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In visions of the dark night
I have dreamed of joy departed-
But a waking dream of life and

light Hath left me broken-hearted.

Ah! what is not a dream by day
To him whose eyes are cast

On things around him with a ray
Turned back upon the past?

That holy dream- that holy dream,
While all the world were chiding,
Hath cheered me as a lovely beam

A lonely spirit guiding.

What though that light, thro’ storm and night,
So trembled from afar-

What could there be more purely bright
In Truth’s day-star?

A Dream (1827) by Edgar Allan Poe





ABSTRACT OF THE THESIS

Numerical methods for the accelerated resolution of large scale linear systems
on massively parallel hybrid architecture

Abstract — Advances in computational power have led to many developments in science and its
applications. Solving linear systems occurs frequently in scientific computing, as in the finite element
discretization of partial differential equations. The running time of the overall resolution is a direct
result of the performance of the involved algebraic operations.

In this dissertation, different ways of efficiently solving large and sparse linear systems are put
forward. We present the best way to effectively compute linear algebra operations in an heterogeneous
multi-core-GPU environment in order to make solvers such as iterative methods more robust and
therefore reduce the computing time of these systems. We propose new techniques to speed algorithms
up the auto-tuning of the threading design, according to the problem characteristics and the equipment
level in the hardware and available resources. Numerical experiments performed on a set of large-size
sparse matrices arising from diverse engineering and scientific problems, have clearly shown the benefit
of the use of GPU technology to solve large sparse systems of linear equations, and its robustness and
accuracy compared to existing libraries such as Cusp.

The main priority of the GPU program is computational time to obtain the solution in a parallel
environment, i.e., “How much time is needed to solve the problem?”. In this thesis, we also address
another question regarding energy issues, i.e., “How much energy is consumed by the application?”. To
answer this question, an experimental protocol is established to measure the energy consumption of a
GPU for fundamental linear algebra operations accurately. This methodology fosters a “new vision of
high-performance computing” and answers some of the questions outlined in green computing when
using GPUs.

The remainder of this thesis is devoted to synchronous and asynchronous iterative algorithms for
solving linear systems in the context of a multi-core-GPU system. We have implemented and analyzed
these algorithms using iterative methods based on sub-structuring techniques. Mathematical models
and convergence results of synchronous and asynchronous algorithms are presented here, as are the
convergence results of the asynchronous sub-structuring methods. We then analyze these methods in the
context of a hybrid multi-core-GPU, which should pave the way for exascale hybrid methods.

Lastly, we modify the non-overlapping Schwarz method to accelerate it, using GPUs. The im-
plementation is based on the acceleration of the local solutions of the linear sub-systems associated
with each sub-domain using GPUs. To ensure good performance, optimized conditions obtained by
a stochastic technique based on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are
used. Numerical results illustrate the good performance, robustness and accuracy of synchronous
and asynchronous algorithms to solve large sparse linear systems in the context of an heterogeneous
multi-core-GPU system.

Keywords — Parallel algorithm, GPU, OpenCL, CUDA, Auto-tuning, Green computing, En-
ergy consumption, Iterative methods, Synchronous, Asynchronous, Substructuring methods, Domain
Decomposition Method, Schwarz, Hybrid methods, Exascale
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RÉSUMÉ DE LA THÈSE

Méthodes numériques pour la résolution accélérée des systèmes linéaires de
grandes tailles sur architectures hybrides massivement parallèles

Résumé — Les progrès en termes de puissance de calcul ont entraîné de nombreuses évolutions
dans le domaine de la science et de ses applications. La résolution de systèmes linéaires survient
fréquemment dans le calcul scientifique, comme par exemple lors de la résolution d’équations aux
dérivées partielles par la méthode des éléments finis. Le temps de résolution découle alors directement
des performances des opérations algébriques mises en jeu.

Cette thèse a pour but de développer des algorithmes parallèles innovants pour la résolution de
systèmes linéaires creux de grandes tailles. Nous étudions et proposons comment calculer efficace-
ment les opérations d’algèbre linéaire sur plateformes de calcul multi-coeur hétérogènes-GPU afin
d’optimiser et de rendre robuste la résolution de ces systèmes. Nous proposons de nouvelles techniques
d’accélération basées sur la distribution automatique (auto-tuning) des threads sur la grille GPU suivant
les caractéristiques du problème et le niveau d’équipement de la carte graphique, ainsi que les ressources
disponibles. Les expérimentations numériques effectuées sur un large spectre de matrices issues de
divers problèmes scientifiques, ont clairement montré l’intérêt de l’utilisation de la technologie GPU, et
sa robustesse comparée aux bibliothèques existantes comme Cusp.

L’objectif principal de l’utilisation du GPU est d’accélérer la résolution d’un problème dans un
environnement parallèle multi-coeur, c’est-à-dire “Combien de temps faut-il pour résoudre le prob-
lème?”. Dans cette thèse, nous nous sommes également intéressés à une autre question concernant la
consommation énergétique, c’est-à-dire “Quelle quantité d’énergie est consommée par l’application?”.
Pour répondre à cette seconde question, un protocole expérimental est établi pour mesurer la consom-
mation d’énergie d’un GPU avec précision pour les opérations fondamentales d’algèbre linéaire. Cette
méthodologie favorise une “nouvelle vision du calcul haute performance” et apporte des réponses à
certaines questions rencontrées dans l’informatique verte (“green computing”) lorsque l’on s’intéresse à
l’utilisation de processeurs graphiques.

Le reste de cette thèse est consacré aux algorithmes itératifs synchrones et asynchrones pour résoudre
ces problèmes dans un contexte de calcul hétérogène multi-coeur-GPU. Nous avons mis en application et
analysé ces algorithmes à l’aide des méthodes itératives basées sur les techniques de sous-structurations.
Dans notre étude, nous présentons les modèles mathématiques et les résultats de convergence des
algorithmes synchrones et asynchrones. La démonstration de la convergence asynchrone des méthodes
de sous-structurations est présentée. Ensuite, nous analysons ces méthodes dans un contexte hybride
multi-coeur-GPU, qui devrait ouvrir la voie vers les méthodes hybrides exaflopiques.

Enfin, nous modifions la méthode de Schwarz sans recouvrement pour l’accélérer à l’aide des
processeurs graphiques. La mise en œuvre repose sur l’accélération par les GPUs de la résolution
locale des sous-systèmes linéaires associés à chaque sous-domaine. Pour améliorer les performances
de la méthode de Schwarz, nous avons utilisé des conditions d’interfaces optimisées obtenues par
une technique stochastique basée sur la stratégie CMA-ES (Covariance Matrix Adaptation Evolution
Strategy). Les résultats numériques attestent des bonnes performances, de la robustesse et de la précision
des algorithmes synchrones et asynchrones pour résoudre de grands systèmes linéaires creux dans un
environement de calcul hétérogène multi-coeur-GPU.

Mot clés — Parallel algorithm, GPU, OpenCL, CUDA, Auto-tuning, Green computing, Energy
consumption, Iterative methods, Synchronous, Asynchronous, Substructuring methods, Domain De-
composition Method, Schwarz, Hybrid methods, Exascale
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Chapter 1
General Introduction

„The beautiful thing about learning is nobody can

take it away from you.

— B. B. King
(Musician)

This chapter introduces my thesis. In this thesis, we focus on different ways to efficiently
solve large and sparse linear systems, arising from the discretization of numerical methods.
Among these methods, we choose the finite element method. We have designed parallel
iterative algorithms for solving these systems in a context of heterogeneous multi-core-GPU
systems. In the first section, the motivations and backgrounds of this work are presented.
We introduce the problem, which interests us, i.e., the resolution of large-scale sparse linear
systems. Then, we present briefly the different class of parallel architectures. The interest of
GPU Computing is highlighted and the necessity of green computing is justified. The use of
domain decomposition methods, such as the sub-structuring method and the Schwarz method,
is then vindicated for solving these systems in parallel. The first section concludes with the
presentation of different projects I have partaken in. Finally, the main contributions of this
thesis are highlighted and the plan of the manuscript is presented.

1.1 Motivation and Background
Undoubtedly, parallelism is the future of computing. Advances in computational power

have led to many developments in science and its large application areas. High Performance
Computing (HPC) uses very large-scale computers to solve some of the world’s biggest
computational problems.

1.1.1 Linear system solvers
For applied sciences and engineering problems, a system of partial differential equations

(PDEs) is used as a fundamental physical and mathematical model, which is solved numerically.
Nowadays, several physical parameters can be taken into account and different physical models
can be coupled and then the PDE system becomes more and more complex. To obtain numerical
solutions of PDEs, discretization methods (finite difference/volume/element methods) are
applied and linear systems with very large sparse matrices are obtained after some linearization
process, if necessary. In scientific computing, solving large linear systems is often the most
expensive part, both in terms of memory space and computation time. There are several
methodologies to solve this type of large linear systems, e.g., direct methods, iterative methods
and a combination of those. However, the choice of method to solve the linear system is often
driven by the properties of the matrix related to the system. The choice also depends on the
speed of the method and the desired accuracy for the resolution. The size of the system can also
be a determining factor in the choice of the method. Indeed, the size of the system may further
slow the resolution process. Due to the hypothesis of a large linear system, these methods
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must be simple to parallelize in order to better harness the computing power and to better
manage the memory capacity of parallel computing platforms. For large-size linear systems,
iterative methods are more appropriate. While fast solvers are frequently associated with
iterative solvers, for special problems, a direct solver can be competitive. Iterative algorithms
constitute a most suitable solution for the resolution of many problems. These methods have
the characteristic to perform several iterations in order to refine the required solution. Krylov
subspace methods are the most representative of iterative methods, where an approximate
solution is updated repeatedly using products of sparse matrix and vectors. Matrix computing
arises in the solution of almost all linear systems of equations. In high-resolution simulations,
a method can reach its applicability limits quickly and hence there is a constant demand for
fast matrix solvers. Because of their size, these matrices cannot be stored as a simple set of
vectors. Instead, taking advantage of their great amount of zero values, we focus on storing
matrices in compressed formats, i.e., only non-zero elements are allocated. In this thesis, we
pay close attention to storing these sparse matrices in memory more efficiently by taking into
account their pattern of non-zero values. Parallel and GPU computing are the key to successful
fast solvers. It is the intention of this thesis to present and investigate efficient solutions to
solve linear systems rapidly.

1.1.2 Parallel architectures
Parallel computing is a set of hardware and software techniques allowing the simultaneous

execution of sequences of independent instructions on different processes and/or cores. The
set of hardware and software techniques consists of various architectures of parallel computers
and various models of parallel programming.

Parallel computing has two objectives: accelerate the execution of a program by distributing
work and executing a big problem with more material resources (memory, storage capacity,
processor, etc.). A parallel computer can be: a multi-core processor having at least two physical
computing units on the same chip or a supercomputer, which gathers the components of several
computers (processors and memories) in only one machine, or a distributed platform made
up of several independent machines, homogeneous or heterogeneous, connected with one
another by a communication network. In the jargon, the supercomputer is more often called a
cluster.

Classifications of parallel architectures In literature, there are several classifications of
parallel architectures based on various criteria. In this thesis, we present the most largely
used classification in parallel computing: the taxonomy of Flynn [1]. This classifies parallel
architectures in several categories, according to whether great volumes of data are processed in
parallel (or not) or whether a large number of instructions are being carried out at the same time
(or not). In the taxonomy of Flynn, one distinguishes four classes: SISD (Single Instruction,

Single Data), SIMD (Single Instruction, Multiple Data), MISD (Multiple Instruction, Single

Data) and MIMD (Multiple Instruction, Multiple Data). The SISD class represents most
conventional computing equipment which has only one computing unit. The sequential
computer (traditional uniprocessor machine) can process only one operation at a time. The
SIMD class corresponds to computers which have a large number of computing units, e.g., array
processors or GPUs. The computer can exploit multiple data against a single instruction to
perform operations which may be naturally parallelized. At each clock cycle, all the processors
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of a SIMD computer carry out the same instruction on different data simultaneously. The MISD

class corresponds to the parallel machines which perform several instructions, simultaneously,
on the same data. These architectures are uncommon and are generally used for fault tolerance.
MIMD represents the most used class in the taxonomy of Flynn. In this architecture, multiple
autonomous processors simultaneously execute different instructions on different data, e.g.,
distributed systems. They exploit a single shared memory space or a distributed memory
space. Computers using MIMD have a number of processors that function asynchronously and
independently.

Memory model In parallel computing, we have two main models of memory management:
shared memory and distributed memory. These two models help define the mode of data access
to the data of the other cooperating processors in a parallel computation for a given process. In
a shared memory model, the processors are all connected to a "globally available" memory.
All the processors have a direct access to the same physical memory space via powerful links
of communication (e.g., cores of a single machine). The second memory model is generally
used in parallel computers with distributed resources, e.g., a grid or cluster. In this model, each
processor has its own individual memory location. Each processor has no direct knowledge of
other processors’ memory. However, access to the data of the distributed memories is ensured
by message passing between cooperating processors through a communication network. In
this thesis, we focus on algorithms in parallel distributed-memory computing.

1.1.3 GPU Computing
For years, increases in HPC performance have been delivered through increased clock

speeds, larger, faster memories and higher bandwidth and lower latency interconnects. Nowa-
days, multi-core and many-core platforms lead the computer industry, forcing developers
to adopt new programming paradigms in order to fully harness their computing capabilities.
Graphics Processing Units (GPUs) are one representative of many-core architectures, and
certainly the most widespread. Comparing the evolution of Central Processing Units (CPUs)
to that of GPUs, one can talk about a revolution in the case of GPUs, looking at it from the
perspective of the reached performance and advances in multi-core designs. Many consumer
personal computers are equipped with powerful Graphics Processing Units (GPUs), which can
be harnessed for general-purpose computations. Currently, the computational efficiency of
GPUs reaches the TeraFlops (Tflops) for single precision computations, and roughly half of that
for double precision computations, all this for one single graphics card. Recent developments
resulting in easier programmable access to GPU devices, have made it possible to use them
for general scientific numerical simulations. The performance reached by add-on graphics
cards has attracted the attention of many scientists, with the underlying idea of utilizing GPU
devices for tasks other than graphics related computations. Gaining the most from the GPU
programming paradigm requires understanding of GPU architectures.

In the early 2000s, this gave birth to the technology known as GPGPU (General-Purpose
computation on GPU). As graphics hardware has become more sophisticated, more control
of this parallel infrastructure has been given to the programmer. The real boost to this tech-
nology was the introduction by Nvidia of their programming paradigm and tools referred as
CUDA (Compute Unified Device Architecture)) [2]. CUDA and OpenCL [3] (Open Computing

Language) provide tools based on extensions to the most popular programming languages

1.1 Motivation and Background 3



(most notably C/C++/Fortran), which makes computing resources of GPU devices easily
accessible for general tasks. The CUDA programming language has made general-purpose
programming on the GPU more accessible and enabled researchers to achieve good perfor-
mance [4] [5] [6] [7]. GPU applications are used to solve critical, grand challenge issues,
including: biomolecular systems, fusion energy, the virtual physiological human, numerical
weather prediction and engineering.

Most of the top supercomputers include GPUs, as we can observe in the list of the world’s
500 fastest supercomputers [8]. Besides this list, there is another top500 list of supercomputers
which are power efficient, the Green 500 [9] [10] [11]. In the latter, all top-10 supercomputers
consist of CPU and GPU hybrid architecture.

1.1.4 Green Computing with GPU
Nowadays, we need to address another question, energy related, i.e., “How much energy

is consumed by the application?”. For high-performance computing (HPC) hardware, the
appropriate answer gives a compromise between computational time and energy consumption.
Numerical algorithms have already faced a similar question, i.e., “How much memory is

necessary to solve the linear system?”. This question is also very important because memory
limitation is one of the physical constraints of numerical simulation. If the memory falls short,
we have to give up the simulation or satisfy ourselves with very slow out-of-core execution.
Therefore, algorithms have been optimized in both directions to minimize computational time
and memory usage. Unfortunately, there is no way to answer the new question on energy
consumption only from a software point of view. To the best of our knowledge, there is no
established way to measure real energy consumption for each application. Therefore, we
aim to design an experimental protocol to measure GPU energy consumption accurately for
fundamental and basic arithmetic operations and some heavy operations involved in numerical
linear algebra with sparse matrix. This allows us to build an accurate energy consumption pre-
diction model of the GPU. This methodology could suggest a “new vision of high-performance
computing” and answer some of the questions outlined in references [12] [13] [14] [11], which
highlight the importance of energy consumption when using GPUs. The computing power
and power/energetic consumption ratio of the GPU being superior to standard CPU, the use of
GPU represents an opportunity to have more power for a lower energetic cost.

1.1.5 Parallel algorithms
Parallel computations are fundamental and ubiquitous in numerical analysis and large ap-

plication areas, when we deal with the problem of large-size. Distributed computing constantly
gains in importance and has become an important tool in common scientific research work.
Recall that a sequential computation consists in performing a program by only one process,
sequentially, i.e., only one instruction is carried out at the same time. When computation is
done in parallel, the simplest solution consists in synchronizing the processors during iterations.
In that particular field of parallel programming, the commonly used model is the synchronous
message passing. In the synchronous case, communications are strongly penalizing the overall
performance of the application. Indeed, they often involve large idle periods, especially when
the processors are heterogeneous. Another solution consists in using asynchronous iterations
in order to avoid the waiting points. However, some properties must be verified to guarantee
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convergence. These algorithms are called asynchronous iterative algorithms and are applicable
to a large class of scientific applications. They allow a significant reduction of the comput-
ing time compared to the synchronous methods, due to the suppression of synchronization
between the iterations. The performance of algorithms strongly depends on the management
of interprocessor communication.

The parallel iterative methods for solving these linear systems are categorized into three
main classes, depending on the nature of the scheme (synchronous or asynchronous) of
iterations and communications. Parallel algorithms require that a large number of parameters,
such as the number and the typology of the processors, be taken into account. Therefore, in
parallel processing, the step of data distribution is crucial and strongly impacts the performance
of algorithms. In this thesis, we propose a study of the optimization process of parallel
algorithms run on modern heterogeneous multi-core-GPU architectures. Different optimization
schemes are proposed for overlapping computations with communications.

Domain decomposition methods The domain decomposition methods allow us to define
powerful algorithms adapted to the parallel machines. These methods consist in splitting the
domain of resolution of an initial problem into sub-domains. The solution to a mathematical
problem of “large” size can thus be obtained by the resolution of the associated “small” sub-
problems. This technique helps deal with problems which no computer has sufficient memory
to solve alone. There are two main classes of decomposition methods: overlapping (e.g.,
Schwarz methods [15]) and non-overlapping (e.g., sub-structuring methods).

In this thesis, we are interested in non-overlapping domain decomposition methods, appli-
cable to the resolution of linear systems arising from a discretization by finite elements.

Sub-structuring methods In this thesis, we pay special attention to sub-structuring meth-
ods. The sub-structuring method is the precursor of non-overlapping domain decomposition
methods [16] [17] [18] [19]. The sub-structuring method is based on decomposition of the
original structure into several sub-structures. The term sub-structuring is a way to describe
the general method allowing to decompose splitting among sub-domains sharing a common
interface. This method is most often used as a way to reduce the number of unknowns in the
linear system by eliminating the interior unknowns.

1.1.6 Project support
My thesis has contributed to various projects and to the label CUDA Research Center.

Project OpenGPU The OpenGPU [20] project started in 2010. It has brought together a set
of French companies and French academical research centers around the vision of a lack of
tool sets, framework and expertise for teeming up the GPGPU. My thesis brings expertise
to clear the vision of GPGPU benefits in terms of efficiency and power consumption. We
have put forward a new library that helps take advantage of the power of GPUs and gives a
new vision of high-performance computing for solving large-size linear systems. Indeed, the
library proposes a way to accelerate the computation of linear algebra operations by taking
into account their features and the hardware configuration.

Project CRESTA CRESTA [21] (Collaborative Research into Exascale Systemware, Tools
& Applications) has brought together four of Europe’s leading supercomputing centers with
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one of the world’s major equipment vendors, two of Europe’s leading programming tools
providers and six application and problem owners to explore how the Exascale challenge
can be met. The CRESTA project was completed at the end of 2014 (source: CRESTA

website [21]). The CRESTA project had two integrated strands: one focused on enabling a
key set of co-design applications for exascale, the other focused on building and exploring
appropriate systemware for exascale platforms. In this project, we propose and analyze parallel
algorithms in a context of heterogeneous multi-core environments that should pave the way to
exascale hybrid methods.

Label CUDA Research Center In 2013, our team led by Pr. Frédéric Magoulès, received the
prize CUDA Research Center, in recognition of the work undertaken in the field of the applied
mathematics and scientific computing, using graphics processors.

1.2 Organization of this thesis and contributions
The organization of the thesis and the main contributions are described in the following.

Chapter 2

In order to understand the popularity of GPUs, we first need to travel back in time, in Sec-
tion 2.2 to explore the history and evolution of the Graphics Processing Unit. Next, Section 2.3
introduces General-Purpose GPU Computing, inter alia, the programming tools that offer
access to the power of graphics cards. The GPU programming model and hardware configu-
ration issues are discussed in Section 2.4. Section 2.5 addresses the question of how much
energy is consumed for a real numerical simulation running on a Graphics Processing Unit
(GPU). In the high-performance computing field, an experimental protocol has been proposed.
In Section 2.6, we present all benchmark workstations and clusters used in this dissertation.
Finally, Section 2.7 concludes the chapter.

My first contribution to this chapter focuses on a gridification technique of the CUDA grid

to help the algorithms take greater advantage of the power of the graphics card.

My second contribution is to address the question of how much energy is consumed for a

real numerical simulation running on a GPU. In the high-performance computing field, an

experimental protocol has been proposed.

We also propose a way to easily handle complex number arithmetics on GPU for all

precisions, using advanced C++ template structures.

Chapter 3

First, an introduction to linear system solvers is given in Section 3.2, which includes matrix
storage formats and a description of two basic classes of methods for solving linear systems,
namely direct and iterative methods, and especially the iterative Krylov methods. For conve-
nience and thoroughness, Section 3.3 gives an overview of existing scientific libraries targeted
for GPU. Section 3.4 and Section 3.5 respectively discuss the best way to efficiently perform
BLAS level-1 linear algebra operations and sparse matrix-vector multiplication (SpMV) on
GPU. Hints for heterogeneous multi-core+GPU are given. Section 3.6 describes how solvers,
particularly iterative Krylov methods are implemented on GPU and multi-core systems, and
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how the performance of the basic linear algebra operations influence the overall performance
of these methods. These sections also describe, evaluate, analyze and present the optimizations
we have developed. Numerical experiments performed on a set of large size sparse matrices
arising from diverse engineering and scientific problems, have clearly shown the value of
using GPU technology to solve large sparse systems of linear equations, and its robustness and
accuracy compared to existing libraries such as Cusp. Section 3.7 presents an overview of the
library we have implemented, Alinea, and its competitive usage. Section 3.8 concludes the
chapter.

My contribution in this chapter has been to develop, implement and test innovative al-

gorithms for computing linear algebra operations on GPU and their use together within

solvers.

My second contribution is to build an accurate energy consumption prediction model of the

GPU. This helps predict energy needs of a program, and then allowing a better task scheduling

with a given computational time.

Another contribution is also the proposal of “An Advanced Linear Algebra Library for

Massively Parallel Computations on Graphics Processing Units”, aimed at providing a new

vision of GPU computing that helps harness the power of GPUs easily, without the program-

ming complexity of classical APIs such as CUDA and OpenCL.

Chapter 4

For convenience and thoroughness, Section 4.2 gives an overview of the different classes of
parallel iterative methods for readers not familiar with parallel and distributed computing.
Given that the first step is also necessary for optimization, in parallel processing consists
in distributing the data on the cluster processors. In Section 4.3 we shortly describe how
data are distributed among processors for different splitting strategies, in particular using a
smart process to partition a sparse matrix for parallel sub-structuring methods. Section 4.4 is
dedicated to a state-of-the-art theory of parallel synchronous and asynchronous iterations. We
notably introduce the classical model and models with total communication.

My contribution in this chapter was to develop and implement code for partitioning data

among processors in order to control and adapt the splitting to the studied parallel algorithms.

This choice allowed freedom in the implementation of parallel algorithms as we like.

I have proposed a way to correctly partition a sparse matrix for sub-structuring methods.

Chapter 5

The first section, Section 5.2, describes and discusses sub-structuring methods. They are first
presented in the synchronous case. Then a particular attention is paid to the asynchronous case.
In this section, we give a proof of the convergence of asynchronous sub-structuring methods.
In Section 5.2, we also evaluate the behavior of parallel algorithms in terms of fault-tolerance
and iteration penalization. Section 5.3 studies the theoretical speed-up of fully parallelizable
iterative methods with synchronous and asynchronous iterations. This section aims to an-
alyze the behavior of asynchronous algorithms. In Section 5.3, my contribution resides in

the theorems for the theoretical speed-up of synchronous and asynchronous parallelizable
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iterative methods. Section 5.4 reports numerical results and shows the advantage of parallel
sub-structuring methods, particularly when they are associated with asynchronous iterations
with enough processes. The numerical results highlight the effectiveness and robustness of
these methods on a platform of multi-core+GPUs. Section 5.5 concludes the chapter.

My contribution to this chapter has been to develop, implement and test innovative algo-

rithms of parallel synchronous and asynchronous sub-structuring methods.

My contribution in also to integrate GPU Computing in parallel algorithms with syn-

chronous and asynchronous iterations.

We give proof of the convergence of asynchronous sub-structuring methods.

We also give some theorems concerning fault-tolerance in parallel processing and we study

the behavior of the algorithm when some iterations are penalized.

Chapter 6

Section 6.2 describes the optimized Schwarz method, followed in Section 6.3 by an overview
of the stochastic-based technique to determine the optimized transmission conditions. Sec-
tion 6.4 reports numerical results performed on a realistic test case of our Schwarz methods
with optimized stochastic conditions. Finally, Section 6.5 concludes the chapter.

My contribution to this chapter is to modify high-order finite element solvers to be run on

a GPU. We use optimized conditions obtained by a stochastic technique based on a CMA-ES

algorithm.

I started with an existing code of domain decomposition with optimized Schwarz, devel-
oped by Frederic Magoulès et al. [22] I modify the sub-domain solvers in order to be run on
GPUs. The implementation is based on the acceleration of the local solutions of the linear
sub-systems associated with each sub-domain using GPUs.

Chapter 7

We conclude and suggest some important open problems and future research.

8 Chapter 1 General Introduction



Chapter 2
GPU Computing

„You can’t do better design with a computer, but you

can speed up your work enormously.

— Wim Crouwel
(Graphic designer and typographer)

2.1 Introduction

A
S per the constant need to solve larger and larger numerical problems, it is not possible
to neglect the opportunity that comes from the close adaptation of computational
algorithms and their implementations for particular features of computing devices,

i.e., the characteristics and performance of available workstations and servers. In the last
decade, the advances in hardware manufacturing, the decreasing cost and the spread of GPUs
have attracted the attention of researchers for numerical simulations, given that for some
problems, GPU-based simulations can significantly outperform the ones based on CPUs.
Comparing the evolution of CPUs to that of GPUs, one can talk about a revolution in the
case of GPUs, looking at it from the perspective of performance and advances in multi-core
designs. Currently, the computational efficiency of GPU reaches the TeraFlops (Tflops) for
single precision computations and roughly half of that for double precision computations,
all this for one single graphics card. Recent developments resulting in easier programmable
access to GPU devices, have made it possible to use them for general scientific numerical
simulations.

Although the field of GPU-based computing matures, there are still some issues regarding
communication, memory access patterns and load balancing, that are challenging and require
further research. Until the beginning of this century, parallel numerical simulations were
most often executed on clusters. The emerging possibility of general-purpose computations
on GPU has opened the door for several new simulation approaches. This is due to the fact
that GPU architecture differs significantly compared to the classical CPU. Because of their
primary use for managing graphics-related calculations, GPU has fewer control units and
many more ALUs (Arithmetical and Logical Units). GPU design results in inherently parallel
architecture well suited to many parallel simulations. A landmark in GPU-based computing
was the appearance of the Compute Unified Device Architecture (CUDA) prepared by NVIDIA.
With it, the developers are given a standard tool, in a form of C/C++ compiler extension to
build parallel programs to be executed on GPUs.

In the market of graphics cards, two major constructors stand out: NVIDIA and AMD.
Although this market is driven by the gaming industry, manufacturers are also struggling in
the high-performance computing market since the beginning of the last decade. A simple API
development is the key point of this battle. Putting GPU-based computations in a wider context
can be helpful in understanding this technology. This is why in subsequent subsections we
briefly discuss its history and evolution. Moreover, in order to master GPU programming one
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needs to be aware of hardware architecture issues, memory layout, language programming
and managing threads of execution. The GPU unit emerged as a specialized and highly
parallel microprocessor designed to accelerate 2D or 3D rendering, and to make it independent
from the load of the central processing unit. The appearance of add-on GPUs can be traced
back to the middle 90s, but it is in the last 10 years that GPUs have become more and more
programmable.

In recent years, we have witnessed that GPGPUs (General-Purpose Graphics Processing
Units) were adopted as an essential computational platform in all scientific fields. For High
Performance Computing (HPC) environments, the use of GPGPU is almost mandatory. The
newest graphics card can achieve performance measured in TeraFlops, and the use of program-
ming tools with APIs, based on high level language such as C, is probably one of the reasons
for that. While offering considerable computational power, the use of GPU architectures
requires redesigning most of the algorithms. Implementations and optimizations need to be
done carefully, otherwise they can degrade the performance significantly. The community
of programmers and graphics card manufacturers are now working on making the power of
GPGPU more accessible, with special programming tools and common standards.

My first contribution to this chapter focuses on a gridification technique of the CUDA grid

to help the algorithms take greater advantage of the power of the graphics card.

My second contribution is to address the question of how much energy is consumed for a

real numerical simulation running on a GPU. In the high-performance computing field, an

experimental protocol has been proposed.

We also propose a way to easily handle complex number arithmetics on GPU for all

precisions, using advanced C++ template structures.

The chapter is structured as follows. In order to understand the popularity of GPUs, we first
need to travel back in time, in Section 2.2 to explore the history and evolution of the Graphics
Processing Unit. Next, Section 2.3 introduces General-Purpose GPU Computing, inter alia, the
programming tools that offer access to the power of graphics cards. The GPU programming
model and hardware configuration issues are discussed in Section 2.4. Section 2.5 addresses
the question of how much energy is consumed for a real numerical simulation running on a
Graphics Processing Unit (GPU). In the high-performance computing field, an experimental
protocol has been proposed. In Section 2.6, we present all benchmark workstations and clusters
used in this dissertation. Finally, Section 2.7 concludes the chapter.

Keywords — GPU, Graphics card, OpenCL, CUDA, History, Auto-tuning grid, Green
computing, Energy consumption

2.2 History and evolution
GPUs were originally used for graphics computing, e.g., calculations of coordinates of

vertices, edges and surfaces, lighting, colors and textures with single floating point arithmetic.
As mentioned above, the first 3D add-in graphics card appeared in 1995. The main driving
force for its evolution was the demand from the gaming industry. The race to provide more
processing power and better video quality to the end users made the graphics card reach such
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a level of performance that is capabilities could no longer be ignored by the computational
science community. Special purpose graphics programming languages and plateforms such as
RapidMind, Sh, Cg, Brook were another factor that helped spread GPU computing [23] over
divers scientific fields [24] [25]. In the early 2000s, GPU units were able to outperform some
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FIGURE 2.1: Evolution of the peak performance of GPUs

of the supercomputers from the previous decade. This is the time when the idea of GPGPU
gained wide acceptance. After establishing the usage of GPGPU (General-Purpose computing
on GPU) the hardware was installed to manage double floating point arithmetic and widely
used for numerical simulation applications, see references [4] [5] [6] [7]. The introduction
by NVIDIA of its parallel computing platform and programming model, CUDA (Compute

Unified Device Architecture) [2] has set the new direction for making GPU programming
more accessible and user friendly to programmers of such high-level languages as C or C++.
That said, GPU programming still is a serious endeavour, especially from the perspective of
portability between devices and proving calculations’ correctness.

Now the GPU has become an indispensable device for HPC. The important and most
attractive character of GPU comes from its developing speed of hardware components. For
example, the GPU, NVIDIA GTX275, used during my thesis, has 200 cores running with
0.633GHz which achieve 126.6GFlop/s in double floating point, and is equipped with
127GB/sec− bandwidth memory. It was produced in 2009. The most recent GPU, NVIDIA

K20 has 2, 496 cores running with 0.706GHz, which achieve 1.17T F lop/s in double floating
point, and is equipped with 208GB/sec− bandwidth memory. We can see that the computa-
tional speed of GPU has become about 10 times faster and memory access speed two times
faster during the last four years, whereas both GPU consumes about 220W electricity. This
tendency has been ongoing for nearly a decade. Figure 2.1 also shows the same tendency
of computational speeds in single floating point with the other leading GPU by AMD in
comparison to the typical CPU from Intel.

2.3 General-Purpose GPU Computing
The performance reached by add-on graphics cards has attracted the attention of many

scientists, with the underlying idea of utilizing GPU devices for tasks other than graphics-
related computations. In the early 21st century, this gave birth to the technology known as
GPGPU (General-Purpose computation on GPU) as introduced in the history. As illustrated by
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Figure 2.1, one can note a big difference between the peak performance of CPUs and GPUs,
partly due to the inherently different architectures of these processors. This is the reason
why an increasing number of researcher focuses their attention on GPU-based numerical
simulations. Since the beginning [4] [5] [6] [24], the use of GPUs in high-performance
computing, especially in the field of scientific computing, has demonstrated its effectiveness
and robustness in terms of computation time. Much like in GPU programming, in this thesis
the CPU is classified as a host and the GPU as a device. Programming on GPU requires a
minimum understanding of the underlying mechanisms of the API and hardware features.
Thus, it seems reasonable to give a description of GPU hardware and software. In order to
better understand the attention paid to GPU Computing, we first introduce the native difference
between CPU and GPU architectures. The main difference between both architectures is
located at hardware level. And then we describe the issue of programming models in the next
section, which includes memory access and the management of computing threads referred to
as gridification.

2.3.1 GPU Programming languages
GPGPU-based programming has undergone substantial evolution over the past few years.

The basic programming model of traditional GPGPU is stream processing, which is closely
related to SIMD (Single Instruction Multiple Data). CUDA and OpenCL [3] (Open Computing

Language) provide tools based on extensions to the most popular programming languages (most
notably C/C++/Fortran), that make computing resources of GPU devices easily accessible for
general tasks. An effective use of these tools requires an understanding of the implications of
GPU hardware architecture, therefore we provide in the following a brief overview of GPU
architecture.

2.3.2 Hardware architecture
The GPU device architecture stems from is role in speeding up graphic related data

processing independently from the load of the central processing unit. The key point of
effective processing of such data lies in specially designed memory hierarchy that allows
each processor to access requested data optimally. The simplified CPU architecture contains
Arithmetical and Logical Unit (the basic unit of computations), several memory units with
multiple levels of associated cache memory and a complex control unit. Figure 2.2 shows
a simplified comparison between CPU and GPU architecture. The key idea of designing
GPU architecture is based on an ALU (Arithmetical and Logical Unit) structure simpler
than CPU with low clock frequency, e.g., 1/4 of CPU but with a very large number of ALUs,
(see Figure 2.2). Tasks such as texture processing or ray tracing imply doing similar calculations

FIGURE 2.2: CPU architecture vs GPU architecture
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on a large amount of independent data (Single Instruction Multiple Data). Thus the main
idea behind the GPU design is to have several simple floating point processors working on a
large amount of partitioned data in parallel. The way this is achieved is, in general, through
a memory hierarchy allowing each processor to access needed data in a somehow optimal
manner. Then it is easy to develop more massively parallel architecture, whereas most recent
CPU houses only up to 12 cores. GPU has in fact become a massively parallel computing
device with hundred or thousand of cores (ALUs) that operate together to massively parallel
process the computing data. The other important factor accounting for the popularity of GPU
computation is the software environment in which to develop computational codes.

Compute Unified Device Architecture (CUDA)

CUDA (Compute Unified Device Architecture) [26] is a framework for GPGPU computing
developed by NVIDIA. The first version of CUDA appeared in 2007 and it is updated almost
every year. Despite being proprietary, CUDA technology sets the de facto standard in GPGPU-
driven computing, being feature rich and delivering top performance. CUDA defines both
hardware and software environment with C-based programming language to manage SIMD-
type massively parallel execution by GPU. Initially based on C language, nowadays it is
also available for C++ and Fortran. For other languages, most notably scripting languages
commonly used in programming numerical simulations, like Matlab, Python or Haskel, it
is possible to find third party wrappers. In this thesis we will show examples based on
C/C++ programming language. The CUDA software environment provides an abstract thread
computing model which could be common over different generations of GPU hardware.
Specifically, CUDA parallel execution has more flexibility than SIMD parallel execution, and
is called as SIMT (Single Instruction Multiple Threads). CUDA lowers the initial barrier for
developers to benefit from NVIDIA GPGPUs technology for solving intensive computations
such as linear algebra operations including matrix-vector multiplication. Thus it enables
programs to use the computation power of GPU, facilitated by the CUDA-SDK. Despite
enormous improvement, there are still some CUDA [27] issues that need to be resolved. GPUs
are originally designed for single precision (32 bits) computations [28]. In fact, single precision
is generally sufficient for graphics rendering. Unfortunately, the numerical simulation generally
requires more precision. All implementations prior to CUDA 1.3 are performed in single
precision, since double precision was introduced for CUDA 1.3. Nevertheless, double precision
computation time is still usually 4 to 8 times higher than single precision [29]. Regarding the
arithmetic, CUDA implementation of double precision floating point operations differ at some
points from the IEEE 754 standard [30]. More research is needed to ensure the correctness,
stability and portability of such operations. In this thesis, we will obviously investigate the
behavior of performance upon the precision. CUDA has proven a large interest in scientific
computing [31] [32] [33] and continues to evolve. CUDA has also demonstrated its efficiency
in distributed parallel computing environment [34] [35].

OpenCL

On the other hand, OpenCL (Open Computing Language), a free and open language offered
in 2008 by the Khronos group, is intended for use on all the compatible graphics cards of all
manufacturers on the graphics card market. It provides a more general framework for a hybrid
parallel computation with CPU and GPU. It can be used with both NVIDIA and ATI/AMD cards.
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The first multi-platform GPU programming language was born. OpenCL has also proven
its efficiency [36] [37] [38] [39] [40] in numerical simulations. NVIDIA includes OpenCL
API in the CUDA toolkit since 2008. Today, many engineering and scientific applications are
transformed in order to utilize the advantages of GPU-based computing.

2.4 GPU Programming Model
In this section, we will discuss important issues of the CUDA programming paradigm.

Understanding the issues of memory access, management of execution threads and the necessity
to account for the features of a particular GPU device is important, in order to provide effective
implementation of the basic linear algebra operations that affect the performance of more
complex algorithms.

2.4.1 Memory structure
The GPU performs the same calculations on a large number of data instances (SIMD model).

This alone, however, is not enough to get more performance, because the data must be well
organized on memory to optimize access, the key point on which the algorithm performance
depends. The memory layout and access patterns are the features that strongly differentiate
CPU and GPU devices. This difference compels us to use a specific code optimization model,
but such optimization brings better performance in GPU. CPU memory exhibits very low
latency for the price of reduced throughput. On the contrary, GPU devices allow to push large
portions of data but the access to their memory is rather slow. As seen in Figure 2.2 (left), CPU
has a connection to the main memory through cache memory. When CPU accesses data, one
of two things happens, i.e., to access to the main memory, or to access to the cache memory.
The cache memory can store the last accessed data. If data once read from the main memory
is reused several times in certain cycles, CPU needs only access such data residing in cache.
However, we need to notice that the usage of the cache memory is completely automatic and
there is no way to control the behavior of the cache memory from the user software. The
GPU system has a more complicated hierarchy of memory. GPU can access register memory,
shared memory, constant memory and global memory, which are shown in Figure 2.3(a) for
CUDA. The OpenCL version is described in Figure 2.3(b). Without loss of generality and for

(a) CUDA memory model (b) OpenCL memory model

FIGURE 2.3: CUDA and OpenCL memory models

the sake of clarity, we must adopt the terminologies of CUDA. In contrast with CUDA, we
will accurate the terminologies whether specific to OpenCL. The register memory is seen as
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local memory of an ALU in GPU. This memory is accessed in the fastest speed in the GPU
board with low latency. In the execution of the code, this latency will be completely hidden by
executing an appropriate number of threads. The shared memory is the next fastst memory,
which can be accessed from all ALUs in a group called a block. Then the shared memory is
used as a communication buffer between ALUs in a block. In CUDA programming, a user
can declare the usage of shared memory explicitly, which leads to a big difference from the
code for CPU. The constant memory also provides faster access but it is only readable. It is
necessary to use an host CPU to rewrite the data in the constant memory. The global memory

is the main memory of the CUDA GPU, which can be accessed from all ALUs of GPU. The
results of computation by ALUs are written in the global memory and sent to the host, which,
in reality, is done the opposite way, i.e., the host reads data through the PIC Express bus. Both
constant memory and global memory need to be allocated by the host computer. A comparison
on access speeds to memories amounts to:

register memory < shared memory

shared memory < constant memory

constant memory≪ global memory .

Since NVIDIA GPU uses GDDR5 memory with a higher clock and wider memory bus, the
memory access speed of global memory is about four times faster than the main memory of
CPU which consists of DDR3 memory. However, we need to be aware that global memory is
shared by all ALUs of the GPU board, and that the speed of the memory to an ALU is slow.
Efficient memory access to the global memory without ALUs idling is paramount to CUDA
GPU computation, for execution time and also for power consumption, because the GPU
board consumes some amount of energy even though all ALUs are idling. Computing units
are divided into blocks of threads. Each block has its own shared memory that is available to
blocks’ threads. The key point in achieving good performance in GPU computing is the wise
use of this memory hierarchy. It might require a redesign of the traditional implementation of
some basic algorithms. What is also important, the algorithm design must not only account for
the architecture but also be tunable to GPU device characteristics.

2.4.2 Kernel and gridification
Handling scientific calculations on GPU with CUDA technology extends beyond the tradi-

tional GPU stream computing by extending the functions of the GPU to address a wide range
of mathematical intensive problems. In GPU terminology, in OpenCL and in CUDA, the word
kernel is used to denote a subroutine executed in parallel by GPU ALUs (see Figure 2.4(a)),
with a CUDA grid architecture. A thread is the smallest unit of processing that can be sched-
uled by an operating system. CUDA threads are controlled by the dedicated hardware inside
GPU. They are grouped into 32 threads assigned to one actual ALU hardware component.
The unit of 32 threads is called a warp. This is a fundamental size of thread execution and is
understood as a size of vector length of vector super computers. Several warps are grouped
into a block whose size is given by the user as a multiplier of 32. Inside a block, all threads

can access a shared memory and can be synchronized by the hardware with almost negligible
latency. This usage of shared memory and synchronization inside a block play a key role in
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(a) The different hierarchies of the execution
process

(b) Gridification: thread,
block, grid

FIGURE 2.4: The different hierarchy of execution process and gridification

computation of the inner product of two vectors for scientific computation. A set of blocks is
called a grid, as shown in Figure 2.4(b).

Following the development history of GPGPU as a graphics hardware, GPU with dedicated
memory is packaged in a PCI expansion board and connected to the host computer through
the PCI Express bus [41] [42]. Here, the GPU itself has no operating system and the general
parallel executing flow is driven by CPU on the host computer. The flow of parallel computation
using CUDA GPU is the following. Data is first copied from the main memory to the GPU
memory, global memory (1). Then the host (CPU) instructs the device (GPU) to carry out
calculations (2). The kernel is then executed by all threads in parallel on the device, (3).
Finally, the results are copied back (from GPU memory) to the host (main memory), (4).
Figure 2.5(b) shows this flow schematically. Figure 2.4(a) shows the different structures of

(a) GPGPU API architecture (b) GPU computing processing
flow

FIGURE 2.5: GPGPU API architecture and GPU computing processing flow

the execution process and Figure 2.5(a) describes the general architecture of GPGPU APIs.
The OpenCL syntax is closed to that of CUDA. The main differences in terminology of the
language architectures are reported in Table 2.1.

The global index of the current thread is obtained from a pair of indices, the index for the
block and the local thread index inside the block,

int idx = blockIdx .x * blockDim.x + threadIdx .x;

where blockDim.x is set as a number of threads per block by user. CUDA has the capability
to assign a global index of current threads in a 2D or 3D-shaped grid, which is originally sup-
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nVidia CUDA AMD (OpenCL)
CPU host host

GPU device device

GPU function kernel kernel

main memory global global

block memory bloc shared local

texture memory texture texture

constant memory constant constant

thread memory local private

grid grid NDRange

block block work group

thread thread work item

warp warp (32) wavefront (64)

TABLE 2.1: Nvidia/AMD: GPGPU nomenclature

posed to manage tasks for the bitmap display. Generalization of these thread index assignments
is understood as gridification.

The literature [43] [44] [45] has proved that the gridification, i.e., the grid settings and
organization, has a strong impact on the performances of the kernels.

To illustrate the inherent difference between the CPU and GPU code, we present as a basic
example the addition of two vectors. CPU code is expressed as a simple loop as described in
Algorithm 2.1. On a GPU, the basic idea consists in assigning each index of the vectors to an

Algorithm 2.1: Addition of vectors on CPU
1 for i = 0 to n− 1 do
2 c[i]← a[i] + b[i]
3 end

execution unit and then performing the addition operation on the whole vector. This principle
is presented in Algorithm 2.2.

Algorithm 2.2: Addition of vectors on GPU (thread function)
1 i = thread number
2 c[i]← a[i] + b[i]

2.4.3 Auto-tuning of the grid
In order to build efficient implementations, developers must pay attention to hardware

configuration issues. The main problem lies in setting up an optimal threads hierarchy and grid
configuration that will match the hardware configuration and the specific problem parameters,
for instance the size of processed matrices.

The kernel function requires at least two additional arguments corresponding to the gridifi-
cation: the number of threads per block, nThreadsPerBlock, and the dimension of the block,
nBlocks. An example of a kernel function declaration for a one-dimensional grid is presented
below:

KernelEx<<<nBlocks, nThreadsPerBlock>>>(arguments);

These values depend both on the total number of necessary threads related to the size of a
problem to be solved, and the number of blocks and number of threads per block, i.e., the
specificity of the GPU architecture. Choosing a number of threads higher than the amount
supported natively will result in non-optimal performance. Accordingly, auto-tuning of the
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gridification is a way that helps the CUDA program achieve near-optimal performance on
a GPU architecture. The idea behind the tuning of the grid is to recognize device features
and then adjust the gridification according to the problem size. We focus on finding the
gridification, which gives the best performance.

To illustrate the concept of gridification, let us consider the example described in the
Listing 2.1.

// Declaration of the kernel
__global__ void KernelEx(double* parameter) ;
// Use of the kernel
KernelEx <<< Dg, Db, Ns, S >>> (parameter) ;

LISTING 2.1: Kernel parameters and call

where Dg, Db, Ns, S denote respectively: (i) Dg, the number of blocks of type dim3 is used
to define the size and dimension of the grid (the product of these three components provides
the number of units launched); (ii) Db, the number of threads per block of type dim3 is used to
specify the size and dimension of each block (the product of these three components offers
the number of threads per block); (iii) Ns, the number of bytes in shared memory of type
size_t represents the number of bytes allocated dynamically in shared memory per block in
addition to statically allocated memory (by default Ns=0); (iv) S corresponds to the CUDA
stream of type cudaStream_t, and gives the associated stream (by default S=0). Each kernel
has read-only implicit variables of type dim3: blockDim, the number of threads per block, i.e.,
value of nThreadsPerBlock of the kernel’s setting, blockIdx, the index of the block in the grid
and threadIdx , the index of the thread in the block.

For the sake of clarity and without loss of generality, the gridification is illustrated for the
Daxpy (Double-precision real Alpha X Plus Y) operation, presented in Algorithm 2.2. The
corresponding CUDA kernel is given in Listing 2.2.

1 __global__ void Daxpy(double alpha, const double* d_x, double* d_y, int size ) {
2 unsigned int idx=blockIdx.x*blockDim.x+threadIdx.x;
3 if ( idx<size ) {
4 d_y[idx] = alpha * d_x[idx] + d_y[idx ];
5 }
6 }

LISTING 2.2: Daxpy (Double-precision real Alpha X Plus Y) on one-dimensional grid

As a comparison, the OpenCL version is described in Listing 2.3.

1 __kernel void Daxpy(double alpha, __global double* d_x, __global double* d_y, int size ) {
2 unsigned int idx = get_global_id (0) ;
3 if ( idx<size ) {
4 d_y[idx] = alpha * d_x[idx] + d_y[idx ];
5 }
6 }

LISTING 2.3: Daxpy (Double-precision real Alpha X Plus Y) version in OpenCL

As an example of a one-dimensional grid, consider one block of the size number of threads, as
shown in Listing 2.4.

1 int main( int argc , char** argv) {
2 // −− variables declaration and initialization
3 ...
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4 // −− kernel call where d_x and d_y are device pointers
5 Daxpy<<<1, size>>>(alpha,d_x,d_y, size ) ;
6 // a vector of size element added once
7 }

LISTING 2.4: Basic kernel call

In the following we present the auto-tuning technique for CUDA. A basic self-configuration of
the number of blocks with a given number of threads can be expressed in Listing 2.5.

1 // call function
2 int main( int argc , char** argv) {
3 const int nThreadPerBlock = 100;
4 // −− self−configuration parameters kernel call
5 const int nBlocks = 1 + ( size−1) / nThreadPerBlock;
6 // −− kernel call where d_x and d_y are device pointers
7 Daxpy<<<nBlocks,nThreadPerBlock>>>(alpha,d_x,d_y,size);
8 }

LISTING 2.5: Kernel call with basic self-threading computation with a number of threads per block equals
to 100

where nBlocks and nThreadPerBlock of type dim3 are required for 2-d an 3-d. The code
presented in Listing 2.6 shows the Daxpy kernel with a two-dimensional grid.

1 __global__ void Daxpy(double alpha, const double* d_x,double* d_y, int size ) {
2 unsigned int x = blockIdx .x * blockDim.x + threadIdx .x;
3 unsigned int y = threadIdx .y + blockIdx .y * blockDim.y;
4 int pitch = blockDim.x * gridDim.x;
5 int idx = x + y * pitch ;
6 if ( idx<size ) {
7 d_y[idx] = alpha * d_x[idx] + d_y[idx ];
8 }
9 }

LISTING 2.6: Daxpy on two-dimensional grid

The implementation given in Listing 2.6 ensures that when the vector content exceeds the
one-dimensional grid, the extra coefficients are stored on the second dimension. To optimize
the threading organization, we propose to set the kernel configuration by taking into account
the hardware characteristics. Thus, the grid block characteristics are computed as described in
Listing 2.7 for a one-dimensional grid and in Listing 2.8 for a two-dimensional grid.

1 dim3 ComputeGridBlock(int size , int thread_per_block ) {
2 dim3 nblocks;
3 // −− compute the necessary blocks
4 int necessary_blocks=1+(size−1)/thread_per_block ;
5 int max_grid_size_x=dev_properties .maxGridSize[0];
6 // −− required two−dimensional grid
7 if ( necessary_blocks > max_grid_size_x) {
8 nblocks .x=max_grid_size_x;
9 nblocks .y=(necessary_blocks−1)/max_grid_size_x+1;

10 nblocks .z=1;
11 } else { // dimensional grid sufficient
12 nblocks .x = necessary_blocks ;
13 nblocks .y = 1;
14 nblocks .z = 1;
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15 }
16 return nblocks;
17 }

LISTING 2.7: Grid features computation for one-dimensional grid fully used

1 dim3 ComputeGridBlock(int size , int thread_per_block ) {
2 dim3 nblocks;
3 // compute the necessary blocks
4 int necessary_blocks = 1 + ( size−1) / thread_per_block ;
5 int max_grid_size_x = dev_properties .maxGridSize[0];
6 if ( necessary_blocks <= max_grid_size_x) {
7 // −− dimensional grid sufficient
8 nblocks = dim3(necessary_blocks) ;
9 } else {

10 // −− required two−dimensional grid
11 int each_block_dim = ceil ( sqrt ( necessary_blocks ) ) ;
12 nblocks = dim3(each_block_dim, each_block_dim);
13 }
14 return nblocks;
15 }

LISTING 2.8: Grid features computation for two-dimensional grid

(a) Skeleton of the “one-dimensional grid
fully used”

(b) Skeleton of the “two-dimensional grid”

FIGURE 2.6: Grid computing strategies: one-dimensional grid technique (a) and two-dimensional grid
techinique (b)

Figure 2.6(a) and Figure 2.6(b) illustrate respectively the first technique presented in Listing 2.7
and the second one exhibited in Listing 2.8. Line 5 of both codes calculates the maximum
size of the first dimension. The technique presented in (Listing 2.7, Figure 2.6(a)) consists
in using all threads of the first dimension of the grid and then completing the remaining
ones with the second dimension. The technique implemented and descibed in (Listing 2.7,
Figure 2.6(a), Figure 2.6(b)) utilizes a two-dimensional square grid. This technique involves a
greater proximity between the blocks of the first dimension and those of the second leading to
better efficiency as we will see in the next sections.

2.4.4 Memory access and data transfers
We focus on the CPU and GPU interaction and communication in order to minimize CPU

and GPU idling, and maximize the total throughput.
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GPUs are interconnected to a motherboard using a standardized type of slot, as drawn in
Figure 2.7. As said above, most source codes using CUDA are divided in multiple steps as

HDD CM CPU

Motherboard

PSU GPU

•

•
SATA connector

•
ATX Power connector

•
Memory slot

•
CPU Socket

•
PCIe x16

•
GPU Power connector

12V input

Step iii & v

FIGURE 2.7: Data transfers between CPU side and GPU side

shown in Figure 2.5(b). and follow the following steps: (i) allocation of memory on the CPU
side, (ii) allocation of memory on the GPU side, (iii) copying allocated values from CPU to
GPU, (iv) kernel launch, (v) copy results from GPU to CPU, (vi) deallocation of allocated
memory. The copy operations use the motherboard bus to transfer data between the Central

Memory (CM) of the computer and the Global Memory inside the GPU.
When we deal with GPU implementation, the evaluation of raw computing efficiency and

memory bottleneck gives a first overview of the performance of the graphics card. Figure 2.8(a)
shows the effectiveness of a cosine function upon the number of threads, where the efficiency
calculation is based on the number of transactions per second. We compare CPU and GPU
with CUDA, and GPU with OpenCL. The analyze has been performed on a workstation
equipped with an Intel Core i7 930 running with 2.67GHz, which has 4 cores and 12 GB main
memory and two NVIDIA GTX570 GPU with 1279MB memory. The GPU card has double
precision arithmetic capability, and is driven by CUDA 4.0 software. We evaluate the number
of transactions carried out per second with 512 threads per block (512 work-items per work
group) and each thread performing 1, 000 computations. Figure 2.8(a) clearly illustrates that

(a) Cosines raw efficiency (b) Cosines computing time in microsec-
onds

FIGURE 2.8: Cosines raw efficiency (a) and computing time in microseconds (b)

the GPU is more effective when the required number of operations increases. The higher the
number of operations, the smaller the influence of a particular gridification. According to the
particularity of GPU architecture as described in Figure 2.2, the efficiency limit is achieved
asymptotically. The shape of the curve in Figure 2.8(b) that represents the cosine computation
time in microseconds, confirms this phenomenon and the importance of the gridification for
small data sizes. For CUDA, a gap in the curve is observed when the load remains constant
while the block is not fully utilized, which involves an overloading when an extra warp is
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required. On the OpenCL curve, levels are less clear-cut because the cutting of blocks was done
in a different way, which allows supernumerary threads to release the GPU quickly instead
of executing itself in a vacuum. When threads of a warp access the memory, the queries are
gathered into words of 32, 64 or 128 bits. More requests are required if each thread accesses a
distant memory location, contrary to the case when threads access localized memory locations.
The performance bottleneck may occur when memory access is poorly managed.

To illustrate this phenomenon, we carry out two tests where each thread accesses a memory
location to indices i+k ∗step first, as shown in Figure 2.9(a) and second to indices i∗step+k,
as described in Figure 2.9(b), for k = 0, . . . , 1000 where i denotes the index of the thread.
Figure 2.10 shows that when we vary the step for the indices i ∗ step + k, the threads are

(a) Gather memory access, i+ k ∗ step (b) Scatter memory access, i ∗ step+ k

FIGURE 2.9: Memory access mode: i+ k ∗ step (a) and i ∗ step+ k (b)

accessing memory locations further from each other, and this results in degraded performance
because a given memory request can satisfy only one thread. On the other hand, it also
illustrates that for the indices i+k ∗ step, the threads are always accessing contiguous memory
locations, and thus it results in good performance because of localised memory access. Let
remark in Figure 2.8(a) the behavior of the CPU access to the RAM, which is constant in time,
unlike the access to the cache.

FIGURE 2.10: Number of memory access per microseconds

2.4.5 Implementing complex number arithmetics on GPU
Some numerical methods, such as the finite element discretization of the Helmholtz

equations for acoustic problems, leads to complex number arithmetics matrices.
GPUs have initially been developed for integer arithmetics, and using floating point

operations with real numbers significantly reduces their performance. This is even more
problematic when using double precision floating point operations which imply a drop in
performance [46] [47] [48]. Since such problems related to numerical simulations involve
complex number arithmetics with double precision floating point operations, the expected
performance is extremely low.

22 Chapter 2 GPU Computing



As mentioned earlier, CUDA was initially dedicated to real numbers arithmetics. To
better take advantage of GPU architectures, we focus on the optimization of complex numbers
in CUDA and OpenCL. As indicated in most of state-of-the-art real-number arithmetics,
GPU implementation clearly outperforms CPU algorithms, but behavior for complex number
arithmetics with double precision is still a challenge.

However, given that a complex number is a set of two real numbers (real part, imaginary
part), implementation is possible by defining a structure containing two real numbers. A natural
approach to defining a complex number in memory is based on the following structure:

s t r u c t complex {
double x ; / / r e a l p a r t

double y ; / / i m a g i n a r y p a r t

} ;

LISTING 2.9: Complex number in memory

We make sure to avoid padding, and that both real numbers x and y are stored on contiguous
memory, i.e., the offset of both is null. The structure of CUDA and the OpenCL complex has
the same concept as before, except that data are stored on a GPU device. The CUDA library
libcudart.so, proposes cuFloatComplex, a float2 structure (typedef float2 cuFloatComplex)
and cuDoubleComplex+, a double2 structure (typedef double2 cuDoubleComplex), which
correspond to the same design given in Listing 2.9. We have implemented a complex template
class complex<T,U> (T i sthe data type name and U the index type name), which redesigns all
the operations available in standard std::complex. The routines of the std complex fall within
the “host” category, i.e., they are only available from the CPU. In our complex class, these
routines are implemented with __host__ __device__ (CUDA), which guarantees the usage on
both CPU and GPU code. To differentiate from the standard complex, we put our new complex
class into “stdmrg” namespace.
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1 namespace stdmrg {
2 // ! @struct complex
3 // ! @brief complex for cuda and
4 template <class T>
5 class complex {
6 public :
7 typedef T value_type ;
8 private :
9 T m_x;

10 T m_y;
11 public :
12 __host__ __device__ complex (void );
13 __host__ __device__ complex (T r , T i =0);
14 __host__ __device__ complex (const complex<T>& copy_c);
15 public :
16 __host__ __device__ T real (void) const ;
17 __host__ __device__ T imag (void) const ;
18 private :
19 __host__ __device__ T abs (void) const ;
20 __host__ __device__ T norm (void) const ;
21 __host__ __device__ complex conj (void) const ;
22 // ...
23 public :
24 __host__ __device__ complex& operator=(const T& value);
25 __host__ __device__ complex& operator+=(const T& value);
26 __host__ __device__ complex& operator−=(const T& value);
27 __host__ __device__ complex& operator/=(const T& value);
28 __host__ __device__ complex operator−(void);
29 // ...
30 } // namespace stdmrg {

LISTING 2.10: Complex class

1 // −− free functions : example of usage:
2 // −− stdmrg::complex<T,U> c;
3 // −− T r = stdmrg:: real (c );
4 // ! @brief real part
5 template <class T>
6 __host__ __device__ T real (const complex<T> c) {
7 return c. real ( );
8 }
9 // ! @brief imaginary part

10 template <class T>
11 __host__ __device__ T imag (const complex<T> c) {
12 return c. imag( );
13 }
14 // ! @brief absolute value of complex
15 template <class T>
16 __host__ __device__ T abs (const complex<T> c) {
17 return c.abs( );
18 }
19 // ! @brief norm of complex number
20 template <class T>
21 __host__ __device__ T norm (const complex<T> c) {
22 return c.norm( );
23 }
24 // ! @brief complex conjugate
25 template <class T>
26 __host__ __device__ T conj (const complex<T> c) {
27 return c. conj( );
28 }
29 // ...
30 } // namespace stdmrg {

LISTING 2.11: Complex free functions

Listing 2.10 shows a piece of the stdmrg::complex<T,U> class, and Listing 2.11 illustrates
some free functions.

2.5 Energy consumption
To answer the question “How much energy is consumed for a numerical simulation running

on a Graphic Processing Unit?”, an experimental protocol is herewith established. The current
provided to a Graphic Processing Unit (GPU) during computation is directly measured using
amperometric clamps. Signal processing of the intensity of the power supplied to a GPU,
with a noise reduction technique, gives precise timing of GPU states, which helps establish an
energy consumption model of the GPU.

2.5.1 Introduction
During the last decade, GPGPU has proved to be extremely powerful and efficient to

accelerate graphics (video games, etc.) and numerical simulations (seismic imaging, etc.).
GPGPU has emerged as an alternative to classical approaches in parallel computing, and
showed a great promise for supercomputers toward exascale and petascale computing. The
power of th GPU can be a real advantage when considering the treatment of an application
with a huge data size.

Recently, mobile devices such as personal computers, cell phones, tablets, etc. are equipped
with a powerful GPU which can be harnessed for general-purpose computations. Nvidia has
newly expanded its CUDA parallel-processing architecture to mobile devices. Usually, embed-
ded systems (aircraft, vehicle, drone, gravimeter, etc.) run with limited computer hardware
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resources, such as memory and performance. The recent idea to support the performance of
embedded processors consists in coupling the classical microprocessors with GPU devices
in order to accelerate the computations. Having a GPU available on embedded systems is
interesting for a number of reasons, such as the acceleration of real-time applications when
solving large-size problems. However, these mobile devices are battery-dependent, i.e., the
battery capacity is dependent upon the equipment level in the device, therefore it is crucial to
take into account the portion of energy consumed by the GPU accelerator, which is energy-
greedy. Beyond our interest in accelerating computations, we are keen to reduce the energy
consumption of embedded systems or supercomputers.

The main contribution of this work is to analyze and understand the behavior of algorithms
when using GPU Computing in terms of energy consumption. This analysis can be helpful
in designing future GPU-accelerated energy-efficient embedded systems. It can be used, for
instance, when managing automatic switching between ordinary microprocessors, GPU and
hybrid microprocessors according to the needs of an algorithm, equipment level and available
resources, e.g., the battery usage. The data used in this analysis are coming from gravity surveys
using a gravimeter. Recent gravimeters (ZLS Dynamic Gravity Meter, Absolute Quantum
Gravimeter, Micro-g LaCoste Absolute Gravimeters, etc.) include embedded processors
connected to a host computer. In the ZLS Dynamic Gravity Meter, the host computer stores all
data on a hard disk and can simultaneously display data to the video monitoring. Real-time
output is one of the most important constraints. GPU Computing is an excellent candidate for
achieving real-time rendering.

With the construction of supercomputers toward exascale computing, a new problem has
arisen, i.e., how to reduce energy consumption of the system. In order to make a computer
100 times faster than today’s supercomputers, it would require 100 times the energy if the
same CPU architecture is used, which is unaffordable. There is a famous list of the 500 fastest
supercomputers in the world [8] which is updated twice a year. Besides this list, there is
another top-500 list of supercomputers which is power efficient, the Green 500 [9] [10] [11].
In the latter list, all top-10 supercomputers consist of hybrid architecture of CPU and GPU.

GPU is the fastest computational unit, which is approximately ten times faster than a
multi-core CPU with similar energy consumption. The usage of a hybrid system with GPU
is a promising way to construct energy-efficient embedded systems and clusters. Efforts to
reduce energy consumption are based on hardware developments, e.g., using special coolant
for efficient heat exchange. The most energy efficient supercomputer TSUBAME-KFC at
TITech, Japan[49] uses a special coolant for efficient heat exchange. Usage of GPU is almost
the standard in super computing and is de facto the future of embedded systems and mobile
devices, but what about energy consumption for real applications?

For applied sciences and engineering problems, a system of partial differential equations
(PDEs), ordinary differential equations (ODEs) and algebraic differential equations (DAEs) is
often used as a physical and mathematical model, which is then solved numerically. Today,
several physical parameters can be taken into account, coupling different physical models
leading to more and more complex systems.

The main priority of the library is the computational time required to obtain the solution in
a parallel environment, i.e., “How much time is necessary to solve the problem?”. The second
priority of the library is G Flop/s, because this indicator is useful to estimate performance on a
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new hardware by evaluating of the ratio between actual G Flop/s by the library and the peak
G Flop/s by the hardware.

Nowadays, we need to address another question, energy related, i.e., “How much energy

is consumed by the application?”. For high-performance computing (HPC) hardware, the
appropriate answer gives a compromise between computational time and energy consumption.
Numerical algorithms [50] [51] [52] [53] [54] [45] have already faced a similar question,
i.e., “How much memory is necessary to solve the linear system?”. This question is also very
important because memory limitation is one of the physical constraints of numerical simulation.
If the memory falls short, we have to give up the simulation or satisfy ourselves with very
slow out-of-core execution. Therefore, algorithms have been optimized in both directions to
minimize computational time and memory usage. Unfortunately, there is no way to answer
the new question on energy consumption only from a software point of view. To the best
of our knowledge, there is no established way to measure real energy consumption for each
application. Therefore, we aim to design an experimental protocol to measure GPU energy
consumption accurately for fundamental and basic arithmetic operations and some heavy
operations involved in numerical linear algebra with sparse matrix. This allows us to build an
accurate energy consumption prediction model of the GPU. This methodology could suggest a
“new vision of high-performance computing” and answer some of the questions outlined in
references [12] [13] [14] [11], which highlight the importance of energy consumption when
using GPUs. The computing power and power/energetic consumption ratio of the GPU being
superior to standard CPU, the use of GPU represents an opportunity to have more power for a
lower energetic cost.

2.5.2 Experimental protocol
In this section, we describe the physical setting in which to measure the CPU energy

consumption through direct measurements of the current sent to the GPU from the host
computer, and a technique to understand the state of the GPU from raw experimental data
on the intensity of the current to the GPU with noise reduction. In order to get accurate
measurements of the energy consumption of a GPU parallelized code, we need to measure
the energy consumption by the GPU alone without consumption by other components of
the computer. Unfortunately, there is no dedicated GPU sensor which can measure energy
with the GPU ALU status, which is why we must plug in a device, an amperometric clamp,
on the power supply cables of the GPU. An amperometric clamp measures the intensity of
the magnetic field created by the current circulation and its output data are values of the
current. This current is converted to voltage by an I-V conversion circuit for input of a digital
oscilloscope to monitor time dependent electric power. We note that we define positive or
negative voltage according to the direction of the original current during the I-V conversion.
There is no space to clamp the amperometric device between the GPU card and the mother
board, because the GPU card is directly connected to the PCI express expansion slot. Then
we use an extension cable called a “riser uncut” in Figure 2.11(a), which allow to make space
for the clamp. The power for the GPU is supplied through the PCI Express interface with
two voltages, +3.3V and +12.0V , and through supplemental cables with +12.0V , directly
from the power supply unit of the workstation. By specification of the PCI Express, each
voltage is guaranteed as the constant value. The currencies on the PCI Express slot for +3.3V

and +12.0V vary up to 3.0A and 5.5A, respectively, which results in 75W electric power at

26 Chapter 2 GPU Computing



(a) Riser uncut (b) Riser cut and connected to a
clamp

FIGURE 2.11: Riser uncut and riser cut connected to a clamp

the maximum. The current of supplemental cables varies up to 18.75A with 225W electric
power. We note that one GPU card can consume power up to 300W . Figure 2.12 presents the
experimental setting schematically. To measure the currencies for +3.2V and +12.0V , we
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FIGURE 2.12: Schematic representation of the protocol

need to separate the +3.3V cable from the +12.0V cable of riser uncut. A way of separation
is shown in Figure 2.11(b), where (1) the riser cut and (2) the amperometric clamp around
the riser. Figure 2.13 shows the global wiring of the experiment, where (1) represents the
GPU computer (workstation), (4) the first amperometric clamp, (2) the second amperometric
clamp, (5) the USB plug for recording, (6) the numerical oscilloscope. In total, we used three

FIGURE 2.13: Experiment wiring: clamp on GPU computer
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clamps to measure each current of the power-supplying cable. By measuring the currencies
I3.3V , I12V riser and I12V ext, we can get the energy consumption of the GPU card as

P = 3.3× I3.3V + 12.0× (I12V riser + I12V ext) .

The foreground clamp is plugged into the power supply unit, whereas the background one
is plugged into the riser. To retrieve the measure we use a numerical oscilloscope, which is
connected to the local area network using an ethernet cable. The computer has two NVIDIA
GTX 275 GPUs. The experiments have been performed on the first GPU, the second one
being mostly used for the video output. We have designed our own experimental protocol
that measures precisely the GPU energy consumption, from the raw data obtained by the
amperometric clamps. The raw data are first processed by a digital oscilloscope, and then as
numerical data.

2.5.3 Signal processing
The intensity is categorized into two levels,

• a level when the GPU is idle,

• another when the GPU is busy.

Unfortunately, as shown by Figure 2.14(a), the measured data are very noisy due to disturbances
caused by the other components of the computer.

(a) Original signal measured by the os-
cilloscope

(b) The frequency spectrum of the orig-
inal signal of Figure 2.14(a)

FIGURE 2.14: Original signal measured by the oscilloscope and its associated frequency spectrum

To retrieve these values, it is definitely necessary to remove noise. Then we need to use a
filtering technique. There are several filtering techniques to process digital signals. First we
have examined three famous filters and then chosen the best one for our purpose.

Ideal low-pass filter

The basic idea of the low-pass filter is based on the assumption that the noise oscillates
much faster than the signal itself, which means the noise resides in higher frequencies. We
have apply the Fast Fourier Transform (FFT) to the signal to get the frequency spectrum.
Figure 2.14(a) and Figure 2.14(b) show the original signal and frequency spectrum respectively.
Most amount of the noise is located in the high spectrum region, then we cut these frequencies.
By applying Inverse FFT, we get a smoother signal by reducing the noise, but it is a little
disrupted as a result of filtering. There is a tuning parameter to define which frequency will
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be cut. We show the results of the processed signal with different cut-off frequencies in
Figure 2.15.

FIGURE 2.15: Low-pass filters with different cut-off frequencies

Simple averaging filter

The other fundamental filtering technique is the averaging filter, which uses the fact that
the noise causes fluctuations which will be removed by replacing the value on each point by
the average of several neighboring points. Simple averaging filter uses a uniform weight on the
points. The computation is realized by a convolution product. There is a parameter to define
the number of averaging points. We show the results of the proceeded signal with a different
number of points in Figure 2.16.

Weighted averaging filter

This filter is an extension of the simple averaging filter by introducing weights for averaging.
The weight with a Gaussian distribution results in a combination of a simple averaging filter in
the temporal domain and a low-pass filter in the frequency domain. The standard deviation σ
defines the distribution of a Gaussian function. We show the results of the proceeded signal
with a different σ in Figure 2.17. Figure 2.18 summarizes the results of three different filters.
We see that a simple averaging filter can not remove the noise completely without losing
information. The low-pass filter and the Gaussian filter produce almost the same results but
the Gaussian is better in terms of accuracy and preserving intensity of the signal. Therefore,
we have chosen the Gaussian filter to eliminate noise from the signal measured by the digital
oscilloscope in our experimental protocol. Before carrying out the benchmark, we have ensured
that the results provided by the protocol are relevant. We evaluate our protocol in the following
subsection.
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FIGURE 2.16: Simple averaging filters

FIGURE 2.17: Gaussian filters

2.5.4 Acquisition process
To evaluate our results and validate our experimental protocol, we have qualitatively studied

the response of the GPU for elementary operations such as memory allocation, addition (called
DAXPY) and product of two vectors (element wise product), and communication (memory
copy) between the GPU and the CPU. Since our target application is a numerical solution of
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FIGURE 2.18: Summary of filters

real engineering and scientific problems, we deal with double precision arithmetic, which has
been the standard in numerical simulations for three decades.

Procedure

A graph obtained by the digital oscilloscope allows us to follow the execution steps of the
code, the CPU preparation and launch of the GPU kernel corresponding to each type of basic
operation. Below are the steps, which are also illustrated in Figure 2.19(a):

• launch the program by given n, which defines the size of the vectors

• generate random vectors in the main memory of the CPU

• allocate working vectors in the global memory of the GPU

• enter a parameter: n_copy, the number of copy operations will be performed

• copy data from CPU to GPU

• enter parameters: n_axpy, number of DAXPY and n_prod, number of products to be
performed, and number of threads per block

• execute the kernel of DAXPY n_axpy times and save the total elapsed time

• execute the kernel product n_prod times and save the total elapsed time

• return the results of all computations from GPU to CPU

The result on the screen of the oscilloscope shows clearly six different phases corresponding
to the following states:

1. GPU is allocating the memory without touching the values.

2. GPU is copying data from the CPU to the memory.

3. GPU is preforming DAXPY.

4. GPU is performing the product.
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(a) Procedure of the acquisition (b) Screen of the oscilloscope

FIGURE 2.19: Procedure of the acquisition and screen of the oscilloscope

5. GPU is copying back data to the CPU and deallocating the memory.

6. GPU is back to stand-by.

This is verified by Figure 2.19(b) by the human eye, but to get a precise timing of the phase
changes, we need to proceed with further steps.

2.5.5 Detection of the phases
Figure 2.20(a) shows an example of measurement of the energy consumption of the

execution obtained from the oscilloscope with the electrical power in Watts or Joules per
second.
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(b) Approximated function of the signal

FIGURE 2.20: Energy consumption of the different phases of the execution and the approximated function of
the signal

We can see four phases with some amount of noise in the figure. Each phase corresponds
to each state: sleep, sum, product, and copy. In order to calculate the energy consumption and
the elapsed time of each state, we needed to construct an algorithm which can detect each step
precisely. We can assume that the energy consumption of each phase can be represented by a
constant value, and then an algorithm needs to identify the time when the relevant jump occurs
as well as the values before and after the jump. We have constructed such an algorithm as
follows. The algorithm identifies the relevant jump by computing the mean value of the current
phase and verifies the tenth forwarding value. If the forward value is too far from the current
mean value, the algorithm concludes there is a relevant jump. This algorithm is improved
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by considering the variation of the standard deviation of the values. Figure 2.20(b) shows an
example of an approximate function with three relevant jumps computed by the algorithm. We
also get information on the timing of the execution from this curve.

2.5.6 Prediction
In this section, we evaluate and analyze the effectiveness and robustness of our experimental

protocol. We used a workstation equipped with an Intel Core i7 920 running with 2.67GHz,
which has 4 cores and 6 GB main memory and one dedicated NVIDIA GTX275 GPU with
895MB memory. The GPU card has a capability of double precision arithmetic and is driven
by CUDA 4.0 software.

Our aim is to establish a model that can predict the program’s execution time and energy
consumption from the number of elementary operations in the source code. For the develop-
ment of our methodology, we first discuss the dependency of the execution time and the energy
consumption of elementary operations on the size of the data set (vectors) for elementary
operations which are executed on a single GPU. For a multiple GPU environment, since
GPUs are independently controlled by the host hardware, our data on a single GPU are easily
extrapolated to the case of multiple GPUs.

To evaluate the elementary operations, we use the program detailed in Figure 2.19(a) for
different sizes of the vectors. With our current protocol, the acquisition and analysis of the
measurements consumes considerable time, therefore we prepared a script that automates the
process.

Data transfers

The cost of transferring data between CPU and GPU is not negligible. We have measured
the time in seconds and the power in Watts for transferring double precision data. Table 2.2
shows the time and power with several sizes of the data.

size time (s) power (W)
1,000 0.00012219 0.000786827
2,000 0.000149068 0.000964973
5,000 0.000172517 0.001386241
10,000 0.000321641 0.002139488
20,000 0.000418555 0.003222079
2,000,000 0.030316534 0.20801877
5,000,000 0.061184495 0.536819129

TABLE 2.2: Double precision data transfers from the CPU to the GPU

Since the complexity of data transfer is linear, we can apply linear prediction for both time
and power of GPU execution. From the table, we can determine the time prediction in seconds
for the size of the vector x, by

7.0× 10−5 + 10−8x (2.1)

with a 0.9922 coefficient of determination. The prediction of the electrical power in Watts is
given by

2.0× 10−5 + 10−7x (2.2)

with a 0.9998 coefficient of determination.
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Elementary operations: DAXPY and DXMY

The programs of the elementary operations used in this analysis will be detailed in the next
chapter, Chapter 3.

An addition operation of two vectors of double precision with a scalar weight yi =

yi +αxi (1 ≤ i ≤ n) is called DAXPY, which belongs to BLAS (Linear Algebra Subprograms)
level-1. This operation is completely parallelized without any overhead of parallelization. We
note that the CUDA hardware processes the Fused Multiply and Addition (FMA) operation
which allows to compute y = y + αx by a dedicated hardware as one operation. An element
wise product computes ci = xiyi (1 ≤ i ≤ n), which we call DXMY in this thesis. This
operation is also completely parallelized as DAXPY. However, it needs to access three arrays
for the operation, which results in a more memory-intensive operation than DAXPY.

(a) DAXPY

size time (s) power (W)
1,000 0.000005008 0.000305963
2,000 0.000006545 0.000390259
5,000 0.000006763 0.000408337
10,000 0.000006535 0.000420392
20,000 0.000009760 0.000571913
2,000,000 0.000456454 0.027676176
5,000,000 0.001142272 0.069889335

(b) DXMY

size time (s) power (W)
1,000 0.00000512 0.000318909
2,000 0.000006673 0.000462524
5,000 0.000007001 0.000563243
10,000 0.000006603 0.000541402
20,000 0.000009795 0.000982404
2,000,000 0.000325738 0.046621519
5,000,000 0.001115328 0.160956136

TABLE 2.3: Double precision addition of vectors (DAXPY) and element wise product (DXMY)

Table 2.2(b) shows the GPU time in seconds and the electrical power in Watts and Ta-
ble 2.2(a) shows the GPU time in seconds and the electrical power in Watts for DAXPY. Since
the complexity of the addition operation is linear, the linear predictions of GPU execution time
and electrical power are appropriate. These predictions are listed in Table 2.4.

equation coef. of det
Time (s) 4.905× 10−6 + 2.272× 10−10x 0.999

Power (W) 2.682× 10−4 + 1.389× 10−8x 0.999
where x is the size of the vectors.

TABLE 2.4: Linear prediction of DAXPY

We can see that the time for each size is exactly same as with DAXPY but the consumed
energy is larger than with DAXPY due to the greater memory access. Since the complexity of
the DXMY operation is linear, the linear predictions of the GPU execution time and electrical
power listed in Table 2.5 are appropriate.

equation coef. of det
Time (s) −6.668× 10−6 + 2.164× 10−10x 0.9857
Power (W) −1.417× 10−4 + 3.131× 10−8x 0.9856
where x is the size of the vectors.

TABLE 2.5: Linear prediction of element wise product
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2.5.7 Evaluation of the execution time and energy
consumption

Following the experimental results of data transfer, vector addition (DAXPY), and element
wise product (DXMY), we propose a model of energy consumption.

Let us define the computation time Tcompute of arithmetic operations (DAXPY or DXMY)
by the unitary time TUcompute multiplied by the size of the vectors n. Let TCP U↔GP U be the
communication time. The execution time Texecute becomes the sum of those three values.

TUcompute = TUDAXPY or TUDXMY (2.3)

Tcompute = n× TUcompute (2.4)

TCP U↔GP U = n ∗ TUCP U↔GP U (2.5)

Texecute = TCP U + TCP U↔GP U + Tcompute (2.6)

To define the whole energy consumption in addition to the execution time, we need to consider
the energy consumption corresponding to other phases,

• Pidle, power at rest: 47.4 W

• Pactive, power when the card is activated (memory allocated but not yet used): 58.43 W

• Ppause, power during a pause in the calculation: 60.77 W

• Pend, power at the end of the program, before the process is completed: 59.14 W

These values correspond to the states in Section 2.5.5, Page 32, Figure 2.20(b). The energy
consumption is calculated by

Energy = Pidle × tidle + Pactive × tactive + Ppause × tpause + Pend × tend

+ Pcopy(n)× Tcopy(n) + Pcompute(n)× Tcompute(n) (2.7)

with

• tidle, the time during which the program runs without using the GPU card

• tactive, the time during which the memory will be allocated without being used

• tpause, the time during which the GPU will not be used in the middle of the calculations,
e.g., computation is done on the CPU

• tend, the time during which the main program continues to run and the GPU is not used

To validate your protocol, we will give an evaluation by a real problem in Section 3.5 and

Section 3.6, which includes analysis of linear algebra operations and their use together within

iterative Krylov methods.

2.6 Benchmark environments

2.6.1 Measurement of execution time
The resolution and accuracy of the clock depends on the hardware environment: host/CPU

or device/GPU. The original clock of a graphic card has an accuracy of a few nanoseconds
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while the host has an accuracy of a few milliseconds. This difference might negatively influence
the objective comparison of the measured times. To overcome this problem, the proposed
solution is to perform the same operation several times, at least 10 times and until the total time
measured is greater than 100 times the accuracy of the clock. In this thesis we adopted this
model for all benchmarks. In particular, we will specify the benchmarking steps explicitly.

2.6.2 Environment for benchmarks
In this dissertation, we have to experiment different analyses. Given the different nature of

the experiments, we will have to use several workstations. Obviously, the performance of our
algorithms depends on the characteristics of the test machines. The calculations depend on
the precision (single or double) and the hardware support. Thus, in this section, we describe
all the workstations used in this thesis. Each workstation will be identified by a unique name
throughout this thesis.

Platform-1

The first workstation is equipped with an Intel Core i7 920 2.67GHz processor, which has
8 cores composed of four physical cores and four logical cores, 5.8 GB RAM memory and two
NVIDIA GTX275 GPUs fitted with 895MB memory. The workstation hardware and software
configuration allows to use CUDA 4.0 features.

Platform-2

The second platform consists of a workstation equipped with an Intel Core i7930 running
with 2.67GHz, which has four physical cores and four logical cores, and 12 GB main memory
and two NVIDIA GTX570 GPU with 1279MB memory. The GPU card has the capability of
double precision arithmetic and is driven by CUDA 4.0 software.

Platform-3

Platform-3 is composed of an Intel Xeon E3-1225 with four physical cores and four threads,
running at 3.1 GHz and 8 GB RAM memory. The GPU consists of an ATI FirePro V4800
equipped with 1 GB memory with 400 stream processors. This graphics card is compatible
with OpenCL 1.0.

Platform-4

The fourth platform consists of a workstation equipped with an Intel Core i7930 running
with 2.67GHz, which has four physical cores and four logical cores, and 12 GB main memory
and two NVIDIA graphics cards: a Tesla K20c (dev#0) with 4799GB memory and GeForce
GTX 570 with 1279MB memory (dev#1).

Platform-5

The Platform-4 corresponds to Titane supercomputer of CEA-GENCI. Titane is an hybrid
CPU/GPU cluster, of which a schematic diagram is given in Figure 2.21. The cluster consists
of 1, 068 compute nodes and 24 nodes dedicated to IO and administration. Each node has
2 Intel Xeon 5570 Nehalem quad-cores (2.93 GHz) and 24 GB of memory (3Go per core).
Titane includes 48 Tesla S1070 servers, each with 4 processors and 4 GB of memory. Each
server is attached to two compute nodes via the PCI-Express bus. The compute nodes are
interconnected by a Voltaire network, based on the InfiniBand DDR technology. In 2010,
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FIGURE 2.21: GENCI-CEA hybrid computing clusters

Titane got an extension of 432 nodes with also 2 Intel Nehalem quad-cores and 24 GB of
memory per node. The compiler Intel suite is considered. This system provides a peak
performance of 100 Tflops for the Intel part and 200 Tflops for the GPU part. The Tesla S1070
includes 4 processors of 240 cores each, i.e., 960 processing units available for each server.

Platform-6 (MRG/LISA)

MRG/LISA is a in-house cluster of our team. I assembled this cluster during my thesis.
MRG/LISA is an hybrid CPU/GPU cluster, whose characteristics are given in Table 2.6. The
cluster consists of 6 CPU nodes (C1, C2, . . . , C6) and 8 CPU/GPU nodes (G1, G2, . . . , G8).
The version of the MPI library used is OpenMPI (OpenRTE) 1.6.5.

node OS CPU GPU

C1, C2, C3

C4, C5, C6

Linux 64 bits
Ubuntu 14.04 LTS
system ’/’: 55GB
swap: 30GB
/home: 180GB

Intel(R) Xeon(R) E5410
2,33GHz, 2× 4 = 8 cores
RAM: 8 GB
MPI (OpenRTE) 1.6.5

none

G1, G2, G3, G4

Linux 64 bits
Ubuntu 14.04 LTS
system ’/’: 55GB
swap: 30GB
/home: 180GB

Intel(R) Core(TM) i7
2,80GHz, 2× 4 = 8 cores
RAM: 8 GB
MPI (OpenRTE) 1.6.5

Tesla K20c 4799MB
GTX 570 1279MB
CUDA v6.5
Double precision

G5, G6, G7, G8

Linux 64 bits
Ubuntu 14.04 LTS
system ’/’: 55GB
swap: 30GB
/home: 180GB

Intel(R) Xeon(R) E5-2609
2,10GHz, 4× 6 = 24 cores
RAM: 16 GB
MPI (OpenRTE) 1.6.5

G5, G6, G7

Quadro K4000 3071MB
G8

Quadro K600 1023MB
G5, G6, G7, G8

CUDA v6.5
Double precision

The interconnected network is a switched, star shaped 10Mb/s Ethernet network.

TABLE 2.6: MRG/LISA hybrid computing clusters

2.7 Conclusion
In this section, we mentioned in the introduction the challenge of GPU computing in the

field of computational science. We have give an overview of the GPU programming model and
looked closely at hardware specifications in order to understand the specific aspects of graphic
card computations and their challenges. We have cared to demonstrate how to capitalize on
the use of GPU Computing and how we proceed to optimize CPU and GPU operations, data
transfers and memory management. In order to ensure even better efficiency, we have proposed
gridification strategies to auto-tune the grid of the GPU architecture, which strongly impacts
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the performance of algorithms. In the next chapter, we will give an analysis to evaluate how
fast are the algorithms.

In this section, we have also established an experimental protocol for measuring the power
consumption of GPU during computation.

Due to the lack of a GPU monitoring sensor for state and energy consumption, we used
amperometric clamps to directly measure the current provided to GPU. Precise phase analysis
of the time-dependent current of GPU combined with an efficient noise reduction technique
provided accurate timing of GPU states and the intensity of each state’s current.

By applying our experimental protocol to fundamental and basic GPU operations, DAXPY
and the element wise product, which are completely parallelized within the GPU, and to
memory copy operations between CPU and GPU, we have determined the energy consumption
of the GPU for an idling state, an activated state, a pausing state, and a finalizing state. It was
interesting to discover that GPU consumes a certain amount of energy, even during its idling
state, by maintaining the state of the GPU global memory.

The next chapter presents linear algebra operations on multi-cores/multi-GPUs environ-
ment. We describe how to implement the efficient iterative Krylov methods on GPU by using
gathered experience. Different Krylov methods are then developed and compared for different
data from real problems.
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Chapter 3
Linear Algebra on Parallel and GPU
Computing„Create your own visual style... let it be unique for

yourself and yet identifiable for others.

— Orson Welles
(Actor)

3.1 Introduction

F
OR many scientific and engineering applications, the overall computational performance
is the direct derivative of the performance of the linear algebraic equations solver, and
this in turn can be related to the performance of basic linear algebra operations, like

dot products, scaling or matrix-vector products. Engineering problems involve the solution
of large sparse linear systems, which could be very expensive in terms of computing time
for classical CPU. They require therefore fast and high-performance algorithms for algebra
operations. For sparse vectors and matrices, it is the matrix-vector product that appears to be
the most time-consuming operation. The basic indicator for the computational complexity of
sparse linear algebra operations is the number of non-zero values (nnz) of the matrix. For the
Krylov algorithm, the operations that are performed for each iteration step consist of several
scaled vector additions, dot products and one or more sparse matrix-vector multiplications.
In this chapter of the dissertation, we aim focus on the best way to perform these operations
effectively in a multi-core/multi-GPUs environment, in order to make solvers such as the
iterative Krylov methods, more robust and therefore reduce the computing time. In this thesis,
we have also paid attention to alerting readers about the energy consumption of the hardwares
used, especially the graphics card. The performance of our algorithms is evaluated on several
matrices arising from engineering problems and compared to different existing libraries.

Matrix and vector computations constitute the core of many scientific numerical programs.
Many linear algebra libraries such as BLAS [55] [56], LINPACK [57] propose various algo-
rithms of linear algebra operations on CPU. Others, such as ITSOL [58] for sparse matrices
or MAGMA [59] for dense matrices, provide functions to solve linear systems. Since the
appartition of GPU Computing, researchers have paid more attention to graphics cards in
order to accelerate their algorithms. As explained in this chapter, over the past decade, GPU
has clearly demonstrated better performance compared to classical CPU, and many libraries
appear in the scientific community, such as: cuBLAS [60], a BLAS level-one GPU version,
cuSPARSE [61], a BLAS level-2 GPU version, Cusp [62], a library of sequential and GPU
iterative solvers.

The performance of algorithms varies depending on the library used. For example, a
library may lead to a faster matrix-vector product than another, but may not be faster for other
operations. The idea that was chosen in my thesis consists in implementing our own library,
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which provides the necessary algorithms of linear algebra and various linear solvers. We also
paid attention to their optimizations. Thus, we can address the implementation of advanced
parallel solvers such as parallel sub-structuring methods, domain decomposition methods,
etc., with optimized, robust and effective linear algebra operations on both CPU and GPU
environments. We illustrate in this chapter how these calculations can be accelerated using
innovative algorithms. We explain how numerical linear algebra solvers can be designed to
harness the power of current heterogeneous multi-core-GPU environments.

My contribution in this chapter has been to develop, implement and test innovative al-

gorithms for computing linear algebra operations on GPU and their use together within

solvers.

My second contribution is to build an accurate energy consumption prediction model of

the GPU. This helps predict the energy needs of a program, and allow a better task scheduling

with a given computational time.

My contribution is also the proposal of “An Advanced Linear Algebra Library for Mas-

sively Parallel Computations on Graphics Processing Units”, to provide a new vision of GPU

computing that helps harness the power of GPUs easily, without the programming complexity

of classical APIs such as CUDA and OpenCL.

This chapter is organized as follows. First, an introduction to linear system solvers is given
in Section 3.2, which includes matrix storage formats and a description of two basic classes of
methods for solving linear systems, the direct and iterative methods, especially the iterative
Krylov methods. For convenience and thoroughness, Section 3.3 gives an overview of the
existing scientific libraries targeted for GPU. In Section 3.4 and Section 3.5 respectively, we
discuss the best way to efficiently perform BLAS level-1 linear algebra operations and sparse
matrix-vector multiplication (SpMV) on GPU. Hints for heterogeneous multi-core-GPU are
given. Section 3.6 describes how solvers, particularly iterative Krylov methods are imple-
mented on GPU and multi-core systems, and how the performance of the basic linear algebra
operations influence the overall performance of these methods. These sections also describe,
evaluate, analyze and present the optimizations we have developed. Numerical experiments
performed on a set of real problems show the robustness, competitiveness and efficiency of the
proposed implementation on GPU for computing linear algebra operations and solving linear
equations. Section 3.7 presents an overview of the library we have implemented, Alinea, and
how its usage is competitive. Section 3.8 concludes the chapter.

Keywords — BLAS-1, BLAS-2, BLAS-3, Saxpy, Element-wise product, Dot product,
Storage formats, Sparse matrix, CSR, CSC, COO, ELL, HYB, Matrix-vector product, SpMV,
Linear system, Solver, Direct methods, Iterative methods, Krylov, CG, GCR, Bi-CGSTAB, Bi-
CGSTAB(l), QMR, TFQMR, Bi-CGCR, Preconditioning techniques, Diagonal preconditioner,
Gravitational potential equation, Acoustic problem, Helmholtz equation, Alinea, cuBLAS,
cuSPARSE, Cusp
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3.2 Sparse linear system solvers
For applied sciences and engineering problems, a system of partial differential equations

(PDEs) is used as a fundamental physical and mathematical model which is solved numerically.
Nowadays, several physical parameters can be taken into account and different physical
modelings can be coupled and then the PDE system becomes more and more complex. To
obtain a numerical solution of PDE, discretization methods (finite difference/volume/element
methods) are applied, and linear systems with very large sparse matrices are obtained after
some linearization process, if necessary. In scientific computing, solving large linear systems
is often the most expensive part, both in terms of memory space and computation time. A
system of linear equations can be written in the matrix notation as

Ax = b, (3.1)

where A is a n × n matrix, b the right-hand side in C
n and x in C

n represents the solution
vector we are looking for. The system (3.1) has a unique solution if and only if the A is
non-singular, which means that the determinant of the matrix A is non-zero.

The rest of this section will discuss suitable methods for solving sparse linear systems.
We will concentrate only on systems of equations with unique solutions. There are several
methodologies to solve this type of large linear system, e.g., sparse direct solvers, iterative
solvers, and a combination of those. However, the choice of method to solve the linear system
is often driven by the properties of the matrix related to the system. The choice also depends
on the speed of the method and the desired accuracy for the resolution. The size of the system
can also be a determining factor in the choice of the method. Indeed, the size of the system
may further slow the resolution process. Due to the hypothesis of a large linear system, these
methods must be facile to parallelize in order to better harness the computing power and
to better manage the memory capacity of parallel computing platforms. The methods for
solving the linear system (3.1) are classified in two categories: direct methods and iterative
methods. A direct method or an iterative method may be faster or more accurate according to
the properties of the matrix A and the speed with which solution xi converges to x = A−1b.
Several numerical methods, for instance the finite element method, result in algebraic problems
for large-size sparse matrices. Because of their size, these matrices cannot be stored as a
simple set of vectors. Instead, taking advantage of their great amount of zero values, we focus
on storing matrices in compressed formats, i.e., only non-zero elements are allocated. First,
we present diverse data structures that can be considered to store matrices more efficiently
in memory. Then, we discuss the direct methods, followed by the iterative methods that are
grouped into two basic classes: stationary (e.g., Jacobi), and non-stationary (e.g., Krylov
methods). For the sake of generality, we work over the field of complex numbers C.

3.2.1 Matrix storage format

Origin and Motivation of sparse matrices

The treatment of large sparse matrices in parallel requires a good choice of storage format
that helps the computations of involved operations. The basic idea behind sparse matrix
storage is to store only the non-zero matrix elements. The distribution of non-zero coefficients
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depends on the features of the original problem. Sparse matrix is called structured when the
non-zero values form a regular pattern along diagonals, otherwise it is called unstructured. The
performance of the algorithms strongly depends on the data structure of the sparse matrices as
demonstrated in [63] [31] [64] [65] [66] [53] [67] [68], and many others.

Such data structures offer several advantages in terms of memory usage and algorithm
execution strategy, compared to naive matrix data structure implementation. Unfortunately,
each special data format also exhibits disadvantages and trade-offs when compared to other
special purpose formats. The purpose of this part is to present the data structures, as well as
their advantages and disadvantages. The purpose of each of these formats is to gain efficiency
both in terms of the number of arithmetic operations and memory usage. We describe in detail
the following storage schemes: COOrdinate format (COO), Compressed-Sparse Row format
(CSR), Compressed-Sparse Column format (CSC), ELLPACK format (ELL) and HYBrid
format (HYB). The sparse matrix A described in Figure 3.1(a) will be used to illustrate each
case. In the following examples, we consider matrices indexed from 1. Figure 3.1(b) draws the
pattern of non-zero values of the matrix A.

A =




-5 14 0 0 0

0 8 1 0 0

2 0 10 0 0

0 4 0 2 9
0 0 15 0 7




(a) Example matrixA, nnz first non-zero on the row

5

4

3

2

1

1 2 3 4 5

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

(b) Non-zero pattern of a matrix A

FIGURE 3.1: Example of non-zero pattern of a sparse matrix A

COO format

The structure of the COOrdinate (COO) Figure 3.2 format is trivial. According to [69],
COO format consists of three one-dimensional arrays of size nnz, i.e., the number of non-
zero matrix coefficients. An array AA holds the non-zero coefficients in such a way that
AA(i) = A(IA(i), JA(i)), 1 ≤ i ≤ n, where IA and JA store respectively the indices of
rows and columns of the ith value of A. The COO format is efficient for unstructured matrices.

IA = 1 / 1 / 2 / 2 / 3 / 3 / 4 / 4 / 4 / 5 / 5,

JA = 1 / 2 / 2 / 3 / 1 / 3 / 2 / 4 / 5 / 3 / 5,

AA = −5 / 14 / 8 / 1 / 2 / 10 / 4 / 2 / 9 / 15 / 7

FIGURE 3.2: COOrdinate (COO) storage format

Indeed, when the sparse matrix is structured, the COO format may contains successive
redundant informations. When the matrix is large in size, the COO format will lose its interest,
especially in terms of memory space. An alternative of this format consists in compressing
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the index of rows or the index of columns. The following presents two formats based on this
compression.

CSR/CSC formats

Compressed Sparse Row (CSR), described in Figure 3.3, is widely used because of minimal
memory usage and the simplicity of the implementation. The sparse matrix A ∈ C

n×n is
stored in three one-dimensional arrays. Two arrays of size nnz, AA and JA, store respectively
the non-zero values, through major row storage (row by row) and the column indices, thus
JA(k)1≤k≤nnz is the column index in A matrix of AA(k)1≤k≤nnz. Finally, IA, an array of size
n + 1 that stores the list of indices at which each row starts. IA(i)1≤i≤n and IA(i + 1) − 1

correspond respectively to the beginning and the end of the ith row in arrays AA and JA,
i.e., IA(n + 1) = nnz + 1. It is interesting to mention the Compressed-Sparse Column

AA = −5 / 14 / 8 / 1 / 2 / 10 / 4 / 2 / 9 / 15 / 7,

JA = 1 / 2 / 2 / 3 / 1 / 3 / 2 / 4 / 5 / 3 / 5,

IA = 1 / 3 / 5 / 7 / 10 / 12

FIGURE 3.3: Compressed-Sparse Row (CSR) storage format

storage format (CSC) Figure 3.4, which is the transpose of the CSR format. This format
is the same as above, but replacing the role of the rows by those of columns. As the CSR
format, the sparse matrix A(n×m) is stored in three one-dimensional arrays. Two arrays of
size nnz, AA and IA, store respectively the non-zero values, through major column storage
(column by column) and the row indices, thus IA(k)1≤k≤nnz is the row index in A matrix of
AA(k)1≤k≤nnz. Finally, JA, an array of size m+ 1 that stores the list of indices at which each
column starts. JA(j)1≤j≤m and JA(j + 1)− 1 correspond respectively to the beginning and
the end of the ith column in arrays AA and IA, i.e., JA(m+ 1) = nnz + 1.

Figure 3.4 describes the corresponding CSC storage of the matrix A.

AA = −5 / 2 / 14 / 8 / 4 / 1 / 10 / 15 / 2 / 9 / 7,

IA = 1 / 3 / 1 / 2 / 4 / 2 / 3 / 5 / 4 / 4 / 5,

JA = 1 / 3 / 6 / 9 / 10 / 12

FIGURE 3.4: Compressed-Sparse Column (CSC) storage format

ELLPACK format

The ELLPACK (ELL) format [70], illustrated in Figure 3.5, for a n × n sparse matrix
consists in storing a n×k dense matrix (where k is the maximum number of non-zero values by
row), COEF , and a full dense matrix, JCOEF , which stores the column indices of non-zero
elements. In terms of implementation, the star symbols ⋆ in COEF (see Figure 3.5(a)) and
JCOEF (see Figure 3.5(b)) can be replaced by any arbitrary value and not be ambiguous.
We have choosen zero in the algorithms used in this thesis. In fact, zero corresponds to a
fictitious value. For example we could use−1. For robustness reasons, we can put a coefficient
that refers to a zero coefficient of COEF to increase the alignment and regularity of memory
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access. This type of storage is very efficient for each row when the number of non-zero values
approaches the average number of non-zero values per line, i.e., when the standard deviation
of the number of non-zero values by row is low. Indeed, if a sparse matrix has a full line,
the storage of the matrix in ELL format takes more space than the matrix itself, therefore
this format loses all interest. The COO format allows rows of different sizes without wasting

COEF =




−5 14 ⋆
8 1 ⋆
2 10 ⋆
4 2 9
15 7 ⋆




(a) ELL dense COEF matrix

JCOEF =




1 2 ⋆
2 3 ⋆
1 3 ⋆
2 4 5
3 5 ⋆




(b) ELL dense JCOEF matrix

FIGURE 3.5: ELLPACK (ELL) storage format

memory space in contrary to the ELL storage.

HYBrid format

The HYBrid (HYB) format introduced by Bell and Garland [31] is based on the ELL and
COO formats. The HYB structure consists of two parts: the ELL part and COO part, as
illustrated in Figure 3.6 for a 5 × 5 matrix. The principle of this format in storing a n × k
dense matrix for the ELL part where k is a typical number, threshold, that depends on both
the context and the structure of the matrix. To determine the ELL portion, i.e., the number
of columns of the ELL matrix, as presented in [32], which use a heuristic for computing the
largest number k such that there are at least K = max(4096,

nnz

3
) rows with k or non-zero

values, in a matrix with nnz non-zero values. All non-zero values of the matrix that would
result in decreasing the benefits of ELL format are stored in COO format (see Figure 3.6(b)).
In the example given in Figure 3.6, the typical number k = 2. To conclude, the HYB format

COEF =




−5 14
8 1
2 10
4 2
15 7




; JCOEF =




1 2
2 3
1 3
2 4
3 5




(a) ELL part of the HYBrid format

AA =
[
9
]

; JA =
[
5
]

; IA =
[
4
]

(b) COO part of the HYBrid format

FIGURE 3.6: HYBrid (HYB) storage format

benefits both from the efficiency of the ELL format due to its regular memory access, and from
the flexibility of the COO format that is insensitive to the distribution of non-zero values of the
matrix.

3.2.2 Direct methods
The principle of the classical direct methods, the oldest methods for solving linear systems,

is discussed in this section. They are called direct methods, because they theoretically give
an exact solution in a predictable finite number of operations. A direct algorithm ensures
the absence of errors related to the method, the only errors that occur are roundoff errors. In
the absence of roundoff errors, the algorithm would give the exact solution of Ax = b. The
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basic idea behind the direct methods consists in decomposing the matrix into a product of
particular and suitable matrices, which are easier to solve with a direct algorithm. This process
consists of the factorization of the matrix. The matrices obtained after the factorization are
simple, based on diagonal matrices and triangular matrices. The solution is then obtained by
successively solving problems associated with each of the factors of the decomposition. This
second step of the resolution is called successive substitution algorithms using forward or/and
backward techniques.

For the direct methods, we will focus on the LU factorization method, which is one
of the most used and robust methods. The LU decomposition is a method that consists in
decomposing a matrix into a product of a lower triangular matrix L (see Figure 3.7(a)) and
an upper triangular matrix U (see Figure 3.7(b)). As said above, once the factorization is

L =




1 0 0 · · · 0
l2,1 1 0 · · · 0
l3,1 l3,2 1 · · · 0
...

...
. . . . . .

...
ln,1 ln,2 · · · ln,n−1 1




(a) Lower triangular matrix L

U =




u1,1 u1,2 · · · u1,n−1 u1,n

0 u2,2 · · · u2,n−1 u2,n

0 0 · · · u3,n−1 u3,n
...

...
. . .

...
...

0 0 0 0 un,n




(b) Upper triangular matrix U

FIGURE 3.7: LU decomposition into a product of a lower triangular matrix L and an upper triangular matrix U

completed, the linear system is solved with two successive substitutions: Ly = b by forward
algorithm and then Ux = y by backward algorithm. Unfortunately, direct methods have to
perform a significant number of arithmetic operations and are greedy in terms of memory space.
The usage of sparse matrices techniques in terms of storage and computation is a solution
to improve the robustness and effectiveness of the LU decomposition method. However, the
implementation of sparse direct methods is more complicated and requires an additional effort.
The main difficulty lies in the management of the sparse data structure. Indeed, some zero
values of the initial matrix could become non-zero during the factorization, which involves
rearranging the data, i.e zero value in A does not necessarily imply a zero value in L or U .
LU factorization strongly depends on the sparse structure of the initial matrix and also on the
associated lower and upper triangular matrices. References [71] [72] show that a sparse direct
method is usually decomposed in four steps:

1. Pretreatments and symbolic factorization: reorders the rows and columns of the matrix
in order to reduce the filling and re-balances the terms in order to limit rounding errors,
i.e., improve the accuracy of calculations. This phase is crucial for computational
efficiency. This steps also consists in constructing the sparse structure of factorized
matrices. It estimates the tasks’ tree of dependency and the total memory consumption
planned.

2. Step of renumbering: renumbers the order of the matrix’s unknowns using the permuta-
tion matrix in order to reduce the filling that implies the factorization.

3. Phase of numerical factorization: this is the most expensive phase, which will explicitly
construct the sparse factorizations LU .
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4. Solving the sparse linear system: performs the successive forward and backward sub-
stitutions, from factors L and U respectively.

The steps 1 and 4 are independent while the steps 1, 2 and 3 are related. According to the
algorithmic approach, these steps are managed differently. It is interesting to mention the
existence of optimized libraries for solving sparse linear systems with direct methods such as
MUMPS [73] where steps 1 and 2 are merged, SuperLu [74] where steps 1 and 3 are merged
and UMFPACK [75] where 1, 2 and 3 are related. The implementation of the LU solver on
GPU [53] is even more complicated. The complexity of the direct solvers is O(n3), where n is
the size of the matrix. For large-size linear systems, iterative methods are more appropriate.
The next two subsections discuss iterative methods.

3.2.3 Iterative methods
Iterative methods are used either for solving large linear systems, or when we would like to

improve a given estimate of a solution. An iterative method consists in constructing a sequence
x(0), x(1), x(2), x(3), · · · of approximate solutions of Ax = b, which stops iterating when the
current solution x(k) is accurate enough. At the stopping step, the convergence suite (x(k))k∈N

satisfies the relation (3.2).
lim

k→+∞
x(k) = x∗, (3.2)

where x∗ is the solution of the system (3.1), which could be considered as the exact solution
(x∗ = A−1b ∈ C

n) under some conditions. The suite (x(k))k∈N is obtained from a given starting
point x(0) by iteratively performing a relation that computes x(k+1) from an already known x(k).
In contrast to direct methods, the number of steps required by iterative methods for reaching
convergence is not predictable in advance. There are different classes of iterative methods for
solving linear systems. In this section, we discuss two categories. The first category is called
stationary iterative methods (e.g., Jacobi) and the second is called non-stationary iterative

methods (e.g., Conjugate Gradient). The suite (x(k))k∈N constructed from an arbitrary initial
guess x(0) can be expressed by the recurrence relation (3.3).

x(k+1) = B(k)x(k) + C(k)b, k ∈ N, (3.3)

where B(k) ∈ C
n×n and C(k) ∈ C

n×n are the iteration matrices of the method. The nature of
the iterative methods differs with the choice of B(k) and C(k). Different choices of B(k) and
C(k) follow. Before presenting the principle of both classes of methods, we will give some
general results concerning iterative methods.

Definition 3.1 An iterative method is convergent if (3.2) from any starting point x(0) ∈ C
n.

Definition 3.2 The iterative method (3.3) is consistent with the system (3.1) if the iteration
matrices B(k) and C(k) satisfy (3.4).

x∗ = B(K)x∗ + C(K)b, k ∈ N, (3.4)
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where x∗ is the solution of the system (3.1), converged at the Kth iteration, and B(K) and
C(K) are the corresponding Kth matrices. Considering the exact solution x∗ = A−1b and the
relation (3.4), the iteration matrix, C(K), is expressed as follows

C(K) = (In −B
(K))A−1. (3.5)

Definition 3.3 Let us define e(k) the error vector at the iteration k of the iterative method
such as

e(k) = x(k) − x∗, k ∈ N, (3.6)

where x∗ = A−1b is the solution of the system (3.1). We call the vector residual:

r(k) = b− Ax(k), k ∈ N. (3.7)

Lemma 3.4 A consistent iterative method of the form (3.4) converges to the solution of the

system (3.1), from any chosen x(0) iff

lim
k→+∞

e(k) = 0, k ∈ N, (3.8)

That also ensures lim
k→+∞

r(k) = lim
k→+∞

Ae(k) = 0, k ∈ N.

Theorem 3.5 An iteration sequence x(k), k ∈ N of the form (3.4) converges to the solution of

the system (3.1), from any chosen x(0) iff lim
k→+∞

e(k) = 0, k ∈ N, which means that

lim
k→+∞

B(k)B(k−1) · · ·B(0) = 0, k ∈ N, (3.9)

An iterative algorithm computes an approximate solution of the system (3.1). In practice,
the iteration process should be stopped at the first iteration for which the error is “sufficiently

small”. We define three stop criteria: absolute error (3.10), relative error (3.11) and residual

solution (3.12). Let us define K the maximum number of iterations, ε the tolerance threshold
required for calculation accuracy and ‖.‖ a given vectorial norm.

Definition 3.6 The absolute error criterion is defined as follows

‖x(k+1) − x(k)‖ < ε (3.10)

where x(k) is the approximate solution at iteration k ≥ K.

Definition 3.7 The relative error criterion is defined as follows

‖x(k+1) − x(k)‖

‖x(k)‖
< ε (3.11)

where x(k) is the approximate solution at iteration k ≥ K.

Definition 3.8 The residual solution criterion is defined as follows

‖r(k)‖

‖b‖
=
‖b− Ax(k)‖

‖b‖
< ε (3.12)
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where x(k) is the approximate solution at iteration k ≥ K.

The algorithm associated with the iterative method converges depending on the properties
of the linear system. The rate of convergence also depends on the properties of the linear
system.

Stationary iterative methods

Stationary iterative methods consist of iterative methods that satisfy (3.3) with constant
iteration matrices, B(k) = B and C(k) = C, k ∈ N. The recurrence relation becomes (3.3).

x(k+1) = Bx(k) + Cb, k ∈ N. (3.13)

Theorem 3.9 An iteration sequence x(k), k ∈ N of the form (3.13) converges to the solution

of the system (3.1), from any chosen x(0) iff

lim
k→+∞

‖Bk‖ = 0. (3.14)

A necessary and sufficient condition that ensures lim
k→∞
‖Bk‖ = 0 is that the spectral radius

ρ(B) < 1.

Proof. Let us assume that the method is of the form (3.4), i.e., consistent to the system (3.1).
The error at the iteration k + 1, k ∈ N, satisfies the following relation of recurrence

e(k+1) = x(k+1) − x∗

= Bx(k) + Cb− (Bx∗ + Cb)

= B(x(k) − x∗)

= Be(k)

= Bke(0)

The stationary iterative algorithm converges if lim
k→∞
‖ζ(k)‖ = 0, which means that lim

k→∞
‖Bk‖ =

0, i.e the matrix Bk be close to the zero matrix. A necessary and sufficient condition that
ensures lim

k→∞
‖Bk‖ = 0 is that the spectral radius ρ(B) < 1.

For a dense matrix, the complexity of iterative methods is O(n2) operations at each
iteration. As seen above, the complexity of the direct solvers is O(n3), where n is the number
of equations. Therefore, an iterative method will be competitive compared to direct methods
if it converges into a number of iterations that does not increase linearly with the size of the
matrix. The main stationary iterative methods are based on a “splitting” of the matrix A of the
form

A = M −N, (3.15)

where M ∈ C
n×n is a non-singular matrix and N ∈ C

n×n. The stationary iterative methods
are motivated by the following observation. Let A be a matrix with non-zero diagonal values,
M ∈ C

n×n be a non-singular matrix and N ∈ C
n×n a matrix such as A = M − N . The

system (3.1) can be rewritten as (M −N)x = b⇔Mx = Nx+ b, which gives

Mx(k+1) = Nx(k) + b, k ∈ N. (3.16)
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The equation (3.16) can be rewritten as

x(k+1) = M−1Nx(k) +M−1b, k ∈ N. (3.17)

The iteration matrices are: B = M−1N and C = M−1. Different choices of M ∈ C
n×n and

N ∈ C
n×n define different stationary iterative methods. The Jacobi and Gauss-Seidel methods

that will be discussed in this thesis are a particular instance of stationary iterative methods
with:

• Jacobi: M = D and N = −(L+ U),

• Gauss-Seidel: M = D + L and N = −U ,

• Richardson (constant step descent): M =
1

α
I and N =

1

α
I − A,

• Successive overrelaxation method (SOR): M =
ωL+D

ω
and N =

(1− ω)D − ωU

ω
.

It is interesting to mention that the Richardson method is stationary with B = In − ωA and
C = ω, ω ∈ R

+∗. Figure 3.8 shows the definition of matrices D, L and U . Algorithm 3.1

D

U

L

FIGURE 3.8: Design of the splitting algorithm

gives the main steps of the algorithm of stationary iterative methods.

Algorithm 3.1: Algorithm of the stationary iterative methods
input : A ∈ C

n×n: initial matrix, B ∈ C
n×n and C ∈ C

n×n: iteration matrices,
b: right-hand side vector, x(0): initial guess,
ε: tolerance threshold, K: maximum number of iterations

output : x: solution vector
variable : k, convergence

1 // initialization

2 convergence← false
3 k ← 0

4 // loop until convergence

5 while .not. convergence .OR. k < K do
6 compute x(k+1) ← Bx(k) + Cb

7 convergence←

(
‖b−Ax(k)‖

‖b‖
≤ ε

)

8 k ← k + 1

9 end

As said above, the update of the solution performed at Line 6 of Algorithm 3.1 becomes:

• x(k+1) = D−1b−D−1(L + U)x(k) for Jacobi, where D is the diagonal part of A and
non-singular, L and U are the strictly lower and upper triangular of A. So, the method
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consists in computing with a given x(0) the sequence of vectors x(k), which are defined
as follows

x
(k+1)
i =

1

aii


bi −

n∑

j=1
j 6=i

aijx
(k)
j


 , , i = {1, . . . , n}, k ∈ N. (3.18)

• x(k+1) = (D + L)−1b− (D + L)−1Ux(k) for Gauss-Seidel, which can be rewritten as

x
(k+1)
i =

1

aii


bi −

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j


 , i = {1, . . . , n}, k ∈ N. (3.19)

The convergence test is controlled using the relative error on the residual vector for a given
precision, ε,as described at Line 7 of Algorithm 3.1 . Unlike the Gauss-Seidel algorithm, the
Jacobi algorithm converges more slowly, but is fully parallelizable. More details will emerge
on these methods, when we have to analyze them. The choice of method is driven by the
properties of the linear system as said previously, but it is often motivated by the speed of
convergence of the algorithm. Stationary iterative methods are suitable for sparse matrices.
However, the speed of convergence remains insufficient. Recently, non-stationary methods
such as the iterative Krylov methods have demonstrated [76] [77] [78] [79] their efficiency and
robustness for solving linear systems, especially sparse linear systems. The have also proved
their efficiency on GPU and multi-core/multi-GPUs [80] [81] [82] [83] [84]. The value of
these methods is discussed below.

Non-stationary iterative methods

The non-stationary iterative methods consist of iterative methods with non-constant iter-
ation matrices B(k) and C(k) in the recurrence relation x(k+1) = B(k)x(k) + C(k)b, k ∈ N.
These methods involve data that changes at every iteration. The non-stationary methods are the
more recent iterative methods. The non-stationary methods are harder to understand, but are
more effective compared to stationary methods, which have a slow convergence but simpler to
understand. The methods, in general are based on the idea of orthogonal vectors and subspace
projections such as the Krylov iterative methods, which are based on the Krylov subspace.
The main idea of the iterative Kyrlov methods introduced by Youcef Saad [69] consists in
generating a basis of the Krylov subspace and looking for an approximate solution x(k) of the
system (3.1) from this subspace, Kk.

Krylov subspace methods The Krylov subspace methods are the most representative itera-
tive methods, where an approximate solution is updated repeatedly using products of a sparse
matrix and some vectors.

In a Krylov subspace method,

x(k) − x(0) ∈ Kk(A, r(0)) = span {r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}, (3.20)

where A ∈ C
n×n is a square matrix and r(0) = b − Ax(0) the residual of a given non-zero

initial vector of solution.
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We call Kk(A, r(0)) a k − th Krylov subspace. Equivalently,

x(k) ∈ x(0) + span {r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}. (3.21)

Recall that the minimal polynomial of a vector b is the non-zero monic polynomial P of the
lowest degree such that P (A)b = 0. Clearly, the Krylov subspace Kk is the subspace of all
vectors in C

n, which can be written as x = P (A)b, where P is a polynomial of degree not
exceeding k − 1. In other terms, the idea of the Krylov subspace methods is to construct
a basis of the Krylov subspace Kk = span {r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}, and seek an
approximate solution x(k) from this subspace, Kk. Given an initial guess x(0) to the linear
system (3.1), a general projection method looks for an approximate solution x(k) from an affine
subspace x(0) +Kk of order k such that the Petrov-Galerkin condition is satisfied:

b− Ax(k)⊥Lk (3.22)

where Lk is another Krylov subspace of order k. Krylov methods differ in the choice of Lk

and Kk. The following give an overview of the iterative Krylov methods with different choices
of Lk and Kk. The Conjugate Gradient (CG) method is a particular instance of the Krylov
subspace method with Lk = Kk = Kk(A, r0) when the matrix is hermitian positive-definite.
The Conjugate Residual (GCR) method, an analogue of the conjugate gradient method, is a
Krylov subspace method with Lk = AKk where Kk = Kk(A, r0). This choice of Lk gives
an appoximate solution x(k) which minimizes the residual norm ‖b− Ax‖2 over all vectors
in x0 + Kk. Presented in 1986 by Y. Saad and M. H. Schultz in [85], the Generalized Min-

imun RESidual (GMRES) algorithm, is an extension of the GCR method to non-hermitian
problems. The GMRES algorithm is a projection method based on the Arnoldi algorithm [86].
GMRES uses a Gram-Schmidt modified [87] [88] algorithm to compute an orthonormal ba-
sis {v1, v2, . . . , vk} ofthe Krylov subspace Kk(A, v0) = span {v0, Av0, A

2v0, . . . , A
r−1v0}.

There exist many other Krylov methods such as Bi-Conjugate Gradient Conjugate Residual
(BiCGCR), transpose-free Quasi Minimal Residual (TFQMR), Stabilized BiConjugate Gradi-
ent (BiCGStab), Stabilized BiConjugate Gradient (L) (BiCGStabl), etc. In general, Krylov
methods have a rapid convergence compared to the stationary methods. The conditioning of the
matrix has a fundamental role in the convergence speed of the Krylov method. Nevertheless,
certain sparse linear systems require a high number of iterations to converge. In practice,
preconditioning techniques are used in order to help the Krylov methods accelerate their
convergences [89] [90] [91] [92]. Preconditioning a linear system consists in replacing it with
an equivalent system, where the conditioning of the matrix is smaller, which allows a faster
convergence. The basic principle consists in replacing the sparse linear system (3.1) with one
of the following systems:

MAx = Mb, (3.23)

AMx̂ = b, with x = Mx̂, (3.24)

where M ∈ C
n×n is an approximation of A−1. The system (3.23) is called left preconditioning

and system (3.24) consists in right preconditioning. In general, there are two approaches for
constructing preconditioners: matrix-based and operator-based. Within the first class, the
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most basic one is the diagonal (Jacobi) preconditioning. We also find the incomplete LU (ILU)
factorizations. Examples of operator-based preconditioners are: separation of variables [93]
and analytic ILU (AILU) [94].

In practice, the iterative Krylov methods performance depends on the matrix conditioning,
and efficient preconditioning techniques must be used to ensure fast convergence such as ILU
factorization [95] [96] and domain decomposition methods [18] [97] [98], which involve vari-
ous interface conditions [99], either based on a continuous optimization [100] [101] [102] using
an approximation of the Steklov-Poincaré operators or an algebraic optimization [103] [104]
using an approximation of the Schur complement matrix [105], etc. Gander et al. analyzes
and evaluates ILU-type preconditioners used with QMR algorithms to solve the Helmholtz
equation. Several library software solutions [106] [107] [58] [62] [108] are developed to
provide fundamental components of the Krylov subspace methods. In particular when solving
extremely large sparse linear systems, new programming paradigms of the Krylov methods
should be defined and evaluated with respect to the state-of-the-art scientific methods. Iterative
Krylov methods involve linear algebra operations such as dot product, norm, addition of vectors
and sparse matrix-vector multiplication, which are computationally expensive for large-size
matrices. The optimization of this type of computation is crucial, and the large-size of the data
structure involves the use of parallel and appropriate methods. Parallel iterative methods are
well suited for their resolutions. Algorithms need to be adapted to these new constraints. One
solution is to use a GPU or multi-core system to accelerate them. In this thesis, we will pay
a special attention to iterative methods. In the next section, we give an overview of existing
linear algebra libraries.

3.3 Overview of existing scientific libraries
In my thesis, we have decided to implement our own research library, Alinea, that will

described in the following in order to better optimize the algorithms according to the hardware
characteristics and the properties of the problem to solved. This section gives the motivations
of our choice.

3.3.1 Basic Linear Algebra Subprograms
The BLAS (Basic Linear Algebra Subprograms) is a set of basic routines for performing

basic operations of numerical linear algebra, i.e., basic vector and matrix operations. The
initial version of the subprogram specifications arose in [109], where Hanson, Krogh, and
Lawson demonstrated the advantages of adopting a set of basic routines for linear algebra
problems. In [110] [111], Lawson, Hanson, Kincaid, and Krogh presented the original basic
linear algebra subprograms commonly referred to as the BLAS. This BLAS [111] of Lawson
et al. is labeled as “BLAS level-1”, which concerns elementary vector operations. The library
has been used in a wide range of software in numerical science such as LinPack [57] and many
fields of engineering [112] [113] [114] [115], and others. In numerical science, BLAS has
become a de facto standard for the elementary vector operations.
From 1984 to 1986, motivated by the development of vector-processing machines with ex-
tended precision arithmetic registers, for example machines performing IEEE arithmetic [116],
an extension to the set of Basic Linear Algebra Subprograms was proposed by Dongarra et

al., [117]. The extensions are targeted at matrix-vector operations which should provide for
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efficient and portable implementations of algorithms for high-performance computers. Subse-
quently, a set of Level 3 BLAS for matrix-matrix operations, motivated by high-performance
computers, especially those with hierarchical memory and parallel processing capability, was
proposed by Dongarra et al. [118]. The Numerical Algorithms Group Ltd (NAG) has pro-
posed a C equivalents library [119] of the Fortran BLAS. The linear algebraic operations
are frequently used in numerical simulations, which leads us to pay more attention to their
implementation. In the massively parallel simulation, their use is multiplied requiring to look
for the best way to implement them. Given their massively parallel character, it is especially
important to adjust their algorithms upon the environment of computations and the hardware
specifications. The BLAS exploits real and complex objects in single and double precision.
Each BLAS routine comes in several versions, one for each precision. The first letter of the
routine name specifies the precision used: S: Real single precision, D: Real double precision,
Z: Complex single precision and C: Complex double precision. In the remainder of this thesis,
when we talk about general routine without specific type, we will remove the first letter (S, D,
Z, C) or replace it with “?”.

3.3.2 Toward accelerated BLAS
In our comparative study of scientific libraries targeted for GPU, we concentrate exclusively

on libraries implemented with CUDA-provided languages. The primary target of the study is
our Alinea library. Alinea is designed to provide efficient linear algebra operations on hybrid
multi-CPU and GPU clusters. The framework offers direct and iterative solvers for solving
large, both dense and sparse, linear systems. Our primary aim is to ease the development of
engineering and scientific applications on both CPU and GPU by hiding most of the intricacies
encountered when dealing with these architectures. In Alinea we pay particular attention to
the auto-tuning implementation of GPU as said in Section 2.4, Page 14, with accordance to the
present and future hardware on which the library is likely to be used. For maximum flexibility,
the library provides a whole set of matrix data storage formats.

In the following, we will have to compare our algorithms with the following libraries:
cuBLAS, cuSPARSE, Cusp. The cuBLAS library [60], which is a CUDA version of the
Basic Linear Algebra Subprograms (BLAS) library, gives the basic set of tools to access the
computational resources of Nvidia GPUs. As written in the cuBLAS Library Guide [60], the

basic model by which applications use the cuBLAS library, is to create matrix and vector

objects in GPU memory space, fill them with data, call a sequence of cuBLAS functions, and,

finally, upload the results from GPU memory space back to the host. To accomplish this,

cuBLAS provides help functions for creating and destroying objects in GPU space, and for

writing data to, and retrieving data from these objects. The cuSPARSE [61] library is an
implementation of basic linear algebra used for sparse matrix operations, on top of an Nvidia
CUDA library. The Cusp [62] library provides flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems on GPU. Cusp appears as the popular library
that offers GPU iterative solvers. Cusp library includes various sparse matrix formats such as
COO, CSR, ELL and HYB.

It is interesting also to mention the CUDA_ITSOL [58] library, which is developed under
CUDA language by Ruipeng Li [PhD Student supervised by Yousef Saad, Univ. of Minnesota].
It supports several sparse matrix operations and, more importantly, provides a variety of GPU
linear system iterative solvers.
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3.4 BLAS level-1 operations
In this section, we present “BLAS level-1”, which concerns vector operations.

3.4.1 Addition of vectors (axpy)
Alpha X Plus Y (AXPY), i.e., y = y+αx, is an addition of two vectors with a scalar weight,

which belongs to the BLAS level-1 package. This BLAS-1 operation is completely parallelized
without any overhead of parallelization.

GPU Implementation

We note that CUDA hardware procsses the Fused Multiply and Addition (FMA) operation
which allows to compute y = y + αx by a dedicated hardware as one operation. The first

FIGURE 3.9: Summation of two vectors

implementation of BLAS on GPU has been reported in cuBLAS. Axpy is inherently parallel,
which makes them excellent candidates for implementation on a GPU. The update, which is
done in place, i.e., yi = yi + αxi (0 ≤ i ≤ n − 1), where n is the size of vectors, is done
with simple GPU kernel of the form given in Listing 3.1, using a two-dimensional grid. In
Listing 3.1, d_x and d_y are the vector on global memory, size is the length of vectors, i.e.,
the number of elements in d_x and d_y. The scheme of the vector summation is illustrated in
Figure 3.9.

1 template <class T, class U>
2 __global__ void Axpy ( T alpha , double* d_x, T* d_y, const U size ) {
3 unsigned int x = blockIdx .x * blockDim.x + threadIdx .x;
4 unsigned int y = threadIdx .y + blockIdx .y * blockDim.y;
5 unsigned int pitch = blockDim.x * gridDim.x;
6 unsigned int idx = x + y * pitch ;
7 if ( idx<size ) {
8 d_y[idx] = alpha * d_x[idx] + d_y[idx ];
9 }

10 }

LISTING 3.1: Summing two vectors, using on two-dimensional grid

Let us note that all of our kernels are template functions on indices (U) and on values (T). The
kernel is unique for real and complex arithmetic numbers in single and double precision. The
handling of complex arithmetic number templates in CUDA will be presented in the following.
The threads of (Figure 3.9, Listing 3.1) are distributed using auto-tuning techniques that take
into account the characteristics of the graphics card and the size of vectors.
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MPI Implementation

For the sake of simplicity, at this level of the dissertation we do not care about the
contribution and the cost of communications between processes.

For the purposes of our advanced algorithms (sub-structuring, domain decomposition,
...) that will be presented in the following, we have adopted the following convention: pre-
treatment has been performed in order to distribute our global data locally to each process.
The algorithms presented for the parallel MPI version assume that the input data is local to
each process. Let us consider a system capable of executing N ∈ P processes of execution.

FIGURE 3.10: Summation of two vectors in parallel

Let P = {P1, . . . , PN} be the set of the processors.

As said above and described in Figure 3.10 the input data are local to each processor.
Let us note that the local size can differ with each processor. The parallel scheme described
in Figure 3.10 consists in each processor computing local addition of two vectors, and then
a gather of the results of all processors The global vector is obtained, if necessary, by a
gather operation of local results. In case of multi-core/multi-GPUs, all local computations are
performed on the GPU associated with the process, using the algorithm presented in Figure 3.9
and Listing 3.1.

3.4.2 Element-Wise product
As the addition of two vectors, the element-wise multiplication or scalar-vector multiplica-

tion between two vectors computes ci = xiyi (1 ≤ i ≤ n), which we call X Multiply Y (XMY)

in this dissertation. This operation is also completely parallelized as AXPY. However, it needs
to access three arrays for the operation, which results in a more memory-intensive operation
than AXPY.

GPU Implementation

The scheme of this operation is close to that of AXPY as described in Figure 3.11, except
that it performs multiplication, element by element, and the results are stored in a new third
array. Listing 3.2 presents the CUDA kernel of XMY operation.

1 template <class T, class U>
2 __global__ void Axpy ( double* d_x, T* d_y, T* d_c, const U size ) {
3 unsigned int x = blockIdx .x * blockDim.x + threadIdx .x;
4 unsigned int y = threadIdx .y + blockIdx .y * blockDim.y;
5 unsigned int pitch = blockDim.x * gridDim.x;
6 unsigned int idx = x + y * pitch ;
7 if ( idx<size ) {
8 d_c[idx] = d_x[idx] * d_y[idx ];
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FIGURE 3.11: Multiplying two vectors

9 }
10 }

LISTING 3.2: Multiplying two vectors, using on two-dimensional grid

As in Listing 3.1, we check whether idx is less than the size of vectors in Listing 3.2. In
fact the idx should always be less than the size, since we have specifically launched our kernel
so that this assumption holds.

MPI Implementation

The parallel version is similar to AXPY as described in Figure 3.12. Each process
computes its local element-wise product. In heterogeneous multi-core-GPU systems, all local

FIGURE 3.12: Multiplication of two vectors in parallel

computations are carried out on the GPU associated with the process, using the algorithm
presented in Figure 3.11 and Listing 3.2.

3.4.3 Scaling vectors
The “Scale” operation (SCAL) is equivalent to the level-one (vector) operation in the

Basic Linear Algebra Subprograms (BLAS) package, which scales all elements of a vector by
a scalar alpha. This operation is done “in-place”, i.e., the result will overwrite elements of the
input vector. The Listing 3.3 presents the CUDA kernel of the SCAL operation.

1 template <class T, class U>
2 __global__ void SCAL ( T alpha, double* d_x, const U size ) {
3 unsigned int x = blockIdx .x * blockDim.x + threadIdx .x;
4 unsigned int y = threadIdx .y + blockIdx .y * blockDim.y;
5 unsigned int pitch = blockDim.x * gridDim.x;
6 unsigned int idx = x + y * pitch ;
7 if ( idx<size ) {
8 d_x[idx] = alpha * d_x[idx ];
9 }

10 }

LISTING 3.3: Scaling vector, using on two-dimensional grid
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This operation in heterogeneous multi-core-GPU is similar to AXPY and XMY operations.

3.4.4 Dot product and norm
The computation of dot products and euclidean norms are prevailing linear algebra opera-

tions, which could be very expensive both in terms of computing time and memory storage
for large-size vectors. DOT, computes a dot product of two vectors and belongs to BLAS
level-1, same as AXPY. However, the implementation of DOT requires some effort to achieve
good performance in a parallel environment. The operation

∑
i xiyi is distributed over several

processors by decomposing indices into a union of blocks, and finally it is necessary to sum up
scalar values from all processors. This operation implies a kind of synchronization between
processors. Unfortunately, there is no dedicated hardware for synchronization between CUDA
ALUs. The host CPU needs to participate to get the final value of the inner product.

GPU Implementation

The dot product operation is characterized by a simple loop with simultaneous summation,
which is computationally expensive in a sequential implementation on CPU. The optimized
dot product operation given here is computed in two steps. The first task consists in performing
an element-wise operation, and the second task consists in calculating the sum of each of
these products to get the final result. This second step is achieved in a hierarchical way by
summing product components in neighboring threads as indicated by the gridification and
illustrated in Figure 3.13. At the final level of the reduction, the partial sum of all elements

FIGURE 3.13: Dot product scheme for tree cutting passes sums

of a block’ threads is stored in the first thread (thread [0]) of the current block. Finally, the
dot product results in a sum of all partial sums of all blocks. The calculation of the euclidean
vector norm is done in a similar way. The number of threads harnessed by the shared memory
while performing dot product operations depends on the fixed number of threads per block.
Obviously, we need to use a given number of threads that will provide good performance when
treated in shared memory, and which also ensure optimal performance for the reduction of the
global sum between all blocks; this depends on the number of threads per block. The threads
in a warp spread multiple rows and each thread handles multiple non-zero values of a row.

MPI Implementation

The computation of dot products in parallel MPI is a relatively simple operation. Each
processor then computes the dot product on the piece that it has, i.e., the local dot product.
Finally, the pieces of the dot product must be summed together to obtain the full dot product
on the required process, using a reduction operation. This reduction is performed with the
MPI_REDUCE operation, using predefined constant MPI_SUM. This constant means that the
desired reduction operation is to sum the values and return the sum to the process collecting the
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results. When the dot product is required by all processes, an MPI_ALLREDUCE operation is
used instead of MPI_REDUCE. This operation ensure that all processes will collect the result
of the dot product. For the GPU version, local operations have been performed on graphics
cards, and MPI handles the sum reduction.

3.4.5 Numerical results
In this section, we report the collected numerical results of the experiments we have

performed to evaluate the speed of our linear algebra operations both on CPU and GPU.
In the experiments the default gridification (nBlocks, nThreadsPerBlock) of “Scale”,

“Addition of Vectors”, “Element wise product” is set to the following values

nBlocks =
size+ numb_thread_block − 1

numb_th_block
numb_th_block = 256

where size and numb_thread_block represent respectively the size of the vector and the
thread block size. For dot products, we consider the following default gridification

nBlocks =
size+ numb_thread_block − 1

numb_th_block
numb_th_block = 128

For a particular configuration, we will take care to specify the gridification explicitly. The
cost of transferring data from CPU/GPU to GPU/CPU is not negligible. In all the algorithms
presented here, the step before launching the kernel consists in sending data from CPU to
GPU and then copy back the result from GPU to CPU. In all our programs, we pay attention
to minimizing data transfers, i.e., only necessary transfers are performed. The first set of
numerical results consists in analyzing OpenCL and CUDA when both algorithms are carried
out on Platform-2, which consists of NVIDIA cards. We used in this first set a one-dimensional
grid. In the following benchmarks, the execution time corresponds to the exclusive time of the
kernel, i.e., our measurements do not include time spent transferring data between the host
and the device memory. This benchmark setting will be considered as default running. As
a first step, we take a look at the impact of data construction and copy on host and device.
Figure 3.14(a) and Figure 3.14(b) provide comparative operations of elementary transfer on
CPU, GPU with CUDA and GPU with OpenCL. As we can see in these figures, allocation
and transfer times are quasi-linear operations in size with different penalization factors except
for CUDA double, where fluctuations appear. Figure 3.15(a) presents the execution time in
microseconds of the addition operation performed on CPU, GPU/CUDA and GPU/OpenCL.
These figures clearly show the effectiveness of GPU compared to CPU for this inherent parallel
operation for large-size data. On the other hand, single precision is faster than double precision.
OpenCL is more efficient than CUDA for these operations. Figure 3.15(b) compares the
scalar product execution time in microseconds of CPU, CUDA and OpenCL. It appears from
Figure 3.15(b) that the dot product on CPU is exactly linear in the size of the vector, which
is consistent with the traditional method of calculation (

∑

k

ak ∗ bk). On the GPU, we take

advantage of its parallel architecture.
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FIGURE 3.14: Execution times of vector construction and copy vector in µs on NVIDIA card
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FIGURE 3.15: Running times of the addition of vectors and the dot product in µs on NVIDIA card

The second set of numerical experiments consists in evaluating OpenCL and CUDA when
algorithms are performed on different types of graphics cards from Platform-2 and Platform-3.
We used in this second set a one-dimensional grid. The second set of experiments confirms the
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FIGURE 3.16: Execution times of the addition of vectors and the dot product on NVIDIA and ATI

effectiveness of GPU to compute linear algebra operations according to the execution time
for the addition of vectors (OpenCL) and dot products (OpenCL). The results are shown in
Figure 3.16(a) and Figure 3.16(b). OpenCL gave better results for the AMD/ATI card compared
to NVIDIA; this can be explained by the fact that NVIDIA is more optimized for CUDA. In this
thesis, we have chosen to concentrate our study on CUDA with double precision. So, after a
brief comparison between CUDA and OpenCL, we now focus on our CUDA algorithms. The
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experiments reported in Table 3.1 have been performed on vectors of different sizes changing
from 103 to 107, on Platform-1.

Size DAXPY Dot product Norm
Alinea cuBLAS Cusp Alinea cuBLAS Cusp Alinea cuBLAS Cusp

103 0.045 0.030 0.025 0.045 0.060 0.202 0.053 0.151 0.200
105 0.070 0.033 0.051 0.082 0.077 0.234 0.114 0.059 0.317
107 2.490 0.037 2.607 1.693 0.082 1.958 5.301 0.077 1.146

TABLE 3.1: Double precision kernel execution time in milliseconds

Table 3.1 shows the computation time in milliseconds for the DAXPY, dot product and
norm operations, by considering 256 threads per block for the Alinea DAXPY experiment
and, 128 threads per block for the Alinea dot products and norms. Note that the times given
in Table 3.1 are strictly the times of the kernel execution, which uses a one-dimensional
grid. The Alinea dot product outperforms the Cusp dot product as we can see in Table 3.1.
Indeed cuBLAS gives better results that Cusp and Alinea for basic linear operations (BLAS 1).
Now, we consider a two-dimensional grid for the rest of experiments of this subsection. The
speed-ups presented in these results are computed as follows: ratio = CPU_time / GPU_time.

CPU GPU CPU GPU CPU/GPU
h time (ms) time (ms) Gflops Gflops time ratio

101,168 0.414 0.059 0.243 1.7 6
296,208 1.176 0.083 0.251 3.5 14
544,563 2.222 0.108 0.245 5.0 20
650,848 2.777 0.121 0.234 5.3 22
848,256 3.571 0.149 0.237 5.6 23

1,213,488 5.555 0.194 0.218 6.2 28
1,325,848 5.555 0.208 0.238 6.3 26

TABLE 3.2: Alinea double precision Scale (DSCAL) operation

Table 3.2 collects the double precision execution time of our implementation for the Scale

operation. The first column h gives the size of the vector. The second and third columns
contain the execution time in milliseconds for CPU and GPU algorithms, respectively. The
fourth and fifth columns give the floating point operations per second for CPU and GPU
algorithms. The last column shows the ratio of the CPU to the GPU time. Table 3.2 clearly
shows the better results of GPU compared to CPU. As this operation is inherently parallel, we
have observed higher speed-up for larger vectors. The numerical results for our implementation
of the DAXPY operation in double precision are reported in Table 3.3.

CPU GPU CPU GPU CPU/GPU
h time (ms) time (ms) Gflops Gflops time ratio

101,168 0.833 0.067 0.364 4.5 12
296,208 2.439 0.102 0.364 8.6 23
544,563 4.761 0.155 0.343 10.5 30
650,848 5.555 0.175 0.351 11.1 31
848,256 7.692 0.188 0.330 13.4 40

1,213,488 10.000 0.283 0.364 12.8 35
1,325,848 11.111 0.291 0.357 13.6 38

TABLE 3.3: Alinea double precision addition of vectors (DAXPY)

Table 3.3 clearly confirms the efficiency of the GPU implementation compared to the CPU.
As we can see by comparing Table 3.2 and Table 3.3, the speed-up for DAXPY is better than
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for DSCAL. Table 3.4 presents the double precision execution time of our implementation for
the element-wise product operation.

CPU GPU CPU GPU CPU/GPU
h time (ms) time (ms) Gflops Gflops time ratio

101,168 0.781 0.072 0.129 1.4 10
296,208 2.439 0.116 0.121 2.5 20
544,563 4.166 0.146 0.130 3.7 28
650,848 5.000 0.166 0.130 3.8 29
848,256 6.666 0.209 0.127 4.0 31

1,213,488 9.090 0.294 0.133 4.1 30
1,325,848 10.000 0.289 0.132 4.5 34

TABLE 3.4: Alinea double precision element wise product (DXMY)

The GPU remains clearly better than CPU for element-wise product operations. Table 3.5
gives the comparison of our implementation on both CPU and GPU for the dot product double
precision execution time.

CPU GPU CPU GPU CPU/GPU
h time (ms) time (ms) Gflops Gflops time ratio

101,168 0.564 0.103 0.358 1.9 5
296,208 1.612 0.131 0.367 4.5 12
544,563 3.125 0.192 0.348 5.6 16
650,848 3.571 0.196 0.364 6.6 18
848,256 5.263 0.204 0.322 8.3 25

1,213,488 7.142 0.312 0.339 7.7 22
1,325,848 7.692 0.336 0.344 7.8 22

TABLE 3.5: Alinea double precision dot product (DDOT)

As illustrated in Table 3.5, GPU implementation outperforms the CPU with a speed-up 27
times higher, for the largest vector case.

As a conclusion, the simulations performed demonstrate that with 128 threads per block we
have a good rate of performance and a compromise between the use of shared memory and the
reduction of the global sums. As proved above, GPU clearly gives effective results compared
to CPU for real number arithmetics. But performance for complex number arithmetics with
double precision remains a defiance, and dynamic auto-tuning of the GPU grid should be
considered. The analysis of performance for complex number arithmetics with double precision
has been performed on Platform-4, which consists of an Intel Core i7 920 2.67Ghz with four
physical cores and four logical cores, 12GB RAM, and two NVIDIA graphics cards: a Tesla
K20c with 4799GB memory and GeForce GTX 570 with 1279MB memory. In the following
Table 3.6, Table 3.7, Table 3.8 and Table 3.9, the cards Tesla K20c and GTX 570 will be
denoted respectively dev#0 and dev#1. In Table 3.6, we collect the execution times of the scale

operation for complex number arithmetics with double precision.

h cpu cpu dev#0 dev#0 dev#1 dev#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

648,849 5.56 0.70 0.20 19.47 0.21 18.34 27.78 26.17
2,000,000 15.71 0.76 0.46 26.04 0.53 22.56 34.10 29.54
9,000,000 80.00 0.68 1.92 28.08 2.33 23.22 41.60 34.40
14,000,000 120.00 0.70 2.94 28.56 3.57 23.52 40.80 33.60

TABLE 3.6: Alinea complex double precision scale (ZSCAL) operation
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In Table 3.7, we present the complex number arithmetics with double precision execution
times in milliseconds (ms) of the ZAXPY operation.

h cpu cpu dev#0 dev#0 dev#1 dev#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

648,849 5.56 0.93 0.26 20.04 0.27 19.52 21.44 20.89
2,000,000 16.67 0.96 0.69 23.20 0.81 19.68 24.17 20.50
9,000,000 75.00 0.96 3.03 23.76 3.33 21.60 24.75 22.50

14,000,000 120.00 0.93 4.76 23.52 5.26 21.28 25.20 22.80

TABLE 3.7: Alinea complex double precision addition of vectors (ZAXPY)

Table 3.8 exhibits the double precision execution times of the element by element product

operation.

h cpu cpu dev#0 dev#0 dev#1 dev#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

648,849 8.33 0.47 0.28 13.66 0.29 13.55 29.25 29.00
2,000,000 25.00 0.48 0.72 16.56 0.85 14.16 34.50 29.50
9,000,000 120.00 0.45 3.03 17.82 3.33 16.20 39.60 36.00

14,000,000 180.00 0.47 4.76 17.64 5.00 16.80 37.80 36.00

TABLE 3.8: Alinea complex double precision element wise product (ZXMY)

The dot product execution times for double precision with complex number arithmetics on
both CPU and GPU are exposed in Table 3.9.

h cpu cpu dev#0 dev#0 dev#1 dev#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

648,849 5.56 0.93 0.33 15.83 0.33 15.94 16.94 17.06
2,000,000 16.67 0.96 0.83 19.20 0.76 20.96 20.00 21.83
9,000,000 80.00 0.90 3.23 22.32 3.23 22.32 24.80 24.80

14,000,000 130.00 0.86 4.76 23.52 4.55 24.64 27.30 28.60

TABLE 3.9: Alinea complex double precision dot product (ZDOT)

For the dot product, 128 threads per block give good rate of performance and a compromise
between the use of shared memory and the reduction of the global sums. Table 3.6, Table 3.7,
Table 3.8 and Table 3.9 have demonstrated the efficiency of GPU in terms of computing time
for double precision with complex number arithmetics.

We now need to address question, energy related, i.e., how much energy is consumed by the
dot product? We compare the Alinea and Cusp libraries in terms of energy computation. We
used Platform-1. Figure 3.17(a) and Figure 3.17(b) respectively show a graphic presentation of
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FIGURE 3.17: DDOT: Time in seconds (s) and Energy in Joules (J)
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the execution time in seconds and energy consumption in Joules. Here the kernel is performed
by both Alinea and Cusp. The energy consumption in Joules is calculated by the multiplication
of the operations’ energy and time plus the fundamental energy consumption by the GPU.
We can see that Alinea is faster than Cusp and consumes less energy than Cusp. Since the
complexity of DDOT is linear, the linear prediction of the GPU execution time and energy
consumption is appropriate and is given in Table 3.10 . We can see Alinea’s better energy
consumption performance than Cusp, by verifying the coefficient of linear dependency. The
prediction formula for Alinea is 1/3 of Cusp.

equation coef. of determination
Alinea Time (s) −2.216× 10−4 + 4.002× 10−8x 0.9996
Cusp Time (s) −6.325× 10−4 + 1.142× 10−7x 0.9996

Alinea Energy (J) −1.897× 10−2 + 2.241× 10−6x 0.9996
Cusp Energy (J) −5.477× 10−2 + 6.514× 10−6x 0.9996

where x is the size of the vectors.

TABLE 3.10: Linear prediction of the dot product

3.5 Sparse matrix-vector product
The sparse matrix-vector product (SpMV) is the basic operation not only for Krylov algo-

rithms. It can be found at the core of many scientific numerical programs. In [45] [120] [121],
we proved that the sparse matrix-vector multiplication is the crucial operation to reach a good
performance. Many numerical methods, among them finite element methods, involve extremely
large-size sparse matrices. Crucial to the effective implementation of algebraic operations for
such matrices is the matrix storage format. Sparse data structures such as Compressed-Sparse
Row (CSR) [69] are also essential with respect to storing the matrices on GPU memory effec-
tively. We have showed in [122] that the computation time of GPU kernels strongly depends on
both gridification, i.e., threads distribution upon the grid, and the performance of the machine
(CPU and GPU). This result is also corroborated in references [44] [43] [123]. Let us consider
the following matrix-vector product

y = Ax, (3.25)

where A ∈ C
n×n, left operand of the SpMV, is a sparse matrix, x ∈ C

n, right operand of the
SpMV, is a vector, and y ∈ C

n is the vector that stores the result of the SpMV.

3.5.1 Basic algorithms
Algorithm 3.2 describes the matrix-vector multiplication algorithm for the COO storage

format.
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Algorithm 3.2: Matrix-vector multiplica-
tion with the COO storage format
input : n (size of the matrix), nnz (number of

non-zero values),
r_numb (row numbers),
c_numb (column numbers),
coef (non-zero values),
x (vector)

output : y (vector)
variable : i, j, tid

1 // - - initialization of the vector result

2 for i = 0 to n− 1 do y[i]← 0

3 // - - compute the COO SpMV

4 for tid = 0 to nnz − 1 do
5 i← r_numb[tid]

6 j ← c_numb[tid]

7 y[i]← y[i] + coef [tid]× x[j]

8 end

Algorithm 3.3: Matrix-vector multiplica-
tion with the ELL storage format
input : n (size of the matrix), m (maximum

number of non-zero values per row),
c_numb (column numbers),
coef (non-zero values),
x (vector)

output : y (vector)
variable : i, j, k, tid

1 // - - initialization of the vector result

2 for i = 0 to n− 1 do y[i]← 0

3 // - - compute the ELL SpMV

4 for i = 0 to n− 1 do
5 for k = 0 to m− 1 do
6 tid← k +m× i j ← c_numb[tid]

7 y[i]← y[i] + coef [tid]× x[j]

8 end
9 end

Algorithm 3.4 presents the matrix-vector multiplication algorithm for the CSR storage
format. As we can see in Algorithm 3.4, each atomic update (y[i]← y[i] + coef [tid]× x[j])
of the CSR SpMV requires to get the column index and the corresponding value of vector x
via an indirect memory access.

Algorithm 3.4: Matrix-vector multiplica-
tion with the CSR storage format
input : n (size of the matrix), nnz (number of

non-zero values),
rows_indices (position of the first entry

of each row),
c_numb (matrix column numbers),
coef (matrix non-zero values),
x (vector)

output : y (vector)
variable : i, j, tid

1 // - - initialization of the vector result

2 for i = 0 to n− 1 do y[i]← 0

3 // - - compute the CSRSpMV

4 for i = 0 to n− 1 do
5 for tid = rows_indices[i] to

rows_indices[i+ 1]− 1 do
6 j ← c_numb[tid]

7 y[i]← y[i] + coef [tid]× x[j]

8 end
9 end

Algorithm 3.5: Matrix-vector multiplica-
tion with the CSC storage format
input : n (size of the matrix), nnz (number of

non-zero values),
r_numb (matrix row numbers),
columns_indices (position of first entry

of each column),
coef (matrix non-zero values),
x (vector)

output : y (vector)
variable : i, j, tid

1 // - - initialization of the vector result

2 for j = 0 to n− 1 do y[j]← 0

3 // - - compute the CSC SpMV

4 for j = 0 to n− 1 do
5 for tid = columns_indices[j] to

columns_indices[j + 1]− 1 do
6 i← r_numb[tid]

7 y[i]← y[i] + coef [tid]× x[j]

8 end
9 end

The transpose of the CSR matrix corresponds to a format called CSC. The algorithm of
the CSC matrix-vector product is given in Algorithm 3.5. As in CSR SpMV, each atomic
operation (y[i]← y[i] + coef [tid]× x[j]) of the CSC SpMV (Algorithm 3.5) involves getting
the row index and then updating the vector result y at the corresponding place via an indirect
memory access.
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Algorithm 3.3 gives the matrix-vector multiplication algorithm for the ELL storage for-
mat.

The matrix-vector multiplication algorithm for the HYB storage format is described in
Algorithm 3.6.

Algorithm 3.6: Matrix-vector multiplication with the HYB storage format
input : ell_n (size of the ELL matrix),

ell_m (maximum number of non-zero values per row of ELL matrix),
m_ell_c_numb (ELL matrix of column numbers),
m_ell_coef (ELL matrix of non-zero values)

input : coo_r_numb (COO matrix row numbers),
coo_c_numb (COO matrix column numbers),
coo_coef (COO matrix non-zero values),
coo_nnz (COO number of non-zero values)

input : x (vector)
output : y (vector)
variable : i, j, k, tid

1 // - - initialization of the vector that stores the result

2 for i = 0 to n− 1 do y[i]← 0
3 // - - compute the ELL matrix-vector multiplication

4 for i = 0 to ell_n− 1 do
5 for k = 0 to ell_m− 1 do
6 tid← k + n× i j ← m_ell_c_numb[tid]
7 y[i]← y[i] +m_ell_coef [tid]× x[j]

8 end
9 end

10 // - - compute the COO matrix-vector multiplication

11 for tid = 0 to coo_nnz − 1 do
12 i← coo_r_numb[tid]
13 j ← coo_c_numb[tid]
14 y[i]← y[i] + coo_coef [tid]× x[j]

15 end

3.5.2 GPU Implementation

COO format

The idea behind the SpMV COO algorithm consists in performing n-element-wise products
between each row of the sparse matrix and the right operand x of the SpMV, followed by a
summation. This scheme corresponds to n−dot products. In practice, each thread computes
the product of a non-zero value of the matrix and the corresponding value in vector x of (3.25).
Then, the final result yi is obtained from a dot product of a row of the matrix by the vector
x. The scheme of the dot product performed in the SpMV is similar to that presented in
Section 3.4.4, Page 57, which uses a reduction step to accumulate the partial products. As
explained in Section 3.4.4, Page 57 for the dot product, the performance of SpMV on a matrix
in COO format depends on the efficiency of the segmented sum.

CSR format

The parallel algorithm we designed for computing the sparse matrix-vector multiplication
for CSR format is inspired by the algorithm described in references [31] and [32]. The very
basic, intuitive approach called the CSR scalar version, consists in simply assigning a thread
of execution to each matrix row. This results in a straightforward CUDA implementation.
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However the consequence of such design is that the access to storage arrays of the matrix is
not contiguous [31], which is not efficient. In fact, the manner in which threads within a warp
access the coefficients has serious drawbacks.

The algorithm we implemented in this thesis is close to the CSR vector version. Threads
are grouped into warps of size 32 (or 16, i.e., a half-warp, or 8, i.e., half a half-warp). We
assume a warp uses 32 threads, so on each cycle, every thread in the warp executes the same
instruction (SIMD). A row of the matrix is thus worked on by a warp performing 32 (number
of threads per warp) computations per iteration. The main step of the computation is to sum,
the values computed by the threads of the warp in an array of shared memory that is faster than
global memory. This allows us to avoid the main constraint of the CSR scalar approach, due
to the recovered contiguous memory access into storage arrays and column indices. When a
thread requires access to the shared memory outside the range of cached data, global memory
access is needed for these data. Despite having optimized the access to matrix elements, the
sparse matrix-vector computation remains handicapped, because of the non-contiguous access
to the values of the dense vector. The access pattern to the elements of this vector is closely
related to the distribution of the non-zero values.

ELLPACK format

The idea behind the SpMV ELL algorithm we implemented consists in assigning each
thread the treatment of a row of the matrix. The matrix is stored in an array arranged in an
increasing order to ensure continuous and linear access to memory. If the number of non-zero
values per row of a matrix alters a lot, i.e., if the variance of the density of non-zero values per
row is high, this data storage format turns out to be very suitable. Our investigation has shown
that this leads to fewer problems when the matrices are well structured, but in cases where the
distribution is non balanced, the algorithm loses its effectiveness.

HYBrid format

The format is hybrid, the kernel is also implemented in hybrid mode The HYB SpMV kernel
consists of a ELL SpMV followed by a COO SpMV as described in Algorithm 3.6. Obviously,
the COO SpMV kernel is performed only if the matrix has a COO part (see Figure 3.6, Page 44).
The performance of the HYB kernel strongly depends on performance of the ELL and COO
SpMV. Therefore, we have paid attention to optimize both kernels, using auto-tuning technique
of the grid. The hybrid format depends on both the portion of ELL and COO formats. The
HYB SpMV takes benefits both of the efficiency of ELL SpMV and the regularity of the COO
SpMV.

SpMV gridification

The required number of blocks in SpMV for CSR, ELL and HYB kernels of execution is
calculated as follows:

(numb_rows× numb_thread_warp) + numb_thread_block − 1

numb_thread_block

where numb_rows, numb_thread_warp and numb_thread_block represent respectively the
number of rows of the matrix, the number of threads inside the warp and the thread block
size. The number of threads per warp and the number of threads per block are given upon a
dynamic tuning of the gridification according to the properties of the graphics card and size of
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the problem. The SpMV implementation is based on tuning the performance of warps in order
to speed the computation. This dynamic control strategy consists in calculating the required
number of blocks used in a grid for computing the SpMV, with a given number of threads
per block, a number of threads to be used in a warp and the size of the matrix. A row of the
matrix is associated with a warp. The proposed optimization for accelerating the calculation is
based on the full utilization of the performance of warps. Therefore, the number of warps used
depends on the number of threads in a block. Moreover, depending on the structure and size of
the matrix, a row can be handled by several warps, which can be located in different blocks.

The idea of our approach also consists in looking for the optimal number of threads to
use together within a warp according to the pattern of the matrix, i.e., the distribution and the
density of non-zero values per row. According to the non-zero values of the row × vector
multiplication, we aim to find the optimal warp size to use. Note that a row × vector product
can be handled by several warps. We exploit the power of warp and manage a kind of balance
on the density of the distribution of the number of non-zero elements per row. Thus, we focus
on looking for a grid layout that provides contiguous memory access, because the performance
is strongly impacted by the memory accesses patterns as discussed in Section 2.4, Page 14.

3.5.3 Numerical results
In this section, we summarize the results of experiments performed to evaluated our SpMV

algorithms on both CPU and GPU. The set of data presented in this part will be used in the
remainder of this dissertation, especially in the next analysis of the iterative Krylov methods.

SpMV comparisons: sparse formats

The first set of numerical results analyzes and evaluates our SpMV algorithms on both
CPU and GPU. Our algorithms are also compared to cuSPARSE and Cusp. The tests have been
performed on large sparse matrices coming from the University of Florida collection [124] with
different size and properties of the structure. Table 3.11 collects the Florida set of matrices and
gives the main properties of each matrix: h the size of the matrix, nnz the number of non-zero
values, density the density that corresponds to the number of non-zero values divided by the
total number of matrix coefficients, nnz/h the mean row density, max_row the maximal row
density, σ(nnz/n) or nnz/h stddev the standard deviation of the mean row density (nnz/h)
and bandwidth the upper bandwidth, which is equal to the lower bandwidth in the case of a
symmetric matrix. The first and second pictures represent the pattern of non-zero values and
an histogram of the distribution of non-zero values per row respectively for each matrix. The
matrices are arranged in increasing order of non-zero values (nnz), from top to bottom, left to
right.

The first set of experiments has been performed on Platform-1, which consists of on work-
station equipped with an Intel Core i7 920 2.67GHz processor, which has 8 cores composed
of 4 physical cores and 4 logical cores, 5.8 GB RAM memory and two NVIDIA GTX275

GPUs fitted with 895MB memory. This configuration is adequate for carrying out the SpMV
operations for the selection of matrices used in the tests. Unless otherwise stated, we define
the default gridification with 256 threads per block and 8 used threads per warp. The sparse
matrix-vector multiplication total running time (in milliseconds) for different implementations,
that is Alinea (our implementation), cuSPARSE and the Cusp library for CSR storage, is
detailed in Table 3.12 in columns two to five.
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“finan512”
n = 74, 752 nnz = 596, 992
density = 0.011 nnz/n = 7.986
max_row = 55 σ(nnz/n) = 6.278

bandwidth = 74, 724

“thermomech_TK”
n = 102, 158 nnz = 711, 558
density = 0.007 nnz/n = 6.965
max_row = 10 σ(nnz/n) = 0.715

bandwidth = 102, 138

“Dubcova2”
n = 65, 025 nnz = 1, 030, 225
density = 0.024 nnz/n = 15.844
max_row = 25 σ(nnz/n) = 5.762

bandwidth = 64, 820

Portfolio optimization, 512 scenarios, Ed

Rothberg, SGI, John Mulvey,Princeton.

FEM problem, temperature and deformation

of a steel cylinder.
Univ. Texas at El Paso, from a PDE solver.

“thermomech_dM”
n = 204, 316 nnz = 1, 423, 116
density = 0.003 nnz/n = 6.965
max_row = 10 σ(nnz/n) = 0.715

bandwidth = 204, 276

“2cubes_sphere”
n = 101, 492 nnz = 1, 647, 264
density = 0.016 nnz/n = 16.230
max_row = 31 σ(nnz/n) = 2.654

bandwidth = 100, 407

“qa8fm”
n = 66, 127 nnz = 1, 660, 579
density = 0.038 nnz/n = 25.112
max_row = 27 σ(nnz/n) = 4.183

bandwidth = 1, 048

FEM problem, temperature and deformation

of a steel cylinder.

FEM, electromagnetics, 2cubes in a sphere.

Evan Um, Geophysics, Stanford.

3D acoustic FE mass matrix. A. Cunning-

ham, Vibro-Acoustic Sciences Inc.

“cfd2”
n = 123, 440 nnz = 3, 085, 406
density = 0.020 nnz/n = 24.995
max_row = 30 σ(nnz/n) = 3.888

bandwidth = 4, 332

“thermal2”
n = 1, 228, 045 nnz = 8, 580, 313
density = 0.001 nnz/n = 6.987
max_row = 11 σ(nnz/n) = 0.811

bandwidth = 1, 226, 000

“af_shell8”
n = 504, 855 nnz = 17, 579, 155
density = 0.007 nnz/n = 34.820
max_row = 40 σ(nnz/n) = 1.285

bandwidth = 4, 909

CFD, symmetric pressure matrix, from Ed

Rothberg, Silicon Graphics, Inc.

Unstructured FEM, steady state thermal

problem. Dani Schmid, Univ. Oslo.

Olaf Schenk, Univ. Basel: AutoForm Eng.

GmbH, Zurich. sheet metal forming.

TABLE 3.11: Sketches of engineering matrices from University of Florida collection

Matrix Alinea Alinea cuSPARSE Cusp Alinea Alinea
CPU GPU GPU GPU GPU GPU
CSR CSR CSR CSR ELL HYB

2cubes_sphere 14.717 0.943 0.988 0.939 0.904 1.044
cfd2 24.303 1.187 2.433 1.465 0.958 1.189
thermomech_dM 15.906 0.757 1.009 0.813 0.685 0.866
thermomech_TK 7.827 0.465 0.509 0.484 0.445 0.668
qa8fm 12.852 0.633 1.319 0.788 0.529 0.395
Dubcova2 8.326 0.488 0.670 0.498 0.477 0.663
af_shell8 131.043 5.798 9.302 7.103 4.512 3.838
finan512 5.555 0.360 0.452 0.362 0.485 0.517

TABLE 3.12: Double precision running time of sparse matrix-vector product in milliseconds (ms)

Results for the CSR format in Table 3.12 clearly show the good performance of the
GPU compared to the CPU. We can also see in this table that our Alinea implementation
outperforms cuSPARSE and Cusp libraries for double precision computations. Now we focus
on the question of how to improve our library by taking into account the features of the
GPU and the specification of the problem. We propose to vary the parameters used in the
gridification, i.e., the number of threads inside the warp and the thread block size, for the SpMV
with the CSR format. The results with the best gridification are reported in Table 3.13.

A comparison between the computational times of the Alinea library with the default
gridification and the Alinea library with auto-tuning of the gridification are given in Table 3.13.
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Matrix Alinea Grid Alinea Alinea T. Grid Alinea T.
< ntb, tw > < ntb, tw >

2cubes_sphere 0.943 < 256, 8 > 0.928 < 64, 8 >
cfd2 1.187 < 256, 8 > 1.141 < 64, 8 >
thermomech_dM 0.757 < 256, 8 > 0.751 < 128, 8 >
thermomech_TK 0.465 < 256, 8 > 0.460 < 64, 8 >
qa8fm 0.633 < 256, 8 > 0.609 < 64, 8 >
thermal2 4.158 < 256, 8 > 4.158 < 256, 8 >

TABLE 3.13: GPU execution time of the sparse matrix-vector product for CSR format in milliseconds (ms)
with auto-tuning

The second column presents the SpMV GPU time in milliseconds by considering the default

gridification indicated in the third column. The fourth column reports the GPU execution time
in milliseconds of Alinea with the tuned grid (< ntb, tw >) given in the fifth column, where
ntb and tw describe respectively the number of threads per block and the number of threads
used per warp.

Our experiments have produced results that are encouraging to continue our investigation of
the best gridification approach. The best results are obtained when we consider a gridification
with half a half-warp, i.e., 8 threads in a warp. In some rare cases, when our implementation is
not the best (see Table 3.12), by tuning the gridification, we obtain better results. For example,
cuSPARSE is better than Alinea for the 2cubes_sphere matrix by considering 256 threads
per block and half a half-warp used, but Alinea becomes better than cuSPARSE for 64 threads
per block and 8 threads used per warp. The gridification tuning, by optimizing the number of
threads per block and the number of threads per warp depending on the matrix size, definitely
increases the performance. Knowing that the gridification strongly impacts the performance of
our algorithms, as demonstrated with CSR matrices, we now focus on the question of which
storage format results in the best performances for the Alinea library. The results are pointed
out in Table 3.12 in the two last columns. As we can see in column six and seven of Table 3.12,
the ELL format is very effective when the matrix has a nearly uniform distribution of non-zero
values in the rows, see nz/h in Table 3.11. This is the case when the standard deviation of the
number of non-zero values per row is low. However, if a sparse matrix has a full line, this ELL
format may take more space than the matrix itself. In this case the ELL format loses all its
advantages. When we deal with a matrix with a high standard deviation of the non-zero values
per row, i.e., the matrix is poorly structured, COO format is better almost in every case. If the
matrix is moderately structured, ELL format treats the “healthy” part efficiently and COO
supports the rest. When the number of zeros per row is almost constant then the matrix is well
structured, and the ELL format shows its full advantages. Furthermore, it is worthwhile to
choose the ELL format rather than the CSR format even if the standard deviation of the number
of values per row is not uniform, because it is memory-efficient when the average row density
is close to the greatest row density. According to the obtained results, the format to use for
computing a sparse matrix-vector product should be carefully selected to fit the matrix sparse
pattern characteristics, especially the row density of non-zero entries. The results clearly show
that the sparse matrix-vector product on the GPU device is faster than on the CPU host.

SpMV: influence of the gridification

We investigate the sparse matrix-vector multiplication when the matrix stored in the CSR
format comes from a finite element discretization [125] [126]. A finite element matrix is
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associated with a finite element mesh and the coefficients of the matrix are correlated with the
interaction of the cells of the mesh. As a consequence, except for high-order finite elements
which require a different analysis outside the scope of this paper [127] [128], the finite element
matrices are sparse matrices with less than 60 coefficients per row. We vary the parameters used
in the gridification in order to evaluate their influence on the SpMV algorithm for finite element
analysis. We compare cuSPARSE and Cusp to our in-house implementation (Alinea). The
experiments have been performed on two typical types of matrices coming from a discretization
of academic finite element problems. The workstation used for the experiments consists of
Platform-1.

We define a “band diagonal matrix” as a n×nmatrixA satisfying the following conditions:
Ai,l 6= 0 for l = i − k, . . . , i + k where i ≥ 1, i ≤ n, and k is a given integer (k ≥ 1 and
k ≤ n). We define a “multiple diagonal matrix” as a n× n matrix A satisfying: Ai,i−sl−l 6= 0,

where i ≥ 1, i ≤ n, and k is a given integer (k ≥ 1 and k ≤ n), for sl = l
n

k + 1
(l ≥ 1 and

l ≤ k). These two kinds of matrices correspond to two typical finite element matrices when
the nodes of the associated mesh follow a frontal renumbering [129] [130]. Figure 3.18(a)

(a) Band diagonal
matrix

(b) Multiple diagonal
matrix

FIGURE 3.18: Band and multiple diagonal matrices

and Figure 3.18(b) illustrate respectively a “band diagonal matrix” and a “multiple diagonal
matrix”. In this experiment, we vary the parameters k from k = 0 (a diagonal matrix) to
k = 40 of band and multiple real matrices described in Figure 3.18. The default gridification
considered consists of 256 threads per block and 8 threads per warp. Figure 3.19 represents the
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FIGURE 3.19: Double precision execution time of band and multiple diagonal in milliseconds upon k for CSR
format: matrix of size h = 10, 000. And Alinea ELL SpMV.

double precision CSR SpMV running times in milliseconds for Alinea, Cusp and cuSPARSE
for a band diagonal matrix (Figure 3.19(a)) and a multiple diagonal matrix (Figure 3.19(b))
of size 10, 000. The double precision CSR SpMV execution time in milliseconds for Alinea,
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FIGURE 3.20: Double precision execution time of band and multiple diagonal in milliseconds upon k for CSR
format: matrix of size h = 20, 000

Cusp and cuSPARSE for a band diagonal matrix of size 20, 000 and a multiple diagonal matrix
of size 20, 000 are presented in Figure 3.20(a) and Figure 3.20(b) respectively. Figure 3.21(a)
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FIGURE 3.21: Double precision execution time of band and multiple diagonal in milliseconds upon k for CSR
format: matrix of size h = 100, 000. And Alinea ELL SpMV.

and Figure 3.21(b) report for Alinea, Cusp and cuSPARSE, the double precision times of
SpMV (CSR format) in milliseconds for a band diagonal and multiple diagonal matrices of
size 100, 000.

Figure 3.19, Figure 3.20 and Figure 3.21 also collect the in-house double precision times
of SpMV (ELL format) in milliseconds. The additional information allowsus to compare
in-house SpMV for ELL and CSR storage formats. As we can see in these figures, for a
parameter k greater than 32, i.e., matrices with around 64 non-zero value per line, Alinea
loses leadership to cuSPARSE. On th opposite, Alinea is better than Cusp except for certain
values of parameter k greater than 32. In summary, Alinea outshines cuSPARSE and the
Cusp library for the CSR format when the number of non-zero values per row is lower than
60, which corresponds to typical finite element matrices. In addition, the results confirm
the effectiveness of ELL SpMV compared to CSR. The ratio is more important when size
increases. As described in Figure 3.19(a) (n = 10000), the SpMV CSR is efficient compared
to ELL for a band diagonal except for some values of k higher than 28. On the contrary, for a
multiple diagonal (Figure 3.19(b)), ELL is more effective than CSR, except for some ponctual
values of k. In order to analyze and evaluate the impact of the threading distribution on the
grid of in-house implementations, we propose a benchmark that consists in varying the number
of threads per block and the number of threads per warp. Note that the number of blocks
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on the grid also changes. Should the graphics card configuration fail for the combination
“warp+threads per block”, the corresponding bar will not be drawn. Figure 3.22(a) and
Figure 3.22(b) give respectively the Alinea CSR SpMV running times in milliseconds for a
band diagonal and multiple diagonal matrices of size 10, 000. Figure 3.23(a) and Figure 3.23(b)

(a) Band diagonal (nnz = 808, 360) upon gridi-
fication

(b) Multiple diagonal (nnz = 409, 840) upon
gridification

FIGURE 3.22: Double precision execution time of band and multiple diagonal in milliseconds upon
gridification for CSR format: matrix of size h = 10, 000

report those of size 20, 000. Figure 3.24(a) and Figure 3.24(b) collect those of size 100, 000.

(a) Band diagonal (nnz = 1, 618, 360) upon
gridification

(b) Multiple diagonal (nnz = 819, 680) upon
gridification

FIGURE 3.23: Double precision execution time of band and multiple diagonal in milliseconds upon
gridification for CSR format: matrix of size h = 20, 000

These figures point out that a half-warp, i.e., 16 threads in a warp, gives the best results for

(a) Band diagonal (nnz = 8, 098, 360) upon
gridification

(b) Multiple diagonal (nnz = 4, 098, 400) upon
gridification

FIGURE 3.24: Double precision execution time of band and multiple diagonal in milliseconds upon
gridification for CSR format: matrix of size h = 100, 000

the “band diagonal matrix” and half a half-warp, i.e., 8 threads in a warp, is better suited to
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a “multiple diagonal matrix”. We can also conclude that an optimization of the number of
threads per block, which depends on the matrix size, surely promotes better performance.

SpMV: dataset matrices from gravity equation, a realistic physical
problem

Previously, we have performed experiments of a SpMV operation on the GPU using
the matrix market data which contain various data in a wide range of applications, but with
somewhat moderate sizes. Now, we aim to understand the efficiency of GPU computation
for realistic engineering and scientific problems which are described by partial differential
equations. In this set of experiments, we focus on SpMV in the CSR format. The SpMV CSR is
evaluated in terms of computing time and in terms of energy consumption. Our algorithm is also
compared to Cusp SpMV CSR. We tested a large 3D finite element matrix for the simulation
of a realistic scientific problem from geophysics. The third set of experiments has also been
performed on Platform-1. The sparse matrices are obtained from the gravitational potential

(a) Perspective view of the
main structural features of the
Chicxulub impact crater

(b) Slice of Figure 3.25(a)

FIGURE 3.25: Chicxulub crater in the Yucatan Peninsula

equation applied on the Chicxulub crater in the Yucatan Peninsula in Mexico, Figure 3.25. An
example of mesh used in the finite element method is given in Figure 3.26. First, we present

FIGURE 3.26: FE mesh associated with the gravitational potential equation

the context of the realistic problem, and then characterize the set of matrices used for the
third set of numerical experiments. Then, we present the results for the sparse matrix-vector
multiplication.

Gravitational potential equation Earth’s geological processes destroy most of the records of
impact craters on Earth’s surface, however there is evidence that the Earth has also experienced
collisions with other bodies in the Solar System. One such evidence is the ancient Chicxulub
impact crater, located underneath the town of Chicxulub in Yucatán, southwest of Mexico on
the Yucatán Peninsula. Yucatán is bordered by the states of Campeche to the southwest and
Quintana Roo to the east, and the Gulf of Mexico to the north. Geological and other investiga-
tions suggest that this impact crater dates back more than 65 million years approximately and
was caused by a collision with a meteorite. This event coincides with the mass extinction in the
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late Cretaceous period, when the last of the dinosaurs vanished. The Chicxulub impact crater
is now widely accepted as the main footprint of the global mass extinction event that marked
the Cretaceous/Paleogene (K/Pg) boundary. Because of its relevance, the area of the impact
crater was subjected to several geophysical studies including land, marine and aerial surveys.
One of the techniques used to study the geological formations of the crater area was the gravity
method. This method allows to quantify differences in the Earth’s gravitational field at specific
locations. Detected anomalies of the gravitational field allow to draw conclusions about the
morphology and formation processes of geological structures. The gravity method allows to
determine the depth, density and geometry of the gravitational anomaly source. In the case of
the Chicxulub impact crater, the collected survey is relevant to a physical domain covering an
area of 250km × 250km and reaching 15km in depth.

The other way for geological exploration is the analysis of seismic waves, however it
requires solving an “inverse problem”. By its very nature the problem is ill-posed and its
solution might not sufficiently describe the subsurface, especially in case of strong contrasts
in the velocity of seismic waves appearing near the surface. Below a certain depth, it is
important to define the structures of the basement that the seismic method can not resolve.
Hence, other techniques such as the potential method, best describe the subsurface. It consists
in determining mass density distribution correlated with seismic velocities. The study of the
gravitational potential equation gives additional information as to the mass density distribution.
The gravity force is expressed as the sum of the gravitational force and the centrifugal force.
The potential of gravity of a spherical density distribution is Φ(r) = Gm/r, where m and
r respectively represent the mass of the object and the distance to the object, and G is the
universal gravity constant equal to G = 6.672 × 10−11m3kg−1s−2. For the spatial position

x, the gravitational potential is expressed as Φ(x) = G
∫

(ρ(x′)/||x− x′||)dx′ where ρ is an

arbitrary density distribution and x′ is the point position within the considered density. The
effect due to the rotation of the Earth, i.e., the component of centrifugal force, is neglected.
Hence, only the regional scale of the gravity potential equation is considered. The technique
that has been used for the direct calculation of gravity anomalies is based on finite element (FE)
method approximation of the Poisson equation [131]. The gravitational potential of a density
anomaly distribution is thus given as the solution to the Poisson equation. The mathematical
modeling is based on the following Poisson equation,

{
−∆Φ = 4πGδρ = f on Ω,

C(Φ) = b on ∂Ω,
(3.26)

where δρ is the density anomaly and G the gravitational constant and C represents Dirichlet
boundary conditions. This technique does not require defining discontinuities in the discrete
formulation of the problem and enables us to treat a larger number of discrete points than semi
analytic methods. The discretization of this problem leads to a linear system which can be
very large when we consider high order finite elements.

Datasets matrices The computational domain Ω consists of a box 250km × 250km ×

15km, Figure 3.26. A sparse matrix is obtained by a finite element method with Q1 discretiza-
tion. One should note that the sizes of matrices correspond to those used in testing basic
linear algebra operations, i.e., SCAL, AXPY, XMY and DOT. The properties of matrices
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with different mesh sizes are summarized in Table 3.14 and examples of pattern are given in
Table 3.15. The quantities h, nnz, density, bandwidth, max_row, nnz/h, nnz/h stddev
have the same meaning as in properties given in Table 3.11.

h nnz density bandwidth max_row nnz/h nnz/h stddev
101,168 2,310,912 0.022 6,209 27 22.752 8.666
296,208 7,101,472 0.008 12,869 27 23.975 7.544
544,563 13,348,267 0.005 19,439 27 24.512 6.932
650,848 16,044,032 0.004 21,929 27 24.651 6.758
848,256 21,073,920 0.003 26,225 27 24.844 6.504

1,213,488 30,434,592 0.002 33„389 27 25.080 6.171
1,325,848 33,321,792 0.002 33,389 27 25.132 6.094

TABLE 3.14: Sketches of matrices from the 3D FE discretization of the gravitational potential equation

In Table 3.15 the second column represents the sparse matrix pattern and the third column
represents the distribution of the non-zero elements. All those matrices have the same non-zero
pattern structure.

“gravi 1325848”

n = 1, 325, 848 nnz = 33, 321, 792

density = 0.002 nnz/n = 25.132

max_row = 27 σ(nnz/n) = 6.094

bandwidth = 33389

Finite element discretization of gravitational potential equation on (3D − mesh 250km × 250km × 15km)

TABLE 3.15: Example pattern of matrices from the 3D FE discretization of the gravitational equation

The sizes of generated matrices vary from 544, 563 to 1, 325, 848 rows, and the numbers
of non-zeros values vary from 13, 348, 267 to 33, 321, 792.

Numerical experiments Table 3.16 shows the times in seconds (s), the electrical power
in Watt (W), and the energy consumption in Joules (J). Both results by Alinea (in-house
implementation) and Cusp for CSR SpMV with gravitational potential matrices in double
precision are listed. The electrical power in Watts is computed using the experimental protocol
and the execution process described in Section 2.5, Page 24. The energy consumption in Joules
is calculated by the multiplication of the energy and time of the operation plus the fundamental
energy consumption by the GPU. Table 3.16 also compares the double precision execution
times in seconds of our in-house CSR SpMV implementation for CPU and GPU. They are
respectively collected in the second and third columns.

Alinea Cusp
CPU GPU GPU

n time (s) time (s) P (W) E (J) time (s) P (W) E (J)
101,168 0.017 0.001 144.229 0.136 0.001 151.423 0.183
296,208 0.047 0.003 148.591 0.401 0.003 154.756 0.541
544,563 0.085 0.005 151.245 0.754 0.006 156.787 1.007
650,848 0.100 0.006 149.42 0.891 0.008 156.229 1.198
848,256 0.130 0.008 149.289 1.176 0.01 155.357 1.552

1,213,488 0.200 0.011 149.354 1.676 0.014 155.28 2.219
1,325,848 0.220 0.012 145.663 1.807 0.016 155.419 2.427

TABLE 3.16: Double precision SpMV CSR of the gravitational potential matrices

3.5 Sparse matrix-vector product 75



As we can see in Table 3.16, the speed-ups become more than thirty three in favour of
GPU. Numerical experiments clearly illustrate the gains from GPU computations for large-size
problems and especially for linear algebra operations. Figure 3.27(a) and Figure 3.27(b)
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FIGURE 3.27: SpMV CSR of the gravitational potential matrices: time in milliseconds (ms) and energy in
Joules (J)

respectively show a graphic data presentation of execution times in seconds and energy
consumption in Joules, as given in Table 3.16. We can see Alinea achieves better results than
Cusp in terms of execution time and energy consumption. Alinea greatest advantage is energy
consumption, 25% less energy for the largest size. The complexity of SpMV for the matrix
generated by equation (3.26) is linear because non-zero in each row is almost constant for all
sizes of the matrices. The linear prediction of the GPU execution time and energy consumption
for double precision SpMV are given in Table 3.17.

equation coef. of determination
Alinea Time (s) −3.552× 10−5 + 9.286× 10−9x 0.9996
Cusp Time (s) 1.165× 10−5 + 1.177× 10−8x 1.000

Alinea Energy (J) −1.223× 10−3 + 1.371× 10−6x 0.9999
Cusp Energy (J) −6.667× 10−4 + 1.834× 10−6x 1.000

where x is the size of the problem.

TABLE 3.17: Linear prediction of the SpMV CSR of the gravitational potential matrices

SpMV: complex number arithmetics

This set of experiments gives an analysis and an evaluation of the sparse matrix-vector
product on the GPU with complex number arithmetics with double precision. Numerical
experiments carried out on a set of acoustic matrices arising from the modeling of acoustic
phenomena within a car compartment are exposed, exhibiting the performance, robustness and
efficiency of our algorithms, with a ratio up to 10x in complex double precision arithmetics.

Simulation of acoustic problems Amongst other industries, acoustic performance is a major
concern in automotive companies. To tackle this, several models are used. In this study, we
limit ourselves to acoustic models applying to closed cavities where the acoustic problem is
independent from the surrounding structure. We are able to assume that the pressure field does
not have any interactions with the enclosed structure. The acoustic problem, in its simplest
linear form, is governed in the frequency domain by the Helmholtz equation with suitable
boundary conditions. When the high frequency regime is considered, the matrix of the linear
system becomes very large. The matrices we aim to evaluate arise from the discretization of
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the Helmholtz equation (3.27) in a bounded domain Ω, with a boundary condition considered
on the outside boundary Γ = ∂Ω. The Helmholtz equation is expressed as follows

{
−∇2u− k2u = g on Ω,

C(u) = b on Γ = ∂Ω,
(3.27)

where k =
2πF

c
is the wavenumber associated with the frequency F ∈ R and c ∈ R denotes

the velocity of the medium that is different in space. In this experiment, Dirichlet boundary
conditions are considered along a part of Γ. The frequency domain in which the solution is
sought is usually limited, so as to analyze the acoustic response at specific places of the cavity
(for instance around the driver’s ears). To carry this out, a suitable numerical model has to
be used. For complex geometries, two models can be chosen, depending on the boundary
conditions. If there are conditions on all boundaries of the domain, then boundary element
(BE) methods can be used. Else, finite element (FE) methods, which are methods based on the
domain, are used to solve a weak formulation of the problem. When using FE methods, mesh
requirements (around 10 nodes per wavelength are necessary) make the mesh sizes gigantic
when dealing with high frequencies. This experiment focuses on effectively handling large-size
acoustic problems using FE method.

Dataset matrices: automotive acoustic Now, we present the finite element meshes used
for solving the acoustic problems arising from the automotive industry [132].

We focus on numerical examples that enable us to evaluate the performances of our
procedures. We consider the study in a car compartment with Audi (Audi3D) and Twingo
(Twingo3D). Let us look at the example of a car compartment. The goal is to construct the

FIGURE 3.28: Audi 3D, h = (0.133425, 0.066604, 0.033289, 0.016643)

frequency response function at the driver’s ear from the velocity boundary conditions along the
firewall. Understanding this problem can help solve similar problems where the evaluation of
the acoustic response to vibrating panels inside a cavity is at stake. Several sources can explain
such mechanical vibrations. The vibrations can indeed be air-borne or structur-borne. And the
prediction of these vibrations can be a difficult task. In the case of automotive applications,
the higher the frequency is, the worst the quality of numerical predictions for mechanical
vibrationss. Acoustic predictions depend on the treatment of these mechanical vibrations,

FIGURE 3.29: Twingo 3D, h = (0.077866, 0.038791, 0.019379)

precise acoustic predictions are possible only if correct vibration profiles along the car body are
provided. According to advanced FE methodologies used on car bodies, computing accurate
results becomes difficult when the frequencies are higher than 2500 Hz. Such difficulty to
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produce correct results at high frequencies can be explained by the complex mechanical
structure of a car body.

“Audi3D-1”
n = 1727 nnz = 16393
density = 0.550 nnz/n = 9.492
max_row = 27 σ(nnz/n) = 10.205

bandwidth = 1436

“Audi3D-2”
n = 11637 nnz = 188455
density = 0.139 nnz/n = 16.194
max_row = 27 σ(nnz/n) = 11.223

bandwidth = 11237

3D acoustic FE matrix. Audi car (mesh size = 0.133425,

length wave = 3.5).

3D acoustic FE matrix. Audi car (mesh size = 0.066604,

length wave = 3.5).

“Audi3D-3”
n = 85001 nnz = 1781707
density = 0.025 nnz/n = 20.961
max_row = 27 σ(nnz/n) = 9.832

bandwidth = 84474

“Audi3D-4”
n = 648849 nnz = 15444211
density = 0.004 nnz/n = 23.802
max_row = 27 σ(nnz/n) = 7.720

bandwidth = 520461

3D acoustic FE matrix. Audi car (mesh size = 0.033289,

length wave = 3.5).

3D acoustic FE matrix. Audi car (mesh size = 0.016643,

length wave = 3.5).

TABLE 3.18: Sketches of the Audi 3D FE acoustic matrices

Usual models do not consider parameters which are essential to understand the behavior
of a car body at high frequencies, such as the characteristics of the connections, the damping
properties, etc. We can note that modifying the models to make them take such parameters
into account is not easy. At these high frequencies, some variability effects become important
and complicate the predictions. For instance, two car bodies produced in the same way that
could be considered identical, may present drastically different vibro-acoustic behaviors at
such frequencies. The meshes of Audi 3D with different refinements (size h) are presented in
Figure 3.28. Figure 3.29 describes the meshes of Twingo 3D with different refinements (size
h).

Numerical experiments The experiments have been performed on the fourth platform, which
consists of a workstation equipped with an Intel Core i7930 running with 2.67GHz, which has
4 cores and 12 GB main memory and two NVIDIA graphics cards: a Tesla K20c (dev#0) with
4799GB memory and GeForce GTX 570 with 1279MB memory (dev#1). The matrices are
coming from the FE discretization of the Helmholtz equation for car compartment acoustic
problems. The finite element discretization of the Helmholtz equations for acoustic problems
leads to complex number arithmetics matrices. Table 3.18 and Table 3.19 collect a set of
matrices respectively arising from Audi3D and Twingo3D. The quantities h, nnz, density,
bandwidth, max_row, nnz/h, nnz/h stddev have the same meaning as in properties given
in Table 3.11.

The matrices of the acoustic problem are of large-size and are sparse. In this experiment,
the SpMV is evaluated in CSR format. The default gridification and advanced auto-tuned
techniques to organize threads on the CUDA grid are considered. We report in Table 3.20 the
SpMV execution time and the number of floating operations per second when using the CSR
format for in-house implementation of complex number arithmetics with double precision.
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“Twingo3D-0”
n = 8439 nnz = 143889
density = 0.202 nnz/n = 17.050
max_row = 27 σ(nnz/n) = 11.047

bandwidth = 6268

“Twingo3D-1”
n = 62357 nnz = 1351521
density = 0.035 nnz/n = 21.674
max_row = 33 σ(nnz/n) = 9.364

bandwidth = 53935

“Twingo3D-2”
n = 479169 nnz = 11616477
density = 0.005 nnz/n = 24.243
max_row = 39 σ(nnz/n) = 7.233

bandwidth = 470625

3D acoustic FE matrix. Twingo car (mesh

size = 0.077866, length wave = 9.5).

3D acoustic FE matrix. Twingo car (mesh

size = 0.038791, length wave = 9.5).

3D acoustic FE matrix. Twingo car (mesh

size = 0.019379, length wave = 9.5).

TABLE 3.19: Sketches of the Twingo 3D FE acoustic matrices

problem cpu cpu dev#0 dev#0 dev#1 dev#1 ratio#0 ratio#1
time (ms) Gflops time (ms) Gflops time (ms) Gflops cpu/#0 cpu/#1

Audi3D-0 0.01 0.61 0.07 0.12 0.06 0.13 0.19 0.21
Audi3D-1 0.20 0.67 0.11 1.23 0.12 1.07 1.84 1.60
Audi3D-2 2.22 0.68 0.37 4.03 0.42 3.56 5.93 5.24
Audi3D-3 20.00 0.71 2.22 6.41 3.03 4.70 9.00 6.60
Audi3D-4 180.00 0.69 18.33 6.74 24.00 5.15 9.82 7.50
Twingo3D-0 1.67 0.69 0.28 4.06 0.33 3.45 5.88 5.00
Twingo3D-1 15.71 0.69 1.79 6.05 2.44 4.43 8.80 6.44
Twingo3D-2 140.00 0.66 14.29 6.51 16.67 5.58 9.80 8.40

TABLE 3.20: Alinea complex double precision CSR SpMV execution time in milliseconds (ms)

Numerical experiments clearly show that GPU operations are more efficient than CPU
operations when calculating the sparse matrix-vector product in CSR format for complex
number arithmetics with double precision.

SpMV: what about OpenCL?

The last set of numerical experiments consists in an evaluation of SpMV algorithms with
OpenCL. The matrices used in the experiments arise from the finite element discretization of
the equations of the deformation and the stress distribution in an O-ring under pressure. This
is done by determining the expression of local constraints and deformations at each point of
the joint. We vary the size of the finite element mesh in Figure 3.30(b) of the Computer-Aided

(a) Computer-Aided Design
model of the O-ring

(b) One finite element mesh
example of the O-ring

FIGURE 3.30: CAD and mesh of the O-ring

Design model shown in Figure 3.30(a). The experiments have been performed on Platform-2.

3.5 Sparse matrix-vector product 79



Figure 3.31(a) compares the SpMV execution time in microseconds of CPU, CUDA and
OpenCL.
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FIGURE 3.31: Running times of the sparse matrix-vector product (SpMV) in CSR format (µs)

As demonstrated above, the results clearly show that GPU is more effective than CPU
for large-size. The gain is even more important when the problem size is increasing. The
gridification is here optimized to ensure high-performance for CUDA. As we can see in the
Figure 3.31(a), OpenCL outperforms CUDA for the considered gridification.

The parallel multi-core-GPU SpMV will be detailed within parallel algorithms, e.g., sub-
structuring, etc.

3.6 Implementation of Sparse linear system
solvers

Solving linear systems represents an indispensable step in numerical methods such as the
finite difference method, the finite element method, etc. Generally, these methods require
the solution of large-size sparse linear systems. The choice of a concrete algebraic solver
is governed by several factors, but the two main ones are the size of the system and the
parallelization issues. Direct solvers are tuned almost to perfection but above a certain size, in
the linear system, they are inferior to iterative solvers due to the available memory constraints.
Also iterative solvers are more amenable for parallel implementation. Among many available
iterative methods, preconditioned Krylov methods [79] [84] are the ones used most often,
especially for very large systems. Effective implementation of Krylov solvers depends mostly
on the effective sparse matrix-vector multiplication. Having investigated the different strategies
to optimize linear algebra operations, in this section we explain the implementation of iterative
algorithms, especially the iterative Krylov algorithms. We propose to explore and compare
different iterative Krylov methods, which require a computational effort of linear algebra
operations.

We focus on various Krylov methods: Conjugate Gradient (CG) for symmetric positive-
definite matrices, Generalized Conjugate Residual (GCR), Stabilized BiConjugate Gradient

(Bi-CGSTAB), Stabilized BiConjugate Gradient (l) (Bi-CGSTAB(l)), Quasi Minimal Resid-

ual (QMR), Transpose-Free Quasi Minimal Residual (TFQMR) and Bi-Conjugate Gradient

Conjugate Residual (Bi-CGCR) for the solution of sparse linear systems with non-symmetric
matrices. We propose numerical experiments for matrices resulting from a large scale of
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different applications of the finite element method, such as the gravitational potential equation
presented in Section 3.5.3, Page 67. First, we give an overview of the mathematical aspects
of the investigated iterative Krylov methods. We present how we implement these methods
efficiently on GPU, then we analyze and evaluate their performances referring to the collected
numerical results.

3.6.1 Iterative Krylov Algorithms
Before illustrating the implementation of the algorithms of the different solvers, we will

first present the mathematical aspects of these methods in order to better understand the key
points of each algorithm. Let’s consider the system (3.1), Ax = b, where A ∈ C

n×n is a sparse
matrix, b ∈ C

n the right hand side and x ∈ C
n represents the solution vector we looking for.

We consider large-size sparse matrices, i.e., n ∈ N≫ 0, i.e., n is large enough. Let’s consider
the system (3.23), M−1Ax = M−1b, where M ∈ C

n×n such as M−1, the left preconditioning

is an approximation of A−1. In this thesis, we consider left preconditioning. Let us define
(., .) the scalar product of two vectors in C considering the bilinear form (x, y) = yTx as the
governing “inner product”.

Conjugate Gradient method (CG)

The Conjugate Gradient (CG) method is an iterative method for solving linear systems
of the system form (3.1) where matrices are symmetric positive-definite. The CG method
has been propounded initially in 1952 by Hestenes et al. [133]. The CG method is based on
an orthogonal projection technique onto the Krylov subspace of order k, Kk(A, r(0)), where
r(0) is the initial residual. The idea of the CG method much like Krylov subspace methods,
is to construct a basis of the Krylov subspace of order k, Kk(A, r(0)), seek an approximate
solution x(k), k ∈ N from this subspace, such as x(k) ∈ x(0) + Kk(A, r(0)) and satisfy the
Petrov-Galerkin condition r(k) = b− Ax(k)⊥Kk(A, r(0)) where x(0) is the initial solution.

The main principle relies on a short recurrence for the approximate solution x(k) update
step with a given starting point x(0):

x(k+1) = x(k) + α(k)p(k), (3.28)

where α(k) ∈ C is the descent coefficient and p(k) represents the descent-director vector in
Kk, which verifies the orthogonality and conjugacy conditions, i.e., for i, j ∈ N, i 6= j,
p(i) and p(j) are A-conjugate and A-orthogonal. That means that p(i)T

Ap(j) = 0, i 6= j.
According to the recurrence relation (3.28), the residual vectors must satisfy the recurrence
r(k+1) = r(k) − α(k)Ap(k). Assuming that all residual vectors, r(k)

k≥0, are non-zero, and if

the r(k)
k≥0 are to be orthogonal, then (r(k+1), r(k)) = (r(k) − α(k)Ap(k), r(k)) = 0. Therefore,

descent-director vectors are expressed as

α(k) =
(r(k), r(k))

(Ap(k), r(k))
(3.29)

The next search direction p(k+1) is a linear combination of the residual r(k+1) and a scaled
version of the current direction p(k). The search direction p(k+1) is expressed as follows

p(k+1) = r(k+1) + β(k)p(k), β(k) ∈ C, (3.30)
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where the initial descent p(0) = r(0). According to (3.30), we have

(Ap(k), r(k)) = (Ap(k), p(k) − β(k−1)p(k−1)) = (Ap(k), p(k))− β(k−1)(Ap(k), p(k−1)),

= (Ap(k), p(k))− β(k−1)(Ap(k), p(k−1)) = (Ap(k), p(k)),

because the pairs of the sequence {p(k)}k∈N are A-conjugate, i.e., for i, j ∈ N, i 6= j,

p(i)T
Ap(j) = 0, which gives (Ap(k), p(k−1)) = 0.

Therefore, the relation (3.29) can be rewritten α(k) =
(r(k), r(k))

(Ap(k), p(k))
. The β(k) are chosen

so that the descent vectors satisfy the orthogonality condition, i.e., (Ap(k), p(k+1)) = 0. The
relation (3.30) leads us to

(Ap(k), p(k+1)) = 0,⇔ (Ap(k), r(k+1) + β(k)p(k)) = 0,

⇔ (Ap(k), r(k+1)) + β(k)(Ap(k), p(k)) = 0⇔ β(k) = −
(Ap(k), r(k+1))

(Ap(k), p(k))
= −

(Ap(k), r(k+1))

(Ap(k), r(k))
,

or, Ap(k) = −
1

α(k)
(r(k+1) − r(k)), so, β(k) = −

(r(k+1), r(k+1))− (r(k+1), r(k))

(r(k+1), r(k))− (r(k), r(k))
.

Finally, the β(k) can be rewritten as follows β(k) =
(r(k+1), r(k+1))

(r(k), r(k))
, because (r(k+1), r(k)) = 0.

The main steps of the (left) preconditioned CG method are described in Algorithm 3.7.

Theorem 3.10 In theory, i.e., in exact arithmetic, the conjugate gradient algorithm converges

at most n iterations, i.e., it exists k ∈]0;n] such as r(k) = b − Ax(k) = ε, where ε is the

tolerance threshold and k the final number of iterations of the CG.

Nevertheless, in practice due to rounding errors, the CG method can take more than n
iterations.

Conjugate Residual (CR) and Generalized Conjugate Residual (GCR)

Conjugate Residual (CR) When the matrix of the system (3.1) is only an Hermitian matrix,
not symmetric positive-definite, the Conjugate Residual (CR) method, close to the CG method,
is sometimes used. Nevertheless, the CR requires more numerical operations as well as more
memory storage. Indeed, in addition of x, r, z, Ap, CR needs another vector Ar. The CR
method follows a similar construction and holds similar convergence properties as the CG
method. However, the CG algorithm is often preferred over the CR method. In the CG
algorithm, the descent vectors p(k) are A−orthogonal, i.e., A−conjugate, in the CR method,
only Ap(k) are to be orthogonal, i.e., p(k) are ATA−orthogonal. Algorithm 3.8 presents the
main points of the (left) preconditioned CR method. The preconditioning matrix M−1 must
be symmetric. When A is Hermitian (A = AH), the CR method is mathematically equivalent
to the GMRES method [85] and the residual minimization property is based on the complex
Euclidean norm. Reference [134] shows that the natural choice of complex symmetric linear
systems is to consider the complex bilinear form (x, y) = yTx as the governing “inner product”.
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Algorithm 3.7: Preconditioned Conju-
gate Gradient (P-CG) method
input : A ∈ C

n×n: initial matrix, M ∈ C
n×n:

preconditioning matrix,
b: right hand side vector, x(0): initial

solution,
ε: tolerance threshold, K: maximum

number of iterations
output : x: solution vector
variable : k, convergence
variable : vector: r, z, Ap

variable : scalar: ρ

1 // - - initialization

2 convergence← false; k ← 0

3 r(0) ← b−Ax(0)

4 // - - loop until convergence

5 while .not. convergence .AND. k < K do
6 z(k) ←M−1r(k)

7 ρ(k) ← (r(k), z(k))

8 if k = 0 then
9 p(k) ← z(k)

10 else
11 β(k) ← ρ(k)/ρ(k−1)

12 p(k) ← z(k) + β(k) × p(k−1)

13 end

14 Ap(k) ← A× p(k)

15 α(k) ← ρ(k)/(Ap(k),p(k))

16 x(k) ← x(k−1) + α(k) × p(k)

17 r(k) ← r(k−1) − α(k) ×Ap(k)

18 convergence← (‖r(k)‖ < ε)

19 k ← k + 1

20 end

Algorithm 3.8: Preconditioned Conju-
gate Residual (P-CR) method
input : A ∈ C

n×n: initial matrix, M ∈ C
n×n:

preconditioning matrix,
b: right hand side vector, x(0): initial

solution,
ε: tolerance threshold, K: maximum

number of iterations
output : x: solution vector
variable : k, convergence
variable : vector: r, zAp, Ap, Ar

variable : scalar: ρ

1 // - - initialization

2 convergence← false; k ← 0

3 r(0) ← b−Ax(0)

4 // - - loop until convergence

5 while .not. convergence .AND. k < K do
6 Ar(k) ← A× r(k)

7 ρ(k) ← (r(k),Ar(k))

8 if k = 0 then
9 Ap(k) ← Ar(k)

10 else
11 β(k) ← ρ(k)/ρ(k−1)

12 p(k) ← r(k) + β(k) × p(k−1)

13 Ap(k) ← Ar(k) + β(k) ×Ap(k−1)

14 end

15 zAp(k) ←M−1Ap(k)

16 α(k) ← ρ(k)/(Ap(k), zAp(k))

17 x(k) ← x(k−1) + α(k) × p(k)

18 r(k) ← r(k−1) − α(k) × zAp(k)

19 convergence← (‖r(k)‖ < ε)

20 k ← k + 1

21 end

Generalized Conjugate Residual (GCR) Saad proposes in [69], a Generalized Conjugate
Residual (GCR). The main keys of the GCR algorithm are exposed in Algorithm 3.9.
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Algorithm 3.9: Precond. Generalized
Conjugate Residual (P-GCR) method
input : A ∈ C

n×n: initial matrix, M ∈ C
n×n:

preconditioning matrix,
b: right hand side vector, x(0): initial

solution,
ε: tolerance threshold, K: maximum

number of iterations
output : x: solution vector
variable : k, convergence
variable : vector: r, zAp, Ap, Ar, zAr

variable : scalar: ρ

1 // - - initialization

2 convergence← false; k ← 0

3 r(0) ← b−Ax(0)

4 p(0) ← r(0)

5 // - - loop until convergence

6 while .not. convergence .AND. k < K do
7 Ap(k) ← A× p(k)

8 zAp(k) ←M−1Ap(k)

9 ρ(k) ← (Ap(k), zAp(k))

10 α(k) ← (r(k), zAp(k))/ρ(k)

11 x(k) ← x(k−1) + α(k) × p(k)

12 r(k) ← r(k−1) − α(k) × zAp(k)

13 Ar(k) ← A× r(k)

14 zAr(k) ←M−1Ar(k)

15 p(k) ← r(k)

16 for i = 0 to k do

17 β
(k)
i ← −(zAr(k), zAp(i))/ρ(i)

18 p(k) ← p(k) + β
(k)
i × p(k−1)

19 end

20 convergence← (‖r(k)‖ < ε)

21 k ← k + 1

22 end

Algorithm 3.10: Preconditioned Stabi-
lized BiConjugate Gradient (Bi-CGSTAB)
input : A ∈ C

n×n: initial matrix, M ∈ C
n×n:

preconditioning matrix,
b: right hand side vector, x(0): initial

solution,
ε: tolerance threshold, K: maximum

number of iterations
output : x: solution vector
variable : k, convergence
variable : vector: r, r̄, t, v, y, p, s

variable : scalar: α, β, ρ, ω

1 // - - initialization

2 convergence← false; k ← 0

3 {r̄, an arbitrary vector, such that (r̄(0), r(0)) 6= 0}

4 ρ(0) ← α = 1; ω(0) ← 1

5 r(0) ← b−Ax(0); r̄(0) ← r(0)

6 // - - loop until convergence

7 while .not. convergence .AND. k < K do
8 ρ(k+1) ← (r̄(0), r(k))

9 β ← (ρ(k+1)/ρ(k))(α/ω(k))

10 p(k+1) ← r(k) + β × (p(k) − ω(k) × v(k))

11 y←M−1p(k+1); v(k+1) ← A× y

12 α← ρ(k+1)/(r̄(0),v(k+1))

13 s← r(k) − α× v(k+1)

14 z←M−1s; t← A× z

15 ω(k+1))← (M−1t,M−1s)/(M−1t,M−1t)

16 x(k+1) ← x(k) + α× y + ω(k+1)z

17 if x(k+1) is accurate enough then
18 convergence← true

19 else
20 r(k+1) = s− ω(k+1) × t

21 end
22 k ← k + 1

23 end

More iterative Krylov methods

For Hermitian positive-definite matrices, the classical CG method [133] is one of the most
powerful iterative process for solving the system (3.1). For general non-Hermitian matrices,
the CG method loses its robustness and effectiveness.
Therefore, in this thesis, we also discuss alternative iterative Krylov methods such as the
Stabilized BiConjugate Gradient (Bi-CGSTAB), the Stabilized BiConjugate Gradient (l) (Bi-

CGSTAB(l)), the Quasi Minimal Residual (QMR), the Transpose-Free Quasi Minimal Residual

(TFQMR) and the Bi-Conjugate Gradient Conjugate Residual (Bi-CGCR). Most of these
methods are derived from the BiConjugate Gradient (Bi-CG) method [135] [69] [136], which
is the “natural” generalization of the classical CG algorithm for Hermitian positive-definite
matrices to general non-Hermitian linear systems.
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Stabilized BiConjugate Gradient (Bi-CGSTAB) Prior to the Bi-CGSTAB method, the Con-
jugate Gradients-Squared (CG-S) method [137] has been identified as an attractive alternative
the Bi-Conjugate Gradient (Bi-CG) iterative method for solving certain non-symmetric linear
systems. The CG-S method suffers from irregular convergence behavior [138] that may, in
some cases, generate rounding errors, which impact drastic cancellation effects in the solution.
Due to this remark, H. A. van der Vorst proposed [139] another variant of the Bi-CG method,
a stabilized version of the CG algorithm, the stabilized BiConjugate Gradient (Bi-CGSTAB),
which seems to overcome these negative effects. In exact arithmetic, both CG-S and Bi-
CGSTAB break down everytime Bi-CG does. H. A. van der Vorst concluded in [139] that
the convergence behavior of Bi-CGSTAB is much smoother and therefore gives much more
accurate residual vectors. This method converges considerably faster than CG-S in the most
cases [139]. H. A. van der Vorst and many other after [140] [141] [142] [143] [144], showed
that Bi-CGSTAB with preconditioning is a very competitive method for solving relevant classes
of non-symmetric linear systems. The pseudocode for the preconditioned Bi-CGSTAB iterative
method is described in Algorithm 3.10. Reference [145] presents a parallel implementation of
the GPU Bi-CGSTAB solver for the Poisson problem using CUDA.

Stabilized BiConjugate Gradient (l) (Bi-CGSTAB(l)) The Bi-CGSTAB(l) is a generalization
of the Bi-CGSTAB presented by van der Vorst [139]. This method is presented by Sleijpen
et al. [146] and then in [147]. In [146], Sleijpen et al. justify the motivation of this method
by the fact that for a large class of equations, the convergence of Bi-CGSTAB stagnates for
the typical type of equations, this has to do with the matrix having almost pure imaginary
eigenvalues. Before [146], Gutknecht attempted, in a research report [148] (article published
two years later [147]), avoid this stagnation with Bi-CGSTAB2. Sleijpen et al. has concluded
that Bi-CGSTAB(l) may be an attractive method and may be considered as a competitive
algorithm to solve non-symmetric linear systems of equations.

For l = 1, the Bi-CGSTAB(l) algorithm computes exactly the same approximation of
the solution x(k) as Bi-CGSTAB does. Reference [147] shows that Bi-CGSTAB(l) can be
implemented in different ways. We adopted in this thesis the version presented in [146].

Quasi Minimal Residual (QMR) Due to the susceptible possibility of breakdowns (divisions
by 0) and numerical instabilities of the Bi-CG algorithm, Freund and Nachtigal overcome the
problems of Bi-CG by proposing a novel Bi-CG-like approach, the quasi-minimal residual
method (QMR), in [149]. They present how Bi-CG iterates can be recovered stably from the
QMR algorithm. It is shown in [149] that the QMR algorithm has smooth convergence curves
and better numerical properties than the Bi-CG algorithm.

The QMR method requires matrix-vector multiplications with both the matrix A and its
transpose AT . The principle of the matrix transpose is simple, it consists in interchanging
rows and columns. However, when the matrix is sparse, this operation can be complicated and
costly in terms of computations. The operation is further complicated in parallel. One of the
solution is the TFQMR algorithm.

Transpose-Free Quasi Minimal Residual (TFQMR) The TFQMR is proposed in 1993 by
R. W. Freund [150], for solving general non-singular non-Hermitian linear systems. The
TFQMR method is closely related to the CG-S (QMR) algorithm. The main difference lies in
the absence of the matrix transpose AT computation, which justifies the name prefix of the
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method “transpose-free”. The TFQMR can be implemented very simply by modifying only
a few lines in the standard CG-S algorithm. Unlike the CG-S algorithm, the iterates of the
TFQMR algorithm are characterized by a quasi minimization of the residual norm. Freund
demonstrated in [150] that the TFQMR presents smooth convergence curves. However, the
TFQMR can break down but it is very rare in practice. References [151] [152] give some
results of convergence of the TFQMR method.

Bi-Conjugate Gradient Conjugate Residual (Bi-CGCR) In this thesis, we use the Bi-CGCR
of M. Clemens [153] [154], which is a symmetric variant of the Bi-CG algorithm.

Algorithm and implementations The algorithms implemented in this dissertation are those
presented by Youcef Saad in [69], which are based on the Lanczos algorithm for a class
of non-symmetric systems [155] [156] [157]. However, in this thesis, we pay attention to
optimizing both memory storages (limit the number of vectors) and avoiding unnecessary
computations.

3.6.2 Implementation on a GPU
Data transfers (sending and receiving) between host and device are not negligible when

dealing with GPU computing. It is essential to minimize data dependencies between CPU and
GPU. In our implementation, we propose to send all input data from the host to the device just
once, before starting the iterative routine. Nevertheless, each iteration of the iterative Krylov
algorithm requires more than one calculation of the dot product (or norm) that implies data
copy from the device to the host.

Numerical aspects of the Krylov methods

As said in Section 3.2, Page 41, in practice, iterative Krylov methods’ performance
depends on the matrix conditioning, and efficient preconditioning techniques must be used
to ensure fast convergence such as the ILU factorization [95] [96], domain decomposition
methods [18] [97] [98], which involve various interface conditions [99], either based on
a continuous optimization [158] [101] [102] using an approximation of Steklov-Poincaré
operators, or an algebraic optimization [103] [104] using an approximation of the Schur
complement matrix [105], etc. Designing the optimal preconditioner is a research problem in
itself. All the mentioned preconditioning techniques are very efficient and are mandatory to
achieve good performance.

Although these preconditioning strategies are implemented in our Alinea library, it is
not easy to integrate them with the native Cusp library, which is necessary for an objective
comparison of both libraries. The optimal preconditioner is outside the scope of this thesis.
So we choose, for experiments, to use a diagonal preconditioner, which provides a pretty
good preconditioning, if the matrices are not too ill-conditioned. Note that the basic diagonal
preconditioner is available in all libraries (native Cusp and Alinea). For the sake of simplicity,
we chose a preconditioning matrix M easy to compute and to invert. We have adopted M
as the A diagonal which provides a relatively good preconditioning in most cases. This
preconditioner is called the Jacobi preconditioner or diagonal preconditioner. The diagonal
preconditioner is one of the simplest forms of preconditioning, which consists of the diagonal
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of the matrix alone: if i = j, mi,j = ai,i otherwise mi,j = 0, and assuming ai,i 6= 0, ∀i, we

simply compute m−1
ij =

1

ai,i

if i = j otherwise m−1
ij = 0:

M =




a1,1 0 0 · · · 0

0 a2,2 0 · · · 0

0 0
. . . 0

...
...

... 0
. . . 0

0 0 · · · 0 an,n




⇔M−1 =




1

a1,1

0 0 · · · 0

0
1

a2,2

0 · · · 0

0 0
. . . 0

...
...

... 0
. . . 0

0 0 · · · 0
1

an,n




(3.31)

Our implementation computes the inverse of the diagonal on CPU and sends it to the GPU
outside the iterative routine. Then the preconditioning step is done on the GPU with an
element-wise multiplication operation. The iterative Krylov algorithm has been carried out on
the host but all computing steps (DOT, NORM, AXPY, matrix-vector product) are performed
on the device. In fact, at each iteration of the iterative Krylov algorithms, the computation of
one or more linear algebra operations such as SpMV, vector additions, inner products or/and
scalar-vector products are required. At the end of the algorithm, the vector result is copied from
the device to the host. We implement a generic algorithm template and then only specialize
operations according to the architecture (CPU or GPU). As a consequence, both CPU and
GPU codes are similar, except that the GPU one performs operations on the graphics card by
calling the associated kernel. At every conjugate gradient iteration, the preconditioning step is
applied in order to improve the convergence rate of the method. The process is similar for all
the other Krylov methods presented in this chapter.

As said above, the proposed algorithm implementations pay attention to minimizing the
unnecessary data transfers between the CPU and the GPU, and they also take care of CPU
management (copy, etc.). In the last chapter, we will discuss more complex preconditioning
techniques, such as the domain decomposition methods. The ILU factorization precondi-
tioning technique is effective as diagonal preconditioning as proved in [95]. However, for
sparse matrices, the incomplete factorization step can be very expensive, as for the solver
LU (see Chapter 3.2.2, Page 44).

3.6.3 Numerical results
Knowing the behavior and performance of linear algebra operations with matrices arising

from the finite element discretization of different applications, we report numerical experiments
of the presented Krylov methods, performed on both a CPU and a GPU device. We also evaluate
their performance for different sparse storage formats. In this section, we study the same
datasets as those presented in the numerical results of the sparse matrix-vector product. We
follow the same plan as the SpMV part, i.e., comparisons: sparse formats, the influence of the
gridification, dataset matrices from a gravity equation, a realistic physical problem, complex
number arithmetics, what about OpenCL?. All experimental results of the iterative Krylov
methods presented here are obtained for the residual tolerance threshold 1× 10−6, an initial
guess equal to zero. When no right-hand side is associated with the matrix, we consider a
right-hand side vector filled with 1. The maximum number of iterations is fixed to 30000 for
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all considered Krylov algorithms.
We consider the preconditioned Conjugate Gradient (P-CG) for symmetric positive-definite
matrices, the preconditioned Generalized Conjugate Residual method (P-GCR) with restart =

50, the preconditioned Bi-Conjugate Gradient Conjugate Residual method (P-Bi-CGCR), the
preconditioned Transpose-Free Quasi Minimal Residual (P-TFQMR), the preconditioned Bi-
Conjugate Gradient Stabilized (P-Bi-CGSTAB) and its parametered version (P-Bi-CGSTAB(l)).
The practical performance of the CG method is compared with the other methods.

Iterative Krylov comparisons: sparse formats

In this part, we report the numerical findings of the presented Krylov method, performed
on a GPU device, with matrices described in Table 3.11.

Matrix #iter. Alinea Alinea Cusp Alinea Alinea
CPU GPU GPU GPU GPU
CSR CSR CSR ELL HYB

2cubes_sphere 24 0.13 0.04 0.04 0.04 0.04
cfd2 2818 38.62 5.23 11.79 10.75 8.98
thermomech_dM 12 0.08 0.02 0.02 0.02 0.02
thermomech_TK 13226 42.55 14.32 18.7 18.32 15.32
qa8fm 29 0.11 0.04 0.04 0.04 0.03
Dubcova2 168 0.41 0.15 0.18 0.22 0.17
af_shell8 2815 93.3 21.2 18.00 13.84 13.56
finan512 15 0.03 0.01 0.02 0.02 0.02
thermal2 4453 198.49 32.16 26.45 30.8 27.46

TABLE 3.21: Execution time of the P-CG (seconds)

The execution times in seconds of the preconditioned conjugate gradient (P-CG) algorithm
with the Cusp and Alinea libraries for the CSR format, are reported in columns three to five
in Table 3.21. The times given in the table correspond to the global running time, which
includes the communication time between the CPU and the GPU. As illustrated by this table
with respect to the native Cusp iterative algorithm (column five), the in-house algorithm
still outperforms the Cusp library for the CSR format applied to GPU (column four). The
performance of the preconditioned Conjugate Gradient on GPU for ELL and HYB formats is
illustrated in columns six and seven in Table 3.21. The comparison proves better performance
for the HYB format.

Matrix Alinea T. Grid Alinea T.
#iter < ntb, tw >

qa8fm 29 0.04 < 64, 8 >
2cubes_sphere 24 0.04 < 64, 8 >
thermomech_TK 17039 21.72 < 64, 8 >
cfd2 5938 12.05 < 64, 8 >
thermomech_dM 12 0.03 < 128, 8 >
thermal2 4552 32.27 < 256, 8 >

TABLE 3.22: Running time of the P-CG (seconds) with auto-tuning

In Table 3.22 we report the running time for the preconditioned Conjugate Gradient on
GPU by considering the best gridification given in Table 3.13 to ensure the effective sparse
matrix-vector multiplication. Other Krylov methods of practical interest, such as P-TFQMR,
P-Bi-CGCR, P-GCR(50) and P-Bi-CGSTAB, are presented in the following.
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Matrix P-TFQMR P-Bi-CGCR P-GCR, restart=50
#iter. time (s) #iter. time (s) #iter. time (s)

2cubes_sphere 15 0.05 23 0.04 13 0.04
cfd2 5284 19.53 4664 8.56 30000 176.38
thermomech_dM 6 0.03 12 0.02 23 0.09
thermomech_TK 90 0.19 14373 15.92 30000 123.75
qa8fm 25 0.06 28 0.03 50 0.22
Dubcova2 191 0.38 165 0.17 703 2.74
af_shell8 30000 448.78 2298 16.8 723 13.96
finan512 9 0.02 15 0.02 15 0.03
thermal2 112 1.68 4151 31.62 30000 441.37

TABLE 3.23: Number of iterations and execution times (in seconds) of P-GCR, P-Bi-CGCR and P-TFQMR
Alinea algorithms for CSR format

Table 3.23 gives respectively the number of iterations (#iter.) and the execution time
in seconds for the CSR format of preconditioned Transpose-Free Quasi Minimal Residual
(P-TFQMR) in column 2-3, the preconditioned Bi-Conjugate Gradient Conjugate Residual
method (P-Bi-CGCR) in column 4-5 and the preconditioned Generalized Conjugate Residual
method (P-GCR) with a restart parameter equal to 50, in columns 6-7.

Matrix CSR ELL HYB
#iter. time (s) #iter. time (s) #iter. time (s)

2cubes_sphere 15 0.05 15 0.05 15 0.06
cfd2 6285 24.98 5466 15.65 5026 17.69
thermomech_dM 6 0.02 6 0.02 6 0.02
thermomech_TK 30000 64.8 30000 61.73 30000 88.06
qa8fm 30000 80.37 30000 61.25 30000 61.41
Dubcova2 114 0.25 114 0.23 114 0.31
af_shell8 2540 41.32 3014 32.86 2842 31.09
finan512 10 0.02 15 0.05 10 0.03
thermal2 4006 54.29 30000 380.7 30000 346.16

TABLE 3.24: Execution time of the P-Bi-CGSTAB (seconds)

Table 3.24 presents the execution time in seconds for the preconditioned Bi-Conjugate
Gradient Stabilized (P-Bi-CGSTAB) for CSR, ELL and HYB formats.

Table 3.25 illustrates the execution time in seconds for the CSR format for the precondi-
tioned Bi-Conjugate Gradient Stabilized (L) (P-Bi-CGSTAB(l)) algorithm, where L denotes
the stablized parameter. The collected numerical results show that solving linear systems is
less efficient than computing a simple SpMV because in the Krylov methods, several other
operations take place. Anyway, as we can see in Table 3.25, when the parameter l varies for
the P-Bi-CGSTAB(l) method, the number of iterations decreases and so does the computation
time. It should be also noted that Alinea gives encouraging results for solving linear systems
as seen from these tables.

Iterative Krylov: realistic gravity equation problem

Now we present numerical results of the iterative Krylov methods using gravity matrices,
described in Table 3.14. Recall the workstation used, Platform-1 consists of a workstation
equipped with an Intel Core i7 920 2.67GHz processor, which has 8 cores composed of
4 physical cores and 4 logical cores, 5.8 GB RAM memory and two NVIDIA GTX275

GPUs fitted with 895MB memory. Table 3.26 reports respectively the double precision
execution times in seconds of the preconditioned BIConjugate Gradient STABilized (Bi-
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Matrix #iter. time #iter. time #iter. time #iter. time #iter. time
L = 1 L = 2 L = 3 L = 4 L = 5

2cubes_sphere 16 0.07 7 0.04 5 0.04 3 0.04 3 0.05
cfd2 5950 19.44 3287 22.05 1705 17.68 1251 17.81 692 12.85
thermomech_dM 7 0.02 4 0.02 2 0.03 2 0.03 2 0.04
thermomech_TK 20 0.04 18 0.07 36 0.21 21 0.17 6 0.06
qa8fm 37 0.1 6 0.02 12 0.08 2 0.02 7 0.07
Dubcova2 115 0.22 57 0.22 39 0.21 29 0.23 25 0.25
af_shell8 2795 37.88 987 27.14 678 28.42 421 24.2 418 30.32
finan512 10 0.02 5 0.01 3 0.02 2 0.02 2 0.03
thermal2 4535 59.25 1969 53.03 1171 49.05 1070 62.23 775 58.22

L = 6 L = 7 L = 8 L = 9
2cubes_sphere 2 0.04 2 0.05 2 0.06 2 0.07
cfd2 590 13.4 587 16.07 450 14.5 457 17.08
thermomech_dM 1 0.02 1 0.02 1 0.03 1 0.04
thermomech_TK 8 0.1 5 0.08 3 0.06 8 0.17
qa8fm 5 0.07 1 0.02 1 0.02 1 0.02
Dubcova2 20 0.26 17 0.27 15 0.28 13 0.28
af_shell8 330 29.26 254 26.7 244 29.85 233 32.71
finan512 2 0.02 2 0.03 1 0.02 1 0.02
thermal2 671 62.56 553 62.31 483 64.44 384 59.51

TABLE 3.25: Execution time of the P-Bi-CGSTAB(l) (seconds) for CSR format

CGSTAB), the preconditioned BIConjugate Gradient Conjugate Residual (P-Bi-CGCR) and
the preconditioned transpose free Quasi Minimal Residual (P-TFQMR) method. In Table 3.26,
we collect the size of the problem in the first column, from column 2 to column 5 we give the
number of iterations, the CPU time in seconds, the GPU time in seconds and the speed-ups
CPU/GPU for the double precision execution times of P-Bi-CGSTAB. Those of P-Bi-CGCR
and P-TFQMR are respectively given from column 6 to column 9 and from column 10 to
13. The speed-ups presented in these results are computed as follows: ratio = CPU_time /
GPU_time.

P-Bi-CGSTAB P-Bi-CGCR P-TFQMR
CPU GPU CPU/GPU CPU GPU CPU/GPU CPU GPU CPU/GPU

h #iter time (s) time (s) ratio #iter time (s) time (s) ratio #iter time (s) time (s) ratio
101,168 128 4.83 0.296 16 187 3.91 0.259 15 204 8.21 0.486 16
296,208 195 22.38 0.99 23 273 17.23 0.787 22 338 41.12 1.747 23
544,563 223 47.88 1.926 25 342 40.7 1.619 25 384 87.34 3.384 25
650,848 257 66.23 2.601 25 365 51.59 2.025 25 396 108.07 4.122 26
848,256 305 105.39 3.951 27 409 75.76 2.889 26 441 157.66 5.916 26

1,213,488 325 180.39 5.944 30 464 123.76 4.58 27 537 276.79 10.132 27
1,325,848 382 203.78 7.591 27 529 154.44 5.669 27 580 326.7 11.9 27

TABLE 3.26: Double precision CSR preconditioned Krylov methods: P-Bi-CGSTAB, P-Bi-CGCR, P-TFQMR

Table 3.26 clearly proves the effectiveness and robustness of the use of GPU compared to
CPU for solving gravity equations with double precision number arithmetics. Despite GPUs
good performance in terms of computing time for solving linear systems, as said and proved in
the previous section, the energetic efficiency must not be neglected. We have performed the
CG solver by setting the residual tolerance ε = 10−6 for both Alinea and Cusp. Table 3.27
shows the number of iterations, the time in seconds, the electrical power in Watts, and the
energy consumption by the GPU in Joules.

Figure 3.32(a) and Figure 3.32(b) respectively show the graphic data presentation of the
execution times in seconds and the energy consumption in Joules, as in Table 3.27.
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Alinea Cusp
CPU GPU GPU

n time (s) time (s) P (W) E (J) time (s) P (W) E (J)
101168 203 0.313 100.201 31.363 0.471 110.271 51.888
296208 299 1.155 123.19 142.284 1.436 133.129 191.199
544563 371 2.46 133.564 328.568 3.003 140.889 423.019
650848 394 2.46 133.772 329.078 3.741 141.852 530.609
848256 435 4.336 137.843 597.618 5.25 145.828 765.595

1213488 491 6.872 141.169 970.115 8.396 146.889 1233.248
1325848 538 8.18 141.747 1159.492 9.945 150.403 1495.759

TABLE 3.27: Double precision CG CSR with gravitational potential matrices
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FIGURE 3.32: Conjugate Gradient (CG) CSR with gravitational potential matrices: Time in seconds (s) and
Energy in Joules (J)

From Table 3.27, we can derive the dependency of the number of iterations on the size of
problem,

#iter = n0.35, (3.32)

The coefficient 0.35 is in agreement with the theoretical estimation of the condition number
of the Poisson equation in three dimensions. This value leads to the complexity of the whole
CG solver as n1.35. We can conclude that the Alinea implementation is much more efficient
than Cusp in terms of energy consumption, whereas both implementations, Alinea’s and
Cusp’s follow the same numerical characteristic with the iteration number of the CG. The
computational time of Alinea is 18% less than Cusp, and the consumed energy to get an
approximate solution, 22% less, for the largest size of our experiment. The coefficient of
prediction of the energy consumption also shows the greater efficiency of Aliena over Cusp.

equation
Alinea Time (s) 1.408× 10−2 + 4.287× 10−8x1.35

Cusp Time (s) 8.060× 10−2 + 5.231× 10−8x1.35

Alinea Energy (J) −1.881× 101 + 6.156× 10−6x1.35

Cusp Energy (J) −1.1773× 10−1 + 7.890× 10−6x1.35

where x is the size of the problem.

TABLE 3.28: Predictions of computational time and energy consumption of CG solver with gravitational
potential matrices

Iterative Krylov: complex number arithmetics

In both previous sections, we have demonstrated the effectiveness and robustness of linear
algebra operations for complex number arithmetics. The aim of this experiments consists
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in analyzing the impact of complex number arithmetics when solving of linear systems. So
we present and evaluate numerical experiments performed on a set of acoustic matrices,
listed in Table 3.18 (Audi3D) and Table 3.19 (Twingo3D), which arise from the modeling
of acoustic phenomena within a car compartment. We give a comparison of CPU and GPU
implementations for complex number arithmetics with double precision. In the following
experiments, we consider a residual tolerance threshold of 1×10−9, an initial guess of zero and
a maximum number of iterations equal to 1000. Table 3.29 and Table 3.30 show respectively
the speed-up obtained with our GPU implementation compared to the CPU implementation
for Audi3D and Twingo3D: the first column presents the size of the mesh, the second column
gives the number of iterations, the third and the fourth columns represents the CPU and GPU
time in seconds, and the last column collects the speed-up.

problem #iter CPU time (s) GPU time (s) speed-up
P-Bi-CGSTAB

Audi3D-1 21 0.01 0.030 0.33
Audi3D-2 53 0.24 0.106 2.26
Audi3D-3 94 4.01 0.703 5.71
Audi3D-4 183 85.70 9.209 9.31
P-Bi-CGSTAB(8)

Audi3D-1 6 0.03 0.110 0.27
Audi3D-2 12 0.52 0.286 1.82
Audi3D-3 31 12.47 2.162 5.77
Audi3D-4 70 266.26 30.100 8.85
P-TFQMR

Audi3D-1 24 0.02 0.040 0.50
Audi3D-2 52 0.27 0.113 2.40
Audi3D-3 99 4.71 0.755 6.24
Audi3D-4 214 102.17 10.786 9.47

TABLE 3.29: Audi3D - Speed-up of the CSR acoustic solver (complex number arithmetics with double
precision): P-Bi-CGSTAB, P-Bi-CGSTAB(8) and P-TFQMR

problem #iter CPU time (s) GPU time (s) speed-up
P-Bi-CGSTAB

Twingo3D-0 563 1.85 1.008 1.84
Twingo3D-1 1000 29.45 5.730 5.14
Twingo3D-2 1000 295.66 37.670 7.85
P-Bi-CGSTAB(8)

Twingo3D-0 1000 31.2 20.970 1.49
Twingo3D-1 1000 273.81 54.630 5.01
Twingo3D-2 1000 2559.67 324.500 7.89
P-TFQMR

Twingo3D-0 366 1.34 0.626 2.14
Twingo3D-1 954 30.4 5.438 5.59
Twingo3D-2 1000 318.93 38.090 8.37

TABLE 3.30: Twingo3D - Speed-up of the CSR acoustic solver (complex number arithmetics with double
precision): P-Bi-CGSTAB, P-Bi-CGSTAB(8) and P-TFQMR

Figure 3.33 gives an illustration of the solution on the mesh, which consists of the real part
(see Figure 3.33(a)) and the imaginary part (see Figure 3.33(b)) of the solution plotted on the
mesh given in the previous chapter (see Figure 3.28, Page 77).

When we refine the mesh, i.e., the size of the problem increases, the results become more
accurate since more details in the car compartment are taken into account. As we can see in
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(a) Real part

(b) Imaginary part

FIGURE 3.33: Illustration of the obtained solution for the Audi 3D,
with h = 0.033289 (see Figure 3.28, Page 77)

Table 3.29 and Table 3.30 (also in Table 3.26 Table 3.27), for all our implementations the speed-
up increases when the size of the problem increases. Nevertheless, when the size of the problem
becomes too large for GPU memory, which is often very limited on most GPUs, other methods
must be considered. Domain decomposition methods [17] [18] [97] [98] based on iterative
algorithms are an alternative. Such methods have encountered strong success for the solution of
coercive elliptic problems [159] [160] and are easy to implement on parallel computers. Using
absorbing boundary transmission conditions on the interface between the sub-domains [99] is
a key point to obtain a fast convergence of the domain decomposition algorithm, such as the
Schwarz algorithm [161] [162] [163]. First works presented in references [164] [165] [166]
consider Robin-type absorbing boundary transmission conditions on the interface, which
have then been optimized with a continuous approach in [167], [100] [104] [168]. Further
works have considered a discrete optimization of the interface conditions as first introduced
in [105], and then in [103] [169] [170] [171] [172]. In the next chapter, we present how we
have proceeded to efficiently implement domain decomposition methods on a multi-core-GPU
system.

Iterative Krylov: what about OpenCL?

In the following, we collect numerical experiments of CG algorithms with OpenCL. We
use the O−ring matrices associated with the mesh presented in Figure 3.30(b).

Figure 3.34(a) reports the execution times in seconds of the CG algorithm using O−ring
matrices on CPU and GPU with OpenCL in single precision, and GPU with CUDA in both
single and double precision. The results clearly show that GPU is more effective than CPU
for a large size. The speed-up CPU/GPU is equal to 9 for the matrix of size 402, 445. The
gain is even more important when the size of the problem increases. The zoom on the results
for small-size matrices, given in Figure 3.34(b) shows that CPU is more efficient than GPU
for small dimensions, due to the costly data transfer from the host to the device for the GPU
version. When size increases the transfers are overloaded by the computations. For equivalent
accuracy for the matrix of size 1, 607, 352, the CG method respectively converges in 630 and
629 iterations for GPU with CUDA and GPU with OpenCL in single precision. On the other
side, it converges in 621 iterations for GPU with double CUDA. Single precision is faster than
double precision on GPU in terms of computing time, but double precision is faster than single
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(b) Zoom of Figure 3.34(a) in small sizes

FIGURE 3.34: CG execution times in seconds with O-ring matrices and zoom at small sizes

precision in terms of the convergence of the algorithm. We also highlight the good results
obtained by OpenCL over CUDA.

3.7 Alinea: an hybrid CPU/GPU library
In this section, we present an overview of the library we have implemented, Alinea,

effective for computing advanced linear algebra and solving linear systems on both CPU and
GPU.

3.7.1 Introduction
Since computers are evolving with an increasing number of processors (hundreds of thou-

sands in high-end machines) and exascale computers are expected to have highly hierarchical
architectures with nodes composed by multiple core processors, i.e., CPUs and accelerators,
e.g., GPUs, the algorithms must be adapted to the evolution of hardware components and be
optimized according to these features. This is the reason why we have decided to implement
our own library in order to better optimize the algorithms according to the characteristics of
hardware and the properties of the problem to be solved. Alinea stands for Advanced LINEar

Algebra. Alinea is targeted as a scalable software for proposing effective linear algebra oper-
ations on both CPU and GPU platforms. It includes numerous algorithms for solving linear
systems, with different matrix storage formats, with real and complex arithmetics in single
and double precision, on both CPU and GPU devices. Alinea is devoted to simplifying the
development of engineering and science problems on CPU and GPU by discharging most of
the difficulties encountered when using these architectures, particularly with GPU. Alinea
investigates and seeks the best way to effectively implement linear algebra operations and
solver algorithms on both CPU and GPU. It also allows to write the same code for the CPU
and GPU versions of an algorithm easily. The library is implemented in C++ language and
proposes a simple C API interface. The main features of Alinea described in Table 3.31 which
are applied to real and complex arithmetic numbers, simple and double precision.

We are dealing with huge matrix systems and therefore parallel computing becomes an
important issue for optimization. The GPU version with CUDA or OpenCL, written in C++,
has the task to load the methods into the GPU, to control the data transfer and to manage the
memory.
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type function example reference
vector-vector addition & multiplication w = u+ αv BLAS 1
vector-vector scalar product p =< u, v > BLAS 1

vector norm q = ||u|| BLAS 1
matrix-vector sparse product y = A ∗ x BLAS 2
matrix-matrix matrix product C = A ∗B BLAS 3

solver direct x = LU(A, b)
solver iterative x = CG(A, b)

TABLE 3.31: Alinea (Advanced LINEar Algebra) main levels

A summary of the general specifications of Alinea are described and reported in Ta-
ble 3.31(a).

(a) Alinea specifications

Name Alinea
Operating System Linux, Windows
Architectures 32 bits, 64 bits
Language C++
Compiler GNU/g++, clang++
Precision single (float), double
Type real, complex
Device CPU, GPU
GPU language CUDA, OpenCL
BLAS Level 1, 2, 3
Solvers direct, iterative
Tested compiler gcc/g++, clang/clang++

(b) Diagram of Alinea levels

TABLE 3.32: Alinea specifications and diagram of the different levels

The diagram drawn in the figure of Table 3.31(b) presents the main levels of our template
library. This concept allows to develop a much more modular code, easier to use for users
or developers. Indeed, each block is independent and the use of templates allows a very
intuitive use of the library, regardless of the architecture or the data type selected (real,
complex, simple precision or double-precision). Therefore, the available C++ methods are
identical. The template is designed to <T,U>, where T is the type of value, e.g., double or
std :: complex<double> and U the type of index, e.g., int or unsigned int .

3.7.2 BLAS level-1
In this section, we describe the block that implements BLAS level-one functions on both

CPU and GPU (using CUDA and OpenCL). Figure 3.35 reports the routines and functions of

FIGURE 3.35: Diagram of the BLAS level-1

BLAS level-1, including vector-vector and vector operations. To use the vector module of the
library, the lines of Listing 3.4 are mandatory.
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1 // −− include part of library : Vector
2 // −− CPU and or GPU
3 #include <Vector.hpp>
4 //

LISTING 3.4: Vector usage

1 // −− include part of library : GpuDevice
2 #include <GpuDevice.hpp>
3 // −− if complex with GPU device
4 #include <GpuDevice/complex.hpp>

LISTING 3.5: GpuDevice usage

Listing 3.6 and Listing 3.7 present basic examples of vector declaration and usage on CPU and
GPU respectively.

1 // −− allocate a vector on CPU
2 Vector<double,int> x_cpu( 4 );
3

4 // −− intialize the CPU vector
5 x_cpu(0) = 2; // x_cpu[0] = 2;
6 x_cpu(1) = 4;
7 x_cpu(2) = −2;
8 x_cpu(3) = 3;
9

10 // −− print x
11 x_cpu.WriteToStdout( );

LISTING 3.6: CPU real vector storage

1 // −− include GPU environment
2 #include <GpuDevice.hpp>
3 // −− device environment (in−house device)
4 GpuDevice::Cuda::Kernel dev
5 = GpuDevice::Cuda::MakeDevice( );
6 // −− initialize the card number 0
7 dev. Init ( 0 ); // device #0
8 // −− declare a vector on GPU
9 Vector<double,int> x_gpu( 4, &dev );

10 // −− finalize GPU
11 dev. Finalize ( );

LISTING 3.7: GPU real vector storage

Line 2 of Listing 3.6 declares a double precision (double) vector of size 4 on CPU memory,
with an integer index ( int ). On the other hand, the GPU version described in Listing 3.7
requires the declaration of the type of device used first and its initialization. In Line 5 of List-
ing 3.7 , the CUDA device is used. To use OpenCL, it suffices to replace “Cuda” by “OpenCL”
at Line 5 of Listing 3.7 .

Listing 3.8 and Listing 3.9 give corresponding versions of Listing 3.6 and Listing 3.7 for
complex number arithmetics. These examples show the easy way to use templates.

1 #include <complex>
2 typedef std :: complex<double> T;
3 // −− allocate a vector on CPU
4 Vector<T,int> x_cpu( 3 );
5

6 // −− intialize the CPU vector
7 x_cpu(0) = T (2,1);
8 x_cpu(1) = T(4,−1);
9 x_cpu(2) = T(−2,3);

10 x_cpu(3) = T (1,3);
11

12 // −− print x
13 x_cpu.WriteToStdout( );

LISTING 3.8: CPU complex vector storage

1 // −− include GPU environment
2 #include <GpuDevice.hpp>
3 #include <GpuDevice/complex.hpp>
4 typedef stdmrg :: complex<double> T;
5 // −− device environment (in−house device)
6 GpuDevice::Cuda::Kernel dev
7 = GpuDevice::Cuda::MakeDevice( );
8 // −− initialize the card number 0
9 dev. Init ( 0 ); // device #0

10 // −− declare a vector on GPU
11 Vector<T,int> x_gpu( 3, &dev );
12 // −− finalize GPU
13 dev. Finalize ( );

LISTING 3.9: GPU complex vector storage

As we can see in Listing 3.9, stdmrg :: complex is required when we deal with GPU. List-
ing 3.10 shows a complete example of vector usage on GPU. The code also illustrates CPU us-
age, in fact the vector is first created ( Line 2 of Listing 3.10 ) and filled ( Line 4 of Listing 3.10
) on CPU, and then copied to GPU ( Line 18 of Listing 3.10 ). After computation by the GPU,
the result is copied back to CPU. Listing 3.11 presents the same procedure using operators.
The example is given for real double precision ( Line 2 of Listing 3.10 ) but it is also valid for
simple precision by replacing double by float . Similarly, for the complex version, we replace
double ( float ) by stdmrg :: complex<double> (stdmrg :: complex<float>). Moreover, CPU
complex data can use standard complex: std :: complex<double> (std :: complex<float>).
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1 // −− allocate a vector on CPU
2 Vector<double,int> x_cpu( 2 );
3 // −− intialize the CPU vector
4 x_cpu(0) = 2;
5 x_cpu(1) = 4;
6 // −− device environment (in−house device)
7 GpuDevice::Cuda::Kernel dev
8 = GpuDevice::Cuda::MakeDevice( );
9 // −− initialize the card number 1

10 dev. Init ( 0 ); // device #1
11 // −− declare a vector on GPU
12 Vector<double,int> x_gpu( 3, &dev );
13 // −− copy from CPU to GPU
14 CopyTo( x_gpu, x_cpu );
15 // −− declare a vector on GPU
16 Vector<double,int> y_gpu( 2, &dev );
17 // −− copy GPU to GPU
18 CopyTo( y_gpu, x_gpu );
19 // −− compute y_gpu=2.0*x_gpu+y_gpu
20 Blap1::Saxpy( 2.0, x_gpu, y_gpu );
21 // −− compute the dot product of y
22 double d = Blap1::Dot( y_gpu, y_gpu );
23 // −− finalize GPU
24 dev. Finalize ( );

LISTING 3.10: GPU usage, BLAS1
operations

1 // −− allocate a vector on CPU
2 Vector<double,int> x_cpu( 2 );
3 // −− intialize the CPU vector
4 x_cpu(0) = 2;
5 x_cpu(1) = 4;
6 // −− device environment (in−house device)
7 GpuDevice::Cuda::Kernel dev
8 = GpuDevice::Cuda::MakeDevice( );
9 // −− initialize the card number 1

10 dev. Init ( 0 ); // device #1
11 // −− declare a vector on GPU
12 Vector<double,int> x_gpu( 3, &dev );
13 // −− copy from CPU to GPU
14 x_gpu = x_cpu;
15 // −− declare a vector on GPU
16 Vector<double,int> y_gpu( 2, &dev );
17 // −− copy GPU to GPU
18 y_gpu = x_gpu;
19 // −− compute y_gpu = 2.0 * x_gpu + y_gpu
20 y_gpu = 2.0 * x_gpu + y_gpu;
21 // −− compute the dot product of y
22 double d = Blap1::Dot( y_gpu, y_gpu );
23 // −− finalize GPU
24 dev. Finalize ( );

LISTING 3.11: GPU usage, BLAS1
(Operator)

3.7.3 Matrix storage format
Alinea implements several conventional formats of matrix storage such as the Compressed

Sparse Row (CSR) format that is probably the most popular, the COOrdinate (COO) format
that is probably the most trivial, the ELLPACK (ELL) format, the HYBrid (HYB) format, the
DIAgonal (DIA) format, the Symmetric Skyline format (SSK) and the Mapped format that
uses map structure. In this section, we describe the block that implements BLAS level-one
functions on both CPU and GPU (using CUDA and OpenCL). Figure 3.36 illustrates the main

FIGURE 3.36: Diagram of the available matrix formats

matrix storage formats available in Alinea. The code given in Listing 3.12 is required when
dealing with matrices.

1 // −− include part of library : Matrix<T,U>
2 #include <Matrix.hpp>

LISTING 3.12: Matrix usage

Listing 3.13 shows how Matrix<T,U> is declared on CPU and on GPU in Listing 3.14.
Line 9 of Listing 3.13 ( Line 7 of Listing 3.14 for GPU) describes an instantiation of a matrix
with a given format name “fmt": coo, csr, etc.. The way of declaring a matrix on GPU is
similar to that of a vector.
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Alinea provides various possibilities of allocation and matrix filling. Next, we present direct
and explicit allocations. Direct allocation is the most trivial and intuitive mode. Listing 3.15
and Listing 3.16 give illustrations for CPU and GPU usage respectively. The comments given
in these listings offer more explanations.

1

2

3

4

5

6 // −− declare an unknown matrix on CPU
7 Matrix<double,int> A;
8 // −− declare a matrix on CPU
9 Matrix<double,int> B( "fmt" );

10 // where fmt, the matrix format :
11 // dense1d, dense2d, mapped, ssk,
12 // coo, csr , ell , hyb, ...
13 //

LISTING 3.13: Matrix constructors (CPU)

1 // −− device environment (in−house device)
2 GpuDevice::Cuda::Kernel dev
3 = GpuDevice::Cuda::MakeDevice( );
4 // −− initialize the card number 0
5 dev. Init ( 0 ); // device #0
6 // −− declare an unknown matrix on GPU
7 Matrix<double,int> A( &dev );
8 // −− declare a matrix on GPU
9 Matrix<double,int> B( "fmt", &dev );

10 // where fmt, the matrix format :
11 // coo, csr , ell , hyb, ...
12 // −− finalize GPU
13 dev. Finalize ( );

LISTING 3.14: Matrix constructors (GPU)

The second argument of ReadFromFile function at Line 15 of Listing 3.15 ( Line 9 of List-
ing 3.16 ) corresponds to the format of the matrix. Alinea proposes a matrix market [173]
and csv (Comma-separated values) format. Both ascii and binary modes are available. We
have implemented a library, called MatrixMarket, which manages all the input/output of the

“matrix market” matrices.

1

2

3 // −− declare a CPU coo matrix
4 Matrix<double,int> m_coo( "coo" );
5 // −− allocate the coo matrix
6 m_coo.Allocate( 3, 3 );
7 // −− fill out the coo matrix
8 m_coo(0,0) = 5.0;
9 m_coo(2,2) = 6.0;

10 m_coo(1,2) = −1.0;
11 m_coo(2,1) = 4.0;
12 // −− declare a CPU csr matrix
13 Matrix<double,int> m_csr( "csr" );
14 // −− read csr matrix from mtx file
15 m_csr.ReadFromFile( "f_name", "mtx" );

LISTING 3.15: Matrix direct allocation (CPU)

1 // −− device environment (in−house device)
2 GpuDevice::Cuda::Kernel dev
3 = GpuDevice::Cuda::MakeDevice( );
4 // −− initialize the card number 0
5 dev. Init ( 0 ); // device #0
6 // −− declare a CPU csr matrix
7 Matrix<double,int> m_csr( "csr" );
8 // −− read csr matrix from mtx file
9 m_csr.ReadFromFile( "f_name", "mtx" );

10 // −− declare a GPU csr matrix
11 Matrix<double,int> m_csr_gpu( "csr", &dev );
12 // −− copy from csr CPU to csr GPU
13 CopyTo( m_csr_gpu, m_csr );
14 // −− finalize GPU
15 dev. Finalize ( );

LISTING 3.16: Matrix direct allocation (GPU)

As its name suggests, the explicit allocation consists in constructing a matrix by explicitly
calling the constructor function of a given matrix. Examples for CPU and GPU are both given
in Listing 3.17 and Listing 3.18.
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1

2

3

4

5

6 // −− declare an unknown matrix
7 Matrix<T,U> A;
8 // −− set coo matrix from ‘‘mtx’’ file ‘‘ f_name’’
9 A.SetMatrix(

10 &NewMatrixCoo<T,U>("f_name","mtx") );
11 //
12 //

LISTING 3.17: Matrix explicit allocation
(CPU)

1 // −− device environment (in−house device)
2 GpuDevice::Cuda::Kernel dev
3 = GpuDevice::Cuda::MakeDevice( );
4 // −− initialize the card number 0
5 dev. Init ( 1 ); // device #1
6 // −− declare an unknown matrix
7 Matrix<T,U> A;
8 // −− set coo matrix (‘‘ bmtx’’ for binary mtx)
9 A.SetMatrix(

10 &NewMatrixCoo<T,U>(&dev,"f_name","mtx"));
11 // −− finalize GPU
12 dev. Finalize ( );

LISTING 3.18: Matrix explicit allocation (GPU)

When we focus on GPU Computing, data are first copied from CPU to GPU before com-
putation, and then copied back from GPU to CPU in order to get results. An example of usage
of copy routines is described in Listing 3.19. Furthermore, depending on methods, a storage
format may be preferred. This is why Alinea has conversion functions between all formats,
ConvertTo that is the global function defined by the library. Listing 3.20 gives an example of
use.

1 // −− declare a CPU csr matrix
2 Matrix<double,int> m_csr( "csr" );
3 // −− read csr matrix from mtx file
4 m_csr.ReadFromFile( "f_name", "mtx" );
5 // −− declare a GPU csr matrix
6 Matrix<double,int> m_csr_gpu( "csr" );
7 // −− copy from csr CPU to csr GPU
8 CopyTo( m_csr_gpu, m_csr );

LISTING 3.19: Matrix copy (CPU↔GPU)

1 // −− declare a CPU csr matrix
2 Matrix<double,int> m_csr( "csr" );
3 // −− read csr matrix from mtx file
4 m_csr.ReadFromFile( "f_name", "mtx" );
5 // −− declare a CPU coo matrix
6 Matrix<double,int> m_coo( "coo" );
7 // −− convert csr to coo
8 ConvertTo( m_coo, m_csr );

LISTING 3.20: Matrix convertion (only CPU)

3.7.4 BLAS level-2 and level-3
The matrix-vector product is the most time-consuming operation. This operation is classi-

fied in the BLAS level-2 category. In this category we find operations such as the transpose
matrix-vector product and the adjoint matrix-vector product. In addition, some algorithms

FIGURE 3.37: Diagram of the BLAS level-2

FIGURE 3.38: Diagram of the BLAS level-3
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require the computation of the matrix-matrix product. Alinea provides such routines that
manipulate matrices and perform operations between matrices. They are classified as BLAS
level-3. Figure 3.37 and Figure 3.38 illustrate respectively the BLAS level-2 and level-3
modules. Listing 3.21 and Listing 3.22 present a complete example of CPU and GPU use.
Listing 3.23 and Listing 3.24 demonstrate the use of BLAS level-3 functions on CPU and GPU
respectively.

1

2

3

4

5

6 // −− allocate and initialize x vector on CPU
7 Vector<double,int> x( 3 );
8 // −− initialize the vector
9 for ( int i = 0; i < 3; i++ ) x( i ) = i ;

10

11

12

13

14 // −− declare a CPU csr matrix
15 Matrix<double,int> m_csr( "csr" );
16 // −− read csr matrix from mtx file
17 m_csr.ReadFromFile( "f_name", "mtx" );
18

19

20

21

22 // −− declare a vector on CPU
23 Vector<double,int> y( 3 );
24 // −− compute y = m_csr * x
25 Blap2::MatrixVectorProduct ( y, m_csr, x );
26 //
27 //

LISTING 3.21: BLAS 2: computation on CPU

1 // −− device environment (in−house device)
2 GpuDevice::Cuda::Kernel dev
3 = GpuDevice::Cuda::MakeDevice( );
4 // −− initialize with the powerful card
5 dev. Init ( );
6 // −− allocate vector on CPU
7 Vector<double,int> x_cpu( 3 );
8 // −− initialize the CPU vector
9 for ( int i = 0; i < 3; i++ ) x_cpu(i ) = i ;

10 // −− declare a vector on GPU
11 Vector<double,int> x_gpu( 3, &dev );
12 // −− copy vector from CPU to GPU
13 CopyTo( x_gpu, x_cpu );
14 // −− declare a CPU csr matrix
15 Matrix<double,int> m_csr( "csr" );
16 // −− read csr matrix from mtx file
17 m_csr.ReadFromFile( "f_name", "mtx" );
18 // −− declare a GPU csr matrix
19 Matrix<double,int> m_csr_gpu( "csr", &dev );
20 // −− copy from csr CPU to csr GPU
21 CopyTo( m_csr_gpu, m_csr );
22 // −− declare a vector on GPU
23 Vector<double,int> y_gpu( 3, &dev );
24 // −− compute y_gpu = m_csr * x_gpu
25 y_gpu = m_csr_gpu * x_gpu;
26 // −− finalize GPU
27 dev. Finalize ( );

LISTING 3.22: BLAS 2: computation on GPU

1

2

3

4

5

6 // −− declare CPU coo matrices
7 Matrix<double,int> m_coo( "coo" );
8 Matrix<double,int> m_coo1( "coo" );
9 // −− read coo matrix from mtx file

10 m_coo.ReadFromFile( "f_name", "mtx" );
11 // −− copy between matrices
12 m_coo1.Copy( m_coo );
13 // −− m_coo = m_coo * m_coo1;
14 Blap3::MatrixHadProduct(m_coo, m_coo, m_coo1);
15 //
16 //

LISTING 3.23: BLAS 3: simple usage on CPU

1 // −− device environment (in−house device)
2 GpuDevice::Cuda::Kernel dev
3 = GpuDevice::Cuda::MakeDevice( );
4 // −− initialize with the powerful card
5 dev. Init ( );
6 // −− declare GPU csr matrices
7 Matrix<double,int> m_csr( "csr", &dev );
8 Matrix<double,int> m_csr1( "csr", &dev );
9 // −− read csr matrix from mtx file

10 m_csr.ReadFromFile( "f_name", "mtx" );
11 // −− copy between matrices
12 m_csr1.Copy( m_csr );
13 // −− m_csr = m_csr * m_csr1
14 Blap3::MatrixHadProduct(m_csr, m_csr, m_csr1);
15 // −− finalize GPU
16 dev. Finalize ( );

LISTING 3.24: BLAS 3: simple usage on GPU

3.7.5 Solvers
Figure 3.39 details the main block of the solver module. Alinea implements several

direct solvers including the LU for CSR matrices, LDLt and Cholesky for symmetric sky-
line matrices, etc. The LDLt solver for instance consists of two main routines, which are
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FIGURE 3.39: Diagram of the solvers

DirectSolver :: LDLt performing the LDLt decomposition and DirectSolver :: ForwardBackwardLDLt
solving the triangular systems with forward/backward substitutions. The code given in List-
ing 3.25 and Listing 3.26 correspond respectively to “Solver<T,U>” usage and “ Preconditioner <T,U>”
usage, with the same rule as the other containers.

1 // −− include part of library : Solver
2 // −− CPU and GPU (direct and iterative )
3 #include <Solver.hpp>
4 // −− if only direct solvers
5 #include <DirectSolver.hpp>

LISTING 3.25: Solver usage

5 // −− include part of library : Preconditioner
6 // −− CPU and GPU
7 //
8 #include < Preconditioner .hpp>
9 //

LISTING 3.26: Preconditioner usage

Listing 3.27 presents the LDLt solver when the matrix is stored in CSR format. For the
Cholesky solver, it suffices to change LDLt by Cholesky in Listing 3.27.

1 // −− declare a CPU csr matrix
2 Matrix<double,int> m_csr( "csr" );
3 // −− read csr matrix from mtx file
4 m_csr.ReadFromFile( "f_name", "mtx" );
5 // −− declare a CPU ssk matrix
6 Matrix<double,int> m_ssk( "ssk" );
7 // −− convert csr to ssk
8 ConvertTo( m_ssk, m_csr );
9 // rhs vector

10 Vector<T,U> v_rhs( m_ssk.GetNumbRows() );
11 // −− assign v_rhs to 1
12 v_rhs = 1.;
13 // −− ldlt decomosition
14 Matrix<T,U> ldlt_m( "ssk" );
15 DirectSolver :: LDLt ( ldlt_m , m_ssk );
16 // solution vector
17 Vector<T,U> v_x( m_ssk.GetNumbRows() );
18 // forward backward resolution
19 DirectSolver :: ForwardBackwardLDLt ( v_x, ldlt_m, v_rhs );

LISTING 3.27: Direct solver simple usage (CPU)

The diagrams of Figure 3.40 and Figure 3.41 describe the iterative Krylov methods and the
diagrams Figure 3.42 and Figure 3.43 show iterative classical solvers.

FIGURE 3.40: Diagram of the iterative Krylov Solvers (1)

Knowing how to handle the linear algebra operations easily, we now present how simple the
use of iterative Krylov methods proposed by Alinea is. One of the most expensive operations
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of GPU versions is the data transfer (sending and receiving) between the host (CPU) and the
device (GPU). Alinea pay attention to sending the input data from the host (CPU) to the device

FIGURE 3.41: Diagram of iterative Krylov Solvers (2)

(GPU) once before starting the iterative routine. The iterative Krylov algorithm is executed on
the host (CPU), but all computing steps (matrix-vector multiplication, ...) are performed on the
device (GPU). At the end of the algorithm, the solution vector is copied from the device to the

FIGURE 3.42: Diagram of the stationary iterative Solvers (3)

host. Alinea proposes the main Krylov methods on both CPU and GPU. Listing 3.28 gives an

FIGURE 3.43: Diagram of the stationary iterative Solvers (4)

example of usage of iterative solvers. This example is also valid for the LU direct solver.
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1

2

3

4

5

6 // −− declare a csr matrix on CPU
7 Matrix<double,int> m_csr( "csr" );
8 // −− read csr matrix from mtx file
9 m_csr.ReadFromFile( "f_name", "mtx" );

10

11 // −− declare a vector on CPU
12 Vector<double,int> v_rhs;
13 // −− read vector from mtx file
14 v_rhs .ReadFromFile("f_v_name", "mtx");
15

16

17

18

19

20

21

22 // −− declare a solver
23 Solver<double,int> solver ;
24 // −− solver properties
25 const int m_it = 100; const double r_thres = 1e−6;
26 solver .SetSolver(&MakeSolverCg<T,U>(m_it, r_thres));
27 // −− m_csr: matrix of the solver
28 solver .Setup( m_csr );
29 // −− set diagonal preconditioner
30 solver .SetPrecond( MakePrecondDiag<T,U>() );
31 // −− solve m_csr * v_x = v_rhs
32 Vector<double,int> v_x( v_rhs .GetSize() );
33 // −− solve
34 solver .Solve( v_x, v_rhs );
35 //
36 //

LISTING 3.28: CPU iterative solvers usage

1 // −− device environment (in−house device)
2 GpuDevice::Cuda::Kernel dev
3 = GpuDevice::Cuda::MakeDevice( );
4 // −− initialize with the powerful card
5 dev. Init ( );
6 // −− declare a csr matrix on CPU
7 Matrix<double,int> m_csr( "csr" );
8 // −− read csr matrix from mtx file
9 m_csr.ReadFromFile( "f_name", "mtx" );

10 // −− declare a csr matrix on GPU
11 Matrix<double,int> m_csr_gpu("csr",&dev);
12 // −− copy matrix from CPU to GPU
13 CopyTo(m_csr_gpu, m_csr);
14 // −− declare a vector on CPU
15 Vector<double,int> v_rhs;
16 // −− read vector from mtx file
17 v_rhs .ReadFromFile( "f_v_name", "mtx" );
18 // −− declare a vector on GPU
19 Vector<double,int> v_rhs_gpu( &dev );
20 // −− copy vector from CPU to GPU
21 CopyTo(v_rhs_gpu, v_rhs);
22 // −− declare a solver
23 Solver<double,int> solver ;
24 // −− solver properties
25 const int m_it = 100; const double r_thres = 1e−6;
26 solver .SetSolver(&MakeSolverCg<T,U>(m_it, r_thres));
27 // −− m_csr_gpu: matrix of the solver
28 solver .Setup( m_csr_gpu, m_csr );
29 // −− set diagonal preconditioner
30 solver .SetPrecond( MakePrecondDiag<T,U>( &dev ) );
31 // −− solve m_csr * v_x = v_rhs
32 Vector<double,int> v_x(v_rhs.GetSize (), v_rhs .GetDev());
33 // −− solve
34 solver .Solve( v_x, v_rhs );
35 // −− finalize GPU
36 dev. Finalize ( );

LISTING 3.29: CPU iterative solvers usage

Solvers differ on the input of the function SetSolver at Line 26 of Listing 3.28 ( Line 26 of List-
ing 3.29 for GPU). The given example consists of a Conjugate Gradient (Cg) solver. If the
preconditioner is applied, Line 30 of Listing 3.28 ( Line 30 of Listing 3.29 for GPU)
if necessary. For the GPU version, when the preconditioner is required, the setup step,
Line 28 of Listing 3.28 ( Line 28 of Listing 3.29 for GPU), must also gives the CPU matrix
in the second parameter. In fact, the inverse of the diagonal is performed once on CPU, and
then copied to GPU. After that, the element wise product is performed on GPU.

3.7.6 Conclusion
In this section, we have presented Alinea, which stands for Advanced LINEar Algebra, a

library well suited to hybrid CPU/GPU computing. Alinea is targeted as a scalable software
for proposing effective linear algebra operations on both CPU and GPU platforms, using
CUDA and OpenCL languages. Alinea proposes a new vision of GPU computing that allows
to harness the power of GPUs easily, without the programming complexity of classical APIs
such as CUDA and OpenCL. This library, which I developed during my thesis, includes
basic and advanced linear algebra operations, direct solvers and iterative solvers both on CPU
and GPU. Numerical results presented in this thesis confirm the robustness of these hybrid
algorithms that should pave to exascale hybrid methods. Alinea proves to be a well-balanced
compromise in terms of programming and efficiency regarding computing performance and
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energy consumption.

Alinea: An Advanced Linear Algebra Library for Massively Parallel Computations on

Graphics Processing Units.

3.8 Conclusion
In this chapter, we have proposed different ways to efficiently compute linear algebra

operations in order to implement effective iterative Krylov methods for solving large and
sparse linear systems on GPU with different precisions of computations. We have explained
how to handle data transfers and memory management. We have compared the performances
of Alinea, the in-house library, against existing scientific linear algebra libraries for GPU
with CUDA. The experiments have been performed on a set of large-size sparse matrices
for several engineering and scientific problems. In order to ensure even greater efficiency,
the auto-tuning of the gridification on the GPU architecture has been performed to obtain
faster implementation. Auto-tuning proves that gridification strongly impacts the performance
of algorithms. The experiments also exhibit that the tuning of the parameters depends on
the objective of the algorithm, in fact the dot product features will differ from those of the
SpMV.

We have described how to implement efficient iterative Krylov methods on GPU by using
our gathered experience. Different Krylov methods are then developed and compared for
different data matrix storage formats. The experiments, performed for several matrices, confirm
the performance of our proposed implementation. The results demonstrate the robustness,
competitiveness and efficiency of our own implementation compared to the existing libraries.
We have also compared two famous and used accelerators: CUDA and OpenCL. A comparison
of Alinea, a library developed by the author, and Cusp, an open-source library, has shown the
importance of optimization for energy consumption; Alinea outperforms Cusp with 30% less
energy consumption for the same computations. A prediction on energy consumption based
on the complexity of the CG method is on a par with the actual energy consumption. This
methodology could be applied to other kinds of linear solvers and numerical applications.

In order to study the scalability of the implementations, we plan to analyze in the next
chapter, parallel iterative algorithms, such as the sub-structuring method on a cluster of multi-
core-GPUs. In parallel, for each processor we will have to decide on the data distribution
of matrix and vector, and then establish an effective communication scheme by taking into
account the sparsity pattern of the matrix, in order to minimize the overall execution time. We
will pay a special attention to parallel asynchronous algorithms.

104 Chapter 3 Linear Algebra on Parallel and GPU Computing



Chapter 4
Introduction to parallel linear system
solvers „The essence of mathematics lies in its freedom.

— Georg Cantor
(Mathematician)

4.1 Introduction

E
XASCALE computers are expected to have highly hierarchical architectures with nodes
composed by multiple core processors (CPU) and accelerators (GPU) [8]. Distributed
computing constantly gains in importance and has become an important tool in

common scientific research work. Nowadays, the scientific community is committed to
demonstrating that parallel computing has a key role in engineering and applied science
simulations. Parallel computations are fundamental and ubiquitous in numerical analysis and
its large application areas, when we deal with the problem of large data size. Usually, solving
partial differential equations by numerical methods such as the finite element method leads
to linear systems with large and sparse matrices. Parallel iterative methods have become
indispensable for solving large sparse linear systems. Indeed, parallel computers provide the
resources and computing power for solving these systems in a high-performance computing
context. However, the different programming levels generate new difficulties and algorithms
issues.

In this thesis, we focus on algorithms in parallel distributed-memory computing. In
distributed-memory computing, the communication system represents a significant portion
of the total execution cost of an algorithm. Most applications in parallel computing involve
synchronous algorithms. Nevertheless, these algorithms become inefficient when dealing with
a large number of processors. One solution is to use asynchronous algorithms. In general,
asynchronous algorithms require a greater number of iterations before the convergence than
synchronous algorithms. However, asynchronous iterative algorithms can significantly reduce
the overall execution times by eliminating idle times due to synchronizations. Let us consider,
in the remainder of this chapter, a system, PSystem{p} (Parallel System), capable of executing
p processes of execution of PS . Let PS = {P1 = 1, . . . , Pp = p} be the set of the processors.
The implementation of parallel iterative solvers on the parallel platform PSystem{p} requires
first for each processor to decide the data distribution of the matrix and the vector, i.e., the
partitioning of the data of the linear system on PSystem{p}. Then to establish an effective
communication scheme by taking into account the sparsity pattern of the matrix, in order to
minimize the overall execution time.

In this chapter the problem space is supposed euclidean of the form K
n where K is R or C.

K
n denotes a n-dimensional linear space composed of n coordinates of type K.
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My contribution in this chapter was to develop and implement a code for partitioning data

among processors in order to control and adapt the splitting to the studied parallel algorithms.

This choice allowed us to be free and implement parallel algorithms as we like.

I have proposed a way to partition correctly a sparse matrix for sub-structuring methods.

The structure of this chapter is as follows. For convenience and thoroughness, Section 4.2
gives an overview of the different classes of parallel iterative methods for readers not familiar
with parallel and distributed computing. Given that the first step in parallel processing, one also
necessary for optimization, consists in distributing data on the cluster processors, in Section 4.3
we shortly describe how data are distributed among processors for different splitting strategies.
In particular, we present a smart process to partition a sparse matrix for parallel sub-structuring
methods. Section 4.4 is devoted to a state-of-the-art theory of parallel synchronous and
asynchronous iterations. We present the classical model and models with total communication
in particular.

Keywords — Distributed computing, SISC, SIAC, AIAC, Synchronous Iterations, Syn-
chronous Communications, Asynchronous Iterations, Asynchronous Communications, Flexi-
ble communications, Matrix partitioning, Band-row splitting, Substructiring splitting, Graph
partitioning, Line-graph

4.2 Classification of parallel iterative methods
In this section, we review the state-of-the-art parallel iterative methods. Effective interpro-

cessor communication is one of the most important and most challenging problems associated
with massively parallel computing. The performance of algorithms strongly depends on the
management of interprocessor communication. Naturally, except for a rare parallel method, the
local computations of each process in parallel solver algorithms have dependencies between
them. Therefore, synchronization points must be added from the moment data are exchanged
between cooperating processes. The main difference between the algorithms is based on the
choice of the synchronization points.

In this section, we are interested in understanding the different existing choices. We
will also give a short review of asynchronous algorithms. The parallel iterative methods for
solving the linear system (3.1) are classified into different categories depending on both the
nature of the scheme (synchronous, asynchronous) of iterations, and communications. A
classification has been defined based on these criteria that leads to three classes. The three
classes, which be presented in the following, are Synchronous Iterations and Synchronous

Communications (SISC), Synchronous Iterations and Asynchronous Communications (SIAC),
and Synchronous Iterations and Asynchronous Communications (AIAC). These categories have
flexible communication versions.

4.2.1 Iterative methods SISC
The most classical and popular scheme for parallel iterative algorithms is synchronous

iterations (SI). This consists of an algorithm where a new iteration is started only when all
the data from the previous iteration has been received. When coupled with synchronous

communication (SC), the system synchronizes data exchanges, which means that data can only
be exchanged when the source and destination processes have terminated their computation.
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Thus, all processes begin calculating the same iteration at the same time and perform the
exchanges of shared data at the end of each iteration through global synchronous communi-
cations. In this case, communication and computation are totally separate. This scheme is
called Synchronous Iterations and Synchronous Communications (SISC). Figure 4.1 presents

FIGURE 4.1: Example of the execution scheme of the parallel iterative “Synchronous Iterations and

Synchronous Communications (SISC)” with 2 processors

an example of execution scheme of parallel iterative SISC. In Figure 4.1, the arrows and the
bold rectangles represent respectively the communications and the computations, and the
light gray box corresponds to the time where the process is at rest, i.e., without computations
(waiting communication). The parallel solvers with the SISC scheme have exactly the same
number of iterations as their sequential versions. In addition, in exact arithmetic, the residual
histories of sequential and SISC algorithms are identical. Thus, the convergence results of
parallel SISC algorithms are easy to determine. In fact, they are closely related to those of
sequential algorithms. In general, synchronous communications are often a weak link in
the algorithm with respect to performance [174] [175] [176]. With this scheme, the fastest
processes often remain idle, waiting for the others. In theory, this scheme is advantageous
for an homogeneous set of processes which have identical features in terms of speed and
synchronization. Figure 4.2 gives another variant of the SISC scheme where the computation

FIGURE 4.2: Example of the execution scheme of another variant of the parallel iterative “SISC” with 2
processors

starts once all the data has been received, even if the sending is not completed. This requires
more memory since an additional buffer is needed, i.e., one for the computation in progress
and another for the sending.

4.2.2 Iterative methods SIAC
The Synchronous Iterations and Asynchronous Communications (SIAC) class is a pro-

posed solution to overcome the handicap of SISC algorithms, i.e., the synchronization of
the communications. This scheme is often used for slow interconnection networks and/or
heterogeneous platforms. The main idea behind the SIAC scheme consists in preserving a
synchronize iterative scheme (SI) while data are exchanged asynchronously between processes
(AC), which allows an overlapping of the computations with the communications. The conser-
vation of the SI (Synchronous Iterations) scheme ensures the same overall behavior, and thus
the same convergence conditions as the SISC scheme. Therefore, the convergence conditions
of SIAC are identical to those of its sequential counterparts. With the SC (Asynchronous
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Communications) scheme, the idle time of processes between two successive iterations is
reduced. Figure 4.3 shows an example of execution scheme of parallel iterative SIAC. In this
case, communication and computation are overlapped when possible. Indeed, a process can
send data to its dependency as soon as they are ready to be used in the computations of the next
iteration. This allows to reduce the waiting time for receiving data between two successive
iterations. An example of execution scheme of parallel iterative SIAC with flexible send

FIGURE 4.3: Example of the execution scheme of the parallel iterative “Synchronous Iterations and

Asynchronous Communications (SIAC)” with 2 processors

FIGURE 4.4: Example of the execution scheme of the parallel iterative “Synchronous Iterations and

Asynchronous Communications (SIAC)” with flexible send, with 2 processors

is given in Figure 4.4. In the flexible send scheme, a part of the data can be sent before the
completion of the computation. Flexible communication is illustrated in Figure 4.4 by a dashed
line, which means that data are partially incomplete. This allow to have better overlap between
communication and computation and reduce the delay between two iterations. It allows to
use a lower bandwidth interconnection than the standard SIAC for the same performance.
The concept of flexible communication allows to model efficient asynchronous iterations on
parallel computers.

4.2.3 Iterative methods AIAC
The previous parallel iterative synchronous subclasses, SISC and SIAC, are the most used

for solving large sparse linear systems. They use the same mathematical model and have
the same convergence results as their sequential counterparts. They are often simply called
parallel iterative algorithms, synchronous being omitted. Their popularity is probably due to
the fact that they are relatively easy to implement, in contrast to parallel iterative asynchronous
subclasses. Their global convergence behaviors are easy to control and determine as sequential
iterative algorithms, due to the synchronization between the successive iterations. However,
these previous methods have another obstacle related to the SI (Synchronous Iterations). The
last class called Synchronous Iterations and Asynchronous Communications (AIAC) aims to
suppress that obstacle. In this type of parallel scheme, the processes become independent. In
fact, each process executes its own iterations without taking into account the progress of the
execution of the other processes. The principle is simple: when a process has finished one
iteration, it starts a new one immediately. The latest available data is used for the computation
and the data are sent asynchronously. When new data arrives, the previous one is discarded,
even if it has never been read. Also the sending of some data may be skipped if the previous
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send process is not finished. Figure 4.5 gives an example of execution scheme of parallel

FIGURE 4.5: Example of the execution scheme of the parallel iterative “Synchronous Iterations and

Asynchronous Communications (AIAC)” with 2 processors

iterative AIAC. In this case, the iterations are not synchronized anymore. The computation
never waits and simply uses the last data available. This allows for a complete overlap of
computation and communication, and suppresses wasted time. Some processes may be faster in
their calculations and performs more iterations than others. However, the asynchronous AIAC
solvers have more strict convergence conditions their synchronous counterparts (SISC, SIAC).
In general, the AIAC solvers perform more iterations than the synchronous solvers, SISC and
SIAC. An example of execution scheme of parallel iterative AIAC with flexible send and receive

FIGURE 4.6: Example of the execution scheme of the parallel iterative “Synchronous Iterations and

Asynchronous Communications (AIAC)” with flexible send and receive, with 2 processors

is drawn in Figure 4.6. As we can see in Figure 4.6, partial data are sent before the end of the
iteration, and data received are used as soon as they are received. In Figure 4.4, the dashed
line describes flexible communication, which shows that data are partially incomplete. The
iterative methods AIAC were first called chaotic relaxations [177] [178], but are now usually
designated by asynchronous iterations. In the state-of-the-art, three main schemes are used
for asynchronous iterations: partially asynchronous iterations (P-AI), totally asynchronous

iterations (T-AI), and flexible asynchronous iterations (F-AI).
The first scheme, partially asynchronous iterations (P-AI), is based on the hypothesis

that the communication time is bounded and that each process performs at least one iteration
for each given period. In totally asynchronous iterations (T-AI), there are few or almost no
constraints on iterations and communications, except that they must never stop. In 1989,
D.P. Bertsekas and J.N. Tsitsiklis [179] proposed a mathematical model of these methods,
which has resulted in several convergence theorems widely applicable. In [179], a general
convergence theorem based on a set of imbricated boxes has been used as the basis of large
convergence results in several domains. In this thesis, this is this scheme and theoretical model
in use.

Sometimes the “total” feature can be a strong condition for the convergence of some
algorithms. When these algorithms do not converge under totally asynchronous iterations,
they can converge with partially asynchronous iterations assumptions, as shown by D.P.
Bertsekas and J.N. Tsitsiklis [179], J.N. Tsitsiklis, D.P. Bertsekas and M. Athans [174], and
J.N. Tsitsiklis [180]. R. De Leone [181] presents a unified treatment for partially and totally
asynchronous parallel successive overrelaxation (SOR) algorithms for the linear comple-
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mentarity problem. The last scheme, flexible asynchronous iterations (F-AI), more general
than totally asynchronous iterations, is also more recent and was first introduced by J.-C.
Miellou, D. El Baz, and P. Spitéri [182]. Several studies have deepened the analysis of this
scheme [183] [184] [185].

4.2.4 Towards asynchronous algorithms
In the context of massively parallel computing, the asynchronous parallel algorithms

currently present a great interest in the scientific community for solving extremely large linear
systems. New programming paradigms of parallel methods should be defined and evaluated
with respect to state-of-the-art scientific methods. As said before, in this thesis we pay a
particular attention to asynchronous iterative algorithms. Therefore we will start with a review
of the state-of-the-art asynchronous algorithms.

Asynchronous algorithms have a long history. These methods were first introduced in 1969
by D. Chazan and W. Miranker [177] for solving linear systems using chaotic relaxation meth-
ods. Two years later, in 1971, J.D.P. Donnelly [178] generalized two results of [177] concerning
periodic chaotic relaxation. These methods have been widely studied since. The studies of
Chazan and Miranker, and of Donnelly were generalized in 1975 by J.-C. Miellou [186] for
solving large-size non-linear algebraic systems. In 1978, G.M. Baudet [187] presented a class
of asynchronous iterative methods for solving a system of equations. In [177] [178] [186], the
motivation for defining chaotic relaxation was to account for the implementation of iterative
methods on a multi-core system so as to reduce the communication and synchronization
between processes with a dependency. However, in their studies, communication occurs only
at the end of each update. This translates a lack of flexibility in communications. Over the
years, several studies of asynchronous convergence analysis have appeared. One can mention
M. Charnay [188], P. Comte [189], J. Jacquemard [190], M.B El Tarazi [191] [192] [193], D.P.
Bertsekas and J.N. Tsitsiklis [179], D. El Baz [194] for the solution of non-linear systems of
equations Fx = z via parallel asynchronous algorithms, and J.M. Bahi [195]. J.-C. Miellou
et al. [182] proposed in 1998 a new class of parallel asynchronous iterative algorithms for
solving non-linear systems of equations with flexible communication between processors.
The convergence analysis have been performed with partial order technics. This new class
corresponds to flexible AIAC described in Figure 4.6. The convergence analysis of these
methods is based on monotone operators with respect to a partial ordering. Recently in 2005,
D. El Baz, A. Frommer, and P. Spitéri [196], introduced a new formulation of parallel asyn-
chronous algorithms with flexible communication where the convergence analysis is based on
contracting operators. They propose global convergence results for asynchronous iterations
with flexible communication based in a contraction context. The asynchronous algorithms
have been used to solve diverse numerical problems:

• linear systems (D.J. Evans and W. Deren [197], R. Bru, V. Migallón, and J. Pe-
nadés [198])

• non-linear fixed point and optimization problems (J.-C. Miellou [186], G.M. Baudet [187],
P. Spitéri [199], Z. Bai, D. Wang, and D. Evans [200], D. El Baz [201], J.M. Bahi, J.-C.
Miellou, and K. Rhofir [202], J. Arnal, V. Migallón, and J. Penadés [203])

• network flow problems (D.P. Bertsekas and D. El Baz [204], E. D. Chajakis and S. A.
Zenios [205], D. El Baz [206], D. El Baz, P. Spitéri, J.-C. Miellou and D. Gazen [183])
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• Markov systems (J. Bernussou, F. Le Gall, and G. Authie [207], D. El Baz [208] and
J.M. Bahi [209])

These asynchronous algorithms have also been used in domain decomposition methods.
One can cite the work of P. Spitéri, J. Miellou, and D. El Baz [210] [211]. In this thesis, they
are analyzed only in the context of iterative linear system solvers, i.e., only linear fixed point
problems are considered. In this thesis, we aim to solve linear partial differential equations
discretized with Finite Element Methods (FEM). Among the first asynchronous algorithms
used to solve these problems are those using splitting and contracting operators such as
Jacobi’s, Richardson’s, the Successive Over Relaxation (SOR) method, etc. L. Lei analyzes the
convergence of asynchronous iterations using fixed point iterations with an arbitrary splitting
form, in [212]. The fixed point problems for asynchronous algorithms have also been used in
multi-splitting methods [213] [214] [215] [185] [211] [216] [217], which were pioneered by
O’Leary and R. E. White [218] in 1985. Th multi-splitting method is a generalization of the
additive Schwarz and splitting methods.

Asynchronous analysis for iterative Krylov methods remains a challenge in the domain,
and they have not been solved to converge with asynchronous iterations. Asynchronous it-
erations have been unpopular compared to synchronous iterations due to limited knowledge
about them and their complexity both in terms of algorithm and implementation. With the
advent of massively parallel machines, heterogeneous platforms and GPUs, asynchronous
algorithms have taken a more important place in parallel computing. They have become
increasingly widespread in diverse applications [217] [219] [220] [220] [221]. Asynchronous
algorithms ensure a complete overlap of computations and communications, and the fault
tolerance become easier to design. Thus, there is no time wasted on synchronizing cooperating
processors. In addition, there is no time wasted on waiting for messages. The most favorable
environments are particularly the distributed clusters in which the communication networks
are often heterogeneous with some great differences between the networks performances.
Asynchronous algorithms have been implemented is diverse environments: from workstations,
supercomputers to grids, and with shared and distributed memory. There are various commu-
nication APIs such as MPI, PVM, TCP/IP, Infiniband, etc. Recently, several libraries have
appeared in order to ease the development of asynchronous algorithms: Jace [222] [223] for
grid applications, JACEP2P [224] for executing parallel iterative asynchronous applications on
volatile distributed architectures, CRAC [225] an environment dedicated to designing efficient
asynchronous iterative algorithms for a grid architecture. In this thesis, we focus on MPI

communication API.

Considering the AIAC scheme, where the iterations are asynchronous, it appears that the
last obstacle is based on the convergence detection and the halting procedure. Compared to
synchronous iterations, where the detection of convergence requires just an allreduce operation,
asynchronous iterations are a more complex problem. They present a serious obstacle, which is
research problem in itself. In contrast to sequential iterations and synchronous iterations, there
are no global iterations. Each process needs only update data and computations locally, while
respecting all the asynchronous properties (in exact arithmetic). Several methods keep the
same algorithms as in synchronous iterations. They are complete computer science. Most of
them are based on simultaneous local convergence for each process. These methods are mostly

4.2 Classification of parallel iterative methods 111



empirical. They consist in considering the synchronous iterations as macro-iterations. They
may perform a lot of unnecessary iterations before detecting the convergence. These methods
have generated further research, which have been oriented mostly toward two versions: those
centralized (D.P. Bertsekas et al. [179], K. Blathras et al. [226]) and those decentralised (J.M.
Bahi [227] [216] et al. [228]). In [179] and [229], D.P. Bertsekas and J.N. Tsitsiklis have
demonstrated the convergence results of the algorithms they have proposed. Unfortunately,
there is no way to answer the following question: what is a global asynchronous number of
iterations? (what is the number of iterations in an algorithm with asynchronous iterations?).
The mathematical model of asynchronous convergence requires some additional conditions
on the communication delay. The idea behind it is to match asynchronous communications
with synchronous communications. This hypothesis enlarges the number of communications
needed.

B.F. Beidas et al. [230] have assumed communication delays among the processors to be
stochastic, with a Markovian character. In 1996, D. El Baz [231] proposed a variant of proof
that reduces the overhead. A general algorithm exchanging many small messages, is introduced
and demonstrated by S.A. Savari et al. [232]. D. El Baz presents another approach to terminat-
ing asynchronous iterative algorithms in [201], which requires few additional communications.
This method uses the sequence of sets from the convergence theorem of D.P. Bertsekas et

al. [179]. D. El Baz has demonstrated that this method can be applied with success to all
asynchronous iterative algorithms satisfying the conditions of D.P. Bertsekas [179] [233].

The implementation of asynchronous algorithms is summarized by the implementation
of the convergence detection and the halting procedure. A good analysis of the convergence
ensures more accurate termination detection. Further research into this analysis has also been
carried out: those taking into account roundoff errors [234] [235] [236], and those based on
stochastic behaviors [237] [230] [238] [239].

4.3 Graph and Matrix partitioning
Undoubtedly, parallelism is the future of computing. As said above, the main step in paral-

lel processing consists in distributing the data on the cluster processors, which is commonly
called parallel distributed computing. In this section, we describe how data are distributed
among processors for different splitting strategies: band-row, band-column, and sub-structuring
splitting. The distribution of data is accomplished as a preprocessing step, independently from
the solver code. The data such as matrix, right hand-size, vector solution and local to global,
are written into a file, and will be input for the solver code. The matrix is read from and written
into the matrix market file [173] [240].

My contribution was to develop and implement a code for partitioning data in order to

control and adapt the splitting to the studied parallel algorithms. This choice has allowed us

to be free and implement parallel algorithms as we like. The sub-structuring splitting uses

METIS software [241] for partitioning graphs. Then, we have implemented the partitioning

into sub-structures.
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To illustrate the advantages and disadvantages of these types of partitioning, we will focus
on the matrix-vector product, which is the most expensive operation in linear algebra, as
demonstrated in the previous chapter.

4.3.1 Band-row splitting
The partition of the equation set leads to allocating each processor a band of rows corre-

sponding to the block of the processed vectors. In Figure 4.7(a) where an example of band-row
splitting is given, these terms are located in a colorful area. The band-row splitting approach
consists in partitioning the matrix A of size n× n into horizontal band matrices. Each proces-
sor is in charge of the management of a band-row matrix of size Np × n and the associated
unknown vector x of size Np × 1, as drawn in Figure 4.7(a). This method of partitioning by
band-row allows to exhibit a sufficient degree of properly balanced parallelism. This implies
assigning all processors, a block of equally sized rows, containing approximately the same
number of non-zero coefficients. Unfortunately, it suffers from a major lack of granularity for
implementation on a distributed memory system. The band-row partitioning algorithm of a
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(b) Splitting into three band rows

FIGURE 4.7: Example of band-row splitting of a matrix

given matrix for a given processor p is presented in Algorithm 4.1. However, in practice,

Algorithm 4.1: Band-row partitioning for the p− th band, with CSR matrix
input : n (size of the matrix),

A.r_ptr (index of first entry of each row), A.cols_n (column numbers), A.coef (non-zero values)
input : Nb (number of row-bands), 0 < Nb <= n; p (processor number), 1 < p <= Nb

output : Ab: band matrix (CSR)
variable : n_r_band: number of rows per band, rd: r_ptr displasment
variable : nzd: cols_n and coef displasment, nzc: cols_n and coef count

1 n_r_band← n/Nb; Np ← n_r_band
2 if p = Nb − 1 then Np ← n− p× n_r_band
3 rd ← i× n_r_band; nzd ← A.r_ptr[rd]; nzc ← A.r_ptr[rd +Np]-A.r_ptr[rd]
4 // Allocate band-row matrix Ab(Np × n, nzc)
5 Ab.r_ptr[:]← A.r_ptr[rd+ :] // -- copy row indices

6 Ab.r_ptr[:]← Ab.r_ptr[:]−Ab.r_ptr[1] // -- shift row indices to local

7 Ab.r_ptr[Np + 1]← nzc // -- copy cols numb and coef

8 Ab.cols_n[:]← A.[nzd+ :]; Ab.coef [:]← A.[nzd+ :]

i.e., in the implementation, there are two main strategies to store data into each processor with
band-row splitting.
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Algorithm 4.2: Band-column partitioning for the p− th band, with CSR matrix
input : n (size of the matrix),

A.r_ptr (index of first entry of each row), A.cols_n (column numbers), A.coef (non-zero values)
input : Nb (number of column-bands), 0 < Nb <= n, p (processor number), 1 < p <= Nb

output : Ab: band matrix (CSR)
variable : n_c_band: number of columns per band, cold: column indices (r_ptr) displasment
variable : nzd: cols_n and coef displasment, nzc: cols_n and coef count

1 n_c_band← n/Nb; Np ← n_c_band
2 if p = Nb − 1 then Np ← n− p× n_c_band
3 cold ← i× n_c_band
4 nzd ← A.r_ptr[rd]
5 // Recover nzc of the band

6 // Allocate band-column matrix Ab(n×Np, nzc)
7 nzc ← A.r_ptr[rd +Np]-A.r_ptr[rd]
8 c← 1
9 for i← 1 : n do

10 Ab.r_ptr[i]← c
11 for k = Ab.r_ptr[i] : Ab.r_ptr[i+ 1] do
12 if nzd <= A.cols_n[k] < nzd +Np then
13 Ab.cols_n[c]← A.cols_n[k]− nzd; Ab.val[c]← A.val[k]
14 c← c+ 1;
15 end
16 end
17 end

Naive splitting The first splitting is the naive one, which consists in storing both matrices and
vectors without any other informations. The principle of the local matrix-vector product with
row-band splitting consists in multiplying the local band row matrix by the global (gathered)
vector. This implies data exchange between all processors (MPI_ALLGATHER). To perform
the matrix-vector product, each processor needs to receive and/or send missing information of
the vector x from/to cooperating processors. According to the sparsity of the matrix, i.e., the
distribution of non-zero values, the processor may receive and/or send unnecessary information
which overload the communication. This operation is very expensive for large-size matrices.
The communications dominate the computations for large-size matrices. One solution to
overcome this problem is to take into account the sparsity pattern of the local matrix, in order
to send/receive only the necessary data from/to cooperating processors.

Sparsity Pattern splitting In this technique, in addition to the naive splitting data, we store
the information of dependencies from local to cooperating processors and from cooperating to
local processors, according to the sparsity pattern of the local matrix. Each processor has both
a list of receive and a list of send dependencies, which keeps data exchange to a minimum.
Figure 4.7(b) gives an example of splitting a sparse matrix into three band rows. Table 4.0(b)
gives the corresponding list of dependencies for sending to cooperating processors of the
splitting described in Figure 4.7(b). The corresponding list of dependencies for receiving from
cooperating processors of the splitting described in Figure 4.7(b) is reported in Table 4.0(a).

The dependency nodes drawn in gray color in Table 4.1 correspond to zero values in
vector x. In fact, we can remove these nodes from the list of dependencies. In this thesis, the
band-row splitting with the “Sparsity Pattern” technique takes into account both the sparsity of
the matrix and the vector. However, this technique does not guarantee a perfect load balance.
One solution for a perfect load-balance consists in partitioning the weighted graph (graph
where the weight of the vertex vi associated with the row i is its number of non-zero values)
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(a) Receiving dependencies

Local proc. Recv. proc List Dependency nodes
1 ← 2 4 - 5 - 6
2 ← 1 1 - 3
2 ← 3 7 - 9 - 10
3 ← 1 2 - 3
3 ← 2 4 - 5 - 6

(b) Sending dependencies

Local proc. Send. proc List Dependency nodes
1 → 2 1 - 3
1 → 3 2 - 3
2 → 1 4 - 5 - 6
2 → 3 4 - 5 - 6
3 → 2 7 - 9 - 10

TABLE 4.1: List of receiving and sending dependencies of the splitting described in Figure 4.7(b).

associated with the matrix in k parts with the minimal amount of edges cut. This solution leads
to finding a good distribution of the sparse matrix on the parallel processors. The concept
consists in storing the ith row of the matrix on processor j if the vertex vi is in the ith sub-part.
Then, we have equal weight in each band of the splitting. The bands may be composed with
non-contiguous rows.

Matrix-vector product The processor that will perform the matrix-vector product for a band-
row has only the corresponding terms of the vector x, the colored area in Figure 4.7(a). In
order to carry out the sparse matrix-vector, this process needs all the terms of the vector
x. The first step, therefore, consists in collecting the terms that lacking from the colored
area in Figure 4.7(a). As it is the same for all processors, it will therefore be necessary
to reconstruct the full vector x on each processor. This operation corresponds to a classic
collective exchange, where each is both a transmitter and a receiver. In this work, instead of
using the collective operation, MPI_Allgather, including the message passing library (MPI),
we use the equivalent Send/Recv, with a left-right ordering of sending and receiving. For
the processor p, the left-right ordering consists in respectively sending and receiving to and
from k = p − 1, k = p + 1, k = p − 2, k = p + 2, k = p − 3, k = p + 3, ..., if k > 0.
This process is described in Figure 4.8. The number of arithmetical operations requires to

FIGURE 4.8: Send/Recv ordering of the processor p

perform the local sparse matrix-vector multiplication, which is approximately
K × n

s
, where

s is the number of processors, n the dimension of the matrix, and K the average number of
non-zero coefficients per row. On the other hand, the total number of terms of the vector x

to recover before performing the product is approximately
(s− 1).n

s
, if the local matrix has

non-zero values in almost all columns. The amount of data is not small compared with the
number of arithmetic operations. Optimizing communications consists in finding a way to
drastically limit the number of external values of vector x, located on the others processors,
and is necessary to compute the product by the matrix.
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Basic linear algebra operations The computation of the dot product is a relatively simple
operation. Each processor performs a local dot product, i.e., multiplies its elements and sums
them, from their two local vectors. Finally, the local sums are added using MPI_ALLREDUCE

with the MPI_SUM operation. Then each processor has the global dot product. Operations
such as an addition of vectors, the element wise product, etc. do not change compared to the
sequential code. For the GPU version, local operations have been performed on a graphics
card.

4.3.2 Band-column splitting
As for band-row splitting, the band-column approach consists in partitioning the matrix A

into vertical band matrices. Each processor is in charge of the management of a band-column
matrix of size n × Np. The associated unknown vector x of size Np × 1 is splitting into
horizontal band vectors as in band-row splitting as described in Figure 4.9(a).

=
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

n

Np

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

y A x
(a) Band-column splitting

=
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

y A x
(b) Block-diagonal splitting

FIGURE 4.9: Example of the band-column and block-diagonal splitting of a matrix

The Algorithm 4.2 describes the column-row partitioning procedure of a given matrix for a
given processor p. According to the structure of the CSR format, the computation of the number
of non-zero values of each band requires a particular calculation, unlike row partitioning. At
line 8 of the Algorithm 4.2, we recover the number of non-zero values computed outside the
routine. All non-zero values of all processors are stored in an independent array, which is built
using the same test process described at line 14 of Algorithm 4.2.

Matrix-vector product Unlike the band-row splitting sparse matrix-vector multiplication,
the SpMV for band-column splitting avoids the exchange of the vector x. However, an
MPI_ALLREDUCE (MPI_SUM) is required, in order to assemble the vector y = Ax. Note
that basic operations are the same as for band-row splitting. For the GPU version, local
operations have been performed on a graphics card. For the matrix-vector product, the results
are first sent to CPU before applying the same procedure as in CPU.

4.3.3 Block-diagonal splitting
When the product is performed by the matrix, the product of the diagonal block requires

only local terms of the vector x. In contrast, off-diagonal coefficients require the corresponding
terms of the vector x. The diagonal block are thick black lines in Figure 4.9(b). The optimal
splitting is the one that partitions the mesh into sub-structures of the same size, in order to
balance the load with the smallest possible boundary to limit data transfers. Substructures
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should be as spherical as possible topologically, since it is the sphere that has the smaller outer
surface.

4.3.4 Mesh and Graph Coloring with METIS
In this thesis, we have used METIS software to partition a directed graph and parti-

tion a finite element mesh. Graph partitioning is a common preprocessing step in many
high-performance parallel applications on distributed and shared-memory architectures. The
problem consists in partitioning the vertices of a graph in k into approximately equal parts,
such that the number of edges connecting vertices in different parts is minimized. For in-
stance, the solution of a sparse linear system, Ax = b, by parallel iterative methods leads to a
problem of graph partitioning. The partitioning of the graph corresponding to the matrix A,
significantly reduces the amount of communication required by the computation of a sparse
matrix-vector, which is the key step in each iteration of iterative methods [242]. G. Karypis
and V. Kumar [243] have showed that the partition produced by METIS is consistently 10% to
50% better that those produced by spectral partitioning algorithms [244] [245], and 5% to 15%

better that those produced by Chaco multilevel [245] [246].
METIS [241] is a set of algorithms for partitioning graphs and finite element meshes. It

uses multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes.
The version of the METIS library (API) used is v.5.1 (ParMETIS v.4.0 for parallel version).
ParMetis is a parallelization of Metis using MPI. Let us first get some definitions used in the
graph theory [247] [248] [249] [250] [251].

Definition 4.1 (Graph) In graph theory, a graph G = (V , E) is a collection of points, V ,
called vertices and lines connecting some (possibly empty) subset of them, E ⊂ V × V , called
edges.

Assuming that matrices, vertices, and edges are indexed from 1, the sparse matrix A

described in Figure 4.10(a) will be used to illustrate the terms of this section. Figure 4.10(b)
draws the pattern of non-zero values of the matrix A. For the sake of generality, we discuss
graph theory without taking into account the symmetry of the matrix given in Figure 4.10(a).
Whenever it concerns a particular process for symmetric matrices, we will clearly state it.

A =




5 -1 0 -3 0

-1 6 0 0 -2
0 0 7 2 4
-3 0 2 8 0

0 -2 4 0 9




(a) Example of a symmetric matrix A, nnz
represents the first non-zero on the row
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(b) Non-zero pattern of a matrix A

FIGURE 4.10: Example of non-zero pattern of a sparse matrix A

Definition 4.2 (Cardinality of a partition) The number of elements in V and E are respec-
tively called “cardinality” of V and E . They are respectively noted |V| and |E|.
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Definition 4.3 (Directed Graph (DiGraph)) A “directed graph” (or digraph) is a graph
G = (V , E) where the edges have a direction associated with them, i.e., all the edges are
directed from one vertex to another.

Definition 4.4 (Undirected Graph) An “undirected graph” is a digraph where the edges are
bidirectional.

Notation 4.5 Let G = (V , E) be a graph. Let us note vi ∈ V the node labeled i. Let us note
e(vi,vj) = {vi, vj} ∈ E the edge that connects the vertices vi and vj with tail vi and head vj .
If the graph is undirected, the tail vi and head vj are not significant. If i = j, we can note
simply e(vi) instead of e(vi,vi). For the sake of simplicity in writing, we note (i) instead of
(vi), e(i,j) instead of e(vi,vj) and e(i) instead of e(vi). If the graph is undirected, we will note
e(min(i,j)′max(i,j)) instead of e(i,j) and e(j,i) (for example, e(2,1) → e(min(1,2)′max(1,2)) → e(1,2)).

Notation 4.5 is summarized in Figure 4.11.

1 2
e(v1,v1)
e(v1)
e(1)

e(1,2)

e(v1,v2)

e(2,1)

e(2)

(a) Directed graph (digraph)

1 2

1 2

e(1)

e(1,2)

e(2,1)

e(2)

e1
e1′2

e2

(b) Undirected graph

FIGURE 4.11: Notation of a directed graph and an undirected graph

Definition 4.6 (Adjacency Matrix for a Graph) An “adjacency matrix” of a graph G =

(V , E), also called connection matrix of G, is a matrix n× n where n is the number of vertices,
such that (vi, vj) = 1 if the vertices (nodes) vi and vj are adjacent, i.e., {vi, vj} ∈ E otherwise
(vi, vj) = 0.

Figure 4.12 presents the directed graph of the matrix given in Figure 4.10 and its corre-
sponding adjacency matrix (see Figure 4.13(b)).
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(a) Directed graph G of the matrix given in Fig-
ure 4.10




1 1 0 1 0
1 1 0 0 1
0 0 1 1 1
1 0 1 1 0
0 1 1 0 1




(b) Adjacency matrix of
the digraph G illustrated in
Figure 4.12(a)

FIGURE 4.12: Example of directed graph and its corresponding adjacency matrix
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Remark 4.7 The adjacency matrix of a digraph is not necessarily symmetric. That of
Figure 4.12(a) given in Figure 4.13(b) is symmetric because of the symmetry of the initial
matrix described in Figure 4.10.

Definition 4.8 (Adjacency Matrix of an Undirected Graph) For an undirected graph, the
adjacency matrix is symmetric. Therefore, the adjacency matrix of the graph of symmetric
matrix is symmetric.

Figure 4.13 presents the undirected graph of the matrix described in Figure 4.10 and its
corresponding adjacency matrix (see Figure 4.13(b)).
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(a) Undirected graph G of the matrix given in Fig-
ure 4.10
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1 1 0 1 0
1 1 0 0 1
0 0 1 1 1
1 0 1 1 0
0 1 1 0 1




(b) Adjacency matrix of
the digraph G illustrated in
Figure 4.13(a)

FIGURE 4.13: Example of undirected graph and its corresponding adjacency matrix

Definition 4.9 (Partitioning of graph) A partitioning of a graph G = (V , E) is a set S of
subsets S1, S2, . . . , Sk of V such that

for i, j ∈ {1, . . . , k},
⋃
Si = V and Si ∩ Sj = ∅, i 6= j.

An individual subset Si is sometimes called a partition.

Definition 4.10 (Cardinality of a partition) The number of elements in Si is called “cardi-
nality” of Si and is noted |Si|.

Definition 4.11 (Cut-edge of a partition) A “cut-edge” of a partition is an edge evi,vj
=

{vi, vj} such that vi ∈ Si and vj ∈ Sj such as Si 6= Sj .

The number of edges-cut (or edge-cut) of the partitioning corresponds to the number of
edges of the graph cut by a partitioning.

Definition 4.12 (Graph partition problem) The “graph partitioning problem” is defined,
given a graph G = (V , E), such that it is possible to partition G into smaller components with
specific properties, i.e. given a number of partition k the graph partitioning problem is to find
k−way partitioning P such that the balance of P and the edge cut of P are minimized.

Proposition 4.13 The goal of graph partitioning is to find a partitioning where the number of

cut-edges is minimized and each Si has roughly the same size. In terms of parallel computing,

we are interested in evening the amount of work on each processor (load balancing) and

minimizing the total amount of communication.
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All of the graph partitioning routines in METIS take as input the adjacency structure of
the graph and the weights of the vertices and edges (if any). The adjacency structure of the
graph is stored using the compressed storage format (CSR) (see Section 3.2.1, Page 43). The
adjacency list of the vertex i is stored in the array adjncy starting at index xadj[i] and ending
at (but not including) index xadj[i+ 1]. In the METIS structure we store both e(i,j) and e(j,i)

for each egde e(i′j). Figure 4.14 shows the adjacency structure or the CSR format of the graph

xadj = 1 / 4 / 7 / 10 / 13 / 16,

adjncy = 1 / 2 / 4 / 1 / 2 / 5 / 3 / 4 / 5 / 1 / 3 / 4 / 2 / 3 / 5

FIGURE 4.14: An example of the CSR format for storing sparse graph given in Figure 4.13(a)

described in Figure 4.12(a). As a result, from a CSR data structure, we can easily create
the data structure required for METIS routines, i.e., xadj (row pointers) and adjncy (column
indices). For detailed information on the adjacency structure, the readers are invited to look up
page 23 of the METIS 5.1.x (API C/C++) manual [241].

Remark 4.14 METIS software cuts edges by respecting the Proposition 4.13.

When we partition a graph or mesh, METIS does not guarantee that the partitions are
contiguous. In most cases, the partitions will be contiguous. As consequence, the number of
iterations may be impacted when the number separation set varies. However, there exists an
option which allows to insist in obtaining contiguous parts: METIS_OPTION_CONTIG. Let us
note that this option just ‘insists’ but does not fully ensure a partitioning with only contiguous
parts.

4.3.5 Sub-structuring splitting
The splitting techniques presented previously (band-row, band-column, etc.) are undoubt-

edly simple and easy to control but present disadvantages concerning the Proposition 4.13, i.e.,
in terms of load balancing and the minimization of the total amount of communication due to
the sparsity of the matrix. Therefore, the communications risk to dominate the computations
of large-size matrices. One solution to overcome this problem is to take into account the
sparsity pattern of the local matrix, i.e., the graph of the matrix. In terms of communication,
this approach will allow, for instance, to only send/receive necessary data from/to cooperating
processors. The sub-structuring splitting approach proposed here is based on this solution.
In this subsection, we present how we proceed to prepare data for sub-structuring methods
(see Section 5.2, Page 142).

Definition 4.15 (Graph of a matrix) The “graph of a matrix” A ∈ K
n×n is a graph G =

(V , E) where |V| = n, i.e., G has n vertices v1, v2, . . . , vn such that there is an edge between
vi and vj (i 6= j) if aij 6= 0.

Definition 4.16 (Weighted graph of a matrix) The weight of a vertex vi of the graph of
the matrix A ∈ K

n×n is defined as the number of non-zero values of the ith row of A. This
quantity will be noted ω(vi) and we have ω(vi) = d(vi) + 1, where d(vi) is the degree of the
vertex vi.
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Remark 4.17 The “graph of a matrix” A ∈ K
n×n is a representation of a sparse matrix. The

graph is weighted by the number of non-zero values per row if necessary.

Remark 4.18 (Data dependency) Each edge e(i,j) of the graph of the matrix A ∈ K
n×n

symbolizes a data dependency between the ith row and jthrow of the matrix, and thus a
possible communication.

In order to optimize, there is communication only if row i and row j present a dependency
Remark 4.18 and also if the corresponding vector element xj is non-zero (aijxj). The solution
of the “graph partitioning problem” (see Definition 4.12, Page 119) leads to a good distribution
of the sparse matrix on the parallel processors. A good partitioning helps to achieve perfect
load balance. The communication cost of a sub-domain is a function of its edge-cut as well
as the number of neighboring sub-domains it share edges with [252] [253]. For the sake
of clarity, we consider first an undirected graph. The objective is to partition a matrix into
consistent sub-structures for sub-structuring methods. As said in Remark 4.18, each edge e(i,j)

of the graph G of the matrix A ∈ K
n×n means that there is a data dependency between the ith

row and jthrow of A. Whereas if we partition the graph directly into k partition sets using
METIS, we will have k independent partitions, which lead to k independent sub-matrices.
This procedure implies a loss of informations concerning the dependencies between rows.
As a direct consequence, communication will not be done correctly. Indeed, some required
send/receive will not occur. Without loss of generality and for the sake of clarity, we illustrate
the partitioning for k = 2 and k = 3. For example, with the undirected graph described in
Figure 4.13(a), and via the adjacency structure given in Figure 4.14, METIS cuts the edges
e(2′5) and e(3′5) for k = 2 and the edges e(2′5) (part #1,part #2), e(2′5) (part #2,part #3) and
e(3′5) (part #1,part #3) for k = 3. The partition produced by METIS for 2 and 3 sub-parts is
respectively presented in Figure 4.15(a) and Figure 4.15(b).

2 3

1

4 5

e(1)

e (1
′ 2)

e
(1 ′4)

e(2)

e
(2 ′5)

e(3)

e(3′4)

e(3′5)

e(4) e(5)

edge-cut

(a) 2 partition sets (2-partitioning)

2 3

1

4 5

e(1)

e (1
′ 2)

e
(1 ′4)

e(2)

e
(2 ′5)

e(3)

e(3′4)

e(3′5)

e(4) e(5)

edge-cut

edge-cut

(b) 3 partition sets (3-partitioning)

FIGURE 4.15: Direct partitioning by METIS (API C/C++) using CSR structure of the graph of the matrix
given in Figure 4.13(a)

Remark 4.19 Notice that METIS does not take into account self-edges, e(i,i), when partition-
ing.

The solution we propose for correctly partitioning the graph G = (V , E) without losing
information consists in partitioning the line-graph of G, L(G), rather than partition the graph
G directly as in Figure 4.15. The line-graph is induced from the original graph.
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Definition 4.20 (Line-graph of undirected graph) The line-graph, L(G), of a undirected
graph G = (V , E) is a graph such that each vertex of L(G) = (L(V),L(E)) corresponds to
an edge of G, and there is e(a,b) an edge from va to vb of L(G) if the corresponding edges,
e(ai,aj) and e(bi,bj) have a vertex in common in G [254] [255]. The edges of L(G) have the form
ee(i,j),e(i,k)

where e(i,j) and e(i,k) are edges in G and nodes in L(G).

Notation 4.21 Let G = (V , E) be a graph. Let e(i,j), e(k,l) ∈ E an edge of G. Let L(G) =

(L(V),L(E)) be the line-graph of G. For the sake of clarity, in the line-graph L(G) we will
note e(i,j) ∈ L(V) and êe(i,j),e(k,l)

the edge that connects the vertices e(i,j) and e(k,l) of L(G).
For an undirected line-graph, we will note êe(min(i,k),j),e(max(i,k),l)

.

Figure 4.16 illustrates Notation 4.21.

e(1) e(1,2)êe(1)

êe(1),e(1,2)

êe(2,1),e(1)

êe(1,2),e(1,2)

FIGURE 4.16: Notation of the line-graph with e(1) ∈ E and e(1,2) ∈ E . Note that the directed edge êe(1,2),e(1,2)

is for the illustration.

Remark 4.22 The edges in the original graph G contain all the edge information in the
line-graph L(G).

Remark 4.23 An undirected graph leads necessarily to an undirected line-graph.

In the case of our matrix partitioning, we remove the self-edges, e(i,i), when we construct the
line-graph. Anyway, METIS does not take into account edges, e(i,i), when partitioning a graph.
They are virtual but exist. They will be taken into account when we construct the sub-matrices.
Figure 4.17 illustrates the line-graph of the undirected graph given in Figure 4.13(a). The next

e(1′4) e(3′4)

e(1′2)

e(2′5) e(3′5)

FIGURE 4.17: Line-graph L(G) of the undirected graph given in Figure 4.13(a)

step consists in partitioning the obtained line-graph, which is illustrated in Figure 4.17. Let
us consider the following numbering: 1→ e(1′2), 2→ e(1′4), 3→ e(2′5), 4→ e(3′4), 5→ e(3′5),
where l → e(i′j) means that the node e(i′j) ∈ L(V) is the node #l. Considering the previous
numbering, we give the corresponding adjacency structure in Figure 4.19. Figure 4.18 gives
the adjacency matrix of the line-graph described in Figure 4.17 and illustrates its corresponding
non-zero pattern. Notice that an edge e(i,j) ∈ E in the original graph (see Figure 4.13(a))
corresponds to a vertex in L(G). Thus, when METIS partitions the graph, the cut-edges will
correspond to the cut-nodes of the original graph. Figure 4.20 gives the partitioning given by
METIS of the line-graph described in Figure 4.17 for 2 sub-parts. By the proposed partitioning
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


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0




(a) Adjacency matrix
(with self-loops removed)

e(1′2)

e(1′4)

e(2′5)

e(3′4)

e(3′5)

e(1′2) e(1′4) e(2′5) e(3′4) e(3′5)

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

(b) Non-zero pattern of the adjacency matrix
given in Figure 4.18(a)

FIGURE 4.18: Adjacency matrix of the line-graph described in Figure 4.17 and the corresponding non-zero
pattern

xadj = 1 / 3 / 5 / 7 / 9 / 11

adjncy = 2 / 3 / 1 / 4 / 1 / 5 / 2 / 5 / 3 / 4

(4.1)

FIGURE 4.19: The CSR format for storing the sparse line-graph given in Figure 4.17

procedure, a vertex (node) vi of G (edge in L(G) can be in different partitions. In this case, the
vertex is called an interface node.

Definition 4.24 (Interface node) Let G = (V , E) be a graph. Let L(G) = (L(V),L(E))

be the line-graph of G. Let S be a set of subsets S1, S2, . . . , Ss of L(V) as defined in
Definition 4.9. Let S be the partition of L(G). A node i ∈ V is considered interface if and only
if there exists an edge-cut êe(i′j),e(i′l)

∈ L(E), e(i′j) ∈ Sp ⊂ L(E) and e(i′l) ∈ Sq ⊂ L(E) such
that Sp 6= Sq.

For example, in the twofold-partitioning (see Figure 4.20(a), Page 123), there are 2 cut-
edges : êe(1′4),e(3′4)

and êe(2′5),e(3′5)
, and in the threefol-partitioning (see Figure 4.20(b), Page 123),

there are 3 cut-edges : êe(1′4),e(3′4)
, êe(2′5),e(3′5)

and êe(3′4),e(3′5)
. Each edge-cut leads to an inter-

face node. To construct the sub-domains it suffices to convert the line-graph of each partition

e(1′4) e(3′4)

e(1′2)

e(2′5) e(3′5)

(x) (y)

partition #1 partition #2

(a) 2 partition sets (2-partitioning)

e(1′4) e(3′4)

e(1′2)

e(2′5) e(3′5)

(x) (y) (z)

partition #1 partition #2 partition #3

(b) 3 partition sets (3-partitioning)

FIGURE 4.20: METIS (API C/C++) 2-partitioning and 3-partitioning of the line-graph described in
Figure 4.17 using CSR structure given in Figure 4.19

and also to keep the information concerning the cut-edges of the line-graph, i.e., the interface
nodes.
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Remark 4.25 Let L(G) = (L(V),L(E)) be a line-graph. A vertex e(i′j) ∈ L(V) in the line-
graph corresponds to an edge in G and an edge êe(i′j),e(k′l)

∈ L(E) is a vertex in G. Considering
Notation 4.21 and according to Definition 4.20, an edge of the line-graph L(G) has the form
êe(i′j),e(i′l)

∈ L(E), and gives the node i in G.

Considering Definition 4.24 and Remark 4.25, from the METIS partitioning of L(G)

described in Figure 4.20, we have obtained the sub-domains illustrated in Figure 4.21. The 2

1 (1) 3 (4) 2 (4)

1 (3)

2 (2) 4 (5) 3 (5)

µ4

µ5

nl (ng) nl (ng)

sub-domain #1 (S1) sub-domain #2 (S2)

(a) 2 sub-domains (2-partitioning). Multiplicity of
nodes (4) and (5): µ4 = 2 and µ5 = 2.

1 (1) 3 (4) 2 (4) 1 (3)

2 (2) 4 (5) 2 (5) 1 (3)

µ4

µ5

µ3

nl (ng) nl (ng) nl (ng)

sub-domain #1 (S1) sub-domain #2 (S2) sub-domain #3 (S3)

(b) 3 sub-domains (3-partitioning). Multiplicity of
nodes (3), (4) and (5): µ3 = 2, µ4 = 2 and µ5 = 2.

FIGURE 4.21: Sub-domains obtained from the METIS (API C/C++) 2-coloring and 3-coloring of the
line-graph given in Figure 4.20. nl (ng) stands for nl: local node number, ng: global node

number

cut-edges êe(1′4),e(3′4)
and êe(2′5),e(3′5)

in Figure 4.20(a) lead respectively to the interface nodes
(4) and (5). As we can see in Figure 4.21(a), the node (4) is split into 2 nodes: 3 (4) ∈ S1

and 2 (4) ∈ S2, and the node (5) is also split into 2 nodes: 4 (5) ∈ S1 and 3 (5) ∈ S2.
Similarly, in Figure 4.21(b), we have three interface nodes: (3), split into 1 (3) ∈ S2 and
1 (3) ∈ S2, from the cut-edge êe(3′4),e(3′5)

, (4), split into 3 (4) ∈ S1 and 1 (4) ∈ S2, from the
cut-edge êe(1′4),e(3′4)

and (5), split into 4 (5) ∈ S1 and 2 (5) ∈ S3, from the cut-edge êe(2′5),e(3′5)

(see Figure 4.20(b), Page 123). In the following, we consider non-interface nodes as internal

nodes.
Knowing the partitioning, i.e., the internal and interface nodes of each sub-domain, we

now present how sub-structure (sub-domain) matrices are constructed. The self-edges have
been removed before the partitioning (see Remark 4.19, Page 121), but must be taken into
account for the sub-domains given in Figure 4.21, and therefore in the construction of the
sub-matrices (we have considered that all diagonal values are non-zero). Moreover, each
interface node, ‘nl (ng)’, is associated with a number called multiplicity and noted µ#ng

where

ng is the global number of the node and nl the local number, and an edge e
(
n1

l (n1
g), n2

l (n1
g)
)

of two interface nodes ‘n1
l (n1

g)’ and n2
l (n2

g)’ is associated with an interface edge multiplicity,
noted µ#e(n1

g ,n2
g).

Definition 4.26 (Interface node multiplicity µe) The multiplicity of an interface node
‘il (ig)’ (il local number, ig global number) is the number of associated sub-domains.

We define the associated weight as follows: ωµ#ig
=

1

µ#ig

. In the following, {il (ig), µ#ig
}

and {il (ig), ωµ#ig
} will denote the interface node associated with the multiplicity µ#ig

and
associated with the weight ωµ#ig

respectively.
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Definition 4.27 (Interface edge multiplicity µ) Let us define µ#e(i1
g ,i2

g) the multiplicity of the
edge, e(i1g, i

2
g), formed by two interface nodes ‘i1l (i1g)’ and i2l (i2g)’. The multiplicity µ#e(i1

g ,i2
g)

is defined as the number of sub-domains containing the edge e(i1g, i
2
g). Note that if e(i1g, i

2
g) is

in only one sub-domain then µ#e(i1
g ,i2

g) = 1.

The notions of node multiplicity and edge multiplicity are crucial. In fact, values at the
interface nodes are weighted by the associated weight. Let us illustrate the process with a
simple example. Let M ∈ K

n×n be a square symmetric matrix, S = {S1, S2, S3} be the
partition sets of the graph associated with M , and {a1

l (ag), µ#ag
} ∈ S1, {a2

l (ag), µ#ag
} ∈ S2,

{a3
l (ag), µ#ag

} ∈ S3 an interface node ag split into S1, S2, and S3, and {b1
l (bg), µ#bg

} ∈ S1,
{b2

l (bg), µ#bg
} ∈ S2 another interface node bg split into S1, S2. We have µ#ag

= 3 and
µ#bg

= 2 . In the sub-matrices MS1 , MS2 , MS1 , we have the following contributions:

• MS1(a1
l , a

1
l ) =

M(ag, ag)

3
, MS2(a2

l , a
2
l ) =

M(ag, ag)

3
and MS3(a3

l , a
3
l ) =

M(ag, ag)

3
, such

that M(ag, ag) = MS1(a1
l , a

1
l ) +MS2(a2

l , a
2
l ) +MS3(a3

l , a
3
l ),

• MS1(b1
l , b

1
l ) =

M(bg, bg)

2
, MS2(b2

l , b
2
l ) =

M(bg, bg)

2
, such that M(bg, bg) = MS1(b1

l , b
1
l ) +

MS2(b2
l , b

2
l ),

• if the nodes ai
l and bi

l are not linked in Si then MSi
(ai

l, b
i
l) = MSi

(bi
l, a

i
l) = 0, otherwise

MSi
(ai

l, b
i
l) = MSi

(bi
l, a

i
l) =

M(ag, bg)

µ#e(ag ,bg)

Proposition 4.28 Let {ak
l (ag), µ#ag

} ∈ Sk and {bk
l (bg), µ#bg

} ∈ Sk two interface nodes

where Sk is one of the sub-domain. We have





MSk
(ak

l , a
k
l ) =

M(ag, ag)

µ#ag

and MSk
(bk

l , b
k
l ) =

M(bg, bg)

µ#bg

,

MSk
(ak

l , b
k
l ) =

M(ag, bg)

µ#e(ag ,bg)

and MSk
(bk

l , a
k
l ) =

M(bg, ag)

µ#e(bg ,ag)

.
(4.2)

such that





M(ag, ag) = MSk
(ak

l , a
k
l ) +

s∑

j=1,j 6=k

MSi
(ai

l, a
i
l), s = µ#ag

M(ag, bg) = MSk
(ak

l , b
k
l ) +

s∑

j=1,j 6=k

MSj
(as

l , b
s
l ), s = µ#e(ag ,bg),

M(bg, bg) = MSk
(bk

l , b
k
l ) +

s∑

j=1,j 6=k

MSj
(bj

l , b
j
l ), s = µ#bg

M(bg, ag) = MSk
(bk

l , a
k
l ) +

s∑

j=1,j 6=k

MSj
(bs

l , a
s
l ), s = µ#e(ag ,bg).

(4.3)

where {ai
l (ai

g), µ#ag
} ∈ Si and {bj

l (bg), µ#bg
} ∈ Sj . When the matrix is symmetric:

MSk
(ak

l , b
k
l ) = MSk

(bk
l , a

k
l ).

Considering Proposition 4.28 and according to the twofold-partitioning given in Figure 4.21(a),
we obtained the sub-matrices illustrated in Figure 4.22 for 2 sub-domains. And from the

4.3 Graph and Matrix partitioning 125



threefold-partitioning given in Figure 4.21(b), we have the sub-matrices described in Fig-
ure 4.23 for 3 sub-domains.

A(1, 1) A(1, 2) A(1, 4) 0

A(2, 1) A(2, 2) 0 A(2, 5)

A(4, 1) 0
A(4, 4)

µ4

0

0 A(5, 2) 0
A(5, 5)

µ5







1(1)

2(2)

3(4)

4(5)

1(1) 2(2) 3(4) 4(5)
S1




5 −1 −3 0
−1 6 0 −2

−3 0
8

2
0

0 −2 0
9

2




(a) Sub-domain #1 (S1)

A(3, 3) A(3, 4) A(3, 5)

A(4, 3)
A(4, 4)

µ4

0

A(5, 3) 0
A(5, 5)

µ5







1(3)

2(4)

3(5)

1(3) 2(4) 3(5)
S2




7 2 4

2
8

2
0

4 0
9

2




(b) Sub-domain #2 (S2)

FIGURE 4.22: Sub-domain matrices of the 2-partitioning described in Figure 4.21(a)

A(1, 1) A(1, 2) A(1, 4) 0

A(2, 1) A(2, 2) 0 A(2, 5)

A(4, 1) 0
A(4, 4)

µ4
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0 A(5, 2) 0
A(5, 5)

µ5


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


1(1)

2(2)

3(4)

4(5)

1(1) 2(2) 3(4) 4(5)
S1




5 −1 −3 0
−1 6 0 −2

−3 0
8

2
0

0 −2 0
9

2




(a) Sub-domain #1 (S1)

A(3, 3)

µ3

A(3, 4)

A(4, 3)
A(4, 4)

µ4







1(3)

2(4)

1(3) 2(4)S2



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2
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2
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2




A(3, 3)

µ3

A(3, 5)

A(5, 3)
A(5, 5)

µ5







1(3)

2(5)

1(3) 2(5)S3




7

2
4

4
9

2




(b) Sub-domain #2 (S2) and Sub-domain #3
(S3)

FIGURE 4.23: Sub-domain matrices of the 3-partitioning described in Figure 4.21(b)

Remark 4.29 The presented procedure for partitioning can be extended to a directed graph.
The crucial point with a digraph is to take into account the definition of adjacency in a directed
line-graph. Thus, in the following, we give the definition of a line-digraph, Ld(G) of a directed
graph Gd.

Definition 4.30 (Directed line-graph) The directed line-graph, Ld(G), of a directed graph G
is a graph such that each vertex of Ld(G) corresponds to an edge of G, and there is e(a,b) an
edge from va to vb of Ld(G) if the corresponding edges, e(ai,aj) and e(bi,bj) form a length-two
directed graph path from e(ai,aj) to e(bi,bj) in G [254] [255].

In order to avoid deadlock, the list of neighboring interfaces is re-ordering using the
algorithm proposed by D.J.A. Welsh and M.B. Powell [256] for coloring the graph optimally.
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4.3.6 Evaluation of the partitioning
To have an idea of the preprocessing step, we evaluate such data partitioning. The evaluation

has been performed in Platform-1, equipped with an Intel Core i7 920 2.67GHz processor,
which has eight cores composed of four physical cores and four logical cores, and 5.8 GB
RAM memory. To evaluate our analysis on large-scale engineering problems, we used a set
of matrices from the University of Florida repository (see Table 3.11, Page 68). The time in
seconds (s) used for partitioning into row-bands, column-bands, and sub-structures is reported
in Table 4.2. The first column gives the name of the matrix. In the second column (metis), the
sub-structuring splitting using METIS software for coloring the graph is collected. The band
column (band-c) splitting is given in the third column. The last column gives the band row
(band-r) splitting.

Matrix 2-partitioning 4-partitioning 8-partitioning

metis band-c band-r metis band-c band-r metis band-c band-r
qa8fm 3.16 1.15 1.20 4.6 1.19 1.11 6.64 1.28 1.51
2cubes_sphere 5.4 2.49 2.49 5.14 2.52 2.49 6.08 2.58 2.49
thermomech_TK 1.58 1.03 1.0 2.83 1.03 1.0 1.88 1.07 1.0
cfd2 6.74 3.72 2.06 8.28 2.52 2.04 10.84 2.25 2.61
thermal2 12.53 6.98 6.53 15.72 7.37 7.63 17.33 8.01 7.75
af_shell8 68.05 26.93 27.65 86.18 28.32 51.36 104.41 28.72 27.38
finan512 0.83 0.44 0.42 1.01 0.45 0.42 1.21 0.48 0.42

TABLE 4.2: Execution time used for partitioning (s)

For the sub-structuring splitting, see Section 5.4, Page 174.

4.4 Mathematical model
Considering the parallel platform, PSystem{p}, is capable of performing p processes of

execution of PS. Let E be a Banach space, defined as a finite product of Banach spaces:

E =
p∏

s=1

E{s} ⊂
p∏

s=1

K
n{s}

(4.4)

where s ∈ {1, . . . , p} and p ∈ N
∗. The decomposition of any vector X ∈ E can be written

as the following sequence from X = (x{1}, . . . , x{s}, . . . , x{p}), where x{s} ∈ E{s}, ∀s ∈
{1, . . . , p}. Each E{s} (s ∈ {1, . . . , p}) is a Banach space with respect to the norm |.|i. The
canonical vectorial norm c(.) of X ∈ E is a subset of Kp∗, and is defined as follows

∀X ∈ E, c(X) = (
∣∣∣x{1}

∣∣∣
{1}
, . . . ,

∣∣∣x{1}
∣∣∣
{s}
, . . . ,

∣∣∣x{1}
∣∣∣
{p}

). (4.5)

Let T be a linear mapping from D(T ) ⊂ E to E, whose domain of definition is D(T ),
D(T ) 6= ∅, T : D(T ) ⊂ E 7→ E.
Let us consider the fixed point problem: x∗ = T (x∗), x∗ ∈ D(T ). Considering the decompo-
sition of the space E, the function T can be decomposed as follows:

T (x) =
(
T {1}(x), . . . , T {s}(x), . . . , T {p}(x)

)
. (4.6)
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Each set T {s} is a function of D(T ) with values in E{s} ∩ D(T ). In this chapter, T (k), T {k}

and T k will denote respectively a linear matrix or a function depending on the iteration k,
depending on the process k and the kth power of T . So, T {k}(k) and T {k}k

denote respectively
the linear matrix or the function associated with the process k depending on the iteration k
and the kth power of T {k}. For the sake of generality, we consider in the following linear
and non-linear functions. However, we will clearly state the appropriate function if necessary.
Before discussing the convergence analysis, we will recall basic definitions.

Definition 4.31 Let p ∈ [1,+∞[. We define the lp norms in K
n by ‖x‖p =

( n∑

s=1

|xi|
p
)1/p

.

The particular l2 and l∞ norms are respectively called Euclidean norm and maximum norm.

They are respectively defined as follows ‖x‖2 =

√√√√
n∑

s=1

|xi|
2, ‖x‖∞ = max

1≤s≤n
‖xi‖.

Definition 4.32 A sequence of vectors (x(k))k∈N converges to a vector x∗ if each component
x

(k)
i converges to x∗

i , then lim
k→∞

x(k) = x∗ ⇔ ∀i ∈ {1, . . . , n}, lim
k→∞

x
(k)
i = x∗

i , which proved

that lim
k→∞

x(k) = x∗ ⇔ lim
k→∞
‖x(k) − x∗‖ = 0 for any arbitrary norm.

Now we introduce the tools which will help us model the parallelism in mathematical terms.
First, we model the behavior of synchronous algorithms, followed by the chaotic behavior of
asynchronous algorithms.

4.4.1 Synchronous iterations
Let us consider a problem defined on a set X which has an unique solution x∗. As

synchronous algorithms use the same mathematical model and have the same convergence
results as their sequential counterparts, the prerequisites are the same as those presented in
Section 3.2, Page 41. From a mathematical point of view, an iterative algorithm is defined as
a sequence of successive functions

(
T (k)

)
k∈N

from an arbitrary initial guess of the solution,
where T : X 7→ X .

The mathematical formulation of the algorithm, with an initial guess x0, is given as




x(0) = x0

x(k+1) = T (k)(x(k)), k ∈ N
∗

(4.7)

We called iteration an application of a function T (k), k ∈ N and x(k) the corresponding
approximation of the solution x∗. The convergence is detected when an accurate approximation
of the solution has been found, with a given tolerance threshold. We say that the algorithm
has converged. When T is constant, i.e., ∀ k ∈ N, T (k) = T , the algorithm is stationary such
as the Jacobi iterative method. Under this condition, the algorithm becomes a fixed point
problem. A parallel iterative algorithm is an iterative algorithm where the applications of
functions T (k), k ∈ N, are performed in parallel. Let us define X{s} ⊂ E, a set associated
with the process s ∈ PS. In most cases, X{s} is a subset of X . In addition to the variables of

128 Chapter 4 Introduction to parallel linear system solvers



a sequential algorithm, some artificial ones may be used for the needs of the parallel algorithm.

Let P be a linear (or non-linear) mapping from E =
p∏

s=1

E{s} to E,

P : X{1} × · · ·X{s} × · · ·X{p} 7→ X. (4.8)

where s ∈ {1, . . . , p}. From the mapping (4.8) we extract the problem variable from the
parallel problem, such that each process s is associated with a sequence of functions T {s}(k),
k ∈ N, with

T {s}(k) : X{1} × · · ·X{s} × · · ·X{p} 7→ X{s}. (4.9)

Definition 4.33 (Parallel synchronous algorithm) A classical synchronous parallel algo-
rithm constructs recursively for each process s ∈ {1, . . . , p} a sequence of iterations (x(k))k∈N,
from an initial guess solution x{s}(0) = x0, with x{s}(k) ∈ X(k):

x{s}(k+1) = T {s}(k)
(
x{1}(k), . . . , x{s}(k), . . . , x{p}(k)

)
, k ∈ N

∗. (4.10)

At the iteration k ∈ N, the approximate solution of the problem is expressed as follows

x(k) = P
(
x{1}(k), . . . , x{s}(k), . . . , x{p}(k)

)
.

In the synchronous algorithm (4.10), at iteration k ∈ N, each process s locally performs
the calculations associated with its function T {s}(k) and then shares the result with cooperating
processes. The functions (T {s})s∈{1,...,p} are considered independent. The exchange between
cooperating processes is only carried out at the end of the local application of the functions in
order to prepare the next iteration. Indeed, the iterations are performed synchronously (SISC
or SIAC). In general, for the sake of optimization, a given process s1 ∈ {1, . . . , p} will send
its result to process s2 ∈ {1, . . . , p}, s1 6= s2 only if its associated function T {s1} (or T {s1}(k),
k ∈ N, for non-linear functions) depends on its s2

th component. With the same procedure, and
for the sake of comparison, we now give the sequential version of the algorithm (4.10). Let us
define T̂ a mapping from D(T̂ ) ⊂ E to E,

T̂ (k) : X̂ 7→ X̂

x̂ 7→ T̂ (k)(x̂) (4.11)

where X̂ = X{1} × · · ·X{s} × · · · ×X{p} and x̂ =
(
x{1}, . . . , x{s}, . . . , x{p}

)
. Hence,

T̂ (k)(x̂) =
(
T {1}(k)

(
x{1}, . . . , x{s}, . . . , x{p}

)
, . . . , T {p}(k)

(
x{1}, . . . , x{s}, . . . , x{p}

))
.

An equivalent sequential algorithm to the synchronous parallel algorithm (4.10) is obtained
by applying X̂ and T̂ into the iterations given in (4.7). In general, the set X̂ is different to
the set X . This equivalent version may need more variables compared to the pure sequential
algorithm (see Algorithm 3.1, Page 49). However, this algorithm presents a constraint, which
compel the function P to be surjective, i.e., X ⊂ X̂ (all values of the problem domain can be
represented). Let remark that if X̂ = X , the function P is the identity.
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Proposition 4.34 (Identical behavior, sequential and synchronous) Both the sequential

and parallel algorithms have the same mathematical model and convergence results.

Considering the Proposition 4.34, to demonstrate the convergence of the parallel model, it
suffices to prove the sequential version.

Algorithm 4.3: Algorithm of sequential iterative methods

input : T : function of the iterative algorithm, x(0) ∈ D(T ): initial arbitrary solution,
ε: tolerance threshold, K: maximum number of iterations

output : x: solution
variable : k, convg

1 convg ← false; k ← 0
2 while .not. convg .OR. k < K do
3 x(k+1) ← T (k)(x(k)) // T (k) = T (for stationary)

4 convg ←
(
‖x(k) − x(k−1)‖ ≤ ε

)

5 k ← k + 1

6 end

Theorem 4.35 (Convergence results with contractive application) Suppose that T is a

contraction for a norm ‖.‖ and α is its constant of contraction. The Algorithm 4.3 generates a

convergent sequence (x(k))k∈N whose limit is the unique fixed point x∗ of T , i.e.

lim
k→∞

x(k) = x∗ where x∗ = T (x∗). (4.12)

Moreover, we have the estimation (for this norm) at the iteration k,

‖x(k) − x∗‖ ≤
α

1− α
‖x(k) − x(k−1)‖. (4.13)

In addition, if T is α-Lipschitzian, the approximation error at the iteration k is bounded by

‖x(k) − x∗‖ ≤ αk‖x0 − x
∗‖. (4.14)

This important theorem gives a sufficient condition for the convergence of sequential
stationary iterative algorithms, and thus for the parallel synchronous algorithm. For more
developments references: Y. Saad [69] and J.M. Bahi et al. [216]. The theorem also marks the
uniqueness of the fixed point of a mapping T .

4.4.2 Totally asynchronous iterations (T-AI)
In general, except for rare cases, asynchronous iterative algorithms can work as syn-

chronous algorithms with minor changes, including the addition of synchronization points.
On the contrary, a synchronous iterative algorithm is often hard to write in asynchronous
iterations because of their special conditions. Some synchronous algorithms, such as parallel
iterative Krylov methods have no answer with asynchronous schemes. The study of these
methods in an asynchronous environment remains a real challenge. Nevertheless, there are
some synchronous algorithms that can work with asynchronous iterations without any change.
In the following, we will describe the parallel model and the chaotic behavior of asynchronous
algorithms mathematically. We are interested in the stationary fixed point algorithms, which
correspond to a constant function T , i.e., ∀ k, T (k) = T .
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Definition 4.36 (Steering) A steering Σ of the algorithm is a sequence (σ(k))k∈N of non-
empty subsets of {1, . . . , p}, such as

∀ s ∈ {1, . . . , p}, {k ∈ N | s ∈ σ(k)} is infinite set, (4.15)

i.e., card
{
k ∈ N | s ∈ σ(k)

}
= +∞. (4.16)

The steering of the algorithm represents which processes update their components at the
iteration k.

Definition 4.37 (A sequence of delay of processes) A sequence of delays R is a sequence
(r(k))k∈N, such as

∀ k ∈ N, r(k) =
(
r{1}(k), . . . , r{j}(k), . . . , r{p}(k)

)
∈ N

p, j ∈ {1, . . . , p}. (4.17)

For every s, i ∈ {1, . . . , p}, let us define a function τ {s} : N → N
p, of components τ {s|i} :

k 7→ k − r{s|i}(k). For processes s, i ∈ {1, . . . , p},
(
τ {s|i}(k)

)
k∈N

is a sequence of integers,
such as

∀ k ∈ N, τ {s}(k) =
(
τ {s|1}(k), . . . , τ {s|j}(k), . . . , τ {s|p}(k)

)
∈ N

p, j ∈ {1, . . . , p}. (4.18)

τ {s|i}(k) represents the iteration number of the data coming from process i and available on
process s at iteration k and satisfies the following conditions:

∀ k ∈ N, ∀ s, i ∈ {1, . . . , p}, 0 ≤ τ {s|i}(k) ≤ k, (4.19)

and
∀ k ∈ N, lim

k→∞
τ {s|i}(k) = +∞. (4.20)

The mathematical model of the asynchronous algorithms presented in this thesis follows
the model of D.P. Bertsekas and J.N. Tsitsiklis [179] (also see J.-C. Miellou [186] and G.M.
Baudet [187]).
For more developments, proofs and more convergence results, see [177] [186] [187] [179] [216].

Definition 4.38 (Parallel asynchronous algorithm) Let a process s ∈ {1, . . . , p}. Let
X(0) = (x{s}(0)) ∈ D(T ) a given initial solution, Σ a sequence of steering andR a sequence
of delays. A classical asynchronous parallel algorithm constructs recursively for each process
s ∈ {1, . . . , p} a sequence of iterations (x(k))k∈N, from an initial guess solution x{s}(0) = x0,
with x{s}(k) ∈ X(k):




x{s}(0) = x0
{s}

x{s}(k+1) =




T {s}

(
x{1}(τ{s|1}(k)), . . . , x{i}(τ{s|i}(k)), . . . , x{p}(τ{s|p}(k))

)
if s ∈ σ(k)

x{s}(k) if s /∈ σ(k)

(4.21)

On the one hand, the sequence of steering Σ (4.15) gives the order of calculations in
parallel. The indices in σ(k) consists of the components relaxed in parallel at the iteration k.
On the other hand, the sequence of delaysR (4.17) provides information on the availability
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of data, which allows to model both the absence of synchronization between cooperating
processes and the delays due to communication latencies. The condition (4.16) on steering Σ

implies that no process will definitively stop refreshing its corresponding components. The
condition (4.20) means that old data are cleaned out of the process, i.e., new data will always
be furnished to the process, and no process will have a piece of data blocked at one iteration.
Thus, the refreshment of the components of the iterated vector always use recent data. The
condition (4.19) corresponds to the fact that data used at the time k must have been generated
before time k, i.e., time is ascending. When conditions (4.16) and (4.20) are satisfied, we talk
about a totally asynchronous algorithm. For partially asynchronous algorithms, the conditions
given in Definition 4.37 become the following:

∀ k ∈ N, ∀ s, i ∈ {1, . . . , p}, ∃ γ ∈ N, γ ≥ 0, k − γ + 1 ≤ τ {s|i}(k) ≤ k, (4.22)

and
∀ s ∈ {1, . . . , p}, τ {s|s}(k) = k. (4.23)

The condition (4.23) means that old data are cleaned out from the process after at most γ
iterations. The condition (4.22) ensures that the own calculated components of a process are
never obsolete.

Remark 4.39 For all iterations k ∈ N and all processes s, i ∈ {1, . . . , p}, if τ {s|i}(k) = k, i.e.,
r{s|i}(k) = 0, i.e., we consider a sequence of zero delays [257], then the algorithm (4.21) de-
scribes synchronous parallel algorithms. In this context, the conventional sequential relaxation
methods are modeled by specific choices of steering Σ:

• For the Jacobi method: ∀ k ∈ N, σ(k) = {1, . . . , p},

• For the Gauss-Seidel method: ∀ k ∈ N, σ(k) = 1 + (k mod p).

Convergence results In the following, we present some convergence results for asyn-
chronous algorithms.

Assumption 4.40 Let E =
p∏

s=1

E{s} ⊂
p∏

s=1

K
n[s] . ∀ i ∈ {1, . . . , p},∀ k ∈ N, ∃ E{s}(k) ⊂

E{i}, a sequence of nested sets, such as E{i}(k+1) ⊂ E{i}(k) and T (E(k)) ⊂ E(k+1), where

E(k) =
p∏

i=1

E{i}(k).

We give in Assumption 4.41 another equivalent approach of the conditions of Assump-
tion 4.40.

Assumption 4.41 There exists a sequence of non-empty sets (X̂(k))k∈N such as, ∀ k ∈
N, X̂(k+1) ⊂ X̂(k), with X̂(0) ⊂ X̂ , such that satisfies the following conditions:

• ∀ k ∈ N, x̂ ∈ X̂(k), T̂ (x̂) ∈ X̂(k+1).

• For each k ∈ N, there exists a set X{s}(k) ⊂ X{s}, s ∈ {1, . . . , p}, such that

X̂(k) = X{1}(k) × · · · ×X{i}(k) × · · · ×X{p}(k).

Considering the first condition, if (y(k))k∈N is a sequence such that for each k, y(k) ∈ X̂(k),
then every limit point of (y(k))k∈N is a fixed point of T̂ .
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Theorem 4.42 (Convergence results of parallel asynchronous iterations) Under Assump-

tion 4.40 (Assumption 4.41) and under hypothesis (4.16) and (4.20), from any initial guess

x(0) ∈ E(0) (x̂(0) ∈ X̂(0)), the limit points of the sequence (x(k))k∈N ((x̂(k))k∈N) produced by

an asynchronous iterative algorithm (4.21) are the solution of a fixed point problem (4.12)
(fixed point of T̂ ).

D. Chazan and W. Miranker [177] have shown that the sufficient conditions of the The-
orem 4.42 are necessary when T is a linear mapping and ni = 1 for each i ∈ {1, . . . , p}.
Convergence results have been proven by D. Chazan and W. Miranker [177] for linear sys-
tems, J.-C. Miellou [186], G.M Baudet [187], and M.N. El Tarazi [191] [192] for contracting
operators and J.-C. Miellou [186] and D.P. Bertsekas [233] for monotone iterations.

Definition 4.43 (Weighted maximum norm) A weighted maximum norm ‖.‖w
∞ is defined in

such a way that,

∀ x ∈ E, ‖x‖w
∞ = max

1≤i≤p

∣∣∣x{i}
∣∣∣
i

wi

. (4.24)

where |.|i is a norm defined in E{i} and w is a positive vector, such as

w = (w1, . . . , wi, . . . , wp) ∈ K
p

with wi > 0,∀ i ∈ {1, . . . , p}. And thus, for T a n× n matrix,

‖T‖w
∞ = max

1≤i≤p

1

wi

n∑

j=1

|tij|wj. (4.25)

Theorem 4.44 (Convergence with weighted maximum norm) If T has a fixed point and if

T is a contractiion mapping in x∗ with respect to the weighted maximum norm ‖.‖w
∞, i.e.

∃ α ∈]0, 1[, ∀ x ∈ D(T ), ‖T (x)− T (x∗)‖w
∞ ≤ α‖x− x∗‖w

∞ (4.26)

then the sequence (x(k))k∈N generated by a parallel asynchronous algorithm (4.21) converges

to the unique fixed point x∗ of T with respect to the weighted maximum norm ‖.‖w
∞.

The Theorem 4.44 is the asynchronous equivalent of Theorem 4.35. J.-C. Miellou [186]
has demonstrated this theorem.

The weights wi are obtained by the Perron-Frobenius theorem (Theorem 4.47) in case of
monotone operators. Let us fix the following notations. Let v ∈ R

n and w ∈ R
n two vectors,

A ∈ R
n×n, and β noted as a scalar but β ∈ R

n.

• v > w means ∀ i ∈ {1, . . . , n}, vi > wi,

• v ≥ w means ∀ i ∈ {1, . . . , n}, vi ≥ wi,

• v ≥ β means ∀ i ∈ {1, . . . , n}, vi ≥ β,

• A ≥ β means ∀ i, j ∈ {1, . . . , n}, Ai,j ≥ β; if β = 0 ∈ R
n, A is a non-negative matrix.

Proposition 4.45 If an n× n matrix is irreducible and if some non-negative vector w ≥ 0,

such as Tw = 0, then w = 0.

Proof. This is a direct consequence of (4.25).
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Proposition 4.46 If T and N are n× n matrices and w ≥ 0 a non-negative vector, then the

following are equivalent:

1. If T ≥ 0, then ‖T‖w
∞ = ‖Tw‖w

∞.

Proof. By (4.25), ‖T‖w
∞ = max

i

1

wi

n∑

j=1

tijwi = max
i

1

wi

(Tw)i = ‖Tw‖w
∞.

2. ‖|T |‖w
∞ = ‖T‖w

∞

Proof. This is a direct consequence of (4.25).

3. Let T ≥ 0. Then, for any scalar ζ > 0, ‖T‖w
∞ ≤ ζ iff Tw ≤ ζw.

Proof. Using 1., ‖T‖w
∞ ≤ ζ iff ‖Tw‖w

∞ ≤ ζ ⇔ Tw ≤ ζw.

4. ρ(T ) ≤ ‖T‖w
∞.

Proof. True for any norm ‖.‖.

5. If T ≥ N ≥ 0, then ‖T‖w
∞ ≥ ‖N‖

w
∞.

Proof. This is a direct consequence of (4.25).

Theorem 4.47 (Perron-Frobenius Theorem) Let T be a n×n non-negative matrix (T ≥ 0).

Then

• If T is irreducible, then ρ(T ) is an eigenvalue of T and there exists some w ∈ R
n, w > 0

such that Tw = ρ(T )w. Moreover, such a w is unique within a scalar multiple, i.e.,

if some v also satisfies Mv = ρ(T )v, then for some scalar α, v = αw. Finally,

‖T‖w
∞ = ρ(T ).

• ρ(T ) is an eigenvalue of T and there exists some w ≥ 0, w 6= 0, such as Tw = ρ(T )w.

• ∀ ε > 0, there exists some w > 0 such that ρ(T ) ≤ ‖T‖w
∞ ≤ ρ(T ) + ε.

The proof of the Theorem 4.47 is given in the subsection 2.6 (Convergence Analysis of Classical

Iterative Methods), pp.148–150, of the book by D.P. Bertsekas and J.N. Tsitsiklis [179], Part 1
(Synchronous Algorithms), Section 2 (Algorithms for Systems of Linear Equations and Matrix

Inversion). Considering the Perron-Frobenius Theorem (Theorem 4.47), we give the following
corollaries and propositions.

Corollary 4.48 If T is a n× n non-negative matrix, then the following are equivalent:

1. ρ(T ) < 1.

Proof. Using 2 and 3., then ‖T‖w
∞ ≤ ζ < 1, and by 4. of Proposition 4.46, ρ(T ) <

1.

2. There exists some w > 0 such that ‖T‖w
∞ < 1.

Proof. Using 1., by Theorem 4.47 (Perron-Frobenius), let ε→ 0+, there exists some w
such that ‖T‖w

∞ ≤ ρ(|T |) + ε < 1

3. There exist some ζ < 1 and w > 0 such that Tw ≤ ζw.

Proof. See 3. of Proposition 4.46.

Corollary 4.49 Given any n× n matrix T , there exists some w > 0 such that ‖T‖w
∞ < 1 is

and only is ρ(|T |) < 1.
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Proof. By Theorem 4.47 (Perron-Frobenius), for any ε > 0, there exists some w such that

ρ(T ) ≤ ‖T‖w
∞ = ‖|T |‖w

∞ ≤ ρ(|T |) + ε

Since w was arbitrary, we can choose ε→ 0 to obatin ρ(T ) < ρ(|T |).

Corollary 4.50 For any n× n matrix T , ρ(T ) ≤ ρ(|T |).

Proof. By Theorem 4.47 (Perron-Frobenius), for any ε > 0, there exists some w such that

ρ(T ) ≤ ‖T‖w
∞ = ‖|T |‖w

∞ ≤ ρ(|T |) + ε

Since w was arbitrary, we can choose ε→ 0 to obatin ρ(T ) < ρ(|T |).

exist some ζ < 1 and w > 0 such that Tw ≤ ζw.

Corollary 4.51 For any n× n matrix T , exist some γ ∈ R, ζ ∈ R and w ∈ R
n such that

0 < γ < ζ < 1, w > 0 and |T |w ≤ γw.

Proof. By Theorem 4.47 (Perron-Frobenius) on |T |, for any ε > 0, there exists some w such
that

ρ(|T |) ≤ ‖|T |‖w
∞ ≤ ρ(|T |) + ε.

Let us consider ε =
1− ρ(|T |)

2
and an appropriate w which satisfies the previous. We can then

choose, γ = ‖|T |‖w
∞ and ζ = 1 −

1− γ

2
. By (4.25), γ = ‖|T |‖w

∞ = max
i

1

wi

n∑

j=1

|tij|wi =

max
i

1

wi

(|T |w)i.

Thus, ∀ i, γ ≥
1

wi

(|T |w)i. Finally, |T |w ≤ γw < ζw (γ < ζ and w > 0).

The following proposition stems from Theorem 4.47.

Corollary 4.52 Let T ∈ K
n×n a square matrix and c ∈ K

n a vector. F : x 7→ Tx + c is a

contraction mapping with respect to a weighted maximum norm ‖.‖w
∞ if and only if ρ(|T |) < 1.

Definition 4.53 (Z−matrix) A matrix T ∈ K
n×n is said to be a Z−matrix if all of its

off-diagonal entries (if any) are non-negative, i.e.

∀ i, j ∈ {1, . . . , n}, Ai,i > 0 and Ai,j ≤ 0 for i 6= j (4.27)

Proposition 4.54 Let A be a Z−matrix, then the following properties are equivalent:

• There exists a non-negative vector u (u ≥ 0) such that Au > 0.

• There exists a positive vector u (u > 0) such that Au > 0.

• The matrix A is non-singular and (A−1)i,j ≥ 0,∀ i, j ∈ {1, . . . , n}

• The spectral radius of the Jacobi matrix associated to A is strictly less than 1, i.e.,

ρ(I −D−1A) < 1

Definition 4.55 (M−matrix) A matrix T ∈ K
n×n is said to be a M−matrix if T is a

Z−matrix that satisfies Proposition 4.54.
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Proposition 4.56 The Jacobi iterative algorithm converges for any M−matrix.

Proposition 4.57 The Jacobi matrix associated with a Z−matrix is non-negative. For

Z−matrices, the asynchronous convergence conditions are similar to synchronous ones.

Moreover, if the matrix A of the linear system Ax = b (3.1) is a Z−matrix, then the associated

asynchronous Jacobi algorithm converges if and only if the properties of Proposition 4.54 are

verified.

Before presenting the sub-structuring methods in the next section, we first give some
properties and convergence results of splitting methods. A particular attention will be paid to
the Jacobi method.

4.4.3 Jacobi method, a stationary iterative method based on
splittings

The Jacobi method is a stationary iterative method based on splittings of the matrix
A ∈ K

n×n, presented in Section 3.2.3, Page 48. Let

A = M −N, (4.28)

be a splitting of A, such that M is a non-singular matrix.

Definition 4.58 (Iterative splitting algorithm) The iterative algorithm associated with the
splitting (4.28) is defined by




u(0) given,

u(k+1) = M−1Nu(k) +M−1b, ∀ k ∈ N.
(4.29)

Let T = M−1N and c = M−1b. The matrix |T | is defined such that |T | = (|Ti,j|), for
i, j ∈ {1, . . . , n}.

Remark 4.59 The speed of the algorithm is determined by the quantity ρ(T ), where ρ(T )

denotes the spectral radius of the matrix T . More accurately, the bounded value of the error
between the exact solution and the approximate solution at iteration k is expressed by:

∀ε > 0, ‖u(k) − u∗‖ ≤ (ρ(T ) + ε)k‖u(0) − u∗‖ (4.30)

For a detailed proof of (4.30), see Section 3.2, Page 41 and J.M Bahi et al. book [216].

Theorem 4.60 The sequential and parallel synchronous algorithms (4.29) converge if and

only if the spectral radius ρ(T ) < 1.

Proof. (see Section 3.2.3, Page 46)

Theorem 4.61 The asynchronous associated with algorithm (4.29) converges if and only if

the spectral radius ρ(|T |) < 1.

The Theorem 4.61 stems from D. Chazan and W. Miranker [177].
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Definition 4.62 (Jacobi iterations) The Jacobi algorithm is obtained by considering M and
N in algorithm (4.29) such as M = D is the diagonal part of A (non-singular), N = −(L+U)

where L and U are the strictly lower and upper triangular of A, i.e.




u(0) given,

u(k+1) = D−1
(
b− (L+ U)u(k)

)
, ∀ k ∈ N

(4.31)





u
(0)
i given,

u
(k+1)
i =

1

aii


bi −

n∑

j=1
j 6=i

aiju
(k)
j


 , i = {1, . . . , n}, k ∈ N.

(4.32)

Definition 4.63 (Gauss-Seidel iterations) The Gauss-Seidel algorithm is obtained by con-
sidering M and N in algorithm (4.29) such that M = D + L and N = −U , i.e.




u(0) given,

u(k+1) = (D + L)−1
(
b− Uu(k)

)
, ∀ k ∈ N

(4.33)

Figure 4.24 shows the scheme of the Jacobi method (4.31). Considering the algorithm (4.32),

D u(k+1) +

U

L

u(k) = b

FIGURE 4.24: Design of the Jacobi algorithm
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the computations of the components u(k)
i , i ∈ {1, . . . , n} are independent, which signifies that

their update can be performed in parallel.

Algorithm 4.4: Jacobi method: element updates version
input : n: size of the matrix,

A: n× n square matrix, b: right-hand side vector, u(0): initial guess,
ε: tolerance threshold, K: maximum number of iterations

output : u: solution vector

1 Choose an initial guess u(0) to the solution
2 k ← 0

3 while Loop until convergence do
4 for i = 1 : n do
5 σ ← 0

6 for j = 1 : n do
7 if i 6= j then

8 σ ← σ + aij ∗ u
(k)
j

9 end
10 end
11 end

12 u
(k+1)
i ←

1

aii

(bi − σ)

13 if ‖u(k+1) − u(k)‖ ≤ ε then
14 k ← k + 1

15 break;

16 end
17 k ← k + 1

18 end

Algorithm 4.5: Jacobi method: vectorial version
input : n: size of the matrix,

A: n× n square matrix, b: right-hand side vector,
u(0): initial guess,
ε: tolerance threshold, K: maximum number of iterations

output : u: solution vector

1 Choose an initial guess u(0) to the solution
2 k ← 0

3 Compute D−1 //- - D−1 is computed once before the iterations

4 while Loop until convergence do
5 q ← Au(k)

6 // Compute r ← b−Au(k)

7 r ← b− q

8 //- - Compute ‖r‖ ≡ ‖u(k+1) − u(k)‖/‖D−1‖

9 ‖r‖ ← ‖b−Au(k)‖

10 if ‖r‖ ≤ ε then
11 k ← k + 1

12 break;

13 end

14 u(k+1) ← u(k) +D−1r

15 k ← k + 1

16 end
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Algorithm 4.4 and Algorithm 4.5 present respectively the element updates version and
vectorial version. Unlike the Gauss-Seidel algorithm, the Jacobi algorithm converges more
slowly, but is fully parallelizable.

Proposition 4.64 (Jacobi iterations (vectorial form)) The jacobi iteration given in algo-

rithm (4.31) can be rewritten in the following form




u(0) given,

u(k+1) = D−1
(
b− Au(k)

)
+ u(k), ∀ k ∈ N

(4.34)

The vectorial form given in algorithm (4.32) can also be written as





u
(0)
i given,

u
(k+1)
i =

1

aii


bi −

n∑

j=1

aiju
(k)
j


+ u

(k)
i , i = {1, . . . , n}, k ∈ N.

(4.35)

Proof.

u(k+1) = D−1
(
b− (L+ U)u(k)

)
= D−1

(
b− (A−D)u(k)

)

= D−1
(
b− Au(k)

)
+ u(k)

Similarly, u(k+1)
i =

1

aii


bi −

∑

j=1
j 6=i

aiju
(k)
j


 =

1

aii


bi − (

∑

j=1

aiju
(k)
j − aiiu

(k)
i )




=
1

aii


bi −

∑

j=1

aiju
(k)
j


+ u

(k)
i , ∀ i = {1, . . . , n}.

Proposition 4.65 The convergence of the Jacobi method is ensured if the matrix A is diago-

nally dominant:

∀ i ∈ {1, . . . , p}, |aii| ≥
∑

j=1
j 6=i

|aij| . (4.36)

The convergence is also ensured for Z−matrices, which are matrices with positive diagonal

elements and negative off-diagonal elements.

Proposition 4.66 (Jacobi error vector) Considering the Proposition 4.64, the error vector

ζ(k) = u(k+1)−u(k) of the Jacobi algorithm can be expressed as follows: ζ(k) = u(k+1)−u(k) =

D−1
(
b− Au(k)

)
.

4.5 Conclusion
In this chapter, we have introduced the different classes of parallel iterative methods for

readers not familiar with parallel and distributed computing. Different splitting strategies
allowing data distribution among processors are also described. In particular, we have presented
a smart process to partition a sparse matrix for parallel sub-structuring methods. In order to
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better understand the mechanism and the model of parallel algorithms, we have presented the
mathematical models of parallel synchronous and asynchronous algorithms.
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Chapter 5
Implementation of parallel linear system
solvers „The only source of knowledge is experience.

— Albert Einstein
(Physicist)

5.1 Introduction
Knowing more about synchronous and asynchronous iterative methods and how to prepare

data for parallel algorithms, we now focus on the study of sub-structuring method, a domain
decomposition method without overlap.

My contribution to this chapter has been to develop, implement and test innovative algo-

rithms of parallel synchronous and asynchronous sub-structuring methods.

My contribution was also to integrate GPU Computing in parallel algorithms with syn-

chronous and asynchronous iterations.

We give proof of the convergence of asynchronous sub-structuring methods.

We also give some theorems concerning fault-tolerance in parallel processing and we study

the behavior of the algorithm when some iterations are penalized.

The remainder of this chapter is organized as follows. The first section, Section 5.2 de-
scribes and discusses sub-structuring methods. The sub-structuring method is first presented
in the synchronous case. Then a particular attention is paid to the asynchronous case. In this
section, we give a proof of the convergence of the asynchronous sub-structuring methods. In
Section 5.2, we also evaluate the behavior of parallel algorithms in terms of fault-tolerance
and iteration penalization. Section 5.3 studies the theoretical speed-up of fully parallelizable
iterative methods with synchronous and asynchronous iterations. This section aims to analyze
the behavior of asynchronous algorithms. In Section 5.3, my contribution is the theorems

for theoretical speed-up of synchronous and asynchronous parallelizable iterative methods.

Section 5.4 reports numerical results and shows the advantage of parallel sub-structuring
methods, particularly when they are associated with asynchronous iterations with enough
processes. The numerical results highlight the effectiveness and robustness of these methods
on a platform of multi-core-GPUs. Section 5.5 concludes the chapter.

Keywords — Parallel Synchronous, Parallel Asynchronous, Convergence detection, Itera-
tive algorithms, Sub-structuring methods, Jacobi method, Domain Decomposition Method,
DDM, Schwarz
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5.2 Sub-structuring methods
The sub-structuring method is the precursor of non-overlapping domain decomposition

methods [16] [17] [18] [19]. The sub-structuring method is based on the decomposition of the
original structure into several sub-structures. The term sub-structuring is a way to describe
a general method allowing to decompose a splitting among sub-domains sharing a common
interface. This method is most often used as a way to reduce the number of unknowns in the
linear system by eliminating the interior unknowns. In this section, we present a convergence
theorem for asynchronous sub-structuring methods. The convergence results are derived from
the convergence of the associated sequential fixed point problem and the splitting of the matrix
between the sub-domains. Consider again the system of linear equations,

Au = f, (5.1)

where A is a n× n square non-singular matrix, f and u represent respectively the right-hand
side and the solution vector we are looking for. Let us consider the field K, usually R or C.

The remainder of this section is organized as follows. We start by giving a complete
and basic illustration of sub-structuring methods in order to better understand their main
steps and properties. A general mathematical model of synchronous and asynchronous sub-
structuring methods are then presented. The proof of the asynchronous convergence of the
sub-structuring algorithm is also presented. The next section relates some important points
concerning the halting procedure and the convergence detection of asynchronous algorithms.
The last section describes how we proceed to implement sub-structuring methods on a system
of multi-core-GPUs. Some approaches of this section are inspired by the chapter presented in
reference [258].

5.2.1 Overview of the principle of sub-structuring
methods

In order to illustrate the sub-structuring method, we consider a problem steming from
the finite element discretization of an elliptic partial differential problem. To simplify the
analysis, we consider the Laplace equation. However, the analysis can be carried out for any
coercive elliptic problem. The model problem for the unknown u, in a bounded domain Ω with
homogeneous Dirichlet boundary conditions on the boundary ∂Ω = Γ can be expressed as:
for f ∈ L2(Ω), find u ∈ H1(Ω) such that −∇2u = f in Ω and u = 0 on Γ. An equivalent
variational formulation of this problem can be formulated as: for f ∈ L2(Ω), find u ∈ H1

0 (Ω)

such that ∀v ∈ H1
0 (Ω),

∫

Ω
∇u.∇v =

∫

Ω
b.v. This problem is well posed, i.e., it has one and

only one solution. After a Galerkin discretization with finite elements and a choice of nodal
basis, the linear system (5.1), Au = f , is obtained, where f denotes the right-hand side, u the
unknown and A the stiffness matrix which is sparse. The following shows the main steps for
performing a matrix-vector product using a splitting into sub-structures.

Matrix splitting

In practice, mesh partitioning is a crucial step of the finite element method. A finite element
matrix is associated with a finite element mesh and the elements of the matrix are correlated
with the interaction of the basis functions defined in the elements of the mesh. The total
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matrix is calculated as an assembly of elementary matrices. Let us consider a global domain
Ω partitioned into two sub-domains without overlap Ω1 and Ω2, with a shared interface Γ as
drawn in Figure 5.1. When a suitable numbering of the degrees of freedom is harnessed, the

FIGURE 5.1: Splitting into two sub-domains

stiffness matrix of the initially considered model problem can be written as in the following
matrix:

A =




A[11] 0 A[13]

0 A[22] A[23]

A[31] A[32] A[33]


 (5.2)

It is formulated considering the case where the set of nodes numbered 1 and 2 are respectively
associated to the sub-domains Ω1 and Ω2. The last set of nodes numbered 3 corresponds to
the interface nodes of both sub-domains. It is possible to split the original system (5.1) into
blocks




A[11] 0 A[13]

0 A[22] A[23]

A[31] A[32] A[33]







u[1]

u[2]

u[3]


 =




f[1]

f[2]

f[3]


 (5.3)

where u = (u[1], u[2], u[3])
t is the unknown vector and f = (f[1], f[2], f[3])

t is the right-hand
side. The blocks A[13] and A[23] are respectively the transpose matrix of A[31] and A[32], and the
blocks A[11] and A[22] are symmetric positive-definite if A was symmetric positive-definite. By
assigning the different sub-domains at distinct processors, the local matrices can be formulated
in parallel as follows:

A1 =


 A[11] A[13]

A[31] A
{1}
[33]


 and A2 =


 A[22] A[23]

A[32] A
{2}
[33]


 . (5.4)

The blocks A{1}
[33] and A{2}

[33] denote the interaction between the nodes on the interface Γ, respec-
tively integrated in sub-domains Ω1 and on Ω2, i.e.

A[33] = A
{1}
[33] + A

{2}
[33] (5.5)

In practice, the sub-domains Ω1 and Ω2 respectively know the set of nodes (1, 3) and (2,3).

Matrix-vector product

As described in the previous chapter, iterative Krylov algorithms require performing one
or more multiplication(s) of the matrix A by a descent direction vector u = (u[1], u[2], u[3])

t at
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each iteration. With the splitting into two sub-domains, the global matrix-vector multiplication
can be written as follows:




y[1]

y[2]

y[3]


 =




A[11] 0 A[13]

0 A[22] A[23]

A[31] A[32] A[33]







u[1]

u[2]

u[3]




=




A[11]u[1] + A[13]u[3]

A[22]u[2] + A[23]u[3]

A[31]u[1] + A[32]u[2] + A[33]u[3]




Considering the local matrices’ described in equation (5.4), we can independently compute
both local matrix-vector products as follows


 y[1]

y
{1}
[3]


 =


 A[11]u[1] + A[13]u[3]

A[31]u[1] + A
{1}
[33]u[3]





 y[2]

y
{2}
[3]


 =


 A[22]u[2] + A[23]u[3]

A[32]u[2] + A
{2}
[33]u[3]




Since A[33] = A
{1}
[33] + A

{2}
[33], and y[3] = y

{1}
[3] + y

{2}
[3] . According to this last remark, SpMV can

be calculated in two steps:

• calculate the local matrix-vector multiplication in each sub-domain

• assemble, the local contributions on the interface

The first step involves only local data. The second requires the exchange of data between
processes dealing with sub-domains with a common interface. In order to assemble interface
values of neighboring sub-domains, each processor responsible for a sub-domain must know
the description of its interfaces.

Exchange at the interfaces

When a sub-domain Ωi has several neighboring sub-domains, we denote Γij the interface
between Ωi and Ωj as described in (see Figure 5.2, Page 144). An interface is identified by

FIGURE 5.2: Sub-structure interface description
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its neighboring sub-domains and the equations associated with its nodes. The interface is
evaluated from its sub-domains using the sparse matrix-vector product. This computation
is in two steps for each neighboring sub-domain (Algorithm 5.1): collect the values of the
local vector y = Au for all interfaces nodes, and then send this list to the y vector of the
interface equation. The next step consists in updating these changes to all neighboring

Algorithm 5.1: Construct inner buffer and send to neighboring
input : ns: number of interface nodes

number_of_neighboring: number of neighboring sub-domains
y: values on the whole sub-domain
lists: list of the interface nodes

output : buffers: sending buffer
1variable s, i

1 for s← 1 : number_of_neighboring do
2 for i = 1 : ns do
3 buffers(i) = y(lists(i))
4 end
5 Send buffers to neighbour(s)
6 end

sub-domains at interfaces equations. First, the contributions of the array containing the result
of the matrix-vector product at the interface are received, and then values on the corresponding
interface nodes are updated. This processus is described in Algorithm 5.2. In GPU code, the
construction of the inner buffer is carried out on CPU before sending it to the neighboring
sub-domain. When an equation is shared by several interfaces, the node value of the local

Algorithm 5.2: Receiving interface results and updating interface equations
input : ns: number of interface nodes

number_of_neighboring: number of neighboring sub-domains
y: values on the whole sub-domain
lists: list of the interface nodes

output : buffers: receiving buffer
1variable s, i

1 for s← 1 : number_of_neighboring do
2 Receive buffers from neighbour(s) for i = 1 : ns do
3 y(lists(i)) = y(lists(i)) + buffers(i)
4 end
5 end

vector y = Au in question is sent to all interfaces to which it belongs. For any number of
sub-domains, the mechanism of interface exchange and update is similar to those previously
presented. In GPU code, the procedure of exchange has been performed on CPU and then the
assembled vector is copied back to GPU, before continuing the algorithm.

The use of the sub-structuring approach in iterative algorithms is inherently parallel and
makes it an excellent candidate for implementation on parallel computers. Indeed, we can
distribute the sub-domains over all available processors and thus compute the matrix-vector
products locally, independently and in parallel, and use the distributed memory in order to limit
the memory usage. As explained previously, after the computing of the local matrix-vector
multiplications, they required to be assembled along the interface. The key ingredient of the
data is the local matrix C that arises from the finite element discretization. With this approach,
each node i only needs to store Ci, the corresponding local matrix to the sub-domain Ωi, which
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is only a fraction of the original matrix. The dot product requires that each processor compute
a weighted combination of the interface contributions in order to update its own data. After
that, an MPI_ALLREDUCE is required to compute the global inner product. Transfers between
CPU and GPU at each iteration can decrease the performance of the exchanges’ algorithms.

The iterative sub-structuring method introduces only two new steps, which reside in data
exchange. They consist firstly in sharing the contributions of the local computed SpMV at
the interface. Each machine requires to know the list of nodes along the interface and the
number of neighboring sub-domains. Secondly, in assembling results over the cluster in order
to piece together the local scalar product. This action, realized with MPI, is independent from
the splitting. Finally, another advantage of this algorithm is that it can easily be generalized
for n sub-domains. This approach however, presents two disadvantages. The first drawback
arises from a computational point of view. The granularity, i.e., the number of operations
to be performed by the processors compared to the amount of data received or sent by the
processors may be weak. Indeed, here the granularity is proportional to the number of nodes in
the sub-domains compared to the number of nodes on the interface. The number of operations
depend on the first parameter and the data transfer depends on the second parameter. If
a lot of sub-domains are used, the interface size will not be small compared to the local
sub-problem size. This means that the processors realize few computing operations (a local
matrix-vector product) and a lot of communications. The second and more important drawback
is an algorithmic one. The classical parallel preconditioners per sub-domain are based on an
incomplete factorization of the local matrices. Such preconditioners are less and less efficient
when the number of sub-domain increases.

5.2.2 Matrix-based splitting
Let us consider the parallel platform, PSystem{p}, is capable of executing p processes of

execution of PS and the original domain is decomposed in p sub-domains.
The system of linear algebraic equations (5.1) (Au = f , A ∈ K

n×n is a sparse matrix,
f ∈ K

n the right-hand side and u ∈ K
n represents the solution vector we are looking for)

obtained from a finite element discretization, which has a special form thanks to the appropriate
ordering of the unknowns




A
{1}
[ii] 0 · · · A

{1}
[ib]

. . .
...

0 A
{s}
[ii] A

{s}
[ib]

...
. . .

...

A
{p}
[ii] A

{p}
[ib]

A
{1}
[bi] · · · A

{s}
[bi] · · · A

{p}
[bi] A[bb]




︸ ︷︷ ︸
A




u
{1}
[i]
...

u
{s}
[i]
...

u
{p}
[i]

u[b]




︸ ︷︷ ︸
u

=




f
{1}
[i]
...

f
{s}
[i]
...

f
{p}
[i]

f[b]




︸ ︷︷ ︸
f

(5.6)

Let us describe the notations used in (5.6):

• b denotes the parts corresponding to the interface between sub-domains,

• i denotes the parts corresponding to the interior between sub-domains,
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• A{s}
[ii] , where s ∈ {1, . . . , p}, is the sub-matrix of internal nodes of matrix A on the

sub-domain s,

• A{s}
[ib] and A{s}

[bi] , where s ∈ {1, . . . , p}, denote respectively the interactions between the
interface (i) and the interior (b) of the sub-domain s,

• A[bb] is the interface sub-matrix,

• u{s}
[i] and f {s}

[i] , where s ∈ {1, . . . , p}, are respectively sub-vectors of the internal nodes

of the solution and the right-hand side on the sth sub-domain,

• u[b] and f[b] are respectively sub-vectors of the solution and the right-hand side on the
interface.

Matrix A[bb] and vector f[b] contain contributions from the sub-domains

A[bb] =
p∑

s=1

A
{s}
[bb] and f[b] =

p∑

s=1

f
{s}
[b] . (5.7)

A spatial partitioning of the domain conforming to the finite element discretization is given in
Figure 5.1.

The splitting of the system (5.6) is performed following a renumbering of the rows so that
the degree of freedom (dof ) of internal nodes comes out first and is ranged by sub-domains.
The splitting is such that two cooperating sub-domains s1 and s2 interact only via their interface
nodes. Considering the special form (5.6) of the system of linear algebraic equations (5.1),
which thanks to appropriate renumbering of the unknowns, the associated matrix T = M−1N

and the vector c = M−1f of iterative splitting algorithm (see eq. (4.29), Page 136) can be
rewritten in the form

T =




T
{1}
[ii] 0 · · · T

{1}
[ib]

. . .
...

0 T
{s}
[ii] T

{s}
[ib]

...
. . .

...

T
{p}
[ii] T

{p}
[ib]

T
{1}
[bi] · · · T

{s}
[bi] · · · T

{p}
[bi] T[bb]




and c =




c
{1}
[i]
...

c
{s}
[i]
...

c
{p}
[i]

c[b]




(5.8)

After the splitting of the matrix T and vector c described in (5.8), on each subdom s ∈

{1, . . . , p}, these contributions can be rewritten in the form

T {s} =


T

{s}
[ii] T

{s}
[ib]

T
{s}
[bi] T

{s}
[bb]


 and c{s} =


c

{s}
[i]

c
{s}
[b]


 (5.9)

The matrix T[bb] and vector c[b] contain contributions from the sub-domains:

T[bb] =
p∑

s=1

T
{s}
[bb] and c[b] =

p∑

s=1

c
{s}
[b] . (5.10)
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The splitting (5.9) becomes more attractive if we can build for each sub-domain s ∈ {1, . . . , p},
the sub-matrix T {s} from the sub-matrix A{s} of the original matrix:

A{s} =


A

{s}
[ii] A

{s}
[ib]

A
{s}
[bi] A

{s}
[bb]


 (5.11)

This is the case for the Jacobi method. Considering the special form of the matrix A (5.6)
and the splitting of the Jacobi method (see Definition 4.62, Page 136), where M = D is the
diagonal part of A (non-singular) and N = −(L+ U) with L and U are the strictly lower and
upper triangular of A, we can rewrite M and N as follows

M =




M
{1}
[ii] 0 · · · 0

. . .
...

0 M
{s}
[ii] 0

...
. . .

...

M
{p}
[ii] 0

0 · · · 0 · · · 0 M[bb]




, N =




N
{1}
[ii] 0 N

{1}
[ib]

. . .
...

0 N
{s}
[ii] N

{s}
[ib]

...
. . .

...

N
{p}
[ii] N

{p}
[ib]

N
{1}
[bi] · · · N

{s}
[bi] · · · N

{p}
[bi] N[bb]




(5.12)
The matrix N[bb] is the opposite of the off-diagonal values of A[bb], i.e.

N[bb] = −A[bb]. (5.13)

With the splitting (5.12), the terms of the sub-matrix T {s} described in (5.9) can be expressed
as follows:




T

{s}
[ii] = M

{s}
[ii]

−1
N

{s}
[ii] ,

T
{s}
[ib] = M

{s}
[ii]

−1
N

{s}
[ib] ,

and




T

{s}
[bi] = M[bb]

−1N
{s}
[bi] ,

T
{s}
[bb] = M[bb]

−1N
{s}
[bb] .

(5.14)

where N{s}
[bb] = −A

{s}
[bb] . Given that A[bb] =

p∑

s=1

A
{s}
[bb] Similarly,

c
{s}
[i] = M[bb]

−1f
{s}
[i] and c

{s}
[b] = M[bb]

−1f
{s}
[b] . (5.15)

For each sub-domain s ∈ {1, . . . , p}, the computation of the terms T {s}
[bi] and T {s}

[bb] , and c{s}
[i]

and c
{s}
[b] , requires the assembly matrix M[bb] on the interface, which is the diagonal part

of the interface matrix A[bb] of A. As described in (5.16), the matrix A[bb] is computed as:

A[bb] =
p∑

s=1

A
{s}
[bb]. Let remark that the full value of f[b] =

p∑

s=1

f
{s}
[b] is not needed, in fact each

sub-domain has only its own part f {s}
[b] .
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According to the equalities (5.13), i.e., N[bb] = −A[bb], and (5.16), i.e., A[bb] =
p∑

s=1

A
{s}
[bb],

after some substitutions, we can have

N[bb] =
p∑

s=1

N
{s}
[bb] and T[bb] =

p∑

s=1

T
{s}
[bb] . (5.16)

5.2.3 Synchronous sub-structuring algorithm
Let us consider the following notations. Let T ∈ K

n×n be a square matrix and c ∈ K
n

a vector. Let us define n{s} the number of equations of the matrix T {s} of the sub-domain
s ∈ {1, . . . , p}. Let us recall the fixed point mapping function T̂ described in (4.11) and (4.12)
(see Section 4.4, Page 127)

T̂ : X̂ 7→ X̂

û 7→ T̂ (û) (5.17)

where X̂ = X{1} × · · ·X{s} × · · · ×X{p} and û =
(
u{1}, . . . , u{s}, . . . , u{p}

)T
∈ X̂ . Let us

define u{s} ∈ X{s}, s ∈ {1, . . . , p} such that the piece of the solution

u{s} =
(
u

{s}
[i] u

{s}
[b]

)T
(5.18)

is computed by the process s ∈ {1, . . . , p}. The mapping function T̂ can be expressed as
follows

T̂ (û) =
(
T̂ {1}(û), . . . , T̂ {s}(û), . . . , T̂ {p}(û)

)T
.

with

T̂ {s}(û) = T {s}


u

{s}
[i]

u[b]


+ c{s}. (5.19)

where u[b] =
p∑

j=1

u
{j}
[b] must be assembled between the sub-domains on the interface. In general,

the interface is small compared to the internal nodes. Therefore, the exchange required between
the cooperating processors is also small. The solution u of the system of linear algebraic
equations (5.1) can finally be calculated from û as follows:

u = P(û) =


u{1}

[i] , . . . , u
{s}
[i] , . . . , u

{p}
[i] , u[b] =

p∑

j=1

u
{j}
[b]




T

. (5.20)

Definition 5.1 (Parallel sub-structuring algorithm) The synchronous parallel sub-structuring
algorithm constructs recursively for each process s ∈ {1, . . . , p} a sequence of iterations
(u(k))k∈N, from an initial guess solution u{s}(0) = u

{s}
[0] , with u{s}(k) ∈ X(k):




u{s}(0) = u

{s}
[0]

u{s}(k+1) = T̂ {s}(û) = T̂ {s}
(
u{1}(k), . . . , u{s}(k), . . . , u{p}(k)

)
, k ∈ N

∗.
(5.21)
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At the iteration k ∈ N, the approximate solution of the problem is expressed as follows

u(k) = P


u{1}(k)

[i] , . . . , u
{s}(k)
[i] , . . . , u

{p}(k)
[i] , u

(k)
[b] =

p∑

j=1

u
{j}(k)
[b]




T

.

Lemma 5.2 (Convergence of parallel sub-structuring algorithms) Considering the Propo-

sition 4.34 (see Proposition 4.34, Page 129), as for the sequential algorithm, the algo-

rithm (5.21) converges if and only if the spectral radius ρ(T ) < 1.

Proof. Considering the equation (5.9) “(5.14)” and given that u{s} =
(
u

{s}
[i] u

{s}
[b]

)T
(5.18),

after substitution in the algorithm (5.21), we have the two following equalities:


u

{s}(k+1)
[i]

u
{s}(k+1)
[b]


 =


T

{s}
[ii] T

{s}
[ib]

T
{s}
[bi] T

{s}
[bb]




u

{s}(k)
[i]

u
(k)
[b]


+


c

{s}
[i]

c
{s}
[b]




on each process s ∈ {1, . . . , p}. Hence,




u

{s}(k+1)
[i] = T

{s}
[ii] × u

{s}(k)
[i] + T

{s}
[ib] × u

(k)
[b] + c

{s}
[i]

u
{s}(k+1)
[b] = T

{s}
[bi] × u

{s}(k)
[i] + T

{s}
[bb] × u

(k)
[b] + c

{s}
[b]

Then, after summation over all the processes

p∑

s=1

u
{s}(k+1)
[b] =

p∑

s=1

(
T

{s}
[bi] × u

{s}(k)
[i] + T

{s}
[bb] × u

(k)
[b] + c

{s}
[b]

)

=
p∑

s=1

T
{s}
[bi] × u

{s}(k)
[i] + u

(k)
[b]

p∑

s=1

T
{s}
[bb]

︸ ︷︷ ︸
T[bb] (5.10)

+
p∑

s=1

c
{s}
[b]

︸ ︷︷ ︸
c[b] (5.10)

=
p∑

s=1

T
{s}
[bi] × u

{s}(k)
[i] + T[bb]u

(k)
[b] + c[b]

= u
(k+1)
[b] (5.22)

Finally,




u
{1}(k+1)
[i]

...

u
{s}(k+1)
[i]

...

u
{p}(k+1)
[i]

u
(k+1)
[b]




=




T
{1}
[ii] 0 · · · T

{1}
[ib]

. . .
...

0 T
{s}
[ii] T

{s}
[ib]

...
. . .

...

T
{p}
[ii] T

{p}
[ib]

T
{1}
[bi] · · · T

{s}
[bi] · · · T

{p}
[bi] T[bb]







u
{1}(k)
[i]

...

u
{s}(k)
[i]

...

u
{p}(k)
[i]

u
(k)
[b]




+




c
{1}
[i]
...

c
{s}
[i]
...

c
{p}
[i]

c[b]




More simply,
u(k+1) = Tu(k) + c, k ∈ N

∗, and given u(0).
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This last is equivalent to the sequential algorithm (see eq. (4.7), Page 128). Therefore, the
parallel sub-structuring algorithm has the same condition, i.e., iff the spectral radius ρ(T ) <

1.

Algorithm 5.3 describes the main steps of the algorithm of parallel synchronous sub-
structuring iterative methods given in (5.21). In terms of implementation, the summation of

Algorithm 5.3: Algorithm of the iterative parallel synchronous sub-structuring methods
input : s ∈ {1, . . . , p}

T {s}: sub-matrix of the sub-domain s, c{s}: sub-vector of the sub-domain s (5.9),
u{s}(0) = (u

{s}(0)
[i] u

{s}(0)
[b] ): initial solution of whole sub-domain s,

u
{s}(0)
[i] (internal) and u{s}(0)

[b] (interface) from u{s}(0),
ε: tolerance threshold, K: maximum number of iterations

output : u{s} = (u
{s}
[i] u

{s}
[b] ): local solution

variable : k, j, convg
variable : u[b]

1 convg ← false; k ← 0

2 // -- allocate u{s}

3 while .not. convg .OR. k < K do
4 // -- assembly of sub-domain s along the interface

5 u
(k)
[b] ←

p∑

j=1

u
{j}(k)
[b]

6 // -- local computation of u{s}(k+1) = T̂ {s}(û) (5.21)

7 u
{s}(k+1)
[i] = T

{s}
[ii] × u

{s}(k)
[i] + T

{s}
[ib] × u

(k)
[b] + c

{s}
[i]

8 u
{s}(k+1)
[b] = T

{s}
[bi] × u

{s}(k)
[i] + T

{s}
[bb] × u

(k)
[b] + c

{s}
[b]

9 convg ← DetectConvergence(u{s}, ε)
10 k ← k + 1

11 end

u
{s}(k)
[b] on the interface, at Line 5 of Algorithm 5.3 is performed using the MPI_ALLREDUCE

function:
MP I_ALLREDUCE(u

(k)
[b] , u

{s}(k)
[b] ,MP I_SUM ).

Due to the pattern of u{s}(k)
[b] , which contains most of the zero values, this choice is not the

most efficient way to perform the summation
p∑

j=1

u
{j}(k)
[b] on the interface. In fact, only non-zero

values of u{s}(k)
[b] correspond to the interface nodes of the sub-domain s. In general, a small

number of interface nodes is associated with a given cooperating sub-domain. In practice, the
summation on the interface is performed only between sub-domains which share an interface.
We have also implemented a special function using (MPI_)send/receive for performing
this assembly operation, which only exchanges and updates the interface with the sub-domains
s1 sharing an interface with the sub-domain s2. The main points of the algorithm are given
in Algorithm 5.1 and (see Algorithm 5.2, Page 145). In case of synchronous iterations, the
convergence detection and the halting procedure, Line 9 of Algorithm 5.3 , is easy to control.
For example, it suffices to perform an MPI_ALLREDUCE

MPI_ALLREDUCE(&global_norm, local_norm,MP I_MAX)
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in order to get the maximum of ‖u{s}(k+1) − u{s}(k)‖∞ over all processes, where local_norm
and global_norm denote respectively the local ‖u{s}(k+1) − u{s}(k)‖∞, s ∈ {1, . . . , p} and
global norm max

1≤s≤p
‖u{s}(k+1) − u{s}(k)‖∞.

Particular case: internal unknowns are hidden Unlike the method of Jacobi, where we
have a particular splitting M = D and N = −(L + U), with some methods such as Gauss-
Seidel’s, the sub-matrix T {s} (5.9) cannot be built for each sub-domain s ∈ {1, . . . , p} directly
from the sub-matrixA{s} of the original matrix described in (5.11). The idea behind the general
case consists in performing an exact solve in the sub-domain and iterate only on the interface.
We consider the sub-structuring finite element where the internal unknowns are hidden. To
describe the general case, we focus on the Gauss-Seidel method defined in Definition 4.63. As
before, on the interface, the splitting is

A[bb] = M[bb] −N[bb] (5.23)

Considering the splitting given in (5.6), the splitting of the matrixA = M−N can be rewritten
in the form

A =




A
{1}
[ii] 0 · · · 0

. . .
...

0 A
{s}
[ii] 0

...
. . .

...

A
{p}
[ii] 0

A
{1}
[bi] · · · A

{s}
[bi] · · · A

{p}
[bi] M[bb]




︸ ︷︷ ︸
M

−




0 0 · · · 0 −A
{1}
[ib]

. . .
...

...

0 0 −A
{s}
[ib]

...
. . . 0

...

0 −A
{p}
[ib]

0 · · · 0 · · · 0 N[bb]




︸ ︷︷ ︸
N

(5.24)

The inverse of the square matrix M ∈ K
n×n can be explicitly computed

M−1 =




A
{1}
[ii]

−1
0 0 · · · 0

0
. . .

...

0 0 A
{s}
[ii]

−1
0 0

... 0 0
. . .

...

0 0 A
{p}
[ii]

−1
0

· · · · · · −M[bb]
−1A

{s}
[bi]A

{s}
[ii]

−1
· · · · · · M[bb]




(5.25)

Hence,

T = M−1N =




0 0 · · · 0 −A
{1}
[ii]

−1
A

{1}
[ib]

. . .
...

...

0 0 −A
{s}
[ii]

−1
A

{s}
[ib]

...
. . . 0

...

0 −A
{p}
[ii]

−1
A

{p}
[ib]

0 · · · 0 · · · 0 T[bb]




(5.26)
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where

T[bb] = M[bb]
−1N[bb] +

p∑

s=1

M[bb]
−1A

{s}
[bi]A

{s}
[ii]

−1
A

{s}
[ib] (5.27)

Or from (5.23) A[bb] = M[bb] −N[bb], i.e., N[bb] = M[bb] − A[bb], so we have,

T[bb] = I −M[bb]
−1

(
A[bb] −

p∑

s=1

A
{s}
[bi]A

{s}
[ii]

−1
A

{s}
[ib]

)

︸ ︷︷ ︸
Shur complement of A on the interface

(5.28)

Considering the definition of T[bb] (5.10), i.e., T[bb] =
p∑

s=1

T
{s}
[bb] , the splitting of T[bb] can be

written
T

{s}
[bb] = I{s} −M[bb]

−1
(
A

{s}
[bb] − A

{s}
[bi]A

{s}
[ii]

−1
A

{s}
[ib]

)
(5.29)

such as

A[bb] =
p∑

s=1

A
{s}
[bb] and I =

p∑

s=1

I{s}. (5.30)

In practice, in addition to its local sub-matrix A{s}, each sub-domain s ∈ {1, . . . , p}, requires
only the assembly matrix M[bb] on the interface. At each iteration we must solve a system in

each sub-domain in order to compute A{s}
[ii]

−1
.

Proposition 5.3 Under the previous conditions,

ρ(T ) = ρ(T[bb]).

The convergence condition is reduced to T[bb] matrix ρ(T[bb]) < 1.

5.2.4 Asynchronous sub-structuring algorithm
The asynchronous sub-structuring mathematical model is close to the multi-splitting

model [218]. However, in case of sub-structuring, the sum on the interface is not weighted.
Therefore, the sum of errors on the interface can not be bound by the maximum number of
errors on the sub-domain interface values. Under these conditions, the classical multi-splitting
convergence results cannot be used in the case of asynchronous iterations. The condition
of convergence of the asynchronous multi-splitting method (see Theorem 4.61, Page 136)
is necessary but not sufficient for sub-structuring. In contrast, we can use the convergence
results for asynchronous splitting methods on the global fixed point and then conclude the
convergence for the sub-structuring method.

This theorem was first proposed by C. Venet and F. Magoulès in [258].

Theorem 5.4 (Convergence of parallel asynchronous sub-structuring algorithms) Let

T ∈ K
n×n and c ∈ K

n the square matrix and vector defined in Section 5.2.3, Page 149 such

that

ρ(|T |) < 1 and
∣∣∣T[bb]

∣∣∣ =
p∑

s=1

∣∣∣T {s}
[bb]

∣∣∣ . (5.31)

Under these conditions (5.31), the parallel associated asynchronous sub-structuring algorithm

converges.
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In the rest of this subsection, we give the proof of the Theorem 5.4.

Proof. Let s ∈ {1, . . . , p}. Let T be a n× n matrix. Let us choose γ ∈ R, ζ ∈ R and w ∈ R
n

such that Corollary 4.51 ((see Corollary 4.51, Page 135)) is satisfied. The splitting of w can be
rewritten

w =
(
w

{1}
[i] , . . . , w

{s}
[i] , . . . , w

{p}
[i] , w[b]

)T
(5.32)

Let us define w{s}, φ{s} ∈ R
n{s}

for each sub-domain s ∈ {1, . . . , p} such that

w{s} =
(
w

{s}
[i] w

{s}
[b]

)T
(5.33)

and

φ{s} =
1

ζ



(∣∣∣T {s}

[bi]

∣∣∣
∣∣∣T {s}

[bb]

∣∣∣
)

w

{s}
[i]

w[b]


+

ζ − γ

p
w[b]


 (5.34)

Given that 0 < γ < ζ < 1 and w > 0, then ∀ s > 0, φ{s} > 0. We define for each sub-domain
the quantity

u
{s}
[b]

∗
=
(
T

{s}
[bi] T

{s}
[bb]

)

u

{s}
[i]

∗

u∗
[b]


+ c

{s}
[b] , (5.35)

where

u∗
[b] =

p∑

s=1

u
{s}
[b]

∗
. (5.36)

Similarly,

u
{s}
[i]

∗
=
(
T

{s}
[ii] T

{s}
[ib]

)

u

{s}
[i]

∗

u∗
[b]


+ c

{s}
[i] . (5.37)

Let us define the quantity ∆(k) = ζk∆ such that

∆ = max
(
‖u0 − u

∗‖w
∞, max

1≤s≤p
‖u

{s}(0)
[b] − u

{s}
[b]

∗
‖φ{s}

∞

)
(5.38)

and for each sub-domain s the sets X{s}
[i] (space of the degrees of freedom) and X{s}

[b] (space of
the interface) such that

X
{s}(k)
[i] = {u

{s}
[i] ∈ X

{s}
[i] ,

∣∣∣u{s}
[i] − u

{s}
[i]

∗∣∣∣ ≤ ∆(k)w
{s}
[i] },

X
{s}(k)
[b] = {u

{s}
[b] ∈ X

{s}
[b] ,

∣∣∣u{s}
[b] − u

{s}
[b]

∗∣∣∣ ≤ ∆(k)φ{s}}, (5.39)

with X{s}(k) = X
{s}(k)
[i] × X

{s}(k)
[b] . So, for each sub-domain s, the set X{s} is such that

X{s} = X
{s}
[i] ×X

{s}
[b] . We have X{s}(k) ⊂ X{s}.

Let X(k)
[b] be a set such that

X
(k)
[b] = {u[b] ∈ X[b],

∣∣∣u[b] − u
∗
[b]

∣∣∣ ≤ ∆(k)w[b]}. (5.40)

Let us recall the set X̂ described in (see eq. (4.11), Page 129):

X̂ = X{1} × · · ·X{s} × · · · ×X{p} (5.41)
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Then, we define the set X(k) ⊂ X̂ as follows

X̂(k) = X{1}(k) × · · ·X{s}(k) × · · · ×X{p}(k) (5.42)

The proof of the asynchronous convergence will be based on the following statement (based
on the nested box theorem by D.P. Bertsekas [233]):

∀ k ∈ N, û ∈ X̂(k) ⇒ T̂ (û) ∈ X̂(k+1).

Let us fix k such that û ∈ X̂(k), so

∀ s, u
{s}
[i] ∈ X

{s}
[i] and u{s}

[b] ∈ X
{s}
[b] .

The sum at the interface is satisfied u[b] =
p∑

s=1

u
{s}
[b]

?︷ ︸︸ ︷
∈ X[b] (5.40).

First, let us prove that u[b] ∈ X[b]. It suffices to demonstrate that
∣∣∣u[b] − u

∗
[b]

∣∣∣ ≤ ∆(k)w[b].

∣∣∣u[b] − u
∗
[b]

∣∣∣ ≤
p∑

s=1

∣∣∣u{s}
[b] − u

{s}
[b]

∗∣∣∣

≤
p∑

s=1

∆(k)φ{s} = ∆(k)
p∑

s=1

φ{s} by (5.39) , u{s}
[b] ∈ X

{s}
[b]

Or

p∑

s=1

φ{s} =
p∑

s=1

1

ζ



(∣∣∣T {s}

[bi]

∣∣∣
∣∣∣T {s}

[bb]

∣∣∣
)

w

{s}
[i]

w[b]


+

ζ − γ

p
w[b]




=
1

ζ

p∑

s=1

(∣∣∣T {s}
[bi]

∣∣∣w{s}
[i] +

∣∣∣T {s}
[bb]

∣∣∣w[b] +
ζ − γ

p
w[b]

)

=
1

ζ

( p∑

s=1

∣∣∣T {s}
[bi]

∣∣∣w{s}
[i] + w[b]

p∑

s=1

∣∣∣T {s}
[bb]

∣∣∣+
p∑

s=1

ζ − γ

p
w[b]

)

By the Theorem 5.4, we have
p∑

s=1

∣∣∣T {s}
[bb]

∣∣∣ =
∣∣∣T[bb]

∣∣∣, so

p∑

s=1

φ{s} =
1

ζ

( p∑

s=1

∣∣∣T {s}
[bi]

∣∣∣w{s}
[i] +

∣∣∣T[bb]

∣∣∣w[b] + (ζ − γ)w[b]

)

In addition, according to Corollary 4.51 (see Corollary 4.51, Page 135), we have

p∑

s=1

∣∣∣T {s}
[bi]

∣∣∣w{s}
[i] +

∣∣∣T[bb]

∣∣∣w[b] ≤ γw,

because it is a restriction of |T |w to X[b]. Hence,

p∑

s=1

φ{s} ≤
1

ζ

(
γw + (ζ − γ)w[b]

)
≤ w[b].
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Finally,
∣∣∣u[b] − u

∗
[b]

∣∣∣ ≤ ∆(k)w[b], so by (5.40), we have u[b] ∈ X[b].

Now, let us prove that T̂ (û) ∈ X̂(k+1).

It suffices to demonstrate that for all processes s ∈ {1, . . . , p}, T̂ {s}(û) ∈ X{s}(k+1).

• First, let us show that ∀s ∈ {1, . . . , p},
(
T

{s}
[ii] T

{s}
[ib]

)

u

{s}
[i]

u[b]


+ c

{s}
[i] ∈ X

{s}(k+1)
[i] :

∣∣∣∣∣∣

(
T

{s}
[ii] T

{s}
[ib]

)

u

{s}
[i]

u[b]


+ c

{s}
[i] − u

{s}
[i]

∗

∣∣∣∣∣∣
=

∣∣∣∣∣∣

(
T

{s}
[ii] T

{s}
[ib]

)

u

{s}
[i] − u

{s}
[i]

∗

u[b] − u
∗
[b]



∣∣∣∣∣∣

by (5.37)

≤
(∣∣∣T {s}

[ii]

∣∣∣
∣∣∣T {s}

[ib]

∣∣∣
)


∣∣∣u{s}

[i]

∣∣∣− u{s}
[i]

∗

∣∣∣u[b] − u
∗
[b]

∣∣∣




≤
(∣∣∣T {s}

[ii]

∣∣∣
∣∣∣T {s}

[ib]

∣∣∣
)

∆(k)w

{s}
[i]

∆(k)w[b]




≤ ∆(k)
(∣∣∣T {s}

[ii]

∣∣∣w{s}
[i] +

∣∣∣T {s}
[ib]

∣∣∣w[b]

)

Or
p∑

s=1

∣∣∣T {s}
[ii]

∣∣∣w{s}
[i] +

∣∣∣T {s}
[ib]

∣∣∣w[b] ≤ ζw because it is a restriction of |T |w to X{s}
[i] , so

∣∣∣∣∣∣

(
T

{s}
[ii] T

{s}
[ib]

)

u

{s}
[i]

u[b]


+ c

{s}
[i] − u

{s}
[i]

∗

∣∣∣∣∣∣
≤ ∆(k)ζw

{s}
[i] = ∆(k+1)w

{s}
[i] , QED.

• Second, let us show that ∀s ∈ {1, . . . , p},
(
T

{s}
[bi] T

{s}
[bb]

)

u

{s}
[i]

u[b]


+ c

{s}
[b] ∈ X

{s}(k+1)
[b] :

∣∣∣∣∣∣

(
T

{s}
[bi] T

{s}
[bb]

)

u

{s}
[i]

u[b]


+ c

{s}
[b] − u

{s}
[b]

∗

∣∣∣∣∣∣
=

∣∣∣∣∣∣

(
T

{s}
[bi] T

{s}
[bb]

)

u

{s}
[i] − u

{s}
[i]

∗

u[b] − u
∗
[b]



∣∣∣∣∣∣

by (5.35)

≤
(∣∣∣T {s}

[bi]

∣∣∣
∣∣∣T {s}

[bb]

∣∣∣
)


∣∣∣u{s}

[i]

∣∣∣− u{s}
[i]

∗

∣∣∣u[b] − u
∗
[b]

∣∣∣




≤
(∣∣∣T {s}

[bi]

∣∣∣
∣∣∣T {s}

[bb]

∣∣∣
)

∆(k)w

{s}
[i]

∆(k)w[b]




≤ ∆(k)
(∣∣∣T {s}

[bi]

∣∣∣w{s}
[i] +

∣∣∣T {s}
[bb]

∣∣∣w[b]

)

≤ ∆(k)

(
ζφ{s} −

ζ − γ

p
w[b]

)
by (5.34)

≤ ∆(k)ζφ{s} = ∆(k+1)ζφ{s}, QED.

Finally, with these two points, we can conclude that

∀s ∈ {1, . . . , p}, T̂ {s}(û) ∈ X{s}(k+1).

In addition, the following results can be stated:
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• lim
k→+∞

∆(k) = lim
k→+∞

ζk∆ = 0.

• lim
k→+∞

X̂(k) = {û∗}.

• ∀ k ∈ N, X̂(k+1) ⊂ X̂(k) (see Assumption 4.41, Page 132).

• ∀ k ∈ N, X̂{s}(k+1) ⊂ X̂{s}(k) (see Assumption 4.41, Page 132).

With an appropriate choice of ∆ (5.38), we can find an initial solution so that u∗ ∈ X̂(0).
Under these conditions, the Theorem 5.4 guarantees the convergence of parallel asynchronous
sub-structuring algorithms.

Algorithm 5.4 shows the main points for the algorithm of parallel asynchronous sub-
structuring iterative methods.

Algorithm 5.4: Algorithm of the parallel iterative asynchronous sub-structuring methods
input : s ∈ {1, . . . , p}

T {s}: sub-matrix of the sub-domain s, c{s}: sub-vector of the sub-domain s (5.9),
u{s}(0) = (u

{s}(0)
[i] u

(0)
[b] ): initial solution of whole sub-domain s,

u
{s}(0)
[i] (internal) and u{s}(0)

[b] (interface) from u{s}(0),
ε: tolerance threshold, K: maximum number of iterations

output : u{s} = (u
{s}
[i] u

{s}
[b] ): local solution

variable : k, j, convg
variable : buff{s1, data}: received buffer from buff.s1, which contains buff.data
variable : u[b]

1 convg ← false; k ← 0
2 foreach process j do
3 // -- allocate u

{j}
[b]

4 u
{j}(k)
[b] ← 0 // -- initialize to zero

5 end

6 // -- allocate u[b] ← u
(0)
[b]

7 while .not. convg .OR. k < K do
8 // -- update the nodes on the interface

9 u
{s}(k+1)
[b] = T

{s}
[bi] × u

{s}(k)
[i] + T

{s}
[bb] × u

(k)
[b] + c

{s}
[b]

10 foreach process j do
11 // -- asynchronous non blocking send

12 SEND(j, u
{s}(k+1)
[b] )

13 end

14 u
{s}(k+1)
[i] = T

{s}
[ii] × u

{s}(k)
[i] + T

{s}
[ib] × u

(k)
[b] + c

{s}
[i]

15 foreach message buff received do
16 // -- continuous receive (always listening)

17 u
{buff.s1}(k)
[b] ← buff.data // -- RECEIV E(buff)

18 end
19 // -- assembly of sub-domain s along the interface

20 u
(k)
[b] ←

p∑

j=1

u
{j}(k)
[b]

21 convg ← DetectConvergence(u{s}, ε)
22 k ← k + 1

23 end
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The exchange at the interface of the asynchronous version differs to synchronous by the
absence of waiting and synchronization points ((see Algorithm 5.1, Page 145) and (see Algo-
rithm 5.2, Page 145)).

Remark 5.5 The total interface can be split into small interfaces, each involving only two
neighboring sub-domains. This allows to transfer less data between the processes and reduces

the number of operations to perform
p∑

j=1

u
{j}(k)
[b] ( Line 20 of Algorithm 5.4 ).

In this asynchronous algorithm (Algorithm 5.4), receptions are non-blocking whereas they
were blocking in the synchronous version (Algorithm 5.3). Therefore, after the sending, a
process takes the last version of its neighbors’ messages if new messages have arrived since
the previous iteration. In Algorithm 5.4, restarting a new iteration without receiving any new
messages leads to the same computation. In this way, to improve this algorithm and avoid
to perform unnecessary iterations, we can choose to verify if a new message has arrived at
each iteration. Otherwise it would probably be better to wait for a few micro seconds and then
to test again if a new message has arrived. According to the number of neighbors, it may be
judicious to wait for the reception of a given number of messages.

In case of asynchronous iterations, the convergence detection and the halting procedure,
Line 21 of Algorithm 5.4 , is one of the main points of the algorithm.

In the following, we give a brief overview of the existing convergence detectors.

5.2.5 Convergence detection
The implementation of an asynchronous iterative algorithm may seem easier to achieve

compared to a synchronous algorithm since there is no more synchronization. However, the
convergence detection is different and requires a special attention. J.M Bahi et al. [228] show
that according to the dedicated architecture, a centralized mechanism can either be used for
a parallel architecture or a cluster with a high-speed network with quite a limited number of
processors. On the other hand, with a distributed cluster or a grid with a large number of
processors, this mechanism is completely inconceivable. Two versions are proposed by J.M
Bahi et al. [228], which use a centralized version or a decentralized version in order to detect
the convergence.

At the time of the implementation of the first algorithm developed by the team of F.
Magoulès, the only publicly available library to help programs using asynchronous algorithms
was Jace’s [222] [223], which is programmed in Java and uses only TCP communication to
exchange data. Jace was not suitable for our studies. There was also CRAC [225] (a Grid

Environment to Solve Scientific Applications with Asynchronous Iterative Algorithms) in C++

proposed by R. Couturier et al. in 2007.
In order to easily program asynchronous algorithms, our team had the idea to develop

an appropriate communication library. This library, named Jack, was first developed by C.
Venet (PhD student of our team) and F. Magoulès [258]. This library is written on the top of
MPI [259] and facilitates sending and receiving data asynchronously. In the asynchronous
mode, the messages are placed in a queue until the communication medium is free to send the
messages. If the tunnel is busy, i.e., there is already a message inside the queue with the same
tag and destination, the new message overwrites the previous one. This choice avoids having
to put the new message at the end of the queue. In this way, the message in the queue awaiting
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to be sent will be the updated one. Concerning the reception, the messages are placed in a
receiving queue. As for the sending, if the tunnel is busy, i.e., there is already a message inside
the queue with the same tag and source, then the most recent message overwrites the previous
one, instead of being put at the end of the queue. By this way, the message received will be the
last sent.

C. Venet and F. Magoulès [258] have added a function to detect the global convergence
of iterative algorithms. They use the convergence detection presented by J.M Bahi et al. in
2005 [227]. The global convergence is based on the estimation of local convergence. During
my work, I added an extension based on the decentralized version proposed by J.M Bahi et

al. [228] in 2008. For more details on the Jack library, the readers are referred to Section 5.1
(Presentation of JACK architecture) of [258].

5.2.6 Implementation on a cluster of multi-core-GPUs
In case of multi-core/multi-GPUs, the mechanism is identical to a multi-core system except

that all local computations are performed on the GPU card associated with the process. The
update of the solution at interface nodes require data transfers between CPU and GPU, which
is the main drawback of the GPU version. At each iteration, each process copies its results
from GPU to CPU, and then the solution is updated at interface nodes on CPU. Finally, the
updated solution is copied back to GPU for the next iteration. The multi-core/GPU algorithm
takes advantages of the effectiveness of the GPU computation in each process. The algorithm
is mostly efficient when the sub-problems are also large in size. Given the computational
power of GPUs, communication is the key point of the algorithm. The efficiency of this
algorithm depends on the effectiveness of the communication latencies whenever synchronous.
The asynchronous model may be an effective solution to improve the algorithm. In summary,
all parallel and intensive computations on local data are performed on GPUs and reduction
operations to compute global results are carried out by CPUs.

5.2.7 Fault-tolerance and iteration penalty behavior
In this subsection we aim to analyze the behavior of parallel algorithms in terms of fault-

tolerance and in terms of iteration penalization. We consider synchronous iterations. The
concept of iteration penalization consists in stopping the evolution of the solution during a
certain time, i.e., the penalized process keeps the current solution during the idle state. In
this analysis, the fault-tolerance consists in restarting the solution to the corresponding initial
guess and in stopping sending and receiving from cooperating processors. This enables us
to simulate the breakdown of a process. This concept simulates asynchronous iterations. In
this analysis, we give some heuristic for understanding the behavior of chaotic iterations. We
consider that only one process is penalized (idle state or breakdown). We do not pay attention
to communication and synchronization. Let us note that process synchronization is the main
difference between synchronous and asynchronous algorithms.

Considering the parallel platform, PSystem{p}, capable of executing p processes of execu-
tion of PS. Let the original domain Ω be decomposed in p sub-domains: {S{1}, . . . , S{p}}.

Theorem of delay (iteration penalization)
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Proposition 5.6 Let (i, j) ∈ {1, . . . , p}2, i 6= j, such as the sub-domain S{i} has a delay, S{j}

another one without delay. Their number of iterations satisfy the following N
{i}
[para] ≤ N

{j}
[para]

where para is synchronous (sync) or asynchronous (async). In synchronous case, there is no

delay. So, from Proposition 5.6, we have N
{i}
[sync] = N

{j}
[sync] = N[seq], where N[seq] is the number

of iterations of the algorithm.

Definition 5.7 Let p−algorithm be an algorithm which converges synchronously with the
Jacobi method. Let i ∈ {1, . . . , p}, such that S{i} is the only sub-domain with delay, i.e.,
S{i} presents an idle state. Let n be the nth iteration of the algorithm. Let us define nr−

the iteration where the idle state (pause) is activated for the processor associated with S{i}

and nr+ the iteration where the idle state ends. Let us define τ the pause duration expressed
as: τ = nr+ − nr−. The sub-domain in idle state does not update its local solution. The
other sub-domains continue to update their solutions normally. This scheme models chaotic
iterations (basic asynchronous scheme). The asynchronous scheme is simulated here by the
non-updating of the solution.

Theorem 5.8 (Theorem of delay) Let S be a synchronous p−algorithm which converges in

N[S] = N[seq] iterations and C a chaotic (asynchronous) p−algorithm which converges with

Definition 5.7 in N[C] iterations.

The number of iterations of the sub-domain with delay, S{i}, of the chaotic algorithm, C, is

largely inferior to that of the pure synchronous algorithm, S, i.e.





N
{j}
[C] = N[C] > max

j
N

{j}
[S] = N[S], ∀j ∈ {1, . . . , p}\{i}

N
{i}
[C] ≪ N

{i}
[S] = N[S]

(5.43)

where i ∈ {1, . . . , p}, S{i} , is the only sub-domain with delay.

Proof. Let us show that N{j}
[C] = N[C] > max

j
N

{j}
[S] = N[S], ∀j ∈ {1, . . . , p}\{i}.

The notation S c.v.
−→
para

n means the sub-domain S converges in n iterations.

∀q ∈ {1, . . . , p}, sub-domain S{q} converges in N{q}
[S] = N[S] iterations for pure synchronous

algorithms, i.e. S{i} c.v.
−→
sync

N
{q}
[S] = N[S]. For an asynchronous algorithm (chaotic synchronous)

with S{i} the only sub-domain with delay ( nr−, nr+), we have S{i} c.v.
−→
async

N
{i}
[C] and S{j} c.v.

−→
async

N
{j}
[C] = N[C].

In chaotic iterations, all sub-domains without delay will need at least N[S] iterations to
converge. Nevertheless, the sub-domain S{i} has a delay, therefore cooperating processors(
S{i}(l)

)
will need to perform additional iterations, n+, to converge due to the use of the

old solution from the idle processor. So, we have S{l} c.v.
−→
async

N
{l}
[S] + n+. In conclusion, if the

algorithm converges with a sub-domain presenting a delay, the other sub-domains will require
more than the number of iterations in a pure synchronous case. For the idle processor, we have
S{i} c.v.

−→
async

N
{i}
[C] = N[C] −

(
(nr+ − nr−)

)
.

• If N[C] ≫ nr− then N{i}
[C] ≪ N[C].

• If nr+ ≫ nr− then a steady state appears and the asynchronous algorithm loses its
interest.
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• If nr− ≥ N[S], the algorithm is equivalent to a pure synchronous one.

• If nr− + τ = nr+ ≥ N[S] then N{i}
[C] = N[S].

This theorem helps observe the behavior of the convergence of the asynchronous algorithm. In
the chaotic algorithm defined in Definition 5.7, the number of iterations of non-idle processors
are identical, which is due to the synchronization of our chaotic model. In general, the number
of iterations of the asynchronous algorithm is different in each processor and differs at each
execution.

Fault-tolerance Now, we simulate fault-tolerance by restarting the solution to the correspond-
ing initial guess. Moreover, at the breakdown point, i.e., when the solution is reset, the sending
and receiving from the broken processor to and from the cooperating processors are disabled.
This allows us to simulate the breakdown of a process.

Theorem 5.9 (Fault-tolerance) Let p−algorithm be an algorithm which converges syn-

chronously with the Jacobi method. Let i ∈ {1, . . . , p}, such that S{i} is the only sub-domain

breakdown. When the processor i is woken up and has finished its current iteration after a

time ti, it benefits from the solution computed by the other processors j ∈ {1, . . . , p}, j 6= i

during ti, and thus the processor i performs less iterations than execution without breakdown.

Proposition 5.10 (Fault-tolerance) Let p−algorithm be an algorithm and an execution E

that satisfies Theorem 5.9. Let i ∈ {1, . . . , p}, such that S{i} is the only sub-domain breakdown.

Let N[S] be the number of iterations obtained from the execution of the pure synchronous

algorithm. Let N
{i}
[C] be the number of iterations obtained from the execution E . Let us suppose

that processor i breaks down at the k−th iteration. Then, the processor i performs

N
{i}
[C] = N

{j}
[C] − k, ∀j ∈ {1, . . . , p}\{i}. (5.44)

Let us remark that N
{j}
[C] = N

{l}
[C] ,∀j, l ∈ {1, . . . , p}\{i} for the given scheme. In a real

asynchronous scheme, usually, the number of iterations of each processor is different. More-

over, in general, asynchronous algorithms require a greater number of iterations before the

convergence than in the synchronous case.

The numerical analysis of the two presented theorems will be given in the numerical result
section (see Section 5.4, Page 174).

5.3 Theoretical speed-up of the fully
parallelizable iterative method

In this section, my contribution is the theorem for the theoretical speed-up of synchronous

and asynchronous parallelizable iterative methods.

5.3.1 Background and motivations
Unless otherwise indicated, the results of speed-ups presented in this thesis do not take

into account the initialization (input, ...) and output writing times. In practice, in a standard
implementation, these operations are sequential. When the total program running time is used,
the limits of the parallelization become clear. In parallel programming, the speed-up measures
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how much a parallel algorithm is faster than the corresponding sequential algorithm. Let us
define T (p) the time required to finish an algorithm being executed on p processes, which will
be denoted as p-algorithm and µ ∈ [0; 1] the proportion of the parallel algorithm that is strictly
sequential. The time of the p-algorithm is expressed as

T (p) = T (1)

(
µ+

1

p
(1− µ)

)
. (5.45)

The theoretical speed-up S(p), which corresponds to the ratio between the execution time
of a serial algorithm and those of parallel algorithms executed on a system of p processes of
execution, can be written as follows:

S(p) =
T (1)

T (p)
=

1

µ+
1

p
(1− µ)

. (5.46)

Remark 5.11 The speed-up is ideal for µ = 0 ensures to be linear, i.e., S(p) = p. Let us
assume that T (p) ≥ T (1), where the equality is obtained when the sequential and parallel
algorithm are equivalent in terms of executing times, i.e., T (p) = T (1), which means S(p) = 1

with µ = 1.

Definition 5.12 The efficiency of a p-algorithm, E(p), is a metric performance defined as

E(p) =
S(p)

p
=
T (1)

pT (p)
=

1

1 + µ(p− 1)
. (5.47)

As with any optimization method, the first step is to determine the critical parts of a code,
those for which the benefit is potentially greater.

Theorem 5.13 (General Amdahl’s law) Amdahl’s law states that the maximum speed-up

that can be obtained on a system using p processes is

S(p) =
1

(1− γ) +
γ

p

, (5.48)

where γ ∈ [0; 1] is the fraction of the algorithm that can be parallelized and (1 − γ) those

cannot be parallelized, i.e., stay sequential.

Remark 5.14 Let us remark that (5.48) is obtained for µ = 1− γ in (5.46).

Theorem 5.15 (Amdahl’s law, global speed-up from local speed-up) Amdahl’s law pro-

pounds that the global speed-up, Sg, of an algorithm with a local speed-up, Sl on a proportion

γ ∈ [0; 1] of the serial execution time is:

Sg =
1

(1− γ) +
γ

Sl

. (5.49)
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Remark 5.16 For a partially parallel algorithm being executed on n thread(s) of execution
with an efficiency λ, the local speed-up is Sl(n) = λn and (5.49) gives:

Sg(n) =
1

(1− γ) +
γ

λn

. (5.50)

Remark 5.17 Amdahl’s law clearly shows that the maximum speed-up is limited by
1

1− γ
,

i.e., the part of the algorithm that can be made parallel. When we add new process to the
program, the gain from the addition of processes is smaller.
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FIGURE 5.3: Speed-up upon the number of processes

Figure 5.3(a) and Figure 5.3(b) illustrate the speed-up of an algorithm executed in parallel
on a system using several processes. According to Amdahl’s law, the global speed-up of the
algorithm is limited by the portion strictly sequential. As we can see in Figure 5.3(a), when
the portion that can be parellized consists of 97% of the algorithm, the theoretical maximum
speed-up achievable is 33x.

Figure 5.4 and Figure 5.5 present the optimal speed-up of the program based on the
proportion of the part that can be parellized.
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FIGURE 5.4: Speed-up upon the parallel portion of an algorithm
with 21, 22, 23, 24, 25, 26, 27, 28 processes

Figure 5.5 shows that when a program is fully (or very close) parallelizable (µ→ 100%),
the speed-up becomes linear based upon the number of processes.
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FIGURE 5.5: Speed-up upon the parallel portion of an algorithm
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Figure 5.6(a), Figure 5.6(b), Figure 5.7(a) and Figure 5.7(b) describe the global efficiency
of an algorithm respectively using a system of 16, 128, 256 and 512 processes based on the
proportion µ of the fraction of the algorithm that is parallelized and the efficiency λ of the
parallel part.
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FIGURE 5.6: Global efficiency with 16 (a) and 128 (b) processes upon parallel proportion µ and parallel local
efficiency λ
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FIGURE 5.7: Global efficiency with 256 (a) and 512 (b) processes upon parallel proportion µ and parallel local
efficiency λ

In Figure 5.6 and Figure 5.7 the point (0.99, 0.9) represents a program with only 1%
of sequential execution and 90% of efficiency of the remaining portion, which is sufficient
to diminish the global efficiency to 80%, 45%, 30% and 20% for 16, 128, 256 and 512
processes respectively. Figure 5.6 and Figure 5.7 clearly show that an application must be fully
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parallelizable in order to have a good scalability. When the application is fully parallelizable
(µ = 1), the scalability is good. For given examples, the efficiency is higher than 90% for 16,
128, 256 and 512 processes. With a given portion of sequential execution, the global efficiency
of a program depends on the efficiency of the remaining portion, i.e., it increases (decreases)
when the efficiency of the remaining portion also increases (decreases).

In order to effectively use a lot of processes, the initialization (input, ...) and the out-
put result gathering must also be performed in parallel. Sub-structuring methods [260] [172]
(see Chapter 5.2, Page 142) and domain decomposition methods [16] [18] [19] [100] (see Chap-
ter 6, Page 201) are two solutions which allow the whole code to be parallel. The problem is
divided into sub-parts (sub-domains, sub-structures) executed in parallel such that the input
(loading) and output (result gathering) can be performed in parallel.

5.3.2 Speed-up of the fully parallelizable iterative method in
parallel computing

In this subsection, we study the performance of parallel synchronous and asynchronous
iterative algorithms, compared to a sequential algorithm. An analysis of the theoretical speed-
up is the subject of this part. However, the asynchronous methods will be the subject of a
particular study. For the sake of generality, we give an analysis valid for all iterative methods
that require at most four different operations: vector updates (saxpy), the element-wise product,
the dot product (or inner product) and the matrix-vector product. In this analysis we only
consider iterative methods where the iterations can be entirely parallelizable, e.g., the Jacobi
method. Before starting the analysis of the theoretical speed-up, we detail the computation
complexities of the different operations of the algorithm.

Let us consider A ∈ K
n×n a square matrix. Let PSystem{p} be a system capable of

executing p processes of execution of PS.
Let us define Cop and Cpara

op the complexity of the operation “op” respectively on sequential and
parallel computing, and nop the number of “op” operations to be performed in the algorithm.
In the following, we consider “op = mvp” for the matrix-vector product, “op = dot” for the dot
product operation, “op = upd” for the update operations and “op = ewp” for the element-wise
product. In the matrix-vector product, we have to perform

∑

j

aijxj, i = 1 : n and in dot

product we compute
∑

i

aibi, i = 1 : n. At each sum of these two operations, we have to carry

out two arithmetic operations: one addition and one multiplication.

Definition 5.18 (Complexity of the sequential matrix-vector product) The complexity of
the sequential matrix-vector multiplication is Cmvp = cmvp.n, where cmvp is a constant that
depends on the structure of the matrix and the number of arithmetic operations.

Definition 5.19 (Complexity of the sequential dot product) The computation costs of the
dot product is Cdot = cdot.n, where cdot is a constant.

Definition 5.20 (Complexity of the sequential element-wise product) Computation of the
element-wise multiplication operation zi = xi.yi, i = 1 : n in sequential, which requires one
multiplication for each element by the element operation, is Cewp = cewp.n, where cewp is a
constant.
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Definition 5.21 (Complexity of the sequential Saxpy) The complexity of the update opera-
tion (Saxpy), yi = α ∗ xi + yi, i = 1 : n is Cupd = cupd.n, where cupd is a constant.

Definition 5.22 (Complexity of the parallel element-wise product and Saxpy) The element-
wise product and update operations are performed locally by each process without any exchange
(communication) operations. The parallel complexity of these two operations are respectively

evaluated by Cpara
ewp =

Cewp

p
=
cewp.n

p
and Cpara

upd =
Cupd

p
=
cupd.n

p
.

In this analysis, we consider the class of parallel iterative methods that require commu-
nications only on the matrix-vector product and the dot product at most. We note the costs
of these exchanges by ǫpara

mvp (p) and ǫpara
dot (p) respectively for the matrix-vector product and

the dot product. The behavior of these amounts depends on the parallel mode: synchronous
or asynchronous. For example, in a synchronous mode, the ǫpara

dot (p) strongly relates to the
behavior of the MPI_ALLREDUCE (or equivalent), when the Message Passing Interface (MPI)
is considered. A detailed study will be given subsequently in order to analyze these two
quantities.

Definition 5.23 (Complexity of the parallel matrix-vector product) The parallel computa-
tion costs of the matrix-vector product operation is estimated by

Cpara
mvp =

Cmvp

p
+ ǫpara

mvp (p) =
cmvp.n

p
+ ǫpara

mvp (p). (5.51)

Definition 5.24 (Complexity of the parallel dot product) The parallel computation costs
of the dot product operation is estimated by

Cdot
para =

Cdot

p
+ ǫpara

dot (p) =
cdot.n

p
+ ǫpara

dot (p). (5.52)

In the following, we consider that the constants cupd, cewp, cdot and cmvp take into account
the number of operations performed respectively for each operation.

Proposition 5.25 (Sequential complexity) The theoretical model of the complexity of the

sequential algorithm is

Cseq = cseq × n×N, (5.53)

where n is the number of equations, N is the total number of iterations of the sequential

algorithm and cseq = cupd + cewp + cdot + cmvp ∈ R
+ is a constant, and cupd, cewp, cdot, cmvp

are the coefficients of linear complexity respectively for update (saxpy), element-wise product,

dot product and matrix-vector product operations.

Proof. After summing up all the contibutions, we obtain the theoretical complexity of the
sequential algorithm

Cseq = N(Cupd + Cewp + Cdot + Cmvp)

= N(cupd.n+ cewp.n+ cdot.n+ cmvp.n)

= N × n(cupd + cewp + cdot + cmvp) = cseq ×N × n

where cseq = cupd + cewp + cdot + cmvp.
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Proposition 5.26 (Parallel complexity) The theoretical model of the complexity of the par-

allel algorithm is

Cpara = Npara ×

(
cpara.n

p
+
(
ǫpara

dot (p) + ǫpara
mvp (p)

))
(5.54)

where n is the number of equations, Npara is the number iterations of the parallel algorithm

and cpara = cseq = cupd + cewp + cdot + cmvp ∈ R
+ is a constant.

Proof. After summing up all the computation costs, we obtain the theoretical complexity of
the parallel algorithm

Cpara = Npara(Cpara
upd + Cpara

ewp + Cpara
dot + Cpara

mvp )

= Npara

(
cupd.n

p
+
cewp.n

p
+

(
cdot.n

p
+ ǫpara

dot (p)

)
+

(
cmvp.n

p
+ ǫpara

mvp (p)

))

= Npara ×

(
n

p
(cupd + cewp + cdot + cmvp) +

(
ǫpara

dot (p) + ǫpara
mvp (p)

))

= Npara ×

(
cpara.n

p
+
(
ǫpara

dot (p) + ǫpara
mvp (p)

))
,

where cpara = cseq = cupd + cewp + cdot + cmvp and Npara the number iterations of the parallel
algorithm.

Remark 5.27 Considering the Proposition 5.26, for the synchronous case, we have Npara =

N s = N and the asynchronous case will consider Npara = Na.

Lemma 5.28 (Parallel and sequential relation complexity) The theoretical model of the

complexity of the parallel algorithm (Cpara) can be written based on the sequential complexity

(Cseq)

Cpara = Npara

(
1

p

Cseq

N
+
(
ǫpara

dot (p) + ǫpara
mvp (p)

))
. (5.55)

Similarly,

Cseq = p
N

Npara

(
Cpara −Npara

(
ǫpara

dot (p) + ǫpara
mvp (p)

))
, (5.56)

where N is the total number iterations of sequential algorithm, Npara those of the parallel

algorithm, i.e., Npara = N s = N or Npara = Na. ǫpara
mvp (p) and ǫpara

dot (p) are respectively the

latencies related to the parallel system for the matrix-vector product and the dot product.

Proof. Using both the sequential (5.53) and parallel (5.54) complexity and considering the
assumption cpara = cseq, we have

Cpara = Npara ×

(
cpara.n

p
+
(
ǫpara

dot (p) + ǫpara
mvp (p)

))

= Npara

(
1

p

Cseq

N
+ (ǫpara

dot (p) + ǫpara
mvp (p)

)
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and

Cpara = Npara ×

(
cpara.n

p
+
(
ǫpara

dot (p) + ǫpara
mvp (p)

))

p
Cpara

Npara
= cpara.n+ p

(
ǫpara

dot (p) + ǫpara
mvp (p)

)

p
Cpara

Npara
=
Cseq

N
+ p

(
ǫpara

dot (p) + ǫpara
mvp (p)

)

⇔ Cseq = p
N

Npara

(
Cpara −Npara

(
ǫpara

dot (p) + ǫpara
mvp (p)

))

Knowing the sequential and parallel complexity enunciated respectively in (5.53) and (5.54),
we now compute the speed-up Spara|seq that can be obtained by executing an algorithm on the
system PSystem{p}, which is capable of executing p processes of execution, by

Spara|seq(p) =
Cseq

Cpara
(5.57)

where Cseq and Cpara are specified in units of time. We can consider Cseq and Cpara as the
number of arithmetic operations of the sequential and the parallel algorithm respectively. In
the rest of the analysis, let us define the constant ξ ∈ R

+ such that ξ = cseq = cpara.

Theorem 5.29 (Speed-up of parallel algorithm upon sequential algorithm) Let a given

sequential algorithm with a complexity Cseq and the parallel version with a complexity Cpara.

Let us assume that the sequential and parallel algorithms converge. The theoretical speed-up

Spara|seq of the parallel algorithm regarding the sequential algorithm is given by

Spara|seq(p) =
N

Npara
.

p

1 +
p

ξ.n
(ǫpara

dot (p) + ǫpara
mvp (p))

(5.58)

where n is the number of equations, ξ ∈ R
+ is the constant related to the coefficients of

linear complexity of the four operations, and N and Npara are the number of iterations of the

sequential algorithm and the parallel algorithm respectively, and ǫpara
dot (p) and ǫpara

mvp (p) are the

latencies of the matrix-vector product and the dot product respectively, related to the parallel

system.

Proof.

Spara|seq(p) =
Cseq

Cpara

=
ξ.n×N

Npara ×

(
ξ.n

p
+ (ǫpara

dot (p) + ǫpara
mvp (p))

)

=
N

Npara
×

ξ.n

ξ.n+ p (ǫpara
dot (p) + ǫpara

mvp (p))
p

=
N

Npara
.

p

1 +
p

ξ.n
(ǫpara

dot (p) + ǫpara
mvp (p))
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Theorem 5.30 (Speed-up of asynchronous algorithm upon synchronous algorithm) Let

us assume that the asynchronous algorithm converges. The theoretical speed-up Sa|s of the

parallel asynchronous algorithm regarding the synchronous algorithm is

Sa|s(p) =
N s

Na
×

1 +
p

ξ.n

(
ǫs

dot(p) + ǫs
mvp(p)

)

1 +
p

ξ.n

(
ǫa

dot(p) + ǫa
mvp(p)

) (5.59)

where n is the number of equations, ξ ∈ R
+ is the constant related to the coefficients of

linear complexity of the four operations, N s is the unique number of iterations of the parallel

synchronous algorithm, Na is the number of iterations of the parallel asynchronous algorithm

(not unique, different in each process), and
(
ǫs

mvp(p), ǫs
dot(p)

)
and

(
ǫa

mvp(p), ǫa
dot(p)

)
are the

latencies of the matrix-vector product and the dot product respectively, related to the parallel

synchronous and asynchronous system.

Proof.

Sa|s(p) =
Cs

Ca
=

N s ×

(
ξ.n

p
+
(
ǫs

dot(p) + ǫs
mvp(p)

))

Na ×

(
ξ.n

p
+
(
ǫa

dot(p) + ǫa
mvp(p)

))

=
N s

Na
×

1 +
p

ξ.n

(
ǫs

dot(p) + ǫs
mvp(p)

)

1 +
p

ξ.n

(
ǫa

dot(p) + ǫa
mvp(p)

)

5.3.3 Estimation of the costs of data exchange
The development of this part is based on studies presented in references [261] [262] [263] [264].

Now, we aim to give more details regarding the costs of data exchange of the matrix-vector
product ǫpara

mvp (p) and dot product ǫpara
dot (p) due to the parallel system. In this analysis, we will

study both the synchronous and the asynchronous case. We first propose to estimate the costs
of data exchange operations.

Definition 5.31 Let PS = {P1 = 1, . . . , Pp = p} be the set of the processors, a system
capable of executing p ∈ P processes of execution. The communication latency (tl) is the time
that spends a process Pi ∈ P when it sends, receives or sends/receives a message to/from a
process Pj ∈ P, Pi 6= Pj . This time (tl) is proportional to the size (number of items) of the
message, m, which is defined as

tl(m, p) = ts +m× tt + ⌊
m

p
⌋ × tp, (5.60)

where ts is the startup latency, m is the size of the message, tt is the transmission latency, and
tp is the packetization latency. This packetization latency is the time needed to create and fill
packets of data for transfer over the network protocol. The startup time take into account the
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fixed cost of the system call and those of recurring expenses during initialization. As proved
in [261], the transmission latency (tt) is generally inferior to the startup latency (ts).

Remark 5.32 For asynchronous communication, the startup latency and the transmission

latency are considered null, i.e., ts = 0 and tt = 0. The communication latency (tl) is then
given by

tl(m, p) = ⌊
m

p
⌋ × tp. (5.61)

The communication latency strongly depends on the properties of the program. Therefore,
the parallel mode, synchronous or asynchronous, highly impacts the communication latency.
When we deal with message transferring, we can no longer neglect the network throughput
(τ ) at which the network can distribute data. This metric is also called bandwidth and is often
measured in Mbits per second. It is assumed that the network has a finite capacity.

Definition 5.33 The network throughput (bandwidth), τ , is related to the communication

latency (tl) by the following formula: τ = 10−6.
m

tl
=

10−6

ts
m

+ tt

. In the limit, as n tends to

infinity, which means that the size of the message is infinite, the maximum bandwidth tends to
10−6

tt
.

Definition 5.34 Let us consider a system capable of executing p ∈ P processes of execution.
The costs of data exchange of the dot product ǫpara

dot (p) is defined by

ǫpara
dot (p) = 2(p− 1)× tl(1, p) = 2(p− 1)(ts + tt), (5.62)

whether we consider that the reduction is equivalent to (p− 1) sends and (p− 1) receives. For

p ≥ 2,
1

p
= 0, so ⌊

1

p
⌋ × tp = 0.

Remark 5.35 Considering Remark 5.32, we have ǫpara
dot (p) = 0 for asynchronous communi-

cation. In practice, in asynchronous mode, the dot product may not be computed. Another
approach must be used for the halting procedure (cf. convergence detection).

Definition 5.36 Let us consider a system capable of executing p ∈ P processes of execution.
The costs of data exchange of the matrix-vector product ǫpara

mvp (p) is given by

ǫpara
mvp (p) =

card(u)∑

i=1

tl(card(ui), p) =
k∑

i=1

ts + card(ui)× tt + ⌊
card(ui)

p
⌋ × tp, (5.63)

where u = {u1, . . . , uk} is the set of messages, card(u) the number of exchanges performed
during the computation and card(ui) the size of the ith message.

5.3.4 Synchronous vs Sequential
LetN s

q be the number of iterations of the process q ∈ PSystem{p} of a parallel synchronous
algorithm. The following describes the unicity of the number of iterations in each process in a
parallel synchronous algorithm.

∀(r, q) ∈ PS × PS, N s
r = N s

q . (5.64)
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Definition 5.37 Let us define N s as the unique number of iterations of a parallel synchronous
algorithm such as

∀q ∈ PS, N s = N s
q . (5.65)

Remark 5.38 The parallel synchronous algorithm has the same number of iterations as the
sequential algorithm, i.e.

∀q ∈ PS, N s
q = N s = N. (5.66)

Lemma 5.39 (Parallel synchronous speed-up upon sequential) The theoretical speed-up

Ss and its corresponding efficiency Es can be had by executing the parallel iterative algorithm,

which solves linear systems Ax = b with A ∈ R
n×n, on a system capable of executing p ∈ P

processes of execution synchronously are

Ss(p) =
p

1 +
p

ξ.n

(
ǫs

dot(p) + ǫs
mvp(p)

) and Es(p) =
1

1 +
p

ξ.n

(
ǫs

dot(p) + ǫs
mvp(p)

) , (5.67)

where n is the number of equations, p the number of processes, ξ ∈ R
+ the constant related to

the coefficients of linear complexity of the four operations, and ǫs
mvp(p), ǫs

dot(p) the latencies

of the matrix-vector product and the dot product respectively related to a parallel synchronous

system.

Proof. This is a direct consequence of Theorem 5.29 and considering the Remark 5.38.

5.3.5 Asynchronous vs Sequential
The asynchronous version of the studied iterative algorithm such as Jacobi’s is obtained

by simply removing from the synchronous version all synchronization points, and ensuring
that the messages can be received at any point in the iteration. For example, we remove all
reduction functions such as MPI_ALLREDUCE, which requires a synchronization of the whole
set of processes. In case of asynchronous algorithms, each process has a different number of
iterations. Indeed, from one execution to the other, the order of messages will change and
the number of iterations to reach the convergence will also change, i.e., Na

q (i) 6= Na
q (j) in

general for a process q ∈ PS and i, j two different executions. The asynchronous model is non-
deterministic. In general, asynchronous algorithms require a greater number of iterations before
the convergence than in the synchronous case. However, in some cases, the asynchronous
version requires fewer iterations to converge than its synchronous counterpart, as proved
in [265]. J.M Bull et al. [265] show that this behavior can be explained in terms of the presence
or absence of oscillations in the sequence of error vectors in the synchronous version, and that
removing the synchronization point can damp the oscillations.

Definition 5.40 Let Na
q be the number of iterations of the process q ∈ PS of a parallel

asynchronous algorithm. Let us note first that this assumption implies the following hypothesis:

∀(r, q) ∈ PS × PS, r 6= q,Na
r 6= Na

q (5.68)

and
∀q ∈ PS, Na

q (ith run) 6= Na
q (jth run) for i 6= j. (5.69)
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Definition 5.41 To analyse the asynchronous speed-up, we define the total number of iter-
ations (unique) of a parallel asynchronous algorithm such that it is proportionally equal to
the total number of iterations of a parallel synchronous algorithm, which is expressed by
Na = δ.N s, where δ ∈ R

+∗ is the multiplier coefficient.

We can choose for instance, δ ∈ R
+∗ such that the total number of iterations of a parallel

asynchronous algorithm is proportional to the average number of iterations of all the processes,

which can be formulated as δ =
1

N s
×

1

p

p∑

q=1

Na
q , q ∈ PS.

Lemma 5.42 (Parallel asynchronous speed-up upon sequential) The theoretical speed-up

Sa and its corresponding efficiency Ea can be had by executing the parallel iterative algorithm,

which solves linear systemsAx = b withA ∈ R
n×n), on a system capable of executing p ∈ PS

processes of execution asynchronously are

Sa(p) =
1

δ
×

p

1 +
p

ξ.n

(
ǫa

dot(p) + ǫa
mvp(p)

) and Ea(p) =
1

δ
×

1

1 +
p

ξ.n

(
ǫa

dot(p) + ǫa
mvp(p)

) .

(5.70)
where n is the number of equations, p the number of processes, ξ ∈ R

+ the constant related to

the coefficients of linear complexity of the four operations, and ǫa
mvp(p), ǫa

dot(p) the latencies of

the matrix-vector product and the dot product respectively related to a parallel asynchronous

system.

Proof. This is a direct consequence of Theorem 5.29 and considering the Definition 5.41.

5.3.6 Asynchronous vs Synchronous
Lemma 5.43 (Parallel asynchronous speed-up upon synchronous) The theoretical speed-

up Sa|s and its corresponding efficiency Ea|s can be had by executing the parallel iterative

algorithm, which solves linear systems Ax = b with A ∈ R
n×n), on a system capable of

executing p ∈ PS processes of execution asynchronously is

Sa|s(p) =
1

δ
.
1 +

p

ξ.n

(
ǫs

dot(p) + ǫs
mvp(p)

)

1 +
p

ξ.n

(
ǫa

dot(p) + ǫa
mvp(p)

) and Ea|s(p) =
1

δ.p
.
1 +

p

ξ.n

(
ǫs

dot(p) + ǫs
mvp(p)

)

1 +
p

ξ.n

(
ǫa

dot(p) + ǫa
mvp(p)

)

(5.71)
where δ ∈ R

+∗, n is the number of equations, p the number of processes, ξ ∈ R
+ the constant

related to the coefficients of linear complexity of the four operations,
(
ǫs

mvp(p), ǫs
dot(p)

)
and(

ǫa
mvp(p), ǫa

dot(p)
)

the latencies of the matrix-vector product and the dot product respectively

related to a parallel synchronous and asynchronous system.

Proof. This is a direct consequence of Theorem 5.30 and considering the Definition 5.41.

5.3.7 Application to Jacobi method
Let A ∈ K

n×n be a square matrix that satisfies the Jacobi condition of convergence
enunciated in Theorem 4.60 for synchronous algorithms and Theorem 4.61 for asynchronous
algorithms. For the sake of clarity and simplicity, we use in this analysis the vector version of
the Jacobi method (see Proposition 4.64, Page 139), which corresponds to the Algorithm 4.5.
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The analysis is equivalent with those considering the Jacobi element updates version described
in Definition 4.62 (Algorithm 4.4).

Proposition 5.44 As we can observe in (4.35) (Algorithm 4.5), each iteration of the Jacobi

method performs one matrix-vector product (nmvp = 1), one element-wise product (newp = 1)

and two vector updates (nupd = 2). Finally, a dot product (ndot = 1) is performed to compute

the residual of D−1
(
b− Ax(k)

)
. In fact, ε(k) = ‖x(k+1) − x(k)‖ = ‖D−1

(
b− Ax(k)

)
‖.

Remark 5.45 The Jacobi method satisfies the assumption of the speed-up analysis given
previously, i.e., it is fully parallelizable and has four operations (Proposition 5.44).

In our implementation, the input and output of a parallel algorithms are local to each
process. Indeed, the distribution of data is accomplished as a preprocessing step, independently
from the solver code, as described in Section 4.3, Page 112.

Multi-splitting band-row method Each processor has to perform (p− 1) sends and (p− 1)

receives of m items where m is the size of blocks. Therefore,

ǫpara
mvp (p) =

p−1∑

i=1

2 ∗ tl(card(bi), p) =
p−1∑

i=1

2(ts + card(bi)× tt + ⌊
card(bi)

p
⌋ × tp),

where b = {b1, . . . , bp−1)} is the set of blocks with card(b) = p− 1 and card(bi) the size of
the ith block. Considering Remark 5.32, we have

ǫa
mvp(p) =

p−1∑

i=1

2⌊
card(bi)

p
⌋ × tp.

Considering Definition 5.34, in synchronous algorithms, the dot product latency is always
calculated as follows

ǫs
dot(p) = 2(p− 1)(ts + tt). (5.72)

Sub-structuring method The sub-structuring Jacobi algorithm (Algorithm 5.3 and Algo-
rithm 5.4) considered here only performs the four operations locally in each process without
any exchange of data. Considering the Algorithm 5.3 and Algorithm 5.4, the dot product and
the matrix-vector product are computed locally without any exchange. Moreover, at each
iteration, the input data of the matrix-vector product needs to be updated by assembling the
local contributions from all neighboring sub-domains on the interface. This scheme requires
the exchange of data between processes dealing with sub-domains sharing a common interface.
For the sake of simplicity on the notation, we consider that this scheme corresponds to the
contribution ǫpara

mvp (p). Without losing generality and for the sake of simplicity, we assume
that the number of interfaces (neighboring, which share a common interface) is the same in
each sub-domain. Let I be the number of interfaces. So, each sub-domain has to perform I

sends and I receives, i.e., 2I communications. In addition, the size of a sending and receiving
process at a given interface is equal, we can conclude that

ǫpara
mvp (p) =

2I∑

i=1

tl(card(ui), p) =
2I∑

i=1

ts + card(ui)× tt + ⌊
card(ui)

p
⌋ × tp, (5.73)
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where u = {u1, . . . , uk} is the set of interfaces, card(u) is the number of exchanges performed
during the computation, and card(ui) the number of nodes of the corresponding interface.

5.4 Numerical results
This section reports the numerical experiments concerning the studies presented in this

chapter, i.e., the sub-structuring methods with synchronous and asynchronous iterations. We
will also analyze their behaviors using CUDA accelerators. In this chapter, although we mainly
focus on parallel synchronous and asynchronous stationary iterative methods, we will also give
some results of the Conjugate Gradient, a non-stationary iterative Krylov method. A numerical
analysis of the theoretical speed-up of the Jacobi method will also presented. To be in line
with previous chapters, we will give an analysis using the set of matrices from the University
of Florida repository (see Table 3.11, Page 68). Nevertheless, the matrices given in Table 3.11
do not meet the conditions of convergence of the Jacobi method (see Theorem 4.60, Page 136),
so we will introduce a novel set of data that satisfies the convergence conditions. The matrices
have been chosen so that Jacobi’s convergence condition for parallel asynchronous algorithms
are satisfied (see Theorem 4.61, Page 136). The matrices used in this section are stored in
Compressed Sparse Row (CSR) format.

5.4.1 Test cases
To illustrate the results of the chapter, the following equation in an heterogeneous 3D

media is first considered:

(−∇. (µ∇))u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω (5.74)

in the domain Ω = [a1, b1] × [a2, b2] × [a3, b3], where a1, b1, a2, b2, a3, b3 ∈ R. The equa-
tion (5.74) is called non-linear Poisson equation. The problems are obtained by the finite
element method discretization on divers meshes. In this study, the global domain is split in n
layers, where n = 1 (Poisson equation) and n = 4. The coefficient µ is assumed to be constant
per layer. The design of the finite element method consists in discretizing the equation (5.74)
to build an elementary matrix in each layer by considering the associated constant µ and then
assemble the global matrix. The method consists of hexahedron finite elements. The layers can
be non-uniform. Note that when µ is considered constant, the equation (5.74) can be rewritten
as

−µ∇.∇u = −µ∆u = f, (5.75)

because when µ isconstant, we have −∇µ = 0, so −∇µ.∇u = 0. The meshes used here are
structured. Table 5.1 shows representative ranges of hydraulic conductivity values (m.s−1), µ,
for common rocks and soils (adapted from P.A Domenico and F.W Schwartz 1990 [266], T.T.
Eaton et al. [267], B. Suski [268]).

Global domain in 4 layers upon µ The first set of data consists of matrices obtained by the
finite element discretization of the equation (5.74), using 4 layers with the following value of
µ: 10, 100, 10, 1000 (see Table 5.1).
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Material hydraulic conductivity (m.s−1), K = µ
bound inf bound sup

coarse gravel 103 · · · 104

sand, gravel 100 · · · 103

fine sand, silt 10−4 · · · 100

clay, shale 10−9 · · · 10−6

limestone 100 · · · 102

sandstone 10−5 · · · 101

altered chalk 100 · · · 102

unaltered chalk 10−9 · · · 101

granite, gneiss 10−8 · · · 10−4

TABLE 5.1: Hydraulic conductivity (m.s−1), µ, depending on the environment of the medium (material)

The domain Ω has the shape of a parallelepiped extending from 0 to 250, 000 in the
x−direction and y−direction, and from −15, 000 m to 0 in the z−direction. The domain
Ω = [0; 250, 000] × [0; 250, 000] × [−15, 000; 0] is projected into [0; 1] × [0; 1] × [0; 0.06].
The projection conserves the geometry, the discretization topology (h remains uniform), the
number of nodes and elements, and the layers and partitioning.

FIGURE 5.8: Example of the mesh with 4 layers

Figure 5.8 illustrates an instance of mesh with 4 layers.
Homogeneous Dirichlet boundary conditions are defined on the vertical faces (xz−plane

and yz− plane), i.e.




u(x, y, z) = 0, ∀ (x, y, z) ∈ {0; 1} × [0; 1]× [0, 0.06],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× {0; 1} × [0, 0.06].
(5.76)

The right-hand side is defined such that f(x, y, z) = cos(250× z).
Table 5.2 collects the main features of the two levels of meshes used for the finite element

discretization of the equation (5.74) with 4 layers.
Table 5.3 reports the statistics of the layers of the level #1 and level #2 meshes respec-

tively.

3D Laplace equation The second set of data consists of purely academic test cases. The
matrices are obtained by the finite element discretization of the equation (5.74) with µ = 1.
Under this condition, the equation (5.74) corresponds to the classical Laplace equation (Poisson
equation), i.e.

−∆u = f. (5.77)
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original mesh projected mesh
LEVEL #0 LEVEL #1 LEVEL #0 LEVEL #1

instance Figure 5.8 Figure 5.8
x−range [0 : 2500 : 250, 000] [0 : 1250 : 250, 000] [0 : 0.01 : 1] [0 : 0.005 : 1]
y−range [0 : 2500 : 250, 000] [0 : 1250 : 250, 000] [0 : 0.01 : 1] [0 : 0.005 : 1]
z−range [−15, 000 : 2500 : 0] [−15, 000 : 1250 : 0] [0 : 0.01 : 0.06] [0 : 0.005 : 0.06]
Number of nodes 71, 407 525, 213 71, 407 525, 213
Number of elements 60, 000 480, 000 60, 000 480, 000
Size of element ≈ 4330.12702 ≈ 2165.06351 ≈ 0.0173 ≈ 0.0087
Number of layers 4 4 4 4
Total interface size 96, 234 391, 510 96, 234 391, 510

TABLE 5.2: Statistics of the original and projected meshes with 4 layers

level #0 mesh level #2 mesh

layer #1 layer #2 layer #3 layer #4 layer #1 layer #2 layer #3 layer #4
Number of nodes 29, 921 29, 846 29, 806 29, 951 29, 921 29, 846 29, 806 29, 951
Number of elements 15, 066 14, 934 14, 918 15, 082 15, 066 14, 934 14, 918 15, 082
Number of interface nodes 18, 963 29, 164 29, 154 18, 953 18, 963 29, 164 29, 154 18, 953

TABLE 5.3: Statistics of the level #0 and #1 of the meshes with 4 layers: muluf_hexas100x100x6_0 (level #1)
and muluf_hexas100x100x6_1 (level #2)

Note that the Helmholtz equation does not converge with a classical splitting method such as
Jacobi’s. The domain has the shape of a cube extending from 0 to 1 in each direction (x−, y−,
z−), i.e., Ω = [0; 1]× [0; 1]× [0; 1]. Homogeneous Dirichlet boundary conditions are defined
on the whole boundary, i.e.





u(x, y, z) = 0, ∀ (x, y, z) ∈ {0; 1} × [0; 1]× [0; 1],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× {0; 1} × [0; 1],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× [0; 1]× {0; 1}.

(5.78)

The right-hand side is defined such that f(x, y, z) = cos(x+ y).

CUBE-35937 CUBE-274624
instance Figure 5.9(a) Figure 5.9(b)
x−range [0 : 0.03125 : 1] [0 : 0.015625 : 1]
y−range [0 : 0.03125 : 1] [0 : 0.015625 : 1]
z−range [0 : 0.03125 : 1] [0 : 0.015625 : 1]
Number of nodes 35, 937 274, 624

TABLE 5.4: Statistics of the academic cube meshes: luf_cube-35937 and luf_cube-274624

The set consists of two matrices of size 35, 937 and 274, 624 where the properties of the
associated meshes are collected in Table 5.4. Figure 5.9 illustrates an instance of a finite
element mesh of the CUBE-35937 (see Figure 5.9(a), Page 177) and the CUBE-274624
(see Figure 5.9(b), Page 177).

3D gravitational potential equation The third set of data is obtained from the finite element
discretization of the gravitational potential equation. The gravitational potential of a density
anomaly distribution is given as a particular case of the equation (5.77) with a right-hand
side defined so that f(x, y, z) = 4πGδρ(x, y, z), where δρ is the density anomaly and G
the gravitational constant. Let us remark that the domain Ω corresponds to the area of the
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(a) luf_cube-35937 (lupcuf_cube-
35937) “0 : 0.03125 : 1” (35, 937
nodes)

(b) luf_cube-274624 (lupcuf_cube-
274624): “0 : 0.015625 : 1”
(274, 624 nodes)

FIGURE 5.9: Finite element mesh examples of the cube

Chicxulub impact crater (see Section 3.5.3, Page 69). However, in the new discretization of
the following mathematical modeling,

−∆u = 4πGδρ, (5.79)

we consider homogeneous Dirichlet boundary conditions defined on the vertical faces (xz−plane
and yz− plane), i.e.




u(x, y, z) = 0, ∀ (x, y, z) ∈ {0; 1} × [0; 1]× [0, 0.06],

u(x, y, z) = 0, ∀ (x, y, z) ∈ [0; 1]× {0; 1} × [0, 0.06]
(5.80)

The density anomalies δρ are those of the Chicxulub impact crater.
The properties and the mesh are closely similar to those presented in Table 5.2 and Fig-

ure 5.8, except that there is only one layer (whole domain). The matrices are named
gravi_hexas100x100x6_0 (level #1) and gravi_hexas100x100x6_1 (level #2).

3D Heat equation Let us first get some definitions:

• u(x, u, z, t): temperature at any point (x, y, z) and any time t, [K]

• c(x, y, z): specific heat [j/kg K] (assumed constant in time),

• ρ(x, y, z): mass density [kg/m3] (assumed constant in time),

• Q(x, y, z, t): heat energy generated per unit volume per unit time.

The specific heat, c(x, y, z), of a material is the amount of heat energy that it takes to raise
one unit of mass of the material by one unit of temperature, i.e., the heat necessary to raise
the temperature of a 1kg-mass by 1 Kelvin. The mass density, ρ(x, y, z), is the mass per unit
volume of the material. In our analysis, we assume that the specific heat, c(x, y, z), the mass
density, ρ(x, y, z), and the heat energy, Q(x, y, z, t), are considered constant, i.e.

c(x, y, z) = c, ρ(x, y, z) = ρ and Q(x, y, z, t) = Q.
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The heat equation in an isotropic and homogeneous media is considered:





∂u

∂t
(x, y, z, t) = k∆u(x, y, z, t) +

Q

cρ
, (x, y, z) ∈ Ω and t ∈ R

+,

u(x, y, z, 0) = f(x, y, z), ∀ (x, y, z),

u(x, y, z, t) = 0, ∀ (x, y, z) on ∂Ω,

(5.81)

in the spatial domain Ω = [a1, b1] × [a2, b2] × [a3, b3] (a1, b1, a2, b2, a3, b3 ∈ R) where ∂Ω

denotes the closed surface of Ω, where ∆ = ∇2 is the Laplacian operator and k =
K0

cρ
with

K0 is the thermal conductivity (considered constant). Here, there are no external sources, thus
Q = 0, and then the equation (5.82) can be written as follows





∂u

∂t
(x, y, z, t) = k∆u(x, y, z, t), (x, y, z) ∈ Ω and t ∈ R

+,

u(x, y, z, 0) = f(x, y, z), ∀ (x, y, z),

u(x, y, z, t) = 0, ∀ (x, y, z) on ∂Ω,

(5.82)

where k =
K0

cρ
([m2/s]) is the thermal diffusivity. The exact solution of the heat equation can

be obtained using the technique of separation of variables. First, we assume that the solution
will take the form,

u(x, y, z, t) = ψ(x, y, z)φ(t), (5.83)

and we substitute the equation (5.83) with the equation (5.82), by taking into account also the
boundary conditions. We separate the equation (5.83) to get a function which only depends on
t and another that only depends on the spatial domain (x, y, z), and then introduce a separation
constant λ. After that, the initial problem (5.82) leads to solve the following equations:

∂φ

∂t
= −kλφ and





∆ψ + λψ = 0, ∈ Ω,

ψ(x, y, z, t) = 0, ∀ (x, y, z) on ∂Ω.
(5.84)

In this analysis we only solve the spatial problem,





∆ψ + λψ = 0, ∈ Ω,

ψ(x, y, z, t) = 0, ∀ (x, y, z) on ∂Ω,
(5.85)

with λ considered positive. The set of matrices is obtained from the finite element discretization
in space of the problem (5.85). The time-dependent equation can really be solved at any time.
The time equation can be solved using the finite difference discretization. For example, we can
use an explicit Euler scheme, which gives

φn+1 − φn

δt
= −kλφn (5.86)

where δt is the time step of the temporal discretization. Finally, at each time step n, we have to
perform

φn+1 = φn (1− kλδt) . (5.87)
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In this analysis, for the sake of simplicity, the matrices used are obtained from the finite
element discretization of the following space problem:

∆ψ + ηψ = f, (5.88)

where η depends on k =
K0

cρ
and the time discretization δt. The parameter η is fixed to 0.1 for

cube matrices, and to 1 for the church matrix. The chosen η ensures the convergence of the
Jacobi method. The right-hand side is defined so that f(x, y, z) = cos(x+ y). The properties
of the meshes used in the discretization are given in Table 5.5.

CUBE-35937 CUBE-274624 CHURCH-484507
instance Figure 5.9(a) Figure 5.9(b) Figure 5.12
x−range [0 : 0.03125 : 1] [0 : 0.015625 : 1] [−24.4 :≈ 0.5 : 26.6]
y−range [0 : 0.03125 : 1] [0 : 0.015625 : 1] [−59.9 :≈ 0.5 : 37.9]
z−range [0 : 0.03125 : 1] [0 : 0.015625 : 1] [0.161 :≈ 0.5 : 39.2]
Number of nodes 35, 937 274, 624 484, 507
Parameter η of (5.88) 1 1 0.1

TABLE 5.5: Statistics of the meshes used in the discretization of ∆ψ + ηψ = f : lupcuf_cube-35937,
lupcuf_cube-274624 and church-484507

Figure 5.12 illustrates an instance of the mesh that models the Royaumont church (484, 507

nodes). Computer-Aided Design (CAD) models of the Royaumont church are given in
Figure 5.10 (exterior view) and Figure 5.11 (interior view). F. Magoulès, R. Cerise and P.

FIGURE 5.10: Computer-Aided Design (CAD) model of the Royaumont church
(exterior view of the architecture)

(a) Interior wiew 1 (b) Interior wiew 2

FIGURE 5.11: CAD model of the Royaumont church
(interior view of the architecture)

Callet [269] have designed an efficient methodology for sound holography within the church
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(a) Church mesh with 21, 215 nodes (b) Church mesh with 484, 507
nodes

FIGURE 5.12: Finite element mesh examples of the church

of the Royaumont Abbey. The Royaumont Abbey is situated about 35 kilometers north of
Paris. This is a royal church. The construction was demanded by King Saint Louis and his
mother, Blanche de Castille, in 1228 and finished in 1235. During the sovereignty of Saint
Louis, the Royaumont Abbey was one of the most important Cistercian places in Europe,
inhabited by a maximum of 140 monks. For more detail, the readers are referred to the paper
of F. Magoulès et al. [269]. F. Magoulès et al. [269] and G. Gbikpi-Benissan et al. [270] have
studied the medieval glass rendering in terms of acoustics (Helmholtz equation) within the
church of the Royaumont Abbey using the ray-tracing domain decomposition method (DDM).
Given that the Helmholtz equation does not satisfy the convergence condition of Jacobi, we
give an evaluation that helps analyze the heat within the church of the Royaumont Abbey.

Summary of test cases Table 5.6 collects the set of matrices obtained by the finite element
P1 discretization of the test cases presented previously. The main properties of each matrix are
also given: h the size of the matrix, nnz the number of non-zero values, density the density
that corresponds to the number of non-zero values divided by the total number of matrix
coefficients, nnz/h the mean row density, max_row the maximal row density, σ(nnz/n) or
nnz/h stddev the standard deviation of the mean row density (nnz/h) and bandwidth the
upper bandwidth, which is equal to the lower bandwidth in case of a symmetric matrix. The
first and second pictures represent respectively the pattern of non-zero values and an histogram
of the distribution of non-zero values per row for each matrix. The matrices are ranged in
increasing number of non-zero values (nnz), from top to bottom, left to right.

5.4.2 Parallel test cases
The data of the parallel test cases consist of the splitting of the matrices presented in

Table 5.6 according to the methods of data partitioning for distributed computing (see Sec-
tion 4.3, Page 112).

Statistics of parallel test cases In this paragraph, we give and analyze some statistics
concerning the matrix partitioning using the proposed sub-structuring splitting described in
Section 4.3.5, Page 120. In this analysis, for the sake of simplicity, we give statistics for
the matrices “church-484507” and “lupcuf_cube-274625” only. The other matrices have
the same behavior concerning the partitioning. Figure 5.13, Figure 5.15 and Figure 5.14
describe respectively the number of nodes (# of nodes) in each sub-domain, the number of
neighboring sub-domains and the number of interface nodes for the 32 and 64-partitioning of
“church-484507”.
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“luf_cube-35937”

n = 35, 937 nnz = 759, 667

density = 0.059 nnz/n = 21.139

max_row = 27 σ(nnz/n) = 9.741

bandwidth = 1, 123

“luf_cube-274625”

n = 274, 625 nnz = 6, 563, 167

density = 0.009 nnz/n = 23.899

max_row = 27 σ(nnz/n) = 7.621

bandwidth = 4, 291

“church-484507”

n = 484, 507 nnz = 10, 641, 113

density = 0.005 nnz/n = 21.963

max_row = 27 σ(nnz/n) = 9.262

bandwidth = 11, 341

Structured FEM problem, 3D Laplace equa-

tion (5.77), cube [0 : 0.03125 : 1] × [0 :
0.03125 : 1] × [0 : 0.03125 : 1].

Structured FEM problem, 3D Laplace equa-

tion (5.77), cube [0 : 0.015625 : 1] × [0 :
0.015625 : 1] × [0 : 0.015625 : 1].

Structured FEM problem, 3D heat equa-

tion (5.88), church Figure 5.12.

“lupcuf_cube-35937”

n = 35, 937 nnz = 759, 717

density = 0.059 nnz/n = 21.140

max_row = 27 σ(nnz/n) = 9.742

bandwidth = 1, 123

“lupcuf_cube-274625”

n = 274, 625 nnz = 6, 563, 781

density = 0.009 nnz/n = 23.901

max_row = 27 σ(nnz/n) = 7.622

bandwidth = 4291

“gravi_hexas100x100x6_0”

n = 71, 407 nnz = 1, 656, 131

density = 0.032 nnz/n = 23.193

max_row = 27 σ(nnz/n) = 6.174

bandwidth = 10, 303

Structured FEM problem, 3D heat equa-

tion (5.88), cube [0 : 0.03125 : 1] × [0 :
0.03125 : 1] × [0 : 0.03125 : 1].

Structured FEM problem, 3D heat equa-

tion (5.88), cube [0 : 0.015625 : 1] × [0 :
0.015625 : 1] × [0 : 0.015625 : 1].

Structured FEM problem, 3D gravitational

potential equation (5.79), parallelepiped [0 :
0.01 : 1]×[0 : 0.01 : 1]×[0 : 0.01 : 0.06].

“gravi_hexas100x100x6_1”

n = 525, 213 nnz = 13, 107, 979

density = 0.005 nnz/n = 24.957

max_row = 27 σ(nnz/n) = 4.820

bandwidth = 463, 803

“muluf_hexas100x100x6_0”

n = 71407 nnz = 1, 656, 270

density = 0.032 nnz/n = 23.195

max_row = 27 σ(nnz/n) = 6.174

bandwidth = 10, 303

“muluf_hexas100x100x6_1”

n = 525, 213 nnz = 13, 109, 255

density = 0.005 nnz/n = 24.960

max_row = 27 σ(nnz/n) = 4.820

bandwidth = 463, 803

Structured FEM problem, 3D gravitational

potential equation (5.79), parallelepiped [0 :
0.005 : 1] × [0 : 0.005 : 1] × [0 : 0.005 :
0.06].

Structured FEM problem, non-linear Pois-

son equation in an heterogeneous 3D me-

dia (5.74), parallelepiped [0 : 0.01 : 1]×[0 :
0.01 : 1] × [0 : 0.01 : 0.06] with 4 lay-

ers Figure 5.8.

Structured FEM problem, non-linear Pois-

son equation in an heterogeneous 3D me-

dia (5.74), parallelepiped [0 : 0.01 : 1]×[0 :
0.01 : 1] × [0 : 0.01 : 0.06] with 4 lay-

ers Figure 5.8.

TABLE 5.6: Sketches of matrices obtained by the finite element discretization of the presented test cases
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FIGURE 5.13: Number of nodes (# of nodes) in each sub-domain for 32 and 64-partitioning of the matrix
“church-484507”

As we can see in Figure 5.13 and Figure 5.16, the partitioning is almost load-balanced.
Figure 5.16, Figure 5.18 and Figure 5.17 give respectively the number of nodes (# of nodes)
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FIGURE 5.14: Number of interface nodes (# of interface nodes) in each sub-domain for 32 and 64-partitioning
of the matrix “church-484507”
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FIGURE 5.15: Number of neighboring (# of neighboring) in each sub-domain for 32 and 64-partitioning of the
matrix “church-484507”

in each sub-domain, the number of neighboring sub-domains and the number of interface
nodes for the 32 and 64-partitioning of “lupcuf_cube-274625”. The partitioning gives a good
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FIGURE 5.16: Number of nodes (# of nodes) in each sub-domain for the 32 and 64-partitioning of the matrix
“lupcuf_cube-274625”

distribution of the sparse matrix on the parallel processors. The number of neighboring given in
Figure 5.15 and Figure 5.18 estimates the number of communications (send/receive). Moreover,
the number of interface nodes presented in Figure 5.14 and Figure 5.17 estimates the size of
send/receive messages.

Figure 5.19 and Figure 5.20 present respectively the projection of the 32- and 64-partitioning
of the “church-484507” and ‘lupcuf_cube-274624” matrices into the associated meshes given
in Figure 5.12 and Figure 5.9(b). As we can see in these figures, the partitioning of a matrix
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FIGURE 5.17: Number of interface nodes (# of interface nodes) in each sub-domain for the 32 and
64-partitioning of the matrix “lupcuf_cube-274625”
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FIGURE 5.18: Number of neighboring (# of neighboring) in each sub-domain for the 32 and 64-partitioning of
the matrix “lupcuf_cube-274625”

(a) 32 sub-domains (b) 64 sub-domains

FIGURE 5.19: Projection of the 32- and 64-partitioning of the matrix “church-484507” into the associated
mesh given in Figure 5.12

leads to regular sub-parts. The partitioning looks like what can be achieved by partitioning the
mesh directly.

5.4.3 Jacobi’s numerical results using GPU
Before reporting the results of parallel synchronous and asynchronous algorithms, we first

evaluate the behavior of Jacobi algorithm on GPU considering the test matrices described
in Table 5.6. The GPU version will be compared to the CPU one. The implementation
corresponds to the vector version of the Jacobi algorithm (see Proposition 4.64, Page 139)
and (see Algorithm 4.5, Page 138). Moreover, we will compare the Jacobi results with the
conjugate gradient (CG) method with and without preconditioner (P-). Let us remark that the
matrices presented in Table 5.6 are symmetric positive-definite (necessary condition of the CG
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(a) 32 sub-domains (b) 64 sub-domains

FIGURE 5.20: Projection of the 32- and 64-partitioning of the matrix “lupcuf_cube-274624” into the associated
mesh given in Figure 5.9(b)

method). The diagonal (Jacobi) preconditioner is considered. As for the implementation of the
preconditioning step in the iterative Krylov method (see Section 3.6.2, Page 86), in the Jacobi
algorithm, we compute the inverse of the diagonal on CPU and send it to the GPU outside the
iterative routine ( Line 3 of Algorithm 4.5 ).

The numerical experiments have been performed on Platform 4 (see Section 2.6, Page 35),
which consists of a workstation equipped with an Intel Core i7930 running with 2.67GHz,
which has 4 cores and 12 GB main memory and two NVIDIA graphics cards: a Tesla K20c
(dev#0) with 4799GB memory and GeForce GTX 570 with 1279MB memory (dev#1). The
GPU algorithms have been carried out on the Tesla K20c (dev#0). In the following results, the
GPU codes use the best threading distribution of the CUDA grid (see Table 3.22, Page 88).
For each simulation case, we ran 10 trials, and the presented times correspond to the average.
The convergence criteria of the Jacobi experiments presented in Table 5.7 are defined by
‖b− Au(k)‖2 < ε. where ε is the residual threshold (see Line 9 of Algorithm 4.5 ).
Note that ‖b−Au(k)‖2 = ‖u(k+1)−u(k)‖2/‖D

−1‖2 (see Proposition 4.66, Page 139). Table 5.7
reports the double precision execution times of the Jacobi algorithm in seconds on both CPU
and GPU for ε = 10−6, ε = 10−8 and ε = 10−10 respectively. In Table 5.7, we collect the
name of the problem (see Table 5.6, Page 181) in the first column, from column 2 to column 5
we give the numbers of iterations, the CPU times in seconds, the GPU times in seconds and
the speed-ups CPU/GPU for the double precision execution times with ε = 10−6. Those
considering ε = 10−8 and ε = 10−10 are respectively given from column 6 to column 9, and
from column 10 to 13. The speed-ups presented in these results are computed as follows:

ratio =
CPU_time
GPU_time

.

The times given in the table correspond to the global running time, which includes the times of
transfers between CPU and GPU.

Table 5.7 clearly confirms the results presented in Chapter 3 (see Section 3.6, Page 80)
for the matrices described in Table 5.6. In general, the speed of convergence with the Jacobi
iteration is slow compared to the iterative Krylov methods such as the CG. The CG without
preconditioner and the Jacobi method perform approximately the same number of arithmetic
operations. But the Jacobi method needs much more iterations compared to the CG. The
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ε = 10−6 ε = 10−8 ε = 10−10

CPU GPU CPU GPU CPU GPU
h #iter time (s) time (s) ratio #iter time (s) time (s) ratio #iter time (s) time (s) ratio
luf_cube-35937 1,236 9.5 2.8 3.4 1,660 12.8 3.7 3.5 2,085 16.0 4.7 3.4
luf_cube-274625 4,937 298.4 16.5 18.1 6,635 400.1 22.2 18.0 8,334 502.0 27.9 18.0
church-484507 473 50.1 2.1 23.9 123 78.3 3.3 23.7 164 107.1 4.4 24.3
lupcuf_cube-35937 1,196 9.2 2.7 3.4 1,655 12.4 3.6 3.4 2,078 15.5 4.5 3.4
lupcuf_cube-274625 4,776 288.1 16.0 18.0 6,613 387.7 21.5 18.0 8,306 486.7 26.9 18.1
gravi_hexas100x100x6_0 18,220 265.7 43.3 6.1 24,440 356.3 58.1 6.1 30,661 447.9 72.8 6.2
gravi_hexas100x100x6_1 72,895 8,386.3 359.5 23.3 97,780 11,249.5 480.8 23.4 122,665 14,134.7 603.5 23.4
muluf_hexas100x100x6_0 16,702 243.8 39.6 6.2 23,554 343.7 55.8 6.2 30,406 443.5 71.9 6.2
muluf_hexas100x100x6_1 70,229 8,078.5 346.0 23.3 98,496 11,351.9 484.6 23.4 126,764 14,616.9 623.8 23.4

TABLE 5.7: Double precision CSR Jacobi method for ε = 10−6, ε = 10−8 and ε = 10−10

speed-up increases with the number of iterations. The higher the number of iterations, the
greater the speed-up. For a large-size matrix, the Jacobi method becomes rapidly unusable
with CPU in terms of time computing. One solution can consist in seeking the appropriate
iterative method according to the properties of the matrix. Otherwise, Table 5.7 shows that
GPU can be used to accelerate the algorithm. In parallel algorithms, GPU can be used to
accelerate the local computations. Table 5.7 also shows that when we seek to refine the solution
by decreasing the residual threshold, ε, the CPU/GPU speed-up remains unchanged. Table 5.7
clearly show the value of GPU to accelerate the Jacobi algorithm for large sparse matrices. The
convergence criteria of the CG and P-CG experiments presented respectively in Table 5.8 and

Table 5.9 are defined by
‖b− Au(k)‖2

‖b‖2

< ε. The performance of the CG and preconditioned

CG (P-CG) on CPU and GPU for ε = 10−6, ε = 10−8 and ε = 10−10 are respectively reported
in Table 5.8 and Table 5.9.

ε = 10−6 ε = 10−8 ε = 10−10

CPU GPU CPU GPU CPU GPU
h #iter time (s) time (s) ratio #iter time (s) time (s) ratio #iter time (s) time (s) ratio
luf_cube-35937 55 0.4 0.3 1.6 66 0.5 0.3 1.9 78 0.6 0.4 1.6
luf_cube-274625 112 7.1 0.7 10.5 134 8.5 0.7 13.0 158 10.1 0.8 12.8
church-484507 57 6.3 0.3 18.7 77 8.5 0.5 15.5 99 10.9 0.6 18.5
lupcuf_cube-35937 55 0.4 0.3 1.6 66 0.6 0.2 2.4 78 0.6 0.3 2.2
lupcuf_cube-274625 112 7.1 0.6 12.1 133 8.4 0.8 11.0 157 9.9 0.9 10.8
gravi_hexas100x100x6_0 119 1.8 0.6 2.9 140 2.1 0.7 3.2 156 2.5 0.8 3.0
gravi_hexas100x100x6_1 234 28.4 1.5 18.6 268 32.5 1.8 18.2 305 37.0 2.0 18.6
muluf_hexas100x100x6_0 385 5.9 1.6 3.7 508 7.9 1.9 4.1 643 9.9 2.5 4.0
muluf_hexas100x100x6_1 803 97.4 5.2 18.6 1,069 132.5 7.0 19.0 1,350 164.1 8.8 18.6

TABLE 5.8: Double precision CSR CG method for ε = 10−6, ε = 10−8 and ε = 10−10

As said above, Table 5.8 corroborates the fast convergence of the CG algorithm compared
to the Jacobi method. The diagonal preconditioner accelerates the convergence as shown in
Table 5.9.

ε = 10−6 ε = 10−8 ε = 10−10

CPU GPU CPU GPU CPU GPU
h #iter time (s) time (s) ratio #iter time (s) time (s) ratio #iter time (s) time (s) ratio
luf_cube-35937 55 0.5 0.3 1.5 66 0.6 0.4 1.5 78 0.7 0.3 2.1
luf_cube-274625 112 8.1 0.7 11.1 134 9.7 0.9 11.4 158 10.4 0.8 12.3
church-484507 55 0.5 0.2 2.1 66 0.6 0.3 2.1 78 0.7 0.3 2.1
lupcuf_cube-35937 112 7.3 0.7 9.8 133 8.7 0.9 9.9 157 10.3 0.9 11.2
lupcuf_cube-274625 57 6.5 0.4 17.0 77 8.9 0.5 16.6 99 11.3 0.7 15.3
gravi_hexas100x100x6_0 112 1.8 0.5 3.8 131 2.1 0.5 3.8 146 2.3 0.8 3.0
gravi_hexas100x100x6_1 225 28.2 1.7 17.0 258 32.3 1.8 17.7 293 42.2 2.1 20.1
muluf_hexas100x100x6_0 168 2.7 0.7 3.8 227 3.6 0.9 3.8 277 4.4 1.2 3.8
muluf_hexas100x100x6_1 353 44.2 2.5 17.8 473 59.2 3.3 17.9 566 71.0 4.0 17.9

TABLE 5.9: Double precision CSR preconditioned CG (P-CG) method for ε = 10−6, ε = 10−8 and ε = 10−10
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From Table 5.8 and Table 5.9, let us note that when we refine the solution, i.e., decrease
the residual threshold, the speed-up is not really constant compared to the Jacobi method
(see Table 5.7, Page 185). Knowing the performance results of the CG and Jacobi methods for
the studied matrices, we now focus on the evaluation and analysis of parallel synchronous and
asynchronous algorithms.

5.4.4 Numerical analysis of the theoretical speed-up
In this section, we give an analysis of the different theorems of theoretical speed-up,

presented in Section 5.3, Page 161. We vary the dependent parameters in order to better
understand their influences. The analysis of the theoretical speed-up helps get an idea of the
expected performance of parallel algorithm compared to the sequential one. The analysis given
here also helps estimate the efficiency of the asynchronous algorithm.

Execution Profiles

In this analysis, we consider the Laplacian problem.

Parameters related to the parallel system According to the analysis given in the book of
I. Foster (Section 3.4 Scalability Analysis, pp. 99) [271] and the studies described in the
following papers [261] [272] [273] [274], with the MPI API, we can consider the propor-
tion of the communication latencies, tl, (see Definition 5.31, Page 169) as follows: 3/6 for
startup latency (ts), 1/6 for transmission latency (tt), and 2/6 for packetization latency (tp),
(see Figure 5.21).

FIGURE 5.21: Proportion of communication latencies: tl(m, p) = ts +m× tt + ⌊
m

p
⌋ × tp

Parameters related to the Jacobi method The theoretical speed-ups are dependent on a con-
stant ξ = cpara = cseq ∈ R

+, i.e., ξ = cupd + cewp + cdot + cmvp, where cupd, cewp, cdot, cmvp are
the coefficients of linear complexity respectively for the update (saxpy), the element-wise prod-
uct, the dot product and the matrix-vector product operations (see Proposition 5.25, Page 166).
In the Jacobi algorithm (see Algorithm 4.5, Page 138), we have to perform nupd = 2 updates
(saxpy), newp = 1 element-wise product, ndot = 1 dot product and nmvp = 1 matrix-vector
product (see Proposition 5.44, Page 173). In addition, update (saxpy), element-wise product,
dot product and matrix-vector product carry out respectively aupd = 2, aewp = 1 and adot = 2

arithmetic elementary operations. The ξ is then computed as follows:

ξ = nupd × aupd + newp × aewp + ndot × adot + nmvp × amvp.

So, ξ = 9. This coefficient should also depend on the value of stencil associated with the
finite element method. It gives an approximation of the number of non-zero values per line.
For example, for a regular 3D grid with a Q1 finite element, the stencil value is equal to
9× 3 = 27.

186 Chapter 5 Implementation of parallel linear system solvers



Analysis

The following numerical results illustrate the parallel scalability (scaling efficiency) of the
Jacobi sub-structuring and band-row algorithms. We first analyze the theoretical scalability
and then we evaluate real measurements. This parallel scalability indicates how efficient
the algorithm is when using increasing numbers of parallel processors. We study how the
theoretical speed-up varies with parameters such as the processor count and the problem size.
In this analysis, we approximate the size of interfaces and sub-domains. These sizes strongly
impact on the performance. In real cases, this step may decrease the performance compared to
the theoretical model.

Strong Scaling In this case, we consider the luf_cube-35937 problem where the size is equal
to 35937. The first measurement consists in increasing the number of processors.

Figure 5.22(a) and Figure 5.22(b) show respectively the theoretical speed-up Spara|seq of
the parallel sub-structuring algorithm (synchronous and asynchronous) regarding the sequential
algorithm (see Theorem 5.29, Page 168) and Sasync|sync of the asynchronous sub-structuring
algorithm regarding the sub-structuring synchronous algorithm (see Theorem 5.30, Page 169)
for the luf_cube-35937 problem. In these figures, we vary the number of iterations of asyn-
chronous algorithm, Na = δ.N s (see Definition 5.41, Page 171), where N s is the number
of iterations of the synchronous (sequential) algorithm, with δ = {1.2, 1.4, 1.6, 2, 3}. In the
legend of Figure 5.22, sync stands for synchronous and async δx means asynchronous with
Na = δ.N s.
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FIGURE 5.22: Theoretical speed-up Spara|seq and Sasync|sync of sub-structuring Jacobi with luf_cube-35937

From Figure 5.22(a), the following observations can be made about the theoretical speed-
up: the speed-up increases with increasing the number of processors for all performance
models. In general, asynchronous algorithms require a greater number of iterations before the
convergence than in the synchronous case. We can see in this figure that the asynchronous
algorithm becomes more efficient compared to the synchronous one when we increase the
number of processors. So, even if the former performs a greater number of iterations, with
an acceptable large number of processors, we can find δ that asynchronous is more efficient.
In contrast, the efficiency of the synchronous algorithms decreases fast with the number
of processors. The asynchronous algorithm scales much more. This effect is particularly
strong since the communication to computation ratio is high. This is due to low-speed
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interconnection and fast iterations. These behaviors are confirmed in Figure 5.22(b). However,
the sub-structuring algorithm presents the advantage of exchanging data only at the interface,
which considerably optimizes the cost of communication, compared to band-row algorithms.
Figure 5.23 gives the theoretical speed-up of the parallel band-row algorithm. The band-row
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FIGURE 5.23: Theoretical speed-up Spara|seq and Sasync|sync of band-row Jacobi with luf_cube-35937

algorithm requires a greater number of exchanges. As we can see in Figure 5.23(a) and
Figure 5.23(b), the direct consequence is that the efficiency of the band-row synchronous
algorithms decreases more quickly with the number of processors compared to sub-structuring
algorithms. On the other hand, the asynchronous optimized is more efficient (as of 26), which
is due to the removal of synchronization points. In a band-row algorithm, the impact of the
increasing of δ in the efficiency of the asynchronous algorithm is weak compared to sub-
structuring. The sub-structuring algorithms are faster than band-row. In the following, our
study will concentrate on sub-structuring algorithms.

Limits of the efficiency of the asynchronous algorithm To evaluate these limits, we pro-

pose to vary the parameter δ, i.e., the ratio
Na

N s
. Figure 5.24 reports the theoretical speed-up of

sub-structuring of luf_cube-35937 on the parameter δ. From Figure 5.24(a) and Figure 5.24(b),
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FIGURE 5.24: Theoretical speed-up Sasync|seq and Sasync|sync upon δ of sub-structuring with luf_cube-35937

the following observations can be made: speed-up increases with an increasing number of pro-
cessors (as said above) and speed-up decreases with an increasing δ. For a fixed problem size,
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if δ ≫ 0, i.e., the asynchronous algorithm achieves many more iterations than the synchronous
algorithm, then synchronous is more interesting. However, with a large number of processors,
the asynchronous algorithm may become more efficient. This behavior can be expressed as
follows: it exists (p, δ), where p is the number of processors, such that asynchronous is more
efficient than synchronous. In general terms, when δ increases, the algorithm is more effective
with an increasing number of processors.

Scaled problem analysis A large number of processors is frequently used not only to solve
fixed-size problems faster, but also to solve larger problems. Now, we evaluate the theoretical
speed-up with a larger problem. We aim to study how the amount of performed computation is
scaled with the number of processors. We consider the luf_cube-274625 problem where the
size is equal to 274625. In this case, the interface and sub-domain nodes increase. The size of
messages becomes bigger. Figure 5.25(a) and Figure 5.25(b) report respectively the theoretical
speed-up Spara|seq of the parallel sub-structuring algorithm (synchronous and asynchronous)
regarding the sequential algorithm (see Theorem 5.29, Page 168) and the theoretical speed-
up Sasync|sync of the asynchronous sub-structuring algorithm regarding the sub-structuring
synchronous algorithm (see Theorem 5.30, Page 169) for the luf_cube-274625 problem.
In these figures, we vary the number of iterations of the asynchronous algorithm, Na =

δ.N s (see Definition 5.41, Page 171), where N s is the number of iterations of the synchronous
(sequential) algorithm, with δ = {1.2, 1.4, 1.6, 2, 3}. In the legend of Figure 5.22, sync stands
for synchronous and async δx means asynchronous with Na = δ.N s. As we can see in
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FIGURE 5.25: Theoretical speed-up Spara|seq and Sasync|sync of the sub-structuring Jacobi with
luf_cube-274625

Figure 5.25, the speed-up of the synchronous algorithms decreases very fast with the number
of processors. Compared to the small problem, this is due to the increasing number of nodes at
the interface. When the number of processors increases, the synchronous algorithm performs
more exchanges. On the other hand, the asynchronous algorithm becomes more efficient.
The asynchronous algorithm scales much more. Figure 5.26(a) and Figure 5.26(b) collect the
theoretical speed-up of the sub-structuring of luf_cube-274625 based on the parameter δ. As
we can see in Figure 5.26, the limits concerning δ are higher. As a conclusion, considering
a load-balanced problem with sufficient amount of data for each processor, asynchronous is
efficient for large parallel computers. The asynchronous algorithm is highly scalable, mostly
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FIGURE 5.26: Theoretical speed-up Sasync|seq and Sasync|sync upon δ of sub-structuring with
luf_cube-274625

when the amount of computation requires to increase. This is due to the fact that the amount
of essential computations must increase at the same overhead rate.

Figure 5.27 shows the theoretical speed-up Ssync|seq and Sasync|seq based on the degree
of freedom. The two legends are to be used in the two graphs. The left one represents the
problem sizes and the right one gives the number of processors. The size of the interfaces and
the sub-problems are arbitrary. As we can see in these figures, the speed-up increases with an
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FIGURE 5.27: Sub-structuring theoretical speed-up Ssync|seq and Sasync|seq upon degree of freedoms

increasing number of processors and increasing size.
When GPU is used to perform linear algebra operations, the speed-up may decreases with

the number of iterations because of the constant copies between CPU/GPU at each iteration.

5.4.5 Parallel synchronous and asynchronous numerical
results

On a cluster of multi-core-GPUs, all parallel and intensive computations on local data are
performed on GPUs and reduction operations to compute global results are carried out by
CPUs. The version of the MPI library used is OpenMPI (OpenRTE) 1.6.5.

Conjugate Gradient Here, we propose to evaluate and analyze the parallel sub-structuring
CG method with synchronous iterations. Let us recall that the iterative Krylov methods, in
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particular the CG, do not converge with asynchronous iterations. The influence of applying
these techniques on the computation time of parallel processing is illustrated for the case of
parallel conjugate gradient methods. In the following, we report the numerical results of the
parallel sub-structuring Conjugate Gradient method. For each simulation case, we ran 100
trials with a residual tolerance threshold ε = 1× 10−6, where an initial guess equals to zero.
When no right-hand side is associated with the matrix, we consider a right-hand side vector
filled with 1.
To be in line with previous chapters, the numerical experiments and benchmarks of the CG
on a multi-core-GPUs system were performed with the set of matrices from the University
of Florida repository (see Table 3.11, Page 68) and the same workstation, Platform-1 (see Ta-
ble 3.21, Page 88). The test cases are run on a single workstation since I did not have access to
the cluster of a supercomputer at the time.

#subdoms #subdom’s 2cubes_sphere af_shell8 cfd2 Dubcova2

number dof nnz dof nnz dof nnz dof nnz
1 (0) 101,492 874,378 504,855 9,046,865 123,440 1,605,669 65,025 547,625
2 (0) 52,016 826,126 253,221 8,810,853 62,601 1,548,093 32,919 519,515
2 (1) 51,491 836,151 252,674 8,794,432 62,156 1,553,740 32,884 518,240
4 (0) 26,617 422,713 126,597 4,398,547 32,707 787,341 16,716 262,504
4 (1) 26,563 423,375 126,767 4,406,873 31,179 775,703 16,641 260,889
4 (2) 26,998 426,534 126,876 4,406,834 31,744 782,066 16,647 261,091
4 (3) 26,966 416,932 127,080 4,414,982 31,433 783,833 16,603 261,111
8 (0) 13,759 215,379 63,467 2,201,715 16,601 397,151 8,435 131,319
8 (1) 14,038 219,588 63,723 2,206,843 16,037 395,369 8,601 133,729
8 (2) 13,768 214,322 63,665 2,209,225 16,150 396,526 8,530 132,948
8 (3) 13,731 213,449 63,668 2,205,260 15,992 394,800 8,451 131,319
8 (4) 13,928 211,472 64,104 2,219,056 16,299 380,831 8,558 132,986
8 (5) 13,869 210,473 63,602 2,206,164 16,660 408,534 8,442 131,728
8 (6) 14,164 217,980 63,974 2,215,750 15,724 387,660 8,461 131,671
8 (7) 14,168 218,740 63,422 2,198,874 15,966 394,114 8,590 133,900
#subdoms #subdom’s finan512 qa8fm thermomech_dM thermomech_TK

number dof nnz dof nnz dof nnz dof nnz
1 (0) 74,752 335,872 66,127 863,353 204,316 813,716 102,158 406,858
2 (0) 37,436 298,814 33,248 831,710 102,158 711,558 51,134 356,060
2 (1) 37,395 298,479 33,268 832,512 102,158 711,558 51,179 355,965
4 (0) 18,713 149,273 17,092 419,714 51,116 355,948 25,630 177,754
4 (1) 18,713 149,273 17,328 423,986 51,200 356,086 25,702 178,598
4 (2) 18,713 149,273 17,226 421,230 51,173 356,313 25,672 178,354
4 (3) 18,713 149,273 17,217 422,921 51,150 355,746 25,660 178,392
8 (0) 9,369 74,649 9,067 218,487 25,693 178,523 12,871 89,213
8 (1) 9,369 74,649 9,032 217,326 25,650 178,332 12,903 89,315
8 (2) 9,369 74,649 8,995 214,621 25,664 177,978 12,907 89,383
8 (3) 9,369 74,649 8,997 214,955 25,643 178,209 13,027 90,187
8 (4) 9,369 74,649 8,949 214,675 25,677 178,115 12,842 88,912
8 (5) 9,369 74,649 8,899 214,329 25,680 178,428 12,917 89,491
8 (6) 9,369 74,649 9,080 217,594 25,673 178,385 12,870 89,184
8 (7) 9,369 74,649 9,146 219,042 25,612 178,094 12,895 89,097

TABLE 5.10: Degree of freedoms (dof) and non-zero values of the matrix of each sub-domain

Table 5.10 reports the degree of freedoms (dof) and non-zero values (nnz) of the matrix of
each sub-domain. The first column gives the number of sub-domains (#subdoms), followed by
the sub-domain number (#subdom’s) in brackets.

A comparison of the results obtained for CPU clusters and GPU clusters is given in
Table 5.11 for the sparse CSR preconditioned Conjugate Gradient (P-CG), and Table 5.12
represents the corresponding speed-up. To obtain these results, we execute the same algorithm
100 times with the same input data. The performance of our parallel P-CG solver for various
sparse matrices are reported in columns 4 to 6 for CPU and in columns 4 to 10.

Both sequential CPU and GPU are given in columns three and seven, respectively. The
first column lists the test cases’ names and the second column gives the number of iterations
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Matrix #iter. 1CPU 2CPUs 4CPUs 8CPUs GPU 2GPUs 4GPUs 8GPUs
2cubes_sphere 24 0.386 0.209 0.124 0.125 0.026 0.047 0.065 0.113
af_shell8 2,815 374.356 198.998 110.662 107.668 14.549 23.422 18.814 21.385
cfd2 2,818 71.078 38.114 21.657 22.111 3.730 5.904 8.280 12.186
Dubcova2 168 1.776 0.926 0.540 0.850 0.128 0.364 0.405 0.640
finan512 15 0.117 0.121 0.067 0.145 0.017 0.063 0.071 0.120
qa8fm 29 0.418 0.235 0.198 0.168 0.023 0.099 0.137 0.115
thermomech_dM 12 0.313 0.176 0.100 0.091 0.016 0.037 0.072 0.106
thermomech_TK 13,226 141.359 74.423 41.979 40.888 13.214 22.877 32.587 51.528

TABLE 5.11: Execution time for parallel sub-structuring P-CG (seconds) for CSR format

Matrix #iter. 1CPU 2CPUs 4CPUs 8CPUs GPU 2GPUs 4GPUs 8GPUs
2cubes_sphere 24 1.0 1.8 3.1 3.1 15.1 8.2 5.9 3.4
af_shell8 2815 1.0 1.9 3.4 3.5 25.7 16.0 19.9 17.5
cfd2 2818 1.0 1.9 3.3 3.2 19.1 12.0 8.6 5.8
Dubcova2 168 1.0 1.9 3.3 2.1 13.8 4.9 4.4 2.8
finan512 15 1.0 1.0 1.8 0.8 7.0 1.9 1.6 1.0
qa8fm 29 1.0 1.8 2.1 2.5 18.0 4.2 3.0 3.6
thermomech_dM 12 1.0 1.8 3.1 3.5 19.0 8.5 4.4 3.0
thermomech_TK 13226 1.0 1.9 3.4 3.5 10.7 6.2 4.3 2.7

TABLE 5.12: Speed-up of parallel sub-structuring P-CG (seconds) for CSR format

for the P-CG solver. For the presented set of test case matrices, the parallel sub-structuring
P-CG gives satisfactory results. Nevertheless, we can remark that relative gains of some kinds
of matrices increase when matrix bandwidths decrease and matrix sizes increase. As already
mentioned, the gains of using GPU are the most visible for large-size matrices. Moreover,
when the number of sub-domains increases, the GPU code underperforms. This is mainly due
to the decreasing number of degrees of freedom within each sub-domain, and more particularly,
the transfer between the GPU and the host when data exchanges are performed at the interfaces
between the sub-domains. This degrades the overall execution time, as we can see in Table 5.12.
In fact, MPI calls cannot be performed yet inside the GPU.

Jacobi The system is solved using a Jacobi splitting (see Section 4.4.3, Page 136). The
benchmark consists in an analysis of the Jacobi method declined in 3 versions: BANDROW

(JB), BANDROW-OP (JBO) and SUB-STRUCTURING (JSS), which correspond respectively
to the Jacobi method with naive band-row partitioning, optimized band-row partitioning and
sub-structuring partitioning (see Section 4.3, Page 112). We will prefix the synchronous
version and the asynchronous version with an S- and A- respectively. For instance, S-JSS

and A-JSS correspond to the synchronous and asynchronous Jacobi sub-structuring. The
experiments have been performed on Platform-6 of LISA cluster (see Section 2.6, Page 35)
with the set of matrices described in this chapter (see Table 5.6, Page 181). We have used the
nodes (C1, C2, C3, C4, C5, C6).

The stopping criterion used is the simultaneous local convergence of all the processors.
The convergence criterion is the weighted norm defined by ‖D

(
u(k+1) − u(k)

)
‖∞ < ε, where

the residual threshold ε = 10−8. The norm is weighted to the diagonal D.
Table 5.13, Table 5.14 and Table 5.15, Table 5.16 show the numerical results of the experi-

ments. These tables are organized as follows: the top sub-table (e.g., Table 5.12(a)) reports the
results of the BANDROW (S-JB), BANDROW-OP (S-JBO) and SUB-STRUCTURING (S-JSS)

synchronous Jacobi method and the bottom sub-table (e.g., Table 5.12(b)) collects the asyn-
chronous sub-structuring method (SUB-STRUCTURING (A-JSS)). In the top sub-table (e.g.,
Table 5.12(a)), the number of processors is given in the first column, and the results of the
BANDROW (S-JB), BANDROW-OP (S-JBO) and SUB-STRUCTURING (S-JSS) synchronous
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Jacobi method are respectively reported from column 2 to 4, from column 5 to 7, and from
column 8 to 10. For each method, the first column gives the number of iterations, the second
column collects respectively the communication (exchange) times and the solver execution
times in seconds (s). The third column gives the efficiency (eff) of the synchronous algorithm
upon the sequential code (one processor). In the bottom sub-table (e.g., Table 5.12(b)), we
report the number of processors, the minimum, maximum and average number of iterations
from column 1 to 4. The communication (exchange) times and the solver execution times
in seconds (s) are respectively reported in column 5 and 6. The seventh and eighth columns
collect the speed-up and efficiency of the asynchronous algorithm upon the sequential one.
The two last columns give those based on the synchronous sub-structuring algorithm.

(a) Synchronous BANDROW, BANDROW-OP and SUB-STRUCTURING
SYNCHRONOUS

S-J-BANDROW S-J-BANDROW-OP S-J-SUB-STRUCTURING

#p (#n) # iterations time (s) eff. # iterations time (s) eff. # iterations time (s) eff.
comm – total comm – total comm – total

1 746 0.0 – 10.9 100% 746 0.0 – 10.9 100% 746 0.0 – 10.9 100%
8 746 34.5 – 35.8 3.81% 746 1.5 – 3.1 43.81% 699 1.4 – 3.2 42.09%
16 746 67.0 – 67.7 1.01% 746 0.3 – 2.5 26.94% 678 1.5 – 2.6 25.88%
24 746 98.5 – 98.9 0.46% 746 0.5 – 2.9 15.96% 680 1.9 – 2.9 15.52%
32 746 132.6 – 132.9 0.26% 746 0.6 – 2.3 14.84% 646 1.7 – 2.4 14.46%
40 746 169.2 – 169.4 0.16% 746 0.4 – 2.4 11.38% 617 1.6 – 2.5 10.93%
48 746 547.5 – 547.6 0.04% 746 0.6 – 2.7 8.43% 582 1.9 – 2.6 8.70%
56 746 650.6 – 650.8 0.03% 746 0.8 – 2.3 8.48% 568 1.7 – 2.5 7.68%
64 746 734.6 – 734.7 0.02% 746 1.1 – 2.1 8.13% 525 1.8 – 2.4 7.02%

(b) Asynchronous SUB-STRUCTURING
ASYNCHRONOUS J-SUB-STRUCTURING

#p (#n) # iterations time (s) upon sequential upon parallel (Sync(SS)/Async)
min max mean comm total ratio efficiency (eff.) ratio efficiency (eff.)

1 746 746 746 0.0 10.9 1.00 100% 1.00 100%
8 1,293 1,625 1,441 0.3 3.1 3.58 44.75% 1.06 13.29%

16 1,439 2,277 1,714 0.4 2.2 5.08 31.74% 1.23 7.67%
24 1,741 2,589 2,122 0.2 1.8 5.98 24.90% 1.60 6.69%
32 1,255 3,372 2,427 0.5 1.7 6.39 19.96% 1.38 4.31%
40 958 3,945 2,913 0.4 1.9 5.86 14.65% 1.34 3.35%
48 1,127 4,520 3,116 0.3 1.8 5.98 12.47% 1.43 2.98%
56 1,338 4,537 3,060 0.5 1.7 6.57 11.74% 1.53 2.73%
64 1,066 4,843 3,105 0.4 1.6 6.81 10.64% 1.52 2.37%

TABLE 5.13: luf_cube-35937: Numerical results for the Synchronous (BANDROW, BANDROW-OP and
SUB-STRUCTURING) and Asynchronous (SUB-STRUCTURING) Jacobi method

Normally, the number of iterations of all synchronous algorithms should be identical
independently from the number of processors for all algorithms. The band-row versions
give the same number of iterations for all numbers of processors. In contrast, the number
of iterations of the synchronous sub-structuring algorithm is a little different. The effects on
the number of iterations can be explained by the use of simultaneous local convergence as a
stopping criterion. In fact, the global convergence depends on the local convergence, where
the local sub-domain depends on the number of processors.

In parallel synchronous algorithms, the sub-structuring is always fast, in particular with
a large number of processors. The naive band-row algorithm is the slowest. This version is
slow because of a growing number of communications. We can see in all tables that with the
optimized version we considerably decrease the number of exchanges and therefore improve
the execution time of the solver. These results are even more important when the problem is
large in size, as we can observe in Table 5.15(a).
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(a) Synchronous BANDROW, BANDROW-OP and SUB-STRUCTURING
SYNCHRONOUS

S-J-BANDROW S-J-BANDROW-OP S-J-SUB-STRUCTURING

#p (#n) # iterations time (s) eff. # iterations time (s) eff. # iterations time (s) eff.
comm – total comm – total comm – total

1 2,216 0.0 – 238.4 100% 2,216 0.0 – 238.4 100% 2,216 0.0 – 238.4 100%
8 2,216 848.7 – 882.7 3.38% 2,216 14.9 – 53.9 55.27% 2,132 13.7 – 48.0 62.02%
16 2,216 1,617.8 – 1,634.2 0.91% 2,216 2.3 – 37.1 40.21% 2,098 14.5 – 32.1 46.35%
24 2,216 2,675.6 – 2,686.6 0.37% 2,216 3.3 – 33.8 29.40% 2,067 13.7 – 27.8 35.74%
32 2,216 3,222.1 – 3,229.7 0.23% 2,216 2.9 – 28.7 25.98% 2,041 14.6 – 24.6 30.25%
40 2,216 3,725.8 – 3,731.7 0.16% 2,216 6.7 – 34.5 17.29% 1,995 17.2 – 27.1 21.95%
48 2,216 4,341.1 – 4,345.9 0.11% 2,216 6.6 – 33.6 14.79% 1,980 17.7 – 25.8 19.27%
56 2,216 4,957.1 – 4,961.2 0.09% 2,216 6.2 – 31.2 13.64% 1,907 16.5 – 24.7 17.26%
64 2,216 7,055.0 – 7,058.6 0.05% 2,216 5.7 – 28.0 13.31% 1,889 16.2 – 23.0 16.18%

(b) Asynchronous SUB-STRUCTURING
ASYNCHRONOUS J-SUB-STRUCTURING

#p (#n) # iterations time (s) upon sequential upon parallel (Sync(SS)/Async)
min max mean comm total ratio efficiency (eff.) ratio efficiency (eff.)

1 2,216 2,216 2,216 0.0 238.4 1.00 100% 1.00 100%
8 4,808 6,262 5,213 2.0 77.0 3.10 38.70% 0.62 7.80%

16 5,687 8,328 6,595 3.1 51.5 4.63 28.91% 0.62 3.90%
24 15,635 22,712 19,574 2.8 104.4 2.28 9.52% 0.27 1.11%
32 4,723 9,490 7,524 1.6 31.2 7.63 23.84% 0.79 2.46%
40 10,913 17,278 14,922 3.1 52.4 4.55 11.37% 0.52 1.30%
48 9,064 17,235 14,096 3.2 43.7 5.46 11.37% 0.59 1.23%
56 6,784 14,984 11,627 2.7 32.2 7.40 13.22% 0.77 1.37%
64 4,093 9,607 7,174 1.3 18.0 13.22 20.66% 1.28 1.99%

TABLE 5.14: luf_cube-274625: Numerical results for the Synchronous (BANDROW, BANDROW-OP and
SUB-STRUCTURING) and Asynchronous (SUB-STRUCTURING) Jacobi method

The asynchronous versions of the algorithm are faster than the synchronous ones, and
especially with a large number of processes. Let us note that the asynchronous algorithm is
less efficient for small problems, as shown in Table 5.12(b).

(a) Synchronous BANDROW, BANDROW-OP and SUB-STRUCTURING
SYNCHRONOUS

S-J-BANDROW S-J-BANDROW-OP S-J-SUB-STRUCTURING

#p (#n) # iterations time (s) eff. # iterations time (s) eff. # iterations time (s) eff.
comm – total comm – total comm – total

1 6,234 0.0 – 159.5 100% 6,234 0.0 – 159.5 100% 6,234 0.0 – 159.5 100%
8 6,234 650.1 – 668.2 2.98% 6,234 121.8 – 142.7 13.97% 6,234 8.4 – 33.8 59.00%
16 6,234 1,099.4 – 1,108.5 0.90% 6,234 105.2 – 133.1 7.49% 6,184 9.1 – 22.9 43.58%
24 6,234 1,644.8 – 1,650.9 0.40% 6,234 107.3 – 137.4 4.83% 6,130 12.0 – 25.7 25.82%
32 6,234 2,284.2 – 2,288.7 0.22% 6,234 105.3 – 136.6 3.65% 6,163 14.7 – 23.7 21.02%
40 6,234 5,655.7 – 5,659.4 0.07% 6,234 103.6 – 152.2 2.62% 5,940 12.7 – 22.8 17.50%
48 6,234 6,889.4 – 6,892.5 0.05% 6,234 110.7 – 151.7 2.19% 6,201 10.4 – 22.9 14.48%
56 6,234 7,422.6 – 7,425.3 0.04% 6,234 108.2 – 150.7 1.89% 6,025 11.8 – 21.7 13.11%
64 6,234 8,435.8 – 8,438.5 0.03% 6,234 98.1 – 149.2 1.67% 6,011 14.5 – 22.6 11.02%

(b) Asynchronous SUB-STRUCTURING
ASYNCHRONOUS J-SUB-STRUCTURING

#p (#n) # iterations time (s) upon sequential upon parallel (Sync(SS)/Async)
min max mean comm total ratio efficiency (eff.) ratio efficiency (eff.)

1 6,234 6,234 6,234 0.0 159.5 1.00 100% 1.00 100%
8 11,647 19,393 16,447 2.3 60.4 2.64 33.01% 0.56 6.99%
16 14,978 21,843 17,629 1.6 32.7 4.88 30.52% 0.70 4.38%
24 25,827 36,483 29,701 3.3 38.7 4.12 17.18% 0.67 2.77%
32 16,180 24,687 20,508 2.5 20.6 7.73 24.17% 1.15 3.59%
40 14,600 24,870 21,514 1.0 18.9 8.46 21.14% 1.21 3.02%
48 19,973 37,422 28,437 1.2 21.9 7.29 15.19% 1.05 2.18%
56 16,147 30,865 24,132 2.3 16.8 9.48 16.92% 1.29 2.30%
64 12,803 35,543 26,530 2.6 16.8 9.47 14.80% 1.34 2.10%

TABLE 5.15: gravi_hexas100x100x6_0: Numerical results for the Synchronous (BANDROW, BANDROW-OP
and SUB-STRUCTURING) and Asynchronous (SUB-STRUCTURING) Jacobi method

194 Chapter 5 Implementation of parallel linear system solvers



(a) Synchronous BANDROW, BANDROW-OP and SUB-STRUCTURING
SYNCHRONOUS

S-J-BANDROW S-J-BANDROW-OP S-J-SUB-STRUCTURING

#p (#n) # iterations time (s) eff. # iterations time (s) eff. # iterations time (s) eff.
comm – total comm – total comm – total

1 13,791 0.0 – 2,713.0 100% 13,791 0.0 – 2,713.0 100% 13,791 0.0 – 2,713.0 100%
8 13,791 9,508.5 – 9,907.6 3.42% 13,791 5,994.3 – 6,891.7 4.92% 13,791 66.0 – 469.7 72.20%
16 13,791 19,564.6 – 19,760.2 0.86% 13,791 6,869.0 – 7,399.3 2.29% 13,637 66.0 – 273.7 61.95%
24 13,791 27,329.7 – 27,453.9 0.41% 13,791 7,002.2 – 7,689.7 1.47% 13,791 71.9 – 222.8 50.73%
32 13,791 34,939.7 – 35,030.2 0.24% 13,791 7,309.4 – 8,429.6 1.01% 13,456 97.7 – 228.3 37.13%
40 13,791 42,060.2 – 42,132.9 0.16% 13,791 7,475.9 – 9,768.5 0.69% 13,734 116.4 – 210.4 32.24%
48 13,791 49,218.6 – 49,278.7 0.11% 13,791 6,513.5 – 10,769.9 0.52% 13,674 104.9 – 191.9 29.46%
56 13,791 56,170.8 – 56,223.9 0.09% 13,791 6,370.3 – 10,940.9 0.44% 13,590 105.5 – 187.8 25.80%
64 13,791 62,913.8 – 62,965.6 0.07% 13,791 7,770.8 – 11,921.9 0.36% 13,069 86.6 – 164.6 25.76%

(b) Asynchronous SUB-STRUCTURING
ASYNCHRONOUS J-SUB-STRUCTURING

#p (#n) # iterations time (s) upon sequential upon parallel (Sync(SS)/Async)
min max mean comm total ratio efficiency (eff.) ratio efficiency (eff.)

1 13,791 13,791 13,791 0.0 2,713.0 1.00 100% 1.00 100%
8 13,955 19,654 14,264 4.0 382.4 7.09 88.68% 1.23 15.35%
16 16,057 22,056 18,124 5.8 243.8 11.13 69.55% 1.12 7.02%
24 19,643 26,065 21,607 4.3 205.4 13.21 55.04% 1.09 4.52%
32 42,963 54,869 46,466 8.5 350.3 7.74 24.20% 0.65 2.04%
40 36,773 50,323 42,383 14.4 273.1 9.93 24.83% 0.77 1.93%
48 19,577 31,430 26,074 10.3 148.1 18.32 38.16% 1.30 2.70%
56 22,647 28,134 24,203 13.1 107.6 25.21 45.02% 1.75 3.12%
64 17,645 38,945 29,456 14.1 100.9 26.89 42.01% 1.63 2.55%

TABLE 5.16: gravi_hexas100x100x6_1: Numerical results for the Synchronous (BANDROW, BANDROW-OP
and SUB-STRUCTURING) and Asynchronous (SUB-STRUCTURING) Jacobi method

The results highlight the robustness of the theoretical speed-up analysis described previ-
ously. From these tables, the following observations can be made: the speed-up decreases with

the increasing ratio δ =
Na

N s
(where Na is the average number of asynchronous iterations) and

increases with an increasing number of processors. These observations satisfy the theoretical
speed-up theorems.

5.4.6 Fault-tolerance and iteration penalty behavior
The last set of results consists in numerical experiments that simulate the penalization

of iterations, by stopping the solution update of a processor in idle state, and fault-tolerance
by breaking down a given processor and resetting the solution at a given time. We analyze
these behaviors with two test cases: luf_cube-274625 and gravi_hexas100x100x6_1. In these
experiments we have used 48 processors.

Theorem of delay (iteration penalization) In Figure 5.28 and Figure 5.29, we report the
number of iterations of the sub-structuring Jacobi method of the luf_cube-274625 test case with
48 processors where the iterations of processor #7 are penalized from the pa

th iteration during
pd iterations. Figure 5.30 and Figure 5.31 give those of the gravi_hexas100x100x6_1 test
case. Figure 5.28(a) and Figure 5.29(a) collect the number of iterations of the non-penalized
processors and Figure 5.28(b) and Figure 5.29(b) report those of prenalized processor according
to the penalty activation, pa, and the penalty duration pd.

As we can see in Figure 5.28 and Figure 5.29, the penalized processor carries out fewer
iterations than the non-penalized ones. After its idle time, the penalized processor takes
advantage of the solution advance from the other processors. We can see in Figure 5.28(a)
and Figure 5.29(a) that the number of iterations of the algorithm increases with an increasing
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(a) Number of iterations of non-penalized processors (b) Number of iterations of the penalized processor (#7)

FIGURE 5.28: Simulation of chaotic iterations with the sub-structuring Jacobi method for luf_cube-274625

with 48 processors
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(a) Number of iterations of non-penalized processors
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(b) Number of iterations of the penalized processor (#7)

FIGURE 5.29: Number of iterations of the sub-structuring Jacobi method of the luf_cube-274625 test case with
48 processors where the iterations of processor #7 are penalized from the pa

th iteration during
pd iterations

penalty duration time. In contrast, the number of iterations of the penalized processor decreases
with an increasing penalty duration time, as described in Figure 5.28(b) and Figure 5.29(b).
Moreover, from these figures, we observe that when the activation is done tardily, i.e., at a
point when the solution is relatively advanced, near the convergence point, the number of
iterations of the algorithm is close to that of a pure synchronous version. In addition, if the
penalty duration time is relatively long, then the algorithm converges slowly and can diverge if
the penalty duration exceeds a certain limit. These observations highlight the delay theorem

(see Theorem 5.8, Page 160) of a simple chaotic algorithm.
We have performed the same experiments with the gravi_hexas100x100x6_1 test case in

order to analyze these observations for a bigger problem size wise, with a larger number of
iterations in the pure synchronous case. Numerical results are summarized in Figure 5.30 and
Figure 5.31. The experiment results corroborate and confirm our previous analysis. However,
the limits of the penalty activation point and time of the idle state are larger. Indeed, the limits
depend on the convergence of the pure synchronous case. The small number of iterations of
the penalized processor is obtained when we disable the processor early and remains longer in
pause. Let us note that the execution time is proportional to the number of iterations.
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(a) Number of iterations of non-penalized processors (b) Number of iterations of penalized processor (#7)

FIGURE 5.30: Simulation of chaotic iterations with the sub-structuring Jacobi method for
gravi_hexas100x100x6_1 with 48 processors
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(b) Number of iterations of the penalized processor
(#7)

FIGURE 5.31: Number of iterations of the sub-structuring Jacobi method of the gravi_hexas100x100x6_1 test
case with 48 processors where the iterations of processor #7 are penalized from the pa

th

iteration during pd iterations

Fault-tolerance In this experiment, we have solved both test cases with the Jacobi syn-
chronous sub-structuring method, in so far as the k−th iteration the solution of the broken
processor, s ∈ {0, . . . , p}, is restarted to the corresponding initial guess. Let us note E the
execution of this algorithm. At this iteration, the sending and receiving from the broken proces-
sor to and from the cooperating processors are disabled. Let N[S] be the number of iterations

obtained from the execution of the pure synchronous algorithm. Let N{s}
[C] be the number of

iterations obtained by the version with breakdown. In the following, we consider s = 1, the
processor which will break down. We have carried out 10 simulations which consist of tests

with k = n×
N[S]

10
, where n = {1, . . . , 10}. At iteration k = n×

N[S]

10
, n = {1, . . . , 10}, the

solution is reset to 0, and the processor s = 1 does not send nor receive messages. Therefore,

the processor s performs N{s}
[C] = N

{q}
[C] − n ×

N[S]

10
, ∀q ∈ {1, . . . , p}\{s}. Let us note that

the other processors that cooperate with the broken one do not either receive from it. This
mechanism allows us to simulate the breakdown of a process, and simulates a model of
fault-tolerance. Figure 5.32(a) and Figure 5.32(b) respectively report the number of iterations
obtained from the execution of the sub-structuring Jacobi method of the luf_cube-274625 and

5.4 Numerical results 197



gravi_hexas100x100x6_1 tests cases with 48 processors, where the solution of the processor

s = 1 is restarted to 0 t the iteration k = n ×
N[S]

10
, n = {1, . . . , 10}. From Figure 5.32(a)
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FIGURE 5.32: Number of iterations of the sub-structuring Jacobi method of the luf_cube-274625 and
gravi_hexas100x100x6_1 tests cases with 48 processors with s = 1

and Figure 5.32(b), the following observations can be made: the number of iterations of the
processor s = 1 decreases with an increasing breakdown point, and in contrast, that of the
non-penalized processors increases with an increasing breakdown point. As we can see in

Figure 5.32, before the breakdown point k = 5×
N[S]

10
, the number of iterations of the processor

s = 1 is higher than the number of iterations of the pure synchronous case. This result means
that from a certain limit breakdown point nl, the number of iterations of the processor s will
be smaller than the pure synchronous one. As we can remark in Figure 5.32(b), this limit
increases for a problem that requires a large number of iterations to converge synchronously.
Otherwise formulated, there exists nl ∈ R, 0 < nl ≤ 1 so that if a processor s breaks down at
k = nl×N[S], the number of iterations of the processor s will be smaller than the synchronous
one, N[S]. To confirm this observation we now analyze the asymptotic behavior.

We have performed the same algorithm as in Figure 5.32 for 8, 16, 24, 32, 48, 56, 64 proces-
sors. The numerical results of these experiments are collected in Figure 5.33 and Figure 5.34.
Figure 5.33(a) and Figure 5.33(b) report respectively the numerical results of the luf_cube-

274625 test case for processor the s = 1 and other non-penalized processors. Those of the
gravi_hexas100x100x6_1 are described respectively in Figure 5.34(a) and Figure 5.34(b).

Figure 5.33 and Figure 5.34, with a different number of processors, corroborate the
results obtained in Figure 5.32 with 48 processors. Moreover, from these figures, we remark
that the k = nl × N[S] limit moves back with an increasing number of processors. This
analysis attempted to illustrate the fault-tolerance theorem (see Theorem 5.9, Page 161) and
(see Proposition 5.10, Page 161).

Conclusion This analysis was an attempt to simulate chaotic iterations. This analysis is
interesting for heterogeneous systems. Indeed, when we solve an algorithm, one can voluntarily
stop (or breakdown) a slow processor over a given time so that it does not slow down general
calculations. According to our proposition, the processor can take advantage from the advance
of the solution in the other processors.
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(a) Number of iterations of non-penalized processors (b) Number of iterations of processor s = 1

FIGURE 5.33: Number of iterations of the sub-structuring Jacobi method with luf_cube-274625 regarding the
number of processors (8, 16, 24, 32, 48, 56, 64) and breakdown points
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(a) Number of iterations of the non-penalized proces-
sors
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(b) Number of iterations of the processor s = 1

FIGURE 5.34: Number of iterations of the sub-structuring Jacobi method with gravi_hexas100x100x6_1

regarding the number of processors and breakdown points

5.5 Conclusion
In this chapter, we have presented and evaluated parallel algorithms for solving large

sparse linear systems. We have proposed and analyzed hybrid sub-structuring methods that
should pave the way to exascale hybrid methods. Given the large-size of the problems
to be solved, we focused particularly on asynchronous parallel iterative algorithms. We
have presented the proof of the convergence of sub-structuring methods with asynchronous
iterations. The numerical results clearly show that the asynchronous versions of the algorithm
are generally faster than the synchronous versions, in particular with a large number of
processes. The asynchronous algorithm scales much more with the number of processors
compared to synchronous algorithm. This is due to the slow interconnection and the use of
synchronous communications for the synchronous version. The sub-structuring algorithms are
more efficient than the classical splitting algorithms. They also show that the integration of
GPUs helps algorithms accelerate their resolution. However, when the number of sub-domains
increases, the GPU code underperforms. This is mainly due to the decreasing number of
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degrees of freedom within each sub-domain, and especially to the transfer between the GPU
and the host when data exchanges are performed at the interfaces between sub-domains. This
degrades the overall execution time. Indeed, MPI calls cannot be performed inside the GPU.

To better understand the behavior of both synchronous and asynchronous iterations, com-
pared to sequential iterations, we have proposed some theorems concerning the speed-up of
fully parallelizable algorithms such as the Jacobi method. We have also studied the behavior
of parallel algorithms in terms of fault-tolerance and when an iteration is penalized. The
scalability and performance of the methods are tested on diverse scientific problems, together
with numerous numerical experiments which clearly illustrate the robustness, competitiveness
and efficiency of parallel algorithms, and much more so when combined with GPU Computing.

In the next chapter, we present parallel algorithms by an effective application of parallel
processing based on the hybrid CPU/GPU domain decomposition method (DDM). The purpose
is to analyze the behavior of DDM on a cluster of GPUs.

200 Chapter 5 Implementation of parallel linear system solvers



Chapter 6
Implementation of the Optimized
Schwarz method without overlap for the
gravitational potential equation on a
cluster of GPUs„Computer science is no more about computers than

astronomy is about telescopes.

— Edsger Dijkstra
(Scientist)

6.1 Introduction

M
ANY engineering and scientific problems need to solve boundary value problems for
partial differential equations or their systems. For most cases, to obtain the solution
with desired precision and in acceptable time, the only practical way is to harness

the power of parallel processing. In this chapter, we present some effective applications of
parallel processing based on the hybrid CPU/GPU domain decomposition method. Within
the family of domain decomposition methods, the so-called optimized Schwarz methods have
proven to have good convergence behavior compared to the classical Schwarz methods. The
price for this feature is the need to transfer more physical information between sub-domain
interfaces. For solving large systems of linear algebraic equations resulting from the finite
element discretization of the sub-problem for each sub-domain, the Krylov method is often a
good choice.

Since the overall efficiency of such methods depends on the effective solver, approaches
that use GPU instead of CPU for such tasks look very promising. In this chapter, we use the
effective implementation of algebraic operations for the iterative Krylov methods on GPU
(see Chapter 3, Page 39). In order to ensure a good performance of the non-overlapping
Schwarz method, we propose to use optimized conditions obtained by a stochastic technique
based on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The performance,
robustness, and accuracy of the proposed approach are demonstrated for the solution of the
gravitational potential equation for the data acquired from the geological survey of the Chicxu-
lub crater.

My contribution in this chapter is to modify the high-order finite element solver to be run

on the GPU. We use optimized conditions obtained by a stochastic technique based on the

CMA-ES algorithm.

I started with an existing code of optimized Schwarz domain decomposition developed by
Frederic Magoulès et al. [22] I modify the sub-domain solvers in order to be run on GPUs. The
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implementation is based on the acceleration of the local solutions of the linear sub-systems
associated with each sub-domain using GPUs.

Geophysical exploration by seismic imaging can often benefit from a complementary
analysis of the gravitational potential equation by the finite element method. Our approach to
the analysis of the gravitational potential equation is based on partitioning the computational
domain into a number of sub-domains, with each sub-domain assigned to one processor. The
next step is to carry on the iterations of the Schwarz method with optimal conditions obtained
by the CMA-ES algorithm. The solution of the independent sub-problems in each sub-domain
required for each iteration step of the Schwarz algorithm is done in parallel. Central to our
proposal is the application of CUDA/GPU computing for solving local problems in each
sub-domain. We evaluate the gravimetry field in the Chicxulub crater area located between
the Yucatan region and the Gulf of Mexico, which shows strong gravimetry and magnetic
anomalies. The gravimetry problem is described in Chapter 3 (see Section 3.5.3, Page 73).

The plan of the chapter is the following. Section 6.2 describes the optimized Schwarz
method, followed in Section 6.3 by an overview of the stochastic-based technique to determine
the optimized transmission conditions. Section 6.4 reports numerical results performed on
a realistic test case of our Schwarz methods with optimized stochastic conditions. Finally,
Section 6.5 concludes the chapter.

Keywords — Domain Decomposition Method, Optimized Schwarz method, CMA-ES
algorithm, Krylov methods, GPU, CUDA, Gravitational potential equation

6.2 Optimized Schwarz method
In order to solve gravity problems arising from the finite element analysis, domain de-

composition methods [16] [275] [276] [277] are considered. As said in the previous section,
preconditioning techniques, such as domain decomposition methods, guarantee fast conver-
gence. Domain decomposition methods [17] [18] [19] [98] [278] rely on splitting the global
domain into several sub-domains, and in independently solving, in parallel, the sub-problems
formulated for each sub-domain. In order to set up boundary conditions for the sub-problems,
the neighboring sub-systems must exchange information about the solution along the interfaces.
The performance of the algorithms strongly depends on the interface conditions [99], which
can be adjusted either with a discrete approach [105] [170] [103] [172] or a continuous ap-
proach [165] [279] [167] [101] [168] [280] [281]. Similar approaches like the Aitken-Schwarz
methods have shown a strong efficiency too, as described in references [282] [283]. These
transmission conditions [99] between adjacent sub-domains must be carefully defined to assure
the convergence of the solution. The solution of independent sub-problems in parallel is
required at each iteration. The interface problem is often solved with an iterative method,
whereas the sub-problems can be solved either by using a direct method or an iterative one. In
the presented case, we chose the iterative Krylov methods to resolve the sub-problems.

The origins of the classical Schwarz algorithms date back to over 100 years ago [15]. At
the time, Schwarz had proposed a method, later called after him, to demonstrate the existence
and uniqueness of solutions to the Laplace equation on irregular domains. At the core of his
method is the decomposition of non-regular domains into regular sub-domains, with some
overlap. The solution for the whole domain was obtained by a special iterative scheme,
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special in the sense that each iteration step requires solving a problem only for the regular sub-
domain. The suitably selected boundary conditions are called transmission conditions, as they
propagate the solution in one sub-domain onto the boundary of the overlapping sub-domain.
The transmission conditions between sub-domains are crucial to obtain a satisfactory speed of
convergence of the Schwarz domain decomposition methods [284]. The rate of convergence
of the classical Schwarz method depends on both the size of the overlapping layers and the
spatial frequency k of the Fourier transform of the solution. In the case of the Schwarz domain
decomposition methods without overlap between sub-domains [161] [162] [163] [285] [100],
the algorithm can be formulated by changing the transmission conditions from Dirichlet to
Robin [164] [165]. The absorbing boundary transmission conditions located on the interface
between the non-overlapping sub-domains are the crucial factors to ensure a rapid convergence
of the iterative Schwarz algorithm.

The difficulty in the parallel implementation of an algorithm that produces the “optimal”

interface conditions lies in the non-local properties of the operators by which the problem
is formulated. One of the approaches to deal with this problem is based on approximat-
ing the associated discrete non-local operators with algebraic ones [105] [103] [170] [172],
or on approximating these continuous non-local operators with partial differential opera-
tors [167] [286] [287]. In this chapter, we study an approximation based on a new stochastic
optimization process.

Without loss of generality and for the sake of clarity, the gravitational potential equation is
defined in the domain Ω with homogeneous Dirichlet conditions. We consider this domain
partitioned into two non-overlapping sub-domains Ω1 and Ω2 with an interface Γ as shown
in Figure 6.1. We want to solve the gravitational potential equation, a particular case of the
Poisson equation: {

−∆Φ = 4πGδρ = f on Ω

C(Φ) = b on ∂Ω

with δρ the density anomaly and G the gravitational constant (6.67428× 10−11 m3.kg−1.s−2).
Let (Φn

1 ,Φ
n
2 ) be an approximation to (Φ|Ω1 ,Φ|Ω2) at iteration n of the Schwarz algorithm,

FIGURE 6.1: Non-overlapping domain decomposition, Ω = Ω1 ∪ Ω2

(Φn+1
1 ,Φn+1

2 ) expressed as:

−∆Φn+1
1 = f, in Ω1(

∂νΦn+1
1 +A(1)Φn+1

1

)
=

(
∂νΦn

2 +A(1)Φn
2

)
, on Γ

−∆Φn+1
2 = f, in Ω2(

∂νΦn+1
2 −A(2)Φn+1

2

)
=

(
∂νΦn

1 −A
(2)Φn

1

)
, on Γ

where ν is the unit normal vector along Γ. For the algorithm, to achieve the best performance,
the operators A(1) and A(2) have to be suitably selected. An application of the Fourier trans-

6.2 Optimized Schwarz method 203



form in Ω = R
2 for the homogeneous problem f = 0, leads to the expression of the Fourier

convergence rate that depends on the quantities Λ(1) and Λ(2), which are the Fourier transforms
of operators A(1) and A(2). Over the years, researches have proposed several ways to approxi-
mate these non-local operators with partial differential operators. One of such methods relies
on looking for a partial differential operators enforcing a tangential derivative on the interface
such as: A(s) := p(s) + q(s)∂2

τ2 , where s denotes the sub-domain number, p(s), q(s) are two
coefficients, and τ is the unit tangent vector. From references [101] [280] [168], one can clearly
see that both the coefficients p(s), q(s) of the sub-domain s largely contibute to the speed-up the
convergence when they are chosen optimally. The results shown in [165] [166] use a zero order
Taylor expansion of the non-local operators to find p(s) and q(s). A minimization procedure is
considered in [287] for the Helmholtz equation, in [167] for the Maxwell equation, in [288]
for convection diffusion equations, and in [281] for heterogeneous media. The minimization
function or cost function is defined as the maximum of the Fourier convergence rate for the
considered frequency ranges. This approach consists in calculating the free parameters p(s) and
q(s) through an optimization problem. The functions to minimize, τ 7→ τ(k, L,p), for zeroth
and second order approximation for the one-sided (symmetric) formulation are respectively
formulated as follows:

max
kmin<k<kmax

(|k| − p)2

(|k|+ p)2
e−2|k|L; max

kmin<k<kmax

(|k| − p− qk2)2

(|k|+ p+ qk2)2
e−2|k|L (6.1)

where p > 0, q > 0, L ≥ 0 is the size of the overlap and k is the spatial frequency of the
Fourier transform. For the two-sided (non-symmetric) formulation:

max
kmin<k<kmax

(−|k|+ p1)(−|k|+ p2)

(|k|+ p1)(|k|+ p2)
e−2|k|L; max

kmin<k<kmax

(|k| − p1 − q1k
2)(|k| − p2 − q2k

2)

(|k|+ p1 + q1k2)(|k|+ p2 + q2k2)
e−2|k|L

(6.2)

where p1 > 0, q1 > 0, p2 > 0 and q2 > 0 and L is the overlap size. Since the evaluation of the
minimization function is quick enough and the dimension of the search space reasonable, a
more effective and solid minimization method could be considered, as introduced in the next
section.

6.3 Stochastic-based optimization
We consider the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in order to

obtain good results rapidly. The CMA-ES algorithm investigates the whole space of solutions
and selects the absolute minima. This recent algorithm clearly demonstrates its robustness
in [289] with good global search ability. Its advantage is that it does not need the calculation
of the derivatives of the cost function. The main idea behind the CMA-ES strategy consists
in finding the minimum of the cost function by refining a search distribution iteratively. The
distribution is expressed as a general multivariate normal distribution d(m,C). The initial
distribution is taken to be the uniform one. The population size parameter reflects the trade-off
between algorithm speed and its ability to find the global minimum. The algorithm is faster for
smaller populations but we have a greater chance of finding a local minimum. When the size
of the populations is large, the algorithm is able to avoid local minima but it needs a larger
number of cost function evaluations. In this chapter, a population size of 26 has been enough
to find the global minimum in a few seconds (<4 sec). Knowing the distribution, λ samples are
randomly chosen in this distribution at each iteration and the evaluation of the cost function at
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those points is performed in order to compute a new distribution. When the variance of the
distribution is small enough, the center of the distribution m is considered to be the sought
solution. After analyzing the cost function for the new population, the samples are sorted
and we select the best sample µ. Then we recombine them to find a new distribution center
by considering a weighted mean. The step size σ is an ingredient which serves to scale the
standard deviation of the distribution. The variance of the search distribution is proportional to
the square of the step size. The most complex task of the algorithm is to update the covariance
matrix. While this could be done using only the current population, it would be unreliable,
especially with a small population size; thus the population of the previous iteration should
also be taken into account. According to the theory of CMA-ES, we have to fix a size of
population that is a trade-off between speed and global search of the minimum. In our case,
a population size of 25 has been enough to find the global minimum in a few seconds or
less. The maximum number of iterations, depending on the population size, is computed as

follows: 1000×
(N + 5)2

√
(po)

, where N and p respectively present the problem dimension and

the population size. In this chapter, with N = 1 and po = 25, the following stopping criteria
for the CMA-ES algorithm are considered: a maximum number of iterations is equal to 7 200

and a residual threshold to 5× 10−11.
Figure 6.2(a) and Figure 6.2(b) collect the isolines of the convergence rate in the Fourier

space of the Schwarz algorithm for the symmetric zeroth order and non-symmetric zeroth order
arising from the CMA-ES strategy. Those of the symmetric and non-symmetric second order
are respectively given in Figure 6.3(a) and Figure 6.3(b). Figure 6.2(b) and Figure 6.3(b) display
the profiles corresponding to the non-symmetric zeroth

(
p(1)(i) = p(i) and p(2)(i) = p(N − i)

)
,

N = card(p)) and second order
(
p(1)(i) = p(i), p(2)(i) = p(N − i), q(1)(i) = q(i) and q(2)(i) = q(N − i)

)
.
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FIGURE 6.2: Convergence rate isolines of the Schwarz algorithm with zeroth order optimized transmission
conditions

Figure 6.4(a) and Figure 6.4(b) give the convergence rate of the Schwarz algorithm in the
Fourier space for the symmetric and non-symmetric zeroth order arising from the CMA-ES
strategy. Those of the symmetric and non-symmetric second order are respectively given in
Figure 6.5(a) and Figure 6.5(b). Table 6.1 reports the exact values of the coefficients obtained
by the CMA-ES minimization procedure. These values are used to define the local operators
previously mentioned in order to optimize our Schwarz domain decomposition method.
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p(1) q(1) p(2) q(2) τmax

oo0_symmetric 0.183 0.000 0.183 0.000 0.682
oo0_unsymmetric 1.219 0.000 0.047 0.000 0.446
oo2_symmetric 0.047 0.705 0.047 0.705 0.214
oo2_unsymmetric 0.108 0.321 0.023 1.579 0.110

TABLE 6.1: Optimized coefficients obtained from the CMA-ES algorithm

6.4 Numerical experiments
In this section, we summarize the results of the experiments performed to evaluate the

speed-up of our optimized Schwarz implementation with the optimized coefficients obtained
from the CMA-ES algorithm. The matrices are stored in CSR format.

All test cases are related to the study of the Chicxulub impact crater. The solution of
the gravitational potential equation, ∇Φ = −4πδρ where δρ is the variation of an arbitrary
density distribution, is evaluated with a finite element method. The Q1 Lagrange finite el-
ements are considered for the discretization. The numerical solution of the gravitational
potential equation required for this study was done for a parallelepiped, a geometric domain
of dimensions 250 km × 250 km × 15 km. The finite element discretization of the domain
(see Figure 3.26, Page 73) resulted in a total of 19, 933, 056 degrees of freedom. The mesh
(see Figure 3.26, Page 73) is split in the x−direction. Each sub-domain is assigned to one
single processor and each iteration of the optimized Schwarz method implying the solution of
the equations inside each sub-domain is assigned to one single accelerator (GPU). Figure 6.6(a)
and Figure 6.6(b) show respectively the perspective view of the main structural feature and the
gravity measure of the Chicxulub impact crater, obtained from our simulation. The experiments

(a) Perspective view of the main struc-
tural features

(b) Gravity anomaly map over the
Chicxulub crater (Yucatán basin)

FIGURE 6.6: Perspective view of the main structural features and gravity anomaly map of the Chicxulub impact
crater

have been performed on Platform-5, which consists of an hybrid CPU/GPU cluster, as per the
schematic diagram (see Figure 2.21, Page 37). The cluster consists of 1, 068 compute nodes
and 24 nodes dedicated to IO and administration. Each node has 2 Intel Xeon 5570 Nehalem
quad cores (2.93 GHz) and 24 GB of memory (3Go per cores). Titane includes 48 Tesla S1070
servers, with 4 processors of 4 GB memory each. Every server is attached to two compute
nodes via the PCI-Express bus. The compute nodes are interconnected by a Voltaire network,
based on the InfiniBand DDR technology.
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For each iteration step, GPU is involved only in solving the sub-problems inside the sub-
domains. The algebraic solver selected for this task is the preconditioned conjugate gradient
(P-CG) with a diagonal preconditioner. We fix a residual tolerance threshold of εP −CG = 10−10

for P-CG for the sub-domain solution, and a residual tolerance threshold of εSchwarz = 10−6

for the Schwarz algorithm. The distribution of processors on our experiment workstation is
computed as follows: number of processors = 2 × number of nodes, where 2 corresponds
to the number of GPUs per node available on our workstation. As a consequence, only two
processors will share the bandwidth, which strongly enhance the communication, especially
the inter-sub-domain communications. The number of computing units depends both on the
size of the sub-domain problem and the gridification that use 256 threads per block and 8

threads per warp as mentioned in Chapter 2 and proved in Chapter 3. In the experiments, each
sub-domain is handled by one classical processor (CPU) and one graphic processor (GPU).
The data are double precision arithmetic. Table 6.2 collects the numerical results obtained
when the preconditioned CG algorithm is used to solve the local sub-domain problem with
ε = 10−6, and the Jacobi method or CG for solving the problem at the interface. In Table 6.2,
the results are organized as follows: the first column reports the number of sub-domains (#
subdom), the second column gives the name of the interface solver (itf. solver), the next
column gives the number of iterations of the Schwarz algorithm, the fourth and fifth columns,
respectively, give the CPU and GPU times, in seconds (s), of the whole program, and lastly the
speed-up (CPU/GPU) is reported in the last column.

# subdom itf. solver #iter. Schwarz CPU time (s) GPU time (s) Speed-up
32 Jacobi 41 11,240 1,600 7.03
32 CG 24 7,560 1,031 7.33
64 Jacobi 45 5,360 860 6.23
64 CG 32 4,730 678 6.97
96 Jacobi 62 4,550 925 4.92
96 CG 42 3,200 645 4.96
128 Jacobi 92 6,535 960 6.81
128 CG 61 3,050 671 4.55

TABLE 6.2: Comparison of stochastic-based optimized Schwarz domain decomposition method on CPU and
GPU

Increasing the number of sub-domains without increasing the number of degrees of freedom
of the sub-meshes results in increasing the number of communications between the neighboring
sub-domains, and this handicaps the GPU version. Each P-CG involves a copy from the host
to the device for the right-hand side, and a copy back from the device to the host to update the
sub-domain solutions. However, the GPU-based implementation remains clearly superior to
the pure CPU implementation.

6.5 Conclusion
In this chapter, we have used an efficient double precision implementation of the iterative

Krylov methods for GPU (see previous chapters), that leads to the effective implementation of
the optimized Schwarz domain decomposition method. The main advantage of the classical
Schwarz methods is the simplicity of their implementation.

In order to test the performance of the implemented solvers on realistic data we have
solved the gravitational potential equation with input data collected from geological surveys
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of the Chicxulub crater in Yucatán, southwest of Mexico. The approach taken to solve that
equation is the optimized Schwarz domain decomposition method. Numerical optimization
by the stochastic-based algorithm (CMA-ES) is used to find the optimal coefficients of the
approximate transmission conditions. This algorithm is robust and has good global search
properties. It is faster and more precise than a brute force approach.

In our experiments, the number of (mesh) sub-domains is ranged from 32 up to 128. Those
experiments have clearly showed the benefits of applying the GPU-based implementation of
domain decomposition method for large-size problems, and confirmed the robustness, perfor-
mance and effectiveness of the Schwarz method with stochastic-based optimized transmission
conditions. With a carefully tuned CPU/GPU code, and sufficient balance between the number
of sub-domains and the size of the sub-problems, we were able to calculate the solution 7
times faster with respect to the calculation times for equivalent CPU-based only, reference
implementations.
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Chapter 7
Conclusions and Perspectives

„Man is still the most extraordinary computer of all.

— John F. Kennedy
(President of USA)

7.1 Summary
We have presented different ways to efficiently solve large sparse linear systems. We have

investigated the best way to effectively compute linear algebra operations in an heterogeneous
multi-core-GPU environment in order to make solvers, especially iterative methods, more
robust. In the first chapter, we have introduced the challenge of GPU computing in the
field of computational science. We have given different programming techniques that offer
access to the power of graphics cards. In the second chapter, we have demonstrated how to
capitalize on the use of GPU computing and how we proceed to optimize CPU and GPU
operations, data transfers and memory management. In order to ensure even better efficiency,
we have proposed gridification strategies to auto-tune the grid upon the GPU architecture,
which strongly impacts the performance of algorithms. I have also proposed a way to easily
handle complex number arithmetics on GPU for all precisions, using advanced C++ template
structures. The performance was benchmarked on modern GPUs such as Tesla K20c and
GeForce GTX 570. Numerical experiments performed on a set of large-size sparse matrices
arising from diverse engineering and scientific problems, have clearly shown the value of
using GPU technology to solve large sparse systems of linear equations, and its robustness
and accuracy compared to existing libraries such as Cusp. The implementations of all the
techniques we proposed are compiled in the Alinea library, effective for computing advanced
linear algebra and solving linear systems on both CPU and GPU.

Knowing how to better access the power of graphics cards in terms of computational
time for solving large sparse linear systems, we have attempted to answer another important
question related to energy issues, i.e., “How much energy is consumed?” by the powerful GPU.
To answer this question, we have established an experimental protocol to accurately the energy
consumption of a GPU for fundamental linear algebra operations. This methodology could
suggest a “new vision of high-performance computing” and answer some of the questions
outlined in green computing when using GPUs.

The remainder of the manuscript was devoted to synchronous and asynchronous iterative
algorithms for solving linear systems in the context of a multi-core-GPU system. We have
implemented and analyzed these algorithms using iterative methods based on sub-structuring
techniques. The sub-structuring method is a decomposition method without overlap that
allows to reduce a global problem to a problem on the interface between sub-domains. In
the fourth chapter, we have presented the proof and implementations of the synchronous
and asynchronous sub-structuring methods. I have explored them in the context of linear
systems only. The demonstration is based on fixed point iterative algorithms. However, we
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have also analyzed the conjugate gradient sub-structuring method with synchronous iterations.
Numerical results clearly show that asynchronous versions of the algorithm are generally faster
than synchronous versions, in particular with a large number of processes. The asynchronous
algorithm scales much more with the number of processors compared to the synchronous
algorithm. The sub-structuring algorithms are more efficient that classical splitting algorithms.
They have also showed that the integration of GPUs helps algorithms accelerate their resolution.
However, when the number of sub-domains increases, the GPU code’s performance decreases.
To better understand the behavior of both synchronous and asynchronous iterations compared
to sequential iterations, we have proposed some theorems concerning the speed-up of fully
parallelizable algorithms such as the Jacobi method. We have also studied the behavior
of parallel algorithms in terms of fault-tolerance and when an iteration is penalized. The
scalability and performance of these methods are tested on diverse scientific problems, together
with numerous numerical experiments which clearly illustrate the robustness, competitiveness
and efficiency of parallel algorithms, much more so when combined with GPU computing.

Finally, in the last chapter, we have modified the non-overlapping Schwarz method to
accelerate its use of GPUs. The implementation is based on the acceleration of the local
solutions of the linear sub-systems associated with each sub-domain using GPUs. To ensure
good performance, optimized conditions obtained by a stochastic technique based on the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are used. In order to test the
performance of the implemented solvers on real data, we have solved the gravitational potential
equation with input data collected from geological surveys of the Chicxulub crater in Yucatán,
southwest of Mexico. Those experiments have clearly showed the benefits of applying a
GPU-based implementation of the domain decomposition method for large-size problems,
and confirmed the robustness, performance and effectiveness of the Schwarz method with
stochastic-based optimized transmission conditions. With a carefully tuned CPU/GPU code,
and sufficient balance between the number of sub-domains and the size of the sub-problems,
we were able to calculate the solution 7 times faster, with respect to the calculation times for
an equivalent, CPU-based only, reference implementation.

7.2 Perspectives and future works
In this thesis, the experimental tests were carried out on a workstation or on a small cluster.

It would thus be interesting to test the performance of our implementations on a big cluster,
e.g., an exascale machine. Moreover, most implementations of our iterative algorithms were
evaluated on local hybrid clusters. In the context of a large number of processors, the parallel
algorithms will perform a large number of communications. Let us recall that the performance
strongly depends on the hardware characteristics and also on the network configuration
(bandwidth, etc.). The comparative study with the Cusp library is old, whereas Cusp was
clearly improved. In the hybrid CPU/GPU synchronous and asynchronous algorithms, at each
iteration we perform copies between CPU and GPU, which degrade the overall execution time.
The optimization of this task will considerably improve the performance of the algorithm.
Concerning the acceleration of the non-overlapping Schwarz method, it would be worthwhile
to also solve the interface problem on GPU. The analysis of the theoretical speed-up of
synchronous and asynchronous algorithms presents some limits concerning the distribution
of data, i.e., the sub-domains and the interfaces. It would be interesting, to analyze this
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distribution carefully in order to better evaluate the cost of data transfers and computation. In
the analysis of the behavior of chaotic iterations, we have assumed that only one processor
can be in idle state or breakdown. Future investigations may focus on analyzing the behavior
with a more complex chaotic scheme and then propose clear mathematical models. The
future investigations must also concentrate on the study of the parallel algorithms with a real
fault-tolerance, allowing the breakdown of certain physical processors or even the reboot of a
machine.
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