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Résumé

Le monde dans lequel nous vivons est observé par de nombreux satellites.

En effet, grâce aux missions satellitaires, certaines zones de la Terre, à savoir

les champs d’agriculture, le désert ainsi que les zones urbaines peuvent être

surveillées efficacement. La surveillance de ces zones est faite grâce aux caméras

embarquées à bord des satellites destinés aux missions d’observation de la Terre.

En revanche, à cause des contraintes techniques et financières, le développement

des capteurs d’imagerie haute résolution est assez limité. Par conséquent, des

compromis sont constamment pris par les fabricants afin de construire des

capteurs adaptés à la mission à laquelle ils sont destinés. Ainsi, les méthodes

consistant à fusionner des données issues de plusieurs capteurs, permettent de

contourner les limitations et produisent des images haute résolution.

En traitement d’images, la plupart des problèmes sont inverses et mal-

posés. Inverses car, à partir du modèle physique d’acquisition de l’image et des

observations disponibles, la scène observée doit être reconstruite. Les problèmes

inverses sont considérés comme mal-posés lorsque la solution n’est pas unique

et lorsque de faibles perturbations au niveau des observations peuvent conduire

à des résultats très différents. L’omission ou la simplification des informations

concernant la scène observée peut également conduire à une nouvelle image

reconstruite. L’application de la régularisation à un problème mal-posé permet

de le rendre bien-posé. La régularisation se traduit par l’ajout d’un terme de
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régularisation dans le problème à résoudre. Le terme de régularisation décrit

les propriétés que l’image à reconstruire doit satisfaire.

La problématique traitée dans la présente thèse est celle de la fusion d’images

hyperspectrales et multispectrales. Une image hyperspectrale (HS) possède une

haute résolution spectrale et une faible résolution spatiale, alors qu’une image

multispectrale (MS) a une haute résolution spatiale et une faible résolution

spectrale. Le but est donc de fusionner l’information pertinente contenue

dans chacune des images afin de produire une image haute résolution avec la

résolution spectrale de l’image hypespectrale et la résolution spatiale de l’image

multispectrale.

Dans le présent document, une variété de méthodes pour la fusion d’images

hyperspectrales et multispectrales est présentée. Le document de thèse est

constitué de deux chapitres, chaque chapitre est divisé en deux sections qui

décrivent chacune un nouveau modèle de fusion d’images hyperspectrale et

multispectrale.

Dans le chapitre 2, Section 2.4, le problème de la fusion est résolu avec des

outils de la théorie du transport optimal. Parmi ces outils figure la distance de

Wasserstein régularisée définie comme suit

Wγ(µ,ν) = min
π∈Π(µ,ν)

< π,D>−γE(π),

où µ et ν sont deux mesures de probabilités, D est une matrice de coût, π

est le plan de transport, E est l’énergie entropique et γ est le coefficient de

régularisation entropique.

L’énergie entropique est définie comme suit

v
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E(π) = −

n∑
i=1

m∑
j=1

πi,j(logπi,j − 1) − ιR+(πi,j),

où ι est la fonction indicatrice de R+ telle que

∀x, ιR+
(x) =


0 si x ∈R+,

+∞ sinon.

Le problème de fusion est ainsi modélisé par la minimisation de la somme

de deux distances de Wasserstein régularisées comme suit

min
u∈Σu

G(u) = λWγM(u, S̃(f)) + (1− λ)WγH(u, T̃(g)), (1)

où u est l’image fusionnée à reconstruire, WγM et WγH sont les distances de

Wasserstein régularisées relatives à la composante multispectrale et hyperspec-

trale respectivement, γM et γH sont des coefficients de régularisation entropique

relatifs àWγM et àWγH respectivement, S̃ et T̃ sont des opérateurs d’inversion,

λ est un paramètre déterminant le poids de chaque distance de Wasserstein et

Σu est le simplex où u est défini.

La résolution du problème de minimisation (1) a été faite avec l’algorithme

de Sinkhorn. Ce dernier permet l’utilisation des opérations matrices-vecteurs

ce qui permet d’accélérer le calcul. La figure 1 montre les résultats visuels de

la méthode de fusion proposée. Nous pouvons remarquer que visuellement,

l’image fusionnée est similaire à l’image de référence et que la plupart des

détails géométriques ont été récupérés à l’issu du process de fusion. Dans la

Section 2.8.2, une étude détaillée des résultats expérimentaux est fournie. La
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méthode proposée est également comparée, visuellement et quantitativement

avec d’autres méthodes de l’état de l’art. La comparaison a montré que les

résultats de la méthode suggérée se comparent favorablement avec d’autres

méthodes de l’état de l’art.

Figure 1: Évaluation de la fusion HS-MS avec le transport optimal sur l’image
Pavia 256× 256× 93. De haut à gauche vers la droite. L’image référence, l’image
HS, l’image MS et le résultat de la méthode proposée.

Dans la Section 2.9 du même chapitre, une version améliorée du précédent

modèle de fusion est proposée. Dans le nouveaumodèle de fusion, la nouveauté

concerne la matrice de coût qui, dans le précédent modèle était définie comme

suit

ξ= e−
D
γ

Dans le nouveau modèle de fusion, un terme nonlocal means décrivant la
relation entre les patchs de l’image est ajouté. Le but du terme nonlocal est
d’inclure les valeurs des pixels dans le transport et de prendre en compte le bruit
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contenu dans les images de départ. Pour deux pixels i et j dont les coordonnées
sont (xi,yi,zi) et (xj,yj,zj) respectivement, le nouveau coût du transport est le
suivant

ξ(i, j) = exp
(
−
1

γ
((xi − xj)

2 + (yi − yj)
2) −

α

γ
(zi − zj)

2 −
||P(i) − P(j)||22

h2sim

)

où α est un coefficient permettant d’équilibrer la distance spectrale par rapport

à la distance spatiale, P désigne le patch extrait de l’image en question et hsim est

un paramètre de filtrage. La difficulté de cette méthode réside dans le nombre

élevé des paramètres relatifs au modèle de fusion qui est égal à huit. Une étude

de sensibilité des paramètres a montré que le nouveau coût n’a pas amélioré

les résultats de la fusion en comparaison avec le premier modèle. En revanche,

l’inclusion des poids NLM pourrait être bénéfique pour diminuer les effets du

bruit géométrique, tel que les erreurs d’enregistrement qui peuvent affecter les

images hyperspectrales et multispectrales lors de la phase d’acquisition. Cette

nouvelle piste sera explorée dans la continuité de l’actuel travail de recherche.

Dans le chapitre 3, deux modèles de fusion basés sur le gradient nonlocal

ont été proposés. Le premier modèle de fusion, présenté dans la Section 3.2,

est exprimé comme la minimisation d’une fonctionnelle constituée de quatre

termes d’énergie.

min
u∈RH×N

H∑
h=1

‖∇ωhuh‖1 +
µ

2

H∑
h=1

‖DBuh − gh‖22+

γ

2

M∑
m=1

‖(Su)m − fm‖22 +
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖22,

(2)

Le terme ‖∇ωhuh‖1 est un régularisateur défini comme suit

‖∇ωhuh‖1 =
∑
i

∣∣∇ωhuh,i
∣∣

viii
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où | · | dans ce cas désigne la norme L2 et∇ωhuh ∈RN×N est le gradient nonlocal

calculé pour chaque pixel tel que

∇ωhuh,i =
(
(∇ωhuh,i)1, . . . ,(∇ωhuh,i)N

)
,

avec

(∇ωhuh,i)j =
√
ωh,i,j

(
uh,j − uh,i

)
,

où ωh,i,j est le poids nonlocal défini comme suit

ωh,i,j=



1

Γi
exp

−
‖i− j‖22
h2spt

−

∑M
m=1 sm,h

∑
{t∈Z2 :‖t‖∞6νc}

∥∥fm,i+t − fm,j+t
∥∥2
2

h2sim(2νc + 1)2
∑M
m=1 sm,h

 si

‖i− j‖∞ 6 νr
(i 6= j)

0 sinon

Γi =
∑

{j:‖i−j‖∞6νr}

exp

−
‖i− j‖22
h2spt

−

∑M
m=1 sm,h

∑
{t∈Z2 :‖t‖∞6νc}

∥∥fm,i+t − fm,j+t
∥∥2
2

h2sim(2νc + 1)2
∑M
m=1 sm,h


ωh,i,i = max

{
ωh,i,j : ‖i− j‖∞ 6 νr et j 6= i}

Contrairement au gradient classique qui permet une interaction locale entre

les pixels, le gradient nonlocal peut être calculé entre deux pixels quelconques

dans l’image quelque soit leur position.

Les deux termes d’attache aux données ‖DBuh − gh‖22 et ‖(Su)m − fm‖22 sont

relatifs à la génération de l’imagemultispectrale et hyperspectrale. L’opérateur B

est un filtre passe-bas,D est un opérateur de sous-échantillonnage et S représente

la réponse spectrale du capteur multispectrale. Le rôle des termes d’attache aux

données est de pénaliser la déviation de la solution u de l’image hyperspectrale
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gh et multispectrale fm. La pénalisation est faite à travers la norme L2.

Le dernier terme ‖P̃huh − Phg̃h‖22 est une contrainte radiométrique pénalisée

avec la norme L2. Le but de cette contrainte est de forcer l’image fusionnée u à

partager les mêmes hautes fréquences spatiales que l’image multispectrale f,

l’égalité suivante est donc imposée pour chaque bande hyperspectrale h

uh
Ph

=
g̃h

P̃h
, ∀h ∈ {1, . . . ,H}, (4)

L’égalité (4) est équivalente à uh − g̃h = g̃h
P̃h

(
Ph − P̃h

)
. Cette dernière signifie

que l’on impose que les hautes fréquences de chaque bande hyperspectrale

uh− g̃h coïncident avec les hautes fréquences de l’imagemultispectralePh− P̃h de

telle façon à ce que les détails géométriques soit injectés dans l’image fusionnée.

Le coefficient de modulation g̃h
P̃h

prend en compte l’énergie hyperspectrale et

multispectrale de chaque bande h. Les différentes composantes de la contrainte

radiométrique sont définies comme suit

• P ∈RH×N est une combinaison linéaire de l’image multispectrale telle que,

Ph =

M∑
m=1

αm,hfm, ∀h ∈ {1, . . . ,H}. (5)

• P̃ ∈RH×N est calculé comme suit

P̃h =

M∑
m=1

αm,hf̃m, ∀h ∈ {1, . . . ,H}. (6)

• g̃ ∈RH×N est l’image hyperspectrale ramenée à la grille fine par interpola-

tion bicubique.

avec αm,h défini comme suit
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αm,h =
sm,h∑
m sm,h

où sm,h sont des coefficients extraits de la réponse spectrale du capteur multi-

spectral.

L’image P̃ est calculée comme dans (6) mais cette fois-ci avec l’image f̃. Cette

dernière est le résultat de la dégradation spatiale de l’image multispectrale

comme dans le modèle de génération (1.7) suivi par une interpolation bicu-

bique afin de revenir sur la grille de l’image multispectrale. Cette succession

d’opérations dégrade amplement les hautes fréquences spatiales tout en préser-

vant les basses fréquences. La contrainte radiométrique est détaillée davantage

dans le reste du document. La figure 2montre les résultats visuels de laméthode

proposée. Nous remarquons que l’information spectrale ainsi que l’information

spatiale ont été reconstruites et que l’image fusionnée ressemble visuellement à

l’image référence. Des mesures objectives avec des indices de qualité ont montré

que la méthode proposée se compare favorablement aux méthodes de l’état de

l’art.

Dans la Section 3.7, des modifications ont été apportées au modèle initial (2)

afin d’aboutir au modèle suivant

min
u∈RH×N

H∑
h=1

‖∇
ω
′
h
uh‖1 +

µ

2

H∑
h=1

‖DBuh − gh‖22+

γ

2

M∑
m=1

‖(Su)m − fm‖22 +
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖1,

avec les nouveaux poids nonlocaux définis comme suit

ω
′
h,i,j=


1

Γ
′
i

exp

−
‖i− j‖22
h2spt

−

∑
{t∈Z2 :‖t‖∞6νc}

∥∥g̃h,i+t − g̃h,j+t
∥∥2
2

h2sim(2νc + 1)2

 si ‖i− j‖∞ 6 νr (i 6= j)
0 sinon

xi
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Figure 2: Évaluation visuelle des performances de la fusion HS-MS avec le
gradient nonlocal sur l’image Chikusei 304× 304× 93. De haut à gauche vers la
droite. L’image référence, l’image HS, l’image MS et le résultat de la méthode
proposée.

et

Γ
′
i =

∑
{j:‖i−j‖∞6νr}

exp

−
‖i− j‖22
h2spt

−

∑
{t∈Z2 :‖t‖∞6νc}

∥∥g̃h,i+t − g̃h,j+t
∥∥2
2

h2sim(2νc + 1)2


où

ω
′
h,i,i = max

{
ωh,i,j : ‖i− j‖∞ 6 νr et j 6= i}

Les différents termes impliqués dans la contrainte radiométrique à savoir

P, P̃ et g̃ sont les résultats de transformations de l’image multispectrale et

hyperspectrale comme cela a été montré avant. Par conséquent, il est possible

qu’un nouveau bruit ait été créé à travers ces transformations. La norme L2 est

efficace dans le cas d’un bruit gaussien et moins efficace pour d’autres types de

bruit. Ainsi, la norme L2 n’est peut être pas suffisamment adaptée au type de

bruit fabriqué lors des transformations mentionnées ci-dessus. Par conséquent,

dans le nouveau modèle, la contrainte radiométrique a été pénalisée avec la

norme L1. Les expérimentations dans cette partie ont porté sur des images

xii
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issues d’une caméra hyperspectrale représentant des scènes de la vie de tous les

jours. La figure 3 montre le résultat visuel de la modification proposée. Nous

remarquons que l’image fusionnée ressemble visuellement à l’image référence

et que les détails spatiaux ainsi que les détails spectraux ont été reconstruits.

L’analyse des résultats quantitatifs montre que la modification proposée du

modèle se compare favorablement aux méthodes de l’état de l’art et dépasse

même les résultats du modèle initial dans quelques mesures de qualité.

Figure 3: Évaluation visuelle des performances de la fusion HS-MS dans le cas
de la pénalisation de la contrainte radiométrique avec la norme L1 sur l’image
"Bookshelves" de résolution spatiale 512× 512× 31. De haut à gauche vers la
droite. L’image référence, l’image HS, l’image MS et le résultat de la méthode
proposée.

xiii
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Abstract

The world we live in is constantly under observation. Many areas such

as offshore zones, deserts, agricultural land and cities are monitored. This

monitoring is done throughout remote sensing satellites or cameras mounted

on aircrafts. However, because of many technological and financial constraints,

the development of imaging sensors with high accuracy is limited. Thus,

compromises are constantly made by the manufacturers to adapt the sensors to

the application they are destined for. Therefore, solutions such as multi-sensor

data fusion overcome the different limitations and produce images with high

quality. The idea behind image fusion is the combination of spatial and spectral

characteristics from different sensors into one image with high spatial and

spectral quality.

Most of image processing tasks are ill-posed inverse problems. Inverse

because from the physical imaging process and available observations one seeks

to reconstruct the original observed scene or object. Inverse problems are called

ill-posed because the solution depends on the observations and small change

of these latter may lead to a different outcome. Discarding or simplifying

information about the scene may also lead to a different solution of the image to

be reconstructed. In order to account for the ill-posedness of inverse problems,

a regularization term is imposed to get the desired properties of the original

image in the final solution.

xv
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In this dissertation various methods for dealing with hyperspectral and

multispectral image fusion are presented. The first part of the thesis uses

tools from the optimal transport theory namely the regularized Wasserstein

distances. The fusion problem is thus modeled as the minimization of the

sum of two regularized Wasserstein distances. Each one of these distances

recovers either the spectral or the spatial characteristics contained in the input

images. The minimization problem is strongly convex and it is solved with

Sinkhorn-Knopp’s algorithm. The visual and quantitative evaluation of the

fused model on satellite images compares favorably to the state-of-the-art fusion

methods. A modification of the previous fusion model is also suggested. It

consists in adding nonlocal means (NLM) weights in the cost matrix. Including

the NLM weights allows the mixing of the distances between the pixels and

their values. The goal of the NLM weights is to improve the transport between

the pixels and take into account the noise of the input data. The experimental

results showed that the NLMweights did not improve the transport and did not

reduce the noise. However, the NLMweights might mitigate the misregistration

that affects data during the acquisition process. This line of research will be

tested in a future work. In the second part of this thesis, the hyperspectral and

the multispectral fusion problem is presented differently. The latter is modeled

as the minimization of four energy terms. The first term is a nonlocal regularizer

that accounts for the ill-posedness of the problem. Throughtout the term of

regularization, the fused image is forced to share the fine geometric details

of the multispectral image. The second and the third terms are related to the

data generation model, their minimization forces the fused image to stay as

close as possible to the hyperspectral and the multispectral image. The last

term of the fusion model is a radiometric constraint. Its goal is to force the

fused image to share the geometric details and the high spatial frequencies

xvi
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of the multispectral image, for the latter contains the relevant spatial details.

The regularization term was penalized with the L1,2 norm and the rest of the

terms of the model were penalized with the L2 norm. In a second step, the

fusion model was upgraded by penalizing the radiometric constraint with the L1

norm. Both fusion problems were solved with the gradient-descent algorithm of

Chambolle and Pock. Experimental results were conducted onmultiple datasets

and the fusion was assessed visually and quantitatively. The performance of

both models compares favorably with the state-of-the-art methods.

xvii
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Chapter 1

Introduction

The use of digital images to understand theworld around us has been rapidly

growing during the last years. In fact, the availability of developed imaging

devices gave birth to high quality images that allowed many applications in

many fields. The use of machines destined to process and interpret these images

is what is called computer vision. For humans, visualizing and analyzing data

such as counting the number of individuals in a crowd, distinguishing their

skin colors etc is automatic and we do not even think about it. However, such

tasks for a computer are extremely difficult and challenging. Thanks to the

big development of image processing methods that are integrated in computer

vision machines, many devices like drones, medical machines etc are able to

receive, analyze and process visual data on their own in order to make decisions.

Reconstructing images through the eye or througha computer visionmachine

can be seen as an ill-posed inverse problem. In fact, it is widely known in the

image processing society that the human eye perceives visual information from

a limited number of points. How comewe can see everything around us then? It

is because, for a human beingwith good health (mental and physical) conditions,

the brain completes the perceived image by interpolating and extrapolating
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the data received from different points. If the scene is familiar to us then the

true image of the latter can be adequately reconstructed. Thus, the problem of

reconstructing the image of a scene is ill-posed because of the non-uniqueness

and the instability of the solution. The human brain is usually quick in solving

ill-posed problems by using its previous experience (a priori information).

In the majority of image processing tasks, ill-posed inverse problems are very

present. The ill-posedness is due to the instability of the solution which is itself

due to the errors that might affect the observations. These problems are inverse

because one seek to deduce the original observed scene from a set of physical

data. Ill-posed inverse problems are solved by choosing priors that impose and

describe the desired characteristics in the final solution. These priors regularize

the problem and make it well-posed because, thanks to the regularization, in

most of the cases, a unique solution can be found.

1.1 Image formation models

1.1.1 The human visual system

The human visual system is very complex and it has been the subject of many

studies that led to much progress in developing image processing techniques

and imaging devices. The human eye perceives colors because it is composed

of photoceptors named cones which are sensitive to three different bands of the

electromagnetic spectrum as shown in Figure 1.1. The B-Cones are sensitive to

the spectrum in the range of wavelengths between 400 nm and 550 nm peaking

at 440 nm which covers violet, blue and cyan light. The G-Cones are sensitive to

the spectrum in the range of wavelengths between 430 nm and 670 nm peaking

at 550 nm which covers cyan, green, yellow and orange light. As to the R-Cones

they are sensitive to the spectrum in the range of wavelengths between 500 nm

2
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and 760 nm peaking at 575 nm. This spectrum covers green, yellow, orange and

red light.

Figure 1.1: The spectral responses of rods and cones

The spectral response of the humaneye canbe found throughout an averaging

of the three cone sensitivities as shown in Figure 1.2. As one can notice, the

eye’s visual response peaks in the region corresponding to the green light, this

shows that the eye responds strongly to the green light and that we are more

sensitive to the green light than to any other color in the visible spectrum. If we

are presented with three light sources: red, green and blue with equal optical

power, the green would be perceived as the brightest.

Figure 1.2: The spectral sensitivity of the human eye

The human visual system has a fascinating and a complex structure. Under-
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standing the latter led to the development of algorithms and imaging devices

that replicate roughly the functioning of the human eye and help visualize and

interpret the world around us. For example, the physiological understanding of

the eye’s cells inspired the theory of edge detection of Marr [3]. It also led to

spatial filtering, introduced in the early work of Hubel and Wiesel [4], which is

a fundamental operation that is heavily used in image processing.

1.1.2 Digital imagery

A digital image is a binary representation of visual information such as

scenes and objects and it is electronically saved on any storage device. Each

digital image is recorded as many numbers, it is divided into a matrix or array

of small picture elements called pixels. A pixel is the smallest component in an

image that can be displayed and represented on a digital display device. The

value of a pixel is related to the brightness or color of the represented scene.

Like in the visual human eye system, an aperture at the front of the camera

opens to let light through. Then, the electronic equipment of the camera captures

the incoming light rays and turns them into electrical signals. The light detector

is one of two types, either a charge-coupled device (CCD) or a complementary

metal-oxide semiconductor (CMOS) image sensor. Both CCD and CMOS image

sensors convert light into electric charge through photodiode and process it

into electronic signals. Both technologies use an array of millions of tiny photo

sensors (photodiodes). Each one of these sensors creates an electrical current

when exposed to light. In a CCD device, the charge is transported across the

chip and read at one corner of the array. Then, each pixel’s value is turned into

a digital value with an analog-to-digital converter. In CMOS devices, there are

several transistors at each pixel that amplify and move the charge using more

traditional wires and each pixel can be read individually. CCD sensors create
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high-quality, low noise images whereas CMOS sensors are more susceptible to

noise. Furthermore, the light sensitivity of a CMOS sensor is low. In fact, each

pixel on a CMOS sensor has several transistors next to it, many electrons hit

the transistors instead of the photodiode, thus the amount of electrons hitting

the photodiode is low. CMOS sensors consume little power whereas CCDs use

a process that consumes lots of power. CCDs consume as much as 100 times

more power than an equivalent CMOS sensor.

In eachdigital imaging system, a number of bits ismade available to represent

each pixel in the image, it is what is called the pixel bit depth. Thus, each pixel

is represented as a series of bits, in most imaging devices the pixel bit depth is

equal to eight bits which means that each pixel can have 256 different brightness

levels.

Each image sensor has small individual detectors that respond to light that

hits them.The light energy generates an electric current at each detector. The

current is then measured electronically and converted to a digital value that

represents the amount of light detected. However, the sensor responds to

all wavelengths in the visible spectrum and produces only black and white

(grayscale) images. The sensor itself does not discriminate colors, thus, detectors

are needed to separate red, green and blue wavenlengths. Adding three sensors

is one solution to discriminate colors but it makes the camera bulky and very

expensive. Instead, most cameras use a filter array as shown in Figure 1.3. The

filter array is a single sensor that has pixels that respond to either red, green or

blue color. Figure 1.3 shows the most common type of color filter arrays which

is called "Bayer array". The latter is placed on top of the image sensor to make

each element of the sensor detect either red, green or blue color. An algorithm

incorporated in the camera has to approximate the other two primary colors in

order to have full color at every pixel. As one can notice in Figure 1.3, there are
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more green elements than there are red or blue. This is due to the fact that the

human eye is more sensitive to the green color than to the two other ones as

illustrated in Figure 1.2. The redundancy with green pixels produces an image

which appears less noisy.

Figure 1.3: Bayer filter

Since at each pixel the information of the three primary colors is needed (red,

green and blue), image processing is carried out in order to convert the detected

image (with the color filter) to a single full-color image. This process is known

as demosaicking. The latter consists in translating the Bayer array of primary

colors into a final image which contains full color information at each pixel.

1.1.3 Satellite imagery

Satellite sensors can provide three types of images with different spectral and

spatial resolutions: the panchromatic, the multispectral and the hyperspectral

image. The panchromatic (Pan) image is a grayscale image that has a very high

spatial resolution but only one spectral band, most of the time, in the visible

spectrum. The multispectral (MS) image has a high spatial resolution, lower

than the panchromatic’s, and few spectral bands. Finally, the hyperspectral

(HS) image has a low spatial resolution, compared to the multispectral image,

but it has many contiguous spectral bands. Figure 1.4 shows an example of a
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hyperspectral image with a spatial resolution of 30 m and 224 spectral bands.

The figure also shows that each object of the image has its own spectral signature

which is useful for instance to distinguish between the objects of a captured

scene.

Figure 1.4: Representation of hyperspectral data spatially degraded but with
many contiguous bands [5].

For several decades, satellite imagery has been used in various applications

and it made significant contributions to our understanding of earth processes

and human-environment interactions. The high spectral resolution in the

hyperspectral images allows to see the unseen, the availability of the multiple

spectral bands reveal valuable information about the acquired object or scene.

Hyperspectral images are used, for instance, in quality food inspection, study of

composition of materials etc. The panchromatic or the multispectral image are

used for their high spatial resolution. The latter describes how much detail is

visible to the human eye, the higher the spatial resolution the finer the geometric

details. Having fine geometric details in an image is very important because it
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helps in different tasks such as vegetation mapping, objects recognition etc.

Most observation satellites like Ikonos, Landsat, Quickbird and Pléiades

decouple the acquisition of panchromatic, multispectral and hyperspectral

images. The decoupling of the acquisition is due to technical constraints of

satellite sensors such as the on-board storage capacity and the transmission

bandwidth. The hyperspectral cameras sample the electromagnetic spectrum in

very contiguous and narrow spectral bands. Most of imaging sensors contain

pushbroom scanners as highlighted in Figure 1.5. This kind of scanners contain

linear array sensors, which, in most cases correspond to CCD devices. With

this kind of scanning, the recording of the image is carried out line by line as

the spacecraft that contains the imaging sensor flies forward. For each line

perpendicular to the flight direction, the pixels are measured simultaneously.

Pushbroom scanners have an important drawback, the detectors can have

varying sensitivity which can cause some noise in the final image. Thus, the

narrower the bands the higher the noise because of the difference of sensitivity

of different sensors. One way of reducing the impact of noise is the resampling

of the spatial grid of the image. In the case of hyperspectral images, the

spatial solution is compromised and it has to undergo resampling in order to

reduce noise and keep the spectral resolution. Unlike the hyperspectral case,

multispectral cameras contain a few optical sensors that are sensitive to very

spaced wavelengths and that apply less resampling than in the hyperspectral

sensors, which leads to high spatial resolution. In the case of the panchromatic

image, only one band is registered with a very high spatial resolution.

For the visualization of multiband images that have more than three bands,

three spectral bands are randomly selected and the image is plotted as a RGB

one. Thus, the colors displayed on the images are false colors and they change

following the selected three bands.
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Figure 1.5: A pushbroom scanner

1.2 Inverse problems

Inverse problems involve the estimation of "real data" from given observa-

tions, these latter are usually noisy and suffer from incomplete information due

to physical limitations of imaging devices. Electronic sensors acquire properties

of "reality" that are not the same as the natural sensors: our eyes. This statement

has even a philosophical side, Inmanuel Kant said: "Things that we see are

not by themselves what we see" [6]. The process of acquiring an image can be

modeled by the integral of a function describing the physical properties of the

scene to be acquired. For example, the light detector CCD in a camera integrates

light on a finite interval of the electromagnetic spectrum and gives as a result

an electrical signal, which is by itself converted to a digital signal, the so-called

gray level. To sum up, what we see are not the objects by themselves but their

integrals. Thus, extracting the information about the objects involves inversing

the image generation model, which can be difficult to solve.

In order to illustrate the idea behind inverse problems, let us take the example

of the restoration of a "clean" image given noisy observations. The forward
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model consists in generating a noisy image f from a sharp image u through the

convolution model f= κ ∗ u+ η, where κ is a convolutional kernel representing

the imaging device and η is some noise affecting the generated data. The

example is illustrated in Figure 1.6 and it shows that the result of recovering u

is not pleasant.

Clean Noisy Denoised

Figure 1.6: From the forward generation model f= κ ∗u+ η a noisy image fwas
generated from a clean image uwith some noise. The inverse process consists
in recovering u given f. The denoising was carried out with the Wiener filter

Inverting the forward model in order to recover a denoised image is not

straight forward because one has to invert the operator κwhich is not always

invertible. For instance, in the case where κ is the Gaussian kernel, the inversion

problem is equivalent to inverting the heat equation and it is well known that

this is an ill-posed problem.

1.2.1 Ill-posed inverse problems

In the field of image processing, hypotheses aremade on the physical process

of generation of observations. Thus, problems are usually modeled by a system

of equations to be solved, it is the so-called image model. Then, the goal is to

find "the real initial" data given the observations. However, most of the time,

the image model is not invertable which causes the ill-posedness of the image

problem in the sense that a unique solution cannot be found. In fact, according
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to Hadamard [7], a mathematical problem is well-posed when

i) the solution exists,

ii) the solution is unique,

iii) the solution depends continuously on the initial data, which means that

the solution must be robust to the noise.

A problem that violates any of the well-posedness properties is an ill-posed

problem. The first and the second condition deal with the feasability of the

inverse problem, whereas the third condition is about the stability of the solution.

When the solution does not depend "smoothly" on the available data, small

perturbations on the latter may lead to huge variations in the solution that

becomes therefore highly instable.

Most image processing problems are linear, thus, from now on, the study

of inverse problem will be restricted to linear ones. The majority of image

models can be represented as follows. Let H and K be two Hilbert spaces and

Φ :H→K a linear forward operator. The operator Φmaps data u contained in

H to another kind of data f in K. We consider the following equation

Φu= f (1.1)

The model (1.1) represents a forward problem and the goal is to compute an

approximation of the true image u such that

u=Φ−1f (1.2)

Problem (1.2) is usually ill-posed because the operator Φ is not always

invertible. In order to make (1.2) well-posed,Φ has to be bounded and surjective

on K, which ensures the existence of a solution, and injective on H to ensure
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the uniqueness of the solution. From the closed graph theorem it follows that

Φ−1 is continuous which ensures that the third condition of well posedness is

satisfied.

Data recovered from imaging systems are usually corrupted with noise and

can thus be represented as follows

fη =Φu+ η (1.3)

where fη is the noisy observed data and η is a realization of an additive noise

introduced by transmission, electronical imaging devices etc. In the rest of the

document fη will be denoted f in order to point out noisy data.

1.2.2 Regularization approach to ensure well-posedness

In image processing, most problems are inverse ones, because the aim of

these problems is to estimate data from inadequate or noisy observations. In

the majority of cases, inverse problems are ill-posed and they can be reduced to

well-posed problems by transforming the functional to be optimized. One way

of making an ill-posed problemwell-posed, is to provide additional information

to the image model, such as hypotheses that take into account the properties of

the image to be found or constraints that impose that the final image takes a

particular structure. Adding extra information to the image model restricts the

dimension of the space of admissible solutions. These additional properties are

generally expressed as new terms in the case of an optimization problem.

Let us go back to the image model (1.3). In this case, recovering the

original image u involves inversing the operator Φ. However, Φ−1 is either not

continuous or does not always exist. One way to hĳack the nonexistence of

Φ−1 is to approach the unknown image u by solving the following least-square
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problem

argmin
u∈H

‖fη −Φu‖2K.

The solution u† is also called Moore-Penrose generalized solution such that

u† =Φ†fwhereΦ† :K→H is continuous if and only if the range ofΦ is closed [8].

Nevertheless, in most of the applications in image processing, the range of Φ is

not closed which means that the solution of the inverse problems is not stable.

Thus, the conditions of Hadamard for well-posedness do not hold anymore.

One important property of ill-posed inverse problems is the instability of

the solution. In order to find an approximate and stable one, one way consists

in modifying the problem to be solved by regularizing it. The regularization

consists in imposing an a priori information to the solution which restricts the

space of admissible solutions. Let us consider the following regularization

scheme

min
u∈H
‖Φu− f‖2K + λΘ(u), (1.4)

where Θ(u) is a penalization term that imposes the desired characteristics in

the final solution and λ = λ(η,f) is a regularization parameter that acts as a

trade-off between the two terms of the regularized problem (1.4). One classic

regularization is introduced by TikhonovwhereΘ(u) = ‖u‖2 [9, 10] is considered.

The Tikhonov regularization problem is strictly convex and the solution uλ is

given by

uλ = (Φ∗Φ+ λI)−1Φ∗f, (1.5)

where Φ∗ is the adjoint operator of Φ.

The choice of the regularization term Θ is very important because it deter-
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mines the characteristics that the final image should have. Moreover, Θ has to

be chosen carefully in order to take into account borders, texture of the image

etc. The influence of Θ in the final image is controlled by the regularization

parameter λ.

1.3 Remote sensing and image fusion

1.3.1 Remote sensing

In remote sensing, energy emanating from the earth’s surface is measured

using a sensor mounted on an aircraft or spacecraft platform. In other words,

remote sensing consists in the collection of information about an object or a

phenomenon without the need of making any contact with it. With remote

sensing we can have access to images and gather information about dangerous,

inaccessible or large areas which most of the time cannot be done by humankind.

Thus, with the collection of these data, better analysis and explanation of many

natural phenomena can be provided. Remote sensing can also be carried out in

the sea where sensors on board of sonar systems are able to provide cartography

of the ocean, which can help study ecosystems and different populations of

different species that grow in the depths of the sea without having to disturb

them.

In remote sensing, there are two types of sensors: passive and active sensors.

Passive sensors capture the reflection emitted by the object due to the exposition

to sunlight whereas active sensors emit a signal to the object and capture the

reflected signal. Radar and Lidar are examples of active sensors, the time delay

between the emission and the reception of the reflected signal helps establish

the location, speed and direction of an object. Moreover, the strength of the

returned signal describes the physical properties of the remotely sensed objects.
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Passive sensors are especially used for land covering and monitoring as well as

object identification, whereas active sensors are used for vegetation structure

and ground surface elevation study.

Hyperspectral remote sensing, also known as imaging spectroscopy, and

multispectral remote sensing are among the most advanced technologies in

imaging science and they can be of big help and use in our everyday life and

in many other fields. For example, natural phenomena such as deforestation,

floods and hurricanes can be monitored, forest fires can be mapped from above

and adequate interventions to control them can be organized. With remotely

sensed images we can also predict the weather, assess the evolution of erupting

volcanoes or follow closely and map the growth of populations, vegetations,

urban cities, forests etc.

Unlike RGB cameras that provide images with only three bands, hyperspec-

tral cameras sample the electromagnetic spectrum into narrow and contiguous

bands (roughly 200 spectral bands) with an interval of 10 to 20 nm between

each two bands. The range of the bands goes from the ultra-violet to radio

waves through the visible range and the infrared, whereas RGB cameras sample

the visible spectrum only. Each object has its own spectral signature which

depends on its physical properties and on how it emits and reflects radiations,

thus, the high number of spectral bands allows the distinction between objects

throughout the reflectance spectrum of each one of them. This particularity

about hyperspectral images has proven very useful in many fields such as in

tracking [11], food inspection [12] and also in the study of biodiversity where

scientists use hyperspectral images to distinguish between species based on their

spectral reflectance [13]. Due to the technical constraints of satellite sensors and

onboared storage capacity restrictions, hyperspectral images are quite degraded

spatially which sometimes limits their applicability. Regarding themultispectral
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sensors, they provide images with much less spectral bands than the hyperspec-

tral sensors (between 3 and 10 bands) from the visible range and the infrared.

However, unlike the hyperspectral case, multispectral sensors provide images

with a high spatial quality. A high spatial resolution provides fine geometric

details that help discern individual objects or features in a captured image. In

general, the analysis of the spatial structure is very important in the remote

sensing field. For instance, in the case of an urban area that contains roads,

office building and parks, having an image with fine geometric details helps

recognize and classify different areas with a good accuracy from the captured

image.

1.3.2 Satellite sensors constraints

Despite the important progress in the remote sensing technology, satellite

sensors remain subjects to many technical constraints. Thus, trade-offs are

constantly made by the manufacturers in order to produce relevant data.

Therefore, satellite provide data that lack relevant details either spectrally or

spatially, depending on the sensor. Two of the determining factors in imaging

devices are the SNR (Signal to Noise Ratio) and the GSD (Ground Sampling

Distance). The good spatial and spectral quality in satellite images come at the

price of a low SNR which means that the images contain noise. Therefore, in

order to provide less noisy images with relatively good spectral and spatial

resolutions, some compromises should be made. The SNR in decibels is

computed as follows

SNRdB = 10 log10(
Psignal

Pnoise
),
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where Psignal is the power of the signal and Pnoise is the power of the noise that

affects the signal.

TheGSD factor represents thedistance between the centers of two consecutive

pixels measured on the ground, the bigger the GSD the more spatially degraded

the image. For example, a GSD of 20 m means that each pixel of the image

represents an area of 20×20 m2 on the ground, which means that the details

and information of the 20×20 m2 ground scene are "squeezed" into one pixel of

the image. Unfortunately, we cannot always choose to have a small GSD and

thus have a better spatial resolution without making sacrifices elsewhere such

as having a low and bad SNR.

The GSD is linked to the SNR through the NIIRS (National Imagery Inter-

pretability Rating Scale) which is given by the following general image quality

equation (GIQE) [14]

NIIRS= c0 + c1 log10(GSD) + c2 log10(RER) + c3
G

SNR
+ c4H, (1.6)

where c0, c1, c2 and c4 are coefficients relative to the imaging device, RER is the

system post-processing relative edge response, G is the system post-processing

noise gain and H is the system post processing edge overshoot factor, see [15].

We can notice that GSD and SNR are inversely proportional and therefore

trade-offs should be made according to the imaging device and the task the

latter is destined to accomplish. Thus, imaging spectrometers provide data

with an important GSD and with a SNR that is relatively small. However,

the hyperspectral data contains many contiguous spectral bands captured at

different wavelengths which is interesting for various applications, namely the

study of the composition of the soil, the existence and concentration of gazes

in the atmosphere etc. Multispectral sensors provide images with very few

spectral channels but with a small GSD which allows data to have a high spatial
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quality that can be harnessed for different purposes such as target detection,

classification, facial recognition etc. One should bear in mind that the capacity

storage and the bandwidth transmission are additional limitations which are

taken into consideration. As a consequence, they might affect the choice of the

GSD and the SNR factors and thus the quality of the produced images.

1.4 Goals of the thesis and contributions

Remotely embedded imaging systems acquire multi-band images which, in

general, can be considered as three-dimensional data cubes. Three variables

(x,y,λ) can be used to represent a multi-band image where x and y are the

spatial dimensions of the scene and λ is the spectral dimension as illustrated in

Figure 1.7. Hyperspectral (HS) images [16] and multispectral (MS) ones [17] are

typical examples of multi-bands images.

Figure 1.7: Hyperspectral data cube

Due to the technical constraints of imaging satellite sensors, multi-band

images suffer from limited spatial or spectral resolution. Thus, the fusion of a
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high-spatial and a low-spectral resolution (MS) image, with a low-spatial and a

high-spectral resolution (HS) image, has emerged in order hĳack the limited

resolutions in satellite sensors. Satellite image fusion has been explored for

many years and it is still a challenging and active field of research [18, 19, 20].

Figure 1.8 shows an example of a high-spectral but low-spatial resolution image,

a high-spatial but low-spectral resolution and a high-spatial and high-spectral

resolution images. Pansharpening was the first fusion technique and it consists

of fusing a high-spatial resolution panchromatic (Pan) image and a low-spatial

resolution (MS) image (MS pansharpening) [21, 22, 23, 24]. The problem of

fusing hyperspectral and panchromatic images (HS pansharpening) has also

been explored [20, 25, 26].

The fusion of multispectral and hyperspectral images (HS-MS fusion) has

been studied in the literature, however, it is still a challenging problem due to

the high dimensionality of images. In fact, in HS-MS fusion, the hyperspectral

data has many spectral bands and the multispectral data contains a rich spatial

information which in total, makes a higher quantity of data than in MS or HS

pansharpening. Thus, the objective of this thesis is to address the HS-MS fusion.

For thismatter, the suggestedmethods take into account the high dimensionality

of data and combine the rich spectral information contained in the hyperspectral

image and the spatial information contained in the multispectral image in order

to infer a high resolution hyperspectral image.

1.4.1 Image fusion and problem formulation

In order to address the HS-MS fusion problem, it is important to specify the

different notations needed for its formulation. The target image, also called the

unknown, fused or high resolution hyperspectral imageu= (u1, . . . ,uH)ᵀ ∈RH×N,

is rearranged in aH×Nmatrix whereH is the number of spectral bands andN is
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Figure 1.8: (Left) Hyperspectral image (size: 99×46×224). (Middle) Panchro-
matic image (size: 396×184). (Right) Target image (size: 396×184×224)

the number of overall pixels of u. This matrix representation of the target image

makes the distinction between spatial and spectral dimensions clear. The way u

is rearranged in the matrix means that each row ui ∈RN is a one-dimensional

vector that contains the pixels of the ith spectral channel with i ∈ {1, . . . ,H}. The

observed images are generally considered as linear degradations of the target

high-spatial and high-spectral image. Thus, the HS-MS fusion can be seen as

restoring a three dimensional data-cube from two degraded data-cubes. The

linear formulation of the observed images allows the fusion problem to be easily

formulated.

The multispectral image referred to as f such that f = (f1, . . . ,fM)ᵀ ∈RM×N

withM bands and N pixels is supposed to be a spectrally degraded and noisy

version of the target image u. On the contrary, the hyperspectral image denoted

as g such that g= (g1, . . . ,gH)ᵀ ∈RH×Nl , is a blurred, down-sampled and noisy

version of u with H bands, where H >>M and Nl = N
l2

pixels where l is the
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spatial sub-sampling factor. The relationship between u, f and g is given by the

following common observation model [27]

gh = uhBD+ εh, ∀h ∈ {1, . . . ,H},

fm = (Su)m + εm, ∀m ∈ {1, . . . ,M},
(1.7)

where uh represent the hth band of the unknown full resolution hyperspectral

image u. The operator B ∈RN×N is a low-pass filter that acts on each band

and it models the point spread function of the hyperspectral sensor. The

operator D ∈ RN×Nl is a down-sampling operator with the down-sampling

factor denoted by l. For the spectral degradation step, the operator S ∈RM×H

is used as the spectral response of the multispectral sensor. The two terms,

εh ∈RNl and εm ∈RN, are the realization of i.i.d. zero-mean band-dependent

Gaussian noise. As to h andm, they denote the number of the spectral band in

g and f, respectively.

1.4.2 Contributions of the thesis

In this thesis, several algorithms for hyperspectral and multispectral image

fusion were suggested. The contributions of this work are described in two

main chapters, each chapter is divided into two components that describe each

a new fusion model. Some notations might be used in many places. In oder

to avoid confusion, in each chapter the notations are introduced and specified

before use.

In Chapter 2, we study the image fusion problemwith tools from the optimal

transport theory. One of these important tools is the regularised Wasserstein

distance defined as follows
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Wγ(µ,ν) = min
π∈Π(µ,ν)

< π,D>−γE(π),

where µ and ν are two probability measures,D is a cost matrix, π is the transport

plan, E is the entropy and γ is the regularization coefficient linked to the entropy.

The entropic energy used to regularize the Wasserstein distance is defined

as follows

E(π) = −

n∑
i=1

m∑
j=1

πi,j(logπi,j − 1) − ιR+(πi,j),

where ι is the indicator of R+ such that

∀x, ιR+
(x) =


0 if x ∈R+,

+∞ otherwise.

The fusion problem is thus modeled by the minimization of the sum of two

regularized Wasserstein distances as follows

min
u∈Σu

{
G(u) = λWγM(u, S̃(f)) + (1− λ)WγH(u, T̃(g))

}
, (1.8)

Where u is the fused image to be recovered, WγM and WγH are regularized

Wasserstein distances, with regularization coefficients γM and γH, related to the

multispectral and hyperspectral components, respectively. Furthermore, the

operators S̃ and T̃ are inversion ones, λ is a trade-off parameter and Σu is the

simplex where u is defined.

The resolution of the minimization problem (1.8) is carried out with
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Sinkhorn’s algorithm. The latter allowed the use of matrix-vector operations

which sped up the computations. Figure 1.9 shows the visual results of the

proposed fusion method. We notice that, visually, the fused image looks sim-

ilar to the reference image and that the main geometric and spectral details

were recovered throughout the fusion process. In Section 2.8.2, a detailed

experimental study of the fusion method is provided. It is also compared with

other state-of-the-art methods visually and also with objective quality indices.

The comparison showed that the results of our proposed algorithm compare

favorably to the state-of-the-art methods.

Figure 1.9: Performances of HS-MS fusion with optimal transport on Pavia
dataset 256× 256× 93. From top left to right. Reference image, HS image, MS
image and the result of the proposed method.

In Section 2.9, an upgrade of the fusion model was suggested. For the new

fusion model the novelty was in the cost matrix which in the previous fusion

model was defined as follows
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ξ= e−
D
γ

where D is the initial cost matrix that contains the euclidean distances between

the pixels and γ is the regularization coefficient.

In a modification of the proposed fusion model, a nonlocal means (NLM)

term that describes the relationship between patches of the image is added. The

goal of adding this term is to include the values of the pixels in the transport,

to account for the noise in the images and the misregistration that might affect

data during acquisition. For two pixels i and j with the three dimensional

coordinates (xi,yi,zj) and (xj,yj,zj) respectively, the modified cost matrix is

defined as follows

ξ(i, j) = exp

(
−
1

γ
((xi − xj)

2 + (yi − yj)
2) −

α

γ
(zi − zj)

2 −
||P(i) − P(j)||22

h2sim

)
,

where α is a coefficient that balances the spatial distance with respect to the

spectral one, P denotes the patch extracted from the image and hsim is a filtering

parameter. The difficulty of this method is the high number of parameters

related to the fusion model which in total is equal to eight parameters. A study

of sensitivity of these parameters showed that the method did not improve the

results of the previous fusion model. Nevertheless, the NLM weights might

contribute to downplaying the effect of misalignment that affects data during

the acquisition process. This new hypothesis will be explored in future work.

In Chapter 3, a fusionmodel based on the nonlocal gradientwith two variants

is suggested. The first fusion model, presented in Section 3.2, is expressed as
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the minimization problem as follows

min
u∈RH×N

H∑
h=1

‖∇ωhuh‖1 +
µ

2

H∑
h=1

‖DBuh − gh‖22+

γ

2

M∑
m=1

‖(Su)m − fm‖22 +
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖22.

(1.9)

The term ‖∇ωhuh‖1 is a regularizer defined as follows

‖∇ωhuh‖1 =
∑
i

∣∣∇ωhuh,i
∣∣ ,

where | · | denotes the L2-norm in this case and ∇ωhuh ∈RN×N is the nonlocal

gradient computed for each pixel such as∇ωhuh,i =
(
(∇ωhuh,i)1, . . . ,(∇ωhuh,i)N

)
and it is defined as follows

(∇ωhuh,i)j =
√
ωh,i,j

(
uh,j − uh,i

)
,

where ωh,i,j is a similarity measure defined as follows

ωh,i,j =



1

Γi
exp

−
‖i− j‖22
h2spt

−

∑M
m=1 sm,h

∑
{t∈Z2 :‖t‖∞6νc}

∥∥fm,i+t − fm,j+t
∥∥2
2

h2sim(2νc + 1)2
∑M
m=1 sm,h

 if

‖i− j‖∞ 6 νr,
(i 6= j)

0 else,

and

Γi =
∑

{j:‖i−j‖∞6νr}

exp

−
‖i− j‖22
h2spt

−

∑M
m=1 sm,h

∑
{t∈Z2 :‖t‖∞6νc}

∥∥fm,i+t − fm,j+t
∥∥2
2

h2sim(2νc + 1)2
∑M
m=1 sm,h


ωh,i,i = max

{
ωh,i,j : ‖i− j‖∞ 6 νr and j 6= i}

.
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Unlike the classical gradient that interacts locallywith the pixels, the nonlocal

one allows the computation of the gradient between any two pixels in the image.

The terms ‖DBuh − gh‖22 and ‖(Su)m − fm‖22 of expression (1.9) are data

fidelity ones related to the generation of the hyperspectral and the multispectral

image. The operator B is a low-pass filter, D is a downsampling operator and S

represents the spectral response of the multispectral sensor. The goal of data

fitting terms is the penalization of the deviation from the hyperspectral and the

multispectral data gh and fm, respectively. The penalization is done throughout

the L2-norm.

The last term ‖P̃huh − Phg̃h‖22 of expression (1.9) is a radiometric constraint

penalized with the L2-norm. The goal of this constraint is to force the fused

image u to share the same high spatial frequencies as the multispectral image f,

that is,

uh
Ph

=
g̃h

P̃h
, ∀h ∈ {1, . . . ,H}, (1.11)

which is equivalent to

uh − g̃h =
g̃h

P̃h

(
Ph − P̃h

)
.

Note that, we are forcing the high frequencies of each hyperspectral band,

uh − g̃h, to coincide with those of the multispectral image, Ph − P̃h, so that

spatial details are injected into the fused product. The modulation coefficient
g̃h
P̃h

takes the energy levels of the multispectral image and of the corresponding

hyperspectral bands into account. The different components of the radiometric

constraints are defined as follows
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• P ∈RH×N is a linear combination of the multispectral image such that,

Ph =

M∑
m=1

αm,hfm, ∀h ∈ {1, . . . ,H}. (1.12)

• P̃ ∈RH×N is computed as follows

P̃h =

M∑
m=1

αm,hf̃m, ∀h ∈ {1, . . . ,H}. (1.13)

where f̃ is the multispectral image spatially degraded, as in the generation

model (1.7), and then brought back to the grid of the multispectral

image with bicubic interpolation. This manipulation kills the high spatial

frequencies and leaves only the low spatial ones

• g̃ ∈RH×N is the hyperspectral image brought to the fine grid of the fused

image by bicubic interpolation.

The weights αm,h are derived as

αm,h =
sm,h∑
m sm,h

,

where sm,h are the coefficients extracted from the spectral response of the

multispectral sensor.

The radiometric constraint is detailed further in the document. Figure 1.10

shows the visual results of the proposed method. We notice that the spectral

information as well as the spatial details were recovered and look similar to the

reference image. Quantitative results show that the suggestedmethod compares

favorably with other state-of-the-art ones.

In Section 3.7, a modification of the variational model (1.9) for hyperspectral

and multispectral image fusion was suggested. The new model is presented as
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Figure 1.10: Performances of HS-MS fusion with the nonlocal gadient based
method on Chikusei dataset 304× 304× 93. From top left to right. Reference
image, HS image, MS image and the result of the proposed method.

follows

min
u∈RH×N

H∑
h=1

‖∇
ω
′
h
uh‖1 +

µ

2

H∑
h=1

‖DBuh − gh‖22+

γ

2

M∑
m=1

‖(Su)m − fm‖22 +
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖1,

where the new similarity weights are computed as follows

ω
′
h,i,j=


1

Γ
′
i

exp

−
‖i− j‖22
h2spt

−

∑
{t∈Z2 :‖t‖∞6νc}

∥∥g̃h,i+t − g̃h,j+t
∥∥2
2

h2sim(2νc + 1)2

 if ‖i− j‖∞ 6 νr (i 6= j)
0 else

and

Γ
′
i =

∑
{j:‖i−j‖∞6νr}

exp

−
‖i− j‖22
h2spt

−

∑
{t∈Z2 :‖t‖∞6νc}

∥∥g̃h,i+t − g̃h,j+t
∥∥2
2

h2sim(2νc + 1)2


where

ω
′
h,i,i = max

{
ωh,i,j : ‖i− j‖∞ 6 νr and j 6= i} .
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The terms implicated in the radiometric constraint P, P̃ and g̃ were the

results of transformations of the initial data as it was shown above. Thus, a

new noise could have been introduced throughout these transformations. The

L2-norm is efficient in the case of Gaussian noise but not in other types of noise.

Therefore, the L2-norm was maybe not well adapted enough to the kind of noise

fabricated during the data transformation process and thus not adapted for

the minimization of P̃huh − Phg̃h. Hence, in the new model the radiometric

constraint was penalized with the L1-norm.

In this part, the experimentations were carried out on images acquired by

hyperspectral cameras of indoor and outdoor scenes. Figure 1.11 shows the

result of the fusion. We notice that the fused image is visually close to the

reference image and that the spatial details as well as the spectral ones are

recovered throughout the fusion process. The analysis of the quantitative results

shows that the modified fusion model compares favorably to the state-of-the-art

methods and overcomes the results of the first model in some quality indices.

1.5 State of the art

Image fusion consists of combining relevant information from different

available images into one single fused image. The latter is more informative and

complete than any of the input images. Moreover, the fused image is supposed

to have superior quality and it is not presumed to contain any details that are

non-existent in the input images. There are many types of image fusion. In

remote sensing and in astronomy, multisensor fusion is used to achieve high

spatial and spectral resolutions by combining images from two sensors, one

with a high spatial resolution and a low spectral resolution and the other one

with a high spectral resolution and a low spatial resolution [28]. In the case of
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Figure 1.11: Performance of HS-MS fusion, on the image "Bookshelves" of
size 512× 512× 31, with the nonlocal-gradient based method in the case of the
penalization with the L1 norm of the radiometric constraint. From top left to
right. Reference image, HS image, MS image and the suggested method.

multi-view fusion, a set of images of the same scene taken by the same sensor,

but from different viewpoints, is fused in order to obtain an image with higher

resolution and recover the 3D representation of the scene [29]. One other type

of image fusion is the multitemporal one [30]. In the latter, images of the same

scene are acquired at different times. This is helpful for finding and evaluating

changes in the studied scene, which is quite useful in medical imaging especially

when it comes to change detection of organs and tumors. Also, the aim of

multitemporal fusion is to obtain a less degraded image of the scene, which is

very used in remote sensing for land monitoring or forests exploitation over

months or years. Each fusion method is different following the purpose of

the fusion and the characteristics of the sensors and the images to be fused.

Multi-focus image fusion is another type of merging different information in

different images. Its goal is to combine images that focus on different objects or

areas. Thus, the fused image has better focus across all the captured scene than
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any other input image [31].

This thesis is focused on fusing different resolutions of images that come

from different remote sensing sensors. Satellite image fusion has been an active

field of research these last years due to the growing availability of data and to the

need of gathering information from different imaging sources. In fact, there are

many ongoing and upcoming hyperspectral missions that help shed more light

about many Earth phenomena [32, 33, 34, 35, 36, 37]. As a matter of fact, satellite

sensors with a good GSD (Ground Sampling Distance) factor provide images

with a good spatial quality and a good description of the geometric details.

Satellites such as Aviris, Spot, Pléiades etc capture images with a high number

of spectral bands which provides a good color description of the captured

scene. However, due to technical constraints of imaging sensors onboard, Earth

observation satellites are always subjects to compromises such as to the one

between the SNR and the GSD factors. These tradeoffs lead to acquiring an

image with good spatial details and low spectral ones or to acquiring an image

with good spectral details and low spatial ones. The lack of relevant spatial or

spectral details is sometimes not convenient when good spatial and spectral

information is needed on the same image. Table 1.1 shows the spatial and

spectral resolutions of some satellite sensors.

Name AVIRIS (HS) SPOT-5 (MS) Pleiades (MS) WorldView-3 (MS)
Res. (m) 20 10 2 1.24

Nb. bands 224 4 4 8

Table 1.1: Characteristics of some satellite sensors

Pansharpening has been the first case of satellite image fusion and its goal is

to merge the high spatial resolution of the panchromatic image and the high

spectral resolution of the multispectral image in order to provide one high-

resolution image called the pansharpened image. A panchromatic image has
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one single spectral band and a high spatial resolution. Both the panchromatic

and the multispectral image must cover the same scene. In the ideal case, the

spectral range covered by the panchromatic and the multispectral image has to

be exactly the same in order to avoid undesired outcomes on the pansharpened

image such as color distortion.

Pansharpening methods have been thoroughly explored in the literature

and they can be divided into three main classes: Component Substitution (CS),

Multiresolution analysis (MRA) and Bayesian methods. The CS methods rely

on the transformation of data by using different techniques such as the Itensity

Hue Saturation (IHS) method [38, 39, 40], which is another representation of the

RGB colors that approaches the human eye color visualization system. In CS

methods we also find PCA (Principal Component Analysis) [41, 42] which is a

technique that reduces the dimension of data by converting the correlated data

into non-correlated one. In the category of CS methods, we also find the Brovey

approachwhich is a pixel-level image fusion technique that includes a RGB color

transformation method, moreover, it is effective for merging data that come

from different sensors [43, 44]. The Gram-Schmidt orthonormalization [45, 46]

and partial replacement adaptive CS [47] are also part of the CS family.

The MRA methods are based on multiresolution decomposition techniques.

In this group of methods, we find wavelet-based methods [48, 49, 50, 51],

undecimated wavelet transform [52],"à-trous" wavelet transform (ATWT) [53],

nonseparable transforms based on wavelets [54] and other transforms that are

not based on wavelets [55]. We also find in the MRA family methods that

are based on Laplacian pyramid [56, 57, 58], which is a technique based on

multi-scale decomposition of an image that undergoes repeated smoothing and

subsampling. The difference between different MRA methods resides in the

way spatial details are extracted.
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The Bayesian approach is related to the use of posterior distribution of the

unknown high resolution image with respect to the available observed data.

The posterior distribution depends on the likelihood function which is the

probability of the observed data given the unknown high resolution image.

It also depends on the choice of the prior, because, this latter describes the

desired properties in the target image [59, 60, 61, 62] . Choosing a good prior is

also crucial because it accounts for the ill-posedness of inverse pansharpening

problems which are considered to be a special case of the Bayesian family [63].

CSmethods are known for providing fusion results with good spatial quality

that preserves the fidelity in the geometric details [46]. However, most of the

time, the fusion results of CS methods suffer from spectral distortion which

is due to the fact that the panchromatic and the multispectral sensors do not

always cover exactly the same spectral domain. MRA methods on the other

hand succeed at preserving the spectral details in the fused image, whereas

the spatial resolution suffers from problems such as spatial distortion, ringing

and staircasing artifacts [19, 64, 65] . However, the spatial quality of the MRA

methods can be of a good quality and even compare to the one of the CS family

results when the low-pass function used in the multi-scale decomposition

matches the MTF (Modulation Transfer Function) of the spectral channels.

Most pansharpening techniques assume that the panchromatic image is a

linear combination of the spectral bands of some reference image. The other

assumption is about the geometric alignment of the spectral bands of the MS

image. The last assumption is not always true because sensors in reality introduce

some shifts between the bands that make them not co-registered. In [66], the

authors studied the performances of different pansharpening methods with

mis-registered data and they came to the conclusion that, when data is not

co-registered, CS methods perform better than the MRA ones. In [67], a
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pansharpening variational model without any assumptions on the spectral data

is suggested. Instead of the linearity assumption, they introduced a radiometric

constraint that injects the high spatial frequencies of the panchromatic image

into each spectral band of the multispectral image. The minimization problem

proposed by the authors for pansharpening is carried out on each channel

which deals better with mis-registered and aliased spectral data. For a long time

in pansharpening problems, multispectral images were used for their spectral

quality, the authors in [20] did a review where they presented hyperspectral

pansharpening methods where the spectral information is extracted from the

hyperspectral image and not from the multispectral one. For more details about

the pansharpening methods, see the papers [65, 67].

With the growing number of satellite data and the availability of hyperspec-

tral and multispectral images covering the same scene and the same spectral

domain, many methods throughout the literature adapted pansharpening tech-

niques for HS-MS fusion. The pansharpening techniques presented in [68, 69]

were among the first to have been adapted to HS-MS fusion. The performance

of both methods depend on the way multispectral data is interpolated in the

spectral domain. Chen et al. [70] adapted a pansharpening method for HS-MS

fusion that consists in dividing the spectrum of the hyperspectral image into

many regions. In each region, the HS-MS fusion is carried out with a chosen

pansharpening algorithm. In [71], we find a pansharpening-based model which

assumes that the value of every pixel of an optical image depends on two factors

only: the solar radiation and the spectral reflectance of the land surface. The

fused image is thus found by multiplying the hyperspectral image by a ratio

computed between a high-resolution image and its low-pass filtered version.

The technique presented in [72], which is one of the CS family, is another

pansharpening model that was adapted for HS-MS fusion. In this technique, an
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intensity component is computed as aweighted combination of themultispectral

bands. Moreover, in order to minimise the effect of the spatial distortion, the

used weights are computed as regression coefficients between the bands of

a high-resolution image and a spatially degraded one. One way to account

for missing spectral information in the multispectral image is the resampling

of the latter in the spectral domain using RIBSR (Ratio Image-Based Spectral

Resampling). Following this HS-MS fusion framework, most pansharpening

algorithms can be used. Another framework was suggested by Selva et al.

called hypersharpening where each hyperspectral band is synthesized as a linear

combination of multispectral bands in order to produce a high-resolution image.

The hypersharpening framework proved effective in adapting pansharpening to

HS-MS fusion and it was tested on a MRA-based pansharpening method that

uses GLP [73]. Eismann et al. developed a Bayesian fusion method based on a

maximum a posteriori (MAP) estimation and a stochastic mixing model (SMM)

of the spectral scene. The aim of these estimations was to develop a cost function

that optimizes the estimated target image based on the hyperspectral and the

multispectral data [74, 75]. This Bayesian method proved very effective in terms

of upgrading the spatial resolution of each hyperspectral band. The MAP and

SMM estimations were carried out in the principal component subspace. Using

Bayesian estimation and carrying out optimization in a subspace was used in

many examples throughout the literature [61, 62, 76].

Many authors used spectral unmixing techniques to carry out HS-MS fusion

task. In hyperspectral imaging, each pixel is assumed to be a mixture of

different distinct materials (vegetation, soil, water etc) and each one of these

materials is present with a certain proportion in the pixel. Thus, in unmixing

techniques, materials and their proportions are separated into two different

matrices called endmember and abundance matrices. Zhukov et al. suggested
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a fusion technique where the low-resolution image is unmixed by using the

information about the pixel composition from the high-resolution image after

classifying the latter with an unsupervised algorithm. The fused image is then

induced by sharpening the low-resolution image by assigning the estimated

endmembers to the corresponding high-resolution pixels of the classification

map [77]. Gross and Schott suggested an unmixing-based method for fusion.

Themethod starts by an unmixing stepwhich gives as an output the endmember

fraction images (maps) and then constrained optimization techniques are used

to generate a high-resolution image [78].

Using unmixing for fusion purposes has been very used during recent

years. It consists in obtaining endmember and abundance matrices from

hyperspectral and multispectral data, finally the fused image is the product

of both matrices. Berné et al. suggested a HS-MS method based on the

decomposition of the low-resolution hyperspectral data using Non-Negative

Matrix Factorization (NMF) and then non-negative least square regression was

used to estimate the abundance-maps from the high-resolution multispectral

data. This method was originally destined for applications on mid-infrared

data in astronomy [79]. Yokoya et al. [80] proposed a fusion method where

hyperspectral and multispectral data are alternately unmixed to extract the

endmember spectra and the abundance matrices. Finally the fused image is

induced by multiplying the two extracted matrices. An unmixing-based fusion

technique was suggested by Kawakami et al. [81] where spatial sparsity of the

hyperspectral data was harnessed and only a few materials were assumed to

constitute the composition of a pixel in the hyperspectral image. The latter

is factorized into a basis and the sparse coefficients are found throughout a

L1-norm minimization.

Wycoff et al. [82] proposed a fusion technique based on the spatial sparsity
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of the hyperspectral data. In Lanaras et al. a linear mixing model (LMM) was

used and hyperspectral and multispectral images were jointly unmixed into

endmember and abundance matrices. The fusion problem was solved with a

projected gradient scheme [83]. Akhtar et al. suggested a fusion scheme based

on dictionary learning which was used for the estimation of abundance and

endmember matrices [84].

Wei et al. [62, 85] proposed a fusion approach based on a variational model.

The fusion problem is an ill-posed one and in order to account for the ill-

posedness a sparse regularization term was added and it was determined based

on the decomposition of the scene on a set of dictionaries. The same authors

proposed a Sylvester equation-based fusion model named FUSE (Fast fUsion

base on Sylvester Equation) which can be easily generalized and allow for the use

of Bayesian estimators. The fusion problem was solved by alternating direction

method of multipliers coupled with the block coordinate descent method.

This model achieved the same performance as the existing Bayesian fusion

frameworks but it proved very effective in terms of reducing the computational

time [86]. Simoes et al. [61] suggested a total variation-based fusion model. To

tackle the ill-posedness of the problem, a non-smooth variational regularizer

was added. The resolution of the fusion problem was carried out with SALSA

algorithm.

Deep learning has been enjoying a huge success in many applications in

computer vision including in HS-MS fusion and in super-resolution. The latter,

unlike in HS-MS fusion, aims at inferring a high-resolution image from a single

low-resolution image only and not two low-resolution images. Convolutional

neural networks (CNN) are among the deep learning models and they consist

of an input and an output layer along with hidden connected layers where

convolution based operations take place. CNN-based methods for HS-MS
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fusion have been suggested in [87, 88]. Also, many super-resolution fusion

methods based on CNN have been proposed [89, 90, 91, 92, 93]. The use of deep

learning methods in this kind of fusion is relatively recent.
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Chapter 2

Optimal transport

Summary

Satellite sensors acquire either hyperspectral images with a low spatial

resolution and a high spectral one or multispectral images with high spatial

resolution and low spectral one. The aim of HS-MS fusion is to fuse both

images in order to infer a high resolution image with a good spatial and spectral

resolution. In this chapter, we introduce two HS-MS fusion models based

on optimal transport. Both models are the sum of two weighted regularized

Wasserstein distances which describe the transport of mass in the spectral and

the spatial domain. Both models assume that the low-spatial resolution bands

in the hyperspectral image are obtained from the high-resolution image by low-

pass filtering followed by subsampling. We also assume that the multispectral

image is a spectral degradation of the high-resolution one, and that the spectral

response of the multispectral sensor is known.

The first model outperforms state-of-the-art techniques on remote sensing

data. Ground truth data is also available which allowed evaluation of the results

with objective metrics. In the second model, the information on the similarity of
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pixels was included in the cost function. Due to the high number of parameters

of the second model, a study of the sensitivity of parameters was carried out

on multiple data sets. The results showed that the performance of the second

model did as good as the first one but did not outperform it.

This chapter is organized as follows. In Section 2.1 we review a few

applications of optimal transport in the literature especially in the image

processing field. Section 2.2 is an introduction to optimal transport, it explains

the principle of the latter and reviews the different methods used to solve it.

Section 2.3 presents a detailed study of discrete optimal transport and sets the

framework for the formulation of the HS-MS fusion. In Section 2.4, the HS-MS

fusion is formalized and presented as a barycenter problem in the sense of

optimal transport. Each part of the fusion model is commented and analyzed.

The subject of Section 2.5 is to analyze the costmatrix chosen for the fusionmodel

and to study relevant ways for its computation. Section 2.6 summarizes the

fusion algorithm. In Section 2.7, different quantitative methods for evaluating

the fusion results are presented and detailed. In Section 2.8, the results of the

first fusion method are analyzed. The visual results showed that the suggested

method provided an inferred image close to the reference one. As to the

quantitative part, the results showed that the proposedmodel outperforms state-

of-the-art methods. The second part of this chapter is presented in Section 2.9.

In this latter a modification of the HS-MS fusionmodel is presented. The novelty

in this part is the mixing of nonlocal weights and the position of pixels in the

cost matrix. Section 2.10 presents the experiments of the second fusion method.

The experimental part shows that the new suggested model performs as good

as the first one and that the adding of the nonlocal weights did not improve

the previous results. Finally, Section 2.11 presents a conclusion of the whole

chapter and summarizes the approaches and their related conclusions.
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2.1 Optimal transport and image processing appli-

cations

Optimal transport goes back to the 18th century where originally it has

emerged to tackle a land leveling problem and it has been enjoying a great

success over the last years in many applied fields. In the literature, optimal

transport has been used as a powerful tool due to its interesting properties in the

image processing field such as in restoration [94], color manipulation [95, 96, 97],

reflectance interpolation [98] and denoising [99]. In statistical learning, optimal

transport has proved efficient in the manipulation of histograms [100], in image

retrieval in computer vision [101], in semi-supervised learning [102] and in

domain adaptation [103].

One successful use of optimal transport in image processing is color trans-

fer [104], where the goal is to transfer the colors of a target image to an original

image while preserving the geometry of the latter as shown in Figure 2.1. The

transfer of the colors is carried out in the color space with optimal transport

tools. The result image kept exactly the same geometry as the original one

except that now, it has new colors which are the ones of the target image.

Figure 2.1: (Left) The original image. (Middle) The target image with the color
information of interest. (Right) The result with the geometry of the original
image and the colors of the target image, see [104].

Another application of optimal transport is shape interpolation [105]. Fig-

ure 2.2 shows a 3D interpolation of three geometrical objects: a torus, a duck
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and a hippopotamus, each with an interpolation coefficient βi, i ∈ {1,2,3}, and

βi ∈ [0,1]. We can notice that for each new interpolation coefficients (β1,β2,β3),

the new object has its own geometrical shape. Thus, we can conclude that opti-

mal transport is efficient for providing results with pleasant visual geometrical

properties.

Figure 2.2: A 3D interpolation between a torus, a duck and a hippopotamus,
see [105].

From the two examples in Figure 2.1 and Figure 2.2, we can notice that

optimal transport has the powerful quality of preserving the geometrical shape

of objects and creating objects with new geometrical properties. In this chapter,

we suggest to harness the interesting properties of optimal transport and apply

them in the case of HS-MS fusion. The idea behind applying optimal transport

is to carry out a color transfer from the hyperspectral image while preserving

the geometrical details of the multispectral image in order to infer one high-

resolution image. To our best knowledge, before the present work, optimal

transport has never been applied in the case of HS-MS fusion.

2.2 Introduction to optimal transport

The theory of optimal transport [106], or transportation theory, started a

few years before the French revolution with the French mathematician Gaspard

Monge in 1781 [107]. The latter submitted a memoir called "Théorie des déblais
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et des remblais" to the "Académie des Sciences" in which he exposed the question

of how to move a sand pile from a starting point A to an arrival point B. In

mathematical notations, Monge’s problem can be presented as follows: let

X and Y be two Polish spaces, we denote by P(X) and P(Y) the spaces of

probability measures on X and Y, respectively. Let µ ∈P(X) and ν ∈P(Y) be

two probability measures and c : X× Y → [0,+∞] a cost function. Then, the

following problem arises

min
T

{∫
X
c(x,T(x))dµ(x) : T#µ= ν ∈P(Y)

}
, (2.1)

where T : X→ Y is a map and the measure T#µ ∈P(Y) is called the pushforward

of µ through T and it is defined by T#µ(E) = µ(T
−1(E)),∀E ∈ Y. The probability

measures µ and ν describe each a different distribution of mass and c describes

the cost payed for moving a unit mass located at x ∈ X to y ∈ Y. Finding

the optimal map allows an efficient transportation of mass from µ to ν that

guarantees an overall minimum cost.

To illustrate the main idea of how optimal transport works, let us consider

the following example of hot croissants distribution from bakeries to the cafés in

Vannes city. As one can see in Figure 2.3, the distribution of bakeries is different

from the one of cafés and there are 4! = 24 possible configurations to move from

one distribution to the other. The goal is to supply the cafés with the croissants

with the minimum cost of transportation.

There are many possibilities for choosing the transportation cost, once it is

fixed, the transport has to be optimized based on it. For example, if the chosen

cost to move croissants from one bakery to one café is the distance between

these latter, then the cost of transporting the croissants should be the minimum

of the sum of costs of all possible distances. Figures 2.4 and 2.5 show two

configurations of transport from bakeries to cafés. The way of transporting
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Figure 2.3: Illustration of the principle of optimal transport

croissants following the configuration in Figure 2.4 is less expensive, in terms of

the sum of distances, than the one in Figure 2.5. In fact, the sum of distances

during transport in Figure 2.4 is 23.8 cm whereas the sum of distances in

Figure 2.5 is 25.7 cm.

Figure 2.4: Possible optimal configuration

Figure 2.5: Non-optimal configuration

Thus formulated in the example, Monge’s problem is a combinatorial one

and it is the first operational search problem in which one seeks to have the

best solution among multiple choices. In general, the problem of Monge is
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not easy to solve due to its non-linearity and to the difficulty of proving the

existence of a minimizer and studying it. Monge did not solve the optimal

transport problem and the issue about the existence of a minimizer was not even

addressed [108]. Years after Monge initiated the optimal transport problem,

the Russian mathematician Kantorovich re-studied it and contributed to its

modernization by making the connection between Monge’s problem and linear

programming. The work of Kantorovich made optimal transport problems

more addressable where closed form solutions can be found.

Thanks to the work of Kantorovich, Monge’s problem was inserted in

a suitable framework. The main idea of Kantorovich consisted in relaxing

the nature of transportation by describing a new way of movement for the

mass sources. In Monges’s problem, a mass source x can only be assigned or

transported to one and only one location T(x). Kantorovich suggested that,

the mass at x can be dispatched to different locations y which is commonly

known as "mass splitting". This new description of transport allows for more

movement during mass transportation, thus, the transport problem is not

described through a map T anymore.

Kantorovitch’s problem is formulated as follows

min
π

{∫
X×Y

c(x,y)dπ(x,y) : π ∈ Π(µ,ν)
}

, (2.2)

where Π(µ,ν) is the set of the so-called transportation plans such that

Π(µ,ν) = {π ∈P(X× Y) : (Projx)#π= µ,(Projy)#π= ν}, (2.3)

and Projx and Projy are the two projections of X× Y onto X and Y respectively.

Thus, by changing the point of viewofMonge’s problem, Kantorovitch described

the transportation of mass via a measure π, also called transport plan, on X× Y
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satisfying (Projx)#π = µ and (Projy)#π = ν. Instead of focusing on finding the

location T(x) of each mass source x, the objective of π is to precise, for each pair

(x,y), how can a mass originally located at x be distributed in other locations

y. We note that the value π(A×B) denotes the amount of mass moving from

A ∈ X to B ∈ Y and the constraints (Projx)#π = µ and (Projy)#π = ν mean that

we only focus on moving the mass sources distributed according to µ onto ν.

The new Kantorovitch formulation of optimal transport made a connection

between Monge’s problem and linear programming which opened the door

to an important amount of applications. One of the essential facts established

in Kantorovitch’s work is the introduction of a relevant quantity to compare

probability measures known nowadays as the p-Wasserstein distance which is

defined as follows

Wp(µ,ν) =
(

min
π

{∫
X×Y

c(x,y)dπ(x,y) : π ∈ Π(µ,ν)
}) 1

p

, (2.4)

where p ∈ [1,∞) is the order of the Wasserstein distance. The quantity Wp is

called distance because it satisfies all the axioms of a distance, see [106] for

more details. In the remainder of this chapter we work with p= 1, and instead

of denoting the 1-Wasserstein distanceW1(µ,ν), we simply writeW(µ,ν).

Optimal transport has been used in many fields for different applications

such as in image processing [95, 109], remote sensing [110], computer graph-

ics [98], image retrieval in computer vision [101], machine learning [102] and

astrophysics [111]. Computationally speaking, the resolution of optimal trans-

port problems can be very costly and it is one of the drawbacks of using optimal

transport tools. In fact, Wasserstein distances, which are important metrics

in optimal transport, have many interesting properties, but their formulation

imposes the resolution of linear problems with costs that can grow incredibly

fast, especially whenmeasures with important supports are manipulated. In the
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discrete case, when the probability measures have the same support, many reso-

lution methods exist to solve optimal transport problems [112]. The complexity

of these methods is O(N3) and it becomes too costly when N is important such

as in image processing problems where N can very rapidly reach one million

pixels.

Developing optimal algorithms to tackle optimal transport problems have

been the object of a variety of research work. For example, in the case of

quadratic costs in transport problems, linearizingMonge-Ampère equation with

theNewton solvermethod can be used to solve optimal transport problems [113].

In [114], the problem of computing the transport is tackled differently by using

proximal splitting methods. Computing Wasserstein distances with classic

methods such as the interior point method or the simplex one, which are

iterative methods, is quite costly too. For example, computing the Wasserstein

distance between two probability measures or two histograms with supports of

size N is of the order of O(N3 logN).

Improving the computational performances of optimal transport algorithms

has long been an active field of research. Among the interesting ideas that

contributed to the widespread of optimal transport applications there is the

entropic regularization. The latter consists in regularizing the Wasserstein

distance by substracting the entropic energy times a regularization coefficient.

The goal of using the entropic regularization is to provide an approximation to

the original linearWasserstein distance. The idea behind entropic regularization

has its roots in the work of Schrodinger [115] and it was mainly used in optimal

transport problems for predicting flows of commodities and traffic patterns [116].

Using entropic regularization in these kinds of problems ensures the smoothness

of the flows. Thanks to the concavity of the entropic energy (i.e. minus

the entropy is convex), the entropic regularization has many computational
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properties such as strictly convexifying the transport problem, which ensures the

uniqueness of the solution and allows the use of matrix scaling based methods.

One of the most famous matrix-scaling based algorithms for solving transport

problems there is Sinkhorn-Knopp algorithm [117, 118]. The latter, known for

having a linear convergence rate, is based on matrix-vector multiplications and

more specifically, on the diagonal scaling of the exponential of minus the cost

matrix. Sinkhorn-Knopp’s algorithm’s matrix-vector multiplications are easily

parallelized which makes the computations go faster in addition to the fact that

it is easy to implement.

The entropic regularization has the advantage of ensuring the non-sparsity

of the solution and helps to stabilize the solution [119]. Furthermore, it has

also a connection to Kullback-Leibler (KL) divergences and it allows the use

of iterative Bregman projections [120] which are carried out on affine subsets.

The relationship between KL divergences and Bregman projections will be

highlighted in details in the remainder of the present thesis. One should

stress that the interesting computational properties provided by the entropic

regularization are independent of the choice of the ground metric (or the cost

function) [100].

One of the widespread applications of optimal transport is the Wasserstein

barycenterwhich is an average in the sense of theWassersteinmetric. Wasserstein

barycenter was first solved by replacing the Wasserstein metric by a sliced

approximation over 1D distribution which allowed the use of a stochastic

gradient descent algorithm [121]. The drawback of this method is that it is not

easy to generalize for high dimensional and for non-Euclidean metric spaces.

The properties of the Wasserstein barycenter in practice were highlighted in

[101] and for the theoretical properties the reader can check Villani’s book [106].

The regularizedWasserstein barycenter, computedwith regularizedWasserstein
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distances, is formulated as the solution, over the space of measures, of a convex

variational problem and it is composed of the sum of weighted regularized

Wasserstein distances, see [122] for a detailed study of theWasserstein barycenter.

The optimal transport barycenter is used in statistics where it is very practical

for computing estimators [123] or in machine learning for computing an average

of a family of histograms [124]. Many methods in the literature suggested algo-

rithms for solving the Wasserstein barycenter problem. In [124] the regularized

barycenter problem is solved with a subgradient descent based method where

the gradients are computed with matrix scaling algorithms. The formulation of

the regularizedWasserstein barycenter has many computational advantages like

allowing the use of Sinkhorn’s algorithm described above as well as Bregman

projections under KL divergences [119]. In general, solving the barycenter

problem with iterative Bregman projections is faster and easier than using a

gradient descent method.

2.3 Discrete optimal transport

Let Ω be an arbitrary space and let X = {x1, . . . ,xn} be a set of Ω, xi ∈ Ω,

∀i = 1, . . . ,n. A discrete measure u with weights µ and locations x1, . . . ,xn ∈Ω

reads

u =

n∑
i=1

µiδxi ,

where µ is a vector of probability masses (µi)ni=1 and δxi is the Dirac located at

position xi which represents the quantity of mass µi concentrated in the location

xi. The measure u is a probability measure if µ belongs to the probability
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simplex Σn defined as follows

Σn
def
=

{
µ ∈Rn

+ ;
n∑
i=1

µi = 1

}
. (2.5)

In optimal transport, the manipulated objects in the continuous or the

discrete framework need to be modeled as probability measures. We consider

two probability measures u and v with two probability vectors µ ∈ Σn and

ν ∈ Σm respectively. Then, the Wasserstein distance between µ and ν is defined

as follows

W(µ,ν) def
= min
π∈Π(µ,ν)

< π,D>,

where Π(µ,ν) is the set of all couplings that have µ and ν as marginals defined

as follows

Π(µ,ν) def
= {π ∈Rn×m

+ |π1m = µ,πT1n = ν},

with ∀l ∈N, 1l
def
= (1, . . . ,1)ᵀ ∈Rl and D ∈Rn×m is a cost function defined as

D= [d(xi,yj)]ij,

where d(xi,yj) is a distance between the positions of two Diracs located at xi
and yj.

2.3.1 Regularized Wasserstein distance

The numerical implementation of optimal transport algorithms has a high

computational cost especially in image processing. Introducing the entropic

regularization has the advantage of making the minimization problem strictly
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convex, which guaranties the uniqueness of the minimum and the fast com-

putation of the latter with matrix-vector based algorithms. The entropic

regularization is carried out by penalizing the entropy of the joint coupling π

and it is defined as follows

Wγ(µ,ν) = min
π∈Π(µ,ν)

< π,D>−γE(π), (2.6)

where γ is the regularization coefficient and E(π) is the entropy defined as

E(π) = −

n∑
i=1

m∑
j=1

πi,j(logπi,j − 1) − ιR+(πi,j),

where ι is the indicator of R+ s.t

∀x, ιR+
(x) =


0 if x ∈R+,

+∞ otherwise.

The regularizedWasserstein distance is not a distance in the strict sense, thus,

it does not satisfy the axioms of a metric because of the regularization coefficient:

Wγ(µ,µ) 6= 0. We can notice that the original non-regularized linear problem

can be recovered as γ→ 0. However, when γ is too small, the computations

might become unstable.

Entropic regularization is linked to the divergence of Kullback-Leibler and

then to Sinkhorn’s algorithm which leads to simple formulation of the solution

of the regularized problem. The resolution of problem (2.6) is equivalent to

solving the following minimization problem
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min
π∈Π(µ,ν)

KL(π|ξ), (2.7)

where ξ is a matrix computed component-wise and defined as

ξ= e−
D
γ , (2.8)

and KL denotes the divergence of Kullback-Leibler defined as follows

KL(π|ξ) def
=

n∑
i=1

m∑
j=1

πi,j log
(πi,j
ξi,j

)
− πi,j + ξi,j.

The entropy and the KL divergence are two concepts that come from the

information theory. The entropy is a measure of the average of information

delivered from a data source whereas the KL divergence measures how far

two distributions deviate from each other. The KL divergence is not a distance

because it does not satisfy the axioms of a metric, for example the symmetry is

not verified: KL(π|ξ) 6=KL(ξ|π).

Proposition 1. The problem (2.6) has the unique solution [119]:

∀(i, j) ∈ J1,nK× J1,mK, πi,j = aiξi,jbj,

where a ∈Rn
+ and b ∈Rm

+ are two scaling vectors.

Proof. Let α ∈ Rn and β ∈ Rm two Lagrangian multipliers. The Lagrangian

of (2.6) is written as

L(π,α,β) =< π,D>−γE(π)−< α,π1m − µ >−< β,πᵀ1n − ν >
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The first order condition gives

∂L(π,α,β)
∂πi,j

=Di,j + γ logπi,j −αi −βj = 0.

Thus, the optimal coupling verifies: πi,j = eαi/γ e−Di,j/γ eβj/γ. By expres-

sion (2.8), e−
Di,j
γ = ξi,j and taking ai = e

αi
γ , bj = e

βj
γ , the optimal coupling is

written as πi,j = aiξi,jbj. Finally, in matrix notation, the solution of (2.6) can be

written as

π= diag(a)ξdiag(b),

where diag(a) and diag(b) are diagonal matrices where the diagonal entries are

the vectors a and b respectively. �

A theorem by Sinkhorn [125] states that for any matrix ξ with positive

elements, there exists diagonal scaling matrices diag(a) and diag(b) with

a, b > 0 such that π = diag(a)ξdiag(b) has prescribed row sums and column

sums (π satisfies π1m = µ and πᵀ1n = ν). The coupling π can be seen as the

scaling of ξ and the scaling vectors a and bmay be found by Sinkhorn iterations.

At each iteration the coupling is defined as follows

π(i) = diag(a(i))ξdiag(b(i)),

where a(i) and b(i) are the updated scaling vectors throughout Sinkhorn’s

iterations as follows

a(i+1)
def
=

µ

ξb(i)
and b(i)

def
=

ν

ξᵀa(i)
. (2.9)

Thanks to the updating steps (2.9), we do not have to manipulate at each

iteration the transport coupling variable π which has the size n× n and it is
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simply huge when it comes to image processing application. So instead of

updating π at each iteration, it is sufficient to update the two scaling vectors a

and b which have the sizes n and m respectively. Besides, by applying these

two scaling steps, the computations can be easily vectorized and parallelized

and thus accelerate the computational time which is valuable in minimization

problems.

2.3.2 Wasserstein barycenter

Computing the barycenter of Wasserstein metrics is one of the important

problems in the optimal transport theory. In the discrete case it consists in

computing the average of empirical probability measures in the sense of the

optimal transport metric. In fact, this average is the minimum of the sum of

each Wasserstein distance to each probability measure.

Let (qk)Kk=1 be a set of K positive probability vectors such that qk ∈ Σn and let

q be the Wasserstein mean of these probability vectors. Then, the Wasserstein

barycenter problem is presented as follows

min
q∈Σn

K∑
k=1

λkWγk(qk,q), (2.10)

whereWγk are regularized Wasserstein distances with γk being regularization

coefficients, λk are weights related toWγk such that
∑K
k=1λk = 1 and Σn is the

simplex defined in (2.5) over which the minimization (2.10) is carried out.
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The problem (2.10) is subject to constraints which are defined as

C1
def
= {π= (πk)

K
1 ∈ (Rn×n

+ )K;∃q ∈Rn,∀k ∈ {1, . . . ,K}, πk1= q},

C2
def
= {π= (πk)

K
1 ∈ (Rn×n

+ )K;∀k ∈ {1, . . . ,K}, πᵀk1= qk},
(2.11)

where πᵀk is the transpose of πk and 1= (1, . . . ,1)ᵀ ∈Rn.

The subsets C1 and C2 are affine constraints that describe the conditions that

the optimal coupling π= (πk)
K
1 has to verify. The first constraint C1 imposes that

the sum over the columns of each optimal coupling πk is equal to theWasserstein

mean q which is the sought solution, whereas the sum over the rows has to be

equal to each marginal qk, and that is the purpose of the constraint C2.

Earlier, a link between regularizedWasserstein distances and KL divergences

(Section 2.3.1) was established. Based on this relationship, the problem (2.10)

can be rewritten as follows

min
π=(πk)

K
k=1

s.t.
π∈C1∩C2

{
KLλ(π|ξ) =

K∑
k=1

λkKL(πk|ξk)
}

.

The set of probability vectors (qk)Kk=1 as well as the mean q have the same

support size (the same number of Diracs), so the matrices Dk and ξk have the

same size for all Wasserstein distances.

At each iteration, each coupling πk has the form

π
(i)
k = diag(a(i)k )ξkdiag(b(i)k ),

and the scaling vectors are updated as follows
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a
(i+1)
k

def
=

q

ξb
(i)
k

and b
(i)
k

def
=

qk
ξᵀa

(i)
k

.

At this point, we know how to update the scaling vectors and to compute

the optimal coupling but still, the barycenter given by the Wasserstein mean

(q) needs to be computed. The computation of the barycenter is given by the

following proposition [119]

Proposition 2. For π def
= (πk)k ∈ (Rn×n

+ )K, the projection π def
= (πk)k = ProjC1(π)

satisfies

πk = diag(q� πk1)πk with q = ΠKk=1(πk1)
λk , (2.12)

Where Π and (.)λk should be understood as element-wise operations and � denotes

element-wise division.

Proof. The optimization problem is the following

min
(πk)k,q

K∑
k=1

λkKL(πk|πk)

s.t. πk1= q ∀k ∈ {1, . . . ,K}

(2.13)

Let (βk)k ∈ (Rn)K be Lagrange multipliers. The Lagrangian of problem (2.13)

is written

L(πk,q,βk) =
∑
k

λkKL(πk|πk)−< βk,πk1− q>

=
∑
k

λk
∑
i,j

(πk)i,j log
(

(πk)i,j
e(πk)i,j

)
−< βk,πk1− q>

The first order condition with respect to (πk)i,j gives

∂L(πk,q,βk)
∂πk)i,j

= λk log
(
(πk)i,j
(πk)i,j

)
− (βk)i = 0
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which gives

(πk)i,j = e−
(βk)i
λk (πk)i,j

and in terms of matrix notations we have

(πk) = diag(e−(βk�λk))πk (2.14)

where � is element-wise division.

The first order condition with respect to q gives

∇qL(πk,q,βk) = −
∑
k

βk = 0 (2.15)

with the result established in (2.14) we have

q = πk1

= diag
(

e−βk�λk
)
πk1

define rk = πk1, we have then

q = diag
(

e−βk�λk
)
rk

= e−βk�λk�rk
(2.16)

where � is element-wise multiplication.

The first order condition established in (2.15) shows that
∑
kβk = 0, thus

q = e−βk�λk�rk⇔ q� rk = (e−βk)
1
λk

⇔ (q� rk)λk = e−βk

⇒ Πk(q� rk)λk = Πk e−βk = e−
∑
kβk = 1

(2.17)
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The operations (·)∗, Π and
∑

are element-wise ones. We know that
∑
kλk = 1,

we have then
Πk(q� rk)λk = q

∑
k λk �Πkrλkk

= q�Πkrλkk
(2.18)

from (2.17) and (2.18) we have

q�Πkrλkk = 1⇔ q = Πkr
λk
k

= Πk(πk1)
λk

We have already established in (2.16) that q= e−βk�λk�rk, we conclude then

that e−βk�λk = q� rk and if we insert it in the relation established in (2.14) we

have
πk = diag(q� rk)πk

= diag(q� πk1)πk.

Hence we have πk = diag(q� πk1)πk and q = Πk(πk1)
λk

�

Fromthepreviousproposition,wehaveq=Πk(πk1)
λk andπk=diag(ak)ξkdiag(bk),

thus, the barycenter q is given for each iteration by the following formula

q(i) = ΠKk=1(a
(i)
k � (ξb

(i)
k ))λk .

2.4 Formulation of the fusion problem

During the fusion process, spectral and spatial information is transferred

from the observed data, the hyperspectral and the multispectral image, to

an induced image u which is the result of the fusion. Following this idea of
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energy transfer from one image to another, the HS-MS fusion is formulated as a

Wasserstein barycenter (problem (2.10)) as follows

min
u∈Σu

{
G(u) = λWγM(u, S̃(f)) + (1− λ)WγH(u, T̃(g))

}
, (2.19)

where Σu is the simplex is RH×N over which the minimization (2.19) is carried

out, defined by ΣN = {u ∈ RH×N+ ,
HN∑
i=1

ui = 1}.

Then, the HS-MS fusion problem (2.19) is formulated as the minimization of

the sum of two weighted Wasserstein distances. The minimization is done over

u ∈RH×N which is the high-resolution hyperspectral image to be produced. In

the generic case, the barycenter problem (2.19) is a balanced one which means

that each Wasserstein distance is computed between two images that have the

same dimensions. In our problem, the images f ∈RM×N and g ∈RH×Nl are not

on the same gridwhichmeans that they do not have the same dimensions. In this

case, the introduction of inversion operators is needed in order to bring the input

images f and g, that live on a coarse grid, on the same fine grid as u. The operator

S̃ interpolates spectrally f ∈RM×N whereas T̃ is a spatial inversion operator

that interpolates spatially each pixel of each band of g ∈RH×Nl . Both operators

bring f and g to the same dimensions as u, therefore we have S̃(f) ∈RH×N and

T̃(g) ∈RH×N. The operation T̃(g) is carried out by applying a classic bicubic

interpolation for each pixel in each band of the hyperspectral image g, while

S̃(f) is obtained by solving the following least square problem

min
S̃∈RH×M

||(S ◦ S̃)(f) − f||2. (2.20)

In practice, the operator S ∈ RM×H is a non-square matrix with M rows and

H columns which are the numbers of the multispectral and the hyperspectral
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bands respectively. The matrix S is non-invertible and S−1 cannot be taken for

an inverse operator. So hĳacking the invertibility of S consists in looking for a

pseudo-inverse matrix that approaches the behavior of an inverse matrix and

that brings f back on the finer grid. One of the ways of inverting f spectrally is

through the resolution of the minimization problem (2.20).

As one can notice, the functional (2.19) to be minimized is composed of two

regularized Wasserstein distances. The first distanceWγM(u, S̃(f)) is computed

between u and S̃(f) with the latter containing the valuable spatial information.

The role ofWγM(u, S̃(f)) is the minimization of the transport cost between S̃(f)

and u, so in the spirit of optimal transport, this first distance could be interpreted

as the transport of spatial information from S̃(f) to u. As to the second distance

WγH(u, T̃(g)), it represents the transport of the spectral energy from T̃(g) to

u. By being the average in the sense of the Wasserstein metric, u gathers the

relevant spectral information of T̃(g) and the geometric details of S̃(f).

In order to balance between the spectral and the spatial information, the

trade-off parameter λ is used in the weight for each Wasserstein distance with

λ ∈ [0,1]. The weight of each Wasserstein distance gives the possibility to choose

whether to have more spatial than spectral details or vice versa. The choice of

λ depends on the purpose of the produced image u and the applications this

latter is destined to.

As it was mentioned before, the aim of optimal transport is to transfer energy

from a starting point to an arrival one with a minimum cost. The cost to be

minimized is expressed in a cost matrix that describes how, for eachWasserstein

distance, matter should be redistributed in the new configuration. In the fusion

problem, the manipulated data is three-dimensional and it is composed of a

two-dimensional spatial component and a one-dimensional spectral one. Thus,

the energy transport in eachWasserstein distance is done in a three-dimensional
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space which means that the cost matrix should describe a three-dimensional

transport.

Let p and q be two different pixels and let (xp,yp,zp) and (xq,yq,zq) be their

coordinates respectively. The ground cost paid for a transport from pixel p to

pixel q is computed as follows

Dk(p,q) = (xp − xq)
2 + (yp − yq)

2 +αk(zp − zq)
2 (2.21)

where k ∈ {M,H}, withM stands for the multispectral component and H for the

hyperspectral one.

One can see that the cost of transport between two pixels consists of a spatial

distance and a spectral one with a parameter αk that balances the spectral

distance with respect to the spatial one. In practice, the spatial distances are

expressed in meters(m) and the spectral ones, which are differences between

wavelenghts, are expressed in nanometers (nm = 10−9). Thus, in the absence

of a parameter to balance these two distances, the contribution of the spectral

distance does not have any influence which would mean that the transport

occurs only spatially which is not realistic.

One should stress that the distanceDk of (2.21) is computedwith the positions

of the pixels and it does not depend on their values but only on the grid onwhich

the image is defined. Because of the existence of the parameter αk, the ground

cost distance matrix is not going to be the same for both Wasserstein distances.

This could be explained by the fact that the transport following the spectral

dimension is going to depend on the type of data. In fact, the hyperspectral

image contains more relevant spectral data so in this case, the transport in the

spectral domain is obviously going to be favored over the transport in the spatial

one.By the contrary, for the multispectral image, the transport in the spatial
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domain is going to be more important that the one in the spectral domain.

Once the ground cost is determined by (2.21), the computation of the cost

matrix ξk from expression (2.8) and for two pixels p and q is given by

ξk(p,q) = exp
(
−
1

γk
((xp − xq)

2 + (yp − yq)
2) −

αk
γk

(zp − zq)
2

)
= exp

(
−
1

γk
((xp − xq)

2 + (yp − yq)
2)

)
︸ ︷︷ ︸

2D spatial distance

exp
(
−
αk
γk

((zp − zq)
2)

)
︸ ︷︷ ︸

1D spectral distance

= exp(−
1

γk
(xp − xq)

2)︸ ︷︷ ︸
1D spatial ditance

exp(−
1

γk
(yp − yq)

2)︸ ︷︷ ︸
1D spatial distance

exp(−
αk
γk

(zp − zq)
2)︸ ︷︷ ︸

1D spectral distance

,

where (xp,yp,zp) and (xq,yq,zq) are the coordinates of p and q respectively.

2.5 Computations of the cost matrix

The matrix ξ contains all the distances of all the pixels with respect to every

other pixel in the image. The image is browsed in columns (or in rows) and for

each pixel, the distances with respect to all the pixels of the image should be

computed following the formula (2.8). For example, in the case of a 3D image of

an overall size of N, the first row of ξ contains all the distances between the first

pixel with the coordinates (1,1,1) and all the other pixels of the image, thus, the

first row of ξ is a vector of size N. Figure 2.6 shows an example of computing

the ξmatrix of a 3D image of size 2× 2× 2. The overall size of the latter isN= 8,

thus the matrix ξ corresponding to this image has a size of 8× 8.

For a 3D image that has nx rows, ny columns and nz spectral bands, the

position of each pixel (x,y,z) is converted to a linear subscript denoted lxyz
following the formula:
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Figure 2.6: The construction of ξ from the grid of a 2× 2× 2 image

lxyz = x+ (y− 1)nx + (z− 1)nynx.

Thus, all the distances of the pixel (x,y,z) with respect to all the pixels of the

image are stored in the row number lxyz of the matrix ξ.

The size of ξ can be very important and it can exceed the RAM capacity

storage of a laptop very rapidly which makes it hard to store ξ and even harder

to manipulate and use it in the computations. For example, the size of the 3D

satellite image in Figure 2.7 is 128× 128× 93which gives an overall number of

pixels ofNt = 128× 128× 93= 1523712. Visually, this image is quite small for any

geometric interpretation due to the lack of a high number of pixels. However,

the size of ξ in this case is 1523712× 1523712 which in terms of GB corresponds

to 18574 GB which is simply huge and cannot be carried out on a machine.

Thus, to hĳack storage problems, it is important to look for ways to cope

with the huge size of ξ that could make its use easy and not cumbersome. In

order to illustrate the interesting properties of ξ let us go back to Figure 2.6

which highlights the computations of the matrix ξ for a grid of size 2× 2× 2.
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Figure 2.7: Hyperspectral image with a size of: 128× 128× 93

For the sake of simplicity, the size of the grid was chosen very small so that the

matrix ξ can be representable and readable. As one can notice, ξ has interesting

properties, it is square, positive, symmetric and block-Toeplitz.

A matrix A is said to be Toeplitz when all its diagonals are constant. If the

i, j element of A is denoted by ai,j = ai+1,j+1 = ai−j, then we have

A= (ai,j)i∈[[1,N]]
j∈[[1,N]]

= ai,j = ai−j.

Then, the matrix representation of A is the following

A=



a0 a−1 a−2 . . . a−N+1

a1 a0 a−1
. . . ...

a2 a1 a0
. . . a−2

... . . . . . . . . . a−1

aN−1 . . . a2 a1 a0


. (2.22)

The symmetry of ξ allows the computations of one half (the upper or the

lower one) and then the other half of the matrix is deduced by computing the

transpose. Moreover, the values of the diagonal are e0 = 1 which saves the

trouble of doing unnecessary computations each time. The symmetry of ξ

makes the computations go fast but before that, ξ needs to be stored. Then,

the fact that the matrix ξ is block-Toeplitz is going to play an important role in

making the matrix storable.
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2.5.1 In the case of a Toeplitz matrix

Let us recall that the goal is to find interesting properties of the matrix ξ

that can help deal with memory issues, due to the huge size of ξ, and carry

out conveniently all the computations where the latter is implicated. The idea

behind the equivalence between the multiplication and the convolution was

highlighted in [105]. In what follows, this idea is explained with some examples

and computations.

As it has already been mentioned before, the matrix ξ is block-Toeplitz

and interesting computational techniques can be concluded. Before starting

to deal with block-Toeplitz matrices straight away, properties of matrix-vector

multiplication are going to be studied first when the matrix in question is only

Toeplitz.

In some cases, the matrix-vector multiplication can be very consuming in

terms of memory space. In the case of a Toeplitz matrix, interesting properties

allow replacing the multiplication by convolution, with the advantage of saving

only a representative vector extracted from the matrix instead of saving the

whole matrix.

In order to highlight the relationship between the convolution and the

multiplication in the case of a Toeplitz matrix, let us go back to the N×N

Toeplitz matrix A defined in (2.22). Let P be a N× 1 vector defined as follows

P =



p0

p1

p2
...

pN−1


.

Let us now consider the vector G extracted from the matrix A defined as
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follows

G=

G(2N− 2) G(2N− 3) G(N) G(N− 1) G(N− 2) G(1) G(0)[ ]
aN−1 aN−2 . . . a1 a0 a−1 . . . a−N+2 a−N+1

.

As one can notice, the vector G contains the elements of the first column and

the first row of the matrix A. These elements are sufficient to reconstruct the

result of the multiplication A× P because A is Toeplitz.

The discrete convolution, at an instant n ∈Z, between two real or complex-

valued functions G and P defined on the set Z, is given by

y(n) = (G ∗ P)(n) =
N−1∑
i=0

P(i)G(n− i), (2.23)

where y is the resulting function defined on Z.

The multiplication A× P gives

A× P =


a0p0 + a−1p1 + . . .+ a−N+1pN−1

a−1p0 + a0p1 + . . .+ a−N+2pN−1

...

aN−1p0 + aN−2p1 + . . .+ a0pN−1


=


y(N− 1)

y(N)
...

y(2N− 2)


(2.24)

As (2.24) shows, each row of the result of the multiplication A× P can be

written as a convolution at precise instants fromN− 1 to 2N− 2. In other words,

A× P can be expressed as the central part of the convolution between Z and P

as follows

A× P = y((N− 1)→ (2N− 2))

where the notation ni→ nj should be understood as: from the instant ni to the

66

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



instant nj.

The evolution of the convolution (2.23) can be highlighted throughout a FIR

filter (Finite Impulse Response), as shown in Figure 2.8, at discrete instants n.

At the instant N− 1we start having the first row of the multiplication A× P and

at the instant 2N− 2, the result of the multiplication is complete.

Figure 2.8: A FIR filter

From these first results we can conclude that the multiplication matrix-

vector, when the matrix is Toeplitz, can be replaced with the central part of the

convolution between a vector extracted from the matrix (as shown above) and

the vector originally destined for the multiplication. By using the convolution,

there is no need to store the whole matrix but only a vector which saves a

considerable amount of memory space. The saving of memory space helps

accelerate the computations and prevents from switching on the SWAPmemory,

which can slow down the computations considerably.
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2.5.2 In the case of a block-Toeplitz matrix

The link between the multiplication matrix-vector and the convolution was

made in the case of a Toeplitz matrix, except that in our case, the matrix ξ is

block-Toeplitz and the multiplication matrix-vector is handled differently.

Let us consider in a general setting an image of size nl ×nc × b where nl, nc
and b are the number of rows, columns and spectral bands respectively. The cost

matrix ξ of this image is computed in a row-major order. It is a block-Toeplitz,

symmetric and defined as follows

ξ=



ξ0 ξ1 ξ2 . . . ξb−1

ξ1 ξ0 ξ1 . . . ξb−2

ξ2 ξ1 ξ0 . . . ξb−3
... . . . . . . . . . ...

ξb−1 . . . ξ2 ξ1 ξ0


.

The matrices ξi are themselves block-Toeplitz and symmetric matrices of size

nl ×nl with i ∈ [[0,b− 1]]

Let F be the following block-vector

F=


F0

F1
...

Fb−1


where Fi are block-vectors of size nl × 1 and i ∈ [[1,b− 1]].

The multiplication ξ× F is given as follows

ξ× F=
(
V ∗

(
ξ0 ∗ F

)
(0→ b− 1)

)
((b− 1)→ (2b− 2))
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where

V =

[ ]
e−(b−1)αγ e−(b−2)αγ . . . e−

α
γ 1 e−

α
γ . . . e−(b−2)αγ e−(b−1)αγ

The details of the computations are given in Appendix A.

2.6 Fusion algorithm

The resolution of the fusion problem as it was formulated in Section 2.4 is

carried out by the HS-MS fusion algorithm named HMWB (Hyperspectral and

Multispectral Wasserstein Barycenter) presented as follows

Algorithm 1: HMWB
Input : S̃(f)), T̃(g), ξM, ξH

1 Initialization: a(0)M = a(0)H = b(0)
M = b(0)

H = 1RH×N ;

2 for i← 0 to niter do

3 // Updating the scaling vectors with data (Sinkhorn’s iteration)

4 b(i)
M ←

S̃(f))
ξM∗a

(i)
M

, b(i)
H ←

T̃(g)
ξH∗a

(i)
H

;

5 // Computing the barycenter

6 u← exp(λ log(a(i)M � ((ξM ∗ b(i)
M)) + (1− λ) log(a(i)H � (ξH ∗ b(i)

H )));

7 // Updating the scaling vectors with u (Sinkhorn’s iteration)

8 a(i+1)M ← u
(ξM∗b

(i)
M )

, a(i+1)H ← u
(ξH∗b

(i)
H )

;

9 end

Output :u (the fused image)

The operation a
b should be understood as an element-wise division, the

operation ∗ refers to the convolution developed in (2.5), ξM and ξH are the cost

matrices of the Wasserstein distancesWγM andWγH respectively, λ is a trade-off
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parameter linked to theWasserstein distances and aM, aH, bM and bH are scaling

vectors.

The updating of the scaling vectors aM, aH, bM and bH for the multispectral

and the hyperspectral components can be done in parallel. Their computation

is quite convenient for it is carried out with element-wise operations (divisions

and multiplications) which are parallelized in Matlab.

The fusion model (2.19) contains five parameters that can be adjusted and

that allow the evaluation of the optimal performances of the fusion algorithm.

In order to assess the best performance of the fusion algorithm, the optimal

parameters should to be found. The search of these latter is done by looking

for the set of parameters that gives the minimum of problem (2.19) in terms

of objective measures. Finding the optimal parameters is also a fair and

objective way of comparing the performance of our fusion algorithm with other

state-of-the-art fusion methods.

For each parameter, a set of testing values was determined based on man-

ual adjustment to determine roughly an upper and a lower bound for each

parameter. Thus, the search for the optimal parameters was carried out with

an exhaustive search in the space of possible values. The exhaustive search

for optimal parameters was carried out on three data sets: Pavia, Chikusei

and Urban, and the optimal values are αMopt = 10−4, γMopt = 10−3, αHopt = 102,

γHopt = 1 and λopt = 0.1. From these optimal parameters we can notice that

αHopt >> αMopt which means that the spectral distance for the hyperspectral

component has a more important weight than the one for the multispectral

component. Then, the spectral information in the hyperspectral image is more

important than the one in the multispectral image. Thus, αHopt being important

means a high cost and a penalized transport in the spectral domain for the hyper-

spectral component which leads to the conservation of the spectral information.
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We notice that γMopt << γHopt , which means that the Wasserstein distance

linked to the multispectral image is less regularized than the one linked to the

hyperspectral image. That could be interpreted by the fact that an important

regularization coefficient γMopt would degrade the valuable spatial resolution

of the multispectral image, because the latter needs less regularization. By the

contrary, the hyperspectral image is already quite regularized spatially because

of its generation process, thus, it is more tolerant to greater regularization

coefficients. Finally, the coefficient λ= 0.1 shows that the Wasserstein distance

linked to the hyperspectral image has more weight (1− λ = 0.9) than the one

linked to the multispectral image. This means that the hyperspectral image

contains an important quantity of information that needs to be preserved and

that the fused image u has to contain mainly the information provided by the

hyperspectral image.

2.7 Evaluation methods

The aim of the fusion is to produce a high-resolution hyperspectral image

from two low-resolution images. The fusion result can be evaluated visually but

it is not a reliable and objective way of measuring the performance of an imaging

algorithm. Thus, many objective measures exist and are widely used to measure

the performance of a method in an objective way. Let X∈RH×N be a reference

image such that X=[x1,. . . ,xH] = [ x1, . . . ,xN] where xk ∈R1×N (k ∈ {1, . . . ,H}) is

the kth band of X and xi ∈RH×1 (i ∈ {1, . . . ,N}) is the ith pixel of X. Let X̂ be the

estimated image. The quality measures used in this work to evaluate the fusion

results are the following

1. PSNR: The PSNR (Peak Signal-to-Noise Ratio) measures the quality of the

spatial reconstruction of each hyperspectral band. The PSNR is the ratio
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between the maximum power of the kth band of the reference image and

the residual error between the kth band of the reference and the estimated

image. For the kth band, the PSNR is computed as follows

PSNR(xk, x̂k) = 10. log10

(
max(xk)2

‖xk − x̂k‖22/N

)
,

wheremax(xk) is themaximumpixel value of the kth band for the reference

image X. The residual error is normalized for each band and thus it is not

affected by data values which allows fair comparison between the bands.

The final value of the PSNR is the average of the PSNR value of each band.

2. SAM: The SAM (Spectral Angle Mapper) [126] measures the quality of

the spectral reconstruction by computing the angle between two spectral

vectors at each pixel in the reference and in the reconstructed image. For

two spectral vectors xi and x̂i the SAM is measured as follows

SAM= arccos
(
< xi, x̂i >
‖ x i‖2‖x̂i‖2

)
.

The values of the SAM belong to (−90,90] and they are measured in

degrees, the smaller the absolute value of the SAM the weaker the spectral

distortion and the higher the spectral quality of the fusion. The final SAM

value is computed by averaging all the SAMs of the pixels of the image.

3. RMSE: theRMSE (RootMean Square Error)measures the L2 error between

the original image X and its estimation X̂ as follows

RMSE(X̂,X) = ‖X̂− X ‖F√
N×H

,

where ‖X‖F =
√
trace(XᵀX) is the Frobenius norm of X. The ideal value of
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the RMSE is 0.

4. ERGAS:ERGAS (ErreurRelativeGlobaleAdimentionellede Synthèse) [127]

measures the global fusion quality. It is calculated as follows

ERGAS(X, X̂) = 100d

√√√√ 1

H

H∑
k=1

(
RMSEk
µk

)2
,

where d is the ration between the spatial resolution of the multispectral

image and the one of the hyperspectral image, RMSEk = ‖x̂k−xk‖F√
N

and µk
is the mean of the kth band of X. The ideal value of ERGAS is 0.

5. CC: The Cross Correlation (CC) is defined as follows

CC(X̂,X) = 1

H

H∑
k=1

CCS(xk, x̂k)

where CCS is the cross correlation between two single-banded images and

it is defined as follows

CCS(A,B) =
∑N
j=1(Aj − µA)(Bj − µB)√∑N

j=1(Aj − µA)2
∑N
j=1(Bj − µB)2

where µA = 1
N

∑N
j=1Aj is the mean of A. The ideal value of CC is 1.

6. DD: The measure of Degree of Distortion between two images X and X̂ is

defined as follows

DD(X, X̂) = 1

N×H
‖vec(X) − vec(X̂)‖1

where vec(X) and vec(X̂) represent the vectorization of the image X and

X̂), respectively. The ideal value of DD is 0.
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7. Q: The Q index was suggested by Wang and Bovik [128] to evaluate the

similarity between two single-band images. It measures their distortion

as the product of loss of correlation, luminance distortion and contrast

distortion. The Q index between two single-band images A and B is

defined as follows

Q(A,B) = 4σ2ABµAµB

(σ2A + σ2B)(µ
2
A + µ2B)

(2.25)

where (µA,µB,σ2A,σ2B) are the means and the variances of A and B, respec-

tively, and σAB is the covariance of (A,B). The range of Q is [−1,1] and the

ideal value of Q is 1.

2.8 Experimental results

This section studies the performances of the HMWB (Hyperspectral and

Multispectral Wasserstein Barycenter) fusion algorithm. The experiments are

carried out with dataset acquired by the ROSIS optical sensor over the urban

area of the University of Pavia in Italy with a resolution of 1.3 m. The image was

initially composed of 115 bands and only 93 bands were left after the removal

of water absorption bands. The spectral range is from 430 to 860 nm. For the

experiments, Urban dataset, acquired by the HYDICE imaging sensor with a

ground sampling distance of 2 m, is also used. The image has a spatial size of

307x307 pixels and 210 wavelengths ranging from 400 nm to 2500 nm with a

spectral resolution of 10 nm. After removing bands due to dense water vapor

and atmospheric effects, 162 spectral bands were left.
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2.8.1 Simulation scenario

In this sectionwe suggest to infer a high-resolution hyperspectral image from

a high-spatial resolution but low-spectral resolution image (MS) and a high-

spectral resolution but low-spatial resolution image (HS). The hyperspectral

image is generated by applying a cyclic convolution operator that acts on each

band followed by subsampling by a factor of 4. The 4-band multispectral

image is generated by filtering the reference image with the IKONOS-like

reflectance spectral response as shown in Figure 2.9. The hyperspectral and the

multispectral images are both contaminated by zero-mean additive Gaussian

noises. In the case of the hyperspectral image, the SNR value is taken 35dB for

the first 43 bands and SNR=30dB for the remaining 50 bands. In the case of the

multispectral bands, the SNR=30dB is chosen for all the bands.

Figure 2.9: IKONOS-like spectral response [62]

In optimal transport, the manipulated images have to be assimilated to

probability measures, which means that all their values have to be positive and

they should sum to one. Thus, the entry images S̃(f) and T̃(g) defined in (2.19)

are normalize to one which means that each value of each image is divided by

the sum of the values of the whole image. The values of the output image of

the HMWB algorithm sum to one, so in order to compare the performances of

the HMWB algorithm with other state-of-the-art methods, the output of each

75

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



method is normalized. For the visualization of multi-band images three bands

are needed, thus, for the experiments, three arbitrary bands are chosen each

time to plot different figures.

2.8.2 Evaluation of results

The fusion model defined in (2.19) does not take into account the removal of

noise. In order to lower the effect of the latter, a denoising pre-processing step is

applied to the hyperspectral and multispectral images. The denoising methods

are chosen in order to provide good results in terms of quality measures (RMSE,

SAM etc). For the denoising of the multispectral image, the Wiener filter is

used. For the hyperspectral image, a denoising method based on the total

variation [129] is chosen. This combination of denoising methods gave better

results than when inverting them or imposing the same denoising method to

both images. When the Wiener filter is used on the hyperspectral image, it

introduces a periodic and piecewise constant structure, which is preserved

after the interpolation operation. Therefore, the denoised hyperspectral image

contains undesired structures which introduces errors. When the total variation

method introduces some sort of diffusion in the image and thus degrades the

spatial quality of the latter. Therefore, when this method is applied to the

multispectral image, the spatial details are not correctly constructed, which

leads to degraded results.

For a fair comparison, all state-of-the-art methods are provided with the

same denoised hyperspectral and multispectral dataset.

The experiments are carried outwith the Pavia datasetwith size 256×256×93

and Urban dataset with size 196× 256× 93. The visual results on Figures 2.10

and 2.13 show that, for both datasets, the HMWB algorithm successfully

reconstructed high-resolution hyperspectral images that are visually close to

76

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



the reference images. Some results of the state-of-the-art methods suffer from

staircasing effects such as MAPSMM and SFIMHS (Figure 2.10), from artifacts

like the blue spot on the green vegetation in the GSA method in Figure 2.10

or from bright green surroundings like in the HySure method as shown in

Figure 2.13. Unlike these methods, the proposed method provided a result

which is visually clean from undesired visual effects in both datasets. Generally,

the visualization of the fused image is sufficient to give a first idea about the

performance of the fusion algorithm in inferring a good visual result. However,

it is important to visualize the errors of the fusion algorithm in order to spot

the areas where the fusion could not give satisfying results. That is why, the

mapping of the RMSE and the SAM errors were used in order to reveal the

distribution of the errors across the bands and the pixels.

Figures 2.11 and 2.14 show themappings of the RMSE errors and Figures 2.12

and 2.15 show the mappings of the SAM errors for Pavia and Urban datasets

respectively. The RMSE images visualize the magnitude of the spatial error at

each pixel and the SAM images visualize the spatial distribution of the spectral

errors. For the Pavia dataset, we can see that in terms of the RMSE (Figure 2.11)

and SAM errormappings (Figure 2.12), the fusion result of the proposedmethod

has fewer errors across the image compared to the other methods, which shows

that the spatial and spectral reconstruction at each pixel was correctly done.

All state-of-the-art methods show errors in some parts of the image especially

where there is the roof of the big building which contains bright and saturated

colors. The proposed method however dealt successfully with the saturation of

colors in the image. For the Urban dataset, we can notice that in terms of RMSE

and SAM errors (Figure 2.14 and Figure 2.15), the errors of the suggested model

are lower with respect to the other methods. The error mappings of the results

of most state-of-the-art methods show important errors in areas with contours
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and fine details which is not the case for the proposed method.

Visual evaluation of the quality of images is a first approach that gives an

overall idea about the performance of the fusion algorithm. However, when it

comes to conducting objective assessments or comparing with other state-of-

the-art methods, visual evaluations become subjective and they are not reliable

anymore. That is why many quality indexes were suggested and detailed in

Section 2.7 in order to asses the performance of the fusion algorithms. Tables 2.1

and 2.2 show the performances of different fusion methods on Pavia and Urban

datasets respectively, evaluated with different quality measures and compared

to six methods of the state of the art, the best performances are emphasized

in bold type and the second best ones are shown with underlines. From these

two tables we can see that the performances of the suggested HMWB algorithm

overtake the other methods in all the quality measures.

RMSE PSNR ERGAS SAM Q2n CC DD
Reference 0 ∞ 0 0 1 1 0
CNMF 1.3354 31.7053 1.9882 2.7615 0.9333 0.9559 0.8909
HySure 1.5932 30.1725 2.3947 3.7058 0.9234 0.9422 1.0129
GSA 0.9741 34.4461 1.5409 2.4881 0.9619 0.9772 0.71286

SFIMHS 1.8354 28.9427 2.8866 2.7428 0.8915 0.9125 1.1751
GLPHS 1.7309 29.4522 2.7277 2.7175 0.9022 0.9213 1.1349

MAPSMM 2.1215 27.6848 3.3343 3.0538 0.8423 0.8792 1.3712
HMWB 0.6846 37.5101 1.0017 1.8691 0.9771 0.9868 0.4738

Table 2.1: Quality measures of fusion methods on Pavia dataset with size
256× 256× 93 corrupted with Gaussian noise. The RMSE and DD values are
provided in order of magnitude of 10−8.

2.9 Including the nonlocal means weights

In this part, a new way of carrying out HS-MS fusion is suggested. The

novelty is the introduction of nonlocal means (NLM)weights in the cost function.
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Figure 2.10: Performances of HS-MS fusion of the HMWB algorithm and
comparison with other state of the art methods on Pavia dataset of size 256×
256× 93. From top left to bottom right: Reference image, HS image, MS image,
CNMF [80], HySure [61], GSA [72], SFIMHS [71], GLPHS [73], MAPSMM [75]
and the result of the proposed method.
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Figure 2.11: Mapping of the RMSE error computed for each pixel for Pavia
dataset of size 256× 256× 93. From top left to bottom right: CNMF, HySure,
GSA, SFIMHS, GLPHS, MAPSMM and the result of the proposed method.
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Figure 2.12: Mapping of the SAM error computed for each pixel for Pavia
dataset of size 256× 256× 93. From top left to bottom right: CNMF, HySure,
GSA, SFIMHS, GLPHS, MAPSMM and the result of the proposed method.

81

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



Figure 2.13: Performances of HS-MS fusion of the HMWB algorithm and
comparison with other state of the art methods on Urban dataset of size
196× 256× 93. From top left to bottom right: Reference image, HS image, MS
image, CNMF, HySure, GSA, SFIMHS, GLPHS, MAPSMM and the result of the
proposed method.
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Figure 2.14: Mapping of the RMSE error computed for each pixel for Urban
dataset of size 196× 256× 93. From top left to bottom right: CNMF, HySure,
GSA, SFIMHS, GLPHS, MAPSMM and the result of the proposed method.

RMSE PSNR ERGAS SAM Q2n CC DD
Reference 0 ∞ 0 0 1 1 0
CNMF 1.4276 31.5846 1.5686 2.4071 0.9495 0.9707 0.9888
HySure 1.8618 29.2777 2.1101 3.5705 0.9238 0.9524 1.3074
GSA 1.2036 33.0671 1.3039 2.4963 0.9669 0.9819 0.8419

SFIMHS 2.0421 28.4748 2.2935 2.6032 0.9107 0.9372 1.4053
GLPHS 1.8886 29.1533 2.1251 2.5624 0.9221 0.9454 1.3365

MAPSMM 2.3191 27.3702 2.5999 2.8305 0.8774 0.9163 1.5855
HMWB 1.0147 34.5511 1.1106 2.0377 0.9735 0.9855 0.6911

Table 2.2: Quality measures of fusion methods on Urban dataset with size
196× 256× 93 corrupted with Gaussian noise. The RMSE and DD values are
provided in order of magnitude of 10−8.
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Figure 2.15: Mapping of the SAM error computed for each pixel for Urban
dataset of size 196× 256× 93. From top left to bottom right: CNMF, HySure,
GSA, SFIMHS, GLPHS, MAPSMM and the result of the proposed method.
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This means that the cost function is computed based on the spatial distances

between the pixels and on their values as well. The idea of adding nonlocal

terms is inspired from the work on nonlocal filtering for image denoising by

Buades, Coll and Morel [130]. The authors suggested a NLM algorithm for

image denoising by averaging similar pixels in the image and it proved efficient

for reducing the noise. The success of the NLM algorithm is related to the

computation of the similarity between pixels by comparing patches centered

on them and not only comparing their intensity values. Let Ω be an arbitrary

space and let u be the image to be denoised. Given a pixel x ∈Ω, the filtered or

denoised value at x by the NLM algorithm suggested in [130] is

NL[u](x) =
1

γ
(x)

∫
Ω

exp
(
−

(κρ ∗ |u(x+ .) − u(y+ .)|2)(0)
h2

)
u(y)dy, ∀x ∈Ω

where κρ is a Gaussian kernel of size ρ and h acts like a filtering parameter

that controls the decay of the exponential function and quantifies the speed of

decrease of the latter when the dissimilarities between the pixels start increasing.

Two pixels x and y are similar when the Gaussian window around x looks like

the Gaussian window around y. This method removes the noise in the image

while preserving the geometric and texture features of the image based on the

principle that the images are self-similar.

Nonlocal methods allow the interaction between any two pixels in the image.

Unlike the local case where only the closeness between pixels is used and

matters, the nonlocal methods search for points in all the image with similar

neighborhoods. The nonlocal search allows finding pixels with similar geometry

and texture and it it based on the hypothesis on the regularity and self-similarity

of the image. Which means that for each pixel in the image, a patch centered on

that pixel has many similar patches in the image as shown in Figure 2.16.
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Figure 2.16: Similarity of natural images. The different coloured patches indicate
the similar parts in the image. We can notice that for each square, many similar
squares can be found in different parts of the image.

2.9.1 The new cost function

The previous cost function between two pixels i and j defined in expres-

sion (2.8), denoted by ξdist(i, j), is computed with the spatial positions of the

pixels. The novelty in this part concerns the cost function where the nonlocal

means (NLM) weights are included. The new suggested cost function is defined

as

ξ= ξdist � ξNLM (2.26)

where ξNLM is the NLM cost kernel and � is an element-wise multiplication.

Following the same storage scheme as the kernel ξdist, each row of ξNLM contains

the NLM weights of a pixel with respect to all the other pixels in the search

perimeter which will be defined later. Let i and j be two pixels, the NLMweight

between these two pixels is defined as follows [131]

ξNLM(i, j) = exp(−
||P(i) − P(j)||22

h2sim
), (2.27)
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where P(k) is the patch centered on the pixel k and hsim is a filtering parameter.

The similarity measure between the patches in R3 is computed as follows

||P(i) − P(j)||22 =
1

d

∑
{z∈Z3:||z||∞6d}

(u(i+ z) − u(j+ z))2, (2.28)

where d is the whole size of the patch such that, d= (2ds + 1)
2 × (2d

s
′ + 1), with

ds being the radius of the patch in the spatial dimension and d
s
′ is the radius

in the spectral dimension. The two parameters ds and ds ′ determine if the

patch centered on the pixel is a cubic one (covers the spatial and the spectral

dimension), a square one (restrained to the spatial dimension) or a "linear" one

(covers only the spectral dimension) and u is the image on which the NLM

weights are computed. Thus, given two pixels i (xi,yi,zi) and j (xj,yj,zj), ξ is

computed as follows

ξ(i, j) = exp
(
−
1

γ
((xi − xj)

2 + (yi − yj)
2) −

α

γ
(zi − zj)

2 −
||P(i) − P(j)||22

h2sim

)
. (2.29)

The goal of including the NLM weights is to take into account the values

of the pixels during the transport. As we can see in the expression (2.29), the

distance between the pixels and the values of these latter are mixed. The idea

behind this mixture is to make the decision of transporting the mass between

two pixels based on their distances and also on their values. So the new optimal-

transport-based fusion can be explained and seen as follows: if two pixels i

and j are far from each other, then the distance is going to be quite important.

However, if the patches centered on these two pixels are similar and look alike

according to the formula (2.28), the energy has to be transferred between these

two pixels anyway. If the patches centered on the two pixels are not similar

and though the distance between the pixels positions is small, the transport has
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to take place anyway. Therefore, the main idea is to de-penalize the transport

between pixels that are far and similar and the ones that are close and not very

similar.

Mixing the distances between the pixels and their values has been used in

many imaging problems such as in the bilateral filtering [132]. The latter inspired

many techniques in image processing such as the NLM weights introduced

by [133].

2.9.2 Restricting the search window

Changing the costmatrix does not change the algorithmbehind the resolution

of the fusion problem which is a minimization one. But now that the NLM

weights are included, ξ is not Toeplitz anymore, which reduces significantly

the tricks that could speed up the multiplications matrix-vector where ξ is

implicated. For this reason, other ways of computing and storing ξ were to

be found. Since ξdist is used for the computations of ξ, it has to be stored in

a sparse format so that it can fit in the memory space. In short, some values

that are very small are discarded because their influence and contribution is

extremely small and thus irrelevant.

To make ξdist sparse, a threshold swas fixed and only the values that were

greater or equal to s are kept in ξdist. However, comparing each time a computed

value to "s" before storing it is time consuming and prevent the code from being

parallelized. Therefore, restricting the computations in a search window where

there is only values greater than s would be very convenient. Nevertheless, one

should stress that since the final cost function ξ is the element-wise product of

the two matrices ξdist and ξNLM, the search window has to be the same for both

ξdist and ξNLM. Otherwise, the waste of a tremendous amount of time would be

caused because of unnecessary computations. Thus, it is better to restrain the
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computations of both ξdist and ξNLM in the same search window since they are

going to undergo element-wise multiplications as specified in expression (2.26).

Thus, with the resolution of simple inequalities, a clever way of restraining

the computations to a spatial and spectral window was found as follows

ξdist(i, j) = exp
(
−
1

γ
((xi − xj)

2 + (yi − yj)
2) −

α

γ
(zi − zj)

2

)
> s⇔

−
1

γ
((xi − xj)

2 + (yi − yj)
2) −

α

γ
(zi − zj)

2 > ln(s)⇔

(xi − xj)
2 + (yi − yj)

2 −α(zi − zj)
2 6−γ ln(s)⇔

−
1

γ ln(s)

(
(xi − xj)

2 + (yi − yj)
2 +α(zi − zj)

2
)
6 1.

(2.30)

The expression (xi−xj)
2

−γ ln(s) +
(yi−yj)

2

−γ ln(s) +
(zi−zj)

2

−γ ln(s)
α

= 1 is the equation of the ellipsoid

centered at (xi,yi,zi) with radiuses (rx,ry,rz) as follows:


r2x =−γ ln(s)⇔ rx =

√
−γ ln(s),

r2y =−γ ln(s)⇔ ry =
√
−γ ln(s),

r2z =
−γ ln(s)
α ⇔ rz =

√
−γ ln(s)
α .

(2.31)

Thus, for a pixel i with the coordinates (xi,yi,zi), the search zones are

[xi − rx,xi + rx] and [yi − ry,yi + ry] in the spatial domain and [zi − rz,zi + rz] in

the spectral one. These search domains make sure to keep the values inside

the smallest rectangular block that contains the ellipsoid. But in order to stay

inside the ellipsoid, it is important to make sure to keep only the values of the

rectangular block greater than or equal to s. Figure 2.17 shows a 2D section of

the ellipsoid inside the rectangular with the values that should be kept for ξ.

The search perimeter is very important because, on one hand it restrains

the computations in a limited area of the image grid. On the other hand, it
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Figure 2.17: Acceptable values in the search perimeter

limits the multiple accesses to the sparse matrix in the memory which are much

slower than the accesses to a full matrix.

2.9.3 Computation of the NLM weights

The computations of ξNLM, as specified in formula (2.27), were carried out

in the search window introduced in the Section 2.9.2. The coding of the matrix

ξNLM required six nested loops, and since the coding was done in Matlab, which

is known for not getting along with nested loops, the execution of the code was

extremely slow. The slowness of the execution made it very hard to test various

sets of parameters and assess the performance of the algorithm with the new

cost function. Thus, mex engine provided by Matlab was used to recode ξNLM

and carry out the computations in a faster way. In mex engine, the codes are

written in the C language that uses the API library, which is a Matlab library

that allows coding in C with Matlab commands. Then, the C code is compiled

and executed from a Matlab file with a specific command line. Compiling a

C code from a Matlab script is very convenient in cases where Matlab and C

codes and mixed, which allows using both codes without having to recode

everything in Matlab or in C. After converting many parts in Matlab code to

C, including ξNLM, the computations were very fast, as expected, which gave

the opportunity of conducting many experiments with different data sets in a
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reasonable amount of time.

When only ξdist was used and before adding the NLM weights to the cost

function, there were five parameters (γM, γH,αM, αH,λ) in the fusion model.

After adding the NLM weights, three more parameters were added: ds, ds ′ and

hsim. This means that, in order to evaluate the impact of the new cost function

on the performance of the fusion algorithm, these eight parameters should be

optimized, which is simply challenging. A classic exhaustive search for optimal

parameters was considered with eight nested loops, but the computations never

made it to the end because of various technical complications. Another smart

way of studying the impact of the eight parameters on the new fusion algorithm

was used and it is explained later in the document.

2.9.4 Fusion algorithm

The newHS-MS fusion algorithm is named NLM-HMWB and it is presented

below. It is similar to the HMWB algorithm except that the convolution cannot

be used anymore with the new cost matrix ξ because it is not Toeplitz. This

means that the multiplications matrix-vector cannot be escaped. However,

making the matrix ξ sparse by using the threshold s and restraining the search

into the ellipsoid simplified the computations.
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Algorithm 2: The pseudo-code for the NLM-HMWB algorithm
Input : S̃(f)), T̃(g), ξM, ξH

1 Initialization: a(0)M = a(0)H = b(0)
M = b(0)

H = 1RH×N ;

2 for i← 0 to niter do

3 // Updating the scaling vectors with data (Sinkhorn’s iteration)

4 b(i)
M ←

S̃(f))
ξ
ᵀ
M×a

(i)
M

, b(i)
H ←

T̃(g)
ξ
ᵀ
H×a

(i)
H

;

5 // Computing the barycenter

6 u← exp(λ log(a(i)M � ((ξM × b(i)
M)) + (1− λ) log(a(i)H � (ξH × b(i)

H )));

7 // Updating the scaling vectors with u (Sinkhorn’s iteration)

8 a(i+1)M ← u
(ξM×b

(i)
M )

, a(i+1)H ← u
(ξH×b

(i)
H )

;

9 end

Output :u (the fused image)

2.10 Experimental results

2.10.1 Simulation scenario

The experiments were run on three data sets: Pavia, Chikusei and Botswana

as shown in Figure 2.18. Pavia was introduced in the Section 2.8. Chikusei

dataset [134] was captured by the Headwall Hyperspec-VNIR-C imaging sensor

over the agricultural and urban area of Chikusei in Japan. The original data

consists of images of size 2517× 2335 pixels with a ground sampling distance of

2.5 m and it is formed by 128 bands that range from 363 nm to 1018 nm. The

number of bands of the Chikusei dataset was also reduced to 93 after removing

noisy and water absorption bands. As to the Botswana dataset, it was acquired

by the NASA EO-1 satellite over the Okavango Delta, Botswana. The Hyperion

sensor on EO-1 acquired data with a GSD of 30 m over 7.7 km strip in 242 bands
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covering the 400-2500 nm portion of the spectrum with a spectral resolution of

10 nm. Uncalibrated and noisy bands that cover water absorption features were

removed and 145 bands were left. The preprocessing of the data was performed

by the UT center for Space Research.

The generation of hyperspectral and multispectral data was carried out as in

Section 2.8.1 with the same sensor. All three data sets (Figure 2.18) have the

same size 128× 128× 93. The generated hyperspectral and multispectral images

from each one of these data sets have been denoised just like in Section 2.8.2.

For the experiments in this part, the number of parameters is eight. Thus,

in order to determine the best performance of the new fusion method and

compare fairly with state-of-the-art methods, optimal parameters should be

found. However, it is difficult to carry out exhaustive search for optimal

parameters in the space of all possible parameters (R8) with eight nested loops.

Thus, a new way of looking for optimal parameters was determined in order

to reduce the complexity of search. The five parameters of the fusion model

when only ξdist is used were fixed to the optimal ones introduced in Section 2.6.

Then, the three parameters linked to the NLM cost matrix were varying. The

aim of this search method is to study the sensitivity of the NLM parameters and

adapt the search of optimal parameters gradually. The experiments were run for

logspaced values of hsim in the interval [10−12,104]. The values of hsim are tested

for different patch sizes: when only the pixel value is used, 2D patches of sizes

3× 3 and 5× 5 and 3D patches of sizes 3× 3× 3 and 5× 5× 5. The algorithm

describing the search for the optimal parameters is described in Appendix A,

Section A.2. The performances are compared to the case where there is no

NLM term contribution, which means where ξ= ξdist.
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Figure 2.18: Data sets used for the experiments. From left to right. Chikusei,
Botswana and Pavia. The size of the three data is 128x128x93

2.10.2 Evaluation of results

The search for the NLM weights takes place in a search area defined by an

ellipsoid presented in Section 2.9.2. Based on the fixed optimal parameters

defined in Section 2.6 and the fixed threshold s = 10−9, the radiuses of the

ellipsoid are:

• Hyperspectral component

– rx = 4

– ry = 4

– rz = 0

• Multispectral component

– rx = 0

– ry = 0

– rz = 14

The values of the radiuses show that the search for the hyperspectral

component is done spatially in a search window of size 9× 9 pixels. The search

for the multispectral component is done on the spectral line that has a length of

29 pixels. These search areas are consistent with the principle of transport. In

the hyperspectral component we want to keep the rich spectral information and

transport only the spatial one, thus the transport has to be done spatially. When

it comes to the multispectral component, the transport has to be done spectrally

because we want to preserve the valuable spatial information and upgrade the
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spectral one.

Figures 2.19, 2.20 and 2.21 show the performance of the sensitivity study of

the NLM parameters for the three data sets Chikusei, Botswana and Pavia. Each

one of these images display the performance in terms of RMSE, SAM and CC

measures. From these figures we can notice that, in all the quality measures and

for all data sets, the performance of the fusion algorithm starts with high error

which decreases when hsim increases. We also notice that for a specific value of

hsim, the performance of the algorithm with NLM terms becomes exactly the

same as the performance of the fusion algorithm without the NLM terms.

For the second experiment, the threshold s was reduced to s= 10−3 in order

to reduce the radiuses of the ellipsoid. A smaller ellipsoid means a restricted

search area for NLM weights. The new radiuses of the ellipsoid are

• Hyperspectral component

– rx = 2,

– ry = 2,

– rz = 0,

• Multispectral component

– rx = 0,

– ry = 0,

– rz = 8.

With these new radiuses, the search for the hyperspectral component will

take place in a spatial window of size 5× 5 pixels and for the multispectral

component, the search will occur on the spectral line of lenght 17 pixels. The

experiment was carried out on the Chikusei data set. Figure 2.22 shows the

performance of the fusion algorithm with the new threshold s = 10−3. We

can notice that even with smaller search windows for the NLM weights, the

performance of the fusion algorithm never gets better than in the absence of the

NLM weights.

The use of the NLM weights in the cost matrix was based on the NLM

algorithm for image denoising [130]. The hyperspectral and the multispectral
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Figure 2.19: Chikusei data set. Sensitivity of the NLM parameters measured
with RMSE, SAM and CC quality indices.
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Figure 2.20: Botswana data set. Sensitivity of the NLM parameters measured
with RMSE, SAM and CC quality indices.
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Figure 2.21: Pavia data set. Sensitivity of the NLM parameters measured with
RMSE, SAM and CC quality indices.
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Figure 2.22: Chikusei data set. Sensitivity of the NLM parameters measured
with RMSE, SAM and CC quality indices for a threshold of s= 10−3.
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images are denoised before the fusion. Thus, the denoising properties of the

NLMweights could be harnessed to skip the denoising step for the hyperspectral

and multispectral images before fusion. The aim of the next experiment is to

check if the use of the NLM weights in the cost matrix will lower the effect of

noise in the case of noisy hyperspectral and multispectral images. The goal

is also to verify if the use of the NLM weights on noisy data will give better

results than without the denoising pre-processing step. Figure 2.23 shows the

performance of the fusion algorithm without the denoising step. We can notice

that we have the same behavior as in the previous experiments: the fusion starts

with high errors which decrease when hsim increases and at a specific value of

hsim, the performance of the fusion with the NLM weights becomes exactly the

same as without the NLM weights.

Figure 2.24 shows the result of the fusion algorithm with and without the

denoising step in the case where ξ = ξdist (no NLM weights). We can notice

that the visual result of the fusion is quite noisy when there is no denoising

step. Table 2.3 shows the quantitative results of the fusion in the case ξ= ξdist

corresponding to Figure 2.24. We notice that in terms of quality indices, the

denoising step plays an important role in minimizing the errors. According

to Figure 2.23, the performance of the fusion with the NLM weights do not

overtake the result without NLM weight. The best result of the fusion with

the NLM weights is obtained when hsim reaches high values and it is the same

result when no NLMweights are included. Thus, we conclude that the presence

of the NLMweights in the cost matrix does not contribute to removing the noise

and does not improve the fusion results.
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Figure 2.23: Chikusei data set. Sensitivity of the NLM parameters measured
with RMSE, SAM and CC quality indices for a threshold of s= 10−3 and whitout
denoising the hyperspectral and the multispectral images.
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Figure 2.24: Result of fusion on the Chikusei data set. Left: fusion with
denoising. Right: fusion without denoising. Both results are in the case where
ξ= ξdist.

RMSE SAM CC
Reference 0 0 1

Denoising (ξ= ξdist) 2.8224 1.7318 0.98736
No denoising (ξ= ξdist) 3.539 2.4737 0.97872

Table 2.3: Quality measures of fusion with and without denoising in the case
where ξ= ξdist. The RMSE are provided in order of magnitude of 10−8.

2.10.3 Analyses of the results

The previous experiments showed that the use of the NLM weights in the

cost matrix makes the fusion performance start with high errors in terms of

RMSE, SAM and CC for small values of hsim. Then, these errors start decreasing

when hsim becomes bigger. The performance of the fusion with the NLM

weights reaches the performance of the fusion without NLMwithout overtaking

it.

When hsim is very small, the value of h2sim is even smaller which means that
||P(i)−P(j)||22

h2sim
has a high value. When the latter increases, the value of the following

quantity, that corresponds to the cost of transport, also increases

1

γ
((xi − xj)

2 + (yi − yj)
2) +

α

γ
(zi − zj)

2 +
||P(i) − P(j)||22

h2sim
.
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This means that moving the mass in this case is not favored because the

transport cost is high. This explains why, when hsim is very small, the fusion is

less efficient than in the absence of the NLM weights.

The experiments also showed that the bigger hsim the better the fusion

performance with the NLM weights and the closer it gets to the results in the

absence of the NLM weights. When hsim takes big values, h2sim is even bigger

which makes the fraction ||P(i)−P(j)||22
h2sim

take small values. Therefore, the value of

the term 1
γ((xi− xj)

2+(yi−yj)
2)+ α

γ (zi− zj)
2 is the one that is mainly implicated

in the transport cost, which brings the fusion algorithm to the case where the

NLM weigths are absent. Thus, we can deduce that when hsim takes big values,

the fusion performance with the NLM weights gets closer to the case where the

NLM weights are absent until both performances become exactly the same as

shown by the experiments.

Before introducing the NLM weights, the cost matrix was defined by the

distance between the pixels positions. This fact implies that, when the pixels are

far away from each other, the distance between them is important and thus the

transport between these pixels is not favored. But in the case where the pixels

are close to each other, the distance between the pixels is small and in this case

the transport may take place. Thus, the idea behind the introduction of the NLM

weights was to encourage and force the mass move in the case where pixels are

far away from each other and are similar. In the case where the patches are

similar, the distance ||P(i) − P(j)||22 is small, thus the fraction ||P(i)−P(j)||22
h2sim

is small

too. This means that the term about the distance between the positions of the

pixels is preponderant and counts more than the NLM one. Moreover, when the

spatial distance between two pixels increases, the probability of finding similar

patches is quite low. We can conclude that, either the pixels are far from each

other or not, if their patches are similar, the use of the NLM weights does not
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much contribute to the transport and has less influence than the spatial distance

term.

Finally, the experiments showed that the cost matrix with the NLM weights

does not contribute to the reduction of the noise. Because the NLM weights

that were used for denoising in the literature acted directly on the image to be

denoised. In our case, the NLM terms are included in the cost matrix that is

used for the update of the scaling vectors, thus, the image is indirectly affected

by the NLM terms.

Throughout these experiments, we saw that the use of the NLM weights

does not contribute to upgrading the results of the fusion either in the presence

or in the absence of noise. For all the previous experiments, the images were

assumed to be registered without any misalignment problems. However, this

assumption does not always hold in the real-life conditions. In fact, during

the acquisition process of images, misalignment, also called misregistration

or geometric noise, affects data covering the same scene. Thus, using the

NLM weights in this case might downplay the misalignment effect. Most of

HS-MS state-of-the-art fusion methods assume that the hyperspectral and the

multispectral images are perfectly aligned. Thus, it is likely that, most of these

methods do not take into account the misregistration problems and that the

results of the fusion will suffer from geometric noise. Therefore, imposing to the

transport to take place, even when the pixels are far from each other spatially

but similar in terms of patchs, might decrease the misregistration effect. It is

no secret that the misalignment will highly likely not be completely fixed and

that the fused image will contain some geometric artifacts. However, the goal is

to downplay the geometric noise with respect to the case of transport without

NLM weights and with respect to other state-of-the-art methods. This line of

research seems promising and will be developed in future work. It might also
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open new opportunities for the mixing of NLM weights and optimal transport.

2.11 Concluding remarks

In this chapter, two HS-MS fusion techniques based on optimal transport

were developed. In the first part, the introduced fusion model minimized

the sum of two weighted and regularized Wasserstein distances. These latter

describe the spectral and spatial information to be injected in the final image.

The solution of the minimization problem is the barycenter in the sense of

the Wasserstein distance, computed with the Hyperspectral and Multispectral

Wasserstein Barycenter (HMWB) algorithm developed in Section 2.6.

The Pavia and Urban datasets were used to evaluate the fusion methods. For

both datasets, the qualitative results showed that the fused image is visually

close to the reference one. The Root Mean Square Error (RMSE) and the Spectral

Angle Mapper (SAM) mapping images illustrated the distribution of the spatial

and spectral errors. These error mappings showed that errors are either

homogeneously small across the image or concentrated in parts characterized

with individual and small blocks. Furthermore, the fusion performance of

the suggested method was also assessed with various quality measures and

compared to six state-of-the-art methods. For both datasets, the suggested

method outperformed the other methods in all the quality indices. Overall,

visual and numerical results showed that the optimal transport based fusion

was able to produce fusion results that compare favorably to the state-of-the-art

methods.

In the second part, a new way of carrying out the fusion was suggested. The

NLM weights were included in the cost matrix so that during the transport, not

only the distance between the pixels is taken into account but also the values of
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similar pixels. The goal of including the NLM weights in the cost matrix was

to improve the quality of transport and to take into account the additive noise

that affect the input data. Due to the high number of parameters implicated

in the fusion algorithm (eight), a sensitivity study was conducted in order

to identify the behavior of the fusion results with respect to the parameters.

Different experiments were carried out on three data sets: Chikusei, Botswana

and Pavia. The results of these experiments showed that the NLM weights

do not contribute to improving the results of the fusion. In fact, the figures

showed that the best results the algorithm with the NLM weights can reach,

are the ones without NLM weights. However, the NLM weights might help fix

misregistration problems in the case where the hyperspectral and multispectral

image are not supposed to be perfectly aligned. The contribution of the NLM

weights in downplaying the effect of misalignment will be explored in future

work.
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Chapter 3

Nonlocal gradient based

fusion models

3.1 Introduction to pansharpening methods

Satellite acquire multispectral images at high spatial resolution and subsam-

ple the hyperspectral channels by a factor of 2 or 4. The reduction of resolution

in satellite images is due to technical constraints of sensors onboard and to the

transmission bandwidth. The fusion of hyperspectral and multispectral images

produces a high-resolution hyperspectral image with finer spatial and spectral

details than any of the entry images.

In this chapter, we introduce nonlocal variational models for HS-MS fusion.

The proposed models incorporate a nonlocal regularization term and assume

that the low-resolution bands are obtained from the high-resolution ones by

low-pass filtering followed by subsampling. We also include a constraint that

forces the final image to share the high frequencies of the multispectral image.

The suggested fusionmodels do not need any assumptions on the co-registration
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of the bands since each band is fused independently.

Variational methods for image processing problems have been used to tackle

many imaging problems and they have enjoyed an explosive success [135, 136,

137, 138, 139] since the pioneering work of Mumfomrd-Shah [140] and Rudin-

Osher-Fatemi (ROF) [141]. The goal of variational approaches is to determine

an unknown variable that satisfies given constraints. These constraints are

formulated as an energy functional and the unknown variable is the solution of

the minimization of the energy functional.

Themajority of image processingmodels are formulated as theminimization

of ill-posed inverse problems. In order to account for the ill-posedness of these

problems, a regularizer is carefully chosen and added to the functional to be

minimized. Most of the time, classical variational techniques describe regularity

in terms of local relationships of nearby pixels by computing the gradient or

the Laplacian. Among the variational techniques, the total variation [141] is the

most significant one. Total variation is famous for preserving discontinuities in

the image for assigning the same energy cost to sharp and smooth transitions.

The first variational fusion problem was a pansharpening one called P+XS

and suggested by Ballester et al. [142]. The abreviation P+XS stands for panchro-

matic and multispectral images and the aim is to merge a panchromatic image

that has a high spatial resolution and a low spectral one with a multispectral

image that has a low spatial resolution and a high spectral one. In P+XS, the

formulation of the pansharpening problem consists of the minimization of an

energy functional composed of three terms. A regularization term that accounts

for the ill-posedness of the fusion problem and forces the spectral channels

to share the same geometry as the panchromatic image. The other two terms

penalize the deviation from the panchromatic and the multispectral image. The

P+XS formulation of the pansharpening problem is presented as follows.
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Let Ω be an open and bounded domain in Rd where d > 2. We denote

by u :Ω→RM, with u = (u1(x), . . . ,uM(x)) for any x ∈Ω, the high-resolution

multispectral image, withM spectral bands, we seek to estimate. Each image

uk :Ω→R represents the intensity values corresponding to the k th band of

u. Assume that we are given a high-spatial-resolution panchromatic image

P :Ω→R and a low-spatial-resolutionmultispectral image uS :ΩS→R such that

uS(x) = (uS1(x), . . . ,u
S
M(x)), for any x ∈ΩS where ΩS is a sampling grid ΩS ⊆Ω.

By supposing that the geometry of the spectral channels is contained in the

topographic map of the panchromatic image, the purpose is to reconstruct a

high-resolution multispectral image from the two given data P and uS.

The panchromatic image is supposed to be a linear combination of the bands

of the high-resolution multispectral image u and it is given by

P(x) =

M∑
k=1

αkuk, ∀x ∈Ω

where {αk}
M
k=1, such that αk > 0 for all k ∈ {1, . . . ,M}, are mixing coefficients for

computing the total spectral energy from the channels of the high-resolution

multispectral image. In a variational framework, the aim is to minimize

∫
Ω

( M∑
k=1

αkuk(x) − P(x)

)2
dx, (3.1)

We note that the panchromatic image and the spectral channels uk of the

image to be found u are assumed to be aligned.

In this model, the channels of the multispectral image uS are assumed to be

obtained from the high-resolution multispectral image u by low-pass filtering

followed by sub-sampling. Thus, we have

uSk = (Kk ∗ uk)↓s , ∀k ∈ {1, . . . ,M},
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where ↓s stands for the sub-sampling operator by a factor s (for most satellites

s= 4), and Kk denotes the impulse response of the low-pass filter corresponding

to channel k ∈ {1, . . . ,M}.

We need to assume that it is possible to evaluate Kk ∗ uk at any point of ΩS.

For this, Kk is considered to be the kernel of a convolution mapping L2(Ω) into

C(Ω), that is

Kk ∗ v(y) =
∫
Ω
Kk(y− x)v(x)dx, ∀k ∈ {1, . . . ,M}, ∀v ∈ L2(Ω).

The writing of the above constraint in a variational framework is as follows

∫
Ω
ΠS · (Kk ∗ uk − uΩk (x))2dx, ∀k ∈ {1, . . . ,M} (3.2)

where ΠS =
∑
x∈ΩS δx is a Dirac’s comb defined by the sampling grid ΩS and

uΩ : Ω→ RM, with uΩ(x) = (uΩ1 (x), . . . ,u
Ω
M(x)) for any x ∈ Ω, is an arbitrary

extension of uS as a continuous function from the sampling grid ΩS to the

whole domain Ω. Note that the integral of a sum of Dirac’s is unambiguous as

we assume that no point of ΩS belongs to the boundary of Ω. Moreover, the

integrand term is multiplied by ΠS and the expression (3.2) does not depend on

the particular chosen extension from ΩS to Ω.

Before talking about the last term in the P+XS model, some concepts need

to be introduced. Given a function w that belongs to L1(Ω), the total variation

of w in Ω is defined as follows

V(w,Ω) = sup
{∫

Ω
w(x)divφ(x)dx : φ ∈ C∞0 (Ω,R2), |φ|6 1

}
,

The space of functions of bounded variation (BV functions) can then be

defined as

BV(Ω) =

{
w ∈ L1(Ω) : V(w,Ω)<+∞}.
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In order to account for the ill-posedness of the pansharpening problem, the

following term was suggested

M∑
k=1

γk

∫
Ω
|θ⊥ · ∇uk(x)|2dx.

This term imposes that each channel at the high resolution follows the geometry

of the panchromatic image. The coefficients γk > 0 allow the control of the

relative weight assigned to each channel, since the authors chose not the

privilege any channel over the other ones, they assigned γkMk=1 = 1. The variable

θ represents a vector field θ :Ω→R2 such that

∀x ∈Ω, θ(x) =


∇uk(x)
|∇uk(x)| if ∇uk(x) 6= 0,

0 otherwise,

where θ⊥ is its counterclockwise rotation of angle π
2 which represents the unit

tangents of the level lines of uk, and ∇uk is the gradient of uk which is a

vector-valued measure with finite total variation.

The high-resolution multispectral image is computed by minimizing the

following energy functional

M∑
k=1

γk

∫
Ω
|θ⊥ · ∇uk(x)|2dx+ λ

∫
Ω

( M∑
k=1

αkuk(x) − P(x)

)2

+ µ

M∑
k=1

∫
Ω
Πs

(
Ks ∗ uk(x) − uΩk (x)

)2
,

subject to 06 uk 6Mk, where

Mk = max
(i,j)∈ΩS

max
(
P(i, j)
αk

,uSk(i, j)
)

,

and uk ∈ BV(Ω), γk,λ,µ> 0 (in practice all these parameters are taken equal to
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1).

The release of the P+XS model inspired the scientific community and many

interesting pansharpening algorithms came out. Duran et al. [143] suggested

a variational technique for pansharpening that was inspired by the P + XS

problem and the nonlocal-means algorithm for image denoising [130] presented

in (2.9). Duran et al. kept the idea of the P+ XS model but they introduced

a nonlocal regularizer. The latter forces the fused image to share the same

geometric regularities as the panchromatic one by harnessing its self-similarities.

The panchromatic image was used for extracting the relationship between

the patches that describe and define the geometry of the fused image. The

optimization is performed on each band independently which is convenient in

the case where misregistered and non-aligned data are manipulated. In this

way, the propagation of errors due to ill-acquisition is minimized. Morevover,

this technique contributed to reducing the color artifacts significantly.

The nonlocal regularization term that takes advantage of the self-similarity

of the panchromatic image is presented as follows

∫∫
Ω×Ω

(uk(y) − uk(x))
2ωP(x,y)dydx, ∀k ∈ {1, . . . ,M},

where ωP : Ω ×Ω→ R is a weight function. The latter is computed with

the panchromatic image and it is used to extract the relationships between

the patches. The weight function ωP describes the geometry of the desired

reconstructed image and it is defined as follows

ωP(x,y) =
1

Υ(x)
exp

(
−
dρ(P(x),P(y))

h2

)
, (3.3a)

where

Υ(x) =

∫
Ω

exp
(
−
dρ(P(x),P(y))

h2

)
dy, ∀x ∈Ω (3.3b)
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is a normalization factor and

dρ(P(x),P(y)) =
∫
Ω

Kρ(t)|P(x+ t) − P(y+ t)|
2dt, (3.3c)

is the distance between the patches centered around x and y. In this setting, Kρ
is a Gaussian kernel and h > 0 is a filtering parameter. The filtering parameter

h controls the decay of the exponential function and thus the decay of the

weights. The weights ωp defined in (3.3) satisfy the condition 0 < ωp(x,y)6 1

and
∫
Ωωp(x,y)dy = 1, but because of the normalization defined in (3.3b), the

symmetry of the weights does not hold anymore.

In this pansharpening model the authors assumed that the panchromatic

image is a linear combination of the high-resolution multispectral bands. The

pansharpened image is found by minimizing the following energy term

1

2

M∑
k=1

∫∫
Ω̃×Ω̃

(uk(y) − uk(x))
2ωPk(x,y)dydx

+
λ

2

∫
Ω

( M∑
k=1

αkuk(x) − P(x)

)2

+
µ

2

M∑
k=1

∫
Ω
Πs

(
Ks ∗ uk(x) − uΩk (x)

)2
,

(3.4)

where λ> 0 and µ> 0 are trade-off parameters that control the contribution of

the fidelity terms with respect to the nonlocal regularization term. The domain

Ω̃ is a nonlocal domain defined as Ω̃ =Ω∪ Γ where Γ is a nonlocal boundary

such that Γ ⊂Rd \Ω.

Duran et al. [67] suggested another variational model for pansharpening

with a new term. Let Psk :ΩS→R be the downsampled version of the panchro-

matic image Pk. Let P̃k :Ω→R and ũk :Ω→R be the extensions by bicubic

interpolation of Psk and usk to the whole domain Ω. The goal of the new term is
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the preservation of the geometrical properties of the observed scene. First, the

ratio between each low-resolution spectral component and the downsampled

panchromatic image is computed. Then, this ratio is imposed to be similar to the

ratio of the original panchromatic and each band of the fused product. Finally,

the following constraint, also called radiometric constraint is imposed

uk(x)

Pk(x)
=
ũk(x)

P̃k(x)
, ∀x ∈Ω, ∀k ∈ {1, . . . ,M}. (3.5)

The condition (3.5) assumes that each band Pk is geometrically aligned with

the corresponding kth spectral band in the unknown image. The variational

framework of (3.5) is the following integral expression

∫
Ω

(
uk(x)P̃k(x) − ũk(x)Pk(x)

)2
, ∀x ∈Ω, ∀k ∈ {1, . . . ,M}. (3.6)

The pansharpening model is presented as

1

2

M∑
k=1

∫∫
Ω×Ω

(uk(y) − uk(x))
2ωPk(x,y)dydx

+
µs2

2

M∑
k=1

∫
Ω
Πs

(
Ks ∗ uk(x) − uΩk (x)

)2
dx

+
δ

2‖Pk‖2
M∑
k=1

∫
Ω

(
uk(x)P̃k(x) − ũk(x)Pk(x)

)2
dx,

(3.7)

where µ> 0 and δ> 0 are respectively normalized by the sampling factor s and

the mean value of the panchromatic image, ‖Pk‖ =
√

1
|Ω|

∫
Ω(Pk(x))

2dx. These

parameters define the contribution of each term to the whole energy.

We notice that, in the pansharpening model (3.7), the constraint (3.1) linked

to the generation of the panchromatic image and used in (3.4), was replaced by

the radiometric constraint (3.5). The latter, proved efficient in preserving spatial

details, reducing color distortions and avoiding aliasing artifacts.

114

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



3.2 L2-based nonlocal model

In this chapter, a new way of carrying out the HS-MS fusion is suggested

based on a new approach that is completely different from the OTmodel studied

in Chapter 2. From the generation model (1.7), we can see that recovering an

estimation of u is equivalent to conducting an inverse operation. Depending on

the operators D, B and S that are, by the way, not invertible, one can see that the

solution cannot be unique. Therefore, the fusion problem is ill-posed because

it does not satisfy the conditions of Hadamard for well-posedness which, we

recall, are:

• The existence of the solution,

• The uniqueness of the solution,

• The solution has to have a continuous change of behavior with the initial

conditions.

The new fusion problem, based on the idea of (3.4) presented in [67], is seen

as the minimization of an energy functional composed of four terms. Each one

of these terms has a crucial role in the fusion result because it describes and

imposes constraints that u should verify. The new suggested energy functional

is described as follows

min
u∈RH×N

H∑
h=1

‖∇ωhuh‖1 +
µ

2

H∑
h=1

‖DBuh − gh‖22+

γ

2

M∑
m=1

‖(Su)m − fm‖22 +
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖22.

(3.8)

As discussed earlier, the HS-MS fusion is an ill-posed inverse problem. In

this case, regularizing the problem is mandatory in order to make it well-posed

and recover a unique minimum which is the desired fused image u. Thus,
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choosing a regularizer that accounts for this ill-posedness is crucial and it has

to be chosen carefully.

In the energy functional (3.8), the first term is a regularizer which is the

nonlocal gradient ∇ωhuh ∈ RN×N penalized with the combination of the L1-

norm and the L2-norm. The gradient is computed for each pixel such that

∇ωhuh,i =
(
(∇ωhuh,i)1, . . . ,(∇ωhuh,i)N

)
and it is defined as follows

(∇ωhuh,i)j =
√
ωh,i,j

(
uh,j − uh,i

)
, (3.9)

where ωh,i,j is a similarity measure that will be defined in details later in the

document. Unlike the classical gradient that interacts locally with the pixels,

the nonlocal gradient allows the computation of the gradient between any two

pixels in the image times ωh,i,j. As to the penalization of the gradient at each

pixel, it is computed as follows ‖∇ωhuh‖1 =
∑
i

∣∣∇ωhuh,i
∣∣where in this case | · |

denotes the Euclidean norm.

The terms ‖DBuh − gh‖22 and ‖(Su)m − fm‖22 are related to the image gener-

ation model (1.7) and they are called data fitting terms. The goal of the data

fitting terms is the penalization of the deviation from the multispectral and

hyperspectral data fm and gh respectively. The penalization is done throughout

the L2-norm.

The last term ‖P̃huh − Phg̃h‖22 is a radiometric constraint penalized with the

L2-norm and it aimes at forcing the fused image u to share the same high spatial

frequencies as the multispectral image f where

• Ph ∈RH×N is a linear combination of the multispectral image such that

Ph =

M∑
m=1

αm,hfm, ∀h ∈ {1, . . . ,H}. (3.10)
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• P̃h ∈RH×N is computed as

P̃h =

M∑
m=1

αm,hf̃m, ∀h ∈ {1, . . . ,H}. (3.11)

• g̃ ∈RH×N is the hyperspectral image brought to the fine grid of the fused

image by bicubic interpolation.

The coefficients αm,h are defined as follows

αm,h =
sm,h∑
m sm,h

, (3.12)

where sm,h are the coefficients extracted from the spectral response defined

in (1.7).

As one can notice, P̃h is computed as in (3.10) but with f̃m. The latter is the

result of the spatial degradation as in the generation model (1.7) and then, it is

brought back to the grid of the multispectral image with bicubic interpolation.

This manipulation kills the high spatial frequencies and leaves only the low

spatial ones. The radiometric constraint is detailed further in the document.

3.2.1 Similarity weights

The similarity weights are used in the computations of the nonlocal gradient

as shown in expression (3.9). They are computed as amixture of spatial distances,

computed with the positions of the pixels, and nonlocal weights that compare

the similarity between the patches centered on the pixels. The similarity weight
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corresponding to a pixel with the coordinates (i, j,h) is defined as follows

ωh,i,j =



1

Γi
exp

−
‖i− j‖22
h2spt

−

∑M
m=1 sm,h

∑
{t∈Z2 :‖t‖∞6νc}

∥∥fm,i+t − fm,j+t
∥∥2
2

h2sim(2νc + 1)2
∑M
m=1 sm,h

 if

‖i− j‖∞ 6 νr,
(i 6= j)

0 else,
(3.13a)

Γi =
∑

{j:‖i−j‖∞6νr}

exp

−
‖i− j‖22
h2spt

−

∑M
m=1 sm,h

∑
{t∈Z2 :‖t‖∞6νc}

∥∥fm,i+t − fm,j+t
∥∥2
2

h2sim(2νc + 1)2
∑M
m=1 sm,h

 (3.13b)

ωh,i,i = max
{
ωh,i,j : ‖i− j‖∞ 6 νr and j 6= i} (3.13c)

where Γi is a normalization factor.

The search for similar pixels in the whole image takes a high computational

time and requires a big storage capacity. Moreover, it does not make sense to

search for similar patches in thewhole image because, when the search oversteps

the surrounding of the central pixel, it is hard to find similar patches. Thus, the

computations prove useless and time and memory consuming. For this matter,

a size νr ∈Z+ for the search window was imposed where the search for similar

pixels takes place. The parameter νc ∈Z+ is the size of the patch centered on

the pixel (i, j,h). The parameters hspt > 0 and hsim > 0 act like filtering ones

for the spatial distance and for the measure of similarity between the patches,

respectively. These parameters control the spread of the weights, moreover, they

quantify the speed of decrease of the weights when the dissimilarity between

the patches increases.

The weight of the central pixel with respect to itself is quite important and

in order to avoid giving the central pixel an excessive weight, ωh,i,j is set to the
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maximumweight of the other pixels with respect to the central one as illustrated

in expression (3.13c). To summarize, in order to find the pixels that are similar

to the pixel (i, j,h) (the central one) in the sense of definition (3.13), a search

window of size νr and a patch of size νc are centered on (i, j,h). Next, another

patch of size νc is centered on each pixel (i ′ , j ′ ,h ′) in the search window and

then the weights are computed according to (3.13) between the central pixel and

all the pixels in the search window.

As one can notice, the computation of the weights in (3.13) were chosen to

be computed on the multispectral image f ∈RM×N because of the high spatial

resolution that this latter contains. However, the weights should be computed

for each pixel of the fused image u ∈RH×N, except that f contains onlyM bands

which are much fewer than H. Thus, the spectral response S was chosen in

order to interpolate the weights and extend them to the H number of bands.

Other ways of interpolating the weights might be found. But, the choice of the

spectral response S to carry out this mission was considered legitimate because,

this same response was used to generate the multispectral image from the high

resolution one and thus S is a link between both images.

The spectral response S can be represented under the form of a matrix with

M rows and H columns as follows

S=


s1,1 s1,2 s1,3 · · · s1,H

s2,1 s2,2 s2,3 · · · s2,H
... ... ... ... ...

sM,1 sM,2 sM,3 · · · sM,H


.

For each band h ∈ {1, . . . ,H}, there are M corresponding coefficients sm,h

in the multispectral grid that are used in the computations of the similarity

weights (3.13).
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For example, in the case whereM= 4, H= 93 and x= (1,1,20) is the central

pixel, a search window is centered on the latter. Next, for the computation of

similar patches, the four bands of the multispectral image corresponding to the

spatial position (1,1) are used. The final similar patches are found by averaging

the four values on the four bands of the multispectral image. The averaging is

done with the coefficients (3.12) of the 20th column of the Smatrix computed as

illustrated in Figure 3.1. The final weights are then computed by adding the

distances between the pixels as shown in definition (3.13).

Figure 3.1: Computations of the similarity weights of the pixel x= (1,1,20) with
the multispectral image

The goal behind choosing the multispectral image f to compute the similarity

weights for the regularization term, is to copy the geometric information

contained in f into the final fused image u. In other terms, u is forced to share

the same geometric configuration as the multispectral image, because this latter

contains the finest spatial details.
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3.2.2 Radiometric constraint

The radiometric constraint used in [67] was adapted in our case in order to

inject the high spatial frequencies of the multispectral image into the desired

fused image. The multispectral image is used because it contains the relevant

spatial information and the fine geometric details of the scene captured by the

multispectral sensor. The injection of spatial details is done throughout the

following constraint
uh
Ph

=
g̃h

P̃h
(3.14)

and the variational formulation of the latter corresponds to the fourth constraint

and energy term in the energy functional (3.8). Note that the constraint (3.14) is

equivalent to the following formula [67]:

uh − g̃h =
g̃h

P̃h

(
Ph − P̃h

)
, ∀h ∈ {1, . . . ,H} (3.15)

The data Ph contains the high and the low spatial frequencies, as to P̃h,

it contains only the low frequencies. Thus, by carrying out the difference

Ph − P̃h, only the high spatial frequencies derived from the multispectral data

are kept. After computing the difference uh− g̃h, only the unknown high spatial

frequencies of the fused image are kept because g̃ contains only the low spatial

frequencies. The modulation coefficient g̃h
P̃h

can be different for each band h and

it takes into account the energy level of the multispectral and the hyperspectral

image. Thus, by adding the radiometric constraint, the high spatial frequencies

of the multispectral image are forced to coincide with the high frequencies of

the fused image u.

As one can notice, in the constraints (3.10) and (3.11) the coefficients sm,h

are used. The reason behind the use of these coefficients is the same one as for

the computation of the similarity weights, as explained in Section 3.2.1, which
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is the extension of data fromM bands to H bands. Thus, P and P̃ are spectral

interpolations of f and f̃ throughout weighted linear combinations with the

coefficients sm,h.

3.3 Chambolle-Pock algorithm

The resolution of the minimization problem (3.8) is done with the first-order

primal-dual algorithm of Chambolle and Pock [144] which can be applied to

many convex optimization problems. The algorithm is presented as follows.

Let X and Y be two finite-dimensional real vector spaces endowed with

an inner product 〈·, ·〉 and the norm ‖ · ‖ = 〈·, ·〉12 . Let K : X→ Y be a general

continuous linear operator. Let F : Y→ [0,+∞] and G : X→ [0,+∞] be a proper,

convex, and lower-semicontinous functionals. Consider the nonlinear primal

problem

min
u∈X

F(Ku) +G(u),

and its corresponding saddle-point problem

min
u∈X

max
y∈Y
〈Ku,y〉+G(x) − F∗(y), (3.16)

where F∗ being itself the convex conjugate of F.

Problem (3.16) has at least one solution that satisfies

Kx̂ ∈ ∂F∗(ŷ),

−(K∗ŷ) ∈ ∂G(x̂),

where ∂F∗ and ∂G are the subgradients of the convex functions F∗ and G,

respectively, and K∗ is the adjoint of the linear operator K.
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The use of Chambolle and Pock’s algorithm requires the use of the proximity

operator which is a generalization of the projection operator. The proximal

operator of a closed proper convex function ν is defined as follows

proxτν(x) = argmin
y

{ν(y) +
1

2τ
‖x− y‖2}, (3.17)

where τ > 0 is a scaling parameter that controls the extent of the movement

with which the proximal operator converges to the minimum of ν. Since

problem (3.17) is strongly convex, the solution is unique. The definition (3.17)

indicates that proxτν(x) is a point that compromises between minimizing ν and

being near x. In the case where ν is the indicator function IC such that

∀x, IC(x) =


0 if x ∈ C,

+∞ otherwise,
(3.18)

where C is a closed convex set, the proximal operator defined in (3.17) becomes

ProjC(x) = argmin
y∈C

‖x− y‖2,

which corresponds to the Euclidean projection on C and thus, the proximity

operator can be seen as a generalized projections. For differentiable functions

and small values of τ, the proximal mapping behaves as a kind of gradient

step, that is, proxτν(x) ' x − τ∇ν(x). Moreover, the proximal operator of a

function can be related to its Legendre-Fenchel transform (or convex conjugate)

throughout Moreau’s identity as follows

x= proxν(x) + τprox 1τν∗(
x

τ
).

The algorithm steps to solve the saddle-point problem (3.16) proposed by
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Chambolle and Pock are the following


y(i+1) = proxσF∗(yn + σKx(i)),

x(i+1) = proxτG(x(i) − τK∗y(i+1)),

x(i+1) = x(i+1) + θ(x(i+1) − x(i)).

(3.19)

The steps of the algorithm (3.19) consist in alternating a gradient descent in the

dual variable y and a gradient descent in the primal variable x. The step-size

parameters τ > 0 and σ > 0 are chosen such that τσ‖K‖2 < 1. The parameter

θ ∈ [0,1] controls the over-relaxation in x. The proximity operators have a

closed-form representation and can be solved with a high-precision.

To apply the latter, the problem (3.8) has to be written under a saddle point

problem (a min/max form). To do that, the first three terms of the functional

to be minimized are dualized with the use of known results drawn from the

convex analysis theory [145] using

α

2
‖x‖22 = max

y
〈x,y〉− 1

2α
‖y‖22,

and

‖x‖1 = max
y
〈x,y〉− δP(y),

where δP is the indicator function defined as

δP(y) =


0 if y ∈ P,

+∞ otherwise,

with P the set defined by

P = {y ∈ Y : ‖y‖∞ 6 1}.
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The dualization of the different terms of the functional is as follows:

•
∑H
h=1 ‖∇ωhuh‖1 = max(p1,...,pH)

∑H
h=1

(
〈∇ωhuh,ph〉− δPh(ph)

)
• µ

2

∑H
h=1 ‖DBuh − gh‖22 = max(q1,...,qH)

∑H
h=1

(
〈DBuh − gh,qh〉−

1

2µ
‖qh‖22

)

• γ

2

∑M
m=1 ‖(Su)m − fm‖22 = max(r1,...,rM)

∑M
m=1

(
〈(Su)m − fm,rm〉−

1

2γ
‖rm‖22

)
where u ∈ RH×N is the primal variable and the unknown high-resolution

image. As to p ∈RH×N×(2νr+1)2 , it is the dual variable related to the nonlocal

regularization term. The two terms q ∈ RH×Nl and r ∈ RM×N are the two

dualized data-fidelity terms, related to the hyperspectral and the multispectral

data respectively, arising from the observation model. Furthermore, δPh is the

indicator function of

Ph = {ph ∈RN×(2νr+1)2 : ‖ph‖∞ 6 1},
where ‖ph‖∞ = maxi |ph(i)| with |ph(i)| =

√∑(2νr+1)2

j=1 ph(i, j)2 and i ∈ [[1,N]] de-

notes the number of the pixel in the hth band. Note that the set Ph is the cartesian

product of L2 balls.

Thus, the corresponding saddle-point writing of problem (3.8) can bewritten

in the following form

min
u

max
p,q,r

H∑
h=1

(
〈∇ωhuh,ph〉− δPh(ph)

)
+

H∑
h=1

(
〈DBuh − gh,qh〉−

1

2µ
‖qh‖22

)

+

M∑
m=1

(
〈(Su)m − fm,rm〉−

1

2γ
‖rm‖22

)
+
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖22.

(3.20)

Following the general formulation of the saddle-point problem [144], we can

do the following identifications:
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• K=


∇ω

DB

S

,

• F∗(p,q,r)= δP( p)+ 〈g,q〉+ 〈f,r〉+ 1

2µ
‖q‖22+

1

2γ
‖r‖22where δP(p)=

∑H
h=1 δPh(ph),

• G(u) = λ

2
‖P̃u− Pg̃‖22,

where G and F∗ are proper convex lower-semicontinous (l.s.c.) functions with

F∗ itself the convex conjugate of a l.s.c. function F.

The steps of the primal-dual algorithm [144] are the following

• (pn+1,qn+1,rn+1) = proxσF∗(pn + σ∇ωūn,qn + σDBūn,gn + σSūn),

• un+1 = proxτG(un + τ∇∗ωpn+1 − τ(DB)∗qn+1 − τS∗rn+1),

• ūn+1 = 2un+1 − un,

where∇∗ω, (DB)∗ and S∗ are the adjoint operators of∇ω, (DB) and S, respectively,

with

∇∗ω =−div, (DB)∗ = BᵀDᵀ, S∗ = Sᵀ

3.4 Computation of the proximal operators

In this part, the update of the dual variables is done through the computation

of the proximal operator of σF∗ as

(p,q,r) = proxσF∗(p̃, q̃, r̃),

where (p̃, q̃, r̃) are the dual variables to be updated and (p,q,r) are the updated

ones. The details of the computations are given below.
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3.4.1 Proximal operator of σF∗

• Update of the regularization term-related dual variable p is carried out as

follows

p= argmin
p

1

2σ
‖p− p̃‖22 + δP(p)⇔ argmin

‖ph‖∞61
1

2σ
‖ph − p̃h‖22. (3.21)

Equation (3.21) is the Euclidean projection of the convex subset Ph, which

we recall is the product of L2 balls. We have then

argmin
‖ph‖∞61

1

2σ
‖ph − p̃h‖22⇔ ph =


p̃h if ‖p̃h‖∞ 6 1,
p̃h
|p̃h|

if ‖p̃h‖∞ > 1
⇔ ph(x) =

p̃h(x)

max(1, |p̃h(x)|)
·

.

• Update of the dual variable q related to the hyperspectral image g as

q= argmin
q

1

2σ
‖q− q̃‖22 + 〈g,q〉+ 1

µ
‖q‖22⇔ qh =

q̃h − σgh

1+
σ

µ

·

• Update of the dual variable r related to the multispectral image f as

r= argmin
r

1

2σ
‖r− r̃‖22 + 〈f,r〉+

1

γ
‖r‖22⇔ rm =

f̃m − σfm

1+
σ

γ

·

3.4.2 Proximal operator of τG

The update of the primal variable u is done through the computation of the

proximal operator of τG as follows
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u= proxτG(ũ)⇔ u= argmin
u

1

2τ
‖u− ũ‖22 +

λ

2
‖P̃u− Pg‖22

⇔ uh =
ũ+ τλP̃hPhgh

1+ τλP̃2h
·

3.5 The optimization algorithm

The resolution of the fusion problem proposed in (3.8) is solved with the

first-order primal-dual algorithm of Chambolle and Pock defined in (3.3).

Algorithm 3: The primal-dual algorithm for HS-MS fusion
Input : f, g, D, B, S, P, P̃, ∇ω, τ and σ

1 for i← 0 to convergence do

2 //Update of the primal variable u and the dual variables q, q and r

3 pi+1h =
pih(x)+σ∇ωū

i
h

max(1,|pih(x)+σ∇ωū
i
h|)
;

4 qi+1h =
qih+σ(DBū

i
h−gh)

1+σµ
;

5 ri+1m =
gil+σ((Sū

i)m−fm)
1+σγ

;

6 ui+1h =
uih+τdivωp

i+1
h −τ(BᵀDᵀqi+1)h−τ(S

ᵀri+1)h+τλP̃hPhg̃h
1+τλP̃2h

7 ūi+1h = 2ui+1h − uih

8 end

Output :u (the fused image)

As one can notice, in the resolution algorithm (3), there is one primal variable

and three dual variables. For each one of these variables, the update is done for

each channel h ∈ {1, . . . ,H}. That means that the fusion resolution is carried out

for each spectral channel independently.
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3.6 Experimental results

In this section, the performance of the fusion algorithm that solves prob-

lem (3.8) is studied. Two datasets were used for the experiments, Urban dataset

described in Section 2.8 and Chikusei dataset described in Section 2.10.1.

Figure 3.2 shows the visual results of the fusion algorithm on Chikusei

dataset. All fused images except the one of the proposed method are affected

by noise and aliasing artifacts. The proposed method is able to fuse spatial and

spectral information while removing noise at the same time, thus leading to the

best visual appearance of the final product. Figures 3.3 and 3.4 show the RMSE

and SAM error mappings of the fusion result of the suggested method and the

results of the state-of-the-art methods. On both figures, we can see that, visually,

the distribution of error in the suggested method is less strong than in the other

images. On one hand, the RMSE mapping of our method shows that the areas

where there is texture and where patterns are repetitive are the ones where

error is the weakest. This result is normal given that the image contains many

regular structures which is a suited environment for the nonlocal weights. This

can be explained by the fact that, each pixel can have many similar neighbors

which is convenient to reconstruct the geometry of the image and reduce noise.

We can also notice that, the error is important in isolated spots that do not have

similar patterns in the rest of the image, which increases the probability of error.

On the other hand, the SAMmapping shows that the error is more located in

areas with contours such as roads. This could be explained by the fact that our

model is a variational one with a regularization term, the latter applies some

kind of diffusion which might penalize edges and sharp changes in the image.

Table 3.1 shows the quantitative results of fusion of the proposed method

and other state-of-the-art methods. The results are shown for Chikusei dataset

with a SNR of 35dB. From Table 3.1 we can conclude that the proposed method
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outperforms all state-of-the-art methods in all the quality indices.

Figure 3.2: Performances of HS-MS fusion with the nonlocal gadient based
method and comparison with other state of the art methods on Chikusei dataset
304× 304× 93. From top left to bottom. Reference image, HS image, MS image,
CNMF, HySure, GSA, SFIMHS, GLPHS, MAPSMM, HMWB and the result of
the proposed method.

Figure 3.5 shows the results on Urban dataset. In this case, a SNR of 30dB

was fixed for the generation of the multispectral and the hyperspectral data,
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Figure 3.3: Mapping of the RMSE error computed for each pixel for Chikusei
dataset 304× 304× 93. From top left to bottom. CNMF, HySure, GSA, SFIMHS,
GLPHS, MAPSMM, HMWB and the result of the proposed method.
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Figure 3.4: Mapping of the SAM error computed for each pixel for Chikusei
dataset 304× 304× 93. From top left to bottom. CNMF, HySure, GSA, SFIMHS,
GLPHS, MAPSMM, HMWB and the result of the proposed method.
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RMSE PSNR ERGAS SAM Q2n CC DD
Reference 0 ∞ 0 0 1 1
CNMF 6.1187 37.8164 2.6182 1.5766 0.9614 0.9879 4.0512
HySure 6.1941 37.7096 3.0421 2.0346 0.9425 0.9825 4.2055
GSA 5.0398 39.5011 1.9896 1.8289 0.9474 0.9893 3.3648

SFIMHS 13.7861 30.7601 4.8313 2.8329 0.8858 0.9444 8.4121
GLPHS 13.0311 31.2502 4.3882 2.3949 0.8931 0.9521 8.2641

MAPSMM 16.6531 29.1189 5.7478 2.7116 0.8459 0.9197 9.9148
HMWB 4.1998 41.0851 1.8715 1.5297 0.9531 0.9923 2.9915
Proposed 3.7719 42.0191 1.9286 1.3101 0.9698 0.9931 2.2352

Table 3.1: Quantitative quality evaluation of each fused product on Chikusei
dataset with the size 304× 304× 93 and SNR=35dB.

which means that the level of noise is higher than for Chikusei data set but still

moderate. On Figures 3.6 and 3.7 we have the RMSE and SAM error mappings.

We notice that visually, even with the presence of more noise, the suggested

method performs better than the rest of the methods where some suffer from

important errors. Similarly to Chikusei dataset, the RMSE mapping shows that

the errors are rather located in areas that lack regular and repetitive patterns

whereas the SAM mapping emphasizes the lack of details in contours.

Based on the analysis above, we notice that our method is not affected by

noise like some of the state-of-the-art methods. Thus, the suggested model

is more robust to noise that corrupts the hyperspectral and the multispectral

dataset.

Table 3.2 displays quantitative results corresponding to the Urban dataset.

The proposed model is less affected by noise unlike most state-of-the-art

methods.
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Figure 3.5: Performances of HS-MS fusion with the nonlocal-gadient-based
method and comparison with other state of the art methods on Urban dataset
128× 128× 93. From top left to bottom. Reference image, HS image, MS image,
CNMF, HySure, GSA, SFIMHS, GLPHS, MAPSMM, HMWB and the result of
the proposed method.

134

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



Figure 3.6: Mapping of the RMSE error computed for each pixel for Chikusei
dataset 128× 128× 93. From top left to bottom. CNMF, HySure, GSA, SFIMHS,
GLPHS, MAPSMM, HMWB and the result of the proposed method.

RMSE PSNR ERGAS SAM Q2n CC DD
Reference 0 ∞ 0 0 1 1 0
CNMF 6.0361 28.0728 2.0809 2.1354 0.9291 0.9433 4.0331
HySure 4.7931 30.0751 1.7971 2.9656 0.9486 0.9601 3.5448
GSA 5.2798 29.2354 1.8115 3.0526 0.9473 0.9585 3.7186

SFIMHS 6.9903 26.7973 2.5167 2.4926 0.8949 0.9141 5.0309
GLPHS 6.7556 27.0941 2.4272 2.4663 0.9005 0.9223 4.9163

MAPSMM 8.9021 24.6974 3.1723 3.2062 0.8156 0.8609 6.3091
HMWB 4.0242 31.5941 1.4591 2.0955 0.9638 0.9733 2.9603
Proposed 3.6611 32.4153 1.3115 2.0271 0.9708 0.9798 2.5921

Table 3.2: Quantitative quality evaluation of each fused product on Urban
dataset with the size 128× 128× 93 and SNR=30dB.
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Figure 3.7: Mapping of the SAM error computed for each pixel for Chikusei
dataset 128× 128× 93. From top left to bottom. CNMF, HySure, GSA, SFIMHS,
GLPHS, MAPSMM, HMWB and the result of the proposed method.
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3.7 Using the L1 norm in the radiometric term

In this chapter, we present a new variational fusion problem that is an up-

graded version of the previous model introduced in Section 3.2. The introduced

modifications in the new variational model aim at improving the previous

fusion results. These modifications are based on observations and conclusions

drawn from the previous variational model.

min
u∈RH×N

H∑
h=1

‖∇
ω
′
h
uh‖1 +

µ

2

H∑
h=1

‖DBuh − gh‖22+

γ

2

M∑
m=1

‖(Su)m − fm‖22 +
λ

2

H∑
h=1

‖P̃huh − Phg̃h‖1.

(3.22)

The main modifications introduced in the fusion model (3.22) are the

penalization with the L1 norm of the radiometric constraint and the introduction

of a new way of computing the similarity weights.

3.7.1 L1 penalization of the radiometric constraint

Throughout different contributions in variational problems applied to image

processing, the L1-norm has proved efficient and even more efficient than the

L2-norm in many cases. In fact, in the literature it was shown that the L1-norm

prevents the edges from being smooth [146]. Some researchers also argued that

both outliers and impulse noise are better removed when the residual control

terms as well as the regularizer are in the L1 norm [147, 148]. The authors

in [149] combined the L1 and L2 norm in the regularization term as well as in

the data fidelity term. They showed afterwards that the results are better than

when only the L1 norm or L2 norm are used [149].

On one hand, the L2-norm is quite effective in dealing with the Gaussian

noise, however, it was shown by theoretical and numerical studies that the
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L2-norm is not effective for non-Gaussian additive noise and it has a tendency

to amplify the effect of outliers in the final image [150]. On the other hand, it

was demonstrated that the L1-norm is quite suitable for non-Gaussian additive

noise such as the impulsive and the Laplacian one [148, 151].

The terms implicated in the radiometric constraint P, P̃ and g̃ were the

results of transformations of the initial data as it was already discussed before,

hence, it is hard to predict and to know the noise introduced by these transfor-

mations. Therefore, the L2-norm was maybe not adapted to the kind of noise

fabricated during the data transformation process and thus not adapted for the

minimization of P̃huh − Phg̃h.

The introduction of the L1-norm is notwithout consequences, because, unlike

the L2-norm, it is not differentiable. The non-differentiability of the L1-norm

causes algorithmic and numerical difficulties that might impact the speed of

execution of the optimization code. Due to the introduction of the L1-norm,

the computation of the proximity operator and then the steps of updating the

variables are not the same as with the L2-norm.

3.7.2 New similarity weights

In the new variational model for fusion, a newway of computing the weights

was introduced in definition (3.23) where this time the weights are computed

on g̃ ∈RH×N. As a reminder, the latter is the hyperspectral image g ∈RH×Nl

brought to the high resolution by bicubic interpolation.

For computational reasons, only the most similar pixels are kept for the

computation of the gradient and for this, the previous way of computing the

weights (3.13) is used for classification purposes. Let Nsim be the number of

similar pixels wished to be kept. First, the weights are computed and classified

following (3.13), and only the classification is kept because it is used afterwards.
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Then, the final weights are computed with the formula (3.23) and classified

following the order of the classification of the weights computed with (3.13).

Classifying the weights with the formula (3.13) and computing the final ones

with (3.23), is a way to mix the information contained in both the hyperspectral

and the multispectral image. In fact, the classification on the multispectral

component gives the most similar pixels in terms of geometric details, then, this

information is used to compute weights with the same pixels but with a richer

spectral information.

ω
′
h,i,j=


1

Γ
′
i

exp

−
‖i− j‖22
h2spt

−

∑
{t∈Z2 :‖t‖∞6νc}

∥∥g̃h,i+t − g̃h,j+t
∥∥2
2

h2sim(2νc + 1)2

 if ‖i− j‖∞ 6 νr (i 6= j)
0 else

(3.23a)

Γ
′
i =

∑
{j:‖i−j‖∞6νr}

exp

−
‖i− j‖22
h2spt

−

∑
{t∈Z2 :‖t‖∞6νc}

∥∥g̃h,i+t − g̃h,j+t
∥∥2
2

h2sim(2νc + 1)2

 (3.23b)

ω
′
h,i,i = max

{
ωh,i,j : ‖i− j‖∞ 6 νr and j 6= i} (3.23c)

3.7.3 Proximal operator of the radiometric constraint

In the case of the L1-norm, the computation of the proximal operator related

to the radiometric constraint is different from the one in the case of the L2-norm.

The proximal operator is computed as follows

u= proxτG(ũ)⇔ u= argmin
u

1

2τ
‖u− ũ‖22 +

λ

2
‖P̃u− Pg‖1

⇔ uh = argmin
uh

1

2τ
‖uh − ũh‖22 +

λ

2
‖P̃huh − Phgh‖1

(3.24)

The L1- norm is non-differentiable, then, there are three cases to be discussed:
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i) if P̃huh − Phgh < 0, from (3.24) we conclude

0 ∈ 1
τ
(uh − ũh) −

λ

2
P̃h⇒ uh = ũh +

τλ

2
P̃h (3.25)

ii) if P̃huh − Phgh > 0, we have

0 ∈ 1
τ
(uh − ũh) +

λ

2
P̃h⇒ uh = ũh −

τλ

2
P̃h (3.26)

iii) if P̃huh − Phgh = 0, we have

uh =
Phg̃h

P̃h
(3.27)

3.7.4 The optimization algorithm

the new steps of the optimization algorithm that takes into account the fact

that the radiometric constraint is penalized with the L1-norm are the following
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Algorithm 4: The primal-dual algorithm (L1-norm)
Input : f, g, g̃, D, B, S, P, P̃, ∇ω, τ and σ

1 for i← 0 to convergence do

2 for h← 0 to H do

3 //Update of the primal variable uh and the dual variables qh, qh and rh
4 pi+1h =

pih(x)+σ∇ωū
i
h

max(1,|pih(x)+σ∇ωū
i
h|)

5 qi+1h =
qih+σ(DBū

i
h−gh)

1+σµ

6 ri+1m =
gil+σ((Sū

i)m−fm)
1+σγ

• if P̃huh − Phg̃h < 0

ui+1h = uih + τdivωpi+1h − τ(BᵀDᵀqi+1)h − τ(S
ᵀri+1)h +

τλ

2
P̃h (3.28)

• if P̃huh − Phg̃h > 0

ui+1h = uih + τdivωpi+1h − τ(BᵀDᵀqi+1)h − τ(S
ᵀri+1)h −

τλ

2
P̃h (3.29)

• if P̃huh − Phg̃h = 0

ui+1h =
Phg̃h

P̃h
(3.30)

ūi+1h = 2ui+1h − uih

7 end

8 end

Output :u (the fused image)
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3.8 Experimental results for the L1 case

The experiments in this part are focused on images from the dataset Har-

vard [152]. The latter contains images taken by a hyperspectral camera of indoor

and outdoor scenes. Each image has a spatial resolution of 1392× 1040 with

thirty-one spectral bands, but in this part, the images were cropped to a spatial

resolution of 512× 512. The reason behind choosing a non-satellite dataset is

to test if the fusion algorithm is able to adapt to data that does not necessarily

come from a satellite. The experiments were done with C++ code and the

hyperspectral andmultispectral images were generated following the generation

model (1.7). The spectral response used for the generation of the multispectral

image is the one of the Nikon D700 camera as shown in Figure 3.8. The results

of the fusion in the case of the L1 norm are compared to six state-of-the-art

methods and to the fusion methods suggested in this thesis.

Figure 3.8: The spectral response of the camera Nikon D700

The experimentswere carried out on two images "Bicycles" and "Bookshelves"

from the Harvard dataset with SNR=35dB. Figure 3.9 shows the visual results
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of fusion on the image "Bicycles". We can notice that the fused images of the

state-of-the-art suffer either from blurring effects or color artifacts, see the color

spot behind the blackbox in GSA image and the left side of the handlebar for

the rest of the methods. The result provided by the L1 norm looks very similar

to the ground truth and is artifacts free. Note that, visually, the L2 norm gave

a result very similar to the one of the L1 norm. On Figures 3.10 and 3.11, we

have the mapping of the RMSE and SAM errors of the fusion results given in

Figure 3.9. We can see that, visually, the RMSE error mapping corresponding to

the L1 norm is quite weak with respect to many methods and looks similar to

the one of the L2 norm. We can notice that the errors are mainly located in areas

with saturation. As to the SAMmapping, we can see that the performance of

the L1 norm compares favorably to the rest of the methods. However, visually

speaking, the SAM error of the L2 norm seems to be weaker than the one

provided by the L1 norm.

Table 3.3 shows the numerical results of the different fusion products

corresponding to the image "Bicycles". We can notice that, the L1 and L2 norms

overcome all the other methods in all the quality indices. The L2 norm still takes

the lead in a few quality measures. However, the performance of the L1 norm is

better than the L2’s in some measures.

On Figure 3.12 we have the results of the fusion on the second image from

Harvard dataset: "Bookshelves". We notice that the visual results provided

by the L1 and the L2 norm are less noisy and blurry than the rest of the

methods. Figures 3.13 and 3.14 show the mapping of the RMSE and SAM errors

respectively. Visually speaking, the RMSE error corresponding to the L1 norm

is weaker than the rest of the presented methods including the L2 norm. As

to the SAM error, the performance of the L1 norm compares favorably to the

other methods, however, we can see a few red spots that show that the error
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Figure 3.9: Performances of HS-MS fusion with the nonlocal-gadient-based
method and comparison with other state of the art methods on Harvard dataset,
image "Bicycles" of size 512× 512× 31. From top left to bottom. Reference image,
HS image, MS image, CNMF, HySure, GSA, SFIMHS, GLPHS, MAPSMM,
HMWB, L2 norm and L1.
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Figure 3.10: Mapping of the RMSE error computed for each pixel on Harvard
dataset, image "Bicycles" of size 512× 512× 31. From top left to bottom. CNMF,
HySure, GSA, SFIMHS, GLPHS, MAPSMM, HMWB, L2 norm and L1 norm.
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Figure 3.11: Mapping of the SAM error computed for each pixel on Harvard
dataset, image "Bicycles" of size 512× 512× 31. From top left to bottom. CNMF,
HySure, GSA, SFIMHS, GLPHS, MAPSMM, HMWB, L2 norm and L1 norm.
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RMSE PSNR ERGAS SAM Q2n CC DD
Reference 0 ∞ 0 0 1 1 0
CNMF 22,8271 42.5237 5.0822 2.1087 0.9343 0.9881 9.1502
HySure 10.8181 49.0092 2.7622 2.9111 0.9636 0.9964 6.3197
GSA 14.7971 46.2887 2.9249 3.2588 0.9577 0.9949 7.8039

SFIMHS 40.1161 37.6257 8.2207 2.3244 0.8936 0.9637 15.0971
GLPHS 36.3011 38.4936 7.4117 2.6596 0.9036 0.9704 15.3171

MAPSMM 45.6341 36.5066 9.2112 2.9852 0.8533 0.9536 17.8621
HMWB 10.3256 48.1241 2.6822 2.9062 0.9585 0.9971 6.3037
L2 norm 6.1401 53.9286 1.7511 1.6393 0.9755 0.9983 3.8729
L1 norm 6.7306 53.1321 1.6705 1.7894 0.9763 0.9984 3.9155

Table 3.3: Quantitative quality evaluation of each fused product on Harvard
dataset, image "Bicycles" of size 512× 512× 31 and SNR=35dB. RMSE and DD
values are expressed in a magnitude of 10−9.

becomes important. The visual results show that the SAM error is weaker for

the L2 norm than for the L1 norm.

Table 3.4 shows the quantitative results corresponding to the image "Book-

shelves". We can see that the fusion results provided by the L1 and the L2 norms

perform better than the other methods in most of the quality measures. We can

also notice that, for the "Bookshelves" image, the L1 norm overtakes the L2 norm

in terms of spatial quality measures such as RMSE, PSNR and CC whereas

the L2 norm takes the lead when it comes to the spectral measure SAM. The

quantitative results confirm the visual observations carried out on the RMSE

and the SAM mappings.

We can conclude that for both images "Bookshelves" and "Bicycles", the L2

norm provide good results in terms of spectral quality whereas the L1 performs

better in recovering the spatial details. For the image "Bookshelves" that contains

more constant structures, the L1 norm did well in recovering a fused result with

a minimum amount of noise than the rest of the methods including the L2 norm.
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Figure 3.12: Performances of HS-MS fusion with the nonlocal-gradient based
method and comparison with other state of the art methods on Harvard dataset,
image "Bookshelves" of size 512× 512× 31. From top left to bottom. Reference
image, HS image, MS image, CNMF,HySure, GSA, SFIMHS, GLPHS,MAPSMM,
HMWB, L2 norm and L1 norm.
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Figure 3.13: Mapping of the RMSE error computed for each pixel on Harvard
dataset, image "Bookshelves" of size 512× 512× 31. From top left to bottom.
CNMF, HySure, GSA, SFIMHS, GLPHS, MAPSMM, HMWB, L2 norm and L1
norm.
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Figure 3.14: Mapping of the SAM error computed for each pixel on Harvard
dataset, image "Bookshelves" of size 512× 512× 31. From top left to bottom.
CNMF, HySure, GSA, SFIMHS, GLPHS, MAPSMM, HMWB, L2 norm and L1
norm.
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RMSE PSNR ERGAS SAM Q2n CC DD
Reference 0 ∞ 0 0 1 1 0
CNMF 5.0651 46.1166 1.2013 1.0964 0.8995 0.9972 3.4515
HySure 5.6362 45.1884 1.5163 1.7113 0.8916 0.9964 3.7267
GSA 6.4841 43.9712 1.3972 1.9213 0.8834 0.9958 4.3021

SFIMHS 18.7981 34.7261 3.9293 1.3359 0.8161 0.9681 9.0311
GLPHS 17.6361 35.2811 3.6893 1.6166 0.8269 0.9717 8.9936

MAPSMM 20.8921 33.8084 4.4446 1.7394 0.7927 0.9595 9.9244
HMWB 5.0875 46.1192 1.1788 1.1674 0.9065 0.9966 2.9568
L2 norm 3.5014 49.3234 0.8284 0.9747 0.8966 0.9985 2.5481
L1 norm 3.4814 49.3731 0.8471 1.0474 0.8959 0.9985 2.5217

Table 3.4: Quantitative quality evaluation of each fused product on Harvard
dataset, image "Bookshelves" of size 512× 512× 31 and SNR=35dB. RMSE and
DD values are expressed in magnitude of 10−9.

3.9 Concluding remarks

In this chapter, two HS-MS fusion techniques based on the nonlocal gradient

were suggested. The first model consisted in minimizing a functional composed

of four energy terms. The first term is a regularization one computed with the

nonlocal gradient. The latter is expressed as the difference between two pixels

times a similarity coefficient. This coefficient’s role is to copy the geometry of

the multispectral image and to inject it in the final fused image. The second

and third terms are data fidelity ones, their goal is the penalize the deviation

of the fused image from the input hyperspectral and multispectral image. The

last term is a radiometric constraint that forces the fused and the multispectral

images to share the same high spatial frequencies. The regularization term

was penalized with the L1 and the L2 norm, the data fidelity terms and the

radiometric constraint were penalized with the L2 norm.

The experiments were carried out on two datasets: Chikusei and Urban. On

Chikusei, the chosen SNR is 35dB. The visual result of the proposed method

is very similar to the reference image, it is not corrupted by noise and does
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not contains artifacts. The mappings of the RMSE and the SAM errors showed

that the suggested fusion model provided a result with minimal errors with

respect to the othermethods. The quantitative results showed that the suggested

method overtook all the methods in most of the quality measures. For Urban,

the SNR is 30dB, which means that the noise is increased but is still moderate.

The visual result shows that the fused image is not corrupted by noise. The

RMSE and SAM error mappings showed that, compared to the rest of the

methods, the errors of the suggested model are minimized. Also, the fusion

result outperformed the other methods in all the quality indices. These results

show that the suggested method is quite robust to noise.

In the second part of the chapter, a modification of the first model was

suggested: the radiometric constraint was penalized with the L1 norm in

order to account for possible impulse noise, also, a new way of computing the

similarity weights was suggested. The experiments were carried out on Harvard

dataset which is not a remote sensing one and contains images of indoor and

outdoor scenes taken by a hyperspectral camera. The experiment on the first

image "Bicycles" showed that, the fused image is very similar to the reference

one, it is denoised and does not contain color artifacts unlike the methods of the

state-of-the-art. The RMSE mapping of the errors showed that the suggested

method compares favorably to the other methods. However, in terms of SAM

error mapping, the L2 norm provided better visual results. The quantitative

measures showed than the L1 norm is very competitive compared to the other

methods and overcame the L2 in some quality indices.

The experiments on the second image "Bookshelves" showed that the fused

image is denoised, is artifacts free and contains all the geometrical information

present in the reference image. The RMSE mapping showed that the error

present in the result with the L1 norm is visually weaker than the ones present
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in all the other methods. The SAMmapping of the L1 norm compares favorably

to the other methods, however, it seems to be stronger than the one provided

by the result with the L2 norm. The quantitative results showed that L1 norm

compares favorably to the other methods and performs better than the L2 norm

in some quality indices. From those results we can also see that, on one hand,

the L2 norm gives better results when it comes to the SAM measure. On the

other hand, the measures show that the L1 norm performs better in denoising

and preserving the spatial quality of the fused image, which confirms the visual

observations.
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Chapter 4

Conclusions

This thesis explored the fusion of hyperspectral and multispectral images

within two frameworks: optimal transport and nonlocal methods. Due to

various sensor-specifics, as discussed in Section 1.3.2: on-board storage ca-

pacity, transmission bandwidth, financial constraints, etc, imaging satellites

capture images with either a good spatial resolution and a low spectral one

(multispectral) or images with a low spatial resolution and a high spectral

one (hyperspectral). Thus, image fusion aims at combining the rich spatial

resolution of the multispectral image and the high spectral information of the

hyperspectral one into one high-resolution hyperspectral image. The fused

image has superior quality and is visually better, in terms of spatial and spectral

resolution, than any of the input images. High-resolution images are very useful

in many missions such as classification, facial recognition, forests mapping, etc.

In this thesis, image fusion was carried out with techniques from the optimal

transport theory and from nonlocal-based methods. The present work focused

on satellite images. In the last chapter, the nonlocal fusion technique was also

tested on images taken by hyperspectral cameras of indoor and outdoor scenes.

In Chapter 2, methods from the optimal transport theory were employed to

model and solve the image fusion problem. The latter was formulated as the
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minimization of the sum of two regularized Wasserstein distances. Each one

of these distances describes either the spectral or the spatial information to be

injected in the final fused image. The injected information is controlled with

coefficients associated with the regularized Wasserstein distances. The solution

of the minimization problem is the barycenter in the sense of the Wasserstein

metric solved with Sinkhorn-Knopp algorithm. In the optimal transport model,

the noise is not taken into account, thus, a denoising preprocessing step was

added in order to downplay the effect of noise. The fusion model contains five

parameters in total. These parameters were optimized with objective measures

on three datasets: Pavia, Chikusei and Urban, the optimal parameters were

fixed for all the experiments. The fusion result was evaluated visually and with

quality indices on two datasets: Pavia and Urban. Also, the suggested method

was compared to six state-of-the-art fusion models. For both datasets, the visual

results showed that the fused image is close to the reference one and artifacts

free. Also, RMSE and SAM error mappings were visualized in order to study

the distribution of the errors across the images. The results showed that the

errors of the proposed method are visually less important than those of the

other methods. The fused image was compared to six state-of-the-art techniques

with various quality measures. The proposed method outperformed the other

ones in all the measures. In future work, it would be interesting to upgrade the

fusion model so that it can take into account the minimization of noise, without

having to apply a preprocessing denoising step.

In the second part of Chapter 2, a modification of the first model was

suggested. The modification consisted in introducing nonlocal means (NLM)

weights in the cost matrix. The goal behind these weights was to take into

account the values of pixels during the transport in order to improve the latter

and to account for the additive noise that affects the data. With the adding of
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the NLM weights, the total number of parameters was eight. Thus, a study

of the sensitivity of parameters was carried out to have a first idea about the

behavior of the new fusion technique. Various experiments were conducted on

three datasets: Chikusei, Botswana and Pavia. The results of these experiments

showed that the NLM weights did not contribute to improving the previous

fusion results. In fact, the different figures showed that the best results the new

technique can reach are the ones of themodel in the absence of the NLMweights.

Nevertheless, the NLMweights might be useful in downplaying misregistration

problems in the case where the hyperspectral and the multispectral data are not

aligned. The study of the contribution of the NLMweights under misalignment

assumptions will be carried out in future work.

In Chapter 3, two variational techniques, for hyperspectral and multispectral

image fusion, based on the nonlocal gradient were suggested. The first fusion

problem was modeled as the minimization of an energy functional composed

of four energy terms. The first term is a regularization one, computed with the

nonlocal gradient. The latter is computed as the difference between two pixels

times a similarity coefficient computed from the multispectral image. The goal

of the nonlocal term is to copy the geometric information of the multispectral

image into the fused one. The second and third terms are data fidelity ones,

they penalize the deviation of the fused image from the input hyperspectral

and multispectral images. The last term is called radiometric constraint, its goal

is to force the fused and the multispectral image to share the same high spatial

frequencies. The nonlocal term was penalized with the L1 and the L2 norms, the

data fidelity terms as well as the radiometric constraint were penalized with the

L2 norm. The optimal parameters of this model were found by exhaustive search

and they were fixed for all the experiments. The first experiment was carried out

on Chikusei dataset with a SNR of 35dB, the results showed that, visually, the
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proposed method is similar to the reference one and is not corrupted by noise

or artifacts. The mappings of RMSE and SAM errors showed that the suggested

method has fewer errors with respect to the other techniques. The quantitative

results showed that the suggested model outperformed all the methods in most

of the quality indices. In order to test the robustness to noise of our model, the

experiments were run on Urban dataset with a SNR of 30dB. The visual results

showed that the fused image is not corrupted by noise. The RMSE and the SAM

error mappings showed that the errors of the proposed method are minimal

compared to the other methods. Also, the fused result outperformed the other

methods in all the quality indices. These results highlight the robustness of the

suggested model to noise.

The second fusion technique developed in Chapter 3 was a modification

of the first one: the radiometric constraint was penalized with the L1 norm in

order to account for possible impulse noise, moreover, a new way of computing

the similarity weights, that mixes information from the hyperspectral and the

multispectral image, was suggested. The experiments in this part were run

on two images, "Bicycles" and "Bookshelves", from outdoor and indoor scenes

with a SNR of 35dB. The results on "Bicycles" showed that, visually, the fused

image is similar to the reference one, is denoised and artifacts free, unlike some

state-of-the-art methods. The RMSE and SAM mappings showed that the L1

normmodel compares favorably to the other methods, even though, the result of

the L2 norm model had less errors in terms of SAM than the rest of the methods.

In terms of quantitative results, the L1 norm is very competitive with respect

to the other methods and outperformed the L2 norm in many quality indices.

Similarly to "Bicycles", the experiments on "Bookshelves" showed that, visually,

the fused image contains the color information and all the geometric details

present in the reference image. Moreover, the fusion result is denoised and
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artifacts free. On one hand, the RMSE mapping showed that the error present

in the result with the L1 norm is weaker than the results of the other methods.

On the other hand, the SAM mapping of the result with the L1 norm compares

favorably to the other methods but it stays stronger than the one of the result

with the L2 norm. The quality measures showed that the result with the L1

norm compares favorably to the other methods and outperforms the result with

the L2 norm in many quality indices. To sum up, the first model seems to give

good results when it comes to recovering the spectral information, whereas

the model with the L1 norm performs better in denoising and recovering the

spatial details. Future work will be focused on studying further the difference

between both models and their contributions to fusing non-remote sensing and

also remote sensing data.

The present thesis explored various techniques for fusing hyperspectral

and multispectral images. The experiments focused mainly on remote sensing

data, but in the last chapter, the fusion was also tested on non-remote sensing

data and it proved efficient. Thus, an interesting line of research might be

to test the studied methods on fusing different types of data such as SAR

(Synthetic-Aperture Radar) and optical images.
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Appendix A

Appendix of chapter 2

A.1 Computations in the caseof a triplyblock-Toepltiz
matrix

The link between the multiplication matrix-vector and the convolution was

made in the case of a Toeplitz matrix, except that in our case, the matrix ξ is

block-Toeplitz and the multiplication matrix-vector is handled differently.

Let us go back to the matrix ξ corresponding to the 2 × 2 × 2 grid as

highlighted in figure (2.6). As illustrated in figure (A.1), ξ is a block-Toeplitz

and symmetric matrix that can be seen as a 4× 4matrix with elements being

themselves matrices. The matrix ξ can be written under the following form

ξ=

ξ0 ξ1

ξ1 ξ0

 (A.1)

Where ξ0 and ξ1 are matrices.

As shown in figure (A.2), each element of ξ is itself a 2× 2 block-Toeplitz and

symmetric matrix that can be written as follows

ξ0 =

ξ0,0 ξ0,1

ξ0,1 ξ0,0

 ξ1 =

ξ1,0 ξ1,1

ξ1,1 ξ1,0

 (A.2)
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Figure A.1: The matrix ξ is block symmetric

So in the end, the matrix ξ can be written under the form

ξ=


ξ0,0 ξ0,1 ξ1,0 ξ1,1

ξ0,1 ξ0,0 ξ1,1 ξ1,0

ξ1,0 ξ1,1 ξ0,0 ξ0,1

ξ1,1 ξ1,0 ξ0,1 ξ0,0

 (A.3)

where ξ0,i and ξ1,i are 2× 2 Toeplitz matrices with i ∈ {0,1}

Let us consider in a general setting an image of size nl ×nc × b where nl, nc
and b are the number of rows, columns and spectral bands respectively. The

cost matrix ξ of this image is computed in a row-major order, it is block-Toeplitz,

symmetric and it is defined as follows

ξ=



ξ0 ξ1 ξ2 . . . ξb−1

ξ1 ξ0 ξ1 . . . ξb−2

ξ2 ξ1 ξ0 . . . ξb−3
... . . . . . . . . . ...

ξb−1 . . . ξ2 ξ1 ξ0


(A.4)
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Figure A.2: Sub-matrices of ξ

Where ξi are themselves block-Toeplitz and symmetric matrices of size

nl ×nl with i ∈ [[0,b− 1]]

Let F be the following block-vector

F=


F0

F1
...

Fb−1


(A.5)

where Fi are block-vectors of size nl × 1 and i ∈ [[1,b− 1]].

Let X be a vector defined as follows

X=

X(2b− 2) X(2b− 3) X(b) X(b− 1) X(b− 2) X(1) X(0)[ ]
ξb−1 ξb−2 . . . ξ1 ξ0 ξ1 . . . ξb−2 ξb−1

(A.6)

The block-convolution between a block-vector X that contains block-matrices

161

Application du transport optimal et des méthodes non locales dans la fusion d'images hyperspectrales et multispectrales Jamila Mifdal 2019



and a block-vector F that contains block-vectors at the instant n is defined as

follows

Definition 1.

Y(n) = (X ∗ F)(n) =
b−1∑
i=0

X(i)F(n− i) (A.7)

Remark. The block convolution (A.7) implicates multiplication operations be-
tween matrices and vectors, thus there is a certain way for the multiplication to
be respected which makes the convolution not commutative.

The block-matrix-block-vector product ξ× F is as follows

ξ× F=


ξ0F0 + ξ1F1 + . . .+ ξb−1Fb−1

ξ1F0 +B0F1 + . . .+ ξb−2Fb−1
...

ξb−1F0 + ξb−2F1 + . . .+ ξ0Fb−1


=


Y(b− 1)

Y(b)
...

Y(2b− 2)


(A.8)

From the structure of the ξmatrix we noticed that the following relationship

can be made between the matrix ξ0 and the matrices (ξi)i∈[[1,b−1]]

ξi = e−i
α
γ ξ0

Thus the vector X defined in (A.6) becomes

X= [ξb−1 ξb−2 . . . ξ1 ξ0 ξ1 . . . ξb−2 ξb−1]

= [e−(b−1)αγ e−(b−2)αγ . . . 1 . . .e−(b−2)αγ e−(b−1)αγ ]⊗ ξ0

where ⊗ is the kronecker product.
we define

V =

V(2b− 2) V(2b− 3) V(b) V(b− 1) V(b− 2) V(1) V(0)[ ]
e−(b−1)αγ e−(b−2)αγ . . . e−

α
γ 1 e−

α
γ . . . e−(b−2)αγ e−(b−1)αγ
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Proposition 3. The multiplication (A.8) becomes

ξ× F= (X ∗ F)((b− 1)→ (2b− 2))

=

((
V ⊗ ξ0

)
∗ F
)
((b− 1)→ (2b− 2))

=

(
V ∗

(
ξ0 ∗ F

)
(0→ b− 1)

)
((b− 1)→ (2b− 2))

Proof. We define R = ξ0 ∗ F, following the definition of the block-convolution
defined in (A.7), the computation of R is as follows

R(n) = (ξ0 ∗ F)(n) = ξ0F(n) (A.9)

Thus, the result of the convolution (A.9) is a block vector defined as

R=
R(0) R(1) R(b− 2) R(b− 1)[ ]
ξ0F0 ξ0F1 . . . ξ0Fb−2 ξ0Fb−1

We define Q= V ∗ R, the computation of Q is as follows

Q(n) = (V ∗ R)(n) =
b−1∑
i=0

R(i)V(n− i)

Q(0) = R(0)V(0) + R(1)V(−1)

Q(1) = R(0)V(1) + R(1)V(0)

...
Q(b− 1) = R(0)V(b− 1) + R(1)V(b− 2) + . . .+ R(b− 1)V(0)

Q(b) = R(0)V(b) + R(1)V(b− 1) + . . .+ R(b− 1)V(1)

...
Q(2b− 2) = R(0)V(2b− 2) + R(1)V(2b− 1) + . . .+ R(b− 1)V(b− 1)

 = (ξ× F)

Q(2b− 1) = R(1)V(2b− 2) + . . .+ R(b− 1)V(b)

...

�

From the structure of the matrices ξi,j where i ∈ [[0,b− 1]] and j ∈ [[0,nl − 1]],
the following relationship between ξi,j and ξ0.0 is established
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ξi,j = e−
(i−j)2

γ ξ0,0

Thus, the multiplication (A.8) can be further simplified by studying the
operation R = ξ0 × F defined in (A.9). By repeating the same reasoning as for
ξ× F for each of the components of the vector R, the operation ξ0 × Fi, where
i ∈ [[0,b− 1]], can be written as follows

ξ0 × Fi = (X
′
∗ Fi)((nl − 1)→ (2nl − 2))

=

(
V
′
∗ (ξ0,0 ∗ Fi)(0→ nl − 1)

)
((nl − 1)→ (2nl − 2))

where

X
′
=

X
′
(2nl − 2) X

′
(2nl − 3) X

′
(nl) X

′
(nl − 1) X

′
(nl − 2) X

′
(1) X

′
(0)[ ]

ξ0,nl−1 ξ0,nl−2 . . . ξ0,1 ξ0,0 ξ0,1 . . . ξ0,nl−2 ξnl−1

= [e
−(nl−1)

2

γ e
−(nl−2)

2

γ . . . 1 . . .e
−(nl−2)

2

γ e
−(nl−1)

2

γ ]⊗ ξ0,0

and

V
′
=

V
′
(2nl − 2) V

′
(2nl − 3) V

′
(nl) V

′
(nl − 1) V

′
(nl − 2) V

′
(1) V

′
(0)[ ]

e
−(nl−1)

2

γ e
−(nl−2)

2

γ . . . e−
1
γ 1 e−

1
γ . . . e

−(nl−2)
2

γ e
−(nl−1)

2

γ

and

Fi =


F0,i
F1,i
...

Fnl−1,i


where F0,i are vectors of size nc × 1 and i ∈ [[0,b− 1]].

We define R ′i = ξ0,0 ∗ Fi, R
′
i is computed as follows

R
′
i(n) = (ξ0,0 ∗ Fi)(n) = ξ0,0Fi(n)

With n ∈ [[0,nl − 1]] and R
′
i is defined as

R
′
i =

R
′
i(0) R

′
i(1) R

′
i(nl − 2) R

′
i(nl − 1)[ ]

ξ0,0F0,i ξ0,0F1,i . . . ξ0,0Fnl−2,i ξ0,0Fn1−1,i
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Let us recall that the matrix ξ0,0 is Toeplitz, the multiplication ξ0,0Fi(n) can
be then computed using the convolution as shown in (2.5.1) in the case of non
block-Toeplitz matrices. In this case, the storing of the matrix ξ0,0 is not needed
but only a vector as the one defined in (2.5.1).

Thus, we can conclude that all the components (ξ0,0Fj,i)j∈[[0,nl−1]] of R
′
i can be

computed independently and in parallel, after that, the convolution with the
vector V ′ can be then carried out. Therefore, all the components (R(i))i∈[[0,b−1]]
can also be computed independently and in parallel, the application of the
vector at the end allows the computation of the final multiplication ξ× F.

As one can notice, the decomposition of the matrix-vector multiplication into
convolutions thanks to the interesting properties of the matrix (block-Toeplitz
and symmetric), allows the gain of an important execution time thanks to the
possibility of parallelization of the computations. It also allows the saving of
an important memory space because, according to the previous computations,
only three vectors are needed to carry out the convolution: V , V ′ and the vector
x drawn from the sub-sub matrix ξ0,0 that allows the computation of the last
convolutions (ξ0,0Fj,i)j∈[[0,nl−1]]. Moreover, these last three vectors are symmetric,
which means that only half of them can be stored and the other half can be
concluded by doing the symmetry.

A.2 Algorithm for the search of optimal parameters
when using NLM weights

The algorithm presented below is used for studying the sensitivity of
parameters when using the NLM weights in the cost matrix. The study of the
NLMweights in the cost matrix as well as the experiments where this algorithm
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is used are described in sections (2.9) and (2.10).
Algorithm 5: Optimisation of parameters with the NLM weights
Input : S̃(f),T̃(g) , γM, γH, αM, αH, s

1 ξdistM ← compute_kernel_dist (multispectral component),
2 ξdistH ← compute_kernel_dist (hyperspectral component),
3 array_sizes_patches={(1×1),(3×3),(5×5), (3×3×3),(5×5×5)},
4 array_filtering_parameters=logspaced[-12,4]
5 for i← 0 to length (array_sizes_patches) do
6 for j← 0 to length (array_filtering_parameters) do
7 ξdistM ← compute_kernel_NLM

(
S̃(f), array_sizes_patches(i),

array_filtering_parameters(j), γM, αM, s
)

8 ξdistH ← compute_kernel_NLM
(
T̃(g), array_sizes_patches(i),

array_filtering_parameters(j), γH, αH, s
)

9 ξM← ξdistM � ξNLMM

10 ξH← ξdistH � ξNLMH

11 u← compute_barycenter
(
S̃(f),T̃(g),γM, γH, αM, αH

)
12 res(i,j)← u
13 end
14 end

Output : res
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