor

reshaping. The d-th reshaping X(d), of size (
d

∏
s=1

Is) × (
D
∏

s=d+1
Is), of the tensor X ∈

RI1×I2×···×ID using the native reshape function of the software MATLAB [82], is defined
by:

X(d) = reshape

(
X ,

d

∏
l=1

Il ,
D

∏
l=d+1

Il

)
. (2.6)

Definition 13. The d-th reshaping X(d) of the tensor X which follows the TT decomposition
(2.5) admits the following expression:

X(d) =
R1,··· ,RD−1

∑
r1,··· ,rD−1=1

(
gd(rd−1, rd)⊗ . . .⊗ g1(r1)

)(
gT

D(rD−1)⊗ · · · ⊗ gT
d+1(rd, rd+1)

)
(2.7)

where g1(r1) = G1(:, r1), gD(rD−1) = GD(rD−1, :)T and gd(rd−1, rd) = Gd(rd−1, :, rd)
are column-vectors of length I1, ID and Id, respectively. An alternative expression of (2.5) in
terms of sum of outer products of vectors is given by:

X =
R1,··· ,RD−1

∑
r1,··· ,rD−1=1

g1(r1) ◦ g2(r1, r2) ◦ · · · ◦ gD−1(rD−2, rD−1) ◦ gD(rD−1).

2.3.4 Why to use the TT decomposition ?

There are four main motivations for using a TT decomposition:

• The TT decomposition has a unique graph-based representation for a tensor of
known order, i.e., any D-order tensor can decomposed into the TT format as a
product set of D TT-cores of order at most 3, with respect to the one configu-
ration where all nodes of the underlying tensor network are aligned. This is

1Note that the product ×m
n is used here in a different way as in [29].
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not the case for the HT decomposition as illustrated by Fig. 2.2-(c). The num-
ber of possible configurations rapidly grows with the order D. For instance, a
10-order tensor admits 11 different HT decompositions [82].

• The ranks for HT are upper bounded by R2 if the TT-ranks are upper bounded
by R [56]. If equal ranks is assumed and I is not too large, the number of free
parameters in the TT format is smaller than that in the HT format due to the
presence of leafs different from the identity matrix in the HT format.

• The TT decomposition storage grows linearly with D, whereas the HOSVD
storage grows exponentially with D, with an important computational cost.

• The TT decomposition has a compact form, unlike the tree-like decomposi-
tions, such as Tree Tucker [106], that requires recursive algorithms based on
the competition of Gram matrices, which is complicated to implement [105].

2.3.5 Description of the TT-SVD algorithm

In the state-of-the-art literature, the TT decomposition is performed thanks to the
TT-SVD algorithm [106]. Fig. 2.4 illustrates this algorithm for a 4-order tensor X of
size I1 × I2 × I3 × I4. The first step is based on the unfolding X(1) of size I1 × I2 I3 I4,
and consists in the computation of the R1-truncated SVD giving X(1) = U1V1. Note
that the diagonal matrix constituted by the singular values is absorbed in V1. The
first TT-core G1 is directly obtained from U1 which contains the left singular vectors
associated with the R1 dominant singular values. The reshaping of V1 leads to X(2)
of size R1 I2 × I3 I4 whose a R2-truncated SVD gives X(2) = U2V2. The second TT-
core G2 is then obtained by a reshaping of U2. Next, the matrix X(3) is obtained from
a reshaping of V2, and the same processing is repeated. The complete algorithm
is described in Fig. 2.4. Note that this process effectively decomposes the original
tensor to lower-order tensors of an order maximum 3.

From this simple example, one can conclude that the TT-SVD algorithm consists
in sequentially truncating the SVD of a reshaped version of the matrices Vd, for
d = 1, · · · , D − 1. It is important to note that each step of the algorithm yields a
TT-core, leading to a sequential algorithm which cannot be parallelized.

2.4 Conclusion

Several properties for tensor decompositions remain desired, such as stable scalable
algorithms, and low storage costs. Unfortunately, the standard tensor decomposi-
tions do not provide these properties. Tensor networks, and particularly, the tensor
train decomposition seems to be a good solution for this issue.
In the following chapters, we propose some new methodological results on the TTD
on its relation with the standard tensor decompositions, and how it can be used to
provide stable, flexible estimation scheme in the case of high-order tensors, while
keeping low storage costs. Moreover, the TTD decomposition algorithm will be im-
proved using some new reshaping strategies. Simulation results for realistic appli-
cations of these results will also be given.



2.4. Conclusion 17

FIGURE 2.4: TT-SVD applied to a 4-order tensor.





19

Chapter 3

Joint dImensionality Reduction
And Factor rEtrieval (JIRAFE)

The aim of this chapter is to present new equivalence results [156, 157, 161] between
the usual tensor models, namely CPD, TD, PARALIND, and the Tensor Train de-
composition. These results will be exploited in an estimation scheme, called JIRAFE
for Joint dImensionality Reduction And Factor rEtrieval. Several JIRAFE-based al-
gorithms [156, 157] will be presented and the uniqueness will also be studied in this
chapter, before applying JIRAFE on two realistic applications. In the sequel, we will
introduce the JIRAFE principle in Section 3.1. The uniqueness in the case of linear
dependencies [161] is studied in Section 3.2. Two JIRAFE-based applications, namely
the Multidimensional Harmonic Retrieval [158] and MIMO channel decomposition
[160], are respectively detailed in sections 3.3 and 3.4.

3.1 JIRAFE principle

3.1.1 Introduction

In this part, equivalence relations between a Tensor Train (TT) decomposition [104]
and the Canonical Polyadic Decomposition (CPD)/Tucker Decomposition (TD) [63,
61, 25, 142] are investigated. It is shown that a Q-order tensor following a CPD/TD
with Q > 3 can be written using the graph-based formalism as a train of Q tensors
of order at most 3 following the same decomposition as the initial Q-order tensor.
This means that for any practical problem of interest involving the CPD/TD, it ex-
ists an equivalent TT-based formulation. As consequence, the TT decomposition
deserves to become a fundamental and a more used estimation tool as the stan-
dard and popular CPD/TD. In addition, this equivalence allows us to overcome the
curse of dimensionality [106] which is one of the main goals in the context of mas-
sive/big data processing. Indeed, our methodology has two main advantages. First,
we show that the native difficult optimization problem in a Q-dimensional space
can be efficiently solved according to flexible strategies involving Q − 2 optimiza-
tion problems in (low) 3-dimensional spaces. In the curse of dimensionality, the
number of free parameters grows exponentially with Q. At contrary, our methodol-
ogy involves a number of free parameters linear with Q and thus allows to mitigate
this problem. Another contribution consists in the proposition of several robust and
fast algorithms based on the TT decomposition to accomplish Joint dImensionality
Reduction And Factors rEtrieval (JIRAFE) for the CPD/TD. In particular, based on
the TT-SVD algorithm [104], we show how to exploit coupling properties existing
between two successive TT-cores in the graph-based formalism. The advantages of
the proposed approaches in terms of storage cost, computational complexity and
factor estimation accuracy are pointed out.
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In the sequel, we study the equivalence between the TT decomposition and both
CPD and TD for an estimation purpose. Seminal works [104, 33] have shown some
links between these decompositions. Our work is different, since we are not aiming
to provide algebraic equivalences from a modeling point of view. Our methodology
is mainly constructive and focused on the TT-ranks and TT-cores structure when the
TT-SVD algorithm is applied to CPD and TD, depending on the rank conditions of
the initial tensors, so they can be exploitable in an estimation scheme. This work
brings the following original contributions:

• A different TT-based strategy for multilinear projection estimation applied to
TD/HOSVD is proposed.

• We provide an algebraic analysis of the TT-SVD algorithm.

• We propose a new methodology called JIRAFE for Joint dImensionality Re-
duction And Factors rEtrieval to solve a sum of coupled least-square criteria
for each TT-core

• New theorems on the analysis of the application of the TT-SVD algorithm to
high-order CPD and TD, regarding the resulting TT-cores structures and the
rank conditions, are given.

• Constructive proofs of the structure of the TT-cores are developped, while fast,
stable and parallel algorithms exploiting this structure are proposed for both
the CPD and TD.

All applications using high-order CPD/TD/HOSVD models can be processed us-
ing the proposed JIRAFE framework. For example, but not limited to, the JIRAFE
framework can be applied to the problem of multilinear harmonic retrieval (MHR)
[67], high-order CPD probability mass function tensors [70] in machine learning, and
for channel estimation for massive MIMO systems [69] in wireless communications.
Some of these applications will be studied in the next sections.

3.1.2 TD-Train model: Equivalence between a high-order TD and a train
of low-order TDs

In this section, we present the first equivalence between TD and TT decompositions,
showing that a high order TD is equivalent to a train of 3-order TDs. In Theorem 1,
we present a new algebraic equivalence between the Tucker and TT decompositions.
We show how the matrix factors and the core tensor of a TD can be recast into the
TT format.

Theorem 1. Assume that tensor X follows a Q-order Tucker model of multilinear rank-
(T1, · · · , TQ), given by eq. (2.4). The TT decomposition (2.5) of X is then given by

G1 = F1,
Gq = T q ×2 Fq, (1 < q < q̄)

with T q = reshape
(
IRq ; T1 · · · Tq−1, Tq, T1 · · · Tq)

G q̄ = C q̄ ×2 Fq̄,

with C q̄ = reshape
(
C; Rq̄−1, Tq̄, Rq̄)

Gq = T̄ q ×2 Fq, (q̄ < q < Q)

with T̄ q = reshape
(
IRq−1 ; Tq · · · TQ, Tq, Tq+1 · · · TQ)

GQ = FT
Q,
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where T q and T̄ q result from the tensorization as defined in (2.1) and (2.2), respectively,
and

• q̄ is the smallest q that verifies
q

∏
i=1

Ti ≥
Q
∏

i=q+1
Ti,

• The TT-ranks verify: Rq = min(
q

∏
i=1

Ti,
Q
∏

i=q+1
Ti
)
.

Proof. It is straightforward to verify that the TT decomposition of the Q-order Tucker
core C takes the following expression:

C = IR1 ×1
2 T 2 ×1

3 · · · ×1
q̄−1 T q̄−1 ×1

q̄ C q̄ ×1
q̄+1 T̄ q̄+1 ×1

q̄+2 · · · ×1
Q−1 T̄ Q−1 ×1

Q IRQ−1

(3.1)

where tensors T q and T̄ q have been defined in the Theorem and thanks to the re-
shaping eq. (2.1) and eq. (2.2), respectively. Replacing the TT decomposition of C in
eq. (2.4), the q-th 3-order tensor in eq. (3.1) is multiplied in its second mode by its
corresponding factor Fq. By identifying the final TT-cores, the theorem is proved.

Note that all the TT-cores follow a 3-order Tucker1 model, whose the second fac-
tor is the q-th factor of the original TD, hence the name TD-Train. More specifically,
for q < q̄ and q > q̄, the corresponding TT cores have Tucker1 structures whose core
tensors have fixed 1’s and 0’s patterns. We recall that a Tucker1 model is a 3-order
Tucker decomposition with two factor matrices equal to identity matrices. For q = q̄,
the associated TT-core has a Tucker1 structure with a core tensor C q̄ obtained from
the core tensor of the original TD. To illustrate this result, consider the TT decompo-
sition of the core tensor C in eq. (2.4). Note that q̄ corresponds to the smallest q such
that C(q) has at least as many rows as columns. For example, if C is a 5-order tensor
of size 2× 3× 2× 4× 2, then q̄ = 3, since 2× 3× 2 > 4× 2. Another example where
C is of size 2× 2× 3× 4× 4 corresponds to q̄ = 4.
The cores of the TD-Train can be recovered by using the TT-SVD algorithm [104] in
practice. However, the application of this algorithm will recover the cores up to non-
singular transformation matrices according to definition 8. In the following theorem,
the structures of the TT-cores associated with a TD-Train are given.

Theorem 2. Applying the TT-SVD algorithm on the tensor (2.4), under the assumptions
that

• Fq is a full column rank matrix of size Nq × Tq (Tq < Nq, ∀q),

• C(q) = reshape
(
C;

q
∏
i=1

Ti,
Q
∏

i=q+1
Ti
)

has full rank,

allows to recover the TT-cores according to

G1 = F1M−1
1 , (3.2)

Gq = T q ×1 Mq−1 ×2 Fq ×3 M−T
q , (1 < q < q̄)

G q̄ = C q̄ ×1 Mq̄−1 ×2 Fq̄ ×3 M−T
q̄ ,

Gq = T̄ q ×1 Mq−1 ×2 Fq ×3 M−T
q , (q̄ < q < Q)

GQ = MQ−1FT
Q, (3.3)

where Mq is a Rq × Rq nonsingular change-of-basis matrix, and the quantities T q, T̄ q,
C q̄ and Rq are defined in Theorem 1.
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Proof. See Appendix A

Note that the TT-cores follow Tucker models with nonsingular transformation
matrices along their first and third modes. These matrices compensate each other
due to the train format. The proof relies on the TT-SVD algorithm applied to a Q-
order Tucker decomposition.

Remark. One may note that, in Theorem 1, no assumptions on the rank of the Tucker core
nor the factors are made, thus there is no guarantee that the considered TT-ranks are minimal,
i.e., applying a decomposition algorithm such as TT-SVD may estimate different (lower) TT-
ranks and provide different TT-cores’ structure. In Theorem 2, additional rank assumptions
are made, especially on the Tucker core C, allowing to guarantee the minimality of the given
TT-ranks and to provide constructive/exploitable results from an estimation point of view.

3.1.3 CPD-Train model: Equivalence between a high-order CPD and a
train of low-order CPD(s)

Following the same methodology as in the previous section, we will draw results
about the relation between the CPD and the TT decomposition. The CPD-Train
equivalence turns out to be very useful and of broad interest, due to the various ap-
plications of the CPD. Note that the idea of rewriting a CPD into the TT format was
briefly introduced in seminal works [104, 33]. In [33], Section 4.3 presents a similar
result as Theorem 3 without discussing the TT-cores structure after the application
of a decomposition algorithm such as the TT-SVD algorithm. In this work, we ex-
ploit this idea to propose a new CPD factor retrieval algorithm. Indeed, in Theorem
4, which is the main result to derive the structure of all the proposed algorithms, we
discuss and expose the TT-cores structure after the application of the TT-SVD algo-
rithm on a CPD tensor when the factor have full column rank. Moreover, we give a
rigorous demonstration for the relation between TT and CPD in an algebraic point
of view, and more important, we expose, for the first time, as a constructive proof an
useful relation between TT and CPD in the context of the TT-SVD algorithm. Specif-
ically, the coupling factors between consecutive TT-cores takes its explication in the
TT-SVD. This important property totally inspires the optimization strategy of the
proposed algorithms. To the best of the authors’ knowledge, this is the first CPD al-
gorithm that exploits such a link. In the following theorem, we provide an algebraic
equivalence between the two decompositions.

Theorem 3. If the tensor X follows a Q-order CPD of rank-R according to (2.3), then the
TT decomposition (2.5) is given by [104, 33]:

G1 = P1,
Gq = I3,R ×2 Pq (3-order CPD), where 2 ≤ q ≤ Q− 1,

GQ = PT
Q,

and the TT-ranks are all identical and equal to the canonical rank R.

Proof. The TT decomposition of the Q-order identity tensor IQ,R of size R× · · · × R
involved in the CPD given by (2.3) is

IQ,R(i1, i2, · · · , iQ) =
R

∑
r1,··· ,rQ−1=1

IR(i1, r1)I3,R(r1, i2, r2)I3,R(r2, i3, r3) · · ·

· · ·I3,R(rQ−2, iQ−1, rQ−1)IR(rQ−1, iQ),
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with 1 < i1, . . . , iQ < R, which can be rewritten in a train format using identity
matrices and tensors as

IQ,R = IR ×1
2 I3,R ×1

3 · · · ×1
Q−1 I3,R ×1

Q IR.

Replacing the above TT decomposition in (2.3), and identifying the TT-cores, we can
deduce the result of Theorem 3.

It is worth noting that both decompositions have the same number of free pa-
rameters, O(RNQ) for the CPD, and O(R2N(Q− 2)) for the TTD. All the TT-cores
follow a 3-order rank-R CPD structure, whose the second factor is the q-th factor of
the original CPD, the other factors being equal to the identity matrix IR. The result of
Theorem 3 means that computing a CPD via its associated TT decomposition main-
tains the model structure while reducing its complexity. In addition, we know the
whole structure of the CPD-Train cores, as well as the ranks of the associated 3-order
CPDs.
In the same perspective, the application of the TT-SVD algorithm to (2.3) allows to
recover the TT-cores up to nonsingular matrices following Definition 8, as estab-
lished in Theorem 4. It is very important to note that the non-uniqueness property
of the TT decomposition suggest that there exists some indeterminate invertible ma-
trices, but in the following theorem, we rigorously, show that these matrices in the
context of the TT-SVD algorithm are in fact a set of change-of-basis rank-R matri-
ces essentially linked to the fundamental problem of singular subspace estimation
via the SVD. Moreover, it is also important to note that the structure of the TT-cores
presented in Theorem 4 is essentially related to the assumption that the factors have
full column rank. For instance, in the case of full row rank factors, the structure of
the TT-cores will completely change, and we may have 2 factors that are absorbed in
the same TT-core, unlike the case we consider and demonstrate in Theorem 4, which
shows that the structure of the resultant TT-cores is not trivial and that each seperate
case needs a new analysis.

Theorem 4. Applying the TT-SVD algorithm to the Q-order CPD (2.3) allows to recover
the TT-cores of (2.3) when the factors Pq have full column rank, yielding

G1 = P1M−1
1 ,

Gq = I3,R ×1 Mq−1 ×2 Pq ×3 M−T
q , where 2 ≤ q ≤ Q− 1

GQ = MQ−1PT
Q

where Mq is a nonsingular R× R change-of-basis matrix.

Proof. See Appendix B

From Theorem 4, we can see that all TT-cores have a 3-order CPD structure,
whose two matrix factors are nonsingular transformation matrices. Note that the
CPD does not belong to the cases of Theorem 2, since the generalized unfolding I (q)
of the CPD core tensor I is not a full rank matrix (as supposed in Theorem 2), due
to the sparsity of the core tensor. In other words, Theorem 4 is not a special case of
Theorem 2. Figure 3.1 depicts the CPD of the TT-core Gq.

Remark. Once again, we should mention that the algebraic equivalence of Theorem 3 does
not guarantee the minimality of the given TT-ranks, i.e., the algebraic equivalence of Theorem
3 remains true even if some factors are rank deficient (rankPq < R), but the estimated TT-
ranks and the TT-cores’ structure will not be the same when the TT-SVD is applied in that
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FIGURE 3.1: CPD of the q-th 3-order core of the associated Q-order
CPD-Train.

case. Thus, additional rank assumptions on the factors are made in Theorem 4 guaranteeing
the minimality of the given TT-ranks.

3.1.3.1 Symmetric CPD

A special case of the CPD is the fully symmetric CPD tensor, which has found several
applications, e.g. in signal processing using high-order statistics [37].

Definition 14. A Q-order symmetric tensor of size N × . . .× N belonging to the family of
rank-R CPD admits the following decomposition:

X = IQ,R ×1 P×2 P×3 . . .×Q P

where P is of size N × R.

Theorem 5. If a Q-order symmetric tensor admits a rank-R CPD, and P has full column
rank, we have:

X CPD
= IQ,R ×1 P×2 P×3 . . .×Q P (3.4)

TT
= G1 ×1

2 G2 ×1
3 G3 ×1

4 . . .×1
Q−1 GQ−1 ×1

Q GQ,

where

G1 = PM−1
1 (3.5)

Gq = I3,R ×1 Mq−1 ×2 P×3 M−T
q for 2 ≤ q ≤ Q− 1 (3.6)

GQ = MQ−1PT, (3.7)

and Mq is a R× R matrix that follows Definition 8 (1 ≤ q ≤ Q− 1). We can then conclude
that:

〈P〉 = 〈G1〉 = 〈Gq(:, :, i)〉 = 〈Gq′(j, :, :)〉 = 〈GT
Q〉 (3.8)

for 2 ≤ q ≤ Q− 1, 2 ≤ q′ ≤ Q− 1, 1 ≤ i ≤ R, 1 ≤ j ≤ R, and we have:

rank(P) = rank(G1) = rank(Gq(:, :, i)) = rank(Gq′(j, :, :)) = rank(GT
Q) (3.9)

which means that, in the symmetric case, the horizontal and frontal slices of the TT-cores
span the same subspaces.

Proof. See Appendix C.
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3.1.3.2 Permutation and scaling ambiguities

It is known that matrix decompositions are not unique unless structural constraints
are imposed on the factor matrices. The usual approach is to assume orthonormality
by means of the SVD. However, the CPD enjoys essential uniqueness under mild
conditions. Specifically, the factors of the 3-order CPD can be identified in a unique
manner up to trivial (column permutation and scaling) ambiguities [137].

Theorem 6. The factors of the Q CPDs associated with a CPD-Train are unique up to the
following ambiguities:

1. common column permutation matrix denoted by Π;

2. diagonal scaling matrices satisfying the following relation:

Λ1Λ2 · · ·ΛQ−1ΛQ = IR, (3.10)

where Λk is the scaling ambiguity for the k-th factor Pk.

Proof. 1. It is straightforward to check that if a change-of-basis matrix M−T
k can

be determined up to a column permutation matrix Π and a diagonal scaling
matrix Γk, then Mk can also be determined up to the same permutation matrix
and inverse scaling Γ−1

k . We can deduce that the column permutation matrix
is unique and common to all the TT-cores due to the recursion property. This
proves the first point of the above theorem.

2. We have

G1 = P1ΠΛ1(M1ΠΓ−1
1 )−1

G2 = I3,R ×1 M1ΠΓ−1
1 ×2 P2ΠΛ2 ×3 M−T

2 ΠΓ2 (3.11)

G3 = I3,R ×1 M2ΠΓ−1
2 ×2 P3ΠΛ3 ×3 M−T

3 ΠΓ3 (3.12)
...

GQ−1 = I3,R ×1 MQ−2ΠΓ−1
Q−2 ×2 PQ−1ΠΛQ−1 ×3 M−T

Q−1ΠΓQ−1

GQ = MQ−1ΠΓ−1
Q−1(PQΠΛQ)

T.

Based on the above expressions, we have Γ−1
1 Λ2Γ2 = IR from (3.11) and Γ2 =

Λ3Γ3 from (3.12). From these relations, we deduce Γ−1
1 Λ2Λ3Γ3 = IR. Following

the same reasoning for the k-th step we have

Γ−1
1 Λ2 . . . ΛkΓk = IR,

Γ−1
k Λk+1Γk+1 = IR.

As Γ−1
1 = Λ1, and ΓQ−1 = ΛQ, combining the above relations for a Q-order

tensor allows to obtain (3.10).

The result of Theorem 6 is important from an estimation viewpoint. It means that
the CPD-Train offers a way to retrieve the factors of a CPD under the same unique-
ness properties but at lower complexity, thanks to dimensionality reduction and the
change-of-basis matrices Mq. This is particularly important for high-order tensors,
where the direct computation of the factor matrices by means of traditional algo-
rithms such as ALS may be impractical due to processing and storage limitations.
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Otherwise, not considering the matrices Mq in the estimation will not guarantee the
same permutation for the estimated factors, nor verify the equation (3.10) between
the scaling matrices. Moreover, these matrices will be used to reduce the complexity
by assuming the knowledge/pre-estimation of Mq−1 when decomposing Gq in an
estimation scheme. Hence the importance of these matrices.

3.1.4 Estimation algorithms for the CPD-and TD-Trains

In this section, several algorithms for Joint dImensionality Reduction And Factors
rEtrieval (JIRAFE) are presented. These solutions are based on the results of Theo-
rem 4 for the CPD-Train and of Theorem 2 for the TD-Train. So, the JIRAFE method-
ology can be described by the following two steps procedure.

1. Reduce the dimensionality of the original factor retrieval problem by breaking
the difficult multidimensional optimization problem into a collection of sim-
pler optimization problems on small-order tensors. This step is carried out
using the TT-SVD algorithm or the TT-HSVD algorithm (see chapter 4).

2. Design a factor retrieval strategy by exploiting (or not) the coupled structure
existing in the 1st and 3rd factors for two consecutive TT-cores. Here, the goal
is to minimize a sum of coupled least-squares criteria.

3.1.4.1 Fast Multilinear Projection (FMP) based on TD-Train

In many important applications, it is crucial to extract the dominant singular sub-
spaces associated to the factors while the computation of the core tensor is not a pri-
mary goal. This scenario is usually known as a multilinear projection as described in
[97] for instance. Indeed, in the context of multilinear analysis for facial recognition
[146], the physical informations, i.e. people × expression × view × illumination
are encoded in the factors. Specifically, assume that we dispose of Q matrices F̂q

(1 ≤ q ≤ Q), with F̂T
q F̂q = I. The tensor-to-tensor multilinear projection is formu-

lated according to

X proj = X data × F̂T
1 ×1 · · · ×Q F̂T

Q.

3.1.4.1.1 Algorithmic description A fast computation of the orthonormal factors
F̂1, · · · , F̂Q is presented in this section. Our scheme is based on an alternative inter-
pretation of equations (3.2)-(3.3) such as

unfold2Gq = Fq unfold2T ′q, (1 < q < q̄),

unfold2G q̄ = Fq̄ unfold2C ′q̄,

unfold2Gq = Fq unfold2T̄
′
q, (q̄ < q < Q)

where

T ′q = T q ×1 Mq−1 ×2 I×3 M−T
q , (1 < q < q̄),

C ′q̄ = C q̄ ×1 Mq̄−1 ×2 I×3 M−T
q̄ , (q = q̄),

T̄ ′q = T̄ q ×1 Mq−1 ×2 I×3 M−T
q , (q̄ < q < Q).
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In other words, after the dimensionality reduction based on the TT-SVD algorithm,
each projector matrix can be recovered thanks to a truncated SVD of the 2nd unfold-
ing of the corresponding TT-core. A pseudo-code of this new approach is given in
Algorithm 2.

Algorithm 2 Fast Multilinear Projection algorithm based on JIRAFE

Input: Q-order tensor X
Output: Estimated orthonormal factors: F̂1, · · · , F̂Q.

1: Dimensionality reduction:

[Ĝ1, Ĝ2, · · · , ĜQ−1, ĜQ] = TT-SVD(X ).

Orthonormal Factors retrieval:
2: for q = 2 · · ·Q− 1 do
3: F̂q = Matrix of the left singular vectors of SVD(unfold2Ĝq) {This step can be

done in a parallel way}
4: end for

3.1.4.1.2 On the difference with the HOSVD It is important to note that using
Definition 11, the core tensor Ĉ generated by the above algorithm is given by Ĉ =
X ×1 F̂T

1 ×2 · · · ×Q F̂T
Q. Let be the HOSVD of a tensor X = S ×1 U1 ×2 · · · ×Q

UQ with UT
q Uq = I. Using Definition 11, the core tensor for the HOSVD is given

by S = X ×1 UT
1 ×2 · · · ×Q UT

Q. It is well-known that the core tensor, S , of the
HOSVD satisfies the all-orthogonality and pseudo-diagonality properties [38]. On
the contrary, we have no guaranty that Ĉ satisfies these properties. Indeed, the TT-
SVD algorithm provides an orthonormal matrix F̂q which span the same subspace as
the factor Uq. This means that there exists a change-of-basis matrix (see Definition
2.1), denoted by Jq for instance, such as Jq = UT

q F̂q. The link between the two core
tensors is given by

S = X ×1 UT
1 ×2 · · · ×Q UT

Q = Ĉ ×1 J1 ×2 · · · ×Q JQ.

3.1.4.1.3 Analysis of the computational cost and execution time The computa-
tion of the native HOSVD for a Q-order Tucker tensor X of size N × · · · × N in-
volves the computation of Q dominant left singular basis thanks to truncated-SVDs
on the unfolding matrices of size N × NQ−1, other methods, such as ST-HOSVD
[145], may use different truncation strategies, while the proposed strategy consists
of computing Q left and right dominant singular basis in the TT-SVD algorithm and
Q− 2 left dominant singular basis of the TT-cores. We recall that based on the QR-
orthogonal iteration (QR-OI) [53], the r-truncated SVD computational cost for a sin-
gle iteration and for the left dominant singular basis for a n×m matrix is evaluated
to 2rmn + 2r2 min(n, m) flops. The computation of the left and the right dominant
singular basis is evaluated to 2rmn + 2r2(n + m) flops.

As an illustrative example, the computational cost of the HOSVD factors of (T, · · · , T)-
multilinear rank for a 4-order tensor is 8TN4 + 8T2N. For the TT-SVD, the TT-ranks
are (T, T2, T) and q̄ = 2. Note that the TT-ranks may be large with respect to the
multilinear rank so as shown on Fig. 3.2, it makes sense to consider the case where
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N � T. Note that this is a standard assumption when using the HOSVD. The com-
plexity cost for the TT-SVD is 2TN4 + 2T2(N + N3) for the first SVD of a N × N3

matrix of rank T. The complexity of the second SVD of a (TN)× N2 matrix of rank
T2 is 2T3N3 + 2T4(TN + N2). Finally, the last SVD of a (T2N)× N matrix of rank T
is 2T3N2 + 2T2(T2N + N). Finally, we have to perform two SVDs of the 2nd unfold-
ing matrices of G2 and G3 of size T × N × T2 and T2 × N × T, respectively for the
extraction of the left dominant basis. The total cost is 4NT4 + 4T2 min(N, T3).
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FIGURE 3.2: Number of flops vs the multilinear rank 4-order tensor
with N = 500.

If we generalize this analysis to a Q-order tensor, we find 2QTNQ flops for the
factors computation of the HOSVD and 2TNQ for the proposed algorithm. So, the
proposed algorithm computational cost is reduced by a factor Q. In other words,
the cost of the computation of the Q factors by Algo.1 is comparable to the cost of a
single factor computation for the HOSVD.
Although the proposed method remains less complex than the HOSVD. The com-
putation of the TT-SVD algorithm still requires the computation of the SVD of a
N × NQ−1 matrix, with a complexity O(TNQ), which can be expensive for large Q.
That is to say that the computation of the TT decomposition is an interesting prob-
lem that needs to be more investigated.

In Table 3.1, an hypercubic tensor with N = 10 was generated, with a multilinear
rank given by T1 = · · · = TQ = T = 2. Its entries are randomly drawn from a
Gaussian distribution with zero mean and unit variance for several tensor orders in
a noiseless scenario. The average execution time was evaluated for 20 Monte Carlo
realisations. Note that in these simulations, we compute the thin SVD [53].

TABLE 3.1: Computation times for (T = 2, N = 10)

Tensor order Fast Multilinear Projection Q-th order HOSVD Gain
Q = 6 0.14 (s) 0.66 (s) 4.71
Q = 7 1.31 (s) 7.34 (s) 5.6
Q = 8 15.25 (s) 101.87 (s) 6.68

Note that the gain increases when the order increases and is of the order of Q
as remarked before. It is also worth noting that the TT-ranks can actually be large,
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but, as demonstrated by the complexity cost analysis, Algorithm 2 is less complex
to a native implementation of the HOSVD and faster as demonstrated in the simu-
lations.
The robustness to an i.i.d. Gaussian noise is evaluated thanks to the Normalized
MSE defined according to NMSE =

||X̂−X ||2F
||X ||2F

, where X̂ refers to the estimated tensor.
In Fig. 3.3, the NMSE measurements averaged over 1000 noise realisations are given
for the proposed Fast Multilinear Projection and the native HOSVD algorithms for
a 6-order hypercubic tensor, with N = 4, and T = 2. Note that for a computational
gain approximately equal to the tensor order Q, the same robustness to noise is ob-
served for both algorithms. This result is important since the HOSVD is intensively
exploited in numerous applications.
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FIGURE 3.3: NMSE vs SNR in dB with Fast Multilinear Projection for
a 6-order Tucker with N = 4, T = 2, 1000 runs

3.1.4.2 Fast CPD with CPD-Train

In this section, we provide several algorithms adapted to the CPD-Train. Before
presenting the new algorithms, we give hereafter a list of advantages of the proposed
CPD-Train equivalence:

1. The CPD-Train has the same number of free parameters O(RNQ) as the CPD
for large Q.

2. The TT-cores follow a 3-order CPD with canonical rank equal to the rank of the
initial Q-order CPD.

3. Based on the TT-SVD algorithm, a dimensionality reduction is carried out
thanks to a non-iterative SVD-based algorithm instead of the standard itera-
tive ALS algorithm.

4. Due to the CPD structure of the TT-cores, the optimization in a high dimen-
sional (Q) space is replaced by a collection of much simpler optimization prob-
lems, i.e., we have to solve (Q− 3) optimizations in bi-dimensional spaces and
a single optimization in a tri-dimensional space.
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3.1.4.2.1 CPD-Train based on low-order ALS algorithm The goal of the JIRAFE
approach is to optimize the following criterion:

min
M,P

{
||G1 − P1M−1

1 ||+ ||GQ −MQ−1PQ||

+
Q−2

∑
q=2
||Gq − I3,R ×1 Mq−1 ×2 Pq ×3 M−T

q ||
}

where M = {M1, · · · , MQ} and P = {P1, · · · , PQ}.
Our first proposition is based on the popular ALS-CPD algorithm [25, 61] applied

in a sequential way on the CPD-Train cores to jointly retrieve the CPD factors P and
the change-of-basis matrices M. A pseudo-code is presented in Algorithm 3, where
Tri-ALS stands for the ALS algorithm applied to a 3-order tensor, while Bi-ALS de-
notes the ALS algorithm applied to a 3-order tensor using a priori knowledge of one
factor. Note that the ALS approach fixes all but one factor to estimate this latter
solving the following least squares problem.

min
Pq

∥∥∥unfoldqX − Pq ·
(
PQ � · · · � Pq+1 � Pq−1 � · · · � P1

)T
∥∥∥2

This procedure is repeated several times until a convergence criterion is satisfied.
When one of the 3-order tensor’s factors is known, the ALS algorithm only has two
steps, which we referred to with the Bi-ALS.

Algorithm 3 JIRAFE based on CPD-Train

Input: Q-order rank-R CPD tensor X
Output: Estimated factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction:

[Ĝ1, Ĝ2, · · · , ĜQ−1, ĜQ] = TT-SVD(X , R).

2: Factor retrieval:
[M̂1, P̂2, M̂−T

2 ] = Tri-ALS(Ĝ2, R).

3: for k = 3 · · ·Q− 1 do
4: [P̂k, M̂−T

k ] = Bi-ALS(Ĝk, M̂k−1, R)
5: end for
6: P̂1 = Ĝ1M̂1, and P̂Q = ĜT

QM̂−T
Q−1

The usual strategy is based on the brute force exploitation of a Q-order ALS-CPD
on the original tensor. We note that TT-SVD(X , R) refers to the conventional TT-
SVD algorithm with all TT-ranks set to R. For the complexity analysis, it is assumed
that the pseudo-inverse and the SVD have the same complexity order. Note that a
single iteration of the Q-order ALS-CPD requires Q SVDs of rank-R matrices of size
N × NQ−1. The complexity is evaluated as Q ·O(R2 · NQ−1), whereas the TT-SVD
applied to the original Q-order tensor (Q� 1) has a complexity of O(R2 · NQ−1).
In addition, the R-truncated SVD [53] using the orthogonal iteration algorithm is
faster to compute than the full rank SVD. The complexity of a R-truncated SVD for
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a m× n matrix is O(R2 max(m, n)). Thus, we have

κ(1 · iteration of Q-order ALS)� κ(Q-order TT-SVD) = O(R2 · NQ−1)

� κ(1 · iteration of 3-order ALS) = O(3 · R3 · N).

This means that the proposed strategy is approximately (Q.number of iterations)-
times less complex than the Q-order ALS-CPD. In Table 3.2, the computation times of
the two methods are given for N = 6 and for different tensor orders. The computa-
tion time takes into account the algorithmic complexity and the storage costs includ-
ing the memoery acces. To manage the convergence of the ALS-CPD, the stopping

criterion is

∣∣∣ f(X̂ (t)
)
− f
(
X̂ (t+1)

)∣∣∣
f
(
X̂ (t)
) < ε, where f

(
X̂ (t))

= ||X − X̂ (t)||F, in which X̂ (t)
de-

notes the estimated tensor at the t-th iteration and ε is the convergence threshold. In
addition, the number of iterations is limited to 1000. It is clear that the gain strongly
increases when the order of the initial tensor grows.

TABLE 3.2: Computation times for (R = 3, N = 6)

Tensor order Alg. 3 Q-order ALS-CPD Gain
Q = 6 0, 63 (s) 7, 48 (s) 11, 87
Q = 7 1, 07 (s) 62, 57 (s) 58, 47
Q = 8 1, 31 (s) 431, 95 (s) 329, 73

In Table 3.3, we fix the order at Q = 8 and vary the tensor dimensions. Here
again, the gain of Alg. 3 over ALS-CPD in terms of computation time is measured.

TABLE 3.3: Computation times for (R = 3, Q = 8)

Tensor dimension Alg. 3 Q-order ALS-CPD Gain
N = 4 0, 79 (s) 19, 26 (s) 24, 37
N = 5 0, 91 (s) 114, 16 (s) 125, 45
N = 6 1, 31 (s) 431, 95 (s) 329, 73

To evaluate the noise robustness, an 8-order, rank-2 CPD tensor of size N× · · · ×
N is generated with N = 3. In Fig. 3.4, we plot the NMSE obtained with Algorithm
3, the Q-order ALS algorithm and the popular HOSVD-based preprocessed ALS
for 8-order hypercubic CPDs, with N = 3 and R = 2. The preprocessing step is
done thanks to the HOSVD with multilinear ranks T = 2. The association of a
preprocessing (HOSVD) to the ALS algorithm generally improves its robustness to
noise while increasing the convergence speed. The NMSEs were averaged over 1000
i.i.d. realisations of a Gaussian noise. To eliminate ill-convergence experiments and
outliers, 5% of the worst and 5% of the best NMSE values are discarded.

According to the NMSE results, the Q-order ALS algorithm is the least robust
scheme for SNR lower than 20 dB for a high computational cost. The ALS scheme
with the preprocessing step shows an improved noise robustness for a very high
computational cost. Finally, the proposed algorithm has the highest accuracy, or
equivalently, the best noise robustness with the lowest computational cost.
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FIGURE 3.4: NMSE vs SNR in dB with JIRAFE for an 8-order CPD

3.1.4.2.2 Improved CPD-Train In this section, an improved CPD-Train based fac-
tor retrieval algorithm is proposed. In Algorithm 3, by exploiting the repetition
of the matrices {M̂1, . . . , M̂Q−1} in the TT-cores, it is possible to replace the iter-
ative Bi-ALS algorithm by the non-iterative Khatri-Rao factorization (KRF) algo-
rithm proposed in [74]. The KRF algorithm is a closed-form algorithm that recov-
ers 3-order CPD factors assuming that one factor is known and has a full-column
rank. It computes R SVDs of rank-one matrices to recover the remaining two other
factors. These assumptions match exactly to our case. Note that the matrix M̂q
by definition is invertible and thus satisfies the full-column rank assumption. A
pseudo-code of the proposed strategy is given in Algorithm 4. Note that Algo-
rithm 4 is thus less sensitive to potential ill-convergence problems than Algorithm
3. In addition, it is worth noting that the complexity of the KRF corresponds to
κ(KRF) = O(R · N)� κ(1 · iteration of Bi-ALS) = O(R3 · N), which means that the
non-iterative KRF is less complex than the iterative Bi-ALS algorithm.

Algorithm 4 Improved CPD-Train algorithm

Input: Q-order rank-R CPD tensor X ,
Output: Estimated factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction:

[Ĝ1, Ĝ2, · · · , ĜQ−1, ĜQ] = TT-SVD(X , R).

2: Factor retrieval:
[M̂1, P̂2, M̂−T

2 ] = Tri-ALS(Ĝ2, R).

3: for q = 3 · · ·Q− 1 do
4: [P̂q, M̂−T

q ] = KRF(Gq, M̂q−1, R)
5: end for
6: P̂1 = Ĝ1M̂1, and P̂Q = ĜT

QM̂−T
Q−1

In Fig. 3.5, we plot the NMSE of Algorithm 4 for an 8-order hypercubic CPD with
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N = 3 and R = 2. The NMSEs were averaged in the same way as in Fig. 3.4. It is
worth noting that Algorithm 4 has an equivalent robustness to noise as Algorithm 3,
using a closed-form, non sensitive to ill-convergence problems, KRF method instead
of the iterative Bi-ALS algorithm.
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FIGURE 3.5: NMSE vs SNR in dB with improved CPD-Train for an
8-order CPD

3.1.4.2.3 Non-iterative CPD-Train algorithm in the case of a known factor In
some applications, a factor among Q can be supposed to be known [50, 151]. In this
case, a fully non-iterative algorithm can be derived. Indeed, assume without loss of
generality1 that the first factor, P1, is known. The recovery of M1 is straightforward
thanks to the pseudo-inverse of the first TT-core. The rest of the method remains
identical as for Algorithm 4. A pseudo-code is given in Algorithm 5.

Algorithm 5 Non-iterative CPD-Train algorithm in case of a known factor

Input:Q-order rank-R CPD tensor X , P1.
Output: Estimated factors: P̂2, · · · , P̂Q.

1: Dimensionality reduction:

[Ĝ1, Ĝ2, · · · , ĜQ−1, ĜQ] = TT-SVD(X , R).

2: Factor retrieval:
M̂1 = Ĝ†

1P1

3: for q = 2 · · ·Q− 1 do
4: [P̂q, M̂−T

q ] = KRF(Ĝq, M̂q−1, R)
5: end for
6: P̂Q = ĜT

QM̂−T
Q−1

1Remark that the choice of the index of the factors is totally arbitrary and is meaningless relatively
to the model.
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3.1.4.2.4 Parallel and non-iterative CPD-Train algorithm in case of Toeplitz fac-
tors For structured tensors, several algorithms have been proposed by exploiting
the structure of the factors in [40, 5]. In some applications [75, 134], the factors of
the CPD are Toeplitz. Recall that for a vector a = [a0 · · · aL−1]

T of length L, we de-
note by T(a) the (L + R− 1)× R Toeplitz matrix that verifies T(a)i,j = ai−j, where
by convention ai−j = 0 if i − j < 0 or i − j > L− 1. The choice of this convention
is related to applications like Wiener-Hammerstein systems [74], the generalization
to the general case is straightforward. Thanks to Theorem 5.2, the TT-cores inherit
from this structure. Thus, it makes sense to exploit the TOMFAC algorithm, for
TOeplitz Matrix FActor Computation, proposed in [74]. This leads to the proposi-
tion of Algorithm 6. TOMFAC is an algorithm that allows to recover a CPD factor in
a closed-form way, considering that it has a Toeplitz structure. As a consequence, Al-
gorithm 6 is fully non-iterative and thus the convergence problem due to the use of
an alternated estimation scheme is completely avoided. In addition, the estimation
of the Toeplitz factors can be done via a parallel processing.

Algorithm 6 Parallel and non-iterative CPD-Train algorithm in case of Toeplitz fac-
tors

Input: Q-order rank-R CPD tensor X
Output: Estimated factors: P̂1, · · · , P̂Q.

1: Dimensionality reduction:

[Ĝ1, Ĝ2, · · · , ĜQ−1, ĜQ] = TT-SVD(X , R).

2: for q = 1 · · ·Q do
3: P̂q = TOMFAC(Ĝq, R) {This step can be done in a parallel way}
4: end for

In Table 3.4, the computation times of the native TOMFAC method applied to a
Q-order CPD tensor with Toeplitz factors and of Algorithm 6 are compared. Note
that the complexity of the Q-order TOMFAC is of the same order as the complexity
of a Q-order HOSVD. Here again, interesting gains in terms of computation times
are obtained.

TABLE 3.4: Computation times for (R = 3, N = 4)

Tensor order CPD-Train-TOMFAC TOMFAC Gain
Q = 6 0.0296 (s) 0.1206 (s) 4.0743
Q = 7 0.2906 (s) 1.6447 (s) 5.6593
Q = 8 5.1253 (s) 39.7964 (s) 7.7647

Figure 3.6 depicts the NMSE performance for the Q-order TOMFAC and Algo-
rithm 6, referred to here as CPD-Train-TOMFAC, for an 8-order hypercubic CPD
with N = 6 and R = 3. The NMSE curves are plotted with respect to the SNR in
dB. Note that thanks to the dimensionality reduction step, the CPD-Train-TOMFAC
algorithm shows a comparable robustness, for severe SNRs, to the native TOMFAC
for a much smaller computational complexity cost.
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FIGURE 3.6: NMSE vs SNR in dB with CPD-Train-TOMFAC for an
8-order CPD with Toeplitz factors, N = 6, and R = 3

3.1.5 Discussion

We have discussed the joint dimensionality reduction and factor retrieval problem
for high-order tensors. We have shown that a Q-order tensor following a CPD/TD
(Q > 3) can be written as a train of Q 3-order tensors with a coupled structure.
Exploiting this model equivalence property, we have introduced new tensor mod-
els, namely the CPD-Train and the Tucker Decomposition (TD)-Train. A two-step
JIRAFE methodology has been proposed to overcome the “curse of dimensionality”
for high-order tensors. The initial step, called “dimensionality reduction”, consists
of splitting the high-order tensor into a collection of graph-connected core tensors of
lower orders, at most equal to three. The second step consists of factors retrieval.
Several algorithms specialized for the CPD-Train/TD-Train have been proposed,
which have a low computational cost and a storage cost that grows linearly with
respect to the order of the data tensor. The advantages in terms of storage cost,
computational complexity, algorithmic stability, and factor estimation robustness to
noise have been demonstrated. JIRAFE can then be seen as a new concept of a more
general framework for joint dimensionality reduction and factor retrieval, where
different solutions for the factor retrieval step can be considered, such as Gauss-
Newton [140] for fitting the CPD, gradient descent [36], or improved versions of
ALS such as those based on enhanced line search [115], for instance. Perspective
for future works include the application of JIRAFE to big data tensors for multilin-
ear harmonic retrieval problem, massive MIMO systems and coupled matrix-tensor
factorizations, besides the investigation of the TT-cores structures when the rank
exceeds the dimensions.
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3.2 Uniqueness of JIRAFE with Linear Dependencies

3.2.1 Context of study

In the last section, it has been shown that a canonical rank-R CPD / PARAFAC
model can always be represented exactly by a TT model whose cores are canonical
rank-R CPD/PARAFAC. This model is called TT-CPD. We generalize this equiva-
lence to the PARALIND model in order to take into account potential linear depen-
dencies in factors. We derive and discuss here uniqueness conditions for the case of
the TT-PARALIND model.
Here, we focus on the case where linear dependencies are present between the columns
on the factor matrices leading to high-order PARALIND (PARAllel profiles with
LINear Dependences) model [23]. PARALIND is a variant of the CPD with con-
strained factor matrices, that models a linearly dependent factor P as a product of a
full column rank matrix P̃ and an interaction matrix Φ. Matrix Φ introduces the lin-
ear dependency and rank deficiency in P. Linear dependencies in factor matrices are
of great interest in real scenarios and can be encountered in chemometrics applica-
tions [23] or in array signal processing [154], to mention a few. In this part, some new
equivalence results between the TTD and PARALIND are presented. The TT-cores
structure is exposed when the Q-order PARALIND has only two full column rank
factor matrices. Partial and full uniqueness conditions for the new TT-PARALIND
model are also studied.

3.2.2 Equivalence between the PARALIND and the TTD

3.2.2.1 Lack of uniqueness of the TTD

Let X be a Q-order tensor of size N1 × . . .× NQ that follows a Tensor Train decom-
position (TTD) [104] of TT-ranks {R1, . . . , RQ−1}:

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 . . .×1

Q−1 GQ−1 ×1
Q GQ, (3.13)

where the TT-cores G1,Gq, and GQ are, respectively, of dimensions N1 × R1, Rq−1 ×
Nq × Rq, and RQ−1 × NQ, for 2 ≤ q ≤ Q − 1, and we have rank{G1} = R1,
rank{GQ} = RQ−1, rank{unfold1Gq} = Rq−1, and rank{unfold3Gq} = Rq.
It is straightforward to see that the TTD of X in eq. (3.13) is not unique since

X = A1 ×1
2 A2 ×1

3 A3 ×1
4 . . .×1

Q−1 AQ−1 ×1
Q AQ,

where

A1 = G1U−1
1 ,

AQ = UQ−1GQ,

Aq = Uq−1 ×1
2 Gq ×1

3 U−1
q .

For 1 ≤ q ≤ Q − 1, Uq are square nonsingular matrices of dimension Rq × Rq. In
practice, the TTD is performed thanks to the state-of-art TT-SVD algorithm [104]. It
is a sequential algorithm that recovers the TT-cores Gq based on (Q− 1) SVDs ap-
plied to several matrix-based reshapings using the original tensor X . This algorithm
allows to recover the true TT-cores up to a post and pre-multiplication by transfor-
mation (change-of-basis) matrices due to the extraction of dominant subspaces when
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using the SVD. In the next section, we will derive the structure of the estimated TT-
cores when the original tensor X follows a CPD with linear dependencies between
the columns of the factor matrices.

3.2.2.2 PARALIND-TTD equivalence

Consider Q-order tensor X of size N1 × · · · × NQ that follows a rank-R CPD:

X = IQ,R ×1 P1 ×2 P2 . . .×Q PQ, (3.14)

where the factor matrices Pq are of size Nq × R. It was shown in [156] that if the
factor matrices Pq are full-column rank for 1 ≤ q ≤ Q, then they can be recovered
from the TT-cores by 3-order CPD decompositions.

In this section we study the case where linear dependencies are present between
the columns of the factor matrices of (3.14). Thus, a factor matrix Pq can be expressed
as:

Pq = P̃qΦq, (3.15)

where P̃q is full column rank of size Nq × Rq (Rq ≤ R) and Φq is a rank deficient
matrix of size Rq× R containing the dependency pattern between the columns of P̃q.
This CPD model with linear dependencies is also known as PARALIND (PARAllel
profiles with LINear Dependences) [23].

Theorem 7 (PARALIND - TTD equivalence). Decomposing tensor X in (3.14) into a
TT format, where P1 and PQ are full column rank matrices, and Pq (2 ≤ q ≤ Q− 1) follow
(3.15), recovers the estimated TT-cores such that

G1 = P1U−1
1 ,

Gq = I3,R ×1 Uq−1 ×2 (P̃qΦq)×3 U−Tq , 2 ≤ q ≤ Q− 1

GQ = UQ−1PT
Q,

where, for 1 ≤ q ≤ Q− 1, Uq is a square R× R nonsingular matrix. The TT-cores G1,Gq,
and GQ are, respectively, of dimensions N1 × R, R× Nq × R, and R× NQ, given TT-ranks
all equal to R.

Proof. Note that tensor IQ,R in eq. (3.14) can be expressed as

IQ,R = IR ×1
2 I3,R ×1

3 · · · ×1
Q−1 I3,R ×1

Q IR, (3.16)

replacing eq. (3.16) into eq. (3.14), we get

X = (IR ×1
2 I3,R ×1

3 · · · ×1
Q IR)×1 P1 ×2 P2 ×3 . . .×Q PQ,

= (IR ×1
2 I3,R ×1

3 · · · ×1
Q IR)×1 P1 ×2 P̃2Φ2 ×3 . . .×Q PQ.

Before introducing the ambiguity matrices Uq, tensor X can then be expressed into
a TT format as

X = P1︸︷︷︸
A1

×1
2 (I3,R ×2 P̃2Φ2)︸ ︷︷ ︸

A2

×1
3 · · · ×1

Q−2 (I3,R ×2 P̃Q−2ΦQ−2)︸ ︷︷ ︸
AQ−2

×1
Q−1 (I3,R ×2 P̃Q−1ΦQ−1)︸ ︷︷ ︸

AQ−1

×1
Q PT

Q︸︷︷︸
AQ

. (3.17)
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One may note that for 2 ≤ q ≤ Q − 1, the considered TT-cores A1, Aq and AQ
verify the definition of the TTD with rank{A1} = rank{AQ} = rank{unfold1Aq} =
rank{unfold3Aq} = R, which justify that matrices P1 and PQ must be of full column
rank. By identifying the TT-cores Aq in eq. (3.17), introducing the pre- and post-
multiplication ambiguity matrices Uq presented in 3.2.2.1, and using the following
equivalence

Gq = Uq−1 ×1
2 Aq ×1

3 U−1
q = Aq ×1 Uq−1 ×3 U−T

q ,

theorem 7 is proven.

3.2.3 Uniqueness of the PARALIND-TTD

One of the most popular condition for the uniqueness of the CPD decomposition
is the Kruskal’s condition [86] relying on the concept of “Kruskal-rank", or simply
krank. The krank of an N×R matrix P, denoted by krank{P}, is the maximum value
of ` ∈N such that every ` columns of P are linearly independent. By definition, the
krank of a matrix is less than or equal to its rank. Kruskal proved [86] that the
condition

krank{P1}+ krank{P2}+ krank{P3} ≥ 2R + 2 (3.18)

is sufficient for uniqueness of the CPD decomposition in (3.14), with Q = 3. Fur-
thermore, it becomes a necessary and sufficient condition in the cases R = 2 or 3
(see [8]). Herein, by uniqueness, we understand “essential uniqueness", meaning
that if another set of matrices P̄1, P̄2 and P̄3 verify (3.18), then there exists a permu-
tation matrix Π and three invertible diagonal scaling matrices (∆1, ∆2, ∆3) satisfying
∆1∆2∆3 = IR, where IR is the R-th-order identity matrix, such that

P̄1 = P1Π∆1, P̄2 = P2Π∆2, P̄3 = P3Π∆3.

The uniqueness condition (3.18) has been generalised to Q-order CPDs in [131].
It states that the factor matrices Pq (q = 1, . . . , Q) in (3.14) can be uniquely estimated
from X if

Q

∑
q=1

krank{Pq} ≥ 2R + (Q− 1). (3.19)

This condition is sufficient but not necessary for the uniqueness of the CPD decom-
position.

Based on Kruskal’s uniqueness condition as well as on the results derived in
[58], we formulate in the following a partial and a full uniqueness condition for the
PARALIND-TTD of a Q-order tensor.

Theorem 8 (Partial uniqueness of TT-PARALIND). The factor matrix Pq can be uniquely
recovered from the estimated TT decomposition of X if there exist q1 and q2 (q1 6= q2 6= q),
such that: {

rank{Pq1} = rank{Pq2} = R,
rank{Pq} ≥ 2.

Proof. In the CPD (3.14) the order of the factor matrices is arbitrary and can be
changed by a simple index permutation. Thus, in the following we will suppose,
without loss of generality, that q1 = 1 and q2 = Q. The fact that rank{P1} =
rank{PQ} = R implies that the square matrices Uq in theorem 7 are all full rank
R. Therefore, the Gq tensor can be uniquely recovered from X by the TT-SVD algo-
rithm.
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According to theorem 7, the tensor Gq can be expressed as:

Gq = I3,R ×1 Uq−1 ×2 Pq ×3 U−Tq . (3.20)

Following Kruskal’s uniqueness condition (3.18), the factor matrices in (3.20) can
be recovered from Gq if

krank{Uq−1}+ krank{Pq}+ krank{U−Tq } ≥ 2R + 2. (3.21)

However, in our case we are only interested in recovering Pq, which allows to relax
Kruskal’s condition. It was proven in [58] that the matrix Pq can be be uniquely
estimated from Gq if

krank{Uq−1}+ rank{Pq}+ krank{U−Tq } ≥ 2R + 2. (3.22)

As Uq−1 and Uq are full rank square matrices, and rank{Pq} ≥ 2, (3.21) is verified,
which completes the proof.

Theorem 9 (Full TT-PARALIND uniqueness). The factor matrices P1, . . . , PQ can be
uniquely recovered from the estimated TT-cores G1,G2, . . . ,GQ−1, GQ if:

rank{P1} = rank{PQ} = R
rank{Pq} ≥ 2, 2 < q < Q− 1
krank{P2}, krank{PQ−1} ≥ 2.

Proof. This result is a consequence of theorem 8. The uniqueness of factor matrices
P2, . . . , PQ−1 can be proven by repeatedly applying theorem 8 to the different TT-
cores Gq, 2 ≤ q ≤ Q− 1. Meanwhile, condition (3.22) does not guarantee uniqueness
of the change-of-basis matrices Uq−1 and Uq. In order to guarantee this, Kruskal’s
condition (3.21) must be verified.

Thus, the condition krank{P2}, krank{PQ−1} ≥ 2 implies uniqueness of the CPD
decomposition of TT-cores G2 and GQ−1 and consequently, the uniqueness of the
R× R non-singular matrices U1 and UQ−1. From theorem 7 we get:

P1 = G1U1 and PQ = GT
QU−TQ−1.

Thus, the unique recovery of G1 and GQ from X along with uniqueness of U1 and
UQ−1 implies uniqueness of factor matrices P1 and PQ, which completes the proof.

3.2.4 Discussion

3.2.4.1 More restrictive conditions

Compared to Kruskal’s condition (3.19) for Q-order CPD, the uniqueness condition
of theorem 9 is more restrictive. For example, in the case of a fourth-order ten-
sor (Q = 4), the condition of theorem 9 implies ∑4

q=1 krank{Pq} ≥ 2R + 4, while
Kruskal’s condition requires ∑4

q=1 krank{Pq} ≥ 2R + 3. This is a direct consequence
of imposing simultaneous (partial) uniqueness on all the 3-order TT-cores. More
restrictive uniqueness conditions is the price to pay for having a numerically effi-
cient algorithm, that guarantees recovery of the factor matrices for a wide variety of
scenarios.
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3.2.4.2 Estimation scheme architecture

It is worth noting that, from an algorithmic point of view, the estimation of the factor
matrices Pq can be done either in parallel or sequentially. For a parallel estimation
scheme, the conditions of theorem 9 are sufficient. In [156], a sequential scheme was
proposed, based on a sequential retrieval of both matrices Pq and Uq. It requires at
each step the knowledge of Uq−1 for decomposing Gq. To use a similar sequential
scheme for the TT-PARALIND model, it is necessary to also ensure the uniqueness of
matrices Uq. This can be done by replacing condition rank{Pq} ≥ 2 (2 < q < Q− 1)
in theorem 9 by a stronger one, krank{Pq} ≥ 2 (2 < q < Q− 1).

3.2.5 Conclusion and perspectives

The factorisation of a high-order tensor into a collection of low-order tensors, called
cores, is an important research topic. Indeed, this family of methods called tensor
Networks is an efficient way to mitigate the well-known “curse of dimentionality”
problem. In this work, we prove that a Q-order PARALIND of rank R can be refor-
mulated as a Q− 2 train of tensors possibly column-deficiency and two full column
rank matrices. The condition of partial and full uniqueness are exposed and dis-
cussed.
Perspectives of this work are as follows.

1. The condition rank{P1} = rank{PQ} in theorem 7 requires the knowledge of
the indices of full-rank modes of tensor X , which are then arbitrarily fixed to
1 and Q; once these two modes are fixed, the order in which the remaining
modes are processed is arbitrary. It is certainly possible to obtain a condition
involving only one full rank matrix, but in this case the order in which the
other modes are processed must be carefully chosen to guarantee the required
rank conditions for the TT-SVD algorithm. This aspect is currently under in-
vestigation.

2. A very promising application domain of these results is the low-rank approx-
imation of high-dimensional probability mass functions. In this case, these
uniqueness results are of upmost importance as the linear dependencies in the
model could account for the random variables correlations. A potential appli-
cation is represented by the flow cytometry data analysis, as shown in [20].
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3.3 JIRAFE-based Multidimensional Harmonic Retrieval

In this section, we will exploit the proposed JIRAFE scheme in the context of the
Multidimensional Harmonic Retrieval. We will show that our methodology [158]
has several advantages in terms of flexibility, robustness to noise, computational
cost and automatic pairing of the parameters of interest with respect to the tensor
order and storage costs.

3.3.1 Context and data model

Multidimensional Harmonic Retrieval (MHR) [66, 126, 14] is a classical signal pro-
cessing problem that has found several applications in spectroscopy [93], wireless
communications [99], sensor array processing [127, 162], to mention a few. The Mul-
tidimensional Harmonic (MH) model can be viewed as the tensor-based generaliza-
tion of the one-dimensional harmonic one, resulting from the sampling process [16]
over a multidimensional regular grid. As a consequence, the MH model can be ex-
pressed in tensor form as a constrained Canonical Polyadic Decomposition (CPD)
[61, 25, 63] with structured Vandermonde factor matrices. Unlike the sum of M
one-dimensional harmonics, which is parametrized by M angular-frequencies only,
the P-dimensional harmonic model needs the estimation of a large number (PM) of
paired angular-frequencies of interest. We can easily note that the number of un-
known parameters and the order of the associated data tensor grow with P. For
instance, in the problem of dual-polarized MIMO (Multiple-Input Multiple-Output)
channel estimation, the data tensor order is five [112]. Moreover, it is likely that the
joint exploitation of multi-diversity/modality sensing technologies for data fusion
[1, 47, 87] further increases the data tensor order. This trend is usually called the
“curse of dimensionality” [28, 147] and the challenge here is to reformulate a high-
order tensor as a set of low-order tensors. In this context, we observe an increasing
interest for the tensor network theory (see [28] and references therein). Tensor net-
work provides a useful and elegant graphical representation of a high-order tensor
into a factor graph where the nodes are low-order tensors, called cores, and the edges
encode their dependencies, i.e., their common dimensions, often called “rank”. In
addition, tensor network allows to perform scalable/distributed computations over
the cores [28]. In the tensor network framework, Hierarchical/tree Tucker [59, 106]
and Tensor Train (TT) [142] are two popular representations of a high-order tensor
into a graph-connected low-order (at most 3) tensors. In this work, we focus our ef-
fort on the TT formalism for its simplicity and compactness in terms of storage cost.
Unlike the hierarchical Tucker model, TT is exploited in many practical and impor-
tant contexts as, for instance, tensor completion [81], blind source separation [12],
and machine learning [130], to mention a few. In the context of the MHR problem,
this strategy has at least two advantages. First, it is well-known that the convergence
of the Alternating Least Squares (ALS) algorithm becomes more and more difficult
when the order increases [118, 21, 92]. To deal with this problem, applying ALS
on lower-order tensors is preferable. The second argument is to exploit some latent
coupling properties between the cores [33, 130] to propose new efficient estimators.

The Maximum Likelihood estimator [84, 34] is the optimal choice from an estima-
tion point of view, since it is statistically efficient, i.e., its Mean Squared Error (MSE)
reaches the Cramér-Rao Bound (CRB) in the presence of noise. The main drawback
of the maximum likelihood estimator is its prohibitive complexity cost. This limi-
tation is particularly severe in the context of a high-order data tensor. To overcome
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this problem, several low- complexity methods can be found in the literature. These
methods may not reach, sometimes, the CRB, but they provide a significant gain
in terms of the computational cost compared to the maximum likelihood estimator.
There are essentially two main families of methods. The first one is based on the
factorization of the data to estimate the well-known signal/noise subspace such as
the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
[122], the ND-ESPRIT [123], the Improved Multidimensional Folding technique [95],
and the CP-VDM [135]. The second one is based on the uniqueness property of the
CPD. Indeed, factorizing the data tensor thanks to the ALS algorithm [22] allows a
direct identification of the unknown parameters by inspection of the factor matrices.
However, the ALS algorithm [21], as well as most of its variants, do not take into
account the Vandermonde structure of the factor matrices. Potentially, discarding
this physical a priori knowledge on the MH model may degrade the estimation per-
formance of the unknown parameters [54]. So, recently, a new family of estimation
methods has been introduced in [15]. This approach, called RecALS for Rectified
ALS, modifies the ALS method by integrating a rectification/reinforcement strategy
on the Vandermonde structure of the factor matrices.

In this work, we propose to use the JIRAFE framework. JIRAFE is composed of
two main steps. The first one is the dimensionality reduction of a high-order har-
monic model thanks to a Tensor Train decomposition (TTD) [142]. We show how a
model equivalence between the CPD and TTD [156] can be exploited to design an
efficient optimization strategy exploiting a sum of coupled Least Squares (LS) prob-
lems2. The second step is dedicated to the estimation of the unknown parameters
using a polynomial rooting procedure. This scheme belongs to the RecALS family
and can be viewed as an alternative to the one proposed in [15]. Our main contribu-
tions can be summarized as follows:

• Vandermonde based Tensor Train decomposition (VTTD). The classic MHR
problem is reformulated under a Vandermonde based TT format, instead of
the usual CPD formulation.

• Optimization strategy for VTTD. The structure of the TT-cores is provided
and in particular the latent coupling property existing between the TT-cores
is explained and exploited in the context of a sequential optimization strategy
of a sum of coupled LS problems. This is the first step of JIRAFE, i.e., the
dimensionality reduction step.

• New rectification strategy for Vandermonde factors. A new rectification strat-
egy for Vandemonde factors is presented and used in the second step of JI-
RAFE, i.e., the retrieval step.

The MH model assumes that the measurements can be modeled as the superpo-
sition of M undamped exponentials sampled on a P-dimensional grid according to
[66]

[X ]n1 ...nP =
M

∑
m=1

αm

P

∏
p=1

znp−1
m,p , 1 ≤ np ≤ Np (3.23)

in which the m-th complex amplitude is denoted by αm and the pole is defined by
zm,p = eiωm,p where ωm,p is the m-th angular-frequency along the p-th dimension,

2Note that the idea of rewriting a CPD into the TT format was briefly mentioned in [142, 33], without
discussing the structure of the TT-cores resulting from a decomposition algorithm.
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and we have zp =
[
z1,p z2,p . . . zM,p

]T . Note that the tensor X is expressed as
the linear combination of M rank-1 tensors, each of size N1 × . . . × NP (the size of
the grid), and follows a generalized Vandermonde CPD [109]:

X = A×1 V1 ×2 . . .×P VP (3.24)

where A is a M× . . .×M diagonal tensor with [A]m,...,m = αm and

Vp =
[
v(z1,p) . . . v(zM,p)

]
is a Np ×M rank-M Vandermonde matrix, where

v(zm,p) =
[
1 zm,p z2

m,p . . . zNp−1
m,p

]T
.

We define a noisy MH tensor model of order P as

Y = X + σE

where σE is the noise tensor, σ is a positive real scalar, and each entry [E ]n1 ...nP fol-
lows an i.i.d. circular Gaussian distribution CN (0, 1), and X has a canonical rank
equal to M.

Remark. The addressed MHR problem aims to estimate the PM angular-frequencies cor-
rectly paired in terms of “source/dimension” given by the complex argument of the entries
of the vectors {z1, . . . , zP}, from the noisy observation tensor Y , when the order of X is
strictly greater than three.

It is important to stress that the paring and estimation operations have to be
jointly performed. Indeed, searching the tensor generated from a given scheduling
of PM parameters of interest that are the closest to the observed tensor suffers from
the well-known combinatorial explosion, especially for large values of P.

3.3.2 Dimensionality reduction based on a train of low-order tensors

3.3.2.1 Vandermonde based TT decomposition

Due to the simple graph-based formalism of the TT, it is straightforward to rewrite
the diagonal tensor A introduced in eq. (3.24) as the following TTD

A = A×1
2 I3,M ×1

3 . . .×1
P−1 I3,M ×1

P IM

where A is a M×M diagonal matrix with [A]m,m = αm. A graph-based visualization
is given on Fig. 3.7.

FIGURE 3.7: A possible TTD of tensor A.
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Plugging the TTD of tensor A into eq. (3.24), leads to

X = A×1 V1 ×2 . . .×P VP

=
(

A×1
2 I3,M ×1

3 . . .×1
P−1 I3,M ×1

P IM

)
×1 V1 ×2 . . .×P VP

= (V1A)×1
2 V2 ×1

3 . . .×1
P−1 VP−1 ×1

P VT
P (3.25)

where V p = I3,M ×2 Vp is of size M× Np ×M. A representation of V p and X are
given on Figs 3.8 and 3.9, respectively.

FIGURE 3.8: Representation of the 3-order M× Np ×M tensor V p.

FIGURE 3.9: VTTD of tensor X corresponding to eq. (3.25).

According to eq. (3.25), the generalized Vandermonde CPD of tensor X is equiv-
alent to a train of (P− 2) 3-order tensors that follow a constrained rank-M CPD with
a Vandermonde factor on its 2nd mode.

In the following theorem, we give the retrieved TT-cores structure when apply-
ing the TT-SVD algorithm to the multidimensional harmonic model in eq. (3.24).

Theorem 10. Applying the TT-SVD algorithm to eq. (3.25) with full column rank factors,
we have the following result:

G1 = V1AM−1
1

G p = I3,M ×1 Mp−1 ×2 Vp ×3 M−T
p , where 2 ≤ p ≤ P− 1, (3.26)

GP = MP−1VT
P

where Mp ∈ CM×M is a nonsingular transformation matrix.

Proof. Here, we prove the result given in the preliminary article [156]. Our method-
ology is based on a constructive proof. The aim is to apply the TT-SVD algorithm
to the model of interest presented in eq. (3.23) and to provide the algebraic structure
of the TT-cores resulting from the decomposition. Let X be a P-order rank-M con-
strained CPD tensor following eq. (3.23) of size N1× · · · × NP with full column rank
factors. Applying the TT-SVD algorithm to X consists of applying sequentially the
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SVD to extract the dominant subspaces at each step. In the following, we give the
expression of the matrix unfoldings and the SVD factors at each step.

• The first unfolding X(1) of size N1 × (N2 · · ·NP) is given by:

X(1) = reshape
(
X ; N1,

P

∏
s=2

Ns
)

∆
= V1A(VP �VP−1 � · · · �V2)

T

SVD
= U(1)V(1)

where U(1) and V(1) are the left and right singular vectors matrices, respec-
tively. We recall that the diagonal singular values matrix is absorbed in V(1).
These matrices can be expressed as

U(1)M1 = V1A, (3.27)

V(1) = M1(VP �VP−1 � · · · �V2)
T (3.28)

where M1 is a M×M transformation matrix and A is defined in Section 3.3.2.1.
Note that in terms of rank we have the equality

rankX(1) = rank(V1A) = rankG1 = M.

It is worth noting that the Khatri-Rao product of matrices Vp does not decrease
the rank [9], i.e., the rank of the Khatri-Rao product matrix also equals M. From
eq. (3.27), the expression of the first TT-core is

G1 = U(1) = V1AM−1
1 . (3.29)

• From eq. (3.28), reshaping matrix V(1) provides

V(1)
(2) = reshape

(
V(1); MN2,

P

∏
s=3

Ns
)

∆
= (V2 �M1)(VP �VP−1 � · · · �V3)

T

SVD
= U(2)V(2)

where U(2) and V(2) are of rank M, and can be expressed as

U(2)M2 = V2 �M1,

V(2) = M2(VP �VP−1 � · · · �V3)
T.

The second TT-core can then be expressed as:

G2 = reshape
(
U(2); M, N2, M

)
= I3,M ×1 M1 ×2 V2 ×3 M−T

2 . (3.30)
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• Following the same reasoning, the expression of V(p−1)
(2) at the p-th step is

V(p−1)
(2) = reshape

(
V(p−1); MNp,

P

∏
s=3

Ns
)

∆
= (Vp �Mp−1)(VP �VP−1 � · · · �Vp+1)

T

SVD
= U(p)V(p)

where

U(p)Mp = Vp �Mp−1,

V(p) = Mp(VP �VP−1 � · · · �Vp+1)
T, (3.31)

where Mp is a M × M transformation matrix and the TT-core expression is
given by

G p = reshape
(
U(p); M, Np, M

)
= I3,M ×1 Mp−1 ×2 Vp ×3 M−T

p . (3.32)

• At the last step, and from eq. (3.31), the SVD factor V(P−1) and the last TT-core
expressions are given by

GP = V(P−1) = MP−1VT
P. (3.33)

Theorem 10 can be proved using (3.29), (3.30), (3.32) and (3.33).

The meaning of the above result is that applying the TT-SVD algorithm to eq. (3.24)
generates 3-order TT-cores that follow a CPD, with TT-ranks all equal to the canoni-
cal rank M (see Fig. 3.10). Furthermore, each CPD-train core G p has a common cou-
pled factor with the two consecutive TT-cores G p−1 and G p+1. Theorem 10 shows
that applying the TT-SVD algorithm to eq. (3.24) allows to retrieve the exact TT-
cores defined in eq. (3.25), up to transformation matrices Mp. These matrices Mp are
change-of-basis matrices that are related to the estimation of the dominant subspace
using the SVD and TT-SVD, as shown in the previous proof.

Remark. One should be cautious about reducing the above theorem to the well-known TT
model ambiguities. Indeed, each entry of a tensor following a TT model is the product of P
matrices, each of which obtained as a reshaping of a TT-core [142]. In fact, the transformation
matrices involved in the TT-SVD algorithm coincide with the TT model ambiguities only if
the factors are full column rank3. Finally, the above theorem shows that the TT-SVD involves
lattent but crucial information in the transformation matrices that must be estimated.

Remark. Under mild conditions, it is well-known that the factors of a P-order CPD are
unique up to trivial ambiguities (common column permutation and scaling [136]). In [156],
it is proved that the factors based on eq. (3.26) can also be estimated with the same trivial
ambiguities.

3For a full row rank factor as for instance in wireless communications [112], the TT-cores computed
by the TT-SVD algorithm have less intuitive and more complicated expressions. This is the subject of
Section 4.2.
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FIGURE 3.10: 3-order CPD of the p-th TT-core. Matrices Mp−1 and
Mp are latent quantities.

3.3.3 Factor retrieval scheme

3.3.3.1 JIRAFE with Vandermonde-based rectification

The proposed estimator is based on the JIRAFE principle. JIRAFE, meaning Joint
dImensionality Reduction And Factors rEtrieval, is composed of two main steps.

1. The first one is the computation of the TTD of the initial tensor. By doing
this, the initial P-order tensor is broken down into P graph-connected third-
order tensors, called TT-cores as represented by Fig. 3.9. This dimensionality
reduction is an efficient way to mitigate the “curse of dimensionality”. To reach
this goal, the TT-SVD [142] presented above is used as a first step.

2. The second step is dedicated to the factorization of the TT-cores. Recall the
main result given by Theorem 10, i.e., if the initial tensor follows a P-order
CPD of rank M, then the TT-cores for 2 ≤ p ≤ P− 1 follow coupled 3-order
CPD of rank M. Consequently, the JIRAFE minimizes the following crite-
rion over the physical quantities {V1, . . . , VP} and over the latent quantities
{M1, . . . , MP−1}:

C = ||G1 −V1AM−1
1 ||

2
F + ||GP −MP−1VT

P||2F

+
P−1

∑
p=2
||G p − I3,M ×1 Mp−1 ×2 Vp ×3 M−T

p ||2F. (3.34)

The above cost function is the sum of coupled LS criterions. The aim of JI-
RAFE is to recover the original tensor factors using only the 3-order tensors
G p based on the result given in eq. (3.26). eq. (3.34) is expressed as a sum of
dependent positive terms due to the coupling properties existing through the
matrices {M1, . . . , MP−1} as demonstrated in Theorem 10. Note that the cou-
pling properties between tensors are usually due to physical constraints [2, 1].
In our case, these properties are a result of the sequential structure of the TT-
SVD algorithm. Matrices {M1, . . . , MP−1} can be considered as latent matrices,
i.e., they do not have a physical meaning, but are essential from an estima-
tion point of view. These remarkable coupling properties take place between
a given TT-core and the two other TT-cores connected to it in the graph-based
representation (see Fig. 3.10). Minimizing independently all the positive terms
in eq. (3.34) is a simple procedure but this also means that the structure of the
problem of interest is completely eluded. On the other hand, finding jointly
{V1, . . . , VP} and {M1, . . . , MP−1} is not trivial and highly time consuming
[35, 1]. Consequently, the JIRAFE approach adopts a straightforward sequen-
tial methodology, described in Fig. 3.11, to minimize the cost function C. Any
3-order algorithm existing in the literature dedicated to the computation of a
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3-order CPD can be exploited as for instance the popular ALS algorithm [22].
However, in the context of the MHR problem, the RecALS method introduced
in [15] is used and extended. The idea of the RecALS is to associate the ALS
algorithm with a Vandermonde rectification strategy. In [15], a link between a
Vandermonde vector and the rank-1 factorization of a Toeplitz matrix is pro-
posed. As a cheaper alternative, the Shift Invariant Property (SIP) is proposed
and described in the next section.

Based on the new Vandermonde constrained Tensor Train modelisation in eq. (3.25),
and the CPD structure of the TT-cores in Theorem 10, the idea of the proposed
scheme is to replace the estimation of the high P-order tensor by a sequential es-
timation procedure that operates on 3-order tensors only. We recall that the RecALS
algorithm is an ALS-based solution that is efficient for 3-order tensors but becomes
a delicate estimator for high-order tensors. In addition, the ALS-based techniques
may require several iterations to converge, and convergence is increasingly difficult
when the order of the tensor increases, and it is not even guaranteed. In the proposed
solution, the use of iterative algorithms, such as ALS, becomes easier after applying
a dimensionality reduction to the original tensor using a CPD-train model, since
they are applied to (smaller) 3-order tensors. The new proposed solution is called
VTT-RecALS algorithm, and its pseudo-code is presented in Algorithm 7. The VTT-

Algorithm 7 VTT-RecALS

Input: Y , M, CritStop
Output: Estimated parameters: {z1, . . . , zP}.

1: Dimensionality reduction:

[G1,G2, · · · ,GP−1, GP] = TT-SVD(X , M).

2: Factor retrieval:
3: For p = 2,

[M̂1, V̂2, M̂2, z2] = RecALS3(G2, M, CritStop).

4: for p = 3 · · · P− 1 do
5: [V̂p, M̂p, zp] = RecALS2(G p, M̂p−1, M, CritStop)
6: end for
7: V̂1Â = G1M̂1, and V̂P = GT

PM̂−T
P−1

RecALS algorithm is actually divided into two parts. The first part is dedicated to
dimensionality reduction, i.e., breaking the dimensionality of the high P-order tensor
into a set of 3-order tensors using Theorem 10. The second part is dedicated to the
factors retrieval from the TT-cores using the RecALS algorithm presented in the next
section. It is worth noting that the factors V̂p are estimated up to a trivial (common)
permutation ambiguity [136]. As noted in [156], since all the factors are estimated
up to a unique column permutation matrix, the estimated angular-frequencies are
automatically paired.
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FIGURE 3.11: VTT-RecALS representation

3.3.3.2 Shift Invariance Principle (SIP)

In this section, we propose a new rectification strategy for Vandermonde factors,
which is an alternative to Toeplitz Rank-1 Approximation (TR1A) proposed in [15].
The rectification strategy is called shift invariance principle (SIP), which is inspired
from the notion of pencil of matrices (see [64] for instance). It is a rectification strat-
egy that copes with the multidimensionality of the MH model, and is integrated into
the VTT-RecALS algorithm to rectify the Vandermonde factors.

3.3.3.2.1 The SIP criterion Note that in a noiseless scenario, each Vandermonde
factor matrix Vp in (3.24) satisfies the following equality [6, 108]

Vp = Vpdiag(zp),

where Vp is the p-th factor in eq. (3.24). Let us now consider the following cost
function:

min
zp
C(zp) where C(zp) = ||Vp −Vpdiag(zp)||2F =

M

∑
m=1

P(zm,p) (3.35)

in which P(zm,p) = ||v(zm,p)− v(zm,p)zm,p||2. Minimizing eq. (3.35) with respect to
zp is equivalent to minimizing each positive term P(zm,p) in the sum. In addition,
P(zm,p) is not a function of zm′,p for m′ 6= m. Thus, minimizing eq. (3.35) with respect
to zp is equivalent to solve M independent problems of the following form:

min
zm,p

P(zm,p) where P(zm,p) = −z∗m,p ·Q(zm,p)

and

Q(zm,p) = am,pz2
m,p − bm,pzm,p + a∗m,p
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in which am,p = v(zm,p)Hv(zm,p), bm,p = ||v(zm,p)||2 + ||v(zm,p)||2, and Q(zm,p) is a
second degree polynomial where the argument of the two roots is

ω̂m,p = ∠ẑm,p = ∠

bm,p ±
√

b2
m,p − 4|am,p|2

2am,p

 = ∠
(

1
am,p

)
, (3.36)

where ω̂m,p is the estimate of the m-th angular-frequency along the p-th dimension.
The result in eq. (3.36) is integrated in the RecALS3 algorithm. We denote by RecALS3,
the RecALS applied to a 3-order tensor, while RecALS2 denotes the RecALS applied
to a 3-order tensor using the knowledge of one factor. The RecALS3 algorithm used
in Algorithm 7 is summarized in Algorithm 8. RecALS2 has a similar algorithmic
description as Algorithm 8, removing step 3, since Mp−1 becomes an a priori known
input. These algorithms are applied to the resultant 3-order TT-cores to recover the
3 factors with a Vandermonde 2nd mode factor.

Algorithm 8 Rectified Tri-ALS (RecALS3)

Input: G p, M, CritStop
Output: Estimated parameters: {ω1,p, . . . , ωM,p}.

1: Initialize: V̂p, M̂−T
p

2: while CritStop is false do
3: M̂p−1 = unfold1G p ·

(
(M̂−T

p � V̂p)T)†

4: V̂p = unfold2G p ·
(
(M̂−T

p � M̂p−1)
T)†

5: for m = 1 · · ·M do
6: am,p = v(zm,p)Hv(zm,p)

7: ωm,p = ∠
(

1
am,p

)
8: zm,p = eiωm,p

9: end for
10: V̂p := [v(z1,p) . . . v(zM,p)]

11: M̂−T
p = unfold3G p ·

(
(V̂p � M̂p−1)

T)†

12: end while

3.3.3.2.2 Comparison with other RecALS scheme It is worth noting that, for each
parameter ωm,p, the TR1A method, proposed in [15], for a P-order rank-M tensor of
size N × · · · × N, is based on (i) the rank-1 diagonalization to obtain the dominant
eigen-vector u of a rank-1 N × N Toeplitz matrix and (ii) the computation of the
angle of the product [u]1[u]∗2 . This cost is evaluated to O(N + 1). So, for the entire
set of parameters of interest, the final computation cost for the TR1A method is eval-
uated to O(N · P ·M + P ·M). In the SIP methodology, only MP inner products have
to be computed. Each inner product implies N − 1 sums and multiplications, thus
the complexity is evaluated to O(N − 1). The overall cost of the SIP method is thus
O(N · P ·M− P ·M). We can see that the additional term O(PM) is involved in the
TR1A method with respect to the SIP one. This quantity may be large for high values
of P.
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3.3.4 Simulation results

This section is organized as follows.

- In section 3.3.4.1, the interest of the VTT approach is illustrated and studied.

(a) Paragraph 3.3.4.1.1 compares the VTT-RecALS-SIP algorithm with the CPD-
RecALS-SIP algorithm to evaluate the interest of using the VTT instead of
the CPD.

(b) Paragraph 3.3.4.1.2 studies the impact of the parameters P and N on the
estimation accuracy of the VTT-RecALS-SIP algorithm.

- Section 3.3.4.2 is dedicated to the comparison of the VTT-RecALS-SIP with the
state-of-art estimators.

(a) In terms of robustness to noise in paragraph 3.3.4.2.1.

(b) In terms of computational time in paragraph 3.3.4.2.2.

It is worth noting that the study of the impact of the parameters dimension, rank
and order, is important, since they can be related to physical quantities in realistic
applications. For instance, in the problem of dual-polarized MIMO channel esti-
mation [112], the dimension, rank and order represent respectively, the number of
sensors/antennas at the transmission and reception, the number of dominant paths
and the number of spatial diversities at the reception and transmission.
The simulations were performed on a PC equipped with Matlab2016b, an i7, 2.10GHz
processor and 8Gb RAM.
Note that the N ×M Vandermonde factors are generated based on a single realiza-

tion of ωm,p following a uniform distribution in ]0, π[. Let f
(
X̂ (t))

= ||X − X̂ (t)||F,

where X̂ (t)
denotes the estimated tensor at the t-th iteration. The convergence test,

noted as CritStop, for RecALS algorithms is chosen such that

∣∣∣ f(X̂ (t)
)
− f
(
X̂ (t+1)

)∣∣∣
f
(
X̂ (t)
) < ε,

or when the number of iterations exceeds 1000. The signal to noise ratio (SNR) is de-
fined as

SNR [dB] = 10 log
( ||X ||2F
||σE ||2F

)
,

with E drawn from a complex circular i.i.d. Gaussian distribution with zero mean
and unit variance. The plotted CRB is the one calculated in [14]. The rank M is
supposed to be perfectly known in the simulations.
The MSE is defined as MSE = 1

MC ∑MC
k=1 ∑P

p=1 ∑M
m=1(ωm,p − ω̂

(k)
m,p)

2, where ω̂
(k)
m,p is the

estimation of ωm,p at the k-th run and MC is the number of Monte-Carlo runs. The
depicted MSE is the error over the angular frequencies, and is obtained by averaging
the results over 1000 independent Monte Carlo runs, truncated from 5% worst and
5% best MSEs to eliminate ill-convergence experiments and outliers.

3.3.4.1 Advantages of the TT approach

3.3.4.1.1 VTT over CPD In this section, we show the interest of using the VTT
model over the CPD in terms of noise robustness. The aim of this section is to com-
pare VTT and CPD, through the comparison of VTT-RecALS-SIP and CPD-RecALS-
SIP, using the proposed solution SIP presented in Section 3.3.3.2.
In Fig. 3.12, the algorithms VTT-RecALS-SIP and CPD-RecALS-SIP are applied to



52 Chapter 3. Joint dImensionality Reduction And Factor rEtrieval (JIRAFE)

a 6-order tensor. The rank is fixed at M = 3 and the dimension N = 6. We can
remark that both methods are efficient for a wide range of SNR, with a better robust-
ness for the VTT-RecALS-SIP for low SNR. Similar behavior was found for a rank
M = 2. We also noticed that for N = 8, M = 2 and P = 6, i.e., for a lower number
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FIGURE 3.12: MSE vs SNR in dB for P = 6 with M = 3, N = 6.

(PM) of parameters to be estimated, and a higher number of samples compared to
the last experiment, the MSE of the VTT-RecALS-SIP gets closer to the CRB for low
SNR, meanwhile the CPD-RecALS-SIP keeps the same behavior. It is worth noting
that the effectiveness of VTT-RecALS-SIP over the CPD-RecALS-SIP in the low SNR
range can be justified by the noise reduction property of the truncated SVD when
the TT-SVD is applied.
Note that the well-known threshold effect in the MSE curves indicates the limit SNR
between the two regimes, i.e., when the estimator fails and succeeds to estimate the
parameters of interest [116, 76, 27]. So, this is a key quantity to assess the quality of
an estimator in a practical context (see for instance [141, 117]). Thanks to the dimen-
sionality reduction step performed here with VTT, this SNR threshold is improved
at least by 10 dB compared to the CPD solution in Fig. 3.12.

3.3.4.1.2 Impact of parameters P and N on the VTT-RecALS-SIP The purpose of
next simulations to evaluate the impact of parameters P and N on the behavior of
the VTT-RecALS-SIP algorithm. First, in Fig. 3.13, we fix P = 6, M = 2, SNR = 5dB
and vary the dimension N. Note that the MSE continuously decreases when the
dimension is increased, which is predictable, since the number (MP) of parameters
is fixed and the number NP of samples grows with dimension N. In Fig. 3.14, we
fix N = 6, M = 2, SNR = 5dB and vary the tensor order P. Here, both, the number
(MP) of parameters and NP of samples grow, but since this latter grows faster with
P, the MSE of VTT-RecALS-SIP linearly decreases, which shows that the proposed
method becomes more efficient when the order of the MH tensor increases.

3.3.4.2 VTT-RecALS-SIP versus the state-of-art estimators

After showing the interest of the VTT-RecALS-SIP over the CPD-RecALS-SIP, in this
section, we compare the proposed VTT-RecALS-SIP algorithm with different state-
of-art schemes such as the CPD-RecALS-TR1A [15], the ND-ESPRIT [123] and the
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FIGURE 3.13: MSE vs tensor dimension for P = 6 with M = 2, SNR =
5dB (impact of N).
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FIGURE 3.14: MSE vs tensor order for N = 6 with M = 2, SNR = 5dB
(impact of P).

CP-VDM [84]. Like for the first experiments, different values of parameters are con-
sidered. In Tab. 3.5, we give the chosen values in each figure. Note that only one
parameter is changed from an experiment to another.

3.3.4.2.1 Robustness to noise In Fig. 3.15, we fix P = 4, M = 2 and N = 6. We
can remark that the VTT-RecALS-SIP has the MSE closest to the CRB for positive
SNR, keeping in mind that P = 4 is not a very high order, which is thus not the
most interesting case. Increasing the rank M = 3, in Fig. 3.16 compared to Fig.
3.15, and for a relatively “small" order P = 4, gives a comparable behavior between
the VTT-RecALS-SIP and the ND-ESPRIT algorithms, the difference of the computa-
tional time of both methods is evaluated in the next section. Meanwhile the gap with
CP-VDM becomes more pronounced. More interesting cases with a higher order P
are considered in the next experiments. In the following figures, we choose P = 6.
In Fig. 3.17, we fix M = 2 and N = 6. We remark that, as in the previous section, the
VTT-RecALS-SIP becomes more robust when the order increases, and is efficient for
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TABLE 3.5: Summary of chosen parameters in Section 3.3.4.2

Dimension N Rank M Order P
Fig. 3.15 6 2 4
Fig. 3.16 6 3 4
Fig. 3.17 6 2 6
Fig. 3.18 8 2 6
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FIGURE 3.15: MSE vs SNR in dB for P = 4 with M = 2, N = 6.

a wide range of SNR. This justifies that VTT-RecALS-SIP is well designed for high-
order tensors. A last scenario for robustness simulations is with P = 6, N = 8 and
M = 2, considered in Fig. 3.18. The ND-ESPRIT is not depicted here due to its too
high computational complexity for high-order tensors. In this figure, we compare
the VTT-RecALS-SIP algorithm with CPD-RecALS and CPD-RecALS-TR1A. We re-
call that the CPD-RecALS is the RecALS algorithm applied to a P-order tensor using
a naive rectification, by dividing each column by its first entry, to refine the Vander-
monde structure, whereas CPD-RecALS-TR1A uses the TR1A rectification. Note that
the CPD-RecALS-TR1A is efficient for positive SNR, but is computationally intense,
which means that VTT-RecALS-SIP is the best tradeoff between noise robustness and
computational complexity in this case.

3.3.4.2.2 Computational times In this section, the computational time is evalu-
ated using the native “Tic-Toc” functions of MatLab. In the following figures, we
generate a 6-order rank-2 tensor of size N1 × · · · × N6, we fix SNR = 5dB, and we
vary the number of the measurements as the product of the dimensions N1N2 · · ·N6.
In Fig. 3.19, we start with a tensor of size 4 × · · · × 4, having 46 measurements,
and we increase each Ni to Ni = 6, having at the end 66 measurements. The same
methodology is used in Fig. 3.20, changing each dimension from Ni = 6 to Ni = 8.
Note that in Fig. 3.19 the computational time of ND-ESPRIT grows faster than the
other algorithms. For larger number of measurements in Fig. 3.20, the ND-ESPRIT
is removed due to its too high computational time. Note that, like all the ALS-based
estimators, CPD-RecALS-TR1A has also an intense computational time since it is
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FIGURE 3.16: MSE vs SNR in dB for P = 4 with M = 3, N = 6.
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FIGURE 3.17: MSE vs SNR in dB for P = 6 with M = 2, N = 6.

an iterative algorithm applied to high-order tensors. For example, for a 6-order ten-
sor of size 8× · · · × 8 which corresponds to 86 measurements, we have an interesting
computational gain of more than 50 for VTT-RecALS-SIP compared to CPD-RecALS-
TR1A for the same noise robustness (see Fig. 3.18). On the other side, we have a
comparable computational time for VTT-RecALS-SIP and CP-VDM which is a non-
iterative algorithm, unlike VTT-RecALS-SIP. This can be justified by the dimension-
ality reduction step, and by the fact that the computational time of VTT-RecALS-SIP
is approximately the one of TT-SVD algorithm when P � 1. As a conclusion, we
can say that VTT-RecALS-SIP offers the best tradeoff between noise robustness and
computational complexity.

3.3.5 Discussion

Multidimensional Harmonic Retrieval (MHR) is at the heart of many important
signal-based applications. The MHR problem admits a natural formulation into the
tensor (a.k.a. multi-way array) framework, usually called generalized Vandermonde
CPD. Joint exploitation of multi-diversity/modality sensing technologies for data
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FIGURE 3.18: MSE vs SNR in dB for P = 6 with M = 2, N = 8.
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FIGURE 3.19: CPU time versus the number of measurements for P =
6, M = 2, Ni = (4, 6), and SNR= 5dB.

fusion increases inexorably the tensor order/dimensionality. Thus, efficient estima-
tion schemes have to face to the well-known “curse of dimensionality”. The chal-
lenge here is to reformulate a high-order tensor as a set of low-order tensors, called
cores or nodes into the graph-based formalism. Splitting the initial multidimen-
sional optimization problem into a sum of low dimensionality optimization prob-
lems for each node of the graph has at least two advantages. Firstly, ill-converging
problems for high dimensional optimization are considerably mitigated. Secondly,
thanks to the graph-based formalism, some lattent coupling properties between the
nodes of the graph can be revealed. As a consequence, new optimization strate-
gies taking the coupling relations into account can be designed. In this work, a new
scheme, called VTT-RecALS-SIP, belonging to the JIRAFE (Joint dImensionality Re-
duction And Factors rEtrieval) family, is proposed for the MHR problem. The aim
of the first step of the VTT-RecALS-SIP scheme is to reduce the dimension of the ini-
tial Least-Square optimization problem or equivalently to recover the nodes in the
popular and simple graph called Tensor Train. We show that due to the MHR prob-
lem structure, each node in the TT is associated to a partially structured VTT-core
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FIGURE 3.20: CPU time versus the number of measurements for P =
6, M = 2, Ni = (6, 8), and SNR= 5dB.

coupled with its two neighbors (in a graph-based sense) VTT-cores. In other words,
the initial difficult multidimensional LS optimization problem is now reformulated
as a more tractable and flexible equivalent optimization problem, i.e., as the sum of
coupled low dimensional LS optimization problems. The second step is dedicated
to the Vandermonde-based factor retrieval, i.e., the estimation of the parameters of
interest automatically paired. To reach this goal, a new rectified ALS algorithm is
proposed and adapted to the exploitation of the coupling properties between the
VTT-cores. Specifically, the Vandermonde rectification exploits the Shift Invariance
Property (SIP). Numerical simulations show the effectiveness of the proposed VTT-
RecALS-SIP method in terms of noise robustness and computational cost compared
to other state-of-art methods.
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3.4 JIRAFE-based MIMO channel decomposition

In this part, we will propose a JIRAFE-based method for a new 5-order MIMO chan-
nel tensor model. The proposed method finds the transmit and receive spatial signa-
tures as well as the complex path gains (which also capture the polarization effects).

3.4.1 Context of study

MIMO systems have been subject of intense research due to their great potential to
provide substantial energy efficiency and data rate gains [68]. Hence, for MIMO
channel modeling and estimation, it is important to accurately estimate path direc-
tions in azimuth and elevation, along with the polarization and amplitude param-
eters at both sides of the link. In multiuser MIMO systems, the knowledge of the
channel parameters at the base station (angles of arrival, angles of departure, path
gains, and polarization parameters) can be efficiently exploited to realize beamform-
ing designs and deal with multiuser interference. In this context, adopting a para-
metric approach to model/estimate the MIMO channel enables the use of limited
feedback in frequency division duplexing (FDD) systems to provide the base station
with the downlink channel parameters for subsequent transmit signal design. In a
recent paper [112], a tensor-based approach for dual-polarized MIMO channel esti-
mation has been proposed by recasting the MIMO channel as a fourth-order tensor.
The authors assumed a MIMO system with a uniform rectangular array (URA) at
the transmitter (e.g. base station) and a uniform linear array (ULA) at the receiver
(e.g. user equipment). The identifiability of the channel parameters is thoroughly
discussed and a channel estimation algorithm is proposed, the core of which relies
on the Alternating Least Squares (ALS) algorithm [60]. Despite being an attractive
solution, its computational complexity may still be high, especially when downlink
channel estimation is carried out at the user equipment with limited processing ca-
pabilities. In this work, URA is considered also at the reception. Note that this
particular array geometry is highly relevant, not only for wireless communications,
but also for modern radio-interferometry-based telescopes [101]. Exploiting azimuth
and elevation diversities at both ends of the link increases the tensor order to five.
Even if the ALS-based method proposed in [112] remains a possible solution, our
approach is inspired by the tensor network theory [28]. Indeed, the ALS algorithm
turns out to be often inefficient for high-order tensors. The principal drawbacks
as illustrated in the simulation part of this work are ill-converging problems [92]
and a high computational complexity cost. To mitigate this dimensionality problem,
the decomposition of the channel tensor is carried out using a Joint dImensional-
ity Reduction And Factor rEtrieval (JIRAFE) principle [156]. The acronym JIRAFE
encompasses a flexible and generic family of algorithms which has already been suc-
cessfully applied in the context of multidimensional harmonic retrieval [158]. More
precisely, the fifth-order channel tensor is first decomposed as a graph-based con-
nected lower-order tensors, called cores [104]. The coupled structure of these cores
is described in two scenarios of interest, i.e., when only few (< 4) propagation paths
are dominant and the case where the multi-path propagation condition becomes
more severe (≥ 4). While the first case is based on some preliminary results given in
[156], the core structure for the more challenging situations is described in this work.
The second step of the JIRAFE method is dedicated to the factor retrieval for which
we exploit the Vandermonde rectification strategy proposed in [15]. Our detailed
contributions can be summarized as follows:
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1. From a fundamental perspective, the equivalence between CPD and TTD has
been presented in [156] for full column rank factors. This equivalence is deeply
reformulated in the sense that the structure of the TT-cores changes if the full
column rank factor assumption is violated. This is precisely the case of the
MIMO channel tensor considered in this work.

2. Comparatively with the channel model considered in [112], the one proposed
in this work exploits an URA at the reception, inducing an increase of spatial
diversity. To the best of our knowledge, this is the first time that such a tensor
model is introduced.

3. The MIMO channel is represented under a TT format, instead of the usual
CPD representation, and the structure of the TT-cores is highlighted separately
under the assumptions of full column rank and full row rank for the matrix
factors.

4. The TT structure characterized by properties of coupling between two adja-
cent cores containing the same latent matrices, is exploited for dimensionality
reduction and channel parameters estimation using the JIRAFE (Joint dImen-
sionality Reduction And Factor rEtrieval) scheme.

The proposed JIRAFE-based method allows to find the transmit and receive spatial
signatures as well as the complex path gains (which also capture the polarization
effects). Monte Carlo simulations show that our proposed TT-based representation
of the channel is more robust to noise and computationally more attractive than
available competing tensor-based methods, for physical parameters estimation.

3.4.2 Tensor-based channel modeling

3.4.2.1 Canonical Polyadic Decomposition (CPD) of the channel tensor

3.4.2.1.1 Expression of the channel tensor The steering vectors for the k-th path
for an URA in transmission of size MTx × MTy and in reception of size MRx × MRy

are respectively, aT(k) = aTx(k)⊗ aTy(k), aR(k) = aRx(k)⊗ aRy(k) where

aX(k) = [1, exp (iωX(k)), · · · , exp (iωX(k)(MX − 1))]T

with X ∈ {Tx, Ty, Rx, Ry}. Note that ⊗ and � denote respectively Kronecker and
Khatri-Rao products. The steering matrices for K paths in transmission and in re-
ception are respectively, AT = ATx �ATy and AR = ARx �ARy in which

AX =
[
aX(1) · · · aX(K)

]
.

Now, define β
(p,q)
k as the k-th entry of the vector β(p,q), with 1 ≤ k ≤ K, where

β
(p,q)
k is the generalized (complex) path-loss parameter for the k-th path and for the

(p, q)-th subchannel. Note that p ∈
{

Vr, Hr
}

refers to the vertical (V) polarized and
horizontal (H) polarized receive antennas, and q ∈

{
Vt, Ht

}
refers to the V-polarized

and H-polarized transmit antennas. In the noise-free scenario, the channel matrix is
given by

H = (A∗Tx
�A∗Ty

�ARx �ARy)B
T

with B = [β(Vr ,Vt)β(Vr ,Ht)β(Hr ,Vt)β(Hr ,Ht)]T ∈ C4×K. From this matrix unfolding of the
channel tensor H, we can conclude that it follows a fifth-order CPD of canonical
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rank K, and size MTx ×MTy ×MRx ×MRy × 4, given by

H = I5,K ×1 A∗Tx
×2 A∗Ty

×3 ARx ×4 ARy ×5 B +N . (3.37)

The additive term N encompasses the background noise and the estimation error
due to the pre-estimation of the unstructured channel obtained by sending known
pilot sequences from the transmit antennas. If orthogonal pilot sequences are used
then the noise tensor N can be modeled as zero-mean circularly complex Gaussian
random variables. Note that the considered channel tensor model is an extension of
the one presented in [112] due to the URA assumption at both the transmitter and the
receiver. We draw attention to the fact that the focus of our work is on the extraction
of the MIMO channel parameters based on the unstructured noisy channel tensor.

3.4.2.1.2 Model assumptions For identifiability concerns, we assume the follow-
ing constraints.

1. The steering matrices are all of full column rank, which implies

K ≤ min{MTx , MTy , MRx , MRy}.

2. Two scenarios in terms of the number of propagation paths are of interest:

(a) K < 4 (few dominant paths), then B is a full column rank matrix.

(b) K ≥ 4, then B is a full row rank factor matrix.

3.4.2.2 Tensor train decomposition (TTD) of the channel tensor

The idea of the TTD [104] is to break the dimensionality/order of H into 3-order
TT-cores and two matrices according to

H TTD
= G1 ×1

2 G2 ×1
3 G3 ×1

4 G4 ×1
5 G5,

where G1 ∈ CMTx×K, G2 ∈ C
K×MTy×K, G3 ∈ CK×MRx×K, G4 ∈ C

K×MRy×K, and G5 ∈
CK×4. The product ×q

p is defined as in [156]. As mentioned in the previous section,
H follows a 5-order CPD of canonical rank-K. In this context, the TT-cores can be
analytically relied to the desired factors of the CPD. This is the subject of the next
section.

3.4.3 Joint Dimensionality Reduction and Factor Retrieval (JIRAFE)

3.4.3.1 JIRAFE: dimensionality reduction

In the following, we present two theorems on the structure of the TT-cores resulting
from the TT-SVD [104] algorithm applied to eq. (3.37).

1. Theorem 11 is a generalization of the result given in [156], i.e., when there
exists few (K < 4) dominant propagation paths. In this case, all the factors are
full-column rank.

2. Theorem 12 modifies Theorem 11 for the more challenging scenario where
there is four or more propagation paths. In this case, the last factor is full-row
rank.
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Theorem 11. When all the factors are full-column rank (K < 4), the TT-cores are given by

G1 = A∗Tx
M−1

1 , G2 = I3,K ×1 M1 ×2 A∗Ty
×3 M−T

2 ,

G3 = I3,K ×1 M2 ×2 ARx ×3 M−T
3 ,

G4 = I3,K ×1 M3 ×2 ARy ×3 M−T
4 , and G5 = M4BT

where, for 1 ≤ k ≤ 4, Mk ∈ CK×K are nonsingular transformation matrices. This means
that the TT-ranks are all equal to the canonical rank K, where K is the number of paths.

Theorem 12. If the last factor is full row rank, i.e., K ≥ 4, then the TT-cores {G1,G2,G3}
verify the same factorizations as in Theorem 11 but the two last TT-cores are given by:

G4 = I3,K ×1 M3 ×2 ARy ×3 M−TB, and G5 = M

where M ∈ C4×4 is a nonsingular transformation matrix. This means that the TT-ranks are
equal to (K, K, K, 4).

Proof. Both theorems rely on constructive proofs based on the algebraic structure of
the TT-SVD algorithm applied to a 5-order CPD tensor. Depending on the rank of
B, the reasoning in both cases will be the same for all but the two last TT-cores. We
recall that Mk are change-of-basis matrices that appear due to the use of the SVD to
extract dominant subspaces [156].

Remark. The two above theorems show that the TT-core structure mixes physical quantities,
i.e., {A∗Tx

, A∗Ty
, ARx , ARy , B} and latent matrices, i.e., {M1, M2, M3, M4, M}, and that each

TT-core is coupled with its two neighbor TT-cores via the latent matrices.

3.4.3.2 JIRAFE: CPD factors retrieval

When the TT-cores have been estimated thanks to the TT-SVD algorithm for instance,
the aim of the second step of JIRAFE is to propose an estimation strategy exploiting
the TT-core structures given in Theorems 11 and 12.

3.4.3.2.1 Few dominant paths scenario (K < 4) When K < 4, we have to mini-
mize the following criterion with respect to the physical quantities {A∗Tx

, A∗Ty
, ARx , ARy , B}

and the latent quantities {M1, M2, M3, M4}:

C1 = ||Ĝ1 −A∗Tx
M−1

1 ||
2
F + ||Ĝ5 −M4BT||2F

+ ||Ĝ2 − I3,K ×1 M1 ×2 A∗Ty
×3 M−T

2 ||
2
F

+ ||Ĝ3 − I3,K ×1 M2 ×2 ARx ×3 M−T
3 ||

2
F

+ ||Ĝ4 − I3,K ×1 M3 ×2 ARy ×3 M−T
4 ||

2
F.

This criterion is the sum of coupled LS criteria. At this point, we choose de-
liberately to promote a local/sequential (but fast) optimization method (see Algo-
rithm 9) instead of a global/optimal optimization strategy based for instance on
the Lagrangian minimization [47]. In Algorithm 9, we denote by Tri-ALS, the ALS
algorithm applied to a 3-order tensor, the acronym TR1A stands Toeplitz Rank-1
Approximation and is dedicated to a Vandermonde rectification strategy presented
in [15], while KRF denotes a non-iterative method called Khatri-Rao Factorization
proposed in [74]. KRF algorithm recovers 3-order CPD factors assuming that one
factor is known and full column rank. It computes K SVDs of rank-one matrices to
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recover the remaining two other factors. Since the focus of this work is on the new
TT representation for the channel tensor H, we could adopt any state-of-art method
for estimating the channel, such as least squares or matched filtering techniques.

Algorithm 9 JIRAFE for few dominant propagation paths

Input: 5-order rank-K tensor H, TT-ranks: (K, K, K, K).
Output: Estimated CPD factors: Â∗Tx

, Â∗Ty
, ÂRx , ÂRy , B̂.

1: Dimensionality reduction: [Ĝ1, Ĝ2, Ĝ3, Ĝ4, Ĝ5]←↩ TT-SVD(H, R),
2: CPD factors retrieval: [M̂1, Â∗Ty

, M̂−T
2 ]←↩ Tri-ALS(Ĝ2, K),

3: [ÂRx , M̂−T
3 ]←↩ KRF(Ĝ3, M̂2, K),

4: [ÂRY , M̂−T
4 ]←↩ KRF(Ĝ4, M̂3, K),

5: Â∗Tx
= Ĝ1M̂1, and B̂ = ĜT

5 M̂−T
4 ;

6: Rectification: [Â∗Tx
, Â∗Ty

, ÂRx , ÂRy ]←↩ TR1A(Â∗Tx
, Â∗Ty

, ÂRx , ÂRy).

Remark. Note that the steering factors have a Vandermonde structure. It then makes sense
to use a Tri-ALS algorithm that takes into account the structure of these factors. In the
simulations, we will use a class of ALS-based methods that is called RecALS, for Rectified
ALS [15]. Note that other methods for angle estimation could also be applied. The chosen
RecALS method is a 3-order ALS that integrates a rectification strategy of the Vandermonde
structure of the factor matrices. This strategy is also applied on the Vandermonde factors
resulting from the KRF algorithm. In the simulations, and considering the use of TR1A to
rectify the Vandermonde structure, we will call the proposed method JIRAFE.

3.4.3.2.2 More general multi-path scenario (K ≥ 4) Based on Theorem 12, we
propose a second algorithm which minimizes the following criterion over the physi-
cal quantities {A∗Tx

, A∗Ty
, ARx , ARy , B} and over the latent quantities {M1, M2, M3, Q}:

C2 = ||Ĝ1 −A∗Tx
M−1

1 ||
2
F + ||Ĝ5 −Q†TBT||2F

+ ||Ĝ2 − I3,K ×1 M1 ×2 A∗Ty
×3 M−T

2 ||
2
F

+ ||Ĝ3 − I3,K ×1 M2 ×2 ARx ×3 M−T
3 ||

2
F

+ ||Ĝ4 − I3,K ×1 M3 ×2 ARy ×3 Q||2F

where Q = M−TB and Ĝ5 = M.
Note that the Algorithm 2 is deduced from Algorithm 11 by replacing the TT-

ranks by (K, K, K, 4) in the dimensionality reduction. In addition, lines 4 and 5 be-
come [ÂRY , Q̂]←↩ KRF(Ĝ4, M̂3, 4) and Â∗Tx

= Ĝ1M̂1, and B̂ = ĜT
5 Q̂, respectively.

It is worth noting that it has been proven in [156] that the JIRAFE method esti-
mates the CPD factors up to the same trivial ambiguities as for the ALS algorithm. In
contrast to the scheme presented in [156], the proposed JIRAFE algorithm replaces
the Bi-ALS algorithm by the non-iterative KRF estimator, which allows to mitigate
potential ill-convergence problems.

3.4.4 Simulation Results

In this section, we show the interest of using the TTD of Section 3.4.2.2 over the
CPD through the JIRAFE-based proposed algorithms. The Vandermonde factors
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FIGURE 3.21: MSE vs SNR in dB with Alg. 9 for K = 3.

ATx , ATy , ARx , and ARy are generated, respectively, based on single random realiza-
tions of the angular frequencies ωTx(k), ωTy(k), ωRx(k) and ωRy(k) following a uni-
form distribution in ]0, π]. The factor B is drawn from a complex Gaussian distri-
bution with zero mean and unit variance. The scenario for the simulations consists
of a receiver and a transmitter both with 10× 8 URAs, implying that H satisfies a
5-order rank-K CPD, of dimensions 10× 8× 10× 8× 4. The channel tensor H is
assumed to be pre-estimated using a supervised approach with orthogonal pilots.
The considered MSE concerns the estimation error over the angular frequencies, i.e.,

MSE =
K

∑
k=1

((
ωTx(k)− ω̂Tx(k)

)2
+
(
ωTy(k)− ω̂Ty(k)

)2

+
(
ωRx(k)− ω̂Rx(k)

)2
+
(
ωRy(k)− ω̂Ry(k)

)2
)

,

the signal to noise ratio (SNR) is defined as

SNR [dB] = 10 log
||H||2F
||N ||2F

.

The depicted MSE is calculated by averaging the results over 1000 independent
Monte Carlo runs, truncated from 5% worst and 5% best MSEs to eliminate the influ-
ence of ill-convergence experiments and outliers. In this work, we assume random
initialization in the ALS for G2, eigendecomposition-based initialization can also
be considered at the expense of an additional computational cost. The proposed
method is compared to two state-of-art algorithms, the ALS-based solution pro-
posed in [112], called PARAFAC, which uses an ALS algorithm followed by closed-
form solutions to estimate the parameters from the factors, and the so-called CP-
VDM, for CPD with Vandermonde factor matrix, proposed in [135]. All algorithms
are applied to the more general model in eq. (3.37). In Fig. 3.21, we fix K = 3, i.e.,
the last factor has a full column rank. One may remark that JIRAFE and PARAFAC
have same robustness to noise for a wide range of positive SNR. For negative SNRs,
JIRAFE is the most robust estimator. This can be justified by the noise reduction
property of the truncated SVD when the TT-SVD is applied. The same remark can
be made for Fig. 3.22 where K = 4. In this figure, we can see that both, JIRAFE and
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FIGURE 3.22: MSE vs SNR in dB with Alg. 2 for K = 4.
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FIGURE 3.23: MSE vs SNR in dB with Alg. 2 for K = 5.

PARAFAC, are competing for high SNRs. Meanwhile, JIRAFE is more robust than
the other estimators for low SNRs. In Fig. 3.23, the number of paths is fixed at K = 5,
which means that the last factor is full row rank. We have a similar behavior for JI-
RAFE and PARAFAC as in the last experiment. On the other hand, CP-VDM has
difficulties when the rank increases. It is worth noting that breaking the dimension-
ality of tensor H helps to improve the convergence of the ALS algorithm, since with
JIRAFE, the ALS is applied to 3-order tensors instead of the original fifth-order ten-
sor. In Fig. 3.24, we plot the mean number of iterations for JIRAFE and PARAFAC.
The bars represent the standard deviation for each SNR. We notice that 3-order ALS
needs less iterations to converge, while keeping in mind that the computational cost
of a 3-order ALS iteration, that needs O(3K2M2) flops, is very low compared to that
of a 5-order ALS with O(5K2M4) flops, where M = max(MTx , MTy , MRx , MRy) = 10.
Tab. 3.6 gives the average computation time for each method. The proposed JIRAFE
provides the best tradeoff between noise robustness and computational complexity.
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FIGURE 3.24: Mean number of iteration for K = 2.

TABLE 3.6: Comparison of the computation time with SNR= 15dB.

Canonical rank K 2 3 4 5
PARAFAC 0, 207 (s) 1, 117 (s) 1, 593 (s) 2, 143 (s)

JIRAFE 0, 026 (s) 0, 063 (s) 0, 088 (s) 0, 215 (s)
CP-VDM 0, 015 (s) 0, 018 (s) 0, 021 (s) 0, 021 (s)

3.4.5 Discussion

In this application, an extension of a MIMO channel is considered using URAs both
at the transmitter and the receiver, which leads to a fifth-order channel tensor. A
TT-based representation has been derived for this tensor, highlighting the coupling
between two adjacent core tensors via the latent matrices. For a multi-path scenario,
a new JIRAFE-based method has been proposed for channel parameters estimation.
This method allows to break the dimensionality of the original fifth-order CPD into
a train of third-order tensors. Simulation results show the effectiveness of the pro-
posed TT-based channel representation in terms of noise robustness and computa-
tion time for retrieving the physical channel parameters.
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3.5 Conclusion

The proposed JIRAFE framework representes a suited solution for the curse of di-
mensionality. JIRAFE allows to break a high dimensional optimization problem
into a set of coupled 3-dimensional optimization problems. We did show that JI-
RAFE has several advantages in terms of storage cost, computational complexity,
convergence and estimation accuracy. It is a general framework where different so-
lutions for the factor retrieval step can be considered depending on the structure of
the factors. Moreover, some results on the uniqueness when the factors have lin-
ear dependencies have been detailes. We showed than more restrictive uniqueness
conditions are the price to pay for having a numerically efficient JIRAFE-based al-
gorithm, that guarantees recovery of the factor matrices. Two realistic applications
have been considered in this work, first, we applied the JIRAFE framework to the
Multidimensional Harmonic Retrieval problem, and then, for estiamting the physi-
cal parameters regarding a MIMO channel tensor. In both applications, interesting
simulation results were found for the JIRAFE framework.



67

Chapter 4

A TT-based hierarchical framework

In this chapter, we exploit the ideas developed for the hierarchical/tree Tucker de-
composition in the context of the TT decomposition. Specifically, a new efficient TT
decomposition scheme [155], called TT-HSVD for Tensor-Train Hierarchical SVD, is
proposed as a solution to compute the TT decomposition of a high-order tensor. The
new algorithm simultaneously delivers the TT-core tensors and their TT-ranks in a
hierarchical way. It is a stable (i.e., non-iterative) and much less complex than the
TT-SVD, which is very important when dealing with large-scale data to break the
curse of dimensionality. Then, we will also expose a communication-based appli-
cation, namely MIMO-OFDM relaying systems [159], where the TT modeling can
be a natural/direct model, and where a TTD based solution using the TT-HSVD is
proposed allowing a joint channel and symbol estimation.

4.1 TT-HSVD algorithm

4.1.1 Motivations for a new hierarchical framework

Massive and heterogeneous data processing and analysis have been clearly identi-
fied by the scientific community as key problems in several application areas [28,
31, 30]. It was popularized under the generic terms of “data science" or “big data".
Processing large volumes of data, extracting their hidden patterns, while preform-
ing prediction and inference tasks has become crucial in economy, industry and sci-
ence. Modern sensing systems exploit simultaneously different physical technolo-
gies. Assume that D specific sensing devices are available, to measure D signals
parameterized by different parameters. Treating independently each set of mea-
sured data is clearly a reductive approach. By doing that, “hidden relationships” or
inter-correlations between the datasets may be totally missed. Tensor decomposi-
tions have received a particular attention recently due to their capability to handle
a variety of mining tasks applied to massive datasets, being a pertinent framework
taking into account the heterogeneity and multi-modality of the data. In this case,
data can be arranged as a D-dimensional array, also referred to as a D-order tensor,
and denoted by X . In the context of big data processing and analysis, the following
properties are desirable:

• a stable (i.e., non-iterative) recovery algorithm

• a low storage cost (i.e., the number of free parameters must be linear in D)

• an adequate graphical formalism allowing a simple but rigorous visualization
of the decomposition of tensors with D > 3

In this section, our interest is on the TT decomposition and the associated TT-SVD
algorithm [105]. It is worth noting that TT-SVD is a sequential algorithm, i.e., the
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TT-cores are computed one after the other and not at the same time. Moreover, it is
a very costly algorithm in terms of complexity, since it involves the application of
SVD to matrices of very large sizes. To tackle the computational and storage com-
plexity problem associated with the decomposition of large-scale tensors, a number
of methods have been proposed [30], which either replace non-iterative methods by
closed-form ones when the tensor is structured [5], or exploit sparsity of the data [80,
107] or, yet, reduce the size of the data using compression with parallel processing
[98, 129]. As an alternative to the TT-SVD algorithm, we propose a new algorithm
called TT-HSVD algorithm. This algorithm allows to simultaneously recover the
TT-core tensors and their TT-ranks in a hierarchical way and is much less complex
than TT-SVD. The proposed Tensor Train - Hierarchical SVD ( TT-HSVD) algorithm
adopts a new unfolding and reshaping strategy that, on one hand, enables to paral-
lelize the decomposition across several processors and, on the other hand, results in
a less expensive computational cost compared to competing solutions based on the
TT-SVD. An algebraic analysis of the two algorithms is carried out, showing that TT-
SVD and TT-HSVD compute the same TT-ranks and TT-core tensors up to specific
bases. Simulation results for different tensor orders and dimensions corroborate the
effectiveness of the proposed TT-HSVD algorithm.

4.1.2 Hierarchical methodology to compute the TT decomposition

4.1.2.1 Description of the TT-HSVD algorithm

In this section, the TT-HSVD algorithm is presented, with the aim to derive the
TT-cores in a parallel hierarchical way. The main difference between the TT-SVD
and TT-HSVD algorithms lies in the reshaping strategy, i.e. the way to reshape
the SVD factors (Ud, Vd), at each step. Fig. 4.1 illustrates the proposed strategy
by means of the graph-based representation of the TT decomposition of a 4-order
tensor. This figure is to be compared with Fig. 2.4. With the TT-HSVD algorithm,
for an a priori chosen index D̄ ∈ {1, . . . , D}, the first matrix unfolding X(D̄) is of
size (I1 · · · ID̄)× (ID̄+1 · · · ID) instead of I1× (I2 · · · ID) as for the TT-SVD algorithm,
which leads to a more rectangular matrix. Its RD̄-truncated SVD provides two fac-
tors UD̄ and VD̄ of size (I1 · · · ID̄)× RD̄ and RD̄ × (ID̄+1 · · · ID), respectively. These
two factors are now reshaped in parallel, which constitutes the main difference with
the TT-SVD algorithm for which only a single reshaping operation is applied to V1.
This processing is repeated after each SVD computation, as illustrated in Fig. 4.1 for
a 4-order tensor.

Generally speaking, the choice of the best reshaping strategy, i.e., the choice of the
index D̄, is depending on an a priori physical knowledge related to each application
[79, 18], as for instance, in bio-medical signal analysis, or in wireless communica-
tions [4, 152, 48]. In Section 4.1.5, this best choice is discussed in terms of algorith-
mic complexity. To illustrate this choice, two reshaping strategies are considered in
Fig. 4.2 for computing the TT decomposition of a 8-order tensor with the TT-HSVD
algorithm. More precisely, Fig. 4.2 (left) corresponds to a balanced unfolding with
D̄ = 4, while Fig. 4.2 (right) corresponds to an unbalanced unfolding with D̄ = 3.
From this simple example, one can conclude that this graph-based representation is
not sufficiently compact in case of high order, which motivated the new graph-based
representation using patterns, introduced in the next section.
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FIGURE 4.1: TT-HSVD applied to a 4-order tensor.

4.1.2.2 Graph-based representation with patterns

A group of algorithmic instructions can be identified as recurrent in the TT-SVD and
TT-HSVD algorithms. Such a group will be called a pattern. The concept of pattern
is introduced in this work as a useful graphical tool to model the processing steps
of TT decomposition algorithms in an illustrative way. A pattern can be described
equivalently under a pseudo-code formalism. This equivalence allows to represent
the TTD of high-order tensor in a more efficient way. It also facilitates understanding
of the main steps of the TT-HSVD algorithm, although it can also be used to describe
any algorithm. Three types of pattern are now described.

4.1.2.2.1 Splitting/Splitting pattern
The Splitting/Splitting pattern takes as input any matrix unfolding X(D̄) of size
RD̄ f

(ID̄ f +1 ID̄ f +2 · · · ID̄) × (ID̄+1 ID̄+2 · · · ID̄l
)RD̄l

, where D̄ f stands for the first index
and D̄l for the last index. This pattern applies the SVD to the input matrix and
generates a matrix UD̄, of size RD̄ f

(ID̄ f +1 ID̄ f +2 · · · ID̄)× RD̄, which contains the left
singular vectors, and a matrix VD̄, of size RD̄ × (ID̄+1 ID̄+2 · · · ID̄l

)RD̄l
, equal to the

product of the diagonal singular values matrix with the matrix composed of the
right singular vectors. These two factors (UD̄, VD̄) are then reshaped using two new
indices D̄′ and D̄′′. This pattern is represented in Fig. 4.3. The corresponding graph
is characterized by one input X(D̄), two indices D̄′ and D̄′′, and two outputs X(D̄ f +D̄′)
and X(D̄+D̄′′). This pattern plays the role of data processing unit, before generating
the desired TT-cores using other patterns that will be called core generation patterns.
One can notice that this pattern is always used at the top of the TT-HSVD algorithm,
with D̄ f = 0, and D̄l = D, the tensor order. (See Figs. 4.1, 4.2 (left) and 4.2 (right)).
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FIGURE 4.2: Balanced (left) and Unbalanced (right) TT-HSVD applied
to a 8-order tensor.

4.1.2.2.2 Mixed patterns: data processing and TT-core generation The first mixed
pattern, that will be called Splitting/Generation pattern, takes as input any matrix
X(D̄) of size RD̄ f

(ID̄ f +1 ID̄ f +2 · · · ID̄)× (ID̄+1RD̄+1), and returns a reshaped matrix and
a tensor. It has the same structure as the splitting/splitting pattern, except that it
generates a matrix and a tensor instead of two matrices. This pattern is represented
in Fig. 4.4 (left). For example, this pattern can be seen in Fig. 4.2 (right) as the func-
tion that takes as input X(2) and generates X(1) and G3. The second mixed pattern,
that will be called Generation/Splitting pattern, takes as input any matrix X(D̄) of
size (RD̄−1 ID̄)× (ID̄+1 ID̄+2 · · · ID̄l

)RD̄l
, and returns a tensor and a reshaped matrix.

This pattern is represented in Fig. 4.4 (right). For example, this pattern can be seen
in Fig. 4.2 (right) as the function that takes as input X(6) and generates G6 and X(7).

4.1.2.2.3 TT-core generation pattern The TT-core generation pattern generates
two core tensors in parallel. It will be called Generation/Generation pattern. It is
represented in Fig. 4.5. It takes as input X(D̄) of size (RD̄−1 ID̄) × (ID̄+1RD̄+1) and
returns two core tensors as outputs. For example, this pattern can be recognized in
Fig. 4.2 (right) as the function that takes as input X(4) and generates G4 and G5.
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FIGURE 4.3: Splitting/Splitting pattern.

4.1.2.3 Application of the pattern formalism

Note that the TT-SVD algorithm uses one Splitting/Splitting pattern at the begin-
ning and then a sequence of Generation/Splitting patterns, while the three differ-
ent patterns can be used for the TT-HSVD algorithm. Figs. 4.6 and 4.7 illustrate
the pattern-based representation of the TT-HSVD algorithm applied to an 8-order
tensor, in the balanced and unbalanced cases, respectively. These figures are to be
compared with Figs. 4.2 (left) and 4.2 (right).

A pseudo-code of the TT-HSVD based on the patterns formalism is presented in
Algorithm 10.

Algorithm 10 TT-HSVD algorithm

Input: D-order tensor X , set of indices D̄, D̄
′

and D̄
′′
.

Output: TT-cores: Ĝhrl
1 , Ĝhrl

2 , · · · Ĝhrl
D−1, Ĝhrl

D .

1: Apply a splitting/splitting pattern to the matrix X(D̄) of size I1 I2 · · · ID̄ ×
ID̄+1 ID̄+2 · · · ID̄ with respect to indices D̄

′
and D̄

′′
.

while the outputs have 2 or more of the original tensor dimensions in their row
or column dimensions

2: Choose to apply either a splitting/splitting, a generation/splitting or a split-
ting/generation patterns on the matrices X(D̄) of size RD̄ f

(ID̄ f +1 ID̄ f +2 · · · ID̄) ×
(ID̄+1 ID̄+2 · · · ID̄l

)RD̄l
with respect to indices D̄

′
and D̄

′′
.

end
3: Apply a generation/generation pattern to any output matrix X(D̄) of size

(RD̄−1 ID̄)× (ID̄+1RD̄+1).

4.1.3 Algebraic analysis of the TT-SVD and TT-HSVD algorithms

From an algorithmic point of view, the TT-HSVD algorithm is based on a different
reshaping-strategy compared to the TT-SVD algorithm leading to a more flexible
way to compute the TT-cores. From the algebraic point of view, it is crucial to study
the relationship between the estimated TT-cores and the true ones. It is important
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FIGURE 4.4: Splitting/Generation pattern (left), Generation/Splitting
pattern (right).

to note that although the TT-SVD has been proposed in [105], its algebraic analysis
is to the best of our knowledge original and is carried out for the first time in this
work. In [144, 119], the non-uniqueness of the TT decomposition is discussed. Each
TT-core can be post and pre-multiplied by any sequence of invertible matrices. In
Lemma 4 and Lemma 5, we expose this property in the context of the TT-SVD and
the TT-HSVD algorithms. Specifically, we show that these quantities play the role of
change-of-basis matrices when a dominant subspace is extracted by the SVD. First,
we recall that for a given rank-deficient matrix, the dominant left singular vectors
of the SVD span the column space up to an invertible change-of-basis matrix. In the
sequel, these matrices are denoted by P or Q.

4.1.3.1 Structure of the estimated TT-cores for the TT-SVD algorithm

Lemma 4. Let Ĝseq
d be the sequentially estimated TT-core using the d-th TT-SVD algorithm

and define a set of change-of-basis matrices {P1, . . . , PD−1} with Pd of dimensions Rd ×
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FIGURE 4.5: Generation/Generation pattern.

FIGURE 4.6: Graph-based representation using patterns for a bal-
anced TT-HSVD applied to an 8-order tensor.

Rd. The TT-cores associated with the TT-SVD algorithm verify the following relations:

Ĝseq
1 = G1P1,

Ĝseq
d = P−1

d−1 ×
1
2 Gd ×1

3 Pd, for 2 ≤ d ≤ D− 1, (4.1)

Ĝseq
D = P−1

D−1GD.

Proof. Based on the algebraic formalism of the patterns given in Appendix D, and
giving the facts that

• Splitting/Splitting patterns are always applied first, before applying any other
type of patterns in the TT-SVD algorithm, i.e., we always generate matrices G1
and X(2) from matrix X(1) at the first step.

• Generation/Splitting pattern is always applied after Generation/Splitting and
Splitting/Splitting patterns in the TT-SVD. A combination of this type is al-
lowed, since the format of the outputs of these latters corresponds to the format
of the input of the Generation/Splitting pattern. This means that the expres-
sions of the outputs in (D.7) and (D.9) have the same structure of the input in
(D.8).
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FIGURE 4.7: Graph-based representation using patterns for an unbal-
anced TT-HSVD applied to an 8-order tensor.

• The TT-SVD algorithm can be seen as a Splitting/Splitting pattern followed by
a succession of Generation/Splitting patterns.

The expression of the Generation/Splitting pattern output, given in (D.10), shows
that the TT-core associated to the TT-SVD admits a general and final formulation
given by (4.1).

4.1.3.2 Presentation and analysis of the TT-HSVD algorithm

In the following, we present the TT-HSVD algorithm. We also establish the link
between the TT-HSVD and TT-SVD algorithms, in terms of the TT-cores and TT-
ranks.

4.1.3.2.1 Structure of the estimated TT-cores Hereafter, we formulate a similar
result for the TT-HSVD.

Lemma 5. Let Ĝhrl
d be the hierarchically estimated d-th TT-core using the TT-HSVD algo-

rithm and define a set of change-of-basis matrices {Q1, . . . , QD−1} where Qd is a Rd× Rd.
The TT-cores associated with the TT-HSVD algorithm verify the following relations:

Ĝhrl
1 = G1Q1

Ĝhrl
d = Q−1

d−1 ×
1
2 Gd ×1

3 Qd, for 2 ≤ d ≤ D− 1 (4.2)

Ĝhrl
D = Q−1

D−1GD.

Proof. The demonstration of this Lemma is based on the algebraic formalism of the
patterns given in Appendix D. Note that in the TT-HSVD algorithm:

• The Splitting/Splitting patterns are always applied first, before applying any
other type of patterns.
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• The input and the outputs of the Splitting/Splitting pattern have the same for-
mat. Any combination of Splitting/Splitting patterns is possible and allowed
(See (D.1), (D.6) and (D.7)).

• The output of the Splitting/Splitting pattern has the same format as the input
of all other generation patterns. Any combination of Splitting/Splitting pat-
terns with the other patterns is possible and allowed (See (D.6), (D.7), (D.8)
and (D.11)).

Based on the expressions of the generation patterns outputs, given in (D.10),
(D.12) and (D.13), it can be noticed that the TT-core associated to the TT-HSVD ad-
mits a general and final formulation given by (4.2).

4.1.3.3 Comparison of the two schemes

In Fig. 4.8 and Fig. 4.9, we can see that the TT-SVD and the TT-HSVD in the algebraic
perspective estimate the same TT-core up to different change-of-basis matrices.

FIGURE 4.8: Graph-based illustration of the TT-SVD algorithm.

FIGURE 4.9: Graph-based illustration of the TT-HSVD algorithm.

Based on the previous relations on the structure of the TT-cores, the following result
can be formulated.

Lemma 6. Define a set of matrices: {H1, . . . , HD−1}, with Hd = P−1
d Qd. The TT-cores

obtained by applying the TT-SVD and TT-HSVD algorithms satisfy the following relations:

Ĝhrl
1 = Ĝseq

1 H1, (4.3)

Ĝhrl
d = H−1

d−1 ×
1
2 Ĝ

seq
d ×1

3 Hd for 2 ≤ d ≤ D− 1 , (4.4)

Ĝhrl
D = H−1

D−1Ĝseq
D . (4.5)
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Proof. Note that to demonstrate Eq. (4.4), we use the identity A×1
2 B = AB.

From (4.1), we deduce:

Gd = Pd−1 ×1
2 Ĝ

seq
d ×1

3 P−1
d .

Substituting this last equation into (4.2), we have:

Ĝhrl
d = (P−1

d−1Qd−1)
−1 ×1

2 Ĝ
seq
d ×1

3 (P
−1
d Qd) for 2 ≤ d ≤ D− 1

The above Lemma allows us to formulate the following theorem.

Theorem 13. The TT-ranks are equal for the TT-SVD and the TT-HSVD algorithms.

Proof. From (4.3) and (4.5) in Lemma 6, the proof of the theorem is straightforward
for d = 1 and d = D. For 2 ≤ d ≤ D− 1, two alternative Tucker-based formulations
of (4.4) are

Ĝhrl
d = Ĝseq

d ×1 H−1
d−1 ×2 IId ×3 HT

d ,

Ĝseq
d = Ĝhrl

d ×1 Hd−1 ×2 IId ×3 H−T
d .

Based on the two above relations, tensors Ĝhrl
d and Ĝseq

d have a multilinear (Rd−1, Id, Rd)-
rank. Since the TT-ranks correspond to the dimensions of the first and third modes

of Ĝhrl
d or Ĝseq

d , the proof is completed.

Intuitively, the TT-ranks are essentially related to the TT model, and in particular
to the matrices given by (2.6), and not to the choice of the algorithm.
One may note that in the case where the tensor reshapings are of low rank only ap-
proximately, Oseledets in [105] has established a bound on the error of reconstruc-
tion for the TT-SVD algorithm. Unfortunaltely, establishing a similar bound for the
TT-HSVD is not straightforward since we reshape and use both the left and right
parts of the SVD at each step, leading to the manipulation of some non-orthonormal
factors causing this issue. In [138, 46], the authors have proposed a good strategy
to deal with the non-orthonormal factors that can be applied in the context of the
TT-HSVD algorithm. However, we will show in the next section that even if the ten-
sor is affected by noise, both algorithms, namely the TT-SVD and the TT-HSVD, can
still have the same robustness when the TT-ranks are either assumed to be known
or when they are estimated in the algorithms.

4.1.4 Computational complexity and simulation results

4.1.4.1 Numerical computation of the SVD

In this section, we compare the computational complexity of both algorithms us-
ing the truncated SVD. Note that TT-HSVD an TT-SVD involve the same number
of SVDs. However, the TT-HSVD has the advantage of applying SVDs to matrices
of smaller dimensions compared to the TT-SVD algorithm, which results in a lower
computational complexity. The numerical stability of the TT-SVD and the TT-HSVD
is relied to the well-known numerical rank determination in the SVD. We have es-
sentially two scenarios of interest.
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1. The true rank is a priori known. This is often realistic due to a priori knowl-
edge on the physical model as for instance in wireless communication appli-
cations where the rank can be the number of path/user, in array processing
for sky imaging where the rank is the number of most brining stars (known
due to decade and decade of sky observation), .... For these important scenar-
ios, the TT-SVD and the TT-HSVD algorithms provide an exact factorization of
a high-order tensor into a collection of low-order tensors. This is mainly the
framework of our contribution. The computation of the SVD is done based on
two orthogonal iteration (OI) algorithms [53] executed in parallel. We recall
that computing the matrix U of size m× r consists in [53] recursively comput-
ing the QR factorization of the m× r matrix (AAT)Ui−1 = UiR with dominant
complexity [53] O(r2m). In the same way, we can calculate matrix V of size
n× r, using the QR decomposition of (ATA)Vi−1 = ViR with dominant com-
plexity [53] O(r2n). The singular values are automatically obtained with the
calculation of U and V from the matrix R. Considering the matrix multiplica-
tion cost, the overall SVD cost is evaluated at O

(
r2(m + n) + rmn

)
.

2. The true rank is unknown. In this case, the problem is to find a robust estima-
tion of the true rank, called the numerical rank. Considering a numerical rank
larger than the true one can be problematic since the last columns of the basis
matrices are pondered by near-zero singular values. Typically, the true rank
is numerically estimated by searching a numerical gap toward the dominant
singular values and the others. Many dedicated methods exist to find this gap
[113, 143, 26, 83, 24]. In our work, the numerical rank is computed with the na-
tive routine rank.m of MatLab as the number of singular values that are larger
than a tolerance. The tolerance is a function of the spacing of floating point
(eps), the size and the norm of the matrix as for instance max{m, n} · eps(||A||)
where eps(x) is the distance from |x| to the next larger in magnitude floating
point number of the same precision as x. It makes sense to use the bi-iteration
algorithm based on the sequential computation of two OI(s). Unlike the OI
algorithm, the singular-values are an output of the bi-iteration algorithm [53,
139]. The complexity cost per iteration of the bi-iteration algorithm is in the
same order as a single OI.

Finally, the two schemes, namely the popular TT-SVD and our proposition called
the TT-HSVD, inherit from the numerical robustness of the SVD. But, we think that
the optimization of this important operation (the numerical rank estimation) is out
of scope of our work.

4.1.4.2 Complexity analysis and simulations

Considering a 4-order hypercubic (I) tensor of TT-ranks equal to R, the complexity
of the TT-SVD algorithm is given by O(RI4) + O(R2 I3) + O(R2 I2) where,

1. the complexity of the first R-truncated SVD is

O(R2(I3 + I) + RI4) ≈ O(RI4)

for large I.

2. The complexity of the second R-truncated SVD applied on X(2) is O(R2(RI +
I2 + R2 I3) + RI3) ≈ O(R2 I3) if I � R.
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3. The complexity of the last R-truncated SVD applied on X(3) is O(R2(RI + I) +
R2 I2) ≈ O(R2 I2).

Following the same reasoning, the complexity of the TT-HSVD algorithm for a
mono-core architecture is given by O(RI4) + O(R2 I2) where,

1. The complexity of the first R-truncated SVD of X(2) is O(R2(I2 + I2) + RI2) =

O(RI4).

2. The complexity of the R-truncated SVD of X(1) related to the left part of the
tree is O(R2(IR + I) + R2 I2) ≈ O(R2 I2).

3. The complexity of the R-truncated SVD of X(3) related to the right part of the
tree is O(R2(IR + I) + R2 I2) ≈ O(R2 I2).

The dominant complexity of the TT-HSVD is much lower than that of the TT-
SVD due to the large term O(R2 I3).
Note that, for both algorithms, the term dominating the complexity corresponds to
the first SVD step, which is applied to the largest matrix at the beginning of the pro-
cess. For a D-order tensor, and by fixing Id = I for all d, the dominant complexities
of TT-SVD and TT-HSVD (in the balanced case), are respectively given by

κseq = O(RID) + O(R2 I(D−1)) + O(R2 I(D−2)) + · · ·+ O(R2 I2), (4.6)

and

κhrl = O(RID) + O(R2 I
D
2 ) + O(R2 I

D
4 ) + · · ·+ O(R2 I2). (4.7)

This means that the complexity of TT-SVD grows faster than that of the TT-HSVD
algorithm as a function of the tensor order. Thus, TT-HSVD offers a significant ad-
vantage over the TT-SVD algorithm especially for high-order data tensors. This gain
of complexity for TT-HSVD is due to the low storage cost of the considered matrices
X(d) in the TT-HSVD compared to those of the TT-SVD. One may note that the stor-
age cost of these matrices in TT-SVD and TT-HSVD is proportional respectively to
the complexities in (4.6) and (4.7) up to a multiplication by R, since the complexity
of a truncated SVD of a matrix is evaluated to the number of its entries multiplied
by the rank. This means that the TT-HSVD has advantages in both the algorithmic
complexity and the intermediate storage cost before recovering the TT-cores.
In Table 4.1, we compare the computation time of both algorithms using the “Tic-

Toc”functions of MATLAB to decompose a D-th order tensor X , for 9 ≤ I ≤ 13.
To this end, we generate the tensor X with I = Id and R = Ri, for 1 ≤ d ≤ D,

1 ≤ i ≤ D− 1, where Rd are the associated TT-ranks. The execution time is expressed
in seconds (s). The simulations were performed on a personal computer equipped
with an Intel(R) CORE(TM) i7-3687U CPU @ 2.10GHz processor and 8Gb RAM.

Remark. Note that the execution time of TT-HSVD is that of a sequential processing, where
all the SVD steps are run in batch. This execution time could be significantly reduced [65] if
a parallel processing architecture is used. However, the complexity estimation given in (4.7)
remains valid when using a multicore structure for the decomposition.

In Table 4.1, we consider (D, R) = (8, 3). Note that the results shown in this
table are in agreement with the analytical complexity analysis, confirming that a
significant complexity gain is achieved by TT-HSVD in comparison with TT-SVD,
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TABLE 4.1: Comparison of the computation time of both algorithms
(D = 8, R = 3).

Tensor dimension I = 9 I = 10 I = 11 I = 12 I = 13
TT-SVD algorithm 5.9 13.3 29 88.1 −
TT-HSVD algorithm 1.9 4 8.3 17.3 43.9
Gain 3.1 3.3 3.5 5.1 ∞

especially for very high-order tensors. In particular, for I = 13, the TT-SVD algo-
rithm can not be executed by the computer, which returned an out of memory error.
Note that the first unfolding matrix X(1) of the TT-SVD algorithm is of size 13× 137,
which requires a right singular vectors matrix of size 3× 137 for the truncated SVD.
The size of this matrix is actually beyond the allowed storage capacity. Notice that
the TT-HSVD algorithm has also the advantage of having a storage cost lower than
the TT-SVD algorithm.

In Table 4.2, we evaluate the impact of the choice of the unfolding used as the
starting point of the TT-HSVD, in terms of computational complexity. To this end,
we choose different values of Ii, with (D, R) = (8, 4). The two configurations used
in the results of Figs. 4.2 (left) and 4.2 (right) are considered here. The results shown
in this table correspond to the best computation time of the TT-HSVD algorithm.

TABLE 4.2: Comparison of the computation time of TT-HSVD and
TT-SVD.

Scenarios
(I1, · · · , I8)

TT-HSVD
(Fig. 4.2
(left))

TT-HSVD
(Fig. 4.2
(right))

TT-SVD Gain

(18, 36, 32, 16,
6, 6, 6, 6).

22.6 16.3 152.2 9.3

(22, 36, 32, 19,
6, 6, 6, 6).

45.1 23.7 993.7 42

It can be noted that choosing the most “square” unfolding matrix (i.e. the one
with more balanced row and column dimensions) results in a lower overall com-
putational complexity. The higher is the tensor order, more degrees of freedom are
available for choosing the best unfolding to start the TT-HSVD algorithm.

In the following experiment, we generate an 8-order tensorX of size I× · · ·× I in
the TT-format, with TT-ranks (R1, · · · , R7) chosen randomly between 2 and 4. This
tensor is decomposed by means of the TT-SVD and TT-HSVD algorithms. We fix
I = 4 and observe the TT-ranks calculated by each algorithm. In Fig. 4.10, we plot
the estimated ranks for both algorithms against the true TT-rank R4. We can see that
the TT-ranks calculated by both algorithms follow the true values. The same results
are found for the other TT-ranks. We note here that for random realizations of the
TT-ranks, we observe exactly the same ranks for both algorithms TT-SVD and TT-
HSVD. This illustrates well the results on the equality between the TT-SVD ranks
and the TT-HSVD ranks obtained previously.
In Table 4.3, we give the normalized reconstruction error of the estimated tensor for
both the TT-SVD and the TT-HSVD, considering a tensor affected by an additive
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FIGURE 4.10: The estimated ranks for the true TT-rank R4.

Gaussian noise. The original tensor is an 8-order hypercubic tensor following a CPD
of canonical rank R = 2 with dimension I = 4. This is an interesting and realistic
case regarding the Joint dImensionality Reduction And Factor rEtrieval (JIRAFE)
framework [158, 156] presented in Chapter 3, where the original tensor is a high-
order CPD that is decomposed into a TT format to break its dimensionality before
estimating its parameters. Two cases are considered in the following experiment,
i.e., when the original noisy tensor has a known TT-ranks equal to R and when the
TT-ranks are unkown and are estimated at each step of the algorithm. The given
errors are obtained by averaging the results over 1000 Monte-Carlo runs. One may
note that for a wide range of SNR, either when the TT-ranks are estimated or are
assumed to be known, both algorithms have the same robustness. This means that
the TT-HSVD can be a better alternative for the TT-SVD algorithm in the JIRAFE
framework for parameters estimation of high-order tensor.

TABLE 4.3: Comparison of the robustness of TT-HSVD and TT-SVD.

SNR (dB) Unknown rank Known rank
TT-HSVD TT-SVD TT-HSVD TT-SVD

30 1.28× 10−6 1.27× 10−6 1.28× 10−6 1.27× 10−6

25 4.02× 10−6 4.01× 10−6 4.06× 10−6 4.05× 10−6

20 1.3× 10−5 1.3× 10−5 1.29× 10−5 1.28× 10−5

15 4.06× 10−5 4.05× 10−5 4.06× 10−5 4.06× 10−5

10 1.3× 10−4 1.3× 10−4 1.3× 10−4 1.3× 10−4

5 4.07× 10−4 4.1× 10−4 4.1× 10−4 4.2× 10−4

0 1.3× 10−3 1.3× 10−3 1.3× 10−3 1.4× 10−3

−5 4× 10−3 4.7× 10−3 4.4× 10−3 5.7× 10−3

−10 1.36× 10−2 2.11× 10−2 1.71× 10−2 2.95× 10−2

4.1.5 Discussion

In this chapter, we have proposed the TT-HSVD algorithm, a hierarchical algorithm
for Tensor Train decomposition. It is a new algorithm that allows to recover simulta-
neously/hierarchically the TT-core tensors and their TT-ranks. A new graph-based
representation using patterns has also been proposed to simplify and make more il-
lustrative the algorithmic representation of both TT-SVD and TT-HSVD algorithms.
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Our analysis has shown that the TT-SVD and TT-HSVD algorithms estimate same
TT-ranks and same TT-core tensors up to specific bases, with significant time sav-
ings for the TT-HSVD algorithm. Perspectives for future work include the study of
the combination of the tensor modes in a random way, and the consequences of this
modification on the estimation and the complexity of the algorithm, and evaluating
the performance of the TT-HSVD algorithm for applications like tensor completion
[81], blind source separation [13] and fast SVD of large scale matrices [91]. In the
next section, TT-HSVD will be applied in the context of MIMO relay systems.
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4.2 TT-based applications

4.2.1 Introduction

The use of relay stations in MIMO communication systems has shown to have a
great potential to enhance coverage and increase system capacity [88, 96, 43, 100].
In the case of one-way two-hop MIMO relay systems, the communication can be di-
vided into two phases. In the first one, the source node transmits the symbols to the
relay. In the second one, the relay amplifies and forwards the signals to the desti-
nation node, meanwhile the source stays silent. To achieve the predictable gains of
cooperative diversity, an accurate knowledge of channels associated with the multi-
ple hops involved in the communication is required for the design of smart antenna
schemes, such as beamforming or precoding [121].

In relay-assisted MIMO communication systems, the instantaneous channel for
each hop is usually estimated by means of training sequences transmitted by the
source and relay nodes during successive transmission phases. The works [94, 120]
proposed training sequence based schemes to estimate the individual channel ma-
trices for two-hop MIMO relaying systems. The first one [94] relies on an SVD-based
solution, while the second [120] is based on a parallel factor (PARAFAC) modeling
of the received signals at the destination. By aiming at a joint channel and symbol
estimation in a semi-blind fashion, tensor-based receivers have been proposed in
several works [150, 49] for two-hop MIMO relaying systems. Of particular interest
to this work is the approach of [49], which is based on tensor coding-and-forwarding
(TCF) scheme by means of a tensor space-time coding applied at both the source and
relay nodes. More recently, generalizations to multihop systems [51] and to two-way
systems [52] have also been proposed. All these works have assumed that the propa-
gation channels are frequency-flat, which is the case of narrowband communication
systems.

In this work, we assume a more general and practical scenario where the MIMO
relaying system is operating in frequency-selective fading environment. As will be
shown later, when generalizing the scheme of [49] to the wideband communica-
tion scenario, the tensor modeling of the received signals involves the estimation
of larger quantities compared to the narrowband case. These quantities are repre-
sented by third-order channel tensors and one symbol matrix, the third dimension
being associated to the frequency domain. By resorting to multicarrier modulation
using orthogonal frequency division multiplexing (OFDM), we propose a new re-
ceiver design for a TCF MIMO-OFDM relaying system that is capable to solve the
joint channel and symbol estimation problem. The proposed receiver fits the result-
ing 6-order received signal tensor to a tensor train decomposition (TTD), where the
knowledge of the tensor coding structure is used to ensure identifiability of the chan-
nel tensors and the symbol matrix. It is important to note that our methodology is
able to manage the case of any number of relays. To the best of our knowledge, this
is the first work where the TTD approach is used to design a semi-blind receiver for
a MIMO communication system.

4.2.2 System Model

In this work, we consider a MIMO-OFDM relaying system, where the communica-
tion is divided into two hops1 as illustrated in Fig. 4.11. The 6 dimensions/diversities
of the system are associated with time, source code, frequency (during the first hop),

1A generalization with more than two hops can be easily derived from the contribution of our work.



4.2. TT-based applications 83

relay code, frequency (during the second hop), and space. At both source and relay
nodes, we consider a tensor space-time coding (TSTC) scheme, following the idea
of [49]. Note, however, that the system model considered in this work is a gen-
eralization of that of [49] to a MIMO-OFDM system. Due to the added frequency
dimensions at both the source→ relay (SR), and relay→ destination (RD) channels,
the SR and RD channels are modeled as third-order tensors and denoted as H(SR)

and H(RD) . Let X be the 6-order tensor, of dimensions MD × F1 × K× F2 × P× N,

FIGURE 4.11: One-way two-hop MIMO-OFDM relay system illustra-
tion.

representing the received signals at the destination. In a free-noise scenario, this
tensor X can be expressed as follows:

[X ]mD , f1,k, f2,p,n =
M̄R

∑
m̄R=1

MR

∑
mR=1

MS

∑
ms=1

R

∑
r=1

[H(RD)]mD , f1,m̄R

[C(R)]m̄R,k,mR [H
(SR)]mR, f2,mS [C

(S)]mS,p,r[S]r,n. (4.8)

We provide in Table 4.4 the description and dimensions of tensors used in eq. (4.8).

TABLE 4.4: Description of tensors used in eq. (4.8).

Symbols Description Dimensions
H(RD) RD channel tensor MD × F1 × M̄R

C(R) Coding tensor at the relay M̄R × K×MR

H(SR) SR channel tensor MR × F2 ×MS

C(S) Coding tensor at the source MS × P× R
S Transmitted symbols matrix R× N

It is worth mentioning that the tensor X results from the transmission of R data
streams, each composed of N symbols, during N different time-blocks. During each
block n, each antenna mS transmits a combination of R information symbols [S]r,n to
the relay after a space-time coding by means of the coding tensor C(S) and through
the channel H(SR). The signals received at the relay are encoded by means of the cod-
ing tensor C(R) and then transmitted to the destination through the channel H(RD).
The received signals satisfy eq. (4.8). Different assumptions are considered for the
model of eq. (4.8):

• the coding tensors are constant during the whole transmission

• the channels are quasi-static, i.e. do not change, whitin a transmission cycle

• the coding tensors and the structural parameters (tensor dimensions) are known
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Note that MD, M̄R, MR, MS, and R refer to the number of antennas at the destination,
transmitting antennas at the relay, receiving antennas at the relay, antennas at the
source, and the data streams, respectively.

4.2.3 Tensor Train decomposition (TTD)

4.2.3.1 Definition of the TTD

Definition 15. Let {R1, . . . , RQ−1} be the TT-ranks with bounding conditions R0 = RQ =
1. A Q-order tensor of size N1 × . . .× NQ admits a decomposition into a train of low-order
tensors if

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 . . .×1

Q−1 GQ−1 ×1
Q GQ, (4.9)

where the TT-cores G1,Gq, and GQ are, respectively, of dimensions N1 × R1, Rq−1 × Nq ×
Rq, and RQ−1 × NQ, for 2 ≤ q ≤ Q − 1, with rank(G1) = R1, rank(GQ) = RQ−1,
rank(unfold1Gq) = Rq−1, and rank(unfold3Gq) = Rq.

Using the contraction product, the model in eq. (4.8) can be written in a compact
form such that:

X = IMD ×1
2 H(RD) ×1

3 C(R) ×1
4 H(SR) ×1

5 C(S) ×1
6 S, (4.10)

to match the definition of the TTD given in eq. (4.9).

4.2.3.2 The TTD multiplicative ambiguities

As shown in eq. (4.10), the considered MIMO system is modeled as a 6-order TTD
with a priori known TT-ranks {MD, M̄R, MR, MS, R}. The multiplicative ambiguities
in the TTD correspond to post- and pre-multiplications by nonsingular matrices, i.e.,
we can replace two successive TT-cores Gq and Gq+1 in eq. (4.9), respectively, by G ′q
and G ′q+1 such that

G ′q = Gq ×1
3 U−1

q ,

G ′q+1 = Uq ×1
2 Gq+1,

to recover the same tensor X of eq. (4.9), where Uq is a nonsingular matrix of size
Rq × Rq.
Applying the TT-HSVD algorithm to tensor X allows to recover the original TT-
cores Gq up to these nonsingular matrices, called Uq in the sequel. The TT-HSVD
algorithm is based on several truncated SVD(s). Knowing the TT-ranks and in the
noise-free case, the TT-HSVD algorithm recovers exactly the TT-cores. In the context
of the TT-HSVD algorithm these nonsingular matrices correspond to transformation
(change-of-basis) matrices due to the extraction of the dominant singular subspaces
using the SVD.

4.2.4 TT-based receiver

4.2.4.1 TT-cores structure

The following theorem gives the structure of the TT-cores when the TT-HSVD algo-
rithm is applied to tensor X in eq. (4.10).



4.2. TT-based applications 85

Theorem 14. Consider the 6-order tensor X defined in eq. (4.10). In the noise-free scenario
and knowing a priori the TT-ranks, the structure of the recovered TT-cores is given by

G1 = U−1
1 ,

G2 = H(RD) ×1 U1 ×3 U−T
2 ,

G3 = C(R) ×1 U2 ×3 U−T
3 ,

G4 = H(SR) ×1 U3 ×3 U−T
4 ,

G5 = C(S) ×1 U4 ×3 U−T
5 ,

G6 = U5S,

where U1, · · · , U5 are square nonsingular transformation matrices of ranks MD, M̄R, MR, MS
and R, respectively, corresponding to the TT-ranks of the model.

It is worth noting that the above theorem is the result of the application of the
multiplicative ambiguities of the TTD given in eq. (4.10). This means that the cores of
eq. (4.10) are estimated up to post- and pre-multiplications by nonsingular matrices
as shown in Section 4.2.3.2. In Theorem 14, the TT-cores follow a Tucker decomposi-
tion (TD) with the following equivalence:

T ′ = A1 ×1
2 T ×1

3 A2 = T ×1 A1 ×3 AT
2 .

The TD formalism helps us to introduce our estimation scheme in the next sec-
tion.

4.2.4.2 Estimation algorithm: TT-MRS

In this section, we propose an estimation scheme of tensor channels H(RD), H(SR),
and of the transmitted symbols matrix S, assuming the knowledge of the code ten-
sors C(R) and C(S). It is a TT-based semi-blind receiver for MIMO relay systems
(TT-MRS). The idea of Algorithm 11 is to eliminate the latent ambiguity matrices
U1, · · · , U5 of Theorem 14 using the knowledge of tensors C(R) and C(S). The pro-
posed algorithm is a 3 steps scheme that is based on:

• the TT-HSVD algorithm to decompose X into the TTD

• the estimation of the transformation matrices using C(R) and C(S)

• channels and symbols estimation using the TT-cores of step 1 and the ambigu-
ity matrices of step 2.

It is worth mentioning that the processing of step 2 (same for step 3) can be done
in a parallel way. Note that tensors C(R) and C(S) represent the core tensors of the
respective TDs of G3 and G5, as shown in Theorem 14, and we have

unfold1G3 = U2 · unfold1C(R) ·
(
U−T

3 ⊗ IK
)T, (4.11)

unfold2G3 = IK · unfold2C(R) ·
(
U−T

3 ⊗U2
)T, (4.12)

unfold3G3 = U−T
3 · unfold3C(R) ·

(
IK ⊗U2

)T. (4.13)

Regarding eq. (4.11) and eq. (4.13), we can notice that recovering matrices U2 and
U3 (the same reasoning is valid for U4 and U5), using C(R) and G3, can be done in a
general case using an iterative Tucker-ALS algorithm [85].
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Algorithm 11 TT-MRS algorithm

Input: 6-order tensor X , C(R) and C(S) defined in eq. (4.10).

Output: Ĥ(RD)
, Ĥ(SR)

, and Ŝ.

1: TTD: (using the TT-HSVD algorithm)

X = Ĝ1 ×1
2 Ĝ2 ×1

3 Ĝ3 ×1
4 Ĝ4 ×1

5 Ĝ5 ×1
6 Ĝ6.

2: Transformation matrices estimation:

Û−1
1 = Ĝ1.

[Û2, Û−T
3 ] = Tucker-ALS(Ĝ3,C(R)).

[Û4, Û−T
5 ] = Tucker-ALS(Ĝ5,C(S)).

3: Channels and symbols estimation:

Ĥ(RD)
= Ĝ2 ×1 Û−1

1 ×3 ÛT
2

.

Ĥ(SR)
= Ĝ4 ×1 Û−1

3 ×3 ÛT
4

.

Ŝ = Û−1
5 Ĝ6.

One may note that U2 and U3 invloved in eq. (4.12) are estimated up to a scalar
multiplication, since

A⊗ B = α ·A⊗ (
1
α
) · B.

Applying this property on the proposed scheme, and taking into account that ma-
trices U2, · · · , U5 are estimated up to scalar multiplication, the outputs of Algorithm
11 are then expressed as

Ĥ(RD)
= α1 ·H(RD),

Ĥ(SR)
= α2 ·H(SR),

Ŝ = (
1

α1α2
) · S,

this means that the parameters of interest are estimated up to a scalar multiplication.
To resolve this ambiguity, two assumptions are possible:

• the knowledge of the first-order statistic (the mean) of channels H(RD) and
H(SR) can be assumed as in [149].
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• assume the knowledge of one entry of tensors H(RD) and H(SR) as assumed in
[49].

4.2.5 Simulation Results

In this section, we evaluate the performance of the proposed receiver by means of
numerical computer simulations for various system configurations. The aim of the
following experiments is twofold. First, we want to validate the TT modeling for
the proposed MIMO relay system, and show that the proposed method allows a
joint channels and symbols estimation. Second, we want to evaluate the influence
of the system configurations on the quality of estimation, in particular, the choice
and interest of the new introduced parameter F. The 6-order MIMO relay system
is generated with random channel and coding tensors whose elements are drawn
from a Gaussian distribution with zero mean and unit variance. The transmitted
symbols are uniform random variables from a 4-QAM constellation. The additive
noise tensors at relay and destination, noted respectively N (R) and N (D), are as-
sumed to be composed of elements which are zero-mean Gaussian variables, with a
unit variance. The final noise, noted N (SRD) corresponding to N (D) at destination,
and N (R) at relay filtered by the relay coding tensor C(R) and the channel H(RD) is
expressed as

N (SRD) = H(RD) ×1
3 C(R) ×1

4 N (R) +N (D),

where N (R) and N (D) are respectively of size MR × F1 × P × N and MD × F1 ×
K × F2 × P × N. The depicted NMSE are obtained by averaging the NSE over 104

independent Monte Carlo runs, with

NSE =

∥∥∥X̂ −X
∥∥∥2

F

‖X ‖2
F

,

where X and X̂ denote, respectively, the received and reconstructed signals tensors.

Fig. 4.12 shows the NMSE of X after the TTD using the TT-HSVD algorithm (1st
step of Algo. 11), i.e., the reconstruction error for the TTD of the received signals
at the destination, when F1 = F2 = K = P = N = DTT and MD = M̄R = MR =
MS = R = RTT. This shows how the TT modeling fits successfully the considered
MIMO relay system. Moreover, it can be concluded that the bigger is the dimension
DTT for a fixed TT-rank RTT, the better is the estimation. In the opposite, when RTT
grows for a fixed DTT, the estimation is degrading. Indeed, increasing DTT implies
higher diversity gains due to spreading across a higher number of subcarriers and
time slots. On the other hand, increasing RTT corresponds to a higher number of
parameters (channel and symbols) to be estimated at the receiver. In Fig. 4.13, we
plot the NMSE of the estimation of H(RD) by fixing F2 = K = P = R = 4, N = 10
and MD = M̄R = MR = MS = 2, and varying the parameter F1. This result shows
the correct estimation of the channel tensors using Algo. 11. Furthermore, it shows
that the canal estimation becomes more difficult when several frequencies F1 are
considered.

Finally, Fig. 4.14 shows the symbol error rate (SER) of the estimation of the sym-
bols S as a function of the SNR. The system configuration is as follows, F1 = F2 =
K = P = 4, N = 10 and MD = M̄R = MR = MS = 2. The conclusions of this
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FIGURE 4.12: NMSE vs SNR in dB with the TTD.
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FIGURE 4.13: NMSE of H(RD) for the proposed algorithm.
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experiment join the previous one in the sense that the symbols matrix S is correctly
estimated using Algo. 11, which means that this latter allows a joint channels and
symbols estimation. In addition, we can see the influence of the parameter R, one
may note that the estimation becomes a difficult task when there is more symbols to
transmit.
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100

FIGURE 4.14: NMSE of symbols S for the proposed algorithm.

4.2.6 Discussion

A new TTD modeling approach has been proposed for MIMO-OFDM relay systems
to jointly estimate the channels and the information symbols. Our approach gen-
eralizes the NTD based system of [49] by considering the case of an OFDM relay
system. A new semi-blind receiver which uses a closed-form TTD algorithm and
Tucker-ALS algorithms, and which relays on some TTD ambiguity results, had also
been proposed. To the best of our knowledge, it does not exit competitive algorithm
for solve this problem. The effectiveness of the proposed receiver is demonstrated
by means of Monte Carlo simulations. Some extensions of this work include a gen-
eralization to TCF MIMO-OFDM with multiple relays.
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Chapter 5

Conclusion and prospects

The work described in this PhD thesis deals with the curse of dimensionality and
the challenge was to reformulate a high-order tensor as a set of graph connected
low-order tensors. In particular, the goal was to have new tensor processing meth-
ods adapted to big data tensors, having the advantages of being robuste, scalable
with a parallel computing. Among the all the existing tensor networks, the tensor
train, due to its simplicity, has shown to be a good candidate to mitigate this issue.
To address this problem, the tensor train decomposition is exploited in this work to
derive new equivalence results between usual tensor decompositions and the TTD,
with the aim to propose a new optimisation strategies. Indeed, a new framework
called JIRAFE, for Joint dImensionality Reduction And Factor rEtrieval, is proposed.
It is a two-step scheme that consists in, firstly, split the high-order tensor into a col-
lection of graph-connected core tensors of lower order, and secondly, in the factor
rectrieval step thanks to an ad-hoc optimization strategy. JIRAFE allows to split the
initial high-order optimiztion problem into a sum of low dimensionality optimiza-
tion problems. This scheme shows its efficienty by allowing flexible parameters esti-
mation strategies, stable algorithms (i.e., insensitive to ill-converging problems), less
computational and storage complexity and better robustness to noise compared to
other state-of-art methods.
Moreover, by using the tensor networks graphical formalism, the tensor train allows
then to visualize high-order tensors in a simple, rigorous and intuitive representa-
tion.
Also, to deal with the high computational complexity of the state-of-the-art TTD
algorithm, namely the TT-SVD, we have proposed a new hierarchical framework,
namely the TT-HSVD, which allows to simultaneously recover the TT-cores and their
TT-ranks in a hierarchical way and which has a less complexity compared to the TT-
SVD. This algorithm is well adapted to the big data tensors and is a good alternative
to the TT-SVD algorithm to deal with the curse of dimensionality issue.
These two methodological parts have had applications in the context of multidimen-
sional spectral analysis and relay telecommuncation systems. The different simula-
tion results showed the JIRAFE and TT-HSVD methods interests in the desired prop-
erties mentioned before.

Among the possible future prospects which naturally follow this work, we can
mention the following points:

• Regarding the JIRAFE framework and from a fundamental perspective, the
equivalence TT-CPD needs to be studied when the formulated full column
rank assumption is violated, i.e., when the canonical rank is greater than sev-
eral factors mode dimensions.
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• In the same sense, a more general case of factors with linear dependencies
can be considered. The TT-cores structure, the TT-ranks and the uniqueness
conditions in that case need to be studied.

• Applications of JIRAFE for the PARALIND can be considered in future works,
as for example in the estimation of the probability density function of multidi-
mensional flow cytometry data [20], where linear dependecies may exist.

• Regarding the TT-HSVD, a study of the combination of the tensor modes in a
random way may be interessting, showing the consequences of this modifica-
tion in the estimation and the complexity of the algorithm.

• Also, replacing the TT-SVD algorithm by the TT-HSVD one in the JIRAFE
framework, and apply this methodology on estimation problems, especially
and in particular for applications where only some factors are required as in
clustering. In this case joining the hierarchical framework to the JIRAFE frame-
work may be interessing.

• From an application perspective, an extension of the TT-based receiver for re-
lay systems can include a generalization to MIMO-OFDM systems with multi-
ple relays, where the TT-HSVD algorithm can be of a bigger interest.

• An application of the TTD in the context of coupled matrix tensor factorization
[11] can also be investigated.
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Proof of Theorem 2

In this constructive proof, the TT-SVD algorithm is applied “step by step” to a TD
presented in (2.4), under the two assumptions that

• all the factors Fq have full column rank, and

• C(q) = reshape
(
C;

q
∏
i=1

Ti,
Q
∏

i=q+1
Ti
)

has full rank.

The first unfolding X(1) of size N1 × (N2 · · ·NQ), using Lemma 3, is given by:

X(1) = reshape
(
X ; N1,

Q

∏
q=2

Nq
)

∆
= F1C(1)(FQ ⊗ · · · ⊗ F2)

T

SVD
= U(1)V(1).

Note that rank(X(1)) = rank(F1) = R1 = T1 (R1 is the first TT-rank), which means
that U(1) is of size N1 × R1, and V(1) is of size R1 × (N2 · · ·NQ). It exists a R1 × R1
nonsingular change-of-basis matrix M1 that verifies

U(1) = F1M−1
1 (A.1)

V(1) = M1C(1)(FQ ⊗ · · · ⊗ F2)
T (A.2)

Following the methodology of the TT-SVD algorithm, the first TT-core G1 is
given by eq. (A.1), i.e.,

G1 = U(1) = F1M−1
1 . (A.3)

Applying the same methodology to a reshaped version, denoted by V(1)
(2), of V(1), of

size (R1N2)× (N3 · · ·NQ), provides from eq. (A.2)

V(1)
(2) = reshape

(
V(1); R1N2,

Q

∏
q=3

Nq
)

∆
= (F2 ⊗M1)C(2)(FQ ⊗ · · · ⊗ F3)

T (A.4)
SVD
= U(2)V(2)

Once again, we have rank(V(1)
(2)) = rank(F2 ⊗M1) = R2 = T1T2. In addition, U(2) of

size (R1N2)× R2, and V(2) of size R2 × (N3 · · ·NQ) are defined by
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U(2) = (F2 ⊗M1)M−1
2 (A.5)

V(2) = M2C(2)(FQ ⊗ · · · ⊗ F3)
T

where M2 is a R2 × R2 nonsingular change-of-basis matrix. From eq.(A.5), the 2nd
TT-core G2 is expressed as

G2 = reshape
(
U(2); R1, N2, R2)

= T 2 ×1 M1 ×2 F2 ×3 M−T
2 , (A.6)

where T 2 = reshape
(
IR2 ; R1, T2, R2).

This strategy can be continued to obtain the q-th TT-cores for 3 ≤ q ≤ q̄ − 1 since
C(q), defined in Theorem 1, has always a full row rank and can always be absorbed
in V(q), when applying the SVD. Let us now see what happens when we express
V(q̄−1)

(2) of size (Rq̄−1Nq̄)× (Nq̄+1 · · ·NQ). From (A.4), we obtain

V(q̄−1)
(2) = reshape

(
V(q̄−1); Rq̄−1Nq̄,

Q

∏
q=q̄+1

Nq
)

∆
= (Fq̄ ⊗Mq̄−1)C(q̄)(FQ ⊗ · · · ⊗ Fq̄+1)

T

SVD
= U(q̄)V(q̄)

Note that here we have rank(V(q̄−1)
(2) ) = rank

(
(Fq̄ ⊗Mq̄−1)C(q̄)

)
= Rq̄ = Tq̄+1 · · · TQ,

since C(q̄) has a full column rank, and we can write

U(q̄) = (Fq̄ ⊗Mq̄−1)C(q̄)M
−1
q̄ (A.7)

V(q̄) = Mq̄(FQ ⊗ · · · ⊗ Fq̄+1)
T (A.8)

From eq.(A.7), the q̄-th TT-core can be expressed as:

G q̄ = reshape
(
U(q̄); Rq̄−1, Nq̄, Rq̄)

= C q̄ ×1 Mq̄−1 ×2 Fq̄ ×3 M−T
q̄ , (A.9)

where C q̄ = reshape
(
C; Rq̄−1, Tq̄, Rq̄) is absorbed in G q̄.

Applying the same computation to the reshaping of V(q̄), denoted by V(q̄)
(2) of size

(Rq̄Nq̄+1) × (Nq̄+2 · · ·NQ), and considering an identity matrix IRq̄×Rq̄ in (A.8) such
as V(q̄) = Mq̄IRq̄×Rq̄(FQ ⊗ · · · ⊗ Fq̄+1)

T, we obtain

V(q̄)
(2) = reshape

(
V(q̄); Rq̄Nq̄+1,

Q

∏
k=q̄+2

Nq
)

∆
= (Fq̄+1 ⊗Mq̄)I(q̄+1)(FQ ⊗ · · · ⊗ Fq̄+2)

T

SVD
= U(q̄+1)V(q̄+1)
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where I(q̄+1) = reshape
(
IRq̄×Rq̄ ; Rq̄ · Tq̄+1, Rq̄

Tq̄+1
). Matrices U(q̄+1) and V(q̄+1) are then

expressed as

U(q̄+1) = (Fq̄+1 ⊗Mq̄)I(q̄+1)M
−1
q̄+1, (A.10)

V(q̄+1) = Mq̄+1(FQ ⊗ · · · ⊗ Fq̄+2)
T.

From eq.(A.10), G q̄+1 is expressed as:

G q̄+1 = reshape
(
U(q̄+1); Rq̄, Nq̄+1, Rq̄+1)

= T̄ q̄+1 ×1 Mq̄ ×2 Fq̄+1 ×3 M−T
q̄+1, (A.11)

where T̄ q̄+1 = reshape
(
IRq̄×Rq̄ ; Rq̄, Tq̄+1, Rq̄+1). From (A.11), the result can be gener-

alized to the Q− q̄ last TT-cores giving

Gq = T̄ q ×1 Mq−1 ×2 Fq ×3 M−T
q , (q̄ < q < Q). (A.12)

Given the expressions of the TT-cores in (A.3), (A.6), (A.9) and (A.12), we can there-
fore deduce the result of Theorem 2.
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Proof of Theorem 4

To prove Theorem 4, a constructive proof based on the TT-SVD algorithm is given
for (2.3). We assume that the factors have full column rank. For that aim, we will
follow step by step the methodology of the TT-SVD algorithm.

• The first unfolding X(1) of size N1 × (N2 · · ·NQ), using Lemma 2, is given by:

X(1) = reshape(X ; N1, N2 · · ·NQ)

= P1(PQ � PQ−1 � · · · � P2)
T.

Note that, according to Lemma 1, (PQ � PQ−1 � · · · � P2)T is a full row rank
matrix of size R× (N2 · · ·NQ), since the factors Pq are assumed to be full col-
umn rank.

• Applying the SVD to X(1), the following expression holds:

X(1) = U(1)V(1) = G1V(1)

where G1 = U(1) contains the left singular vectors, and is the first TT-core
of size N1 × R1. V(1) contains the singular values and the the right singular
vectors. It is of size R1 × (N2 · · ·NQ). From the above two relations, we can
conclude that

rank(X(1)) = rank(P1) = rank(G1) = R = R1.

and we can express G1 and V(1) as:

G1 = P1M−1
1 , (B.1)

V(1) = M1(PQ � PQ−1 � · · · � P2)
T

where M1 is a R× R matrix that follows definition 8.

• Applying the TT-SVD algorithm, we have to reshape the matrix V(1) as a ma-
trix of size (RN2)× (N3 · · ·NQ), according to Lemma 2, which gives:

V(1)
(2) = reshape(V(1); RN2, N3 · · ·NQ)

= (P2 �M1)(PQ � PQ−1 � · · · � P3)
T. (B.2)

Note that, according to Lemma 1, the matrix P2 �M1 of size (RN2)× R is full
column rank, and (PQ � PQ−1 � · · · � P3)T of size R× (N3 · · ·NQ) is full row
rank.
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• The SVD of V(1)
(2) gives:

V(1)
(2) = U(2)V(2) (B.3)

where U(2) of size (RN2)× R2 is the reshaping of the 2nd TT-core G2
From (B.2) and (B.3), we can conclude that:

rankV(1)
(2) = rank(P2 �M1) = rankU2

Lemma1
= R TT

= R2

and we can write U(2) and V(2) as:

U(2) = P2 �M1)M−1
2 , (B.4)

V(2) = M2(PQ � PQ−1 � · · · � P3)
T

where M2 is a R× R matrix that follows definition 8. Reshaping U(2), and from
(B.4), we obtain the expression of G2 according to

G2 = reshape
(
U(2); R, N2, R)

= I3,R ×1 M1 ×2 P2 ×3 M−T
2

• Based on the same methodology, we find at the q-th step:

V(q−1)
(2)

Reshaping
= (Pq �Mq−1)(PQ � PQ−1 � · · · � Pq+1)

T SVD
= U(q)V(q) (B.5)

where V(q−1)
(2) is of size (RNq) × (Nq+1 · · ·NQ), and according to Lemma 1,

(Pq �Mq−1) is a full column rank matrix of size RNq × R, (PQ � PQ−1 � · · · �
Pq+1)

T is a full row rank matrix of size R× (Nq+1 · · ·NQ), and Mq−1 is a R× R
matrix that follows definition 8.
From (B.5), we can conclude that the relation between the factor matrices Pq
and the TT-cores Gq is given by:

U(q)Mq = Pq �Mq−1

or equivalently

U(q) = (Pq �Mq−1)M−1
q for 2 ≤ q ≤ Q− 1

= (Pq �Mq−1)(M−T
q )T (B.6)

where Mq is a R×R matrix that follows definition 8, and U(q) = reshape(Gq; RN, Rq).
We can write:

rankV(q−1)
(2) = rank(Pq �Mq−1) = rankU(q) Lemma1

= R TT
= Rq,

for 2 ≤ q ≤ Q− 1.
From (B.6) and considering U(q) = reshape(Gq; RNq, Rq), we can see that Gq
follows a 3-order CPD according to:

Gq = I3,R ×1 Mq−1 ×2 Pq ×3 M−T
q (B.7)



Appendix B. Proof of Theorem 4 99

• At the last step, we have:

V(Q−2)
(2)

Reshaping
= (PQ−1 �MQ−2)PT

Q
SVD
= U(Q−1)V(Q−1) = U(Q−1)GQ.

We then have for the last core:

GQ = MQ−1PT
Q. (B.8)

Given (B.1), (B.7) and (B.8), we then have a proof for Theorem 4.
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Appendix C

Proof of Theorem 5

The first part of the proof of Theorem 5 is obtained by the use of Theorem 4. In other
words, assuming the factors in (3.4) have full column rank, expressions (3.5), (3.6),
and (3.7) are obtained in a straightforward way thanks to Theorem 4.
To prove that two matrices span the same range space, it is equivalent to show the
equality of their orthogonal projectors. This is the methodology used to prove (3.8)
and (3.9). More precisely, assuming a full column rank for factor P the following
equalities hold:

G1G†
1 = (PM−1

1 )(PM−1
1 )†

= PP†

Gq(:, :, i)†Gq(:, :, i) =
((

M−T
q (i, :)�Mq−1

)
PT
)†((

M−T
q (i, :)�Mq−1

)
PT
)

(C.1)

= PT†
((

M−T
q (i, :)�Mq−1

)†(M−T
q (i, :)�Mq−1

))
PT (C.2)

= (PP†)T

= PP†

We recall that the i-th frontal slice of the q-th TT-core can be expressed as Gq(:
, :, i) =

(
M−T

q (i, :) �Mq−1
)
PT. Note that, using Lemma 1, we can see that the

product
(
M−T

q (i, :) �Mq−1
)

of size R × R, is of rank R, since all Mq are of rank
R. This justifies the passage from (C.1) to (C.2). The same argument is used for
the following equalities. Considering the j-th horizontal slice of the q′-th TT-core
Gq′(j, :, :) = P

(
M−T

q′ �Mq′−1(j, :)
)T, we have

Gq′(j, :, :)Gq′(j, :, :)† =
(

P
(
M−T

q′ �Mq′−1(j, :)
)T
)(

P
(
M−T

q′ �Mq′−1(j, :)
)T
)†

= P
((

M−T
q′ �Mq′−1(j, :)

)T(M−T
q′ �Mq′−1(j, :)

)T†
)

P†

= PP†

GT
QGT†

Q = (PMQ−1)(PMQ−1)
†

= PP†

which justifies the equalities

〈P〉 = 〈G1〉 = 〈Gq(:, :, i)〉 = 〈Gq′(j, :, :)〉 = 〈GT
Q〉,

and

rankP = rankG1 = rankGq(:, :, i) = rankGq′(j, :, :) = rankGT
Q,
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for 2 ≤ q ≤ Q− 1, 2 ≤ q′ ≤ Q− 1, 1 ≤ i ≤ R, 1 ≤ j ≤ R.
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Algebraic analysis of the patterns

In this section, we give an algebraic analysis of the patterns to prove Lemmas 4
and 5. In the sequel only the analysis of the Splitting/Splitting pattern is given in
detail. The analysis of the Generation/Generation, Splitting/Generation and Gener-
ation/Splitting patterns is very similar and is omitted here to the lack of space, only
the expressions of inputs and outputs of these patterns are given. Note that in an in-
formatic point of view, all the patterns can be implemented using the same function,
that we call “Pattern”, since they can be considered similar up to index grouping.
Before giving the algebraic analysis of the patterns, we present in Algorithm 12 a
pseudocode of the function that can be used in the TT-HSVD algorithm. In this ex-
ample, we suppose that the rank is estimated in the function “Pattern” using the
rank.m of MatLab. Outputs S1, S2 can be either tensors or matrices depeding on
their respective dimensions dim1 and dim2.

Algorithm 12 Pattern

Input: M, dim1, dim2
Output: S1, S2, R.

1: R = rank(M)
2: [U, D, V] = svd(M, R)
3: V = DVT

4: S1 = reshape(U, dim1)
5: S2 = reshape(V, dim2)

Splitting/Splitting Pattern

This first pattern (Fig. 4.3) takes as input a matrix and returns 2 matrices. It applies
the SVD to the input matrix and reshape the 2 matrices generated according to the
choice we want. The graphical representation of this pattern is given in Fig. 4.3.
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The input matrix X(D̄) can be expressed as:

X(D̄) =

RD̄ f
,··· ,RD̄l

∑
rD̄ f

,··· ,rD̄l
=1

(
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

·
(

QD̄l
(rD̄l

, :)T ⊗ gD̄l
(rD̄l−1, rD̄l

)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)
)T

(D.1)

=
RD̄

∑
rD̄=1

( RD̄ f
,··· ,RD̄−1

∑
rD̄ f

,··· ,rD̄−1=1
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

·
( RD̄+1,··· ,RD̄l

∑
rD̄+1,··· ,rD̄l

=1
QD̄l

(rD̄l
, :)T ⊗ gD̄l

(rD̄l−1, rD̄l
)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)

)T

=
RD̄

∑
rD̄=1

S(:, rD̄)T(rD̄, :) = ST. (D.2)

where S and T are respectively of size RD̄ f
(ID̄ f +1 · · · ID̄)×RD̄ and RD̄× (ID̄+1 · · · ID̄l

)RD̄l
,

and we have rank(X(D̄)) = RD̄.
Note that the expression (D.1) corresponds to the definition given in (2.7), where
RD̄ f

= R0 = 1, RD̄l
= RD = 1, and Q0 = QD = 1.

Applying the SVD on X(D̄) gives:

X(D̄) = UD̄VD̄. (D.3)

From (D.2) and (D.3), we can conclude that:

UD̄ = SQD̄

=
RD̄

∑
rD̄=1

( RD̄ f
,··· ,RD̄−1

∑
rD̄ f

,··· ,rD̄−1=1
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

·Q(rD̄, :)

=

RD̄ f
,··· ,RD̄

∑
rD̄ f

,··· ,rD̄=1

(
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

Q(rD̄, :)

(D.4)

and

VD̄ = Q−1
D̄ T

=
RD̄

∑
rD̄=1

Q−1
D̄ (:, rD̄)

( RD̄+1,··· ,RD̄l

∑
rD̄+1,··· ,rD̄l

=1
QD̄l

(rD̄l
, :)T ⊗ gD̄l

(rD̄l−1, rD̄l
)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)

)T

=

RD̄ ,··· ,RD̄l

∑
rD̄ ,··· ,rD̄l

=1
Q−1

D̄ (:, rD̄)
(

QD̄l
(rD̄l

, :)T ⊗ gD̄l
(rD̄l−1, rD̄l

)⊗ · · · ⊗ gD̄+1(rD̄, rD̄+1)
)T

(D.5)

where QD̄ is a RD̄ × RD̄ change-of-basis matrix.
Let X(D̄ f +D̄′) and X(D̄+D̄′′) be the reshaping of the matrices UD̄ and VD̄ according to
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the chosen D̄′ and D̄′′. From (D.4) and (D.5), we have:

X(D̄ f +D̄′) = reshape(UD̄, RD̄ f
ID̄ f +1 · · · ID̄ f +D̄′ , ID̄ f +D̄′+1 · · · ID̄RD̄)

=

RD̄ f
,··· ,RD̄

∑
rD̄ f

,··· ,rD̄=1

(
gD̄ f +D̄′(rD̄ f +D̄′−1, rD̄ f +D̄′)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

·
(

QD̄(rD̄, :)T ⊗ gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄′+1(rD̄′ , rD̄′+1)
)T

(D.6)

and

X(D̄+D̄′′) = reshape(VD̄, RD̄ ID̄+1 · · · ID̄+D̄′′ , ID̄+D̄′′+1 · · · ID̄l
RD̄l

)

=

RD̄ ,··· ,RD̄l

∑
rD̄ ,··· ,rD̄l

=1

(
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QD̄l
(rD̄l
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)⊗ · · · ⊗ gD̄+D̄′′+1(rD̄+D̄′′ , rD̄+D̄′′+1)
)T

(D.7)

Splitting/Generation Pattern:

This pattern (Fig. 4.4 (left)) also takes as input a matrix and gives as outputs a tensor
and a reshaped matrix according to our choice. According to (D.6) and (D.7), the
matrix X(D̄) will be expressed as:

X(D̄) =

RD̄ f
,··· ,RD̄+1

∑
rD̄ f

,··· ,rD̄+1=1

(
gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

·
(

QD̄+1(rD̄+1, :)T ⊗ gD̄+1(rD̄, rD̄+1)
)T

(D.8)

The outpouts X(D̄′) and Ĝ D̄+1 of this pattern will then be expressed as follows:

X(D̄ f +D̄′) = reshape(UD̄, RD̄ f
ID̄ f +1 · · · ID̄ f +D̄′ , ID̄ f +D̄′+1 · · · ID̄RD̄)

=

RD̄ f
,··· ,RD̄

∑
rD̄ f

,··· ,rD̄=1

(
gD̄ f +D̄′(rD̄ f +D̄′−1, rD̄ f +D̄′)⊗ · · · ⊗ gD̄ f +1(rD̄ f

, rD̄ f +1)⊗Q−1
D̄ f
(:, rD̄ f

)
)

·
(

QD̄(rD̄, :)T ⊗ gD̄(rD̄−1, rD̄)⊗ · · · ⊗ gD̄′+1(rD̄′ , rD̄′+1)
)T

(D.9)

and

Ĝ D̄+1 = reshape(VD̄, RD̄, ID̄+1, RD̄+1)

= Q−1
D̄ ×

1
2 G D̄+1 ×1

3 QD̄+1 (D.10)

The Generation/Splitting pattern has same expressions as the Splitting/Generation
pattern if the outputs are reversed.
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Generation/Generation Pattern:

It is the third and last type of core generation patterns (Fig. 4.5). This pattern has as
input matrices of dimension (RD̄−1 ID̄) × (ID̄+1RD̄+1). It outputs 2 tensors at time.
From what we have seen before, the matrix XD̄ will be expressed as:

X(D̄) =
RD̄−1,RD̄ ,RD̄+1

∑
rD̄−1,rD̄ ,rD̄+1=1

(
gD̄(rD̄−1, rD̄)⊗Q−1

D̄−1(:, rD̄−1)
)

(D.11)

·
(

QD̄+1(rD̄+1, :)T ⊗ gD̄+1(rD̄, rD̄+1)
)T

The outpouts Ĝ D̄ and Ĝ D̄+1 of this pattern will then be expressed as follows:

Ĝ D̄ = reshape(UD̄, RD̄−1, ID̄, RD̄)

= Q−1
D̄−1 ×

1
2 G D̄ ×1

3 QD̄ (D.12)

and

Ĝ D̄+1 = reshape(VD̄, RD̄, ID̄+1, RD̄+1)

= Q−1
D̄ ×

1
2 G D̄+1 ×1

3 QD̄+1 (D.13)
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