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Introduction

Background

In recent years, composite materials have been widely developed in many in-
dustrial sectors such as equipment, construction, medical prostheses, railways,
automobile and aeronautics. This development is mainly due to the favor-
able features of the composites which result from the performances of their
constituents. For example, we use thermoplastic composites to meet the en-
vironmental requirements while preserving the mechanical properties and to
improve the thermal conductivity of these composites. The use of such com-
posites contribute to the reduction of fossil fuel consumption and the reduction
of greenhouse gases.

A composite material is an heterogeneous material, composed at least of
two different constituents : a matrix, usually serving as a binder, and inclusions
made of one or more materials. The inclusions are often called reinforcements
as the aim of manufacturing composite materials is to combine the properties
of the matrix/inclusions to produce material with different properties from the
individual constituents.

An experimental study of composite properties is laborious and difficult.
One of the objective of MA team (Modeling and Applications) of LMNO (Nico-
las Oresme Mathematical Laboratory) is to develop tools allowing the model-
ing of composites such as multi-scale numerical homogenization methods. This
approach enables the determination of the thermal and elastic properties of
composite materials by using finite element methods (FEM) or Fast Fourier
Transform (FFT).

High performance computing and the development of innovative numeri-
cal methods enable a better understanding of the phenomena involved in the
microscopic scale which have an impact on the macroscopic behavior of the
composite materials. The work presented in this thesis falls within this frame-
work. The primary objective is to have a fast, reliable and efficient tool capable
of calculating the effective properties of composite materials from the thermal
and elastic point of view.
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Motivation and Contribution

As the composite structure becomes more complex, especially in the cases of
tiny inclusions or coated inclusions with a thin film, some difficulties arise: to
accurately model such composites, we need a mesh involving a huge number
of nodes (especially in three dimensional case) for FEM based methods or a
high resolution image for FFT based methods. Although some numerical ad-
vances allow the study of very high resolution 3D images, the need to efficiently
compute the effective properties of more and more complex composite subsists.

In the case of finite element methods, one difficulty, due to the heterogene-
ity, is to accurately approximate integrals defining the energy bi-linear form
involved in the weak formulation of the homogenization modeling see [7,24,95].
It usually requires a conformal mesh but building such a conformal and peri-
odic mesh with complex composites is not trivial, see for instance [96].

To circumvent the meshing difficulty, an original finite element method,
named Phantom domain Finite Element Method (PFEM), is proposed in this
thesis. The PFEM relies on computations of integrals with independent meshes
based on a Fictitious Domain principle. In other words, one structured mesh
is used for the entire domain, including the matrix phase and the inclusions
phase. Meanwhile, we use non-structured independent meshes for the inclu-
sions. We then compute integrals defined both on the whole domain and
the inclusions. The inclusion meshes will be related to the structured mesh
through a substitution matrix. The PFEM Method can be directly applied to
inclusions of any kind of shape or geometry, as long as a mesh is available.

We developed the Phantom domain Finite Element Method for Dirichlet
and Neumann boundary value problems in both thermal and elastic cases.
The main difficulty is to bind the degrees of freedom (DOFs) of the inclusion’s
mesh to the DOFs of the entire domain’s mesh. With isoparametric elements
and a structured mesh, it can be achieved by building a substitution matrix.
Although the mesh of the inclusion is independent, it should be fine enough
to obtain an accurate approximation of the integrals forms. We accomplished
a study to find the favorable resolution of the inclusion mesh. Convergence
studies and error localization referenced to conformal finite element method are
performed to validate and evaluate the PFEM with inclusions of elementary
geometry such as disk and square. For square inclusions, in a special case
of which the mesh of the entire domain and the mesh of the inclusion are
matching, the PFEM will coincide with a conformal FEM. This observation
allows us to measure the error produced by the PFEM.

We then extend the PFEM for numerical homogenization, which means
the computation of effective properties of composite materials on a represen-
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tative volume element (RVE). We employ three type of boundary conditions:
Dirichlet, Neumann and periodic boundary conditions. The homogenization
development of the PFEM is realized for both thermal conductivity and linear
elasticity problems. Numerical experiments are performed for RVE with one
spherical inclusion, one cubic inclusion and one ellipsoidal inclusion. After-
wards, in order to show the advantages of the PFEM, we illustrate some cases
which are difficult to mesh by conformal finite element method, but can be
easily treated by PFEM.

We developed a finite element library code, using object-oriented program-
ming, to perform the computation of the PFEM. The main structure of the
code is programmed in Python, while the computation part is programmed in
Fortran. A lot of works are devoted to the PFEM code. Several versions of the
PFEM code are programmed for the reason of efficiency and for the extension
to all the cases involved (thermal, elastic, 2D, 3D, boundary value problems,
periodic homogenization etc).

Organization

The rest of this dissertation is organized as follows:
In chapter 1, we present the overview of different analytical and numerical

homogenization approaches for both thermal conductivity problem and linear
elasticity problem. We focus on classical bounds, Mori-Tanaka model and
Self-consistent model for the mean field methods. In the full field method
part, we introduce the notion of Representative Volume Element (RVE) and
recall the basic principle of effective properties computation of a composite
material using the finite element method with Dirichlet, Neumann and periodic
boundary conditions. An emphasis is put on the periodic homogenization
which is based on a multi-scale approach and asymptotic analysis. At the end
of the first chapter, we mention other homogenization methods such as Fast
Fourier Transform method and eXtended Finite Element Method.

In chapter 2, we introduce the PFEM based on the use of independent
meshes to represent composite materials. The method is presented for linear
static thermal or elasticity problems defined as boundary value problems. We
describe the construction of a substitution matrix which allows to substitute
the degrees of freedom from inclusion mesh into matrix mesh and compute the
energy forms involved in the equivalent variational form associated with the
considered boundary value problem. In the second part of this chapter, we
show some numerical experiments with two-dimensional inclusion geometries,
such as disk and square.

In chapter 3, we present the extension of PFEM to homogenization tech-
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nique on a RVE with Dirichlet, Neumann and periodic boundary condition.
Numerical experiments with three-dimensional elementary inclusion geome-
tries have been presented for one or several inclusion cases. We perform con-
vergence studies in terms of mesh resolution and parametric studies in terms
of volume fraction in order to compare the effective properties computed by
PFEM with reference solutions to discuss the performance of the PFEM for
composite materials.
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Chapter 1

Homogenization

Contents

1.1 Principle of homogenization . . . . . . . . . . . . . 5

1.2 Mean field methods . . . . . . . . . . . . . . . . . . 6

1.2.1 The classic bounds . . . . . . . . . . . . . . . . . . . 7

1.2.2 Mori-Tanaka method . . . . . . . . . . . . . . . . . . 9

1.2.3 Self-consistent method . . . . . . . . . . . . . . . . . 11

1.3 Full field methods . . . . . . . . . . . . . . . . . . . 12

1.3.1 Representative Volume Element . . . . . . . . . . . . 12

1.3.2 Determination of effective properties . . . . . . . . . 13

1.3.3 Periodic homogenization . . . . . . . . . . . . . . . . 17

1.3.4 Fast Fourier transform method and Lippmann-Schwinger

equation . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.5 Other methods . . . . . . . . . . . . . . . . . . . . . 25

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Principle of homogenization

The main objective of homogenization is to calculate the effective properties of
a composite material from knowledge of the topology of its constituents. This
allows one to replace the composite medium with an equivalent homogeneous
medium in the macroscopic level.

Let us consider Ω a domain representing a continuum body of heterogeneous
material. Two scales are considered: the macroscopic scale (the continuum me-
dia scale) and the microscopic scale (the inclusion scale). The distribution, the
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form and the elastic/thermal properties of each inclusions inside the matrix
and the matrix itself are supposed known. The aim is to estimate the macro-
scopic behavior of the heterogeneous medium by determining its effective or
homogenized properties. This principle is illustrated in Figure 1.1.

Figure 1.1: Homogenization principle

We are interested in methods who can evaluate homogenized thermal con-
ductivity tensor Λhom and the homogenized elastic tensor Chom. We can distin-
guish two kinds of homogenization method : the mean field methods [11, 107]
and the full field methods [83]. The mean field methods are used with an in-
complete knowledge of the composite: only the volume fraction and the specific
geometry of the inclusions are known. These methods allow to estimate the
effective behavior of the microstructure with an analytical approach. The full
field methods require a complete knowledge of the microstructure: properties
of materials, geometry of inclusions and their distribution. When the entire
microstructure is identified, the stress/strain tensors or the heat flux/temper-
ature can then be calculated at any point in the microstructure via Finite
Element Methods (FEM) or Fast Fourier Transform (FFT) by a numerical
approach.

1.2 Mean field methods

The mean field methods are analytic or semi-analytic methods, such as the
Mori-Tanaka method [76] or the self consistent method [47]. As they are based
on the study of the Eschelby’s tensor, see [26], they are usually restricted to
spherical and ellipsoidal inclusions and a low volume fraction of inclusions,
see [8, 48].
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1.2.1 The classic bounds

Rule of mixtures

For a composite material made up of matrix and continuous fiber inclusions,
a general rule of mixtures can be used to predict the effective properties by
providing analytical upper and lower bound for elasticity and thermal conduc-
tivity.

In the case of elasticity, the rule of mixture states that the effective property
in the direction parallel to the fibers is:

C
hom = ρ0C0 + ρ1C1 (1.1)

where Chom, C0 and C1 denote the elastic tensor of the homogenized material,
the matrix and the inclusion respectively, so as the volume fraction ρ. This is
known as the upper bound.

The inverse rule of mixture states that the effective property in the direction
normal to the fibers is:

C
hom−1

= ρ0C0
−1 + ρ1C1

−1 (1.2)

This quantity is called the lower bound.
In the case of thermal conductivity, the rule of mixture states the same

ways as in the elasticity, the effective property in the direction parallel to the
fibers (the upper bound) writes:

λhom = ρ0λ0 + ρ1λ1 (1.3)

where λhom, λmat and λinc denote the thermal conductivity of the homogenized
material, the matrix and the inclusion respectively.

The inverse rule of mixture states that the effective property in the direction
perpendicular to the fibers (the lower bound) is:

1
λhom

=
ρ0

λ0

+
ρ1

λ1

(1.4)

Voigt-Reuss bounds

Within the framework of the linear elasticity, the Voigt-Reuss bounds [91,102]
only require the knowledge of the volume fractions and the elastic behavior of
each phase composing the heterogeneous medium. These bounds are obtained
by assuming either the strain tensor e or the stress tensor σ are uniform in the
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material. In the first case, we have the Voigt bound (an upper bound) and in
the second, the Reuss bound (a lower bound), that read:

C
V =

σ

e
=
∑
ρi σi

e
=
∑
ρi(Ci e)
e

=
∑

ρiCi

C
R = {

∑
ρiCi

−1}−1 (1.5)

C
R
6 C

hom
6 C

V

where CV and CR denote the strain tensor of the Voigt bound and Reuss bound
respectively, ρi the volume fraction of the phase i. Since these are upper and
lower bounds, an estimate of the effective value is sometimes taken as the
average of the two, known as the Voigt-Reuss-Hill average:

C
V RH =

CR + CV

2
(1.6)

For a two-phase isotropic medium (the volume fraction of the matrix noted
as ρ0 and the volume fraction of the inclusion noted as ρ1), we obtain the
bounds of the bulk modulus k and the shear modulus µ as follows:

kV = ρ1k0 + ρ1k1

µV = ρ0µ0 + ρ1µ1

1
kR

=
ρ0

k0

+
ρ1

k1

1
µR

=
ρ0

µ0

+
ρ1

µ0

(1.7)

In the thermal case, these bounds are known as Wiener bounds [103], which
is initially developed to evaluate the effective conductivity for a heterogeneous
dielectric medium. Subsequently, Wiener bounds are adapted to the thermal
conductivity by Springer [98].

The upper Weiner bound is based on a serial layer model and the lower
Weiner bound is based on a parallel layer model. For a two-phase medium
(the volume fraction noted as ρ0 and ρ1 for respectively the matrix and the
inclusion, the thermal conductivity noted as λ0 and λ1 respectively for the
matrix and the inclusion, hence the bounds write:

λW +
hom = ρ0λ0 + ρ1λ1

1
λW −

hom

=
ρ0

λ0

+
ρ1

λ1

(1.8)
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Hashin-Shtrikman bounds

Compared to the the Voigt-Reuss bounds, the Hashin-Shtrikman bounds [40,
42] are narrower and defined in a macroscopically isotropic two-phase material
medium. The homogenized behavior is defined by the bulk modulus khom and
the shear modulus µhom with the assumption k1 > k0 and µ1 > µ0:

kHS− ≤ khom ≤ kHS+

with





kHS− = k0 +
ρ1

1
k1 − k0

+
3ρ0

3k0 + 4µ0

kHS+ = k1 +
ρ0

1
k0 − k1

+
3ρ1

3k1 + 4µ1

(1.9)

µHS− ≤ µhom ≤ µHS+

with





µHS− = µ0 +
ρ1

1
µ1 − µ0

+
6ρ0(k0 + 2µ0)
5µ0(3k0 + 4µ0

µHS+ = µ1 +
ρ0

1
µ0 − µ1

+
6ρ1(k1 + 2µ1)

5µ1(3k1 + 4µ1)

(1.10)

where ρ0 and ρ1 denote respectively the volume fraction of the matrix and
the inclusion. Microstructures such as the assembly of the Hashin spheres [40]
make it possible to calculate the bulk modulus bound and the shear modulus
bound.

From the Hashin-Shtrikman model, the thermal conductivity bounds are
developed in several lectures [10,17,71,89,104], by assuming λ1 > λ0, we have:

λHS−
hom = λ0

(
1 +

3ρ1(λ1 − λ0)
3λ0 + ρ0(λ1 − λ0)

)
(1.11)

λHS+
hom = λ1

(
1 +

3ρ0(λ0 − λ1)
3λ1 + ρ1(λ0 − λ1)

)
(1.12)

1.2.2 Mori-Tanaka method

The Mori-Tanaka model [8,76] is defined for a heterogeneous medium of rein-
forced matrix type, which is consisted of isotropically distributed inclusions.
The inclusions are treated as isolated inclusions in an infinite matrix. We as-
sume that the interface bond between inclusions and their surrounding matrix
is perfect.

To determine the elastic properties, we consider a macroscopic material
point at x position in a Cartesian frame. In the case of linear elasticity, the
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macroscopic stress tensor T and the macroscopic strain tensor E are related
with the help of a homogenized stiffness tensor (also called effective stiffness
tensor) Chom :

〈T 〉V = C
hom〈E〉V (1.13)

with the averaging operator over volume V ,

(
〈•〉V =

1
|V |

∫

V
•dy

)
.

Let e be the microscopic strain within the volume V . The local mechanical
behavior of each inclusion is related to the macroscopic behavior via the strain
concentration tensor A according to:

e(x) = A(x)E (1.14)

In the following, we use A to describe the volume average of A(x) over volume
V , A = 〈A(x)〉V . Proposed by Hill [46, 47], for two phases composite, the
homogenized stiffness tensor is given by:

C
hom = 〈CA〉V (1.15)

If the heterogeneous medium is a composite made of matrix (index 0)
reinforced by several inclusions (index i ranging from 1 to n), the Mori-Tanaka
strain concentration tensor for inclusion i of volume Vi, AMT

i = 〈AMT 〉Vi
can

be calculated by:

A
MT
i = T

MT
i




n∑

j=0

ρjT
MT
j




−1

(1.16)

with:

T
MT
i =

[
I + S

E
i (C0)−1(Ci − C0)

]−1
(1.17)

where SE
i designates the Eshelby tensor corresponding to the ith inclusion (the

expression of the Eshelby tensor is given in Appendix C), I is the identity
matrix, C0 the stiffness tensor of the matrix, Ci the stiffness tensor of the
inclusion i, and ρi = Vi/V denotes the volume fraction of the inclusion i with
respect to the total volume V of the RVE, which is subjected to the restriction
∑n

i=0 ρi = 1 and
∑n

i=0 ρiAi = I.
According to (1.15), the expression of the homogenized stiffness tensor Chom

is given by:

C
h =

n∑

i=0

ρiCiAi = C0 +
n∑

i=1

ρi(Ci − C0)Ai (1.18)
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Substituting the Mori-Tanaka strain concentration tensor AMT (1.16) in the
equation (1.18), we get the expression of the effective tensor CMT :

C
MT = C0 +

n∑

i=1

ρi(Ci − C0)TMT
i




n∑

j=0

ρjT
MT
j




−1

(1.19)

Since the stiffness tensors C0 and Ci are known , the CMT formula is ex-
plicit. However, this model remains valid for weak volume fractions of inclu-
sions.

In the thermal case, the expression of the homogenized conductivity tensor
Λhom is given by a similar way compared to the elastic case:

Λhom = Λ0 +
n∑

i=1

ρi(Λi − Λ0)Ai (1.20)

where Λ0 designates the thermal conductivity tensor of the matrix, Λi the
thermal conductivity tensor of the inclusion i, ρi the volume fraction of the
inclusion i, and Ai denotes the heat concentration tensor (analogous to the
strain concentration tensor in the elastic case).

1.2.3 Self-consistent method

The self consistent method is based on the solution of an auxiliary inclusion
problem where a single spherical or ellipsoidal inclusion is embedded in an infi-
nite matrix [13]. The matrix has the effective properties CSC of the composite
that is felt by each inclusion. The interaction between the inclusions and the
homogeneous matrix was given by Eshelby [26].

The self-consistent strain concentration tensor ASC
i for the inclusion i is

determined via the equation:

A
SC
i =

[
I + S

E
i (CSC)−1(Ci − C

SC)
]−1

(1.21)

Substituting this strain concentration tensor ASC
i in the equation (1.18),

we have the expression of the self-consistent effective stiffness tensor CSC :

C
SC = C0 +

n∑

i=1

ρi(Ci − C0)
[
I + S

E
i (CSC)−1(Ci − C

SC)
]−1

(1.22)

As we can see from equation (1.22), the formula of CSC is implicit. A
common method to find out CSC is to use an iterative fixed-point method by
initializing CSC through the Voigt-Reuss bound or by the Mori-Tanaka model.

This is a widely used model for polycrystalline and granular media [89].
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1.3 Full field methods

Full field methods can consider more general composites than mean field meth-
ods, but require the exact knowledge of the geometry. Effective properties can
be calculated with the help of various numerical methods such as the finite
element method [24] or iterative methods based on Fast Fourier Transform
technique [78,79]. In this section, we distinguish two cases: the determination
of effective properties with non-periodic conditions and the periodic homoge-
nization.

1.3.1 Representative Volume Element

First, we introduce the notion of Representative Volume Element (RVE). The
concept of RVE is important in the field of numerical modeling of heteroge-
neous media. The term RVE seems to have been created by Hill [46] and has
also been detailed extensively by Hashin and co-workers (reviewed in [41]).
The effective properties of composites can be determined not only by numeri-
cal simulations with large volume elements of heterogeneous material, but also
as mean values of apparent properties of rather small volumes, provided that
a sufficient number of realizations is taken into account.

From a statistical point of view, Homogenization problems can be solved
by means of numerical techniques on samples of microstructure. And RVE is
the smallest sample which is large enough to be stochastically representative
of the composite. The notion of RVE is very important, since computations
on large volumes are usually prohibitive. And it should be noticed that the
RVE is a representative motif of the microstructure of a multi-phase medium.
The key point is to understand under which assumptions the representativity
of the composite is respected. Several definitions have been given during the
last decades among which we can retain the following ideas:

• The RVE must contain enough information on the microstructure and
therefore include a sample of heterogeneities such as voids, fibers, inclu-
sions, grains, etc [41,46];

• According to Kanit et al. [53], the size of RVE must be considered as a
function of five parameters: the physical property, the contrast of prop-
erties, the volume fractions of components, the wanted relative precision
for the estimation of the effective property and the number of realizations
of the microstructure associated with the computations;

• By Drugan and Willis [22], the RVE must be the smallest material vol-
ume element of the composite for which the usual spatially constant
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(overall modulus) macroscopic constitutive representation is a sufficiently
ensured model to represent mean constitutive response. The definition is
based on a numerical criterion according to the homogenization calcula-
tion. This is to verify that the representation of the macroscopic medium
in terms of properties or modules is equivalent to that of the expected
average response;

• The chosen volume of RVE cannot be taken as small as one may wish,
because there exists in general a bias in the estimation of the effective
properties. This bias is due to the type of boundary conditions [53];

The evaluation of RVE dimensions is important. It has to respect a compromise
between the richness of the collected information and the cost of calculation.
Furthermore, in the case of periodic homogenization, we can assume the con-
sidered RVE is the period of the composite material. And in that case, we can
obtain the homogenized conductivity or elasticity tensor.

1.3.2 Determination of effective properties

In this section, we introduce the notations and elements of the determination
of effective properties which can be found in reference papers like [53]. The
following studies are presented for thermal conductivity and linear elasticity.

The approach of effective properties determination presented in this section
is different than the periodic homogenization which is based on a multi-scale
approach and asymptotic analysis. It is developed in accordance with two dif-
ferent type of boundary conditions: the Dirichlet condition and the Neumann
condition.

Thermal conductivity

We briefly summarize here the approach to compute the effective properties for
composite material with finite elements methods. Let us consider the domain
Ω representing the space occupied by a composite material. To fix the ideas,
let Ω be a subset of the space ❘D (with D = 2, 3 the dimension of the domain).
Let ∂Ω be the boundary of the domain Ω. For the sake of simplicity, we set
|Ω| = 1. The approach presented below is in three dimensional case, while the
two dimensional case is the same.

To calculate effective properties using a Finite Element Method, one can
solve specific boundary value problems. With the help of the solutions ob-
tained, we are able to determine effective properties. Let us present here the
principle of calculating effective properties in the case of steady state thermal
conductivity problems.
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For the temperature u, we associate the thermal flux defined as

q = Λ∇u, (1.23)

where Λ is the second order thermal conductivity tensor, ∇u is the temperature
gradient; (1.23) defines the thermal properties of the material. we remind that
for a composite material, the second order thermal conductivity tensor Λ is
not constant every where over Ω but can be piecewise constant.

The effective properties are represented by a constant second order tensor
Λeff satisfying the relation

∫

Ω
q = Λeff

∫

Ω
∇u, (1.24)

for some specific cases.
The effective properties tensor Λeff will have different expressions depend-

ing on the imposed boundary conditions. Two types of boundary conditions are
considered : Pure Dirichlet boundary conditions and Pure Neumann boundary
conditions. For thermal conductivity problems, the boundary conditions are
originally called Uniform Heat Flux and Uniform Gradient of Temperature,
see [53]. For linear elasticity problems, the boundary conditions are called
Kinematic Uniform Boundary Conditions (KUBC) and Static Uniform Bound-
ary Condition (SUBC). For the sake of clarity, we chose to use the terminology
of elasticity problems for both cases.

• Kinematic Uniform Boundary Conditions (KUBC)

In thermal case, a uniform gradient of temperature is imposed at the boundary,
the pure Dirichlet boundary value problem writes:




div q = 0 in Ω

u = g.x on ∂Ω
(1.25)

with g a constant vector independent of x, ‘ . ’ symbolize the dot product of
two vectors :

g.x =
3∑

i=1

gi xi

The problem (1.25) is well-posed and implies that:
∫

Ω
∇u = g (1.26)

See Appendix A.1 for the proof of the equation (1.26). With the spatial average
operator 〈...〉 and |Ω| = 1, we have:

〈∇u〉 =
1

|Ω|
∫

Ω
∇u

= g
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The macroscopic flux vector Q is defined by the spatial average:

Q = 〈q〉

=
∫

Ω
Λ∇u

= Λkubc〈∇u〉

so that we have:
Λkubcg =

∫

Ω
Λ∇u (1.27)

Solving all three problems with g = [1, 0, 0], [0, 1, 0] and [0, 0, 1] by using
finite element method, we get the effective conductivity tensor Λkubc column
by column.

• Static Uniform Boundary Condition (SUBC)

A uniform heat flux is imposed at the boundary as Neumann condition, which
reads: 



div q = 0 in Ω

q.n = Q.n on ∂Ω
(1.28)

In Appendix A.2, we proof that:

Q =
∫

Ω
q

which implies:

Q = 〈q〉
= Λsubc〈∇u〉

so that we have:

Q = Λsubc
∫

Ω
∇u (1.29)

By imposing Q = [1, 0, 0], then Q = [0, 1, 0] and Q = [0, 0, 1], we obtain
(Λsubc)−1 column by column.

Linear elasticity

For steady state linear elasticity problems, we are able to determine effective
properties by solving a specific boundary value problem using a Finite Element
Method.

In the case of linear elasticity, the stress tensor σ and the strain tensor e
are related by Hooke’s law:

σ = C e (1.30)
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where C is a fourth order stiffness tensor (the expression of C is given in ap-
pendix B); (1.30) defines the elastic properties of the material. C is a piecewise
constant in Ω of a composite material.

The effective properties are represented by a constant fourth order tensor
Ceff satisfying the relation:

∫

Ω
σ = C

eff
∫

Ω
e (1.31)

for some specific cases.
The effective properties tensor Ceff will have different expressions depend-

ing on the imposed boundary conditions. Two types of boundary conditions
are considered : Pure Dirichlet boundary conditions, Pure Neumann boundary
conditions.

• Kinematic Uniform Boundary Conditions (KUBC)

For the kinematic uniform boundary conditions, we impose a displacement
at point x belonging to the boundary ∂Ω, the pure Dirichlet boundary value
problem writes: 



div σ = 0 in Ω

u = E x on ∂Ω
(1.32)

with E a symmetrical tensor which does not depend on x. The spatial average
of strain gives:

〈e〉 =
∫

Ω
eij(u)

=
1
2

(∫

Ω
ui,j +

∫

Ω
uj,i

)

In Appendix A.3, we demonstrate in detail that:

〈e〉 = E

The macroscopic stress tensor is defined by the spatial average:

Σ = 〈σ〉
= C

kubc〈e〉
= C

kubc E

where Ckubc denotes the effective elasticity tensor calculated with KUBC method,
and then we have:

〈σ〉 =
∫

Ω
C e(u)
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which leads to:
C

kubc E =
∫

Ω
C e(u) (1.33)

Solving the six problems in Voigt notation withE = [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1] by using finite ele-
ment method, we obtain Ckubc column by column.

• Static Uniform Boundary Conditions (SUBC)

With the static uniform boundary condition (Neumann condition), we pre-
scribe a traction vector at the boundary, reads:




div σ = 0 in Ω

σ n = Σ n on ∂Ω
(1.34)

where n denotes the outgoing normal unit vector to ∂Ω at x, Σ is a symmetrical
second-rank tensor independent of x.

In Appendix A.4, we proof that:

Σ = 〈σ〉

We introduce Csubc, the effective elastic tensor calculated by SUBC method:

〈σ〉 =
∫

Ω
σ

=
∫

Ω
C e(u)

= C
subc

∫

Ω
e(u)

Finally, we have:

Σ = C
subc

∫

Ω
e(u) (1.35)

By solving the six problems in Voigt notation with Σ = [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], we obtain (Csubc)−1

column by column.

1.3.3 Periodic homogenization

In this section, we recall the periodic homogenization theory and its numerical
implementation with the finite element method [24].

Periodic material is a material with cavities or inclusions periodically ar-
ranged in one, two or three directions of space, as shown in Figure 1.2.

The material period can be identified as the RVE. In other words, the whole
microstructure of the periodic composite is generated by periodic repetition
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Figure 1.2: Periodic materials

of the RVE. And the overall property of the composite is specified from the
geometrical and material properties of RVE.

We present the periodic homogenization theory in the case of thermal prop-
erties and elastic properties. The multi-scale modelling based on asymptotic
expansion is described by Bensoussan et al. [7] and Sanchez-Palencia [95].

Let us consider a εP periodic material, P thus constitutes the Representa-
tive Volume Element (RVE), ε denotes the characteristic length of the RVE.
To fix the ideas the RVE P is the unit cube [0, 1]3.

The multiscale modeling consider macrocospic and local space variables. To
the macroscopic space variables x ∈ ❘3, we associate the local (microscopic)
space variables:

y =
1
ε

x ∈ P

The divergence and gradient differential operators are respectively denoted as:

div = divx +
1
ε
divy

∇ = ∇x +
1
ε

∇y

where divx and ∇x (resp. divy and ∇y) denote the divergence and the gradient
differential operator with respect to the macroscopic variables x (resp. the local
variables y).

Thermal conductivity problem

With a periodic heterogeneous media, the thermal constitutive law writes:

q = Λ∇u (1.36)
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where u denotes the temperature and q the heat flow, the conductivity tensor
Λ is εP periodic.

Under the action of external heat source f , the thermal equilibrium writes:

div q + f = 0 (1.37)

We set the asymptotic expansion:

u = u0(x) + εu1(y) + . . . (1.38)

∇u = e(u) = e0(u) + ε e1(u) + . . . (1.39)

q = q0 + εq1 + . . . (1.40)

q = Λ( e0(u) + ε e1(u) + . . . ) (1.41)

As we develop:

∇u = (∇x +
1
ε

∇y)(u0 + εu1 + ε2u2 + . . . )

=
1
ε

∇yu
0 + (∇xu

0 + ∇yu
1) + ε(∇xu

1 + ∇yu
2) + . . .

we obtain by identification:

e0(u) = ∇xu
0 + ∇yu

1

e1(u) = ∇xu
1 + ∇yu

2

q0 =Λ(∇xu
0 + ∇yu

1)

Writing asymptotic expansion of the heat flow q in the equilibrium equa-
tion (1.37) gives:

(divx +
1
ε
divy)(Λ∇u) + f = 0

(divx +
1
ε
divy)(Λ(

1
ε

∇yu
0 + e0(u) + ε e1(u) + ...)) + f = 0

1
ε2
divy(Λ∇yu

0) +
1
ε
divx(Λ∇yu

0) +
1
ε
divy(Λ e0(u))

+ divx(Λ e0(u)) + divy(Λ e1(u) + f = 0

By identification according to the order of ε, we obtain:

(ε−2) : divy(Λ∇yu
0) = 0 (1.42)

(ε−1) : divx(Λ∇yu
0) + divy(Λ e0(u)) = 0 (1.43)

(ε0) : divx(Λ e0(u)) + divy(Λ e1(u)) + f = 0 (1.44)
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As it follows that u0 depends only on x (1.42), the simplification of the
equation (1.43) gives a local equation:

divy(q0) = 0 in P (1.45)

Applying the average operator

(
〈•〉P =

1
|P |

∫

P
•dy

)
to the equation (1.44)

gives:
divx〈Λ e0(u)〉P + divy〈Λ e1(u)〉P + 〈f〉P = 0 (1.46)

As u1 must be P -periodic, the second term of the equation (1.46) vanishes
by using the divergence theorem and the anti-symmetric heat flux. Thus, we
obtain a macroscopic equation:

divx〈q0〉P + 〈f〉P = 0 (1.47)

In order to obtain the homogenized coefficients, we write the local equa-
tion (1.45) in a weak or variational form :

∫

P
q0.∇y(u∗) = 0 ∀u∗ ∈ H1

periodic(P ) (1.48)

Where H1
periodic(P ) is the P -periodic Sobolev space H1 .

Let E0 = ∇xu
0, then

q0 = Λ(E0 + ∇yu
1)

Averaging q0 on the RVE P , we then have :

〈q0〉P =
1

|P |
∫

P
Λ(E0 + ∇yu

1)

= Λperiodic∇u0 (1.49)

Λperiodic denotes the homogenized conductivity tensor.
Furthermore, with (1.48), ∀E∗ ∈ ❘3 and ∀u∗ ∈ H1

periodic(P ) :

1
|P |

∫

P
q0.(E∗ + ∇yu

∗) =
1

|P |
∫

P
q0.E∗ +

1
|P |

∫

P
q0.∇yu

∗

= 〈q0〉P .E
∗

= (Λperiodic∇u0).E∗

In other words, we obtain the variational problems:




∀u∗ ∈ H1
periodic(P ),∀E∗ ∈ ❘3,

1
|P |

∫

P
Λ(E0 + ∇yu

1).(E∗ + ∇yu
∗) = (ΛperiodicE0).E∗

(1.50)

Solving the three problems (1.50) as ΛperiodicE0 span ❘3, gives the ho-
mogenized conductivity tensor Λperiodic. The variational problems (1.50) are
well-posed [95] and their solutions can be approximated by the finite element
method [24].
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Linear elasticity problem

With the external forces f , the elasticity problem writes:




div(σε) + f = 0 in P

σε = Cε e(uε) in P

Boundary conditions on ∂P

(1.51)

with C
ε(x) = C

(
x

ε

)
= C(y) for all x in P , y in εP

We set the asymptotic expansion:

uε(x) = u0(x) + εu1(x,y) + ε2u2(x,y) + o(ε2) (1.52)

e(uε) = e0(x,y) + εe1(x,y) + o(ε) (1.53)

σ(uε) = σ0(x,y) + εσ1(x,y) + o(ε) (1.54)

where u1 and u2 are P-periodic on y.
The strain tensor e expands as follow:

e(uε) = ex(uε) +
1
ε
ey(uε) (1.55)

eij(uε) = eijx(uε) +
1
ε
eijy(uε) (1.56)

with:




eijx =
1
2

(
∂ui

∂xj

+
∂uj

∂xi

)

eijy =
1
2

(
∂ui

∂yj

+
∂uj

∂yi

) (1.57)

Replacing the expansion of uε (1.52) in the expression of e (1.55) (or (1.56)
with index notation), we obtain the term of degree 0 on ε by identification:

e0(x,y) = ex(u0) + ey(u1) (1.58)

σ0(x,y) = C(y) e0(x,y) = C(y)
(
ex(u0) + ey(u1)

)
(1.59)

On the other hand, replacing the expression of σ (1.54) in the local problem
(1.51) and identifying in the degree order of ε, we obtain the equations:

(ε−1) : divyσ
0 = 0 (1.60)

(ε0) : divxσ
0 + divyσ

1 + f = 0 (1.61)
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Applying the average operator to the equation (1.61), and using the di-
vergence theorem with the periodicity of σ1 in relation to y, we obtain the
macroscopic equation:

divx〈σ0〉P + 〈f〉P = 0 (1.62)

To obtain the effective coefficients, we use the microscopic equation (1.60),
in which we replace the expression of σ0 in (1.59) by defining the macroscopic
deformation: E def= ex(u0)

σ0 = C(y)
(
E + ey(u1)

)
(1.63)

divy

[
C(y)

(
E + ey(u1)

)]
= 0 (1.64)

We assume that u1 is depending on x and y:

u1(x,y) = ex(u0(x))w(y) (1.65)

with the functions w depend on y and P-periodic.
Once the w functions are known, we deduce in Appendix A.5, the expres-

sion of the homogenized coefficients:

C
periodic =

1
|P |

∫

P
C(y)

︸ ︷︷ ︸
average coefficient

+
1

|P |
∫

P
C(y) ey(w(y))

︸ ︷︷ ︸
corrective term

(1.66)

Using weak formulation technique and periodicity assumption, the expres-
sion of the homogenized tensor Cperiodic is thus determined. However, the
expression obtained in (1.66) gives an expression of Cperiodic as a function of w

which have to be determined beforehand. When the problem is unidirectional,
it is possible to determine Cperiodic analytically. Therefore in three dimen-
sional problem or complex microstructure, we need other techniques to solve
the problem.

In order to estimate the coefficients Cperiodic without calculating wpq, we use
the method proposed by Débordès [24]. We reconsider the weak formulation
of the microscopic equation (1.64). By using an integration by parts and the
periodicity on P, it writes:





∀u∗ ∈ H1
periodic(P ),

∫

P
Cijkl(Ekl + ekly(u1))(eijy(u∗)) = 0

so we have:




∀(E
∗
,u∗) ∈ R

3×3
sym ×H1

periodic(P ),
∫

P
Cijkl(Ekl + ekly(u1))(E∗

ij + eijy(u∗) − E∗
ij) = 0
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Rewriting the previous equality, we obtain:
∫

P
Cijkl(Ekl + ekly(u1))(E∗

ij + eijy(u∗)) =
∫

P
Cijkl(Ekl + ekly(u1))E∗

ij (1.67)

The second part of the equation (1.67) can be rewrited by using the inde-
pendence of E

∗
versus y:

∫

P
Cijkl(Ekl + ekly(u1))(E∗

ij) =
(∫

P
Cijkl(Ekl + ekly(u1))

)
E∗

ij

=
(∫

P
σ0

ij

)
E∗

ij

= |P |〈σ0〉P : E
∗

= |P | (CperiodicE) : E
∗

(1.68)

where ‘ : ’ symbolize the double dot product of two matrices :

A : B =
3∑

i=1

3∑

j=1

AijBij

From the equations (1.67) and (1.68), we obtain:




∀(E
∗
,u∗) ∈ R

3×3
sym ×H1

periodic(P ),
1

|P |
∫

P

[
C(E + ey(u1))

]
: (E

∗
+ ey(u∗)) = (CperiodicE) : E

∗
= 〈σ0〉P : E

∗

(1.69)
Solving the six problems of (1.69) for 〈σ0〉P in R3×3

sym allow us to obtain
(Cperiodic)−1 by using finite element method.

This method is efficient for elementary microstructures but it becomes pro-
hibitive in memory capacity and computation time for complex microstructures
with a requirement of very fine mesh.

1.3.4 Fast Fourier transform method and Lippmann-

Schwinger equation

This method does not use mesh as in finite elements but a voxelization of the
RVE, which is close to the grid approximation mesh methods. In each voxel,
we associate a phase with its specific properties. More precisely, the method
consists in solving the Lippman-Schwinger equations in the Fourier space. This
approach is described in the Moulinec and Suquet’s work [78,79].

Inspired by the asymptotic development, the local problem of elastic de-
formation is given by:





σ(x) = C0(e(u)) + τ(x) in P

div(σ(x)) = 0 in P

u periodic
(1.70)
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where C0 designates the stiffness tensor for the reference material, σ the stress
tensor, e the strain tensor, and τ denotes the polarization tensor defined by:

τ(x) = δC(x)e(x) + C0E , with δC(x) = C(x) − C0 (1.71)

Introducing the periodic Green’s function1 G0 associated to C0, we have:

e(u)(x) = −G0 τ(x), for all x in P (1.72)

In the Fourier space, the equation (1.72) becomes:




ê(u)(ξ) = −Ĝ0τ̂(ξ), for all ξ 6= 0

ê(u)(0) = 0
u periodic

(1.73)

Using the expression (1.71), the equation (1.72) becomes:

e(u(x)) = −G0(δC(x) e(u(x))) + E, for all x in P (1.74)

Putting (1.74) in the Fourier space, we obtain:




ê(u)(ξ) = −Ĝ0( ̂δC e(u))(ξ), for all ξ 6= 0

ê(u)(0) = E

u periodic

(1.75)

The equations (1.74) and (1.75) form the periodic equation of Lippmann-
Schwinger [56,80] respectively in the real space and in the Fourier space. The
equation (1.75) can be solved iteratively by a fixed point method [68–70, 74,
75,78–80].

For an isotropic reference material, the stiffness tensor C0 and the periodic
Green’s function G0 is given by Mura [83] in the Fourier space:

Cijkh = λ0δijδkh + µ0(δikδjh + δihδjk)

Gijkh(ξ) =
1

4µ0|ξ|2 (δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)

− λ0 + µ0

µ0(λ0 + 2µ0)
ξiξjξkξh

|ξ|4

where λ0, µ0 denote the Lamé parameters δ the Kronecker’s delta, and ξ is the
Fourier space variable.

The contribution of the Fourier space is directly related to the convolution
between the Green’s operator and the stress tensor. An example of the reso-
lution algorithm is given in [35]. The limitation of this methodology is that
it does not work with very strong contrasts. However, it is possible to set up
an increased Lagrangian type scheme to study very heterogeneous composites
with complex geometry [70].

1C0e(G0)im = δimδ0(x), [83]
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1.3.5 Other methods

XFEM method

With the Finite Element Method (FEM), the modeling of a domain containing
interfaces requires a mesh conforming with all internal surfaces. This operation
is costly for complex three-dimensional geometries, for example in case of the
phase evolution [101]. The eXtended Finite Element Method (XFEM) [33,65,
82,100] is an extension of the finite element method that was developed in order
to overcome some limitations of the finite elements. It has been proposed for
modeling and computing the overall properties of complex microstructures [81].
The principle of the method is to enrich the finite element approximation
with additional shape functions in order to specify the interfaces which is
independent of the background mesh.

Consider a domain Ω ⊂ RD (with D the dimension of the domain), the
X-FEM displacement approximation can be expressed by :

ûXF EM(x) =
∑

i∈I

Φi(x)ui

︸ ︷︷ ︸
Classical

+
∑

j∈Ie

Φj(x)ψ(x)uj

︸ ︷︷ ︸
Enriched

(1.76)

where I (resp. Ie) stands for a set of nodes (resp. enriched nodes) in the mesh,
Φi (resp. Φj) denotes the finite element shape functions for classical nodes
(resp. the enriched nodes). The function ψ(x) is an enrichment function with
the desirable discontinuous properties. The second term in equation (1.76)
allow us to model discontinuities or weak continuities which is independent of
the classical finite element mesh.

In order to improve the finite element approximation, the choice of the
enrichment function ψ(x) is crucial. In the case of matrix/inclusion type com-
posite, Sukumar et al. [100] were the first ones to combine the XFEM with
a level-set method to construct the enrichment function related to interfaces.
The interfaces implying weak continuities of the field are considered, i.e. the
enrichment function is continuous while its derivative is discontinuous. In [100],
the absolute value of the level-set function L(x) is considered as an enrichment:

ψ(x) = |L(x)| (1.77)

L(x) is called level-set function, which is a representation of a curve Γ (in
2D) or a surface (in 3D) described by the iso-zero contour (in 2D) or surface
(in 3D) of an implicit scalar function:

Γ = {x|ψ(x) = 0} (1.78)

This level-set function is usually chosen as the signed distance to the curve
(resp. surface). The shape of the curve (resp. surface) Γ can be modified
based on the evolution of ψ(x), following a transport equation.
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As the level-set is interpolated on the computational mesh, the density
of computational mesh directly affects the accuracy of the XFEM solution.
Despite XFEM allows the use of uniform meshes, the mesh should be fine
enough to represent the geometrical information.

FCM method

Proposed by Parvizian et al. [87], the Finite Cell Method (FCM) is an extension
to the classcial finite element method. The FCM can be interpreted as a
combination of a fictitious domain concept with higher-order finite elements,
adaptive integration, and weak enforcement of boundary conditions. The core
idea of the method is to use a simple structured mesh of higher-order basis
functions for the approximation of the solution fields.

In the FCM, the principle is to embed the physical domain Ω into a domain
Ωe of simpler shape. Therefore the integration of the weak form of equilibrium
has to be extended over Ωe.

Applying the FCM simplifies the meshing process, since a simple Cartesian
mesh is used. The geometry of the micro-structure and the different material
properties are treated during the integration of the stiffness matrices of the
cells. In this way, the effort is shifted from mesh generation towards the
numerical integration, which can be performed adaptively in a fully automatic
way.

Moreover, the existing algorithms and solution methods can be used be-
cause of the similarity between the FCM and the FEM [25].

Conclusions

In the first chapter, we have presented the state of the art of the mean field
methods and full field method which can be used to compute the effective
properties for a composite material.

In the case of periodic composite, the material period is identified as the
Representative Volume Element. As the RVE becomes more complex, espe-
cially in the cases with very thin or tiny inclusions or inclusions coated with
a thin pellicle, some difficulties arise : to accurately model such RVEs, we
need a huge number of meshes (especially in 3D) or a high resolution image.
Although some numerical advances allow the study of very high resolution 3D
images, the need to efficiently compute the effective properties of more and
more complex RVE subsists.

In the case of finite element methods, one difficulty, due to the heterogene-
ity, is to accurately approximate integrals defining the energy bi-linear form
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involved in the weak formulation of the homogenization modeling see [7,24,95].
It usually requires a conforming mesh but the building such a conforming and
periodic mesh with complex geometries is not trivial, see for instance [96].

To circumvent the meshing difficulty, several approaches have been consid-
ered, such as eXtended Finite Element Method (XFEM) [100], or Finite Cell
Methods (FCM) [25]. The XFEM is combined with the Level Set Method to
define the inclusions and enriched shape functions [106]. The FCM considers
only one structured mesh the elements of which are then called cells. The
FCM uses cell subdivisions to ensure a better approximation of the integrals,
see [25, 62].

We propose a new approach, based on the finite element method, to effi-
ciently compute the effective properties of composite by remedying the mesh-
ing difficulty of existing numerical methods. This is the main objective of
this Ph.D work and the next chapter is fully dedicated to introduce this new
approach called phantom domain finite element method.



28 CHAPTER 1. HOMOGENIZATION



29

Chapter 2

A Phantom domain Finite

Element Method

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Thermal conductivity problem . . . . . . . . . . . 30

2.2 Linear elasticity problem . . . . . . . . . . . . . . . 38

2.3 Numerical Experiments . . . . . . . . . . . . . . . . 40

2.3.1 Specifications of numerical experiments . . . . . . . 40

2.3.2 Meshes of PFEM . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Convergence study . . . . . . . . . . . . . . . . . . . 45

2.3.4 PFEM/FEM comparison . . . . . . . . . . . . . . . 50

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Introduction

The PFEM method is inspired by the Fictitious Domain Method (FDM), a
technique used to solve elliptic boundary value problems in domain with com-
plex boundaries or interfaces for which the meshing or the repetition of the
meshing can induces difficulties, see [38]. To remedy this, distinct meshes are
considered, one main structured mesh and independent meshes of the interfaces
or inclusions. The fictitious domain method is then equivalent to a constrained
quadratic optimization problem : the relations between the meshes or the in-
terface or boundary conditions are taken in account with the help of Lagrange
multipliers, see [38].
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While the distinct independent meshes is also the basis for the PFEM, it
differs from the standard Fictitious Domain Method since we shall not intro-
duce Lagrange multipliers: it does not solve a constrained or coupled problem.
It is also different from other variants of the Fictitious Domain Method such
as the Finite Cell Method [25] as we employ a true (conformal) mesh of the
inclusion instead of refining the computation within the element (or cell) that
are being cut by the boundary of an inclusion see [25,62].

Actually, the use of isoparametric element on a structured mesh of the
RVE allows us to substitute the inclusion’s mesh for the matrix’s mesh in a
very simple way by the mean of the definition of a Substitution Matrix. Our
method can be directly applied to inclusions of any kind of shape or geometry,
as long as a mesh is available. The inclusions meshes appear then as phantom
meshes.

Even though, our method has been developed mainly to perform numerical
homogenization, for the sake of simplicity, we shall first present our method in
detail for a thermal conductivity equilibrium problem. Afterwards, the PFEM
method is extended to the linear elasticity problem. Numerical experiments
are given in the following in order to verify the PFEM method in both one
inclusion cases and several inclusions cases.

2.1 Thermal conductivity problem

Let Ω represents a domain constituted by a heterogeneous material. Under the
action of external heat source f , imposed temperature u0 on ΓD and imposed
heat flux F on ΓN , the thermal boundary value problem writes:





div q + f = 0 in Ω

u = u0 on ΓD

q.n = F on ΓN

(2.1)

with ΓD ∪ ΓN = ∂Ω, u denotes the temperature and q is the heat flux. The
domain Ω is shown in the Figure 2.1.

In theory, Ω can be of arbitrary shape but in the sequel we shall only
consider domain such as Ω = [0, 1]d with d = 2, 3 since we want to use a
structured mesh.

Λ is a thermal conductivity second order tensor :

q = Λ∇u (2.2)

For the sake of simplicity, let us consider a material domain Ω to be con-
stituted by two homogeneous and isotropic media : the matrix Ω \ Ωinc and



2.1. THERMAL CONDUCTIVITY PROBLEM 31

Figure 2.1: A domain Ω with inclusions Ωinc under the imposed temperature u0 on ΓD

and imposed heat flux F on ΓN .

inclusions Ωinc. The conductivity matrix writes:

Λ =





Λmat in Ω\Ωinc

Λinc in Ωinc

In other words, Λmat and Λinc are respectively the constant thermal conduc-
tivity tensors of the matrix and the inclusion.

The equation (2.1) is equivalent to the variational formulation:





Find u ∈ Vadm = {u ∈ H1(Ω)/u|ΓD
= u0}∫

Ω
(Λ∇u).∇u∗ =

∫

Ω
fu∗ +

∫

ΓN

Fu∗, ∀u∗ ∈ V0

(2.3)

with V0 a vector subspace associated to the affine admissible space Vadm:

V0 = {u ∈ H1(Ω)/u|ΓD
= 0}

Classically, the problem (2.3) is a well posed problem from the Lax-Milgram
framework [90]. The unique solution of the problem (2.3) also minimize the
energy functional J(u) in Vadm:

J(u) =
1
2

∫

Ω
(Λ∇u).∇u−

∫

Ω
fu (2.4)

In a composite material, Λ is not constant but can be piece-wise constant.
For instance, If the mesh element belongs to the matrix, Λ takes the value of
Λmat whereas if the mesh element belongs to the inclusion, Λ takes the value
of Λinc.
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With a conformal Finite Element Method, we define an interpolation space
V h of dimension n such that any uh ∈ V h can be represented by û ∈ ❘n. With
the help of a stiffness matrix K and a vector L, we have:

J(uh) =
1
2

∫

Ω
(Λ∇uh).∇uh −

∫

Ω
fuh (2.5)

J(uh) =
[
û
]⊤
K
[
û
]

−
[
û
]⊤
L (2.6)

With inclusions in complex geometries, it can be costly to build an con-
forming mesh in order to accurately compute the functional integral by the
conventional Finite Element Method.

Split of the Energy form

As the material is composed of two constituent, we split the energy functional
in (2.4) into the corresponding parts :

J(u) =
1
2

∫

Ω\Ωinc

(Λmat∇u).∇u+
1
2

∫

Ωinc

(Λinc∇u).∇u−
∫

Ω
fu (2.7)

The main idea of the PFEM consists in using two distinct and a priori

incompatible and independent meshes representing the whole domain Ω and
inclusions Ωinc instead of a unique conformal mesh matching the geometry of
the inclusion, see Figure 2.2 for an illustration in the case of one disk inclusion
in Ω = [0, 1]2.

Figure 2.2: A conforming mesh (left) and independent meshes (right) for one disk inclusion

in domain Ω = [0, 1]2
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From (2.7), we can rewrite the energy functional:

J(u) =
1
2

∫

Ω
(Λmat∇u).∇u

︸ ︷︷ ︸
Jmat

+
1
2

∫

Ωinc

((Λinc − Λmat)∇u) .∇u
︸ ︷︷ ︸

Jinc

−
∫

Ω
fu (2.8)

The two split integrals Jmat and Jinc are respectively defined on the whole
domain Ω and the inclusion Ωinc.

The consideration of distinct meshes allow independent numerical compu-
tations of Jmat and Jinc. The functional Jmat can then be calculated in V h

with the help of a n× n matrix Kmat :

Jmat(uh) =
1
2

∫

Ω
(Λmat∇uh).∇uh =

[
û
]⊤
Kmat

[
û
]

(2.9)

On another hand, let us consider a conforming mesh of the inclusion Ωinc

independent of the mesh defining Ω. We define the interpolation space W l of
finite dimension p, associated to the inclusion’s mesh so that any vl ∈ W l can
be represented by a vector v̂ ∈ ❘p. In order to simplify the presentation, the
meshes will be denoted respectively as Ω and Ωinc.

The functional Jinc can be defined in W l with a p× p matrix Kinc:

Jinc(vl) =
1
2

∫

Ωinc

(
(Λinc − Λmat)∇vl

)
.∇vl =

[
v̂
]⊤
Kinc

[
v̂
]
. (2.10)

Both the matrices Kmat and Kinc can be computed using standard finite ele-
ment procedures.

A Substitution Matrix

We defined the matrices Kmat and Kinc, allowing to separately compute the
energy functionals Jmat and Jinc. The objective is to relate v̂, the Degrees of
Freedom (DOFs) of the inclusion Ωinc to û, the DOFs of the structured mesh
Ω.

With isoparametric elements and a structured mesh, it can easily be achieved
: For each component vi of v̂, we have vi = v(Ni) where Ni is a node of Ωinc.
Let El, be an element of Ω in which the node Ni is included, see the Figure 2.3
for an illustration in a two dimensional case.

Let x̂, ŷ, ẑ be the coordinates of the nodes constituting the element El.
With an isoparametric element, we usually define a reference element and its
corresponding shape functions Φ̂. Let (xi, yi, zi) be the coordinates of the node
Ni, and let (ri, si, ti) be its coordinates in the reference element associated to
El. By definition, we have :

xi = Φ̂(ri, si, ti)⊤x̂

yi = Φ̂(ri, si, ti)⊤ŷ

zi = Φ̂(ri, si, ti)⊤ẑ
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Figure 2.3: A node Ni from a triangular mesh of an inclusion in the quadrangular element

El of the mesh Ω. Note that the nature of the inclusion’s mesh (tri3) can be different from

the structured mesh’s (qua4).

Let vi be the value of v̂ at node Ni :

vi = v(xi, yi, zi) (2.11)

As we work with isoparametric element, we also have :

v(xi, yi, zi) = Φ̂(ri, si, ti)⊤û, (2.12)

In other words, we have the relation of the value vi at a node of the inclusion’s
mesh from the values û on the mesh of the element El :

vi = Φ̂(ri, si, ti)⊤û. (2.13)

We fill up (completing with zeros) the relation (2.13) to all the values of û at
the other nodes of the mesh Ω. Let us denote Si the 1 × n line matrix, with n
the total number of DOFs of the structured mesh Ω, we have :

vi = v(xi, yi, zi) = Φ̂(ri, si, ti)⊤û = Siû,

(û abusively represents the nodal values of u in an element El but also in the
whole domain Ω).

To make it clear, we give an example for the two dimensional case which can
be similarly extended to three dimensional case, to illustrate the construction
of the substitution matrix S. Let’s consider a structured mesh of Ω with
resolution 3 (3 × 3 elements and 4 × 4 nodes) and a mesh of triangle inclusion
Ωinc with 1 element and 3 nodes, shown in Figure 2.4. It can be observed that,
the node N1 of Ωinc is included in one element El of Ω with nodes 5, 6, 9, 10. In
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

N2

N3

N1(x1, y1) Ωinc

El

Ω

Figure 2.4: A triangular mesh of an inclusion in the structured mesh Ω with mesh resolu-

tion equal to 3.

the general case of a structured mesh Ω, if we know the coordinates (xi, yi) of
the node Ni, it is easy to calculate in which element of Ω the node Ni belongs.

In this example, as Ω is a quadrilateral mesh, the shape function Φ̂ of the
reference element associated to El writes:





Φ1(r, s) = (1 − r)(1 − s)

Φ2(r, s) = r(1 − s)

Φ3(r, s) = r s

Φ4(r, s) = (1 − r)s

We denote (r1, s1) as the coordinates of the node N1 in the reference element
associated to El.

Within the isoparametric element El, we have the value v1 at node N1:

v1 = v(x1, y1) = Φ̂(r1, s1)⊤û

The first line of the substitution matrix S1, which correspond to the node N1

of the inclusion’s mesh Ωinc, is defined as:

[
v1

]
=
[
0 · · · Φ1 Φ2 0 0 Φ4 Φ3 · · · 0

]

︸ ︷︷ ︸
S1




...
u5

u6

...
u9

u10

...



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Considering every nodes of Ωinc, we finally obtain the substitution matrix
S constructed line by line, which substitutes v̂, the DOFs associated to the
inclusion’s mesh Ωinc, for û, the DOFs associated to the mesh Ω :

v̂ = Sû (2.14)

We emphasize on the fact that the construction of the substitution matrix S is
completely formulated. Neither sorting nor testing is required in the procedure.
Consequently, the construction of the substitution matrix S is computationally
costless.

We are then able to rewrite the energy quadratic form computed on the
inclusion Jinc :

Jinc =
[
v̂
]⊤
Kinc

[
v̂
]

=
[
Sû
]⊤
Kinc

[
Sû
]

=
[
û
]⊤ (

S⊤KincS
) [
û
]

Finally, we obtain the main energy quadratic form defined only on û :

J(u) = Jmat(u) + Jinc(u) −
[
û
]⊤
L

=
[
û
]⊤
Kmat

[
û
]

+
[
û
]⊤ (

S⊤KincS
) [
û
]

−
[
û
]⊤
L

=
[
û
]⊤ (

Kmat + S⊤KincS
) [
û
]

−
[
û
]⊤
L (2.15)

In other word with the matrix defined in (2.15), we are applying a finite element
method with the interpolation space defined on the structured mesh of the
domain Ω.

Multiple inclusions treatment

The PFEM computation in case of multiple inclusions is quiet the same as in
the simple inclusion case. We show an illustration of FEM and PFEM mesh
in Figure 2.5 for RVE with one disk inclusion and one square inclusion.

The PFEM computation procedure is repeated independently for each in-
clusion; all computations can be performed in parallel. The principle is very
general and flexible, the inclusion’s meshes do not have to be of identical types,
we can mix different types of mesh.

It should emphasized that, contrary to usual Fictitious Domain Methods,
the PFEM, is not a constrained or a coupled problem, there is no Lagrange
multiplier nor additional DOFs. The substitution matrix allows to substitute
the DOFs associated to the inclusions meshes; the problems are thus solely
solved on the DOFs associated to the structured mesh of the domain Ω.
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Figure 2.5: A conforming mesh (left) and independent meshes (right) for one disk inclusion

and one square inclusion in domain Ω = [0, 1]2

Pixelization and fine enough inclusions mesh

In the presentation of the method, no assumptions have been made on the
independent meshes. However, in order to obtain an accurate approximation
of the integrals form (2.8), the mesh of the inclusion must be fine enough
compared to the structured mesh Ω; this is also a standard requirement in
Fictitious Domain Methods see [38,88].

As an illustration, let us consider a triangle inclusion in a domain Ω = [0, 1]2

of structured meshes by two resolutions. The inclusion mesh remains the same
with one element and three nodes. In Figure 2.6 we have drawn in pink the
elements of Ω which are the substitution of the inclusion’s mesh, we can see
them as the pixels (or voxels in 3D) resulting from the mesh of the inclusion.
On the 3 × 3 mesh (left), we can see that the elements in pink recover entirely
the inclusion while they do not on the 6 × 6 mesh (right) : the one-element
inclusion mesh is fine enough for the 3 × 3 mesh, but not for the 6 × 6 mesh.
In other words, the finer the structured mesh Ω is, the finer the inclusion’s
mesh Ωinc must be. The substitution of each node of Ωinc for an element of Ω
defines a pixelization of the inclusion.

In the rest of this paper, we shall only consider fine enough mesh for the
inclusion in order that the resulting pixelization recovers the inclusions entirely,
see Section 2.3.2 for a more detailed analysis.

Convergence

In the general case with non matching meshes, PFEM can be seen a better
approximation than a conforming Finite Element Method applied to an ap-
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Figure 2.6: A one-element mesh of a triangle inclusion with 3 × 3 (left) and 6 × 6 (right)

structured meshes of Ω = [0, 1]2. The pink elements define the pixels resulting form the

inclusion’s mesh.

proximation of the inclusion geometry by a pixelization procedure, which is
convergent.

Since a finer mesh of Ω induces a finer pixelization and thus a better ap-
proximation of the inclusion, we deduce that the PFEM is a convergent method
as long as the inclusion’s mesh is fine enough to define a correct pixelization.
In other words, if there is a gap in the pixelization, see the right side of Figure
2.6, the convergence of the PFEM is not ensured.

Error approximation

Since the material is heterogeneous, the discontinuity of the "constitutive law"
implies that the PFEM solution does not possess, in general, the correct weak
continuity at the interfaces between the matrix phase and the inclusion phase.

2.2 Linear elasticity problem

The extension of the PFEM to linear elasticity problems is straightforward.
Under the action of external volume force f , imposed displacement ud on ΓD

and imposed force Fn on ΓN , the linear elasticity equilibrium problem writes:





div(σ) + f = 0 in Ω

σ = C e(u) in Ω

u = ud on ΓD

σ n = Fn on ΓN

(2.16)
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where ΓD ∪ ΓN = ∂Ω the boundary of the domain Ω and e(u) is the linearized
deformation tensor associated to the displacement u, defined as:

e(u) =
1
2

(∇u + ∇u⊤)

The variational formulation equivalent to the elastic problem (2.16) writes:





Find u ∈ Vadm = {u ∈ H1(Ω)/u|ΓD
= ud}

∫

Ω
(C e(u)) : e(u∗) =

∫

Ω
fu∗ +

∫

ΓN

Fnu∗, ∀u∗ ∈ V0

V0 = {u ∈ H1(Ω)/u|ΓD
= 0}

(2.17)

The problem (2.17) involves a quadratic deformation energy form : for any
displacement u,

J(u) =
∫

Ω
(C e(u)) : e(u) (2.18)

The second order elasticity tensor C defining the constitutive law of the ma-
terial :

C =




Cmat in Ω\Ωinc

Cinc in Ωinc

We then just split the energy form as in the thermal case :

J(u) =
∫

Ω
(Cmat e(u)) : e(u) +

∫

Ωinc

((Cinc − Cmat) e(u)) : e(u) (2.19)

Associated to the structured mesh of the entire domain Ω, let us define an in-
terpolation space Vh of finite dimension n such that any displacement u ∈ Vh

can be represented by û ∈ ❘n. On another hand, let us define the interpolation
space Wl of finite dimension p, associated to the inclusion’s mesh so that any
displacement v ∈ Wl can be represented by a vector v̂ ∈ ❘p. We define the
n× n and p× p matrices Kmat and Kinc:

∫

Ω
(Cmat e(u)) : e(u) =

[
û
]⊤
Kmat

[
û
]
, ∀u ∈ Vh (2.20)

∫

Ωinc

((Cinc − Cmat) e(v)) : e(v) =
[
v̂
]⊤
Kinc

[
v̂
]
, ∀v ∈ Wl (2.21)

We define a substitution matrix S, similarly to the thermal case but for all
the components of the displacement. For example, in three-dimensional elastic
case, we have 3 DOFs for each node Ni of the inclusion’s mesh Ωinc, instead of
1 DOF in the thermal case. For each component vj of v̂, we have:

vj = v(Ni), for j = 3i, 3i+ 1, 3i+ 2
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Let (xi, yi, zi) be the coordinates of the node Ni, let (ri, si, ti) be its coordinates
in the reference element associated to El and let Φ̂ be its corresponding shape
function, we have the line matrix Sj writes:

vj = v(xi, yi, zi) = Φ̂(ri, si, ti)⊤û = Sjû, for j = 3i, 3i+ 1, 3i+ 2

By this way, we can bind the DOFs v̂ defined on the inclusion Ωinc to the DOFs
û defined on the structured mesh Ω as:

v̂ = Sû

The dimension of the substitution matrix S becomes larger with respect to
the increase of DOFs in the elastic case. We can then rewrite the deformation
energy form :

J(u) =
[
û
]⊤ [

Kmat + S⊤KincS
] [
û
]

∀u ∈ Vh (2.22)

2.3 Numerical Experiments

In this section, we present some numerical experiments of the thermal bound-
ary value problem 2.1 and the elastic boundary value problem 2.16. For the
sake of simplicity, we consider isotropic constitutive laws for both linear prob-
lems.

2.3.1 Specifications of numerical experiments

Boundary conditions

• In thermal Pure Dirichlet boundary value problem, we impose a uniform
gradient of temperature at the boundary of Ω, which reads:

u = g.x, ∀x ∈ ∂Ω (2.23)

with g = [1, 0] an imposed vector in two dimensional case, x denote the
coordinate of the nodes.

• In thermal Pure Neumann boundary value problem, we impose a uniform
heat flux at the boundary of Ω, that reads:

q.n = Q.n, ∀x ∈ ∂Ω (2.24)

with Q = [0, 1] an imposed vector, n denotes outward pointing unit
normal at each point on the boundary ∂Ω.
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• In elastic Dirichlet boundary value problem, we impose a displacement
at point x belonging to the boundary ∂Ω:

u = E x, ∀x ∈ ∂Ω (2.25)

with E =

[
1 0
0 0

]
, an imposed 2 × 2 tensor in two dimensional case.

• In elastic Neumann boundary value problem, we prescribe a traction
vector at the boundary, reads:

σ n = Σ n, ∀x ∈ ∂Ω (2.26)

with Σ =

[
0 0
0 1

]
an imposed 2 × 2 traction tensor.

The corresponding Dirichlet and Neumann boundary value problems are
respectively in relation with the Kinematic Uniform Boundary Conditions
(KUBC) and the Static Uniform Boundary Condition (SUBC) used for nu-
merical homogenization in the section 1.3.2 and will be studied in the next
chapter.

Inclusion types

In two dimensional cases, we consider the domain Ω defined with inclusions of
elementary geometry such as disk and square, of course any kind of geometry
can be considered.

• A disk is defined by the coordinates of its center and its diameter d, see
Figure 2.7.

Figure 2.7: One disk inclusion of diameter d = 0.3 in domain Ω, volume fraction ρ = 0.0707

• A square is defined by the coordinates of its center and its side l. For
example, if the square inclusion is centered with side l = 0.3, the volume
fraction is thus ρ = 0.09, see Figure 2.8.
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Figure 2.8: One square inclusion of side l = 0.3 in domain Ω, volume fraction ρ = 0.09

Contrast parameter of the constitutive law

We define a contrast parameter as the ratio between the characteristic coeffi-
cient of inclusions and that of matrix :

• In the thermal case :

cthermal =
λinc

λmat

• In the linear elasticity case :

celastic =
Einc

Emat

νinc = νmat

where λinc, Einc and νinc (resp. λmat, Emat and νmat) are the conductivity, the
Young’s modulus and the Poisson’s ratio of the inclusion (resp. the matrix).
For isotropic linear elastic materials, we introduce the bulk modulus k, defined
as:

k =
E

3(1 − 2ν)

As we set that the Poisson’s ratio ν for both inclusion and matrix are the same,
the contrast parameter can also be expressed by the bulk modulus k:

celastic =
kinc

kmat

In all cases presented in this section, to fix the idea, we chose to set the
contrasts cthermal and celastic to 100.
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Computing resources

The computations are performed by a finite element library code, named
PFEM, developed by the authors, in Python/Fortran. We use the PETSc
1 library to solve the linear systems. The meshes are generated with the Gmsh
software [34].

In some cases, as the RVE resolution may involves millions of DOFs, we
used Myria, a HPC cluster located in CRIANN 2. However, all of the compu-
tations presented in this dissertation can be performed on personal computer
(We used a hp laptop with Intel Core i5 processor and 16 GB memory).

2.3.2 Meshes of PFEM

The PFEM meshes are consist of one structured mesh of the domain Ω and
independent meshes of each inclusion Ωinc, as shown in Figure 2.5.

Structured mesh of the domain Ω

Let us consider a d dimensional domain Ω ∈ [0, 1]d , d = 2, 3 representing a
medium of a heterogeneous material embedding one or several inclusions. The
structured mesh of the domain Ω is characterized by its resolution. If d = 3, a
resolution n corresponds to a n×n×n subdivision in all three space dimension,
see for instance Table 2.1 with a Ω mesh resolution n = 10 in two dimensional
and three dimensional case.

Dimension Resolution Structured mesh of the domain Ω
d = 2 n = 10 102 4-nodes quadratic element 121 nodes
d = 3 n = 10 103 8-nodes hexaedric element 1331 nodes

Table 2.1: Structured mesh elements of the domain Ω in two dimensional and three

dimensional case.

In periodic homogenization, the domain Ω can be seen as a Representative
Volume Element (RVE) of the material. In order to put in coherent with the
periodic homogenization part, in the following, we note the mesh resolution
as Nrve. Associated to the resolution, we define the parameter hrve = 1/Nrve,
representing the characteristic length of an element of the mesh.

1Portable Extensible Toolkit for Scientific computation: https://www.mcs.anl.gov/petsc
2Regional Computer Center and Digital Applications of Normandy: https://

www.criann.fr
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Independent meshes of the inclusions Ωinc

As we presented in the section 2.1, the pixels of the domain Ω, which are
resulting from the inclusion’s mesh Ωinc, should recover entirely the inclusion
in order to obtain an accurate approximation of the integrals. As a result,
the inclusion’s mesh needs to be sufficiently fine depending on the structured
mesh.

Besides the resolution Nrve, we define another parameter Ninc to set the
element size of the mesh of the inclusions. The relation between Nrve and Ninc

would have an effect on the precision of PFEM method. So that, we set hrve

and hinc respectively the characteristic length of the mesh of the RVE and the
inclusion, and we define the ratio η as :

η =
hrve

hinc

(2.27)

A value of η larger than 1 means a finer mesh of the inclusion than the
matrix’s, in other words, a pixelization of the inclusion. In order to illustrate
the influence of η on the inclusion’s mesh, in Figure 2.9, we have drawn in blue
the mesh elements of Ω, and in yellow the the inclusion’s mesh for η = 0.5, 1, 2.

(a) η = 0.5 (b) η = 1 (c) η = 2

Figure 2.9: Meshes of a square inclusion (yellow) in a 4 × 4 structured mesh of Ω = [0, 1]2

(blue) for η = 0.5, 1, 2.

Numerical experiments of the thermal Dirichlet boundary value problem
(2.1) have been performed to evaluate the influence of η. The mesh resolution
Nrve is set to 60, which relates to 3600 4-nodes quadratic elements. The value
of η = 0.5, 1.0, 2.0 relate to a inclusion’s mesh with 405, 1620, 6480 elements
respectively.

In Figure 2.10 and Figure 2.11, we present the relative error of H1 semi-
norm of the computed temperature against the value of η, respectively in the
case of one disk inclusion and one square inclusion.
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Figure 2.10: Case of one disk inclusion with diameter d = 0.3. Relative error of H1

semi-norm of the temperature against the value of η with Nrve = 150.
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Figure 2.11: Case of one square inclusion with side l = 0.3. Relative error of H1 semi-norm

of the temperature against the value of η with Nrve = 150.

We have found that, as we increase the value of η, the norm value is de-
creasing. However, the evolution of the value becomes less important from
the point η = 1. In the following study, we set η to 1, with this condition,
we consider that the inclusion’s mesh is fine enough to make the pixelization
recovers the inclusion entirely.

2.3.3 Convergence study

In order to present the numerical results, we compute L2 norm and H1 semi-
norm of the temperature and displacement respectively for thermal conductiv-
ity problem and linear elasticity problem. In the L2(Ω) space, the correspond-
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ing L2 norm is defined as:

‖u‖L2(Ω) =
(∫

Ω
u2
) 1

2

(2.28)

In the Hilbert space H1(Ω), we note the corresponding H1 semi-norm:

|u|H1(Ω) =
(∫

Ω
(∇u)2

) 1

2

(2.29)

In practice, L2 norm and H1 semi-norm are computed with the help of the
mass matrix M and the rigidity matrix K.

A conformal fine mesh of FEM (with a resolution Nrve = 150) is used
as the reference solution. The contrast between matrix and inclusion is set
to 100. In order to study the convergence of PFEM in static problems, we
compute the relative error of L2 norm and H1 semi-norm of the temperature
and displacement respectively for thermal conductivity problem and linear
elasticity problem, which reads:

Relative error(‖u‖L2) =
| ‖u‖pfem

L2 − ‖u‖fem
L2 |

‖u‖fem
L2

(2.30)

Relative error(|u|H1) =
| |u|pfem

H1 − |u|fem
H1 |

|u|fem
H1

(2.31)

with |x| denotes the absolute value of x.
In Figure 2.12, the relative error are plotted for a static thermal conductiv-

ity problem with Dirichlet boundary conditions 2.23 and Neumann boundary
conditions 2.24 in the domain Ω with one disk inclusion d = 0.3. The linear
elasticity case is shown in Figure 2.13.

We notice that, the behavior of the norms in thermal conductivity problem
is similar to that in linear elasticity problem. In both cases, a linear conver-
gence with respect to the number of resolution is observed for L2 norm. The
convergence of H1 semi-norm is lightly deviated to the linear rate. Compared
to the reference FEM solution, the relative error of L2 norm with Dirich-
let boundary condition is in order of magnitude 10−3 with a resolution of
Nrve = 140, which is smaller than that with Neumann boundary condition.

In Figure 2.14, we draw the relative error of L2 norm and H1 semi-norm
for a static thermal Dirichlet boundary value problem and Neumann boundary
value problem in the domain Ω with one square inclusion l = 0.3 against the
resolution Nrve.

The convergence study of PFEM for a domain Ω with one square inclusion
l = 0.3 in linear elasticity case is presented in Figure 2.15.
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Figure 2.12: Case of one disk inclusion d = 0.3. Relative error of L2 norm and H1 semi-

norm for a static thermal Dirichlet boundary value problem and Neumann boundary value

problem in the domain Ω.

101 102

Nrve

10 3

10 2

Re
la

tiv
e 

er
ro

r, 
CF

EM
 / 

FE
M

L2 norm
H1 semi-norm
Linear rate

(a) Relative error for Dirichlet boundary value

problem

101 102

Nrve

10 3

10 2

Re
la

tiv
e 

er
ro

r, 
CF

EM
 / 

FE
M

L2 norm
H1 semi-norm
Linear rate

(b) Relative error for Neumann boundary value

problem

Figure 2.13: Case of one disk inclusion d = 0.3. Relative error of L2 norm and H1 semi-

norm for a static elastic Dirichlet boundary value problem and Neumann boundary value

problem in the domain Ω.

We notice a linear convergence of L2 norm and H1 semi-norm for both
thermal conductivity and linear elasticity problem. This study shows the con-
vergence of the method against the resolution Nrve.

In the case of square inclusions, we distinguish a special case that the mesh
of domain Ω and the mesh of inclusion Ωinc are matching. For example, let’s
consider a centered square inclusion of side l = 0.5. If the resolution Nrve is
in multiple of 4, geometrically, the mesh of Ω will match with the mesh of the
square inclusion, see for instance in Figure 2.16, where the inclusion’s mesh
Ωinc is colored in orange and the mesh of domain Ω in blue.
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Figure 2.14: Case of one square inclusion l = 0.3. Relative error of L2 norm and H1

semi-norm for a static thermal Dirichlet boundary value problem and Neumann boundary

value problem in the domain Ω.
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Figure 2.15: Case of one square inclusion l = 0.3. Relative error of L2 norm and H1

semi-norm for a static elastic Dirichlet boundary value problem and Neumann boundary

value problem in the domain Ω.

In the case of matching meshes, the PFEM will coincide with a standard
Finite Element Method with conforming and compatible mesh for the inclu-
sion. The comparison between matching and non-matching meshes allows us
to measure the error made by the PFEM with a specific way that we proposed
in the following:

In a fixed mesh of the domain Ω, from a matching position of two meshes,
we move the square inclusion slightly in different directions (following x axis,
y axis and the diagonal direction of these two axis, see Figure 2.16), until
another matching position.
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Figure 2.16: A square inclusion in a structured mesh Ω of Nrve = 4 with matching meshes

(left) and non-matching meshes (right).
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Figure 2.17: Case of one square inclusion l = 0.3. PFEM/FEM comparison between

matching and non-matching meshes with Nrve = 100. Relative error of L2 norm for a

thermal Dirichlet boundary value problem.

In Figure 2.17, we plot the relative error of the PFEM referenced to the
FEM for L2 norm relative error in a thermal Dirichlet boundary value problem
versus relative distance, which is the ratio between the moved distance and
hrve, the characteristic length of the mesh of the RVE. Compared to the FEM,
the error made by our method is null in the matching position, and reach its
maximum with a relative distance equal to 0.5. For a resolution Nrve = 100,
we note that the error of the method might be significant about 1.3%.

With Nrve = 20, 40, 60, 80, 100 (Resolution multiple of 4), we are immersed
in the matching meshes case. The relative error of L2 norm and H1 semi-norm
for a thermal Dirichlet boundary value problem in such resolutions is shown
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in Figure 2.18.
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Figure 2.18: Case of one square inclusion l = 0.3. Relative error of L2 norm and H1

semi-norm for a thermal Dirichlet boundary value problem in the domain Ω with matching

meshes.

Compared to the reference FEM solution, the relative error L2 norm of
temperature is in order of magnitude 10−5 with a resolution of Nrve = 100.
Besides the convergence, we observe a noticeable difference in the order of
magnitude for the relative errors between the non-matching meshes case and
matching meshes case. This difference corresponds to the error made by the
PFEM compared to a conformal finite element calculation.

But generally in PFEM computation, as the mesh of domain Ω and the
mesh of inclusion Ωinc are independent, they will not matching each other.

2.3.4 PFEM/FEM comparison

In this section, for a static thermal conductivity problem 2.1, we compare the
distribution of temperature u computed by FEM and PFEM in corresponding
meshes. In order to project the solution of PFEM upfem in the mesh of FEM,
we construct a substitution matrix S the similar way as in PFEM approach
(2.14).

For each component ufem
i of ûfem, we have ufem

i = ufem(Ni) where Ni is a
node of the FEM mesh. Let El, be an element of PFEM mesh in which the
node Ni is included.

We define a reference element and its corresponding shape functions Φ̂ for
the isoparametric element El. Let (xi, yi, zi) be the coordinates of the node Ni,
and let (ri, si, ti) be its coordinates in the reference element associated to El.
We denote Si the 1 × n line matrix (n is the total number of DOFs in PFEM
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mesh) such that:

ufem
i = ufem(xi, yi, zi) = Φ̂(ri, si, ti)⊤ûpfem = Siû

pfem (2.32)

Considering every nodes of the FEM mesh, we finally obtain a substitution
matrix S constructed line by line, which substitutes ûfem, the DOFs associated
to the mesh of FEM, for ûpfem, the DOFs associated to the mesh of PFEM:

ûfem = Sûpfem (2.33)

And then, we can calculate the relative difference of the solution between
two methods in the same mesh:

Relative difference =
|ufem − Supfem|
max(|ufem|) (2.34)

Let’s consider a domain Ω with one disk inclusion of diameter d = 0.3.
The structured mesh of the PFEM with a resolution Nrve = 60 relates to
3721 nodes and 3600 quadratic elements. The mesh of the referenced FEM is
generate by Gmsh 3, with 3692 nodes and 3631 quadratic elements.

We draw the temperature u, which is the solution of the thermal Dirichlet
boundary value problem (2.1), in each nodes of the corresponding mesh for
PFEM in Figure 2.19a and for FEM in Figure 2.19b. The relative difference
between these two methods is plotted in Figure 2.19c. The numerical results
with Neumann boundary conditions (2.24) is shown in Figure 2.20.

(a) PFEM solution (b) FEM solution (c) Relative difference

Figure 2.19: Case of one disk inclusion of diameter d = 0.3. Temperature computed by

PFEM, FEM and the relative difference between them for thermal Dirichlet boundary value

problem.

3Gmsh is a finite element mesh generator developed by Christophe Geuzaine and Jean-

François Remacle. https://gmsh.info



52 CHAPTER 2. A PHANTOM DOMAIN FINITE ELEMENT METHOD

(a) PFEM solution (b) FEM solution (c) Relative difference

Figure 2.20: Case of one disk inclusion of diameter d = 0.3. Temperature computed by

PFEM, FEM and the relative difference between them for thermal Neumann boundary value

problem.

In both cases, we observe that the maximum value of the relative difference,
which is in order of magnitude 10−2, is located around the boundary of the
inclusion. This study help us to estimate the location and the quantity of the
PFEM’s error referenced to the FEM.

To deal with the static linear elasticity problem 2.16, we compare the dis-
placement, strain and Von Mises stress computed by FEM and PFEM in cor-
responding meshes. We keep the same meshes for FEM and PFEM as in the
thermal conductivity problem. The numerical results of Dirichlet boundary
value problem is presented in Figure 2.21. In Figure 2.22, we illustrate the
results of Neumann boundary value problem.

We notice that, the maximum value of relative differences is always located
around the interface between the matrix phase and the inclusion phase, as
in the thermal cases. This is due to the fact that the weak continuity is not
respected at the interface of the matrix and the inclusion.

The maximum relative difference of displacement is in order of magnitude
10−2, but the maximum relative difference of strain and stress reach to ≃ 0.5.
The Von Mises stress arise on the boundary of inclusions in PFEM computa-
tion, which is not the case in the FEM solution, see Figure 2.21g and Figure
2.22g. In other words, in strain and stress calculation, the error produced by
PFEM is more significant.

Let’s consider a domain Ω with one square inclusion of side length l = 0.3.
The mesh of the PFEM is structured with a resolution Nrve = 58 which relates
to 3481 nodes and 3364 quadratic elements. We note that the structured mesh
is not matching with the inclusion’s mesh, which is a general case for the
PFEM resolution. The mesh of the referenced FEM is generate by Gmsh with
3415 nodes and 3314 quadratic elements.
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(a) Displacement by PFEM (b) Displacement by FEM (c) Relative difference of

displacement

(d) Strain by PFEM (e) Strain by FEM (f) Relative difference of strain

(g) Von Mises stress by PFEM (h) Von Mises stress by FEM (i) Relative difference of Von

Mises stress

Figure 2.21: Case of one disk inclusion of diameter d = 0.3. Displacement, strain and Von

Mises stress computed by PFEM, FEM and the relative difference between them for elastic

Dirichlet boundary value problem.

We have done the same studies as in the disk inclusion case. We plot the
temperature computed by PFEM, FEM and the relative difference between
them for thermal Dirichlet boundary value problem in Figure 2.23, for thermal
Neumann boundary value problem in Figure 2.24. The displacement, strain
and Von Mises stress computed by PFEM, FEM and the relative difference
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(a) Displacement by PFEM (b) Displacement by FEM (c) Relative difference of

displacement

(d) Strain by PFEM (e) Strain by FEM (f) Relative difference of strain

(g) Von Mises stress by PFEM (h) Von Mises stress by FEM (i) Relative difference of Von

Mises stress

Figure 2.22: Case of one disk inclusion of diameter d = 0.3. Displacement, strain and Von

Mises stress computed by PFEM, FEM and the relative difference between them for elastic

Neumann boundary value problem.

between them for elastic Dirichlet boundary value problem is drawn in Figure
2.25, for elastic Neumann boundary value problem is drawn in Figure 2.26.

We notice that, in case of Ω with one square inclusion, the temperature,
displacement, strain and Von Mises stress solutions computed by the PFEM
and the FEM are visually similar, as in the disk inclusion case. The peak value
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(a) PFEM solution (b) FEM solution (c) Relative difference

Figure 2.23: Case of one square inclusion of side length l = 0.3. Temperature computed

by PFEM, FEM and the relative difference between them for thermal Dirichlet boundary

value problem.

(a) PFEM solution (b) FEM solution (c) Relative difference

Figure 2.24: Case of one square inclusion of side length l = 0.3. Temperature computed

by PFEM, FEM and the relative difference between them for thermal Neumann boundary

value problem.

of relative difference is located around the four corners of the square inclusion,
which could reach to ≃ 0.02 for the temperature and displacement; and reach
to ≃ 0.2 for the strain and Von Mises stress. With this study, we are able to
locate the error made by PFEM for a square inclusion.

In order to evaluate the PFEM solution for several inclusions case, let’s
consider two disk inclusions with diameter d = 0.3. We draw in Figure 2.27,
the temperature computed by PFEM, FEM and the relative difference between
them for thermal Dirichlet boundary value problem. While the displacement
and strain computed these two methods for elastic Dirichlet boundary value
problem are plotted in Figure 2.28. The referenced FEM solution is computed
by a conformal mesh with 3658 nodes and 3607 quadratic elements. The
contrast remains fixed at celastic = 100.
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(a) Displacement by PFEM (b) Displacement by FEM (c) Relative difference of

displacement

(d) Strain by PFEM (e) Strain by FEM (f) Relative difference of strain

(g) Von Mises stress by PFEM (h) Von Mises stress by FEM (i) Relative difference of Von

Mises stress

Figure 2.25: Case of one square inclusion of side length l = 0.3. Displacement, strain and

Von Mises stress computed by PFEM, FEM and the relative difference between them for

elastic Dirichlet boundary value problem.

The same behavior has been observed as in the one inclusion case. The
error produced by PFEM is always located in the interface between matrix
phase and inclusion phase. Compared to the referenced FEM solutions, the
maximum value of the relative difference of temperature and displacement are
in order of magnitude 10−2. However, the relative difference of strain reach to
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(a) Displacement by PFEM (b) Displacement by FEM (c) Relative difference of

displacement

(d) Strain by PFEM (e) Strain by FEM (f) Relative difference of strain

(g) Von Mises stress by

PFEM

(h) Von Mises stress by FEM (i) Relative difference of Von

Mises stress

Figure 2.26: Case of one square inclusion of side length l = 0.3. Displacement, strain and

Von Mises stress computed by PFEM, FEM and the relative difference between them for

elastic Neumann boundary value problem.

≃ 0.63.

In a specific case that inclusions situated very close to each other, the
structured mesh may not be fine enough to separate these independent meshes
of each inclusion, see Figure 2.29. With Nrve = 80, the nearest boundary nodes
of two disk inclusions are treated by one element of structured mesh Ω. While
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(a) Temperature by PFEM (b) Temperature by FEM (c) Relative difference of

temperature

Figure 2.27: Case of two disk inclusions of diameter d = 0.3. Temperature computed by

PFEM, FEM and the relative difference between them for thermal Dirichlet boundary value

problem.

(a) Displacement by PFEM (b) Displacement by FEM (c) Relative difference of

displacement

(d) Strain by PFEM (e) Strain by FEM (f) Relative difference of

strain

Figure 2.28: Case of two disk inclusions of diameter d = 0.3. Displacement and strain

computed by PFEM, FEM and the relative difference between them for elastic Dirichlet

boundary value problem.
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in the case of Nrve = 160, all the boundary nodes of disk inclusion’s meshes
could be treated independently.

(a) Nrve = 80 (b) Nrve = 160

Figure 2.29: Independents meshes of disk inclusions (yellow) in structured mesh of domain

Ω (blue) with Nrve = 80, 160.

We draw, in Figure 2.30, the strain solution computed by PFEM, FEM
and the relative difference between them for an elastic Dirichlet boundary
value problem with 4 disk inclusions lain in one direction.

We observe that, in FEM solution, the strain in each disk inclusion is
rigid, the peak value of strain is situated between each inclusion. The same
observation can be found for PFEM solution with Nrve = 240. While in PFEM
solution with Nrve = 80, we note that the area closest to each inclusion seems
to be rigid as well. This is due to the fact that, if the structured mesh Ω is not
fine enough to isolate two disk inclusions, a numerical percolation phenomenon
appears in the PFEM computation with low resolution. The percolation area
is located particularly between each inclusions.

Conclusion

In this chapter, we have presented an original method named Phantom do-
main Finite Element Method (PFEM) to solve a steady model problem such
as thermal boundary value problem and elastic boundary value problem for
heterogeneous materials. The principle of PFEM is the same as Fictitious
domain method. Using distinct meshes of inclusions Ωinc and the domain Ω,
as shown in Figure 2.31, we are able to implement a finite element in the
framework of a structured mesh Ω with the help of a substitution matrix.

Numerical experiments, with inclusions of elementary geometry such as disk
and square, have shown a linear convergence of relative errors with respect to
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(a) PFEM strain solution with
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(g) PFEM strain solution with

Nrve = 240

0 10.6 21.1
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(h) Reference FEM strain solution

0 1.37 2.74

Relative difference of strain

(i) Relative difference of strain

PFEM 240 / FEM

Figure 2.30: Case of 4 disk inclusions of diameter d = 0.24. Strain computed by PFEM

and FEM for elastic Dirichlet boundary problem.

referenced FEM solutions. The convergence rates are observed as expected,
regarding the use of linear interpolation. By comparing the solution computed
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Figure 2.31: PFEM meshes: one structured mesh of the domain Ω in blue and independent

meshes of each inclusion Ωinc in yellow.

by PFEM and FEM in the same mesh, we are able to estimate the error
produced by PFEM, which is located around the interface between the matrix
and the inclusion, due to the fact that the weak continuity is not respected.

Furthermore, a numerical percolation phenomenon is observed in case that
inclusions situated very close to each other.
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Introduction

In the chapter 2, we have presented the Phantom domain Finite Element
Method (PFEM) for a standard boundary value problem. Our first aim was
to deal with the homogenization, which means the computation of effective
properties of composite materials in cases where the meshing is difficult. We
consider both thermal and elasticity cases.

Effective properties are usually calculated on a Representative Volume Ele-
ment (RVE), as it has been presented in section 1.3.1; for the sake of simplicity,
we only consider elementary RVEs such as Ω = [0, 1]2 or Ω = [0, 1]3, for which
the definition of a structured mesh is easy and does not need a special algo-
rithm.

We consider three type of boundary conditions, two of them were recalled
in section 1.3.2 and section 1.3.3 : pure Dirichlet conditions, pure Neumann
conditions, plus periodic conditions. This chapter is devoted to calculate the
effective properties of a composite material as a straight application of previous
method presented in chapter 2 associated with the corresponding boundary
conditions.

3.1 Effective properties determination with Kine-

matic Uniform Boundary Conditions

• Thermal conductivity problem

In a thermal conductivity problem, the Kinematic Uniform Boundary Con-
ditions (KUBC) is defined as the pure Dirichlet boundary value problem :




div q = 0 in Ω

u = g.x on ∂Ω
(3.1)

where g is a constant vector. In section 1.3.2, it has been established that:

1
|Ω|

∫

Ω
Λ∇u = Λkubcg (3.2)

The vector g is chosen such a manner it spans the canonical basis of ❘3 so
that the effective property Λkubc is obtain, column by column.

To apply the Phantom domain Finite Element Method (PFEM), from the
problem (3.2), let us consider the energy functional : for any temperature u,

J(u) =
∫

Ω
(Λ∇u).∇u (3.3)
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As before, we suppose the domain Ω to be constituted by two homogeneous and
isotropic media : the matrix Ω \ Ωinc and the inclusion Ωinc. The conductivity
matrix writes:

Λ =





Λmat in Ω\Ωinc

Λinc in Ωinc

The energy form is split as follows:

J(u) =
∫

Ω\Ωinc

(Λmat∇u).∇u+
∫

Ωinc

(Λinc∇u).∇u (3.4)

A classical Finite Element Method would employ a conforming mesh matching
the matrix Ω\Ωinc and the inclusion Ωinc to calculate the integral in (3.4) in
an interpolation space associated to the mesh.

We emphasize that, PFEM consists in using two distinct and independent
meshes representing the whole domain Ω and the inclusion Ωinc instead of a
unique conformal mesh matching the geometry of the inclusion.

From (3.4), the energy functional reads :

J(u) =
∫

Ω
(Λmat∇u).∇u

︸ ︷︷ ︸
Jmat

+
∫

Ωinc

((Λinc − Λmat)∇u) .∇u
︸ ︷︷ ︸

Jinc

(3.5)

The functional J is then split into two integrals Jmat and Jinc respectively
defined on the whole domain Ω and the inclusion Ωinc.

This allows independent numerical computations of Jmat and Jinc : Associ-
ated to the structured mesh of the entire domain Ω, let us define an interpola-
tion space V h of finite dimension n such that any uh ∈ V h can be represented
by û ∈ ❘n. The functional Jmat can then be calculated in V h with the help of
a n× n matrix Kmat :

Jmat(uh) =
∫

Ω
(Λmat∇uh).∇uh = û⊤Kmatû, ∀uh ∈ V h (3.6)

On another hand, let us consider a conforming mesh of the inclusion Ωinc

independent of the mesh defining Ω. We define the interpolation space W l of
finite dimension p, associated to the inclusion mesh so that any vl ∈ W l can
be represented by a vector v̂ ∈ ❘p. The functional Jinc can be defined in W l

with a p× p matrix Kinc :

Jinc(vl) =
∫

Ωinc

((Λinc − Λmat) ∇vl).∇vl = v̂⊤Kincv̂, ∀vl ∈ W l (3.7)

Both the matrices Kmat and Kinc can be computed using standard finite ele-
ment procedures. By defining these two matrices, we compute separately the
energy forms Jmat and Jinc.
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To relate the DOFs v̂ defined on the inclusion Ωinc to the DOFs û defined
on the structured mesh Ω, we define a substitution matrix S, as in the steady
model problem case (2.14):

v̂ = Sû

The energy form computed on the inclusion Js becomes:

Js = v̂⊤Kincv̂

= (Sû)⊤KincSû
(3.8)

Finally, we obtain the main energy form defined only on û :

J(uh) = û⊤
[
Kmat + S⊤KincS

]
û (3.9)

• Linear elasticity problem

In a linear elasticity problem, the Kinematic Uniform Boundary Conditions
(KUBC) is defined as the pure Dirichlet boundary value problem :




div σ = 0 in Ω

u = E x on ∂Ω
(3.10)

where E is a symmetrical tensor that does not depend on x. In section 1.3.2,
it has been proved that:

1
|Ω|

∫

Ω
C e(u) = C

kubc E (3.11)

where e(u) is the linearized deformation tensor associated to the displacement
u. The tensor E is chosen such a manner it spans the six vectors of the basis
of Voight to obtain the effective property Ckubc, column by column.

The extension of the PFEM to linear elasticity problem is straightforward.
The problem (3.11) involves a deformation energy form : for any displacement
u,

J(u) =
∫

Ω
(C e(u)) : e(u) (3.12)

where C is the second order elasticity tensor defining the constitutive law of
the material :

C =




Cmat in Ω\Ωinc

Cinc in Ωinc

As in the thermal case the energy form is devided in two parts as follows :

J(u) =
∫

Ω
(Cmat e(u)) : e(u)

︸ ︷︷ ︸
Jmat

+
∫

Ωinc

((Cinc − Cmat) e(u)) : e(u)
︸ ︷︷ ︸

Jinc

(3.13)
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Considering two interpolation spaces uh ∈ Vh and vl ∈ Wl, we define the
n× n and p× p matrices Kmat and Kinc:

Jmat(uh) =
∫

Ω

(
Cmat e(uh)

)
: e(uh) = û⊤Kmatû, ∀uh ∈ Vh (3.14)

Jinc(vl) =
∫

Ωinc

(
(Cinc − Cmat) e(vl)

)
: e(vl) = v̂⊤Kincv̂, ∀vl ∈ Wl (3.15)

With the help of a substitution matrix S, which is similar to the thermal case
but for all the components of the displacement, the main energy form reads :

J(uh) = û⊤
[
Kmat + S⊤KincS

]
û (3.16)

3.2 Effective properties determination with Static

Uniform Boundary Conditions

• Thermal conductivity problem

In a thermal conductivity problem, the Static Uniform Boundary Condi-
tions (SUBC) method is defined as solving the pure Neumann boundary value
problem : 



div q = 0 in Ω

q.n = Q.n on ∂Ω
(3.17)

where Q is a constant vector. From the demonstration presented in section
1.3.2, it has been proved that:

1
|Ω|Λ

subc
∫

Ω
∇u = Q (3.18)

The vector Q is chosen such a manner it spans three vectors of the canonical
basis of ❘3 to obtain column by column, the inverse of the effective property
Λsubc.

To apply the PFEM, from the problem (3.18), let us consider the energy
functional : for any temperature u,

J(u) =
∫

Ω
∇u.∇u (3.19)

As before, we rewrite:

J(u) =
∫

Ω
∇u.∇u

︸ ︷︷ ︸
Jmat

+
∫

Ωinc

∇u.∇u
︸ ︷︷ ︸

Jinc

(3.20)
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Considering the same interpolation spaces V h and W l as in the KUBC case,
we define the n× n and p× p matrices Kmat and Kinc:

Jmat(uh) =
∫

Ω
∇uh.∇uh = û⊤Kmatû, ∀uh ∈ V h (3.21)

Jinc(vl) =
∫

Ωinc

∇vl.∇vl = v̂⊤Kincv̂, ∀vl ∈ W l (3.22)

By defining a substitution matrix S (2.14), we have the main energy form:

J(uh) = û⊤
[
Kmat + S⊤KincS

]
û (3.23)

• Linear elasticity problem

In a linear elasticity problem, the Static Uniform Boundary Conditions
(SUBC) method is defined as solving the pure Neumann boundary value prob-
lem : 



div σ = 0 in Ω

σ n = Σ n on ∂Ω
(3.24)

where n denotes outward pointing unit normal to ∂Ω at x, Σ is a second-rank
tensor independent of x. From the demonstration presented in section 1.3.2,
we prove that :

1
|Ω|C

subc
∫

Ω
e(u) = Σ (3.25)

The tensor Σ is chosen such a manner it spans the six vectors of the basis
of Voight to obtain the effective property Csubc, column by column.

To apply the PFEM, from the problem (3.25), let us consider the energy
form : for any displacement u,

J(u) =
∫

Ω
e(u) : e(u) (3.26)

As before, we rewrite:

J(u) =
∫

Ω
e(u) : e(u)

︸ ︷︷ ︸
Jmat

+
∫

Ωinc

e(u) : e(u)
︸ ︷︷ ︸

Jinc

(3.27)

Considering the same interpolation spaces Vh and Wl as in the KUBC case,
we define the n× n and p× p matrices Kmat and Kinc :

Jmat(uh) =
∫

Ω
e(uh) : e(uh) = û⊤Kmatû, ∀uh ∈ Vh (3.28)

Jinc(vl) =
∫

Ωinc

e(vl) : e(vl) = v̂⊤Kincv̂, ∀vl ∈ Wl (3.29)

Finally, we have the main energy form by defining a substitution matrix S :

J(uh) = û⊤
[
Kmat + S⊤KincS

]
û (3.30)
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3.3 Homogenization with Periodic Boundary

Conditions

In the case of periodic conditions, we can assume that the considered RVE
is the period of the composite material. With this condition, we obtain the
homogenized conductivity tensor.

The case of periodic condition is a case for which the meshing procedure
can be very complex. It is thus a case of particular interest.

We recalled the periodic homogenization theory and its numerical imple-
mentation with the finite element method in section 1.3.3. To summarize, we
consider a εP periodic material. P constitutes the Representative Volume El-
ement (RVE), ε denotes the characteristic length of the RVE. The multiscale
modeling consider macroscopic space variables x and local space variables y.

• Thermal conductivity problem

Under the action of external heat source f , the thermal equilibrium writes:

div q + f = 0 in P (3.31)

Writing the asymptotic expansion of the heat flow q in the equilibrium
equation, (3.31) gives by identification a local equation, which writes :

divy(q0) = 0 in P (3.32)

The weak or variational form of (3.32) leads to:




∀u∗ ∈ H1
per(P ),

∫

P
q0∇y(u∗) = 0

(3.33)

where H1
per(P ) is the P -periodic Sobolev space H1 .

Let E0 = ∇xu
0, averaging q0 on the RVE P , with (3.33), we have the

variational problem:




∀u∗ ∈ H1
per(P ), ∀E∗ ∈ ❘3,

∫

P
Λ(E0 + ∇yu

1).(E∗ + ∇yu
∗) = ΛhomE0.E∗

(3.34)

where Λhom denotes the homogenized conductivity tensor calculated with pe-
riodic condition.

The resolution of the three problems (3.34) as ΛhomE0 spans ❘3, gives the
homogenized conductivity tensor Λhom.
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To apply the PFEM, from the variational problem (3.34), let us consider
the quadratic energy functional:

J(u,E) =
∫

P
Λ(E + ∇yu).(E + ∇yu) (3.35)

Let the RVE P be constituted by two homogeneous and isotropic media : the
matrix P \ Pinc and one inclusion Pinc :

J(u,E) =
∫

P \Pinc

Λmat(E + ∇yu).(E + ∇yu) +
∫

Pinc

Λinc(E + ∇yu).(E + ∇yu)

(3.36)
The energy form can be rewritten as follows:

J(u,E) =
∫

P
Λmat(E + ∇yu).(E + ∇yu)

︸ ︷︷ ︸
Jmat

+
∫

Pinc

(Λinc − Λmat)(E + ∇yu).(E + ∇yu)
︸ ︷︷ ︸

Jinc

(3.37)
Associated to the structured mesh of the entire domain P , let us define an in-
terpolation space V h of finite dimension n such that any displacement uh ∈ V h

can be represented by û ∈ ❘n. On another hand, let us define the interpolation
space W l of finite dimension p, associated to the inclusion mesh so that any
displacement vl ∈ W l can be represented by a vector v̂ ∈ ❘p.

We define the matrix Kmat of dimension (n + 2) × (n + 2) in 2D, (n +
3) × (n+ 3) in 3D, and the matrix Kinc of dimension (p+ 2) × (p+ 2) in 2D,
(p+ 3) × (p+ 3) in 3D :

Jmat(uh,E) =
∫

P
Λmat(E + ∇yu

h).(E + ∇yu
h)

=

[
û

E

]⊤

Kmat

[
û

E

]
, ∀uh ∈ V h (3.38)

Jinc(vl,E) =
∫

Pinc

(Λinc − Λmat)(E + ∇yv
l).(E + ∇yv

l)

=

[
v̂

E

]⊤

Kinc

[
v̂

E

]
, ∀vl ∈ W l (3.39)

Considering the same substitution matrix as in (2.14), we have :

Jinc =

[
v̂

E

]⊤

Kinc

[
v̂

E

]
=

[
Sû

E

]⊤

Kinc

[
Sû

E

]
, ∀uh ∈ V h (3.40)

Finally, we obtain the main energy quadratic form defined only on û :

J(uh,E) =

[
û

E

]⊤

Kmat +

[
S 0
0 1

]⊤

Kinc

[
S 0
0 1

]

[
û

E

]
∀uh ∈ V h (3.41)
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• Linear elasticity problem

Under the action of the external forces f , the elastic equilibrium writes:

div σ + f = 0 in P (3.42)

With the demonstration presented in section 1.3.3, by applying the multiscale
method, the variational problems leads to:





∀u∗ ∈ H1
per(P ), ∀E∗ ∈ ❘3×3

sym,∫

P
C
(
E

0
+ ey(u1)

)
:
(
E

∗
+ ey(u∗)

)
= (ChomE

0
) : E

∗ (3.43)

The resolution of the six problems (3.43) as (ChomE
0
) spans ❘3×3

sym, gives the
homogenized elasticity tensor calculated with periodic condition Chom.

To apply the PFEM, from the variational problem (3.43), let us consider
the quadratic energy functional:

J(u, E) =
∫

P
C
(
E + ey(u)

)
:
(
E + ey(u)

)
(3.44)

We split the energy form as in the thermal case :

J(u, E) =
∫

P
Cmat(E + ey(u)) : (E + ey(u))

︸ ︷︷ ︸
Jmat

+
∫

Pinc

(Cinc − Cmat)(E + ey(u)) : (E + ey(u))
︸ ︷︷ ︸

Jinc

(3.45)

Considering two interpolation spaces uh ∈ Vh and vl ∈ Wl, We define the
matrix Kmat of dimension (n+ 3) × (n+ 3) in 2D, (n+ 6) × (n+ 6) in 3D, so
as the matrix Kinc :

Jmat(uh, E) =
∫

P
Cmat(E + ey(u)) : (E + ey(u))

=

[
û

E

]⊤

Kmat

[
û

E

]
, ∀uh ∈ Vh (3.46)

Jinc(vl, E) =
∫

Pinc

(Cinc − Cmat)(E + ey(u)) : (E + ey(u))

=

[
v̂

E

]⊤

Kinc

[
v̂

E

]
, ∀vl ∈ Wl (3.47)

A substitution matrix S, similarly to the thermal case but for all the compo-
nents of the displacement is defined, so that we can substitute the DOFs v̂

defined in the inclusion S for the DOFs û defined on the structured mesh P .
The deformation energy form reads :

J(uh, E) =

[
û

E

]⊤

Kmat +

[
S 0
0 1

]⊤

Kinc

[
S 0
0 1

]

[

û

E

]
, ∀uh ∈ Vh (3.48)
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3.4 Numerical Experiments

In order to validate and estimate the performance of the Phantom domain
Finite Element Method (PFEM) for numerical homogenization, we present
here some numerical experiments. We shall study thermal conductivity and
linear elasticity for 2D and 3D case.

3.4.1 Inclusion types

Let’s consider the RVE defined with inclusions of elementary geometry, such
as sphere, cube and ellipsoid in three dimensional case, disk and square in two
dimensional case.

• A sphere is defined by the coordinates of its center and its diameter d,
see Figure 3.1.

Figure 3.1: RVE with one spherical inclusion of diameter d = 0.6, volume fraction ρ =

0.1131

• A disk is defined by the coordinates of its center and its diameter d, see
Figure 3.2.

• A cube is defined by the coordinates of its center and its side l, see Figure
3.3.

• A square is defined by the coordinates of its center and its side l, see
Figure 3.4.

• An ellipsoid is defined by its center coordinates and its principal axis,
see Figure 3.5. Or it can be defined as a volume, the boundary of which
is defined by a quadric:

x2

a2
+
y2

b2
+
z2

c2
= 1.
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Figure 3.2: RVE with one disk inclusion of diameter d = 0.3 in domain Ω, volume fraction

ρ = 0.0707

Figure 3.3: RVE with one cubic inclusion of side l = 0.5, volume fraction ρ = 0.125

Figure 3.4: RVE with one square inclusion of side l = 0.3 in domain Ω, volume fraction

ρ = 0.09
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Figure 3.5: RVE with one ellipsoidal inclusion, a = 0.15, b = 0.15, c = 0.4, volume fraction

ρ = 0.0377

3.4.2 Meshes of PFEM

As usual a structured mesh is used for the domain Ω = [0, 1]3 or the RVE
P = [0, 1]3, which is characterized by its resolution Nrve. In the following,
to simplify the reading, we use the word ‘RVE’ to represent the domain Ω in
KUBC and SUBC case and the RVE P in periodic case.

As mentioned in the section 2.3.2, the mesh of the inclusion must be suf-
ficiently refined compared to the mesh of the RVE, so that the resulting pix-
elization recovers the inclusion entirely. But the mesh of the inclusion does
not need to be too fine since that does not improve the approximation beyond
a certain value. In all of our following numerical studies, the ratio η is set to
an optimal value η = 1.

We have decided to use the 8-nodes hexaedric element (cub8) for both
RVE and inclusions. The spherical and cubic inclusions meshed by hexaedric
element is shown in Figure 3.6.

Figure 3.6: Spherical (left) and cubic (right) inclusions in hexaedric mesh
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3.4.3 Constitutive law and effective coefficients

Isotropic materials

If the inclusion is in shape of sphere or cube, a priori, the composite material is
isotropic. we consider isotropic constitutive laws for matrices and inclusions.
In a thermal conductivity problem, the respective normalised conductivity
tensors are defined as: {

Λ0 = I

Λ1 = cthermalI

where cthermal designates the contrast between the matrix and the inclusion.
The contrast cthermal is set to 100 for the following experiments.

From the conductivity tensor Λ, we introduce the conductivity coefficient
λ defined as:

λ =
Trace(Λ)

3
=

Λ11 + Λ22 + Λ33

3
This conductivity coefficient is used in the following studies to present com-
puted solutions for thermal conductivity problems.

In a linear elasticity problem, we consider isotropic constitutive laws in
Voigt notation (see Appendix B), we have:

C =
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2




where E denotes the Young’s modulus and ν is the Poisson’s ratio. The nor-
malised Young’s modulus and Poisson’s ratio are used to characterise the ma-
trix and the inclusion: {

E0 = 1, ν0 = 1
3

E1 = celastic, ν1 = 1
3

The contrast celastic is set to 100 for the following study.
As the composite material of RVE with a spherical inclusion is isotropic,

to present the effective properties, we use the bulk modulus k and the shear
modulus µ, defined as:

k =
E

3(1 − 2ν)
; µ =

E

2(1 + ν)

Numerically, the coefficients k and µ are computed from the tensor C:

k =
C1111 + C1122 + C1133 + C2211 + C2222 + C2233 + C3311 + C3322 + C3333

9

µ =
C1111 + C2222 + C3333 + 2(C2323 + C3131 + C1212) − 3k

10
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Transversely isotropic materials

In case of ellipsoidal inclusions, materials constituted with such RVE are not
isotropic, especially if the contrast is large. Thus, for the thermal case, we
analyze the diagonal terms of the effective conductivity tensor Λ (i.e., Λ11, Λ22

and Λ33).
In the linear elasticity case, since we have a transversely isotropic material

in the plane (x, y) and in the longitudinal axis (z), the computation of the
compliance tensor S in the Bechterew basis (see Appendix B), makes it possible
to identify the Young’s modulus E1, E3 and the shear modulus G31:

S =




1
E1

−ν12

E1

−ν31

E3

0 0 0
−ν12

E1

1
E1

−ν31

E3

0 0 0
−ν31

E3

−ν31

E3

1
E3

0 0 0

0 0 0 1
2G31

0 0

0 0 0 0 1
2G31

0

0 0 0 0 0 1+ν12

E1




with
E1 =

2
S1111 + S2222

E3 =
1

S3333

G31 =
1

S2323 + S3131

Thus, for non-isotropic material, we analyze the Young’s modulus E1, E3

and the shear modulus G31 instead of k and µ.
To take into account the orientation of the inclusion, we use the Euler

angles which allow, by three successive rotations, to pass from the global RVE
basis to the local inclusion basis. The change of basis is achieved with the help
of a transformation matrix [20].

3.4.4 Reference solutions and relative errors

Mori-Tanaka model

If the volume fraction of spherical or ellipsoidal inclusion ρ is small enough,
the analytical Mori-Tanaka model, based on the Eschelby’s tensor is used as
the reference solution [48], both in thermal conductivity and linear elasticity
cases, see [76,99].

As presented in section 1.2.2, the effective conductivity tensor is determined
by Mori-Tanaka model as follows:

ΛMT = Λ0 + ρ1(Λ1 − Λ0)TMT
1

(
ρ0I + ρ1T

MT
1

)−1
(3.49)
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with
T

MT
1 =

[
I + S

E
1 (Λ0)−1(Λ1 − Λ0)

]−1

where Λ0, Λ1 denote respectively the conductivity tensor of the matrix and
the inclusion; ρ0, ρ1 the respective volume fraction; SE

1 the Eshelby tensor in
the thermal conductivity case (the components of the Eshelby tensor for a
spherical inclusion or an ellipsoidal inclusion are given in Appendix C).

In linear elasticity case, the effective stiffness tensor is determined by Mori-
Tanaka model as:

C
MT = C0 + ρ1(C1 − C0)TMT

1

(
ρ0I + ρ1T

MT
1

)−1

with
T

MT
1 =

[
I + S

E
1 (C0)−1(C1 − C0)

]−1

where C0, C1 denote respectively the stiffness tensor of the matrix and the
inclusion; SE

1 is the Eshelby’s tensor (the expression of the Eshelby tensor for
a spherical inclusion in linear elasticity case is given in Appendix C).

Fast Fourier Transform method

The iterative methods based on the FFT (Fast Fourier Transform) give in sev-
eral cases an almost exact solution since the geometry is exactly reproduced by
the voxelisation, see [78]. For example, if we consider a centered cubic inclusion
of side l = 0.5, the voxelizations should be made in multiple of 4 subdivisions
in order to match the geometry. In such cases, the FFT calculation (with a
voxelization resolution 100) is then considered as a reference solution.

For FFT computation, in the case of finite contrast, Moulinec and Silva [77]
have shown that the most efficient scheme is the accelerated scheme. This
scheme is introduced by Eyre and Milton [29] for the thermal conductivity
case, which can also be used for the linear elasticity case [70].

Relative errors

The relative error of the effective conductivity coefficients between PFEM and
the reference solution, for example Mori-Tanaka model, is defined as:

Relative error(λeff ) =
|λeff − λMT |

λMT
(3.50)

We denote respectively the effective conductivity coefficients computed by
PFEM with KUBC, SUBC and periodic homogenization as λkubc, λsubc and
λhom. In (3.50), we replace λeff by λkubc, λsubc and λhom to calculate the
relative error in KUBC, SUBC and periodic cases.
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The relative error of the effective elastic coefficients between PFEM and the
reference solution is defined in the same way in (3.50). We replace the thermal
coefficient λ by the elastic coefficients k and µ to calculate the relative error
in linear elasticity case.

3.4.5 Case of RVE with single inclusion

We start the numerical evaluation of the PFEM with cases of RVEs with a
single inclusion. We focus on the experiments for elementary geometries for
which we can easily define some reference solutions.

One spherical inclusion

In case of one spherical inclusion, we have plotted the relative error of effec-
tive conductivity coefficients between the numerical solutions and the reference
Mori-Tanaka solution in Figure 3.7. The numerical solutions have been com-
puted by PFEM with KUBC, SUBC and periodic homogenization.

1022 × 101 3 × 101 4 × 101 6 × 101

Nrve

10 3

10 2

10 1

Re
la

tiv
e 

er
ro

r, 
PF

EM
 / 

M
T

kubc

subc

periodic

Linear rate

Figure 3.7: Case of one spherical inclusion d = 0.6. Relative Error of conductivity coeffi-

cient λ computed by PFEM with KUBC, SUBC and periodic homogenization.

In Figure 3.7, linear convergences are observed with respect to the RVE
resolution for KUBC and periodic homogenization. With a resolution Nrve =
100, the relative error of Λhom is about 1%. The non-linear convergence of
the effective conductivity coefficient λsubc is caused by the inaccuracy of the
referenced Mori-Tanaka solution. More precisely, with inclusion of volume
fraction ρ = 11.3%, the precision of Mori-Tanaka model reaches a certain
limit (≃ 10−2). If the PFEM and Mori-Tanak solutions are too close, the
behavior of the relative error will be uncertain.
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In Figure 3.8, we compare the evolution of the normalised effective con-
ductivity coefficient λeff in terms of inclusion’s volume fraction ρ between the
Mori-Tanaka model, the FFT method (in resolution 100) and the PFEM (in
resolution Nrve = 100) computed with KUBC, SUBC and periodic homoge-
nization.

0.05 0.10 0.15 0.20 0.25 0.30

1.2

1.4

1.6

1.8

2.0

2.2

2.4

no
rm

al
ise

d 
ef
f

kubc

subc

periodic

MT

FFT

Figure 3.8: Case of one spherical inclusion. The normalised effective conductivity coeffi-

cient λeff computed by Mori-Tanaka model, FFT method and PFEM with KUBC, SUBC

and periodic homogenization, versus volume fraction ρ.

The PFEM computation with KUBC, SUBC and periodic boundary condi-
tion give different numerical results of effective properties. A favorable match
is observed between the PFEM periodic homogenization and other models,
especially in low volume fraction. we note that the PFEM computation with
KUBC over estimates the effective properties, while the PFEM computation
with SUBC under estimates them.

The relative error of the effective elastic coefficients k and µ have been
plotted versus the RVE resolution in Figure 3.9. We notice an almost linear
convergence with respect to the RVE resolution for the effective bulk modulus,
which is similar to the thermal case. We also observe a convergence for the
effective shear modulus but with a slower rate. Furthermore, the relative error
is more important for the shear modulus with a discrepancy of 10%.

In Figure 3.10, we compare the evolution of the normalised effective elas-
ticity coefficient k and µ in terms of inclusion’s volume fraction ρ between the
reference solutions and the PFEM solutions (in resolution Nrve = 100).

From Figure 3.10, we observe a good accordance between the PFEM and
other methods for the effective bulk modulus k, especially in low volume frac-
tion. For the effective shear modulus µ, the discrepency between each method
is obviously more important.
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Figure 3.9: Case of one spherical inclusion d = 0.6. Relative Error of bulk modulus k and

shear modulus µ computed by PFEM with KUBC, SUBC and periodic homogenization.
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Figure 3.10: Case of one spherical inclusion. The normalised effective bulk modulus k and

shear modulus µ computed by Mori-Tanaka model, self-consistent model, the FFT method

and PFEM with KUBC, SUBC and periodic homogenization, versus volume fraction ρ.

One disk inclusion

In the case of KUBC or SUBC condition, the effective coefficients are computed
by solving respectively pure Dirichlet boundary value problem (3.1) or pure
Neumann boundary value problem (3.17) using PFEM. For RVE with one
disk inclusion, the numerical solutions of such problems are presented in the
previous chapter, see Figure 2.19 and Figure 2.20 for thermal conductivity
case, see Figure 2.21 and Figure 2.22 for linear elasticity case.

In Figure 3.11, we have plotted the relative error of the effective thermal
coefficient λ computed by such PFEM solutions. The reference solution is
given by Mori-Tanaka model. The elastic case is presented in Figure 3.12.

The behaviours of the effective properties in two-dimensional case are sim-
ilar to that in three-dimensional case. We notice a linear convergence for the
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Figure 3.11: Case of one disk inclusion d = 0.3. Relative error of the effective thermal

coefficient λ computed by PFEM with KUBC, SUBC and periodic homogenization.
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Figure 3.12: Case of one disk inclusion d = 0.3. Relative error of the effective elastic

coefficients k, µ computed by PFEM with KUBC, SUBC and periodic homogenization.

effective properties λ and k.

One cubic inclusion

In Figure 3.13, we have depicted the relative error of effective conductivity
coefficients between the PFEM and the reference FFT solution.

With a contrast cthermal = 100, a linear convergence is observed for the
effective coefficient λeff with KUBC, SUBC and periodic homogenization. We
have also noticed that the effective coefficient computed with the mentioned
three conditions is not the same. With KUBC, the effective coefficient is
overestimated than the other two conditions.

In Figure 3.14, the relative error of effective elasticity coefficients k et µ
have been depicted versus the RVE resolution. The relative error referenced to
FFT solution is calculated analogously as in the thermal conductivity problem.
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Figure 3.13: Case of one cubic inclusion l = 0.5. Relative error of the thermal effective

coefficient λ computed by PFEM with KUBC, SUBC and periodic homogenization.
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Figure 3.14: Case of one cubic inclusion l = 0.5. Relative error of the effective bulk

modulus k and shear modulus µ computed by PFEM with KUBC, SUBC and periodic

homogenization.

For KUBC, SUBC and periodic homogenization, the same observation has
been found as in the thermal case, with a similar linear convergence. However,
an abnormal behavior of the effective shear modulus µsubc has been observed
for SUBC case. This is due to the fact that the PFEM solution is too tight to
the FFT solution. One can notice it by the crossing of convergence curves.

The parametric studies in terms of inclusion’s volume fraction ρ is shown
in Figure 3.15 and Figure 3.16, for respectively thermal conductivity prob-
lem and linear elasticity problem. Thanks to the comparison, we notice a
good accordance between the FFT method (in resolution 100) and the PFEM
(in resolution Nrve = 100) computed with KUBC, SUBC and periodic ho-
mogenization, especially in low volume fraction for the effective conductivity
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coefficient λeff and the effective bulk modulus keff .
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Figure 3.15: Case of one cubic inclusion. The normalised effective conductivity coefficient

λeff computed by FFT method and PFEM with KUBC, SUBC and periodic homogeniza-

tion, versus volume fraction ρ.
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Figure 3.16: Case of one cubic inclusion. The normalised effective bulk modulus k and

shear modulus µ computed by FFT method and PFEM with KUBC, SUBC and periodic

homogenization, versus volume fraction ρ.

As mentioned in section 2.3.3, for cubic inclusion, a special case can be dis-
tinguished: the mesh of the RVE and the mesh of inclusion are matching. We
remind that, with matching meshes, the PFEM will coincide with a conformal
Finite Element Method (FEM).

In order to illustrate the behavior in the case of matching meshes, we have
drawn for example, the relative error of effective bulk modulus k and shear
modulus µ between the PFEM and the reference FFT solution in Figure 3.17.
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Figure 3.17: Case of one cubic inclusion l = 0.5 (matching meshes). Relative error of the

effective bulk modulus k and shear modulus µ computed by PFEM with KUBC, SUBC and

periodic homogenization.

We notice that, due to the lower value of the illustrated relative errors,
the effective properties computed with matching meshes are obviously closer
to the reference solution than the general case, especially in computation with
periodic boundary condition.

One square inclusion

The numerical solutions of RVE with one square inclusion are presented in
the previous chapter, see Figure 2.23 and Figure 2.24 for Pure Dirichlet and
Neumann boundary value problems in thermal conductivity case.

In Figure 3.18, we have plotted the relative error of the effective thermal
coefficient λeff computed by PFEM solutions, reference to a high resolution
(10003) FFT computation.
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Figure 3.18: Case of one square inclusion l = 0.3. Relative error of the effective thermal

coefficient λeff computed by PFEM with KUBC, SUBC and periodic homogenization.
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We notice again the linear convergence for the computed thermal coefficient
λeff , especially for the problem with periodic conditions.

One ellipsoidal inclusion

To compare the PFEM numerical solution with the Mori-Tanaka analytical
solution, we have plotted, in Figure 3.19, the relative error of the effective
conductivity tensor’s diagonal terms for KUBC, SUBC and periodic homoge-
nization.
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Figure 3.19: Case of one ellipsoidal inclusion a = 0.15, b = 0.15, c = 0.4. Relative error of

the diagonal terms of the effective conductivity tensor Λ computed by PFEM with KUBC,

SUBC and periodic homogenization.

The behavior of Λ11 and Λ22 are similar, due to the fact that the dimension
of the studied ellipsoidal inclusion in the direction x and y are the same (a = b).
Moreover, The linear convergence can be found for the coefficients in the plane
(x, y), see Figure 3.19. The unexpected behavior of the coefficient in the
longitudinal axis (z) is possibly caused by the inaccuracy of the referenced
Mori-Tanaka solution, in the case of which, the inclusion is too elongated in
the longitudinal direction compared to the size of RVE. With a RVE resolution
of 1003, the relative error is in order of magnitude 10−2.
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The evolution of the normalised effective conductivity tensor Λeff versus
inclusion’s volume fraction ρ computed by the Mori-Tanaka model, the self-
consistent model, the FFT method (in resolution 100) and the PFEM (in
resolution Nrve = 100) with KUBC, SUBC and periodic homogenization is
plotted in Figure 3.20.
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Figure 3.20: Case of one ellipsoidal inclusion. The normalised diagonal terms of the

effective conductivity tensor Λeff computed by Mori-Tanaka model, Self-consistent model,

FFT method and PFEM with KUBC, SUBC and periodic homogenization, versus volume

fraction ρ.

The present volume fraction parametric study has shown the similarity
between the PFEM and the reference solutions, especially for two full field
methods: the FFT and the PFEM with periodic condition.

For linear elasticity problem, in Figure 3.21, we observe that, for KUBC
and periodic homogenization, the linear convergence can be found for the co-
efficients in the plane (x, y), as in the thermal case. The weak precision of the
coefficients in the longitudinal axis (z) is probably due to the inaccuracy of the
referenced Mori-Tanaka solution. For SUBC case, we notice a curve crossing
for the Young’s modulus E1 and E3.

Figure 3.22 shows the volume fraction parametric studies for the PFEM
and the reference methods (MT, SC, FFT) in linear elasticity problem. With
a volume fraction ρ = 0.04, the difference of effective coefficients between each
method is significant, particularly for E3, while a good accordance is always
observed for the FFT and the PFEM with periodic condition. The limitation
of the Mori-Tanaka method in the case of an elongated inclusion is apparently
verified with the effective shear modulus G31 in Figure 3.22.
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Figure 3.21: Case of one ellipsoidal inclusion a = 0.15, b = 0.15, c = 0.4. Relative error

of the effective elastic coefficients E1, E3 and G31 computed by PFEM with KUBC, SUBC

and periodic homogenization.

3.4.6 Case of RVE with multiple inclusions

To illustrate a case of multiple inclusions, let us consider eight ellipsoidal in-
clusions with the same size a = 0.05, b = 0.05, c = 0.15, which are randomly
distributed and randomly oriented, see Figure 3.23. The volume fraction is
ρ = 0.01257. We recall that the PFEM procedure is repeated for each inclu-
sion.

As ρ is small enough, we use the Mori-Tanaka model as a reference solu-
tion both in thermal conductivity and linear elasticity cases [8]. The effective
tensors are calculated as presented in the first chapter (1.19).

In Figure 3.24 and Figure 3.25, we have depicted the relative error of ef-
fective thermal coefficients Λ11, Λ22, Λ33 and elastic coefficients E1, E3, G31

between the PFEM and the reference Mori-Tanaka solution. The contrast
remains unchanged; cthermal = celastic = 100.

In both thermal and elastic cases, we have noticed a linear convergence for
KUBC, SUBC and periodic homogenization, see Figure 3.24 and Figure 3.25.
for instance. This observation shows that the PFEM responds properly to
the cases with numbers of inclusions. But we notice that, compared to Mori-
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Figure 3.22: Case of one ellipsoidal inclusion. The normalised effective Young’s modulus

E1, E3 and shear modulus G31 computed by Mori-Tanaka model, self-consistent model,

FFT method and PFEM with KUBC, SUBC and periodic homogenization, versus volume

fraction ρ.

Figure 3.23: RVE with eight ellipsoidal inclusions, a = 0.05, b = 0.05, c = 0.15, volume

fraction ρ = 0.01257

Tanaka model, the PFEM computation of the shear modulus is less precise
with a weak convergence rate.

We consider another case of 4 disk inclusions aligned along the x axis, see
Figure 3.26. An FFT computation with high resolution 80002 is considered as
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Figure 3.24: Case of eight ellipsoidal inclusions a = 0.05, b = 0.05, c = 0.15. Relative error

of the effective conductivity tensor’s diagonal terms Λ11, Λ22, Λ33 computed by PFEM with

KUBC, SUBC and periodic homogenization

the reference solution. We have depicted the relative error of the homogenized
conductivity tensor computed by PFEM with periodic condition in Figure 3.27.

The example of 4 disks, which are very close to each other but contactless
allows us to exhibit the numerical percolation effect. This phenomenon is
observed when the RVE’s meshes are not fine enough regard to the inclusion’s
mesh. One can notice that the homogenized conductivity tensor in y axis Λhom

22

obtained by the PFEM is in accordance with the reference FFT solution, with
a relative error less than 0.1% for a mesh resolution Nrve = 1000. Whereas
we notice an important discrepancy of the homogenized conductivity tensor
on x axis Λhom

11 , especially when Nrve < 180. This is cleary the numerical
percolation effect.

3.5 Interesting cases of PFEM

In this section, we present some cases which are difficult to mesh by conformal
finite element method (FEM), but can be easily treated by PFEM.
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Figure 3.25: Case of eight ellipsoidal inclusions a = 0.05, b = 0.05, c = 0.15. Relative error

of the effective elastic coefficients E1, E3, G31 computed by PFEM with KUBC, SUBC and

periodic homogenization

Figure 3.26: RVE with 4 disk inclusions d = 0.24, aligned along the x axis, volume fraction

ρ = 0.18096
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Figure 3.27: Case of 4 disk inclusions aligned along axis x. Relative error of homoge-

nized conductivity tensor’s diagonal terms Λ11 and Λ22 computed by PFEM with periodic

condition referenced to FFT solution.

3.5.1 Case of inclusions on the borders of RVE

In periodic homogenization, if the inclusions are on the borders of the RVE,
a fine conforming mesh is required at the edges for a standard finite element
method. It may cause mesh problems or a long computation time. With
PFEM, this drawback can be easily circumvented by moving periodically the
nodes and elements of the inclusion mesh, see Figure 3.28.

Figure 3.28: RVE with one spherical inclusion d = 0.4 and one ellipsoidal inclusion

a = 0.1, b = 0.1, c = 0.3 on the borders of the RVE.

Let us consider a case of one spherical inclusion d = 0.4 and one ellipsoidal
inclusion a = 0.1, b = 0.1, c = 0.3. Both inclusions touch the edges of the RVE.
The volume fraction is ρ = 0.046.

The reference solution is given by the analytical Mori-Tanaka Model. In
Figure 3.29, we again notice the linear convergences for the effective coefficients
in both thermal and elastic case except the shear modulus G31. This numerical
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Figure 3.29: Case of one spherical inclusion d = 0.4 and one ellipsoidal inclusion

a = 0.1, b = 0.1, c = 0.3 on the borders of RVE. Relative error of the effective thermal

coefficients Λ11, Λ22, Λ33 and elastic coefficients E1, E3, G31 computed by PFEM in peri-

odic homogenization.

experiment helps us to verify that PFEM works well in the case of which the
inclusions are on the borders of RVE.

3.5.2 Case of pellicle / hollow sphere inclusion

With conformal finite element method (FEM), a computation of pellicle inclu-
sion encounters significant difficulties as excessively fine meshes are required.
Another advantage of the PFEM is that it can deal with the pellicle inclusion
efficiently.

The reference solution is given by a three phases Mori-Tanaka model based
on the Eshelby inclusions [60]. We consider a sphere of material 1 surrounded
by a pellicle of material 2, which is immersed in a domain of material 3. The
materials 1 and 3 are low conductive while the material 2, the pellicle, is high
conductive, see Figure 3.30. We denote respectively the volume fractions and
the conductivity coefficients f1, λ1 of the material 1, f2, λ2 of the material 2
and f3, λ3 of the material 3.

We further define l, the thickness ratio of the pellicle to the radius r of the
sphere, so that the pellicle of thickness lr is situated between the spheres of
radius (1 − l)r and r, see Figure 3.31.

In [60], Le Quang et al. developed the analytical models based on the
Eshelby inclusion in the case of composites with high conductive interfaces. In
the particular case of a fine spherical pellicle inclusion, with a homogeneous
and isotropic inclusion in RVE, the Mori-Tanaka model writes:

λMT = λ3 +
3fλ3(λ1 − λ3 + 2λ̂inc)

3λ3 + (1 − f)(λ1 − λ3 + 2λ̂inc)
(3.51)
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1

2

3

Figure 3.30: One spherical pellicle of heart 1, of pellicle 2 and of domain 3.

r

lr

Figure 3.31: One spherical pellicle of radius r, and of thickness h = lr.

with f = f1 +f2 the volume fraction of the inclusion, and λ̂inc the conductivity
coefficient of the pellicle defined as follows:

λ̂inc =
hλ2

r
= lλ2 (3.52)

Let us consider a coated spherical inclusion, centered with d = 0.6 depicted
in Figure 3.32. Numerical experiments are performed with different thickness
ratio, from a extremely thin pellicle with l = 0.001 to a thick case with l = 0.5.

In Figure 3.33, we have plotted the normalised effective conductivity co-
efficients λeff computed by MT method, FFT method (with resolution 100)
and PFEM periodic homogenization (Nrve = 100), versus the thickness ratio.
We notice that the results computed by the PFEM and the MT method are
similar for all the thickness ratio value. However, the FFT method encounters
its limitation when the pellicle become so thin like l < 0.05. In such case, the
FFT pixelization requires a very high resolution to correctly describe the ge-
ometry of thin pellicle inclusion. In the PFEM, this difficulty is circumvented
as the inclusion mesh is independent.
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Figure 3.32: RVE with one pellicle spherical inclusion (clipping) with d = 0.6, thickness

ratio l = 0.01
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Figure 3.33: Case of one coated spherical inclusion. The effective conductivity coefficient

λeff computed by FFT method, MT method and PFEM with periodic condition, versus

the thickness ratio of the pellicle.

We conclude that the PFEM can be used to compute efficiently the effective
properties of composite material with very thin pellicle inclusions. We also note
that, a two dimensional model can be used to mesh the inclusion. This ability
to consider very thin inclusions is an interesting advantage of the PFEM over
other numerical homogenization methods.

Conclusion

In this chapter, we have presented Phantom domain Finite Element Method
(PFEM) applied to KUBC, SUBC and periodic homogenization for thermal
conductivity problem and linear elasticity problem.
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In order to validate the PFEM method, numerical experiments with inclu-
sions of elementary geometry such as sphere, cube and ellipsoid have been per-
formed. Linear convergences of relative errors referenced to the Mori-Tanaka
model or FFT solutions, for the considered effective coefficients have been
shown, such as the conductivity coefficient λ, the bulk modulus k etc. On the
other hand, the PFEM computation of the shear modulus is less precise with
a weak convergence rate.

The numerical results of effective properties obtained by the KUBC, SUBC
and periodic homogenization are different. The results of the periodic homog-
enization are more close to the reference solutions, especially in case of low
volume fraction. we note that the KUBC homogenization overestimates the
effective properties, while the SUBC homogenization underestimates them.

We also show that PFEM responds properly to the cases with multiple
inclusions, coated inclusions and thin inclusions. In other words, an important
feature of PFEM is that it is able to deal with the homogenization of composite
materials in cases where the meshing is difficult for a conformal finite element
method.
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Conclusion and perspective

This thesis aimed to bring out a reliable and efficient tool able to calculate
the effective properties of composite materials for thermal conductivity and
linear elasticity problems. In the case of complex structure composite, the
existing FEM based method and FFT based methods require a huge mesh
resolution to accurately model such composites, which is computational costly.
To circumvent this difficulty, we proposed in this thesis, an original alternative
method named Phantom domain Finite Element Method (PFEM), using a
fictitious domain principle.

In the PFEM, we split the energy functional from the equilibrium varia-
tional problem, into two parts: the RVE part and the inclusion part, which are
represented by two distinct and independent meshes, instead of one conformal
mesh in the standard FEM. In this way, the effort is shifted from mesh gen-
eration towards combination of the numerical integration in two parts. With
isoparametric elements and a structured mesh of RVE, a substitution matrix
can be constructed via developed formulae, to substitute the DOFs of inclusion
mesh for the DOFs of the RVE mesh. Consequently, we are able to implement
a finite element in the framework of a structured mesh of the RVE.

The PFEM is not only capable of calculating effective properties in homog-
enization technique with KUBC, SUBC and periodic condition, but also can
be used in all the problems which can be solved by the FEM, such as the linear
static thermal or elastic problems defined as Dirichlet or Neumann boundary
value problems in the case of composites materials.

A library code, based on PFEM, have been developed in Python/Fortran.
With the help of this code, numerical experiments in two or three dimensional
cases, with inclusions of elementary geometry such as disk, square, sphere,
cube and ellipsoid, have been performed to validate the PFEM method. Linear
convergences of relative errors with respect to reference solutions such as the
Mori-Tanaka model, the self-consistent model and the FFT method are shown
for thermal and elastic effective properties. The convergence rates are observed
as expected in both boundary value problems and homogenization problems
with one or multiple inclusions in elementary geometry, regarding the use of
linear interpolation. However, in the case of 4 disk inclusions aligned closely, we
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find that, if the structured mesh is not fine enough to separate the independent
meshes of each inclusion, a numerical percolation phenomenon will appear in
the PFEM computation.

From the volume fraction parametric studies, we notice a gap of effec-
tive properties between the KUBC, SUBC and periodic homogenization. A
favorable match is observed between the periodic homogenization and other
reference models, while the KUBC homogenization over estimate the effective
properties, and the SUBC homogenization under estimate them.

One interesting feature of the PFEM presented in this paper is the total
flexibility concerning the inclusions meshes. Complex geometries of any kind
can be considered, as long as a mesh is available. We have shown an example
with very thin pellicle sphere, in case of that it is difficult to mesh by conformal
finite element method or FFT method, but can be treated by PFEM. However,
as the substitution procedure can be seen as a pixelization of the inclusion in
the structured mesh, the ‘pixels’ resulting form the inclusion mesh should
recover entirely the inclusion, in order to obtain an accurate approximation of
the integral forms. In other words, the inclusion mesh should be fine enough
compared to the structured mesh.

The performance of the PFEM has still to be improved. In convergence
studies, we illustrate that the relative error of the effective properties computed
by PFEM compared to reference solution is in order of magnitude ≃ 10−2 for
a computation of resolution Nrve = 100. With a cubic inclusion test, we have
been able to give an estimation for the error produced by the PFEM compared
to a classical finite element method with a mesh conforming to the inclusions
geometry. By plotting the difference between PFEM and FEM solution, we
also find that, no matter the shape of the inclusion, the peak value of errors
is always located on the interface between the matrix phase and the inclusion
phase. These substantial errors indicates that improvement of the accuracy of
the method is needed.

In outlooks, we are particularly investigating how to introduce some kind
of improvement to the accuracy of the PFEM. As we have illustrated the
peak error of the PFEM is situated at interfaces, we propose to modify the
shape functions involved in the finite elements situated on the boundary of the
inclusion phase in order to better conform the weak continuities at interfaces.

We can imagine a case of a very high resolution three-dimensional image
of a composite material sample, obtained through imagery techniques, such as
tomography. We can obtain the (fine) meshes of the inclusions by segmenta-
tion techniques and then consider a coarser mesh of the sample, making the
computation possible.

Numerical experiments in thermal and elastic case are performed with ma-
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terials in linear constitutive law. We could extend PFEM to consider materials
with nonlinear behavior. Higher-order shape functions could be implemented
to evaluate the accuracy of the PFEM.

Other perspectives concern the treatment of RVE with inclusions with wavi-
ness or tortuosity, which would help us to better understand the phenomena
involved in the alteration inclusions to the macroscopic behavior of the com-
posite materials. Furthermore, the PFEM proposed in this thesis could be
adapted to electromagnetism.
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Appendix A

Details of homogenization

theory

The details and the proofs of homogenization theory necessary for the numer-
ical determination of effective properties are presented in this appendix.

A.1 KUBC homogenization for thermal con-

ductivity problem

A uniform gradient of temperature is imposed at the boundary :

u = g.x ∀x ∈ ∂Ω

According to the gradient theorem (see Appendix A.6):
∫

Ω
∇u =

∫

∂Ω
un

with n the outgoing normal unit vector to ∂Ω at x, we have:
∫

Ω
∇u =

∫

∂Ω
un

=
∫

∂Ω
(g.x) n

=
∫

∂Ω
gi xi nj ej

so that, ∀j = 1, 2, 3 :
∫

Ω
∇u ej =

∫

∂Ω
gi xi nj

= gi

∫

∂Ω
xi nj
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However:
∫

∂Ω
xi nj =

∫

Ω
∇xi ej

as ∇xi = ei, we have:
∫

∂Ω
xi nj = ei ej

= δij

Finally, we obtain:
∫

Ω
∇u ej = δij gi

= gj

It implies that:

〈∇u〉 =
1

|Ω|
∫

Ω
∇u

=
∫

Ω
∇u

= g

A.2 SUBC homogenization for thermal con-

ductivity problem

A uniform heat flux is imposed at the boundary:

q.n = Q.n, ∀x ∈ ∂Ω

The macroscopic temperature gradient gives:

G = 〈∇u〉

=
∫

Ω
∇u

With div(q) = 0 in Ω, we have:

div(xi q) = ∇xi.q + xi div(q)

= ei.q

= qi
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According to the divergence theorem A.4, we write:
∫

Ω
qi =

∫

Ω
div(xi q)

=
∫

∂Ω
xi q.n

With the SUBC, we have:
∫

∂Ω
xi q.n =

∫

∂Ω
xi Q.n

= Q
∫

∂Ω
xi n

= Q
∫

Ω
ei

which leads to the property:
∫

Ω
q = Q

A.3 KUBC homogenization for linear elastic-

ity problem

We impose a displacement at point x belonging to the boundary ∂Ω:

u = E x, ∀x ∈ ∂Ω

The spatial average of strain gives:

〈e〉 =
∫

Ω
eij(u)

=
1
2

(∫

Ω
ui,j +

∫

Ω
uj,i

)

According to the gradient theorem (A.5), we have:
∫

Ω
ui,j =

∫

Ω
∇ui ej

=
(∫

∂Ω
ui n

)
ej

The KUBC implies that:
(∫

∂Ω
ui n

)
ej =

∫

∂Ω
(Eik xk)nj

= Eik

∫

∂Ω
xk nj

= Eik

∫

∂Ω
(xk ej) n
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According to the divergence theorem (A.4), we have:

Eik

∫

∂Ω
(xk ej) n = Eik

∫

Ω
div(xk ej)

= Eik xk,j

= Eik δkj

= Eij

So that, we obtain: ∫

Ω
ui,j = Eij

With the same approach, we find:
∫

Ω
uj,i = Eji

As Eij is symmetric, we have:

〈e〉 =
1
2

(∫

Ω
ui,j +

∫

Ω
uj,i

)

=
1
2

(Eij + Eji)

= Eij

A.4 SUBC homogenization for linear elastic-

ity problem

We prescribe a traction vector at the boundary, reads:

σ n = Σ n, ∀x ∈ ∂Ω

We write in index notation:

div(x σ) =



(xi σ1j),j

(xi σ2j),j

(xi σ3j),j


 =



xi,j σ1j + xi σ1j,j

xi,j σ2j + xi σ2j,j

xi,j σ3j + xi σ3j,j


 =



xi,j σ1j

xi,j σ2j

xi,j σ3j




which implies:
div(x σ) = σ∇xi = σ ei

With the divergence theorem (A.4), the spatial average of the stress tensor
gives:

〈σ〉 =
∫

Ω
σ ei

=
∫

Ω
div(x σ)

=
∫

∂Ω
x σ n
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According to the static uniform boundary condition (1.34):
∫

∂Ω
x σ n =

∫

∂Ω
x Σ n

= Σ
∫

∂Ω
xi n

= Σ ei

So that we have:
〈σ〉 = Σ

A.5 Periodic homogenization for linear elas-

ticity problem

Using the multi-scale modelling based on asymptotic expansion, we have the
microscopic equation:

divy

[
C(y)

(
E + ey(u1)

)]
= 0 (A.1)

with E
def= ex(u0).

We suppose that u1 is depending on the macroscopic space variable x and
the microscopic space variable y, in index notation we have:

u1(x,y) = epqx(u0(x))wpq(y) (A.2)

with the functions w depend on y and P-periodic.
We then deduce from (1.58) and (A.2) using Kronecker symbol δpk :

e0
kl = eklx(u0) + ekly(u1)

= eklx(u0) + epqx(u0)ekly(wpq)

= δpkδqlepqx(u0) + epqx(u0)ekly(wpq)

= epqx(u0) (δpkδql + ekly(wpq)) (A.3)

Writing the weak formulation of the equation (A.1) on the P-periodic vector
fields space of class H1 on P denoted by H1

periodic(P ), we have the following
problem to solve:





∀φ ∈ H1
periodic(P ),

∫

P
Cijkl

[
epqx(u0) (δpkδql + ekly(wpq))

]
eijy(φ) = 0

This problem is well-posed in the space H1
periodic(P ) with zero average on

P and admits a unique solution.
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Once the wpq functions are known, we write the expression of σ0
ij using the

equations (1.59) and (A.3):

σ0
ij = Cijkl

[
epqx(u0) (δpkδql + ekly(wpq))

]

= [Cijpq + Cijklekly(wpq)] epqx(u0)

Then, we apply the average operator on P and by identification with 〈σ0〉P =
CperiodicE, we obtain the expression of the homogenized coefficients:

Cperiodic
ijpq =

1
|P |

∫

P
[Cijpq + Cijklekly(wpq)]

=
1

|P |
∫

P
Cijpq

︸ ︷︷ ︸
average coefficient

+
1

|P |
∫

P
Cijklekly(wpq)

︸ ︷︷ ︸
corrective term

A.6 Divergence theorem and Gradient theo-

rem

Consider a domain Ω ∈ RN (with N the dimension of the domain) and a vector
field V defined on Ω, i.e.

∀x ∈ Ω, V(x) ∈ R
n

According to Stokes’ theorem, we have the divergence theorem:
∫

Ω
divV =

∫

∂Ω
V.n (A.4)

with ∂Ω the piecewise smooth boundary of the domain Ω, and n the outward
pointing unit normal field of the boundary ∂Ω.

Corollaries : Consider a scalar field u defined on Ω, we have the gradient
theorem: ∫

Ω
∇u dV =

∫

∂Ω
un ds (A.5)

It can be deduced from the divergence theorem:

div(u ei) = ∇u.ei + u div(ei)

= ∇u.ei

So that:
∫

Ω
div(u ei) =

∫

Ω
∇u.ei
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Since:
∫

Ω
div(u ei) =

∫

∂Ω
u ei.n

=
∫

∂Ω
uni

=
∫

∂Ω
un.ei

Hence, we have the gradient theorem (A.5) and the two terms are identical by
the projections in all direction ei.
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Appendix B

Linear elasticity tensors

The objective of this appendix is to clarify the writing of symmetric fourth-
order tensors intervening in linear elasticity [32].

B.1 Voigt notation

Let’s consider (e1, e2, e3) an orthonormal basis of R3. To express the 81 inde-
pendent components of a fourth-order tensor, the canonical basis (ei ⊗ ej ⊗
ek ⊗ el) is the natural base.

However, in linear elasticity, Hooke’s law connects the tensor σ and the
tensor e linearly by means of two symmetric fourth-order tensors, the stiffness
tensor C and the compliance tensor S:

σ = C e

σij = Cijkl ekl with index notation

e = S σ

eij = Sijkl σkl with index notation

(B.1)

Hooke’s law and the symmetries of the tensor σ and e induce the following
symmetries for the components of tensor C: Cijkl = Cjikl, Cijkl = Cjilk. The
energetic point of view of the Hooke law implies a third symmetry: Cijkl =
Cklij. Thus, there remains only 21 independent components describing this
tensor C. We have the same results for the compliance tensor. The canonical
base is not adapted to this type of tensor.

To express such a symmetric tensor, we often encounter the Voigt notation
in which the components of the stress tensor σ and the stiffness tensor e are
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given by σ and e:

σ =




σ11

σ22

σ33

σ23

σ31

σ12




and e =




e11

e22

e33

2e23

2e31

2e12




(B.2)

The components of the stiffness tensor C are given by a 6 × 6 matrix,
denoted C:

C =




C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212




(B.3)

Voigt notations for σ, e and C translate well the Hooke’s law in stiffness.
In other words, the Voigt notation σ = C e is faithful to: σij = Cijklekl.

To write the Hooke’s law with compliance tensor, e = S σ, we have:




e11

e22

e33

2e23

2e31

2e12




=




S1111 S1122 S1133 2S1123 2S1131 2S1112

S2211 S2222 S2233 2S2223 2S2231 2S2212

S3311 S3322 S3333 2S3323 2S3331 2S3312

2S2311 2S2322 2S2333 4S2323 4S2331 4S2312

2S3111 2S3122 2S3133 4S3123 4S3131 4S3112

2S1211 2S1222 2S1233 4S1223 4S1231 4S1212







σ11

σ22

σ33

σ23

σ31

σ12




(B.4)

B.2 Bechterew basis

In writing Hooke’s law with Voigt notation, we deal with a basis that is in-
compatible with the equality: S = C−1 because of S 6= C

−1
.

To overcome this, we construct an orthonormal basis (BI) proposed in 1926
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by Bechterew [5]:

B1 = e1 ⊗ e1

B2 = e2 ⊗ e2

B3 = e3 ⊗ e3

B4 =
1√
2

(e2 ⊗ e3 + e3 ⊗ e2)

B5 =
1√
2

(e3 ⊗ e1 + e1 ⊗ e3)

B6 =
1√
2

(e1 ⊗ ve2 + e2 ⊗ e1)

(B.5)

The components of the stress tensor σ and the strain tensor e are noted as
σ̂ and ê:

σ̂ =




σ11

σ22

σ33√
2σ23√
2σ31√
2σ12




and ê =




e11

e22

e33√
2e23√
2e31√
2e12




(B.6)

With the help of the Bechterew basis (BI), the writing of the stiffness
tensor C (respectively the compliance tensor S) is represented by a matrix of
size 6 × 6 denoted Ĉ (Ŝ):

Ĉ =




C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C1112 C2222 C2233

√
2C2223

√
2C2231

√
2C2212

C1133 C2233 C3333

√
2C3323

√
2C3331

√
2C3312√

2C1123

√
2C2223

√
2C3323 2C2323 2C2331 2C2312√

2C1131

√
2C2231

√
2C3331 2C3123 2C3131 2C3112√

2C1112

√
2C2212

√
2C3312 2C2312 2C3112 2C1212




(B.7)

This notation is faithful to the Hooke’s law σij = Cijkl ekl in the sense that
σ̂ = Ĉê and ê = Ŝσ̂ with Ŝ = Ĉ−1.

B.3 Special case of an isotropic elasticity ten-

sor

The elasticity properties of an homogeneous isotropic linear elastic materials
only determined by any two modulus among these:
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- Kelvin parameters: k and µ,

- Lamé parameters: λ and µ,

- Young and Poisson parameters: E and ν.

Thus, given any two, any other of the elasticity modulus can be calculated
according to the formulae given in the following table:

E et ν λ et µ k et µ

E E µ
3λ + 2µ

λ + µ

9kµ

3k + µ

ν ν
λ

2(λ + µ)

3k − 2µ

2(3k + µ)

λ
νE

(1 + ν)(1 − 2ν)
λ

3k − 2µ

3

µ
E

2(1 + ν)
µ µ

k
E

3(1 − 2ν)

3λ + 2µ

3
k

Table B.1: Conversion formulae for elasticity modulus.
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Appendix C

Components of the Eshelby

tensor for an inclusion in shape

of sphere or ellipsoid of

revolution

C.1 thermal conductivity problem

In the first part of this appendix, we are interested in the components of the
Eshelby tensor in thermal conductivity case. Hatta and Taya have studied,
in the manner of Eshelby, the problem of equivalent inclusion for the ther-
mal conductivity of composites and deduced the analytical expressions of the
Eshelby tensor for ellipsoidal or spherical inclusion [48].

The Eshelby tensor for inclusion i, denoted SE
i , is a second-order tensor in

the basis (ei ⊗ ej): SE
i = Sijei ⊗ ej. The tensor SE

i is diagonal for an isotropic
material.

Spherical inclusion

For a sphere, the Eshelby tensor is sample:

Sij = 0 if i 6= j

S11 = S22 = S33 =
1
3

(C.1)
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Figure C.1: A sphere inclusion in domain [0, 1]3

Oblate ellipsoidal inclusion

Let’s consider (e1, e2, e3) an orthonormal basis of R3.
The ellipsoid of revolution is rotated about e3 with semi-diameter a, b, c

such that a = b > c. The aspect ratio e = c/a define the form of the ellipsoid,
see Figure C.2.

Figure C.2: An ellipsoid rotated about axis e3 with the aspect ratio e < 1

We give the analytical expression of the Eshelby tensor’s components for
the particular case of the ellipsoid of revolution with parameter a and e:

Sij = 0 if i 6= j

S11 = S22 =
e

2(1 − e2)3/2

(
acos(e) − e(1 − e2)1/2

)

S33 = 1 − 2S22

(C.2)
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Prolate ellipsoidal inclusion

Let’s consider (e1, e2, e3) an orthonormal basis of R3.

The ellipsoid of revolution is rotated about e3 with semi-diameter a, b, c
such that a = b < c. The aspect ratio e = c/a define the form of the ellipsoid,
see Figure C.3.

Figure C.3: An ellipsoid rotated about axis e3 with the aspect ratio e > 1

We find the expression of the Eshelby tensor’s components:

Sij = 0 if i 6= j

S11 = S22 =
e

2(e2 − 1)3/2

(
e(e2 − 1)1/2 − acos(e)

)

S33 = 1 − 2S22

(C.3)

C.2 Linear elasticity problem

The second part gives the expressions of the Eshelby tensor for three dimen-
sional linear elasticity problem. The results for a sphere or an ellipsoid of
revolution given in the following come from the work Micromechanics of de-
fects in solids of T. Mura [83], more precisely from the chapter on the Eshelby
tensor referenced to [26–28].

The Eshelby tensor for inclusion i, denoted SE
i , is a fourth-order tensor in

the basis (ei ⊗ ej ⊗ ek ⊗ el): SI
Esh = Sijklei ⊗ ej ⊗ ek ⊗ el.



116 APPENDIX C. ESHELBY TENSORS

Spherical inclusion

We have the components of Eshelby tensor in this case:

S1111 = S2222 = S3333 =
7 − 5ν

15(1 − ν)

S1122 = S2233 = S3311 = S1133 = S2211 = S3322 =
5ν − 1

15(1 − ν)

S1212 = S2323 = S3131 =
4 − 5ν

15(1 − ν)

(C.4)

where ν denotes the Poisson’s ratio of the isotropic matrix material.

Oblate ellipsoidal inclusion

Let’s consider (e1, e2, e3) an orthonormal basis of R3.
The ellipsoid of revolution is rotated about e3 with semi-diameter a, b, c

such that a = b > c. The aspect ratio e = c/a define the form of the ellipsoid,
see Figure C.2.

Naturally, the ellipsoidal inclusion leads to a transversely isotropic ten-
sor. The Eshelby tensor is determined from six coefficients, we introduce the
following notations:

I1 =
2πe

(1 − e2)3/2

(
acos(e) − e

(
1 − e2

)1/2
)

I3 = 4π − 2I1

I13 =
I1 − I3

3(e2 − 1)

I12 =
π

3
− I13

4
I11 = 3I12

I33 =
4π
3e2

− 2I13

(C.5)

The non-zero components of the Eshelby tensor is deduced as below:

S1111 = QI11 +RI1

S3333 = Qe2I33 +RI3

S1122 = QI12 −RI1

S1133 = Qe2I13 +RI1

S3311 = QI13 −RI3

S2323 =
Q

2
(1 + e2)I13 +

R

2
(I1 + I3)

S1212 =
1
2

(S1111 − S1122)

(C.6)
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with

Q =
3

8π(1 − ν)
, R =

1 − 2ν
8π(1 − ν)

The other non-zero components are obtained from (C.6) by permutation
between the axis e1 and the axis e2 (the property of the transversely isotropic,
for example S2222 = S1111 or S1313 = S2323 etc...) and by a permutation between
the first two indices or the last two indices (the property of minor symmetry
Sijkl = Sjikl = Sijlk). All components can not be obtained by this permutation
are null (for example, S1232 = S1223 = S1112 = 0).

Other writings of the Eshelby tensor can be found in the works of Chow [18]
or Dormieux [21].

Prolate ellipsoidal inclusion

The ellipsoid of revolution is rotated about e3 with semi-diameter a, b, c such
that a = b < c. The aspect ratio e = c/a is greater than 1 in this case, see
Figure C.3.

The components of the Eshelby tensor are almost identical to the oblate
case (C.6), except the expression of I1:

I1 =
2πe

(e2 − 1)3/2

(
e
(
e2 − 1

)1/2 − cosh−1 (e)
)

(C.7)
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List of Abbreviations

RVE Representative Volume Element

FEM Finite Element Method

XFEM eXtended Finite Element Method

PFEM Phantom domain Finite Element Method

FCM Finite Cell Method

FFT Fast Fourier Transform

MT Mori - Tanaka model

SC Self - Consistent model

DOFs Degrees Of Freedom

KUBC Kinetic Uniform Boundary Condition

SUBC Static Uniform Boundary Condition

cub8 eight-node hexahedral element

qua4 four-node quadrilateral element
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List of Symbols

div divergence differential operator

∇ gradient differential operator

. dot product operator

: double dot product operator

〈•〉P average operator on P, 〈•〉P =
1

|P |
∫

P
•dy

δij Kronecker delta

u temperature

q heat flow

f heat source

Λmat thermal conductivity tensor for the matrix phase

Λinc thermal conductivity tensor for the inclusion phase

Λi thermal conductivity tensor for phase i of composite

Λeff effective thermal conductivity tensor

ΛMT effective thermal conductivity tensor calculated by
Mori-Tanaka model

ΛSC effective thermal conductivity tensor calculated by self-
consistent model

Λkubc effective thermal conductivity tensor computed with
kinematic uniform boundary condition

Λsubc effective thermal conductivity tensor computed with
static uniform boundary condition

Λhom homogenized thermal conductivity tensor

λ thermal conductivity coefficient

cthermal contrast parameter in the thermal case

u displacement field
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σ stress tensor

e strain tensor

Cmat stiffness tensor for the matrix phase

Cinc stiffness tensor for the inclusion phase

Ci stiffness tensor for phase i of composite

Ceff effective stiffness tensor

S compliance tensor

A strain concentration tensor

celastic contrast parameter in the elastic case

E Young’s modulus

ν Poisson’s ratio

k bulk modulus

µ shear modulus

SE
i Eschelby tensor of the inclusion i

Vi volume of the inclusion i

ρ volume fraction of the inclusion

ε characteristic length of an RVE

G Green’s function

τ polarization tensor

ξ Fourier space variable

f̂ quantity f in the Fourier space

Ω domain

Ωinc domain of the inclusion phase

P periodic domain

Pinc periodic domain of the inclusion phase

H1 Sobolev space

J quadratic energy functional

S substitution matrix

I identity matrix

Nrve RVE mesh resolution

hrve characteristic length of an element of the RVE mesh
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hinc characteristic length of an element of the inclusion
mesh

η characteristic length ratio between RVE mesh and in-
clusion mesh
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