
HAL Id: tel-02921442
https://theses.hal.science/tel-02921442

Submitted on 25 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal modeling and quantitative analysis of security
using attack- defense trees

Wojciech Widel

To cite this version:
Wojciech Widel. Formal modeling and quantitative analysis of security using attack- defense trees.
Cryptography and Security [cs.CR]. INSA de Rennes, 2019. English. �NNT : 2019ISAR0019�. �tel-
02921442�

https://theses.hal.science/tel-02921442
https://hal.archives-ouvertes.fr

Acknowledgements

I would like to thank my supervisor Barbara Fila, especially for the help that I could

count on whenever faced with problems related to everyday life. I am also grateful for

the guidance provided by my official supervisor, Gildas Avoine.

I am thankful to all members of the Embedded Security and Cryptography team at

IRISA Rennes who made an effort of speaking English with me, even if they preferred

French. This includes my officemates. Of them, additional thanks go to Florent, for

showing me a way of getting deeper into cybersecurity, and for guiding me on that way

whenever requested.

I am very grateful to all my friends in Rennes for making my life there good. For

the time spent together, many thanks go to Adela, Gautier, Katharina, Sam and Lucy,

Solène and Vaishnavi.

The support provided continously by Ola throughout these years was by far the most

important and precious thing for me. Thanks for being there! Together with my parents

and brothers, all of their help and their faith in my capabilities, you made it possible for

me to complete this thesis.

Contents

Résumé 1

Contexte . 1

Introduction informelle aux arbres d’attaque et aux arbres d’attaque et de défense 3

Questions de recherche et contributions . 6

Structure de la thèse . 8

1 Introduction 9

1.1 Context . 9

1.2 Informal introduction to attack trees and attack–defense trees 11

1.3 Research questions and our contributions 16

1.4 Thesis structure . 17

2 Preliminaries 19

2.1 Elements of set theory and abstract algebra 19

2.2 Elements of term rewriting . 23

2.3 Elements of graph theory . 24

2.4 Elements of formal language theory . 25

2.5 Attack–defense trees . 27

2.6 Attribute domains for attack–defense trees 30

3 State of the art 39

3.1 Formal semantics for attack–defense trees 39

3.1.1 Multiset semantics . 40

3.1.2 Set semantics . 42

3.1.3 SP semantics . 44

3.1.4 Path semantics . 46

3.1.5 Sequence semantics . 47

3.2 Quantitative analysis of security using attack–defense trees 49

3.2.1 Approximation of the minimal cost of an attack in the presence of

clones . 49

3.2.2 Pareto efficient strategies in attack–defense trees 50

3.2.3 Stochastic game interpretation of attack–defense trees 52

iii

iv CONTENTS

3.2.4 Attack–defense trees analysis with timed automata 54

3.2.5 Multi-parameter analysis of security using attack–defense trees . . 56

3.3 Selection of countermeasures in attack–defense scenarios 58

4 Evaluation of attributes on attack–defense trees with clones 61

4.1 Preliminaries . 62

4.2 Properties of the set semantics . 68

4.3 Computational aspects of the evaluation of attributes on the set semantics 78

4.4 A method for evaluation of attributes in trees with clones 83

4.4.1 Necessary and optional clones . 84

4.4.2 Repeated bottom-up evaluation of attributes 86

4.4.3 Complexity of repeated bottom-up evaluation of attributes 92

4.5 Extraction of optimal strategies . 93

4.5.1 Tree pruning procedure . 94

4.5.2 Tree reduction technique preserving optimal strategies 95

4.5.3 Complexity of Algorithm 2 . 101

4.6 Relations to other formalisms . 102

4.6.1 Fault trees . 102

4.6.2 Weighted monotone satisfiability problem 103

4.6.3 Attack graphs . 103

4.7 Empirical validation . 104

4.8 Conclusion and future work . 104

5 Multi-parameter analysis of security 107

5.1 Preliminaries . 107

5.2 Pareto attribute domains . 109

5.2.1 Proof of Theorem 5 . 111

5.2.2 Complexity issues . 114

5.3 Empirical validation . 115

5.3.1 Case study . 115

5.3.2 Performance tests . 117

5.4 Conclusion and future work . 118

6 Selection of countermeasures in attack–defense scenarios 123

6.1 Preliminaries . 124

6.2 Defense semantics . 126

6.2.1 Construction of the defense semantics 129

6.3 Optimal selection of countermeasures . 141

6.3.1 The mathematical model . 142

6.3.2 Optimization problems in the deterministic case 142

6.3.3 Stochastic model . 146

CONTENTS v

6.4 Conclusion and future work . 147

7 Tool support and a case study 149

7.1 The OSEAD tool . 149

7.2 Case study: electricity theft scenario . 153

7.2.1 Description of the scenario . 154

7.2.2 Quantitative analysis of the tampering scenario 162

7.2.3 Optimal strategies for the attacker and the defender 167

7.2.4 Selection of optimal sets of countermeasures 167

7.2.5 Attacks optimizing single parameter 168

7.2.6 Attacks optimizing several parameters 171

7.3 On the reliability of the computation framework 172

7.4 Conclusion and future work . 174

8 Conclusion 177

Bibliography 178

Index 192

vi CONTENTS

List of publications

Some of the results presented in this thesis have been already published, in the following

articles.

[WAFP19] Wojciech Wide l, Maxime Audinot, Barbara Fila and Sophie Pinchinat.

Beyond 2014: Formal methods for attack tree-based security modeling. In ACM Com-

puting Surveys, 52(4), pages 75:1–75:36, 2019.

[FW19b] Barbara Fila and Wojciech Wide l. Efficient Attack–Defense Tree Analysis

using Pareto Attribute Domains. In 32nd IEEE Computer Security Foundations Sympo-

sium, CSF 2019, pages 200–2015. IEEE, 2019.

[FW19a] Barbara Fila and Wojciech Wide l. Attack–defense trees for abusing optical

power meters: A case study and the OSEAD tool experience report. In Graphical Models

for Security — 6th International Workshop, GraMSec 2019, Proceedings, volume 11720

of Lecture Notes in Computer Science, pages 95–125. Springer, 2019.

[KW18] Barbara Kordy and Wojciech Wide l. On quantitative analysis of attack–

defense trees with repeated labels. In Principles of Security and Trust — 7th Interna-

tional Conference, POST 2018, Proceedings, volume 10804 of Lecture Notes in Computer

Science, pages 325–346. Springer, 2018.

[KW17] Barbara Kordy and Wojciech Wide l. How well can I secure my system? In

Integrated Formal Methods — 13th International Conference, IFM 2017, Proceedings,

volume 10510 of Lecture Notes in Computer Science, pages 332–347. Springer, 2017.

vii

viii CONTENTS

Résumé

Contexte

Le seul système totalement sécurisé est le système vide, qui n’offre aucune fonctionnalité.

Tout autre système offrant un réel service, qu’il s’agisse d’un guichet automatique, d’un

serveur Web ou d’une centrale nucléaire, sera toujours vulnérable aux attaques. Ces

attaques peuvent viser la disponibilité du système (par exemple, attaques par déni de

service), l’intégrité des données liées au système (par exemple, modification des dossiers fi-

nanciers d’un client bancaire) ou la confidentialité des renseignements liés au système (par

exemple, accès au dossier médical du patient). Pour atteindre leurs objectifs malveillants,

les attaquants, externes ou internes au système, peuvent employer diverses approches, no-

tamment des moyens numériques, des attaques physiques et des techniques d’ingénierie

sociale reposant sur la manipulation psychologique. Tous ces aspects doivent être pris en

compte lors de l’analyse de la sécurité d’un système. La sécurisation d’un système contre

les attaques est d’autant plus difficile que la sécurité parfaite nécessite des ressources il-

limitées, en termes de moyens financiers et de temps, qui ne sont malheureusement jamais

disponibles. C’est dans ce contexte que l’évaluation des risques joue un rôle majeur.

Le risque peut être défini de manière informelle comme la probabilité d’un incident

et ses conséquences pour un actif [RSS15]. Pour un actif qui serait la disponibilité d’un

service sur un serveur Web, un incident pourrait être une attaque par déni de service : la

conséquence serait que le serveur Web devient indisponible pour ses utilisateurs légitimes.

Pour faire face aux risques liés à un système, un processus d’identification, d’analyse

et de gestion proactive des risques, appelé gestion des risques, est mené. L’évaluation

des risques fait partie du processus de gestion des risques. Bien qu’il n’existe pas de

définition unique de l’évaluation des risques, elle comprend trois phases selon la norme

ISO 3100 [ISO18] : l’identification des risques, l’analyse des risques et l’évaluation des

risques.

L’objectif de la phase d’identification des risques est, sans surprise, d’obtenir une liste

exhaustive des risques possibles liés au système et à ses actifs. Il s’agit d’identifier les

vulnérabilités présentes dans le système, les manières dont elles peuvent être exploitées

pour provoquer un incident (menaces), et les causes possibles de leur exploitation (sources

de menaces). Une fois les risques identifiés, l’analyse des risques peut commencer. Son

but est d’estimer la probabilité et de déterminer les conséquences des menaces identifiées.

1

2 Résumé

De nombreux facteurs influent sur la probabilité d’une menace.

Quand la source de la menace est un attaquant, selon leur point de vue, «l’objectif

principal est de poursuivre des attaques plus faciles et moins coûteuses à mener et qui

ont une plus grande probabilité de réussir plutôt que d’échouer», selon le CISO AppSec

Guide de l’OWASP1. C’est-à-dire que, dans ce cas particulier, lors de l’analyse du risque

et de l’évaluation de la probabilité d’une attaque, il faudrait au moins tenir compte de la

difficulté de l’attaque, du coût de son exécution et de la probabilité de son succès, exprimés

de manière qualitative ou quantitative. Une fois les probabilités et les conséquences des

menaces estimées, les risques sont évalués : ils peuvent être comparés à certains critères

d’acceptation des risques supposés, certains risques peuvent être regroupés en un seul

risque et leur tolérabilité peut être évaluée.

De nombreuses techniques peuvent être employées pour mener à bien le processus

d’évaluation des risques et divers outils peuvent rendre la tâche plus facile à accomplir.

Lors de l’évaluation des risques, on peut, par exemple, suivre les directives d’évaluation

des risques (en constante évolution) créées par des organismes officiels pour traiter des

systèmes spécifiques, ou utiliser des méthodologies générales, telles que EBIOS, CRAM,

ITSG-04 ou MAGERIT, pour n’en citer que quelques-unes. Ces quatre méthodologies

sont décrites et comparées dans le rapport de l’OTAN intitulé Improving Common Se-

curity Risk Analysis [TR-08]. Les auteurs du rapport affirment également que, dans

certains cas, les méthodes basées sur les arbres d’attaque offrent une alternative viable à

des méthodes aussi complexes.

Les arbres d’attaque peuvent être utilisés à la fois pour identifier et analyser les

risques. Leur fonction fondamentale consiste à traduire les objectifs de l’attaquant en ac-

tions simples menant à la réalisation de ces objectifs. Le processus même de leur création

pourrait fournir des informations précieuses au cours des délibérations sur l’évaluation

des risques et permettre de mieux comprendre le système étudié et les menaces auxquelles

il est confronté. Mais leurs applications potentielles ne se limitent pas à ces fonctions. Si

l’on peut attribuer aux actions susmentionnées des informations quantitatives ou quali-

tatives, reflétant par exemple l’investissement monétaire nécessaire à leur exécution, les

arbres peuvent être analysés à l’aide de méthodes bien documentées, fournissant des

résultats utiles pour évaluer la probabilité d’attaques particulières. Il est également pos-

sible d’inclure des contre-mesures dans les modèles arborescents d’attaque, ce qui rend

ces modèles étendus utiles dans la phase de gestion des risques qui suit l’évaluation des

risques, à savoir le traitement des risques. Le traitement des risques consiste en des

activités visant à déterminer et à sélectionner les moyens de faire face aux risques, y

compris, entre autres, l’évitement des risques, la réduction des risques, le transfert des

risques.

1Disponible à l’adresse https://www.owasp.org/index.php/CISO_AppSec_Guide:_Criteria_for_

Managing_Application_Security_Risks.

Introduction informelle aux arbres d’attaque et... 3

Introduction informelle aux arbres d’attaque et aux

arbres d’attaque et de défense

Arbres d’attaque Les arbres d’attaque [Sch99] sont un formalisme graphique bien

établi et couramment utilisé pour la modélisation de la sécurité. Inspirés des arbres

de défaillance [HRVG81], utilisés dans l’analyse de fiabilité des systèmes, et des arbres

logiques de menaces [Wei91], ils fournissent une représentation lisible et structurée des at-

taques possibles contre un système à protéger. Leur structure hiérarchique révèle les car-

actéristiques communes des attaques et permet une évaluation quantitative des éléments,

mettant ainsi en évidence les vulnérabilités les plus graves sur lesquelles il faut se concen-

trer lors de la mise en œuvre de contre-mesures. Formellement, les arbres d’attaque sont

des arbres avec une racine et des nœuds étiquetés. Les étiquettes des nœuds représentent

les buts de l’attaquant, avec l’étiquette de la racine correspondant au but principal de

l’attaquant. Cet objectif, souvent de haut niveau et abstrait, est alors récursivement

raffiné en sous-objectifs représentés par les étiquettes des nœuds restants. Le modèle de

base des arbres d’attaque admet deux types de raffinements : le raffinement conjonc-

tif AND et le raffinement disjonctif OR. Pour atteindre l’objectif d’un nœud AND, il faut

atteindre les sous-objectifs de tous ses enfants, alors que pour atteindre l’objectif d’un

nœud OR il suffit d’atteindre au moins un but de ses nœuds enfants. Un autre raffinement

souvent considéré est le raffinement conjonctif séquentiel (SAND). De même que dans le

cas du raffinement conjonctif, l’atteinte d’un but d’un nœud SAND nécessite l’atteinte des

sous-buts de tous ses enfants, mais dans un ordre spécifique.

Arbres d’attaque et de défense Les arbres d’attaque et de défense [KMRS14]

améliorent la puissance expressive des arbres d’attaque en permettant de représenter

explicitement les objectifs du défenseur dans le modèle. Dans un scénario représenté par

un arbre d’attaque et de défense, le but d’un acteur (attaquant ou défenseur) peut être

contré par le but de l’autre acteur. C’est-à-dire, chacun des nœuds, y compris un nœud

non raffiné, peut avoir parmi ses enfants un nœud de l’autre acteur, qui représente un

moyen de contrer le but du nœud parent. L’objectif d’un nœud ayant une contre-mesure

parmi ses enfants est atteinte si les conditions issues du raffinement du nœud sont at-

teintes (dans le cas où le nœud est raffiné) et si l’objectif du nœud de contre-mesure n’est

pas atteint. On peut noter qu’exiger que chaque nœud ait au plus une contre-mesure

parmi ses enfants n’est pas restrictive : s’il est possible de décrire l’objectif d’un nœud de

plusieurs possibilités, elles peuvent toutes être regroupées sous un nœud parent commun

raffiné de façon disjonctive, qui devient alors l’unique contre-mesure du nœud.

Selon la terminologie introduite dans [KMRS14], l’acteur principal d’un arbre d’attaque

et de défense est appelé le proponent et l’autre acteur est l’opponent. L’objectif du pro-

ponent est d’atteindre l’objectif fondamental, alors que l’opponent tente de le rendre

impossible. Les étiquettes des nœuds qui ne sont pas raffinées sont appelées actions de

4 Résumé

base. Elles représentent les actions que les acteurs exécutent pour atteindre les objectifs

des nœuds raffinés.

Notation graphique Lors de la représentation graphique des arbres d’attaque et

de défense, nous utilisons les conventions standard. Les nœuds de l’attaquant sont

représentés par des ellipses rouges et les nœuds du défenseur par des rectangles verts.

Les nœuds AND diffèrent des nœuds OR en ce que les bords qui les relient à leurs enfants

sont reliés par un arc. Les contre-mesures sont attachées aux nœuds qu’elles contrent par

une ligne pointillée. Les nœuds de contre-mesure et les fils d’un nœud sont représentés

sous le nœud.

Exemple fil rouge Un arbre d’attaque et de défense utilisé comme exemple récurrent

tout au long de cette thèse est illustré en figure 1. Le scénario modélisé avec cet arbre

est expliqué dans l’exemple 1.

Exemple 1. Dans le scénario représenté par l’arbre d’attaque et de défense de la figure 1,

le proponent est l’attaquant et l’opponent est le défenseur. L’attaquant veut voler l’argent

du compte du défenseur. Pour atteindre cet objectif, l’agresseur peut utiliser des moyens

physiques, c’est-à-dire apprendre le NIP de la victime, voler sa carte, puis retirer de

l’argent à un guichet automatique. Pour apprendre le NIP, l’agresseur pourrait forcer la

victime à le révéler ou l’intercepter lorsqu’elle entre le NIP. La victime pourrait prévenir

ce dernier en recouvrant le clavier de sa main. Cependant, la couverture du clavier

échoue si l’attaquant surveille le clavier avec une micro-caméra cachée installée à un

endroit approprié. Au lieu d’attaquer d’un point de vue physique, l’attaquant peut voler de

l’argent en exploitant les services bancaires en ligne. Pour ce faire, il pourrait apprendre le

nom d’utilisateur et le mot de passe de la victime. Ces deux objectifs peuvent être atteints

en créant un faux site Web de banque et en utilisant des techniques d’hameçonnage pour

amener le titulaire du compte à entrer ses informations d’identification. Il pourrait aussi

essayer de deviner quel est le mot de passe et le nom d’utilisateur. L’utilisation d’un

mot de passe solide permettrait au titulaire du compte de contrer une telle attaque par

devinette. Une fois que l’attaquant obtient les identifiants, il peut les utiliser pour se

connecter à la banque en ligne et exécuter un transfert. Pour prévenir une telle attaque,

les dispositions de transfert pourraient être en outre sécurisés par une authentification

bifactorielle à l’aide de SMS. Cette mesure de sécurité pourrait être contrée en volant le

téléphone de la victime.

L’arbre de la figure 1 est un exemple jouet, pratique pour illustrer les notions intro-

duites plus loin dans la thèse. Dans le chapitre 7, nous construisons un arbre d’attaque et

de défense plus grand et réaliste, d’après un arbre d’attaque analysé par le Département

de l’énergie des États-Unis dans [Nat15].

Introduction informelle aux arbres d’attaque et... 5

Actions de base répétées Il n’est pas rare que dans un arbre d’attaque et de défense

certains nœuds portent la même étiquette. Dans un tel cas, il y a deux façons de les

interpréter.

– Les nœuds représentent la même instance unique du but - par exemple, les deux

nœuds étiquetés avec l’action de phishing dans l’arbre de la figure 1 peuvent se

référer à la même action, comme décrit dans l’exemple 1. En d’autres termes, le

simple fait de créer un faux site Web de banque et d’inciter la victime à entrer ses

informations d’identification permet d’obtenir à la fois un nom d’utilisateur et un

mot de passe.

– Chacun des nœuds est traité comme une instance distincte du but. Par exemple,

dans le scénario modélisé à l’aide de l’arbre de la figure 1, on pourrait utiliser deux

techniques d’hameçonnage différentes, chacune conçue spécialement pour atteindre

exactement l’un des objectifs suivants : obtenir un nom d’utilisateur et un mot de

passe. Dans un tel cas, alors que les deux nœuds pourraient encore être appelées

hameçonnage, elles représenteraient des cas distincts d’une attaque d’hameçonnage.

La présence de différents nœuds étiquetés de la même manière est naturelle. Certains

buts et actions peuvent contribuer à de multiples façons d’attaquer ou de défendre un

système, et certains de ces moyens peuvent exiger qu’une action soit effectuée plusieurs

fois. Il est facile de contrôler les étiquettes si un arbre est petit et s’il est construit

manuellement, et de le construire avec une interprétation fixe des étiquettes répétées

en tête. Des problèmes peuvent survenir si un arbre est le résultat d’une procédure

automatique, ou s’il est, par exemple, composé d’arbres plus petits créés par différents

analystes analysant des sous-scénarios du scénario, ou ayant des connaissances sur des

sous-systèmes particuliers du système à l’étude.

Dans ce travail, nous suppons la première des deux manières d’interprétation données

ci-dessus. Il y a au moins deux raisons à ce choix. Nous croyons que cette méthode corre-

spond à la lecture intuitive des arbres d’attaque et de défense, c’est-à-dire que lorsqu’une

personne reçoit un arbre, elle est plus susceptible de considérer que les étiquettes répétées

représentent le même événement, et non des instances distinctes de celui-ci. De façon plus

importante et plus formelle, cette interprétation est plus libérale que l’autre. Elle permet

de modéliser à la fois des objectifs et des actions contribuant à des objectifs multiples, en

utilisant le même label, tout en gardant la possibilité de modéliser différentes instances

d’une même action ou d’un même but, en utilisant des étiquettes légèrement différentes.

Si l’autre interprétation était utilisée, il serait impossible de modéliser la possibilité d’une

seule action contribuant à des attaques multiples.

Selon [BK17], nous appelons une action de base qui sert d’étiquette pour au moins

deux nœuds un clone ou une action basique clonée. Les nœuds représentant des instances

distinctes de la même action ou objectif sont supposés avoir des étiquettes différentes.

Dans ce réglage, il est pratique d’utiliser des graphes orientés acycliques, où les nœuds

6 Résumé

portant la même étiquette sont fusionnés en un seul nœud, au lieu d’arbres. Une

telle approche conduit à une meilleure lisibilité des modèles et peut être exploitée pour

l’accélération des calculs effectués sur les arbres. Utiliser des graphes orientés acycliques

au lieu d’arbres est une mesure standard dans le domaine de l’analyse des arbres de

défaillance [RS15], où les sous-arbres enracinés dans les nœuds portant le même label

sont appelés sous-arbres partagés, et les analogues des clones sont des événements de base

partagés, prise aussi parfois dans le cas d’arbres d’attaque, par exemple dans [AHPS14].

Notre définition des arbres d’attaque et de défense basée sur des graphes acycliques ori-

entés sera donnée au Chapitre 2. La représentation graphique de l’arbre de la figure 1

redessinée en graphe orienté acyclique est donnée à la figure 2. La seule différence entre

les deux représentations est que dans ce dernier cas, les nœuds étiquetés avec l’action de

phishing sont fusionnés en un seul nœud.

Questions de recherche et contributions

L’objectif principal des travaux de recherche dont cette thèse est issue est d’identifier et

de lever les limites de l’utilité des arbres de défense contre les attaques dans le processus

d’évaluation des risques. Parmi les limites que nous avons pu identifier, mentionnons les

suivantes.

1. De nombreuses méthodes d’analyse des arbres d’attaque et de défense qui pour-

raient être utiles pour estimer la probabilité d’attaques sont soit développées dans

l’hypothèse explicite que les arbres ne contiennent pas de clones, soit d’une manière

qui les rend impropres aux arbres avec clones.

2. Les méthodes d’analyse axées sur un certain nombre de paramètres à la fois, par

exemple pour déterminer les attaques qui sont optimales en termes de coût et de

probabilité de réussite, ne sont généralement pas efficaces dans le cas de grands

modèles et/ou peuvent être appliquées à un nombre limité de paramètres.

3. Les approches pour une sélection optimale (dans un sens bien défini) des contre-

mesures en des scénarios de sécurité modélisés à l’aide d’arbres d’attaque et de

défense sont soit formulés en termes d’une analyse par simulation, c’est-à-dire

qu’elles permettent de sélectionner des contre-mesures dans le cadre d’un comporte-

ment fixe de l’attaquant, ou bien elles ne peuvent être appliquées qu’aux arbres

satisfaisant certaines restrictions structurelles.

4. L’accès des analystes aux derniers développements dans le domaine des arbres

d’attaque et de défense est très limité. De nouvelles techniques d’analyse sont

créées chaque année et il est difficile d’avoir une vue d’ensemble claire du domaine,

même pour les chercheurs travaillant dans ce domaine. De plus, très peu d’outils

Questions de recherche et contributions 7

mettant en œuvre les techniques d’analyse les plus récentes sont accessibles et tous

les outils existants ne sont pas maintenus.

Contributions Pour aborder la première de ces limitations, nous avons analysé l’une

des méthodes fondamentales d’analyse des arbres de défense contre les attaques, à savoir

la procédure ascendante pour calculer les paramètres liés aux attaques. Elle peut être

utilisée, par exemple, pour obtenir efficacement des valeurs telles que le coût minimal ou

la probabilité maximale de succès d’une attaque. Nous avons pu déterminer les causes du

dysfonctionnement de la procédure ascendante en présence de clones. Cela nous a permis

de développer des méthodes alternatives pour calculer ces paramètres et de construire

des algorithmes efficaces pour déterminer les attaques optimales du point de vue de

l’attaquant. Nous avons pu adapter ces nouvelles méthodes pour l’objectif de l’analyse

multiparamétrique de scénarios de sécurité modélisés à l’aide d’arbres, c’est-à-dire en

abordant dans une certaine mesure le deuxième des quatre points soulevés ci-dessus.

Nous avons également abordé le problème de l’exploitation de modèles d’arbres

d’attaque et de défense pour une sélection optimale des contre-mesures dans les scénarios

de sécurité. Nous avons développé une méthode pour extraire des modèles les com-

portements possibles d’un attaquant rationnel, ainsi que des moyens de contrer de tels

comportements par le défenseur. Ces informations peuvent être utilisées comme données

d’entrée pour des méthodes d’optimisation standard, permettant ainsi de déterminer,

par exemple, un ensemble de contre-mesures dont la mise en œuvre correspond à un

budget donné et maximise l’investissement nécessaire de l’attaquant pour atteindre son

but. Enfin, nous nous sommes efforcés d’accrôıtre l’accessibilité du grand public aux

développements récents dans le domaine de l’analyse des arbres d’attaque. Tout d’abord,

nous avons passé en revue les articles de recherche pertinents publiés au cours des années

2014-2018. Nous avons évalué les points forts et les points faibles des méthodologies

présentées, étudié les relations entre elles et décrit nos conclusions. Deuxièmement, nous

avons développé un support d’outil pour les méthodes d’analyse présentées dans cette

thèse. L’outil OSEAD (Optimal Strategies Extractor for Attack-Defense Trees) est un logi-

ciel facile à utiliser et disponible gratuitement qui vise à soutenir les analystes dans leur

travail.

Le processus d’évaluation des risques est une tâche quelque peu délicate, dont les

résultats ne sont généralement accessibles à personne d’autre que les parties intéressées.

C’est peut-être la cause de l’impossibilité de trouver des modèles réalistes basés sur des

arbres d’attaque. Pour valider les méthodes décrites dans cette thèse, nous avons donc

créé un arbre d’attaque et de défense réaliste basé sur un scénario de sécurité considéré

dans [Nat15]. Nous avons mené une étude de cas sur le scénario modélisé avec l’arbre, en

utilisant certaines des méthodes décrites dans cette thèse. Nous espérons que le modèle

lui-même pourra être utile à d’autres chercheurs comme banc d’essai pour leurs idées.

8 Résumé

Structure de la thèse

Dans le chapitre 2, nous fournissons le contexte formel nécessaire à la compréhension

complète des autres parties de la thèse.

Pour situer les résultats de nos recherches dans le contexte de l’analyse des arbres

d’attaque, nous décrivons certains des travaux existants qui sont étroitement liés aux

nôtres dans le chapitre 3, basé sur notre enquête [WAFP19].

Le problème de l’analyse quantitative de la sécurité à l’aide d’arbres de défense contre

les attaques contenant des clones est étudié en profondeur au chapitre 4. Les fondements

du cadre décrit dans ce chapitre ont été posés dans [KW18]. La plupart des résultats

sont nouveaux et n’ont pas encore été préparés pour publication.

Le chapitre 5, basé sur [FW19b], est consacré à l’analyse multiparamétrique de la

sécurité.

La sélection optimale des contre-mesures dans des scénarios modélisés avec des arbres

est le point central du chapitre 6. Les idées qui sous-tendent l’approche décrite dans le

chapitre, ainsi que certains résultats préliminaires, ont été présentés dans [KW17]. Le

reste du chapitre porte sur des développements récents qui n’ont pas encore été publiés.

Enfin, au chapitre 7, nous décrivons l’outil OSEAD et l’utilisons pour réaliser une

étude de cas d’un scénario de sécurité lié au secteur énergétique. L’étude a été publiée

dans [FW19a].

Nous concluons au chapitre 8.

Chapter 1

Introduction

1.1 Context

The only system that is guaranteed to be fully secure is the empty system, which does not

provide any functionality. Any other system offering an actual service, be it an automated

teller machine, a web server or a nuclear power plant, will always be vulnerable to attacks.

These attacks may target the system’s availability (e.g., denial-of-service attacks), the

integrity of system-related data (e.g., modification of financial records of a bank client),

or the confidentiality of system-related information (e.g., gaining access to a patient’s

medical record). To achieve their malicious goals, attackers, who might be external to

the system or insiders, can employ various approaches, including digital means, physical

attacks, and social engineering techniques relying on psychological manipulation. All

these aspects should be taken into account when analyzing security of a system. The

task of securing a system against attacks is made even more difficult by the fact that

perfect security requires unlimited resources, in terms of financial means and time, which

are of course never available. This is where the risk assessment comes into play.

Risk can be informally defined as the likelihood of an incident and its consequences for

an asset [RSS15]. For the asset being the availability of a web server services, an incident

might be a denial-of-service attack, the consequence of which is the web server becoming

unavailable to its intended users. To tackle the risks related to the system of interest,

the process of risks identification, analysis and proactive management, called risk man-

agement, is conducted. Risk assessment is a part of the risk management process. While

no single definition of risk assessment exists, according to the ISO 3100 standard [ISO18]

it consists of three phases: risk identification, risk analysis and risk evaluation.

The goal of the risk identification phase is, not surprisingly, to obtain an exhaustive

list of possible risks related to the system and its assets. It involves identifying vul-

nerabilities present in the system, the ways in which they can be exploited to cause an

incident (threats), and the possible causes for their exploitation (threat sources). With

the risks identified, the risk analysis can begin. Its aim is to estimate the likelihood and

to determine the consequences of identified threats. Numerous factors impact the likeli-

9

10 CHAPTER 1. Introduction

hood of a threat. When the threat source is an attacker, then from their perspective “the

main goal is to pursue attacks that are easier and cheaper to conduct and have the high-

est probability to succeed rather than otherwise,” according to OWASP CISO AppSec

Guide1. That is, in this particular case, when conducting a risk analysis and assessing

the likelihood of an attack, one could take at least the attack’s difficulty, the cost of its

execution and the probability of its success into account, expressed either qualitatively

or quantitatively. Once the likelihoods and the consequences of threats are estimated,

the risks are evaluated: they might be compared against some assumed risk acceptance

criteria, some of the risks can be aggregated into one risk, and their tolerability can be

assessed.

Numerous techniques can be employed for conducting the risk assessment process

and various tools can make the task easier to handle. When performing risk assessment,

one can, for instance, follow (ever evolving) risk assessment guidelines created by official

bodies for dealing with specific systems, or use general-purpose methodologies, such as

EBIOS, CRAM, ITSG-04 or MAGERIT, to name a few. These four methodologies are

described and compared in the NATO’s Improving Common Security Risk Analysis re-

port [TR-08]. The authors of the report state also that in some cases methods based on

attack trees offer a viable alternative to such complex methodologies.

Attack trees can be used for both identifying and analyzing risks. Their fundamental

function lies in translating the attacker goals into simple actions leading to realization of

these goals. The very process of their creation might provide valuable insights during the

risk assessment deliberations and offer a better understanding of the system under con-

sideration and the threats that the system is facing. But their potential applications are

not limited to these functions. If the above mentioned actions can be assigned quantita-

tive or qualitative information, reflecting for instance the monetary investment necessary

for their execution, trees can be analyzed using well-studied methods, providing results

helpful in assessing the likelihood of particular attacks. It is also possible to include

countermeasures against attacks in the attack tree-based models, which makes such ex-

tended models useful in the phase of risk management that follows the risk assessment,

namely, risk treatment. Risk treatment consists of activities aimed at determining and

selecting ways of dealing with risks, including risk avoidance, risk reduction, risk transfer

and others.

1Available at https://www.owasp.org/index.php/CISO_AppSec_Guide:_Criteria_for_

Managing_Application_Security_Risks.

1.2. Informal introduction to attack trees and attack–defense trees 11

1.2 Informal introduction to attack trees and attack–

defense trees

Attack trees Attack trees [Sch99] are a well-established and commonly used graphi-

cal formalism for security modeling. Inspired by fault trees [HRVG81], which are used in

system reliability analysis, and threat logic trees [Wei91], they provide readable and struc-

tured representation of possible attacks against a system to protect. Their hierarchical

structure reveals common features of the attacks and enables quantitative evaluation of

security, thus highlighting the most severe vulnerabilities to focus on while implementing

countermeasures. Formally, attack trees are rooted trees with labeled nodes. The labels of

the nodes represent goals of the attacker, with the label of the root node corresponding

to the attacker’s main goal. This, often high-level and abstract, goal is recursively refined

into subgoals represented by the labels of the remaining nodes. The basic model of attack

trees admits two types of refinements: conjunctive refinement AND and disjunctive refine-

ment OR. To achieve a goal of an AND node one needs to achieve the subgoals of all of

its children, whereas to achieve the goal of an OR node it is enough to achieve any of the

goals of its child nodes. Another often considered refinement is the sequential conjunctive

refinement (SAND). Similarly as in the case of the conjunctive refinement, achieving a

goal of a SAND node requires achieving the subgoals of all of its children, but in a specific

order.

Attack–defense trees Attack–defense trees [KMRS14] enhance the expressive power

of attack trees by allowing for explicitly depicting goals of a defender in the model. In a

scenario represented by an attack–defense tree, a goal of an actor (attacker or defender)

can be countered by a goal of the other actor. That is, each of the nodes, including the

non-refined ones, can have among its children a single node of the other actor, which

represents a way of countering the parent node’s goal. The goal of a node having a

countermeasure among its children is achieved if the achievement conditions following

from the node’s refinement are satisfied (if the node is refined) and the goal of the

countermeasure node is not achieved. Note that the requirement of every node having at

most one countermeasure among its children is not limiting at all: should it be possible to

counter a goal of a node in many different ways, all of these ways can be gathered under a

common disjunctively refined parent, which can then be the single unique countermeasure

of the node.

According to the terminology introduced in [KMRS14], the root actor in an attack–

defense tree is called the proponent and the other actor is the opponent. The aim of the

proponent is to achieve the root goal, whereas the opponent tries to make this impossible.

The labels of the nodes that are non-refined are called basic actions. They represent

actions that the actors execute to achieve the goals of the refined nodes.

12 CHAPTER 1. Introduction

Graphical notation When depicting attack–defense trees graphically, we use the stan-

dard conventions. The nodes of the attacker are represented with red ellipses, and the

nodes of the defender with green rectangles. The AND nodes differ from the OR nodes in

that the edges connecting them with their children are joined with an arc. The counter-

measures are attached to the nodes they are countering via a dotted line. Both counter-

measure and child nodes of a node are depicted below the node.

Running example An attack–defense tree used as a running example in this thesis is

depicted in Figure 1. The scenario modeled with this tree is explained in Example 1.

Example 1. In the scenario represented by the attack–defense tree from Figure 1, the

proponent is the attacker and the opponent is the defender. The attacker wants to steal

money from the defender’s account. To achieve this goal, the attacker can use physical

means, i.e., learn the victim’s PIN, steal their card, and then withdraw cash from an

ATM. To learn the PIN, the attacker could force the victim to reveal it or eavesdrop on

the victim when they enter the PIN. The victim could prevent the latter by covering the

keypad with hand. However, covering the keypad fails if the attacker monitors the keypad

with a hidden micro–camera installed at an appropriate spot.

Instead of attacking from a physical angle, the attacker can steal money by exploiting

online banking services. In order to do so, they could learn the victim’s user name and

password. Both of these goals can be achieved by creating a fake bank website and using

phishing techniques for tricking the account holder into entering their credentials. The

attacker could also try to guess what the password and the user name are. Using very

strong password would allow the account holder to counter such a guessing attack. Once

the attacker obtains the credentials, they can use them for logging into the online banking

services and execute a transfer. To prevent such an attack, transfer dispositions might

be additionally secured with two-factor authentication using mobile phone text messages.

This security measure could be counterattacked by stealing the victim’s phone.

The tree in Figure 1 is a toy example, convenient for illustrating notions introduced

further in the thesis. In Chapter 7, we construct a bigger, realistic attack–defense tree,

based on an attack tree analyzed by the U.S. Department of Energy in [Nat15].

Repeated basic actions It is not rare that in an attack–defense tree some nodes bear

the same label. In such a case, there are two ways of interpreting them.

– The nodes represent the same single instance of the goal – e.g., both of the nodes

labeled with the phishing action in the tree from Figure 1 might refer to the same

action, as described in Example 1. That is, the single action of setting up a fake

bank’s website and luring the victim into entering their credentials achieves both

the get user name and get password goals.

1
.2

.
In

fo
rm

a
l

in
tr

o
d
u
ct

io
n

to
a
tt

a
ck

tr
ee

s
a
n
d

a
tt

a
ck

–
d
ef

en
se

tr
ee

s
13

steal from account

via ATM

learn

PIN

eavesdrop

(eav)

cover

keypad

(cover)

camera

(cam)

force

(force)

steal

card

(card)

withdraw

cash

(cash)

via online banking

get

password

guess

pwd

(pwd)

strong

pwd

(spwd)

phishing

(phish)

get

user name

phishing

(phish)

guess

user name

(uname)

log in

& execute transfer

(log&trans)

SMS

(sms)

steal

phone

(phone)

F
ig

u
re

1:
A

tt
ac

k
–d

ef
en

se
tr

ee
fo

r
st

ea
li
n
g

m
on

ey
fr

om
so

m
eb

o
d
y
’s

ac
co

u
n
t

14 CHAPTER 1. Introduction

– Each of the nodes is treated as a distinct instance of the goal. For instance, in

the scenario modeled with the tree from Figure 1 one could employ two different

phishing techniques, each tailored specifically for achieving exactly one of the goals

get user name and get password. In such a case, while both nodes could still be

labeled phishing, they would represent distinct instances of a phishing attack.

The presence of different nodes being labeled in the same way is natural. Some goals

and actions might contribute to multiple ways of attacking or defending a system, and

some of these ways might require an action to be performed a number of times. It is easy

to control the labels if a tree is small and if it is constructed manually, and to construct

it with a fixed interpretation of repeated labels in mind. Problems might arise if a tree is

a result of an automatic procedure, or if it is, for instance, composed from smaller trees

created by different analysts analyzing subscenarios of the scenario, or having knowledge

about particular subsystems of the system under consideration.

In this work we assume the first of the two ways of interpretation given above. There

are at least two reasons for this choice. We believe that this way corresponds to the

intuitive reading of attack–defense trees, that is, we believe that when a person is given a

tree, they are more likely to consider the repeated labels to stand for the same event, and

not for distinct instances of it. More importantly and more formally, this interpretation is

more liberal than the other one. It allows for modeling both goals and actions contributing

to multiple goals, by using the same label, while keeping the possibility of modeling

different instances of the same action or goal, by using slightly different labels. Should

the other interpretation be used, it would be impossible to model the possibility of a

single action contributing to multiple attacks.

Following [BK17], we call a basic action that serves as a label for at least two nodes a

clone or a cloned basic action. Nodes representing distinct instances of the same action

or goal are assumed to have different labels. In this setting, it is convenient to use

directed acyclic graphs, where nodes bearing the same label are merged into a single

node, instead of trees. Such approach leads to a better readability of models and can

be exploited for speeding up computations performed on trees. Using directed acyclic

graphs instead of trees is a standard measure in the field of fault trees analysis [RS15]

(where subtrees rooted in nodes bearing the same label are called shared subtrees, and

the analogue of clones are shared basic events), taken also sometimes in the case of attack

trees, e.g., in [AHPS14]. Our definition of attack–defense trees based on directed acyclic

graphs will be given in Chapter 2. The graphical representation of the tree from Figure 1

redrawn as a directed acyclic graph is given in Figure 2. The only difference between the

two representations is that in the latter the nodes labeled with the phishing action are

merged into a single node.

1
.2

.
In

fo
rm

a
l

in
tr

o
d
u
ct

io
n

to
a
tt

a
ck

tr
ee

s
a
n
d

a
tt

a
ck

–
d
ef

en
se

tr
ee

s
15

steal from account

via ATM

learn

PIN

eavesdrop

(eav)

cover

keypad

(cover)

camera

(cam)

force

(force)

steal

card

(card)

withdraw

cash

(cash)

via online banking

get

password

guess

pwd

(pwd)

strong

pwd

(spwd)

phishing

(phish)

get

user name

guess

user name

(uname)

log in

& execute transfer

(log&trans)

SMS

(sms)

steal

phone

(phone)

F
ig

u
re

2:
A

tt
ac

k
–d

ef
en

se
tr

ee
fo

r
st

ea
li
n
g

m
on

ey
fr

om
so

m
eb

o
d
y
’s

ac
co

u
n
t

re
p
re

se
n
te

d

u
si

n
g

a
d
ir

ec
te

d
ac

y
cl

ic
gr

ap
h

16 CHAPTER 1. Introduction

1.3 Research questions and our contributions

Research questions The main goal of the research that this thesis is a byproduct of

was to identify and to lift limitations on the usefulness of attack–defense trees in the

risk assessment process. Among the limitations that we were able to identify are the

following.

1. Many methods for analysis of attack–defense trees that could be useful for esti-

mating likelihood of attacks are either developed under the explicit assumption of

trees not containing clones, or in a way that makes them not suitable for trees with

clones.

2. Analysis methods focusing on a number of parameters at a time, e.g., for determin-

ing attacks that are optimal w.r.t.2 both cost and success probability, are generally

not efficient in the case of big models and/or can be applied to a limited number

of parameters.

3. Approaches for optimal (in a well defined sense) selection of countermeasures in

security scenarios modeled with attack–defense trees are either formulated in terms

of a ”what-if” analysis, that is, they allow for selection of countermeasures under

fixed behavior of the attacker, or else they can be applied only to trees satisfying

some structural restrictions.

4. The access of risk analysts to the latest developments in the field of attack–defense

trees is very limited. New analysis techniques are being created yearly, and it is

difficult to have a clear overview of the field, even for the researchers working in the

domain. Furthermore, very few tools implementing most recent analysis techniques

are accessible, and not all of the existing tools are maintained.

In the light of the above limitations, we have posed and tried to answer the following

research questions.

1. How to determine optimal attacks efficiently in the presence of clones?

2. How to determine efficiently attacks optimal w.r.t. to multiple parameters, possibly

in the presence of clones?

3. How to determine efficiently sets of optimal countermeasures, possibly in the pres-

ence of clones?

Contributions Trying two answer the first two of the above questions, we have ana-

lyzed one of the fundamental methods for analysis of attack–defense trees, namely, the

2To be read as with respect to.

1.4. Thesis structure 17

bottom-up procedure for computing attack-related parameters. It can be used, for in-

stance, for efficiently obtaining values such as the minimal cost or the maximal success

probability of an attack. We were able to determine causes of the bottom-up proce-

dure malfunctioning in the presence of clones. This allowed us for developing alternative

methods for computing such parameters, and for constructing efficient algorithms for de-

termining attacks optimal from the point of view of the attacker. We were able to adapt

these new methods for the purpose of multi-parameter analysis of security scenarios mod-

eled with trees.

We have also tackled the problem of exploiting attack–defense trees models for optimal

selection of countermeasures in security scenarios, thus partially answering the third of

the research question posed above. We have developed a method for extracting possible

behaviors of a rational attacker from models, as well as ways of countering such behaviors

by the defender. This information can be used as input for standard optimization meth-

ods, thus allowing for determining, e.g., a set of countermeasures the implementation of

which fits a given budget and maximizes the necessary investment of the attacker into

achieving their goal.

Finally, we have made efforts to raise accessibility of the recent developments in the

field of attack tree analysis to general public. First, we have surveyed relevant research

articles published in the years 2014-20183. We have assessed the strong and weak points

of the methodologies presented within, studied relations between them and described our

findings. Second, we have developed a tool support for the analysis methods presented

in this thesis. The OSEAD tool (Optimal Strategies Extractor for Attack–Defense Trees) is

an easy-to-use and freely available software that aims at supporting risk analysts in their

work.

The risk assessment process is a somewhat delicate task, a one the results of which are

generally not made accessible to anyone beyond the parties of interest. This might be the

cause for realistic attack tree-based models being almost impossible to find. To validate

the methods described in this thesis, we have thus created a realistic attack–defense tree

model, based on a security scenario considered in [Nat15]. We conducted a case study of

the scenario modeled with the tree, using some of the methods described in this thesis.

We hope that the model itself might be useful for other researchers as a testing ground

for their ideas.

1.4 Thesis structure

In Chapter 2, we provide the formal background necessary for full understanding of the

remaining parts of the thesis.

To place the results of our research in the context of the field of attack tree analysis,

3The previously published articles have been extensively surveyed before, and compared taking dif-

ferent criteria into account, see, e.g., [KPS14, HKCH17, NPMK18].

18 CHAPTER 1. Introduction

we describe some of the existing works that are closely related to ours in Chapter 3, which

is based on our survey [WAFP19].

The problem of quantitative analysis of security using attack–defense trees containing

clones is studied in depth in Chapter 4. The foundations of the framework described in

this chapter have been layed in [KW18]. Most of the results are new, and have not been

prepared for publication yet.

Chapter 5, based on [FW19b], is devoted to the multi-parameter analysis of security.

The optimal selection of countermeasures in scenarios modeled with trees is the focal

point of Chapter 6. The ideas underlying the approach described in the chapter, as well as

some preliminary results, have been presented in [KW17]. The remainder of the chapter

consists of recent developments that have not been published yet.

Finally, in Chapter 7, we describe the OSEAD tool and use it for conducting a case

study of a security scenario related to the energy sector. The study has been published

as [FW19a].

We conclude in Chapter 8.

Chapter 2

Preliminaries

Reliable methods for modeling and analysis of security necessarily require firm formal

foundations. In Section 2.1– 2.4, we recall and illustrate with examples some of the notions

and concepts underlying security analysis based on attack–defense trees. Definition of

attack–defense trees based on directed acyclic graphs is given in Section 2.5. The last

part of this chapter, Section 2.6, is devoted to the so-called attribute domains and the

bottom-up procedure, which is a standard tool for analysis of models based on AND/OR

trees, including attack trees, attack–defense trees, fault trees and many others.

2.1 Elements of set theory and abstract algebra

We use N for the set of natural numbers, including zero, and R for the set of real numbers.

For n P N and r P R, the set of natural numbers greater than or equal to n and the set

of real numbers greater than or equal to r are denoted by Něn and Rěr, respectively.

The number of elements of a finite set X is denoted by |X|. We use 2X for the set of

all subsets of X (the powerset of X). For a subset Y of X, we write Y Ď X if Y P 2X ,

and Y Ă X if Y P 2XztXu. A subset R of the Cartesian product XˆX is called a binary

relation over X. For better readability, we sometimes write xRy instead of px, yq P R.

Binary relations that will be of particular interest for us are partials orders.

Definition 1 (Partial order). A binary relation ĺ over a set X is called a partial order

on X if

– it is reflexive, i.e., x ĺ x for every x P X,

– it is antisymmetric, i.e., if x ĺ y and y ĺ x for some x, y P X, then x “ y,

– it is transitive, i.e., if x ĺ y and y ĺ z for some x, y, z P X, then x ĺ z.

Definition 2 (Partially ordered set). A partially ordered set is a pair pX,ĺq, where X

is a set and ĺ is a partial order on X.

19

20 CHAPTER 2. Preliminaries

For a partially ordered set pX,ĺq, we use x ă y to denote the fact that x ĺ y and

x ‰ y. An element x of X is a minimal (respectively, maximal) element w.r.t. the order

ĺ if there is no y P X such that y ă x (respectively, x ă y).

Example 2. For every set X, the pair p2X ,Ďq is a partially ordered set. The empty set ∅

is the unique minimal element w.r.t. the relation of inclusion Ď, and the unique maximal

element w.r.t. this order is the set X.

Recall that a function f from a set X to a set Y is defined by a subset Gf of the

Cartesian product X ˆ Y such that for every x P X there is exactly one y P Y satisfying

px, yq P Gf . The set Gf is called the graph of the function f . The notation f : X Ñ Y is

used to denote the fact that f is a function from X to Y . If px, yq P Gf , then y is called

the image of x by f and denoted by fpxq. If the set Y is obvious from the context or

irrelevant, the function f is said to be a function on X. A binary operation on a set X

is a function f : X ˆX Ñ X. For f being a binary operation on X, we sometimes write

xfy instead of fpx, yq.

A special example of the partial order is the canonical partial order on idempotent

semirings.

Definition 3 (Semiring). Let X be a set and let ‘ and b be binary operations on X.

The triple pX,‘,bq is a semiring if

– both ‘ and b are associative, i.e., px‘yq‘z “ x‘py‘zq and pxbyqbz “ xbpybzq,

for every x, y, z P X,

– the operation ‘ is commutative, i.e., x‘ y “ y ‘ x, for every x, y P X,

– X contains neutral element for ‘, i.e., an element e‘ satisfying x ‘ e‘ “ x, for

every x P X,

– X contains neutral element for b, i.e., an element eb satisfying x b eb “ x and

eb b x “ x, for every x P X,

– the neutral element e‘ for ‘ is equal to the absorbing element ab for b, i.e.,

xb e‘ “ e‘, for every x P X,

– the operation b distributes over ‘, i.e., x b py ‘ zq “ px b yq ‘ px b zq and

py ‘ zq b x “ py b xq ‘ pz b xq for every x, y, z P X.

A semiring pX,‘,bq is commutative if the operation b is commutative. If the op-

eration ‘ is idempotent, that is, if for every x P X the equality x ‘ x “ x holds, then

the semiring pX,‘,bq is an idempotent semiring. Every idempotent semiring admits a

partial order defined as follows.

Definition 4 (Canonical partial order on idempotent semiring). Let pX,‘,bq be an

idempotent semiring. The canonical partial order on pX,‘,bq is the order defined for

x, y P X by x ĺ y if and only if x‘ y “ y.

2.1. Elements of set theory and abstract algebra 21

We illustrate the notion of canonical partial order with the following two examples.

Example 3. For a set X, the triple p2X ,Y,Xq is a commutative idempotent semiring.

The neutral elements for the union and intersection of sets are the empty set ∅ and the

set X, respectively. The empty set is also the absorbing element for the intersection. The

canonical partial order on this semiring is the inclusion relation, defined for Y, Z P 2X by

Y ĺ Z if and only if Y Y Z “ Z.

Example 4. The commutative idempotent semiring pr0, 1s,max, ¨q, where ¨ is the multi-

plication operator, belongs to the class of so-called Viterbi semirings. The neutral elements

for the operation of taking maximum and the multiplication are 0 and 1, respectively. The

former is also the absorbing element for the multiplication. The canonical partial order

on this semiring is the less than or equal to relation ď, defined for x, y P r0, 1s by x ĺ y

if and only if maxpx, yq “ y.

If every two elements of a set X are comparable under a partial order ĺ, that is, if

x ĺ y or y ĺ x holds for every two elements x, y P X, then ĺ is called total order . If ĺ

is a total order, then the pair pX,ĺq is a totally ordered set.

Another relation that will be of use for us is the equivalence relation.

Definition 5 (Equivalence relation). A binary relation ” over a set X is called an

equivalence relation on X if

– it is reflexive, i.e., x ” x for every x P X,

– it is symmetric, i.e., if x ” y implies that y ” x, for every x, y P X,

– it is transitive, i.e., if x ” y and y ” z for some x, y, z P X, then x ” z.

For a function f : X Ñ Y , we use f |Z to denote the restriction of f to the subset

Z Ď X of X, i.e., g “ f |Z if Z Ď X, g : Z Ñ Y and gpxq “ fpxq, for x P Z.

A function f is a Boolean function if f : t0, 1un Ñ t0, 1u, for some n P Ně1.

Definition 6. Let f be a Boolean function on t0, 1un, with n P Ně1, and let k P

t1, . . . nu. The function f is positive (respectively, negative) in the k-th variable if for

every px1, . . . , xk´1, xk`1, . . . , xnq P t0, 1u
n´1 the inequality

fpx1, . . . , xk´1, 0, xk`1, . . . , xnq ď fpx1, . . . , xk´1, 1, xk`1, . . . , xnq

(respectively,

fpx1, . . . , xk´1, 0, xk`1, . . . , xnq ě fpx1, . . . , xk´1, 1, xk`1, . . . , xnqq

holds.

Finally, an unranked function is defined as follows.

22 CHAPTER 2. Preliminaries

Definition 7 (Unranked function). An unranked function on a set X is a family of

functions pfnq
`8
n“1 such that fn : Xn Ñ X, for n P Ně1.

Throughout the thesis, we naturally treat binary, associative operations as unranked

functions. In such a case, we assume that when provided with a single argument, the

function returns the argument itself. The following example illustrates the notion of

unranked function.

Example 5. The families pfnq
`8
n“1 and pgnq

`8
n“1 with fn and gn being defined for n P Ně1

and x1, . . . , xn P R as

fnpx1, . . . , xnq :“
nÿ

i“1

xi,

gnpx1, . . . , xnq :“
nź

i“1

xi,

are unranked functions on R. To represent pfnq
`8
n“1 and pgnq

`8
n“1 in a simple manner, we

would use the (binary and associative) operators ` and ¨, respectively.

Another concept which will be of use in our considerations is that of a multiset.

Definition 8 (Multiset). Multiset is a pair pX,mq, where X is the underlying set of the

multiset and m : X Ñ N is the multiplicity function.

The multiplicity function describes the number of occurrences of particular elements of

the underlying set in the multiset. For a set X, we denote by MpXq the set of all multisets

whose underlying set is X. If M1 “ pX,m1q and M2 “ pX,m2q are multisets belonging to

MpXq, then their sum is defined as M1

Ţ
M2 :“ pX,m1`m2q, with pm1`m2qpxq defined

as m1pxq`m2pxq for x P X. For simplicity, we use the t| ¨ |u notation to denote multisets,

and when defining a multiset pX,mq, we specify the function m by explicitly listing each

of the elements x of X the corresponding number mpxq of times. For example, we write

t|a, a, b|u for the multiset pta, b, cu,mpaq “ 2,mpbq “ 1,mpcq “ 0q PMpta, b, cuq.

Example 6. Let M1 “ t|a, a, b|u and M2 “ t|a, b, c|u be multisets belonging to Mpta, b, cuq.

Their sum is M1

Ţ
M2 “ t|a, a, a, b, b, c|u.

We finish this section with a simple and yet useful lemma.

Lemma 1. Let A1, . . . , Ak and B1, . . . , Bk, for k P Ně1, be sets such that Ai X Bj “ ∅,

for i, j P t1, . . . , ku, i ‰ j, satisfying

kď

j“1

Aj Ď
kď

j“1

Bj.

If Ai ‰ Bi, for some i P t1, . . . , ku, then Ai Ă Bi.

Proof. Let i P t1, . . . , ku be such that Ai ‰ Bi. Since AiXBj “ ∅ for j P t1, . . . , ku, j ‰ i,

and every element of Ai belongs to
kŤ

j“1

Bj, it follows that every element of Ai belongs to

Bi.

2.2. Elements of term rewriting 23

2.2 Elements of term rewriting

For technical reasons, it will be sometimes useful to transform algebraic expressions over

semirings into a specific form. Formally, we will apply to such expressions term rewriting

rules, which will iteratively reduce the expressions to the desired form. This section, based

on [BN98], is devoted to introducing notions necessary for defining the above mentioned

reductions.

An abstract reduction system is a pair pA,Ñq, where A is a set and Ñ is a binary

relation on A, called reduction. The reflexive transitive closure of the reduction Ñ,

denoted
˚
ÝÑ, is defined as

˚
ÝÑ:“ Ñ

Y tpx, xq : x P Au

Y tpx, yq : there is n P Ně1 and x1, . . . , xn P A such that

xÑ x1, xn Ñ y and xi Ñ xi`1, for i P t1, . . . , n´ 1uu.

Intuitively, if x
˚
ÝÑ y, then x can be reduced to y in a finite number of steps using the

reduction Ñ. An element x P A is reducible, if there is y P A, y ‰ x, such that x Ñ y.

If x P A is not reducible, then it is said to be in normal form. An element y P A is a

normal form of x if x
˚
ÝÑ y and y is in normal form.

Example 7 (Example 2.1.2 in [BN98]). Let A “ Nzt0, 1u and Ñ“ tpm,nq : m ą

n and n divides mu. The elements of A that are not reducible are the prime numbers.

An element p P A is a normal form of m P A if and only if p is a prime factor of m.

Among the properties of reduction systems that will be of interest for us are local

confluence and termination.

Definition 9. Let pA,Ñq be an abstract reduction system. The reduction Ñ is

– locally confluent, if for every x, y1, y2 P A satisfying x Ñ y1 and x Ñ y2 there is

z P A such that y1
˚
ÝÑ z and y2

˚
ÝÑ z,

– terminating, if there is no infinite sequence x1, x2, . . . of elements of A such that

xi Ñ xi`1, for i P Ně1.

Example 8. Let pA,Ñq be the reduction system considered in Example 7. The reduction

Ñ is terminating, since every sequence of reductions using Ñ ends with a prime number

that cannot be reduced further. The reduction is not locally confluent. Indeed, if n “ p1 ¨p2

is a product of two distinct prime numbers, then n Ñ p1 and n Ñ p2, but neither of the

two primes is reducible.

Note that a reduction system in which every element can be reduced to exactly one

element is trivially locally confluent. This is the case, since if for every x P A there is

24 CHAPTER 2. Preliminaries

exactly one y P A such that x Ñ y, then the only possible choice of y1 and y2 from the

definition of local confluence is y1 “ y, y2 “ y, and the second part of the definition is

satisfied by z “ y.

Reduction systems that are both locally confluent and terminating have the following

property.

Lemma 2 (Reformulation of Theorem 2.1.9 and Lemma 2.7.2 from [BN98]). Let pA,Ñq

be an abstract reduction system. If Ñ is locally confluent and terminating, then every

element of A has a unique normal form.

2.3 Elements of graph theory

In this section, we recall basic notions necessary for defining attack–defense trees using

directed graphs. The content of this section is based mainly on [BM08].

Definition 10 (Directed graph). A directed graph is an ordered pair D “ pV,Aq consist-

ing of a set V of nodes and a set A, disjoint from V , of arcs, together with an incidence

function ψD that associates with each arc of D an ordered pair of (not necessarily distinct)

nodes of D.

Let D “ pV,Aq be a directed graph. If a is an arc in A and ψDpaq “ pw, vq, then a is

said to join w and v. In this work, we consider directed graphs with no parallel arcs, i.e.,

directed graphs having injective incidence functions. For such graphs, we identify arcs

with their images by the incidence function. In other words, we assume that A Ď V ˆV .

Let pV,Aq be a directed graph. If the pair pw, vq is an arc in A, then w is called a

child of v and v is a parent of w. A path in pV,Aq is a sequence of nodes of V in which

each node is a child of its successor in the sequence.

Definition 11 (Directed acyclic graph). A directed acyclic graph (DAG) is a directed

graph pV,Aq in which none of the nodes appears more than once in any of the paths in

pV,Aq.

When depicting DAGs graphically, we place children of a node below that node, and

connect each of them with the parent using a line segment.

Example 9. Let V “ 2t0,1u and let A “ tpX, Y q : X Ă Y u. In the DAG pV,Aq, depicted

in Figure 3, the sequence p∅, t0u, t0, 1uq is a path, since the node ∅ is a child of the node

t0u, and the latter is a child of the node t0, 1u.

If a DAG pV,Aq contains a unique node that has no parents, then this node is called

the root of pV,Aq. DAG containing a root node is called rooted.

Example 10. The DAG depicted in Figure 3 is rooted. Its root is the node t0, 1u.

2.4. Elements of formal language theory 25

t0, 1u

t0u

∅

t1u

Figure 3: DAG p2t0,1u, tpX, Y q : X Ă Y uq.

A directed graph pV 1, A1q is a subgraph of a directed graph pV,Aq if V 1 Ď V and

A1 Ď A. If the set A1 consists of all the arcs of A whose both nodes belong to V 1, then

pV 1, A1q is a subgraph of pV,Aq induced by V 1. If both pV,Aq and pV 1, A1q are DAGs, we

use the word subdag for pV 1, A1q, instead of subgraph.

Example 11. Consider again the DAG pV,Aq depicted in Figure 3. Let

V 1 “ t∅, t0u, t0, 1uu,

A1 “ tp∅, t0uq, pt0u, t0, 1uqu and

A2 “ tp∅, t0uq, pt0u, t0, 1uq, p∅, t0, 1uqu.

The pair pV 1, A1q is a subdag of pV,Aq, and pV 1, A2q is a subdag of pV,Aq induced by V 1.

If for every two nodes u, v of a directed graph pV,Aq there is a sequence of nodes

v1, v2, . . . , vk such that v1 “ u, vk “ v and for every i P t1, . . . , k ´ 1u either pvi, vi`1q or

pvi`1, viq is an arc in A, then the graph is said to be connected. A maximal, w.r.t. to

the inclusion of both nodes and arcs sets, connected subgraph of a directed graph pV,Aq

is called a component of pV,Aq. Note that the only component of a connected directed

graph is the graph itself, and that every rooted DAG is connected.

2.4 Elements of formal language theory

It is standard to represent attack–defense trees as typed ground terms over a specific

signature. In this section, we briefly recall notions necessary for the understanding of

this representation. An interested reader is referred to [Koz97] for more details.

An alphabet is any finite set. The elements of an alphabet Σ are called symbols. A

string over Σ is any finite-length sequence of elements of Σ. The length of a string s is

the number of symbols in s. The unique string of length zero over Σ is called the empty

string and is denoted by ǫ.

Example 12. Let Σ “ ta, bu. Both s1 “ aaa and s2 “ abab are strings over Σ. The

length of s1 is three, and the length if s2 is four.

26 CHAPTER 2. Preliminaries

The set of all strings over an alphabet Σ is denoted by Σ˚. A language over Σ is any

subset of Σ˚. Some languages can be concisely described with a finite set of production

rules. Production rules specify how strings in a language can be transformed into other

strings in this language.

Example 13. Let Σ “ ta, bu and let L “ tǫ, aa, aaaa, aaaaaa, . . .u be the language of

strings containing an even number of the letter a. The language L can be described using

the production rules

s ::“ ǫ | saa.

They can be read as follows: every string s in L is either the empty string ǫ or a concate-

nation of a string in L with two letters a.

An algebraic signature is an alphabet consisting of function symbols in which each

symbol is assigned a natural number, called its arity.

Definition 12 (Algebraic signature). An algebraic signature is a pair pΣ, arq such that

Σ is an alphabet consisting of function symbols and ar : Σ Ñ N is a function assigning a

natural number to each of the symbols.

If pΣ, arq is an algebraic signature, then an element of Σ is called constant, unary,

binary, trinary or n-ary if its arity is 0, 1, 2, 3 or n, respectively. An expression built from

the function symbols of Σ that respects the arities of symbols is called a ground term

over the signature.

Definition 13 (Ground term over a signature). The set TΣ of ground terms over a

signature pΣ, arq is defined recursively as follows. Any constant function symbol c P Σ is

in TΣ. If t1, . . . , tn P TΣ and f is an n-ary function symbol of Σ, then fpt1, . . . , tnq P TΣ.

The following example illustrates the notion of ground terms over a signature.

Example 14. Consider the alphabet Σ “ tx, y,_,^u, with x and y being constant sym-

bols, and _ and ^ being unranked functions, i.e., families p_nqnPNě1
, p^nqnPNě1

, with the

arity function defined as arp_nq “ n and arp^nq “ n, for n P Ně1. The set of ground

terms over the signature pΣ, arq is

TΣ “ tx, y,_px, xq,_py, yq,_px, yq,^px, xq,^py, yq,^px, yq, . . .u,

and it can be seen as the set of representations of all propositional formulæ involving

variables x and y and logical conjunction and disjunction.

On the top of a signature a type system can be defined, assigning types (called sorts)

to symbols. This is usually achieved by generalizing the arity function in the following

manner.

2.5. Attack–defense trees 27

Definition 14 (Many-sorted algebraic signature). A many-sorted algebraic signature

is a triple pS,Σ, arq, where S is a set of sorts, Σ is an alphabet consisting of func-

tion symbols and ar is a function assigning to each of the symbols its arity of the form

s1 ˆ . . .ˆ sn Ñ sn`1, for s1, . . . , sn`1 P S.

Intuitively, the arity function defined as in Definition 14 specifies for a function symbol

f P Σ the number of its arguments, the sorts of the arguments, and the sort of the image

by f . For the constant symbols, i.e., when n “ 0, the arity function describes their sorts.

Since the sets of ground terms over a signature are special strings over an alphabet,

they can sometimes be specified using appropriate production rules, as illustrated in the

next example.

Example 15. Let TΣ be the language produced by the grammar

ts ::“ xs | ys | _spts, . . . , tsq | ^spts, . . . , tsq | ^ spts, ts̄q,

for s P ts1, s2u and s1 “ s2, s2 “ s1. The language TΣ is the set of ground terms over

many-sorted algebraic signature

pts1, s2u, tx
s1 , xs2 , ys1 , ys2 ,_s1 ,_s2 ,^s1 ,^s2 ,^ s1 ,^ s2 , u, arq,

with the arity function ar defined as

arpxsq “ s,

arpysq “ s,

arp_s
nq “ sn Ñ s,

arp^s
nq “ sn Ñ s,

arp^ sq “ sˆs̄ Ñ s,

for s P ts1, s2u and n P Ně1.

2.5 Attack–defense trees

Various definitions of attack(–defense) trees can be found in the literature, each of them

being either graph-based [AHPS14, KW17] or term-based [KMRS14, AN15, GHL`16].

We use the following definition based on DAGs.

Definition 15 (Attack–defense tree). An attack–defense tree is a tuple

T “ pV,A,L, λ, actor, refq, where

– pV,Aq is a rooted DAG,

– L is a set of labels representing the attacker’s and the defender’s goals,

– λ : V Ñ L is an injective function assigning labels to the nodes,

28 CHAPTER 2. Preliminaries

– actor : V Ñ ta, du is a function assigning actors to the nodes, in such a way that

every node has at most one child assigned to the other actor,

– ref : V Ñ tOR, AND, Nu describes refinements of nodes. We use OR for disjunctively

and AND for conjunctively refined nodes, N stands for the non-refined nodes, i.e.,

nodes labeled with basic actions,

– for every node v P V , refpvq “ N if and only if v has no child assigned to the same

actor as v,

– for every node v P V , the set of children of v is totally ordered1, and if v has a child

belonging to the other actor, then this child is the maximal element of this set2.

From now on, whenever we use the word “tree”, we mean attack–defense tree. The

root of a tree T , denoted rootpT q, is the root of its underlying DAG. The actor assigned

to the root of a tree is called proponent, and the other one is called opponent. For a tree

T , we use pT to mark the components of T assigned to the proponent, and oT for those

assigned to the opponent, i.e., pT stands for actorprootpT qq and oT stands for the other

actor. The labels of the non-refined nodes are basic actions. For s P tp, ou, we denote by

B
sT the set of basic actions of the corresponding actor in T , and we set BT :“ B

pT YB
oT .

The universe of all basic actions is denoted with B. Note that the fact that the labeling

function from Definition 15 is injective implies that the sets BpT and B
oT are disjoint. We

use T for the set of all attack–defense trees.

Let T “ pV,A,L, λ, actor, refq be an attack–defense tree. For v P V , we use

childrenT pvq :“ tw P V : wv P A, actorpwq “ actorpvqu

to denote the set of children of v that are assigned the same actor as v. Whenever a

function acts over children of v, the order of its arguments follows the total order of the

set of children, beginning with the minimal element. If v has a child belonging to the

other actor, this child is denoted by v̄. If all of the nodes of a tree belong to the same

actor, then the tree is an attack tree. Finally, for v P V , we use T pvq to denote the

maximal subdag of T rooted at v , i.e., a subdag of T induced by all the nodes w such

that there is a path from w to rootpT q passing by v.

While labels of refined nodes are important when creating a tree, they might not be

necessary for its analysis. Indeed, they are disregarded in most of the formal approaches

to the attack–defense trees analysis, e.g., in [AN15, GHL`16, KW17]. Similarly, it is

often irrelevant for the analysis who the proponent is, i.e., whether the root actor is

1In the case of graph-based definitions of attack trees, the condition of children being ordered is often

formulated by defining a function that maps nodes to lists of their children, see, e.g., [AHPS14, KRS15].

In the term-based definitions the order is explicit in the form of the term.
2The choice of this particular child being the maximal element w.r.t. the order is dictated by the fact

that such a child is listed as the last one in the standard term-based notation.

2.5. Attack–defense trees 29

the attacker or the defender. This is also true for the methods presented in this thesis.

Therefore, for the purpose of concise representation of trees, we employ the standard

term-based notation, which relies only on the labels of the non-refined nodes and on the

refinement operators of the refined ones, and distinguishes the actors with respect to the

root goal of the tree.

Definition 16 (Attack–defense term). An attack–defense term over a set of basic actions

B is a typed term conforming with the grammar

ts ::“ bs | ORspts, . . . , tsq | ANDspts, . . . , tsq | Cspts, ts̄q, (1)

where b P B, s P tp, ou and p̄ :“ o, ō :“ p.

With the following definition, we formalize the procedure for creating attack–defense

terms corresponding to trees, sketched graphically in [KMRS14].

Definition 17 (Attack–defense term corresponding to an attack–defense tree). Let T “

pV,A,L, λ, actor, refq be an attack–defense tree and let v P V be a node such that actorpvq “

sT , s P tp, ou, refpvq “ OP and childrenT pvq “ tv1, . . . , vku, with the children being ordered

according to their indices. Let tpT, vq be the function defined recursively as follows

tpT, vq :“

$
’’’’’&
’’’’’%

λpvqs, if OP “ N and v̄ does not exist,

Cs pλpvq, tpT, v̄qq , if OP “ N and v̄ exists,

OPs ptpT, v1q, . . . , tpT, vkqq , if OP ‰ N and v̄ does not exist,

Cs pOPsptpT, v1q, . . . , tpT, vkqq, tpT, v̄qq , otherwise.

The attack–defense term corresponding to T , denoted tpT q, is then defined as tpT, rootpT qq.

In the remainder of this thesis, when using attack–defense terms, we skip types of

the basic actions. For example, we would use Cppb1, b2q instead of Cppbp
1, b

o
2q. Since for a

given tree T the sets B
pT and B

oT are disjoint, this does not introduce any ambiguity.

Example 16. Using the abbreviations of basic actions in tree T from Figure 2, one

obtains the corresponding attack–defense term

tpT q “ ORp

˜
ANDp

ˆ
ORp

´
Cp
`
eav, Copcover, camq

˘
, force

¯
,

card,

cash

˙
,

ANDp

ˆ
ORp

´
Cpppwd, spwdq, phish

¯
,

ORp

´
phish, uname

¯
,

Cp

´
log&trans, Copsms, phoneq

¯˙¸
.

30 CHAPTER 2. Preliminaries

When introducing an attack–defense tree, we either use the corresponding attack–

defense term or the graphical representation. In the former case, the order of children of

particular nodes follows the order in which they appear in the term. Thus, the underlying

attack–defense tree can be easily reconstructed, with the exception of the actors assigned

to the nodes (attacker/defender) and the labels of refined nodes. In the latter, we assume

that the children of a node are placed from left to right, following the corresponding total

order.

2.6 Attribute domains for attack–defense trees

Among the existing approaches to analysis of attack–defense trees there are methods that

can be formulated using the notion of attribute domains (even if originally they were not).

In this section, we recall the notion of attribute domains and some of the ways in which

they can be exploited for the purpose of analysis of attack–defense trees. Most of the

notions and definitions used in this section are well-established [MO05, KMRS14, KW18],

but we adapt them to the DAG-based formalization of attack–defense trees.

Intuitively, an attribute of an attack–defense tree is a piece of information regarding

the scenario modeled with the tree. Attributes can represent quantitative aspects of the

scenario, such as minimal cost of executing an attack or maximal damage caused by

an attack. As it will be extensively illustrated in Section 3.1, they can also correspond

to other scenario-related information, e.g., the ways in which goals and subgoals of the

actors can be achieved.

Numerous methods for evaluation of attributes on attack–defense trees exist, and most

of them involve a bottom-up procedure: some of them as the sole method of evaluation,

some of them as a subprocedure. The idea behind the bottom-up procedure is to assign

attribute values to the basic actions and to propagate them up to the root of the tree

using appropriate operations at the intermediate nodes. The notions of an attribute and

the bottom-up evaluation are formalized using attribute domains.

Definition 18 (Attribute domain). Let α be an attribute of attack–defense trees. An

attribute domain for α is a tuple Aα “ pDα, ORp
α, ANDp

α, ORo
α, ANDo

α, C
p
α, C

o
αq, where

– Dα is a set of values that the attribute can attain,

– ORs
α and ANDs

α are unranked functions on Dα, for s P tp, ou,

– Cs
α is a binary function on Dα, for s P tp, ou.

In practice, α appearing in the above definition is usually a shorthand for an intuitive

description of the attribute, such as cost for the minimal cost for the proponent attribute.

To analyze an attack–defense tree using attribute domains, one assigns values of the

attribute to the basic actions of the actors and then combines them using the domain’s

2.6. Attribute domains for attack–defense trees 31

operations. In the next example, the domain for the minimal cost for the proponent

attribute is presented. The choice of its operations will be explained once a way in which

they can be exploited is introduced. Further examples of attribute domains are given in

Table 1.

Example 17. The standard attribute domain for the minimal cost for the proponent

attribute is Acost “ pRě0 Y t`8u,min,`,`,min,`,minq.

A function β : B Ñ Dα is called a basic assignment for attribute α. A standard way

of combining the values of the basic assignment to obtain the value of the attribute

corresponding to the modeled scenario is the following.

Table 1: Selected attribute domains for attack–defense trees, where x ‹ y :“ x ^ y for

x, y P t0, 1u

Attribute α Dα ORp
α ANDp

α ORo
α ANDo

α Cp
α Co

α

Minimal cost for

the proponent
cost Rě0 Y t`8u min ` ` min ` min

Maximal

damage done by

the proponent

dmg Rě0 Y t´8u max ` ` max ` max

Minimal skill

level of the

proponent

skill NY t0,`8u min max max min max min

Maximal

probability for

the proponent

prob r0, 1s max ¨ ¨ max ¨ max

Minimal time

for the

proponent

time NY t0,`8u min ` ` min ` min

Satisfiability for

the proponent
satp t0, 1u _ ^ ^ _ ^ _

Satisfiability sat t0, 1u _ ^ _ ^ ‹ ‹

Definition 19 (Bottom-up evaluation of attributes). Let α be an attribute of attack–

defense trees, and let Aα “ pDα, ORp
α, ANDp

α, ORo
α, ANDo

α, C
p
α, C

o
αq be its attribute domain.

Given an attack–defense tree T “ pV,A,L, λ, actor, refq, a basic assignment β for α, and

a node v P V , such that actorpvq “ sT , s P tp, ou, and refpvq “ OP, the value of α at v

32 CHAPTER 2. Preliminaries

OR

12 “ minp12, 27q

a

12

AND

27 “ 12` 15

b

15

Figure 4: Bottom-up evaluation of the minimal cost for the proponent attribute on an

attack tree. Values assigned to the basic actions are given in black, values computed at

the intermediate nodes – in dark blue.

under β, denoted by αBpT, β, vq, is defined recursively as

αBpT, β, vq :“

$
’’’’’&
’’’’’%

βpλpvqq, if OP “ N and v̄ does not exist,

Cs
α pβpλpvqq, αBpT, β, v̄qq , if OP “ N and v̄ exists,

pOPs
αqv1PchildrenT pvqαBpT, β, v

1q, if OP ‰ N and v̄ does not exist,

Cs
α

`
pOPs

αqv1PchildrenT pvqαBpT, β, v
1q, αBpT, β, v̄q

˘
, otherwise.

The value of attribute α for T under β obtained via the bottom–up procedure, denoted

by αBpT, βq, is then defined as αBpT, β, rootpT qq. In the notation αBpT, βq, the subscript

B refers to the “bottom-up” computation.

An extensive overview of attribute domains and their classification can be found

in [KMS12]. The article [BKMS12] contains a case study and guidelines for practical

application of the bottom-up procedure. Numerous examples of attributes of attack

trees and attack trees extended with additional sequential refinement have been given

in [JKM`15] and [HMT17].

The following two examples illustrate the bottom-up evaluation of the cost attribute

in attack and attack–defense trees.

Example 18. In Figure 4 a bottom–up evaluation of the minimal cost for the proponent

attribute, whose domain Acost “ pRě0 Y t`8u,min,`,`,min,`,minq has been given in

Example 17, is depicted. Since the OR nodes of the proponent correspond to a choice, the

minimal cost is computed at these nodes using the operation of taking the minimum. The

addition is used at the AND nodes of the proponent, as the achievement of a goal of an

AND node requires achieving goals of all of its children.

2.6. Attribute domains for attack–defense trees 33

Example 19. In Figure 5 a bottom–up evaluation of the minimal cost for the proponent

attribute on an attack–defense tree is depicted. Recall that the domain for minimal cost

for the proponent is Acost “ pRě0 Y t`8u,min,`,`,min,`,minq. Similar intuition as

the one provided in Example 18 supports the choice of operations for the nodes of the

opponent: to counter the goal of an opponent’s AND node, it is sufficient for the proponent

to counter any of its child nodes (the proponent has a choice, thus the min operation),

and to counter the goal of an opponent’s OR node, all of the children of the node need to

be countered (addition).

The choice of the operations to be performed when the bottom-up evaluation traverses

countermeasures is closely related to the values assigned to the basic actions of the op-

ponent. For C
p
cost “ ` and Co

cost “ min, the reasonable values for the actions of the

opponent are 0, modeling the opponent not executing the action, and `8, modeling the

action being executed by the opponent. Note that `8 is both the neutral element for taking

the minimum and the absorbing element for the addition, while 0 is the neutral element

for the addition. In consequence, the values assigned to the actions not executed by the

opponent do not influence the bottom-up evaluation of minimal cost for the proponent.

The actions executed and the goals achieved by the opponent do, since they either absorb

the results of the bottom-up evaluation, yielding `8, modeling the impossibility for the

proponent being successful (as it is the case for the OR node of the defender in the tree

from Figure 5), or else they force the values of countermeasures attached to them to be

taken into account (via the min operator; as it is the case for the node labeled d1 and the

AND node of the defender in the tree from Figure 5).

The discussion from the above paragraph justifies further the choice of the addition

being performed at the opponent’s OR nodes. If each of the basic actions of the opponent

is assigned either 0 or `8, then the value computed at the nodes the goals of which the

proponent does not have to counter will be 0. Thus, the result of addition at an OR node

of the opponent corresponds to the cost of countering all the goals of the child nodes of

the node that have been achieved by the opponent; the remaining goals are ignored.

The result of the bottom-up evaluation of minimal cost for the proponent on the

tree in Figure 5 can be therefore interpreted as follows: if the opponent executes actions

d1, d2 and d3, then the minimal cost of achieving the root goal by the proponent is 22. It

corresponds to the execution of both actions a and c.

Excluding the satisfiability attribute, the attribute domains presented in Table 1 have

the following feature in common. Each of them is of the form pDα,‘,b,b,‘,b,‘q,

where pDα,‘,bq is a commutative idempotent semiring. We shall say that such domains

are induced by semirings.

Definition 20 (Attribute domain induced by a semiring). An attribute domain Aα is

induced by a semiring if Aα “ pDα,‘,b,b,‘,b,‘q and pDα,‘,bq is a commutative

idempotent semiring.

34 CHAPTER 2. Preliminaries

OR

22 “ minp22,`8q

a

12

22 “ 12` 10

AND

10 “ minp10,`8,`8q

d1

`8

10 “ minp`8, 10q

c

10

d2

`8

AND

`8 “ 22` p`8q

b

15

`8 “ 15` p`8q

OR

`8 “ `8` 0

d3

`8

d4

0

Figure 5: Bottom-up evaluation of the minimal cost for the proponent attribute on an

attack–defense tree. Values assigned to the basic actions are given in black, values com-

puted at the intermediate nodes – in dark blue

The reasoning behind the choice of the operations for the minimal cost for the pro-

ponent attribute domain, given in Example 19, can be generalized for attribute domains

induced by semirings.

Remark 1. For a number of attribute domains of the form Aα “ pDα,‘,b,b,‘,b,‘q,

with pDα,‘,bq being a commutative idempotent semiring, under the assumption that a

given basic action is executed by the opponent, the value assigned to it is ab (“ e‘),

whereas the value assigned to the opponent’s actions assumed not to be executed is eb.

In consequence, the actions not executed by the opponent do not influence the bottom-up

evaluation of the attribute, while the executed actions (unless countered by the proponent)

absorb the results of the computation corresponding to a given subtree of the tree.

Example 19 and Remark 1 highlight the particular applicability of the bottom-up

evaluation for the so called “what-if” analysis. Being able to compute, say, the minimal

2.6. Attribute domains for attack–defense trees 35

cost of a successful attack under the given behavior of the defender can be exploited for

selecting an optimal set of countermeasures to be implemented for increasing security of

a system.

Attribute domains can also be used for formalizing the intuition behind the notions of

refinements and goal achievement. This is usually done using the satisfiability attribute

domain Asat “ pt0, 1u,_,^,_,^, ‹, ‹q, where x ‹ y “ x ^ y, for x, y P t0, 1u. Under

the basic assignment that assigns 1 to each of the actions assumed to be executed by

the actors and 0 to the remaining actions, the result of the bottom-up evaluation of sat

models the root goal of a tree being or not being achieved. In the following definition,

we use ✶X for the indicator function of a set X Ď B, i.e., a function that assigns one to

each of the elements of X, and zero to each of the remaining elements of B.

Definition 21 (Goal achievement). Let T “ pV,A,L, λ, actor, refq be an attack–defense

tree, let v P V be one of its nodes, and let X Ď BT be a set of basic actions in T . With

achievedTpv,Xq being a shorthand for satBpT,✶X , vq, we say that the goal of v is achieved

by X in T if achievedTpv,Xq “ 1.

Example 20. Let T be the attack–defense tree from Figure 6 (considered also on Fig-

ure 5). Assuming that the attacker executes only the actions a and c and the defender

executes only d1, d2 and d3, which is modeled by assigning 1 to each of these actions and

0 to the remaining basic actions, the defender fails to counter the action a (the value

computed at the AND node countering a is 0), and so the attacker achieves the goal of

the root node (the value computed at the root node is 1). In other words, for the set

X “ ta, c, d1, d2, d3u the equality achievedTprootpT q, Xq “ 1 holds.

A careful reader will notice that nothing stops a potential user of attack–defense trees

from, e.g., setting contradictory goals as labels of children of an AND node in a tree. In

such a case, results of any analysis performed on the tree cannot be relied upon. This

considers in particular the value of achievedTp¨, ¨q. In the following, we assume that the

basic actions are independent, as it is classically done, e.g., in [AN15, GHL`16, AN17].

That is, the only dependency between the basic actions that we allow for, is that an

action might be a countermeasure against another action.

Remark 2. The notion of achievement from Definition 21 is closely related to the notion

of propositional semantics for attack–defense trees [KMRS14]. For β being a function

assigning to every basic action b P B the propositional variable βpbq “ xb, the proposi-

tional semantics of an attack–defense tree T is the Boolean function PpT q obtained by the

bottom-up propagation of these variables using the operators of the satisfiability domain.

Thus, for X Ď BT , the value of achievedTprootpT q, Xq is equal to the value of PpT q, when

the variables corresponding to the basic actions in X are assigned 1, and the remaining

actions are assigned 0.

36 CHAPTER 2. Preliminaries

OR

1 “ 1_ 0

a

1

1 “ 1^ 0

AND

0 “ 0^ 1^ 1

d1

1

0 “ 1^ 1

c

1

d2

1

AND

0 “ 1^ 0

b

0

0 “ 0^ 1

OR

1 “ 1_ 0

d3

1

d4

0

Figure 6: Bottom-up evaluation of satisfiability attribute. Values assigned to the basic

actions are given in black, values computed at the intermediate nodes using the attribute

domain’s operations – in dark blue.

Remark 3. The propositional semantics PpT q of a tree T , sketched in Remark 2, has

been proven in [KPS11] to be a Boolean function positive (respectively, negative) in the

variables corresponding to the basic actions of the proponent (respectively, in the variables

corresponding to basic actions of the opponent).

More generally, for a node v of T and a set X Ď BT , the value of achievedTpv,Xq is

obtained by evaluating a Boolean function that is positive in the variables corresponding

to the basic actions of actorpvq, and negative in the remaining variables.

The formalization of the notion of achievement provided in Definition 21 is standard,

in the sense that it is widely used, even though under various names, or sometimes

under no name at all. For instance, for an attack–defense tree T , a set P Ď B
pT and a

set O Ď B
oT , the authors of [GHL`16] call the value of achievedTprootpT q, P Y Oq the

“standard boolean semantics” of T . The same expression is used also in [HJL`17], to

define the final states of automata that the authors transform attack–defense trees into.

2.6. Attribute domains for attack–defense trees 37

Similarly, the authors of [AN15] call the pair

pmin tmax tachievedTprootpT q, P YOq : O Ď B
oT u : P Ď B

pT u,

max tmin tachievedTprootpT q, P YOq : O Ď B
oT u : P Ď B

pT uq
(2)

the “boolean semantics evaluation of an attack–defense tree T”. Since the authors

of [AN15] allow the presence of basic actions that are assumed to be always executed

(representing, for example, countermeasures already present in the system), denoting the

set of such basic actions in T with X and employing Remark 2 and 3, we note that the

pair (2) is equal to

pachievedTprootpT q, Xq, achievedTprootpT q, P YOqq.

As the bottom-up computation simply propagates the values assigned to the basic

actions up to the root of the tree, it involves a number of evaluations of the attribute

domain’s operations that is linear in the size of the tree. Thus, it is generally very fast.

On the downside, it may provide unreliable results in the presence of clones. This fact

can be easily illustrated with the tree T “ ANDppa, ORppa, bqq. Under the basic assignment

βpaq “ 5, βpbq “ 10 of the minimal cost for the proponent attribute, the result of the

bottom up evaluation is costBpT, βq “ 5`minp5, 10q “ 10. However, to achieve the goal

of the root node it is sufficient to execute the basic action a once, at the cost of 5.

In Chapter 4 we study in detail conditions ensuring that the bottom-up evaluation

of attributes yields correct results in trees containing clones. For the case when these

conditions are not satisfied, we devise an alternative method of attributes evaluation.

Another, heuristic method for the special case of this problem, i.e., for computing the

minimal cost of achieving the root goal in attack trees containing clones, is described in

Section 3.2.1.

38 CHAPTER 2. Preliminaries

Chapter 3

State of the art

The field of graphical modeling and quantitative analysis of security using attack trees and

attack–defense trees is relatively young, but it is developing fast. Numerous approaches

are being adapted for improving the applicability of trees for the real-life situations, in

particular for answering the questions raised in Section 1.3. In this chapter, we give a

detailed overview of some of the frameworks that are closely related to our work, and a

brief description of other approaches. We focus on three main areas, namely, on

– formal semantics for attack–defense trees (Section 3.1), where the objective is to

give a rigorous meaning to an attack tree or attack–defense tree model,

– quantitative analysis of security using attack–defense trees (Section 3.2), and

– approaches to the problem of optimal selection of countermeasures in the security

scenarios modeled with attack–defense trees (in Section 3.3).

It is of course impossible to cover the whole research field in a single chapter. An

interested reader is referred to the survey [KPS14] for an exhaustive state of the art on

DAG-based security modeling until the year 2013. Usability aspects, practical applica-

tions, and computer tools for graphical security modeling are discussed in [HKCH17].

Further examples of recent developments in the first two of the three areas that we

cover in this chapter, as well as their deeper comparison, can be found in the recent

survey [WAFP19]. Finally, a detailed overview of approaches to the problem of optimal

selection of countermeasures against potential attacks, including some works based on

attack trees and attack graphs, is given in [NPMK18].

3.1 Formal semantics for attack–defense trees

Even a small and easily readable attack–defense tree might encode a vast number of pos-

sible realizations of the underlying attack–defense scenario, as illustrated by the following

example.

39

40 CHAPTER 3. State of the art

Example 21. Consider an attack tree T “ ANDppORppb1, b2q, . . . , ORppbn´1, bnqq. For β

being a basic assignment for the satisfiability attribute, the value of satBpT, β,) is equal

to

pβpb1q _ βpb2qq ^ . . .^ pβpbn´1q _ βpbnqq.

A simple proof by induction shows that for n being an even natural number the number

of assignments for which the above formula evaluates to 1 is 3n{2. Thus, there are 3n{2

sets of basic actions of the proponent that achieve the goal of the root of T .

Formal analysis of possible realizations of the modeled scenario (which need not be

the basic assignments under which the root goal of the tree is achieved, as it is the case

in Example 21) is made possible by formally specifying what is considered to be such

realization. This is achieved by defining a formal semantics for attack–defense trees.

Transforming attack–defense trees into objects modeling realizations of the underlying

scenario, such as propositional formulæ or automata, helps addressing a wide range

of problems, including enumerating all ways in which the root goal of the tree can be

achieved [KMRS14], checking whether two structurally different trees represent the same

security scenario [MO05, KMRS14, HMT17], comparing whether one tree contains more

information than another one [MO05, KMRS14, HMT17], identifying paths in the ana-

lyzed system that correspond to potential attacks [APK18], and verifying the quality of

the tree refinements [APK17].

In this section, we recall some of the existing semantics for attack–defense trees. Our

goal is to illustrate possible approaches to the problem of interpretation of attack–defense

trees and to highlight their advantages and disadvantages.

3.1.1 Multiset semantics

One of the first semantics introduced for attack–defense trees is the multiset semantics.

Formalized for attack trees by Mauw and Oostdijk in [MO05], generalized for attack–

defense trees in [KMRS14] by Kordy et al., and used for the purpose of threat analysis

of ATMs in [FFG`16], it interprets attack–defense trees as sets of pairs of multisets.

The definition of the multiset semantics for attack–defense trees employs the operation

defined for sets of pairs of multisets of basic actions X1, . . . , Xk ĎMpBq ˆMpBq as

k

e
i“1

Xi :“ tp
kě

i“1

Pi,

kě

i“1

Oiq | pPi, Oiq P Xiu. (3)

Definition 22 (Multiset semantics). Let T be an attack–defense tree and let M be the

attribute specified by the attribute domain AM “ pMpBq ˆMpBq,Y,e,e,Y,e,Yq. Let

β be the basic assignment of M defined as

βpbq “

$
&
%
tpt|b|u, ∅qu, if actorpbq “ pT ,

tp∅, t|b|uqu, otherwise.

3.1. Formal semantics for attack–defense trees 41

The multiset semantics of T , denoted MpT q, is the result MBpT, βq of the bottom-up

evaluation of M on T under the basic assignment β.

Each of the elements of the multiset semantics is of the form pP,Oq, where P is a

multiset of basic actions of the proponent, and O is a multiset of basic actions of the

opponent. Intuitively, as stated in [KMRS14], “A bundle [pair] pP,Oq [belonging to the

multiset semantics of a tree] encodes how the proponent can achieve his goal [goal of the

root node]: the proponent must perform all actions present in P while the opponent must

not perform any of the actions in O.” The multiset semantics is created by propagating

sets of pairs of multisets of basic actions of the actors up to the root of the tree, combining

them along the way using appropriate operations. Since the achievement of a goal of an

OR node requires that at least one goal of its child nodes is achieved, the sets’ union is

performed; as achieving the goal of an AND node is possible only by achieving goals of

all of its children, the different ways of achieving these goals are combined using the e

operation. Similar reasoning as the one given in Example 19 motivates the choice of the

remaining operations.

Example 22. The multiset semantics MpT q of the tree T in Figure 2 is

MpT q “

pt|force, card, cash|u, ∅q,

pt|cam, eav, card, cash|u, ∅q,

pt|eav, card, cash|u, t|cover|uq,

pt|phish, phish, log&trans|u, t|sms|uq,

pt|phish, uname, log&trans|u, t|sms|uq,

pt|phish, pwd, log&trans|u, t|spwd, sms|uq,

pt|uname, pwd, log&trans|u, t|spwd, sms|uq,

pt|phish, phish, phone, log&trans|u, ∅q,

pt|phish, uname, phone, log&trans|u, ∅q,

pt|phish, pwd, phone, log&trans|u, t|spwd|uq,

pt|uname, pwd, phone, log&trans|u, t|spwd|uq
(
.

As illustrated in the above example by the pair pt|phish, phish, log&trans|u, t|sms|uq,

the multiset semantics does not interpret repeated basic actions as clones. The meaning of

the pair pt|phish, phish, log&trans|u, t|sms|uq is the following: if the opponent does not

perform sms action (transfer dispositions are not secured with two-factor authentication

using mobile phone text messages), then the proponent can steal money from the oppo-

nent’s account by executing the phish action twice, and by performing the log&trans

action. Thus, the multiset semantics could be employed for analysis of attack–defense

trees if repeated basic actions are not interpreted as clones (cf. the second of the two

interpretations of repeated basic actions given on page 14).

42 CHAPTER 3. State of the art

A modification of the multiset semantics that could be a viable option for analysis of

attack–defense trees under the clones interpretation of repeated basic actions has been

proposed in [BK17]. We present it in the next section.

3.1.2 Set semantics

The set semantics for attack–defense trees has been first defined by Bossuat and Kordy

in [BK17], for the purpose of interpretation of repeated basic actions as clones. It is

a simple adaptation of the multiset semantics, where multisets are replaced with sets.

Its definition employs the operation defined for sets of pairs of sets of basic actions

X1, . . . , Xk Ď 2B ˆ 2B as

kä
i“1

Xi :“ tp
kď

i“1

Pi,

kď

i“1

Oiq | pPi, Oiq P Xiu. (4)

Definition 23 (Set semantics). Let T be an attack–defense tree and let S be the at-

tribute specified by the attribute domain AS “ p2
2Bˆ2B ,Y,d,d,Y,d,Yq. Let β be a basic

assignment of S defined as

βpbq “

$
&
%

 `
tbu, ∅

˘(
if b P BpT ,

 `
∅, tbu

˘(
otherwise.

The set semantics of T , denoted SpT q, is the result SBpT, βq of the bottom-up evaluation

of S on T under the basic assignment β.

The intuition behind the set semantics is similar to the one behind the multiset

semantics: the presence of a pair pP,Oq in the set semantics SpT q means that if the

proponent executes all the actions from P and the opponent executes none of the actions

from O, then the root goal of T is achieved. The choice of the operations performed when

creating the set semantics is dictated by the same reasoning as in the case of the multiset

semantics.

3.1. Formal semantics for attack–defense trees 43

Example 23. The set semantics SpT q of the tree T in Figure 2 is

SpT q “

ptforce, card, cashu, ∅q,

ptcam, eav, card, cashu, ∅q,

pteav, card, cashu, tcoveruq,

ptphish, log&transu, tsmsuq,

ptphish, uname, log&transu, tsmsuq,

ptphish, pwd, log&transu, tspwd, smsuq,

ptuname, pwd, log&transu, tspwd, smsuq,

ptphish, phone, log&transu, ∅q,

ptphish, uname, phone, log&transu, ∅q,

ptphish, pwd, phone, log&transu, tspwduq,

ptuname, pwd, phone, log&transu, tspwduq
(
.

Note that the pair pt|phish, phish, log&trans|u, t|sms|uq, that belongs to the multi-

set semantics of the tree from Example 23 became the pair ptphish, log&transu, tsmsuq

under the set semantics interpretation. That is, employing sets instead of multisets re-

sults in no repetitions of basic actions in the elements of the set semantics. While the

set semantics seems fit for analyzing attack–defense trees containing clones, we note that

it should not be interpreted in the same way as the multiset semantics. What we mean

by this, is that, while for a pair pP,Oq P MpT q, “A bundle pP,Oq encodes how the pro-

ponent can achieve his goal: the proponent must perform all actions present in P while

the opponent must not perform any of the actions in O [emphasis added],” the “must”

and “must not” no longer applies in the case of a pair pP,Oq belonging to the set seman-

tics SpT q. This fact can be illustrated with the two trees T1 “ ORppa, ANDppa, bqq and

T2 “ ORppa, bq, depicted in Figure 7. While the notion of achievement is not explicitly

formalized in [BK17], its informal description is equivalent with the one we provided in

Section 1.2. Following this description, execution of both actions a and b in both T1 and

T2 results in the root goal being achieved, and in none of the two trees both actions are

necessary; executing only the action a suffices. However, the set semantics of the trees

T1 and T2 are

SpT1q “ tptau, ∅q, pta, bu, ∅qu,

SpT2q “ tptau, ∅q, ptbu, ∅qu,

i.e., the pair pta, bu, ∅q belongs to the set semantics of T1, but not to the set semantics

of T2. While one could argue that pta, bu, ∅q is indeed one of the possible realizations of

the scenario modeled with the tree T1, as it represents a way of achieving the goal of the

AND node, we believe that the information provided by this pair is redundant. This is the

case, because the fact that pta, bu, ∅q achieves the root goal follows immediately from the

fact that the pair ptau, ∅q achieves it.

44 CHAPTER 3. State of the art

OR

a

AND

b

(a) T1 “ ORppa, ANDppa, bqq

OR

a b

(b) T2 “ ORppa, bq

Figure 7: Two attack trees in which execution of both actions a and b achieves the goal

of the root node

To provide an intuitive grasp on the contents of the set semantics, we study its proper-

ties in Section 4.2. The established properties allow for using the results of the evaluation

of attributes on the set semantics as a reference point for the results obtained via other

methods, as discussed in detail in Chapter 4.

3.1.3 SP semantics

Neither the multiset nor the set semantics interpretation of a tree provides information on

the order in which actions should be executed by the proponent so that the root goal can

be achieved. The problem of ordering actions that compose an attack has been apparent

for attack trees since their introduction in 1999. It is also visible in the attack–defense

tree in Figure 2: while it does not matter whether the attacker first learns the victim’s

password or the user name, they need to learn both pieces of information before being

able to log in to the online banking system.

In the attack tree literature, the problem of ordering actions in attack trees has been

addressed in two ways: either AND is implicitly interpreted as an ordered operator, or an

extra sequential refinement, that we call SAND and depict with an arrow, is added to cap-

ture that some actions must be executed in a specific order. While some works focused

on the problem of ordering actions composing an attack existed before [JW09, PB10], it

was not until the publication of [AHPS14, KRS15] and [JKM`15] that a formal seman-

tics for attack trees containing SAND refinement1 has been given. In [AHPS14, KRS15]

and [JKM`15], basic actions are assigned mathematical objects (cumulative distribution

functions, priced timed automata and series-parallel graphs, respectively), and the object

corresponding to the whole tree is obtained from such an assignment using a bottom-up

evaluation. Here, we focus on the SP semantics of Jhawar et al., introduced in [JKM`15],

as it is closely related to the multiset semantics.

The objective of [JKM`15] is to provide mathematical foundations of attack trees

extended with the SAND refinement, called SAND attack trees. To do so, the authors

1Called SEQ in [AHPS14].

3.1. Formal semantics for attack–defense trees 45

introduce a formal semantics for SAND attack trees, based on series-parallel graphs (SP

graphs), and extend the bottom-up method for quantitative analysis from classical attack

trees formalized in [MO05] to SAND attack trees.

SAND attack trees considered in [JKM`15] use three types of refinements: OR, AND, and

SAND. They thus allow to distinguish between actions that can be executed in parallel

(connected with AND) from those that need to be executed sequentially (connected with

SAND). To formally interpret SAND attack trees, Jhawar et al. use SP graphs. SP graphs

are oriented, edge-labeled graphs that contain two distinct nodes – a source with no

incoming edges, and a sink with no outgoing edges – and that can be built in a recursive

way from smaller SP graphs, using their parallel and sequential compositions. The parallel

composition glues two SP graphs by identifying their sinks and their sources, respectively.

The sequential composition attaches the second SP graph to the first one, by identifying

the sink of the first one with the source of the second one.

The semantics developed in [JKM`15], called the SP semantics, interprets an SAND

attack tree as a set of SP graphs whose edges are labeled with the basic actions of the

attacker. The semantics is created in a bottom-up manner, similarly to the multiset

and set semantics. Each of the nodes labeled with basic actions, i.e., each of the leaves

of the tree, is interpreted as an SP graph consisting of a single edge, labeled with that

action. The parallel and sequential compositions are used to interpret the AND and SAND

refinements, respectively. OR refinements are simply interpreted as the union of the sets

of SP graphs corresponding to their children. Each SP graph belonging to the set of SP

graphs interpreting a tree corresponds to a way of achieving the goal of the root of the

tree. An example of a SAND attack tree and its SP semantics is given in Figure 8.

AND

SAND

a b

OR

c d e

(a) A SAND attack tree

{ , ,
a b

c

a b

d

a b

e

}

(b) The SP semantics of the tree from Figure 8a

Figure 8: The SP interpretation of an SAND attack tree

The SP semantics is a conservative extension of the multiset semantics for classical

AND/OR attack trees of [MO05]. The SP semantics equips the multisets of the multi-

set semantics with a partial order encoding which of the actions need to be performed

sequentially.

46 CHAPTER 3. State of the art

3.1.4 Path semantics

The goal of the work presented in [APK17] by Audinot et al. is to verify the correctness

of an OR/AND/SAND attack tree with respect to the analyzed system represented as a

transition system. In this paper, the authors introduce a novel way of labeling the attack

tree nodes and a new semantics for attack trees which is based on paths in the underlying

transition system. This allows them to define four correctness properties describing how

well the children of an attack tree node refine the node’s goal, in the context of a given

system. The paper establishes the theoretical complexity of checking the introduced

correctness properties.

Audinot et al. use transition systems to model real-life systems. A transition sys-

tem [Kel76] is an operational state-transition model with non–deterministic transitions.

In [APK17], the states of the transition system are labeled with propositions that express

possible configurations of the real–life system, and the transitions correspond to the ac-

tions of the attacker. Attack trees considered in this work make use of the same set of

propositions as the underlying transition system. Each node of an attack tree is labeled

with a so called goal, expressed with the help of two propositions: the initial configuration

representing the situation before the node’s attack starts (preconditions), and the final

configuration, describing the situation to be reached (postconditions). These pre– and

postconditions characterize the states of the transition system from which the attacker

can start and where they can end their attack. The nodes’ goals are not necessarily

independent.

Contrary to the existing formalizations of attack trees, the semantics of the trees

considered by Audinot et al. relies on paths in the underlying transition system and not

on the collection of the attacker’s actions. The semantics of a node is defined as a set

of paths in the transition system linking a state where the initial configuration of the

node’s goal is satisfied with a state where the final configuration is valid. The semantics

of a disjunctive (OR), conjunctive (AND), and sequential (SAND) composition of nodes is

defined using respectively the union, the parallel composition, and the concatenation of

the paths belonging to the semantics of its components. For instance, a conjunctive

composition of several goals is realized if there is a path that can be decomposed into

(possibly overlapping) paths that realize each of these goals. Such a view disallows any

kind of parallelism in the execution model.

Table 2: Complexity of correctness checking of [APK17]

meet under-match over-match match

OR P P P P

SAND P P P P

AND NP-c co-NP-c co-NP co-NP

The correctness of an attack tree refinement is then defined by comparing the se-

3.1. Formal semantics for attack–defense trees 47

mantics of a parent node with the semantics of its refinement, i.e., the semantics of

the combination of its children using the parent node’s operator. The following four

correctness properties are introduced: meet – when the intersection between the node’s

semantics and the semantics of its refinement is non-empty; under-match – when the

semantics of the refinement is included in the semantics of the parent node; over-match –

when the semantics of the node is included in the semantics of its refinement; and match

when the semantics of a node is equal to the semantics of its refinement. The complexity

of verifying the four correctness properties is summarized in Table 2. The verification

procedures have been implemented in the ATSyRA Studio tool [ats18].

The authors of [APSW18] follow-up on the work initiated in [APK17] by providing

tight bounds for the complexity of deciding the non-emptiness of the path semantics of

an attack tree. The non-emptiness problem is shown to be NP-complete for arbitrary

attack trees, and NL-complete for attack trees without AND refinements.

3.1.5 Sequence semantics

A common approach in the attack trees literature is to provide a reader with an intuitive

explanation of the rules of goals’ achievement, and then to proceed directly with defining a

semantics for trees (as, e.g., in the works described in Section 3.1.1 – 3.1.3 or in [KRS15]).

The achievement rules are rarely formalized independently of a semantics; rather, the

starting point is a semantics, and it is assumed that the semantics does describe the

ways in which the root goal of a tree can be achieved. In the case of semantics involving

basic actions of the attacker, e.g., the multiset semantics or the SP semantics, further

relations between the root goal and the attacks present in the semantics are almost never

studied. Such relations are the main focus of Mantel and Probst in [MP19]. The authors

of [MP19] aim at introducing a framework in which numerous connections between the

attacks and the root goal of an attack tree can be formally specified. Relying on a

description of the system under consideration and formalization of the attacker’s goals

using propositional formulæ , the authors provide means for defining various criteria for

attacks to be successful in scenarios modeled with trees.

The trees considered in [MP19] are SAND attack trees, in which the leaf nodes represent

basic actions of the attacker. Any finite, non-empty sequence of the attacker’s actions is

an attack; attacks relevant to a given tree are gathered in its semantics, which we will

call sequence semantics2. The sequence semantics of a SAND attack tree is created using

a bottom-up procedure similar to the one used for the SP semantics. The semantics

of a leaf node is a singleton consisting of a sequence whose only element is the node’s

label (attacker’s action). Attacks belonging to the sequence semantics of an OR node

are the attacks that belong to the semantics of at least one of the node’s child nodes.

The semantics of an AND node is obtained by interleaving the attacks belonging to the

2This will make referring to this particular semantics easier. We note that the authors of [MP19] do

not give the semantics that they define any name.

48 CHAPTER 3. State of the art

semantics of the node’s child nodes. That is, an attack belongs to the sequence semantics

of an AND node if it can be partitioned into subsequences, in such a way that each of the

subsequences belongs to the sequence semantics of one of the child nodes of the node.

Finally, the attacks in the semantics of the child nodes are concatenated in order to obtain

attacks in the semantics of their parent SAND node.

To analyze connections between the attacks in the sequence semantics and the goals

that the nodes of the tree are labeled with, the authors of [MP19] rely on a description of

the system in the context of which the tree is analyzed. The minimal viable description

of the system is a set of states, with state being a function that assigns values to the

system’s locations. The attacker’s goals are then modeled with propositional formulæ

parameterized by locations. Intuitively, a goal modeled with a formula is achieved, if the

system is in a state in which this formula is satisfied. Finally, the possible interactions

of the attacker with the system (realizations of the security scenario) are modeled as

sequences of alternating states and the attacker’s actions, starting with a state. In the

remainder of this section we will call such sequences traces.

Formalization of the attacker’s goals using propositional formulæ allows for specifying

what does it mean for the goal to be achieved in a trace (that is, in a particular realization

of the scenario), and for introducing two types of attack occurrences in a trace. Arguing

that an occurrence of an attack in a trace and a goal being achieved by a trace constitute

the minimal sensible criterion for an attack being successful w.r.t. the attacker’s goal,

Mantel and Probst specify three degrees of freedom in defining a success criterion. Called

purity, persistence, and causality, these degrees allow for making the definition of achiev-

ing the root goal more specific. For instance, one could consider an attack occurring in a

trace to be successful only if no other actions are executed in between the executions of

the actions belonging to the attack (high degree of purity), or if, once satisfied in some

state in a trace, the root goal remains satisfied in each of the following states (high degree

of persistence).

The whole framework sketched above relies on a formal description of a system. Such

description is the starting point in some of the existing approaches for semi-automatic

generation of attack trees (e.g., [VNN14, IPHK15]; see also [WAFP19] for an overview

of methods for attack trees generation). A combination of such approaches with the

framework developed in [MP19] could be the first step in a meaningful methodology

for analysis of security with the help of attack trees, which could be followed, e.g., by

application to the created model some of the existing methods for quantitative analysis

of trees. We finish this section with noting that the sequence semantics does not interpret

repeated basic actions as clones. Furthermore, in contrast to the SP semantics, it does

not allow for reasoning about attacks in which some of the actions could be executed in

parallel.

3.2. Quantitative analysis of security using attack–defense trees 49

3.2 Quantitative analysis of security using attack–

defense trees

To fully benefit from the process of security modeling using attack–defense trees, semantic

analysis, that, e.g., exhibits possible attacks against a system and highlights its vulnera-

bilities, should be accompanied by a quantitative analysis of the modeled scenario. One

of the common ways of doing this is to employ attribute domains and the bottom-up

evaluation of attributes [KMS12, BKMS12, KMRS14, HMT17]. Another way is to trans-

form the tree into another formal object, such as an automaton [GHL`16, HJL`17] or a

stochastic two-player game [ANP16], and to perform analysis on the resulting object.

In this section, we provide an overview of some of the attack tree-based methods for

quantitative analysis of security. We begin with the works [BLWC17] of Buldas et al.

and [AN15] of Aslanyan and Nielson, which are closely related to the analysis framework

based on attribute domains. They tackle the same problems that we are interested in:

the problem of attributes evaluation in the presence of clones, and the problem of multi-

objective quantitative analysis of scenarios modeled with attack–defense trees. We present

these works in Section 3.2.1 and 3.2.2, respectively. In the next two sections we give a

flavor of the second approach, the one involving transformation of an attack–defense tree

into another formal object. An analysis method based on stochastic two-player games

is described in Section 3.2.3. In Section 3.2.4 we give an overview of selected works

involving stochastic timed automata. Section 3.2.5 is devoted to a narrow description

of some of the approaches to the problem of multi-parameter analysis of security using

attack–defense trees, and to a comparison between them and the framework that we

develop in Chapter 5.

3.2.1 Approximation of the minimal cost of an attack in the

presence of clones

The focus of Buldas et al. in [BLWC17] is to provide proofs that for some attack trees no

profitable attacks exist. Formally, the problem is addressed by determining whether the

cost of a cheapest attack is greater than a given threshold. This is partially achieved by

evaluating a lower bound for the cost of a cheapest attack via a combination of a weight

reduction technique and the bottom-up evaluation of the minimal cost for the proponent

attribute.

This work considers standard AND/OR attack trees that might contain repeated basic

actions. Attack trees are modeled with monotone Boolean functions over propositional

variables representing successful executions of particular basic actions by the attacker. An

attack in a tree is a minterm of the corresponding formula, i.e., a conjunction of some of

the variables that implies the truth of the whole formula. Given a weight function w that

assigns non-negative, real values to the propositional variables, the cost of an attack is the

50 CHAPTER 3. State of the art

sum of weights of its variables 3. For a tree Φ, a weight function w, and a profit threshold

K, the aim is to determine whether it is profitable for the attacker to execute an attack,

i.e., whether the weight of a cheapest attack in Φ, denoted with wpΦq, does not exceed K.

This problem can be formulated in terms of the weighted monotone satisfiability problem,

which is known to be NP-complete [BLWC17]. To bypass the complexity of this problem,

the authors of [BLWC17] propose a method for computing a lower bound for wpΦq, which

is then compared with K. The quality of the obtained lower bound is indicated by the

relative error of the method, i.e., by the ratio of the difference between the upper bound

and the lower bound to the lower bound.

The lower bound for wpΦq is obtained in two steps. First, a weight reduction technique

is employed. For every propositional variable x that appears multiple times in the formula

Φ, each of its occurrences is replaced with a new variable, and the weight of x is distributed

among the new variables, i.e., the sum of weights of the new variables is equal to wpxq.

Information on how the weights of repeated variables of Φ should be distributed among

their occurrences is called a certificate for Φ. In the propositional formula obtained after

this step, every variable appears exactly once. As we shall prove in Chapter 4, the exact

cost of the cheapest attack in this new tree can be obtained via the bottom-up evaluation.

This exact cost is computed in the second step of the method. It provides a lower bound

for wpΦq. Furthermore, Buldas et al. prove that if in every subformula of the form G^F

of Φ the subformalæ G and F have at most one variable in common, then there exists

a certificate for which this lower bound is actually equal to wpΦq. If the lower bound is

greater than the profit K, then it is not profitable for the attacker to conduct an attack.

Once a certificate for Φ is known, it is computationally easy to verify it, that is, to

check whether the lower bound for the cost of the cheapest attack in Φ that it provides

exceeds K. The choice of a certificate that would achieve the best approximation of wpΦq

remains problematic. It is worth noting that the exact value of wpΦq can be obtained

using methods presented in Chapter 4, in a time linear in the number of nodes of a tree

and exponential in the number of repeated basic actions. A method for extracting an

attack the cost of which is equal to wpΦq is also described in Chapter 4.

3.2.2 Pareto efficient strategies in attack–defense trees

In [AN15], Aslanyan and Nielson provide a formal approach to the problem of multi-

parameter optimization in attack–defense trees. Every set of basic actions of the actors

(called strategy throughout this section) is assigned a vector v “ pv1, . . . , vkq of k ě 1

values. Some of the values might represent costs associated with execution of the actions

of the proponent that belong to a given strategy. Among them there might also be the

probability of the root goal being achieved when the strategy is executed (probability of

3Expressed in our terminology: an attack in an attack tree is a set of basic actions of the attacker

that achieves the goal of the tree’s root node; the cost of an attack is the sum of costs of the basic action

that constitute it.

3.2. Quantitative analysis of security using attack–defense trees 51

success). The aim is to determine the strategies that achieve the root goal and optimize

all of the values at once. Such optimal strategies are defined in terms of Pareto efficiency.

A strategy is optimal if its corresponding vector v is Pareto efficient in the set of vectors

corresponding to all strategies, i.e., if every other vector that offers an improvement w.r.t.

v on at least one coordinate entails a worsening on some other coordinate.

The underlying assumption of the whole framework is the independence of basic ac-

tions performed by the actors. The main focus is put on the class of trees that do not

contain clones, called linear trees by the authors. The basic model of attack–defense trees

introduced in [KMRS14] is extended with a negation operator, which allows for capturing

the situation in which execution of an action by an actor makes it impossible for them

to perform some other action. Aslanyan and Nielson use this operator also for defining a

specific class of attack–defense trees, called polarity–consistent trees (PCTrees), in which

multiple occurrences of basic actions are allowed under some constraints.

Each of the basic actions is assigned two probability values: a probability of achieving

the goal it represents in the case of attempted execution, and a probability of achieving

the goal in the case when the action is not executed (in the Boolean case, where the

problem of satisfiability of the root goal is tackled, these values are 1 and 0, respectively).

Furthermore, each of the actions is decorated with a vector c “ pc1, . . . , cmq of m ě 0 real-

valued costs. In this setting, two approaches to the problem of determining Pareto optimal

strategies that maximize the probability of success and minimize costs are considered. In

the first one, called semantic evaluation, the probabilities and costs corresponding to all

possible strategies (with the cost of a strategy being a coordinate-wise sum of costs of

the actions that constitute the strategy) are computed, and only then the Pareto optimal

values are selected. This method has the drawback of high complexity, due to the fact

that the number of strategies in an attack–defense tree is exponential in the size of the

tree. To overcome this difficulty, the authors of [AN15] develop an alternative method,

which they call algorithmic evaluation. For the case when m “ 0, this method is a

combination of two standard bottom–up procedures, and determines the lowest and the

highest values of probability of success in a linear tree, in the time linear in the size of

the tree. Boolean version of this problem is solved similarly in the class of PCTrees. In

the Boolean variant the result reflects the influence of the actions of the other actor on

the actions of the root actor. For instance, the result can highlight the fact that the root

goal is always achieved, no matter what the other actor does, or that the other actor

can select actions that ensure that the root goal cannot be achieved by the root actor.

The algorithmic evaluation method in the case of m “ 1, that is, in the presence of both

probability and a single cost, propagates up to the root of a tree only the Pareto efficient

values. In a linear tree, the result obtained at the root coincides with the result of the

semantic evaluation, and, again, is obtained in the time linear in the size of the tree. The

computation of the set of Pareto optimal solutions for the probability and cost parameters

has been automated in the Attack Tree Evaluator tool (ATE) [Asl16b, Asl16a].

52 CHAPTER 3. State of the art

It is worth noticing that the complexity of the algorithmic evaluation increases with

the growth of the number m of costs associated with the basic actions, i.e., for any fixed

m there is an attack–defense tree T of size linear in m and with the number of unique

Pareto optimal strategies exponential in the number of nodes of T . For instance, for an

even m, the tree

T “ ANDppORppb1, b2q, ORppb3, b4q, . . . , ORppbm´1, bmqq

has n “ 3{2m ` 1 nodes. Set the probability of successful execution of each of the

actions to 1, and, for i P t1, . . . ,mu, let the cost of execution of the action bi be a vector

assuming 1 on the ith coordinate and 0 on each of the remaining m´ 1 coordinates. It is

not difficult to see that every set of the form tbi1
, bi2

, . . . , bim{2
u, where ij P t2j ´ 1, 2ju,

is Pareto optimal, and that the value corresponding to such set is unique. The number

of such strategies is 2m{2 “ 2pn´1q{3.

In the framework of [AN15] the possible behavior of the actors is described by sets of

actions that they execute. This description does not take the order of the actions’ exe-

cution into account. To additionally capture the order of execution of actions, Aslanyan

et al. develop a framework based on stochastic two-player games, in [ANP16] (see Sec-

tion 3.2.3). Contrary to the approaches for multi-parameter optimization in attack–

defense trees based on timed automata (see Section 3.2.4), the methods presented in [AN15]

do not capture the possibility of a single action being executed multiple times.

The work of [AN15] served as the main motivation for our research on the multi-

parameter optimization in attack–defense trees. In Chapter 5, we provide a general

framework for Pareto-based analysis of security scenarios modeled with attack–defense

trees. Contrary to the work of Aslanyan and Nielson, our framework allows for opti-

mization of parameters belonging to a wide class, including maximal probability for the

proponent and minimal cost for the proponent attributes, and can be employed for anal-

ysis of trees containing clones.

3.2.3 Stochastic game interpretation of attack–defense trees

attack–
defense tree

assignment of
cost and prob.

stochastic two-
player game

PRISM-games

DTMC semantics

PRISM-games
quantitative/

qualitative query

optimal strategies

answer to the query

Figure 9: PRISM-games for attack–defense trees

by [ANP16]

To overcome the limitations

of usual static analysis of sce-

narios modeled with attack–

defense trees, Aslanyan et

al. propose a more dynamic

approach in [ANP16]. The

formalism of attack–defense

trees is extended with se-

quential conjunctive and se-

quential disjunctive nodes, to

capture temporal or causal

3.2. Quantitative analysis of security using attack–defense trees 53

dependencies between the

goals of the actors. With the

basic actions being given an assignment of cost of attempted execution and probability of

successful execution, the aim is to synthesize strategies for the actors that satisfy given

constraints on the two parameters. Intuitively, a strategy provides an actor with informa-

tion on what actions to perform, as well as in which order or under which circumstances

particular actions should be executed. Formally, the strategies are represented as decision

trees. They are derived from a specific stochastic two-player game (STG) [NS03] that the

underlying attack–defense tree is transformed into. The whole framework is sketched in

Figure 9.

In order to analyze an attack–defense tree, taking the order in which actions are exe-

cuted into account, the authors of [ANP16] propose a way of transforming the tree into an

STG. To explicitly reason about strategies available to the players in the stochastic game,

they use probabilistic model checking techniques for stochastic games based on the proba-

bilistic alternating-time temporal logic with rewards (rPATL) [CFK`13a]. This allows for

expressing and answering questions such as “can the defender ensure that the probability

of a successful attack is less than a given threshold?” or “what strategy of the attacker

maximizes the probability of a successful attack?”. An extension of rPATL [CFK`13b] is

employed to synthesize memoryless strategies (or verify their existence) satisfying given

constraints on both parameters under consideration, i.e., a bound on the probability of

a successful attack and a bound on the expected cost of implementing a strategy by

one of the actors. The actual analysis of the game is performed by the PRISM-games

tool [KPW16]. Apart from answering the above-mentioned questions, the tool can also

present the Pareto optimal strategies (cf. Section 3.2.2; note however, that here the

expected, and not the exact, cost is considered).

Strategies of the actors in an attack–defense tree are intuitively represented using a

variant of decision trees. Given a pair of strategies to be implemented by the actors, the

possible realizations of the modeled scenario are represented as a discrete-time Markov

chain (DTMC) [Pri13]. The equivalence between those strategies and the ones originating

from the corresponding STG, as well as ways of obtaining the former given the latter, is

presented in [ANP16]. Finally, Aslanyan et al. implement a prototype tool that translates

an attack–defense tree into a specification of the corresponding STG that is accepted as

input by the PRISM-games tool.

The presented framework is developed under the assumption that the sequential nodes

present in a tree cannot have non-sequential nodes among their ancestors. For the rest

of this section let us refer to a maximal subtree of an attack–defense tree that does not

contain sequential nodes as simply subtree. We observe that the authors of [ANP16] do

not explicitly state the way in which they interpret multiple occurrences of a single basic

action in a tree. However, one can deduce from the procedure constructing an STG that

multiple nodes labeled with the same basic action and belonging to the same subtree

54 CHAPTER 3. State of the art

are interpreted as the same single instance of the action. On the contrary, multiple

occurrences originating from different subtrees are interpreted as distinct instances of the

action.

From the complexity perspective, the approach of [ANP16] does not manage to escape

the state space explosion problem. In the simplest case of an AND/OR attack tree with n

basic actions, there are n ` 2n ` 3 states in the resulting stochastic game, which seems

to make the framework not usable in practice.

3.2.4 Attack–defense trees analysis with timed automata

The main goal of the framework developed in [GHL`16] is to model temporal behavior of

the attacker in an attack–defense tree and to exploit this modeling for the purpose of quan-

titative analysis of the underlying attack–defense scenario. Gadyatskaya et al. propose a

way of encoding the actors and their basic actions as networks of timed automata [AD90].

Such a network is then provided as input to the Uppaal model checker [BDL04, LPY97],

which allows for extracting strategies of the actors satisfying particular properties, as

schematized in Figure 10. The standard model of attack–defense trees with OR and AND

refinements only is considered. The success or failure of the attacker in a tree T , when the

attacker has executed set of actions A and the defender the set of actions D, is defined

as the value of achievedTprootpT q, AYDq.

attack–
defense tree

stochastic at-
tacker’s profile

defender’s profile

assignment of
cost and prob.

network of
stochastic

timed automata

model checking
with Uppaal

quantitative query

answer to the query

Figure 10: Uppaal-based analysis of attack–defense

trees by [GHL`16] and [HJL`17]

First, an attack–defense tree

is used to derive a directed la-

beled graph, called by the au-

thors of [GHL`16] an attack–

defense graph. This graph repre-

sents possible realizations of the

scenario modeled by the tree, i.e.,

combinations of all sets of ac-

tions executed by the defender

with all potential sequences of

the actions executed by the at-

tacker. The attack–defense graph

is used to define the attacker’s

profile, which models the capabil-

ities (what are the actions that

the attacker can execute and what are the properties of their execution times) and pref-

erences (the probability that a given action is chosen) of the attacker in any situation

that can occur in the scenario. Formally, the attacker is modeled as a timed transi-

tion system [HMP91] equipped with a description of its non-deterministic behavior. The

attack–defense graph and the profile of the stochastic attacker are combined to create

a stochastic timed transition system that models possible realizations of the scenario.

3.2. Quantitative analysis of security using attack–defense trees 55

Given a set of actions executed by the defender, and taking into account the stochasticity

of the attacker, the probability of successful execution of basic actions, and the cost of

attempting their execution, Gadyatskaya et al. derive explicit formulæ for the probability

of the attacker’s success, and the expected cost within a given time bound. This naturally

leads to the problem of choosing the attacker’s profile that optimizes these values.

The final transition system is encoded using network of stochastic timed automata, in

a way that ensures that the runs of the network correspond to sequences of transitions in

the system. The encoding is performed in a modular manner, i.e., the network consists

of an automaton that models the attacker, an automaton modeling the defender, and an

automaton for each of the basic actions of the attacker, that models possible outcomes

of executing the action. The authors of [GHL`16] implemented the encoding procedure,

and the implementation outputs a specification of the network that is accepted as input

by the Uppaal model checking engine [BDL04], [LPY97]. Using Uppaal, it is then

possible to, e.g., determine the probability of a successful attack or the expected cost of

succeeding (for a specific attacker profile) within a given time bound.

The approach from [GHL`16] is expanded upon by Hansen et al., in [HJL`17], with

three novelties. First, a dependency between the total cost of execution of an action and

the time spent on the execution of the latter is introduced. Instead of being equipped

with a real value of cost, as in [GHL`16], every basic action in [HJL`17] is assigned a

relative cost of execution per time unit. Second, Hansen et al. formalize a profile of

a cost-preserving attacker. The probability of a given action being executed by a cost-

preserving attacker depends on the relative cost of the action and the maximal possible

time needed for its execution. The lower the impact of the execution of an action on

the attacker’s budget, the more likely the attacker is to execute the action. Since a cost-

preserving attacker might not behave in a way that maximizes the probability of success,

a parametrization of such an attacker is proposed. In the case of the parametrized cost-

preserving attacker, the probabilities based on the impact of the execution of an action

on the attacker’s budget are additionally weighted. Finally, a method for selecting a

configuration of parameters that minimize the expected cost of an attack in a given tree

and under given stochastic defender is proposed. For a given set of configurations of

parameters, a number of simulations of the attack–defense scenario is performed for each

of the configurations, and the results (costs of success) are subject to analysis of variance.

As long as the analysis of the variance detects differences between the sets of results,

some of the configurations are being removed, additional simulations are performed for

the remaining configurations, and the results are tested again. When no differences

are detected, the results of the simulations are assumed to originate from identically

distributed random variables. In particular, it is assumed that all of the remaining

configurations of the parameters yield the same (optimal) expected cost of the attacker

being successful within the given time bound.

In order for the results of the analysis proposed in both [GHL`16] and [HJL`17] to

56 CHAPTER 3. State of the art

be meaningful, the underlying attack–defense tree should satisfy some properties, which

seem to be implicitly assumed. Computations of the probability of the attacker’s success

rely on the assumption of mutual independence of all basic actions. Furthermore, if the

actions under an AND node of the attacker can be executed in parallel, this information

is lost in the automata interpretation of the tree, since the final behavior of the attacker

is represented as a sequence of actions. Finally, it is assumed that every action of the

attacker can be executed an unbounded number of times, until it is completed successfully.

3.2.5 Multi-parameter analysis of security using attack–defense

trees

The works presented in Section 3.2.2– 3.2.4 provide ways of analyzing security scenarios

modeled with attack–defense trees while taking multiple parameters (or attributes) into

account simultaneously. In this section, we briefly describe some of the other possible

approaches to this task, and compare them with the framework that we develop in Chap-

ter 5. We limit this section to the works concerned with multi-parameter quantitative

evaluation and attack–defense trees possibly containing clones.

One way of addressing the problem of multi-parameter quantitative analysis of security

using attack tree-based models is to construct an attribute being a combination of several

relevant elementary parameters. An example of such an attribute is the expected outcome

of the attacker, considered by Jürgenson and Willemson in the context of attack trees

in [JW08]. The expected outcome represents monetary profit of the attacker, expressed

in terms of the gain of the attacker in case the attack succeeds, the costs of the attack,

its success probability, as well as the probability of being caught, and the related penalties.

Similarly as [BLWC17], this work uses Boolean functions as the underlying formal model

of attack trees. The expected outcome’s value is computed for all valuations satisfying the

Boolean function representing an attack tree, and the solution with the highest value is

retained as the outcome that the attacker can get from performing an attack. Since the

logical operators used by Boolean functions are idempotent, repeated basic actions are

treated in [JW08] as clones. Due to the necessity of checking all relevant valuations, the

complexity of the solution from [JW08] is higher than the complexity of the framework

presented in Chapter 5.

In [EDRM06], Edge et al. discuss how to combine the probability, expected cost, and

impact parameters into a metrics called risk. The individual parameters are propagated

using the standard bottom-up approach, and the risk at each node of an attack tree is

then computed according to the formula pprobability{costq ¨ impact. A simple analysis of

the bottom-up propagation rules for probability and cost used in [EDRM06] implies that

they are not suited for trees containing clones.

More recently, several approaches exploiting model checking techniques have been

proposed to address the problem of multi-parameter quantitative evaluation on attack

3.2. Quantitative analysis of security using attack–defense trees 57

tree-based models. The focus of Aslanyan and Nielson in [AN17] is on attack trees

with the exact cost 4 and the probability parameters. Attack trees are transformed into

Markov decision processes with reward structure, and erPCTL5 queries, such as “what

is the maximum probability of an attack with the cost at most c?” are answered using

probabilistic model checking. Compared to the framework of Chapter 5, the approach

developed by Aslanyan and Nielson deals with two-parameter evaluation (exact cost and

probability) only, and similarly to [EDRM06], it does not seem to be suited for attack

trees containing repeated labels.

In [KRS15], Kumar et al. consider attack trees with basic actions decorated with

cost structures modeling time, skills, damage, and difficulty. Attack trees are translated

into priced timed automata which are then given to the Uppaal Cora model checker

where they are queried for quantitative properties of interest expressed with weighted

computation tree logic (CTL) queries. The objective is to provide an effective way of

computing the necessary resources (e.g., time, skills) and the corresponding attack paths

leading to the achievement of the root goal. This solution allows the authors to deal

with two-parameter optimization using an iterative procedure. The method is suitable

for attack trees with repeated basic actions, but cannot be applied to attack–defense

trees and does not tackle the probability attribute. In his Ph.D. thesis [Kum18], Kumar

automatizes this procedure with the help of the ATTop tool [KSR`18], but does not

provide time measurements. Interestingly, for the attack tree considered in [KSR`18],

having 12 nodes and no repeated basic actions, the authors state that the ATTop tool

needed more than 6 seconds for computing an attack of minimal time, i.e., for performing

the first step of the iterative method for determining Pareto optimal attacks. In the light

of the results presented in Section 5.3.2, it thus seems that our solution outperforms the

method of [KRS15] (on inputs suitable for both methods).

Model checking of attack–defense trees decorated with the cost of attempted execution

and the success probability is the focus of Aslanyan et al. in [ANP16], as detailed in

Section 3.2.3. To capture temporal or causal dependencies between the goals of the

actors, sequential conjunctive and sequential disjunctive refinements have been added

to attack–defense trees to complement the two standard refinements OR and AND. The

expressive power of attack–defense trees from [ANP16] is thus richer than in the case

of our work. However, from the perspective of quantitative analysis, our framework of

Chapter 5 is more general in a sense, because [ANP16] is limited to the evaluation of two

specific attributes only, namely expected cost and success probability.

In the works described in Section 3.2.4 it is assumed that the attacker may try ex-

ecuting each of their actions several times, until executed successfully, with a certain

probability of succeeding, which is not the case in our work. On the other hand, the

4The word exact is used to mark a difference with expected cost often used in the context of attack

tree modeling.
5erPCTL stands for probabilistic computation tree logic with exact rewards.

58 CHAPTER 3. State of the art

Uppaal-based approach of [GHL`16] is tailored to specific attributes, namely cost, prob-

ability, and time, whereas the solution that we propose in Chapter 5 can be applied to a

wide class of attributes whose domains satisfy the assumptions of Theorem 5.

Among all existing solutions for multi-parameter evaluation of security on attack–

defense trees, the approach introduced by Aslanyan and Nielson in [AN15], described in

Section 3.2.2, is the closest to our framework of Chapter 5. To the best of our knowledge,

this is the only work considering Pareto optimization on attack–defense trees using the

bottom-up approach. The advantages of our framework over the approach of [AN15]

are that, first, it allows for computing strategies that optimize a number of different

parameters, and second, that it can be applied to attack–defense trees containing clones.

3.3 Selection of countermeasures in attack–defense

scenarios

Finding an optimal way of protecting a system is crucial from several perspectives. A

security expert will mostly be interested in identifying a set of countermeasures that can

cover the largest possible part of attack surface. The system owner will rather take an

economic point of view and aim at spending on security only as much as it is really

necessary. By estimating the cost of an optimal set of countermeasures, the security

expert can provide to the system owner an impartial argument about the minimal budget

that should be devoted for securing the system.

The optimization criteria of interest for security expert or a system owner can be

diverse. On the one hand, they may want to select the countermeasures in such a way that

the remaining uncountered attacks are as expensive for the attacker as possible (attacker

investment problem), or that the number of countered attacks is maximal (attack coverage

problem). Both these problems fall into the class where the objective is to maximize a

certain function that quantifies possible attacks. On the other hand, the aim could also

be to minimize the defender’s investment under some constraints (defender investment

problem). Classically, if one is able to express which countermeasures disable which

attacks, the aforementioned problems can be addressed with the help of integer linear

programing, see, e.g., [RDR12, Saw13, ZALT19] and references therein.

In this section, we focus mostly on works that aim at extracting the above-mentioned

pairs (attack, countermeasure) from attack–defense trees. Similarly as in the previous

section, we briefly compare them with our approach to this problem, developed in Chap-

ter 6, in a way that does not require being familiar with the approach. Here, we would

like to only emphasize the fact that our method can be applied to any attack–defense

tree, which is not the case in any of the works described in the following paragraphs.

In [RKT12], Roy et al. use attack countermeasure trees (ACT), which are attack trees

augmented with countermeasure nodes composed of a detective and a mitigating part.

They exploit what can be seen as our method of Chapter 6 in the special case of attack

3.3. Selection of countermeasures in attack–defense scenarios 59

trees in which to each node of the attacker a single non-refined countermeasure node can

be attached. In other words, this modeling framework does not allow for nodes of the

opponent to be refined or countered. The authors propose a linear programming–based

solution to the problem of minimizing defender’s investment while covering some of the

attacks, and the problem of maximizing the defender’s return on investment (ROI). While

the former can be applied to trees containing clones, the latter cannot, as it relies on the

bottom-up computation of success probability that is known not to work in trees with

clones. The main research focus of [RKT12] is on algorithms for solving the optimization

problems, while we mostly concentrate on extracting information on reasonable ways of

achieving the root goal and on reasonable behavior countering these ways from trees.

Maximization of the defender’s ROI in scenarios modeled with attack–defense trees

has also been addressed in [MHM16]. Trees considered by Muller et al. in [MHM16] are

assumed to have no clones of the proponent, and, similarly as in [RKT12], the nodes of

the opponent can have no children, i.e., they can be neither refined nor countered. The

main contribution of [MHM16] is a branch-and-bound algorithm that iterates in a non-

naive way over sets of countermeasures that the opponent can implement, in the search

of the one that maximizes the value of the opponent’s ROI.

The framework described in Section 3.2.3 could also be applied to AND/OR attack–

defense trees for the purpose of optimal selection of countermeasures. That is, an attack–

defense tree could be transformed into a stochastic two-player game, in which an optimal

strategy for the defender, corresponding to an optimal set of countermeasures in the

modeled scenario, could be synthesized. This method, however, can only be applied to

small trees: as detailed in the last paragraph of Section 3.2.3, the size of the resulting

game is exponential in the size of the tree.

The complexity of our framework described in Chapter 6 originates from the fact

that the dependencies between basic actions of the actors are encoded in attack–defense

trees; they are complex, and to make use of them, one needs to decode them. In the

approaches developed for optimal selection of countermeasures in [BCSW06, KLM19],

the relations between behaviors of the actors are simple: in [BCSW06], every attacker’s

actions disables a set of defender’s actions, and in [KLM19], every defender’s action im-

pacts success probability of each of the attacker’s actions. This simplicity allows for an

immediate formulation of the optimization problems as bilevel mixed integer program-

ming (MIP) programs [MB90, Woo93], which can be solved using standard methods.

We note that, in the light of Definition 21 of goal achievement, the root node of an

attack–defense tree being achieved corresponds to a propositional formula being satis-

fied. The optimization problems considered in Chapter 6 could thus have been expressed

as variants of the satisfiability problem, which in turn could be directly encoded as MIP

programs [Hoo88, GWH`18]. Since the goals of the actors are conflicting (e.g., the at-

tacker wants to minimize, and the defender wants to maximize the value of the objective

function), and the defender is the first one to act, the result of such encoding would be

60 CHAPTER 3. State of the art

a bilevel MIP problem resembling the ones considered in [BCSW06, KLM19]. A stan-

dard technique for dealing with bilevel programs involves replacing the inner problem

with its dual or the dual of its linear relaxation [Woo93, BCSW06, KLM19]. If the inner

problem is a linear programming problem or the integrality gap of its linear relaxation

is 1, one eventually obtains a single level optimization problem equivalent to the initial

one. In our case, the integrality gap is greater than 1, i.e., the difference between the

optimal solution of the final program and the optimal solution of the initial one can not

be predicted. Therefore, even though this method would allow for omitting the computa-

tionally expensive construction of defense semantics, we decided to pursue the approach

yielding the exact optimal solutions. We believe that our framework could thus play

an important role in assessing performance of heuristic methods for optimal selection of

countermeasures in attack–defense trees developed in the future.

Chapter 4

Evaluation of attributes on

attack–defense trees with clones

When discussing the bottom-up evaluation of attributes, we have mentioned on page 37

that it might return incorrect results for attack–defense trees containing clones. This

is a widely known issue, motivating the work of [BLWC17] and causing some analysis

frameworks to be developed under the explicit assumption of trees not having repeated

basic actions [AN15, MHM16, KW17]. The difficulty introduced by the presence of clones

can be sometimes bypassed by transforming a tree into another object, and performing

quantitative analysis on this object. An example of such approach is the method of

evaluation of attributes on the set semantics, defined in [BK17].

We begin this chapter with a preliminary Section 4.1, in which the notion of the eval-

uation of attributes on the set semantics is recalled. In the same section, the normal form

of the bottom-up evaluation, a useful tool for analyzing parallels between attribute do-

mains, is introduced. In Section 4.2, properties of the set semantics are studied, providing

insights into the actual contents of the semantics. We discuss the complexity of the eval-

uation of attributes on the set semantics, and present conditions under which the result

of this evaluation can be quickly obtained using the bottom-up evaluation in Section 4.3.

For the case when these conditions are not satisfied, we develop an alternative method

for evaluation of attributes. It is described in Section 4.4. Finally, for attributes such as

minimal cost for the proponent or maximal probability for the proponent, we tackle the

issue of efficiently extracting the optimal strategies, i.e., the ones achieving the optimal

value of an attribute, from attack–defense trees. An algorithm solving this problem is

presented in Section 4.5. In Section 4.6, we sketch possible applications of the methods

developed in the previous sections in fields related to attack–defense trees. Finally, Sec-

tion 4.7 is devoted to experimental results highlighting the differences between various

evaluation procedures. We conclude in Section 4.8

61

62 CHAPTER 4. Evaluation of attributes on...

4.1 Preliminaries

When introducing a new attribute domain and studying its properties, one might wish

to examine its relations with another domain. In such a case, valuable insights can be

sometimes obtained by comparing the bottom-up evaluations of the two attributes. To

make such comparison straightforward, we employ the term rewriting techniques.

Consider an attribute domain Aα “ pDα,‘,b,b,‘,b,‘q with the operations ‘ and

b being associative and commutative, and with b distributing over ‘. Let β be a basic

assignment for α, and let L be the language generated by the grammar

t ::“ βpbq | ‘pt, . . . , tq | bpt, . . . , tq, (5)

for b P B.

Let Ñ be a reduction relation on L defined as follows: for t, t1 P A, we say that tÑ t1

if t1 can be obtained from t by replacing the leftmost subterm of t that is in one of the

forms bpt1,‘pt2, t3qq, bp‘pt2, t3q, t1q with ‘pbpt1, t2q,bpt2, t3qq or ‘pbpt2, t1q,bpt3, t1qq,

respectively. In other words, the first place in which the distributivity rule of the semiring

pDα,‘,bq can be applied is identified, and the appropriate rule is applied. Note that

this definition implies that for every t P L there is at most one t1 P L such that t Ñ t1.

Thus, the reduction Ñ is locally confluent. It is also easy to see that Ñ is terminating.

Therefore, by Lemma 2, every element in L has a unique normal form.

Suppose now that during the bottom-up evaluation of α on tree T under the basic

assignment β no evaluation of the operations takes place at the intermediate nodes, but

rather that the expressions are propagated up to the root of the tree, eventually yielding

an algebraic expression, involving the operators ‘, b and the values assigned to the basic

actions. By switching to the prefix notation, the expression becomes a term belonging

to the language L. By reducing this term to its normal form and switching back to the

infix notation, one obtains an expression of the form

αBpT, βq “ pβpb
1
1q b βpb

1
2q b . . .b βpb

1
k1
qq‘

. . .

‘ pβpbi
1q b βpb

i
2q b . . .b βpb

i
ki
qq‘

. . .

‘ pβpbn
1 q b βpb

n
2 q b . . .b βpb

n
kn
qq,

(6)

where
nŤ

i“1

kiŤ
j“1

tbi
ju “ BT .

We call the result of the above procedure the normal form of the bottom-up evaluation

αBpT, βq. Note that the attribute domains induced by semirings admit the normal form

of the bottom-up evaluation.

Example 24. Let Aα “ pDα,‘,b,b,‘,b,‘q be an attribute domain induced by a semir-

ing, let T be the attack–defense tree depicted in Figure 5 and let β be a basic assignment

4.1. Preliminaries 63

for α. After the first step of the procedure described in the previous paragraph, that is,

after propagating algebraic expressions up to the root of T , one obtains the expression

αBpT, βq “
`
βpaq b ppβpd1q ‘ βpcqq ‘ βpd2q ‘ βpd3qq

˘
‘

‘

ˆ`
βpaq b ppβpd1q ‘ βpcqq ‘ βpd2q ‘ βpd3qq

˘
b βpbq b βpd3q b βpd4q

˙
.

Switching to the prefix notation yields term

αBpT, βq “ ‘

ˆ
b
`
βpaq,‘pβpd1q, βpcq, βpd2q, βpd3qq

˘
,

b
`
b pβpaq,‘pβpd1q, βpcq, βpd2q, βpd3qqq,bpβpbq, βpd3q, βpd4qq

˘˙
,

which reduces to

αBpT, βq “ ‘

ˆ
‘
`
b pβpaq, βpd1qq,bpβpaq, βpcqq,bpβpaq, βpd2qq,bpβpaq, βpd3qq

˘
,

b
`
b pβpaq,‘pβpd1q, βpcq, βpd2q, βpd3qqq,bpβpbq, βpd3q, βpd4qq

˘˙
.

Reducing the last term to its normal form and switching back to the infix notation results

in the following normal form of αBpT, βq:

αBpT, βq “
`
βpaq b βpd1q

˘

‘
`
βpaq b βpcq

˘

‘
`
βpaq b βpd2q

˘

‘
`
βpaq b βpd3q

˘

‘
`
βpaq b βpd1q b βpbq b βpd3q b βpd4q

˘

‘
`
βpaq b βpcq b βpbq b βpd3q b βpd4q

˘

‘
`
βpaq b βpd2q b βpbq b βpd3q b βpd4q

˘

‘
`
βpaq b βpd3q b βpbq b βpd3q b βpd4q

˘
.

The next example provides an illustration of the normal form of the set semantics.

Example 25. Consider again the tree T from Figure 5. Example 24 implies that the

normal form of the set semantics SpT q of T is

SpT q “

ptau, ∅q d p∅, td1uq

(

Y

ptau, ∅q d ptcu, ∅q

(

Y

ptau, ∅q d p∅, td2uq

(

Y

ptau, ∅q d p∅, td3uq

(

Y

ptau, ∅q d p∅, td1uq d ptbu, ∅q d p∅, td3uq d p∅, td4uq

(

Y

ptau, ∅q d ptcu, ∅q d ptbu, ∅q d p∅, td3uq d p∅, td4uq

(

Y

ptau, ∅q d p∅, td2uq d ptbu, ∅q d p∅, td3uq d p∅, td4uq

(

Y

ptau, ∅q d p∅, td3uq d ptbu, ∅q d p∅, td3uq d p∅, td4uq

(
.

64 CHAPTER 4. Evaluation of attributes on...

The usefulness of the normal form of the bottom-up evaluation will be demonstrated

in the remaining sections of this chapter.

To tackle the difficulties in the evaluation of attributes in the presence of clones,

Bossuat and Kordy introduced in [BK17] the evaluation of attributes on the set semantics.

Definition 24 (Evaluation of attributes on the set semantics). Let α be an attribute with

the attribute domain pDα, ORp
α, ANDp

α, ORo
α, ANDo

α, C
p
α, C

o
αq such that the operations ORp

α, ANDp
α

and ORo
α are associative and commutative. Let T be an attack–defense tree, and let β be

a basic assignment for α. The value of α for T under β evaluated on the set semantics,

denoted by αSpT, βq, is defined as

αSpT, βq :“ pORp
αqpP,OqPSpT q

ˆ
Cp

α

`
pANDp

αqbPPβpbq, pORo
αqbPOβpbq

˘˙
.

In the notation αSpT, βq, the subscript S refers to the computation on the “set semantics”.

From now on, we shall call the elements of set semantics strategies. The attribute

evaluation on the set semantics consists of computing values of the attribute correspond-

ing to particular strategies, and then combining these values using the ORp
α operator. This

is visible in the following two examples.

Example 26. Consider an attribute domain Aα “ pDα,‘,b,b,‘,b,‘q induced by a

semiring pDα,‘,bq. For a tree T and a basic assignment β for α, the evaluation of α

on the set semantics of T acquires the form

αSpT, βq “
à

pP,OqPSpT q

ˆâ`â
bPP

βαpbq,
â
bPO

βαpbq
˘˙
“

“
à

pP,OqPSpT q

â
bPP YO

βαpbq.

Example 27. Consider the tree T from Figure 2 and the attribute domain Atime “

pNYt`8u,min,`,`,min,`,minq for the minimal time for the proponent attribute. Let

βtime be the basic assignment that assigns `8 to the basic actions of the opponent and

the values given in Table 3 to those of the proponent. The evaluation of minimal time

4.1. Preliminaries 65

for the proponent for T under βtime is

timeSpT, βtimeq “ min
`
10` 120` 5,

60` 360` 120` 5,

360` 120` 5`8,

100` 5`8,

100` 20` 5`8,

100` 300` 5`8`8,

20` 300` 5`8`8,

100` 20` 5,

100` 20` 20` 5,

100` 300` 20` 5`8,

20` 300` 20` 5`8
˘
“

“125,

where the consecutive elements correspond to the elements of the set semantics of T ,

as presented in Example 23 on page 42. Following Remark 1 from page 34, the result

means that if the opponent executes all of their actions, then the minimal time needed

for achieving the root goal by the proponent is 125 units of time. It corresponds to the

execution of the strategy ptphish, phone, log&transu, ∅q.

Intuitively, the result obtained in Example 27 seems to be correct: the time needed

for execution of any set of actions of the proponent that achieves the root goal when the

opponent executes all of their actions is at least 125. We note that in this particular case,

the bottom-up evaluation fails, as illustrated in the next example.

Table 3: Basic assignment of time to the basic actions of the proponent from tree in

Figure 2.

Basic action b βtimepbq Basic action b βtimepbq

cam 60 eav 360

force 10 card 120

cash 5 pwd 300

phish 100 uname 20

log&trans 5 phone 20

Example 28. Consider again the tree, the attribute domain and the basic assignment

66 CHAPTER 4. Evaluation of attributes on...

from Example 27. In this setting, the bottom-up evaluation yields

timeBpT, βtimeq “

min
´

min
`
360`minp60,`8q, 10

˘
` 120` 5,

minp100, 300`8q `minp100, 20q `
`
5`minp`8, 20q

˘¯

“ minp135, 145q “ 135,

which is the minimal time necessary to achieve the root of T when executing the strategy

ptforce, card, cashu, ∅q. It exceeds the actual minimal time, obtained using the evaluation

on the set semantics in Example 27, by 10 time units. This is the case, because the

bottom-up disregards any piece of information about nodes other than value assigned to

them. In consequence, the value corresponding to the cloned phish action has been taken

into account twice, in the expressions maxp100, 300,`8q and minp100, 20q, leading to the

value of 125 time units not appearing in the computations.

Similarly as it is the case with the bottom-up evaluation of attributes, the evaluation

on the set semantics should be applied with care. In particular, the result of this eval-

uation method is not meaningful for all attributes. This fact is visible in the following

example.

Example 29. Consider the attribute domain A “ pr0, 1s, ˝, ¨, ˝, ¨, ‚, ‚q, where

p1 ˝ p2 ˝ . . . ˝ pn :“ 1´
nź

i“1

p1´ piq,

p1 ‚ p2 :“ p1 ¨ p1´ p2q,

for p1, . . . , pn P r0, 1s and n P Ně1. This domain has been used in [KMS12, AN15]

and [EK19] for formalizing the attribute called success probability, with the authors

of [KMS12] stating explicitly that the bottom-up evaluation of this attribute yields mean-

ingful results only in trees with no dependencies between the basic actions.

Let T “ ORppa, ANDppa, bqq. Assume that the probabilities of successful execution of

actions a and b are ppaq and ppbq, respectively. Furthermore, assume that the actions

are independent, i.e., that neither an attempted nor a successful execution of any of the

two actions impacts the probability of a successful execution of the other one, and that

a successful execution of any of them does not cancel the consequences of a successful

execution of the other one.

Following Definition 21 of achievement, there are two sets of actions that achieve the

root goal of T : the singleton tau and the set ta, bu. Thus, if the root goal of T is achieved,

then the attacker must have executed successfully either the action a or else both actions

a and b. In either case, the attacker must have executed successfully the action a. On

the other hand, since the singleton tau achieves the root goal of T , should the attacker

execute the action a successfully, they will have achieved the root goal of T . It follows

4.1. Preliminaries 67

that the root goal of T is achieved if and only if the basic action a is executed successfully.

Therefore, it seems plausible to conclude that the probability of the attacker achieving the

root goal cannot be greater than ppaq.

However, regardless of the intuitive meaning of the attribute corresponding to the

domain A, the result of its evaluation on the set semantics of T is

1´ p1´ ppaqqp1´ ppaqppbqq,

and it is greater than ppaq for ppaq, ppbq R t0, 1u.

Therefore, for the attribute domain A, turning to the evaluation on the set semantics

is not enough to obtain meaningful results in the presence of clones.

The least that one could require from a method of evaluation of attributes, is that

it returns the same result for, possibly syntactically different, trees describing the same

attack–defense scenario. This requirement being satisfied by a particular attribute and its

evaluation on the set semantics can indicate that the results obtained with this evaluation

method of the attribute are meaningful. To be more specific, if for a non-trivial attribute

domain1 Aα and any two attack–defense trees T1 and T2 satisfying SpT1q “ SpT2q the

value of αSpT1, βq is the same as αSpT2, βq for any basic assignment β for α, it seems

reasonable to expect that the evaluation of α on the set semantics yields meaningful

results.

In [KMRS14], where the authors consider any equivalence relation on the set of all

terms produced by the grammar (1) to be a semantics for attack–defense trees, this re-

quirement is formalized for the bottom-up evaluation with the notion of compatibility of

attribute domain with semantics for attack-defense trees. Since the result of any evalua-

tion method of attributes on attack–defense trees relies on the tree under consideration

and some additional data, such as basic assignment, we generalize the compatibility no-

tion of [KMRS14] as follows.

Definition 25 (Compatibility with an equivalence relation on T). Let X be a set and

let f be a function on T ˆ X. For ” being an equivalence relation on T, function f is

said to be compatible with ” if for any two trees T1, T2 satisfying T1 ” T2 the equality

fpT1, xq “ fpT2, xq holds for every x P X.

In particular, we say that a function is compatible with the set semantics if it is

compatible with the equivalence relation defined on the set T of all trees by T1 ”S T2 if

and only if SpT1q “ SpT2q.

1A trivial attribute domain could be, e.g., a domain with the set of values that the attribute can

attain being a singleton, and with all six domain operations being the same idempotent operation. The

result of evaluation of the corresponding attribute, whether using the bottom-up procedure or evaluation

on the set semantics, would be the same for all trees.

68 CHAPTER 4. Evaluation of attributes on...

Example 30. Considerations from Example 26 imply that if Aα is an attribute domain

induced by a semiring, then the evaluation of α on the set semantics, seen as a func-

tion defined on the set T ˆ tβ : β is a basic assignment for αu is compatible with the set

semantics.

While every attribute domain should be examined carefully before employing the

evaluation of the corresponding attribute on the set semantics, Example 29 and 30 sug-

gest that the results obtained for the attributes induced by semirings are likely to be

meaningful.

4.2 Properties of the set semantics

In order to study the properties of the set semantics, we employ the notion of minimal

strategy.

Definition 26 (Minimal strategy). Let T be an attack–defense tree. A minimal strategy

in T is a pair pP,Oq P 2B
pT ˆ 2B

oT such that

1. if the proponent executes all the actions from P , and the opponent does not perform

any of the actions from O, then the root goal of T is achieved, i.e., for every set

O1 Ď B
oT zO the equality achievedTprootpT q, P YO1q “ 1 holds,

2. all the actions from P need to be executed when O is not performed in order for

the root goal to be achieved: should the proponent perform only a nonempty proper

subset of P , the opponent could prevent them from succeeding by executing some

of the allowed actions. That is, for every nonempty subset P 1 Ă P , there is a set

O1 Ď B
oT zO such that achievedTprootpT q, P 1 YO1q “ 0,

3. none of the actions from O can be performed by the opponent so that the proponent

executing P cannot be prevented by the opponent from succeeding: if only a subset

O2 of O was forbidden, execution of P could be countered by the opponent. That is,

if the set O is not empty, then for every subset O2 Ă O, there is a set O1 Ď B
oT zO2

such that the equality achievedTprootpT q, P YO1q “ 0 holds.

Intuitively, the non-minimal strategies are the strategies that do not provide any

additional insight into the scenario modeled with an attack–defense tree: for every non-

minimal strategy describing a way of achieving the root goal, there is a minimal one from

which this description can be deduced.

Example 31. Consider again the tree T1 “ ORppa, ANDppa, bqq from Figure 7a on page 44,

whose set semantics is

SpT1q “ tptau, ∅q, pta, bu, ∅qu.

The pair ptau, ∅q is a minimal strategy in T1: the condition achievedTprootpT q, tauY∅q “ 1

holds, and the remaining two conditions are vacuously true.

4.2. Properties of the set semantics 69

The strategy pta, bu, ∅q is not minimal, as it does not satisfy the second condition of

Definition 26. Indeed, for P 1 “ tau Ď ta, bu, and O1 “ ∅, which is the only subset of

B
oT z∅, the equality achievedTprootpT q, P 1 YO1q “ 1 holds.

On the intuitive level, knowing that execution of only the action a is enough for achiev-

ing the root goal allows for deducing that executing both a and b achieves the root goal,

too.

The next example illustrates the intuition behind the third condition of Definition 26.

Example 32. Consider the attack–defense tree T “ CppANDppa, bq, Copd, bqq. Its set se-

mantics is

SpT q “ tpta, bu, ∅q, pta, bu, tduqu.

The pair pta, bu, ∅q is a minimal strategy in T . This is the case, since

achievedTprootpT q, ta, bu Y tduq “ 1, and for P 1 being any of the sets tau and tbu setting

O1 “ ∅ yields achievedTprootpT q, P 1 YO1q “ 0.

The strategy pta, bu, tduq is not minimal in T , as it does not satisfy the third condition

of Definition 26. Indeed, for O2 “ ∅ the only possible choice of O1 is O1 “ ∅, and the

equality achievedTprootpT q, ta, bu YO1q “ 1 holds.

Intuitively, knowing that the execution of a and b achieves the root goal regardless of

the behavior of the opponent, allows for deducing that the same actions achieve the root

goal when the opponent does not execute d.

Finally, we illustrate the notion of the minimal strategy on our running example.

Example 33. Consider again the tree T from Figure 2. As described in Example 23 on

page 42 the pairs pP,Oq “ ptphish, log&transu, tsmsuq and

pP 1, O1q “ ptphish, uname, log&transu, tsmsuq both belong to the set semantics of T .

It is easy to verify that both pairs satisfy the first condition of Definition 26. Since the set

P is contained in P 1, the pair pP 1, O1q is not a minimal strategy in T : it fails to satisfy

the second condition of the definition.

Since there is no opponent in attack trees, each pair belonging to the set semantics

of an attack tree has the empty set as its second component. Thus, the elements of the

set semantics of an attack tree can be seen as sets of actions. It follows that the minimal

strategies in the case of attack trees are the minimal (w.r.t. inclusion) sets of actions of

the proponent that achieve the root goal of the tree.

Definition 26 is intentionally verbose, to ensure that it indeed formalizes our intu-

ition behind the minimal strategies. Nevertheless, a simpler characterization of minimal

strategies can be derived from it instantaneously. Let T be a tree and let pP,Oq, pP 1, O1q P

2B
pT ˆ 2B

oT . Assume that pP,Oq ‰ pP 1, O1q, P 1 Ď P , O1 Ď O and that both pairs of sets

satisfy the first condition of Definition 26. It is easy to see that if P 1 ‰ P , then the pair

pP,Oq does not satisfy the second condition of Definition 26. Similarly, if O1 ‰ O, then

the third condition of Definition 26 is not satisfied by pP,Oq. This implies the following.

70 CHAPTER 4. Evaluation of attributes on...

Table 4: Two satisfiability domains for attack–defense trees

attribute α Dα ORp
α ANDp

α ORo
α ANDo

α Cp
αpx, yq Co

αpx, yq

satp t0, 1u _ ^ ^ _ x^ y x_ y

sat t0, 1u _ ^ _ ^ x^ y x^ y

Corollary 1. Let T be an attack–defense tree and let ĺ be the partial order defined on

the set X of all elements of 2B
pT ˆ 2B

oT satisfying the first condition of Definition 26 by

pP 1, O1q ĺ pP,Oq if and only if P 1 Ď P and O1 Ď O.

The elements minimal in X w.r.t. the partial order ĺ are the minimal strategies in T .

The above formulation will be useful in studying the properties of the set semantics.

We will begin with proving that every pair pP,Oq belonging to the set semantics of an

attack–defense tree satisfies the first condition of Definition 26, i.e., that for every such

pair the root goal is indeed achieved when P is executed and none of the actions from O

are executed. Then, we will demonstrate that every minimal strategy in T belongs to the

set semantics of T , and that if there are no clones in T , then in fact each of the strategies

in T is minimal.

Our proofs rely on the following lemma, which shows that in order to verify whether

a set of actions achieves the root goal in a tree, one can use the satisfiability for the pro-

ponent attribute (abbreviated as satp; see Table 4) instead of the satisfiability attribute

(sat). Since, contrary to the latter, the domain of the former is induced by a semiring,

this allows for exploiting the normal form of its bottom-up evaluation.

Lemma 3. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, and let P Ď B
pT ,

O Ď B
oT . Let βsat and βsatp be basic assignments of satisfiability and satisfiability for

the proponent attributes, respectively, defined as

βsatpbq “

$
&
%

1 if b P P YO,

0 otherwise,

βsatppbq “

$
&
%

1 if b P P or b P BoT zO,

0 if b P O or b P BpT zP.

For every v P V the following holds.

– If actorpvq “ pT , then satpBpT, βsatp, vq “ satBpT, βsat, vq,

– if actorpvq “ oT , then satpBpT, βsatp, vq “ satBpT, βsat, vq.

In particular, achievedTprootpT q, P YOq “ satpBpT, βsatpq.

4.2. Properties of the set semantics 71

Proof. The proof is by induction on the structure of the subdag T pvq. For the base case,

assume that v is a non-refined node and that v̄ does not exist. In this case the required

equalities follow immediately from definitions of the basic assignments βsat and βsatp. We

now proceed with the remaining cases.

Case 1. The node v is not refined and v̄ exists.

If actorpvq “ pT , then

satpBpT, βsatp, vq “ βsatppλpvqq ^ satpBpT, βsatp, v̄q

“ βsatpλpvqq ^ satBpT, βsat, v̄q

“ satBpT, βsatp, vq,

where the second of the equalities follows from the definitions of the two basic assign-

ments and the induction hypothesis, and the remaining ones from definitions of the two

satisfiability attributes’ domains.

Similarly, if actorpvq “ oT , then

satpBpT, βsatp, vq “ βsatppλpvqq _ satpBpT, βsatp, v̄q

“ βsatpλpvqq _ satBpT, βsat, v̄q

“
`
βsatpλpvqq ^ satBpT, βsat, v̄q

˘

“ satBpT, βsatp, vq.

For the cases when v is a refined node, we let OP “ refpvq and childrenT pvq “

tv1, . . . , vku.

Case 2. The node v is refined and actorpvq “ pT .

If v̄ does not exist, then

satpBpT, βsatp, vq “ satpBpT, βsatp, v1q OPp
satp . . . OPp

satpsatpBpT, βsatp, vkq

“ satBpT, βsat, v1q OPp
sat . . . OPp

satsatBpT, βsat, vkq

“ satBpT, βsat, vq,

where the second equality follows from the fact that OP
p
satp “ OP

p
sat and from the induction

72 CHAPTER 4. Evaluation of attributes on...

hypothesis. Similarly, if v̄ does exist, then

satpBpT, βsatp, vq “

“ Cp
satp

`
satpBpT, βsatp, v1q OPp

satp . . . OPp
satpsatpBpT, βsatp, vkq, satpBpT, βsatp, v̄q

˘

“
`
satpBpT, βsatp, v1q OPp

satp . . . OPp
satpsatpBpT, βsatp, vkq

˘
^ satpBpT, βsatp, v̄q

“
`
satpBpT, βsatp, v1q OPp

satp . . . OPp
satpsatpBpT, βsatp, vkq

˘
^

`
 satpBpT, βsatp, v̄q

˘

“
`
satBpT, βsat, v1q OPp

sat . . . OPp
satsatBpT, βsat, vkq

˘
^ satBpT, βsat, v̄q

“ Cp
sat

`
satBpT, βsat, v1q OPp

sat . . . OPp
satsatBpT, βsat, vkq, satBpT, βsat, v̄q

˘

“ satBpT, βsat, vq,

as required.

Case 3. The node v is refined and actorpvq “ oT .

To prove the lemma’s conclusion in this case, we employ de Morgan’s laws, which

imply that for x, y P t1, 0u the equalities x OPo
satpy “ p x OPo

sat yq and Co
satppx, yq “

 Co
satp x, yq hold. Similarly as in the previous case, we begin with the subcase when v̄

does not exist. Then,

satpBpT, βsatp, vq “ satpBpT, βsatp, v1q OPo
satp . . . OPo

satpsatpBpT, βsatp, vkq

“
`
 satBpT, βsatp, v1q OPo

sat . . . OPo
sat satBpT, βsatp, vkq

˘

“
`
satBpT, βsat, v1q OPo

sat . . . OPo
satsatBpT, βsat, vkq

˘

“ satBpT, βsat, vq,

where the second equality follows from the induction hypothesis.

If v̄ does exist, then

satpBpT, βsatp, vq “

“ Co
satp

`
satpBpT, βsatp, v1q OPo

satp . . . OPo
satpsatpBpT, βsatp, vkq, satpBpT, βsatp, v̄q

˘

“ Co
satp

ˆ

`
 satpBpT, βsatp, v1q OPo

sat . . . OPo
sat satpBpT, βsatp, vkq

˘
, satBpT, βsatp, v̄q

˘˙

“ Co
sat

`
satBpT, βsat, v1q OPo

sat . . . OPo
satsatBpT, βsat, vkq, satBpT, βsat, v̄q

˘

“ satBpT, βsat, vq,

where for the consecutive equalities we used the equality x OPo
satpy “ p x OPo

sat yq, the

induction hypothesis, and the equality Co
satppx, yq “ Co

satp x, yq, respectively.

With the next proposition we establish that each element of the set semantics of a

tree indeed describes a way of achieving the root goal of the tree.

Proposition 1. Let T be an attack–defense tree. If a pair pP,Oq belongs to the set seman-

tics SpT q of T , then for every set O1 Ď B
oT zO the equality

achievedTprootpT q, P YO1q “ 1 holds.

4.2. Properties of the set semantics 73

Proof. Recall that the set semantics SpT q is a result of the bottom-up evaluation of the

attribute S whose domain is AS “ p22Bˆ2B ,Y,d,d,Y,d,Yq, where d is the operation

defined on page 42, under the basic assignment

βpbq “

$
&
%

 `
tbu, ∅

˘(
if b P BpT ,

 `
∅, tbu

˘(
otherwise.

Let O1 Ď B
oT be a set satisfying O1 Ď B

oT zO, and let

βsatppbq “

$
&
%

1 if b P P or b P BoT zO1,

0 if b P O1 or b P BpT zP.

Lemma 3 implies that achievedTpT, P YO
1q “ satpBpT, βsatpq.

Since both p22Bˆ2B ,Y,dq and pt0, 1u,_,^q are commutative idempotent semirings,

the bottom-up evaluations of S and achievedTpT, P YO
1q can be represented using their

normal forms

SpT q “ pβpb1
1q d βpb

1
2q d . . .d βpb

1
k1
qqY

. . .

Y pβpbi
1q d βpb

i
2q d . . .d βpb

i
ki
qqY

. . .

Y pβpbn
1 q d βpb

n
2 q d . . .d βpb

n
kn
qq,

(7)

and

achievedTpT, P YO
1q “ pβsatppb

1
1q ^ βsatppb

1
2q ^ . . .^ βsatppb

1
k1
qq_

. . .

_ pβsatppb
i
1q ^ βsatppb

i
2q ^ . . .^ βsatppb

i
ki
qq_

. . .

_ pβsatppb
n
1 q ^ βsatppb

n
2 q ^ . . .^ βsatppb

n
kn
qq.

(8)

From the definition of the basic assignment β and the operation d it follows that for

every i P t1, . . . , nu the ith term

βpbi
1q d βpb

i
2q d . . .d βpb

i
ki
q

of representation (7) is a set consisting of exactly one pair of sets. Let us denote this term

with tpPi, Oiqu. Since pP,Oq P SpT q, there is i P t1, . . . , nu such that pPi, Oiq “ pP,Oq.

Thus, under the basic assignment βsatp, the corresponding term

βsatppb
i
1q ^ βsatppb

i
2q ^ . . .^ βsatppb

i
ki
q

of representation (8) evaluates to 1, implying that achievedTpT, P YO
1q “ 1, as required.

74 CHAPTER 4. Evaluation of attributes on...

Next, we shall demonstrate that among the strategies in an attack–defense tree there

are all of the minimal strategies in this tree.

Proposition 2. Let T be an attack–defense tree. If pP,Oq is a minimal strategy in T ,

then pP,Oq P SpT q.

Proof. Let O1 “ B
oT zO. Since pP,Oq is a minimal strategy, the equality

achievedTpT, P Y O1q “ 1 holds. Let βsatp be the basic assignment of the satisfiabil-

ity for the proponent attribute defined by

βsatppbq “

$
&
%

1 if b P P YO,

0 otherwise.

Then, by Lemma 3, achievedTpT, P YO
1q “ satpBpT, βsatpq, and so there is i P t1, . . . , nu

such that the ith term of the representation (8) of achievedTpT, P Y O1q evaluates to 1.

The definition of βsatp together with the choice of O1 imply that

P YO Ě tbi
1, b

i
2, . . . , b

i
ki
u.

We will prove that the two sets are actually equal. Towards a contradiction, suppose that

this is not the case. Then for

P “ P X tbi
1, b

i
2, . . . , b

i
ki
u,

O “ O X tbi
1, b

i
2, . . . , b

i
ki
u,

it holds that P ‰ P or O ‰ O.

Suppose first that P ‰ P . Note that the value of the ith term of the representa-

tion (8) of achievedTpT, P Y O1q is the same as that of achievedTpT, P Y O1q. Thus,

achievedTpT, P Y O1q “ 1, contradicting the assumption of pP,Oq being the minimal

strategy.

Suppose now that O ‰ O, i.e., that O is a strict subset of O. Then for any rO Ď B
oT zO

setting

rβsatppbq “

$
&
%

1 if b P P or b P BoT z rO,
0 if otherwise,

yields rβsatp

ˇ̌
ˇ
O
” 1, implying that the ith term of representation (8) of satpBpT,

rβsatpq

evaluates to 1. Since achievedTprootpT q, PY rOq “ satpBpT,
rβsatpq, by Lemma 3, it follows

that achievedTprootpT q, P Y rOq “ 1. This means that the pair pP,Oq does not satisfy the

third condition of Definition 26, in contradiction with the choice of pP,Oq as a minimal

strategy in T .

The above reasoning proves that PYO “ tbi
1, b

i
2, . . . , b

i
ki
u. It follows that the ith term

of the representation (7) of the set semantics of T is βpbi
1qdβpb

i
2qd . . .dβpb

i
ki
q “ pP,Oq,

completing the proof.

4.2. Properties of the set semantics 75

Proposition 2 shows that minimal strategies are strategies. Combining it with Corol-

lary 1 leads to the following corollary.

Corollary 2. The minimal strategies in an attack–defense tree T are the minimal ele-

ments in SpT q w.r.t. the partial order ĺ defined in Corollary 1.

We finish our characterization of the set semantics by demonstrating that for many

trees the converse of Proposition 2 holds, i.e., that in a class of trees with no clones every

strategy is a minimal strategy.

Proposition 3. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree. If there are no

clones in T , then every element of the set semantics SpT q is a minimal strategy in T .

Proof. Recall that the set semantics of T is the result SBpT, βq of the bottom-up evalua-

tion of the attribute S whose attribute domain is AS “ p2
2Bˆ2B ,Y,d,d,Y,d,Yq, where

d is the operation defined on page 42, under the basic assignment β defined as

βpbq “

$
&
%

 `
tbu, ∅

˘(
if b P BpT ,

 `
∅, tbu

˘(
otherwise.

Informally speaking, we shall prove that for every node v P V , every pair belonging

to the intermediate result SBpT, β, vq of the process of the set semantics creation satisfies

locally the definition of minimal strategy. That is, relying on Corollary 2, for every v P V

we will prove that every element of SBpT, β, vq is a minimal element in SBpT, β, vq w.r.t.

the relation ĺ defined by

pP 1, O1q ĺ pP,Oq if and only if P 1 Ď P and O1 Ď O.

Since SpT q “ SBpT, β, rootpT qq, the claimed statement will follow.

The proof is by induction on the structure of the subdag T pvq. For the base case,

assume that v is a non-refined node and that v̄ does not exist. The required minimality

condition is then trivially satisfied, since SBpT, β, vq is a singleton. We now proceed with

the remaining cases.

Case 1. The node v is not refined and v̄ exists.

To ease the presentation, for the proof of this case we let b :“ λpvq.

Case 1.1 actorpvq “ pT

In this case, definition of the attribute domain AS and the basic assignment β imply

that every element of SBpT, β, vq is of the form ptbu, ∅q d pP 1, O1q “ pP 1 Y tbu, O1q, for

some pP 1, O1q P SBpT, β, v̄q. Note that for pP 1, O1q, pP 2, O2q P SBpT, β, v̄q the relation

pP 1Ytbu, O1q ĺ pP 2Ytbu, O2q holds if and only if pP 1, O1q ĺ pP 2, O2q. Thus, since every

element of SBpT, β, v̄q is minimal in SBpT, β, v̄q w.r.t. ĺ, by the induction hypothesis, it

76 CHAPTER 4. Evaluation of attributes on...

follows that every element of SBpT, β, vq is also minimal in SBpT, β, vq w.r.t. ĺ.

Case 1.2 actorpvq “ oT

In this case, SBpT, β, vq “ SBpT, β, v̄q Y tp∅, tbuqu. Thus, the order between the el-

ements of SBpT, β, v̄q in SBpT, β, vq is the same as in SBpT, β, v̄q. Since there are no

clones in T , for every pP 1, O1q P SBpT, β, v̄q it holds that b R O1, and so p∅, tbuq ĺ pP 1, O1q

does not hold. Therefore, by the induction hypothesis, every element of SBpT, β, v̄q is

a minimal element in SBpT, β, vq w.r.t. ĺ. Clearly, the pair p∅, tbuq is also a minimal

element in SBpT, β, vq w.r.t. ĺ. Thus, the statement holds.

For a proof of the remaining cases, when v is a refined node, we let childrenT pvq “

tv1, . . . , vku and assume that the node v̄ exists. The proof for the cases when v̄ does not

exist is obtained by skipping the parts related to v̄ in what follows. Finally, we denote

with pP,Oq an arbitrary but fixed element of SBpT, β, vq.

Case 2. The node v is refined and actorpvq “ pT .

Case 2.1 refpvq “ OR

For a proof by contradiction, suppose that pP,Oq is not a minimal element in SBpT, β, vq

w.r.t. the order ĺ. Then, there is an element pP 1, O1q P SBpT, β, vq such that pP 1, O1q ă

pP,Oq. From definition of the attribute domain AS it follows that there are i, j P

t1, . . . , ku, nodes vi, vj and pairs pPi, Oiq P SBpT, β, viq, pPj, Ojq P SBpT, β, vjq,

pP ,Oq, pP
1
, O

1
q P SBpT, β, v̄q, such that

pP,Oq “ pPi Y P ,Oi YOq

pP 1, O1q “ pPj Y P
1
, Oj YO

1
q.

Note that the definition of AS and the basic assignment β imply that none of the sets

Pi and Pj is empty.

Since there are no clones in T , if Pi ‰ Pj, then the sets in each of the triples pPi, Pj, P q,

pPi, Pj, P
1
q are pairwise disjoint. Thus, the condition P 1 Ď P is not satisfied, contradicting

the choice of pP 1, O1q and implying that pP,Oq is indeed a minimal element in SBpT, β, vq

w.r.t. ĺ.

Suppose now that Pi “ Pj. Since there are no clones in T , this implies that vi “ vj.

Furthermore, from the choice of pP 1, O1q as an element satisfying pP 1, O1q ă pP,Oq it

follows that P
1
Ď P . Since every element of SBpT, β, v̄q is minimal in SBpT, β, v̄q w.r.t.

ĺ, by the induction hypothesis, this implies that either pP ,Oq “ pP
1
, O

1
q or else O

1
is not

a subset of O. If pP ,Oq “ pP
1
, O

1
q, then, since pP 1, O1q ă pP,Oq, it follows that Oi ‰ Oj

and Oi Ď Oj. But then pPi, Oiq ĺ pPi, Ojq, contradicting the induction hypothesis for vi.

Thus, Pi “ Pj, P
1
Ď P and O

1
is not a subset of O. The last of these facts implies

in particular the the set O
1

is not empty. But, since pP 1, O1q ă pP,Oq, we have that

4.2. Properties of the set semantics 77

Oj Y O
1
Ď Oi Y O, and so the intersection O

1
X Oi cannot be empty. And yet, empty it

surely is, since there are no clones in T . This final contradiction completes the proof of

this case.

Case 2.2 refpvq “ AND

In this case, the pair pP,Oq can be represented as

pP,Oq “ pP1 Y . . .Y Pk Y P ,O1 Y . . .YOk YOq,

for some pPi, Oiq P SBpT, β, viq, for i P t1, . . . , ku, and some pP ,Oq P SBpT, β, v̄q. For a

proof by contradiction, suppose again that pP,Oq is not a minimal element in SBpT, β, vq

w.r.t. the order ĺ, i.e., that there is an element pP 1, O1q P SBpT, β, vq such that pP 1, O1q ă

pP,Oq. Let

pP 1, O1q “ pP 1
1 Y . . .Y P

1
k Y P

1
, O1

1 Y . . .YO
1
k YO

1
q,

for some pP 1
i , O

1
iq P SBpT, β, viq, for i P t1, . . . , ku, and some pP

1
, O

1
q P SBpT, β, v̄q. Since

there are no clones in T , for i, j P t1, . . . , ku, i ‰ j, each of the intersections

Pi X Pj, Pi X P
1
j , Pi X P , Pi X P

1
, P 1

i X P , P
1
i X P

1
,

Oi XOj, Oi XO
1
j, Oi XO,Oi XO

1
, O1

i XO,O
1
i XO

1

is empty. Note that, since pP 1, O1q ‰ pP,Oq, either there is i P t1, . . . , ku such that

pPi, Oiq ‰ pP 1
i , O

1
iq or else pP ,Oq ‰ pP

1
, O

1
q. But then it follows from Lemma 1 that

either pPi, Oiq ă pP 1
i , O

1
iq or else pP ,Oq ă pP

1
, O

1
q. This contradicts the induction hy-

pothesis for vi or v̄.

Case 3. The node v is refined and actorpvq “ oT .

Case 3.1 refpvq “ OR

From the definition of the set semantics it follows that pP,Oq “ pP1 Y . . .Y Pk, O1 Y

. . .YOkq for some pPi, Oiq P SBpT, β, viq, for i P t1, . . . , ku, or else pP,Oq P SBpT, β, v̄q. If

the former is true, then, since the operation performed during the bottom-up creation of

the set semantics at the AND nodes of the proponent and the OR nodes of the opponent is

the same, a proof of the declared statement is obtained by repeating the reasoning from

Case 2.2, combined with the fact that for every i P t1, . . . , ku, every pP 1, O1q P SBpT, β, viq

and every pP , P
1
q P SBpT, β, v̄q, neither pP 1, O1q ă pP ,Oq nor pP ,Oq ă pP 1, O1q. Thus,

we assume that pP,Oq P SBpT, β, v̄q. But now the statement follows immediately from

the induction hypothesis for v̄ and the last part of the previous sentence, i.e., neither

pP 1, O1q ă pP,Oq nor pP,Oq ă pP 1, O1q being satisfied for any of i P t1, . . . , ku, and any

of pP 1, O1q P SBpT, β, viq.

Case 3.2 refpvq “ AND

78 CHAPTER 4. Evaluation of attributes on...

In this case, definition of the set semantics implies that

SBpT, β, vq “
ď

v1Ptv1,...,vk,v̄u

SBpT, β, v
1q.

Since there are no clones in T , for every v1, v2 P tv1, . . . , vk, v̄u, v
1 ‰ v2 and every pP 1, O1q P

SBpT, β, v
1q, pP 2, O2q P SBpT, β, v

1q, the sets P 1, P 2 are disjoint, and the sets O1, O2 are

disjoint. Thus, neither pP 1, O1q ă pP 2, O2q nor pP 2, O2q ă pP 1, O1q. Combined with the

induction hypothesis, this implies that every element in SBpT, β, vq is minimal w.r.t. the

order ĺ.

Summarizing the results presented in Proposition 1– 3, (1) the elements of the set

semantics indeed describe ways of achieving the root goal of a tree, (2) among them there

are all of the minimal strategies in the tree, and (3) there are trees, in particular the

class of trees with no clones, in which every element of the set semantic is a minimal

strategy. We believe that this characterization can be useful for proper interpretation

of the results of evaluation of attributes on the set semantics. The following example

supports this belief.

Example 34. Consider the maximal probability for the proponent attribute prob, whose

attribute domain is pr0, 1s,max, ¨, ¨,max, ¨,maxq (cf. Table 1). Let pP,Oq and pP 1, O1q be

strategies in an attack–defense tree T such that pP,Oq ‰ pP 1, O1q and P Ď P 1, O Ď O1.

Then, for any basic assignment β the equality

max

˜
ź

bPP YO

βpbq,
ź

bPP 1YO1

βpbq,

¸
“

ź

bPP YO

βpbq

holds. It follows that the result of evaluation of prob on the set semantics in T under the

basic assignment β is

probSpT, βq “ max
pP,OqPSpT q

ź

bPP YO

βpbq “ max
pP,OqPSpT q

pP,Oq is a minimal strategy in T

ź

bPP YO

βpbq.

Therefore, if β assigns to basic actions the probability of successful execution, then the

value of probSpT, βq represents the maximal probability of achieving the root goal of T

when executing exactly one of the minimal strategies in T .

4.3 Computational aspects of the evaluation of at-

tributes on the set semantics

Having provided means for intuitive interpretation of its results, we now turn our attention

to the computational aspects of the evaluation of attributes on the set semantics. We

begin with noting that the first step of this evaluation method is the creation of the

set semantics, which is highly complex, due to the d operation defined by formula (4).

4.3. Computational aspects of the evaluation of attributes on the set semantics 79

AND

OR

b11 b12 b13

OR

b21 b22 b23

OR

b31 b32 b33

Figure 11: An example of a tree with the size of the set semantics exponential in the

number of basic actions (see Example 35)

Indeed, because of this operation, the size of the set semantics might be exponential in

both the number of basic actions in the tree and the total number of nodes, as illustrated

by the following construction (see also Figure 11).

Example 35. Let T “ ANDppORppb11, b12, b13q, . . . , ORppbk1, bk2, bk3qq be an attack tree

with n “ 3k basic actions and 4k ` 1 nodes, containing no clones. Proposition 3 implies

that the set semantics of T consists of the minimal sets achieving the root goal of T . The

number of such sets is 3k “ 3n{3.

Therefore, while the set semantics is useful for formalizing intuition behind an at-

tribute with an appropriate attribute domain, there are trees for which its practical

application for evaluation of attributes is limited. What is important, however, is that

this is not the case for all trees. That is, even if a tree is big, in the sense of the number

of nodes or basic actions, the size of its set semantics might be small enough so that the

evaluation of attributes on the semantics will perform well.

Should one want to evaluate an attribute on a tree with clones, it seems thus reasonable

to try to estimate the size of the set semantics of the tree before trying to create it. Should

the obtained estimate be reasonable, one could proceed with this evaluation method. The

following proposition provides a fast procedure for computing an upper bound on the size

of the set semantics of a given tree.

Proposition 4. Let SetSemBound be an attribute with the attribute domain ASetSemBound “

pN,`, ¨, ¨,`, ¨,`q, where ¨ is the multiplication operator. Let βSetSemBound ” 1 be a basic

assignment of SetSemBound. Then the inequality

|SpT q| ď SetSemBoundBpT, βSetSemBoundq (9)

holds for every attack–defense tree T .

Proof. Since pN,`, ¨q is a commutative semiring, the result of the bottom-up computation

80 CHAPTER 4. Evaluation of attributes on...

of the SetSemBound attribute can be represented in the normal form

SetSemBoundBpT, βSetSemBoundq “ p1 ¨ 1 ¨ . . . ¨ 1q`

. . .

` p1 ¨ 1 ¨ . . . ¨ 1q`

. . .

` p1 ¨ 1 ¨ . . . ¨ 1q.

The number of terms in the above expression is the same as the number of terms in

the normal form (7) of the set semantics of T . Since the latter is at least |SpT q|, the

statement follows.

Proposition 4 shows that an upper bound on the number of strategies can be found in

time linear in the size of the tree. We note that the bound provided by the inequality (9)

is tight: the equality is attained for instance for trees from Example 352. Nevertheless,

the difference between the bound and the actual size of the set semantics can be ar-

bitrarily large. For example, there are three elements in the set semantics of the tree

ANDppORppa, bq, . . . , ORppa, bqq, while the bound is equal to 2 to the power equal to the

number of OR nodes.

Having an easily computable formula for a non-trivial lower bound on the size of

the set semantics would also be very useful. It seems that such a lower bound cannot

be computed using a single bottom-up procedure that would simply propagate natural

numbers throughout the tree. This is the case, because such a procedure would have to

yield 1 for every attack tree in which all the leaf nodes bear the same label, irrespective

of the tree structure. To obtain a non-trivial lower bound, one would have to propagate,

along a number, some additional information about the repeated basic actions seen so

far in the tree.

There are at least two other ways of avoiding the possible complexity of the evalu-

ation of attributes on the set semantics. One of them would be to use the bottom-up

evaluation, while being sure that it will return the same, correct result. The other one,

to be employed if the bottom-up procedure fails, is to devise yet another, alternative

method of attributes evaluation. With the following theorem we establish some sufficient

conditions for employing the simple bottom-up evaluation instead of the evaluation on

the set semantics with the guarantee of obtaining the correct result.

Theorem 1. Let T be an attack–defense tree and let Aα “ pDα,‘,b,b,‘,b,‘q be an

attribute domain such that the operations ‘ and b are associative and commutative, ‘

is idempotent, and b distributes over ‘. Furthermore, let β1 be a basic assignment of α.

If

2In fact, we believe that the equality is attained for every tree that does not contain clones. We are,

however, unable to prove this statement.

4.3. Computational aspects of the evaluation of attributes on the set semantics 81

– there are no repeated labels in T , or

– the operator b is idempotent, or

– for every clone b in T it holds that β1pbq P tab, ebu,

then the equality αBpT, β
1q “ αSpT, β

1q holds.

Proof. Let β be the basic assignment defined for T as in Definition 23 of the set semantics.

Consider the normal forms

SpT q “ pβpb1
1q d βpb

1
2q d . . .d βpb

1
k1
qqY

. . .

Y pβpbi
1q d βpb

i
2q d . . .d βpb

i
ki
qqY

. . .

Y pβpbn
1 q d βpb

n
2 q d . . .d βpb

n
kn
qq,

(10)

αBpT, β
1q “ pβ1pb1

1q b β
1pb1

2q b . . .b β
1pb1

k1
qq‘

. . .

‘ pβ1pbi
1q b β

1pbi
2q b . . .b β

1pbi
ki
qq‘

. . .

‘ pβ1pbn
1 q b β

1pbn
2 q b . . .b β

1pbn
kn
qq.

(11)

Relying on the idempotency of both sets union and the operator ‘, we assume that every

term appearing in the two representations is unique, i.e., that for any two distinct i1 and

i2 belonging to the set t1, . . . , nu the multisets t|bi1

1 , b
i1

2 , . . . , b
i1

ki1
|u and t|bi2

1 , b
i2

2 , . . . , b
i2

ki2
|u

are different.

Let us denote again the ith term of representation (10) with tpPi, Oiqu. Note that if

the operation b is idempotent or every cloned basic action is assigned ab or eb under

the basic assignment β1, then for every clone b in T the equality

β1pbq b β1pbq b . . .b β1pbq “ β1pbq

holds. Furthermore, if there are no clones in T , then for every i P t1, . . . , nu the multiset

t|bi
1, b

i
2, . . . , b

i
ki
|u is in fact a set, i.e., every basic action appears in each of the terms

of representation (10) and (11) at most once. It follows that under any of the three

conditions we have

β1pbi
1q b β

1pbi
2q b . . .b β

1pbi
ki
q “

â
bPPiYOi

β1pbq,

implying that

αBpT, β
1q “

à

pP,OqPSpT q

â
bPP YO

β1pbq “ αSpT, β
1q,

as required.

82 CHAPTER 4. Evaluation of attributes on...

Among the attribute domains gathered in Table 1, there are two of the form

pDα,‘,b,b,‘,b,‘q satisfying the assumptions of Theorem 1, with the operation b

being idempotent. Therefore, the bottom-up procedure can be used to evaluate these

attributes on attack–defense trees containing repeated basic actions, yielding the same

result as the evaluation on the set semantics. The attribute domains in which the opera-

tion b is not idempotent include the domains for the minimal cost for the proponent and

the maximal probability for the proponent attributes. Nevertheless, these two domains

enjoy a useful property that can be exploited for the purpose of the attribute evaluation

on attack–defense trees with clones. This property is captured by the following notion.

Definition 27 (Non-increasing attribute domain). An attribute domain Aα is non-

increasing if Aα is of the form pDα,‘,b,b,‘,b,‘q, where pDα,‘,bq is a commutative

idempotent semiring, such that for every c, d P Dα the equality c‘ pcb dq “ c holds3.

To give some intuition regarding the non-increasing attribute domains, assume that

pDα,‘,b,b,‘,b,‘q is such a domain. Then, for an attack–defense tree T , two sets

P, P 1 Ď B
pT and two sets O,O1 Ď B

oT satisfying P Ď P 1, O Ď O1, the equality

` â
bPP YO

βpbq
˘
‘
` â

bPP 1YO1

βpbq
˘
“

â
bPP YO

βpbq

holds for any basic assignment β for α. Combining this fact with Example 26 and

Corollary 2, one can see that for the attribute α the equality

αSpT, βq “
à

pP,OqPSpT q

â
bPP YO

βαpbq “
à

pP,OqPSpT q
pP,Oq is a minimal strategy in T

â
bPP YO

βαpbq (12)

holds. In other words, if an attribute has a non-increasing domain, then the non-minimal

strategies have no impact on the evaluation of this attribute on the set semantics.

We note that from the attribute domains displayed in Table 1, only the maximal

damage done by the proponent and satisfiability domains are not non-increasing. This is

because the equality maxpc, c ` dq “ c does not hold for every c, d P Rě0, and because

the satisfiability domain is not induced by a semiring.

In the next section, we present an alternative method for attributes evaluation that

can be employed for attributes having non-increasing domains, yielding the same result

as the evaluation on the set semantics. We finish this section with a remark regarding

the compatibility of the bottom-up evaluation of attributes with the set semantics, which

follows immediately from Theorem 1.

Proposition 5. Let Aα “ pDα,‘,b,b,‘,b,‘q be an attribute domain such that the

operations ‘ and b are associative and commutative, ‘ is idempotent, and b distributes

3This condition is equivalent to the inequality d b c ĺ c, where ĺ stands for the canonical partial

order on the semiring pDα, ‘, bq. This is the reason for the name non-increasing.

4.4. A method for evaluation of attributes in trees with clones 83

over ‘. Let DB

α and be the set of all basic assignments for α and let T1 be the set of all

trees containing no clones. Finally, let

f 1 : T1 ˆDB

α Q pT, βq ÞÑ αBpT, βq

and

f : TˆDB

α Q pT, βq ÞÑ αBpT, βq.

The function f 1 is compatible with the set semantics, and the function f is compatible

with the set semantics if and only if the operation b is idempotent.

Proof. By Theorem1, the equality f 1pT, βq “ αSpT, βq holds for every pT, βq P T
1 ˆDB

α,

and if b is an idempotent operation, then fpT, βq “ αSpT, βq for every pT, βq P TˆDB

α.

The assumptions on Aα imply that

αSpT, βq “
à

pP,OqPSpT q

â
bPP YO

βαpbq.

It follows that for any two trees T1 and T2 having the same set semantics the equality

αSpT1, βq “ αSpT2, βq holds for every β P DB

α. Thus, the function f 1 is compatible with

the set semantics, and if b is idempotent, then f is also compatible with the set semantics.

To prove that f is not compatible with the set semantics when the operation b is

not idempotent, it is enough to consider trees T1 “ b and T2 “ ANDppb, bq. Note that

SpT1q “ SpT2q. If b is not idempotent, then there exists x P Dα such that x b x ‰ x.

Thus, for every basic assignment β assigning x to the basic action b the value of fpT1, βq

is different from fpT2, βq.

4.4 A method for evaluation of attributes in trees

with clones

In the previous section, we have identified the class of attributes having non-increasing

attribute domains, which includes such important attributes like minimal cost for the

proponent and maximal probability for the proponent (cf. Example 34). As the bottom-

up evaluation of these attributes might result in incorrect results, and their evaluation

on the set semantics might be computationally infeasible, we are going to develop a new

method of evaluation of attributes. It is tailored specifically for the attributes having

non-increasing attribute domains, it can be applied on trees having clones, and in terms

of computational complexity, it offers a compromise between the bottom-up evaluation

and the evaluation on the set semantics.

The idea behind our method is simple. The values assigned to the repeated basic

actions are temporarily modified, and for each such modification the bottom-up evalu-

ation is performed. The values modification mimics the proponent performing some of

the clones, and not performing others. The results obtained in this way are eventually

84 CHAPTER 4. Evaluation of attributes on...

combined in an appropriate manner, yielding the same result as the computation on the

set semantics.

4.4.1 Necessary and optional clones

Since we would like to be able to perform a “what-if” analysis similar to the one enabled

by the remaining two methods, we begin with determining, for a given set O of actions of

the opponent, the clones that the proponent needs to execute in order to achieve the root

goal when the opponent performs O. This knowledge will determine the way in which the

values assigned to the clones will be tackled later. The clones that need to be executed

under fixed behavior of the opponent are called necessary clones.

Definition 28 (Necessary and optional clones). Let b be a cloned basic action of the

proponent in an attack–defense tree T and let O Ď B
oT . The action b is a necessary

clone w.r.t. O in T if

– there is a strategy pP,O1q P SpT q satisfying O XO1 “ ∅, and

– for every strategy pP,O1q P SpT q satisfying O XO1 “ ∅ it holds that b P P .

If b is not a necessary clone w.r.t. O, then it is called an optional clone w.r.t. O.

In the case of attack trees, the set of basic actions of the opponent is empty, and so

the only set that a clone can be necessary or optional w.r.t., is the empty set ∅. Hence,

in the case of attack trees we reason simply about necessary and optional clones, without

specifying the corresponding set. A necessary clone in an attack tree is a one that belongs

to every strategy in this tree, as illustrated by the following example.

Example 36. Consider the attack tree T depicted in Figure 12. The set semantics of T

is

SpT q “ tpta, b, cu, ∅q, pta, c, du, ∅q, ptb, c, du, ∅q, ptb, cu, ∅qu.

Hence, c is the only necessary clone in T , and the only optional clone is b; in order to

achieve the root goal, the attacker has to perform action c, and there are ways of achieving

the root goal that do not involve executing b.

In the case of attack–defense trees, clone can be optional w.r.t. some of the sets of

basic actions of the opponent, and necessary w.r.t. to others, as illustrated by Example 37.

Example 37. Let T be the attack–defense tree from Figure 13. The set semantics of T

is

SpT q “ tpta, cu, tduq, ptb, cu, tduq, pta, b, cu, ∅q, ptb, cu, ∅qu.

The only clone in T is b. It is a necessary clone w.r.t. tdu, and an optional clone w.r.t.

∅. This reflects the fact that if the opponent executes the action d, then in order to achieve

the root goal the proponent has to execute b; if the opponent does nothing, the execution

of b is not necessary.

4.4. A method for evaluation of attributes in trees with clones 85

AND

OR

a b

OR

AND

d c

Figure 12: In the attack–defense tree T “ ANDp
`
ORppa, bq, ORppb, ANDppd, cqq, c

˘
, the clone

c is necessary, and the clone b is optional.

AND

OR

a

b

c

d

Figure 13: In the attack–defense tree T “ ANDp
`
ORppa, bq, Cppc, Copd, bqq

˘
, the clone b is

necessary w.r.t. tdu.

Example 38. Consider the attack–defense tree T from Figure 2 on page 15, whose set

semantics is given in Example 23 on page 42. The only clone in this tree is phish. This

action is an optional clone w.r.t. every set O Ď B
oT . This is the case, because under any

behavior of the opponent the proponent can achieve the root goal without executing the

phishing action.

The sets of all necessary and optional clones w.r.t. a set O Ď B
oT in a tree T are

denoted with CNpT,Oq and COpT,Oq, respectively. When there is no danger of ambiguity,

we use CNpOq and COpOq instead of CNpT,Oq and COpT,Oq. In the next lemma, a simple

method for determining whether a cloned basic action of the proponent is a necessary

clone w.r.t. a given set of the opponent’s actions is provided.

86 CHAPTER 4. Evaluation of attributes on...

Lemma 4. Let T be an attack–defense tree, a P B
pT be a cloned basic action of the

proponent in T and O Ď B
oT be a set of basic actions of the opponent. Let βskill be the

basic assignment of the minimal skill of the proponent attribute defined as

βskillpbq “

$
’’’&
’’’%

1 if b “ a,

`8 if b P O,

0 otherwise.

The basic action a is a necessary clone w.r.t. O if and only if skillBpT, βskillq “ 1.

Proof. Recall that the attribute domain for the minimal skill of the proponent attribute

is pN Y t0,`8umin,max,max,min,max,minq. Since max is an idempotent operation,

it follows from Theorem 1 that skillBpT, βskillq “ skillSpT, βskillq. Observe that

skillSpT, βskillq can be represented as

skillSpT, βskillq “ min
pP,OqPSpT q

max
bPP YO

βskillpbq

“min
`

min
pP,OqPSpT q

aPP
OXO“∅

max
bPP YO

βskillpbq,

min
pP,OqPSpT q

aRP

OXO“∅

max
bPP YO

βskillpbq, (13)

min
pP,OqPSpT q

OXO‰∅

max
bPP YO

βskillpbq
˘
.

Assume first that a is a necessary clone w.r.t. O. It follows from Definition 28 that

the set semantics SpT q of T contains no pairs pP,Oq satisfying O X O “ ∅ and a R P .

Thus, the expression (13) reduces to

skillSpT, βskillq “ minp min
pP,OqPSpT q

aPP
OXO“∅

max
bPP YO

b, min
pP,OqPSpT q

OXO‰∅

max
bPP YO

bq.

Together with the basic assignment βskill this implies that skillSpT, βskillq “ 1, whether

the set semantics SpT q contains pairs pP,Oq satisfying O XO ‰ ∅ or not.

Assume now that skillBpT, βskillq “ 1. Then, it immediately follows from (13) and

the definition of βskill that there is a strategy pP,Oq P SpT q satisfying O X O “ ∅, and

that a P P for every strategy pP,Oq P SpT q satisfying OXO “ ∅, i.e., that a is a necessary

clone w.r.t. O.

4.4.2 Repeated bottom-up evaluation of attributes

The idea behind our novel method of evaluation of attributes, given in Algorithm 1,

is to first recognize the set CNpOq of necessary clones and temporarily ensure that the

values of the attribute assigned to them do not influence the result of the bottom–up

4.4. A method for evaluation of attributes in trees with clones 87

Algorithm 1 Repeated bottom-up evaluation of attributes

Input: Attack–defense tree T , attribute domain pDα,‘,b,b,‘,b,‘q, basic assignment

β : BÑ Dα, set O Ď B
oT

Output: αRBpT, β,Oq

1: αRBpT, β,Oq Ð e‘

2: initialize CNpOq, COpOq

3: β1pbq Ð eb for every b P CNpOq

4: β1pbq Ð βpbq for every b P BT zpCNpOq Y COpOqq

5: for every subset C Ď COpOq do

6: β1pbq Ð ab for every b P C

7: β1pbq Ð eb for every b P COpOqzC

8: rC Ð αBpT, β
1q b

Â
bPCOpOqzC

βpbq

9: αRBpT, β,Oq Ð αRBpT, β,Oq ‘ r
C

10: end for

11: αRBpT, β,Oq Ð αRBpT, β,Oq b
Â

bPCN pOq βpbq

12: return αRBpT, β,Oq

procedure. Then the values of the optional clones are also temporarily modified, and the

corresponding bottom-up evaluations are performed. Only then the result is adjusted in

such a way that the original values of the necessary clones are taken into account. We

now proceed with providing the details.

Algorithm 1 takes as input an attack–defense tree T , an attribute domain Aα, a basic

assignment β for α, and a set O of basic actions of the opponent in T . Once the sets of

necessary and the optional clones w.r.t. O have been determined, new basic assignments

are created. Under each of these assignments β1, the clones necessary w.r.t. O receive

the neutral element eb (in line 3). Intuitively, this ensures that in the final result of the

algorithm, the values of β assigned to the necessary clones are taken into account exactly

once (with the expression
Â

bPCN pOq βpbq in line 11).

In lines 6–7, an assignment β1 is created for every subset C of the set of optional clones

COpOq. The clones from C are assigned ab “ e‘, which intuitively ensures that they are

ignored by the bottom-up procedure whenever possible, and the remaining optional clones

are assigned eb (again, to ensure that their values under β will eventually be counted

exactly once; this happens in line 8).

The result of the computations performed in the for loop is eventually combined in

line 11 with the values assigned to the necessary clones, and the result is returned. The

subscript RB in the notation αRBpT, β,Oq refers to the “repeated bottom-up” evaluation.

Before analyzing the results provided by Algorithm 1 and its complexity, we illustrate

its behavior with two examples.

Example 39. Let T be the tree from Figure 13 and Aprob be the attribute domain for

the maximal probability for the proponent attribute, given in Table 1. Let β be the basic

88 CHAPTER 4. Evaluation of attributes on...

AND

0.2 = 0.5 ¨ 0.4

OR

0.5 = maxp0.2, 0.5q

a

0.2

b

0.5

c

0.8

0.4 = 0.8 ¨ 0.5

d

0

0.5 = maxp0, 0.5q

Figure 14: Bottom-up evaluation of the maximal probability for the proponent attribute.

Values assigned to the basic actions are given in black, values computed at the interme-

diate nodes – in dark blue

assignment of probability in T as given in Figure 14. Finally, let O “ tdu.

As illustrated in Figure 14, the bottom-up evaluation of prob in T results in the value

of probBpT, βq “ 0.2. When performing evaluation on the set semantics of T (given

in Example 37), one obtains probSpT, βq “ 0.4, which is the probability of successful

execution of both actions b and c.

Consider now the behavior of Algorithm 1. The initialization phase consists of setting

probRBpT, β,Oq “ 0,

CNpOq “ tbu,

COpOq “ ∅,

and of creating the basic assignment β1 which differs from β only in the value assigned to

the necessary clone b, i.e., β1|ta,c,du ” β and β1pbq “ 1.

The only subset of the set of clones optional w.r.t. O is the empty set. Therefore, no

modification of values takes place in the for loop, and the value of probRBpT, βq is set in

line 9 to

maxp0, r∅q “ maxp0, probBpT, β
1qq “ maxp0, 0.8q “ 0.8

(see Figure 15 for the bottom-up evaluation of probBpT, β
1q). Then, in line 11, the final

result of

probRBpT, β,Oq “ 0.8 ¨ 0.5 “ 0.4

is obtained. Note that probRBpT, β,Oq “ probSpT, βq.

4.4. A method for evaluation of attributes in trees with clones 89

AND

0.8 = 1 ¨ 0.8

OR

1 = maxp0.2, 1q

a

0.2

b

1

c

0.8

0.8 = 0.8 ¨ 1

d

0

1 = maxp0, 1q

Figure 15: Bottom-up evaluation of the maximal probability for the proponent attribute.

Values assigned to the basic actions are given in black, values computed at the interme-

diate nodes – in dark blue

Example 40. Let T be the attack tree from Figure 12 on page 85, whose set semantics is

given in Example 36. Recall the minimal cost for the proponent attribute domain given

in Table 1; let β be the basic assignment of minimal cost for the proponent in T defined

as

βpaq “ 10, βpbq “ 16,

βpcq “ 10, βpdq “ 5.

In this setting, it is easy to compute costBpT, βq “ 35 and costSpT, βq “ 25, the latter

value being the cost of execution of the actions a, c and d .

Consider now the behavior of Algorithm 1 for T , β, O “ ∅ and the minimal cost for

the proponent attribute domain. The initialization phase consists of setting

costRBpT, β,Oq “ `8,

CNpOq “ tcu,

COpOq “ tbu,

and of creating the basic assignment β1 which differs from β only in the value assigned to

the necessary clone c, i.e., β1|ta,b,du ” β and β1pcq “ 0.

The sets C considered in the for loop, their influence on the assignment of cost, and

90 CHAPTER 4. Evaluation of attributes on...

their corresponding results rC are the following

C “ ∅, β1
costpbq “ 0, r∅ “ 21

C “ tbu, β1
costpbq “ `8, rtbu “ 15.

Thus, after the for loop is executed, the value assigned to costRBpT, βq is

costRBpT, βq “ minp`8, 21, 15q “ 15,

and it is modified in line 11, taking the value of the necessary clone into account, yielding

the final result of

costRBpT, β,Oq “ 15` 10 “ 25.

Note that costRBpT, β,Oq “ costSpT, βq.

Example 41. Let T be the attack–defense tree from Figure 2, let β be the basic assignment

of minimal time for the proponent given in Table 3, and let O “ B
oT . As illustrated in

Example 38, CNpOq “ ∅ and COpOq “ tphishu. Thus, the sets C considered in the for

loop, their influence on the assignment of time, and their corresponding results rc are the

following

C “ ∅, β1
costpphishq “ 0, rc “ 125

C “ tphishu, β1
costpphishq “ `8, rc “ 135.

Thus, after the for loop is executed, the value assigned to costRBpT, βq is

costRBpT, βq “ minp`8, 125, 135q “ 125,

and it is returned in line 12.

In Theorem 2 we give sufficient conditions for the result αRBpT, β,Oq of Algorithm 1

to be equal to the result αSpT, βq of evaluation on the set semantics.

Theorem 2. Let T be an attack–defense tree, Aα “ pDα,‘,b,b,‘,b,‘q be a non–

increasing attribute domain and let O Ď B
oT . If the basic assignment β of the attribute

α satisfies

βpbq “ ab for b P O,

βpbq “ eb for b P BoT zO,

then the equality αRBpT, β,Oq “ αSpT, βq holds.

Proof. Let SpT q “ tpP1, O1q, . . . , pPn, Onqu. Consider the result rC of the bottom–up

procedure obtained in the line 8 of Algorithm 1 for a set C Ď COpOq of optional clones.

Due to the values assigned to clones by both basic assignments β and β1, we have

rC “ αBpT, β
1q b

â

bPCOpOqzC

βpbq

“ αSpT, β
1q b

â

bPCOpOqzC

βpbq,

4.4. A method for evaluation of attributes in trees with clones 91

by Theorem 1. Thus,

rC “
“ nà

i“1

â
bPPiYOi

β1pbq
‰
b

â

bPCOpOqzC

βpbq

“
nà

i“1

“` â
bPPiYOi

β1pbq
˘
b

â

bPCOpOqzC

βpbq
‰
.

Denote by rC
i the ith term of the above expression, i.e., set

rC
i :“

` â
bPPiYOi

β1pbq
˘
b

â

bPCOpOqzC

βpbq.

Note that if C XPi ‰ ∅, then rC
i “ ab, due to the values assigned to the clones belonging

to C in the for loop. Furthermore, observe that the result of Algorithm 1 is

αRBpT, β,Oq “

«
à

CĎCOpOq

rC

ff
b

â
bPCN

βpbq “

˜
nà

i“1

«
à

CĎCOpOq

rC
i

ff¸
b

â
bPCN

βpbq. (14)

Since ab “ e‘, the inner expression can be expanded as

à

CĎCOpOq

rC
i “

à

CĎCOpOq
CXPi‰∅

rC
i ‘

à

CĎCOpOq
CXPi“∅

rC
i

“
à

CĎCOpOq
CXPi“∅

»
—–
` â

bPPi

bRCN pOqYCOpOq

βpbq b
â
bPPi

bPCN pOqYCOpOqzC

eb b
â
bPOi

βpbq
˘
b

â

bPCOpOqzC

βpbq

fi
ffifl

“
à

CĎCOpOq
CXPi“∅

»
—–
` â

bPPiYOi

bRCN pOqYCOpOq

βpbq
˘
b

â

bPCOpOqzC

βpbq

fi
ffifl

“
à

CĎCOpOq
CXPi“∅

»
—–

â
bPPiYOi

bRCN pOq

βpbq b
â
bRPi

bPCOpOqzC

βpbq

fi
ffifl ,

where the last transition is a simple regrouping of factors.

Due to the values assigned to the basic actions of the opponent by β, and because

ab “ e‘, the last expression can be transformed to the form

à

CĎCOpOq

rC
i “

à

CĎCOpOq
CXPi“∅
OXOi“∅

»
—–

â
bPPiYOi

bRCN pOq

βpbq b
â
bRPi

bPCOpOqzC

βpbq

fi
ffifl

“
à

CĎCOpOq
CXPi“∅
OXOi“∅

»
—–

â
bPPi

bRCN pOq

βpbq b
â
bRPi

bPCOpOqzC

βpbq

fi
ffifl .

92 CHAPTER 4. Evaluation of attributes on...

Since the attribute domain is non–increasing, the last “sum” is absorbed by the term

corresponding to the set C for which no b P
`
COpOqzC

˘
zPi exists, i.e., the set C satisfying

COpOqzC “ Pi X CO. The corresponding term is
Â

bPPi

bRCN pOq
βpbq. Thus,

à

CĎCOpOq

rC
i “

$
&
%

Â
bPPi

bRCN pOq
βpbq, if O XOi “ ∅

e‘, otherwise.

Substituting to (14) yields

αRBpT, β,Oq “

¨
˚̋ à

iPt1,...,nu
OXOi“∅

»
—–

â
bPPi

bRCN pOq

βpbq

fi
ffifl

˛
‹‚b

â

bPCN pOq

βpbq

“
à

iPt1,...,nu
OXOi“∅

â
bPPi

βpbq

“
nà

i“1

â
bPPiYOi

βpbq

“ αSpT, βq,

where the second equality follows from Definition 28 of necessary clones w.r.t. O, and

the third one from the definition of the basic assignment β, i.e., from the fact that

β|O ” ab “ e‘. The proof is complete.

Theorem 2 specifies conditions under which the evaluation of attributes on the set

semantics can be replaced with the repeated bottom-up evaluation, i.e., the conditions

under which Algorithm 1 can be employed for the purpose of a “what-if” analysis of

security scenarios modeled with attack–defense trees. We note that if there are no clones

in a given tree, the repeated bottom-up evaluation boils down to a single bottom-up

evaluation.

4.4.3 Complexity of repeated bottom-up evaluation of attributes

We now turn our attention to the complexity of Algorithm 1. Among the operations

performed in lines 1–4, the most complex one is the initialization of the sets CNpOq and

COpOq. For a tree with n nodes, the time complexity of this step is in Opn2q, by Lemma 4.

The for loop from line 5 iterates over all of the subsets of the optional clones, and the

most complex of the operations performed within the loop is the bottom-up evaluation,

the complexity of which depends on the complexity of operators ‘ and b. By combining

these considerations with Theorem 2, we get the following result, in which we use |β| to

denote the number of bits needed for storing the basic assignment β.

Theorem 3. Let T be an attack–defense tree with n nodes and k repeated basic actions

of the proponent. Let Aα “ pDα,‘,b,b,‘,b,‘q be a non–increasing attribute domain

4.5. Extraction of optimal strategies 93

such that for a basic assignment β for α a single bottom-up computation αBpT, βq is

performed in time Opfpn, |β|qq, for some function f : N ˆ N Ñ R. Finally, let O Ď B
oT

and let β1 : BÑ Dα be a basic assignment satisfying

βpbq “ ab for b P O,

βpbq “ eb for b P BoT zO.

On input pT,Aα, β, Oq, Algorithm 1 returns αSpT, βq in time

O
`
maxpn2 ` fpn, |β|q, 2kfpn, |β|qq

˘
.

Recall that even in the simplest case of attack trees and minimal cost for the pro-

ponent attribute, the problem of determining the cost of a cheapest attack is equiva-

lent to solving the weighted monotone satisfiability problem, which is known to be NP-

complete [BLWC17]. Theorems 1 and 3 indicate that this difficulty originates from the

presence of repeated basic actions of the proponent. In particular, the complexity of the

repeated bottom-up evaluation is exponential in the number of repeated basic actions of

the proponent. Therefore, among the trees containing n basic actions the running time

of the repeated bottom-up procedure is maximized for a tree in which every basic action

is a repeated basic action of the proponent. This is the case, for instance, for the tree

T “ ANDppORppb1, . . . , bnq, ORppb1, . . . , bnqq.

Contrarily, in the worst-case, the size of the set semantics, and so the complexity of the

evaluation on the set semantics, is exponential in the total number of nodes. Nevertheless,

the evaluation on the set semantics has at least one advantage over the repeated bottom-

up evaluation. If the attribute is such that its value correspond to the execution of exactly

one strategy, as it is the case for the minimal cost for the proponent, knowing the set

semantics allows not only for computing the value of the attribute, but also for extracting

the strategy for which this value is achieved. In the next section we will demonstrate

how, under appropriate assumptions, the two methods of evaluation can be combined for

extracting such strategy without creating the whole set semantics of a tree.

4.5 Extraction of optimal strategies

Both the standard bottom-up evaluation and the repeated bottom-up evaluation of at-

tributes are suitable for performing a “what-if” analysis, the result of which is a value

of an attribute under specified behavior of the opponent. In many cases, such a value is

a solution to an optimization problem, providing an answer to questions such as “what

is the minimal cost of achieving the root goal?” or “what is the maximal probability

of achieving the root goal when executing exactly one of the minimal strategies?”. The

corresponding strategy however, is not obtained. We shall now present a method for

94 CHAPTER 4. Evaluation of attributes on...

obtaining the strategies corresponding to such optimal values, in a way that, if possible,

does not involve the creation of the set semantics of a tree. We begin with defining the

object that we want to extract from a tree.

Definition 29 (Optimal strategy). Let Aα “ pDα,‘,b,b,‘,b,‘q be a non-increasing

attribute domain with Dα Ď R and with ‘ being the operation of taking maximum or

minimum4. A pair pP,Oq P SpT q is a strategy in T optimal w.r.t. α under the basic

assignment β if

αSpT, βq “
â

bPP YO

βpbq.

Example 42. As illustrated in Example 27, the strategy ptphish, phone, log&transu, ∅q

is optimal in the tree T from Figure 2 w.r.t. minimal time for the proponent attribute,

under the basic assignment βtime given in Table 3.

4.5.1 Tree pruning procedure

Our method for determining optimal strategies relies on the repeated bottom-up evalua-

tion of attributes and the following lemma.

Lemma 5. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, Aα be an attribute

domain induced by a semiring pDα,‘,bq, and let β be a basic assignment of α satisfying

αBpT, βq ‰ ab. For T 1 “ pV 1, A1,L, λ, actor, refq being the component containing the root

of T of the subdag of T induced by the set

tv P V : αBpT, β, vq ‰ abu,

the equality

αBpT, βq “ αBpT
1, βq

holds.

Proof. We shall prove that for every node v P V 1 the equality αBpT
1, β, vq “ αBpT, β, vq

holds. The proof is by induction on the structure of the subdag T pvq. For the base

case, assume that v is not refined in T and has no countermeasure attached in T . Then,

v is also not refined and has no countermeasure attached in T 1. Thus, αBpT
1, β, vq “

βpλpvqq “ αBpT, β, vq.

Assume now that refpvq ‰ N or that v̄ exists in T . Recall that for s “ actorpvq and

OP “ refpvq the value of αBpT, β, vq is

αBpT, β, vq “

$
’’’’’&
’’’’’%

βpλpvqq, if OP “ N and v̄ does not exist,

Cs
α pβpλpvqq, αBpT, β, v̄qq , if OP “ N and v̄ exists,

pOPs
αqv1PchildrenT pvqαBpT, β, v

1q, if OP ‰ N and v̄ does not exist,

Cs
α

`
pOPs

αqv1PchildrenT pvqαBpT, β, v
1q, αBpT, β, v̄q

˘
, otherwise.

4Note that all of the attribute domains from Table 1 other than the satisfiability domain are of this

form.

4.5. Extraction of optimal strategies 95

We consider three cases.

Case 1. The node v is not refined and v̄ exists.

In this case, αBpT, β, vq “ Cs
α pβpλpvqq, αBpT, β, v̄qq. Thus, if v̄ P V 1, then the required

equality follows from the induction hypothesis. Otherwise, αBpT
1, β, vq “ βpλpvqq and

αBpT, β, v̄q “ ab. Since v P V 1, we have αBpT, β, vq ‰ ab, which combined with the fact

that ab “ e‘ implies that Cs
α “ ‘. Hence, αBpT, β, vq “ βpλpvqq ‘ e‘ “ βpλpvqq “

αBpT
1, β, vq.

Case 2. The node v is not refined and v̄ does not exist.

In this case, the value of αBpT, β, vq is pOPs
αqv1PchildrenT pvqαBpT, β, v

1q. If childrenT pvq Ă

V 1, then the required equality follows from the induction hypothesis. Otherwise, there

is v1 P childrenpvq such that αBpT, β, v
1q “ ab. Since αBpT, β, vq ‰ ab and ab “ e‘, it

follows again that the operation performed by the bottom-up evaluation at the node v in

T is ‘, i.e., OPs
α “ ‘. Thus,

αBpT, β, vq “
à

v1PchildrenT pvq

αBpT, β, v
1q “

à

v1Pchildren
T 1 pvq

αBpT, β, v
1q

“ αBpT
1, β, vq.

Case 3. The node v is refined and v̄ exists in T .

Under the assumptions of this case, the equality

αBpT, β, vq “ Cs
α

`
pOPs

αqv1PchildrenT pvqαBpT, β, v
1q, αBpT, β, v̄q

˘

holds. Similarly as in the previous cases, if all of the children of v in T belong to

V 1, then the claim follows from the induction hypothesis. If this is not the case, then

V 1 X pchildrenT pvq Y tv̄uq ‰ ∅. Note that regardless of whether or not there is a node

v1 P childrenT pvq not belonging to V 1, by repeating the reasoning from the proof Case

2 one obtains the equality pOPs
αqv1PchildrenT pvqαBpT, β, v

1q “ pOPs
αqv1Pchildren

T 1 pvqαBpT, β, v
1q.

Combining this equality with the reasoning from the proof of Case 1 leads to the claimed

statement.

4.5.2 Tree reduction technique preserving optimal strategies

The idea behind our method for determining the optimal strategies is the following.

Should the result of the bottom-up evaluation be equal to that of evaluation on the

set semantics, one could apply Lemma 5 repetitively, thus reducing the size of the tree

while keeping the result of the bottom-up evaluation unchanged. If the equality of the

results provided by the two evaluation methods was maintained after each application

of Lemma 5, the eventually obtained tree would contain an optimal strategy that is also

optimal in the original tree. Hopefully, after the reduction is performed, the set semantics

96 CHAPTER 4. Evaluation of attributes on...

of the final tree is significantly smaller than that of the original tree, and can be computed

easily.

The starting point of the procedure sketched above, and given in detail in Algorithm 2,

is the repeated bottom-up evaluation. Note that for an attribute domain Aα as in Defini-

tion 29, the operation performed in line 9 of the repeated bottom-up evaluation consists

of setting the value of αRBpT, β,Oq to be the minimum/maximum of the currently stored

value and the result of the bottom-up procedure performed in the current iteration of

the for loop. Algorithm 1 could be therefore modified, so that along the optimal value,

the set C of optional clones corresponding to the iteration in which the value has been

obtained is stored. Suppose that the pair pαRBpT, β,Oq, Cq is returned by such modified

algorithm, for a tree T “ pV,A,L, λ, actor, refq, an attribute domain Aα, a basic assign-

ment β and a set O satisfying the assumptions of Theorem 2. Note that αRBpT, β,Oq is

then

αRBpT, β,Oq “ αBpT, β
1q b

â

bPCOpOqzC

βpbq b
â

bPCN pOq

βpbq, (15)

where

β1pbq “

$
’’’&
’’’%

βpbq, if b P BT zpCNpOq Y COpOqq,

eb, if b P CNpOq Y pCOpOqzCq,

ab, if b P C.

Assume that αRBpT, β,Oq ‰ ab, since otherwise there is no need for optimization: if

αRBpT, β,Oq “ ab, then αSpT, βq “ ab, implying that for every strategy pP ,Oq P SpT q

the equality
À

bPP YO “ ab holds. This assumption implies that none of the actions from

the set CNpOq Y pCOpOqzCq is assigned ab under the basic assignment β, and that the

value of αBpT, β
1q is also different from ab. Thus, Lemma 5 can be applied to T , Aα and

β1.

Let T 1 be the tree obtained from T as described in Lemma 5. Then

αSpT, βq “ αBpT, β
1q b

â

bPCOpOqzC

βpbq b
â

bPCN pOq

βpbq

“ αBpT
1, β1q b

â

bPCOpOqzC

βpbq b
â

bPCN pOq

βpbq

“ αSpT
1, β1q b

â

bPCOpOqzC

βpbq b
â

bPCN pOq

βpbq,

(16)

where the first equality follows from (15) and Theorem 2, the second one from Lemma 5,

and the last one from Theorem 1 and the fact that under the basic assignment β1 every

clone in T 1 is assigned either ab or eb.

Note that for every node v in T 1, the value of αBpT
1, β1, vq is different from ab. To

reduce the size of T 1 further, consider a basic action b in BT 1 that does not belong

to the set CNpT,Oq Y COpT,Oq. Create a new basic assignment for α, say, β2, that

differs from β1 in that it assigns ab to b. That is, define β2 with β2|
B

T 1 ztbu ” β1 and

β2pbq “ ab. Under this new basic assignments, there is at least one node v in T 1 for which

4.5. Extraction of optimal strategies 97

αBpT
1, β2, vq “ ab. Thus, if αBpT

1, β2q ‰ ab, Lemma 5 can be applied again, reducing

tree T 1 to a smaller tree, say T 2. Such a reduction might not be beneficial: it should

be performed only if αBpT
1, β2q “ αBpT

1, β1q, as otherwise it might happen that all the

optimal strategies in T 2 under β are suboptimal in T . Thus, if αBpT
1, β2q “ αBpT

1, β1q,

apply Lemma 5 to T 1, obtaining T 2. Since both β1 and β2 satisfy the assumptions of

Theorem 1, the equalities αBpT
1, β1q “ αSpT

1, β1q and αBpT
2, β2q “ αSpT

2, β2q hold.

Furthermore, Lemma 5 implies that the equality αBpT
2, β2q “ αBpT

1, β2q holds, and the

definition of T 2 and the definition of the basic assignment β2 imply that αSpT
2, β2q “

αSpT
2, βq. To summarize, we have

αSpT
1, β1q “ αBpT

1, β1q “ αBpT
1, β2q “ αBpT

2, β2q “ αSpT
2, β2q “ αSpT

2, βq.

Substituting αSpT
2, βq to (16) for αSpT

1, β1q yields

αSpT, βq “ αSpT
2, βq b

â

bPCOpOqzC

βpbq b
â

bPCN pOq

βpbq.

Thus, if the pair pP ,Oq is an optimal strategy in T 2 w.r.t. α under the basic assignment

β, then the pair pP Y CNpOq Y COpOq, Oq is as good as an optimal strategy in T , in the

sense that for any optimal strategy pP̂ , Ôq in T the equality

â

bPP̂ YÔ

βpbq “
â

bPpP YCN pOqYCOpOqzC,Oq

βpbq (17)

holds.

The procedure described in the previous paragraph can be now performed again, for a

basic action b in BT 2 not belonging to the set CNpT,Oq Y COpT,Oq. This yields another,

hopefully smaller tree, in which the procedure can be repeated again. Eventually, a

tree T 2 will be obtained, in which the procedure can no longer be applied, i.e., in which

switching a value assigned to any of the actions not in CNpT,OqYCOpT,Oq to ab switches

the result of the bottom-up evaluation to ab. Since the equality (17) holds for this final

tree T 2, computing its set semantics allows for determining a strategy that is as good as

an optimal strategy in T , in the sense explained above.

The above reasoning proves the following.

Theorem 4. Let T be an attack–defense tree, Aα “ pDα,‘,b,b,‘,b,‘q be a non–

increasing attribute domain with Dα Ď R and with ‘ being the operation of taking maxi-

mum or minimum, and let O Ď B
oT . If the basic assignment β of the attribute α satisfies

βpbq “ ab for b P O,

βpbq “ eb for b P BoT zO,

and the tree T 1 is the output of Algorithm 2 on input T,Aα, β, O, then the equality

αSpT, βq “ αSpT
1, βq b

â

bPCOpT,OqzC

βpbq b
â

bPCN pT,Oq

βpbq

holds.

98 CHAPTER 4. Evaluation of attributes on...

We believe that the following, stronger statement, that we are currently unable to

prove, is true.

Conjecture 1. Let T be an attack–defense tree, Aα “ pDα,‘,b,b,‘,b,‘q be a non–

increasing attribute domain with Dα Ď R and with ‘ being the operation of taking maxi-

mum or minimum, and let O Ď B
oT . If the basic assignment β of the attribute α satisfies

βpbq “ ab for b P O,

βpbq “ eb for b P BoT zO,

and the tree T 1 is the output of Algorithm 2 on input T,Aα, β, O, then every strategy in

T 2 optimal w.r.t. α under the basic assignment β is also an optimal strategy in T .

Algorithm 2 Tree reduction preserving optimal strategies

Input: Attack–defense tree T “ pV,A,L, λ, actor, refq, attribute domain

pDα,‘,b,b,‘,b,‘q, basic assignment β : BÑ Dα, set O Ď B
oT

Output: Attack–defense tree T 1 “ T 1pT,Aα, β, Oq

1: initialize CNpT,Oq, COpT,Oq

2: set pαRBpT, β,Oq, Cq to be as in text

3: if αRBpT, β,Oq “ ab then

4: return T

5: end if

6: β1pbq Ð βpbq for every b P BT zpCNpT,Oq Y COpT,Oqq

7: β1pbq Ð eb for every b P CNpT,Oq Y pCOpT,OqzCq

8: β1pbq Ð ab for every b P C

9: T 1 Ð the connected component containing the root of T of the subdag of T induced

by the set tv P V : αBpT, β, vq ‰ abu that contains the root of T

10: while there is b P BT 1zpCNpT,OqYCOpT,Oqq such that αBpT
1, β2q ‰ ab for β2 defined

with β2|
B

T 1 ztbu ” β1 and β2pbq “ ab do

11: b Ð one of the basic actions satisfying the condition in line 10

12: β2pbq Ð ab

13: β2pb1q Ð β1pb1q for every b1 P BT 1ztbu

14: if αBpT
1, β2q “ αBpT

1, β1q then

15: T 2 Ð the connected component containing the root of T 1 of the subdag of T 1

induced by the set tv P V : αBpT
1, β2, vq ‰ abu

16: T 1 Ð T 2

17: end if

18: end while

19: return T 1

Before analyzing the complexity of Algorithm 2, we illustrate its behavior with two

examples.

4.5. Extraction of optimal strategies 99

Example 43. Let T “ ANDppORppb11, b12, b13q, ORppb21, b22, b23qORppb31, b32, b33qq be the

attack tree depicted in Figure 11. Let β be the basic assignment for minimal cost for the

proponent defined as βpbijq “ 4 ´ j, for i P t1, 2, 3u, j P t1, 2, 3u (see Figure 16). Note

that there are 27 elements in the set semantics of T , the value of costSpT, βq is

costSpT, βq “ costRBpT, βq “ costBpT, βq “ 1` 1` 1 “ 3,

and that the optimal strategy in T w.r.t. minimal cost for the proponent under β is

ptb13, b23, b33u, ∅q.

Let T, β,O “ ∅ and the domain for minimal cost for the proponent be the input for

Algorithm 2. In line 2, C is set to be the empty set. Since there are no clones in T and

C “ ∅, no modification of the basic assignment β takes place in lines 6–8. That is, after

line 8 is executed, β1 ” β. Similarly, in line 9, T 1 is set to be T .

Assume that in the while loop, the search for a candidate basic action b satisfying the

condition in line 10 is performed starting from the lowest index possible, and progressing

towards the highest. Thus, when the algorithm enters the while loop for the first time, b

is set in line 11 to be b11. Then, in lines 12 and 13, the basic assignment β2 is defined

with β2|
B

T 1 ztb11u ” β1 and β2pb11q “ `8. Thus, costBpT
1, β2q “ costBpT

1, β1q “ 3, and

in line 15 the node labeled b11 is removed from T 1. Hence, after the while loop is executed

for the first time, we have

T 1 “ ANDppORppb12, b13q, ORppb21, b22, b23qORppb31, b32, b33qq.

It is easy to see that in the next iteration of the while loop the node b12 is removed

from T 1 in the same manner, reducing the tree to

T 1 “ ANDppORppb13q, ORppb21, b22, b23qORppb31, b32, b33qq.

Now setting the value assigned to b13 to `8 results in the bottom-up evaluation on T 1

returning `8. Thus, b13 is not a viable candidate for the action b in line 11. The next

new b is therefore b “ b21.

Due to the simple structure of T , it is easy to see what will happen next: the nodes

labeled with the basic actions b21, b22, b31 and b32 will be removed from T 1, one by one.

Thus, the tree returned by Algorithm 2 is

T 1 “ ANDppORppb13q, ORppb23qORppb33qq.

The set semantics of this tree is SpT 1q “ tptb13, b23, b33u, ∅qu, i.e., it is a singleton con-

sisting of the optimal strategy in T w.r.t. minimal cost for the proponent under β.

The previous example demonstrates that Algorithm 2 sometimes allows for transform-

ing a tree having set semantics of size exponential in the tree size into a tree having very

small number of strategies, while retaining at least one of the strategies optimal in the

original tree in the set semantics. We now illustrate the behavior of Algorithm 2 on our

running example.

100 CHAPTER 4. Evaluation of attributes on...

AND

OR

b11

3

b12

2

b13

1

OR

b21

3

b22

2

b23

1

OR

b31

3

b32

2

b33

1

Figure 16: A tree with the size of the set semantics exponential in the number of basic

actions, with the basic assignment of minimal cost for the proponent given in the nodes

labeled with basic actions

Example 44. Let T be the attack–defense tree from Figure 2, and let β be the basic

assignment of minimal time for the proponent that assigns `8 to the basic actions of

the opponent and the values given in Table 3 to the basic actions of the proponent. Recall

that there are eleven strategies in T (listed in Example 23) and that the optimal strategy in

T w.r.t. minimal time under β is ptphish, phone, log&transu, ∅q (see, e.g., Example 27).

Let O “ B
oT . Then, CNpOq “ ∅ and COpOq “ tphishu. The (optimal) value returned

by the repeated bottom-up evaluation of minimal time for the proponent on T under β is

125, and it is obtained when in the for loop of Algorithm 1 the set C “ ∅ is considered

(see Example 41. Thus, after the first nine lines of Algorithm 2 are executed on input T ,

β, O and the minimal time for the proponent attribute domain, we have

CNpOq “ ∅, COpOq “ tphishu, C “ ∅,

the assignment β1 differs from β only in the value assigned to the action phish, which is

β1pphishq “ 0, and T 1 is obtained by removing the nodes labeled pwd and spwd from T .

Observe that timeBpT, β
1q “ 25, and that this value comes from the subdag of T rooted

in the node labeled via online banking. Thus, setting the value assigned to any of the

basic actions from the subdag of T rooted in the node labeled via ATM to `8 does not

change the result of the bottom-up evaluation. Hence, after all of these basic actions are

considered in the while loop, the subdag rooted in the via ATM node is removed from T .

On the other hand, if the value of any of the basic actions phone, log&trans and

sms is set to `8, the value computed at the node labeled via online banking with the

bottom-up evaluation will be `8, and so the value computed at the root will be different

than timeBpT, β
1q. Thus, when any of these three basic actions is considered in the while

loop, no modification of the tree occurs.

Finally, setting the value assigned to the basic action uname to `8 results in the node

labeled with that action being removed from T .

Thus, Algorithm 2 returns the tree T 1 depicted in Figure 17. The set semantics of this

tree contains two strategies: the strategy ptphish, phone, log&transu, ∅q and the strategy

ptphish, log&transu, smsq

4.5. Extraction of optimal strategies 101

steal from account

via online banking

get

password

phishing

(phish)

get

user name

log in

& execute transfer

(log&trans)

SMS

(sms)

steal

phone

(phone)

Figure 17: An attack–defense tree obtained by applying Algorithm 2 to the attack–defense

tree from the running example

4.5.3 Complexity of Algorithm 2

Having illustrated the usefulness of Algorithm 2, we now turn to analyzing its complexity.

For this purpose, assume that T is a tree on n nodes, containing k repeated basic actions

of the proponent. Let Aα “ pDα,‘,b,b,‘,b,‘q be a non–increasing attribute attribute

domain with Dα Ď R and with ‘ being the operation of taking maximum or minimum.

Assume that for a basic assignment β for α a single bottom-up computation αBpT, βq is

performed in time Opfpn, |β|qq5 for some function f : Nˆ NÑ R.

Among the operation performed by Algorithm 2 in lines 1 – 8 the most complex one is

the repeated bottom-up evaluation, performed in time O
`
maxpn2 ` fpn, |β|q, 2kfpn, |β|qq

˘
.

The tree T 1 from line 9 can be identified in time linear in n, using a variant of graph

traversal algorithm.

Since there are n nodes in T , the operation within the while loop will be performed at

most n times. In the worst case, checking the while condition itself will require n¨fpn, |β|q

operations. Once this condition is checked, the value of αBpT
1, β2q is known, and so the

5Similarly as in Theorem 2, |β| denotes here the number of bits needed for storing the basic assignment

β.

102 CHAPTER 4. Evaluation of attributes on...

only operation performed in line 14 is comparison of two real numbers. Determination of

T 2 in line 15 is performed again in time linear in n, assuming that the values obtained at

the intermediate nodes when computing αBpT
1, β2q are stored once the algorithm enter

the while loop.

It follows that Algorithm 2 will terminate in time O
`
maxpn3fpn, |β|q, 2kfpn, |β|qq

˘
.

4.6 Relations to other formalisms

Attack and attack–defense trees are only one of many modeling frameworks employing

AND/OR trees. In this section, we discuss relations between the results presented in this

chapter and some of the other similar formalisms. We do not argue that the applications

presented here are necessarily useful per se. We believe that their value lies in demon-

strating that it is worthwhile to try to reformulate analysis methods developed in terms

of one formalism in the language of another one.

4.6.1 Fault trees

Fault trees [HRVG81, RS15] is a modeling framework for depicting and studying depen-

dencies between elements of complex systems. In their simplest form, they are syntacti-

cally equivalent to attack trees: they are directed acyclic graphs with leaf nodes corre-

sponding to failures of system components (basic events) and the refined nodes (gates)

modeling failures propagation throughout the system. Static fault trees (SFTs) admit

three types of gates: AND gates, OR gates and k-out-of -n gates; the latter can be modeled

using only AND and OR gates [RS15]. Thus, we shall consider SFTs to be attack trees.

In the field of fault trees analysis it is standard to interpret repeated basic events

(called shared basic events) as clones [Ste86, Cod06, RS15]. The semantics of an SFT, as

given in [RS15], describes for a given set of basic events that have occurred (equivalently,

a set of components that have failed), for each element (gate or basic event) in the tree,

whether the component or subsystem corresponding to this element failed. For a given

set S of basic events that occurred, the semantics of an element represented with a node

v in the fault tree T is achievedTpv, Sq. A minimal set S of basic events for which

achievedTpv, Sq “ 1 is called a minimal cut set (MCS) in T .

Minimal cut sets in SFTs are thus equivalent to minimal strategies in attack trees.

Therefore, the necessary clones in an SFT are the events that are present in every MCS.

Furthermore, by Proposition 2, MCSs belong to the set semantics of an SFT6. One of the

reliability characteristics of MCSs considered in [HRVG81] is minimal cut set unavailabil-

ity, which is the probability that all the basic events in the MCS occur. In the particular

case when each of the basic events is assigned a constant probability of occurrence, and

6This is fact is neither suprising nor new. A method for minimal cut sets determination equivalent

to the creation of set semantics has been given already in [HRVG81], Chapter XI.

4.6. Relations to other formalisms 103

under the assumption that the basic events are independent, the unavailability of a MCS

is computed as the product of probabilities of its elements. Together with Theorem 2

and the fact that the attribute domain pr0, 1s,max, ¨q is non-increasing, this implies that

the maximal value of MCS unavailability over all the MCSs can be computed in SFTs

containing shared subtrees using the repeated bottom-up evaluation; an MCS achieving

this value can be extracted from the SFT using Algorithm 2.

When applying the repeated bottom-up evaluation to an SFT and the minimal cost

for the proponent attribute, with all the basic events being assigned 1, one obtains the

size of the smallest of all the MCSs in the SFT. Again, Algorithm 2 can be used for

extracting such MCS from the SFT without extracting all of MCSs.

Finally, combining Algorithm 1 with the framework developed in Chapter 5 allows for

determining pairs of the form psize, unavailabilityq corresponding to MCSs optimal (in

the sense of Pareto optimality) w.r.t. both the size and unavailability, i.e., minimizing

the former while maximizing the latter.

4.6.2 Weighted monotone satisfiability problem

In the case of attack trees, the problem of determining the value of a cheapest strategy

is equivalent to determining the minimal sum of costs (or weights) assigned to proposi-

tional variables of an AND{OR propositional formula, over all sets of variables satisfying

this formula. Determining this value solves the weighted monotone satisfiability prob-

lem [BLWC17]. Algorithm 2 can be used for reducing such monotone propositional

formula to a smaller form, from which the set of variables corresponding to the optimal

value could be extracted using the set semantics.

4.6.3 Attack graphs

In the work [WNJ06], the authors tackle the problem of determining the most cost-

effective ways of increasing the security of networks (network hardening problem). They

employ a variant of attack graphs for modeling dependencies between the security con-

ditions related to hosts (e.g., existence of a vulnerability or existence of an established

connection) and the possible exploits. Their goal is to determine a set of initially satisfied

security conditions that should be disabled in order to secure the network, at the lowest

cost possible. To achieve this goal, the authors of [WNJ06] translate attack graphs into

weighted monotone propositional formulæ, which are later transformed into disjunctive

normal form (DNF) and analyzed further. As a weighted monotone propositional for-

mula is equivalent to an attack tree with a basic assignment of cost, Algorithm 2 could

be applied for reducing the formula before the transformation into DNF, thus possibly

avoiding the exponential explosion.

104 CHAPTER 4. Evaluation of attributes on...

4.7 Empirical validation

We have implemented the two methods of evaluation of attributes (evaluation on the

set semantics and the repeated bottom-up evaluation) and tested their performance on

synthetic trees. The main goal of our experiment was to compare how the two methods

perform, depending on the characteristics of the analyzed trees. An excerpt from the

obtained results is presented in Table 5. Full description of the experimental setup,

as well as all the sources necessary to reproduce the results are available at https:

//github.com/wwidel/rbu-tests.

For a tree T with n nodes and k repeated basic actions of the proponent, we used

the two methods for evaluating the minimal cost for the proponent attribute. Basic

assignments β were constructed under the assumption that the opponent performs all

of their actions. Values assigned to the basic actions of the proponent were generated

randomly. We have measured the time of the evaluation on the set semantics costSpT, βq

(which includes the time needed for the construction of the set semantics itself) and using

the repeated bottom-up evaluation (Algorithm 1). Each time value presented in Table 5

is an average over twenty measurements.

Table 5 is partitioned into three parts. For the trees from the first part, the perfor-

mance of the two methods is comparable. For the trees presented in the second part, the

computation on the set semantics outperforms Algorithm 1, while the opposite is true

for the third part of the table.

We would like to point out that the trees from the second part of Table 5 have small set

semantics, while having a significant number of repeated basic actions. The trees tree10

and tree13 have large set semantics, while having a very low number of repeated basic

actions. These results are in line with the established complexity of the two methods of

evaluation of attributes.

4.8 Conclusion and future work

The main focus of this chapter was the problem of evaluation of attributes on attack–

defense trees containing clones. By determining several elementary properties of the set

semantics, we motivated the usage of the evaluation of attributes on the set semantics

in the case of attributes whose domains are induced by semirings, and in particular, the

ones having non-increasing attribute domains.

With Theorem 1, we established sufficient conditions for the standard bottom-up

evaluation of attributes returning meaningful results in attack–defense trees containing

clones. An alternative method of evaluation, the repeated bottom-up evaluation, given

in Algorithm 1, has been developed for the attributes having non-increasing attribute

domains. It serves as the starting point of the tree reduction procedure given in Algo-

rithm 2, which can be used for extracting optimal strategies from attack–defense trees.

4.8. Conclusion and future work 105

Table 5: Running time of the methods for randomly generated trees with n nodes and k

repeated basic actions of the proponent.

Parameters Time in sec

Name of file

storing T
n k |SpT q|

|SpT qq|

bound of

Proposition 4

costSpT, βq Algorithm 1

tree04 31 7 352 1024 0.01 0.02

tree08 37 9 928 4096 0.04 0.05

tree12 43 11 2436 16384 0.25 0.27

tree20 36 4 832 1024 0.04 ă 0.01

tree03 31 4 640 1024 0.03 ă 0.01

tree29 41 10 640 1280 0.02 0.12

tree30 43 11 704 1408 0.02 0.28

tree31 45 12 768 1536 0.02 0.54

tree32 47 13 832 1664 0.03 1.17

tree24 50 8 9536 16384 3.42 0.04

tree10 43 2 14336 16384 10.34 ă 0.01

tree13 46 0 32768 32768 95.45 ă 0.01

tree15 46 6 13824 32768 8.19 ă 0.01

Both algorithms can prove useful in problems involving AND{OR trees or, more generally,

monotone Boolean formulæ, as demonstrated in Section 4.6.

There are several interesting directions in which the work presented in this chapter

could be developed further. First, it seems worthwhile to try verifying Conjecture 1.

Second, since the running time of Algorithm 1 and 2 is exponential in the number of

clones of the proponent, one could try to construct approximate variants of the two

algorithms. For instance, Algorithm 1 could be parameterized with an upper bound on

the number of subsets of the set of optional clones considered in the for loop, causing

the complexity of the algorithm to depend mostly on the complexity of the bottom-up

evaluation of the attribute domain provided as input. It seems that with Algorithm 2

relying on this heuristic variant of Algorithm 1, replacing the equality from line 14 with

the “less than or equal to” inequality would be sufficient for obtaining a fast, approximate

method for extracting optimal strategies from attack–defense trees.

106 CHAPTER 4. Evaluation of attributes on...

Chapter 5

Multi-parameter analysis of security

In the previous chapter, we studied the problem of quantitative analysis of security us-

ing attributes of attack–defense trees. Classically, attribute domains have been used for

formalizing single parameter optimization problems on attack–defense trees, such as de-

termining the minimal cost or maximal probability of achieving the root goal. In this

chapter, we tackle the issue of multi-parameter optimization. We demonstrate how mul-

tiple attribute domains can be combined into a single one, called Pareto attribute domain,

with the evaluation of the corresponding attribute providing Pareto optimal values of at-

tributes of achieving the root goal. We build upon the results presented in Chapter 4 to

identify Pareto attribute domains whose attributes can be evaluated in trees containing

clones using the repeated bottom-up evaluation (Algorithm 1).

The structure of this chapter is as follows. In Section 5.1, we recall the notion of

Pareto optimality, adapted to the setting that we are mostly interested in. The con-

struction and some properties of Pareto attribute domains are presented in Section 5.2.

The applicability of Pareto attribute domains is illustrated in Section 5.3, with both a

small case study, and with results of tests conducted on synthetic trees. We conclude the

chapter and discuss possible future research directions in Section 5.4.

5.1 Preliminaries

To compare different strategies while taking multiple attributes related to their execu-

tion into account, we assign vectors of values to the strategies. Our main focus is on

the attribute domains induced by semirings. Therefore, every set Di considered in the

remainder of this chapter is equipped with two binary operations ‘i and bi, such that

pDi,‘i,biq is a commutative idempotent semiring. Vectors belonging to D1 ˆ . . .ˆDm

will be marked in bold, and if d is a vector, di will stand for its ith coordinate. We

use ĺi to denote the canonical partial order on Di, defined with d ĺi d
1 if and only if

d ‘i d
1 “ d1, for d, d1 P Di. Intuitively, d ĺi d

1 if and only if d1 is preferred over d. To

compare the elements of the set D1 ˆ . . . ˆ Dm, we use the following standard partial

107

108 CHAPTER 5. Multi-parameter analysis of security

ordering1 induced by the orders ĺi.

Definition 30 (Dominance). For d,d1 P D1 ˆ . . . ˆ Dm, the element d1 dominates d

(equivalently, d is dominated by d1), denoted d ĺ d1, if the inequality di ĺi d
1
i holds for

every i P t1, . . . ,mu.

Example 45. Consider the minimal time for the proponent and the maximal probability

for the proponent attribute domains (given in Table 1), which are induced by the com-

mutative idempotent semirings pN Y t`8u,min,`q and pr0, 1s,max, ¨q, respectively. To

choose strategies optimal w.r.t. both attributes, we consider the set pN Y t`8uq ˆ r0, 1s.

Following Definition 30, a point pd1, d2q belonging to this set is dominated by a point

pd1
1, d

1
2q if minpd1, d

1
1q “ d1

1 and maxpd2, d
1
2q “ d1

2. In other words, pd1, d2q ĺ pd1
1, d

1
2q if

d1 ě d1
1 and d2 ď d1

2.

For example, let D “ tp125, 0.114q, p135, 0.057q, p145, 2´23qu be the set of points

representing the minimal time and the maximal success probability of the strategies

ptphish, phone, log&transu, ∅q,

ptforce, card, cashu, ∅q

and

ptphish, uname, phone, log&transu, ∅q,

respectively, under the basic assignments given by Table 3 and 6. The points p145, 2´131q

and p135, 0.057q are both dominated by p125, 0.114q.

Table 6: Basic assignment of probability to the basic actions of the proponent from tree

in Figure 2.

Basic action b βprobpbq Basic action b βprobpbq

cam 0.8 eav 0.5

force 0.3 card 0.2

cash 0.95 pwd 2´48

phish 0.6 uname 2´20

log&trans 0.95 phone 0.2

If an element of D1 ˆ . . . ˆ Dm corresponding to the value of a strategy pP,Oq is

dominated by the value of a strategy pP 1, O1q, e.g., the two strategies are equally likely

to succeed, but the cost of execution of pP 1, O1q is smaller, then the proponent has no

incentive to execute pP,Oq. Therefore, the interesting elements of D1 ˆ . . .ˆDm are the

ones that are not dominated by others.

1In the general case of partially ordered sets (not necessarily commutative idempotent semirings) the

definitions are analogous, cf. [GBTO07].

5.2. Pareto attribute domains 109

Definition 31 (Pareto point). An element d P D Ď D1 ˆ . . . ˆ Dm is called a Pareto

point of D if it is not dominated by any other element of D, i.e., if d ł d1 holds for every

d1 P D,d1 ‰ d.

Definition 32 (Pareto frontier). The set of all Pareto points of a finite set

D Ď D1 ˆ . . .ˆDm, denoted maxpDq2, is called Pareto frontier of D.

Example 46. Consider again the two domains and the set D from Example 45. As

already observed, the point p125, 0.114q dominates the remaining points of D. Thus, the

Pareto frontier of D is

maxpDq “ tp125, 0.114qu.

Our ultimate goal is to identify values of strategies that are not dominated by values

corresponding to the execution of other strategies. In other words, the final result of our

analysis will be a set whose every element is a Pareto point.

Definition 33 (Pareto optimal set). A finite set D Ď D1 ˆ . . . ˆ Dm satisfying

D “ maxpDq is called a Pareto optimal set. We use P pD1 ˆ . . .ˆDmq to denote the set

of all Pareto optimal sets in D1 ˆ . . .ˆDm.

The considerations in Example 45 and 46 show that D defined in Example 45 is not

a Pareto optimal set.

5.2 Pareto attribute domains

We are now ready to develop a general method for combining attribute domains into a

single domain suitable for determining Pareto optimal strategies in attack–defense trees.

For i P t1, . . . ,mu, let Aαi
be the attribute domain pDi,‘i,bi,bi,‘i,bi,‘iq. Given

basic assignments βαi
for the attributes αi, we create a new assignment, which assigns

the singleton tpβα1
pbq, . . . , βαm

pbqqu to each basic action b P B. Note that this singleton

is a Pareto optimal set, and it contains the optimal value corresponding to the execution

of b. Such singletons will be combined using appropriate operations, eventually resulting

in a Pareto optimal set of values corresponding to strategies in an attack–defense tree.

We now define these operations.

For d, d1 P D1 ˆ . . .ˆDm, let

db d1 :“ pd1 b1 d
1
1, . . . , dm bm d1

mq, (18)

and, with a slight abuse of notation, let

D bD1 :“ tdb d1 : d P D,d1 P D1u, (19)

D b̂D1 :“ maxpD bD1q, (20)

D ‘̂D1 :“ maxpD YD1q, (21)

2The choice of the maxp¨q notation is dictated by the fact that Pareto points are the maximal elements

w.r.t. the dominance relation.

110 CHAPTER 5. Multi-parameter analysis of security

for D,D1 P P pD1 ˆ . . .ˆDmq.

The intuition behind the above construction is the following. Suppose that two sets D

and D1 contain Pareto optimal values corresponding to the achievement of two different

subgoals by the proponent in a tree with no repeated basic actions. If in order to achieve

the root goal of T the proponent has to achieve at least one of the two subgoals, then

the set of Pareto optimal values of achieving the root goal is computed as D ‘̂D1: this

operation first gathers all the values corresponding to the strategies achieving the root

goal in a single set, and then returns the Pareto frontier of this set. Similarly, if the

proponent had to achieve both of the aforementioned goals, then the Pareto optimal

values of strategies in T would be obtained by computing D b̂D1: here the result is the

Pareto frontier of the set of all possible values corresponding to simultaneous achievement

of the two subgoals.

Given the above construction, the values of Pareto optimal strategies can be obtained

using the attribute domain pP pD1ˆ . . .ˆDmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q. Throughout the rest of

the thesis, we refer to the attribute domains resulting from the above process as Pareto

attribute domains.

Definition 34 (Pareto attribute domain). A Pareto attribute domain is an algebraic

structure of the form pP pD1 ˆ . . . ˆ Dmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q, for some attribute domains

Aαi
“ pDi,‘i,bi,bi,‘i,bi,‘iq induced by semirings, for i P t1, . . . ,mu, and with

the operations ‘̂ and b̂ defined by (18)–(21). We say that the Pareto attribute do-

main pP pD1 ˆ . . . ˆDmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q is induced by the attribute domains Aαi
, for

i P t1, . . . ,mu.

Pareto attribute domains enjoy the following fundamental properties.

Theorem 5. A Pareto attribute domain pP pD1ˆ . . .ˆDmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q induced by

attribute domains Aαi
induced by semirings, for i P t1, . . . ,mu, is an attribute domain (in

the sense of Definition 18), and pP pD1 ˆ . . . ˆDmq, ‘̂, b̂q is a commutative idempotent

semiring.

Furthermore, if the domains Aαi
, i P t1, . . . ,mu, are non-increasing, then the induced

Pareto attribute domain is also non-increasing.

Before presenting its proof, we briefly discuss the immediate consequences of Theo-

rem 5. The first of them follows from Theorem 1: if there are no repeated basic actions

in an attack–defense tree, then the evaluation of a number of attributes having domains

induced by semirings can be performed using a single bottom-up procedure. Second, if

a tree contains repeated basic actions and the Pareto attribute domain is induced by

non-increasing attribute domains, then, by Theorem 2, the repeated bottom-up evalua-

tion given in Algorithm 1 can be applied, and the values of Pareto optimal strategies can

still be obtained without the need of constructing the set semantics of the entire tree.

Third, note that if a Pareto domain is induced by attribute domains whose multiplicative

5.2. Pareto attribute domains 111

operations are idempotent, then the operation b̂ is itself idempotent. Therefore, again

due to Theorem 1, in such a case the evaluation of a Pareto attribute can be performed

using a single bottom-up procedure.

The above discussion is summarized in the following theorem.

Theorem 6. Let T be an attack–defense tree and let

APar “ pP pD1 ˆ . . . ˆ Dmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q be a Pareto attribute domain induced by

the attribute domains Aαi
, for i P t1, . . . ,mu. Then

– if there are no repeated labels in T , then the equality ParBpT, βParq “ ParSpT, βParq

holds for any basic assignment βPar,

– if the operator bi is idempotent, for every i P t1, . . . ,mu, then the equality

ParBpT, βParq “ ParSpT, βParq holds for any basic assignment βPar,

– if Aαi
is a non-increasing attribute domain, for every i P t1, . . . ,mu, then for every

O Ď B
oT and every basic assignment βPar satisfying

βParpbq “ ab̂ for b P O,

βParpbq “ eb̂ for b P BoT zO,

the equality ParRBpT, βPar, Oq “ ParSpT, βParq holds.

5.2.1 Proof of Theorem 5

Our proof of Theorem 5 exploits some elementary properties of the dominance relation

and of the Pareto frontier, stated in Lemma 6–9. Recall that, for every i P t1, . . . ,mu,

pDi,‘i,biq is an idempotent commutative semiring and that the dominance relation ĺ

in D1 ˆ . . .ˆDm is defined w.r.t. the canonical partial orders ĺi.

Lemma 6. Let d,d1 and d2 be elements of D1 ˆ . . .ˆDm. Then,

1. if d1 ĺ d2, then db d1 ĺ db d2,

2. if the relation d bi d
1 ĺi d

1 holds for every i P t1, . . . ,mu and for every d, d1 P Di,

then db d1 ĺ d1.

Proof. For every i P t1, . . . ,mu, pDi,‘i,biq is an idempotent commutative semiring.

Therefore, for d, d1, d2 P Di we have that if d1 ĺi d
2, then

dbi d
2 “ dbi pd

1 ‘i d
2q “ pdbi d

1q ‘i pdbi d
2q,

meaning that dbi d
1 ĺi dbi d

2. Together with definition of the dominance relation, this

implies the first statement.

The second statement follows immediately from the definition of dbd1, defined by (18)

on page 109, and the definition of the dominance relation.

112 CHAPTER 5. Multi-parameter analysis of security

Lemma 7. If A and B are finite subsets of D1 ˆ . . .ˆDm, then

1. maxpAYBq Ď maxpAq YmaxpBq,

2. maxpAbBq Ď maxpAq bmaxpBq.

Proof. For a proof of the first of the two statements, let d P maxpAYBq. Since d is not

dominated by any other element of AYB, it follows that if d P A, then d P maxpAq, and

if d P B, then d P maxpBq. Hence, d P maxpAq YmaxpBq.

Now, let d “ dA b dB P maxpA b Bq for some dA P A and dB P B. Towards a

contradiction, suppose that d R maxpAq b maxpBq. Then, there exist elements d1
A P

maxpAq, d1
B P maxpBq, such that d1

A dominates dA and d1
B dominates dB, with d1

A ‰ dA

or d1
B ‰ dB. Since d R maxpAq bmaxpBq, it follows that d ‰ d1

Abd1
B. Furthermore, by

Lemma 6, it holds that d ĺ d1
A b d1

B. This contradicts the choice of d as a Pareto point

in AbB.

Lemma 8. If A and B are finite subsets of D1 ˆ . . . ˆ Dm, then maxpmaxpAq Y Bq “

maxpAYBq.

Proof. Let d P maxpAYBq. Observe that d P maxpAq YB, by Lemma 7. Furthermore,

since d is not dominated by any of the points in AYB, it is also not dominated by any

of the points in maxpAq YB. This proves that maxpmaxpAq YBq Ě maxpAYBq.

For a proof of the inclusion maxpmaxpAq Y Bq Ď maxpA Y Bq, let d be a Pareto

point in maxpAq YB. Suppose that d is not a Pareto point in AYB. Then there exists

d1 P AY B, d1 ‰ d, such that d ĺ d1. Since d is not dominated by any element of B, it

follows that d1 P A. But then, since ĺ is a transitive relation, every d2 P maxpAq that

dominates d1 dominates also d. This contradicts the choice of d.

Lemma 9. If A and B are finite subsets of D1 ˆ . . . ˆ Dm, then maxpmaxpAq b Bq “

maxpAbBq.

Proof. For a proof of the inclusion maxpmaxpAqbBq Ď maxpAbBq, let d P maxpmaxpAqb

Bq. Towards a contradiction, suppose that d is not a Pareto point in AbB. This implies

that there exist elements dA P A and dB P B such that d ĺ dA b dB and d ‰ dA b dB.

Let d1
A P maxpAq be such that dA ĺ d1

A. Then

d ĺ dA b dB ĺ d1
A b dB,

by Lemma 6. Since d1
A b dB P maxpAq bB, this contradicts the choice of d.

Assume now that d is a Pareto point in A b B. Observe that d P maxpAq b B, by

Lemma 7. Since d is not dominated by any element of A b B, it is in particular not

dominated by any element of maxpAq b B. Therefore, d is a Pareto point in maxpAq b

B.

We are now ready to prove Theorem 5.

5.2. Pareto attribute domains 113

Proof. We begin with proving that pP pD1ˆ. . .ˆDmq, ‘̂, b̂q is a commutative idempotent

semiring. Since a binary associative operation can be modeled with an unranked operator,

this immediately implies that pP pD1ˆ. . .ˆDmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q is an attribute domain.

For A P P pD1 ˆ . . .ˆDmq, we have

A ‘̂A “ maxpAY Aq “ maxpAq “ A,

i.e., the operation ‘̂ is idempotent. It is easy to verify that both ‘̂ and b̂ are com-

mutative and that ab̂ “ tpab1
, . . . , abm

qu. Since abi
“ e‘i

for every i P t1, . . . ,mu,

together with the definitions of canonical partial orders and Definition 30 this implies

that ab̂ is dominated by every other element of D1 ˆ . . . ˆ Dm. Therefore, for any

D P P pD1ˆ . . .ˆDmq, we have that D ‘̂ ab̂ “ maxpDYab̂q “ maxpDq “ D. This proves

that e‘̂ “ ab̂.

The associativity of the two operations follows from Lemma 8 and 9. Namely,

pA ‘̂Bq ‘̂C “ maxpmaxpAYBq Y Cq

Lemma 8
“ maxpAYB Y Cq

Lemma 8
“ maxpAYmaxpB Y Cqq

“ A ‘̂pB ‘̂Cq

and

pA b̂Bq b̂C “ maxpmaxpAbBq b Cq

Lemma 9
“ maxpAbB b Cq

Lemma 9
“ maxpAbmaxpB b Cqq

“ A b̂pB b̂Cq.

We prove that b̂ distributes over ‘̂ in a similar way:

A b̂pB ‘̂Cq “ maxpAbmaxpB Y Cqq

Lemma 9
“ maxpAb pB Y Cqq

“ maxpAbB Y Ab Cq

Lemma 8
“ maxpmaxpAbBq YmaxpAb Cqq

“ pA b̂Bq ‘̂pA b̂Cq.

The above reasoning proves that pP pD1 ˆ . . .ˆDmq, ‘̂, b̂q is a commutative idempotent

semiring and that pP pD1 ˆ . . .ˆDmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q is an attribute domain.

Assume now that the domains pDi,‘i,bi,bi,‘i,bi,‘iq are non-increasing,

for i P t1, . . . ,mu. To prove the second statement of the theorem, it remains to prove

that for every A,B P P pD1 ˆ . . . ˆ Dmq the equality A ‘̂pA b̂Bq “ A holds. Let

A,B P P pD1ˆ . . .ˆDmq. Observe that, since the domains pDi,‘i,bi,bi,‘i,bi,‘iq are

114 CHAPTER 5. Multi-parameter analysis of security

non-increasing, the second item of Lemma 6 implies that maxpAY pAb Bqq “ maxpAq.

Furthermore, since A is a Pareto optimal set, the equality maxpAq “ A holds. Thus,

A ‘̂pA b̂Bq “ maxpAYmaxpAbBqq

Lemma 8
“ maxpAY pAbBqq “ maxpAq “ A.

The proof of Theorem 5 is complete.

5.2.2 Complexity issues

Theorems 1–5, summarized in Theorem 6, provide a general framework for a convenient

multi-objective analysis of scenarios modeled with attack–defense trees. Before illustrat-

ing the applicability of the framework, we briefly discuss its complexity.

Recall that even in the simplest case of attack trees with a single minimal cost at-

tribute domain, the problem of determining a cheapest strategy is known to be NP-

hard [BLWC17], and that this difficulty originates from the presence of repeated basic

actions of the proponent (as indicated by Theorems 1 and 2). One could therefore hope

for the multi-objective optimization to also be easier in trees with no repeated basic

actions. Unfortunately, this is not necessarily the case, due to the number of possible

Pareto optimal strategies. The following construction illustrates this issue.

Example 47. Let m ě 2 be an even integer and let

T “ ANDppORppb1, b2q, ORppb3, b4q, . . . , ORppbm´1, bmqq. Consider a Pareto domain induced

by m minimal cost for the proponent attribute domains and a basic assignment that as-

signs to the action bi a vector assuming 1 on the ith coordinate and 0 on each of the

remaining m´ 1 coordinates. Then, every pair of the form ptbi1
, bi2

, . . . , bim{2
u, ∅q, where

ij P t2j ´ 1, 2ju, is a Pareto optimal strategy in T , and the value corresponding to such

a strategy is unique. Clearly, the number of such strategies is 2m{2.

If the number of domains inducing a Pareto domain is small, then the time and space

complexities of the methods for evaluation of attributes depend mostly on two factors:

the size of the set semantics and the number k of repeated basic actions in the considered

tree. In the case when k is big and the number of strategies is small, it is better to use

the computation on the set semantics. This is obviously due to the fact that the time

complexity of Algorithm 1 is exponential in k. If k is small and the number of strategies

in the tree is big, then Algorithm 1 will perform better. This intuition is supported

by the experimental results presented in Section 5.3.2. These results provide also some

indications towards making the meaning of the words “big” and “small” more precise for

particular use cases.

5.3. Empirical validation 115

5.3 Empirical validation

In Section 5.3.1, we validate the practicality of Pareto attribute domains with a small

case study. Experimental results illustrating the approach’s scalability and the differences

between the two methods for attributes evaluation are presented in Section 5.3.2.

5.3.1 Case study

We illustrate the applicability of the developed framework with a “what-if” analysis of

the scenario modeled with the attack–defense tree T from Figure 2. For this purpose,

we use the Pareto attribute domain induced by the domains for minimal time for the

proponent, minimal (technical) skill level of the proponent and maximal probability for

the proponent attributes (given in Table 1)3. In other words, we use the domain

`
P
`
pNY t`8uq2 ˆ r0, 1s

˘
, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂

˘
,

where b̂ and ‘̂ are given by equations (19)–(21) for b defined by

db d1 :“ pd1 ` d
1
1,maxpd2, d

1
2q, d3 ¨ d

1
3q

for d,d1 P pNY t`8uq2 ˆ r0, 1s
˘
.

Table 7: Assignment of time, skill level, and probability to the basic actions of the pro-

ponent.

Basic action b βtimepbq βskillpbq βprobpbq

cam 60 2 0.8

eav 360 0 0.5

force 10 0 0.3

card 120 0 0.2

cash 5 1 0.95

phish 100 4 0.6

pwd 300 0 2´48

uname 20 0 2´20

log&trans 5 1 0.95

phone 20 0 0.2

We denote the above domain with APar and let the values assigned to the basic actions

of the proponent to be as specified in Table 7, e.g., the value assigned to the action cam is

tp60, 2, 0.8qu. We consider three scenarios. In the first of them, scenario S1, the opponent

3A more realistic case study, involving a Pareto attribute domain induced by a greater number of

domains, is conducted in Chapter 7

116 CHAPTER 5. Multi-parameter analysis of security

executes none of their actions. In scenario S2, the only action executed by the opponent

is sms. Finally, the opponent executes all of their actions in scenario S3. For each of the

scenarios the basic assignment from Table 7 is extended according to Remark 1 with the

values presented in Table 8. For instance, the value assigned to each of the opponent’s

actions in scenario S1 is tp0, 0, 1qu.

Table 8: Assignment of time, skill level and probability to the basic actions of the oppo-

nent in scenarios S1, S2, and S3.

Basic action S1 S2 S3

cover p0, 0, 1q p`8,`8, 0q p`8,`8, 0q

spwd p`8,`8, 0q p0, 0, 1q p0, 0, 1q

sms p0, 0, 1q p0, 0, 1q p`8,`8, 0q

Table 9: The Pareto optimal strategies in scenarios S1, S2, and S3.

Scenario Pareto optimal values Corresponding strategies

S1

p135, 1, 0.057q ptforce, card, cashu, ∅q

p485, 1, 0.095q pteav, card, cashu, tcoveruq

p105, 4, 0.57q ptphish, log&transu, tsmsuq

S2

p135, 1, 0.057q ptforce, card, cashu, ∅q

p485, 1, 0.095qq pteav, card, cashu, tcoveruq

p125, 4, 0.114q ptphish, phone, log&transu, tsmsuq

S3

p135, 1, 0.057q ptforce, card, cashu, ∅q

p545, 2, 0.076q ptcam, eav, card, cashu, ∅q

p125, 4, 0.114q ptphish, phone, log&transu, ∅q

Using the set semantics of the tree from Figure 2 (given in Example 23 on page 42), it

is straightforward to compute the values corresponding to the execution of the strategies

in the particular scenarios (see Table 10), as well as the Pareto optimal values. We

illustrate the computation in a bit more detail for the case of scenario S1, denoting with

βPar the basic assignment for this scenario. Following Definition 24, we have

5.3. Empirical validation 117

ParSpT, βParq “p‘pP,OqPSpT q

`pbbPP YOβParpbq
˘

“max
`
βParpforceq b̂ βParpcardq b̂ βParpcashq Y . . .

Y βParpunameq b̂ βParppwdq b̂ βParpphoneq

b̂ βParplog&transq b̂ βParpspwdq
˘

“max
`
tp135, 1, 0.057qu Y . . .Y tp345, 1, 0.12 ¨ 2´68qu

˘

“max
`
tp135, 1, 0.057q, . . . , p345, 1, 0.12 ¨ 2´68qu

˘

“tp135, 1, 0.057q, p485, 1, 0.095q, p105, 4, 0.57qu.

The strategies corresponding to the Pareto optimal values obtained above are pre-

sented in Table 9, along the results of the evaluation of the Pareto domain on the set

semantics in the remaining scenarios. One can draw several corollaries from Table 9.

As two of the optimal values and the optimal strategies obtained for scenarios S1 and

S2 are the same, one could conclude that securing transfer dispositions with two-factor

authentication using mobile phone text messages (sms) does not increase significantly

one’s resistance against stealing from the account in the scenario modeled by the tree

from Figure 2. Furthermore, the strategy ptforce, card, cashu, ∅q consisting of forcing

the victim to reveal their PIN, stealing the payment card and withdrawing cash from

an ATM, implementation of which requires relatively low amount of time and very low

technical skill level, is an optimal strategy in all of the three scenarios. Knowing the

values corresponding to strategies that achieve the root goal in particular scenarios, as

well as the capabilities of the attacker and constraints on available resources, might help

a security expert in making an informed decision on which security measures should be

implemented.

5.3.2 Performance tests

To verify that the quantitative analysis of attack–defense trees using Pareto attribute

domains is applicable for trees describing even more complex scenarios than the one from

Figure 2, we have tested our implementation on a number of automatically generated

trees. Full description of the experimental setup, as well as all the sources necessary to

reproduce the results are available at https://github.com/wwidel/pareto-tests. The

main goal of our experiment was to compare how the two methods perform, depending

on the characteristics of the analyzed trees. An excerpt from the obtained results is

presented in Table 11.

For a tree T with n nodes and k repeated basic actions of the proponent, two Pareto

domains were considered. Each of them is induced by m domains for minimal cost for the

proponent, one domain for minimal skill of the proponent, and one domain for minimal

time for the proponent. Basic assignments β were constructed under the assumption

that the opponent performs all of their actions. Values assigned to the basic actions

118 CHAPTER 5. Multi-parameter analysis of security

of the proponent were generated randomly. For the computation of Pareto frontiers,

the naive method, where each element of a set is compared with the other elements,

coordinate by coordinate, was used. We have measured the time of the computation of

the Pareto optimal values using the evaluation on the set semantics ParSpT, βq (which

includes the time needed for the construction of the set semantics itself) and using the

repeated bottom-up evaluation (Algorithm 1) applied to Pareto domains. Each time

value presented in Table 11 is an average over twenty measurements.

Table 11 is partitioned into three parts. For the trees from the first part, the perfor-

mance of the two methods is comparable. For the trees presented in the second part, the

evaluation on the set semantics outperforms the repeated bottom-up evaluation, while

the opposite is true for the third part of the table.

We would like to point out the following facts.

1. The attack trees from the second part of Table 11 have small set semantics, while

having a significant number of repeated basic actions.

2. The trees tree10 and tree13 have large set semantics, while having a very low

number of repeated basic actions.

3. The running times for trees tree12 and tree30 differ significantly, while the two trees

have the same number of nodes and repeated basic actions, and small set seman-

tics. However, there are more Pareto optimal values under the basic assignments

generated for tree30. This illustrates the impact of the actual values assigned to the

basic actions, which translates into different numbers of Pareto optimal values, on

the running time.

5.4 Conclusion and future work

The main objective of the work presented in this chapter was to develop an efficient

method for multi-parameter optimization of security based on attack–defense trees. The

proposed Pareto attribute domains are suitable for this purpose, and can be used with

attack–defense trees containing repeated basic actions. As discussed already in Sec-

tion 3.2.5, Pareto attribute domains are a viable alternative to many of the existing

methods developed for tackling the same problem. Our construction shows that the multi-

parameter evaluation can be addressed with techniques existing for the single-parameter

evaluation. Additionally, Theorem 5 constitutes a general algebraic result that might be

of independent interest on its own.

We focused on optimization from the point of view of the proponent only. However,

the optimization from the point of view of the opponent, or both actors at the same

time is also worth investigating. As stated in Remark 1, the basic assignments that we

consider for the opponent are limited to express whether actions are executed or not,

5.4. Conclusion and future work 119

without taking their actual values, e.g., cost, probability, etc. into account. Should such

values be considered, interesting questions arise. For instance, given the assignment of a

number of attributes to the basic actions of the proponent, as well as the cost of the basic

actions of the opponent, which countermeasures should the opponent (having a fixed

budget) implement to make the achievement of the root goal as “difficult” as possible, in

the sense of Pareto optimality? And if the actions of the opponent are decorated with

several attributes, how to determine a Pareto optimal solution to the above problem?

The Pareto domains defined in this chapter are intentionally crafted in a way ensuring

that they behave well when induced by non-increasing attribute domains. Nevertheless,

other constructions are possible. For instance, by replacing the tuple pP pD1 ˆ . . . ˆ

Dmq, ‘̂, b̂, b̂, ‘̂, b̂, ‘̂q, in Definition 34 with the tuple pP pD1ˆ. . .ˆDmq, b̂, b̂, b̂, b̂, b̂, b̂q,

one obtains a domain similar in spirit to the ones considered in [AN15]. While the former

is suitable for attributes whose evaluation on the set semantics does not depend on the

non-minimal strategies, the latter could be used when every set of basic actions of the

actors is considered to be a possible realization of the security scenario modeled with a

tree.

12
0

C
H

A
P

T
E

R
5
.

M
u
lt

i-
p
a
ra

m
et

er
a
n
a
ly

si
s

o
f

se
cu

ri
ty

Table 10: Values of the strategies in scenarios S1, S2, and S3.

Strategy S1 S2 S3

ptforce, card, cashu, ∅q p135, 1, 0.057q p135, 1, 0.057q p135, 1, 0.057q

ptcam, eav, card, cashu, ∅q p545, 2, 0.076q p545, 2, 0.076q p545, 2, 0.076q

pteav, card, cashu, tcoveruq p485, 1, 0.095q p485, 1, 0.095q p`8,`8, 0q

ptphish, log&transu, tsmsuq p105, 4, 0.57q p`8,`8, 0q p`8,`8, 0q

ptphish, uname, log&transu, tsmsuq p125, 4, 0.57 ¨ 2´20q p`8,`8, 0q p`8,`8, 0q

ptphish, pwd, log&transu, tspwd, smsuq p405, 4, 0.57 ¨ 2´48qq p`8,`8, 0q p`8,`8, 0q

ptuname, pwd, log&transu, tspwd, smsuq p325, 1, 0.95 ¨ 2´68q p`8,`8, 0q p`8,`8, 0q

ptphish, phone, log&transu, ∅q p125, 4, 0.114q p125, 4, 0.114q p125, 4, 0.114q

ptphish, uname, phone, log&transu, ∅q p145, 4, 0.114 ¨ 2´20qq p145, 4, 114 ¨ 2´20q p145, 4, 114 ¨ 2´20q

ptphish, pwd, phone, log&transu, tspwduq p425, 4, 0.114 ¨ 2´48q p425, 4, 0.114 ¨ 2´48q p`8,`8, 0q

ptuname, pwd, phone, log&transu, tspwduq p345, 1, 0.12 ¨ 2´68q p345, 1, 0.12 ¨ 2´68q p`8,`8, 0q

5.4. Conclusion and future work 121

Table 11: Running times of the methods for some trees with n nodes and k repeated

basic actions of the proponent.

Parameters Time in sec

Name

of file

stor-

ing

T

n k |SpT q|

|SpT q|

bound

of

Propo-

sition 4

m

Number

of

Pareto

optimal

values

ParetoSpT, βq ParetoRBpT, β,B
oT q

tree04 31 7 352 1024
1 3 0.02 0.02

5 20 0.11 0.05

tree08 37 9 928 4096
1 2 0.07 0.09

5 30 0.69 0.23

tree12 43 11 2436 16384
1 1 0.27 0.4

5 72 4.97 3.2

tree20 36 4 832 1024
1 2 0.04 0.01

5 12 0.07 0.01

tree29 41 10 640 1280
1 2 0.03 0.25

5 304 13.32 65.05

tree30 43 11 704 1408
1 3 0.03 0.67

5 184 6.52 67.51

tree31 45 12 768 1536
1 2 0.04 1.12

5 128 2.92 53.58

tree32 47 13 832 1664
1 4 0.05 3.47

5 378 27.88 827.92

tree03 31 4 640 1024
1 2 0.04 ă 0.01

5 131 2.77 0.14

tree10 43 2 14336 16384
1 3 9.68 ă 0.01

5 658 2178.31 1.7

tree13 46 0 32768 32768
1 5 81.93 ă 0.01

5 2151 ą 3600 5.56

tree24 50 8 9536 16384
1 2 2.9 0.07

5 15 3.36 0.1

122 CHAPTER 5. Multi-parameter analysis of security

Chapter 6

Selection of countermeasures in

attack–defense scenarios

As highlighted in Section 3.3, a somewhat generic approach to the problem of selection

of countermeasures in attack–defense scenarios is, not surprisingly, mathematical pro-

gramming, and in particular linear programming and integer programming [Chv83]. The

standard input required for formulating security related programming problems includes

a set of attacks (or threats; these are sets or sequences of vulnerabilities or attack steps),

together with a set of mitigations (or countermeasures) and a description of relations

between the attacks and the mitigations, as in, e.g., [RDR12, Saw13, ZALT19]. Existing

methods for extracting such information from attack–defense trees have limited appli-

cations, as they have been developed for specific attack–defense trees of very limited

expressive power (see Section 3.3 for details).

The work described in this chapter is aimed at achieving two goals. The first of them

is the extraction of the information described in the previous paragraph from attack–

defense trees, under no structural restrictions being imposed on trees. The second goal

is to exploit the specific form of the extracted information for formulating integer linear

programming problems interesting from the security point of view.

In Chapter 4, to solve the problem of evaluation of attributes on attack–defense

trees containing clones, we proceeded by studying properties of an existing semantics

for attack–defense trees, and then exploited them to develop Algorithms 1 and 2. Here,

we take a different approach. We begin with formalizing our intuition regarding the

knowledge that we would like to extract from trees. This results in a novel semantics for

attack–defense trees, defined in Section 6.2, that we call defense semantics. Only then

we proceed with the (non-trivial) task of developing a method for the construction of

this semantics, in Section 6.2.1. Section 6.3 is devoted to a number of security-related

optimization problems, expressed in terms of mathematical programming and relying on

the defense semantics. We conclude in Section 6.4.

123

124 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

6.1 Preliminaries

The framework developed in this chapter relies on some structural elements of attack–

defense trees and on properties of the satisfiability attribute domain. We introduce them

in this section.

Due to the different shapes and colors used for representing nodes of the two actors,

the first thing noticed when one looks at a graphically depicted attack–defense tree are

its structural components, namely, the maximal rooted subdags whose all nodes belong

to one of the actors. We call them homogeneous subdags.

Definition 35 (Homogeneous subdag). Let T “ pV,A,L, λ, actor, refq be an attack–

defense tree and let H “ pVH , AHq be a rooted DAG such that

– VH Ď V , AH “ AX pVH ˆ VHq,

– at least one of the parents of rootpHq in T belongs to the actor other than actorprootpHqq

or else rootpHq “ rootpT q,

– childrenT pvq Ď VH , for every v P VH ,

– v̄ R VH , for every v P VH .

Moreover, let λH , actorH , and refH be restrictions of λ, actor, and ref, respectively, to

VH . If the actor assigned to all the nodes of VH is pT (resp. oT), then the attack–defense

tree pVH , AH ,L, λH , actorH , refHq is called a homogeneous subdag of the proponent (resp.

opponent) in T . If the only homogeneous subdag of T is T itself, then T is called a

homogeneous attack–defense tree1.

Example 48. In the tree T from Figure 2, the attacker is the proponent and the defender

is the opponent. Each of the nodes of the defender constitutes a homogeneous subdag of

the defender in T . Each of the nodes labeled cam and phone is a homogeneous subdag of

the attacker in T , and the last homogeneous subdag of the attacker in T is the subdag of

T induced by the remaining nodes of the attacker.

The next example illustrates the fact that every node can belong to more than one

homogeneous subdag of a tree.

Example 49. There are two homogeneous subdags of the defender in the tree from Fig-

ure 5. These are ANDopd1, d2, d3q and ORopd3, d4q. The node labeled d3 belongs to both of

them.

Recall that the for a tree T and a set B Ď BT the value of achievedTprootpT q, Bq is

obtained by evaluating a Boolean function that is positive in the variables corresponding

to the basic actions of the proponent, and negative in the remaining variables (cf. Re-

mark 2 and 3). This fact has multiple consequences, some of them intuitively obvious, of

which the following will be of use for us.

1In such a case, T is in fact an attack tree.

6.1. Preliminaries 125

Corollary 3. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree and let B Ď B
sT ,

with s P tp, ou, be a set of actions of one of the actors. If the equality achievedTpv,Bq “ 0

holds for a node v P V , then achievedTpv,Bztbuq “ 0, for every b P BT .

Proof. For the proof, we assume that b P B, since otherwise the statement is obviously

true.

Suppose first that actorpvq “ sT . Then, the value of achievedTpv, ¨q is computed

by evaluating a Boolean function that is positive in the variables corresponding to the

basic actions of the actor sT . Together with the equality achievedTpv,Bq “ 0 and the

fact that the value of achievedTpv,Bq is computed by substituting the 0 assigned to the

variable corresponding to the basic action b in achievedTpv,Bztbuq with 1, this implies

that achievedTpv,Bztbuq “ 0.

Suppose now that actorpvq “ s̄T . Observe that Definition 15 and 19 together with the

definition of the satisfiability attribute domain imply that achievedTpv, ∅q “ 0. Together

with the fact the the function achievedTpv, ¨q is negative in the variables corresponding

to the actions belonging to the set B, this implies that achievedTpv,Bztbuq “ 0.

Corollary 4. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, B Ď BT be a set

of basic actions of the actors, and v P V be a node with actorpvq “ sT , for s P tp, ou.

Then,

– if achievedTpv,Bq “ 0, then achievedTpv,B YB
1q “ 0, for every B1 Ď B

s̄T , and

– if achievedTpv,Bq “ 1, then achievedTpv,B YB
1q “ 1, for every B1 Ď B

sT .

Of special usefulness for us will be the contraposition of the first of the two statements

given in Corollary 4.

Corollary 5. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, let v P V be a node

satisfying actorpvq “ pT and let P Ď B
pT be a set of basic actions of the proponent. If

there is a set O Ď B
oT of basic actions of the opponent such that achievedTpv, P YOq “ 1,

then achievedTpv, P q “ 1.

Corollary 4 implies also the following.

Corollary 6. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, and let P Ď B
pT

and O Ď B
oT be sets of basic actions of the actors. If the equalities achievedTpv, P q “ 0

and achievedTpv,Oq “ 0 hold for a node v P V , then achievedTpv, P YOq “ 0.

We rely on Corollary 6 to prove the intuitively obvious statement: if a root goal of an

attack–defense tree is achieved by a set of basic actions and an action from this set does

not contribute to the goal being achieved, then the goal is still achieved after the action

is removed from the set.

Lemma 10. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, and let P Ď B
pT

and O Ď B
oT be sets of basic actions of the actors. If v P V is a node such that

126 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

– refpvq “ N,

– achievedTprootpT q, P YOq “ 1, and

– on every path from v to rootpT q there is a node v1 satisfying achievedTpv
1, P q “ 0

and achievedTpv
1, Oq “ 0,

then achievedTprootpT q, P YOztλpvquq “ 1.

Proof. Let v1 be one of the nodes satisfying the last condition of the lemma. Corollary 6

implies that achievedTpv
1, PYOq “ 0. Therefore, when the value of achievedTprootpT q, PY

Oq is computed using the bottom-up procedure, the value propagated up to the root from

v1 is zero. Furthermore, it follows from Corollary 3 that achievedTpv
1, Oztλpvquq “ 0 and

achievedTpv
1, P ztλpvquq “ 0. Thus, by Corollary 6, achievedTpv

1, P YOztλpvquq “ 0, i.e.,

the value propagated from v1 remains unchanged after the removal of the basic action

λpvq from P YO. Hence,

achievedTprootpT q, P YOztλpvquq “ achievedTprootpT q, P YOq “ 1.

6.2 Defense semantics

Our ultimate goal is to extract possible behaviors of rational actors from an attack–

defense tree modeling a security scenario, and to exploit this information for optimal

selection of countermeasures to be implemented by the opponent. Similarly as in the

previous chapters, we will express actors’ behavior in terms of sets of their basic actions.

While some works consider every subset of basic actions of an actor to model a possible

realization of the scenario (e.g., [AN15] or [GHL`16]) such an approach is not only

computationally ineffective, but also unnecessary, in the sense that among all the subsets

there are inefficient ones that do not correspond to a reasonable behavior. Note that the

second condition of Definition 35 implies that the goal of the root node of a homogeneous

subdag either counters some goal of the other actor, or else achieving it means success for

the proponent. Therefore, in order to succeed, the actors need to achieve the root goals of

(some of) their corresponding homogeneous subdags; if a set of actions achieves none of

the root goals of the homogeneous subdags, its execution has no impact on the realization

of the modeled scenario. Therefore, as the building blocks for our formalization of the

behavior of rational actors we use minimal sets of actions that achieve root goals of

homogeneous subdags. We call them proponent’s and opponent’s vectors.

Definition 36 (Proponent’s/opponent’s vector). Let T be an attack–defense tree and let

H be a homogenous subdag of the proponent (opponent) in T . A minimal, w.r.t. the

inclusion, set of basic actions of the proponent (resp. opponent) achieving the root goal

of H is called a proponent’s vector (resp. an opponent’s vector) in H.

6.2. Defense semantics 127

Example 50. Let T 1 be the subdag of the tree T from Figure 2 induced by the nodes bearing

labels from the set BpT ztcam, phoneu. The proponent’s vectors in this homogeneous subdag

of the proponent in T are

tforce, card, cashu,

teav, card, cashu,

tphish, log&transu,

tuname, pwd, log&transu.

We assume that in order to counter the proponent in the best way possible, the

opponent might be interested in executing a number of opponent’s vectors in a single

homogeneous subdag of an attack–defense tree. On the other hand, given a specific

behavior of the opponent, we assume that a rational proponent executes only those actions

that are necessary for achieving the root goal. Thus, we try to capture the behavior of

rational actors with the following notion of strategies of the actors.

Definition 37 (Proponent’s/opponent’s strategy). Let T be an attack–defense tree.

– A set O Ď B
oT is called an opponent’s strategy in T if it is a union of any number

of opponent’s vectors from some of the homogeneous subdags of T . Note that the

empty set is a possible opponent’s strategy.

– A set P Ď B
pT is called a proponent’s strategy in T if there exists an opponent’s

strategy O in T for which P is a minimal set satisfying achievedTprootpT q, PYOq “

1. Such a set O is called a witness for the proponent’s strategy P .

Note that every proponent’s strategy can be witnessed by many opponent’s strategies,

and that each of the opponent’s strategies can be a witness for a number of proponent’s

strategies.

Example 51. Consider again the tree T from Figure 2. The opponent’s strategies in T

are the elements of the set 2B
oT , i.e., the sets

∅,

tcoveru, tspwdu, tsmsu,

tcover, spwdu, tcover, smsu, tsms, spwdu, and

tcover, spwd, smsu.

The proponent’s vectors listed in Example 50 are the proponent’s strategies witnessed

by the empty opponent’s strategy ∅. Intuitively, this means that should the defender per-

form none of their actions in the scenario modeled with T , the reasonable attacker would

achieve the root goal by executing any of the four vectors. The remaining proponent’s

128 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

strategies in T and their (in this case, unique) witnesses are

tcam, eav, card, cashu, witnessed by tcoveru,

tphish, phone, log&transu, witnessed by tsmsu,

tuname, pwd, phone, log&transu, witnessed by tsmsu.

Let P be a proponent’s strategy and O be an opponent’s strategy in T . We say that O

counters P , if achievedTprootpT q, P YOq “ 0; otherwise P counters O. With the actors’

strategies defined by Definition 37, our objective of determining possible behavior of a

rational proponent and ways of countering it is accomplished with the notion of defense

semantics2.

Definition 38 (Defense semantics). The defense semantics of an attack–defense tree T ,

denoted DpT q, is the set of all pairs pP,Oq, where P is a proponent’s strategy in T and

O is a minimal (w.r.t. the inclusion) opponent’s strategy in T that counters P .

We would like to stress that the proponent’s strategies in an attack–defense tree that

cannot be countered do not appear in its defense semantics. The proponent’s strategies

in T that do appear in the defense semantics of T , i.e., those that can be countered by an

opponent’s strategy in T , are called counterable. The defense semantics of our running

attack–defense tree is given in the following example.

Example 52. Recall the strategies of the actors in the tree T from Figure 2 given in

Example 51. The defense semantics of T is

DpT q “ tpteav, card, cashu, tcoveruq,

ptphish, log&transu, tsmsuq,

ptuname, pwd, log&transu, tspwduq

ptuname, pwd, log&transu, tsmsuq

ptuname, pwd, phone, log&transu, tspwduqu.

The strategies that are not counterable in T are

tforce, card, cashu,

teav, cam, card, cashu, and

tphish, phone, log&transu.

While the concept of the defense semantics is intuitively simple and self-explanatory,

constructing this semantics is a complex task. We proceed with describing our method

for its construction.
2We decided to keep the name under which this semantics was initially introduced in [KW17], as the

name seems reasonable no matter which of the actors is the opponent. The semantics aims at helping

the opponent to defend against the proponent, regardless of whether the proponent is the attacker or

the defender.

6.2. Defense semantics 129

6.2.1 Construction of the defense semantics

To construct the defense semantics of an attack–defense tree T , one could consider the

following naive approach, which we are going to build upon.

1. Create all the opponent’s strategies in T .

2. For every opponent’s strategy, determine the proponent’s strategies witnessed by

it.

3. For every proponent’s strategy, identify the minimal opponent’s strategies counter-

ing it.

The first of the three steps is already very expensive, since every subset of basic actions

of the opponent might constitute an opponent’s strategy, as illustrated in Example 51.

We reduce this step’s complexity by creating (if possible) only a subset of the set of all

possible opponent’s strategies in T , while ensuring that every proponent’s strategy is

witnessed by at least one element of this subset. Then, we proceed with the remaining

two steps. The construction of the defense semantics is summarized in Algorithm 3. The

rest of this section is devoted to proving its correctness and completeness.

Algorithm 3 Defense semantics for attack–defense trees

Input: Attack–defense tree T

Output: Defense semantics DpT q of T

1: O Ð SuffWitBpT, β, rootpT qq Y t∅u

2: P Ð ∅

3: for O P O do

4: P Ð P Y tP : P is a minimal set in CounterOppBpT, β
O, rootpT qqu

5: end for

6: DpT q Ð ∅

7: for P P P do

8: DpT q Ð DpT q Y tpP,Oq : O is a minimal set in CounterProBpT, β
P , rootpT qqu

9: end for

10: return DpT q

We start by introducing four operations on sets of sets that we use to define attribute

130 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

domains employed by Algorithm 3. For n sets A1, . . . ,An of sets, let

nò
i“1

Ai :“ t
nď

i“1

Ai | Ai P Aiu, (22)

nð
i“1

Ai :“
ď

IĎt1,...,nu

ò
iPI

Ai, (23)

A1 m A2 :“

$
&
%
t∅u, if A1 “ t∅u or A2 “ t∅u,

A1 YA2, otherwise,
(24)

A1 l A2 :“ A1 Y pA1 b A2q. (25)

To construct a set of witnesses sufficient for determining all proponent’s strategies,

we use the sufficient witnesses attribute, abbreviated as SuffWit, formalized with the

attribute domain ASuffWit :“ p22B ,‘,‘,‘,b,‘,lq. In Proposition 6, we give an elemen-

tary property of the bottom-up evaluation of the SuffWit attribute under a specific basic

assignment.

Proposition 6. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree and let β be the

basic assignment for the SuffWit attribute defined as

βpbq :“

$
&
%

∅, if b P BpT ,

ttbuu, otherwise.
(26)

If O P SuffWitBpT, βq, then O is an opponent’s strategy in T .

Proof. We shall prove that, for every v P V , every element of O P SuffWitBpT, β, vq is a

union of opponent’s vectors from some of the homogeneous subdags of T pvq. The validity

of this statement for v “ rootpT q completes the proof of Proposition 6.

The proof is by induction on the structure of T pvq. For the base case, let v be a

non-refined node such that v̄ does not exist. Then, the statement is obviously true by

the definition of the basic assignment β.

If v is refined or v̄ exists, then, since every element of SuffWitBpT, β, vq is a union of

some of the sets belonging to

ď

v1PchildrenT pvqYtv̄u

SuffWitBpT, β, v
1q,

by formulæ (22), (23) and (25), the statement follows from the induction hypothesis.

The above proof provides some insight into our motivation for the choice of most of

the operations of the SuffWit attribute domain: they are defined in a way that ensures

that the result of the bottom-up evaluation under the basic assignment given by (26)

consists of opponent’s strategies. There is an additional motivation behind the choice

of the l operation that we will comment on later in this chapter. Nevertheless, being

6.2. Defense semantics 131

b1

∅

ttd1u, td1, d2uu “ ∅ ‘ ttd1u, td1, d2uu

d1

ttd1uu

ttd1u, td1, d2uu “ ttd1uul ttd2uu

b2

∅

ttd2uu “ ∅ ‘ ttd2uu

d2

ttd2uu

Figure 18: Bottom-up evaluation of the SuffWit attribute on the attack–defense tree

Cppb1, C
opd1, C

ppb2, d2qqq. Values assigned to the basic actions are given in black, values

computed at the intermediate nodes — in dark blue.

aware that the definition of the attribute domain ASuffWit is somewhat non-intuitive, we

illustrate its usage with three examples. Throughout the rest of the chapter, whenever we

say “bottom-up evaluation of the SuffWit attribute”, we mean its bottom-up evaluation

under the basic assignment given by (26).

Example 53. Consider the tree T “ Cppb1, C
opd1, C

ppb2, d2qqq. The bottom-up evaluation

of the SuffWit attribute in T is depicted in Figure 18. It is easy to verify that the oppo-

nent’s strategy td1u is the unique minimal witness for the proponent’s strategy tb1, b2u.

The set td1, d2u is an opponent’s strategy in T , but it is not a witness for any of the

proponent’s strategies.

Should a node of the attacker labeled b3 be attached as a countermeasure to the node

labeled d2, the set obtained with the bottom-up evaluation of SuffWit in the resulting tree

would be the same as in T . In this case, however, the opponent’s strategy td1, d2u would

be the unique minimal witness for the proponent’s strategy tb1, b2, b3u.

There are attack–defense trees for which the result of the bottom-up evaluation of the

SuffWit attribute consists of exactly the non-empty witnesses necessary for determining

132 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

all proponent’s strategies. As illustrated by Example 53, this is the case, for instance, for

an attack–defense tree being a path of alternating non-refined nodes of the proponent and

the opponent, with the first node on the path belonging to the proponent. We discuss

these trees further in the next example.

Example 54. Let T “ Cppb1, C
opd1, C

ppb2, C
opd2, . . . C

opdn, bn`1q . . .qqqq be an attack–

defense tree being a path of alternating non-refined nodes of the proponent and the oppo-

nent, with the first node on the path belonging to the proponent, and with n nodes of the

opponent. The total number of non-empty opponent’s strategies in T is 2n ´ 1, whereas

there are only n ´ 1 strategies in the result of the bottom-up evaluation of SuffWit on

T . Furthermore, each of them is a unique witness for one of the proponent’s strategies:

the opponent’s strategy td1, . . . , diu, with i P t1, . . . , nu, is the unique witness for the

proponent’s strategy tb1, . . . , bi`1u.

Observe the following: if O is an opponent’s strategy belonging to the result of the

bottom-up evaluation of SuffWit on T and di P O, with i P t1, . . . , nu, then dj P O

for every j P t1, . . . , i ´ 1u. Informally speaking, there are no “gaps” in the obtained

opponent’s strategies. This is intentional: should the above condition be not satisfied by

an opponent’s strategy O, say, O “ td1, . . . , di, di`ku, with i, i`k P t1, . . . , nu, k ą 1, then

O is a witness for the same proponent’s strategies as td1, . . . , diu. This example motivates

our choice of the operation l as the one to be performed in the bottom-up procedure when

traversing countermeasures against goals of the opponent.

Example 53 illustrates also the fact that, in general, there might be opponent’s strate-

gies in the result of the bottom-up evaluation of the SuffWit attribute that do not witness

any proponent’s strategy, or that witness the same proponent’s strategies as other ele-

ments of the set. This is also the case in our running example.

Example 55. Let T be an attack–defense tree from Figure 2. Recall that the operation

performed at the nodes of the proponent during the bottom-up evaluation of the SuffWit

attribute is ‘, defined by (23), and the one performed when traversing countermeasures

against goals of the opponent is l, defined by (25). Observe that for A being a set of sets

the equalities

A ‘ ∅ “ A,

A b ∅ “ ∅ and

A l ∅ “ A

hold. Recalling the basic assignment given by (26), it is thus easy to see that the results

of the bottom-up evaluation of the SuffWit attribute at the nodes labeled via ATM, via

online banking and steal from account are ttcamuu, ttspwdu, tsmsu, tspwd, smsuu and

2B
oT z∅, respectively.

In Proposition 7, we shall prove that the result of the bottom-up evaluation of the

SuffWit attribute on T contains at least one witness for each of the proponent’s strategies

6.2. Defense semantics 133

in T . Our proof of Proposition 7 relies on the following property of the attribute domain

ASuffWit.

Lemma 11. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, let v P V and let

β be the basic assignment of the SuffWit attribute defined by (26). Let T 1 “ pV 1, A1q be

a rooted subdag of T such that

– rootpT 1q “ v,

– if v1 P V 1 and refpv1q “ AND, then childrenT pv
1q Ď V 1,

– if v1 P V 1 and refpv1q “ OR, then the intersection childrenT pv
1q X V 1 is not empty,

– A1 “ AX pV 1 ˆ V 1q.

Let

B
oT

T 1 :“ tλpv1q : v1 P V 1, actorpv1q “ oT , refpv1q “ Nu (27)

be the set of all basic actions of the opponent in T that appear in T 1. If the set B
oT

T 1 is

non-empty, then it belongs to SuffWitBpT, β, vq.

Proof. The proof is by induction on the structure of T 1. We consider three cases.

Case 1. The node v is not refined and v̄ R V 1.

Since the set B
oT

T 1 is not empty, it follows that actorpvq “ oT , B
oT

T 1 “ tλpvqu, and

SuffWitBpT, β, vq “ ttλpvquu. Thus, the claim holds.

Case 2. The node v is not refined and v̄ P V 1.

If actorpvq “ pT , then B
oT

T 1 “ B
oT

T 1pv̄q. Since B
oT

T 1 ‰ ∅, it follows that B
oT

T 1pv̄q ‰ ∅, and so

the subdag T 1pv̄q of T 1 rooted at v̄ satisfies all of the assumptions of the lemma. Thus,

by the induction hypothesis, we have B
oT

T 1pv̄q P SuffWitBpT, β, v̄q. The definition of the

attribute domain for SuffWit and the operation ‘ defined by formula (23) imply that

SuffWitBpT, β, v̄q Ď SuffWitBpT, β, vq. Hence, BoT

T 1 P SuffWitBpT, β, vq.

If actorpvq “ oT , then B
oT

T 1 “ B
oT

T 1pv̄q Y tλpvqu. From the definition of the attribute do-

main for SuffWit, the basic assignment β, and the operation l defined by formula (25), it

follows that both sets ttλpvquu and SuffWitBpT, β, v̄q b ttλpvquu are subsets of

SuffWitBpT, β, vq. Therefore, regardless of whether the set B
oT

T 1pv̄q is empty or not, we

have B
oT

T 1 P SuffWitBpT, β, vq, as required.

Case 3. The node v is refined.

Let k be the size of the (possibly empty) set tv1 P childrenT pvq X V 1 | BoT

T 1pv1q ‰ ∅u. If

k ‰ 0, we use v1, . . . , vk to denote the elements of this set. Depending on whether or not

v̄ P V 1, we have

B
oT

T 1 “
kď

i“1

B
oT

T 1pviq

134 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

or

B
oT

T 1 “
kď

i“1

B
oT

T 1pviq Y B
oT

T 1pv̄q.

Note that, since B
oT

T 1 ‰ ∅, this implies that k ě 1 or the set B
oT

T 1pv̄q is not empty.

Observe also that, by the induction hypothesis, B
oT

T 1pviq P SuffWitBpT, β, viq, for every

i P t1, . . . , ku. If in addition v̄ P V 1 and B
oT

T 1pv̄q ‰ ∅, then also B
oT

T 1pv̄q P SuffWitBpT, β, v̄q.

We distinguish two subcases, depending on the value of k.

Case 3.1 k “ 0

The assumption of this case implies that actorpvq “ pT , v̄ P V 1, and B
oT

T 1 “ B
oT

T 1pv̄q ‰ ∅.

Similarly to Case 2, now it follows from the definition of the attribute domain for SuffWit

and the operation defined by formula (23) that SuffWitBpT, β, v̄q Ď SuffWitBpT, β, vq.

Hence, BoT

T 1 P SuffWitBpT, β, vq.

Case 3.2 k ą 0

In this case, the definitions of the attribute domain for SuffWit and the operations

given by formulæ (22), (25), and (23) imply that

kò
i“1

SuffWitBpT, β, viq

as well as

SuffWitBpT, β, v̄qb
kò

i“1

SuffWitBpT, β, viq,

if v̄ exists, are subsets of SuffWitBpT, β, vq. Thus,
Ťk

i“1 B
oT

T 1pviq P SuffWitBpT, β, vq, and if

v̄ exists and the set BoT

T 1pv̄q is not empty, then also
Ťk

i“1 B
oT

T 1pviqYB
oT

T 1pv̄q P SuffWitBpT, β, vq.

This completes the proof of Lemma 11.

We are now ready to state and prove Proposition 7.

Proposition 7. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, let P be a

proponent’s strategy in T and let β be the basic assignment defined by (26). If O is a

minimal non-empty witness for P in T , then O P SuffWitBpT, βq.

Proof. We begin with constructing an appropriate subdag of T to which we then apply

Lemma 11. Let

V 1 :“ tv P V : achievedTpv, P q “ 1 or achievedTpv,Oq “ 1u,

V 2 :“ tv P V 1 : there are nodes v1, v2, . . . , vm P V, such that v1v2 . . . vm is a path in T,

v1 “ v, vm “ rootpT q, and vi P V
1, for i P t1, . . . ,mu.

Let T 2 be the subdag of T induced by V 2. Observe that, since achievedTprootpT q, P Y

Oq “ 1, it follows from Corollary 5 that the root of T belongs to the set V 1. Together

6.2. Defense semantics 135

with the definition of V 2, this implies that the subdag T 2 is connected and rooted at3

rootpT q. Furthermore, the choice of V 1 and V 2 implies that T 2 satisfies the assumptions

of Lemma 11 (as the subdag T 1). Therefore, if the set B
oT

T 2 defined by (27) is not empty,

then B
oT

T 2 P SuffWitBpT, βq. To complete the proof we shall thus prove that B
oT

T 2 “ O.

The inclusion B
oT

T 2 Ď O follows immediately from the choice of V 2. To prove that the

two sets are in fact equal, suppose that there is a node v P V with λpvq P O which does

not belong to V 2. Then, since v P V 1, it follows that on every path from v to rootpT q

there is a node other than v, such that achievedTpv
1, P q “ 0 and achievedTpv

1, Oq “ 0.

Since O is a witness for P , we have achievedTprootpT q, P YOq “ 1. Therefore, Lemma 10

implies that achievedTprootpT q, P Y Oztλpvquq “ 1. This contradicts the choice of O as

the minimal witness for P . Hence, BoT

T 2 “ O, completing the proof.

Proposition 6 and 7 imply that the bottom-up evaluation of the SuffWit attribute is

a suitable choice for the first step in the process of construction of the defense semantics.

Corollary 7. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree and let β be the

basic assignment defined by (26). The set

tP Ď B
pT : there is O P SuffWitBpT, β, rootpT qq

such that P is a minimal set countering O

or P is a minimal set countering ∅u

consists of all the proponent’s strategies in T .

With a set of witnesses constructed, the next step in our method of creation of the

defense semantics is to determine the proponent’s strategies. This can be achieved with

the help of the attribute CounterOpp, formalized with the attribute domain ACounterOpp :“

p22B ,Y,b,b,Y,b,mq.

Proposition 8. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, let v P V and

O Ď B
oT . Let βO be the basic assignment for the CounterOpp attribute defined by

βOpλpvqq :“

$
’’’&
’’’%

ttλpvquu, if actorpvq “ pT ,

∅, if actorpvq “ oT , λpvq P O,

t∅u, if actorpvq “ oT , λpvq R O.

(28)

Let P be a set of basic actions of the proponent such that P P CounterOppBpT, β
O, vq. If

actorpvq “ pT , then achievedTpv, P YOq “ 1; otherwise achievedTpv, P YOq “ 0.

3In fact, T 2 is the component of the subdag of T induced by the set V 1 that contains the root of T .

Intuitively, T 2 models the (relevant part of the) particular realization of the scenario modeled with T ,

when the opponent executes all of the actions in O, and the proponent — all of the actions in P .

136 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

Proof. The proof is by induction on the structure of T pvq — the maximal subdag of T

rooted at v. We distinguish several cases, depending on the refinement of and the actor

assigned to v, as well as on the existence of v̄.

For the base case, let v be a non-refined node and assume that v̄ does not exist. Since

the set CounterOppBpT, β
O, vq is not empty, the definition of the basic assignment βO

implies that actorpvq “ pT and P “ tλpvqu or actorpvq “ oT and P “ ∅. In the former

case, the claim follows immediately. In the latter, we have λpvq R O, implying that

achievedTpv, P YOq “ achievedTpv,Oq “ 0,

as required.

Case 1. The node v is not refined and v̄ exists.

Case 1.1. actorpvq “ pT

Under the assumptions of this case, and since the set CounterOppBpT, β
O, vq is not

empty, formula (22), the definition of the CounterOpp domain, and the definition of

the basic assignment βO imply that CounterOppBpT, β
O, v̄q ‰ ∅ and P “ P Y tλpvqu,

for some set P P CounterOppBpT, β
O, v̄q. By the induction hypothesis, the equality

achievedTpv̄, P YOq “ 0 holds, and so the definition of the satisfiability attribute domain

implies that achievedTpv, P YOq “ 1.

Case 1.2. actorpvq “ oT

In the case when λpvq P O, we have CounterOppBpT, β
O, vq “ CounterOppBpT, β

O, v̄q,

by formula (24) and the definition of the assignment βO. Thus, P P CounterOppBpT, β
O, v̄q,

which together with the induction hypothesis implies that achievedTpv̄, P YOq “ 1. Now

the equality achievedTpv, P Y Oq “ 0 follows from the definition of the satisfiability at-

tribute domain.

If λpvq R O, then βOpλpvqq “ t∅u, and so CounterOppBpT, β
O, vq “ t∅u, by for-

mula (24). And indeed, since λpvq R O, the demanded equality

achievedTpv, P YOq “ achievedTpv,Oq “ 0

follows from the definition of the satisfiability attribute domain.

For the cases when v is a refined node, we let childrenT pvq “ tv1, . . . , vku.

Case 2. The node v is refined and refpvq “ OR.

Case 2.1. actorpvq “ pT

Depending on whether or not v̄ exists, either P “ Pi Y P (if v̄ does exist) or

P “ Pi (if v̄ does not exist), for some i P t1, . . . , ku, Pi P CounterOppBpT, β
O, viq and

6.2. Defense semantics 137

P P CounterOppBpT, β
O, v̄q. Thus, by the induction hypothesis, we have achievedTpv̄, PY

Oq “ 0 and achievedTpvi, Pi YOq “ 1, implying that achievedTpv, P YOq “ 1.

Case 2.2. actorpvq “ oT

Again, depending on the existence of v̄, and, if it does exist, on whether or not

the set CounterOppBpT, β
O, v̄q is empty, either P “ pP1 Y . . . Y Pkq, for some Pi P

CounterOppBpT, β
O, viq or P “ P , for some P P CounterOppBpT, β

O, v̄q. In the latter

case, we have achievedTpv̄, P Y Oq “ 1, by the induction hypothesis, and the equality

achievedTpv, P YOq “ 0 follows from the definition of the satisfiability attribute domain.

Suppose now that the former of the two cases occurs. The induction hypothesis implies

that achievedTpvi, Pi Y Oq “ 0, for i P t1, . . . , ku. Now, it follows from Corollary 4 that

achievedTpvi, P YOq “ 0, for i P t1, . . . , ku. Thus, achievedTpv, P YOq “ 0.

Case 3. The node v is refined and refpvq “ AND.

Case 3.1. actorpvq “ pT

Depending on the existence of the countermeasure v̄, it either holds that P “ pP1 Y

. . . Y Pkq Y P or P “ pP1 Y . . . Y Pkq, for some Pi P CounterOppBpT, β
O, viq and P P

CounterOppBpT, β
O, v̄q. The induction hypothesis implies that achievedTpvi, PiYOq “ 1,

for i P t1, . . . , ku, and achievedTpv̄, P Y Oq “ 0. By applying Corollary 4, we get

achievedTpv, P YOq “ 1.

Case 3.2. actorpvq “ oT

If v̄ does not exist or CounterOppBpT, β
O, v̄q “ ∅, then, by formula (24), P “ Pi, for

some i P t1, . . . , ku and Pi P CounterOppBpT, β
O, viq. Otherwise, it might hold that P “

P , for some P P CounterOppBpT, β
O, v̄q. In either case, the demanded equality follows

from induction hypothesis and the definition of the satisfiability attribute domain.

Proposition 8 states in particular that every set belonging to

CounterOppBpT, β
O, rootpT qq, with βO defined by (28), counters the set O of basic ac-

tions of the opponent in T . With the next proposition we establish another useful fact:

that every minimal set countering O also belongs to CounterOppBpT, β
O, rootpT qq.

Proposition 9. Let T “ pV,A,L, λ, actor, refq be an attack–defense tree, v P V , O Ď B
oT

and let βO be the basic assignment defined by (28). If

– actorpvq “ pT and P Ď B
pT is a minimal set such that achievedTpv, P YOq “ 1, or

– actorpvq “ oT and P Ď B
pT is a minimal set such that achievedTpv, P YOq “ 0,

then P P CounterOppBpT, β
O, vq.

Proof. The proof is again by induction on the structure of T pvq, the maximal subdag

of T rooted at v. For the base case, assume that v has no children at all, i.e., that

138 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

childrenT pvq “ ∅ and that v̄ does not exist. If actorpvq “ pT , then the only set P

satisfying the assumptions of the theorem is P “ tλpvqu. If actorpvq “ oT , then either

no such P exists (if λpvq P O) or else P “ ∅ (if λpvq R O). In either case, the statement

holds.

We now proceed with the remaining cases.

Case 1. The node v is not refined and v̄ exists.

Case 1.1. actorpvq “ pT

Since achievedTpv, PYOq “ 1, the assumptions of this case imply that achievedTpv̄, PY

Oq “ 0. From the minimality of P it follows that P can be represented as P Y tλpvqu,

for some minimal set P satisfying achievedTpv̄, P YOq “ 0. By the induction hypothesis,

we have P P CounterOppBpT, β
O, v̄q, and so P P CounterOppBpT, β

O, vq.

Case 1.2. actorpvq “ oT

The proof in this case is analogous to that from the previous one. Nevertheless, we

include it for completeness. Since achievedTpv, P YOq “ 0, it follows from the definition

of the satisfiability domain domain that achievedTpv̄, P Y Oq “ 1. The minimality of P

implies that P “ P for some minimal set P satisfying achievedTpv̄, P Y Oq “ 1. As P P

CounterOppBpT, β
O, v̄q, by the induction hypothesis, the definition of the CounterOpp

attribute domain now implies that P P CounterOppBpT, β
O, vq, as required.

For a proof of the remaining cases, when v is a refined node, we let childrenT pvq “

tv1, . . . , vku and assume that the node v̄ exists. The proof for the cases when v̄ does not

exist is obtained by skipping the parts related to v̄ in what follows.

Case 2. The node v is refined and refpvq “ OR.

Case 2.1. actorpvq “ pT

We begin with proving that there exists i P t1, . . . , ku, a minimal set P 1 for which

achievedTpvi, P
1 Y Oq “ 1 and a minimal set P for which achievedTpv̄, P Y Oq “ 0, such

that P “ P 1YP . To obtain such sets P 1 and P , proceed iteratively as follows. Set P 1 :“ P ,

P :“ P . As long as there exists a basic action b P P such that achievedTpv̄, P YOztbuq “

0, set P :“ P ztbu. Similarly, as long as there exists a basic action b P P 1 such that

achievedTpvi, P
1ztbu YOq “ 1, for at least one i P t1, . . . , ku, remove b from P 1. Observe

that, by the minimality of P , the actions that were removed from P belong to P 1, and

those removed from P 1 belong to P . In other words, the equality P “ P 1 Y P indeed

holds. Furthermore, the sets P 1 and P are minimal sets satisfying achievedTpv̄, PYOq “ 0

and achievedTpvi, P
1 Y Oq “ 1, for some i P t1, . . . , ku. Thus, by the induction hypoth-

esis, we have that P 1 P CounterOppBpT, β
O, viq and P P CounterOppBpT, β

O, v̄q. Hence,

6.2. Defense semantics 139

P P CounterOppBpT, β
O, vq.

Case 2.2. actorpvq “ oT

If P P CounterOppBpT, β
O, v̄q, then the definition of the CounterOpp attribute domain

and operation m defined by (24) imply that P P CounterOppBpT, β
O, vq. Thus, in this

case the claimed statement holds.

Assume now that P R CounterOppBpT, β
O, v̄q. Since achievedTpv, P Y Oq “ 0, it fol-

lows from the definition of the satisfiability attribute domain that for every i P t1, . . . , ku

the equality achievedTpvi, P Y Oq “ 0 holds. Furthermore, P being a minimal set satis-

fying achievedTpv, P YOq “ 0 implies that it can be represented as

P “ P1 Y . . .Y Pk (29)

for some minimal sets P1, . . . , Pk satisfying achievedTpvi, Pi Y Oq “ 0. To see that this

is indeed the case, suppose for a proof by contradiction that it is not. Then, in every

representation (29) of P there is a set Pi satisfying achievedTpvi, Pi Y Oq “ 0, for some

i P t1, . . . , ku, that is not a minimal set having this property. Let P 1
1 Y . . . Y P 1

k be a

representation (29) of P that minimizes the number of such non-minimal sets, and let P 1
j

be such a non-minimal set. Then, there is a set P 2
j Ă P 1

j that is a minimal set for which

achievedTpvj, P
2
j YOq “ 0 holds. The first statement of Corollary 4 implies that

achievedTpvi, P
1
1 Y . . .Y P

2
j Y . . .Y P

1
k YOq “ 0

for every i P t1, . . . , ku. Thus,

achievedTpv, P
1
1 Y . . .Y P

2
j Y . . .Y P

1
k YOq “ 0.

But from the choice of P 1
1 Y . . .Y P

1
k it follows that

P Ą P 1
1 Y . . .Y P

2
j Y . . .Y P

1
k.

This contradicts the minimality of P . Thus, the set P admits the representation (29).

Now it follows from the induction hypothesis that for every i P t1, . . . , ku, the set

Pi from (29) belongs to CounterOppBpT, β
O, viq. Together with the definition of the

CounterOpp attribute domain and operation b defined by (22) this fact implies that

P P CounterOppBpT, β
O, vq, completing the proof of this case.

Case 3. The node v is refined and refpvq “ AND.

Case 3.1. actorpvq “ pT

The assumptions of this case and the fact that P is a minimal set for which the

equality achievedTpv, P Y Oq “ 1 holds imply that P can be represented as P “ P1 Y

. . . Y Pk Y P , for some minimal sets P1, . . . , Pk and P satisfying achievedTpvi, Pi Y

140 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

Oq “ 1 and achievedTpv̄, P Y Oq “ 0. By the induction hypothesis, we have Pi P

CounterOppBpT, β
O, viq, for i P t1, . . . , ku, and P P CounterOppBpT, β

O, v̄q. Thus,

P P CounterOppBpT, β
O, vq, by the definition of the CounterOpp attribute domain and

operation b defined by (22).

Case 3.2. actorpvq “ oT

Similarly as in Case 2.1, we assume that P R CounterOppBpT, β
O, v̄q, since otherwise

the claimed statement follows immediately. In this case, the definition of the satisfiability

domain and the fact that P is a minimal set satisfying achievedTpv, P Y Oq “ 0 imply

that there is i P t1, . . . , ku for which P is a minimal set satisfying achievedTpvi, P Y

Oq “ 0. Thus, by the induction hypothesis, P P CounterOppBpT, β
O, viq. Now it fol-

lows immediately from the definition of the CounterOpp attribute domain that P P

CounterOppBpT, β
O, vq.

Proposition 8 and 9 yield immediately the following result.

Corollary 8. Let T be an attack–defense tree and O be an opponent’s strategy in T .

With βO being the basic assignment defined by (28), the minimal (w.r.t. the inclusion)

sets from CounterOppBpT, β
O, rootpT qq are the proponent’s strategies in T witnessed by

O.

The final ingredient of our algorithm for creation of the defense semantics is a method

for determining minimal opponent’s strategies countering a given proponent’s strategy.

Conceptually, this task is the same as the one achieved by the domain of the CounterOpp

attribute, but it requires, informally speaking, switching of the actors. What we mean

by this, is the following: for an attack–defense tree T , let T 1 be the tree obtained by

attaching the root of T as a countermeasure to a new node belonging to oT . Assume that

the the new node bears a unique label, say x. Then, pT 1 “ oT , oT 1 “ pT and for every

proponent’s strategy P in T there is a set O1 “ P of basic actions of the opponent in T 1.

Thus, when creating proponent’s strategies countering O1 in T 1, one in fact creates the

opponent’s strategies countering P in T . That is, every opponent’s strategy countering

O1 in T 1 is of the form P 1 Y txu, where P 1 “ O, for some opponent’s strategy O in T

countering P .

Thus, we define the domain ACounterPro :“ p22B ,b,Y,Y,b,m,bq, with the operations

performed by the bottom-up evaluation at the nodes of the proponent being the ones

performed at the nodes of the opponent in the attribute domain ACounterOpp, and vice

versa. Finally, for an attack–defense tree T “ pV,A,L, λ, actor, refq and a set P Ď B
pT of

basic actions of the proponent let

βP pλpvqq :“

$
’’’&
’’’%

ttλpvquu, if actorpvq “ oT ,

∅, if actorpvq “ pT , λpvq P P,

t∅u, if actorpvq “ pT , λpvq R P.

(30)

6.3. Optimal selection of countermeasures 141

The above reasoning implies the following.

Corollary 9. Let T be an attack–defense tree and P be a proponent’s strategy in T . With

βP being the basic assignment defined by (30), the minimal (w.r.t. the inclusion) sets from

CounterProBpT, β
P , rootpT qq are the minimal opponent’s strategies in T countering P .

The considerations of this section, in particular Corollary 7, 8 and 9, imply that the

procedure described in Algorithm 3 is indeed suitable for creating a defense semantics of

an attack–defense tree.

Corollary 10. On input attack–defense tree T , Algorithm 3 outputs the defense semantics

DpT q of T .

Regarding the complexity of Algorithm 3, we note that

– in the worst case, the number of the opponent’s strategies created using the SuffWit

attribute domain is exponential in both the number of basic actions of the opponent

and the number of the opponent’s nodes in the tree (see, e.g., Example 55),

– the number of proponent’s strategies witnessed by a given opponent’s strategy can

be exponential in both the number of basic actions of the proponent and the number

of the proponent’s nodes in the tree (e.g., in a tree obtained by attaching to the

node labeled d in the tree Cppb, dq the root node of a tree belonging to the family

described in Example 35),

– the number of minimal opponent’s strategies countering a given proponent’s strat-

egy can be exponential in both the number of basic actions of the opponent and the

number of the opponent’s nodes in the tree (e.g., in a tree T obtained by attaching

as a countermeasure to the root node of the tree b the root of a tree T 1 belonging to

the family described in Example 35, with the nodes of T 1 belonging to the opponent

in T).

The above examples imply that for a tree T with n nodes, the time needed for execution

of each of the lines 1, 4 and 8 is in Op2nq, implying that Algorithm 3 returns the defense

semantics of T in time Op22nq. We note that it seems impossible to construct a tree in

which each of the three lines would indeed require a number of operations exponential in

the number of basic actions in the tree.

6.3 Optimal selection of countermeasures

We will now demonstrate how the information stored in the defense semantics of an

attack–defense tree can be exploited for the purpose of optimal selection of countermea-

sures to be implemented by the opponent. We provide a generic framework for solving

142 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

optimization problems expressed in terms of integer linear programming. We consider sin-

gle parameter and multi-parameter cases, we deal with proponent and opponent-related

parameters, and we show how to proceed in a stochastic case. The contents of this section

are inspired by and based on [ZALT19].

6.3.1 The mathematical model

We first present the mathematical model that we use to address the optimization prob-

lems. It relies on a number of variables modeling behavior of the two actors. Given an

attack–defense tree T and its defense semantics DpT q, let

– b1, . . . , bp be the basic actions of the opponent present in T ,

– P1, . . . , Pn be the distinct proponent’s strategies that appear in DpT q,

– O1, . . . , Om be the distinct opponent’s strategy that appear in DpT q.

Furthermore, for k P t1, . . . , pu, i P t1, . . . , nu, and j P t1, . . . ,mu, we set

ykj “

$
&
%

1, if bk P Oj,

0, otherwise,
Pij “

$
&
%

1, if pPi, Ojq P DpT q,

0, otherwise.

Every basic action b of the opponent is assumed to be assigned a non-negative integer

cost value costpbq. The budget available to the opponent is denoted by B. The ways

in which execution of particular actions contributes to the implementation of opponent’s

strategies, which, in turn, results in some proponent’s strategies being countered, are

modeled with inequalities involving Boolean variables:

– xk, for k P t1, . . . , pu: xk “ 1 if and only if the opponent executes action bk,

– zi, for i P t1, . . . , nu: zi “ 1 if and only if the proponent’s strategy Pi achieves the

root node of T in the presence of currently deployed countermeasures,

– fj, for j P t1, . . . ,mu: fj “ 1 if and only if the opponent does not execute at least

one of the basic actions from the opponent’s strategy Oj.

6.3.2 Optimization problems in the deterministic case

We begin with the deterministic case, where there is no uncertainty about the outcome of

the actions of the opponent, i.e., we assume that every action executed by the opponent

succeeds, and that every countermeasure contributes fully to all the goals that depend

on it.

6.3. Optimal selection of countermeasures 143

General integer linear programming problem

The goal of the opponent is to select countermeasures to be implemented, in a way that

optimizes a linear function F dependent on variables xk, fj, and zi. The total cost of

the countermeasures cannot exceed the budget B available to the opponent. The general

form of such optimization problem is given in Figure 19.

Constraint (32) ensures that the opponent’s investment cannot exceed their bud-

get. The next two families of constraints model the meaning of the variables fj: con-

straints (33) ensure that if the opponent does not execute some of the actions from Oj,

then fj “ 1; constraints (34) ensures that if fj “ 1, then the opponent does not execute

some action from Oj. Next, we model the meaning of the variables zi: constraints (35)

ensure that if the opponent does not execute some action in any of the sets countering Pi

(i.e., fj “ 1 for every j, such that Pij “ 1), then zi “ 1; and constraints (36) ensure that

if the opponent executes all the actions from at least one of the sets Oj countering the

proponent’s strategy Pi (i.e., there exists j, such that Pij “ 1 and fj “ 0), then zi “ 04.

Remark 4. Observe that the number of elements in the opponent’s strategy Oj can be

expressed as |Oj| “
řp

k“1 ykj. Thus, the opponent executes all of the actions from Oj if

and only if
pÿ

k“1

ykj “
pÿ

k“1

xkykj,

which is equivalent to
pÿ

k“1

p1´ xkqykj “ 0.

In consequence, if there is j for which the above equality holds and Pij “ 1, then the

proponent cannot succeed by employing the proponent’s strategy Pi. Conversely, if for all

j with Pij “ 1 the above equality does not hold, then the proponent can achieve the root

goal with Pi. This explains the form of inequalities (33) and (34).

Let us have a look at specific instances of this problem.

Coverage problem. Setting F :“ ´
řn

i“1 zi results in so called coverage problem, where

the goal is to maximize the number of proponent’s strategies countered by the opponent.

Countering the most appealing proponent’s strategies

For an attack–defense tree T , let S : 2B
pT Ñ Z

` be a score function used for comparing

proponent’s strategies. The higher the value of the score function of an proponent’s

strategy, the less appealing the strategy is for the proponent. If the opponent cannot

fully protect the system, they can at least implement a set of countermeasures that

maximizes the minimal value of the score function, among the proponent’s strategies

4Note that the denominator in the right hand side of constraints (35) is a constant, i.e., the con-

straints (35) do not introduce any non-linearity into the programming problem.

144 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

Optimization goal: maximize F px1, . . . , xp, f1, . . . , fm, z1, . . . , znq (31)

Subject to:
pÿ

k“1

costpbkqxk ď B (32)

fj ě

řp

k“1 ykjp1´ xkq

p
, 1 ď j ď m (33)

fj ď
pÿ

k“1

ykjp1´ xkq, 1 ď j ď m (34)

zi ě 1`
mÿ

j“1

Pijpfj ´ 1q, 1 ď i ď n (35)

zi ď

řm

j“1 Pijfjřm

j“1 Pij

, 1 ď i ď n (36)

xk P t0, 1u, 1 ď k ď p, fj P t0, 1u, 1 ď j ď m, zi P t0, 1u, 1 ď i ď n.

Figure 19: General integer linear programming problem for optimal selection of counter-

measures

successful in the presence of this set. This is achieved by setting F :“ CS, where CS P Z
`

is a new variable, and by introducing constraints

CS ď ziSpPiq ` 2p1´ ziq max
P PtP1,...,Pnu

SpP q, for i P t1, . . . , nu. (37)

Constraints (37) relate the value of CS to the values of the score function attained

by proponent’s strategies not countered by the considered set of countermeasures. They

ensure that CS is always bounded from above by the minimum of these values, i.e.,

that maximizing CS is beneficial for the opponent. Should all the proponent’s strategies

be countered by the opponent under some configuration of variables, then the optimal

solution to the optimization problem will be

2 max
P PtP1,...,Pnu

SpP q.

The constant multiplier is a technical trick allowing for distinguishing the case when all

the proponent’s strategies can be countered (result exceeds the maximal of the scores of

the proponent’s strategies) from the case when they cannot (the result will correspond

to the minimal of the scores among the proponent’s strategies that are not countered).

Below, we present two instances of this problem that are of practical interest in risk

analysis.

Countering the cheapest proponent’s strategies. Typical example of score

function S is the cost of execution of a strategy. Assume that the cost of the propo-

nent’s actions is modeled with non-negative integers, i.e., that there is a function costp)

6.3. Optimal selection of countermeasures 145

defined on B
p such that costpbq P Z

`, for b P B
pT . By solving the problem from Fig-

ure 19 extended with constraints (37) for SpP q :“
ř

bPP costpbq, one obtains a set of

countermeasures that maximizes the minimal necessary investment of the proponent into

achieving the root goal.

Countering Pareto optimal proponent’s strategies. Let us start with a generic

mathematical setting. Suppose that there is a partial order ĺ defined on the set of

proponent’s strategies P “ tP1, . . . , Pnu, and that maximal elements w.r.t. this order

correspond to the strategies most appealing to the proponent. For a given P P P ,

denote by #Pĺ P Z
` the number of elements of a largest totally ordered subset of P ,

in which P is the minimal element.5 The smaller the value of #Pĺ, the more appealing

the proponent’s strategy P is for the proponent, because there are not many strategies

that are better than P . The opponent’s objective is thus to first counter the proponent’s

strategies P for which the value of #Pĺ is small. By applying the model from Figure 19

extended with constraints (37) for SpP q :“ #Pĺ, one identifies a set of countermeasures

which maximizes the minimal number #Pĺ over all proponent’s strategies that are not

countered, i.e., a set for which the uncountered strategies are as unattractive to the

proponent as possible.

The setting described above applies to any partial order on the set of proponent’s

strategies. In particular, it can be used for countering Pareto optimal proponent’s strate-

gies. That is, should each of the proponent’s strategies be assigned a vector of values

originating from partially ordered sets, one could introduce a partial order ĺ on the set

of strategies, were the maximal elements are the strategies that are Pareto optimal w.r.t.

all the considered parameters. By instantiating the above generic setting with this order,

one selects a set of countermeasures that focuses on countering the proponent’s strategies

that are Pareto optimal in the scenario modeled with the tree.

Optimizing the opponent’s investment without jeopardizing the system

Assume now that the opponent’s budget is not limited, but they do not want to spend

on security more than necessary. Suppose that there exists a solution to the coverage

problem, in which all counterable proponent’s strategies are countered. The opponent

can identify a cheapest set of countermeasures countering all counterable proponent’s

strategies by solving the problem from Figure 19, for F :“ ´
řp

k“1 costpbkqxk, with the

constraints (32) and (36) being removed, and with additional n constraints zi ď 0, for

i P t1, . . . , nu.

In the case of an attack–defense tree T in which all of the proponent’s strategies can be

countered, the optimization of the opponent’s investment can be done using the methods

presented in Chapter 4 and 5. This can be achieved with the trick performed when

introducing the ACounterPro attribute domain on page 140: by creating an attack–defense

tree T 1 by attaching the root of T as a countermeasure to a new node belonging to oT ,

5Notice that #Pĺ induces a total order on P.

146 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

bearing a unique label. Then, pT 1 “ oT , and so the value obtained using evaluation of the

minimal cost for the proponent attribute on T 1 under the assumption that the opponent

in T 1 (who is the proponent in T) performs all of their actions is in fact the minimal

investment of the opponent in T needed for countering all proponent’s strategies in T .

The same maneuver can be employed for other attribute domains induced by semirings.

Optimization goal:

maximize Gpx1, . . . , xpq ` ErHpx1, . . . , xp, ξqs

Subject to:

pÿ

k“1

costpbkqxk ď B

xk P t0, 1u, 1 ď k ď p

where Hpx1, . . . , xp, ξq is the optimal value of the problem

maximize Hpf1, . . . , fm, z1, . . . , znq

Subject to:

fj ě

řp

k“1 Akjp1´ ξkxkq

p
, 1 ď j ď m

fj ď
pÿ

k“1

Akjp1´ ξkxkq, 1 ď j ď m

zi ě 1`
mÿ

j“1

Bijpfj ´ 1q, 1 ď i ď n

zi ď

řm

j“1 Bijfjřm

j“1 Bij

, 1 ď i ď n

fj P t0, 1u, 1 ď j ď m, zi P t0, 1u, 1 ď i ď n.

Figure 20: General stochastic integer programming problem

6.3.3 Stochastic model

All the problems considered in Section 6.3.2, assume that the opponent always perform

their actions successfully. However, in practice, this is almost never the case. We sketch

briefly a non–deterministic mode, where the countermeasures may fail. Formally, we

associate with every basic action bk P B
oT of the opponent a random variable ξk that

is equal to 1 if bk has been implemented successfully, and 0 otherwise (according to

the Bernoulli distribution). After splitting the function F into two parts F “ G ` H,

6.4. Conclusion and future work 147

with G “ Gpx1, . . . , xpq, H “ Hpf1, . . . , fm, z1, . . . , znq, the optimization problem from

Figure 19 becomes then a stochastic programming problem (see, e.g., [SDR14]) given in

Figure 20, where ξ :“ pξ1, . . . , ξpq. This general problem can be instantiated similarly as

the deterministic one. It can be solved using variants of the well-studied sampling average

approximation approach [KSHdM02], or other efficient heuristics, e.g., as in [ZALT19].

An interested reader is referred to [ZALT19] for details.

6.4 Conclusion and future work

The main goal of the work presented in this chapter was to tackle the issue of determining

optimal sets of countermeasures in attack–defense scenarios modeled with attack–defense

trees. To this end, we developed a novel method for extracting rational behaviors of the

actors from attack–defense trees possibly containing clones and countermeasures against

countermeasures. We illustrated how the information stored in the resulting defense

semantics can be employed for formulating numerous optimization problems in terms of

(stochastic) integer linear programming. Some of the optimization problems formalized

in this work have been implemented in the OSEAD tool. The practical evaluation of the

framework developed in this chapter will be performed in Chapter 7.

The bottleneck of our approach is the defense semantic itself. It would be worthwhile

to study possible ways of approximating the defense semantics, i.e., creating its smaller

variants without significant loss in the information stored. One way of doing this could be

to develop a procedure similar in the spirit to Algorithm 2 for the set semantics. Another

possible approach would be to relax the definition of opponent’s strategy, for instance

by limiting the number of opponent’s vectors originating from the same homogeneous

subdag contained in the same opponent’s strategy. Under this new definition, it seems

that to create the set of sufficient witnesses it would suffice to replace the ORo
witnesses “ ‘

operation with the sets union, thus achieving a significant speedup.

148 CHAPTER 6. Selection of countermeasures in attack–defense scenarios

Chapter 7

Tool support and a case study

To validate the theoretical developments of the previous three chapters in practice, and to

make them easily usable by a wider public, we have created a tool that we call OSEAD– Op-

timal Strategies Extractor for Attack–Defense trees. At its core lies the adtrees Python

package [Wid19] that we developed. While OSEAD is intended to be an easy-to-use tool

supporting security analysis, the adtrees package is targeted at the scientific community,

as it can serve as a convenient basis for implementing and testing new analysis methods

for attack–defense trees. The OSEAD tool is described in Section 7.1.

In Section 7.2, we present a case study of an electricity theft scenario that we con-

ducted using OSEAD. Attack–defense trees have been used in the past to perform practical

studies of security scenarios. In [FFG`16], the security of ATM machines was analyzed.

The main difference between [FFG`16] and the current study is that the former focuses on

the modeling aspects only, i.e., it does not involve any quantitative analysis. In [BKMS12],

an RFID-based management system has been analyzed. This work resulted in a list of

guidelines describing how to carry out a case study involving the attack–defense tree

modeling and its quantitative analysis. These guidelines were respected in our electricity

theft study. However, [BKMS12] concentrates on analysis w.r.t. single parameter, and it

uses only the bottom-up evaluation of attributes, which is not well-suited for trees with

clones.

7.1 The OSEAD tool

The OSEAD tool from the user’s perspective OSEAD aims at allowing its users to

analyze trees in a simple and intuitive way, using methods described in Chapter 4–6.

Users operate the tool in a step-by-step manner, via a graphical interface illustrated in

Figure 21. The first step is to provide a file storing the structure of the attack–defense tree

of interest, which is an XML file produced by ADTool [GJK`16], well-known software

for creating attack–defense trees. Furthermore, should the user want to analyze an attack

tree created with the help of ATCalc [ABvdB`13] or ATE [Asl16b], the output files

of these tools can be easily transformed into an ADTool-like XML file with the help of

149

150 CHAPTER 7. Tool support and a case study

ATTop [KSR`18].

Figure 21: OSEAD’s main user interface

Once the tree is provided, users select the problem of interest, which can be

• extraction of attacks1 that optimize a single parameter (tab Find optimal attacks

in Figure 21),

• extraction of attacks that are Pareto optimal (tab Find Pareto optimal attacks), or

• extraction of an optimal strategy of the defender (tab Find optimal set of counter-

measures).

The last step preceding the actual analysis is the assignment of values of parameters of

interest to the basic actions present in the tree. The values can be entered manually,

imported from an XML file generated by ADTool, or loaded from a TXT file produced

by OSEAD, as visualized in Figure 22. With all the inputs provided, OSEAD solves the

optimization problem specified by the user. The results obtained can be exported to a

TXT file (see Figure 23).

Implementation details OSEAD’s computation engine and its user interface have been

implemented in Python. Its architecture is depicted in Figure 24. The implementation

model consists of the Tree Model (storing the tree structure), the Attribute Domain (ob-

ject representing an attribute domain for attack–defense trees), the ILP Problem (derived

from the Tree Model, using defense semantics, and storing the matrix of the selected op-

timization problem) and the Basic Assignment (storing values of parameters assigned to

the basic actions).

The extraction of optimal attacks (tabs Find optimal attacks and Find Pareto optimal

attacks in Figure 21) consists of two steps. In the first step, the evaluation of the selected

1The word attack is used here, since the default proponent in the trees created with ADTool is the

attacker, and the opponent is the defender.

7.1. The OSEAD tool 151

Figure 22: Input management in OSEAD

152 CHAPTER 7. Tool support and a case study

Figure 23: Results generated by OSEAD

attribute on the set semantics of the tree is performed, yielding both the set semantics

of the tree and the optimal value of the attribute. In the second step, a topological

sorting of the strategies is performed, w.r.t. their corresponding values, which allows

for returning specified number of the “best” strategies. Depending on the optimization

problem selected, the “best” strategies can be the cheapest ones, the ones most likely to

succeed, the ones requiring the least level of skill, or the Pareto optimal ones.

The task of Finding optimal set of countermeasures requires selecting optimization

problem to be solved, which can be either the coverage problem (see page 143) or the

attacker’s investment problem (where the defender aims at maximizing the necessary

investment of the attacker, as described on page 144). The additional input needed here is

the budget available to the defender. The task is tackled by creating the defense semantics

of the tree and using it for formulating the corresponding integer linear programming

problem. The problem itself is solved with the help of the free linear programming solver

lp solve [BEN05].

7.2. Case study: electricity theft scenario 153

Tree Selection

Task Selection

Basic Assignment

Run Analysis

GUI

User

interact

XML

TXT

XML

load

save/load

load

Tree Model

Attribute

Domain

ILP Problem

Basic As-

signment

create

create

create

create

Implementation Model

Results

set semantics

lp solve

TXT

save

Figure 24: An overview of the OSEAD architecture

OSEAD is open source and it runs on all main platforms. The version for Win-

dows can be downloaded from https://people.irisa.fr/Wojciech.Widel/suftware/

osead.zip. Using OSEAD on other platforms requires installing the adtrees Python pack-

age [Wid19].

OSEAD’s performance To solve the optimization problems, OSEAD creates either the

set semantics or the defense semantics of the tree provided. In the worst case, the size of

each of these semantics is exponential in the number of basic actions in the tree. Another

possible bottleneck in the process of determining an optimal strategy for the defender is

solving an integer linear programming problem.

In non-extremal cases, OSEAD performs well. Each of the problems considered in the

case study described in Section 7.2 was solved in time not exceeding one second. We have

also tested OSEAD’s performance on trees having structure significantly more complex than

the one considered in the case study, i.e., on trees encoding hundreds and thousands of

attacks. Using some of the trees considered in Chapter 5, in Table 11, we have measured

the time OSEAD needs to determine Pareto optimal attacks2. An excerpt from the tests’

results is presented in Table 12.

7.2 Case study: electricity theft scenario

Electricity theft is a widespread practice [KD13, Kre12] that generates huge financial

losses yearly across the world [Fre19, Kia18, LLC14, T&15], with more than the third of

the losses affecting the BRIC countries (Brazil, Russia, India and China) [LLC14]. One

of the ways in which electricity is being stolen, is by tampering with power meter in a

way that results in the household’s or facility’s power consumption being under-reported.

2 The XML files storing the trees are available at https://github.com/wwidel/pareto-tests/

tree/master/trees, while the basic assignments used are to be found at https://github.com/wwidel/

pareto-tests/tree/master/assignments.

154 CHAPTER 7. Tool support and a case study

Table 12: OSEAD’s runtime for determining Pareto optimal attacks

Name of

file storing

tree

structure

Number

of basic

actions

Name of file

storing basic

assignment

Number

of

attacks

Number of

Pareto

optimal

attacks

Runtime

in seconds

tree03 16 tree03 1 cost 640 2 1

tree10 26 tree10 1 cost 14336 3 438

tree12 17 tree12 5 costs 2436 63 11

tree29 22 tree29 5 costs 640 304 1

tree30 23 tree30 5 costs 704 184 1

tree32 25 tree32 5 costs 832 378 1

Modern smart meters make identifying crude power meter tampering attempts easier,

but remain vulnerable to (not necessarily sophisticated) hacking attacks [Ms.12].

This study is concerned with the issue of tampering with power meters. We consider

a malicious user whose aim is to reconfigure their power meter, in order to lower the

recorded electricity consumption of their household. We extend the attack tree-based

model of possible behavior of such a user, analyzed by the U.S. Department of Energy

in [Nat15], to take possible countermeasures into account.

7.2.1 Description of the scenario

The set-up We consider a fifth year student of an engineering school, whom we will

name Marcel, who is renting an apartment where he needs to pay for the electricity

consumption. Marcel would like to lower his electricity bill and he decided to achieve this

by reconfiguring the power meter in his apartment. In this study, Marcel plays a role

of an attacker and his opponent, i.e., a defender, is the electricity provider. The meter

under study is equipped with an optical port that allows a user to connect to the meter

using an optical probe (see Figure 25 and 26).

The starting point of our analysis was the scenario and the attack tree described in

Section 2.3 of [Nat15]. We complemented this tree with additional attacks, and added pos-

sible countermeasures that we identified based on [Car09, McC10], and [Web12]. The re-

sulting attack–defense tree contains 68 nodes, 5 repeated basic actions of the attacker and

3 repeated basic actions of the defender. The XML file, compatible with ADTool and

OSEAD, containing the entire attack–defense tree for tampering with the power meter is

available at https://people.irisa.fr/Wojciech.Widel/studies/meter_study.zip.

The scenario In order to reconfigure his power meter via optical port, Marcel has to

have physical access to the power meter and reconfigure it using appropriate software

tools. Since the power meter is located in the apartment where Marcel lives, we assume

7.2. Case study: electricity theft scenario 155

Figure 25: A power meter with an optical port (source: https://nl.wikipedia.org/wiki/IEC_62056)

that accessing the power meter is a basic action, i.e., the corresponding node is not refined.

In order to reconfigure the power meter with the help of software, we have identified the

following three sub-scenarios that Marcel can follow, taking into account his knowledge,

capabilities, and financial profile:

The do it yourself approach – Marcel reconfigures the meter himself by using

unauthorized software tools (Figure 28, 29, 30, 31, 32),

The social engineering approach – Marcel social engineers a technician em-

ployed by the electricity provider to reconfigure the power meter for him using

authorized software tools (Figure 33),

The get employed approach – Marcel gets employed by the electricity provider

as a field technician to gain access to the authorized tools and to be able to recon-

figure the meter himself (Figure 34).

This high-level view of the analyzed scenario is presented by the tree from Figure 27,

where the black triangles illustrate subtrees presented in further figures. We now detail

the three approaches considered by Marcel.

The do it yourself approach

To reconfigure the power meter by himself, Marcel needs to obtain unauthorized software

and tools, use optical probe to establish connection with the meter via its optical port,

and finally reconfigure the meter using unauthorized software. He can find and download

unauthorized software from the Internet. As for the optical probe, he can buy it or make

it himself. The corresponding tree is given in Figure 28.

156 CHAPTER 7. Tool support and a case study

Figure 26: Optical probe connected to the power meter (source: https:

//www.aliexpress.com/item/China-Manufacturer-DHL-free-Shipping-electricity-optical-meter-reading/

32455842504.html?spm=2114.10010108.100009.1.6810cc24soIZC4&gps-id=pcDetailLeftTopSell&scm=1007.13482.

95643.0&scm_id=1007.13482.95643.0&scm-url=1007.13482.95643.0&pvid=65873a85-f01b-4876-970d-b58b38041880)

reconfigure power meter

via optical port

have physical access

to the power meter

reconfigure power meter

using appropriate

software/tools

reconfigure power meter

using unauthorized

software/tools

social engineered technician

reconfigures power meter

using authorized

software/tools

get employed as

field technician and

reconfigure power meter

Figure 27: How to reconfigure the power meter – a high level view

Establishing connection to the meter via its optical port might be secured by pass-

word authentication. Also, independently of whether a password-based protection is

implemented or not, an authentication could be required before the power consumption

configuration can be modified. These two possible countermeasures are present in the

tree in Figure 28.

If the connection to the power meter was protected by a password, Marcel could

still reach his goal if he was able to authenticate using the correct credentials. To do

so, he would need to obtain the credentials and enter them to the power meter while

authenticating, as visualized in Figure 29. The power meter credentials could be obtained

by

– exploiting the hardware components of the power meter (Figure 30),

– performing a brute force attack (Figure 31), or

– social engineering a technician working for the energy provider (Figure 32).

7.2. Case study: electricity theft scenario 157

reconfigure power meter

using unauthorized

software/tools

obtain unauthorized

software/tools

find and download

software for hacking

power meters

obtain

optical probe

buy optical probe make optical probe

use optical probe

to establish connection

to the meter via

the optical port

password authentication

for establishing

connection

reconfigure power meter

using unauthorized

software

require authentication

for introducing changes

in power consumption

configuration

Figure 28: The do it yourself approach

password authentication

for establishing connection

authenticate using power

meter credentials

obtain power meter

credentials

obtain power meter

credentials by exploiting

its hardware components

obtain credentials

using brute force

attack

obtain power meter

credentials from a social

engineered technician

enter power meter

credentials

Figure 29: Overcoming the password-based authentication

Extracting credentials from the power meter hardware components, illustrated in Fig-

ure 30, can be achieved in two ways: either by extracting them from a data dump or

by spying on communication between the hardware components. To extract the creden-

tials from the data dump, the dump needs to be made, the location where encrypted

credentials are placed in the dump needs to be identified, and finally the credentials need

158 CHAPTER 7. Tool support and a case study

to be extracted from the encrypted dump. To extract the credentials from the commu-

nication between the hardware components, the communication needs to be monitored

and the credentials need to be intercepted. In this study, we assume that during the

communication between the hardware components, the data are sent unencrypted.

o
b

ta
in

 p
o

w
e

r
m

e
te

r

c
re

d
e
n
ti
a
ls

 b
y
 e

x
p
lo

it
in

g

it
s
 h

a
rd

w
a
re

 c
o
m

p
o
n
e
n
ts

e
x
tr

a
c
t
c
re

d
e
n
ti
a
ls

fr
o

m
 d

a
ta

 d
u

m
p

 f
ro

m

h
a

rd
w

a
re

 c
o

m
p

o
n

e
n

t

m
a

k
e

 t
h

e
 d

a
ta

 d
u

m
p

 f
ro

m

h
a

rd
w

a
re

 c
o

m
p

o
n

e
n

t

lo
c
a
te

 e
n
c
ry

p
te

d

c
re

d
e
n
ti
a
ls

 i
n
 t

h
e
 d

u
m

p

e
x
tr

a
c
t

c
re

d
e
n
ti
a
ls

e
x
tr

a
c
t
c
re

d
e
n
ti
a
ls

 f
ro

m

c
o

m
m

u
n

ic
a

ti
o

n
 b

e
tw

e
e

n

h
a

rd
w

a
re

 c
o

m
p

o
n

e
n

ts

m
o

n
it
o

r
c
o

m
m

u
n

ic
a

ti
o

n

b
e
tw

e
e
n
 h

a
rd

w
a
re

 c
o
m

p
o
n
e
n
ts

in
te

rc
e
p
t

c
re

d
e
n
ti
a
ls

Figure 30: Obtaining power meter credentials from its hardware components

A brute force attack is illustrated in Figure 31. It makes use of software for hacking

power meters (in our scenario, this is exactly the same software as the one used by

the attacker to reconfigure power meter). An off-line brute force attack using tools like

7.2. Case study: electricity theft scenario 159

Ophcrack [Oph16], John the Ripper [tR16], or hashcat [has16], can be prevented if a

strong password is used. To make an on-line cracking impossible, the number of possible

invalid authentication attempts could be limited.

obtain credentials

using brute force

attack

find and download

software for hacking

power meters

perform brute

force attack

prevent brute force attacks

from succeeding

enforce policy of using

strong passwords

limit the allowed number of

invalid authentication attempts

Figure 31: Obtaining credentials by brute force attack

Finally, credentials could also be obtained by social engineering a technician, as de-

picted in Figure 32. To do so, a suitable technician would need to be selected and social

engineered. A social engineering attack would require to assemble background informa-

tion on employees of the energy provider and to select one who would fall into the social

engineering attack to reveal the credentials. Marcel could obtain the background knowl-

edge on employees by searching on the Internet, diving into dumpster and looking for

relevant documents and physical artefacts, or by infiltrating the energy provider. To in-

filtrate the energy provider, Marcel could get hired as an intern student and then collect

information by exchanging gossips with the company employees. The following policies

could be enforced by the company to prevent access to the background information about

its employees:

– a policy to minimize the Internet disclosure,

– a policy to minimize the leakage of physical documents and artefacts,

– a policy of performing thorough background check before hiring new employees.

Once the right social engineering target is selected, the attack itself consists in bribing,

coercing or tricking the technician so that they reveal the power meter credentials. The

16
0

C
H

A
P

T
E

R
7
.

T
o
o
l

su
p
p

o
rt

a
n
d

a
ca

se
st

u
d
y

tr
ic

k
in

g
at

ta
ck

co
u
ld

b
e

p
re

ve
n
te

d
b
y

a
se

cu
ri

ty
tr

ai
n
in

g
d
u
ri

n
g

w
h
ic

h
th

e
p

er
so

n
n
el

is

m
ad

e
aw

ar
e

of
p

op
u
la

r
so

ci
al

en
gi

n
ee

ri
n
g

tr
ic

k
s.

obtain power meter

credentials from a social

engineered technician

identify and select

technician for obtaining

power meter credentials

assemble background

on employees of

the energy provider

acquire information from

public Internet source

enforce policy

to minimize Internet

disclosure

acquire information

from dumpster diving

enforce policy

to minimize leakage

of physical artefacts

acquire information

by infiltrating the

energy provider

get employed

as intern by the

energy provider

thorough background check

before hiring new employees

collect information

by exchanging gossips

with employees

select technician

for obtaining power

meter credentials

obtain power meter

credentials from

selected technician

bribe technician to reveal

power meter credentials

coerce technician into revealing

power meter credentials

trick technician into revealing

power meter credentials

track popular social engineering

tricks and warn personnel

F
ig

u
re

32
:

O
b
ta

in
in

g
cr

ed
en

ti
al

s
b
y

so
ci

al
en

gi
n
ee

ri
n
g

a
te

ch
n
ic

ia
n

7.2. Case study: electricity theft scenario 161

The Social engineering approach

Instead of attacking by himself, Marcel can social engineer a technician, so that they

reconfigure the power meter for him, as modeled in Figure 33.

social engineered technician

reconfigures power meter

using authorized

software/tools

social engineer technician

into reconfiguring

power meter using

authorized software/tools

identify and select

technician for reconfiguring

power meter

assemble background

on employees of

the energy provider

acquire information from

public Internet source

enforce policy

to minimize Internet

disclosure

acquire information

from dumpster diving

enforce policy

to minimize leakage

of physical artefacts

acquire information

by infiltrating the

energy provider

get employed

as intern by the

energy provider

thorough background check

before hiring new employees

collect information

by exchanging gossips

with employees

select technician

for reconfiguring

power meter

convince technician

to reconfigure

power meter

bribe technician

to reconfigure the

power meter

coerce technician

into reconfiguring the

power meter

technician reconfigures

power meter

using authorized

software/tools

Figure 33: The social engineering approach

To perform the social engineering, a suitable technician who would reconfigure the

power meter needs to be identified and Marcel needs to convince them to reconfigure the

meter. Identification of the suitable social engineering target is performed in exactly the

same way as in the do it yourself approach, by assembling relevant background knowledge

on employees. Once identified, the technician who will reconfigure the power meter is

selected. To persuade the technician to reconfigure the power meter, Marcel can bribe or

coerce them.

162 CHAPTER 7. Tool support and a case study

The get employed approach

Marcel can also get hired by the power provider company to be officially able to recon-

figure power meters. To do so, he needs to get employed as a field technician and then

reconfigure his power meter using authorized software provided by the company to its

technicians. Performing thorough background check on future employees would mitigate

this attack, as it was the case in the two previous approaches. The get employed attack

is illustrated in Figure 34.

get employed as

field technician and

reconfigure power meter

get employed as

field technician

thorough background check

before hiring new employees

reconfigure power meter

using authorized software/tools

Figure 34: The get employed approach

7.2.2 Quantitative analysis of the tampering scenario

The first objective of this case study is to analyze the scenario described in Section 7.2.1.

This includes enumeration of all possible attacks, identification of those that are optimal

from the point of view of the attacker, as well as pinpointing the countermeasures that

offer the best protection to the analyzed system. In what follows, we will use the word

attack for a set of basic actions of the proponent that belongs to a minimal strategy in the

tree. By defender’s strategy, we understand a set of countermeasures that the defender

can implement to secure the system (a set of basic actions that the defender can execute).

The three types of optimization problems that we tackle in this study are:

– selection of attacks optimal w.r.t. one parameter,

– selection of attacks optimal w.r.t. several parameters,

– selection of the defender’s strategy optimal from the point of view of their resources

and objective.

We begin with describing the attributes of interest for the case study. We give their

names, the semirings inducing their corresponding attribute domains, and the values that

7.2. Case study: electricity theft scenario 163

they can attain. The process of estimation of the input values, i.e., the basic assignments

for the attributes, is then described. Some issues related to the reliability of the input

values and the computation methods used are discussed in Section 7.3.

The parameters used

Cost, domain induced by pppRRRě0 YYY t`̀̀888u, min, `̀̀qqq The first parameter of interest is

the monetary investment necessary to implement an attack (or a defender’s strategy).

To express it, we use non-negative real numbers representing the necessary investment in

euro. The actions that are too expensive to be executed are assigned the value of `8.

Time, domain induced by pppt0, 10, 102
, 103

, 104
, `̀̀888u, min, maxqqq Since Marcel

would like to lower his electricity bill as soon as possible, the time that an attack would

take is an important parameter to consider. The following scale is used to express time

values:

– Instantaneous (0): can be performed by the actor in less than a minute.

– Quick (10): can be performed by the actor in less than an hour, but not less than

a minute.

– Slow (102): can be performed by the actor in less than a week, but not less than

an hour.

– Very slow (103): can be performed by the actor in less than six months, but not

less than a week.

– Extremely slow (104): can be performed by the actor within a human lifetime, but

not less than six months.

– Impossible (`8): not doable within a human lifetime.

Since this scale is discrete, it is reasonable to assume that the time necessary to perform

an attack is the maximum value over the time values of its composing actions. As in the

case of cost, we are interested in minimizing the time necessary to attack the system,

thus we select the attack which requires minimal time.

Success probability, domain induced by ppprrr0, 1sss, max, ¨̈̈qqq Attacks that are very

cheap or very fast are useless if their probability of succeeding is negligible. Here, we are

thus interested in what is the probability that, if executed, an attack will be successful.

The probability of successful execution of an action is a value from the interval r0, 1s, and

the probability of an attack is the product of the probabilities assigned to the actions

constituting the attack3

3Recall that we are working under the assumption of the basic actions being independent.

164 CHAPTER 7. Tool support and a case study

The remaining three parameters assess the level of special skills – cybersecurity, tech-

nical, and social – that is necessary to be able to perform an action successfully. In all

three cases, the skill level necessary to perform an attack is defined as the maximum

among the skill levels necessary to perform its components. By optimal, we mean an

attack requiring minimal skill level.

Cybersecurity skills level, domain induced by pppt0, 1, 2, 3, `̀̀888u, min, maxqqq Some

of the actions considered in our scenario may require specific expertise regarding cyberse-

curity. We distinguish five levels of such expertise:

– None (0): no cybersecurity-related skills required.

– Basic (1): requires basic cybersecurity knowledge and skills.

– Advanced (2): requires employing advanced cybersecurity-related skills, e.g., exe-

cuting a man in the middle attack on a protocol.

– Expert (3): requires employing cybersecurity-related skills available to few experts,

e.g., return-oriented programming or fault attack on AES.

– Impossible (`8): beyond the known capability of today’s human beings.

Technical skills level, domain induced by pppt0, 1, 2, 3, `̀̀888u, min, maxqqq Similarly

to cybersecurity skills, some actions may require some technical expertise. Here again, we

distinguish five levels:

– None (0): no technical skills required.

– Basic (1): requires basic technical skills, e.g., finding information online.

– Advanced (2): requires advanced technical skills, available for graduates of technical

vocational schools.

– Expert (3): requires technical skills available to experienced engineers.

– Impossible (`8): beyond the known capability of today’s human beings.

Social skills level, domain induced by pppt0, 1, 2, 3, `̀̀888u, min, maxqqq Finally, since

some attacks in our scenario rely strongly on social engineering, we are also interested in

social skills necessary to perform the considered actions. The five levels of social skills

are defined as follows:

– None (0): does not involve social interactions.

– Basic (1): requires basic social interactions, e.g., obtaining information via a con-

versation.

7.2. Case study: electricity theft scenario 165

– Advanced (2): requires convincing or tricking someone into doing something they

would not do otherwise.

– Expert (3): requires convincing or tricking someone into doing something punishable

by law.

– Impossible (`8): beyond the known capability of today’s human beings.

Estimation of input values

The analysis methods employed in our case study require numerical inputs, including the

basic assignments of attributes to the basic actions. We now provide these values, and

explain how they have been obtained.

The values of basic actions of the attacker that we have used in this study are given

in Table 13. They represent a consensus reached as a result of the following procedure.

Seven independent participants, whose profiles correspond to the expertise of Marcel, were

involved in the values’ estimation. The participants were given a document describing

the scenario and the attack–defense tree from Section 7.2.1. They had access to the

Internet and relevant materials, including [Car09, Nat15] and [Web12]. Each participant

estimated the values for all six parameters for every basic action present in the tree.

Unsurprisingly, some of the values were not consistent among different participants. A

semi-automatic procedure has thus been used to extract a single value for each parameter

at every basic action:

– for the parameters different than probability: if all (but one) among the seven values

were the same, this value was retained,

– for the probability parameter, a simple average over seven values was computed,

– for the cases that do not fall into any of the above items, the retained value is the

result of a discussion between the author of this thesis and Barbara Fila (Kordy),

– finally, in the case of strong disagreement, the author of the analyzed attack–defense

tree who, among the seven participants, knows the best the optical meter technol-

ogy, had the decisive power.

The estimation of values took one hour to each participant, on average. The consensus

discussion lasted for 3 hours.

Table 14 gathers the basic actions of the defender and gives their cost. The values of

the defender’s cost represent the investment that the electricity provider needs to make

to hire security experts who will advise the company on potential threats and suitable

countermeasures against them, organize meetings where the decisions on policies to be

implemented will be taken, put in place improved software or hardware solutions, for

instance those allowing more secure authentication, and remunerate its personnel for

performing specific activities, such as background checks before hiring new employees.

16
6

C
H

A
P

T
E

R
7
.

T
o
o
l

su
p
p

o
rt

a
n
d

a
ca

se
st

u
d
y

Table 13: Parameter values for basic actions of the attacker

Basic action Cost Time Prob Cyber Tech Social

acquire information from dumpster diving 0 1000 0.2 0 0 0

acquire information from public Internet source 0 100 0.79 0 1 0

bribe technician to reconfigure the power meter 500 10 0.52 0 0 3

bribe technician to reveal power meter credentials 300 10 0.5 0 0 2

buy optical probe 71.2 100 1 0 1 0

coerce technician into reconfiguring the power meter 0 100 0.3 0 0 3

coerce technician into revealing power meter credentials 0 100 0.33 0 0 3

collect information by exchanging gossips with employees 0 1000 0.46 0 0 1

enter power meter credentials 0 0 0.99 0 0 0

extract credentials 0 10 0.56 0 1 0

make the data dump from hardware component 0 100 0.73 1 3 0

find and download software for hacking power meters 0 10 0.9 1 1 0

get employed as field technician 0 1000 0.48 0 2 1

get employed as intern by the energy provider 0 1000 0.52 0 1 1

have physical access to the power meter 0 0 1 0 0 0

intercept credentials 0 0 0.62 2 1 0

locate encrypted credentials in the dump 0 100 0.6 2 2 0

make optical probe 14 100 0.41 0 2 0

monitor communication between hardware components 0 100 0.5 1 2 0

perform brute force attack 0 100 0.65 1 2 0

provide power meter credentials 0 0 1 0 0 0

reconfigure power meter using authorized software/tools 0 10 0.94 0 1 0

reconfigure power meter using unauthorized software 0 10 0.75 0 2 0

select technician for obtaining power meter credentials 0 100 1 0 0 0

select technician for reconfiguring power meter 0 100 1 0 0 0

technician reconfigures power meter using authorized software/tools 0 10 1 0 0 0

trick technician into revealing power meter credentials 0 100 0.24 0 0 2

use optical probe to establish connection to the meter via the optical port 0 10 0.95 0 1 0

7.2. Case study: electricity theft scenario 167

Table 14: Cost of basic actions of the defender

Basic action Cost

d1 “ enforce policy of using strong passwords 11600

d2 “ enforce policy to minimize Internet disclosure 9600

d3 “ enforce policy to minimize leakage of physical artefacts 9600

d4 “ limit the number of possible invalid authentication attempts 11600

d5 “ password authentication for establishing connection 13600

d6 “ require authentication for introducing changes

in power consumption configuration 13600

d7 “ thorough background check before hiring new employees 320

d8 “ track popular social engineering attacks and warn personnel 1500

7.2.3 Optimal strategies for the attacker and the defender

We now present the results of the power meter tampering scenario analysis. We begin, in

Section 7.2.4, by determining sets of countermeasures that the defender can implement

under specified budget and that are optimal w.r.t. a given criterion (coverage or attacker’s

investment). For some of these sets, we then perform a what-if analysis: if a given strategy

of the defender is implemented, what are the attacks optimal w.r.t. one (Section 7.2.5) or

many (Section 7.2.6) parameters? Our objective is to verify whether an attacker having

a profile of Marcel would be able to launch a successful attack on its power meter.

The analysis has been performed using the OSEAD tool. The files containing all the

inputs used, as well as all of the obtained results, are available at https://people.

irisa.fr/Wojciech.Widel/studies/meter_study.zip.

7.2.4 Selection of optimal sets of countermeasures

The choice of an optimal strategy for the defender depends on the budget that they have

at their disposal, and on the optimization problem of interest. In our study, we consider

a small, local electricity provider, and we thus analyze three possible values for the

defender’s budget: 20000, 30000, and 40000 euros. Table 15 presents optimal strategies for

a defender interested in maximizing the number of prevented attacks (coverage problem)

and another one focused on maximizing the necessary investment of the attacker necessary

to achieve his objective (investment problem).

Requiring authentication for introducing changes in power consumption configuration

(d6) and performing thorough background check before hiring new employees (d7) is an

optimal strategy for a defender interested in covering a maximal number of possible

attacks and having the budget of 20000 euros. We denote this strategy by D1. Under the

same budget, but with the goal of maximizing the necessary investment of the attacker

in mind, the optimal behavior of the defender would be to enforce policy to minimize

168 CHAPTER 7. Tool support and a case study

Internet disclosure (d2), enforce policy to minimize leakage of physical artefacts (d3) and

perform thorough background check before hiring new employees (d7). This ensures that

the minimal necessary investment of the attacker into achieving the root goal is 14. This

means, in particular, that the execution of the three actions prevents all the attacks

having the cost of 0 euros.

The other two strategies that we consider are D2 which corresponds to D1 extended

with the action of enforcing policy to minimize Internet disclosure (d2), and D3 consisting

of enforcing policy to minimize Internet disclosure (d2), enforcing policy to minimize

leakage of physical artefacts (d3), performing thorough background check before hiring new

employees (d7), and tracking popular social engineering attacks and warning personnel

(d8). The strategies D2 and D3 are optimal for a defender having 30000 euros, and

interested in the coverage problem and the attacker’s investment problem, respectively.

Finally, a defender having 40000 euros is able to fully secure the analyzed system, by

implementing the countermeasures d2, d3, d6, and d7. Due to space restrictions, we refer

the reader to Table 14 for their meaning.

Table 15: Optimal strategies of the defender

Coverage problem Investment problem

Defender’s Optimal Prevented Optimal
Necessary

attacker’s

budget strategy /preventable strategy investment

20000 D1 “ td6, d7u 29{33 td2, d3, d7u 14

30000 D2 “ td2, d6, d7u 31{33 D3 “ td2, d3, d7, d8u 14

40000 td2, d3, d6, d7u 33{33 td2, d3, d6, d7u `8

For the rest of our study, we retain the strategies D1, D2, and D3 and look for optimal

attacks in the case when one of these strategies is implemented by the defender.

7.2.5 Attacks optimizing single parameter

In total, there are 33 attacks4 in the studied scenario. Their list is available at https:

//people.irisa.fr/Wojciech.Widel/studies/meter_attacks.txt. The attacks of

interest for us are those that are not countered by at least one of the three defender’s

strategies D1, D2 or D3. There are twelve such attacks, and they are presented in Ta-

ble 16.

By analyzing Table 16, one notices that if the defender decides to implement one of

the strategies D1 or D2, Marcel will be able to succeed only by executing some of the

attacks from the social engineering approach. If the strategy D3 is implemented, then

the only possible attacks are those from the do it yourself approach.

4Recall that, in this chapter, the word attack has a meaning specified in the first paragraph of

Section 7.2.2.

7
.2

.
C

a
se

stu
d
y
:

electricity
th

eft
scen

a
rio

169

Table 16: Some of the attacks available to Marcel

Attacking approach:

do it yourself (Y); social engineering (S); get employed (E) S S S S Y Y Y Y Y Y Y Y

Basic action A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

acquire information from dumpster diving X X

acquire information from public Internet source X X

bribe technician to reconfigure the power meter X X

bribe technician to reveal power meter credentials

buy optical probe X X X X

coerce technician into reconfiguring the power meter X X

coerce technician into revealing power meter credentials

collect information by exchanging gossips with employees

enter power meter credentials X X X X X X

extract credentials X X

find and download software for hacking power meters X X X X X X X X

get employed as field technician

get employed as intern by the energy provider

have physical access to the power meter X X X X X X X X X X X X

intercept credentials X X

locate encrypted credentials in the dump X X

make optical probe X X X X

make the data dump from hardware component X X

monitor communication between hardware components X X

perform brute force attack X X

provide power meter credentials

reconfigure power meter using authorized software/tools

reconfigure power meter using unauthorized software X X X X X X X X

select technician for obtaining power meter credentials

select technician for reconfiguring power meter X X X X

technician reconfigures power meter using authorized software/tools X X X X

trick technician into revealing power meter credentials

use optical probe to establish connection to the meter via the optical port X X X X X X X X

Defender’s strategy under which the attack is successful D1 D1, D2 D1 D1, D2 D3 D3 D3 D3 D3 D3 D3 D3

170 CHAPTER 7. Tool support and a case study

Once the values corresponding to the attacks are obtained, OSEAD returns the optimal

ones. We list them in Table 17. This table can be used to check whether an attacker of

interest would be able to launch a successful attack. We recall that Marcel is a fifth year

student of an engineering school. We assume that he has advanced technical skills, but

he has only basic knowledge of cybersecurity. Being a student, he is not rich, but he can

manage his time availability freely.

Table 17: Attacks optimal w.r.t. a single parameter and their values

Attacks optimal w.r.t.

Defender’s

strategy Cost Time Prob Cyber Tech Social

D1 A1, A2 A1, A3 A3

A1, A2,

A3, A4

A2, A4

A1, A2,

A3, A4

Optimal value 0 100 0.41 0 0 3

D2 A2 A2, A4 A4 A2, A4 A2, A4 A2, A4

Optimal value 0 1000 0.10 0 0 3

D3

A5, A6,

A7, A8

A5 –

A12

A9

A5, A6,

A9, A12

A5, A6,

A8, A9,

A11, A12

A5 –

A12

Optimal value 14 100 0.64 1 2 0

Since the cost aspect is of the highest priority for Marcel, we assume that he would

analyze the attacks optimal w.r.t. to this parameter first. The preference is given to

attack A2 which consists of having physical access to the power meter, acquiring informa-

tion from dumpster diving, selecting technician for reconfiguring power meter, coercing

technician into reconfiguring power meter and the technician reconfiguring power meter

using authorized software/tools. While this attack is optimal from the point of view of

cost and all the three skills levels under strategies D1 and D2, it would require from Mar-

cel to force someone to perform an action punishable by law. Also, A2 is not prevented

by the strategy D3. Indeed, implementation of D3 counters all the attacks from the social

engineering approach.

The strategy D3 does not secure the meter from any attack in the do it yourself

approach. An interesting attack within this approach is A6, consisting of having physical

access to the power meter, making optical probe, finding and downloading software for

hacking power meters, using optical probe to establish connection to the meter via the

optical port, and reconfiguring power meter using unauthorized software. Note that A6

corresponds to the profile of Marcel, from the point of view of his resources and skills. Its

only drawback is that its probability of success is quite low – only 0.26, as can be seen

in Table 18.

Thanks to Table 17, we can also study the impact of the implemented countermeasures

7.2. Case study: electricity theft scenario 171

on the attacks available to the attacker. Upgrading the system’s protection from D1

do D2 (by enforcing policy to minimize Internet disclosure) at the cost of 9600 euros

(see Table 14) is not worthwhile if the defender considers cheap attacks to be the most

tempting for the attacker – the attack A2 achieves the root goal under both strategies D1

and D2. However, if the defender aims at making the attacker less likely to succeed, then

this investment is beneficial, as it lowers the attacker’s success probability from 0.41 (for

attack A3 which would not work under D2) to 0.10 (for A4 that still works when D2 is

implemented).

7.2.6 Attacks optimizing several parameters

Unfortunately, for every attack listed in Table 17, i.e., optimal w.r.t. to one of the

parameters, there is always another one that is better from the point of view of another

parameter. To overcome this problem, we are now looking for Pareto optimal attacks,

i.e., attacks that are not dominated by another one, while taking all six parameters into

account simultaneously.

Table 18: Pareto optimal attacks and their values for: cost (c), time (t), prob (pb), cyber

skills (cs), tech. skills (ts), and social skills (ss)

Defender’s strategy Pareto optimal attacks Values pc, t, pb, cs, ts, ssq

D1 A1 p0, 100, 0.24, 0, 1, 3q

A2 p0, 1000, 0.06, 0, 0, 3q

A3 p500, 100, 0.41, 0, 1, 3q

A4 p500, 1000, 0.10, 0, 0, 3q

D2 A2 p0, 1000, 0.06, 0, 0, 3q

A4 p500, 1000, 0.10, 0, 0, 3q

D3 A6 p14.0, 100, 0.26, 1, 2, 0q

A9 p71.2, 100, 0.64, 1, 2, 0q

The Pareto optimal attacks are presented in Table 18, along with the values corre-

sponding to their execution. Observe that under strategies D1 or D2, all of the attacks

available to Marcel are Pareto optimal, including the attack A2 discussed in the previous

section. If the strategy D3 is implemented by the defender, there exist eight possible

attacks that achieve the root goal, but only two of them are Pareto optimal, namely A6

and A9. Observe that A9 is a very interesting attack. It is almost the same as A6, except

that it involves buying optical probe instead of making it. Attack A9 is optimal w.r.t. to

all parameters, except cost. However, when checking its cost value, one realizes that the

investment necessary to perform it (71.2 euros) would probably be acceptable for Marcel.

The greatest advantage of A9 is that its success probability (0.64) is significantly higher

than that of A6 (0.26).

172 CHAPTER 7. Tool support and a case study

The importance of the multi-parameter analysis is further illustrated by two facts.

First, securing the system in a way that maximizes the necessary investment of the

attacker, by implementing D3, not only leaves the system vulnerable to more attacks

than it is the case for the coverage problem (eight attacks versus two or four, see last

row of Table 16), but also allows the attacker to execute attack A9, which has a high

probability of succeeding. Second, when the defender implements strategy D3, the attack

A6 is among the cheapest ones, and the attack A9 is the optimal one w.r.t. the probability.

When we analyze the scenario taking only one of these parameters into consideration, we

overlook one of these two attacks. But both of them are Pareto optimal, and as such,

both can be considered equally appealing for the attacker.

7.3 On the reliability of the computation framework

Quantifying security is a highly disputable exercise. The reliability of the obtained results

depends on the quality of the employed input values and on the suitability of the functions

used to perform computations. Despite a great effort of the academic and the industrial

communities, numerous underlying issues still remain unsolved. In this section, we debate

on drawbacks that we met while performing this study, some of which we have not

necessarily managed to overcome.

The quantitative analysis of graphical security models relies on numerical inputs whose

exact values can almost never be provided. Their estimation is a difficult task that

requires a thorough understanding of

– the parameters employed,

– the meaning of the basic actions present in the tree,

– the attacker’s and defender’s profiles and knowledge.

In practice, this estimation is very subjective, as it relies to a great extent on the mod-

eler’s expertise. In real-life, input values are usually based on historical data, statistics,

information gathered from surveys or open sources, e.g., Internet. Such inputs inevitably

carry some uncertainty about the values, and this uncertainty propagates during the

computations and is accumulated in the final result of the analysis. While there is no

established methodology for determining the best approximations of the actual values of

the parameters under consideration, we believe that a reasonable estimates can still be

obtained, if provided in collaboration with experts in the respective domains. Several

industry practitioners performing security and risk analysis on a daily basis, that we had

an opportunity to work with, suggest to follow a couple of simple rules.

– Finding a consensus through a discussion usually results in numbers that are more

accurate than standard composite values, e.g., the average. People providing inputs

might have misunderstood the significance of a parameter or the meaning of an

7.3. On the reliability of the computation framework 173

action, thus their values might be inconsistent. Computing a simple average over

such values is meaningless. A discussion allows to identify such misunderstandings

and results in a more reliable estimate.

– If a discrete scale is used, an odd number of possible values, such as low-medium-

high, should be avoided. People having problems with deciding on the most suitable

value, for instance due to the lack of knowledge, often tend to chose the middle value,

because it seems to be the most neutral alternative. However, if numerous attacks

get the same value, their ranking and thus a selection of the optimal ones become

impossible.

– A way of taking the knowledge of the value providers into account is to complement

the parameter value with the information on how certain the provider is about this

value. Such an approach has, for instance, been used in the case study described

in [BKMS12], where a confidence level was used in addition to the actual values of

the parameters of interest. The confidence level plays a role of a weight, allowing to

give more importance to values with high confidence (usually provided by experts)

compared to those with low confidence (probably coming from less knowledgeable

participants).

Note that in our study we decided not to use the confidence level, because our value

providers had exactly the same profile as our potential attacker Marcel. We thus assumed

that their estimates would be consistent with the estimates (and thus indirectly with the

decisions) that Marcel would make.

Another factor possibly undermining the pertinence of the quantitative analysis of

security are the computations performed on the input values during the analysis. We

illustrate this issue on the examples of probability and risk metrics. An arguable but

commonly used operator in the context of attack tree analysis is the multiplication em-

ployed to propagate the probability values at AND nodes in a bottom-up fashion. Using

multiplication implies that attack components are considered to be independent, which

is rarely the case in reality. This means that, even if the input values are correct, the

probability computation might introduce some error or inaccuracy to the final result. To

overcome this known drawback of the classical bottom-up propagation, some more ad-

vanced methods for computing attacks’ probability have been proposed in the literature.

Their weakness however lies in the fact that they often require sophisticated inputs, such

as conditional probability tables [KPS16] or probability distributions [AHPS14], instead

of simply probability points. An interested reader is referred to Section 7 of [WAFP19]

for a description of some of the probabilistic frameworks for attack tree-based analysis.

Another example highlighting both the importance and the difficulty of quantifying secu-

rity is the risk metrics. Various formulas for risk exist. In [RSS15], the authors state that

the standard way of defining risk is “the likelihood of an incident and its consequences for

an asset”, with all the words used having some specified meaning. This definition is used

174 CHAPTER 7. Tool support and a case study

for instance in the French risk analysis method EBIOS [ANS18]. It relies on two factors

only, but other definitions are possible. In [EDRM06], risk has been defined in terms of

cost, probability, and impact. For a discussion on possible three-factor and many-factor

risk measure definitions see Chapter 11 of [RSS15] and references therein. On the one

hand, the fact that there are many risk metrics definitions can be seen as a positive thing,

because it allows the expert to select the one that is most suitable in a specific analysis

context or w.r.t. the available input values. On the other hand, however, different risk

formulas will provide different results, so it might be unclear which risk formalization

should be used in which case.

To conclude this discussion section, we would like to stress that graphical security

models are not the silver bullet for the risk assessment process, and that their role is to

accompany other threat and risk analysis approaches, such as penetration testing, red

teaming, standardized ISO 27XXX-compatible methods, e.g., [ANS18, LSS11], etc. Each

of these methods focuses on different types of attacks and different security problems,

so it is worthwhile to combine them in order to get the most complete and full-fledged

results.

7.4 Conclusion and future work

In this chapter, we used attack–defense trees to analyze a realistic security scenario

of tampering with a power meter. The study allowed us to validate the quantitative

analysis methods discussed in Chapter 4-6. To facilitate and automate their usage, we

have implemented the OSEAD tool described in Section 7.1.

We took great care so that our model and analysis are as unbiased and impartial

as possible. The tree was created by crossing several industrial and academic sources,

and the input values estimation was performed by independent participants with various

cultural background, from Estonia, France, Poland, and Russia.

As discussed in Section 7.2.6, we were able to confirm the intuitive conjecture about

the practical importance of the multi-parameter analysis. We note that, despite the

fact that the algorithms implemented in OSEAD are highly complex, the tool performs

extremely well when applied to trees encoding hundreds of attacks, and reasonably well

in the case of trees with up to several thousands of attacks.

This study corroborates practical usefulness of attack–defense trees in security and

risk analysis. However, solutions for some pragmatic issues still need to be found. The

bottleneck of our study was the attribution of parameter values to basic actions. While

for some parameters, e.g., cost, finding an accurate estimate is easy (nowadays, it suffices

to search on the Internet), for some others, e.g., success probability, this task is much

more difficult, if not impossible. More research and practical investigation is definitely

necessary before a reliable methodology for the estimation of values for basic actions can

be proposed.

7.4. Conclusion and future work 175

Finally, we would like to emphasize that an attack tree-based analysis, as the one

performed in this case study, does not fully cover the entire process of risk analysis. For

instance, a practical issue regarding Marcel’s return on investment was not discussed in

our work. This issue includes the analysis of the actual gain of Marcel versus the necessary

expenses related to making the tampering possible, or the estimation of minimal time

after which Marcel’s investment in attacking the system would start to pay back. Also,

one should not forget about a completely separate dimension of risk of being arrested for

performing illegal tampering. Although we judged these aspects out of scope of our study,

in real life they should be investigated before a truly optimal attack can be identified.

Acknowledgements

We would like to thank the following students and researchers for their (far from being

trivial) contribution to the estimation of parameter values used in this study: Jean-Loup

Hatchikian-Houdot (INSA Rennes, France), Pille Pullonen (Cybernetica AS, Estonia),

Artur Riazanov (Saint Petersburg Department of V.A. Steklov Institute of Mathemat-

ics of the Russian Academy of Sciences, Russia), Petr Smirnov (Saint Petersburg State

University, Russia), and Aivo Toots (Cybernetica AS, Estonia).

176 CHAPTER 7. Tool support and a case study

Chapter 8

Conclusion

The main focus of this thesis were methods for quantitative analysis of security based

on attack–defense trees, under a fixed interpretation of repeated labels. We studied the

problem of attributes evaluation on such trees, including attributes suitable for multi-

parameter analysis of security. The problem of optimal selection of countermeasures in

security scenarios modeled with trees has also been investigated. Finally, we constructed

a realistic attack–defense tree and performed a thorough case study of the corresponding

scenario using the OSEAD tool that we have created.

For the convenience of a reader, we have decided to conclude each of the chapters

separately. Here, we would like to only reiterate two important points raised in Chapter 7.

The first of them is that attack–defense trees (in particular, attack trees) are just one of

many tools available for risk analysts. Their proper usage is not easy, especially due to

the process of their creation being error-prone; actions available to the actors might be

overlooked and not included in the model, nodes might be labeled in an inappropriate

way, giving raise to misleading results, etc. Just for these reasons, attack–defense trees

should never be used as the sole device for performing risk analysis. The second issue

regarding the practical usability of trees, and in particular the methods presented in this

thesis, is the difficulty in obtaining reliable numerical inputs, as discussed in detail in

Section 7.3.

There are many paths in the field of attack trees analysis that a curious researcher

might pursue, with some of them highlighted in Section 4.8, 5.4 and 6.4. In the light

of the difficulties described in the previous paragraph, one could hesitate whether these

paths are worth pursuing. We believe so; even if the attack–defense trees itself will

never become popular among risk analysts, they will remain closely related to Boolean

functions and other modeling frameworks based on AND/OR trees, such as fault trees.

Further theoretical work on attack–defense trees could thus result in new insights into

problems arising in other research areas.

177

178 CHAPTER 8. Conclusion

Bibliography

[ABvdB`13] Florian Arnold, Axel Belinfante, Freark van der Berg, Dennis Guck, and

Mariëlle Stoelinga. Dftcalc: A tool for efficient fault tree analysis. In

Friedemann Bitsch, Jérémie Guiochet, and Mohamed Kaâniche, editors,

Computer Safety, Reliability, and Security - 32nd International Confer-

ence, SAFECOMP 2013, Toulouse, France, September 24-27, 2013. Pro-

ceedings, volume 8153 of Lecture Notes in Computer Science, pages 293–

301. Springer, 2013. Available from: https://doi.org/10.1007/978-3-

642-40793-2_27, doi:10.1007/978-3-642-40793-2_27.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems.

In Mike Paterson, editor, Automata, Languages and Programming, 17th

International Colloquium, ICALP90, Warwick University, England, UK,

July 16-20, 1990, Proceedings, volume 443 of Lecture Notes in Computer

Science, pages 322–335. Springer, 1990. Available from: https://doi.

org/10.1007/BFb0032042, doi:10.1007/BFb0032042.

[AHPS14] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga.

Time-Dependent Analysis of Attacks. In Mart́ın Abadi and Steve Kremer,

editors, Principles of Security and Trust - Third International Conference,

POST 2014, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,

Proceedings, volume 8414 of Lecture Notes in Computer Science, pages 285–

305. Springer, 2014. Available from: https://doi.org/10.1007/978-3-

642-54792-8_16, doi:10.1007/978-3-642-54792-8_16.

[AN15] Zaruhi Aslanyan and Flemming Nielson. Pareto efficient solutions of attack-

defence trees. In Riccardo Focardi and Andrew C. Myers, editors, Principles

of Security and Trust - 4th International Conference, POST 2015, Held as

Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, volume 9036 of

Lecture Notes in Computer Science, pages 95–114. Springer, 2015. Available

from: https://doi.org/10.1007/978-3-662-46666-7_6, doi:10.1007/

978-3-662-46666-7_6.

179

180 BIBLIOGRAPHY

[AN17] Zaruhi Aslanyan and Flemming Nielson. Model checking exact cost for

attack scenarios. In Matteo Maffei and Mark Ryan, editors, Principles

of Security and Trust - 6th International Conference, POST 2017, Held

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-

ings, volume 10204 of Lecture Notes in Computer Science, pages 210–231.

Springer, 2017. Available from: https://doi.org/10.1007/978-3-662-

54455-6_10, doi:10.1007/978-3-662-54455-6_10.

[ANP16] Zaruhi Aslanyan, Flemming Nielson, and David Parker. Quantitative veri-

fication and synthesis of attack-defence scenarios. In IEEE 29th Computer

Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 -

July 1, 2016, pages 105–119. IEEE Computer Society, 2016. Available from:

https://doi.org/10.1109/CSF.2016.15, doi:10.1109/CSF.2016.15.

[ANS18] ANSSI. La Méthode EBIOS Risk Manager, 2018. Available from: https://

www.ssi.gouv.fr/guide/la-methode-ebios-risk-manager-le-guide/.

[APK17] Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Is My Attack

Tree Correct? In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,

editors, Computer Security - ESORICS 2017 - 22nd European Symposium

on Research in Computer Security, Oslo, Norway, September 11-15, 2017,

Proceedings, Part I, volume 10492 of Lecture Notes in Computer Science,

pages 83–102. Springer, 2017. Available from: https://doi.org/10.1007/

978-3-319-66402-6_7, doi:10.1007/978-3-319-66402-6_7.

[APK18] Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. Guided design of

attack trees: A system-based approach. In 31st IEEE Computer Security

Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12,

2018, pages 61–75. IEEE Computer Society, 2018. Available from: https:

//doi.org/10.1109/CSF.2018.00012, doi:10.1109/CSF.2018.00012.

[APSW18] Maxime Audinot, Sophie Pinchinat, François Schwarzentruber, and Flo-

rence Wacheux. Deciding the non-emptiness of attack trees. In George Cy-

benko, David J. Pym, and Barbara Fila, editors, 5th International Workshop

on Graphical Models for Security, held in conjunction with the Federated

Logic Conference (FLoC) 2018, GraMSec@FLoC 2018, Oxford, UK, July 8,

2018, Revised Selected Papers, volume 11086 of Lecture Notes in Computer

Science, pages 13–30. Springer, 2018. Available from: https://doi.org/

10.1007/978-3-030-15465-3_2, doi:10.1007/978-3-030-15465-3_2.

[Asl16a] Zaruhi Aslanyan. Stochastic Model Checking of Socio-Technical Models.

PhD thesis, Terchnical University of Denmark, Denmark, 2016.

BIBLIOGRAPHY 181

[Asl16b] Zaruhi Aslanyan. TREsPASS toolbox: Attack Tree Evaluator, 2016. pre-

sentation of a tool developed for the EU project TREsPASS. Available from:

https://vimeo.com/145070436.

[ats18] ATSyRA Studio, 2018. Available from: http://atsyra2.irisa.fr/.

[BCSW06] Gerald G. Brown, W. Matthew Carlyle, Javier Salmerón, and R. Kevin

Wood. Defending critical infrastructure. Interfaces, 36(6):530–544, 2006.

Available from: https://doi.org/10.1287/inte.1060.0252, doi:10.

1287/inte.1060.0252.

[BDL04] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial

on uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal Meth-

ods for the Design of Real-Time Systems, International School on Formal

Methods for the Design of Computer, Communication and Software Sys-

tems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lec-

tures, volume 3185 of Lecture Notes in Computer Science, pages 200–236.

Springer, 2004. Available from: https://doi.org/10.1007/978-3-540-

30080-9_7, doi:10.1007/978-3-540-30080-9_7.

[BEN05] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp solve: Open source

(Mixed-Integer) Linear Programming system, 2005. Version 5.5.2.5, dated

September 24, 2016. Available from: http://lpsolve.sourceforge.net/

5.5/.

[BK17] Angèle Bossuat and Barbara Kordy. Evil twins: Handling repetitions in

attack-defense trees - A survival guide. In Liu et al. [LMS18], pages 17–

37. Available from: https://doi.org/10.1007/978-3-319-74860-3_2,

doi:10.1007/978-3-319-74860-3_2.

[BKMS12] Alessandra Bagnato, Barbara Kordy, Per H̊akon Meland, and Patrick

Schweitzer. Attribute decoration of attack-defense trees. IJSSE, 3(2):1–

35, 2012. Available from: https://doi.org/10.4018/jsse.2012040101,

doi:10.4018/jsse.2012040101.

[BLWC17] Ahto Buldas, Aleksandr Lenin, Jan Willemson, and Anton Charnamord.

Simple Infeasibility Certificates for Attack Trees. In Satoshi Obana

and Koji Chida, editors, Advances in Information and Computer Secu-

rity - 12th International Workshop on Security, IWSEC 2017, Hiroshima,

Japan, August 30 - September 1, 2017, Proceedings, volume 10418 of Lec-

ture Notes in Computer Science, pages 39–55. Springer, 2017. Available

from: https://doi.org/10.1007/978-3-319-64200-0_3, doi:10.1007/

978-3-319-64200-0_3.

182 BIBLIOGRAPHY

[BM08] John Adrian Bondy and Uppaluri S. R. Murty. Graph Theory. Graduate

Texts in Mathematics. Springer, 2008. Available from: https://doi.org/

10.1007/978-1-84628-970-5, doi:10.1007/978-1-84628-970-5.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge

University Press, 1998.

[Car09] Matthew Carpenter. Advanced Metering Infrastructure Attack Methodol-

ogy, 2009. Accessed: 2019-02-20. Available from: http://docshare.tips/

ami-attack-methodology_5849023fb6d87fd2bb8b4806.html.

[CFK`13a] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and

Aistis Simaitis. Automatic verification of competitive stochastic systems.

Formal Methods in System Design, 43(1):61–92, 2013. Available from:

https://doi.org/10.1007/s10703-013-0183-7, doi:10.1007/s10703-

013-0183-7.

[CFK`13b] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and

Clemens Wiltsche. On stochastic games with multiple objectives. In

Krishnendu Chatterjee and Jiŕı Sgall, editors, Mathematical Foundations

of Computer Science 2013 - 38th International Symposium, MFCS 2013,

Klosterneuburg, Austria, August 26-30, 2013. Proceedings, volume 8087 of

Lecture Notes in Computer Science, pages 266–277. Springer, 2013. Avail-

able from: https://doi.org/10.1007/978-3-642-40313-2_25, doi:10.

1007/978-3-642-40313-2_25.

[Chv83] Vašek Chvátal. Linear Programming. W. H. Freeman, 1983.

[Cod06] D. Codetta-Raiteri. Bdd based analysis of parametric fault trees. In RAMS

’06. Annual Reliability and Maintainability Symposium, 2006., pages 442–

449, Jan 2006. doi:10.1109/RAMS.2006.1677414.

[DBL19] 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hobo-

ken, NJ, USA, June 25-28, 2019. IEEE, 2019. Available from: http://

ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8804915.

[EDRM06] Kenneth S. Edge, George C. Dalton II, Richard A. Raines, and Robert F.

Mills. Using Attack and Protection Trees to Analyze Threats and Defenses

to Homeland Security. In MILCOM, pages 1–7. IEEE, 2006.

[EK19] Julia Eisentraut and Jan Kretinsky. Expected Cost Analysis of Attack-

Defense Trees, 2019. To appear in QEST’19.

BIBLIOGRAPHY 183

[FFG`16] Marlon Fraile, Margaret Ford, Olga Gadyatskaya, Rajesh Kumar, Mariëlle

Stoelinga, and Rolando Trujillo-Rasua. Using attack-defense trees to an-

alyze threats and countermeasures in an ATM: A case study. In Jen-

nifer Horkoff, Manfred A. Jeusfeld, and Anne Persson, editors, The Prac-

tice of Enterprise Modeling - 9th IFIP WG 8.1. Working Conference,

PoEM 2016, Skövde, Sweden, November 8-10, 2016, Proceedings, volume

267 of Lecture Notes in Business Information Processing, pages 326–334.

Springer, 2016. Available from: https://doi.org/10.1007/978-3-319-

48393-1_24, doi:10.1007/978-3-319-48393-1_24.

[Fre19] Frederic Byumvuhore. FEATURED: REG steps up crackdown

on electricity theft , 2019. Accessed on: 2019-04-05. Avail-

able from: https://www.newtimes.co.rw/news/featured-reg-steps-

crackdown-electricity-theft.

[FW19a] Barbara Fila and Wojciech Wide l. Attack–defense trees for abusing optical

power meters: A case study and the OSEAD tool experience report. In

Graphical Security Modeling (GraMSec), volume 11720 of LNCS. Springer,

2019. (To appear).

[FW19b] Barbara Fila and Wojciech Wide l. Efficient Attack–Defense Tree Anal-

ysis using Pareto Attribute Domains. In 32nd IEEE Computer Security

Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019

[DBL19], pages 200–215. Available from: https://doi.org/10.1109/CSF.

2019.00021, doi:10.1109/CSF.2019.00021.

[GBTO07] Marc Geilen, Twan Basten, Bart D. Theelen, and Ralph Otten.

An Algebra of Pareto Points. Fundam. Inform., 78(1):35–74, 2007.

Available from: http://content.iospress.com/articles/fundamenta-

informaticae/fi78-1-03.

[GHL`16] Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen, Axel

Legay, Mads Chr. Olesen, and Danny Bøgsted Poulsen. Modelling attack-

defense trees using timed automata. In Martin Fränzle and Nicolas Markey,

editors, Formal Modeling and Analysis of Timed Systems - 14th Interna-

tional Conference, FORMATS 2016, Quebec, QC, Canada, August 24-26,

2016, Proceedings, volume 9884 of Lecture Notes in Computer Science, pages

35–50. Springer, 2016. Available from: https://doi.org/10.1007/978-3-

319-44878-7_3, doi:10.1007/978-3-319-44878-7_3.

[GJK`16] Olga Gadyatskaya, Ravi Jhawar, Piotr Kordy, Karim Lounis, Sjouke Mauw,

and Rolando Trujillo-Rasua. Attack Trees for Practical Security Assess-

184 BIBLIOGRAPHY

ment: Ranking of Attack Scenarios with ADTool 2.0. In QEST, volume

9826 of LNCS, pages 159–162. Springer, 2016.

[GWH`18] W. Guo, J. Wang, M. He, X. Ren, Q. Wang, and W. Tian. An effi-

cient method to transform a sat problem to a mixed integer linear pro-

gramming problem. In 2018 IEEE 4th International Conference on Com-

puter and Communications (ICCC), pages 1992–1996, Dec 2018. doi:

10.1109/CompComm.2018.8780844.

[has16] hashcat. https://hashcat.net/hashcat/, 2016. Accessed on: 2019-03-27.

[HJL`17] René Rydhof Hansen, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel

Legay, and Danny Bøgsted Poulsen. Quantitative Evaluation of Attack De-

fense Trees Using Stochastic Timed Automata. In Liu et al. [LMS18], pages

75–90. Available from: https://doi.org/10.1007/978-3-319-74860-

3_5, doi:10.1007/978-3-319-74860-3_5.

[HKCH17] Jin B. Hong, Dong Seong Kim, Chun-Jen Chung, and Dijiang Huang. A sur-

vey on the usability and practical applications of graphical security models.

Computer Science Review, 26:1–16, 2017. Available from: https://doi.

org/10.1016/j.cosrev.2017.09.001, doi:10.1016/j.cosrev.2017.09.

001.

[HMP91] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition

systems. In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever,

and Grzegorz Rozenberg, editors, Real-Time: Theory in Practice, REX

Workshop, Mook, The Netherlands, June 3-7, 1991, Proceedings, volume

600 of Lecture Notes in Computer Science, pages 226–251. Springer, 1991.

Available from: https://doi.org/10.1007/BFb0031995, doi:10.1007/

BFb0031995.

[HMT17] Ross Horne, Sjouke Mauw, and Alwen Tiu. Semantics for specialising attack

trees based on linear logic. Fundam. Inform., 153(1-2):57–86, 2017. Avail-

able from: https://doi.org/10.3233/FI-2017-1531, doi:10.3233/FI-

2017-1531.

[Hoo88] J.N. Hooker. A quantitative approach to logical inference. Decision Support

Systems, 4(1):45 – 69, 1988. Available from: http://www.sciencedirect.

com/science/article/pii/0167923688900978, doi:https://doi.org/

10.1016/0167-9236(88)90097-8.

[HRVG81] David F. Haasl, Norman H. Roberts, William E. Veselay, and Francine F.

Goldberg. Fault tree handbook. Technical report, Systems and Reliability

BIBLIOGRAPHY 185

Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory

Comission, 1981.

[IPHK15] Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof Hansen,

and Florian Kammüller. Attack tree generation by policy invalidation.

In Raja Naeem Akram and Sushil Jajodia, editors, Information Secu-

rity Theory and Practice - 9th IFIP WG 11.2 International Conference,

WISTP 2015 Heraklion, Crete, Greece, August 24-25, 2015 Proceedings, vol-

ume 9311 of Lecture Notes in Computer Science, pages 249–259. Springer,

2015. Available from: https://doi.org/10.1007/978-3-319-24018-3_

16, doi:10.1007/978-3-319-24018-3_16.

[ISO18] Risk management – Guideliness. Standard, International Organization for

Standardization, February 2018.

[JKM`15] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and

Rolando Trujillo-Rasua. Attack trees with sequential conjunction. In

Hannes Federrath and Dieter Gollmann, editors, ICT Systems Security and

Privacy Protection - 30th IFIP TC 11 International Conference, SEC 2015,

Hamburg, Germany, May 26-28, 2015, Proceedings, volume 455 of IFIP

Advances in Information and Communication Technology, pages 339–353.

Springer, 2015. Available from: https://doi.org/10.1007/978-3-319-

18467-8_23, doi:10.1007/978-3-319-18467-8_23.

[JW08] Aivo Jürgenson and Jan Willemson. Computing exact outcomes of multi-

parameter attack trees. In Robert Meersman and Zahir Tari, editors, On

the Move to Meaningful Internet Systems: OTM 2008, OTM 2008 Confed-

erated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE

2008, Monterrey, Mexico, November 9-14, 2008, Proceedings, Part II, vol-

ume 5332 of Lecture Notes in Computer Science, pages 1036–1051. Springer,

2008. Available from: https://doi.org/10.1007/978-3-540-88873-4_8,

doi:10.1007/978-3-540-88873-4_8.

[JW09] Aivo Jürgenson and Jan Willemson. Serial model for attack tree com-

putations. In Dong Hoon Lee and Seokhie Hong, editors, Information,

Security and Cryptology - ICISC 2009, 12th International Conference,

Seoul, Korea, December 2-4, 2009, Revised Selected Papers, volume 5984

of Lecture Notes in Computer Science, pages 118–128. Springer, 2009.

Available from: https://doi.org/10.1007/978-3-642-14423-3_9, doi:

10.1007/978-3-642-14423-3_9.

[KD13] Peter Kelly-Detwiler. Electricity Theft: A Bigger Issue Than

You Think, 2013. Accessed: 2019-02-20. Available from: https:

186 BIBLIOGRAPHY

//www.forbes.com/sites/peterdetwiler/2013/04/23/electricity-

theft-a-bigger-issue-than-you-think/#5475872972ef.

[Kel76] Robert M Keller. Formal verification of parallel programs. Communications

of the ACM, 19(7):371–384, 1976.

[Kia18] Kiana Wilburg. GPL lost US$450M in 19 years to electricity

theft, poor networks, 2018. Accessed on: 2019-04-05. Available

from: https://www.kaieteurnewsonline.com/2018/12/10/gpl-lost-

us450m-in-19-years-to-electricity-theft-poor-networks/.

[KLM19] M. H. R. Khouzani, Zhengliang Liu, and Pasquale Malacaria. Scalable

min-max multi-objective cyber-security optimisation over probabilistic at-

tack graphs. European Journal of Operational Research, 278(3):894–903,

2019. Available from: https://doi.org/10.1016/j.ejor.2019.04.035,

doi:10.1016/j.ejor.2019.04.035.

[KMRS14] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick Schweitzer.

Attack–defense trees. J. Log. Comput., 24(1):55–87, 2014. Avail-

able from: https://doi.org/10.1093/logcom/exs029, doi:10.1093/

logcom/exs029.

[KMS12] Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer. Quantitative ques-

tions on attack-defense trees. In Taekyoung Kwon, Mun-Kyu Lee, and

Daesung Kwon, editors, Information Security and Cryptology - ICISC 2012

- 15th International Conference, Seoul, Korea, November 28-30, 2012, Re-

vised Selected Papers, volume 7839 of Lecture Notes in Computer Science,

pages 49–64. Springer, 2012. Available from: https://doi.org/10.1007/

978-3-642-37682-5_5, doi:10.1007/978-3-642-37682-5_5.

[Koz97] Dexter Kozen. Automata and computability. Undergraduate texts in com-

puter science. Springer, 1997.

[KPS11] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. Computational aspects

of attack-defense trees. In Pascal Bouvry, Mieczyslaw A. Klopotek, Franck

Leprévost, Malgorzata Marciniak, Agnieszka Mykowiecka, and Henryk Ry-

binski, editors, Security and Intelligent Information Systems - International

Joint Conferences, SIIS 2011, Warsaw, Poland, June 13-14, 2011, Revised

Selected Papers, volume 7053 of Lecture Notes in Computer Science, pages

103–116. Springer, 2011. Available from: https://doi.org/10.1007/978-

3-642-25261-7_8, doi:10.1007/978-3-642-25261-7_8.

[KPS14] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer.

DAG-based attack and defense modeling: Don’t miss the forest for

BIBLIOGRAPHY 187

the attack trees. Computer Science Review, 13-14:1–38, 2014. Avail-

able from: https://doi.org/10.1016/j.cosrev.2014.07.001, doi:10.

1016/j.cosrev.2014.07.001.

[KPS16] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. Probabilistic reasoning

with graphical security models. Inf. Sci., 342:111–131, 2016. Available

from: https://doi.org/10.1016/j.ins.2016.01.010, doi:10.1016/j.

ins.2016.01.010.

[KPW16] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. Prism-games

2.0: A tool for multi-objective strategy synthesis for stochastic games. In

Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms

for the Construction and Analysis of Systems - 22nd International Confer-

ence, TACAS 2016, Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,

April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer Sci-

ence, pages 560–566. Springer, 2016. Available from: https://doi.org/10.

1007/978-3-662-49674-9_35, doi:10.1007/978-3-662-49674-9_35.

[Kre12] Brian Krebs. FBI: Smart Meter Hacks Likely to Spread, 2012. Accessed:

2019-02-20. Available from: https://krebsonsecurity.com/2012/04/

fbi-smart-meter-hacks-likely-to-spread/.

[KRS15] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative attack

tree analysis via priced timed automata. In Sriram Sankaranarayanan and

Enrico Vicario, editors, Formal Modeling and Analysis of Timed Systems -

13th International Conference, FORMATS 2015, Madrid, Spain, Septem-

ber 2-4, 2015, Proceedings, volume 9268 of Lecture Notes in Computer Sci-

ence, pages 156–171. Springer, 2015. Available from: https://doi.org/10.

1007/978-3-319-22975-1_11, doi:10.1007/978-3-319-22975-1_11.

[KSHdM02] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The

sample average approximation method for stochastic discrete optimization.

SIAM J. on Optimization, 12(2):479–502, 2002.

[KSR`18] Rajesh Kumar, Stefano Schivo, Enno Ruijters, Bugra Mehmet Yildiz,

David Huistra, Jacco Brandt, Arend Rensink, and Mariëlle Stoelinga. Ef-

fective analysis of attack trees: A model-driven approach. In Alessan-

dra Russo and Andy Schürr, editors, Fundamental Approaches to Soft-

ware Engineering, 21st International Conference, FASE 2018, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings., vol-

ume 10802 of Lecture Notes in Computer Science, pages 56–73. Springer,

188 BIBLIOGRAPHY

2018. Available from: https://doi.org/10.1007/978-3-319-89363-1_4,

doi:10.1007/978-3-319-89363-1_4.

[Kum18] Rajesh Kumar. Truth or Dare: Quantitative security risk analysis via attack

trees. PhD thesis, University of Twente, The Netherlands, 2018.

[KW17] Barbara Kordy and Wojciech Widel. How Well Can I Secure My System? In

Nadia Polikarpova and Steve Schneider, editors, Integrated Formal Meth-

ods - 13th International Conference, IFM 2017, Turin, Italy, September

20-22, 2017, Proceedings, volume 10510 of Lecture Notes in Computer Sci-

ence, pages 332–347. Springer, 2017. Available from: https://doi.org/10.

1007/978-3-319-66845-1_22, doi:10.1007/978-3-319-66845-1_22.

[KW18] Barbara Kordy and Wojciech Wide l. On Quantitative Analysis of Attack-

Defense Trees with Repeated Labels. In Lujo Bauer and Ralf Küsters,

editors, Principles of Security and Trust - 7th International Conference,

POST 2018, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,

Proceedings, volume 10804 of Lecture Notes in Computer Science, pages

325–346. Springer, 2018. Available from: https://doi.org/10.1007/978-

3-319-89722-6_14, doi:10.1007/978-3-319-89722-6_14.

[LLC14] Northeast Group LLC. World Loses $89.3 Billion to Electricity Theft

Annually, $58.7 Billion in Emerging Markets, 2014. Accessed: 2019-02-20.

Available from: https://www.prnewswire.com/news-releases/world-

loses-893-billion-to-electricity-theft-annually-587-billion-

in-emerging-markets-300006515.html.

[LMS18] Peng Liu, Sjouke Mauw, and Ketil Stølen, editors. Graphical Models for

Security - 4th International Workshop, GraMSec 2017, Santa Barbara, CA,

USA, August 21, 2017, Revised Selected Papers, volume 10744 of Lecture

Notes in Computer Science. Springer, 2018. Available from: https://doi.

org/10.1007/978-3-319-74860-3, doi:10.1007/978-3-319-74860-3.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a

nutshell. STTT, 1(1-2):134–152, 1997. Available from: https://doi.org/

10.1007/s100090050010, doi:10.1007/s100090050010.

[LSS11] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-Driven

Risk Analysis - The CORAS Approach. Springer, 2011. Available

from: https://doi.org/10.1007/978-3-642-12323-8, doi:10.1007/

978-3-642-12323-8.

BIBLIOGRAPHY 189

[MB90] James Moore and Jonathan Bard. The mixed integer linear bilevel pro-

gramming problem. Operations Research, 38:911–921, 10 1990. doi:

10.1287/opre.38.5.911.

[McC10] Jeff McCullough. Deterrent and detection of smart grid meter tamper-

ing and theft of electricity, water, or gas, 2010. Accessed: 2019-02-20.

Available from: https://www.elstersolutions.com/assets/downloads/

WP42-1010A.pdf.

[MHM16] Steve Muller, Carlo Harpes, and Cédric Muller. Fast and optimal counter-

measure selection for attack defence trees. In Jürgen Großmann, Michael

Felderer, and Fredrik Seehusen, editors, Risk Assessment and Risk-Driven

Quality Assurance - 4th International Workshop, RISK 2016, Held in Con-

junction with ICTSS 2016, Graz, Austria, October 18, 2016, Revised Se-

lected Papers, volume 10224 of Lecture Notes in Computer Science, pages

53–65, 2016. Available from: https://doi.org/10.1007/978-3-319-

57858-3_5, doi:10.1007/978-3-319-57858-3_5.

[MO05] Sjouke Mauw and Martijn Oostdijk. Foundations of Attack Trees. In

Dongho Won and Seungjoo Kim, editors, Information Security and Cryp-

tology - ICISC 2005, 8th International Conference, Seoul, Korea, Decem-

ber 1-2, 2005, Revised Selected Papers, volume 3935 of Lecture Notes

in Computer Science, pages 186–198. Springer, 2005. Available from:

https://doi.org/10.1007/11734727_17, doi:10.1007/11734727_17.

[MP19] Heiko Mantel and Christian W. Probst. On the Meaning and Purpose of

Attack Trees. In 32nd IEEE Computer Security Foundations Symposium,

CSF 2019, Hoboken, NJ, USA, June 25-28, 2019 [DBL19], pages 184–

199. Available from: https://doi.org/10.1109/CSF.2019.00020, doi:

10.1109/CSF.2019.00020.

[Ms.12] Ms. Smith. FBI Warns Smart Meter Hacking May Cost Utility Com-

panies $400 Million A Year, 2012. Accessed on: 2019-04-05. Available

from: https://www.csoonline.com/article/2222111/fbi-warns-

smart-meter-hacking-may-cost-utility-companies--400-million-

a-year.html.

[Nat15] National Electric Sector Cybersecurity Organization Resource (NESCOR).

Analysis of selected electric sector high risk failure scenarios, version

2.0, 2015. Available from: http://smartgrid.epri.com/doc/NESCOR%

20Detailed%20Failure%20Scenarios%20v2.pdf.

[NPMK18] Pantaleone Nespoli, Dimitrios Papamartzivanos, Félix Gómez Mármol,

and Georgios Kambourakis. Optimal countermeasures selection against

190 BIBLIOGRAPHY

cyber attacks: A comprehensive survey on reaction frameworks. IEEE

Communications Surveys and Tutorials, 20(2):1361–1396, 2018. Available

from: https://doi.org/10.1109/COMST.2017.2781126, doi:10.1109/

COMST.2017.2781126.

[NS03] Abraham Neyman and Sylvain Sorin. Stochastic Games and Applications,

volume 570 of NATO Science Series ASIC. Kluwer Academic Publishers,

2003.

[Oph16] Ophcrack. http://ophcrack.sourceforge.net/, 2016. Accessed on:

2017-03-17.

[PB10] Ludovic Piètre-Cambacédès and Marc Bouissou. Beyond attack trees:

Dynamic security modeling with boolean logic driven markov processes

(BDMP). In Eighth European Dependable Computing Conference, EDCC-8

2010, Valencia, Spain, 28-30 April 2010, pages 199–208. IEEE Computer

Society, 2010. Available from: https://doi.org/10.1109/EDCC.2010.32,

doi:10.1109/EDCC.2010.32.

[Pri13] Nicolas Privault. Discrete-time markov chains. In Understanding Markov

Chains: Examples and Applications, pages 77–94. Springer, 2013.

[RDR12] Terry R. Rakes, Jason K. Deane, and Loren Paul Rees. It security planning

under uncertainty for high-impact events. Omega, 40(1):79 – 88, 2012.

Available from: http://www.sciencedirect.com/science/article/pii/

S0305048311000582, doi:https://doi.org/10.1016/j.omega.2011.03.

008.

[RKT12] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Scalable optimal

countermeasure selection using implicit enumeration on attack countermea-

sure trees. In Robert S. Swarz, Philip Koopman, and Michel Cukier, edi-

tors, IEEE/IFIP International Conference on Dependable Systems and Net-

works, DSN 2012, Boston, MA, USA, June 25-28, 2012, pages 1–12. IEEE

Computer Society, 2012. Available from: https://doi.org/10.1109/DSN.

2012.6263940, doi:10.1109/DSN.2012.6263940.

[RS15] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of the

state-of-the-art in modeling, analysis and tools. Computer Science Review,

15:29–62, 2015. Available from: https://doi.org/10.1016/j.cosrev.

2015.03.001, doi:10.1016/j.cosrev.2015.03.001.

[RSS15] Atle Refsdal, Bjørnar Solhaug, and Ketil Stølen. Cyber-Risk Manage-

ment. Springer Briefs in Computer Science. Springer, 2015. Available

BIBLIOGRAPHY 191

from: https://doi.org/10.1007/978-3-319-23570-7, doi:10.1007/

978-3-319-23570-7.

[Saw13] Tadeusz Sawik. Selection of Optimal Countermeasure Portfolio in IT Secu-

rity Planning. Decis. Support Syst., 55(1):156–164, April 2013.

[Sch99] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

[SDR14] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures

on Stochastic Programming - Modeling and Theory, Second Edition, vol-

ume 16 of MOS-SIAM Series on Optimization. SIAM, 2014. Available

from: http://bookstore.siam.org/mo16/.

[Ste86] K. Stecher. Evaluation of large fault-trees with repeated events using an

efficient bottom-up algorithm. IEEE Transactions on Reliability, 35(1):51–

58, April 1986. doi:10.1109/TR.1986.4335344.

[T&15] T&D World. India To Spend $21.6 Billion On Smart Grid In-

frastructure By 2025, 2015. Accessed on: 2019-04-05. Avail-

able from: https://www.tdworld.com/smart-grid/india-spend-216-

billion-smart-grid-infrastructure-2025.

[TR-08] Improving Common Security Risk Analysis. Technical report, Research and

Technology Organisation, North Atlantic Treaty Organisation, September

2008.

[tR16] John the Ripper. https://www.openwall.com/john/, 2016. Accessed on:

2019-03-27.

[VNN14] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Automated gen-

eration of attack trees. In IEEE 27th Computer Security Foundations Sym-

posium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 337–350. IEEE

Computer Society, 2014. Available from: https://doi.org/10.1109/CSF.

2014.31, doi:10.1109/CSF.2014.31.

[WAFP19] Wojciech Wide l, Maxime Audinot, Barbara Fila, and Sophie Pinchinat.

Beyond 2014: Formal methods for attack tree–based security modeling.

ACM Comput. Surv., 52(4):75:1–75:36, August 2019. Available from: http:

//doi.acm.org/10.1145/3331524, doi:10.1145/3331524.

[Web12] Don C. Weber. Optiguard: A Smart Meter Assessment Toolkit, 2012. Ac-

cessed: 2019-02-20. Available from: https://media.blackhat.com/bh-

us-12/Briefings/Weber/BH_US_12_Weber_Eye_of_the_Meter_WP.pdf.

[Wei91] Jonathan D. Weiss. A system security engineering process. In 14th Annual

NCSC/NIST National Computer Security Conference, pages 572–581, 1991.

192 BIBLIOGRAPHY

[Wid19] Wojciech Wide l. adtrees. https://github.com/wwidel/adtrees, 2019.

Accessed on: 2019-08-30.

[WNJ06] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost network

hardening using attack graphs. Computer Communications, 29(18):3812–

3824, 2006. Available from: https://doi.org/10.1016/j.comcom.2006.

06.018, doi:10.1016/j.comcom.2006.06.018.

[Woo93] R.Kevin Wood. Deterministic network interdiction. Mathematical

and Computer Modelling, 17(2):1 – 18, 1993. Available from: http:

//www.sciencedirect.com/science/article/pii/089571779390236R,

doi:https://doi.org/10.1016/0895-7177(93)90236-R.

[ZALT19] Kaiyue Zheng, Laura A. Albert, James R. Luedtke, and Eli Towle. A

budgeted maximum multiple coverage model for cybersecurity planning and

management, 2019. IISE Transactions, to appear. doi:10.1080/24725854.

2019.1584832.

Index

abstract reduction system, 23

algebraic signature, 26

many-sorted, 27

attack tree, 11, 27, 28

attack–defense term, 29

corresponding to attack–defense tree, 29

attack–defense tree, 11, 27

attribute domain, 30

induced by a semiring, 33

non-increasing, 82

Pareto, 110

basic action, 11, 28

basic assignment for attribute, 31

Boolean function, 21

bottom-up evaluation of attributes, 31

clone, 14

necessary, 84

optional, 84

cloned basic action, 14

compatibility, 67

compatibility with the set semantics, 67

component, 25

countermeasure, 11

DAG, 24

directed acyclic graph, 24

directed graph, 24

connected, 25

dominance, 108

equivalence relation, 21

evaluation on the set semantics, 64

function, 20

Boolean, 21

goal achievement, 11, 35

ground term over a signature, 26

maximal rooted subdag, 28

minimal element,maximal element, 20

multiset, 22

sum of, 22

normal form

in abstract reduction systems, 23

of the bottom-up evaluation, 62

opponent, 11, 28

Pareto

attribute domain, 110

frontier, 109

optimal set, 109

point, 109

partial order, 19

canonical, 20

partially ordered set, 19

path, 24

proponent, 11, 28

reduction, 23

locally confluent, 23

terminating, 23

refinement, 11

reflexive transitive closure, 23

restriction of a function, 21

semiring, 20

commutative, 20

strategy, 64

193

194 INDEX

minimal, 68

optimal, 94

subdag, 25

induced, 25

subgraph, 25

induced, 25

total order, 21

totally ordered set, 21

unranked function, 22

	Résumé
	Contexte
	Introduction informelle aux arbres d'attaque et aux arbres d'attaque et de défense
	Questions de recherche et contributions
	Structure de la thèse

	Introduction
	Context
	Informal introduction to attack trees and attack–defense trees
	Research questions and our contributions
	Thesis structure

	Preliminaries
	Elements of set theory and abstract algebra
	Elements of term rewriting
	Elements of graph theory
	Elements of formal language theory
	Attack–defense trees
	Attribute domains for attack–defense trees

	State of the art
	Formal semantics for attack–defense trees
	Multiset semantics
	Set semantics
	SP semantics
	Path semantics
	Sequence semantics

	Quantitative analysis of security using attack–defense trees
	Approximation of the minimal cost of an attack in the presence of clones
	Pareto efficient strategies in attack–defense trees
	Stochastic game interpretation of attack–defense trees
	Attack–defense trees analysis with timed automata
	Multi-parameter analysis of security using attack–defense trees

	Selection of countermeasures in attack–defense scenarios

	Evaluation of attributes on attack–defense trees with clones
	Preliminaries
	Properties of the set semantics
	Computational aspects of the evaluation of attributes on the set semantics
	A method for evaluation of attributes in trees with clones
	Necessary and optional clones
	Repeated bottom-up evaluation of attributes
	Complexity of repeated bottom-up evaluation of attributes

	Extraction of optimal strategies
	Tree pruning procedure
	Tree reduction technique preserving optimal strategies
	Complexity of Algorithm 2

	Relations to other formalisms
	Fault trees
	Weighted monotone satisfiability problem
	Attack graphs

	Empirical validation
	Conclusion and future work

	Multi-parameter analysis of security
	Preliminaries
	Pareto attribute domains
	Proof of Theorem 5
	Complexity issues

	Empirical validation
	Case study
	Performance tests

	Conclusion and future work

	Selection of countermeasures in attack–defense scenarios
	Preliminaries
	Defense semantics
	Construction of the defense semantics

	Optimal selection of countermeasures
	The mathematical model
	Optimization problems in the deterministic case
	Stochastic model

	Conclusion and future work

	Tool support and a case study
	The OSEAD tool
	Case study: electricity theft scenario
	Description of the scenario
	Quantitative analysis of the tampering scenario
	Optimal strategies for the attacker and the defender
	Selection of optimal sets of countermeasures
	Attacks optimizing single parameter
	Attacks optimizing several parameters

	On the reliability of the computation framework
	Conclusion and future work

	Bibliography
	Index

