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A B S T R A C T

Humans and animals are capable of overcoming complex terrain chal-
lenges with graceful and agile movements. One of the key ingredi-
ents for such complex behaviors is motion coordination to exploit
their natural dynamics. Sports performers coordinate their muscles
actions to achieve a synergistic motion that surpasses their physical
limits. Lizards and Cheetahs coordinate their tail swing to rapidly ac-
celerate and maneuver during the pursuit of their prey. Understand-
ing and emulating these motions is one of the long-standing grand
challenges in robotics and biomechanics, with possible applications
in rehabilitation, sport, search-and-rescue, environmental monitoring,
and defense.

In striking contrast, the traditional research in robotics has either
ignored or purposely suppressed the inherent dynamics of the robotic
systems. Interlimb dynamic coupling and nonlinear dynamics has
been long viewed as a source of perturbation that needs to be avoided
either by means of mechanical design (e.g., link design to decouple
motion, reduced mass appendages to neglect inertial coupling) or via
a decoupling controller to compensate for the coupling effects (e.g.,
feedback linearization). This control philosophy is the reminiscence
of the control schemes developed for industrial manipulators with
the aim of achieving highly accurate and robust and repetitive mo-
tions. In this work, we focus our attention on a particular class of
robotic systems called underactuated robots. Underactuation imposes
a second-order nonholonomic constraints on their dynamics that re-
strict the family of trajectories their accelerations can follow. This
is one of the reasons that has compelled us to treat underactuated
robots with torque limits. The fact that it is not feedback-linearizable,
the non-negligible dynamic coupling and the severe torque limits re-
move the full control authority that one enjoyed in the fully-actuated
robots, thus the class of underactuated robots forces you to handle
the inherent nonlinear dynamics in an unconventional way.

Despite the existence of powerful tools such as nonlinear trajectory
optimization, they are usually treated as black boxes that provide lo-
cal optimal trajectories. We introduce the Dynamical Coupling Map
(DCM), a novel graphical analysis technique, to help gain insight into
the output trajectory of the optimization and analyze the capability
of underactuated robots. The key insight is to manipulate the Euler-
Lagrange differential equations of motion to approximate the acceler-
ation capabilities of the passive system as an ellipsoid coined as the
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Dynamic Coupling Ellipsoid (DCE). The volume of this ellipsoid rep-
resents the capability of the robot to transmit the torque of the active
subsystem to the passive subsystem while the origin of the ellipsoid
in the acceleration space represents the bias term which comes from
the contribution of gravity and nonlinear velocity dependent forces
on the set of allowed accelerations of the passive subsystem. We in-
troduce three novel performance indexes aptly named Natural Dy-
namics Indexes (NDI) which allow to quantify the role of the natural
dynamics during a dynamic motion and its significance with respect
to the input control its physical bounds. Furthermore, the benefits of
the DCM analysis is demonstrated on several highly dynamic maneu-
vers such as the swing-up motion of a simplified model of a gymnast
on high bar. The formulation of DCM is extended to floating base
systems with contact forces while demonstrating its merits on the
analysis of dynamic maneuver such as standing high jump for a high-
dimensional humanoid robot showing the beneficial use of dynamic
coupling of arms swings on jumping height. The motion is gener-
ated first using direct trajectory optimization method based direct
collocation trajectory optimization technique. The generated trajec-
tory is subsequently analyzed using the DCM tool. The DCM shows
graphically and intuitively the pivotal role of exploiting the natural
dynamics in order to exceed their physical capacity which is dictated
by the input torques limits. We also extend the current utilization of
DCM from a posteriori analysis tool to a fundamental heuristic for
guiding motion generation of highly dynamic maneuvers by leverag-
ing random based motion planning approaches with a new natural
dynamic based heuristic. We introduce the Natural Dynamics based
Tree (NDT), a novel kinodynamic planning algorithm which plans a
dynamic motion based on the natural dynamics of the system which
results in a more efficient kinodynamic motion planning.

Keywords: Underactuated robots, Natural dynamics, Inter-segmental

Dynamic coupling, Acceleration analysis, Motion planning
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Figure 27 Feedback control policies for the acrobot based
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1
I N T R O D U C T I O N

1.1 motivation & context

As we are witnessing the dawn of the fourth industrial revolution,
robotic systems play an increasing role in our economic and per-
sonal ecosystem. Robots have transitioned from industrial manipu-
lators, locked inside a steel cage, executing a pre-designed repetitive
task, to more complex and versatile mobile manipulators conquering
other spaces beyond the steel cage. Nowadays, robotic systems are
ubiquitous everywhere starting from advanced aerial manipulators
in the sky to the underwater scuba diver robotic mobile manipulator,
needless to mention the ongoing efforts for autonomous humanoids.
Robots are increasingly employed across all sectors and for a broad
range of tasks from personal entertainment to search and rescue op-
erations. Consequently, there is a strong demand for increasing the
capabilities, efficiency, and reliability of different robotic systems.

Despite all recent technological advances and efforts to take cues
from nature to biomimic the biological systems, the performance of
robotic systems is still far from their natural counterparts from the an-
imal kingdom on many levels including agility, maneuverability, en-
ergy performance, motion smoothness, etc. Humans and animals are
capable of overcoming complex terrain challenges with graceful and
agile movements. Sports performers coordinate their muscles actions
to achieve a synergistic motion that surpasses their physical limits.
Lizards and Cheetahs coordinate their tail swing to rapidly acceler-
ate and maneuver during the pursuit of their prey [Lib+12; PB14].

One of the fundamental reasons behind this gap of performance
is due to our limited understanding of how the brain represents, con-
trols, and coordinates the numerous Degrees of Freedom (DoF) of
the musculoskeletal system. The complexity rises partly from the fact Bernstein did his

research behind the

iron curtain of the

USSR, his ideas only

became known to

Western scientists in

1967, when his

seminal book, The

Co-ordination and

Regulation of

Movements, was

translated to

English.

that the central nervous system (CNS) generates motor commands
to many muscles, each comprising thousands of motor units, which
are simultaneously activated and coordinated. Selecting the appro-
priate DoF patterns to achieve a purposeful movement is extremely
demanding task given the huge dimensionality of the search space
and its inherent nonlinearities. This led to the most influential and
controversial [TJ09] seminal idea of the Russian physiologist Niko-
lai Bernstein (1896-1966) of "motor synergy"[Ber67]. Broadly speaking,
motor synergy refers to the correlated activation of multiple muscles in

1



2 introduction

a coordinative structure which is used by the central nervous system
(CNS) as building blocks to represent and control actions, thus allevi-
ating the problem of controlling a large number of muscles. In other
words, motor synergy causes multiple degrees of freedom to inter-
act and coordinate more efficiently than possible with standard robot
control techniques that decouple the control of individual joints.

However, after almost half a century the concept of synergy is
still debated and not well-defined despite the numerous observations
made on tasks ranging from walking and running to reaching and
grasping [FH85; Iva05; CI06; Ber+09]. While these studies focus on
physiological aspects of the muscle synergy hypothesis, very few re-
search addresses the theoretical foundation of the proposed modu-
lar controller. How to compose a motor synergy? Which synergies
should be employed to execute the desired motor tasks? How many
synergies are needed? How does the dynamics of the system to be
controlled affect the synergy-set? This uncertainty led researchers
to propose a proliferation of definitions and conceptualizations of
motor synergy ranging from kinematic synergy to postural synergy.
However, the fundamental nature of motor synergy remains an open
question.

Beyond the question of solving the problem of kinematic redun-
dancy, Bernstein [Ber67] also stressed the need for studying the con-
tributions of the passive forces and moments to the final expression
of movement, arguing that skilled movements exploited these pas-
sive forces to control movements simply and efficiently. It is almost a
tautology of locomotion research that the motions of the various body
segments ’co-operate’ to facilitate a specific gait, minimize forces and/or
energy expenditure, or ensure adequate stability, or some combina-
tion of these. However, Synergy and coordination in highly-dynamic
and agile motions are still beyond the realm of human knowledge.
By coordination we refer to efficient motor skills that exploit, rather
than cancel, the natural dynamics of the mechanism. The work in this
thesis attempts to take a step forward in that direction.

1.1.1 Interlimb Dynamic Coordination

In the literature of sports biomechanics [Cha00], one of the most cited
reasons for an increase in performance is an improved coordination
among the muscles involved in the task. However, there is not yet a
well-established theory on motor coordination.

Dynamic

Coordination in

Bioscience

A dictionary defines "Coordination" as " bringing different elements

(parts, movements, etc.) into a harmonious or efficient relationship." This
definition can be applied to all different motions of human and ani-
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mals as a motion coordination problem in which coupled motor units
have to cooperate in order to achieve a particular task. The most influ-
ential thinker and a pioneer of the study of coordinated movements,
Bernstein (1967) [Ber67] defined coordination as a problem of master-

ing the redundant degrees of freedom involved in a particular movement.
Bernstein proposed a number of appealing ideas such as "regularity
without regulation" and "patterned outputs from unpatterned inputs"
however they remain largely vague and doesn’t provide a rigorous
theory or a satisfactory explanation of motor coordination [BPS95;
Tur90]. Nevertheless, his work initiated an extensive research effort
across many scientific domains including, neuroscience, behavioral
science, kinesiology, biomechanics, and dynamics; all strive for a bet-
ter understanding of how the human or animal’s control system man-
ages to organize the cooperation among the limbs. However, since
each field of science employs its unique techniques and methodology
and due to the compositional complexity (e.g., vascular, neural, mus-
cular, skeletal) operating at different time and space scale, the prob-
lem of movement coordination is extremely difficult to resolve in a
scientifically satisfactory way. This led to a disparity and sometimes
an inconsistent explanation of the interlimb dynamic coordination.
Reader is referred to [Swi+94] for a comprehensive review.

For example, the difference between the meaning of the term dy-
namics in dynamical system theory and mechanics has been a persis-
tent source of confusion. Most of the work in interlimb dynamical co-
ordination employ the term dynamics based on the broad definition
of from dynamical system theory as the time evolution of a system at
any level of description ( e.g., cell, brain or behavior). In mechanics,
in contrast, the term is used as a synonym of kinetics, i.e., the realm
of force- inertia- acceleration the causes of motion (kinematics). The
confusion is amplified when terms like energy, dissipation, stiffness,
and difference in eigenfrequencies are used in the abstract sense of
dynamics system theory which refers to the space-time behaviour of
the system as a whole.

Coordination can take many forms as well. Studies on interlimb
dynamic coordination extend over a wide range of systems; starting
from the mechanically decoupled system of two persons walking side-
by-side [Ulz+08] to the interlimb dynamic coordination of a highly-
coupled mechanical system of an athlete performing a vertical jump
[AH02] or a gymnastic maneuver [OT15; HY16]. However, most of
the investigations focused on the interlimb dynamic coordination of
rhythmic activities such as locomotion (walking, running, swimming)
[Dic00; Iva05; CI06; Wan+01]. These experiments show that voluntary
rhythmic movements are either in phase or out of phase. This indi-
cates a common internal pace or a Central Pattern Generator (CPG)
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that coordinates movements. In this sense, coordination is argued to
be a consequence of evolving processes of self-organization or pattern
formation.

Dynamic

Coordination in

Robotics
Conversely, the traditional research in robotics has either ignored

or purposely suppressed the inherent dynamics of the robotic sys-
tems. Interlimb dynamic coupling has been long viewed as a source
of perturbation that needs to be avoided either by means of mechan-
ical design (e.g., link design to decouple the dynamics, or high mass
ratio to neglect the inertial coupling) or via a decoupling controller to
compensate for the coupling effect. Furthermore, the robot’s nonlin-
ear dynamics itself is usually regarded as an undesirable disturbance
that must be suppressed by means of control. The main reason be-
hind this control paradigm can be attributed to set of mature control
tools that have been designed principally for industrial manipulators.
For example, a widely adopted control scheme is the inverse dynam-
ics or computed torque ( a form of feedback linearization [Kre89])
which is essentially employed as a feedback loop to compensate for
the coupled, nonlinear dynamics of the manipulator. Thus, rendering
the robot into a linear decoupled system in the canonical form, which
can then be controlled by an outer loop designed using standard lin-
ear control techniques. The advantage of linear control theory is that
it is much more mature than its nonlinear counterpart that can easily
provide guarantees on convergence, robustness, and stability. How-
ever, the resulting motion is usually very stiff, overly conservative
and energetically inefficient.

Another control paradigm that results in emerging coordination
of body parts is the regulation of the robot’s linear and angular mo-
mentum about its Center Of Mass (COM). Kajita [Kaj+03] pioneered
this approach by proposing the resolved momentum controller which
he demonstrated a robust and coordinated motion of a humanoid
while walking and balancing while kicking. The key insight behind
this approach is to regulate the robot’s angular momentum about
the COM, also know as the Centroidal Angular Momentum (CAM),
to zero. This strategy will lead to a coordinated inter-segmental mo-
mentum cancellation. This insight was also verified in biomechanical
studies [PHH04] which showed that CAM is a privileged quantity
during steady-state human walking; subjects had a high non-zero an-
gular momentum for individual bodies in their limbs, yet the CNS
coordinate their movements in such to regulate their CAM to near
zero. Later, the centroidal momentum regulation approach has at-
tracted the attention of many follow-ups works in biomechanics, com-
puter animation [MZS09; LMH10; Zor10], and robotics[LG07; OGL13;
WO16; Her+16] . However, the main critique of this approach is that
it requires a reference trajectory for the linear and angular centroidal
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momentum, yet it is not clear how to design these trajectories in a
principled manner. Although it is convenient to derive the centroidal
linear momentum based on the prescribed trajectory of the center of
mass, the angular momentum cannot be integrated to yield any mean-
ingful orientation of the humanoid as a function of its configuration.
In other words, the average linear position and velocity of any multi-
body system are accepted to be the position and velocity of its COM.
However, neither an average angular position nor an average angular
velocity exists for a multibody system. This is the reason why most
of the work regulate the CAM around zero. However, this restricts
the resultant motions to just a rotational stabilization where the inter-
limb dynamic coordination emerges as a reactive strategy to increase
the rotational stability in situations such as tipping and tumbling. A
recent work [WO16] enforces a non-zero CAM to induce a pitching
rotation angle of humanoid while kicking a ball. However, it remains
an ad-hoc solution, and a more rigorous way to design a non-zero
CAM reference for rich and proactive motor skills remains an open
research topic.

More recently, impressive results for highly dynamic and agile mo-
tions (e.g., running, jumping, pronking, etc..) with substantial aerial
phase for a range of robotics systems were shown using motion plan-
ning and control techniques remotely based on optimal control theory
such as trajectory optimization [DVT14; Bel+18; Win+18], differen-
tial dynamic programming [TET12], reinforcement learning [TBS10]
or even deep learning [Lil+15; Hee+17]. Although the foundation of
these approaches were known for more than half a century, nowa-
days they leverage the current progress in computational power and
the readily available mature mathematical libraries (e.g., numerical
optimization, automatic differentiation, etc..). Nevertheless, our main
critique of those approaches beside their known limitation of exces-
sive computational time (can take up to several hours or few days
depending on the method and the complexity of motion) is that they
are often treated as black-box that result in a locally optimal solu-
tion, and it is difficult to understand the underlying mechanism be-
hind the given motion plan. A popular example is the work [Hee+17]
of Google DeepMind’s on using a reinforcement learning method to
generate a set of rich, dynamic locomotion behaviours for a range of
systems (quadruped, humanoid, planar walker) in an environment
rich with obstacles and floor gaps. A remarkable observation from the
associated video is that the resulting motion of the humanoid uses a
dramatic oscillation and nonintuitive motion of the humanoid’s arms
although they are never used to contact any surface. One might think
that the arm’s dynamic motion is an artifact of the algorithm. How-
ever, a recent study [BTB] has confirmed that the arm’s dynamic mo-
tion is not a random exploration of the robot’s redundancies but it
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has a physical function, and it actually helps in the stabilization of
the humanoid’s motion. Reseach in biomechanics has also provided
evidence on the importance of the dynamic coupling between the dif-
ferent body limbs on general locomotion.

Another problem with the optimization-based methods or rein-
forcement learning is that it is not always obvious what should be
the proper optimality criteria or reward function. This problem has
spurred research lines such as inverse optimal control [MTL10] or in-
verse reinforcement learning [KAN08; ACN10] with the goal to find
the optimal criterion given a dynamic process and an observed so-
lution. However, this is a mathematically difficult problem since it
requires to solve a parameter identification problem inside an opti-
mal control problem. Moreover, the solution of the inverse optimal
control problem is sensitive to the choice of the base function. Thus,
the data fitting can only get as good as its base functions permit. Also,
several studies show that many widely used ideas for objective func-
tions studied in the robotics and biomechanical communities such
as jerk, velocity or kinetic energy related terms are not plausible ob-
jective functions to explain the locomotion trajectories entirely. It is
generally agreed upon that acceleration is an important quantity for
human motion if studied from a global perspective, and that sensing
of acceleration is with the vestibular organ is crucial for all human
movement.

As emphasized by Schaal [SS05], questions in motor control often
parallel questions in robotics, and a fruitful interaction has emerged
between neuroscience and engineering. This is particularly true for
the control of rhythmic tasks where the idea of CPG has seen numer-
ous successes in the robotics community[FKC03; RI06; Ijs08]. CPGs
are neural networks (a system of coupled oscillators controlling each
joint) capable of producing coordinated patterns of rhythmic activity
without any rhythmic inputs from sensory feedback, or from higher
control centers. Models of CPGs have been used to control a variety
of different types of robots and different modes of locomotion. Per-
haps the most notable result is that of Ijspeert [Ijs+07] concerning his
work on the salamander locomotion —a unique amphibian with a bi-
locomotion mode; swimming and walking —where he demonstrated
the transition between swimming and walking using just few input
parameters modulating the frequencies, phases, and amplitudes of
the system of coupled oscillators. This result highlights the most inter-
esting feature of the CPG-based approach as it provides a reduction
in the dimensionality of the control problem.

However, there are several critiques /disadvantages to the CPG-
based approach. Even though CPG is the most cited method in robotics
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in the context of interlimb dynamic coordination, it still lacks a solid
theoretical foundation and methodology for designing the CPG as
most implementations depend on learning or optimization techniques
to identify the adequate parameters of the system of coupled oscilla-
tors [Ijs08]. More importantly, most CPG-based studies disregard the
actual mechanical dynamics and energetics of the robot’s body and
are only applicable for steady-state locomotion. It is worth noting,
however, that there are few studies which investigated the idea of
exploiting the passive dynamics to minimizing energy consumption
[BII06; VKH09; Wil99]. The basic idea behind this approach relies on
the fact that most robots have several resonant frequencies due to
pendulum and/or spring-mass phenomena (e.g., due to robot’s struc-
ture compliance). Therefore, it is possible to synchronize the intrin-
sic frequency of CPG with the resonant frequency of the robot, thus
achieving an energy efficient and robust control of a rhythmic limb
movement. However, the problem of how to design controllers capa-
ble of producing rich motor skills not limited to steady state rhythmic
while exploiting the natural dynamics remains an open research ques-
tion [Ijs08].

On the other hand, it is obvious that interlimb dynamic coordina-
tion plays a significant role in many non-rhythmic animal and ath-
letes dynamic maneuvers while exploiting the natural dynamics of
the body such as a brachiating gibbon swinging their body from a
tree limb to a tree limb [GR05] or a gymnast performing acrobatic
maneuvers on a high bar[OT15; HY16]. Understanding and exploit-
ing these dynamical effects is thus crucial to reduce the necessary
active contribution to the motion. In this thesis, we start from Bern-
stein’s qualitative definition of dynamic coordination

"...the secret of co-ordination lies not only in not wasting superfluous

force in extinguishing reactive phenomena but, on the contrary, in employing

the latter in such a way as to employ active muscle forces only in the capacity

of complementary force. " [Ber67]

If such philosophy can be transferred to the domain of design
and control of robots, this may lead to a new generation of hyper-
performance robots that can exceed the capability of its motor sys-
tem.

In consideration of the foregoing discussion, the work in this the-
sis explores a new avenue of research which concentrates on demon-
strating, explaining and understanding the behavior of underactu-
ated robots performing a dynamic non-rhythmic maneuver such as
the swing-up of a gymnast on a high-bar while highlighting the role
of coordinating the motion with the natural dynamics.
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1.1.2 Natural Dynamics

Natural dynamics

refers to the set of

motions that a robot

or animal exhibits

without using their

actuators

The concept of natural dynamics can be found in virtually any sci-
entific domain that is dealing with dynamical processes. Be it the
regeneration of tropical dry forests in biology, the development of an
informal employment sector in economics, or the transformation of a
coastline in civil engineering, in all these examples, the term natural

dynamics refers to the behavior that a system follows without external
intervention.

Applying this definition to robotics systems implies that the nat-
ural dynamics describes a set of motions that a robot or animal ex-
hibits without using their actuators. Of course, these dynamics can
be initiated and excited through muscle activity or other forms of
actuation, but they are shaped and maintained as a result of inertia,
gravity, and elastic oscillations. Natural dynamics exist for any sys-
tem, whether premeditated or not, whether favorable or detrimen-
tal to the task at hand. For highly dynamic behaviors, with large
accelerations, impacts, and energy transfers, natural dynamics sig-
nificantly affect the performance, energy economy, stability, and task
bandwidth. Applied control must work in complementarity with the
passive dynamics, and not by forcing the robot’s motion against its
natural dynamics. In this context, the terms natural dynamics and
passive dynamics are often used interchangeably, not to be confused
with zero dynamics which is a property of feedback control of nonlin-
ear systems. However, this thesis we will abstain from employing the
term passive dynamics to not confuse the reader with the dynamics
of passive subsystem of an underactuated robot.

For industrial robots, natural dynamics have long been consid-
ered an undesired side-effect that degrades kinematic precision. To
reduce its impact, traditional robots are built as stiff as possible: me-
chanically rigid structures in combination with strong motors, large
transmission ratios, and high-gain position controllers ensure that the
robots are moving in kinematically exact ways. The underlying goal
is to build systems that precisely follow predefined trajectories, in-
dependent of the shape of the motion that they execute or the pay-
load they are carrying. The same traditional approach has been ap-
plied on legged robots such as Asimo which is characterized by high
impedance actuators and control systems that resist any unplanned
variation to movement or acceleration caused by the outside world or
more critically the natural dynamics of the system that act against the
prescribed trajectory for the robot to follow. The result is a quasi-static
motion and unnatural motion. A more dynamical motion is typically
seen in Boston Dynamics hydraulic machines which are character-
ized by very high bandwidth, high power actuators. These robots are
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sometimes capable of overcoming unfavorable natural dynamics and
exhibiting highly dynamic behavior, but they do so at the cost of ex-
tremely high power requirements. Designing systems with appropri-
ate passive dynamics can simplify the active control system, permit
low-bandwidth actuation, and minimize energy costs [Col05].

Nature, on the other hand, shows us that it can be actually quite
beneficial to enable natural dynamics in a system. Especially in pe-
riodic movements, such as walking or running, large fluctuations in
kinetic and potential energy arise, and instead of creating the entire
motion (and thus the energetic fluctuations) actively, the mechanical
structure of animals and humans is built in such a way that a substan-
tial part of the motion emerges passively. Energy is stored elastically
in muscles and tendons, and motions are shaped by the pendulum dy-
namics of the leg segments. By exploiting these dynamical effects, the
necessary active contribution to the motion can be reduced greatly.

Many Motions are shaped by the pendulum dynamics for example
the swing leg motion in all legged animals locomotion are approxi-
mated by the dynamics of a pendulum or a multi-pendulum system
with relatively high accuracy [Ale03; DDK05]. Swinging is a primor-
dial movement primitive which is ubiquitous in the dynamic behavior
of many living organisms. Brachiation [GR05], or body swinging, is
a principal movement element in arboreal locomotion in which pri-
mates, such as gibbons, swing from tree limb to tree limb by swing-
ing their body while at least one hand is grasping a support at all
times. This locomotion mode is also known as a continuous contact
brachiating gait which can be regarded as an upside down walking.
Understanding and exploiting these dynamical effects is thus crucial
to reduce the necessary active contribution to the motion.

From the robotics perspective, natural dynamics was not always
seen as an adversary that needs to be suppressed by means of input
control. The recognition of the importance of natural dynamics has
witnessed several waves of interest in the robotics community. Most
of the work in robotics citing natural dynamic or passive dynamics
are actually referring principally to the dynamics of the compliant
actuators in the robot. The interest in compliant actuators —as op-
posed to the traditionally rigid and high impedance motors —can
be traced back to the observation that many dynamic motions of an-
imals and humans can be approximated as a mass-spring behavior
[Ale90; Ale03], later on, formalized as the Spring Loaded Inverted
Pendulum (SLIP) model. In the late 80s, Raibert hoppers [Rai86] were
among the earliest to demonstrate mechanical compliance by using
pneumatic actuators which gave his running robots a springy bounc-
ing behavior and then used three simple controllers to modify the
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speed, height and pitch stability of the bouncing motion. This ap-
proach yielded robots which could run fast as well as do gymnastic
maneuvers with a degree of agility that is still impressive to this day
[Pla95]. However, the motion planning and control depend on a set
of intuitive heuristics which cannot be easily transferred to a more
general anthropomorphic bipedal robot.

The second wave of interest in natural dynamics raised with the
introduction of passive dynamic walkers. Counterintuitively, one way
to improve maneuverability and efficiency is to strategically remove
actuators from a robot. McGeer [McG90] introduced an alternative
paradigm of robot design of completely passive bipedal robot that ex-
ploits gravitational forces which can be considered as a system which
is completely powered and stabilized by the natural dynamics of the
system. However, these systems are characterized by narrow stability
regions and weak robustness and can only walk at a specific speed
and can neither jog, nor walk up stairs or stand still.

More recently, a third wave of interest in natural dynamics grew
with the advent of more advanced actuators such as Serial Elastic Ac-
tuators (SEA) [Pra00] or Variable Stiffness Actuators (VSA) [WH08].
Several studies showed that it is possible not only to exploit natu-
ral dynamics in hardware [Pra00; AHH15] but also in control [Wil99;
Ren+15; Ugu+12; Van+06; Rem11; BII06]. However, all these studies
concentrate on the compliance inhibited in the robot’s structure as
the source of natural or passive dynamics. From their perspective,
this is sufficient because the vast majority of these studies build on
a mass-spring model while assuming negligible limbs masses (legs
or arms), therefore inertial coupling is neglected with respect to the
dominant behavior of a mass-spring system. In this thesis, we focus
on the natural dynamics inhibited in the dynamic coupling of multi-
link underactuated systems.

1.1.3 Underactuated robotics

In the control of fully-actuated robots, desired control forces and/or
torques may be applied to each joint by actuators. These are actuated
joints or active joints. There are however robots that have a fewer num-
ber of joints actuators than the number of its total joints is so-called an
underactuated robots. It is a well-known fact that an articulated un-
deractuated manipulator with passive joints satisfies a second-order
nonholonomic constraint which is a non-integrable constraint on the
acceleration.

Examples of nonholonomic underactuated systems are acrobots,
cart-pole systems, mobile-based robots with no base actuators, a car
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with n-trailers with passive joints, robot manipulators with failed ac-
tuators, free-flying manipulators without jets or momentum wheels
where the base can be considered as a virtual passive linkage in iner-
tial space, underactuated spacecrafts, underactuated surface vessels,
hyper-redundant (snake-like) robots with passive joints, underwater
vehicles with no base actuators, legged robots with passive joints.

The advantages of using such underactuated systems reside in the
fact that they weigh less and consume less energy than their fully-
actuated counterparts, and allow a more compact design and sim-
pler communication scheme all at the expense of a more complicated
control scheme than their fully-actuated counterpart. The underactu-
ated robot concept is also useful for the reliability or fault-tolerant
design of fully actuated manipulators working with dangerous ma-
terials or in remote or hazardous areas such as space, underwater,
nuclear power plants, etc.

Moreover underactuation imposes constraints on the dynamics
that restrict the family of trajectories that configurations, velocities
and accelerations can follow. These constraints are classified as second-
order nonholonomic constraints [ON91]. Though, control of mechan-
ical systems with nonholonomic first-order (or velocity) constraints
is very well-studied, the control of underactuated systems with non-
holonomic second-order (or acceleration) constraints still remain on
the frontier of our knowledge and remains a major open problem.

These challenges for the underactuated systems has a profound
impact on the ability to plan a trajectory and design a controller.
For example, underactuated systems are known to be cannot be fully
feedback linearized [Spo98], which is a common control method that
uses high gain feedback control to suppress the nonlinearity in the
system and renders the closed loop system linear. On the other hand,
underactuated systems can only be partially linearized under cer-
tain conditions. Underacuated mechanical systems can only be con-
trolled indirectly either through contact forces with the environment
or through inertial forces which rise from the nonlinear inertial cou-
pling of the articulated system. The dynamics of a nonlinear system
are much richer than the dynamics of a linear system. In this the-
sis we advocate to embrace the nonlinearity that originates from the
dynamic coupling and to exploit these forces to achieve a high perfor-
mance behaviour that cannot be achieved from a linearized system.

Mature Nonlinear optimization algorithms such as Sequential Quadratic
Program (SQP) and interior point are available [Bet10] and were suc-
cessfully applied on many robotic application. However, these non-
linear programs are limited to local search which often struggle to
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converge to high quality solutions for particulary high dimensional
problems or long trajectories. More importantly, Nonlinear optimiza-
tion tools are often treated as black boxes that are very sensitive to
the initial guess solution.

These challenges has motivated us to develop a novel trajectory
analysis tool that can peek into the output solution and evaluate its
performance. The Dynamic Coupling Map (DCM) help in gaining in-
sight into the motion of the system. Our ultimate goal for studying
such systems is to understand problems of dynamic locomotion in
both biological systems and in robotic systems.

1.2 thesis goals

The philosophical motivation of this thesis is driven by the perfor-
mance gap between the motion of humans and animals and the state
of art of motion control and synthesis of robotic systems. Alterna-
tively, to put it in simpler words; why is it easy to tell animal move-
ment from machine movements? Despite the simplicity of this ques-
tion, it is very subtle and remains an open question. The complexity
of the question reflects the richness of human and animal behavior
which encompasses a broad range of fundamental interdisciplinary
problems that still need to be understood. In the previous section,
we’ve highlighted some of these aspects which range from under-
standing the principles of how the brain represents and control the
high-dimensional, nonlinear, and highly-coupled DoFs to the com-
plexity of their biological bodies as dynamical systems. But the mo-
tion richness does not just come from biological complexity, a large
body of research and observations in biomechanics and sports sci-
ences suggest that the richness of human and animals motion stems
from the inter-segmental coordination and their ability to execute dy-
namically synergistic motions that exploit —gravity, inertia, joint cou-
pling, elasticity, contact wrenches, and so on —as a regular part of
skillful, coordinated movements

On the robotics side, in striking contrast, the prevailing philosophy
of robotic motion synthesis and control relies heavily upon cancella-
tion of the nonlinear dynamics by means of feedback linearization
technique or by ignoring the dynamic coupling effects by virtue of
mechanical design and decoupling controller. Clearly, the advantage
of this approach is to linearize the dynamical system and be able to
apply the well-founded theories for linear control and stability anal-
ysis tools. However, this approach risks the design of forced and un-
coordinated behavior. This is one of the reasons that has compelled
us to treat underactuated robots with torque limits. The fact that it is
not feedback linearizable, the non-negligble dynamic coupling, and
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the severe torque limits remove the full control authority that one
enjoyed in the fully-actuated robots, thus the class of underactuated
robots forces you to handle the inherent nonlinear dynamics in an
unconventional way.

The philosophy behind the work in this thesis is to embrace the
inherent nonlinear dynamics of the system rather than avoid them.
Moreover, this work departs from the recent trending approaches
such as trajectory optimization, dynamic programming, random sampling-
based motion planning, reinforcement learning, and evolution strat-
egy. All of which has remarkable success in synthesizing dynamic
motions for a wide array of robotic systems. However, they do not
address the fundamental principles of natural dynamic motions as
they are often treated as a black-box which provide a local-optimal
solution with little insight into the mechanism of the output motion.
This work takes a new approach by going back to the fundamentals;
first by generating dynamic motions using state of the art non-linear
trajectory optimization tool and analyzing thoroughly from a dynam-
ical perspective the pivotal role of the natural dynamics and dynamic
coupling, thus abstracting the principles of natural dynamics. Sub-
sequently, this approach enables us to synthesize natural dynamics
based motion by applying directly those principles. Although this
work does not provide a complete theory of natural dynamic motion,
it is a stepping stone towards that ambitious goal. The contributions
of this thesis can be outlined as follows:

• The introduction of the Joint Space Dynamic Coupling Ellipsoid
(JS-DCE) of the passive subsystem acceleration, which describes
the set of admissible accelerations of the passive subsystem
while taking into consideration the second-order nonholonomic
constraint imposed by the underactuation, torque bounds on
the active subsystem, inertial distribution over the manipulator,
gravity effect, nonlinear velocity-dependent forces, and external
wrenches.

• The introduction of the "Joint Space Dynamic Coupling Map (JS-
DCM)," a novel analysis technique in the joint acceleration space
based on JS-DCE, to help gain insight into a dynamic trajectory
and analyze the dynamic coupling between the passive and ac-
tive subsystems of an underactuated robot. More importantly, it
allows analyzing the pivotal role of the natural dynamics of the
system on the passive joints during a dynamic motion.

• The introduction of three novel performance indexes aptly named
Natural Dynamics Indexes (NDI) which allow to quantify the
role of the natural dynamics during a dynamic motion and
its significance with respect to the input control its physical
bounds.
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• Extending the formulation of the aforementioned analysis tech-
nique for floating-base systems and demonstrating its merits by
applying it on a high-dimensional humanoid robot performing
a vertical jump with the aid of arm swing.

• Extending the formulation of the aforementioned analysis tech-
nique for task-space acceleration analysis, thus, TS-DCE and
TS-DCM allow to study the set of admissible accelerations of
a particular operational point in the task space while taking
into consideration different dynamic constraints and parame-
ters (i.e. the second-order nonholonomic constraint imposed by
the underactuation, torque bounds on the active subsystem, in-
ertial distribution over the manipulator, gravity effect, nonlinear
velocity-dependent forces, and external wrenches). Hence, it is
possible to find the direction and magnitude of influence of each
force on the task acceleration space in a graphical and intuitive
manner.

• In addition, the merits of the TS-DCM analysis tool is demon-
strated by applying it to the dynamic swing-up maneuver of
the gymnast-robot on a high bar. The dynamic motion is formu-
lated as a nonlinear optimal control problem which is solved us-
ing the direct collocation method. The TS-DCM along with the
associated natural dynamic indexes are employed to help gain
insight into the dynamic motion of the underactuated system
and the associated control strategy and highlight the pivotal
role of exploiting the natural dynamics to achieve the dynamic
motion.

• The introduction of the Natural Dynamics based Tree (NDT), a
novel kinodynamic planning algorithm which plans a dynamic
motion based on the natural dynamics of the system. More-
over, the effectiveness of the proposed NDT algorithm is demon-
strated on planning the motion and control of the swing-up of
the Acrobot, a canonical underactuated robot which is typically
used as a benchmark for control of underactuated robots. In
addition, a statistical comparison between the proposed NDT
algorithm and RRT —a classical kinodynamic motion planning
algorithm —show that the proposed NDT algorithm is superior
in terms of computation time and motion solution quality.

1.3 thesis outline

The rest of the thesis can be outlined as follows:

• Chapter 2 provides a complete panorama of performance met-
rics while highlighting the difference with the contribution in
this thesis.
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• Chapter 3 introduces the JS-DCE and the JS-DCM as a novel
analysis technique in the joint acceleration space analysis as
well as three novel performance measures based on the afore-
mentioned analysis while highlighting its interpretation of the
natural dynamics of the system. In addition, chapter 3 extends
the analysis to floating-base systems and demonstrates its mer-
its on a high-dimensional humanoid robot performing a vertical
jump with the aid of arm swing. The motion planning and con-
trol of the vertical jump are generated using the state-of-the-art
trajectory optimization tool, and the JS-DCM is used as a poste-
riori analysis tool of the resultant motion.

• Chapter 4 extends the formulation of the aforementioned anal-
ysis technique for task-space acceleration analysis while high-
lighting the interpretation of TS-DCE and the TS-DCM of the
robot dynamics by applying it on a variety of underactuated
manipulators with different kinematic and dynamic parameters
to demonstrate clearly the mechanism of the analysis technique.
Finally, chapter 4 demonstrates the merits of the TS-DCM anal-
ysis tool is demonstrated by applying it to the dynamic swing-
up maneuver of the gymnast-robot on a high bar. The dynamic
motion is first generated using direct collocation trajectory opti-
mization loosely based on the actual motion of a gymnast on a
high-bar. However, since trajectory optimization is often treated
as a black-box providing a local-optimal trajectory without any
insight into the mechanism of the motion, the TS-DCM along
with the associated natural dynamic indexes are employed to
help gain insight into the dynamic motion of the underactuated
system and the associated control strategy and highlight the
pivotal role of exploiting the natural dynamics to achieve the
dynamic motion.

• Chapter 5 introduces a novel kinodynamic motion planning al-
gorithm based on the natural dynamics of the system. First, an
overview and a taxonomy of the different kinodynamic motion
planning algorithms is given while highlighting the merits of
our novel algorithm. In addition, the effectiveness of the pro-
posed NDT algorithm is demonstrated on planning the motion
and control of the swing-up of the Acrobot along with a statis-
tical comparison with RRT in terms of computation time and
motion solution quality.

• Chapter 6 concludes the thesis with discussion and suggestions
for future work.





2
A R E V I E W O N P E R F O R M A N C E M E A S U R E S

Performance measures are quintessential to the design, synthesis, study
and application of robotic systems. Numerous performance measures
have been defined to study the performance and behavior since the
early days of robotics. We briefly review some of the relevant mea-
sures and discuss their scope and limitations. For extensive survey
the reader should refer to [PS15].

[DP96] defined performance measures as a field defined on the
configuration manifold, i.e. the space of all postures of the manipula-
tor, that measures some general property of the manipulator. In other
words, the theory of performance tries to answer the question "which
robot configuration is optimal for a certain task? carry a heavy object?
to hammer a nail ?". However, this definition is more suited for fully
actuated robots with quasi-static motion (low velocity) as it attempts
to grasp the dynamics based on the configuration only while assum-
ing that the velocity-dependent forces are negligible. In this thesis we
show the importance of these forces in the context of highly dynamic
maneuverers.

Historically, performance measures were developed for fully actu-
ated manipulators due to the importance of their industrial applica-
tions. The need for such measures became more evident as indus-
trial manipulators grew more complicated regarding the mechanical
design and increase in DoFs. Consequently, the dynamics emerging
from the coupling among multiple joints, nonlinear effects such as
Coriolis and centrifugal forces, and varying inertia depending on the
arm configuration made it difficult to have a good grasp of the dy-
namics and the overall behavior of the system. Moreover, as the bar
of expected performance in terms of speed and accuracy keeps in-
creasing these complicated dynamics become more prominent and
cannot be neglected.

Performance measures can be categorized into two groups: kine-
matic or kinetostatic measures, and dynamic measures.

2.1 kinetostatic performance measures

Kinetostatic measures focus on studying the differential kinematics
relationship, together with the statics relationship from the duality
principle. The purpose of these measures is to provide a performance
index that characterizes the twist/ wrench capabilities of the end ef-
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fector in terms of the performance of the velocity/torque capabilities
of the robot actuators. Despite the plenitude of the proposed kineto-
static performance measures, most of them depend on the forward
kinematic map between joint space and task space, and in particular
its Jacobian.

2.1.1 kinetostatic manipulability

kinetostatic manipulability [Yos85b; CBVP97] ellipsoids can be de-
fined for each configuration of the arm. The velocity ellipsoid gives
an index of the ability of performing end-effector velocities along
each task space direction for a given set of joint velocities. Dually,
the force ellipsoid gives an index of the ability of performing end-
effector forces along each task space direction for a given set of joint
torques. It can be shown that the principal axes of the two ellipsoids
coincide, whereas the lengths of the axes are in inverse proportion.

The motivation to study the kinetostatic manipulability of robots
comes from the fact that, in order to perform an end-effector twist or
to withstand a wrench acting on the end-effector, the velocities and
the efforts at the actuators are, in general, greater at configurations
close to singularities. At singular configuration, some twists cannot
be executed and some wrenches can only be passively resisted by
the manipulator. Therefore, maintaining a manipulator away from
singularities is convenient to general task execution.

The kinetostatic manipulability can have several interpretation:

• Manipulability can be interpreted as how closely the forward
kinematic map of a manipulator approximates an isometry. Or
in other words, as the ease of arbitrarily changing the position
and orientation of the end effector at the tip manipulator.

• Manipulability can also be interpreted as the efficiency of the
velocity and force transmission between the joint space and task
space as certain configuration of the manipulator.

velocity ellipsoid :
Consider a manipulator with n degrees of freedom. The joint vari-

ables are denoted by an n-dimensional vector, q. An m-dimensional
vector r = [r1, r2, . . . , rm]T (m 6 n) describes the position and/or ori-
entation of the end effector. The kinematic relation between q and r

is assumed to be

r = fr(q) (1)

The relation between the velocity vector v corresponding to r and
the joint velocity q̇ is

v = J(q)q̇ (2)
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where J(q) is the Jacobian matrix. For the sake of brevity J(q) may
also be written as J hereafter. Now we consider the set of all end-
effector velocities v which are realizable by joint velocities contained
in the unit sphere of the joint velocity space. This constraint can be
defined as

q̇T q̇ 6 1 (3)

Or alternatively we can express the Euclidean norm of q̇

kqk2 = (q̇2
1 + q̇2

2 + . . .+ q̇2
n) (4)

satisfies kqk2 6 1

It can be shown that the corresponding velocities in the task space
are defined by

vT (J+)T J+v 6 1, v 2 R(J) (5)

where J+ is the right pseudo-inverse matrix of J and R(J) denotes
the range of J. The right pseudo-inverse matrix is given by

J+ = JT (JJT )−1 (6)

If the manipulator is not in a singular configuration ( that is, if rank
J = m), then, since v 2 R(J) for any v, the manipulability ellipsoid is
given by

vT (J+)T J+v 6 1 (7)

Equation (7) can be further simplified by accounting for the ex-
pression of the pseudo-inverse of J in Eq (6) to represent the velocity
manipulability in its final form as

vT (JJT )−1v 6 1 (8)

The principal axes of the manipulability ellipsoid can be found
by employing To analyze the linear mapping, the Singular Value

Decomposition (SVD) of the Jacobian matrix can be written in the
form

JJT = UΣVT =

MX

i=1

σiuiv
t
i (9)

where U is the M⇥M orthornomal matrix of the output singular
vectors ui, V is the N⇥N orthonormal matrix of the input singular
vectors vi, and Σ = (S0) is the M⇥N matrix whose M⇥M diagonal
submatrix S contains the singular values σi of the matrix JJT .
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It is worth noticing that the SVD is a continuous and well-behaved
function of its matrix argument; therefore, the input and output sin-
gular vectors as well as the singular values do not change much in
the neighbourhood of the current configuration.

The velocity ellipsoid is useful for analyzing the velocity transmis-
sion performance of the robot. The principle axes of the ellipsoid are
given by the vector of Ui, which are the eigenvectors of JJT . The
length of the principle axes are determined by the singular value

p
σi

of JJT which is equal to λi where (λi, i = 1, 2, . . . ,n) are the eigenval-
ues of J.

The principle axis of the velocity manipulability ellipsoid can pro-
vide several useful analytical indications of the robot’s current config-
uration. For example, the optimum direction to generate velocity is
along the major axis where the transmission ratio is maximized. Con-
versely, the minimum velocity in the task space for the given config-
uration is along the ellipsoid’s minor axis. However, velocity is most
accurately controlled along the minor axis. Further, the closer the el-
lipsoid is to a sphere i.e., unit eccentricity, the better the end-effector
can move isotropically along all directions of the operational space.

force ellipsoid :
Analogous to the velocity ellipsoid, we can also define a force ellip-

soid for describing the force transmission characteristics of a manip-
ulator at a given posture. According to the duality principle, forces
in the joint space and task space are mapped via the same Jacobian
through the relation

τ = JT f (10)

where f is the force vector in the task space and τ is the joint torque
vector. Hence, the set of achievable force in Rm subject to the con-
straint kτk2 6 1 is the ellipsoid defined by

fT (JJT )f 6 1 (11)

duality of velocity and force :
From Eqs. (8) and (11), the velocity ellipsoid is defined by the ma-

trix (JJT )−1, and the force ellipsoid is defined by the matrix (JJT ). It
can be shown that both matrices share the same eigenvectors while
the eigenvalues of (JJT )−1 are the reciprocals of the eigenvalues of
(JJT ). Consequently, The principal axes of the force ellipsoid coincide
with the eigenvectors of the velocity ellipsoid while the length of a
principle axis of the force ellipsoid is reciprocal of that of the velocity
ellipsoid in the same direction. This means the optimal direction for
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effecting velocity (maximum velocity transmission ratio) is also the
optimal direction for controlling force (minimum force transmission
ratio). Similarly, the optimal direction for effecting force is also the
optimal direction for controlling velocity.

This inverse force-velocity behaviour is a direct consequence of
the conservation of energy principle, which dictates that amplifica-
tion in velocity transmission must invariably be accompanied by re-
duction in force transmission, and vice versa. This can also be ex-
plained from the control perspective, the velocity is most accurately
controlled in the direction where the manipulator can resist large dis-
turbance forces, while force is most accurately controlled in the direc-
tion where the manipulator can quickly adapt its motion.

The driving

motivation for most

kinematic

performance

measures is to avoid

Singularity to

guarantee dexterity

Yoshikawa, however, has focused on an index to indicate the dis-
tance from a configuration of singularity so he proposed the manipu-
lability index as proportional to the volume of the ellipsoid which is
given by

w(q) =

q
det[J(q)JT (q)] (12)

In case of non-redundant manipulator where m = n, the measure
reduces to a regular determinant of the Jacobian matrix J as

w(q) = |det(J(q))| (13)

This measure is viewed as a generalized concept of the determinant,
because of the followings:

• The manipulability reduces to the regular determinant in the
nonredundant case.

• The manipulability becomes zero, when the workspace rank re-
duces at singularity, just as the regular determinant of a square
Jacobian matrix does.

• since the singular values of JJT have the square values of those
of J, the determinant of JJT may be regarded as if it were the
square of the regular determinant of a square Jacobian matrix.

• The manipulability cannot indicate the degree of singularity
when it approches zero, just as the absolute value of the de-
terminant of the jacobian matrix.

In linear algebra, the determinant of a matrix has been an impor-
tant measure used to test the invertibility of the matrix and its near-
ness to singularity. Accordingly the determinant of the Jacobian ma-
trix has been tried for the dexterity measure for both nonredundant
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and redundant manipulators. For nonredundant manipulators, for in-
stance, the determinant has been used as a measure of degeneracy for
the analysis of the wrist configurations. However [ALC92] noted the
limitation of relying on the absolute value of the determinant to de-
termine the invertibility of the Jacobian matrix and recommended the
condition number of a matrix as a measure of the relative roundoff
error amplification upon solving a linear system of equations.

2.1.2 Kinematic Isotropy

Salisbury and Craig [SC82] introduced the concept of dexterity while
working on the design of articulated hands. In the pursuit of isotropic
points, Salisbury et al proposed the minimization of condition num-
ber of c(JT ) as an optimization criterion for link design. The author
defined isotropic points as configurations with a condition number
of unity by virtue of having all their singular values identical. Thus a
manipulator in these configuartion minimizes the error propagation
from the input torque to the output force - equivalently, the velocity
error propagation from joint space to workspace - for nonredundant
manipulator.

kδFk
kFk 6 c(JT )

kδτk
kτk (14)

This can be understood as demonstrated by the velocity/force el-
lipsoid, the Jacobian matrix distorts the velocity/force inputs that are
uniformly applied towards all the directions joint space into an el-
lipsoidal outputs in the end-effector space. The condition number is
used to describe the distortion in the velocity and force transmission.
Along the direction of major semi-axis of the ellipsoid, disturbance
in the joint space will result in larger error of end-effector in the task
space. Therefore, the condition number also measures the ability of
error propagation of a mechanism at some kinematical configuration

The condition can be computed in more than one ways. One of
the computation defined the condition number as the ratio of the
largest singular value σMax to the smallest singular value σmin of
the Jacobian.

k(J) =
σMax

σmin
(15)

2.1.3 Singular Values and Their Combinations

The determinant and the condition number of the Jacobian matrix can
be expressed in terms of the singular values of the matrix: the deter-
minant is the product of all the singular values, while the condition
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number is the ratio of the largest to the smallest singular value. Thus,
several variations were proposed.

Angeles [ALC92] defined kinematic isotropy as the reciprocal of
the condition number k(J), which denotes the singular values of the
Jacobian matrix are all identical and non zero at certain

Since the minimum singular value becomes zero when the matrix
is singular, and approximately determines the worst limits of the two
measures, the value itself was suggested as a new measure [Klein85].
In addition to its simple expression, the measure has a relatively clear
physical meanning: it may be interpreted as the minimum responsive-
ness in end effector velocity due to a unit change in joint velocity

Moreover, the geometric mean and harmonic mean of singular val-
ues have been proposed for the dexterity measures (yoshikawa), which
may be viewed essentially as variations of the aforementioned mea-
sures.

2.1.4 Task Compatibility Index

The manipulator can

be viewed as a

mechanical

transformer, with

joint space velocity

and torques as input

and task space

velocity and forces

as output.

Chiu [Chi88] had a different perspective on the utility of the veloci-
ty/force ellipsoid; he viewed the manipulator as a mechanical trans-
former, with joint space velocity and torques as input and task space
velocity and forces as output. Chiu noted that manipulation tasks
could be described as a sequence of actions in the cartesian task coor-
dinates and for a given posture of a manipulator there are preferred
directions for motion and force exertion in task coordinates. Hence,
he proposed the task compatibility index to exploit the manipula-
tor’s redundancy to adjust its posture to optimize the performance of
a given task.

By varying the posture of a manipulator, we can change the shape
and orientation of the velocity and force ellipsoids, and hence change
the optimal directions for effecting or controlling velocity and force.
The effective capability of a manipulator can be increased by adopting
postures that align the optimal directions with the task directions.

The transmission ratio along a particular direction is equal to the
distance from the center to the surface of the ellipsoid along the di-
rectional vector. Then if u is a unit vector in the direction of interest,
and the scalar α is the force transmission ratio in the direction u, then
αu is a point on the ellipsoid and must satisfy equation (11)

(αu)T (JJT )(αu) = 1 (16)

Therefore, the force transmission ratio α is given by

α = [uT (JJT )u]−1/2 (17)
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Conversely the velocity transmission ratio β in the direction of u

can be obtained as

β = [uT (JJT )−1u]−1/2 (18)

Chiu continued by defining the task compatibility index as the
weighted sum of the square of both ratios.

c =

lX

i=1

wiα
±2
i +

mX

j=1

wjβ
±2
j (19)

where the + sign is used for the directions in which the magnitude
is of interest, and the − sign is used for the directions in which accu-
racy is of interest; wi and wj are weighting factors that indicate the
relative magnitude or accuracy

2.2 dynamic performance measures

2.2.1 Generalized Inertia Ellipsoid (GIE)

Asada [Asa83] was one of the earliest to seek a geometrical represen-
tation of robotic manipulator dynamics. He realized that although we
have efficient algorithms in recursive Lagrangian formulations and
Newton-Euler formulation to calculate the dynamics, we still need
an efficient and more intuitive means to analyze the behaviour of the
multi-DoF motion for control and design purposes. He proposed the
Generalized Inertia Ellipsoid (GIE) which gives a geometric represen-
tation of the manipulator’s effective inertia seen at the end effector.

GIE = J−TMJ−1 (20)

where M denotes the joint space inertia matrix of the manipulator,
and J is the Jacobian to the manipulator’s end effector or any point
of interest.

The GIE can also be seen as the generalization of the inertia ellip-
soid associated with the inertia tensor I of a single body. However,
unlike the inertia ellipsoid of a single body, the GIE changes its orien-
tation and size depending on the manipulator’s configuration. There-
fore, the GIE would measure the resistance of the robot if a human
operator were holding the end effector and attempting to move it.

It is noteworthy to mention that Asada’s original motivation for
developing the GIE is to design a manipulator by modifying the link
lengths and the distribution of mass so that the GIE is uniform in any
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direction over a wide range of the reachable region. The reason for
this is that when the GIE is a pure circle a better control performance
is expected. This is mainly due to two main reasons:

• First, In case of circular GIE the manipulator responds accu-
rately and uniformly in all directions while large difference in
axial lengths between the major and minor axes shows that gen-
eralized moment of inertia at the tip of the arm varies signifi-
cantly depending on the direction of motion.

• Second, Asada showed that dynamic nonlinear forces vanish in
the case of circular GIE and they are reduced if the GIE doesn’t
change much in orientation and shape over the course of its
movement.

limitations : The main limitation of the GIE is that it doesn’t take
explicitly into account the velocity dependent forces such as Coriolis
and centripetal forces nor gravity nor torque limits.

2.2.2 Dynamic Manipulability Ellipsoid (DME)

Yoshikawa [Yos85a] has extended his kinetostatic manipulability mea-
sure to a dynamic version. This measure describe the ease of acceler-
ating arbitrarily the the manipulator’s end effector while taking into
consideration the dynamics of the manipulator and the torque limits.
However, we will show that he has not correctly took into considera-
tion all the robot’s nonlinear dynamics except for the robot’s inertia
as shown by [Chi+91]. Moreover, Yoshikwa has not studied the full
dynamics because in his paper he assumed that the robot’s velocity
is zero to neglect the nonlinear dynamic terms.

For a fully actuated manipulator, we can write the equations of
motion in the following form

M(q)q̈+ h(q, q̇) + g(q) = τ (21)

where q is the generalized coordinates, q̈ is second time derivative
of q given by q̈ = d2q

dt2
, M(q) 2 Rn⇤n is the positive definite joint

space inertia matrix, h(q, q̇) 2 Rn represents the velocity dependent
torques such as centrifugal and Coriolis forces, and g(q) 2 Rn repre-
sent the gravity induced torques.

Moreover to find the relation between joints accelerations and the
acceleration of the end effector we can differentiate Eq.(2) with re-
spect to time to get the following equation

v̇ = Jq̈+ ar(q, q̇) (22)

ar(q, q̇) = J̇q̇ (23)
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where ar can be interpreted as the virtual acceleration caused by
the non-linear relation between the two coordinate frames q and r,
which are the joint space and the task space, respectively.

In Yoshikawa’s original derivation he introduced two new variables
τ̃ 2 Rn and ˙̃v 2 Rm

τ̃ = τ− h(q, q̇) − g(q) (24)

˙̃v = v̇− Jq̈− ar(q, q̇) (25)

Finally, using Eqs. (21 ), (22), (24) and (25) we can get a relationship
between the two new variables

˙̃v = JM−1τ̃ (26)

therefore JM−1 can be considered as the transmission factor be-
tween τ̃ and ˙̃v which can be interpreted as the joint torque space and
the end effector acceleration space, respectively.

Furthermore, the Dynamic manipulability ellipsoid can be defined
as the set of all ˙̃v which is realizable by the joint torque space such
that

kτ̃k 6 1 (27)

From Eqs. (26) and (27) this set is given by the following equation
of an ellipsoid

˙̃vT (MJ+)TMJ+ ˙̃v 6 1, ˙̃v 2 R(J) (28)

Analogous to the kientostatic manipulability we can find the Dy-
namic manipulability ellipsoid’s orientation and size by calculating
the eigenvectors and eigenvalues of the matrix J(MTM)−1JT or sim-
ply JM−1 principal axes by finding the singular value decomposition

JM−1 = UΣVT (29)

the principal axes are σ1u1, σ2u2, , . . . ,σmum, where ui 2 Rm is
the i-th column vector of U and σi 2 Rm are the singular values.

the relation between dme and gie : Although both concepts
were developed in a fundamentally different manner, we can show
the relation between them through an intuitive example. Imagine a
manipulator with a moving end-effector. Then, the GIE expresses the
resistance to changing the position and orientation of the end effector
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in various direction for a human operator who holds the end-effector
and applies a force with a fixed magnitude. On the other hand, the
DME expresses the easiness of changing the position and orientation
of the end effector via the set of actuators which drives the manipulator
joints by applying joint torques with a fixed magnitude.

the dynamic manipulability measure is proportional to the volume
of the dynamic manipulability ellipsoid which gives an indication on
the uniformity of the torque acceleration gain.

Wd =

q
det [J(MTM)−1JT ] (30)

The measure wd can also be expressed as the product of the singu-
lar values

Wd = σ1 σ2 . . . σm (31)

In case of nonredundant manipulators, i. e.when m = n the dy-
namic manipulability measure wd reduces to

Wd =
|det J|

|detM|
(32)

important notes : Yoshikawa’s DME does not explicitly relate
the control input torques τ to the end effector’s acceleration v̇ but
rather τ̃ to ˜̇v. Recall that τ̃ represents all torques acting on the joints
including gravity and velocity dependent forces in addition to the
control input torques.

2.2.3 Inertia Matching Ellipsoid (IME)

Kurazume et al. [KH06] introduced a new index for fully actuated se-
rial link manipulators which indicates the torque-force transmission
efficiency from the joint torques to the forces and moments (wrench)
received by the load at the end-effector. This index is inspired by
the impedance matching concept found in electric circuit design or
mechanical gear design with the objective of maximizing the power
transfer from source to load.In addition, Kurazume showed that by
taking into consideration the load dynamics at the end effector which
has a mass Mp, the IME index behaves as continuum between both
dynamic manipulability ellipsoid and static force manipulability as
the two ends of the spectrum related to the weight of the load. In
other words, if the load weight is relatively very large Mp !1 IME
behaves as the static force manipulability since the manipulator dy-
namics can be neglected. Conversely, if the load weight is relatively
very small Mp ! 0 then the manipulator dynamics will be dominant,
thus IME will behave as the DME.
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This can be shown by expressing the equation of motion of a fully
actuated serial manipulator with n links and n joints and an external
force applied to the end effector Fe 2 Rm

M(q)q̈+C(q, q̇) +G(q) + J(q)TFe = τ (33)

while the motion equation for the load held at the end-effector is
given as

Fe = Mpẍ+Mpg (34)

where Mp 2 Rmxm is the inertia matrix of the load, ẍ 2 Rm is the
acceleration of the end-effector, and g 2 Rm is the gravity accelera-
tion vector. The acceleration of the end-effector can also be defined
as

ẍ = J(q)q̈+ J̇(q)q̇ (35)

The relation between the input torques and the external force(wrench)
on the payload can be found by substituting Eqs. (34) and (35 ) into
Eq. (33)

τ = M(q)J(q)+M−1
p [Fe −Mpg −MpJ̇(q)q̇)]

+C(q, q̇) +G(q) + J(q)TFe (36)

Which can be simplified as

τ = Q(fe − fbias) (37)

where

Fbias = W(J(q)T +M(q)J(q)+M−1
p )+

[M(q)J(q)+(g + J̇(q)q̇)) +C(q, q̇) +G(q)] (38)

Q(q) = J(q)T +M(q)J(q)+M−1
p (39)

W is a weighting matrix and J(q)+ 2 Rn⇥m is the pseudo inverse
of the Jacobian matrix J(q), which is calculated in case of redundant
manipulator as

J(q)+ = W−1JT (JW−1JT )−1 (40)

Finally, we proceed by following the derivation of the ellipsoid as
in the manipulability ellipsoid by taking the norm of the torques or
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the normalized torques to obtain the equation of the inertia matching
ellipsoid

(fe − fbias)
TQTL−2Q(fe − fbias) 6 1 (41)

Eq. (41) describes the wrench transmitted from the joints to the load.
Q which is defined in Eq. (39) can be regarded as the transmission
factor. Q is the sum of two terms; the first term depend only on the
Jacobian matrix J(q) while the second term depends on the joint space
inertia matrix M(q), the Jacobian matrix J(q) and the inverse of load
inertia Mp. The bias force Fbias can be regarded as the manipulator
dynamics projected at load plus the load dynamics itself.

Kurzame follows the same line of thought of yoshikawa by defin-
ing the inertia matching index as the volume of the ellipsoid which
can be obtained by calculating the singular value decomposition of
Q(q)

Q(q) = UΣVT (42)

where Σ = diag(σ1 σ2 , . . . ,σm 2 Rm⇥n) is the matrix containing
the singular values, while U 2 Rm⇥m, and V inRn⇥n are orthogo-
nal matrices containing the singular vectors. Therefore, the measure
wIME can be expressed as the product of the singular values

wIME = σ−1
1 σ−1

2 . . . σ−1
m (43)

2.2.4 Acceleration Radius

Unlike other performance measures which depend on a particular
state, hence categorized as a local measure, the acceleration radius is
considered as a global measure which indicates the maximal lower
bound on the magnitude of the acceleration that can be achieved at
the end effector over the entire operating region. The acceleration
radius is initially proposed to measure the minimum acceleration ca-
pability of the end-effector in arbitrary directions, for given torque
bounds on the actuators. the acceleration radius is defined as the
largest sphere centered at the origin that is constrained in this poly-
tope; the radius reflects the minimum guaranteed end-effector accel-
eration in arbitrary directions. This concept is applied to measure the
end-effector acceleration radius. Although this might seems to be a
conservative measure for the purpose of motion planning, it was orig-
inally developed by [GK88] to compare the dynamic performance of
two or several manipulator design in terms of the maximal lower
bound on the acceleration capabilities of its end-effector. The accel-
eration radius is obtained by solving a particular type of nonlinear



30 a review on performance measures

optimization called semi-infinite program (SIP), which is, a mathe-
matical program with a finite number of decision variables and an in-
finite number of constraints. The infinite number of constraints arise
from the fact that joint torques bounds and manipulator dynamic
constraints must be satisfied over a continuum of positions, velocities
and accelerations.

2.2.5 Dynamic Capability Equation

In [BK05] the concept of acceleration radius is generalized to cap-
ture both the force, acceleration, and velocity capabilities of the end-
effector, with a view to quantifying the worst-case dynamic perfor-
mance capability of a manipulator. In a series of work [BK95; BK98;
BK00; BK03; Bow05], Bowling and Khatib proposed to adopt the op-
erational space formulation of the equations of motion to analyze
the tradeoffs between different capabilities, acceleration, force and
velocity given torque bounds in a common framework. The driving
motivation behind this type of analysis is to analyze a fully actuated
manipulator’s dynamic performance for tasks which require specific
force and velocity such as the task of polishing the surface of a cylin-
der.

Another particularity of this method is that it addresses the prob-
lem of units homogeneity between the linear and angular compo-
nents by treating them separately and mapping them to the torque
space instead of scaling both components in the same vector.

The end result of this type of analysis is what the author defines as
the Dynamic Capability Hypersurface (DCH) and the associated worst-
case directions, which show the limitations on the force, acceleration
and velocity capabilities of the robot’s end-effector. The DCH is gener-
ally a six-dimensional hypersurface. The six dimensions of this space
are the norm of the following capabilities of the end effector: linear
velocity, linear acceleration, linear force, angular velocity, angular ac-
celeration and the moment on the end effector. This hypersurface
guarantees the isotropic performance of any of the mentioned quan-
tity before saturating any of the actuators. Therefore, this kind of
analysis is mostly adapted for the actuator design phase as it can
show which actuator is oversized or undersized.
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Table 1: Comparative overview on the state of the art of performance measures

Thesis Contribution

Kinetostatic

Manipu-

lability

Ellipsoid

[Yos85b]

Kinetostatic

Manipu-

lability

Measure

[Yos85b]

Dynamic

Manipu-

lability

Ellipsoid

[Yos85a]

Dynamic

Manipu-

lability

Measure

[Yos85a]

Acceleration

Radius

[GK88]

Dynamic

Coupling

Index

[BLX95]

Force

Polytope

[CBVP97]

Inertia

Matching

Ellipsoid

(IME)

[KH06]

Dynamic

Capability

Hyper-

surface

(DCH)

[BK05]

Force Ca-

pacity In-

dex (FCI)

[BB18]

Dynamic

Coupling

Map

Natural

Dynamics

Index

Output
type

Single
veloci-
ty/force
ellipsoid
in the task
space

Scalar Single el-
lipsoid in
the task ac-
celeration
space

Scalar Scalar Scalar Polytope
in the task
space

Single
ellipsoid
in the task
space

Hypersurface
in the N-D
velocity-
acceleration
space

Scalar Accumulated
Ellipsoids
in the
task/joint
accel-
eration
space

Scalar

Applicable
to fully-
actuated
manipula-
tor

4 4 4 4 4 6 4 4 4 4 6 4

Applicable
to under-
actuated
manipula-
tor

6 6 6 6 6 4 6 6 6 6 4 4

Handles
Inertia dis-
tribution

6 6 4 4 4 4 6 4 4 4 4 4

Handles
bias forces
(natural
dynamics)

6 6 6* 6 4* 6 6 4* 4* 6 4 4
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2.2.6 Dynamic Coupling Measure of Space Robot Systems

[Xu93] introduced the concept of dynamic coupling factor for space
robots that represents the inertial coupling between the base motion
and the end-effector motion. Due to the absence of gravity in space
and by assuming no external forces the analysis is simply based on
conservation of momentum. The measure is function of the manipu-
lator configuration, geometric and inertia parameters of the manipu-
lator and the free-floating base. Eigenvalue analysis of the coupling
factor results in the direction and relative magnitude of the maximum
base (or end-effector) motion produced by end-effector (or base) mo-
tion.

The driving motivation in this work is to minimize the dynamic
coupling between the free-floating base and the manipulator to min-
imize motion disturbance and to reduce fuel consumption used in
attitude control to compensate for this disturbance.

2.2.7 Dynamic Coupling Index for Underactuated Manipulators

Bergerman et al. [BLX95] attempted to quantify the coupling between
the passive and the active joints to ensure that the controller could
transmit the torques to the passive joints in order to drive them. The
author proposed the dynamic coupling index based solely on the
eigenvalue analysis of the inertial coupling matrix between the pas-
sive and active subsystems. The author defines the dynamic coupling
index as the product of the singular values of the inertial coupling
matrix, thereby the index can be regarded as the degree of invert-
ibility and thus the capacity to transmit the torque from the active
to the passive joints. However, a serious limitation of the proposed
index is that it doesn’t take into account the influence of gravity or
the velocity-dependent forces such as Coriolis and centrifugal forces
which may drastically affect the capacity of the active joints to gener-
ate acceleration at the passive joints.

2.3 conclusion

We have presented a brief panorama of the different performance
measures along with their original motivation, advantages, and lim-
itations. Table 1 summarizes the state of art while highlighting the
main difference with the proposed contribution in this thesis. In par-
ticular, the proposed Dynamic Coupling Map (DCM) and the associ-
ated Natural Dynamic Index (NDI) are the first analytical techniques
that aim to investigate the influence of natural dynamic and its rela-
tionship with the input torques during a highly dynamic manoeuvre
in both graphical and quantitative manner as demonstrated in the
subsequent sections.
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D Y N A M I C C O U P L I N G M A P I N T H E J O I N T S PA C E

3.1 dynamic coupling map for underactuated manipu-
lators

3.1.1 Underactuated Manipulator Lagrangian Dynamics

Consider a dynamic system defined on a configuration manifold Q.
let (q, q̇) = (q1, . . . ,qn, q̇1, . . . , q̇n) denote local coordinates on the
tangent bundle TQ. We refer to q,q̇, and q̈ as the vectors of gener-
alized coordinates, generalized velocities, and generalized accelera-
tions, respectively. Let the system possess a control input space of
dimension a < n, where u 2 Ra denote the vector of the control
variables. Thus, we have dim(qa) = a degrees of freedom which the
control input act upon and dim(qp) = n− a are the passive degrees
of freedom with no direct control. Without loss of generality, we de-
compose the set of generalized coordinates q = (q1, . . . ,qn) 2 Rn

into q = (qp,qa) where qp 2 Rp , qa 2 Ra denote the passive gen-
eralized coordinate vector and the actuated generalized coordinate
vector, respectively. The generalized coordinates vector can be writ-
ten as

q =

"
qp((n−a)⇥1)

qa(a⇥1)

#
2 <n (44)

Accordingly, we can express the decomposed Euler-Lagrange equa-
tion of motion for the serial underactuated manipulator in its canoni-
cal form as

 
Mpp(q) Mpa(q)

MT
pa(q) Maa(q)

! 
q̈p

q̈a

!
+

 
Cpp(q, q̇) Cpa(q, q̇)

Cap(q, q̇) Caa(q, q̇)

! 
q̇p

q̇a

!

+

 
Gp(q)

Ga(q)

!
+

 
Bp(q̇)

Ba(q̇)

!
−

 
JTp(q)F

JTa(q)F

!
=

 
0np⇥1

τna⇥1

!
(45)

Equation (45) describe the dynamics of the underactuated serial
manipulator as two subsystems, namely, the active subsystem and
the passive subsytem, thus coupling between the two subsystems ap-
pears explicitly. Equation (45) accounts for inertial forces, gyroscopic
forces, gravity , damping forces and external wrench. For the detailed
derivation, reader is referred to chapter (2). However, the physical in-
terpretation of each term can be given as following:

33
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• Mpp(q): represents the joint space inertia matrix for the sys-
tem seen at the passive articulating subsystem with a dimen-
sion of np ⇥ np. The dependence of the passive inertia matrix
of the generalized coordiantes depend on the distribution of ac-
tuators over the manipulator’s DoF. For example, a special case
where the passive inertia matrix can depend only on the pas-
sive generalized coordinates Mpp(qp) is when the passive links
are grouped at the end of the serial manipulator w.r.t the frame
of reference at the fixed base. Otherwise, the inertia matrix of
the manipulator seen at the passive subsystem can generally be
expressed as Mp +Mp/a which is the sum of the inertia of the
passive subsystem and the part of the manipulator affecting the
passive subsystem, respectively.

• Maa(q): represents the inertia matrix of the active articulating
subsystem. The same argument regarding the dependence of
the active inertia matrix on the generalized coordinates can be
given as for the passive inertia matrix.

• Mpa(q): denotes the p ⇥ a inertial coupling matrix between
the passive and the active articulating subsystems. If Mpa is
a null matrix, then no coupling exist between the passive and
active subsystems, consequently the motion of the passive sub-
system is independent of the motion of the active subsystem.
Conversely, If Mpa has a full rank or its rank is at equal to the
number of Dof of the passive subsystem rank(Mpa) = n− a =

pthen the system is called strongly coupled. Also note that due to
the symmetry of in the joint-space inertia matrix of the manip-
ulator then Map(q) = MT

pa(q).

• q̈p, q̈a: are the p⇥ 1 generalized acceleration vector of the pas-
sive subsystem and the p⇥ 1 active generalized acceleration vec-
tor, respectively.

• τ 2 Rna⇥1 vector of joint torques acting on the active subsys-
tem, assuming that the active subsystem system is fully actu-
ated.

• Cpp(q, q̇): the velocity dependent gyroscopic torques contain-
ing the Coriolis and centrifugal terms C(q, q̇) can be decom-
posed in the same manner as with the manipulator’s joint space
inertia matrix. Hence, Cpp(q, q̇) 2 Rnp⇥np denotes the velocity
dependent gyroscopic torques on the passive subsystem as if it
was isolated.

• Caa(q, q̇) 2 Rna⇥na denotes the the velocity dependent gyro-
scopic (Coriolis/centrifugal) torques on the active subsystem as
if it was isolated.
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• Cpa(q, q̇) 2 Rnp⇥na denotes the the velocity dependent gyro-
scopic (Coriolis/centrifugal) torques from the active subsystem
acting on the passive subsystem.

• Cap(q, q̇) 2 Rna⇥np denotes the the velocity dependent gyro-
scopic (Coriolis/centrifugal) torques from the passive subsys-
tem acting on the active subsystem.

• Gp(q) 2 Rnp⇥1 denotes the generalized gravitational torque
vector acting on the passive subsystem.

• Ga(q) 2 Rna⇥1 denotes the generalized gravitational torque
vector acting on the active subsystem.

• Bp(q̇) 2 Rnp⇥1 denotes the generalized damping torque vector
acting on the passive subsystem.

• Ba(q̇) 2 Rna⇥1 denotes the generalized damping torque vector
acting on the active subsystem.

• JTp(q)F 2 Rnp⇥1 denotes the external wrench projected on the
passive generalized coordiantes.

• JTp(q)F 2 Rna⇥1 denotes the external wrench projected on the
active generalized coordiantes.

For the sake of clarity of demonstration and without loss of
generality Eq (45) can be simplified as

 
Mpp Mpa

MT
pa Maa

!  
q̈p

q̈a

!
+

 
Np(q, q̇)

Na(q, q̇)

!
=

 
0

τ

!
(46)

where

Np(q, q̇) = Cp(q, q̇) +Gp(q) +Bp(q) − JTp(q)F (47)

Na(q, q̇) = Ca(q, q̇) +Ga(q) +Ba(q) − JTa(q)F (48)

• Na(q, q̇): is the generalized bias force, it follows that it is the
value that τ would have to take in order to produce zero joint
acceleration, assuming that all the other joint accelerations are
zero. Generalized bias force is a vector of force terms that ac-
count for Coriolis and centrifugal forces, gravity.

• Np(q, q̇): is the generalized bias force acting on the passive sub-
system.
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3.1.2 Dynamic Coupling in the Passive Joint Acceleration Space

Kinematic and dynamic coupling between the active articulated sys-
tem and the passive subsystem is usually regarded as unwanted per-
turbation that degrades positioning accuracy and operational dexter-
ity. In this work we attempt to exploit the dynamic coupling between
the unactuated subsystem and its associated active articulated sub-
system. We will start first by exploring the relationship between the
acceleration space of the unactuated subsystem and the torque space
of the active articulating subsystem.
The dynamic equations of the system (46) can be decomposed into
two main equations; one describing the dynamics of the passive free-
floating base.

Mp q̈p +Mpa q̈a +Np = 0 (49)

and the second equation describing the dynamics of the articulated
system

Ma q̈a +MT
pa q̈p +Na = τ (50)

For the sake of clarity, we dropped the dependence of the force bias
terms Na,p on q, q̇.

Definition 3.1.1. The underactuated mechanical system (45) is locally Strongly

Inertially Coupled if and only if

rank(Mpa(q)) = n− a = p for all q 2 B

where B is a neighborhood of the origin. The Strong Inertial Coupling is

global if the rank condition holds for all q 2 Q

the strong inertial coupling condition [Spo98] requires that the num-
ber of active degrees of freedom be at least as great as the number of
passive degrees of freedom. This condition can be thought of as an
analogue of controllability. Note that that this condition is configura-
tion dependent, therefore it is defined locally. A system is can have
the property of Global Strong Inertial Coupling if the rank condition is
valid for every configuration

Under the assumption of Strong Inertial Coupling we may compute
the pseudo-inverse M

†
pa for Mpa as

M†
pa = MT

pa(MpaM
T
pa)

−1 (51)

Then active joints generalized accelerations ¨̂q in (49) can be ex-
pressed as

q̈a = −M†
paMpq̈p −M†

paNp (52)
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By substituting (52) in (50), we can find a relation between the ac-
celeration of the passive subsystem and its acting surrounding, which
include; joint torques, nonlinear inertial forces, gravity and wrench
acting on the end points of the articulated system, if exists.

q̈p

⇣
MT

pa −MaM
†
paMp

⌘
−MaM

†
paNp +Na = τ (53)

we finally express equation (53) as

q̈p = Z†
⇣
τ+ eN

⌘
= q̈pτ + q̈pbias

(54)

where we introduce the dynamic coupling factor Z† as

Z† =
⇣
MT

pa −MaM
†
paMp

⌘†
(55)

Z is the Schur complement [KB08] of the inertia coupling Mpa be-
tween the passive subsystem and the active articulating system We
denote, as well, the bias term.

eN = MaM
†
paNp −Na (56)

Equation (54 ) provides an intuitive comprehension of the influence
of different forces on the motion of the passive subsystem. The accel-
eration of the passive subsystem can be viewed as the sum of two
sources of motion:

• q̈pτ is the acceleration caused by the torque τ, which is transmit-
ted from the active subsystem to the passive subsystem through
the transmission factor or the dynamic coupling factor Z†. Note
that from Eq. (55), the dynamic coupling factor Z† depends on
the inertial coupling Mpa, therefore if Mpa(q) is a null matrix
then it wouldn’t be possible to control the passive subsystem
via the control input τ. Conversely, the dynamic coupling factor
is maximized by maximizing Mpa(q).

• q̈pbias
is the bias acceleration due to gravity, non-linear velocity

dependent forces (Coriolis, centrifugal, damping), and wrenches
-if exist- acting on the passive subsystem which include part
of these forces coming from the active subsystem as well. This
term can also be considered as the acceleration due to the natu-
ral dynamics of the passive subsystem, because this acceleration
persist even if the control input vector is null.

Furthermore, we note that the inverse of the dynamic coupling fac-
tor Z† act as transmission factor between the control input space τ and
the acceleration space of the passive subsystem. Z† is configuration-
dependent matrix. Thereby, it is possible to search for the configura-
tion that maximizes the dynamic coupling factor which will result in
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a decrease in the effort expenditure. However, in dynamic manoeu-
vres with high velocities the motion planning approach should be
state based rather than configuration based. In addition, in such sce-
narios, the natural dynamics, represented by the bias term q̈pbias

, be-
comes dominant. Therefore, planning highly dynamic motion while
exploiting these forces can result in highly efficient and graceful mo-
tion.

This formulation of the dynamic equation helps in analyzing the
effects of these three sets of variables on the achievable set of passive
subsystem acceleration.

Note that the previous derivation of Eq. (54 ) is valid if and only
if Mpa is non singular and that the inverse of the Schur complement
MT

pa of Mpa . An alternative and equivalent formulation of Eq. (54)
but more robust to singularity is to consider the inverse of the 2⇥ 2

block matrix of the joint space inertia matrix.

According to [LS02], there are four different but equivalent inverse
matrices of the 2⇥ 2 matrix. If na > np then the Schur complement
Maa −MT

paM
−1
ppMpa is invertible assuming M−1

pp is nonsingular. We
can express the inverse of the 2⇥ 2 joint space inertia block matrix as

 
Mpp Mpa

MT
pa Maa

!−1

=

"
ζpp ζpa

ζap ζaa

#

=

"
M−1

pp +M−1
ppMpaZ

−1
ppM

T
paM

−1
pp −M−1

ppMpaZ
−1
pp

−Z−1
ppM

T
paM

−1
pp Z−1

pp

#
(57)

where Zpp is the Schur complement of Maa

Zpp = Maa −MT
paM

−1
ppMpa (58)

If np > na then the Schur complement Mpp −MpaM
−1
aaM

T
pa is

invertible assuming M−1
aa is nonsingular. We can express the inverse

of the 2⇥ 2 joint space inertia block matrix as

 
Mpp Mpa

MT
pa Maa

!−1

=

"
ζpp ζpa

ζap ζaa

#

=

"
Z−1
aa −Z−1

aaMpaM
−1
aa

−MaaM
T
paZ

−1
aa M−1

aa +M−1
aaM

T
paZ

−1
aaMpaM

−1
aa

#
(59)

where Zaa is the Schur complement of Maa

Zaa = Mpp −MpaM
−1
aaM

T
pa (60)

We can then reformulate Eq.(46) as
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q̈p

q̈a

!
=

 
ζpp ζpa

ζap ζaa

! 
−Np

τ−Na

!
(61)

Hence, the passive subsystem acceleration from Eq.(54) can be re-
formulated as

q̈p = q̈pτ + q̈pbias
(62)

where

q̈pτ = ζpaτ (63)

q̈pbias
= −ζpaNa − ζppNp (64)

We can see from Eq.(63) and Eq.(64) that all forces originating from
the active subsystem including the control input τ are modulated or
transmitted via the factor ζpa which depends on the inertial coupling
Mpa. Therefore, the action of ζpa can be regarded as projecting and

modulating all forces from the active subsystem to the acceleration of
the passive subsystem.

3.1.3 Dynamic Coupling Ellipsoid in the Passive Joint Acceleration Space

The goal of the dynamic coupling ellipsoid is to represent geomet-
rically, in the acceleration space, the ensemble of the accelerations
achievable by the unactuated subsystem while taking into considera-
tion the torque limits on the active subsystem and the natural dynam-
ics affecting the acceleration limits such as gravity and gyroscopic
forces.

The torque limits at each actuator in the active subsystem are as-
sumed to be symmetrical, that is,

−τi,max 6 τi 6 τi,max, i = 1, . . . ,na (65)

Each actuator may have unique bounding torque. As such, Eq. (65)
may be normalized via the introduction of the diagonal matrix L

whose diagonal terms are Lii = 1
τi,max

. The normalized joint torque
vector τ̃ can be expressed as

τ̃ = L−1τ (66)
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where the scaling matrix L is given by

L = diag(τ1,max, τ2,max, . . . , τn,max) (67)

Each inequality constraint in Eq. (65) defines a closed half-space
in the torque space. The set of admissible torques can then be repre-
sented as a unit hypercube defined by 2na inequalities written in the
following compact form

kτ̃k1 6 1 (68)

Substituting Lτ̃ for τ in Eq. (62) yields

q̈p = ζpa L τ̃+ q̈pbias
(69)

where q̈pbias
from Eq.(64) represents the acceleration of the passive

subsystem due to natural dynamics, i.e., when the joint actuators are
quiescent, τ̃ = 0.

Eq. (69) and Eq. (68) maps the na-dimensional hypercube to a poly-
tope of dimension np in the passive acceleration space that delimits
the set of feasible accelerations. Alternatively, the feasible torque rep-
resented by hypercube in the torque space can be approximated as a
na-dimensional sphere defined by l2 norm of the torque kτ̃k 6 1 as

τ̃T τ̃ 6 1 (70)

Substituting Eq.(62) in Eq.(104) yields the equation of a np-dimensional
ellipsoid in the acceleration space of the passive subsystem. Note that
this ellipsoid is the approximation of the acceleration polytope de-
fined in Eq.(69)

(q̈p − q̈pbias
)T (ζpaL)

−T (ζpaL)
−1(q̈p − q̈pbias

) 6 1 (71)

Since L is a symmetric matrix, the previous result simplifies to

(q̈p − q̈pbias
)T Z̃−1(q̈p − q̈pbias

)T 6 1 (72)

where

Z̃ = ζTpaL
2ζpa (73)

We denote by Eq. (72) the Dynamic Coupling Ellipsoid in the joint

space. Note that this ellipsoid is the approximation of the achievable
passive acceleration whose convex envelope is bounded by the poly-
tope defined in Eq.(69). q̈pbias

represents the offset of the center of the
ellipsoid from the origin of the acceleration space, while the matrix
Z̃ 2 Rnp⇥na , which depends on the torque limits L and the inertial
coupling Mpa, determines the size and the orientation of the ellip-
soid. More insights are explored in details in Section 3.1.3.2.
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τ1

τ2

τna q̈np

q̈p1

q̈p2

actuator space passive acceleration space

Figure 1: Mapping between the input actuator space and the passive accel-
eration space

3.1.3.1 Visualizing the relation between torque space and the passive accel-

eration space

The goal of these analyses, particularly in Eq. (68)-Eq.(72), is to ex-
plore the mapping between passive subsystem np acceleration space
and the na actuator torque space, using different representations of
the available torque and attainable acceleration. Figure 1 illustrates
the various representations and highlights their differences.

The physical capacity of the control input is represented by the
torque limits in Eq. (65). The set of inequality constraints in Eq. (65)
defines an na-orthope (hyper-rectangle) in the na torque space. Map-
ping these torque bounds to the acceleration space of the passive sub-
system using Eq. (62) yields a polyhedron with a pair of na parallel
faces in the np-dimensional passive acceleration space, as shown in
Figure 1 The l2-norm of normalized torques in Eq. (104) defines a
unit na-hypersphere in the na-torque space. This sphere is inscribed
in the na-hypercube defined in Eq. (68)and can be considered as
an approximation. It follows from Eq.(72), that the na hypersphere
torque bounds in the na-dimensional torque space is mapped to an
np-dimensional ellipsoid in the np-dimensional passive acceleration
space.

3.1.3.2 Interpretation of the Dynamic Coupling Ellipsoid

The major advantage of approximating the np polyhedron to an np-
dimensional ellipsoid is to simplify the analysis of the achievable ac-
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celerations of the passive system. In particular, it is sufficient to know
the position of the center of the ellipsoid in the acceleration space,
its orientation and the lengths of its semi-axes to have a complete
knowledge of the attainable acceleration of the passive subsystem at
a certain robot’s state.

The Dynamic Coupling Ellipsoid (DCE) of the passive subsystem
acceleration –which describes the set of admissible passive acceler-
ations given the manipulator’s state (generalized configuration and
velocities) while taking into consideration the torque bounds on the
active subsystem, inertial distribution over the manipulator, gravity
effect, nonlinear velocity-dependent forces, and external wrenches (if
it exist), is given by the equation of an ellipsoid in center form

Definition 3.1.2. The Dynamic Coupling Ellipsoid (DCE) of the passive

subsystem of an underactuated manipulator is

Eq̈p =
{
q̈p 2 R

np | (q̈p − q̈pbias
)T Z̃−1(q̈p − q̈pbias

)T 6 1
 

(74)

where q̈pbias
2 Rnp is the center of the ellipsoid Eq̈p while the dynamic

coupling factor Z̃ 2 S
np

++ determines the size and orientation of Eq̈p

Note that from Eq.(73), Z̃ depends on the diagonal torque bounds
matrix L and the inertia distribution of the manipulator ζpa which,
in turn, crucially depends on the inertial coupling Mpa as shown
in Eq.(57) or Eq. (59). As noted earlier, all inertia submatrices are
configuration dependent, thus, Z̃ is configuration dependent as well.
Z̃ matrix is a real, symmetric, positive-definite matrix. Consequently,
it has orthogonal eigenvectors and real, positive eigenvalues. Let the
singular-value decomposition of the dynamic coupling factor, Z̃, be

Z̃ = UΣVT (75)
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where Z̃ is a rank r matrix, U 2 Rnp⇥np and V 2 Rna⇥na are
orthogonal matrices. The principal axes of the nr-dimensional ellip-
soid is determined by the eigenvectors u1,u2, . . . ,ur. While the cor-
responding lengths of the semi-axes are given by

p
σ1,
p
σ2, . . . ,

p
σr

where
p
σ1 >

p
σ2 > . . . >

p
σr. Thus, the principal axes of the DCE

Eq̈p are

p
σ1u1,

p
σ2u2, . . . ,

p
σrur

Similar to the dynamic manipulability ellipsoid, the volume of the
ellipsoid dynamic coupling ellipsoid Eq̈p is proportional to the deter-
minant of the dynamic coupling factor det(Z̃), or equivalently, the
product of its singular values σ1 σ2 . . . σr.

However, unlike the dynamic manipulability ellipsoid which is de-
fined only for fully actuated manipulators, as shown in Eq.(28), the
dynamic coupling ellipsoid correctly accounts for the underactuation
constraint. In addition, the interpretation of the ellipsoid is different
in this case, the volume of the ellipsoid determines the manipulator’s
ability to transmit the joint torques indirectly through the inertial cou-
pling. Therefore, the volume of the ellipsoid Eq̈p is directly propor-
tional to the ability of the underactuated manipulator to indirectly
control the passive subsystem. If all the singular values of the ellip-
soid are zero, then this indicates that the underactuated manipulator
has no authority to influence the acceleration the passive subsystem
by means of the control input torques at the given configuration q.
Moreover, If one of the singular values is zero, then the manipulator
is dynamically degenerate in the direction of the corresponding sin-
gular vector in the passive acceleration space, and no torque can be
transmitted in that direction.

On the other hand, the term q̈bias is responsible for translating
the ellipsoid center from its origin. This term has been overlooked or
neglected in all previous work except for few studies which studied
special cases on a fully actuated manipulator. We introduce the Joint

Space Dynamic Coupling Map (JS-DCM), which helps in analyzing the
relationship between the joint space DCE Eq̈, its principal axis, and
the vector q̈bias in the passive joint acceleration space, as shown in
Figure 2. More importantly, it has a pivotal role in providing graphi-
cal and intuitive manner to analyze the evolution this relationship in
a dynamic trajectory. The term q̈bias groups all forces on the passive
subsystem except the input control torque. Therefore, it represents the
natural dynamics of the passive subsystem as previously defined in
Chapter 1. The term q̈bias have strong implications on the behaviour
of the underactuated manipulator which have not been considered
in previous studies. For example, if the origin is not included in the
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Figure 2: Illustration of the Joint Space Dynamic Coupling Map (JS-DCM)

ellipsoid this means that that passive subsystem has a considerable
drift acceleration due to the natural dynamics and that the physical
capacity of the actuators cannot bring the passive subsystem to a halt.
Moreover, the ellipsoid’s center displacement due to the term q̈bias

is a Rnp vector in the passive acceleration space which can be decom-
posed to its original constituents. Eq. (64) describes an affine relation
between the natural dynamics of the active subsystem Na projected
to space of the passive subsystem through the dynamic coupling ζpa,
in addition to the natural dynamics of the passive subsystem itself
Np. Recall that from Eqs.(47) and (48), Np and Na depend on grav-
ity, velocity dependent forces, damping and external wrench, if exist.
Hence, it is possible to find the direction and magnitude of influence
of each force on the passive subsystem acceleration in a graphical and
intuitive manner.

q̈pbias
= q̈pG

+ q̈pC
+ q̈pB

+ q̈pF
(77)

Where the gravitational effect on the acceleration of the passive
subsystem on q̈p is represented by the displacement vector q̈pG

2
Rnp of the center of the ellipsoid Eq̈p . From Eqs. (64), (48), and (47) it
can be expressed as
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q̈pG
= −ζpaGa − ζppGp (78)

Accordingly, the effect of the nonlinear velocity dependent forces,
damping, and external wrenches can be expressed as

q̈pC
= −ζpaCa − ζppCp (79)

q̈pB
= −ζpaBa − ζppBp (80)

q̈pF
= −ζpaFa − ζppFp (81)

3.1.4 Natural Dynamic Index in the Passive Acceleration Space

We propose three performance indices derived from the DCM analy-
sis tool. These performance indices describe the relationship between
the influence of the natural dynamics and the input torque along with
its limits on the acceleration of a particular body part or a subsystem.
Thus, the performance measure is aptly named as Natural Dynamic

Index (NDI) , or in this particular case the passive acceleration space
Natural Dynamic Index.

The first index of the three variants is named NDI-1, and it de-
scribes the scalar ratio of the natural dynamics influence represented
by the norm of

∥∥~̈qpbias

∥∥ to the norm of the eigenvalues of DCE , kσk
, which is an approximation the maximum torque influence on the
passive acceleration space.

NDI− 1 =

∥∥~̈qpbias

∥∥
kσk (82)

NDI-1 is important to understand the significance of the natural
dynamics in a particular dynamic morion e. g.if NDI-1 & 1 then it
would signify that the torque capacity of the underactuated robot
cannot override the natural dynamics and vice versa.

The second natural dynamic index NDI-2 describes the absolute
value of cosine the angle between the vector of the effective accelera-
tion due to the natural dynamics on the passive acceleration, ~̈qpbias

,
and the major axis of the DCE, ~u1 , which represents the direction of
the maximum torque transmission in the passive acceleration space.

NDI 2 =

∣∣∣∣∣

(
~u1 ·

~̈qpbias

)
(
k ~u1k ·

∥∥~̈qpbias

∥∥)
∣∣∣∣∣ (83)
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NDI-2 attempts to grasp the relationship between the natural dy-
namics and the ability of the system to exploit these forces. NDI-2

is a scalar value bounded between 0 and 1. NDI-2 = 1 signifies that
the DCE’s major axis is aligned with the effective natural dynamics,
meaning that the direction corresponding to maximum torque trans-
mission in the passive acceleration space is aligned with the direction
of the effective natural dynamics in the same space.

The third natural dynamic index NDI-3 describes the value of co-
sine the angle between the vector of the actual torque transmission
to the passive acceleration space ~̈qpτ and the vector of the effective
acceleration due to the natural dynamics on the passive acceleration,
~̈qpbias

NDI 3 =

(
~̈qpτ ·

~̈qpbias

)
(∥∥~̈qpτ

∥∥
·

∥∥~̈qpbias

∥∥) (84)

NDI-3 is a performance measure crucial to understand the relation-
ship between the actual input torques and the natural dynamics act-
ing on the passive subsystem. NDI-3 is a signed scalar value bounded
between −1 and 1. NDI-3 = 1 signifies that the effective acceleration
due the actual torque input vector is aligned and acting in the same
direction of the effective natural dynamics acting on the acceleration
of the passive subsystem, whereas NDI-3 = −1 signifies that the ac-
tual input torque acts against the influence of the natural dynamics
on the passive subsystem.

3.2 dynamic coupling for floating-base articulated sys-
tems

Humans usually employ and coordinate their full body dynamics
even in locomotion modes that seemingly doesn’t depend on all ap-
pendages such as walking or running where arms don’t directly con-
tribute to the forward motion. Studies in biomechanics [CAK09; MBD13]
show evidence that arm swing help in reducing ground reaction mo-
ment angular momentum leading to a decrease in overall energy ex-
penditure. The effect of arm swings on jump performance has been
studied for a few decades. It is well established that if the arms are
swung upwards when jumping maximally for height, jump height
improves by 10% or more compared with when the arms are held in
position. However, the high dimensionality and the complexity of the
human’s motion hinder the understanding of the mechanisms that
enable the arms to increase jump height, despite the numerous pro-
posed conjecture[Che+08; AH02; Bv88] .

Unlike previous studies on capabilities and manipulability analy-
sis[CFM10; NL06; ABM17]. To our knowledge, no one has studied the
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acceleration capacity of high-dimensional floating base system dur-
ing highly dynamic motions. We show in particular the importance
of dynamic coupling between articulated body and the floating base
which could outweigh the physical actuation capacity of the robot.
We extend our work on DCM to floating-base systems which interact
with the environment through contact forces. We chose the vertical
jump with arm swing as a dynamic motion where we first gener-
ate its motion using nonlinear optimization building on the work of
[DVT14].

3.2.1 Lagrangian Dynamics of floating base articulated system

Consider an underactuated dynamic system defined on a configura-
tion manifold Q. let (q, q̇) = (q1, . . . ,qn, q̇1, . . . , q̇n) denote local coor-
dinates on the tangent bundle TQ. We refer to q,q̇, and q̈ as the vectors
of generalized coordinates, generalized velocities, and generalized ac-
celerations, respectively. Let the system possess a control input space
of dimension m < n, where u 2 Rm denote the vector of the control
variables. Without loss of generality, we decompose the set of gener-
alized coordinates q = (q1, . . . ,qn) 2 Rn into q = (qp,qa) where
qp 2 Rn−m , qa 2 Rm denote the passive degrees of freedom and
the actuated degrees of freedom. Adopting the floating base formu-
lation of a humanoid we can describe it as a class of underactuated
system where qp = qf 2 R6 which corresponds to the translation
and rotation motion of the floating-base in the space. For the sake of
clarity of the presentation, we assume Euler description of rotations
as well as the full actuation of the all degrees of freedom of the ar-
ticulating body. Hence we can write the generalised coordinates of a
humanoid as

q =

"
qf(6⇥1)

qa(m⇥1)

#
2 <n (85)

We can then write the Euler-Lagrange equation of motion in the
canonical form as

M(q) q̈+C(q, q̇)q̇+G(q) = Sτ+

NcX

i=1

JTi wi (86)

where M(q) 2 <n⇥n is the joint space positive definite inertia ma-
trix, C(q, q̇) 2 <n⇥n is the Coriolis matrix and G(q) 2 <n is the vec-
tor of gravity torques in the joint space. JTi (q) is the wrench jacobian
that maps the corresponding wrench wi<

6 to the generalized forces
of the system. The selection matrix S maps the torques τ 2 <m of the
active degrees of freedom to the generalized forces of the system.

The previous formulation can be developed further in order to
highlight the dynamic coupling between the unactuated floating-base
and the active articulating system. Other unactuated degrees of free-
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doms can be easily considered as well but for the sake of clarity we
limit our study on fully actuated articulating body.

 
Mff Mfa

MT
fa Maa

!  
q̈f

q̈a

!
+

 
Nf(q, q̇)

Na(q, q̇)

!
=

 
0

τ

!
+

 
JTf (q)

JTa(q)

!
λ (87)

where the joint space inertia matrix is decomposed into:

• Mff: represents The inertia matrix for the system seen at the
passive floating base.

• Maa: represents The inertia matrix of the active articulating sub-
system.

• Mfa: The inertial coupling term between the active articulated
subsystem and the passive floating-base.

• q̈f is the second derivative of the floating base’s pose (position
and orientation) w.r.t time. While q̈q is the m-actuated joints
acceleration.

• τ: The vector of the joint torques of the articulated system, as-
suming that articulated system is fully actuated.

• Na(q, q̇): is the generalized bias force, it follows that it is the
value that τ would have to take in order to produce zero joint
acceleration, assuming that all the other joint accelerations are
zero and in the absence of external wrenches. Generalized bias
force is a vector of force terms that account for Coriolis, centrifu-
gal forces, and gravity.

• Nf(q, q̇): is the generalized bias force acting on the floating base.

• JTf (q), J
T
a(q): is the jacobian that maps external wrenches to the

generalized forces on the floating base and the generalized torques
on the articulating body, respectively.

• λ: is the vector that groups contact forces acting at Nc contact

points where λ =
h

wT
1 · · · wT

Nc

iT

3.2.2 Dynamic Coupling for floating base articulated systems

Kinematic and dynamic coupling between the articulated system and
the floating base is usually regarded as unwanted perturbation that
degrades positioning accuracy and operational dexterity. In this work
we attempt to exploit the dynamic coupling between the unactuated
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floating-base and the active articulating body. We start first by explor-
ing the relationship between the acceleration space of the floating-
base and the torque space of the active articulating subsystem.
The dynamic equations of the system (87) can be rewritten as (for the
sake of clarity, we dropped the dependence on q, q̇)

"
q̈f

q̈a

#
=

"
ζff ζfa

ζaf ζaa

#"
τ̃f

τ̃a

#
(88)

Where ζ is the explicit block inverse for the 2⇥ 2 inertia block ma-
trix given by the formulae :

ζff = (Mff −MfaM
−1
aaM

T
fa)

−1 (89)

ζfa = −(Mff −MfaM
−1
aaM

T
fa)

−1M−1
aaM

T
fa (90)

ζaf = −MaaM
T
fa(Mff −MfaM

−1
aaM

T
fa)

−1 (91)

ζaa = M−1
aa +M−1

aaM
T
fa(Mff −MfaM

−1
aaM

T
fa)

−1MT
faM

−1
aa (92)

The inverse of the inertia matrix exists assuming that Maa is non-
singular and that the Schur complement Mpp − MpaM

−1
aaM

T
pa of

Maa is invertible.
The effective generalized torques are given by

τ̃f = JTf λ−Nf (93)

τ̃a = τ+ JTaλ−Na (94)

We can now proceed by writing the dynamics of the floating-base
as

q̈f = ζff(J
T
f λ−Nf) + ζfa(τ+ JTaλ−Na) (95)

We are interested in exploring the coupling between the passive float-
ing base and the active articulating system. Thus we can regroup
equation (95) as

q̈f = q̈fbias + q̈fτ q̈fτ = ζfaτ (96)

Where
q̈fτ = ζfaτ (97)

And we denote as well the bias term as

q̈fbias = ζff(J
T
f λ−Nf) ++ζfa(J

T
aλ−Na) (98)

Equation (96) gives a relation between the acceleration of the float-
ing base and its acting surrounding : q̈fτ is the acceleration of the float-
ing base due to the torques of the active articulated system modulated
by ζfa, q̈fbias is the acceleration due to gravity , velocity-dependent
inertial forces, and wrenches acting on the contact points of the artic-
ulated system, if they exist.

We finally express equation (96) as
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τ = Z (q̈f − q̈f−bias) (99)

Where we introduce the dynamic coupling factor Z as

Z = (ζfa)
† = (−(Mff −MfaM

−1
aaM

T
fa)

−1M−1
aaM

T
fa)

† (100)

The existence of the dynamic coupling factor is closely related to
Spong’s strong inertial coupling condition[Spo98].

Theorem 1. The underactuated mechanical system (87) is locally Strongly

Inertially Coupled if and only if

rank(Mbm(q)) = n−m for all q 2 B

where B is a neighborhood of the origin. The Strong Inertial Coupling is

global if the rank condition holds for all q 2 Q

Furthermore, we note that the the dynamic coupling factor Z act as
transmission factor between the control input space τ and the acceler-
ation space of the passive subsystem. Z is a configuration-dependent
matrix. Thereby, it is possible to search for the configuration that max-
imizes the dynamic coupling factor which will result in a decrease
in the effort expenditure. This formulation of the dynamic equation
helps in analyzing the effects of these three sets of variables on the
achievable set of free floating base acceleration.

3.2.3 Dynamic Coupling Ellipsoid

The goal of the Floating base dynamic coupling ellipsoid is to repre-
sent geometrically, in the acceleration space, the ensemble of the ac-
celerations achievable by the floating base. The torque limits at each
actuator in the articulated system are assumed to be symmetrical, that
is,

− τi,max 6 τi 6 τi,max (101)

The normalized joint torque vector τ̃ can be expressed as

τ̃ = L−1τ (102)

where the scaling matrix L is given by

L = diag(τ1,max, τ2,max, . . . , τn,max) (103)

The control input space can then be represented as m-dimensional
sphere defined by

τ̃T τ̃ 6 1 (104)

By solving Eq.(99) and substituting in Eq.(104) we get the equation of
an ellipsoid in the acceleration space of the passive floating base.

(q̈f − q̈fbias)
T (L−1Z)T (L−1Z)(q̈f − q̈fbias) 6 1 (105)
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which simplifies to

(q̈f − q̈fbias)
T Z̃(q̈f − q̈fbias)

T
6 1 (106)

where
Z̃ = ZTL−TL−1Z (107)

By applying singular value decomposition, Z̃ can be decomposed
into

Z̃ = UΣVT (108)

where U 2 Rm⇥m and V 2 Rn⇥n are orthogonal matrices. The
principal axis of the n −m-dimensional ellipsoid is determined by
the eigenvectors ui, while its length is specified by the correspond-
ing eigenvalue 1/

p
σi. Furthermore, the term q̈bias is responsible for

translating the ellipsoid center from its origin.

3.3 case study : humanoid’s vertical jump with arm swing

Humans and animals are distinguished from their robotic counter-
part with their graceful and agile movements. Literature [Zaj93; Ber67;
Tod04; PB15; Dic00] suggests that a key ingredient to highly dynamic
motions is multiple joint coordination and synchronization across the
body in order to exploit dynamic coupling between the moving parts
of the body as well as the inherent natural dynamics of the body.

Humans usually employ and coordinate their full body dynam-
ics even in locomotion modes that seemingly doesn’t depend on all
appendages such as walking or running where arms don’t directly
contribute to the forward motion. Studies in biomechanics [CAK09;
MBD13] show evidence that arm swing help in reducing ground re-
action moment angular momentum leading to a decrease in overall
energy expenditure. The effect of arm swings on jump performance
has been studied for a few decades. It is well established that if the
arms are swung upwards when jumping maximally for height, jump
height improves by 10% or more compared with when the arms are
held in position. However, the high dimensionality and the complex-
ity of the human’s motion hinder the understanding of the mecha-
nisms that enable the arms to increase jump height, despite the nu-
merous proposed conjectures [Che+08; AH02; Bv88].

In this work, we focus on the full body dynamics and to exploit
the dynamic coupling between body parts and to coordinate their
motions to achieve a particular task. We choose the vertical jumping
of a humanoid as a dynamic task and study the effect of the dynamic
coupling across all degrees of freedom of the system while jumping
with and without arm swings.
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3.3.1 Vertical Jump as a Dynamic Maneuver

Vertical jump is an important motor skill for both robotic systems
and athletics that has attracted researchers attention in both fields.
From the technological perspective, hopping robots has better mobil-
ity in a natural environment [Arm+07]. It can move with great speed
and maneuverability even on rough terrain which is suitable for ap-
plications like search and rescue and reconnaissance tasks. While in
sports biomechanics, the study and analysis of vertical jump are pri-
mordial. Vertical jump agility contributes to successful athletic per-
formance, particularly in sports such as basketball, volleyball, and
football.

High power demand and high-dimensionality render the jump-
ing motion of more general walking and running legged robots very
complex thus researchers focused on designing jumping-specialized
robots[Hal+16; Kov+08; SSD07]. These robots have few degrees of
freedom and most of them rely on the catapult mechanism; the prin-
ciple of slow energy storage in elastic elements, and a quick release
of the stored energy translating it into the initial leap speed that pro-
pels the robot into the air. Other non-conventional mechanisms such
as chemical energy [Tol+14] or shape memory alloy spring actuators
were also demonstrated.

Dynamic maneuvers such as hopping and somersaults were first
demonstrated first on a monopod and later on 3D biped in the semi-
nal work of Raibert and his team which remains impressive till nowa-
days[Rai86]. Raibert’s machine was tethered to a hydraulic, a pneu-
matic, and an electrical power supply. It was a low-dimensional sys-
tem with hydraulically actuated telescopic leg and a hip joint with
negligible dynamic coupling. The motion planning and control de-
pend on a set of intuitive heuristics which cannot be easily transferred
to a more general anthropomorphic bipedal robot.

Legged robots such as Raibert’s machine [Rai86], HyQ and MIT
cheetah neglected inertial coupling by assuming massless legs and in-
stalling the hip actuators near the center of mass. By having the center
of mass coincident with the hip, the ground impulse is transmitted
directly through the center of mass, as the SLIP model assumes. This
allows controllers to negelect inertial coupling and implement SLIP-
based trajectory with few modifications.

[DVT14] presents a direct collocation nonlinear optimization frame-
work to jointly optimize the robot’s joint angles, the center of mass
and angular momentum trajectories as well as the forces between the
robot and the environment. This framework has been able to gener-
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ate a broad range of behaviors including running, jumping, as well as
traversing multi-contact scenarios such as monkey bars and salmon
ladder. However, the author has not focused on generating and an-
alyzing the contribution of arm swing on the jump’s performance.
Other studies [NNG06; AF13] focus on bipedal jumping without dy-
namic coupling that arises from arm swings.

Arm swing has been studied in the context of walking [Hub+16;
Kob+15]. However, few work [SY05; Nis+12] report the utilization of
arm swing in humanoid jumping and is still not well studied. [SY05]
employs full body dynamics trajectory optimization while enforcing
Ground Reaction Forces (GRF) obtained from human jumping as a
task constraint.

3.3.2 Motion Synthesis of Dynamic Motions

Synthesis of highly dynamic maneuvers such as jumping and acro-
batic somersaults for humans and humanoids is a challenging task
mainly due to the high dimensionality and nonlinearity. Besides, the
hybrid nature of these motions that have multiple phases, or modes
of locomotion, with implicit switching functions and discontinuities
at impact with the environment. Nevertheless, this problem gained
the interest of sports science, computer graphics, and robotics com-
munities. Each offered different solutions with an emphasis on its
own interests.

Sports science as a field of biomechanics is interested in analyzing
human motion and identifying optimum parameters that maximize
performance. The principal method for such studies relies on acquir-
ing kinematic data of the motion using a motion capture system and
ground force measurements using force plates. However, relying only
on a direct measurement of experimental quantities to understand
the motion dynamics has its fundamental limits. First, it is difficult
to establish cause-effect relationships in complex dynamic systems by
relying only on experimental data. Secondly, it is currently impossible
to measure important variables such as neuro-muscular activities dur-
ing motion due to technical and ethical reasons. Moreover, the accu-
racy of the motion analysis using inverse dynamics technique highly
depends on the accuracy of the underlying model, which varies from
a 2-D simplification to a musculoskeletal model for a subset of the
human body.

Computer graphics community has addressed the synthesis of the
dynamic and acrobatic behavior of human motion more aggressively
than the robotics community due to the physical constraints of agility
and power of the available hardware. However, their research shifts
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away from physical realism and focuses more on natural-looking and
interactive control of animations. Early approaches relied on ad-hoc
locomotion controllers applied using PD servos and coordinated by a
high-level state machine. Despite its capability of producing a variety
of motions including running and athletic motions the combination
of high gain tracking and discrete state machines frequently leads to
stiff motions that are difficult to tune to get a physically realistic full-
body behavior. To facilitate the synthesis of more natural motion the
graphics community relies heavily on motion capture data or trajec-
tory optimization using physically simple models or a combination of
both. However, physical realism is usually relaxed by formulating the
problem as an unconstrained nonlinear optimization with the physi-
cal dynamics as an objective to optimize. Moreover, contact impulses
are usually approximated by smooth functions to make the problem
tractable but produce artifact forces; allowing contact forces at a dis-
tance.

In robotics, motion generation approaches can be categorized over
a wide spectrum depending on the level of description of the dynamic
model. At one end of the spectrum are optimizations that reason
about the full hybrid dynamics of the floating-base systems. Unfor-
tunately, progress on full-body trajectory optimization has been lim-
ited to systems with low DoF and remains an open problem for sys-
tems like Atlas. Nonlinear optimization reaches a bottleneck for high-
dimensional and highly nonlinear problems as they lead optimization
procedures into poor local minima. At the other end of the spectrum
are methods based on reduced dynamical models, where assump-
tions such as the absence of angular momentum simplify the dynam-
ics but limit the range of possible motions. Recent work proposes a
tractable nonlinear optimization by focusing on centroidal dynamics
while taking into account full kinematics of the robot ensuring proper
treatment of contact dynamics using wrench cones [DVT14]. The term
centroidal momentum has been recently proposed as the sum of the
individual link momenta expressed at the robot’s instantaneous Cen-
ter of Mass (CoM) position and aligned with the world frame [OG08;
OGL13], and the dynamics expressed at the CoM has been introduced
as centroidal dynamics. This is a particularly important concept since
the dynamic motion of humanoid robots typically involves large an-
gular momenta. The main limitation is that it relies on a predefined
contact sequence and the inability to handle joints torque limits. Nev-
ertheless, it is suitable to our scope of study as it offers a sufficient
level of abstraction that captures the dynamic coupling between body
parts of a humanoid during a vertical jump. Moreover, centroidal mo-
mentum has been previously employed [YGS09; Gos+14] as a tech-
nique for inertia shaping to generate angular momentum to divert
the robot away from obstacles while falling. The success of this ap-
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proach along with the optimization framework presented in [DVT14]
that enables the incorporation of kinematic constraints has compelled
us to use it to investigate the dynamic motion of a humanoid’s verti-
cal jump with arm swing.

The general framework of the optimization can be described as
following, refer to [DVT14] and Appendix B for more details.

minimize
Γ

MP

k=1

L(q[k], v[k], r̈[k],λ[k],dt[k])

subject to mr̈[k] = mg +
NcP

j=1

λj[k]

(linearmomentum rate)

k̇[k] =
NcP

j=1

(cj[k] − r[k])⇥ λj

(angularmomentum rate)

hG[k] = Ak
G(q[k])v[k]

(centroidalmomentum)

8jλj[k] =
NdP

i=1

βij[k]wij

8i,j βij > 0

friction coneapproximation

r[k] = COM(q[k])

COM location

qref[k] − δ 6 q[k] 6 qref[k] + δ

Kinematic constraints

dt[k]v[k] = q[k] − q[k− 1]

dt[k]k̇[k] = k[k] − k[k− 1]

dt[k]r̈[k] = ṙ[k] − ṙ[k− 1]
dt[k]

2
ṙ[k] + ṙ[k− 1] = r[k] − r[k− 1]

Time integration constraints

(109)

3.4 experiment results

In order to illustrate the importance of dynamic coupling in highly
dynamic motions, we generate a vertical jump with and without arm
swing for a humanoid robot using direct collocation nonlinear op-
timization. We then proceed by analyzing the trajectories using the
DCM analysis technique.

3.4.1 Model Description: Atlas Humanoid Robot

The Humanoid robot used in this experiment is Atlas, a full-scale,
hydraulically-actuated humanoid robot manufactured by Boston Dy-
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Figure 3: The Boston Dynamics Atlas humanoid robot (photo credits: Boston
Dynamics)

namics, Inc. The robot stands approximately 1.88m tall with a chest
depth of 0.56m and shoulder width of 0.76m and having a total mass
of 175 kg. Atlas has 30 actuated revolute joints (shown in Figure 3: six
in each leg , six in each arm (plus an extra DoF in the hand), three in
the back, and a neck joint.

The robot is modeled using MIT toolbox Drake [Ted16] in a Matlab
environment. The optimization problem is solved using a non-linear
optimization solver SNOPT based on Sequential Quadratic Program
(SQP) algorithm.

3.4.2 Results

Table (2) shows a compilation of the vertical jump motion with arms
swing. Figure (5) compares the evolution of the CoM of the robot dur-
ing the vertical jump. Using Arms swing increase the jump height by
more than 20%. However CoM’s height is not a good performance
measure as it fluctuates with the motion of the arms. That is why
we focus our study on the floating base of the humanoid. The DCM
shows the capacity of the robot to accelerate its floating base. The
DCM decouples the capacity of the active articulated system, which
is dependant on the torque limits and the configuration and place-
ment of actuators, from the generalized bias force which includes
the velocity-dependent nonlinear inertial forces and the gravitational
force on all body parts projected at the floating base as well as the
effect of contact wrenches on the acceleration of the floating base.
Figure (6) shows the dynamic coupling ellipsoid and the general-
ized bias between two consecutive motion instants during the vertical
jump with arm swing. It is clear that dynamic coupling ellipsoid is
degenerated in the sagittal plane with limited capacity in the vertical
direction despite the high torque capabilities of the robot. However
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the nature of the system and the motion limits the direction of the
direct application of these torques. However, the vertical acceleration
capacity is extended by exploiting the dynamic coupling in the bias
term which includes the effect of the ground contact forces on the
acceleration of the floating base. Figure (4) focuses on the dynamic
coupling the first nine instants of the trajectories without showing
the ellipsoid for the sake of clarity. We can observe that employing
arms swings increases the capacity of the robot to accelerate in the
vertical against gravity. Arms swings increase indirectly the ground
reaction forces which by turn increase the capacity of vertical acceler-
ation of the humanoid. This may confirm the conjecture of [Che+08]
on the mechanism of jumping with arm swing from the biomechanics
community.

3.5 conclusion

In this chapter, we have introduced the Joint Space Dynamic Cou-
pling Ellipsoid (JS-DCE) which describes the set of admissible accel-
erations of the passive subsystem in a graphical and intuitive manner,
while taking into consideration the second-order nonholonomic con-
straint imposed by the underactuation, torque bounds on the active
subsystem, inertial distribution over the manipulator, gravity effect,
nonlinear velocity-dependent forces. We highlighted the role of the
natural dynamics which can be interpreted as the bias vector respon-
sible for displacing the center of the JS-DCE from the origin of the
acceleration space. Thus inducing a drift and directly affecting the
set of possible accelerations. In a dynamical trajectory, this relation-
ship can be better grasped by employing the "Joint Space Dynamic
Coupling Map (JS-DCM)," a novel analysis technique in the joint ac-
celeration space based on JS-DCE, to help gain insight into a dynamic
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Table 2: Snapshots of the vertical jump with arms swing trajectory: Instants
are ordered from top left to bottom right
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trajectory and analyze the dynamic coupling between the passive and
active subsystems of an underactuated robot. More importantly, it al-
lows analyzing the pivotal role of the natural dynamics of the sys-
tem on the passive subsystem during a dynamic motion. This tool
was developed with the floating-base system in mind. Floating-base
systems dynamic modeling paradigm became prominent recently as
it encompasses many-legged robots or any robotic system with in-
termittent contact or spatial mobile manipulators. The floating-base
system is inherently underactuated by construction. It is important to
understand how the developed forces in the active-subsystem along
with its torque limits as well as the contact forces affect the motion
of the floating-base. To this end, we have extended the JS-DCM anal-
ysis to floating-base systems and demonstrates its merits on a high-
dimensional humanoid robot performing a vertical jump with the aid
of arm swing. The motion planning and control of the vertical jump
are generated using the state-of-the-art trajectory optimization tool,
and the JS-DCM is used as a posteriori analysis tool of the resultant
motion.



4
D Y N A M I C C O U P L I N G M A P I N T H E TA S K S PA C E

4.1 dynamic coupling map in the task space

In certain applications, it is more natural to reason about the underac-
tuated mechanical system in the task space acceleration space, when
it is more relevant than the generalized accelerations space. We ex-
tend the previous analysis to describe the dynamic coupling between
the active subsystem and the task space, while taking into considera-
tion the unactuated nature of the mechanical system.

let X =
h
x1 x2 . . . xm

iT
2 Rm denote the m-dimensional task

vector, which can represent the Cartesian position of the end effector
of the manipulator or the center of mass of the underactuated system
or any configuration dependent task can be formulated as X = f(q).
By taking the Taylor expansion of this mapping, we express the Jaco-
bian that maps the task space velocities to the generalized velocities
of the underactuated system

Ẋ = J(q)q̇ (110)

Where J(q) 2 R(m⇥ n) is the task space Jacobian matrix. The task
space acceleration can be found by differentiating Eq.(110) with re-
spect to time yielding

Ẍ = J(q)q̈+ J̇(q, q̇)q̇ (111)

We drop the dependance on q and q̇ for clarity of presentation, and
we partition further Eq.(111) into passive and active subsystems as
follows

Ẍ =
⇣

Jp Ja

⌘ q̈p

q̈a

!
+ J̇q̇ (112)

Where Jp 2 Rm⇥np is the Jacobian between the generalized coordi-
nates of passive subsystem and the task space, while Ja 2 Rm⇥na is
the Jacobian between the generalized coordinates of active subsystem
and the task space.

Hence, we can express the relation between the acceleration of the
end-effector of an underactuated manipulator Ẍ (or any point of inter-
est in the task space) and the control input torques τ by substituting
Eq.(61) in Eq.(112)

61
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Ẍ =
⇣

Jp Ja

⌘ ζpp ζpa

ζap ζaa

! 
−Np

τ−Na

!
+ J̇q̇ (113)

Following the same derivation of Eq.(62) for the passive joint-space
acceleration, (113) can be rewritten in the following form

Ẍ = Ẍτ + Ẍbias (114)

where

Ẍτ = (Jpζpa + Jaζpp) τ (115)

Ẍbias = J̇q̇−
(
JpζppNp + JpζpaNa + JaζaaNa + JaζapNp

)
(116)

Same interpretation as in Section 3.1.2 apply but for the task space
acceleration instead of the joint space acceleration. Ẍτ denotes the
acceleration of the end effector due to the applied torque while Ẍbias

represents the intrinsic motion of the end effector which was defined
earlier as the behaviour due to the natural dynamics of the system.
We note as well another important difference between Eq. (63) and
Eq. (115). In the case of the task space Eq. (115), acceleration from
the active input torque is transmitted to the end effector through two
sources; direct transmission through the active subsystem Jaζpp and
indirect transmission through the passive subsystem Jpζpa by the
means of inertial coupling Mpa. Eq. (115) can be written as

Ẍτ = JZ̄ τ (117)

where

Z̄ = [ζpa ζpp]
T (118)

4.1.1 Dynamic Coupling Ellipsoid in the Task Acceleration Space

As in Section 3.1.3, the torque bounds generate a polytope of dimen-
sion na in the torque space. The goal of the task space dynamic cou-
pling ellipsoid is to represent geometrically, in the task acceleration
space, the ensemble of the accelerations achievable by the end effec-
tor of the underactuated manipulator while taking into consideration
the torque limits on the active subsystem and the natural dynamics
affecting the acceleration limits such as gravity and gyroscopic forces.
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Following the same procedure in 3.1.3 for deriving the dynamic
coupling ellipsoid in the generalized acceleration space, we express
the relation between the task space acceleration and the normalized
torque vector by substituting Eq. (66) in Eq. (114) as

Ẍ = JZ̄L τ̃+ Ẍbias (119)

Finally, the Dynamic Coupling Ellipsoid in the task acceleration
space can be found by substituting Eq. (119) in Eq. (104)

(Ẍ− Ẍbias)
T (JZ̄L)−T (JZ̄L)−1(Ẍ− Ẍbias) 6 1 (120)

Eq. (121) describes the equation of a nm-dimensional ellipsoid in
the task acceleration space. Note that this ellipsoid is the approxima-
tion of the acceleration polytope defined in Eq. (119) and Eq. (68),
which maps the na-dimensional hypercube to a polytope of dimen-
sion nm in the task space acceleration space that delimits the set of
attainable accelerations by the end effector.

Since the torque bound matrix L is a symmetric matrix, the previ-
ous result simplifies to

(Ẍ− Ẍbias)
TZ⇤(Ẍ− Ẍbias) 6 1 (121)

Where we define the dynamic coupling factor in the task space as

Z⇤ = Z̄T JTL2JZ̄ (122)

Definition 4.1.1. The Dynamic Coupling Ellipsoid (DCE) of the task space

of an underactuated manipulator is

EẌ =
{
Ẍ 2 R

nm | (Ẍ− Ẍbias)
TZ⇤(Ẍ− Ẍbias) 6 1

 
(123)

where Ẍbias 2 Rnm is the center of the ellipsoid EẌ while the dynamic

coupling factor Z⇤ 2 S
nm
++ determines the size and orientation of EẌ

Note that from Eq.(122), the dynamic coupling factor in the task
space Z⇤ depends on the diagonal torque bounds matrix L and the
inertia distribution of the manipulator ζpa which, in turn, crucially
depends on the inertial coupling Mpa as shown in Eq.(57) or Eq. (59).
Moreover, unlike the joint space dynamic coupling factor Z̃, defined
in Eq. (73), the task space dynamic coupling factor Z⇤ depends on
the task space Jacobian as well, which makes it prone to kinematic
singularities.
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Let the singular-value decomposition of the dynamic coupling fac-
tor, Z̃, be

Z⇤ = UΣVT (124)

where Z⇤ is a rank r matrix, U 2 Rnm⇥nm and V 2 Rna⇥na are
orthogonal matrices. The principal axes of the mr-dimensional ellip-
soid is determined by the eigenvectors u1,u2, . . . ,ur. While the cor-
responding lengths of the semi-axes are given by

p
σ1,
p
σ2, . . . ,

p
σr

where
p
σ1 >

p
σ2 > . . . >

p
σr. Thus, the principal axes of the task

space DCE, EẌ, are

p
σ1u1,

p
σ2u2, . . . ,

p
σrur

Similar to the dynamic manipulability ellipsoid, the volume of the
ellipsoid dynamic coupling ellipsoid EẌ is proportional to the deter-
minant of the dynamic coupling factor det(Z⇤), or equivalently, the
product of its singular values σ1 σ2 . . . σr.

However, unlike the dynamic manipulability ellipsoid which is de-
fined only for fully actuated manipulators, as shown in Eq.(28), the
dynamic coupling ellipsoid correctly accounts for the underactuation
constraint and the influence of actuation distribution over the DoFs
of the manipulator.

On the other hand, the term Ẍbias is responsible for translating
the ellipsoid center from its origin. This term has been overlooked or
neglected in all previous work except for few studies which studied
special cases on a fully actuated manipulator. We introduce the Task

Space Dynamic Coupling Map (TS-DCM), which helps in analyzing the
relationship between the task space DCE EẌ, its principal axis, and
the vector Ẍbias in the task acceleration space, as shown in Figure 7.
More importantly, it has a pivotal role in providing graphical and
intuitive manner to analyze the evolution of this relationship in a
dynamic trajectory, as demonstrated in Section 4.2.

The term Ẍbias groups all forces acting on the end-effector except
the input control torque. Therefore, it represents the natural dynamics
acting on the task space as defined in chapter 1. The term Ẍbias have
strong implications on the behaviour of the underactuated manipula-
tor which have not been considered in previous studies. For example,
if the origin is not included in the task space DCE this implies that
the end-effector (or any point of interest in the task space) is experi-
encing a considerable drift acceleration due to the natural dynamics
and that the physical capacity of the actuators cannot bring the end-
effector to a halt. Moreover, the ellipsoid’s center displacement due to
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Figure 7: Illustration of the Task Space Dynamic Coupling Map (TS-DCM)

the term Ẍbias is a Rnm vector in the task acceleration space which
can be decomposed to its original constituents.

Eq. (116) describes an affine relation the between the natural dy-
namics acting on the end-effector and the natural dynamics acting on
all the manipulator itself, which can be decomposed further into the
sum of the natural dynamics originating from the active subsystem
Na and the passive subsystem itself Np projected appropriately using
the task space Jacobian and the inverse of the inertia matrix. In addi-
tion, to the velocity-dependent acceleration J̇q̇ due to the nonlinear
relationship between the reference frames. Recall that from Eqs.(47)
and (48), Np and Na depend on gravity, velocity dependent forces,
damping and external wrench, if exist. Hence, it is possible to find
the direction and magnitude of influence of each force on the task
acceleration space in a graphical and intuitive manner.

Ẍbias = ẌG + ẌC + ẌB + ẌpF (125)

Where the gravitational effect on the acceleration of the passive
subsystem on Ẍbias is represented by the displacement vector ẌG 2
Rnm of the center of the ellipsoid EẌ. From Eqs. (116), (48), and (47)
it can be expressed as
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ẌG = ẌGa
+ ẌGp

(126)

where

ẌGa
= −JpζpaGa − JaζaaGa (127)

ẌGp
= −JpζppGp − JaζapGp (128)

Note that the terms JpζpaGa and JaζapGp represents the grav-
ity forces transmitted to the end-effector through the inertial cou-
pling while the terms JaζaaGa and JpζppGp are the gravity terms
of each subsystem transmitted directly to the end effector. Moreover,
notice that from Eq.(122) and Eq.(127), ẌGa

can be rewritten as ẌGa
=

Z⇤1/2Ga this reinforces the notion of the task space dynamic coupling
factor Z⇤ as a transmission factor between all the forces acting on the
active subsystem and the task space. Accordingly, the rest of the bias
forces can be formulated in the same manner.

4.1.2 Natural Dynamic Index in the Task Acceleration Space

We propose three performance indices derived from the DCM analy-
sis tool. These performance indices describe the relationship between
the influence of the natural dynamics and the input torque along with
its limits on the acceleration of a particular body part or a subsystem.
Thus, the performance measure is aptly named as Natural Dynamic

Index (NDI), or in this particular case the task space Natural Dynamic
Index.

The first index of the three variants is named NDI-1, and it de-
scribes the scalar ratio of the natural dynamics influence represented
by the norm of

∥∥∥~̈Xbias

∥∥∥ to the norm of the eigenvalues of DCE , kσk
, which is an approximation the maximum torque influence on the
passive acceleration space.

NDI− 1 =

∥∥∥~̈Xbias

∥∥∥
kσk (129)

NDI-1 is important to understand the significance of the natural
dynamics in a particular dynamic morion e. g.if NDI-1 & 1 then it
would signify that the torque capacity of the underactuated robot
cannot override the natural dynamics and vice versa.
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The second natural dynamic index NDI-2 describes the absolute
value of cosine the angle between the vector of the effective accelera-
tion due to the natural dynamics on the passive acceleration, ~̈qpbias

,
and the major axis of the DCE, ~u1 , which represents the direction of
the maximum torque transmission in the passive acceleration space.

NDI 2 =

∣∣∣∣∣∣

⇣
~u1 ·

~̈Xbias

⌘

⇣
k ~u1k ·

∥∥∥~̈Xbias

∥∥∥
⌘

∣∣∣∣∣∣
(130)

NDI-2 attempts to grasp the relationship between the natural dy-
namics and the ability of the system to exploit these forces. NDI-2

is a scalar value bounded between 0 and 1. NDI-2 = 1 signifies that
the DCE’s major axis is aligned with the effective natural dynamics,
meaning that the direction corresponding to maximum torque trans-
mission in the passive acceleration space is aligned with the direction
of the effective natural dynamics in the same space.

The third natural dynamic index NDI-3 describes the value of co-
sine the angle between the vector of the actual torque transmission
to the passive acceleration space ~̈qpτ and the vector of the effective
acceleration due to the natural dynamics on the passive acceleration,
~̈qpbias

NDI 3 =

⇣
~̈Xτ ·

~̈Xbias

⌘

⇣∥∥∥~̈Xτ

∥∥∥ ·
∥∥∥~̈Xbias

∥∥∥
⌘ (131)

NDI-3 is a performance measure crucial to understand the relation-
ship between the actual input torques and the natural dynamics act-
ing on the passive subsystem. NDI-3 is a signed scalar value bounded
between −1 and 1. NDI-3 = 1 signifies that the effective acceleration
due the actual torque input vector is aligned and acting in the same
direction of the effective natural dynamics acting on the acceleration
of the passive subsystem, whereas NDI-3 = −1 signifies that the ac-
tual input torque acts against the influence of the natural dynamics
on the passive subsystem.

The significance of the proposed index is demonstrated in Sec-
tion 4.2. Note that the proposed natural dynamic index in the task
space is applicable for any type of robotic system including fully ac-
tuated robotic systems.

4.1.3 Effect of Actuation Distribution on the DCE

The dynamic coupling ellipsoid DCE provides a graphical an intutive
way to analyze the acceleration capabilities of an underactuated ma-
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Figure 8: Effect of actuation distribution on the Dynamic Coupling Ellipsoid
in the task space for 2-Dof underactuated manipulator : (a) Ac-
tivePassive (AP)-type underactuated manipulator has a relatively
limited capacity to accelerate the end effector compared to (b) Pas-
siveActive (PA)-type underactuated manipulator
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nipulator while taking into consideration all the related complexities.
In this section we show the effect of acutation distribution on the ca-
pacity of several examples of underactuated manipulators to generate
end-effector acceleration in the task space.

Consider a planar two-link underactuated manipulator with link
lengths l1 = l2 = 1m where l1 and l2 are the link lengths of the first
and the second link, respectively. Assume that each link has the iner-
tia of a cylinder where the center of mass of each link lies at the center
of the link’s length. In addition, assume equal masses for both links
m1 = m2 = 1 kg and torque limit is set to L = 1 N.m. We study two
types of planar 2-Dof underactuated manipulator; a Passive-Active
(PA) underactuated manipulator, where the first joint near the base is
passive and the actuator is installed on the second joint near the end
effector, and an Active-Passive (AP) underactuated manipulator with
the reverse actuation distribution. Moreover, to focus on the effect of
actuation distribution, we neglect for the moment the gravity forces
as well as other velocity dependent forces.

Figure 8 shows the task space DCE in the sagittal plane for two
2-DoF underactuated manipulators with different actuation distribu-
tion, namely, PA-type shown in Figure 8b and AP-type shown in Fig-
ure 8a. In both cases, the task space DCE ellipsoid degenerates to a
single line. The reason is that, in both cases, we have na = np = 1;
thus the rank of the dynamic coupling factor is always equal to 1

rank(Z⇤) = 1. Consequently, the SVD of Z⇤ gives only a single eigen-
vector u1 and a corresponding eigenvalue σ1.

It is also interesting to note that in Figure 8b the lengths of the de-
generated ellipsoids are longer than that of Figure 8a. In other words,
the eigenvalues of the dynamic coupling factor Z⇤ of the PA-type un-
deractuated manipulator are greater than that of the AP-type under-
actuated manipulator. This observation can be interpreted as the PA-
type underactuated manipulator has a better capacity to accelerate
the end-effector as the actuator is placed near to it. The AP-type un-
deractuated manipulator has more difficulty in accelerating the end-
effector due to the additional burden of the inertia of link 1 and link 2

which require more torque to achieve the same acceleration capacity
of the PA-type.

Another important observation is to be made regarding the ori-
entation of the eigenvector with respect to generalized coordinates.
Figure 8b shows that DCE’s axis is almost always perpendicular to
the last link. This is understandable from the fact that the accelera-
tion of the end-effector depends primarily on the actuation torque
which rotates directly the second link. On the other hand, Figure 8a
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shows that the DCE’s axis tends towards an alignment with the ma-
nipulator’s second link, which is pronouncedly clear when q2 = pi/2

or when the second link is perpendicular to the first link. This can be
explained by the fact that since the actuator rotates the first link and
the second joint is passive and do not transmit torques, the torque is
then transmitted along the direction of the second link.

Figure 9 shows the task space DCE for two types of 3-DoF un-
deractuated manipulator: The first type is an Active-Active-Passive
(AAP)-type where the first and second joints are active while the third
joint is passive; the second type is a Passive-Active-Active (PAA)-type
where the first joint is passive while the second and third joints are
active. In case of 3-Dof underactuated manipulator the rank of the
dynamic coupling factor is equal to two, rank(Z⇤) = 2, hence, Z⇤

has two unique eigenvectors. Consequently DCE is a 2-D ellipse in
the 2-dimensional acceleration space of the task space. This implies
that increasing the number of actuators in a underactuated manipu-
lator increases the isotropicity of the acceleration capabilities. More-
over, regarding the size and orientation of the ellipsoid, it is clear
from Figure 9 that same conclusion made for the 2-D underactuated
manipulator applies for the 3-DoF version. PAA-type underactuated
manipulator has greater singular values of the dynamic coupling fac-
tor Z⇤ than that of AAP-type. Consequently, Figure 9b shows that
PAA-type has bigger ellipsoids than AAP-type shown in Figure 9a.
Therefore, it is generally beneficial to place the actuators near the lo-
cation of interest to increase its acceleration capacity. Conversely, as
previously noted for the DME of fully-actuated manipulators, shorter
axis implies that acceleration are more accurately controlled.

Figure 10 shows the task space DCE for two types of 4-DoF un-
deractuated manipulator: The first type is an Active-Active-Passive-
Passive (AAPP)-type where the first and second joints are active while
the third and fourth joints are passive; the second type is a Passive-
Passive-Active-Active (PPAA)-type where the first and the second
joints are passive while the second and third joints are active. Same
conclusion regarding the size and orientation of the DCE applies for
the higher-dimensional underactuated manipulator. We also note that
the DCE in Figure 10a is much smaller than Figure 10b and even
smaller than in the AAP-type underactuated manipulator Figure 9a
simply because AAPP has the same actuation capacity of AAP while
having the burden of the inertia of an extra passive link.

4.1.4 Effect of Inertia Distribution on the DCE

One of the advantages of DCE is that it can easily provide a graphical
intuition on the acceleration capacity of a general high-dimensional
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(b) PAA-type underactuated manipulator

Figure 9: Effect of actuation distribution on the Dynamic Coupling Ellip-
soid in the task space for a 3-Dof underactuated manipulator : (a)
(AAP)-type underactuated manipulator has a relatively limited ca-
pacity to accelerate the end effector compared to (b) PassiveActive
(PAA)-type underactuated manipulator
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Figure 10: Effect of actuation distribution on the Dynamic Coupling Ellip-
soid in the task space for a 4-Dof underactuated manipulator : (a)
(AAPP)-type underactuated manipulator has a relatively limited
capacity to accelerate the end effector compared to (b) PassiveAc-
tive (PPAA)-type underactuated manipulator
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underactuated manipulator while taking into consideration the in-
fluence of the manipulator’s variable inertia distribution. Figure 11

shows the task space DCE of a 3-DoF underactuated manipulator
type PAA with three different inertia distribution.

Figure 11a shows the task space DCE of the manipulator’s end-
effector acceleration in various configurations as in Figure 9b but
with a mass of the first link, which is attached to a passive joint,
m1 = 10kg ten times larger than the PAA-type manipulator shown
in Figure 9b. However, the DCE results are strikingly similar despite
the augmented mass of the first link. The interpretation of this result
is that the active joints transmit motion directly through the second
and third link to the end-effector, the inertia of the first link doesn’t
influence the transmission factor between the input torques and the
end-effector’s acceleration. On the other hand, increasing the iner-
tias of the second and the third links, shown in Figure 11b and Fig-
ure 11c, respectively, reduces greatly the acceleration capacity of the
end-effector given the limited torque capacity.

4.1.5 Effect of Torque Limits on the DCE

The task space DCE takes into consideration the effect of the torque
limit of each actuator on the acceleration capability of the end effector.
Recall that the task dynamic coupling factor Z⇤ in Eq. (122) depends
on the torque scaling matrix L2. Therefore, increasing the torque lim-
its will generally result in higher singular values ui of the task space
dynamic coupling factor Z⇤. Consequently, higher torque limits will
result in larger ellipsoids without affecting its orientation.

Figure 12 shows four different cases for the torque limits of a 4-
DoF AAPP-type underactuated manipulator. Figure 12a shows the
task space DCE results for the same manipulator example in Fig-
ure 10a with the torque scaling factor L = diag(1, 1). The DCE results
are barely visible in this case because the manipulator’s inertia and ac-
tuation distribution diminish considerably the manipulator’s ability
to accelerate the end effector. Figure 12d shows the task space DCE af-
ter multiplying both torque limits by a factor of ten L = diag(10, 10),
this has the effect of magnifying the ellipsoid’s size while preserving
its shape (ratio of eigenvalues) and orientation (eigenvectors). Fig-
ure 12d confirms the hypothesis that increasing the actuation redun-
dancy and actuation capacity increases the isotropicity of the manip-
ulator’s acceleration capacity.Figure 12c shows the task space of an
AAPP-type underactuated manipulator with a torque scaling vector
L = diag(1, 10). We observe that multiplying the torque of the first
joint only by a factor of ten renders a behaviour similar, and even
more pronounced, to that of an AP-type underactuated manipulator
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(c) PAA-type underactuated manipula-
tor with link masses m1 = m2 = 1
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Figure 11: Effect of actuation distribution on the Dynamic Coupling Ellip-
soid in the task space for a 3-Dof underactuated manipulator
PAA-type : (a) (AAPP)-type underactuated manipulator has a rel-
atively limited capacity to accelerate the end effector compared
to (b) PassiveActive (PPAA)-type underactuated manipulator
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Figure 8a where The ellipsoid’s major axis align with the last passive
link. This confirms the proposed hypothesis inSection 4.1.3 that if pas-
sive or weak actuators exist between the active actuators and the end-
effector (or any point of interest) then the control input efforts will be
transmitted through the principal axis of the links. Conversely, Fig-
ure 12b shows the task space DCE for an AAPP-type underactuated
manipulator with a torque scaling vector of L = diag(10, 1); mul-
tiplying the torque of the second joint by a factor of ten renders a
behaviour similar to that of an PA-type underactuated manipulator
Figure 8b, where the ellipsoid’s major axis tends to be more perpen-
dicular to the last passive link.

4.1.6 Effect of Gravity on the DCE

Gravity is one of the bias forces that is responsible of translating the
DCE’s center in the task acceleration space. Previous sections demon-
strated that the effect of inertia distribution, actuation distribution or
torque limits affected only the orientation, shape and size of the DCE
with having any influence on the position of its center. Therefore, it
was drawn appropriately with its center coinciding with the manip-
ulator’s end-effector to easily visualize the relationship between the
ellipsoid’s orientation and the manipulator’s configuration. On the
other hand, the ellipsoid’s size was scaled arbitrarily to fit in the task
space. However, it is important to note that DCE is an ellipsoid that
demonstrates the underactuated manipulator ability to accelerate the
end effector. Therefore, by introducing the bias acceleration Ẍbias,
it is more appropriate to examine the DCE in the Dynamic Coupling

Map (DCM), which helps in visualizing the relation between several
DCE in the task acceleration space to understand the effect of the bias
forces on the achievable set of accelerations.

Figure 13 shows the effect of gravity on task space DCE demon-
strated on a AAPP-type 4-DoF underactuated manipulator with a
generalized coordinate q = [2.1, 0.5, 0.9, 0.5]T with torque scaling ma-
trix L = [10, 10]TN.m. In the previous section, Figure 12d showed the
DCE in various configuration without taking into consideration the
effect of gravity. All ellipsoids were scaled arbitrarily and centered
on the end-effector because the task space bias acceleration is null
Ẍbias = 0. Figure 13a shows that by introducing gravity and assum-
ing zero generalized velocity q̇ = 0, we get a non-zero bias acceler-
ation and from Eq.(125) only on the bias acceleration due to gravity
Ẍbias = ẌG . Figure 13b shows that The bias vector due to gravity
translates the center of DCE downwards in the vertical acceleration
direction towards −g = −9.8m/s2. The orientation and magnitude
of the gravity bias vector depends on the posture of the robot q and
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(b) AAPP-type underactuated manip-
ulator with torque limits τlimit
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(c) AAPP-type underactuated manipu-
lator with torque limits τlimit
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(d) AAPP-type underactuated manip-
ulator with torque limits τlimit
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Figure 12: Effect of torque limits on the Dynamic Coupling Ellipsoid in the
task space for a 4-DoF AAPP-type underactuated manipulator :
(a) (AAPP)-type underactuated manipulator has a relatively lim-
ited capacity to accelerate the end effector compared to (b) Pas-
siveActive (PPAA)-type underactuated manipulator
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is determined from Eqs. (126)-(128). The exact decomposition Ẍbias

and the contribution of each term is shown in Figure 14.

The interpretation of Figure 13b is that in the case of zero gravity
and the given robot’s posture, the shown 4-DoF AAPP-type under-
actuated manipulator is capable of accelerating the end-effector with
an acceleration of Ẍ = [−3.3, 2.28]Tm/s2 which corresponds to u1σ1.
The underactuated manipulator cannot exceed this acceleration due
to the physical limits on the actuator’s torque capacity. The origin of
DCE represents the acceleration of the end-effector if null torque vec-
tor is applied, therefore it represents the instantaneous acceleration
of the end-effector due to natural dynamics. In case of zero grav-
ity, the origin of the DCE coincides with the origin of the accelera-
tion space, therefore the end-effector will remain still. Conversely, in
the case of gravity, the origin of DCE coincides with the acceleration
Ẍ = [0; 9, −9.39]Tm/s2 which represents the natural instantaneous
acceleration of the end-effector at the given posture.

Another important conclusion can be drawn from the DCM regard-
ing the relationship between the dynamic coupling factor and the bias
acceleration. It is clear from Figure 13b that

∥∥Ẍbias

∥∥ > kuσk, this
implies that the underactuated manipulator does not have enough
torque to counter or compensate the natural dynamics of the sys-
tem. This idea is reinforced in Figure 15, where the relationship be-
tween the effect torque limits and the end-effector acceleration bias
due to gravity is explored. Figure 15 shows the DCE of the same
underactuated manipulator, shown in Figure 13a, but with two dif-
ferent torque scaling factors L = [80, 80]TN.m (shown in dotted line),
and L = [10, 10]TN.m (shown in solid line). The DCM, shown in
Figure 15, gives a clear an intutive picture of the interplay of the
different parameters on dynamic behaviour of the underactauted ma-
nipulator. It is clear that the shown underactuated manipulator with
torque limits L = [10, 10]TN.m cannot overpower the natural dynam-
ics. However, by paying the hefty price of increasing the torque limits
to L = [80, 80]TN.m while retaining the same inertia —or decreas-
ing the inertia while retaining the same torque capacity, thus increas-
ing the torque to mass ratio —the underactuated manipulator can be
barely counter or compensate the natural dynamics (only gravity in
this case). Thus, a given underactuated manipulator can compensate
or override the natural dynamics if and only if the acceleration bias
vector Ẍbias is encapsulated inside the DCE. A robot can override

the natural

dynamics if and only

if the acceleration

bias vector Ẍbias is

encapsulated inside

the DCE.

Another interesting case is that an underactuated manipulator can
be dynamically singular even though it is not kinematically singular. Fig-
ure 16 shows the effect of gravity on DCE for the same 3-dof AAP-
type underactuated manipulator previously discussed in Figure 9a
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Figure 13: Effect of Gravity on task space DCE demonstrated on a AAPP-
type 4-DoF underactuated manipulator with a generalized coor-
dinate q = [2.1, 0.5, 0.9, 0.5]T (a) DCE without the effect of gravity
(dotted line) in the task space with its origin coinciding with the
end-effector while the DCE is displaced relatively (b) Dynamic
coupling map showing the DCE in the task acceleration space
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Figure 14: Decomposition of task acceleration bias due to gravity into its
components (a) Task bias acceleration decomposition showing
the effect of each the active and passive subsytems (b) the influ-
ence of each subsystem can be further decomposed into a compo-
nent due to inertial coupling and another component represent-
ing direct influence.
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with the generalized coordinates q = [2.1, 0.5, 0.9, 0.5]T . Figure 16a
shows the DCE with respect to robot’s posture while Figure 16b
shows the DCE in the acceleration space with a torque scaling factor
L = [1, 1]TN.m. Note that the DCE is degenerated to a line because
there is only one non-zero eigenvalue σ1 of the dynamic coupling
factor Z⇤. This case is called appropriately dynamic singularity; note
as well that the 3-DoF manipulator is not in a kinematically singular
configuration. Figure 16c and the DCM in Figure 16d show clearly
that even after increasing the torque-to-mass ration by a factor of ten
L = [10, 10]TN.m the underactuated manipulator does not have the
ability to compensate the natural dynamics because the eigenvector
u1 of the DCE does not pass through the origin. Therefore, any at-
tempt to apply any combination of the torque vector τ will cause the
system to accelerate in the direction of the principal axis of the DCE.
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Figure 15: Relationsip between torque limits and task acceleration bias due
to gravity

4.2 case study : gymnast swing-up dynamic maneuver

In this section, we demonstrate the effectiveness of the Task-Space
Dynamic Coupling Map (TS-DCM) and the associated Natural Dy-
namic Index (NDI) in analyzing a highly dynamic maneuvers. In par-
ticular, we choose the swing-up motion of a gymnast on a high bar
as a demonstrative case study. The dynamic motion is generated us-
ing a nonlinear optimization solver guided by data from the sports
science and biomechanics community. Although the nonlinear opti-
mization is becoming increasingly popular in the robotics commu-
nity, it remains treated as a black-box which takes as input several
constraints, objective function, and boundary conditions and output
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Figure 16: Relationship between torque limits and acceleration bias due to
gravity effect highlighting the case of dynamic singularity on a
AAP-type 3-DoF underactuated manipulator with a generalized
coordinate q = [1.8, 1.0, 0.7]T (a) DCE is shown with respect to
underactuated manipulator’s posture demonstrating a dynami-
cally degenerated DCE although the robot is not in a kinemati-
cally singular configuration (b) the corresponding DCM for the
robot with low torque capacity L = [1, 1]TN.m shows a dynami-
cally degenerated DCE which doesn’t cover the acceleration space
origin (c) DCE with respect to underactuated manipulator’s pos-
ture after increasing the torque-to-mass ratio by a factor of ten
L = [10, 10]TN.m (d) Corresponding DCM demonstrating that
the DCE remains dynamically degenerated despite increasing the
torque-to-mass ratio by a factor of ten
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(a) (b)

Figure 17: Approximation of a Gymnast on a high-bar as a three-link under-
actuated manipulator

a local-optimal trajectory. It is difficult to understand how the opti-
mization reached to this particular motion or to estimate the quality
of the output motion by relying solely on the output motion. Notwith-
standing this limitation, we propose the DCM and the associated NDI
as a graphical and intuitive trajectory analysis tool that helps in pro-
viding a more intuitive insight into the mechanism of the resulting
dynamic motion and its quality in terms of exploiting the robot’s
robot dynamic capabilities. NDI also demonstrates the pivotal role of
exploiting the natural dynamics in highly dynamic manoeuvres.

4.2.1 Model Description

Swinging is a primordial movement primitive which is ubiquitous in
the dynamic behaviour of many living organisms. Brachiation [GR05],
or body swinging, is a principal movement element in arboreal loco-
motion in which primates, such as gibbons, swing from tree limb to
tree limb by swinging their body while at least one hand is grasp-
ing a support at all times. This locomotion mode is also known as a
continuous contact brachiating gait which can be regarded as an up-
side down walking. Other examples include the agile manoeuvres of
animals that exploit the swinging dynamics of their tails to achieve
a sudden acceleration, deceleration or extreme direction adjustments
such as geckos and lizards, or even cheetahs [PB13; Lib+12]. However,
[Ale03] stated that our understanding of these dynamic manoeuvres
is still very limited. On the other hand, perhaps the epitome of hu-
man agile and graceful dynamic motions can be found in the sport of
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artistic gymnastics. Prassas has stated that – mastering of swinging– is
a critical motor skill for gymnasts to succeed in competition and to be
treated as other essential attributes such as strength, flexibility, and
stamina [PPK74]. Swinging requires complex dynamic coordination
between various body parts and proper timining in order to achieve
a desired movement while minimizing their muscular work [Ale03]
[Yam+09][GR05]. mastering of

swinging is of

paramount

importance for

gymnasts desiring to

succeed in

competition

Gymnasts use swings in various movements including kips, casts
and giant swings on a high bar or rings. Gymnasts are in some rou-
tines required to do full circular movements followed by a flight
phase with acrobatic movements such as somersaults and twists. Gym-
nasts swing behaves as a pendular movement that may be composed
of several sub-pendulums including the legs, the trunk, the arms
and the rings (in case of rings routine). Therefore, the swing dy-
namics depends on the dynamic coupling between the subsystems,
which if synchronized correctly could achieve synergy to deliver a
high-performance movement otherwise the movement of subsystems
can be counter-productive in which the resulting motion can be sub-
optimal or not achieved at all.

Gynamstic maneuvers has been studied extensively in the sport
science and biomechanics communities and has been a source of in-
spiration for many robotic advances. [HM90] introduced a canonical
model of underactuated systems known as the Acrobot (for acrobatic
robot). It can be considered as a highly simplified model of a human
gymnast on a high bar, where the underactuated first joint models
the gymnast’s hands on the bar, and the actuated second joint models
the gymnast’s hips. The objective is to swing up the Acrobot from the
downward stable equilibrium point to the upright unstable equilib-
rium point and balance it about the upright vertical. This motion con-
trol problem is usually decomposed into two sub-problems; first, the
swing-up motion control [ÅF00] [Spo95] [Xin13], once the robot’s con-
figuration is brought up to the neighborhood of the unstable equilib-
rium point, switching to a stabilization controller is necessary[OS01].
Several variants of the Acrobot have been proposed either by increas-
ing the number of degrees of freedoms [KH06] [ST08] [Ibu+15] or
by varying the placement of the actuators [LO02]. During the last
two decades, many researchers have investigated the approach of pas-
sivity or energy-based control of underactuated mechanical systems.
[LD06] showed that the dynamic coupling becomes more complex
when the number of links increases, and its control problem becomes
more challenging. [XK07a] noted that energy based techniques are
difficult to apply for higher dimension robots.
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For the purpose of illustration, we focus our attention on the swing-
up dynamic motion of an extended version of the acrobat called the

’Gymnast’ robot shown in Figure 17. [XK07b] argue the importance of
the extra third active joint representing the shoulder joint. The gym-
nast robot is a simplified approximation of an athlete swinging his
body on a high bar. Assuming symmetrical motion, we restrict our
attention to the sagittal plane. This model has been widely used
to study various gymnastic maneuvers on a high-bar. The model
is composed of three links representing the arm, the trunk and the
leg. All three links are connected by 1-DoF rotary joints. Assuming
negligible elasticity in the high-bar, we can consider the arm to ro-
tate freely around the high-bar, thus the arm is connected to the
world through a passive joint. This joint imposes a non-integrable
second-order nonholonomic constraint constraint. On the other hand,
the second and the third joints, representing the shoulder and the
hip joint, respectively, are active and torque controlled. Therefore, a
gymnast on a high-bar is an underactuated system where the first
joint qp = q1 is passive np = 1, while the second and third joints
qa = [q2,q3]

T are active na = 2. The system’s generalized coor-
diantes is q = [q1,q2,q3]

T rad, where the q1 is the angle between
the vertical axis and the arm, while the second and third coordinates
are taken relative to the connected links. All angles are taken positive
clockwise. The control input is the torque vector τ = [τ1, τ2]TN.m
acting on the second and third joints.

The inertial and kinematic parameters are loosely based on the
actual anthropomorphic data from the biomechanics community as
shown Table 3. The three parts of the body are approximated with
cylindrical elements where the first link represents the arm with a
mass denoted by m1 and a cylinder length of l1 and assuming its
center of mass lies at lc1 with a moment of inertia I1. Accordingly,
the trunk and the legs are represented by with link 2 and link 3,
respectively .

4.2.2 Approach

Trajectory optimization algorithms are a powerful class of methods
for generating goal-directed behavior in dynamical systems by com-
puting admissible state and control sequences that minimize a cost
functional subject to a set of constraints. In this work, we employ
nonlinear trajectory optimization for the swing-up motion genera-
tion and control. Second-order Nonholonomic and torque constraints
fit naturally into the direct formulation of trajectory optimization.
Furthermore, there exists strong evidence that humans solve task-
level and motor-level challenges though optimization processes. A
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parameters values

l1[m] 0.6

l2[m] 0.55

l3[m] 0.8

lc1[m] 0.3

lc2[m] 0.275

lc3[m] 0.4

m1[kg] 6

m2[kg] 33

m3[kg] 22

I1[kgm
2] 0.18

I2[kgm
2] 0.83

I3[kgm
2] 1.17

Table 3: Physical parameters of the Gymnast robot model

good overview of optimal control in sensorimotor systems is given
by [Tod04].

Trajectory optimization approach is becoming increasingly attrac-
tive with the advent of computational power and the recent advances
in nonlinear optimization [PCT13][Hau14]. Given an initial trajectory
that may be non-optimal or even non-feasible, trajectory optimiza-
tion methods can often quickly converge to a high-quality, locally-
optimal solution. In this work, the system is modeled using MIT tool-
box Drake [Ted16] in a Matlab environment. The Gymnast swing-up
problem is formulated as a direct collocation Nonlinear Program (NP)
which is solved using a non-linear optimization solver, Sparse Non-
linear OPTimizer (SNOPT) [GMS02] based on Sequential Quadratic
Program (SQP) algorithm. Reader is referred to Appendix B for a brief
background on the optimization algorithm and a general overview of
NP methods.

The Swing-up motion of a 3-link robot is thus formulated as a
trajectory optimization problem where the objective function or the
cost functional is given by

• Cost functional

J = Φ(tf, xf) +

tfZ

0

φ(x(t),u(t), t) dt (132)
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where Φ(·) and φ(·) are the final cost and the running cost func-
tions, respectively. The cost function Equation 132 is referred to as
the Bolza form as it involves both integral term φ(·) and a bound-
ary term Φ(·). In this work we choose to minimize the final time
tf as a boundary term, while minimizing the input torques and the
generalized velocities as the running cost. Therefore, Equation 132 is
implemented as

J = tf +

tfZ

0

τTRτ+ xTQx dt (133)

where R = diag(R1,R2) is a diagonal matrix with the weights for
the torque input and Q = diag(0, 0, 0,Q1,Q2,Q3) is the weighting
matrix for the state vector. The first three terms in the Q matrix are
null because we penalize only the generalized velocities.

However, as we employ direct collocation method this continuous
formulation is transcribed into a nonlinear

On the other hand, trajectory constraints can be categorized into
three types :

• Boundary constraints

Boundary constraints are generally defined as

bmin 6 b(t0, x0, tf, xf) 6 bmax (134)

In our implementation, the boundary conditions are clearly defined
by the starting state of the gymnast from rest at the vertical down-
ward equilibrium position and the motion ends at the vertical upward
unstable equilibrium position. Thus, the boundary constraints can be
expressed as

x0 = [0, 0, 0, 0, 0, 0]T (135)

xf = [pi, 0, 0, 0, 0, 0]T (136)

• Bounds on the state and control variables

Bounds on state and control variables during the motion can gen-
erally be expressed as

xmin 6 x(t) 6 xmax (137)

τmin 6 τ(t) 6 τmax (138)

In the case of the swing-up movement of the gymnast, in addition
to the torque constraints, we impose bounds constraint on the gener-
alized coordinates to prevent solutions with several turns.
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Figure 18: Six stages of gymnast swing-up movement

−pi 6 q 6 pi (139)

In order to test the influence of torque limits on the output mo-
tion of the trajectory optimization, two torque limits are evaluated. In
one optimization problem, high torque limits are set to −500 N.m 6

τ(t) 6 500N.m in another optimization problem the low torque limits
are set to −80N.m 6 τ(t) 6 80N.m.

• Path Constraints

Path constraints in trajectory optimization imposes constraints on
the state and/or the input torques at certain instants during the tra-
jectory and they are generally exressed as

cmin < c(t, x, τ) < cmax (140)

The nonlinear optimization provides a local-optimal solution. Thus,
in order to get a local-optimal solution which is similar to the actual
movement of the gymnast, the nonlinear optimization problem is di-
vided in two phases. In the first phase, we restrict the path of the
gymnast motion to follow the six phases of motion of the actual gym-
nast swing-up motion as shown in Figure 18. In each phase we define
a bounding box constraint on the generalized coordinates of the gym-
nast robot as

qimin < qi < qimax (141)

However the path constraints may not be dynamically consistent
with the rest of the optimization problem and result in non-feasible
trajectory. Therefore, these constraints are relaxed in a second phase
and we feed the output solution of the first phase as the guess so-
lution for the second phase which result in a dynamically feasible
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local-optimal trajectory which is similar to the actual gymnast mo-
tion. the constraints relaxation and solution cascading scheme is a
common practice in nonlinear optimization problems to converge to
a feasible and high-quality solution.

Finally, we analyze the output trajectory using a novel graphi-
cal and quantitative technique "Dynamic Coupling Map (DCM)" along
with the associated natural dynamic indexes that help gain insight
into the dynamic motion of the underactuated system and the associ-
ated control strategy. In particular, we employ the task space formu-
lation presented in Section 4.1 to study the influence of different the
dynamic constraints such as the torque limits and the second-order
nonholonomic constraints due to the underactuation nature of the
gymnast on the task-space acceleration of the terminal organ (foot)
which is required to move from the down equilibrium position to
the up-right unstable position. More interestingly, the DCM and the
associated natural dynamic indexes help in understanding the rela-
tionship between the natural dynamics acting on the system and the
input torques. Our ultimate goal for studying such systems is to un-
derstand problems of dynamic locomotion in both biological systems
and in robotic systems which exploit its natural dynamics.

4.2.3 Results

For richer motion analysis, we study the effect of increasing the torque
limits of the active subsystem (shoulder and hip joints) on the dy-
namic swing-up manoeuvre of the gymnast-robot. Therefore, two
trajectory optimization problems are solved with two sets of torque
limits while maintaining the same physical parameters values and
optimization related settings. The low torque dynamic swing-up ma-
noeuvre corresponds to a gymnast-robot with torque limits set to
|τlimit| = [50 50]T N.m while the high-torque case corresponds to a
gymnast-robot with torque limits set to |τlimit| = [500 500]T N.m.

The nonlinear trajectory optimization solver outputs two differ-
ent local-optimal trajectories demonstrating two different dynamic
behaviours for the swing-up dynamic manoeuvre of the gymnast-
robot for the two cases as depicted in Figure 19. The first link which
represents the arms is shown in blue and is connected to a rigid bar
shown in black via a passive pivot joint. The second and third links
representing the torso and the legs are shown in red and yellow, re-
spectively.Both are connected via active pivot joints representing the
shoulder and hip joint, respectively. The motion of the gymnast-robot
with low torque limits exhibits a swinging phase before accelerating
to the upright vertical configuration as shown in Figure 19a, whereas
the gymnast-robot in the high-torque case accelerates directly to the
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goal configuration. Note that in Figure 19b the gymnast’s motion ex-
hibits oscillations or "a kicking motion" despite the high torque capac-
ity which should permit a smooth motion towards the goal configura-
tion. This phenomenon is exhibited due to the underactuation nature
on the gymnast-robot which imposes a second order nonholonomic
constraint, whereas a fully-actuated robot with sufficient torque can
perform a linearly interpolated motion between the two configura-
tions, for more details reader is referred to the discussion in Sec-
tion 4.2.4.

The resultant local-optimal trajectory for the low torque case is
shown in Figure 20. The evolution of the generalized coordinates and
the generalized velocities during the swing-up motion are shown in
Figure 20b and Figure 20c, respectively. Figure 20a shows the local-
optimal torque control profile, recall that τ1 and tau2 are the torque
inputs for the active subsystems, corresponding to the shoulder and
hip joints, respectively. Accordingly, the local optimal trajectory for
the high torque case is shown in Figure 21. Note that despite the non-
linear trajectory optimization requires an initial guess for the motion
trajectory including, torque profile, generalized coordinates and gen-
eralized velocities in addition to the expected duration of the motion.
The trajectory optimization solver finds a local optimal solution differ-
ent than the initial guess. For example, although we have set an initial
guess of the time span of the motion to be t0 = 6 s in both cases the
achieved the goal configuration with an optimal time of t⇤ = 5 s in
the case of low torque capacity whereas the optimal time is reduced
to t⇤ ' 3 s in the case of high torque capacity.

The output of the nonlinear trajectory optimization if further ana-
lyzed using the Task Space-Dynamic Coupling Map (TS-DCM) tech-
nique which provides a graphical and quantitaive analysis tool to un-
derstand the influence of dynamic constraints (e. g.torque limits, un-
deractuation) on the motion and the control strategy used to achieve
the final optimal motion. The results are organized in tables with
three rows, the first row shows the gymnast robot at a specific instant
while the second and third rows show the corresponding TS-DCE and
TS-DCM, respectively. The analysis results for the low-torque case are
shown in Table 4 to Table 7 while the results for the high-torque case
are shown in Table 8 to Table 10

Furthermore, a comparision of the Natural Dynamic Index (NDI)
during the swing-up dynamic manoeuvre for the gymnast robot be-
tween both cases: low-torque capcity (shown in blue) and high-torque
capcity (shown in red) is given in Figure 22 . the evolution of NDI 1

with time is shown in Figure 22a while the evolution of NDI 2 and
NDI 3 are shown in Figure 22b and Figure 22c, respectively
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(a)

(b)

Figure 19: Local-optimal motion results for the gymnast-robot swing-up dy-
namic manoeuvre showing two different dynamic behaviours
between low torque and high-torque constraints. (a)Swing-up
motion compilation with low torque constraint |τlimit| =

[50, 50]T N.m exhibits a swinging phase which is absent in (b)
the swing-up motion with high torque constraints |τlimit| =

[500, 500]T N.m
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Figure 20: Nonlinear trajectory optimization results for the dynamic
swingup manoeuver of the gymnast-robot swing-up with low
torque capacity. (a) Shows the local-optimal torque control profile,
while (b) and (c) shows the local-optimal trajectory for the gener-
alized coordinates and the generalized velocities, respectively.
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Table 4: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with low torque capacity
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Table 5: Table 3 Continued: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with low torque capacity
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Table 6: Table 4 Continued: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with low torque capacity
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Table 7: Table 5 Continued: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with low torque capacity
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Figure 21: Nonlinear trajectory optimization results for the dynamic
swingup manoeuver of the gymnast-robot swing-up with high
torque capacity. (a) Shows the local-optimal torque control profile,
while (b) and (c) shows the local-optimal trajectory for the gener-
alized coordinates and the generalized velocities, respectively.
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Table 8: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with high torque capacity
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Table 9: table 7 continued: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with high torque capacity
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Table 10: table 8 continued: DCM analysis for the dynamic swing-up manoeuvre of the gymnast robot with High torque capacity
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4.2.4 Discussion

Trajectory optimization proved to be an interesting approach to gen-
erate high quality dynamic motion despite its local optimality aspect.
Moreover, its natural capacity to integrate all types of constraints (lin-
ear, nonlinear, complementarity problems), objective functions and
application-related heuristics allowed it to gain traction in the robotics
community. However, after many iterations, the optimization solver
outputs a single local optimal trajectory without any insight into the
nature of the given trajectory. The swing up motion example illus-
trates the emergence of nontrivial solution to the torque control, ve-
locity and position trajectory from simple core principles (time and
torque minimization, boundary conditions, torque limits, dynamic
model,etc..).

We demonstrate how to use the Dynamic Coupling map (DCM)
and the associated Natural Dynamic Indexes to analyze the dynamic
motion given by the optimization. For a richer analysis, we provide a
comparative study of two different cases of the swing-up motion of a
gymnast-robot. Both cases retain the same physical parameters values
of the gymnast model and optimization settings except that in the
first case severe torque limits were applied while in the second case
high-torques were allowed. The resulting dynamic motions for both
cases are drastically different. Qualitivaley speaking, the first case,
with low torque limits (50 N.m) demonstrates more swinging phases
compared to the second case with high-torque limits (500 N.m).

DCM and the associated indexes provide more in-depth dynamic
analysis of the swing-up motion. To facilitate the navigation and ex-
planation of the DCM, let the location of each cell in the tables Ta-
ble 4 to Table 10 be referred to by the triplet (t, r, c), where t ,r and
c corresponds to the number of table, row and column, respectively.
The ’Gymnast-robot’ starts from an equilibrium position depicted in
cell(1,1,1). Since the starting configuration is singular, the correspond-
ing task space Dynamic Coupling Ellipsoid (DCE) in cell(1,2,1), rep-
resenting the acceleration capacity of the terminal organ or the foot
(shown in green), is degenerated to a single line in the horizontal ac-
celeration. The DCE shows that the torque limits impose horizontal
acceleration limits to ±15 m/s2, however since the DCE is degener-
ated the gymnast robot cannot generate vertical acceleration in this
configuration. Since the origin of the DCE coincides with the origin of
the acceleration space then the initial state is stable. Meanwhile, Fig-
ure 20a shows that the robot applies the maximum torque on the hip
joint and starts by quickly saturating.. Consequently, at t = 0.2, the
robot starts by retracting the legs. The corresponding DCM, depicted
in cell(1,3,2), shows that as the robot starts getting out of singularity
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Figure 22: Comparision of the Natural Dynamic Index (NDI) during the
swing-up dynamic manoeuvre for the gymnast robot between
both cases: low-torque capcity (shown in blue) and high-torque
capcity (shown in red). the evolution of NDI 1 with time is shown
in (a) while the evolution of NDI 2 and NDI 3 are shown in (b)
and (c), respectively
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the DCE is no longer degenerated and has the capacity to generate a
vertical acceleration which is limited to −1m/s2 and −20 m/s2 due
to torque limits as well as the drift vector Ẍbias (shown in black). The
DCE shows that despite the non-degenerated ellipsoid in the task
acceleration space, the robot is not capable to generate a positive ver-
tical acceleration. This is mainly due to the drift vector Ẍbias which
is dominated by the gravity term because the generalized velocity q̇

is still low and the velocity dependent forces has relatively little effect.
Thus, the center of the DCE is shifted towards −gm/s2 as shown in
Section 4.1.6. Moreover, since the DCE does not contain the origin of
the acceleration space it is clear that robot does not have the torque
capacity to compensate the negative gravity acceleration. Therefore,
it is impossible to achieve positive vertical acceleration by depending
solely on the torque capability of the active subsystem of the under-
actuated robot. Interestingly, it is possible to attain other areas in the
acceleration space even it is initially not covered by the DCE due to
the torque restrictions. This can be achieved by exploiting the Ẍbias

vector to shift the origin of the DCE towards the positive vertical ac-
celeration. This means that the only mean to achieve a considerable
positive vertical acceleration is to exploit the natural dynamics acting
on the system. Equivalently, the DCM provides a graphical and a quanti-

tative tool to analyze the qualitative idea of exploiting the natural dynamics

by studying the evolution of Ẍbias vector and its relation with DCE and the

input torques as demonstrated afterwards. ‘DCM analysis

shows graphically

and quantitatively

how the gymnast

robot exploit the

natural dynamics as

its actuators solely

fails to achieve the

swing-up dynamic

manoeuvre

Indeed, the motion depicted in the following frames shows that as
the gymnast-robot velocity increases the norm of the acceleration bias
vector Ẍbias increases as well. Note that in cell(1,2,3), the DCE shows
that the natural dynamics, represented by the bias vector (shown in
black), is considerably greater than the ellipsoid itself which repre-
sents the influence of the input torques on the acceleration of the
terminal organ. The evolution ratio of the influence of the natural
dynamics (also called drift forces) to the actual torque capacity is
reflected by the proposed index NDI 1, shown in Figure 22a. This
means that as the NDI 1 becomes greater than 1 (NDI1 > 1) the input
torques can neither control the motion of the robot nor compensate
the drift forces which arise due to the natural dynamics. However, it is
possible to indirectly control or exploit the natural dynamics through
the synchronised use of the input torques. We attempt to capture the
synchronisation between the natural dynamics and the input torques
through the proposed indexes NDI 2 and NDI 3 which are shown in
Figure 22b and Figure 22c, respectively. Recall from Section 4.1.2 that
NDI 2 describes the absolute value of the angle between the accelera-
tion bias vector Ẍbias and the major axis of the ellipsoid while NDI

3 defines the angle between the acceleration bias vector Ẍbias and
the acceleration due to the input torques Ẍτ. The blue curves in Fig-
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ure 22b and Figure 22c corresponding to the evolution of NDI 2 and
NDI 3 for the case of swing-up motion with low torque limits, show
that they are generally above 0.5. This can be interpreted as the input
torques act in generally in the direction of the natural dynamics in
order to exploit it instead of trying to override it or to compensate for
it.

The key challenge is to steer the natural dynamics, or equivalently
the acceleration bias vector Ẍbias in the desired direction. In the case
of the dynamic swing-up manoeuvre, the goal is to steer Ẍbias to-
wards the positive vertical acceleration space. The analysis shown in
Table 4 to Table 7 shows that there are two principal mechanisms
to achieve this motion. The first mechanism is to exploit the velocity-

dependent inertial forces by the means of inertia redistribution. The frames
from t = 0.2 s to t = 1.7 s show that the gymnast-robot attempts
several swings to increase its velocity. A closer inspection shows that
the gymnast-robot reconfigure its inertia distribution by retracting
and extending its center of mass which result in amplifying the an-
gular oscillations. From the DCM perspective and by inspecting the
trace of evolution of the natural dynamics Ẍbias (shown in blue)
from cell(1,3,2) to cell(6,3,1), we can observe a discretized version of
a swirl pattern. The high natural dynamic indexes in Figure 22b and
Figure 22c demonstrate that the swirl pattern is a not a chaotic move-
ment but rather a purposely planned trajectory in order to exploit the
natural dynamics to achieve the desired swing-up movement. This
confirms the results reported in [SS02], where they demonstrated on
a variable length pendulum that by proper extension and retraction
of the pendulum,hence redistributing the inertia, the Coriolis forces
are exploited and steered to achieve attenuation/amplification of the
angular oscillation. This model is used to explain a child on a play-
ground swing. One explanantion of the phenomenon of the swirl pat-
tern is that it is not possible to steer to an arbitrary acceleration due
to the second-order nonholonomic constraints imposed by the under-
actuation of the system. Therefore, it is not possible to steer directly
towards the positive vertical acceleration, however it is possible to
manoeuvre to any point in the acceleration space through a series of
manoeuvres following the shown swirl pattern. The kinematic equiv-
alent of this phenomenon is the car parallel parking problem which
has a first-order nonholonomic constraint which make it possible to
reach an arbitrary position only through a series of adequate manoeu-
vres.

The second principal mechanism is the acceleration channeling through

singularity. This mechanism can be clearly observed by inspecting the
DCM at cell(5,3,3) which corresponds to dynamic motion at t = 1.7 s.
Note that the active subsystem of the gymnast robot is at a singu-
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lar configuration. Also note that it is only at this moment that the
gymnast robot starts to steer the acceleration bias vector Ẍbias con-
siderably towards the positive vertical acceleration space. In the the
two following frames at t = 1.75 s and t = 1.8 s you can observe a
surge in the vertical acceleration capacity from −130m/s2 to 20m/s2.
Meanwhile, note that the surge in acceleration is not due to a surge in
the input torques as shown in Figure 20a at t = 1.7 s. The surge in the
vertical acceleration is rather due to the synchronization between the
input torques and the natural dynamics. This conclusion is confirmed
by the three natural dynamic indexes shown in Figure 22; at t = 1.7 s
NDI 1 = 10 which means that the influence of the natural dynamics
on the terminal organ acceleration is 10 times more than the influ-
ence of input torques.Moreover, NDI 2 > 0.9 which means that the
DCE’s prinicipal axis is oriented towards the acceleration bias vector
Ẍbias and NDI 3 > 0.9 meaning that the input torques fully exploit
the natural the dynamics to achieve a surge in the positive vertical ac-
celeration. A similar result is reported by [RG02] for a fully actuated
manipulator where the authors claim that "singularity appears to offer

an efficient means for "focusing" kinetic energy to produce movement in a

particular direction". However, we show that in the case of underactu-
ated manipulator only the active subsystem needs to be in a singular
configuration. This demonstrates the coherence of the proposed DCM
analysis technique with the literature.

In contrast to the swing-up motion of the gymnast-robot with low
torque limits, the trajectory optimization solver outputs a completely
different dynamic motion after increasing the torque limits 10 folds
to 500/ : N.m. The output trajectory depicted in Figure 21 and Ta-
ble 8 to Table 10 shows that the gymnast-robot reaches the upward
vertical goal configuration without the need to perform the swing-
up manoeuvre. This result is demonstrated graphically and quantita-
tively using the DCM analysis technique and the associated natural
dynamic indexes. In Table 8 the DCE starts in a degenerated con-
figuration similar to the case of the gymnast with low torque limits.
However, a clear difference appears in the following frames, the DCE
depicted in cell(7,2,2) to cell(7,2,4) demonstrate that the torque capa-
bility of the underactuated gymnast-robot is greater than the influ-
ence of the natural dynamics (shown in dotted black line), which is
also demonstrated in Figure 22a, where NDI 1 is near zero. The DCE
occupies a large area of the acceleration space encompassing the ori-
gin of the acceleration space and part of the positive vertical acceler-
ation. Consequently, the gymnast-robot has the physical capacity to
compensate and override the natural dynamics. This demonstrated
clearly in Figure 22c where NDI 3 is mostly negative, implying that
the input torques counteract the natural dynamics.
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4.3 conclusion

In this chapter we extended the formulation of the aforementioned
analysis technique for task-space acceleration analysis while high-
lighting the interpretation of TS-DCE and the TS-DCM of the robot
dynamics by applying it on a variety of underactuated manipulators
with different kinematic and dynamic parameters to demonstrate
clearly the mechanism of the analysis technique. Finally, chapter 4

demonstrates the merits of the TS-DCM analysis tool is demonstrated
by applying it to the dynamic swing-up maneuver of the gymnast-
robot on a high bar. The dynamic motion is first generated using
direct collocation trajectory optimization loosely based on the actual
motion of a gymnast on a high-bar. However, since trajectory opti-
mization is often treated as a black-box providing a local-optimal tra-
jectory without any insight into the mechanism of the motion, the
TS-DCM along with the associated natural dynamic indexes are em-
ployed to help gain insight into the dynamic motion of the underac-
tuated system and the associated control strategy and highlight the
pivotal role of exploiting the natural dynamics to achieve the dynamic
motion.





5
M O T I O N P L A N N I N G W I T H N AT U R A L D Y N A M I C S

In the previous chapters, we have presented the DCM as ’a posteriori’
graphical analysis tool of the dynamic capability of underactuated
manipulators. In this chapter, we take a step towards using DCM as
a guiding heuristic tool that helps in synthesizing a motion which ex-
ploits the natural dynamic and minimizes energy expenditure. First,
we start by presenting the kinodynamic problem formulation then we
give an overview of the different approaches of the sampling- based
motion planning highlighting the advantages and limitations of each
approach. We follow by describing how can the DCM be employed as
a control policy and we demonstrate the effectiveness of the Dynamic
Coupling based heuristic in planning the famous swing up maneuver
of the acrobot robot. We also show how can the proposed DC heuris-
tic be integrated with kinodynamic sampling-based methods such as
RRT and EST to improve their performance

5.1 a review on kinodynamic sampling based motion plan-
ning

The sampling-based approach has been shown to be a practical solu-
tion for quickly finding feasible path for relatively high-dimensional
motion planning challenges. The success of "geometrical" path plan-
ning algorithms such as RRT and PRM has motivated researchers
to further extend its scope to handle kinodynamic problems. Histor-
ically, the most common approach for such a problem is to solve
it in a decoupled manner, whereby the problem is decomposed in
steps of computing a collision-free path (neglecting the differential
constraints), then add a dynamic filter which smoothes the path to
satisfy the motion constraints, and finally consider "time" of motion
by reparameterizing the trajectory so that the robot can execute it.
However in principle, most dynamic robots controlled by the second-
order derivative of their configuration (e.g., acceleration, torque) and
which exhibit drift cannot be treated by a decoupled approach for
trajectory planning given their controllability properties [Lau98]. In-
tuitively, systems with drift constraints are systems where from some
states it is impossible to stop instantaneously (this is typically due to
momentum). More rigorously, a system ẋ = f(x,u) is a drift system
if for some state x there does not exist any admissible control u such
that f(x,u) = 0.

107
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To solve such challenges, the idea of kinodynamic planning has
been proposed [Don93], which involves directly searching for a collision-
free and feasible trajectory in the underlying system’s state space.
This is a harder problem than kinematic path planning, as it involves
searching a higher-dimensional space and respecting the underly-
ing flow that arises from the dynamics. Given its importance, how-
ever, it has attracted a lot of attention in the robotics community.
Sampling-based kinodynamic planners can be divided into two broad
categories: state sampling approaches such as RRT and control sam-
pling approaches such as EST and SST. State sampling approaches
requires a steering function. This function returns the optimum or at
least a feasible path between two states in the absence of obstacles. In
the case of a dynamical system, the steering function corresponds to
the solution of a two-point boundary value problem (BVP). However,
such function exists only for simple dynamics or linearized dynamics
(e.g. LQR-RRT) which performs well only close to the linearization
area. Furthurmore, properties of path planners such as probabilistic

completeness for RRT is not directly transferable to its kinodynamic
version [CPN14]. Actually, Kunz [KS14] showed the incompleteness
of the standard Kinodynamic RRT with best input and fixe d time
step. To avoid the use of steering function and linearization, one can
sample the control space directly using forward propagation. Such
planners were initially proposed by [Hsu+02]. EST finds an admissi-
ble trajectory, rather than the optimal one. Recently [PKP14a; LLB13]
showed that expanding the node using random shooting, based on
forward propogation of the dynamics can converge to a near-optimal
or even an optimal solution under certain conditions. [PKP14b] con-
cludes that for general non-linear systems where a steering function
is not available or expensive to compute, a better strategy to directly
sample the control space is a fruitful avenue for further improvement.
The focus in this work is to propose a new motion planning algorithm that

can handle underactuated robots more efficiently by exploiting the natural

dynamics of the system.

5.1.1 Kinodynamic Planning Problem Formulation

This section develops the notation and mathematical objects neces-
sary to understand sampling-based kinodynamic motion planning.
We adopt a terminology similar to [HZ16]and [Jeo15] and we formal-
ize the problem definition as following:

Definition 5.1.1 (Kinodynamic Planning Problem). Given a state space

S, an obstacle region Sobs, a feasible goal region Sgoal, feasible states Sfeas,

feasible inputs Ufeas, an initial state s0 2 Sfeas\Sobs a dynamical system

D. A feasible kinodynamic planning problem P = (S,U, sI,Sgoal,Sfeas,Sfeas,D)

ask to produce a trajectory s(t) : [0, T ] ! S and control τ(t) : [0, T ] !
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Ufeas such that

S(0) = sI (initial state) (142)

S(T) 2 Sgoal ✓ S (goal state) (143)

S(t) 2 Sfeas ✓ S 8t 2 [0, T ] (kinematic constraints) (144)

S(t) /2 Sobs 8t 2 [0, T ] (avoid collision) (145)

u(t) 2 Ufeas ✓ U 8t 2 [0, T ] (control constraints) (146)

ṡ(t) = D(s(t),u(t)) 8t 2 [0, T ] (dynamic equation) (147)

(148)

5.1.2 Taxonomoy Of Kinodynamic Planners

Sampling-Based Kinodynamic Planners

Control Space

Sampling
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Analytical steering

[Laumond 1998]

State-based steer-

ing [Pham 2013]

Control-based

steering [LaValle;

2001][Perez 2012]

Figure 23: Taxanomy of kinodynamic planners

Extending SBP algorithms to kinodynamic problems is not triv-
ial since states connections in the state-space cannot generally be
achieved using direct straight-line interpolation as in the case of path
planning in the configuration space. Thus, different approaches were
proposed to comply with the kinodynamic constraints. They can be
categorized into state-space sampling approach that has several steer-
ing methods and control space sampling approach that doesn’t rely
on a steering method. A simplified taxonomy of the different ap-
proaches is illustrated in Figure 23

State sampling approach depends on a steering method to create a
feasible trajectory (edge) between two states (nodes) in the tree. Steer-
ing methods can be categorized into three categories:

• Control-based steering: compute a control function u : [0, T ]!
Uadm and generate the corresponding trajectory using forward
dynamic. This approach does not guarantee that the desired
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state is reached by the end of the trajectory. One of the known al-
gorithms in this category is RRT [LaV01], in which random func-
tions u are sampled from a family of primitives (e.g., piecewise-
constant functions), a number of them are tried and only the
one bringing the system closest to the target (sampled state)
is retained. Linear-Quadratic Regulation (LQR) [Per+12] is also
control-based steering: in this case, u is computed as the op-
timal policy for a linear approximation of the system given a
quadratic cost function.

• State-based steering: interpolate a trajectory γ : [0,∆t]! C, for
instance a Bezier curve matching the initial and target config-
urations and velocities, and compute a control that makes the
system track it. For fully-actuated system, this is typically done
using inverse dynamics. If no suitable control exists, the trajec-
tory is rejected.

• Analytical steering: with control-based steering, it is easy to re-
spect differential constraints but difficult to reach the desired
state. Conversely, with state-based steering, it is easy to reach
the desired state but difficult to enforce differential constraints
(for instance, inverse dynamics cannot always be used with non-
holonomic systems). For some systems, steering functions sat-
isfying both requirements are known, like Reeds and Shepp
curves for cars. When it is the case, the problem can be reduced
to path planning.

5.2 the proposed dynamic coupling based algorithm

Motion planning and control of underactuated nonlinear mechanical
systems is still a main concern for the robotics and control commu-
nities. Despite the various approaches and frameworks proposed to
tackle this problem, they all boil down to finding a control policy
which maps sensors to actions. A control policy is a function that
generates the motor commands based on the state. The two main ap-
proaches for finding a control policy are optimal control theory and
reinforcement learning. Optimal control theory [Kir12]answers the
question by establishing a certain cost function ((e.g., minimum jerk,
minimum torque)) over a predefined time frame. The control law au-
tomatically results as the solution of the associated optimization prob-
lem. Depending on the problem structure and the resolution method,
the control law can be either a feedback control policy or quite often
a pure open-loop trajectory, while the correction of errors during exe-
cution is left to simple PID controller. The principal limitations of the
optimal control approach are:

• Computational requirements limited its application for systems
with nonlinear dynamics and strong coupling.
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• Optimal control approaches for non-linear systems suffer from
the local-minimum problem and the sensitivity to the provided ini-
tial guess solution, which quickly leads to undesired behaviour
or quite often a lot of tuning.

• Identifying the underlying optimality criteria for a certain task
is a challenging problem by itself. Not to mention, the challeng-
ing complications that arise in the case of multiple criteria for
a single task or when the task is decomposed into several sub-
task. The sub-field of inverse optimal control is devoted entirely
to solve this problem given the optimal solution. However, in-
verse optimal control problems are difficult from a mathemati-
cal point of view, since they require to solve a parameter identi-
fication problem inside an optimal control problem [MTL10].

On the other hand, reinforcement learning (RL) finds a control
policy by exploiting the data collected through intensive interaction
with the dynamical system, therefore, avoiding the classical and la-
borious analytical approach of optimal control theory. There are two
principal paradigms for RL application in robotics, model-free and
model-based approaches. Model-free policy search typically requires
an expert demonstration to initialize the learning process, followed by
many interactions with the actual robot. Model-based policy search
attempts to improve the sampling efficiency by learning a simulator
of the robot’s dynamics from data. Subsequently, the simulator gen-
erates trajectories that are used for policy learning. However, both RL
paradigms suffer from serious drawbacks: The famous

DeepMind’s paper

[Mni+15] which

applied RL to learn

Atari pong game

required 50 million

frames or 38 days to

find a control policy.

However, if you just

changed the ball

color you have to

repeat the learning

process

• Model-free RL approaches often require a large amount of data
from these interactions, which limits their applicability.

• While optimization of the initial demonstrated policy leads to
improved task performance, in the most popular gradient-based
appraches the resulting solution remains within the envelope
of the initially demonstrated policy. This limits the method’s
ability to discover novel optimal control behaviors.

• Not well suited for high-dimensional problems with continuous
action and state space leading to the known curse of dimension-
ality.

We propose to formulate the DCM and the natural dynamics as a
feedback control policy that exploits the natural dynamics based on
the actual state of the robot. The proposed control policy presents a
new control paradigm that is based on a deep insight directly from
the robot dynamics itself. The main advantage of the proposed feed-
back control policy is that can provide instantly the input torques that
exploit the natural dynamics with direct calculations given the exact
dynamic model. Furthermore, we show that the proposed control policy if
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Figure 24: Illustration of DCM-based control policy

combined with sampling-based motion planning scheme can provide an effi-

cient motion planning and control approach that doesn’t need neither initial

solution guess nor any time-consuming training phase nor laborious and

computationally demanding calculations, thus avoiding the aforementioned

limitations of the other motion planning paradigms.

5.2.1 Natural Dynamics based Control Policy

We have previously demonstrated in section Section 4.2 that the DCM
analysis tool in the task space and the associated natural dynamic
indexes show a posteriori the mechanism of exploiting the natural
dynamics during the dynamic swing-up maneuver of the gymnast-
model. More precisely, given a dynamic model and a particular state,
the TS-DCM provides the set of achievable accelerations in the task
space, EẌ from Equation 74, given the torque limits on the active
subsystem as well as the second-order nonholonomic constraints im-
posed by the underactuation. More importantly, it can provide the
subset of task-space accelerations that exploit the natural dynamics
of the system. These desired accelerations in the task space can be
mapped back to the input torques using an adequate operational
space control scheme for underactuated systems. Therefore, by fol-
lowing this briefly sketched derivation, we get a feedback control
policy that exploits the natural dynamics of the system.
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5.2.1.1 Natural Dynamics Based Control Inputs

We define the operational space accelerations that exploit the natural
dynamics as the subset of accelerations from the set of the achievable
accelerations, defined by the DCE EẌ, which are generally aligned
with the acceleration bias vector ~̈Xbias. In a m-d operational space,
the intersection between the m-d ~̈Xbias vector and the m-d ellipse
given by EẌ result in two specific operational space accelerations; One
acceleration that exploits the passive dynamics and the other which
counteracts and compensate the effect of the passive dynamics within
the limits of the torque constraints, as illustrated in Figure 24 .

For the sake of demonstration, let m = 2, thus the 2-d operational
space has the coordinates X = [X1 X2]

T , and the operational accelera-
tion space coordinates are Ẍ = [Ẍ1 Ẍ2]

T . Therefore, the 2-d dynamic
coupling ellipse is described parametrically by the equations

Ẍ1 = Ẍbias1 + a cos(α), (149)

Ẍ2 = Ẍbias2 + b sin(α), (150)

0 6 α 6 2π (151)

where a =
p
σ1 and b =

p
σ2 are the semi-length of the ellipse’s

major and minor axes, respectively. σ1 and σ2 are the eigenvalues cal-
culated from the singular value decomposition of the dynamic cou-
pling factor Z⇤ in Equation 124. (Ẍbias1 , Ẍbias2) are the coordinates
of the center of dynamic coupling ellipse in the operational accelera-
tion space. The ellipse is paramterized by the variable α with a value
limited between the 0 and 2π.

The angle between the acceleration bias vector and the ellipse’s
major axis can be found by multiplying the vector Ẍbias with the el-
lipse’s rotation matrix with respect to task acceleration frame U which
is calculated from he singular value decomposition in Equation 124

Ẍ0
bias = U Ẍbias (152)

Finally, the angle between the acceleration bias vector and the DCE’s
principal axis can be found by taking the multi-valued inverse tangent
of the rotated acceleration bias vector Ẍ0

bias using the atan2 function

φ = atan2
(
Ẍ0
bias2

, Ẍ0
bias1

)
(153)

By substituting φ back in the ellipse’s parametric equations Equa-
tion 149- we get the achievable operational space acceleration that
exploit the natural dynamics. On the other hand, φ+ π is the oppo-
site operational space acceleration



114 motion planning with natural dynamics

5.2.1.2 Operational space control

To compute the input torques needed to realise the calculated
accelerations, we employ the operational space control scheme pre-
sented by Mistry et al. in [MR12]. However, we note two important
contributions. First, we calculate a desired operational space accel-
eration based on the natural dynamics of the system while Mistry
et al. calculate a desired acceleration based on a simple PD form that
doesn’t take into account the robot dynamics. Second, the operational
space control scheme presented in [MR12] cannot handle torque con-
straints while we guarantee that torque limits are respected thanks to
the calculated accelerations from DCM that implicitly take into con-
sideration the inequality constraints on the control input of the active
subsystem.

We briefly outline the operational space control. However, for fur-
ther details reader is referred to [MR12]. Khatib [Kha87] has derived
the dynamics in the operational space for unconstrained and fully
actuated robot as

ΛẌ+
(
JM−1N− J̇q̇

)
= F (154)

where Λ = (JM−1JT )−1 and F is an external force applied at the
end-effector. Thus, the operational space control equation for fully-
actuated and redundant manipulator is formulated as

τ = JTF+
(
I− JT JT#) τ0 (155)

where F is calculated from Equation 154 using a desired task ac-
celeration Ẍdes in place of Ẍ, and JT# is the following generalized
inverse of JT

JT# =
(
JM−1JT

)−1
JM−1 (156)

As discussed by Khatib, this generalized inverse is defined to be dy-
namically consistent with the task: it is the only generalized inverse
that results in zero end-effector acceleration for any τ0. This inverse
also solves the equation ẋ = Jq̇ for the joint velocities that minimize
the instantaneous kinetic energy of the system. For a fully-actuated
robot, Equation 155 provide the input torques that compensate for
task space dynamics, such that Ẍ = Ẍdes, while decoupling motion
generated by τ0 from the task-space dynamics. However, as noted
by [MR12], such dynamic decoupling is not possible for underactu-
ated robots. Note that in the case of underactuation constraints, the
generated torques must statisfy

τ = Bτ (157)
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B =

"
0 0

Ina 0

#
(158)

where B is the projector into the actuated joint space, and Ina is the
na dimensional identity matrix. Since JTF 6= BJTF, therefore, τ0 has
to compensate for the unactuated joints by adding a null space com-
ponent with the control equation given as

τ = JTF+ N τ0 (159)

where N is defined as N = I− JT JT#. Therefore, from Equation 157

and Equation 159 we have

JTF+ N τ0 = BJTF+B N τ0 (160)

therefore, we can solve for τ0

(I−B)JTF = −(I−B)Nτ0 (161)

τ0 = −[(I−B)N]†(I−B)JTF (162)

where the Moore-Penrose pseudoinverse is denoted by the dagger
symbol †. Given that Equation 161 has at least one valid solution for
τ0, we can use Equation 162 in Equation 159 to write the operational
space control equation as

τ =
⇣
I− N[(I−B)N]†

⌘
JTF (163)

If the system has sufficient redundancy, there may be an infinite
number of possible control solutions. However, by using the Moore-
Penrose pseudoinverse in Equation 162, we are computing the min-
imum possible kτ0k. Thus Equation 163 represents the operational
space control solution with the minimum possible null space effect.
Note that Equation 163 generates dynamically consistent torques for
the active-subsystem that achieve the desired operational space accel-
eration with a null-space motion that compensate for the lost torque
at the passive joints.

5.2.1.3 Demonstration of the natrual dynamics-based policy on the Acrobot

The ND- control policy shown in the previous section is a general
feedback control policy that is based on the natural dynamics analy-
sis of the system, and it is applicable on any dynamical system given
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EẌ Ẍα

Figure 25: Block diagram of DCE-based control

its dynamical model. However, in order to better understand and ap-
preciate the effect of applying the ND-control policy on a dynamical
system, we test it on a canonical underactuated robot model, the ac-
robot, and study the emerging dynamical behaviour.

Each point in the state dependent DCE represents an achievable
operation space acceleration that can be passed to the operational
space controller as the desired acceleration (see Section 5.2.1.2). How-
ever, we identify four unique acceleration points, as shown in Fig-
ure 24:

• Ẍ0, Ẍπ: are the two acceleration points on both ends of the ellip-
soids major axis representing the task space accelerations with
the maximum torque transmission efficiency. Using the para-
metric equation of the ellipsoid (Equation 149) we can find these
accelerations using the parametric angle α = 0 and α = π, hence
the notation of the operational space accelerations Ẍ0, Ẍπ with
the subscripts 0 and π.

• Ẍφ, Ẍφ+π: are the natural dynamics based accelerations as de-
fined in section Section 5.2.1.1. Ẍφ is the operational space ac-
celeration that exploits the natural dynamics while Ẍφ+π is the
acceleration which counteracts the natural dynamics, using the
DCE’s parametric angle α = φ and α = φ+ π, respectively.

The block diagram of the DCE based feedback policy, shown in
Figure 25, consists of calculating the task space dynamic coupling el-
lipsoid TS −DCE(s) at the given state s using the robot’s dynamic
model, as shown in section Section 4.1. TS −DCE(s) will provide
the ellipsoid EẌ which represents an approximation of the set of fea-
sible task-space accelerations bounded by the physical limits of the
input control. More importantly, TS−DCE(s) will provide the accel-
eration bias vector Ẍbias as shown in Figure 24 which represents the
direction and magnitude of the natural dynamics on the task space
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acceleration. Ẍbias is a crucial information to calculate the natural
dynamics based accelerations as defined in Section 5.2.1.1. The pol-
icy selection module selects a particular task space acceleration from
the acceleration ellipsoid EẌ. In particular, the task space accelera-
tion Ẍα is determined based on a given policy using the parameter
α from the ellipsoid’s parametric equation. For example, to get a dy-
namical behaviour that exploits the natural dynamics, the accelera-
tion Ẍφ is selected based on the angle of the acceleration bias vector
Ẍbias, whereas for a motion that maximises the torque transmission
efficiency Ẍ0 is selected. The desired acceleration from the policy se-
lection module is then passed to the operational space control to get
the required control input τ to achieve the desired behaviour.

The presented control scheme is applied on the acrobot with a
frequency of 100 Hz. The acrobot is a canonical underactuated robot
with links lengths l1 = l2 = 1m and masses m1 = m2 = 1Kg the first
joint θ1 is unactuated while the second joint θ2 has an input torque
limit of kτk = 5N.m.

First and foremost, it is interesting to know what does each policy
produces in terms of input torque and how does it evolve in the state
space, since for each state s = (q, q̇) there is a unique input torque τ.
Figure 26 show the torque as function of the state for control policies
Ẍ0 and Ẍπ. Both policies represent the maximum torque transmission
efficiency from the active subsystem (joint 2) to the operational point
(terminal organ). Several observations can be made:

• First, if we thought of this feedback control policy as a black box
that takes the state as an input and produces a torque as an out-
put, we observe that both control policies based on Ẍ0 and Ẍπ

outputs a torque that is always at the limits of the torque bounds
regardless of the state. This observation made clear by using
the the colormap plots in Figure 26c and Figure 26d, where the
torque has a binary value either τ = τmax = +5 N.m repre-
sented by yellow or τ = τmin = −5N.m represented by blue.

• The output torque varies with both angles q1 and q2. However,
the angular velocities does not influence the output torque of
these policies. This made clear by comparing the torque given
by the state {0 6 q1,q2 6 2π | s = [q1,q2, 0, 0]T } with zero angu-
lar velocities as shown in Figure 26c and Figure 26d, with the
output torque for the states {0 6 q1,q2 6 2π | s = [q1,q2, 10, 10]T }
where the angular velocities is increased significantly to 10rad/s.

• The torque from both control policies based on Ẍ0 and Ẍπ are
exactly the same with opposite signs. However,
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• Note that the proposed control policy provides a torque which
is strictly within the torque limits.

On the other hand, Figure 27 shows the control policy based on
Ẍφ and Ẍφ+π, which are dependants on the natural dynamics of the
robot. Several observations to be made as well:

• Contrary to the previous control policy shown in Figure 26, the
natural dynamics based policy produces a torque manifold in
the state space that is relatively smooth and has continuous
spectrum between τmax and τmin.

• Contrary to the previous control policy shown in Figure 26, the
natural dynamics based policy varies with the angular velocities
as well as the configuration. This made clear by comparing the
torque given by the state {0 6 q1,q2 6 2π | s = [q1,q2, 0, 0]T }
with zero angular velocities as shown in Figure 27a and Fig-
ure 27b, with the output torque for the states {0 6 q1,q2 6

2π | s = [q1,q2, 10, 10]T }, shown in Figure 27e and Figure 27f
which represent the control policy based on Ẍφ and Ẍφ+π, re-
spectively, where where the angular velocities is increased sig-
nificantly to 10 rad/s. It is interesting to note that, the control
policy generally reduces the output torque as the velocity in-
creases.

• The torque from both control policies based on Ẍφ and Ẍφ+π

are exactly the same with opposite signs. However, it is im-
portant to note that both policies produce different motion be-
haviour, as shown in Figure 28, even though they are the same
with opposite signs.

• Note that the proposed control policy provides a torque which
is strictly within the torque limits.

Finally, Figure 28 and Figure 29 show the resulting motion and the
output trajectories after applying each of the four previous control
policies with a frequency of 100 Hz. A couple of observations can be
made at this point. First of all, each control policy produces a dis-
tinct dynamic behaviour. The first two rows in Figure 28 show the
resultant motion and torque input due to the control policies Ẍ0 and
Ẍπ. The resulting torque inputs and motions are exactly the inverse
of each other, since the control policy in both cases depends only on
the configuration as shown in Figure 26. Moreover, the input torques
are strictly at the limits of torque bounds. On the other hand, the
third and fourth rows in Figure 28 show the motion of the natural
dynamics based control policies. Both motions and input torque are
completely different even though they share the same torque mani-
fold with opposite signs, but as they depend on the velocity as well
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as the configuration they interacts differently with the dynamics. The
control policy based on Ẍφ exploits the natural dynamics to produce
smooth swings while the control policy based on Ẍφ+π tends to coun-
teracts the natural dynamics and produces a rotational motion for the
second link.

Nevertheless, it is clear that none of the four control policies achieve
the full swing-up manoeuvre by itself. Recall that these control poli-
cies is purely based on task space acceleration without taking into
consideration a specific goal configuration or velocity. This limitation
raises the need for a higher level motion planning algorithm that can
explore the state space using a combination of these control policies
in order to reach a specific goal state. In the next section we show
how these limitations are alleviated using a sampling-based motion
planning algorithm.

5.2.2 Natural Dynamics based Motion Planning Algorithm

The Natural Dynamics based control policy presented in the previous
section can generate dynamic motions that exploit the inherent natu-
ral dynamics of the system. However, its main limitation is that it can-
not reason about a specific desired goal position and velocity. In ad-
dition, for particular manoeuvres such as the swing-up, the dynamic
motion is composed of several phases of accelerations and deceler-
ations to reach a specific state. For a general system with complex
dynamics, it is unknown a priori the conditions (state and/or time-
dependent conditions) for switching between both behaviours. There-
fore, we leverage the existing kinodynamic sampling-based motion
planning techniques such as RRT and EST with our natural dynam-
ics based control inputs. We demonstrate that the natural dynamics
based control inputs improve their convergence rate as well as the
resulting motion quality regarding energy expenditure and trajectory
smoothness.

The proposed Natural Dynamics based Tree (NDT) is a tree-based
search in the state space, similar to other kinodynamic planners such
as RRT, EST, KPIECE, and SST. Although these planners are differ-
ent in many aspects, they share a common feature; they assume no
access to a BVP solver (or a steering function) that connects two ar-
bitrary points in the state space with a feasible or an optimal so-
lution. This feature enabled these approaches to be applicable to a
wide range of systems with complex dynamics, since solving the BVP
problem is as hard as the original motion planning problem and is
only available for systems with simple dynamics. However, the major
drawback of these approaches is that they resort to a Monte-Carlo
propagation scheme, which means that these methods usually apply
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Figure 26: The feedback control policies for the acrobot based based on
Ẍ0 and Ẍπ, showing in particular the torque evolution with the
acrobot’s state. Figure 26a and Figure 26b show the 3-D plot
of the torque τ as function of the configuration (q1,q2) while
q̇1 = q̇2 = 0 for control policies based on Ẍ0 and Ẍπ, respec-
tively. Figure 26c and Figure 26d are their equivalent colormaps
where the torque is represented by the colour spectrum within
the torque bounds kτk = 5 N.m. Same plots are repeated in the
four subsequent figures but with a velocity vector q̇1 = q̇2 = 10

to show the effect of velocity on the control policies.
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5

-4

-3

-2

-1

0

1

2

3

4

(f)

0 pi/2 pi 3*pi/2 2*pi
q1 (rad)

0

pi/2

pi

3*pi/2

2*pi

q
2

 (
ra

d
)

Control Policy based on Ẍφ
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Figure 27: The feedback control policies for the acrobot based based on Ẍφ

and Ẍφ+π, showing in particular the torque evolution with the
acrobot’s state. Figure 27a and Figure 27a show the 3-D plot
of the torque τ as function of the configuration (q1,q2) while
q̇1 = q̇2 = 0 for control policies based on Ẍφ and Ẍφ+π, respec-
tively. Figure 27c and Figure 27d are their equivalent colormaps
where the torque is represented by the colour spectrum within
the torque bounds kτk = 5 N.m. Same plots are repeated in the
four subsequent figures but with a velocity vector q̇1 = q̇2 = 10

to show the effect of velocity on the control policies.
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Figure 28: Resulting motion for the acrobot upon applying the four control
policies for four seconds with a frequency of 100 Hz. Each row
corresponds to the resulting motion for a particular control policy
in the following order: Ẍ0, Ẍpi, Ẍφ and Ẍφ+π. The figures on
the left column show the compilation of the resulting motion of
each control policy. All motions starts in the vertical equilibrium
position s = [0, 0, 0, 0]T with a dense colour and it gets brighter as
time advances. The figures on the right column show the input
torque profile produced by each control policy.
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Figure 29: Configuration and velocity trajectories for the acrobot upon ap-
plying the four control policies for four seconds with a frequency
of 100Hz. Each row corresponds to the state trajectory for a partic-
ular control policy in the following order: Ẍ0, Ẍpi, Ẍφ and Ẍφ+π.
The figures on the left column show the generalised coordinates
trajectory while the right column shows the generalized velocities
trajectories.
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a randomly sampled control input during a random sampled time
in a black-boxed simulator of the system. Despite the generality of
these approaches, they suffer from low convergence rate and jerky
motion due to random nature of the control inputs. The main ad-
vantage of the proposed NDT algorithm is that we use the natural
dynamics based input controls instead of randomly sampled input
controls, which we demonstrate empirically that it is more efficient,
more smooth, and leads to higher convergence rate.

The NDT Algorithm (1) builds a tree T = (V, E) whose vertices
and edges are the states s 2 R2n, where n is the number of DOF
(assuming that the state space is 2n), and motions ν. Each motion is
defined as ν = (s(t),u(t),∆t), where s(t) is the state trajectory be-
tween the two states on both ends of the edge and u(t) 2 Rna is the
applied input control trajectory during a duration ∆t 2 R>0. More-
over, a distinguished feature of NDT is that the vertices in the motion
tree T are divided in two groups, Explored vertices and Unexplored ver-

tices denoted by VExplored and VUnexplored, respectively. We define
VExplored as the vertices that has motions (or edges) starting from
these particular vertices, which means that all k control inputs have
already been applied at these vertices therefore they will add not fur-
ther information to the tree This means. This tree partition scheme is
inspired by the Interior and Exterior cells scheme in the KPIECE algo-
rithm [Kav12] to focus the exploration on states that have not been
explored before, which allows the motion planner to cover the state
space faster.

The algorithm begins in line by initializing the tree T with an un-
explored vertex VUnexplored holding the initial state sinit which has
no associated motion in the edge. From a high-level perspective,the
NDT algorithm follows an RRT-like tree expansion strategy such that
it samples a state Srand uniformly at random from the state space
S (line 4), then it searches for the nearest neighbour in the tree (line5).
The NearestNeighbor routine find a candidate state snear for fur-
ther expansion which is explored by applying a control input. This
expansion strategy is known as a Voronoi biasing strategy because the
probability of choosing a node in T is proportional to the volume of its
Voronoi cell. The Voronoi bias stimulates the tree to extend outwards
and explore new regions. It is a desirable property since it enables
relatively rapid and efficient exploration of the state space.

However, contrary to the kinodynamic RRT, described in algo-
rithm (4), the proposed NDT algorithm has two distinguishing fea-
tures. The first and the most distinctive feature from RRT and other
kinodynamic planners is the control sampling method. RRT and most
general kinodynamic planners employ a Monte-Carlo approach where
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the input control is sampled randomly from the input control space
uk 2 U and applied for a sampled duration ∆t, whereas the NDT
algorithm computes control torques based on the natural dynamics
of the system at the given state using the natural dynamics feedback
control policy. The second feature different from RRT is the vertex
selection for propagation routine. RRT selects the nearest neighbor to
a sampled state from the tree T whether it has been already explored
or not while the NDT algorithm selects the nearest neighbor from
the unexplored vertices VUnexplored only and apply the calculated
natural dynamics based control inputs.

The NDT algorithm 1 can be described in details as follows: Line 3

Algorithmus 1 : Natural Dynamics based Tree (NDT)
input : Kinodynamic problem (P) , State Space (S), Initial state

(sinit), Goal region (Sgoal), Distance metric (d),
Integration time limits (∆tmax,∆tmin), Number of
sampled control trials (k), Maximum number of nodes
Nmax

output : State trajectory s(t) 2 Sfeas for t 2 [0, tf] from sI to
sterminal 2 Sgoal and control trajectory u(t) for
t 2 [0, tf]

1 Initialization: VExplored  ;, VUnexplored  {sinit}

2 T = {V  (VExplored [VUnexplored), E  ;}
3 while (i 6 Nmax) _ ( T \ Sgoal = ;) do

4 srand  Sample(S)

5 snear  NearestNeighbor(VUnexplored, ssampled)

6 (ν1 . . . νk) EXTEND−ND (snear,νnear,k)
7 for j = 1 to k do

8 if νk(t) 2 Sfeas for t 2 [0,∆tk] then

9 Let snewk
= sk(∆tk) denote the end of the extension

10 VUnexplored  VUnexplored \ {snear}

11 VExplored  VExplored [ {snear}

12 VUnexplored  V [ {snewk
}

13 E  E [ {νk(t) : snear ! snewk
}

14 if snewk
2 Sgoal then

15 return State and control trajectory in T from sI to
snewk

16 end

17 end

18 end

19 end
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Algorithmus 2 : ND-EXTEND
input : Dynamical system D, Starting state sstart, associated

motion νstart ,Integration time limits (∆tmax,∆tmin),
Number of sampled control trials (k)

output :k Natural-Dynamic based motions ν1 . . . νk from sstart
to skend

// Calculate Natural Dynamics based input control

1 u1 . . . uk  ND−Control(D, sstart)
2 for i = 1 to k do

3 ∆tk  Sample([∆tmin,∆tmax])

4 uk(t) = PiecewiseControlProfile(νstart,uk,∆tk)
5 sk(t) Integrate(D, xs, uk(t),∆tk)
6 νk = {sk(t), uk(t),∆tk}
7 end

8 return ν1 . . . νk

Algorithmus 3 : ND-Contol
input : Dynamical Model D, Control input Constraints L, state

s, Number of sampled control inputs (k)
output :k Natural-Dynamic based control inputs u1 . . . uk

// Calculate the Task-Space Dynamic Coupling Ellipsoid

(TS-DCE) at state s

1 EẌ(s) = TS−DCE(D,L, s) from Equation 123

// Sample k Task-space accelerations from EẌ(s)

2 for i = 1 to k do

// Sample Natural Dynamics based acceleration as shown

in Section 5.2.1.1

3 Ẍi  ND− SampleAcceleration(EẌ(s))

// Calculate the input torques for the desired task

space acceleration Ẍi as shown in Section 5.2.1.2

ui  OperationalSpaceControl(D, s, Ẍi)

4 end

5 return u1 . . . uk
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5.3 experiment results

In order to demonstrate the effectiveness of the proposed NDT mo-
tion planning algorithm, we compare its performance with the clas-
sical RRT kinodynamic algorithm on the swing-up motion planning
problem of the acrobot robot.

The acrobot is a canonical model for an underactuated robot. The
swing up motion planning problem consist of finding a trajectory
in the state space as well as the required input control to move the
acrobot from its stable downward position to its unstable inverted po-
sition. The final unstable position is usually stabilized by switching to
an adequate linear controller (e.g., LQR). However, the stabilization
of the final position is not considered as part of the motion planning.
Despite the simplicity of the acrobot model, its dynamics are com-
plex enough that it has attracted the attention of the community to
consider it as a test bed for nonlinear control and motion planning
problems.

5.3.1 Model Description

The term "Acrobot" was coined at Berkeley by Murray and Hauser
as they studied its controllability properties. However, the swing-up
problem was introduced by [Spo95], motivated by the study of brachi-
ation and gymnast motions. The Acrobot model is a two-link pla-
nar robot, shown in Figure 30. The generalized coordinates vector is
q = [q1 q2]

T , where q1 is the angle of the first link relative to the
vertical and q2 is the angle of the second link relative to the first link.
The generalized velocities vector is q̇ = [q̇1 q̇2]

T , thus the Acrobot has
a four dimensional state vector s = [q1 q2 q̇1 q̇2]

T . A single actuator
is place on the second joint with an input control τ, while the first
joint is passive. The Acrobot’s kinematic and inertial parameters are
detailed in Table 11.

5.3.2 Results

The Acrobot swing-up motion planning problem is solved by the
NDT and RRT kinodynamic motion planning algorithms with two
different torque limits: kτlimitk = 5 N.m and kτlimitk = 10 N.m.
Each of the four motion planning is solved for 100 trials. Hence,
RRT_tau5 and RRT_tau10 denote the results of the RRT algorithm
for the acrobot’s with torque limits kτlimitk = 5N.m and kτlimitk =
10 N.m, respectively, NDT_tau5 and NDT_tau10 denote the results
for the NDT algorithm.
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Figure 30: Model of the Acrobot robot

Table 11: Acrobot model parameters

Symbol Description Value

m1 mass of link 1 1.0 kg

m2 mass of link 2 1.0 kg

L1 length of link 1 1.0 m

L2 length of link 2 1.0 m

Lg1 center of mass of link 1 0.5 m

Lg2 center of mass of link 2 0.5 m

I1 moment of inertia of link 1 0.083 kg.m2

I2 moment of inertia of link 2 0.083 kg.m2

Comparative tables of the results of the NDT and RRT algorithms
are shown in Table 12 and Table 13. Three metrics are used to mea-
sure the efficiency of the algorithms; the total calculation time, the
total number of nodes and the number of iterations of the main loop
before reaching a successful motion solution. The motion planning is
declared successful if it has reached the tolerance region around the
goal state sgoal = [pi 0 0 0]T using the condition

∣∣d(s, sgoal)
∣∣ 6 Rgoal,

where the distance metric d defined as d(s1, s2) = wqkq1 − q2k2 +

wvkq̇1 − q̇2k2. Table 13 compares the results regarding the quality of
the final motion using two metrics: The duration of the final motion
and the energy consumption which is defined as E =

P
|τk · q̇2k

·∆tk|.

In the case of low torque limit kτlimitk = 5 N.m, RRT has failed
to find a feasible motion before reaching a termination condition on
the total number of nodes N = 20000 nodes. Therefore, the results for
RRT_tau5 is marked as N/A.
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Table 12: Comparison of motion planning results

Calculation Time (s) Number of nodes Number of iterations

min mean max min mean max min mean max

RRT_tau5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

NDT_tau5 42.3 119.9 142.6 1043 2858 3425 174 476 571

RRT_tau10 37.5 408.2 1337 486 4051 9930 485 4050 9929

NDT_tau10 3.9 7.4 12.1 100 189 316 17 31 53

Table 13: Continued: Comparison of motion planning results

Energy consumption (J) Final motion duration (s)

min mean max min mean max

RRT_tau5 N/A N/A N/A N/A N/A N/A

NDT_tau5 67.1 67.1 67.1 4.9 4.9 4.9

RRT_tau10 117.2 245.9 411.6 3.6 7.0 11.7

NDT_tau10 110.9 110.9 110.9 3.7 3.8 3.8

The statistical results of the 100 trials for each of the four motion
planning problems is also shown using a box-and-whisker diagram
in Figure 31 to Figure 34. On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers extend to the
most extreme data points not considered outliers, and the outliers
are plotted individually using the ’+’ symbol.

Finally, for the sake of completeness, a sampled motion solution
from each algorithm is shown in Figure 36, Figure 37 and Figure 38.

5.3.3 Discussion

The results shown in the previous section for the motion planning
problem of the swing-up maneuver of an acrobot model demonstrates
clearly the superiority of the proposed NDT algorithm over a classical
Monte-Carlo based kinodynamic motion planning algorithm such as
RRT. This is demonstrated from both perspectives, the performance
of the algorithm to reach a feasible solution and the quality of the
output solution.

Regarding the algorithm’s performance, the box-and-whiskers dia-
grams for the calculation time, number of nodes and number of itera-
tions shown in Figure 31, Figure 32, and Figure 33 respectively, show
that the proposed NDT algorithm have significantly lower values
with several order of magnitudes, and more importantly, with much
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Figure 31: Comparison of calculation time between NDT and RRT motion
planning algorithms to reach a successful solution for the acrobot
swing-up manoeuvre in two cases with different torque limits us-
ing a box plot for 100 trials each. NDT_tau5 and NDT_tau10
denote the results for the NDT algorithm with torque limit
kτk = 5N.m and kτk = 10N.m, respectively, whereas RRT_5 and
RRT_10 are the results of the RRT algorithm with torque limits
kτk = 5N.m and kτk = 10N.m, respectively.The calculation time
in seconds is shown on a logarithmic scale
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Figure 32: Comparison of number of nodes to reach a motion solution of
the acrobot’s swing-up by the NDT and RRT motion planning
algorithms in two cases with different torque limits using a box
plot for 100 trials each. NDT_tau5 and NDT_tau10 denote the
results for the NDT algorithm with torque limit kτk = 5N.m and
kτk = 10 N.m, respectively, whereas RRT_5 and RRT_10 are the
results of the RRT algorithm with torque limits kτk = 5N.m and
kτk = 10 N.m, respectively. Number of nodes are shown on a
logarithmic scale
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Figure 33: Comparison of number of iterations to reach a motion solution
of the acrobot’s swing-up by the NDT and RRT motion planning
algorithms in two cases with different torque limits using a box
plot for 100 trials each. NDT_tau5 and NDT_tau10 denote the
results for the NDT algorithm with torque limit kτk = 5N.m and
kτk = 10 N.m, respectively, whereas RRT_5 and RRT_10 are the
results of the RRT algorithm with torque limits kτk = 5N.m and
kτk = 10N.m, respectively. Number of iterations are shown on a
logarithmic scale
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Figure 34: Comparison of energy consumption during the final motion solu-
tion of the acrobot’s swing-up by the NDT and RRT motion plan-
ning algorithms in two cases with different torque limits using a
box plot for 100 trials each. NDT_tau5 and NDT_tau10 denote
the results for the NDT algorithm with torque limit kτk = 5N.m
and kτk = 10 N.m, respectively, whereas RRT_5 and RRT_10 are
the results of the RRT algorithm with torque limits kτk = 5 N.m
and kτk = 10N.m, respectively.
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Figure 35: Comparison of the acrobot’s swing-up motion duration given
by the NDT and RRT motion planning algorithms in two cases
with different torque limits using a box plot for 100 trials each.
NDT_tau5 and NDT_tau10 denote the results for the NDT al-
gorithm with torque limit kτk = 5 N.m and kτk = 10 N.m, re-
spectively, whereas RRT_5 and RRT_10 are the results of the RRT
algorithm with torque limits kτk = 5 N.m and kτk = 10 N.m,
respectively.

lower variability. This result is expected since the NDT algorithm de-
pends on a particular control policy for the propagation phase, while
the RRT randomly samples an input torque each iteration. It is worth
noting that the NDT algorithm finds a motion solution successfully
in the case of restricted torque limit while the RRT has failed to find
a solution before reaching the maximum number of nodes.

Regarding the quality of the final motion solution, the box-and-
whiskers diagrams for the energy consumption and the final motion
duration shown in Figure 34 and Figure 35, respectively, reveal that
the proposed NDT algorithm reaches a high-quality solution (i.e., low
energy consumption and short motion duration) with respect to the
RRT algorithm, although we do not claim that the NDT algorithm
provides an optimal solution in terms of energy or motion duration.

It is interesting to note that there is almost no variability in the fi-
nal motion, meaning that it reaches nearly the same solution. This can
be explained by the fact that in the current implementation the NDT
algorithm employs a two particular natural dynamics based policies
which provides two sets of input torques and the role of the NDT
algorithm is to find the right combination of these policies to reach to
the goal configuration. The variability that was shown earlier regard-
ing the calculation time and the number of nodes is mainly due to
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Figure 36: Output motion solution from RRT Kinodynamic algorithm for
the acrobot swing-up manoeuvre with kτlimitk = 10 N.m (a)
shows the torque profile in blue while the torque limits are shown
in dotted red lines. (b) shows the evolution of the generalized
coordinates during the motion; the angle of the first and the sec-
ond joints are shown in red and blue, respectively.(c)shows the
cumulative energy consumption during the motion .(d) shows a
compilation of the resultant motion, the first and second links are
shown in red and blue, respectively, and the colours gets brighter
as the motion advances in time
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Figure 37: Output motion solution from the NDT motion planning algo-
rithm for the acrobot swing-up manoeuvre with kτlimitk =

10N.m (a) shows the torque profile in blue while the torque limits
are shown in dotted red lines. (b) shows the evolution of the gen-
eralized coordinates during the motion; the angle of the first and
the second joints are shown in red and blue, respectively.(c)shows
the cumulative energy consumption during the motion.(d) shows
a compilation of the resultant motion, the first and second links
are shown in red and blue, respectively, the colours gets lighter
as the motion advances in time
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Figure 38: Output motion solution from the NDT motion planning algo-
rithm for the acrobot swing-up manoeuvre with kτlimitk =

5 N.m (a) shows the torque profile in blue while the torque lim-
its are shown in dotted red lines. (b) shows the evolution of the
generalized coordinates during the motion; the angle of the first
and the second joints are shown in red and blue, respectively.(c)
shows the cumulative energy consumption during the motion .(d)
shows a compilation of the resultant motion, the first and second
links are shown in red and blue, respectively, the colours gets
lighter as the motion advances in time
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the random nature of sampling a state for propagation as in the RRT
algorithm.

5.4 conclusion

In this chapter, we aimed to leverage the proposed DCM and the
associated NDI indexes from a posteriori motion analysis tools to a
prior heuristic that can be employed to exploit the natural dynamics
in a motion planning problem. The natural dynamics based control
heuristic relies on the previous observation of the strong correlation
between the natural dynamics, represented by the acceleration bias
vector, and the input control during dynamic maneuvers. Several con-
trol policies were designed based on the TS-DCM, by identifying four
main characteristic points in the task acceleration space. However, a
single control policy is not sufficient to achieve a dynamic maneuver
such as the swing-up of an acrobot with several phases of accelera-
tions and decelerations. Thus, A novel sampling-based kinodynamic
motion planning algorithm based on the natural dynamics of the sys-
tem proposed. In addition, the effectiveness of the proposed NDT
algorithm is demonstrated on planning the motion and control of the
swing-up of the Acrobot along with a statistical comparison with RRT
in terms of computation time and motion solution quality.



6
C O N C L U S I O N S & P E R P E C T I V E S

In this chapter, the thesis is concluded with a summary of the intro-
duced contributions and an outlook on some lines of research identi-
fied as the consequent extension of the presented work.

6.1 conclusion

In spite of the spectacular strides in science and technology and par-
ticularly in the fields of robotics, biomechanics, and neuroscience,
there is still a significant discrepancy between robots and their bio-
logical counterparts (i.e., humans and animals) on several different
levels. From the mechanical design and motion control perspective,
there is a notable difference in motion’s agility, smoothness, and en-
ergy efficiency. Sports performers coordinate their muscles actions
to achieve a synergistic motion that surpasses their physical limits.
Lizards and Cheetahs coordinate their tail swing to rapidly accelerate
and maneuver during the pursuit of their prey. Gibbons coordinate
their whole body’s motion to swing gracefully between tree limbs.
One of the key ingredients for such complex behaviors is motion co-
ordination to exploit their natural dynamics. Yet there is a lack in the
literature for a proper tool that analyzes and exploit the interlimb dy-
namic coordination for a robotic system with an arbitrary number of
DOF and its relationship with the role of natural dynamics in shaping
a synergistic motion.

To this end, we have developed an analysis technique in both the
joint space and the task spaces and proposed three novel performance
measures which allow quantifying the role of the natural dynamics
during a dynamic motion and its significance with respect to the in-
put control its physical bounds. Moreover, we leveraged the proposed
analysis tools and the knowledge gained from the analysis studies by
abstracting a hypothesis on the dynamic coordination to exploit the
natural dynamics of the system and use it as a priori to develop a
novel kinodynamic planning algorithm which plans a dynamic mo-
tion based on the natural dynamics of the system.

In this work, we have focused our attention on a particular class
of robotic systems called underactuated robots. Unlike conventional
fully-actuated robots where the natural dynamics can be suppressed
by classical feedback control techniques, a large and diverse array
of dynamical systems falls under the class of underactuated systems.

137
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Synthesizing motion behavior for such underactuated systems is quite
challenging. Underactuation imposes a second-order nonholonomic
constraints on their dynamics that restrict the family of trajectories
their accelerations can follow. A certain subclass of underactuated
systems is composed of an active subsystem which can be directly
controlled by the control input and a passive subsystem which can
only be controlled indirectly through the dynamic coupling with the
latter. This is one of the reasons that has compelled us to treat un-
deractuated robots with torque limits. The fact that it is not feedback-
linearizable, the non-negligible dynamic coupling and the severe torque
limits remove the full control authority that one enjoyed in the fully-
actuated robots, thus the class of underactuated robots forces you to
handle the inherent nonlinear dynamics in an unconventional way.

In Chapter 3, we have introduced the Joint Space Dynamic Cou-
pling Ellipsoid (JS-DCE) which describes the set of admissible accel-
erations of the passive subsystem in a graphical and intuitive manner,
while taking into consideration the second-order nonholonomic con-
straint imposed by the underactuation, torque bounds on the active
subsystem, inertial distribution over the manipulator, gravity effect,
nonlinear velocity-dependent forces. We highlighted the role of the
natural dynamics which can be interpreted as the bias vector respon-
sible for displacing the center of the JS-DCE from the origin of the
acceleration space. Thus inducing a drift and directly affecting the
set of possible accelerations. In a dynamical trajectory, this relation-
ship can be better grasped by employing the "Joint Space Dynamic
Coupling Map (JS-DCM)," a novel analysis technique in the joint ac-
celeration space based on JS-DCE, to help gain insight into a dynamic
trajectory and analyze the dynamic coupling between the passive and
active subsystems of an underactuated robot. More importantly, it al-
lows analyzing the pivotal role of the natural dynamics of the sys-
tem on the passive subsystem during a dynamic motion. This tool
was developed with the floating-base system in mind. Floating-base
systems dynamic modeling paradigm became prominent recently as
it encompasses many-legged robots or any robotic system with in-
termittent contact or spatial mobile manipulators. The floating-base
system is inherently underactuated by construction. It is important to
understand how the developed forces in the active-subsystem along
with its torque limits as well as the contact forces affect the motion
of the floating-base. To this end, we have extended the JS-DCM anal-
ysis to floating-base systems and demonstrates its merits on a high-
dimensional humanoid robot performing a vertical jump with the aid
of arm swing. The motion planning and control of the vertical jump
are generated using the state-of-the-art trajectory optimization tool,
and the JS-DCM is used as a posteriori analysis tool of the resultant
motion.
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In Chapter 4, we extended the formulation of the aforementioned
analysis technique for task-space acceleration analysis while high-
lighting the interpretation of TS-DCE and the TS-DCM of the robot
dynamics by applying it on a variety of underactuated manipulators
with different kinematic and dynamic parameters to demonstrate
clearly the mechanism of the analysis technique. Finally, chapter 4

demonstrates the merits of the TS-DCM analysis tool is demonstrated
by applying it to the dynamic swing-up maneuver of the gymnast-
robot on a high bar. The dynamic motion is first generated using
direct collocation trajectory optimization loosely based on the actual
motion of a gymnast on a high-bar. However, since trajectory opti-
mization is often treated as a black-box providing a local-optimal tra-
jectory without any insight into the mechanism of the motion, the
TS-DCM along with the associated natural dynamic indexes are em-
ployed to help gain insight into the dynamic motion of the underac-
tuated system and the associated control strategy and highlight the
pivotal role of exploiting the natural dynamics to achieve the dynamic
motion.

In Chapter 5, we leveraged the proposed DCM and the associated
NDI indexes from a posteriori motion analysis tools to a prior heuris-
tic that can be employed to exploit the natural dynamics in a motion
planning problem. We presented a novel kinodynamic motion plan-
ning algorithm based on the natural dynamics of the system. The ef-
fectiveness of the proposed NDT algorithm is demonstrated on plan-
ning the motion and control of the swing-up of the Acrobot along
with a statistical comparison with RRT in terms of computation time
and motion solution quality.

6.2 perspectives

The scope of the research topics tackled in this thesis leaves many
unanswered questions and hence several directions for future research.
They are hereby briefly discussed.

• Validation of the proposed hypothesis of exploitation of nat-

ural dynamics based on natural systems performing highly

dynamic motions In this work we have depended on the state-
of-the-art of nonlinear trajectory optimization to synthesize a
dynamic trajectory which was analyzed subsequently with the
proposed analysis technique. It will be very interesting to ver-
ify the proposed hypothesis by studying the actual trajectory of
natural systems such as gymnast motion or brachiating gibbon
using accurate motion capture systems. However, this is not an
easy task as our analysis heavily depends on an accurate model
identification and motion tracking data.
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• Extending the presented floating-base DCM analysis to other

underactuated systems In this work, we have studied a limited
class of robotic systems. In particular, a subclass of underac-
tuated robots where the input control of the active subsystem
can only affect the passive subsystem through the dynamic cou-
pling. However, other robotic systems such as quadrotors or
even aerial mobile manipulators [Kon+14] are underactuated
in the sense of the number of control inputs is less than the
DoFs but the control inputs can directly influence all DoFs. The
motivation is fueled by the recent interest in agile quadrotors
maneuvers at high speed augmented with dynamic inertia such
as cable suspended payload [Foe+17] or underactuated manip-
ulators. Energy efficient motion planning can be facilitated by
following the same methodology presented in this thesis. Ap-
plying the DCM analysis on the optimal trajectories will offer
valuable insight on the mechanism of exploiting the inherent
dynamic coupling between the manipulator or payload and the
UAV base which could later be employed as a heuristic for en-
ergy efficient motion planning or a high-performance motion
which exceeds the physical capacity of the onboard actuators.

• Treatment of unit inhomogenity: A known problem which af-
fects most of the performance measures and analysis with mixed
units is unit inhomogeneity. When translational and rotational
quantities are mixed, the results are not invariant to changes in
units, which means that a simple scaling of units can produce
different results which are not equivalent to each other. The
unit-inhomogeneity issue can complicate a performance analy-
sis, and thus, a careful treatment is required in order to obtain
useful results. In this work, we have not encountered this prob-
lem because we have mainly focused on the translational carte-
sian accelerations. However, for more general motion analysis it
is important to address this issue. Several previous works [BK05;
Kha95] have already addressed this issue either by introducing
a proper scaling factor or by projecting into a unified dimension
or by separating the translational and rotational quantities.

• Improvements for the NDT algorithm The presented NDT kin-
odynamic motion planning algorithm is based on a vanilla ver-
sion of RRT in its minimal form as a proof of concept. However,
RRT and sampling-based motion planning algorithms, in gen-
eral, have known several variants and tweaks to improve its
performance and remedy some of its drawbacks. These ideas
are also applicable to the NDT algorithm for performance im-
provement. Among those ideas are a Bi-directional tree search
[LaV01], that alternatively grows two trees, one from the ini-
tial state and the other from the goal state. Other ideas treat
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the planner’s sensitivity to the distance metric by using offline
learning [PA15; LB10] to automatically learn a distance metric
close to the cost-to-go pseudo-metric instead of a simple Eu-
clidean metric. Finally, the NDT algorithm can be extended to
an asymptotically optimal motion planning algorithm by incor-
porating a cost function and following the same line of thought
of SST* [LLB16] and the work in [HNTH10]. These are meta-
algorithms that extend the search in state space of random-
based motion planning, such as RRT and EST, to a search in
State-Cost space.

• Explore alternative motion planning approaches with the pro-

posed natural dynamics based control heuristic We have em-
ployed sampling-based planning approach as a test-vehicle for
the proposed heuristic to exploit natural dynamics in motion
planning. However, the performance and the quality of the out-
put solution is highly sensitive to the limitations of the used
motion planning approach. Therefore, it might be worthy to test
the proposed heuristic with other motion planning approaches
such as machine learning by rewarding the motion that maxi-
mizes the natural dynamic index thus maximizing the exploita-
tion of the natural dynamics and producing more energy effi-
cient and smoother trajectories.
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Part I

A P P E N D I X





A
U N D E R A C T U AT E D R O B O T S D Y N A M I C
M O D E L L I N G

a.1 underactuated manipulator dynamics

A robotic manipulator is a collection of rigid bodies whose relative
motion is constrained by the admissible velocities of the joints con-
necting two consecutive rigid bodies in the system. The rigid bod-
ies are called the links of the robot. In this work, we assume that
all links are rigid and all joints are ideal. An ideal joint constrains
the motion between two links so that only certain relative velocities
are allowed, independently of the torques and forces applied to the
links. In this section, we address fixed-base underactuated manipu-
lators with 1-DOF joints, i.e., revolute or prismatic joints with one
degree of freedom. Fixed-base manipulators with conventional rota-
tional and prismatic joints are most efficiently modeled using a La-
grangian framework because in this way the constraints are included
in the dynamics by choosing the set of generalized coordinates as the
joint variables.

The motion of a mechanical system is related via a set of dynamic
equations to the forces and torques it is subject to. There are two
main formalisms for deriving the dynamic equations for such me-
chanical systems: Newton-Euler equations that are directly based on
Newton’s laws; and Euler-Lagrange equations that have their root in
the classical work of d’Alembert and Lagrange on analytical mechan-
ics and the work of Euler and Hamilton on variational calculus. The
main difference between the two approaches is in dealing with con-
straints. In robotics, langrangian dynamics formulation is a standard
method to derive the equations of motions for simulation and control
purposes because it doesn’t include explicitly the non relevant con-
straint forces and other internal forces. we are mainly interesetd in
how the input action on the actuators and external forces affect the
accelerations of the rigid bodies.

Euler-Lagrange equations have its origins at the variational prin-
ciples and the notion that the laws of nature act in such a way as to
extremize some function, for more details the reader is referred to
[GPS07; BL05]. As the Lagrangian approach originates from a princi-
ple in nature, it has the merit that it involves only physical quantities
that can be defined without reference to a particular set of generalized
coordinates, namely, the kinetic and potential energies. The formula-
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tion is therefore automatically invariant with respect to the choice of
coordinates for the system.

The Euler-Lagrange equations are derived directly from the energy
expressed in the generalized coordinates. We first form the system
Lagrangian as the difference between the kinetic and the potential
energies of the system. The Langrangian function is

L(q, q̇) = K(q, q̇) − G(q) (164)

where K(q, q̇) is the kinetic energy and G(q) is the potential energy
of the system.

The total energy in a multibody mechanical system is found by
adding the kinetic and potential energy of each rigid body with re-
spect to some common inertial reference frame. An important differ-
ence compared to single rigid bodies is that the inertia matrix de-
pends on the configuration of the multibody system. Thus, the par-
tial derivatives of the inertia matrix will not vanish as for single rigid
bodies.

a.1.1 Manipulator’s Kinetic energy

The manipulator’s kinetic energy is found in terms of the link
velocities expressed in the link frame Ri.

Ki = 1
2(V

B
0i)

T IiV
B
0i (165)

where link velocity twist VB
0i denotes the linear and angular ve-

locity of body i. The link velocity twist, represented with respect to
an inertial frame R0 can be expressed in terms of the manipulator’s
generalized velocities by using the geometric Jacobian.

a.1.2 Manipulator’s Kinematics using adjoint maps

let ξcab denotes the twist representing the velocity of Rb with respect
to Ra as viewed/expressed from Rc. Then ξii denotes the the body

joint twist of joint i represented in Ri. Vc
ab =

h
vcab ωc

ab

iT
Rm de-

notes the twist variable describing the linear and angular velocities of
frame Rb with respect to Ra as viewed from Rc.

Given a joint i with axis pi
i represented in frame Ri, then the joint

body twist for a revolute joint is given by
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ξii =

"
0

pı̂
i

#
(166)

ξii describes the allowed motion of the joints as seen from the frame
attached to the joints. Note that, ξii is always constant and indepen-
dent of the manipulator configuration. The body Jacobian JBi for a
frame Ri attached to the center of gravity of link i is given by

JBi (q) =
h
Adg−1

1i
ξ11 Adg−1

2i
ξ22 . . . Adg−1

ii
ξii 0(n−i)⇥m

i
(167)

where the Adjoint map Ad−1
gji

is used to transform the velocity of
link j expressed in its body frame Rj to the link frame Ri. Then the
mapping from the joint velocities to the velocity of frame Ri attached
to the center of gravity of link i is now given by

VB
0i = JBi (q)q̇ (168)

a.1.3 Joint Space Inertia Matrix (JSIM)

The Joint Space Inertia Matrix (JSIM) can be found from the kinetic
energy as follows

Ki =
1

2
(VB

0i)
T IiV

B
0i

=
1

2
(Ji(q)q̇i)

T Ii(Ji(q)q̇i)

=
1

2
q̇i

T (JTi (q)IiJi(q))q̇i

=
1

2
q̇TMi(q)q̇

(169)

which defines the JSIM of link i in terms of the body geometric
jacobian as

Mi(q) = (JBi )
T IiJ

B
i (170)

Using our definition, Ii is the generalized inertia matrix expressed
in the reference frame Ri attached to the center of gravity of link i and
aligned with the principal axes of inertia and is therefore constant and
defined as

Ii =

"
m3⇥3 0

0 I3⇥3

#
(171)
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The JSIM of M(q) of the total system is then given by

M(q)

nX

i=1

Mi(q) (172)

A robotic manipulator with n 1-DoF prismatic or revolute joints
is completely characterized by the configuration states Q = q 2 Rn

and v = q̇ 2 Rn representing the joint positions and velocities, re-
spectively. For an underactuated manipulator it is convenient to de-
compose the configuration vector into passive and active subsystems.
Thus, for an underactuated manipulator with np passive joints and
na active joints, where na +np = n. Thus, the generalized configura-
tion vector is decomposed as q = [qp qa]

T Accordingly, the JSIM can
be decomposed into these two subsystems for the inertial coupling to
appear as the cross diagonal terms in the matrix as

M(q) =

"
Mpp Mpa

MT
pa Maa

#
(173)

where Mpp 2 Rnp⇥np represents the joint space inertia matrix for
the system seen at the passive articulating subsystem with a dimen-
sion of. Maarepresents the inertia matrix of the active articulating
subsystem. Mpa denotes the p⇥ a inertial coupling matrix between
the passive and the active articulating subsystems.

a.1.4 Potential energy

In this thesis we only consider the gravitational field as the only
source of conservative force acting on the system. In that case, the
potential energy of the linkage typically consists of the sum of the
gravitational potential energies of each of the links. Let the wrench
associated with the gravitational force of link i with respect to coor-
dinate frame Rb be given by

Fig =

"
fi

brgi fi

#
= −mig

"
Rbiez

brgi Rbiez

#
(174)

where ez =
h
0 0 1

iT
andr

g
i is the center of gravity of link i ex-

pressed in Ri. fi 2 R3 represents the forces that act on link i at the
point rgi . In our case, Ri is chosen so that rgi coincides with the origin
so we have r

g
i = 0.The joint torque associated with the link i is given

by

τ
g
i = JTi (q)AdT

gbi(q)F
i
g(q) (175)
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and the total effect of the gravitational forces is found by summing
the effect of each link, which is given by

G(q) =

nX

i=1

τ
g
i (176)

a.1.5 Lagrangian Dynamics

Now that we have found the kinetic and potential energy of the sys-
tem, the dynamics can be found by the Lagrange equations in com-
ponent form as

d

dt

✓
∂L

∂qi

◆
−

∂L

∂qi
= τi (177)

dqi

dt
= q̇i (178)

where τi are the joint torques and other generalized forces collo-
cated with q̇i. However, note that for an underactuated manipulator,
the torques for the passive subsystem are zero τi = 0 8 i 2 np. The
dynamics can be written in matrix form as

 
Mpp(q) Mpa(q)

MT
pa(q) Maa(q)

! 
q̈p

q̈a

!
+

 
Cpp(q, q̇) Cpa(q, q̇)

Cap(q, q̇) Caa(q, q̇)

! 
q̇p

q̇a

!

+

 
Gp(q)

Ga(q)

!
−

 
JTp(q)F

JTa(q)F

!
=

 
0np⇥1

τna⇥1

!
(179)

a.2 floating-base rigid body dynamics

For robots whose root link can float freely in Cartesian space, e.g.
humanoids, it is necessary to consider the pose of the root link with
respect to (w.r.t.) the inertial reference frame. Differently from fixed-
base manipulators, the inertial frame cannot be chosen at the base
of the manipulator, but must be chosen at a fixed location. We will
attach a reference frame R0 anchored to this ground and a reference
frame Rb to the floating base. Rb also defines the base of the robot
and is no longer inertial. n frames Ri are assigned to each link so that
the origins coincide with the axes of the joints or the center of gravity,
respectively. We denote the configuration of the mobile platform with
respect to the inertial frame by g0b, while a vector q 2 Rn describes
the configuration of the n euclidean joints including all Dofs of the
active body limbs.
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Figure 39: Illustration of a general floating-base system

a.2.1 Floating-base System’s Configuration Space

We will adopt the notation presented in [MLS94; DS09]. Let Qi de-
scribe the configuration of each rigid body in the system and vi de-
scribe the velocity states. The configuration space of the floating base
is denoted by the a matrix Qb, where Qb 2 SE(d) d=2 or d=3 for
planar motion or spatial motion, respectively. The special Euclidean
group is a lie group. An alternative way to express the configuration
of the vehicle is as a vector qb which gives Qb = qb 2 Rd. The lo-
cation of a rigid body in space can be described by the position and
orientation of a reference frame attached to the rigid body with re-
spect to the inertial frame. The configuration space of a free floating
rigid body has six degrees of freedom it is reasonable to represent
the configuration as a vector in R6. One way to do this is to first

write the position of the rigid body as a vector X =
h
x0b y0b z0b

iT

and the orientation, also as a vector in R3 by the Euler angles Θ =h
φ0b θ0b ψ0b

iT
. The pose of the floating base in space is then

given by a vector

qb = ˇg0b =

"
P0b

θb

#
=

2
66666666664

x0b

y0b

z0b

φ0b

θ0b

ψ0b

3
77777777775

(180)
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The problem with this representation is that SE(3) has a different
topology than the Euclidean space R6. It is thus not possible to cover
SE(3) continuously and globally using six coordinates in this way. To
obtain a continuous and global covering of SE(3) we need to use more
than six real numbers. One representation that we can use is the unit
quaternion, which requires four parameters to describe the orienta-
tion. We can also combine the rotation matrix and the position vector
into one matrix, called the homogeneous transformation matrix, us-
ing 16 real numbers. In this way we choose a representation that al-
lows us to describe the topology of SE(3) globally and continuously at
the expense of increasing the number of variables used to describe the
configuration of the system to 7 (in case of quatranenion representa-
tion) or 16. The velocity variables of the floating base can be described
using body or spatial twists, or as the time derivative of the position
variables qb. In any case, the velocity vector is an element of R6 if the
configuration space is the special Euclidean group, or a vector in Rd

if the configuration space is an d -dimensional subgroup of SE(3).

We will assume that the active articulating body limbs consists
only of 1-DoF joints with configuration space R or S1. The configu-
ration space of both prismatic and revolute joints can be described
by the configuration states Qi 2 R for each joint i = 1, . . . ,na. The
configuration space of can therefore be written in terms of the joint
positions asQai

= qai
2 R with velocity variables vai

= q̇ai
2 R for

both prismatic and revolute joints.

Using this approach the configuration space is written in terms of
the configuration states Qi which for a floating base system can be
written as Q = g0b,qa where g0b = g0b(Qb) is the floating base po-
sition and orientation and qa 2 Rn collects all limbs joints positions.
The velocity variable are written as q̇ = q̇b, q̇a where qb is the time
derivative of the position variables of the floating base and q̇a 2 Rn

collects the joint velocities of all limbs DOFs. Noting that the time
derivative of the position variables qb is different from the mobile
base twist which has a geometrically meaningful representation of
the velocities of the mobile base.

We can describe the pose of each frame Ri relative to the inertial
frameR0 as a homogeneous transformation matrix g0i 2 SE(d) of the
form

g0i =

"
R0i P0i

0 1

#
2 R

4⇥4 (181)
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with rotation matrix R0i 2 SO(d) and translation vector P0i 2 Rd.
This pose can also be described using the vector of joint coordinates
q and the floating base pose Qb as

g0i = g0bġbi = g0b(Qb)gbi(qa) (182)

The floating base pose Qb and the joint positions qa thus fully
determine the configuration state of the robot. We can then write the
configuration of the floating base system as a vector

q =

"
qb

qa

#
2 R

d+na (183)

where

qb =
h
x0b y0b z0b φ0b θ0b ψ0b

iT
(184)

and

qa =
h
qa1 qa2 . . . qana

i
(185)

represents the configuration vector for the floating base, the na-links
on-board limbs. The generalized velocities of the mobile manipulator
system can be given in the inertial frame as

q̇ =

"
q̇b

q̇a

#
2 R

d+na (186)

This representation of the velocity variables has the apparent ad-
vantage that it can be integrated to find the position variables. It does
not, however, give a geometrically meaningful representation of the
floating base velocity in the same way as the velocity twists. We will
therefore use the twist representation of the velocity variables for mo-
bile manipulator systems to represent the velocities of the floating
base and the robotic links.

a.2.2 Floating-base System Kinematics

The kinematics of the system can be naturally described in terms of
the state variables g0b for position/orientation and VB or VS for ve-
locity. To allow for more general systems, and also multibody systems
such as floating-base system, we will write the configuration of a rigid
body as Q, where it is implicitly understood that Q = q 2 Rm if the
configuration space is Euclidean and where Q is a matrix Lie group
if the configuration space is non-Euclidean. The velocity variable is
written as a vector v = q̇ 2 Rn for an Euclidean configuration space
and as v = VB

0b 2 Rm if it is non-Euclidean. Using this formalism we
obtain a global parameterization of a rigid idealized joint.
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In this section we derive the for velocity twists in terms of adjoint
maps for the na-links with respect to the inertial reference. In mo-
bile robotics, it is generally preferred to use body coordinates for the
robot velocities because these are the state variables that are normally
measured by the sensors mounted on the robot (e.g. Inertial Measure-
ment Unit (IMU)). Therefore, all Kinematic quantities expressed in
body coordinates are denoted by superscript B. Let the link veloc-
ity twist VB

0i denote the linear and angular velocity of body i, and
JBgi(q) 2 Rm⇥(m+n) be the geometric Jacobian matrix of link i. The
link geometric Jacobian provides a mapping from the mobile manipu-
lator system velocity twists, which is the concatenation of the floating
mobile base velocity twist and the joint velocities, to the velocity of
link i in the robotic chain.

VB
0i = JBgi(q)V (187)

where

JBgi(q) =
∂VB

0i

∂V
(188)

Alternatively link velocities can be expressed using adjoint maps as
following

bVB
0i = Ad−1

gbi
bVB
0b + bVB

bi (189)

where the Adjoint map Ad−1
gbi

is used to transform the base velocity
expressed in its body frame Rb to the links frame Ri. For a serial
manipulator, the velocity of link i depends on all previous links in
the chain ( joints j, i6 j do not affect the motion of link i) where VB

bi

is the velocity of link i with respect to the mobile base Rb expressed
in the link frame Ri.

V̂B
bi = g−1

bi (q)ġbi(q) (190)

The time derivative of gbi(q) is given by the chain rule as

ġbi(q) =

naX

j=1

✓
∂gbi

∂qj
q̇j

◆
(191)

The twist coordinates VB
bi can be extracted from the twist V̂ 2 se(3)

using the vee-map _.

VB
bi =

✓
g−1
bi

∂gbi

∂qj
q̇j

◆∨

+

✓
g−1
bi

∂gbi

∂qj
q̇j

◆∨

+ . . .+

✓
g−1
bi

∂gbi

∂qj
q̇j

◆∨

=

⇣
g−1
bi

∂gbi

∂q1
q̇1

⌘∨ ⇣
g−1
bi

∂gbi

∂q2
q̇2

⌘∨
. . .

⇣
g−1
bi

∂gbi

∂qj
q̇j

⌘∨
0(na−i)⇥m

]

2
666664

q̇1

q̇2

...

q̇na

3
777775

= Jm,iq̇a

(192)
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where Jm is the body manipulator’s link i Jacobian. The columns
of the body Jacobian has an intuitive geometrical interpretation. They
correspond to the joint twists written with respect to the joint twists
ξi(q) as observed from the link i at configuration q [MLS94].

Jm,i(qa) =
h
ξ1 ξ2 . . . ξi 0(na−i)⇥m

i
(193)

a.2.3 Kinetic energy

The total energy in a multibody mechanical system is found by adding
the kinetic and potential energy of each rigid body with respect to
some common inertial reference frame.

a.2.3.1 Articulating links kinetic energy

The articulating link’s kinetic energy is found in terms of the link
velocities expressed in the link frame Ri.

Ki =
1

2
(VB

0i)
T IiV

B
0i

=
1

2
(Ad−T

gbi
VB
0b + Ji(qa)q̇a)

T Ii(Ad−1
gbi

VB
0b + Ji(qa)q̇a)

=
1

2
(AdT

gib
VB
0b + Ji(qa)q̇a)

T Ii(Adgib
VB
0b + Ji(qa)q̇a)

=
1

2

h
(VB

0b)
T q̇T

a

i
Mi(q)

"
VB
0b

q̇a

#

=
1

2
VTMi(q)V

(194)

for i = 1, . . . ,na We see that the inertia matrix of the manipulator
can be written in terms of the Adjoint map Adgib

(q) and the link
body jacobian Ji(q) as

Mi(q) =

"
AdT

gbi
IiAdgbi

AdT
gbi

IiJi

JTi IiAdgbi
JTi IiJi

#
2 R

(m+na)⇥(m+na) (195)

Note that the inertia matrix Mi(q) can be written in a compact
form using the body geometric jacobian JBgi as

Mi(q) = (JBgi)
T IiJ

B
gi (196)

where

JBgi(qa) =
∂VB

0i

∂V
=
h
Adgib

Ji

i
2 R

m⇥(m+na) (197)
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a.2.3.2 floating-base kinetic energy

The kinetic energy for the floating base can simply be expressed as

Kb =
1

2
(VB

0b)
T IbV

B
0b (198)

or in the standard form using the same factorization for the floating
base system as

Kb =
1

2

h
(VB

0b)
T q̇T

a

i
Mb

"
VB
0b

q̇a

#
=

1

2

h
(VB

0b)
T q̇T

a

i "Ib 0

0 0

#"
VB
0b

q̇a

#
(199)

We observe that the inertia matrix of the floating base is constant be-
cause we choose to represent the velocities in the floating base frame
Rb

a.2.3.3 Total Kinetic energy

The inertia matrix of the mobile manipulator system can be written
in terms of the body geometric Jacobian

Mi(q) = (JBgi)
T IiJ

B
gi (200)

where

JBgi(qa) =
∂VB

0i

∂V
=
h
Adgib

Ji

i
2 R

m⇥(m+na) (201)

The total kinetic energy of the floating-base system is given by the
sum of the kinetic energies of the floating-base and all attached artic-
ulating links, that is,

K(V ,qa) =
1

2
VT

 
nX

i=b

Mi(qa)

!
V =

1

2
VT

 "
Ib 0

0 0

#
+

nX

i=1

Mi(qa)

!
V(202)

where M(qa) is the inertia matrix of the attached articulating sys-
tem. Note that neither K(qa,V) nor M(qa) depend on the on the
pose g0b nor the choice of inertial reference frame R0.

a.2.4 Free-floating base Dynamics

The free-floating base system with generalized coordinates vector

q =
h
qT
b qT

a

iT
and quasi-velocity vector V =

h(
VB
0b

)T
q̇T
a

iT
. The

velocity twist V is called a quasi-velocity because V itself has a clear
geometric representation as velocity but its integral

R
V has no physi-

cal interpretation. The lagrangian can be written in terms of the gen-
eralized coordinates q and the body velocity twist V as

L(q, V) =
1

2
VTM(q)V − G(q) (203)
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the partial derivatives of the Lagrangian then become

∂L

∂V
= MV (204)

d

dt

✓
∂L

∂V

◆
= M(q)V̇ + Ṁ(q)V (205)

∂L

∂q
=

1

2

∂T (M(q)V)

∂q
V −

∂G(q)

∂q
(206)

M(qa)V̇ +C(q, V)V +G(q) = STτ+e JT (q)w (207)

where S is a selection matrix indicating the actuated degrees of
freedom, w S is a selection matrix indicating the actuated degrees
of freedom S = [06⇥n In⇥n], w is the concatenation of the external
contact wrenches, and Je is their concatenated Jacobians.

a.2.5 Contact dynamics as complementarity problem

Many of the complexities of rigid body contact dynamics can be
avoided by discretizing the system dynamics in time and reasoning
about the integral of contact forces acting over a time step. In particu-
lar, no distinction is made between impulses and finite contact forces
over a time step. By conservatively approximating the friction cone
as a polyhedron, forward dynamics can be cast as a linear comple-
mentarity problem (LCP), for which efficient solvers exist. This has
become a popular formulation for simulation of rigid bodies in fric-
tional contact and it has recently seen applications to control design
for legged systems.

This section will summarize existing theory of modeling non-impacting
rigid contact. Let us define a set of gap functions φj(q) (for j =

1, . . . ,n), where gap function j gives the signed distance between a
link of the robot and another rigid body (part of the environment,
another link of the robot, an object manipulated, etc.)

The gap functions return a positive real value if the bodies are sep-
arated, a negative real value if the bodies are geometrically intersect-
ing, and zero if the bodies are in a ’kissing’ configuration. The rigid
contact model specifies that bodies never overlap, i.e.:

φj(q) > 0 (208)

In the absence of friction, the constraints on the gap functions are
enforced by forces that act along the contact normal. Projecting these
forces along the contact normal yields scalars λ1z, . . . , λNz . The forces
should be compressive (i.e., forces that can not pull bodies together),
which is denoted by restricting the sign of these scalars to be non-
negative:

λz > 0 (209)
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A complementarity constraint keeps frictional contacts from doing
work: when the constraint is inactive (φj > 0) no force is applied
and when force is applied the constraint must be active (φj = 0).
This constraint is expressed mathematically as φj · λj = 0. All three
constraints can be combined into one equation

0 6 λj ? φj(q) > 0 (210)





B
T R A J E C T O RY O P T I M I Z AT I O N B A S E D C O N T R O L

b.1 background

Optimal control had its origins in the calculus of variations in the 17th
century (Fermat, Newton, Liebnitz, and the Bernoullis). The calculus
of variations was developed further in the 18th century by Euler and
Lagrange and in the 19th century by Legendre, Jacobi. Hamilton, and
Weierstrass. In the early 20th century, Bo1za and Bliss put the final
touches of rigor on the subject. In 1957, Bellman gave a new view
of Hamilton-Jacobi theory which he called dynamic programming,
essentially a nonlinear feedback control scheme. McShane and Pon-
tryagin extended the calculus of variations to handle control variable
inequality constraints, the latter enunciating his elegant maximum
principle. The truly enabling element for use of optimal control the-
ory was the digital computer, which became available commercially
in the 1950s.

Optimal control has roots in linear and nonlinear programming
(NLP), i.e., parameter optimization with inequality and/or equality
constraints, which were developed shortly after WWII[KT51]. In par-
ticular, Kuhn and Tucker [KT51] gave a simple necessary condition
for the system to be on a constraint boundary, namely that the gradi-
ent of the performance index must lie inside the "cone" of the con-
straint gradients. Efficient solvers have since been developed that
solve NLP problems with thousands of parameters [WB06; GMS02].
For numerical solutions of optimal trajectory problems the control
history must be approximated by values at a finite number of time
points, so collocation methods using NLP can be used to solve such
problems [Hargraves1987].

b.2 optimal control overview

There are three types of algorithms for solving optimal control prob-
lems; Dynamic programming is an excellent solution to the optimal
control problem for unconstrained low- dimensional systems, but it
does not scale well to high-dimensional systems, since it requires a
discretization of the full state space. Indirect methods tend to be nu-
merically unstable and are difficult to implement and initialize. We
will employ direct method for transcribing and solving the optimal
control problem. The solution to an optimal control problem via tran-
scription scales well to high-dimensional systems, but yields a single
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Figure 40: Overview of numerical methods for optimal control

trajectory through state and control space, rather than a global policy
like dynamic programming. We give a broad description of the first
two methods and discuss direct methods more deeply, as they are
heavily used in robotics and computer graphics nowadays.

b.2.1 Dynamic Programming

In the late 1950’s Richard Bellman introduced a generalization of
the classical Hamilton-Jacobi theory [Bel71]. The key notion of these
so-called extremal field methods, is described by a system of first-
order nonlinear partial differential equations, known as the Hamilton-
Jacobi-Bellman or HJB equation. Essentially these PDE’s describe the
optimal control functions u⇤ [x, t] as well as the optimal objective for
all possible initial. conditions [x(t0), t0]. From a control theory per-
spective, this could be seen as optimal feedback control. Hamilton-
Jacobi-Bellman theory has played a major role in the development
of necessary and sufficient conditions, and has provided a unified
theoretical basis for the field of optimal control. Despite its theoret-
ical importance, the utility of dynamic programming is limited to
unconstrained low- dimensional systems and does not scale well to
high-dimensional systems [Bry75]. The great drawback of dynamic
programming is, as Bellman himself calls it, the "curse of dimensional-

ity." Even recording the solution to a moderately complicated prob-
lem involves an enormous amount of storage.



B.2 optimal control overview 163

b.2.2 Indirect Methods

Indirect approach utilizes the optimize then discretize philosophy,
that is, write the continuous optimality conditions first and then dis-
cretize them. The indirect approach solves the problem indirectly by
converting the optimal control problem to a boundary-value prob-
lem. As a result, in an indirect method the optimal solution is found
by solving a system of differential equations that satisfies endpoint
and/or interior point conditions. The indirect approach leads to a
multiple-point boundary-value problem that is solved to determine
candidate optimal trajectories called extremals. Each of the computed
extremals is then examined to see if it is a local minimum, maximum,
or a saddle point. Of the locally optimizing solutions, the particu-
lar extremal with the lowest cost is chosen. In essence, an indirect
method attempts to locate a root of the necessary conditions the tran-
scription problem has small number of variables. the number of iter-
ation variables is equal to the number of differential equations.

Advantages:

• generally more accurate than direct methods since it attempts to
solve HJB partial differential equation equation by transforming
into 2n-dimensional ODE

• The problem size doesn’t grow since no discrteization is per-
formed before resolving the optimitality conditions

Disadvantages:

• Sensitivity to initial guess is the major disadvantage of the indi-
rect approach: In particular, a small change in the initial condi-
tion can produce a very large change in the final conditions.

• Not suitable for hybrid dynamics with multiple phases since it
is extremely difficult to determine this information a priori, and
failure to do so will cause the indirect method to fail.

b.2.3 Direct Methods

The direct transcription method utilizes a discretize then optimize
philosophy. Specifically the dynamic differential equation and the ob-
jective function are replaced by discrete approximations leading to a
large, sparse NLP problem. A direct method attempts to find a mini-
mum of the objective (or Lagrangian) function.

Advantages:

• In contrast the direct method works because the underlying
NLP algorithm determines the number, location, and correct
active grid points for a linearly independent active set
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Figure 41: Illustration of direct methods for trajectory optimization

Disadvantages:

• The major drawback of direct methods comes from the fact that
we only obtain an approximate solution of the OCP and prone
to numerical errors, as the dynamics of the robot are approxi-
mated in between the nodes but a proper choice of discretiza-
tion gives good results in practice.

• Transcribing the continous OCP into a finite dimensional in-
crease the size of the subsequent NLP, making its solution com-
putationally expensive (can take several minutes or even hours
to find a solution). However, specialized solvers can take ad-
vantage of the high sparsity of the NLP, i.e. the fact that the
associated gradients contain a large number of zeros.

Nowadays direct method are the most commonly used methods due
to their easy applicability to large-scale problems and their robust-
ness.

b.3 trajectory optimization by direct collocation

A trajectory optimization problem seeks to find a trajectory for some
dynamical system that satisfies some set of equality and inequality
constraints while minimizing some cost functional. An abstraction of
the Lagrangian dynamics, it can be written as a set of differential
equations

ẋ(t) = f(x(t),u(t)) (211)

where x =

"
q

q̇

#
2 R2n represent the system states, assuming the num-

ber of generalized coordinates equal to the number of generalized
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Figure 42: Illustration of the state trajectory discretization occurring in direct
collocation optimization. System dynamics f(tc) are enforced to
match the slope of the cubic ẋc at the collocation point xc.

velocities. The input control vector u 2 Rm and the transition func-
tion f(·) defines the system evolution in time. Trajectory optimization
problem seeks to find a finite-time input trajectory u(t), 8 2 [0, tf],
such that a given criteria is minimized,

G = φ(t0, x0, tf, xf) +

tfZ

t0

g(t, x,u) dt (212)

where φ(· and g(·) are the intermediate and final cost function. The
objective function can be written in terms of quantities evaluated at
the ends of the phases only, in that case it is referred to as the Mayer
form. If the objective function only involves an integral it is referred
to as a problem of Lagrange, and when both terms are present it is
called a problem of Bolza.

The optimization may be subject to a set of boundary constraints

bmin < b(t0, x0) < bmax (213)

bmin < b(tf, xf) < bmax (214)

In addition, Dynamic constraints, including the second order non-
holonomic constraints, can be added as path constraints

cmin < c(t, x(t), u(t)) < cmax (215)
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Bounds on state variables and input control limits are added as

xmin 6 x(t) 6 xmax (216)

umin 6 u(t) 6 umax (217)

The result of the optimization is an optimal trajectory given by
[x⇤(t), u⇤(t)]

To compute a feasible motion plan we transcribe the differential
equation of the robot dynamics to algebraic equations and solve them
through NonLinear Optimisation (NLP). [Bet10] showed that that
NLP could be interpreted as discrete approximations of the contin-
uous optimal control problem. There are mature NLP solvers used
in robotics; SNOPT [GMS02] which is based on Sequential Quadratic
Programming (SQP). The second solver is iPOPT [WB06] using the
Interior Point Method. However, The complete description of the
solvers and the algorithms used lies outside of the scope of this work.

In this work, we employ direct method for transcribing and solv-
ing the optimal control problem. In direct collocation, the optimiza-
tion searches over a set of decision variables z, comprised by a vector
of the states and control trajectories discretized over time at certain
points or nodes, i.e., z = [xk,uk], for k = 1, ...,N, where N represents
the total number of nodes. Finally The NLP can be formulated as.

minimize
z

G(z) (218)

subject to : l 6

0
BB@

z

c(z)

Az

1
CCA 6 u (219)

In, direct collocation the input is represented as a piecewise-linear
function of time, and the state is piecewise-cubic. The values of the
state and control at each knot point are the decision variables. The
slope of state is prescribed by the dynamics at each knot point. The
collocation points are the mid-points of each cubic segment. The slope
of the cubic at the collocation point is constrained to match the system
dynamics at that point, as illustrated in figure. For more details the
reader is referred to [Bet10][Bet98].

b.3.1 NLP Solvers

Nonlinear programming solvers are in a mature state of development
given the vast experience of the field of mathematical optimization.
Such solvers have been used and tested for numerical trajectory op-
timization during many years, primarily in the field of aircraft and
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spacecraft trajectory planning. The most popular NLP solvers are
SNOPT and iPOPT. This section presents some features aiming to
describe the main differences between them and to identify the na-
ture of any difference in their performances. A complete comparison
between these classes of solvers can be found in [BG02].

• SNOPT (Sparse Nonlinear OPTimizer)[GMS02]: The basic struc-
ture of this implementation of the SQP algorithm involves major
and minor iterations. Major iterations advance along a sequence
of points zh that satisfy the set of linear constraints. These itera-
tions converge to a point that satisfies the remaining nonlinear
constraints and the first-order conditions of optimality. The di-
rection towards which the major iterations move is produced
by solving a QP subproblem. Solving this subproblem is an it-
erative procedure by itself (i.e. the minor iterations), based on
a Newton-type minimization approach. An important charac-
teristic of all SQP algorithms is that they are ’active set algo-
rithms’. Roughly speaking, this means that during the iterative
procedure all the inequality constraints play a very explicit role
during the search as the QP subproblem must estimate the ac-
tive set of constraints in order to decide the search direction. A
convenient feature of SNOPT is the possibility of using informa-
tion about the gradient of the cost function and the constraints.
It also uses information about the structure of the problem if it
is provided, i.e. separating linear and nonlinear components of
objective function and constraints.

• iPOPT[WB06]: This algorithm also depends on a Newton type
subproblem. Nevertheless, inequalities are handled in a differ-
ent manner. A barrier function is used to keep the search as
far as possible from the bounds of the feasible set. The barrier
parameters change along iterations, allowing proximity to the
adequate constraint.





C
S A M P L I N G - B A S E D K I N O D Y N A M I C P L A N N E R S

c.1 rapidl-exploring random trees (rrt)

The algorithm that constructs a kinodynamic RRT is shown in Algo-
rithm (4). A tree based search where each vertex and edge represent a
state and a trajectory, respectively. The tree T = (V , E) starts with an
initial vertex as the initial state sI and with no associated trajectory in
the edge. RRT’s strategy expands T toward sparsely sampled regions
by sampling a random state in S and extending the tree toward it
using a steering function. This is known as a Voronoi biasing strategy
because the probability of choosing a node in T is proportional to the
volume of its Voronoi cell.

Line (3) provides srand by randomly selecting a state within a
given state bounds. In Line 4, the "nearest" vertex to xrand is chosen
according to the metric d. The EXTEND function attempts to grow
the tree by adding a new vertex that is biased by the randomly se-
lected state srand. This is also know as the steering problem which
is required to compute an open-loop trajectory that brings a non-
holonomic system from an initial state to a goal state without the
presence of obstacles. Given the general difficulty of this problem for
dynamic systems with drift or momentum, a Monte Carlo method is
usually applied by applying a random control input uk 2 U for a
random or some fixed time ∆t.

Algorithm (5) describes the EXTEND function which takes as in-
put a start state ss, a goal or terminal state st, a metric d, and an
integration time interval ∆t while k represents the number of trials.
The EXTEND function consists of a simple iteration in which each
step attempts to apply a randomly selected control uk 2 U (line
3) for a randomly selected integration time ∆t 2 [δmin, δmax] then
proceeds by integrating the system dynamic D from ss as the initial
value. Consequently, the integration provides a trajectory s(t). If the
number of trials k > 1 then k random control inputs uk are applied
for ∆tk producing k different trajectories sk(t) after each trial the dis-
tance between the final state in the trajectory sknew

= sk(∆tk) and st
is evaluated and the trajectory sbest that gets closest to st is retained.

Back to the main RRT loop in Algorithm (1), the trajectory sbest(t)

is verified in line (6) if it is kinematically feasible and does not col-
lide with an obstacle along the whole trajectory if one exists. Upon
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success in the verification phase, the final state snew of the trajectory
ybest(∆t) we added to the tree as a new vertex and its associated tra-
jectory as a new edge. In line (9), snew is checked if it is an element of
the predefined goal region Sgoal . If true then we can trace the final
trajectory in the search tree T back to the initial state sI.
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Algorithmus 4 : Rapidly-exploring Random Tree (RRT)
input : Kinodynamic problem (P) , State Space (S), Initial state

(sI), Goal region (Sgoal), Control space (U), Distance
metric (d), Integration time limits (∆tmax,∆tmin),
Number of sampled control trials (k), Maximum number
of nodes Nmax

output : State trajectory s(t) 2 Sfeas for t 2 [0, tf] from sI to
sterminal 2 Sgoal and control trajectory u(t) for
t 2 [0, tf]

1 Initialization: T = {V  {sI}, E  ;}
2 while (i 6 Nmax) _ ( T \ Sgoal = ;) do

3 srand  Sample(S)

4 snear  NearestNeighbor(T, ssampled)

5 s(t) EXTEND (snear, srand,d,∆t,k)
6 if s(t) 2 Sfeas for t 2 [0,∆t] then

7 Let snew = s(∆t) denote the end of the extension
8 V  V [ {snew}, E E [ {s(t) : snear ! snew}

9 if snew 2 Sgoal then

10 return Trajectory in T from sI to snew

11 end

12 end

13 end

Algorithmus 5 : RRT-EXTEND
input : Control space (U), Distance metric (d), Integration time

limits (∆tmax,∆tmin), Number of sampled control trials
(k)

output : State trajectory s(t) for t 2 [0,∆tbest] from ss to st and
control trajectory ubest(t) for t 2 [0,∆tbest]

1 Initialization: dbest  1, sbest  ;, ∆tbest  ;
2 for i = 1 to k do

3 u Sample(U)

4 ∆t Sample([∆tmin,∆tmax])

5 s(t) Integrate(xs,u,D,∆t)
6 xt  s(∆t)

7 if d(s(∆t), st) < dbest then

8 dbest  d(y(∆t), xt)
9 sbest  s

10 ∆tbest  ∆t

11 end

12 end
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c.2 expansive space tree (est)

EST is also a tree-based search like RRT however, EST’s strategy dif-
fers in that it explicitly maintains an estimate of how densely T covers
the state space and employs and random shooting instead of a steer-
ing approach. The density estimator is a function ρr(s), where r > 0

is a kernel width parameter. Unlike RRT that relies on expanding T

towards a randomly sampled state, EST expansion strategy attempts
to explore uniformly by sampling extensions inversely proportional
to the nodes density then sample the control space randomly and
apply it for a sampled duration . Pseudocode is given in Algorithm
(3).

Line 3-9 sample a set of krandom extensions {(s1,∆t1), . . . , (sk,∆tk)}.
The process samples a node from the tree with a probability inversely
proportional to its density, draws a random control sample from U,
and integrates the dynamics over a duration ∆t sampled from the
range [∆tmin,∆tmax]. Then, it assigns a sampling weight to each
candidate extension, inversely proportional to the density of its end
state. As in RRT, in line 10-12, we check the feasibility of a candidate
end state sj(∆tj) 2 Sfeas before adding it to the list of candidate
extensions.

To estimate density, several methods may be used. A kernel den-
sity estimator ρr(s) =

P
sr2T

exp(− k s− sr k2 /r2) is straightforward
but requires O(| T |) time to evaluate. An alternate method stores a
hash grid with a resolution rover space and counts the number of
existing nodes in T in the same cell as s. However, grids do not scale
well to high-dimensional spaces, providing poorer density estimates.
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Algorithmus 6 : Expansive Space Tree (EST)
input : Kinodynamic problem (P) , State Space (S), Initial state

(sI), Goal region (Sgoal), Control space (U), Distance
metric (d), Integration time limits (∆tmax,∆tmin),
Number of sampled control trials (k), Maximum number
of nodes Nmax

output : State trajectory s(t) 2 Sfeas for t 2 [0, tf] from sI to
sterminal 2 Sgoal and control trajectory u(t) for
t 2 [0, tf]

1 Initialization: T = {V  {sI}, E  ;}
2 while (i 6 Nmax) _ ( T \ Sgoal = ;) do

3 for j = 1 to k do

4 srand  Sample(T)

5 u Sample(U)

6 ∆tj  Sample([δmin, δmax])

7 s(t) Integrate (sj,u,D,∆tj)
8 wj  1

(1+ρr(yj(∆tj))2)

9 (y,∆t) Weighted random sample from
((y1,∆t1), . . . , (yk,∆tk)) with weights (w1, . . . ,wk)

10 if s(t) 2 Sfeas for t 2 [0,∆t] then

11 Let snew = s(∆t) denote the end of the extension
12 V  V [ {snew}, E E [ {s(t) : snear ! snew}

13 if snew 2 Sgoal then

14 return Trajectory in T from sI to snew

15 end

16 end

17 end

18 end
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