
HAL Id: tel-02921539
https://theses.hal.science/tel-02921539

Submitted on 25 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an understanding of neural networks :
mean-field incursions

Marylou Gabrié

To cite this version:
Marylou Gabrié. Towards an understanding of neural networks : mean-field incursions. Mathematical
Physics [math-ph]. Université Paris sciences et lettres, 2019. English. �NNT : 2019PSLEE035�. �tel-
02921539�

https://theses.hal.science/tel-02921539
https://hal.archives-ouvertes.fr

Préparée à l’École Normale Supérieure

Towards an understanding of neural networks:
Mean-field incursions

Soutenue par

Marylou Gabrié
Le 20 septembre 2019

École doctorale no564

Physique en Île-de-France

Spécialité
Physique Théorique

Composition du jury :

Giulio Biroli
LPENS Examinateur,

Président du jury
Florent Krzakala
LPENS Directeur de thèse

Yue Lu
Harvard University Rapporteur

Matteo Marsili
ICTP Examinateur

Manfred Opper
TU Berlin Rapporteur

Lenka Zdeborová
IPHT Invitée

My greatest concern was what to call it. I thought of calling it ’informa-
tion,’ but the word was overly used, so I decided to call it ’uncertainty.’
When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, “You should call it entropy, for two reasons. In the
first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more
importantly, no one really knows what entropy really is, so in a debate
you will always have the advantage.”

Claude Shannon

i

Contents

Acknowledgements v

Foreword vii

Index of notations and abbreviations xi

I Background 1

1 Machine learning with neural networks and mean-field approximations
(Context and motivation) 3
1.1 Neural networks for machine learning . 3

1.1.1 Supervised learning . 3
1.1.2 Unsupervised learning . 6

1.2 A brief history of mean-field methods for neural networks 9

2 Statistical inference and statistical physics
(Fundamental theoretical frameworks) 11
2.1 Statistical inference . 11

2.1.1 Statistical models representations . 11
2.1.2 Some inference questions in neural networks for machine learning 13
2.1.3 Challenges in inference . 15

2.2 Statistical physics of disordered systems . 16

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques) 19
3.1 Naive mean-field . 19

3.1.1 Variational derivation . 19
3.1.2 When does naive mean-field hold true? . 20

3.2 Thouless Anderson and Palmer equations . 21
3.2.1 Outline of the derivation . 21
3.2.2 Illustration on the Boltzmann machine and important remarks 22
3.2.3 Generalizing the Georges-Yedidia expansion 23

3.3 Belief propagation and approximate message passing 23
3.3.1 Generalized linear model . 23
3.3.2 Belief Propagation . 24
3.3.3 (Generalized) approximate message passing 25

3.4 Replica method . 29
3.4.1 Steps of a replica computation . 29
3.4.2 Assumptions and relation to other mean-field methods 31

3.5 Extensions of interest for this thesis . 32
3.5.1 Streaming AMP for online learning . 32
3.5.2 A special special case of GAMP: Cal-AMP 32
3.5.3 Algorithms and free energies beyond i.i.d. matrices 33
3.5.4 Model composition . 36

II Contributions 37

4 Mean-field inference for (deep) unsupervised learning 39
4.1 Mean-field inference in Boltzmann machines . 39

4.1.1 Georges-Yedidia expansion for binary Boltzmann machines 39

iii

0 Contents

4.1.2 Georges-Yedidia expansion for generalized Boltzmann machines 40
4.1.3 Application to RBMs and DBMs . 44
4.1.4 Adaptive-TAP fixed points for binary BM 46

4.2 Applications to Boltzmann machine learning with hidden units 47
4.2.1 Mean-field likelihood and deterministic training 48
4.2.2 Numerical experiments . 50

4.3 Application to Bayesian reconstruction . 55
4.3.1 Combining CS and RBM inference . 55
4.3.2 Numerical experiments . 56

4.4 Perspectives . 57

5 Mean-field inference for information theory in deep supervised learning 61
5.1 Mean-field entropy for multi-layer models . 61

5.1.1 Extension of the replica formula to multi-layer networks 61
5.1.2 Comparison with non-parametric entropy estimators 64

5.2 Mean-field information trajectories over training of deep networks 65
5.2.1 Tractable deep learning models . 66
5.2.2 Training experiments . 68

5.3 Further investigation of the information theoretic analysis of deep learning 72
5.3.1 Mutual information in noisy trainings . 72
5.3.2 Discussion . 74

6 Towards a model for deep Bayesian (online) learning 77
6.1 Cal-AMP revisited . 77

6.1.1 Derivation through AMP on vector variables 78
6.1.2 State Evolution for Cal-AMP . 82
6.1.3 Online algorithm and analysis . 86

6.2 Experimental validation on gain calibration . 87
6.2.1 Setting and update functions . 87
6.2.2 Offline results . 89
6.2.3 Online results . 90

6.3 Matrix factorization model and multi-layer networks 93
6.3.1 Constrained matrix factorization . 93
6.3.2 Multi-layer vectorized AMP . 93
6.3.3 AMP for constrained matrix factorization 94

6.4 Towards the analysis of learning in multi-layer neural networks 97

Conclusion and outlook 99

Appendix 103
A Vector Approximate Message Passing for the GLM 103
B Update functions for constrained matrix factorization 104

Bibliography 107

iv

Acknowledgements

For this dissertation:

For accepting to read and report my work, I warmly thank Manfred Opper
and Yue Lu, as well as Matteo Marsili and Giulio Biroli.

Pour leurs suggestions, leurs relectures ou leur ’baby-sitting’ pendant la
rédaction de ce manuscrit: merci à Adrien, Benjamin, Cédric, Florent, Frédéric,
Guilhem, Lauriane, Lenka et Maxence.

Pour ces années :

Un grand merci à Florent tout d’abord, pour m’avoir embarquée sur ce joli
sujet, pour tout ce qu’il a pu m’expliquer sur des coin de cahier et de tableau,
pour m’avoir écoutée répéter les mêmes présentations tant de fois, pour
m’avoir permis de voyager et découvrir autant de lieux et de personnes. Avec
Lenka, Guilhem, Léon et Giulio, merci aussi pour leurs encouragements, leur
confiance et leurs conseils.

J’ai aussi eu la chance de profiter de la collaboration et de l’enthousisasme des
membres du Sphinx-Smile: Francesco, Jean, Alaa, Christian, Thibault, Ale-
jandro, Laura, Alexis, Jonathan, Alia, Antoine, Benjamin, Sebastian, Stefano,
Antoine, Bruno, et les nouveaux, merci à vous ! Plus particulièrement, merci
aux très experts Eric et Andre avec qui j’ai partagé les projets présentés dans
cette thèse.

Je remercie infiniment les membres distinguées du DJFP, Danijela, Lauriane
et Sophie, pour leur amitié, et leurs oreilles attentives à mes interrogations
sur la thèse et sur la vie. Pour cela je remercie aussi Dimitri, Frédéric, Benôıt,
Gabriel et Levent.

Finalement merci à Manon, Clara et Mathilde que je sais toujours derrière moi.
Merci à mes parents, Pascale et Benôıt, de m’avoir transmis la motivation et
la curiosité, et de toujours aider mes projets tant qu’ils le peuvent. Merci enfin
à Rosalie d’être toujour chat, d’être encore et depuis toujours là.

v

Foreword
With the continuous improvement of storage techniques, the amount of available data is currently
growing exponentially. While it is not humanly feasible to treat all the data created, machine
learning is one possible response. It is a class of algorithms that allows to automatically infer
structure in large data sets. In particular, deep learning methods, based on neural networks, have
drastically improved performances in key fields of artificial intelligence such as image processing,
speech recognition or text mining. A good review of the first successes of this technology published
in 2015 is [79]. A few years later, the current state-of-the-art of this very active line of research is
difficult to envision globally. However, the complexity of deep neural networks remains an obstacle
to the understanding of their great efficiency. Made of many layers, each of which constituted of
many neurons with a collection of parameters, the set of variables describing completely a typical
neural network is impossible to only visualize. Instead we must consider aggregated quantities
to characterize these models and hopefully help and explain the learning process. The first open
challenge is therefore to identify the relevant observables to focus on. Often enough, what seems
interesting is also what is hard to calculate. In the high-dimensional regime we need to consider,
exact analytical solutions are unknown most of the time and numerical computations are ruled
out. Hence we need to find ways of approximations that are simultaneously simple enough to be
tractable and fine enough to retain interesting features.

In the context where dimensionality is an issue, physicists have experimented that macroscopic
behaviors are typically well described by the theoretical limit of infinitely large systems. Under
this thermodynamic limit, the statistical physics of disordered systems offers powerful frameworks
of approximation called mean-field theories. Nevertheless, the models studied by physicists usually
include assumptions of randomness and (statistical) homogeneities. Whereas in machine learning,
interactions between neurons, that are chosen by training algorithms with respect to specific data
sets, have no reason a priori to be as regular as mean-field theories assume. Thus, it is not
straightforward that methods suited in theoretical physics can be applied to deep learning. In
this dissertation we discuss cases where the bridge between these two disciplines can be crossed.
Thanks to this approach we propose new learning procedures and contribute to the theoretical
characterization of other popular, yet poorly understood, training algorithms.

Organization of the manuscript

The first part of this dissertation covers the basic theoretical concepts that are relevant for the
presentation of our original contributions.

In Chapter 1 we wish to clarify the context and motivation of our work by giving a minimal
introduction to methods and challenges in deep learning that will be of particular interest to
the physicist reader. This Chapter is also the occasion to recall some of the historical connections
between learning and mean-field theories. In Chapter 2, we introduce the conceptual frameworks of
statistical inference and statistical physics that are underlying our approach. Finally, we present
mean-field methods in Chapter 3 with several goals in mind. First, we wish to introduce the
different techniques of derivation that will be used in the second part of the dissertation. Our
second aim is to provide intuitions on where the approximation lies in mean-field computations,
or in other words on what they neglect. Third, we attempt to clarify how the different methods
are related, when they are equivalent and when they complement. Lastly, we present some recent
advances on which the contributions presented in this dissertation are building.

The second part is divided into three Chapters, presenting different directions of research in
the training and analysis of neural networks.

In Chapter 4, we present our publications on the unsupervised learning of Boltzmann machines
with hidden units:

vii

0 Contents

[42] Marylou Gabrié, Eric W. Tramel, and Florent Krzakala. Training Restricted Boltzmann
Machines via the Thouless-Anderson-Palmer Free Energy. Advances in Advances in Neural
Information Processing Systems 28, pages 640—-648, jun 2015.

[151] Eric W. Tramel, Marylou Gabrié, Andre Manoel, Francesco Caltagirone, and Florent Krza-
kala. Deterministic and Generalized Framework for Unsupervised Learning with Restricted
Boltzmann Machines. Physical Review X, 8(4):041006, oct 2018.

[150] Eric W. Tramel, Andre Manoel, Francesco Caltagirone, Marylou Gabrié, and Florent Krza-
kala. Inferring sparsity: Compressed sensing using generalized restricted Boltzmann ma-
chines. In 2016 IEEE Information Theory Workshop (ITW), pages 265–269. IEEE, sep
2016.

[148] Eric W. Tramel, Marylou Gabrié, and Florent Krzakala. Boltzmann.jl,
https://github.com/sphinxteam/Boltzmann.jl, 2015.

Our main contributions consist in (i) the derivation of the generalization of the Plefka expan-
sion for mean-field inference to real-valued variables for pairwise models recovering Approximate
Message Passing and (ii) the design of a training algorithm for Restricted and Deep Boltzmann
Machines that we validate in numerical experiments for both binary and real-valued data sets and
for which we provide a public implementation in Julia. We also discuss results obtained with E. W.
Tramel and A. Manoel regarding how the mean-field framework allows to improve reconstruction
performance in Bayesian inference by using Restricted Boltzmann Machines as priors.

In Chapter 5, we discuss our results around an information theoretic approach to the general-
ization puzzle in the supervised learning of deep neural networks. While most of our contributions
are published in the following reference, we also present here further considerations formulated in
collaboration with Léon Bottou.

[40] Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent
Krzakala, and Lenka Zdeborová. Entropy and mutual information in models of deep neural
networks. In Advances in Neural Information Processing Systems 31, pages 1826—-1836,
mar 2018.

[41] Marylou Gabrié, Andre Manoel, Gabriel Samain, and Florent Krzakala. Learning Synthetic
Data https://github.com/marylou-gabrie/learning-synthetic-data, 2018.

[83] Andre Manoel, Marylou Gabrié, and Florent Krzakala. Deep Neural Networks Entropy from
Replicas https://github.com/sphinxteam/dnner, 2018.

Our first contribution is (i) the derivation of an asymptotic formula for entropies in multi-layer
neural networks with rotationally invariant weight matrices and its implementation as a python
package. Additionally, (ii) we design a teacher-student scenario allowing arbitrary depth, non-
linearities and non-trivial synthetic data distributions, also implemented as a python package,
for which the proposed entropy formula is applicable throughout the learning. Lastly, (iii) we
discuss via numerical experiments, using the proposed formula and other non-parametric methods
of estimation, issues in the considered information theoretic approach to deep learning theory.

Finally in Chapter 6 we discuss unpublished works in signal processing that we believe offer
a promising direction to approach an analysis of Bayesian learning in multi-layer neural networks
under a teacher-student scenario. More precisely we revisit the calibration-approximation message
passing algorithm (Cal-AMP) [130, 131] with the following contributions: (i) we provide an original
derivation of the corresponding State Evolution, (ii) we provide a generalization of the algorithm
and State Evolution in the case of online learning and (iii) we provide numerical tests of the last two
results in the particular case of gain calibration. To conclude, (iv) we explain how this algorithm
and analysis can help study the Bayesian learning, under a specific weight constraint, of multi-layer
neural networks both for supervised and unsupervised learning.

viii

https://github.com/sphinxteam/Boltzmann.jl
https://github.com/marylou-gabrie/learning-synthetic-data
https://github.com/sphinxteam/dnner

0.0 Contents

Additional work not covered in this dissertation

This dissertation does not cover an additional publication, using again mean-field methods yet in
the context of Constrained Satisfaction Problems (CSPs), unrelated to deep learning,

[39] Marylou Gabrié, Varsha Dani, Guilhem Semerjian, and Lenka Zdeborová. Phase transi-
tions in the q-coloring of random hypergraphs. Journal of Physics A: Mathematical and
Theoretical, 50(50), 2017.

In this paper, we characterize the set of solutions for random instances of the specific con-
strained satisfaction problem of hypergraph q-coloring. The publication briefly reviews the statis-
tical physics approach to random CSPs. Results are obtained with a mean-field method that we
do not present in this manuscript: the one-step-replica-symmetry-breaking (1RSB) cavity formal-
ism. From its novel application to hypergraph q-coloring we make the following contributions: (i)
we compute the thresholds for various phase transitions undergone by the set of solutions in this
problem. Focusing on the case of bicoloring (q = 2) studied in previous works, (ii) we find that
for certain graph ensembles the colorability threshold is actually not given by the (1RSB) analysis
due to an instability that was missed before, (iii) we also show that distinct 1RSB solutions can
coexist in the colorable region. Lastly, (iv) we derive asymptotic expansions for phase transition
thresholds with respect to parameters of the random graph ensembles.

ix

Index of notations and abbreviations
[N] Set of integers from 1 to N
δ(·) Dirac distribution
σ(x) = (1 + e−x)−1 Sigmoid
relu(x) = max(0, x) Rectified Linear Unit
X Matrix
x Vector
I
N
∈ RN×N Identity matrix

〈·〉 Boltzmann average
O(N) ⊂ RN×N Orthogonal ensemble
AMP Approximate message passing
BP Belief Propagation
CD Contrastive Divergence
DAG Directed Acyclic Graph
DBM Deep Boltzmann Machine
GAMP Generalized Approximate message passing
GLM Generalized Linear Model
i.i.d. independent identically distributed
r-BP relaxed Beleif Propagation
RS Replica Symmetric
RBM Restricted Boltzmann Machine
SE State Evolution
SGD Stochastic Gradient Descent
SK Sherrington-Kirkpatrick
TAP Thouless Anderson Palmer
VAE Variational Autoencoder
VAMP Vector Approximate message passing

xi

Part I

Background

1

1 Machine learning with neural networks
and mean-field approximations
(Context and motivation)

This chapter provides the fundamental concepts in machine learning that will be used throughout
this thesis. A comprehensive reference is [49]. We also take this chapter as an opportunity to
introduce the current challenges in the understanding of deep learning. With these first elements
of context, we briefly review the historical connections between mean-field methods coming from
statistical physics and neural networks used for machine learning.

1.1 Neural networks for machine learning

Machine learning is traditionally divided into three classes of problems: supervised, unsupervised
and reinforcement learning. For all of them, the advent of deep learning techniques, relying on deep
neural networks, has brought great leaps forward in terms of performance and opened the way to
new applications. Nevertheless, the utterly efficient machinery of these algorithms remains full of
theoretical puzzles. In this Section we quickly cover key concepts in supervised and unsupervised
machine learning that will be useful to understand the context of this thesis and motivate its
contributions.

1.1.1 Supervised learning

Learning under supervision

Supervised learning aims at discovering systematic input to output mappings from examples. For
instance, classification is a typical supervised learning problem. For example, from a set of pictures
of cats and dogs labelled accordingly, the goal is to find a function able to predict in any new picture
the species of the displayed pet.

In practice, the training set is a collection of P example pairs D = {x(k), y(k)}
P
k=1 from an input

data space X ⊆ RN and an output data space Y ⊆ RM . Formally, they are assumed to be i.i.d.
samples from a joint distribution p(x, y). The predictor h is chosen by a training algorithm from
a hypothesis class, a set of functions from X to Y, so as to minimize the error on the training set.
This error is formalized as the empirical risk

R̂(h, `,D) = 1
P

P∑
k=1

`(y(k), h(x(k))), (1.1)

where the definition involves a loss function ` : Y × Y → R measuring differences in the output
space. This learning objective nevertheless does not guarantee generalization, i.e. the ability of
the predictor h to be accurate on inputs x that are not in the training set. It is a surrogate for the
ideal, but unavailable, population risk

R(h, `) = Ex,y
[
`(y, h(x))

]
=
∫
X ,Y

dx dy p(x, y)`(y, h(x)), (1.2)

expressed as an expectation over the joint distribution p(y, x). The different choices of hypothesis
classes and training algorithms yield the now crowded zoo of supervised learning algorithms.

Representation ability of deep neural networks

In the context of supervised learning, deep neural networks enter the picture in the quality of
parametrized hypothesis class. Let us first quickly recall the simplest network, the perceptron. It

3

1 Machine learning with neural networks and mean-field approximations
(Context and motivation)

x1

x2

x1

x2

ŷ

x1

x2

bw

ŷ = sign[w1x1 + w1x2 + b]

x1

x2

y = +1
y = �1

Figure 1.1: Let’s assume we wish to classify data points x ∈ R2 with labels y = ±1. We choose as
an hypothesis class the perceptron sketched on the left with sign activation. For given weight vector
w and bias b the plane is divided by a decision boundary assigning labels. If the training data are
linearly separable, then it is possible to perfectly predict all the labels with the perceptron, otherwise
it is impossible.

corresponds to single neuron, so a function from RN to Y ⊂ R applying an activation function f
to a weighted sum of its inputs shifted by a bias b ∈ R,

ŷ = hw,b(x) = f(w>x+ b) (1.3)

where the weights are collected in the vector w ∈ RN . From a practical standpoint this very simple
model can only solve the classification of linearly separable groups (see figure 1.1). Yet from the
point of view of learning theory, it has been the starting point of a rich statistical physics literature
as will be discussed in section 1.2.

Combining several neurons into networks defines more complex functions. The universal ap-
proximation theorem [30, 61] proves that the following two-layer network architecture can approx-
imate any well-behaved function with a finite number of neurons,

ŷ = hθ(x) = w(2)>f(W (1)x+ b) =
M∑
α=1

w(2)
α f(w(1)

α

>
x+ bα), θ = {w(2),W (1), b} (1.4)

for f a bounded, non-constant, continuous scalar function, acting component-wise. In the language
of deep learning this network has one hidden layer of M units. Input weight vectors w(1)

α ∈ RN are
collected in a weight matrix W (1) ∈ RM×N . Here, and in the following, the notation θ is used as
short for the collection of adjustable parameters. The universal approximation theorem is a strong
result in terms of representative power of neural networks but it is not constructive. It does not
tell us what is the minimal M to approximate a given function, nor what are the optimal values
of the parameters w(2),W (1) and b. These questions remain unsolved to this date and practice is
widely led by empirical considerations.

In applications, neural networks with multiple hidden layers were found more effective. A
generic neural network of depth L is the function

ŷ = hθ(x) = f(W (L)f(W (L−1) · · · f(W (1)x+ b(1)) · · ·+ b(L−1)) + b(L)), (1.5)

θ = {W (l) ∈ RNl×Nl−1 , b(l) ∈ RNl ; l = 1 · · ·L}, (1.6)

where N0 = N is the dimension and the input and NL = M is the dimension of the output. The
architecture is fixed by specifying the number of neurons, or width, of the hidden layers {Nl}L−1

l=1 .
The latter can be denoted t(l) ∈ RNl and follow the recursion

t(1) = f(W (1)x+ b(1)) , (1.7)

t(l) = f(W (l)t(l−1) + b(l)) , l = 2 · · ·L− 1 , (1.8)

ŷ = f(W (L)t(L−1) + b(L)) . (1.9)

Fixing the activation functions and the architecture of a neural network defines an hypothesis class.
It is crucial that activations introduce non-linearities; the most common are the hyperbolic tangent
tanh and the rectified linear unit defined as relu(x) = max(0, x). Note that it is also possible, albeit

4

1.1 Neural networks for machine learning

uncommon in supervised learning applications, to define stochastic neural networks by using noisy
activation functions.

An originally proposed intuition for the advantage of depth is that it enables to treat the
information in a hierarchical manner; either looking at different scales in different layers, or learning
more and more abstract representations [13]. Nevertheless, there is no theory to this day clarifying
why in practice ‘the deeper the better’.

Neural network training

Given an architecture defining hθ, the supervised learning objective is to minimize the empirical
risk R̂ with respect to the parameters θ. This optimization problems lives in the dimension of the
number of parameters which can range from tens to millions. The idea underlying the majority
of training algorithms is to perform a gradient descent (GD) from a random initialization of the
parameters:

θ0 ∼ pθ0(θ0) (1.10)

θt+1 ← θt − η∇θR̂ = θt − η
1
P

P∑
k=1
∇θ`

(
y(k), hθt

(
x(k)

))
. (1.11)

The parameter η is the learning rate, controlling the size of the step in the direction of decreasing
gradient per iteration. The computation of the gradients can be performed in time scaling linearly
with depth by applying the derivative chain-rule leading to the back-propagation algorithm [49]. A
popular alternative to gradient descent is stochastic gradient descent (SGD) where the sum over
the gradients for the entire training set is replaced by the sum over a small number of samples,
randomly selected at each step [121, 19].

During the training iterations, one typically monitors the training error (another name for
the empirical risk given a training data set) and the validation error. The latter corresponds to
the empirical risk computed on a set of points held-out from the training set, the validation set,
to assess the generalization ability of the model either along the training or in order to select
hyperparameters of training such as the value of the learning rate. A posteriori, the performance
of the model is judged from the generalization error, which is evaluated on the never seen test set.
While two different training algorithms (e.g. GD vs SGD) may achieve zero training error, they
may differ in the level of generalization they typically reach.

Open questions and challenges

Building on the fundamental concepts presented in the previous paragraphs, practitioners managed
to bring deep learning to unanticipated performances in the automatic processing of images, speech
and text (see [79] for a few years old review). Still, many of the greatest successes in the field of
neural network where obtained using ingenious tricks while many fundamental theoretical questions
at a very basic level remain unresolved.

Regarding the optimization first, (S)GD training generally discovers parameters close to zero
risk. Yet gradient descent is guaranteed to converge to the neighborhood of a global minimum
only for a convex function and is otherwise expected to get stuck in a local minimum. Therefore
efficiency of gradient based optimization is a priori a paradox given the empirical risk R̂ is non-
convex in the parameters θ. Second, the representation capacity of deep learning models is also
poorly understood. Results in the literature that relate the size and architecture of a network to a
measure of its ability to learn are too far from realistic settings to guide choices of practitioners. On
the one hand, traditional bounds in statistics, considering worst cases, appear overly pessimistic.
On the other hand, historical statistical physics analyses of learning, briefly reviewed in Section 1.2,
only concern simple architectures and synthetic data. This lack of theory results in potentially
important waste: in terms of time lost by engineers in trial and error to optimize their solution,
and in terms of electrical resources used to train and re-train possibly oversized networks and
store potentially un-necessarily large training data sets. Lastly, the generalization ability of deep
neural networks trained by gradient descent is still unaccounted for. The size of training data
sets is limited by the cost of human labelling. Thus training a deep and wide network amounts

5

1 Machine learning with neural networks and mean-field approximations
(Context and motivation)

in practice to fitting a model of millions of degrees of freedom against a somehow relatively small
amount of data points. Nevertheless it does not systematically lead to overfitting. The resulting
neural networks can have good predictions both on inputs seen during training and on new inputs.

The success of deep learning, beyond these apparent theoretical puzzles,certainly lies in the
interplay of advantageous properties of training algorithms, the neural network hypothesis class
and structures in typical data (e.g. real images, conversations). Disentangling the role of the
different ingredients is a very active line of research (see [153] for a review) among which this thesis
is a modest contribution to. In particular, Chapter 5 touches the question of the generalization
capability of neural networks.

1.1.2 Unsupervised learning

Density estimation and generative modelling

The goal of unsupervised learning is to directly extract structure from data. Compared to the
supervised learning setting the training data set is made of a set of example inputs D = {x(k)}Pk=1
without corresponding outputs. A simple example of unsupervised learning is clustering, consist-
ing in the discovery of unlabelled subgroups in the training data. Most unsupervised learning
algorithms either implicitly or explicitly adopt a probabilistic viewpoint and implement density
estimation. The idea is to approximate the true density p(x) from which the training data was
sampled by the closest (in various senses) element among a family of parametrized distributions
over the input space {pθ(.), θ ∈ RNθ}. The selected pθ is then a model of the data. Structural
properties of the data can sometimes be inferred from it, such as dependencies according to its
factorization (see Section 2.1.1). If the model pθ is easy to sample, it can also be used to generate
new inputs comparable to the training data points - which leads to the terminology of generative
models. In this context, unsupervised deep learning exploits the representational power of deep
neural networks to create sophisticated candidate pθ.

A common formalization of the learning objective is to maximize the likelihood, defined as the
logarithm of the probability of i.i.d. draws from the model pθ to have generated the training data
D = {x(k)}Pk=1,

max
θ

P∏
k=1

pθ(x(k)) ⇐⇒ max
θ

P∑
k=1

log pθ(x(k)). (1.12)

The second logarithmic additive formulation is generally preferred. It can be interpreted as
the minimization of the Kullback-Leibler divergence between the empirical distribution pD(x) =∑P
k=1 δ(x− x(k))/P and the model pθ:

min
θ

KL(pD||pθ) = min
θ

∫
dx pD(x) log pD(x)

pθ(x) ⇐⇒ max
θ

P∑
k=1

log pθ(x(k)) , (1.13)

although considering the divergence with the discrete empirical measure is slightly abusive.
The detail of the optimization algorithm here depends on the specification of pθ. As we will

see, the likelihood in itself is often intractable and learning consists in a gradient ascent on at best
a lower bound, otherwise an approximation, of the likelihood.

A few years ago, an alternative strategy called adversarial training was introduced [50] leading
to a remarkable quality of samples produced by generative models. However, the training of
models appearing in this thesis, presented in the following paragraphs, will fall under the classical
maximum-likelihood paradigm.

Deep Variational Autoencoders

A variational autoencoder (VAE) [71, 120] defines a density pθ obtained by propagating a simple
distribution through a deep neural network. It can be formalized by introducing a latent variable
z ∈ RN and a deep neural network hθ similar to (1.5) of input dimension N :

z ∼ pz(z) (1.14)
x ∼ pθ(x|z) = pout(x|hθ(z)), (1.15)

6

1.1 Neural networks for machine learning

where pz is typically a factorized distribution on RN easy to sample (e.g. a standard normal
distribution), and pout(.|hθ(z)) is for instance a multivariate Gaussian distribution with mean and
covariance that are function of hθ(z). The computation of the likelihood of one training sample
x(k) requires then the marginalization over the latent variable z,

pθ(x) =
∫

dz pout(x|hθ(z))pz(z). (1.16)

This multidimensional integral cannot be performed analytically in the general case. It is also
hard to evaluate numerically as it does not factorize over the dimensions of z which are mixed
by the neural network hθ. Yet a lower bound on the log-likelihood can be defined by introduc-
ing a tractable conditional distribution q(z|x) that will play the role of an approximation of the
intractable posterior distribution pθ(z|x) implicitly defined by the model:

log pθ(x) =
∫

dz q(z|x) log pθ(x) (1.17)

=
∫

dz q(z|x) log pθ(x, z)
pθ(z|x)

=
∫

dz q(z|x) log pθ(x, z)
pθ(z|x) ×

q(z|x)
q(z|x)

=
∫

dz q(z|x)
[
− log q(z|x) + log pθ(x, z)

]
+ KL(q(z|x)||pθ(z|x))

≥
∫

dz q(z|x)
[
− log q(z|x) + log pθ(x, z)

]
= LB(q, θ, x) (1.18)

where the last inequality comes from the fact that a KL-divergence is always positive; it is replaced
by an equality if and only if q(z|x) = pθ(z|x). Provided q has a tractable expression and is
easy to sample, the remaining lower bound LB(q, θ, x) can be approximated by a Monte Carlo
method. Maximum likelihood learning is then approached by the maximization of the lower bound
LB(q, θ, x), which requires in practice to parametrize the tractable posterior q = qφ as well, typically
with a neural network. In order to adjust the parameters θ and φ through gradient descent a last
reformulation is nevertheless necessary. The expectation over qφ estimated via Monte Carlo indeed
involves the φ parameters. To disentangle this dependence z ∼ qφ(z|x) must be rewritten as
z = g(ε, φ, x) with ε ∼ pε(ε) independent of φ. This so-called re-parametrization trick allows to
compute the gradients of LB(qφ, θ, x) with respect to θ and φ.

In this thesis we will mention variational autoencoders in the perspectives of Chapter 4 and
Chapter 6. We will discuss a different proposition to approximate the likelihood and the alternative
Bayesian learning objective involving prior knowledge on the parameters θ.

Restricted and Deep Boltzmann Machines

Models described in the preceding paragraphs comprised only feed forward neural networks. In feed
forward neural networks, the state or value of successive layers is determined following the recursion
(1.7) - (1.9), in one pass from inputs to outputs. Boltzmann machines instead involve undirected
neural networks which consist of stochastic neurons with symmetric interactions. The probability
associated to a neuron state is a function of neighboring neurons, themselves reciprocally function
of the first neuron. Sampling a configuration therefore requires an equilibration in the place of a
simple forward pass.

A Restricted Boltzmann Machine (RBM) [3, 139] with M hidden neurons defines a joint distri-
bution over an input (or visible) layer x ∈ {0, 1}N and a hidden layer t ∈ {0, 1}M

pθ(x, t) = 1
Z
e
a>x+b>t+x>Wt

, θ = {W,a, b} , (1.19)

where Z is the normalization factor, similar to the partition function of statistical physics. The
parametric density model over inputs is then the marginal pθ(x) =

∑
t∈{0,1}M pθ(x, t). Identically

to VAEs, RBMs can represent sophisticated distributions at the cost of an intractable likelihood.

7

1 Machine learning with neural networks and mean-field approximations
(Context and motivation)

Indeed the summation over 2M+N terms in the partition function cannot be simplified by an
analytical trick and is only realistically doable for small models.

This intractibility remains a priori an issue for the learning by gradient ascent of the log-
likelihood. Given an input training point x(k), the derivatives of log p(x(k)) with respect to trainable
parameters are

∇a log p(x(k)) = x(k) − 〈x〉 , (1.20a)
∇b log p(x(k)) = 〈t〉x(k)

− 〈t〉 , (1.20b)

∇W log p(x(k)) = 〈t x>〉x(k)
− 〈t x>〉, (1.20c)

where we introduce the notation 〈.〉 for the average over the RBM measure (1.19) and 〈.〉x(k)
for the

average over the RBM measure conditioned on x = x(k), also called the clamped RBM measure.
To approximate the gradients, sampling over the clamped measure is actually easy as the hidden
neurons are independent when conditioned on the inputs; in other words p(t|x) is factorized.
Yet sampling over the complete RBM measure is more involved and requires for example the
equilibration of a Markov Chain. It is a costly operation that would need to be repeated at each
parameter update in the gradient ascent. Instead it is commonly approximated by contrastive
divergence (CD) [55], which approximates the 〈.〉 in (1.20) by the final state of a Monte Carlo
Markov chain initialized in x(k) and updated for a small number of steps.

RBMs were the first effective generative models using neural networks. They found applications
in various domains including dimensionality reduction [57], classification [78], collaborative filtering
[125], feature learning [27], and topic modeling [58]. Used for an unsupervised pre-training of deep
neural networks layer by layer [56, 14], they also played a crucial role in the take-off of supervised
deep learning.

Furthermore, they can be generalized to Deep Boltzmann Machines (DBMs) [123], where several
hidden layers are stacked on top of each other. The measure defined by a DBM of depth L is

pθ(x, t) = 1
Z
e
a>x+x>W (1)t+b(L)>t(L)+

∑L−1
l=1

t(l)
>
W (l+1)t(l+1)+b(l)>t(l) (1.21)

θ = {a , b(l), W (l) ; l = 1 · · ·L}. (1.22)

Similarly to (1.20), the log-likelihood gradient ascent with respect to the parameters involves
averages over the DBM measure and the corresponding clamped measure. In this case both of
them involve an equilibration to be approximated by a Markov Chain. The contrastive divergence
algorithm can be generalized to circumvent this difficulty, but the approximation of the gradients
appear all the more less controlled.

Open questions and challenges

Generative models involving neural networks such as VAE, GANs and RBMs have great expressive
powers at the cost of not being amenable to exact treatment. Their training, and sometimes even
their sampling requires approximations. From a practical standpoint, whether these approxima-
tions can be either made more accurate or less costly is an open direction of research. Another
important related question is the evaluation of the performance of generative models [122]. To
start with the objective function of training is very often itself intractable (e.g. the likelihood of
a VAE or a RBM), and beyond this objective, the unsupervised setting does not define a priori
a test task for the performance of the model. Additionally, unsupervised deep learning inherits
some of the theoretical puzzles already discussed in the supervised learning section. In particular,
assessing the difficulty to represent a distribution and select a sufficient minimal model and/or
training data set seems today far out of reach of theory.

In this thesis, unsupervised learning models will be discussed in particular in Chapter 4. A
novel deterministic framework for RBMs and DBMs with a tractable learning objective is derived,
allowing to exploit efficiently their representative power.

8

1.2 A brief history of mean-field methods for neural networks

1.2 A brief history of mean-field methods for neural networks

The mathematical description of learning implies to deal with a large set of correlated random vari-
ables: the data, the network parameters, and the resulting neuron activations. The major hurdle
in our theoretical understanding of algorithms based on deep neural networks is the difficulty in
performing computations involving these high-dimensional multivariate distributions. This is one
aspect of the so-called curse of dimensionality. Here, exact computations are almost never possible
and numerical treatments are unrealistically costly. Finding good approximations is therefore cru-
cial. Mean-field methods can be understood as one approximation strategy. Originally developed
in the statistical physics literature, their applications to machine learning, and in particular to
neural networks, already have a long history and significant contributions to their records.

In the 80s and 90s, a series of works pioneered the analysis of learning with neural networks
through the statistical physics lense. By focusing on simple models with simple data distributions,
and relying on the mean-field method of replicas, these papers managed to predict quantitatively
important properties such as capacities - the number of training data point that could be memorized
by a model - or learning curves - the generalization error (or population risk) of a model as a
function of the size of the training set. This effort was initiated by the study of the Hopfield
model [5], an undirected neural network providing associative memory [60]. The analysis of feed
forward networks with simple architectures followed (among which [44, 45, 104, 156, 95, 106, 37,
96, 7]). Physicists, accustomed to studying natural phenomena, fruitfully brought the tradition of
modelling to their investigation of learning. Their approach was in contrast to the focus of the
machine learning theorists on ‘worst case’ guarantees specific to an hypothesis class and that must
hold for any data distribution (e.g. Vapnik-Chervonenkis dimension and Rademacher complexity).
The originality of their approach, along with the heuristic character of the derivations of mean-field
approximations, may nonetheless explain the minor impact of their theoretical contributions in the
machine learning community at the time.

Before the deep learning era, mean-field methods probably had a greater influence in the practice
of unsupervised learning through density estimation, where we saw that approximations are almost
always necessary. In particular the simplest method of naive mean-field, that will also be our first
example in Chapter 3, was easily adopted and even extended by statisticians (see e.g. [154] for a
recent textbook and [16] for a recent review). The belief propagation algorithm is another example
of a well known mean-field methods by machine learners - it was actually discovered in both
communities. Yet, these applications rarely involved neural networks and rather relied on simple
probabilistic models such as mixtures of elementary distributions. They also did not take full
advantage of the latest, simultaneous developments in statistical physics of the mean-field theory
of disordered systems.

In this context, the inverse Ising problem has been a notable exception. The underlying ques-
tion, rooted in theoretical statistical physics, is to infer the parameters of an Ising model given a
set of equilibrium configurations. This corresponds to the unsupervised learning of the parameters
of a Boltzmann machine (without hidden units) in the machine learning jargon. The correspond-
ing Boltzmann distribution, with pairwise interactions, is remarkable, not only to physicists, as
it is the least biased model under the assumption of fixed first and second moments; in the sense
that it maximizes the entropy. For this problem, physicists lead an efficient cross-fertilization and
proposed dedicated developments of advanced mean-field methods for applications in other fields,
and in particular in bio-physics (see [100] for a recent review). Nevertheless, these works almost
never considered the case of Boltzmann machines with hidden units, more common in the machine
learning community, especially at the first hours of deep learning.

The language barrier between communities is undoubtedly a significant hurdle delaying the
transfer of developments in one field to the other. In machine learning, the potential of the most
recent progress of mean-field approximations was already advocated for in a pioneering workshop
mixing communities in 1999 [105]. Yet their first widely-used application is possibly the Approxi-
mate Message Passing (AMP) algorithm for compressed sensing in 2009 [34] - related to the belief
propagation algorithm and even more closely to the TAP equations known in the physics of dis-
ordered systems. Meanwhile, there have been much tighter connections between developments in
statistical physics and algorithmic solutions in the context of Constraint Satisfaction Problems
(CSPs). The very first popular application of advanced mean-field methods outside of physics,

9

1 Machine learning with neural networks and mean-field approximations
(Context and motivation)

beyond naive mean-field and belief propagation, is probably the survey propagation algorithm [91]
in 2002. It borrows from the 1RSB cavity method (that will not be mentioned in this dissertation)
to solve efficiently certain types of CSPs.

The great leap forward in the performance of machine learning with neural networks brought
by deep learning algorithms, along with the multitude of theoretical and practical challenges it
has opened, re-ignited the interest of physicists. While the power of advanced mean-field theories,
was mostly unexploited in this context at the time this thesis started, this strategy has yielded
over the last couple of years a number of contributions that would be difficult to list exhaustively
(some of them were recently reviewed in [21]). In these works, applying mean-field ideas to deep
neural networks has served different objectives and required different simplifying assumptions such
as considering an infinite size limit, random (instead of learned) weights, or vanishing learning
rates. Hence, there is no such a thing as one mean-field theory of deep neural networks and
these contributions are rather complementary pieces of solving a great puzzle. In this thesis in
particular, we investigated mean-field insights in models being explicitely trained, either on real
or synthetic data sets. To this end we notably exploited some recent progress in the statistical
physics treatment of disordered systems. In the following Chapters of this First Part we formally
introduce the fundamental frameworks and mean-field tools underlying the research presented in
the Second Part.

10

2 Statistical inference and statistical physics
(Fundamental theoretical frameworks)

To study neural networks we will be led to manipulate high-dimensional probability distributions.
Statistical inference consists in extracting useful information from these complicated objects. By
adopting a probabilistic interpretation of natural systems composed of many elementary compo-
nents statistical physics is interested in similar questions. In particular the theory of disordered
systems, considering different sources of randomness, appears especially relevant. In this Chap-
ter we introduce these important theoretical frameworks underlying the approach adopted in this
thesis.

2.1 Statistical inference

Joint probability distributions will be the starting point of the different problems that will interest
us in the following, as they arise from the definition of machine learning models or potentially
from the choice of a statistical model introduced for the purpose of theory. Inference questions will
aim at understanding the properties of these distributions. For instance we may ask what is the
expected value of one of the random variable of the model, or whether the realization of a random
variable can be recovered from the observations of others.

Note that the practical problem of training neural networks from real data discussed in Chapter
1 does not a priori fit in this perspective as there is a priori no need to assume for a joint probability
distribution neither for the training data nor for the learned parameters. However in Section 2.1.2
we will discuss how the learning problem can be cast as inference. Yet it will not be our only
concern and we shall consider other inference questions arising naturally from the definition of
neural network models.

2.1.1 Statistical models representations

Graphical representations have been developed to represent and efficiently exploit (in)dependencies
between random variables encoded in joint probability distributions. In this thesis they will be
useful tools to concisely present the model under scrutiny, as well as direct supports for some
derivations of inference procedures. Let us briefly present two types of graphical representations.

Probabilistic graphical models

Formally, a probabilistic graphical model is a graph G = (V,E) with nodes V representing random
variables and edges E representing direct interactions between random variables. In many statisti-
cal models of interest, it is not necessary to keep track of all the possible combinations of realizations
of the variables as the joint probability distribution can be broken up into factors involving only
subsets of the variables. The structure of the connections E reflects this factorization.

There are two main types of probabilistic graphical models: directed graphical models (or
Bayesian networks) and undirected graphical models (or Markov Random Fields). They allow
to represent different independencies and factorizations. In the next paragraphs we provide intu-
itions and review some useful properties of graphical models, a good reference to understand all
the facets of this powerful tool is [75].

Undirected graphical models In undirected graphical models the direct interaction between a
subset of variables C ⊂ V is represented by undirected edges interconnecting each pair in C. This
fully connected subgraph is called a clique and associated with a real positive potential functions
ψC over the variable xC = {xi}i∈C carried by C. The joint distribution over all the variables
carried by V , xV is the normalized product of all potentials

p(xV) = 1
Z
∏
C∈C

ψC(xC). (2.1)

11

2 Statistical inference and statistical physics
(Fundamental theoretical frameworks)

t1

t2

pt(tα)
∀α = 1 · · ·M

x1

x2

x3

px(xi)
∀i = 1 · · ·N

ψiα(xi, tα)

t1

t2

x1

x2

x3

p(x, t)

(a) Restricted Boltzmann Machine

y

x

W

p(x, y,W)

y1

y2

x1

x2

x3

x4

p(x, y|W)

y1

y2

pout(yµ|wµ>X)
∀µ = 1 · · ·M

x1

x2

x3

x4

px(xi)
∀i = 1 · · ·N

(b) Feed forward neural network.

Figure 2.1: (a) Undirected probabilistic graphical model (left) and factor graph representation (right).
(b) Left: Directed graphical model for p(x, y,W) without assumptions of factorizations for the channel
and priors. Middle: Directed graphical model reflecting factorization assumptions for p(x, y|W). Right:
Corresponding factor graph representation.

Example (i): the Restricted Boltzmann Machine,

p(x, t) = 1
Z
e
x>Wt

px(x)pt(t) (2.2)

with factorized px and pt is handily represented unsing an undirected graphical model depicted
in Figure 2.1a. The corresponding set of cliques is the set of all the pairs with one input unit
(indexed by i = 1 · · ·N) and one hidden unit (indexed by α = 1 · · ·M), joined with the set of
all single units. The potential function are immediately recovered from (2.2),

C = {{i}, {α}, {i, α} ; i = 1 · · ·N, α = 1 · · ·M} , ψiα(xi, tα) = exiWiαtα , (2.3)

p(x, t) = 1
Z

∏
{i,α}∈C

ψiα(xi, tα)
N∏
i=1

px(xi)
M∏
α=1

pt(tα). (2.4)

It belongs to the subclass of pairwise undirected graphical models for which the size of the
cliques is at most two.

Undirected graphical models handily encode conditional independencies. Let A,B, S ⊂ V be
three disjoint subsets of nodes of G. A and B are said to be independent given S if p(A,B|S) =
p(A|S)p(B|S). In the graph representation it corresponds to cases where S separates A and B:
there is no path between any node in A and any node in B that is not going through S.

Example (i): In the RBM, hidden units are independent given the inputs, and conversely:

p(t|x) =
M∏
α=1

p(tα|x), p(x|t) =
M∏
i=1

p(xi|t). (2.5)

This property is easily spotted by noticing that the graphical model (Figure 2.1a) is bipartite.

Directed graphical model A directed graphical model uses a Directed Acyclic Graph (DAG),
specifying directed edges E between the random variables V . It induces an ordering of the random
variables and in particular the notion of parent nodes πi ⊂ V of any given vertex i ∈ V : the set of
vertices j such that j → i ∈ E. The overall joint probability distribution factorizes as

p(x) =
∏
i∈V

p(xi|xπi). (2.6)

12

2.1 Statistical inference

Example (ii): The stochastic single layer feed forward network y = g(Wx; ε), where g(·; ε)
is a function applied component-wise including a stochastic noise ε that is equivalent to a
conditional distribution pout(y|Wx), and where inputs and weights are respectively drawn
from distributions px(x) and pW (W), has a joint probability distribution

p(y, x,W) = pout(y|Wx)px(x)pW (W), (2.7)

precisely following such a factorization. It can be represented with a three-node DAG as
in Figure 2.1b. Here we applied the definition at the level of vector/matrix valued random
variables. By further assuming that pout, pW and px factorize over their components, we keep
a factorization compatible with a DAG representation

p(y, x,W) =
N∏
i=1

px(xi)
M∏
µ=1

pout(yµ|
N∑
i=1

Wµixi)
∏
µ,i

pW (Wµi). (2.8)

For the purpose of reasoning it may be sometimes necessary to get to the finest level of
decomposition, while sometimes the coarse grained level is sufficient.

While a statistical physicist may have never been introduced to the formal definitions of graphi-
cal models, she inevitably already has drawn a few - for instance when considering the Ising model.
She also certainly found them useful to guide physical intuitions. The following second form of
graphical representation is probably newer to her.

Factor graph representations

Alternatively, high-dimensional joint distributions can be represented with factor graphs, that are
undirected bipartite graphs G = (V, F,E) with two subsets of nodes. The variables nodes V
representing the random variables as in the previous section (circles in the representation) and
the factor nodes F representing the interactions (squares in the representation) associated with
potentials. The edge (iµ) between a variable node i and a factor node µ exists if the variable i
participates in the interaction µ. We note ∂i the set of factor nodes in which variable i is involved,
they are the neighbors of i in G. Equivalently we note ∂µ the neighbors of factor µ in G, they
carry the arguments {xi}i∈∂µ, shortened as x∂µ, of the potential ψµ. The overall distributions is
recovered in the factorized form:

p(x) = 1
Z

M∏
µ=1

ψµ(x∂µ). (2.9)

Compared to an undirected graphical models, the cliques are represented by the introduction of
factor nodes.

Examples: The factor-graph representation of the RBM (i) is not much more informative than
the pairwise undirected graphical (see Figure 2.1a). For the feed forward neural networks (ii)
we draw the factor graph of p(y, x|W) (see Figure 2.1b).

2.1.2 Some inference questions in neural networks for machine learning

To fix the ideas, we present what kind of inference questions arising in the context of deep learning
will be of particular interest to us.

Inference in generative models

Generative models used for unsupervised learning are precisely statistical models defining high-
dimensional distributions with complex dependencies. As we have seen in Section 1.1.2, the most
common training objective in unsupervised learning is the maximization of the log-likelihood - the
log of the probability assigned by the generative model to the training set {x(k)}Pk=1. Computing
the probability of observing a given sample x(k) is an inference question. It requires to marginalize

13

2 Statistical inference and statistical physics
(Fundamental theoretical frameworks)

over all the hidden representations of the problem. For instance in the RBM (i) assuming binary
hidden units,

p(x(k)) = 1
Z

∑
t∈{0,1}M

e
x(k)

>Wt
px(x(k))pt(t). (2.10)

While the numerator will be easy to evaluate, the computation of the partition function is trou-
blesome. Inference in generative models will be discussed in particular in Chapter 4.

Mutual information and reconstruction in stochastic deep neural networks

Recently, it has been proposed to analyse supervised learning with deep feed forward neural net-
works with information theory [147, 137]. A quantity of particular interest in this setting is the
mutual information between the input x and output y of a neural network for a given value of the
weights. The mutual information is a functional of the joint probability distribution:

I(x, y) = KL(p(x, y)||p(x)p(y)) =
∫

dx dy p(x, y) log
p(x, y)
p(x)p(y) . (2.11)

It measures the dependence between two random variables. Expressed as a KL-divergence it is
zero if and only if p(x, y) = p(x)p(y), so if the random variables are independent. Otherwise it is
always positive. In fact, the mutual information between input and output even diverges to +∞
for a deterministic map. We shall consider networks with stochastic activations to ensure that the
mutual information I(x, y) is well-defined.

A related inference question is whether from the observed output y of a feed forward neural
network, the input x at its origin can be reconstructed. If the two variables are largely independent,
due for instance to a high level of noise, their mutual information is low while the reconstruction
is impossible. In our toy example (ii), the posterior distribution p(x|W, y) is deriving from the
statistical model following Bayes rule

p(x|W, y) =
p(y|W,x)px(x)

p(y|W) =
p(y|W,x)px(x)∫

dx p(y|W,x)px(x)
. (2.12)

In this context px(x) is usually called the prior, it biases the reconstruction towards values com-
patible with the knowledge on x provided by the statistical model before any observation was
considered. The difficulty in the corresponding inference problem is the marginalization necessary
to compute the denominator p(y|W), sometimes called the evidence. These questions will be the
main concern of Chapter 5.

Learning as statistical inference: teacher-student scenario

Assuming a statistical model for the data and the trainable parameters, the learning problem can
be formulated as an inference in the teacher-student setting. Let us use as an illustration the
case of the supervised learning of the single-layer model (ii). We draw a weight matrix W0 - the
teacher - from the prior distribution pW , along with a set of P inputs {x(k)}Pk=1 i.i.d from px,
and the corresponding outputs y(k) from pout(.|W0x(k)). The inference question is: can we recover
the value W0 from the observations of the P pairs {x(k), y(k)}? In other words, can we learn the
parameters W of a similar single-layer model - the student - using the observations as a training
set so as to reproduce the ground-truth rule defined by W0?

Note that the terminology applies for a generic inference problem of reconstruction: the statis-
tical model used to generate the data along with the realization of the unknown signal is called the
teacher ; the statistical model assumed to perform the reconstruction is called the student. They
may be identical as in the example above, in which case they are said to be matched. But they can
also be different: a bit (e.g. wrong assumptions of prior distributions) or entirely (e.g. different
architecture of graphical model), in which case they are said to be mismatched.

Of course in practical applications, data do not follow a known distribution and there is no
mathematical ground truth rule underlying the input-output mapping. Yet the teacher-student
setting offers interesting possibilities of analysis and we shall resort to it in Chapter 5 and Chapter 6.

14

2.2 Statistical inference

2.1.3 Challenges in inference

Handling dimensions Interesting inference questions in the line of the ones mentioned in the
previous section have no tractable closed-form solution. Exact computations of averages and
marginals requires summing over a number of terms scaling exponentially with the size of the
system. Hence the computational hardness comes from the astronomically large number of config-
urations to be tracked to describe a high-dimensional joint probability distribution. It is therefore
necessary for inference to design strategies of approximations that can be implemented as algo-
rithms running in finite, typically polynomial, time.

Finding good estimators While some inference questions are clearly posed - as for instance
the computation of the likelihood of the RBM - some can accept multiple answers - in particular
reconstruction problems. Let us consider the following setting: we are interested in recovering an
unknown signal x0 from the knowledge of the prior distribution px, downstream observations y
and the channel p(y|x) also called the likelihood in this context. The distribution of x knowing y,
called the posterior distribution, is given by Bayes rule

p(x|y) =
p(y|x)px(x)

p(y) . (2.13)

As soon as x has more than a few components this distribution is difficult to handle. Instead
of keeping all the information it encodes, it is preferable to build directly an estimator x̂ of the
unknown signal. We can either choose

• the maximum a posteriori estimator x̂MAP = arg maxx p(x|y). It corresponds to the most
probable value of x0 given the prior and the observations. It minimizes the probability of
errors defined as x̂i 6= x0,i.

• the minimum mean-square error estimator x̂MMSE =
∫

dx x p(x|y). It is the mean of the
posterior distribution and it minimizes the mean-square error under the posterior distribution
MSE(x̂) =

∫
dx p(x|y) ‖x− x̂‖2.

• the maximum likelihood estimator x̂MLE = arg maxx p(y|x). It discards the information of
the prior.

The MAP and MMSE estimators corresponds to the Bayesian inference setting incorporating
information about a prior. We have implicitly assumed above that the prior and the channel
are perfectly known, i.e. a matched teacher-student scenario. This situation is also called the
Bayes optimal setting. It is of particular interest to assess theoretical optimal performances of
reconstruction. Still, Bayesian inference can also be used when only guesses of the prior and the
channel are available. For instance a sparse analytical prior can be assumed for the reconstruction
of real sparse signals. In the case where no prior on the data is known, the maximum likelihood
estimator can be preferred to the arbitrariness of choosing a prior. This is the strategy of most
unsupervised learning algorithm to find good parameters. One or the other of these estimators can
be preferable according to the situation at hand.

Performance analysis in estimation The perspective of statistical inference and the teacher-
student scenario allow to formalize an analysis of the difficulty of a learning problem. Intuitively,
the definition of a ground-truth rule with a fixed number of degrees of freedom sets the minimum
information necessary to extract from the observations, or training data, in order to achieve perfect
reconstruction. This is an information-theoretic limit. The assumption of an underlying statistical
model further enables the measurement of performance of different learning algorithms over the
class of corresponding problems from an average view point. The traditional approach of computer
science in studying the difficulty of a class of problem is to examine the worst case. This conserva-
tive strategy yields strong guarantees of success, yet it may be overly pessimistic compared to the
experience of practitioners. By defining a distribution over the possible problems (or teachers), one
can compute instead averaged performances, sometimes more informative of behaviors for typical
instances. For deep learning, this approach may prove particularly interesting as the traditional
bounds appear extremely loose when compared to practical examples.

15

2 Statistical inference and statistical physics
(Fundamental theoretical frameworks)

2.2 Statistical physics of disordered systems

To solve and study inference questions we will resort to concepts and methods originally developed
by physicists. In a nutshell we remind some key concepts in statistical physics.

Boltzmann distribution and free energy

Statistical physics aims at explaining the behaviors of systems composed of a large number of
degrees of freedom. Although the laws of classical physics governing microscopic interactions are
deterministic, it is unrealistic to keep track of the evolution of each of the elementary component
to account for the behavior of the whole. Remarkably, macroscopic quantities of interest to the
physicist are well described by an averaging over the elementary states according to the Boltzmann
distribution. For a system with N degrees of freedom noted x ∈ XN and an energy functional
E(x), we have

p(x) = e−βE(x)

ZN
, ZN =

∑
x∈XN

e−βE(x), β = 1/kBT, (2.14)

where we defined the partition function Z. While the adoption of the probabilistic framework
is already a great simplification to the complete microscopic description, it takes us back to the
difficult task of handling high-dimensional joint probability distribution discussed in Section 2.1.
Let us discuss key conceptual steps further taken by physicists to understand large interacting
systems.

To characterize macroscopic systems careful attention should be given to the free energy

FN = − logZN/β = − 1
β

log
∑
x∈XN

e−βE(x) (2.15)

= − 1
β

 ∑
x∈XN

−βE(x)e−βE(x)/ZN +
∑
x∈XN

(
βE(x) + logZN

)
e−βE(x)/ZN

 (2.16)

=
〈
E(x)

〉
+
〈
log p(x)

〉
/β = UN −HN/β (2.17)

where 〈·〉 stands for the average over the Boltzmann distribution, UN is the average energy and
HN is the entropy. Note that the entropy of statistical physics and the entropy of information
theory [133] have the same definition relatively to a distribution.

The thermodynamic limit

The number of available configurations XN grows exponentially with N , yet considering the ther-
modynamic limit N → ∞ can simplify computations due to concentrations. Let eN = E/N be
the energy per degree of freedom, Ω(E) =

∑
x∈XN δ

(
E − E(x)

)
= eNhN be the number of config-

urations at energy E = NeN , and hN (eN) the entropy per degree of freedom. Then the partition
function can be re-written as a sum over the configurations of a given energy eN

ZN =
∑
E

∑
x∈XN

δ
(
E − E(x)

)
e−NβeN =

∑
eN

e−N(βeN−hN (eN)) =
∑
eN

e−NβfN (eN), (2.18)

where we define fN (eN) the free energy density of states of energy eN . This rewriting implies that
at large N the states of energy minimizing the free energy are exponentially more likely than any
other states. In the thermodynamic limit, the statistics are dominated by these states. Using the
definitions of the limits

e = lim
N→∞

eN , h(e) = lim
N→∞

hN (eN), βf(e) = lim
N→∞

βeN − hN (eN), (2.19)

we have

f = min
e
f(e) = lim

N→∞
FN/N, (2.20)

Z = lim
N→∞

ZN = e−βf . (2.21)

16

2.2 Statistical physics of disordered systems

The existence of the previous limits is the condition to the application of the thermodynamic limit.

Disordered systems

To consider the thermodynamic limit, the reader might have imagined a translationally invariant
system, readily extendable. Remarkably, the statistical physics framework can be applied more
generally to systems with quenched disorder. Here the interactions in the system are function of the
realization of random variables so that the energy functional is itself function of a global random
variable, noted W ∈ W for instance. The energy of a state of the system x is then E(x;W).

In principle the system properties depend on a given realization of the disorder W - quite
certainly the average value 〈xixj〉W for instance. Yet some aggregated properties are expected to
be self-averaging in the thermodynamic limit, meaning that they concentrate on their mean with
respect to the disorder W as the fluctuations are averaged out. It is the case of the free energy,
which formally verifies:

lim
N→∞

FN ;W /N = lim
N→∞

EW [FN ;W /N] = f. (2.22)

Thus the typical behavior of an ensemble of complicated systems can be studied in the statistical
physics framework by averaging over the disorder.

Statistical physics of inference problems

Statistical inference questions are mapped to statistical physics systems by interpreting general
joint probability distributions as Boltzmann distributions (2.14). Turning back to our simple
inference examples:

(i) The RBM directly borrows its definition from statistical physics with

E(x, t;W) = −x>Wt− log px(x)− log pt(t). (2.23)

The inverse temperature parameter can either be considered equal to 1 or as a scaling factor
of the weight matrix W ← βW and log-priors. The weights play the role of the disorder.
Here the computational hardness in estimating the log-likelihood comes from the estimation
of the log-partition function, which is precisely the free energy.

(ii) The posterior in the estimation of the input from the output of a network is mapped to a
Boltzmann distribution by setting E(x; y) = − log p(y|x)px(x). The disorder is here materi-
alized by the observations.

In this Section we introduced the key conceptual preliminary steps taken by physicists to handle
high-dimensional joint distributions. These are the starting point to design approximate inference
methods. Before turning to an introduction to mean-field approximations, we stress the originality
of the statistical physics approach. Relying on the thermodynamic limit, these methods will provide
asymptotic results. Nevertheless, experience shows that the behavior of large finite-size systems
are often well explained by the infinite-size limit. Furthermore, the disorder average transposed
in the language of statistical inference will equate to studying the typical rather than worst case
scenario, with the advantages and limitations discussed in 2.1.3. Finally, we must emphasize that
previous and following derivations are not mathematically rigorous. They are based on ‘correct’
assumptions allowing to push further the understanding of the problems at hand, while a formal
proof of the assumptions is possibly much harder to obtain.

17

3 Selected overview of mean-field treatments:
Free energies and algorithms
(Techniques)

Mean-field methods are a set of techniques enabling to approximate marginalized quantities of joint
probability distributions by exploiting knowledge on the dependencies between random variables.
They are usually said to be analytical - as opposed to numerical Monte Carlo methods. In practice
they usually replace a summation exponentially large in the size of the system by an analytical
formula involving a set of parameters, themselves solution of a closed set of non-linear equations.
Finding the values of these parameters typically requires only a polynomial number of operations.

In this Chapter, we will give a selected overview of mean-field methods as they were introduced
in the statistical physics and/or signal processing literature. A key take away of the following
sections is that closely related results can be obtained from different heuristics of derivation. We will
start by deriving the simplest and historically first mean-field method. We will then introduce the
important broad techniques that are used in the following Chapters, high-temperature expansions,
message-passing algorithms and the replica method. In a closing section we will cover the most
recent extensions of mean-field methods that were stepping stones for the contributions of this
thesis.

3.1 Naive mean-field

3.1.1 Variational derivation

The naive mean-field method consists in approximating the joint probability distribution of interest
by a fully factorized distribution. Therefore, it ignores correlations between random variables.
Among multiple methods of derivation, we present here the variational method: it is the best known
methods across fields and it readily shows that, for any joint probability distribution interpreted
as a Boltzmann distribution, the rather crude naive mean-field approximation yields an upper
bound on the free energy. For the purpose of demonstration we consider an Ising model with spins
variables x = (x1, · · · , xN) ∈ X = {0, 1}N , and energy function

E(x) = −
N∑
i=1

bixi −
∑
(ij)

Wijxixj = −b>x− 1
2x
>Wx , b ∈ RN , W ∈ RN×N , (3.1)

where the notation (ij) stands for pairs of connected spin-variables, and the weight matrix W is
symmetric. The choices for {0, 1} rather than {−1,+1} for the variable values, the notations W for
weights (instead of couplings), b for biases (instead of local fields), as well as the vector notation,
are leaning towards the machine learning conventions and the interpretation of the model as a
Boltzmann machine (without hidden units). We denote by qm a fully factorized distribution on
{0, 1}N , which is a multivariate Bernoulli distribution parametrized by the mean values m =
(m1, · · · ,mN) ∈ [0, 1]N of the marginals (denoted by qmi):

qm(x) =
N∏
i=1

qmi(xi) =
N∏
i=1

miδ(xi − 1) + (1−mi)δ(xi). (3.2)

We look for the optimal qm distribution to approximate the Boltzmann distribution p(x) =
e−βE(x)/Z by minimizing the KL-divergence

min
m

KL(qm||p) = min
m

∑
x∈X

qm(x) log
qm(x)
p(x) (3.3)

= min
m

∑
x∈X

qm(x) log qm(x) + β
∑
x∈X

qm(x)(E(x)) + logZ (3.4)

= min
m

βG(qm)− βF ≥ 0, (3.5)

19

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

where the last inequality comes from the positivity of the KL-divergence. For a generic distribution
q, G(q) is the Gibbs free energy for the energy E(x),

G(q) =
∑
x∈X

q(x)(E(x)) + 1
β

∑
x∈X

q(x) log q(x) = U(q)−H(q)/β ≥ F, (3.6)

involving the average energy U(q) and the entropy H(q). It is greater than the true free energy F
except when q = p, in which case they are equal. Note that this fact also means that the Boltzmann
distribution minimizes the Gibbs free energy. Restricting to factorized qm distributions, we obtain
the naive mean-field approximations for the mean value of the variables (or magnetizations) and
the free energy:

m∗ = arg min
m

G(m) = 〈x〉qm∗ (3.7)

FNMF = G(m∗) ≥ F. (3.8)

The choice of a very simple family of distributions qm limits the quality of the approximation
but allows for tractable computations of other observables, for instance the two-spins correlations
〈xixj〉q∗ = m∗im

∗
j or variance of one spin 〈x2

i 〉q∗ − 〈xi〉2q∗ = m∗i −m∗i
2.

In our example of the Boltzmann machine it is easy to compute the Gibbs free energy for the
factorized ansatz,

UNMF(m) = 〈E(x)〉qm = −b>m− 1
2m
>Wm, (3.9)

HNMF(m) = −〈log q(x)〉qm = −
N∑
i=1

mi logmi + (1−mi) log(1−mi) , (3.10)

GNMF(m) = UNMF(m)−HNMF(m)/β. (3.11)

Looking for stationary points we find a closed set of non linear equations for the m∗i ,

∂G

∂mi

∣∣∣∣
m∗

= 0 ⇒ m∗i = σ(βbi +
∑
j∈∂i

βWijm
∗
j) ∀i , (3.12)

where σ(x) = (1+e−x)−1. The solutions can be computed by iterating these relations until a fixed
point is reached. To understand the implication of the restriction to factorized distributions, it is
instructive to compare this naive mean-field equation with the exact identity

〈xi〉p = 〈σ(βbi +
∑
j∈∂i

βWijxj)〉p . (3.13)

Under the Boltzmann distribution p(x) = e−βE(x)/Z, these averages are difficult to compute. The
naive mean-field method is neglecting the fluctuations of the effective field felt by the variable
xi:

∑
j∈∂iWijxj , keeping only its mean

∑
j∈∂iWijmj . This incidentally justifies the name of

mean-field methods.

3.1.2 When does naive mean-field hold true?

The previous derivation shows that the naive mean-field approximation allows to bound the im-
portant free energy. While this bound is expected to be rough in general, the approximation is
reliable when the fluctuations of the local effective fields

∑
j∈∂iWijxj are small. This happens

in particular at the thermodynamic limit N → ∞ in infinite range models, that is when weights
or couplings are not only local but distributed in the entire system, or if each variable interacts
directly with a non-vanishing fraction of the whole set of variables. The influence of the rest of the
system can then be treated as an average background. Provided the couplings are weak enough,
the naive mean-field methods even becomes asymptotically exact. This is the case of the Curie-
Weiss model, which is the fully connected version of the model (3.1) with all Wij = 1/N . The sum
of weakly dependent variables then concentrates on its mean by the central limit theorem. We

20

3.2 Thouless Anderson and Palmer equations

stress that it means that for finite dimensional models (more representative of a physical system,
where for instance variables are assumed to be attached to the vertices of a lattice with nearest
neighbors interactions), mean-field methods are expected to be quite poor. By contrast, infinite
range models are thus traditionally called mean-field models by physicists.

In the next Section we will recover the naive mean-field equations through a different method.
The following derivation will also allow to compute corrections to the rather crude approximation
we just discussed by taking into account some of the correlations it neglects.

3.2 Thouless Anderson and Palmer equations

The TAP mean-field equations [144] were originally derived as an exact mean-field theory for the
Sherrington-Kirkpatrick (SK) model [134]. This emblematic spin glass model corresponds to a fully
connected Ising model with energy (3.1) and disordered couplings Wij drawn independently from a
Gaussian distribution with zero mean and variance W0/N . The derivation followed from arguments
specific to the SK model. Later, it was showed that the approximation could be recovered from
a second order Taylor expansion at high temperature by Plefka [114] and that it could be further
corrected by the systematic computation of higher orders by Georges and Yedidia [47]. We will
briefly present this last derivation, having again in mind the example of the generic Boltzmann
machine (3.1).

3.2.1 Outline of the derivation

Going back to the variational formulation (3.5), we now perform a minimization in two steps.
We start by considering the family of distributions qm enforcing 〈x〉qm = m for a fixed vector of
magnetizations m but without any factorization constraint. We consider the corresponding Gibbs
free energy

G̃(qm) = U(qm)−H(qm)/β, (3.14)

and perform a first minimization at fixed m over the qm to define another auxiliary free energy

G(m) = min
qm

G̃(qm). (3.15)

A second minimization over m would recover the overall unconstrained minimum of the variational
problem (3.5) which is the exact free energy

F = − logZ/β = min
m

G(m). (3.16)

Yet the actual value of G(m) turns out as complicated to compute as F itself. Fortunately,
βG(m) can be easily approximated by a Taylor expansion around β = 0 due to interactions
vanishing at high temperature. After expanding, the minimization over G(m) yields a set a self
consistent equations on the magnetizations m - called the TAP equations - reminiscent of the
naive mean-field equations (3.12), again typically solved by iterations. Plugging the solutions
m∗ back into the expanded expression yields the TAP free energy FTAP = G(m∗). Note that
ultimately the approximation lies in the truncation of the expansion. At first order the naive
mean-field approximation is recovered. At second order, this derivation justifies the original TAP
approximation for SK model [144]. In Section 4.1 of the next Chapter, we detail the different steps
here outlined for a generalization of the Boltzmann machine (3.1).

21

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

3.2.2 Illustration on the Boltzmann machine and important remarks

For the Boltzmann machine (3.1), the TAP equations and TAP free energy (truncated at second
order) are [144],

m∗i = σ

βbi +
∑
j∈∂i

βWijm
∗
j − β2W 2

ij(m∗j −
1
2)(m∗i −m∗i

2)

 ∀i (3.17)

βG(m∗) = −HNMF(m∗)− β
N∑
i=1

bim
∗
i − β

∑
(ij)

m∗iWijmj (3.18)

−β
2

2
∑
(ij)

W 2
ij(m∗i −m∗i

2)(mj −m∗j
2) ,

where naive mean-field entropy was defined in (3.10). For this model, albeit with {+1,−1} variables
instead of {0, 1}, several references present the details of the derivation sketched in the previous
paragraph, in particular [47, 105, 159].

Onsager reaction term Compared to the naive mean-field approximation the TAP equations
include a correction to the effective field called the Onsager reaction term. The idea is that, in the
effective field at variable i, we should consider corrected magnetizations of neighboring spins j ∈ ∂i,
that would correspond to the absence of variable i. This intuition echoes at two other derivations
of the TAP approximation: the cavity method [90] that we will not cover and the message passing
which will be discussed in the next section.

As far as the SK model is concerned, this second order correction is enough in the thermody-
namic limit as the statistics of the weights imply that higher orders will typically be subleading. In
general, the correct TAP equations for a given model will depend on the statistics of interactions
and there is no guarantee that there exists an order of truncation leading to an exact mean-field
theory.

Single instance Although the selection of the correct TAP approximation relies on the statistics
of the weights, the derivation of the expansion outlined above does not require to average over them,
i.e. it does not require an average over the disorder. Consequently, the approximation method
is well defined for a single instance of the random disordered model. The TAP free energy and
magnetizations can be computed for a given (realization of the) set of weights {Wij}(ij). Note that
this fact further allowed the designing of the adaptive TAP approximation [107, 108, 109], that
we will discuss in Section 3.5.3, requiring no prior knowledge on the statistics of the weights. The
Onsager correction is here computed directly for a given W .

Finding solutions The self-consistent equations on the magnetizations (3.17) are usually solved
by turning them into an iteration scheme and looking for fixed points. This generic recipe leaves
nonetheless room for interpretation: which exact form should be iterated? How should the updates
for the different equations be scheduled? Which time indexing should be used? While the following
scheme may seem natural,

mi
(t+1) ← σ

βbi +
∑
j∈∂i

βWijmj
(t) −W 2

ij

(
mj

(t) − 1
2

)(
mi

(t) −mi
(t)2) (3.19)

it typically has more convergence issues than the following alternative scheme including the time
index t− 1,

mi
(t+1) ← σ

βbi +
∑
j∈∂i

βWijmj
(t) −W 2

ij

(
mj

(t) − 1
2

)(
mi

(t−1) −mi
(t−1)2) . (3.20)

This issue was first discussed by [17]. Remarkably, this last scheme, or algorithm, is actually the
one obtained by the approximate message passing derivation that will be discussed in the next
Section.

22

3.3 Belief propagation and approximate message passing

Solutions of the TAP equations The TAP equations can admit multiple solutions with either
identical or different TAP free energy. While the true free energy F corresponds to the minimum
of the Gibbs free energy, reached for the Boltzmann distribution, the TAP derivation consists in
performing an effectively unconstrained minimization in two steps, but with an approximation
through a Taylor expansion in between. The truncation of the expansion therefore breaks the
correspondence between the discovered minimizer and the unique Boltzmann distribution. For
the SK model for instance, the number of solutions of the TAP equations increases rapidly as
β grows [90]. The different solutions must be weighted according to their free energy density
and averaged to recover the thermodynamics predicted by the replica computation [33], another
mean-field approximation discussed in Section 3.4.

3.2.3 Generalizing the Georges-Yedidia expansion

In the derivation outlined above for binary variables, xi = 0 or 1, the mean of each variable mi

was fixed. This is enough to parametrize the corresponding marginal distribution qmi(xi). Yet
the expansion can actually be generalized to Potts variables (taking multiple discrete values) or
real variables by introducing appropriate parameters for the marginals. For real variables, another
level of approximation is introduced by restricting the set of marginal distributions tested to a
parametrized family of distributions. By choosing a Gaussian parametrization, one recovers TAP
equations equivalent to the approximate message passing algorithm that will be discussed in the
next Section. In Section 4.1, we will present a derivation for real-valued Boltzmann machines with
a Gaussian parametrization.

3.3 Belief propagation and approximate message passing

Another route to rediscover the TAP equations is through the approximation of message passing
algorithms. Variations of the latter were discovered multiple times in different fields. In physics
they were written in a restricted version as soon as 1935 by Bethe [15]. In statistics, they were
developed by Pearl as methods for probabilistic inference [112]. In this section we will start by
introducing a case-study of interest, the Generalized Linear Model. We will then proceed by steps
to outline the derivation of the Approximate Message Passing (AMP) algorithm from the Belief
Propagation (BP) equations.

3.3.1 Generalized linear model

Definition We introduce the Generalized Linear Model (GLM) which is a fairly simple model
to illustrate message passing algorithms and which is also an elementary brick of the inference
questions that will interest us in the following. It falls under the teacher-student set up, a student
model is used to reconstruct a signal from a teacher model producing indirect observations. In
the GLM, the product of an unknown signal x0 ∈ RN and a known weight matrix W ∈ RN×M is
observed through a noisy channel pout,0,

W ∼ pW (W)

x0 ∼ px0(x0) =
N∏
i=1

px0(x0,i)
⇒ y ∼ pout,0(y|Wx0) =

M∏
µ=1

pout,0(yµ|wµ>x0). (3.21)

The probabilistic graphical model corresponding to this teacher is represented on Figure 3.1. The
prior over the signal px0 is supposed to be factorized, and the channel pout,0 likewise. The inference
problem is to produce an estimator x̂ for the unknown signal x0 from the observations y. Given
the prior px and the channel pout of the student not necessarily matching the teacher, the posterior
distribution is

p(x|y,W) = 1
Z(y,W)pout(y|x,W)px(x) , Z(y,W) =

∫
dx p(y|x,W)px(x), (3.22)

represented as a factor graph also on Figure 3.1. The difficulty of the task is controlled by the
measurement ratio α = M/N and the amplitude of the noise possibly present in the channel.

23

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

y1

y2

x0,1

x0,2

x0,3

x0,4

pout,0(yµ|w>
µX

0)
∀µ = 1 · · ·M

px0(x0i)
∀i = 1 · · ·N

Teacher

x1

x2

x3

x4

pout(yµ|w>
µX)

∀µ = 1 · · ·M

px(xi)
∀i = 1 · · ·N

Student

x1

x2

x3

x4

m
(t)
i′→µ(xi′)

m̃
(t)
µ→i(xi)

x1

x2

x3

x4 m
(t)
i→µ′(xi)

m̃
(t+1)
µ→i (xi)

Figure 3.1: Graphical representations of the Generalized Linear Model. Left: Probabilistic graph-
ical model of the teacher. Middle left: Factor graph representation of the posterior distribution
on the signal x under the student statistical model. Middle right and right: Belief propagation
updates (3.31) - (3.32) for approximate inference.

Applications The generic GLM underlies a number of applications. In the context of neural
networks of particular interest in this thesis, the channel pout generating observations y ∈ RM

can equivalently be seen as a stochastic activation function g(·, ε) incorporating a noise ε ∈ RM
component-wise to the output. The inference of the teacher signal in a GLM has then two possible
interpretations. On the one hand, it can be interpreted as the reconstruction of the input of a
stochastic single-layer neural network from its output. On the other hand, the same question can
also corresponds to the Bayesian learning of a single-layer neural network with a single output -
the perceptron - where this time {W, y} are interpreted as the collection of training input-output
pairs and x0 plays the role of the unknown weight vector of the teacher.

However, one of the most important application of the GLM, Compressed Sensing (CS) [35],
does not involve neural networks. It consist in recovering a ρ-sparse signal x0, i.e. with ρN (< N)
non zero entries, from M noisy linear measurements gathered in y. At zero noise, the information
theoretic limit for the reconstruction is M > ρN , or equivalently α > ρ. Yet at this threshold the
reconstruction requires the knowledge of the position of the non-zeros entries, or an exponential
number of operations to test all possibilities. Hence the problem is non-trivial as soon as M < N .
Studying the performance of algorithms in between the impossible and trivial regime is of primal
practical and theoretical interest.

Statistical physics treatment and scalings From the statistical physics perspective, the
effective energy functional is read from the posterior (3.22) seen as a Boltzmann distribution with
energy

E(x) = − log pout(y|x,W)px(x) = −
M∑
µ=1

log pout(yµ|
N∑
i=1

Wµixi)−
N∑
i=1

px(xi). (3.23)

The inverse temperature β has here no formal equivalent and can be thought as being equal to 1.
The energy is therefore a function of the random realizations of W and y, playing here the role
of the disorder. The weight matrix is assumed to have i.i.d. Gaussian entries with zero mean and
variance 1/N . The prior of the signal is chosen so as to ensure that the xi (and consequently the
yµ) remain of order 1. Finally, the thermodynamic limit N →∞ is taken for a fixed measurement
ratio α = M/N .

3.3.2 Belief Propagation

The Belief Propagation algorithm is an exact inference algorithm for joint probability distributions
with acyclic (or tree) underlying factor graph. It allows to compute marginals of the random
variables using a set of auxiliary functions called messages, attached to the edges of the factor
graph. Starting at a leaf, the messages communicate beliefs of a given node variable taking a given
value based on the nodes and factors already visited along the tree.

24

3.3 Belief propagation and approximate message passing

General formulation For a generic joint probability distribution, BP can be written considering
the underlying factor graph. Using notations from Section 2.1.1, the sum-product version of BP
(as opposed to the max-sum, see e.g. [88]) consists in the update equations

m̃
(t)
µ→i(xi) = 1

Zµ→i

∫ ∏
i′∈∂µ\i

dxi′ ψµ(x∂µ)
∏

i′∈∂µ\i

m
(t)
i′→µ(xi′), (3.24)

m
(t+1)
i→µ (xi) = 1

Zi→µ
px(xi)

∏
µ′∈∂i\µ

m̃
(t)
µ′→i(xi) (3.25)

where the i-s index the variable nodes, the µ-s index the factor nodes and the ψµ are the potential
functions. The notation ∂µ \ i designate the set of neighbor variables of the factor µ except the
variable i (and reciprocally for ∂i \µ). The partition functions Zi→µ and Zµ→i are normalization
factors ensuring that the messages can be interpreted as probabilities. At convergence of the
iterations the posterior marginals can be computed as

mi(xi) = 1
Zi
px(xi)

∏
µ∈∂i

m̃µ→i(xi) (3.26)

and the Bethe approximation of the free energy is given by

FBethe = −
∑
i∈V

logZi −
∑
µ∈F

logZµ +
∑

(iµ)∈E

logZµi , (3.27)

with

Zi =
∫

dxi px(xi)
∏
µ∂i

m̃µ→i(xi) , (3.28)

Zµ =
∫ ∏

i∈∂µ

dxi ψ(x∂µ)
∏
i∈∂µ

mi→µ(xi) , (3.29)

Zµi =
∫

dxi m̃µ→i(xi)mi→µ(xi) . (3.30)

These marginals, as well as the Bethe free energy, will only be exact if the underlying factor graph is
a tree. Nonetheless, the algorithm (3.24)-(3.25), occasionally then called loopy-BP, can sometimes
be converged on graphs with cycles and in some cases will provide high quality approximations.
For instance, graphs with no short loops are locally tree like and well treated by BP provided
correlations decay with distance. BP will also appear principled for some infinite range mean-field
models previously discussed; an example of which being our case-study the GLM. Note that for
graphs with cycles the Bethe free energy is a priori not a bound of the exact free energy.

Belief propagation for the GLM The writing of the BP-equations for our case-study is
schematized on the right of Figure 3.1. There are N ×M updates:

m̃
(t)
µ→i(xi) = 1

Zµ→i

∫ ∏
i′ 6=i

dxi′ pout(yµ|wµ>x)
∏
i′ 6=i

m
(t)
i′→µ(xi′), (3.31)

m
(t+1)
i→µ (xi) = 1

Zi→µ
px(xi)

∏
µ′ 6=µ

m̃
(t)
µ′→i(xi). (3.32)

Despite a relatively concise formulation, running BP in practice turns out intractable since for
a signal x taking continuous values it would entail keeping track of distributions on continuous
variables. In this case, BP is approximated by the (G)AMP algorithm presented in the next section.

3.3.3 (Generalized) approximate message passing

The name of approximate message passing (AMP) was fixed by Donoho, Maleki and Montanari [34]
who derived the algorithm in the context of Compressed Sensing. Several works from statistical

25

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

physics had nevertheless already proposed related algorithmic procedures and made connections
with the TAP equations for different systems. The algorithm was derived systematically for any
channel of the GLM by Rangan [115] and became Generalized-AMP (GAMP).

The systematic procedure to write AMP for a given joint probability distribution consists in
first writing BP on the factor graph, second project the messages on a parametrized family of
function to obtain the corresponding relaxed-BP and third close the equations on a reduced set
of parameters by keeping only leading terms in the thermodynamic limit. We will quickly review
these steps for the GLM.

Relaxed Belief Propagation

In the thermodynamic limit M,N → +∞, on can show that the scaling 1/
√
N of the Wij and

the extensive connectivity of the underlying factor graph imply that messages are approximately
Gaussian. The algorithm then only needs to keep track of the two first moments. In the derivation
of r-BP different means and variances are in fact introduced to parametrize messages as follows

m̃
(t)
µ→i(xi) ∝ e

B
(t)
µ→ixi+

1
2A

(t)
µ→ix

2
i ∝

∫
dzµ pout(yµ|zµ)e

−
(zµ−Wµixi−ω

(t)
µ→i)

2

2V (t)
µ→i , (3.33)

m
(t+1)
i→µ (xi) ∝ e

−
(x̂(t+1)
i→µ −xi)

2

2Cx(t+1)
i→µ ∝ px(xi)e

−
(λ(t)
i→µ−xi)

2

2σ(t)
i→µ , (3.34)

where we introduced the dummy variable z = Wx, an important intermediate step in the recon-
struction of x from y, and the notation ∝ that omits the normalization factor for distributions.
The BP algorithm projected on this parametrization makes up the r-BP inference algorithm with
O(M×N) quantities to track. An approximation of the marginals is recovered from the projection
on the parametrization of (3.26). A detailed derivation and developed algorithm of r-BP for the
GLM can be found for example in [160]. Also, in Chapter 6 Section 6.1.1, we review the derivation
in a slightly more general setting where the variables xi and yµ are possibly vectors instead of
scalars.

Nonetheless, r-BP is scarcely used as such as the computational cost can be readily reduced
with little more approximation. In the thermodynamic limit, the messages are closely related
to the marginals as the contribution of the missing message between (3.25) and (3.26) is to a
certain extent negligible. Careful book keeping of the order of contributions leads to a set of closed
equations on parameters of the marginals, i.e. O(N) variables, corresponding to the (G)AMP
algorithm.

Approximate message passing

The GAMP algorithm with respect to marginals parameters, analogous to the messages parameters
introduced in (3.33)-(3.34), is given in Algorithm (1). While steps 1) and 3) are general for any
GLM with a random Gaussian weight matrix, steps 2) and 4) involve update functions. These
special functions are defined respectively to choices of a prior on the signal x and an output
channel producing the observations y.

Input update functions relative to the prior

Zx =
∫

dx px(x)e−
(x−λ)2

2σ (3.35)

fx1 (λ, σ) = 1
Zx

∫
dx x px(x)e−

(x−λ)2
2σ (3.36)

fx2 (λ, σ) = 1
Zx

∫
dx x2 px(x)e−

(x−λ)2
2σ − fx1 (λ, σ)2 (3.37)

26

3.3 Belief propagation and approximate message passing

Output update functions relative to the channel

Zout(y, ω, V) =
∫

dz pout(y|z)N (z;ω, V) (3.38)

gout(y, ω, V) = 1
Zout

∫
dz (z − ω)

V
pout(y|z)N (z;ω, V) (3.39)

∂ωgout(y, ω, V) = 1
Zout

∫
dz (z − ω)2

V 2 pout(y|z)N (z;ω, V)− 1
V
− gout(y, ω, V)2 (3.40)

Algorithm 1 Approximate Message Passing
Input: matrix y ∈ RM and matrix W ∈ RM×N :
Initialize: x̂i, Cxi ∀i and goutµ, ∂ωgoutµ ∀µ
repeat
1) Estimate mean and variance of z given current x̂

V (t)
µ =

N∑
i=1

W 2
µiC

x
i

(t) (3.41)

ω(t)
µ =

N∑
i=1

Wµix̂
(t)
i −

N∑
i=1

W 2
µiC

x(t)
i gout

(t−1)
µ (3.42)

2) Estimate mean and variance of the gap between optimal z and ω given y

∂ωgout
(t)
µ = ∂ωgout(yµ, ω(t)

µ , V (t)
µ) (3.43)

gout
(t)
µ = gout(yµ, ω(t)

µ , V (t)
µ) (3.44)

3) Estimate mean and variance of x given current optimal z

σ
(t)
i =

− M∑
µ=1

W 2
µi∂ωgout

(t)
µ

−1

(3.45)

λ
(t)
i = x̂

(t)
i + σ

(t)
i

 M∑
µ=1

Wµigout
(t)
µ

 (3.46)

4) Estimate of mean and variance of x augmented of the information about the prior
Cxi

(t+1) = fx2 (λ(t)
i , σ

(t)
i) (3.47)

x̂
(t+1)
i = fx1 (λ(t)

i , σ
(t)
i) (3.48)

until convergence

Relation to TAP equations Historically the main difference between the AMP algorithm and
the TAP equations is that the latter was first derived for binary variables with 2-body interactions
while the former was proposed for continuous random variables with N -body interactions. The
details of the derivation, not described here, rely on the knowledge of the statistics of the disordered
variable W but do not require a disorder average, as in the Georges-Yedidia expansion yielding
the TAP equation. By focusing on the GLM with a random Gaussian weight matrix scaling as
O(1/

√
N) (similar to the couplings of the SK model) we naturally obtained TAP equations at

second order, with an Onsager term in the update (3.42) of ωµ. The TAP free energy can also
be recovered by plugging-in the approximate parametrized messages in the definition of the Bethe
free energy (3.27). Yet an advantage of the AMP derivation from BP is that it explicitly provides
‘correct’ time indices in the iteration scheme to solve the self consistent equations.

Reconstruction with AMP The AMP algorithm is therefore a practical reconstruction algo-
rithm which can be run on a single instance and estimate an unknown signal x0. Note that the

27

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

prior px and channel pout used in the algorithm correspond to the student statistical model and
they may be different from the true underlying teacher model that generates x0 and y. In other
words, the AMP algorithm may be used either in the Bayes Optimal or in the mismatched setting
defined in Section 2.1.3. Remarkably, it is also possible to now consider a disorder average in
the thermodynamic limit to study the average case computational hardness of the GLM inference
problem in either of these configurations.

State Evolution

The statistical analysis of the AMP equations in the average case leads to another closed set
equations in the thermodynamic limit N → ∞ that was called State Evolution (SE) in [34]. Its
derivation starts from the r-BP equations and relies on the assumption of independent incoming
messages to invoke the Central Limit Theorem. It is therefore only necessary to follow the evolution
of a set of means and variances. When the different variables and factors are statistically equivalent,
as it is the case of the GLM, the State Evolution reduces to a few scalar equations. The interested
reader should refer to Section 6.1.2 for a detailed derivation in a more general setting.

Mismatched setting In the general mismatched setting we need to carefully differentiate the
teacher and the student. We note px0 the prior used by the teacher. We also rewrite its channel
pout,0 as the explicit function g0(·, ε) assuming the noise ε to be distributed according to the
standard normal distribution. The tracked quantities are the overlaps,

q = lim
N→∞

1
N

N∑
i=1

x̂2
i , m = lim

N→∞

1
N

N∑
i=1

x̂ix0,i , q0 = lim
N→∞

1
N

N∑
i=1

x2
0,i = Epx0

[x2
0], (3.49)

along with auxiliary V , q̂, m̂ and χ̂:

q̂(t) =
∫

dε pε0(ε)
∫

dω dz N (z, ω; 0, Q(t))gout(ω, g0 (z; ε) , V (t))2 (3.50)

m̂(t) =
∫

dε pε0(ε)
∫

dω dz N (z, ω; 0, Q(t))∂zgout(ω, g0 (z; ε) , V (t)) (3.51)

χ̂(t) = −
∫

dε pε0(ε)
∫

ddωdz N (z, ω; 0, Q(t))∂ωgout(ω, g0
(
z; εµ

)
, V (t)) (3.52)

q(t+1) =
∫

dx0 px0(x0)
∫
Dξ fx1

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x0

)
; (αχ̂(t))−1

)2
(3.53)

m(t+1) =
∫

dx0 px0(x0)
∫
Dξ x0f

x
1

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x0

)
; (αχ̂(t))−1

)
(3.54)

V (t+1) =
∫

dx0 px0(x0)
∫
Dξ fx2

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x0

)
; (αχ̂(t))−1

)
(3.55)

where we use the notation N (·; ·, ·) for the normal distribution, Dξ for the standard normal
measure and the covariance matrix Q(t) is given at each time step by

Q(t) =

 q0 m(t)

m(t) q(t)

 .
Due to the self-averaging property, the performance of the reconstruction by the AMP algorithm

on an instance of size N can be tracked along the iterations given

MSE(x̂) = 1
N

N∑
i=1

(x̂i − x0,i)2 = q − 2m+ q0, (3.56)

28

3.4 Replica method

with only minor differences coming from finite-size effects. State Evolution also provides an efficient
procedure to study from the theoretical perspective the AMP fixed points for a generic model, such
as the GLM, as a function of some control parameters. It reports the average results for running
the complete AMP algorithm on O(N) variables using a few scalar equations. Furthermore, the
State Evolution equations simplify further in the Bayes optimal setting.

Bayes optimal setting When the prior and channel are identical for the student and the teacher,
the true unknown signal x0 is in some sense statistically equivalent to the estimate x̂ coming from
the posterior. More precisely one can prove the Nishimori identities [104, 63, 101] (or [67] for a
concise demonstration and discussion) implying that q = m, V = q0 −m and q̂ = m̂ = χ̂. Only
two equations are then necessary to track the performance of the reconstruction:

q̂(t) =
∫

dε pε0(ε)
∫

dω dz N (z, ω; 0, Q(t))gout(ω, g0 (z; ε) , V (t))2 (3.57)

q(t+1) =
∫

dx0 px0(x0)
∫
Dξ fx1

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x0

)
; (αχ̂(t))−1

)2
. (3.58)

3.4 Replica method

Another powerful technique from the statistical physics of disordered systems to examine models
with infinite range interactions is the replica method. It enables an analytical computation of the
quenched free energy via non-rigorous mathematical manipulations. More developed introductions
to the method can be found in [101, 22].

3.4.1 Steps of a replica computation

The basic idea of the replica computation is to apply the average over the disorder to the identity
logZ = limn→0(Zn − 1)/n, while at first considering n ∈ N, before taking the n → 0 limit - thus
taking advantage of the fact that the average of a power of Z is easier to compute than the average
of a logarithm. We illustrate the key steps for the calculation of the partition function of the GLM
(3.22).

Disorder average for the replicated system: coupling of the replicas The average of Zn
for n ∈ N can be seen as the partition function of a system with n+ 1 non interacting replicas of
x indexed by a ∈ {0, · · · , n}, where the first replica a = 0 is representative of the teacher and the
n other replicas are identically distributed as the student:

EW,y,x0
[Zn] = EW

[∫
dy dx0 pout,0(y|Wx0)px0

(x0)
(∫

dx pout(y|Wx)px(x)
)n]

(3.59)

= EW

∫ dy
n∏
a=0

(
dxa pout,a(y|Wxa)pxa(xa)

) (3.60)

= EW

∫ dy
n∏
a=0

(
dxa dza δ(za −Wxa)pout,a(y|Wxa)pxa(xa)

) . (3.61)

To perform the average over the disordered interactions W we consider the statistics of za = Wxa.
Recall that Wµi ∼ N (Wµi; 0, 1/N), independently for all µ and i. Consequently, the za are jointly
Gaussian in the thermodynamic limit with means and covariances

EW [za,µ] = EW

 N∑
i=1

Wµixa,i

 = 0 , EW
[
za,µzb,ν

]
=

N∑
i=1

xa,ixb,i/N = qab. (3.62)

The overlaps, that we already introduced in the SE formalism, naturally re-appear. We introduce
the notation q for the (n+ 1)× (n+ 1) overlap matrix. Note that integrating out the disorder W
shared by the n+1 replicas will therefore leave us with an effective system of now coupled replicas.

29

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

Change of variable for the overlaps: decoupling of the variables Considering the over-
laps as variables, and considering the Fourier representation of the Dirac distribution fixing the
consistency between overlaps and replicas, we multiply the replicated average by

1 =
∫ ∏

a,b

dNqab δ(Nqab −
N∑
i=1

xa,ixb,i) =
∫ ∏

a,b

dNqab
∫ ∏

a,b

dNq̂ab eq̂ab(Nqab−
∑N

i=1
xa,ixb,i).

(3.63)

As a result

EW,y,x0
[Zn] =

∫ ∏
a,b

dNqab
∫ ∏

a,b

dNq̂ab exp (Nq̂abqab) (3.64)

∫
dy

n∏
a=0

dza pout,a(y|za) exp

−1
2

M∑
µ=1

∑
a,b

za,µzb,µ(q−1)ab −MC(q, n)


∫ n∏

a=1
dxa pxa(xa) exp

−q̂ab N∑
i=1

xa,ixb,i


where C(q, n) is related to the normalization of the Gaussian distributions over the za variables,
and the integrals can be factorized over the i-s and µ-s. Thus we obtain

EW,y,x0
[Zn] =

∫ ∏
a,b

dNqab
∫ ∏

a,b

dNq̂ab eNq̂abqabe
M log Îz(q)

e
N log Îx(q̂)

, (3.65)

Îz(q) =
∫

dy
n∏
a=0

dza pout,a(y|za) exp

−1
2
∑
a,b

zazb(qab)−1 − C(q, n)

 , (3.66)

Îx(q̂) =
∫ n∏

a=1
dxa pxa(xa) exp (−q̂abxaxb) , (3.67)

where we introduce the notation q̂ for the auxiliary overlap matrix with entries (q̂)ab = q̂ab.
The decoupling of the xi and the zµ of the infinite range system yields pre-factors N and M in
the exponential arguments and consequently an integral for the replicated average that is easily
computed in the thermodynamic limit by the saddle point method:

EW,y,x0
[Zn] ' e

Nextrqq̂
[
φ(q,q̂)

]
, φ(q, q̂) =

∑
a,b

q̂abqab + αÎz(q) + Îx(q̂), (3.68)

where we defined the replica potential φ.

Exchange of limits: back to the quenched average The thermodynamic average of the
log-partition is recovered through an a priori risky mathematical manipulation: (i) perform an
analytical continuation from n ∈ N to n→ 0

1
N

EW,y,x0
[logZ] = lim

n→0

1
nN

EW,y,x0
[Zn − 1] = lim

n→0

1
nN

logEW,y,x0
[Zn] (3.69)

and (ii) exchange limits

−f = lim
n→0

1
n

lim
N→∞

1
N

logEW,y,x0
[Zn] = lim

n→0

1
n

extrqq̂
[
φ(q, q̂)

]
. (3.70)

Despite the apparent lack of rigour in taking these last steps, the replica method has been proven
to yield exact predictions in the thermodynamic limit for different problems and in particular for
the GLM [119, 9].

30

3.4 Replica method

Saddle point solution: choice of a replica ansatz At this point, we are still left with the
problem of computing the extrema of φ(q, q̂). To solve this optimization problem over q and q̂,
a natural assumption is that replicas, that are a pure artefact of the calculation, are equivalent.
This is reflected in a special structure for overlap matrices between replicas that only depend on
three parameters each,

q =


q0 m m m
m q q12 q12
m q12 q q12
m q12 q12 q

 , q̂ =


q̂0 m̂ m̂ m̂
m̂ q̂ q̂12 q̂12
m̂ q̂12 q̂ q̂12
m̂ q̂12 q̂12 q̂

 , (3.71)

here given as an example for n = 3 replicas. Plugging this replica symmetric (RS) ansatz in the
expression of φ(q, q̂), taking the limit n→ 0 and looking for the stationary points as a function of
the parameters q, m, q12 and m̂, q̂, q̂12 recovers a set of equations equivalent to SE (1.7), albeit
without time indices. Hence the two a priori different heuristics of BP and the replica method are
remarkably consistent under the RS assumption.

Nevertheless, the replica symmetry can be spontaneously broken in the large N limit and the
dominating saddle point do not necessarily correspond to the RS overlap matrix. This replica
symmetry breaking (RSB) corresponds to substantial changes in the structure of the examined
Boltzmann distribution. It is among the great strength of the replica formalism to naturally
capture it. We will not investigate here this direction further. By considering the Bayes optimal
setting, we will avoid the necessity of considering the breaking of the replica symmetry [101, 22, 160]
in the problems discussed in Chapters 5 and 6.

Bayes optimal setting As in SE the equations simplify in the matched setting, where the first
replica corresponding to the teacher becomes equivalent to all the others. The replica free energy
of the GLM is then given as the extremum of a potential over two scalar variables:

−f = extrqq̂
[
−1

2qq̂ + Ix(q̂) + αIz(q0, q)
]

(3.72)

Ix(q̂) =
∫
Dξ dx px(x)e−q̂ x

2
2 +
√
q̂ξx log

(∫
dx′ px(x′)e−q̂ x

′2
2 +
√
q̂ξx′
)

(3.73)

Iz(q, q0) =
∫
Dξ dy dz pout(y|z)N (z;√qξ, q0 − q) log

(∫
dz′ pout(y|z′)N (z′;√qξ, q0 − q)

)
.

(3.74)

The saddle point equations corresponding to the extremization (3.72), fixing the values of q and
q̂, would again be found equivalent to the Bayes optimal SE (3.57) - (3.58).

3.4.2 Assumptions and relation to other mean-field methods

A crucial point in the above derivation of the replica formula is the extensivity of the interactions
of the infinite range model that allowed the factorization of the N scaling of the argument of the
exponential integrand. The statistics of the disorder W and in particular the independence of all
the Wµi was also necessary. This is an important assumption for the technique to go through,
although it can be possible to relax it for some types of correlation statistics, as we will see in
Section 3.5.3.

Note that the replica method directly enforces the disorder averaging and does not provide
a prediction at the level of the single instance. Therefore it cannot be turned into a practical
algorithm of reconstruction. Nonetheless, we have seen that the saddle point equations of the
replica derivation, under the RS assumption, matches the SE equations derived from BP. This is
sufficient to theoretically study inference questions under a teacher-student scenario in the Bayes
optimal setting.

In the mismatched setting however, the predictions of the replica method under the RS as-
sumption and the equivalent BP conclusions can be wrong. By introducing the symmetry break-
ing between replicas, the method can sometimes be corrected. It is an important endeavor of the

31

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

replica formalism to grasp the importance of the overlaps and connect the form of the replica
ansatz to the properties of the joint probability distribution examined. When BP fails on loopy-
graph, correlations between variables are not decaying with distance, which manifests into an RSB
phase. Subsequently, a message passing formalism taking into account (one step of) replica sym-
metry breaking was proposed [89, 88]; it maintains the consistency of the replica method with the
corresponding ansatz.

3.5 Extensions of interest for this thesis

In the previous Section we saw how frameworks and procedures of mean-field approximations rely
on structural and statistical properties of the model under scrutiny. While we focused on the
simple, and original, examples of the SK-Boltzmann machine and the GLM with Gaussian i.i.d
weight matrices as examples, the span of applicability of mean-field methods now goes far beyond.
We present here some of the recent applications of these concepts in more complex cases that are
of particular interest for the rest of this thesis.

3.5.1 Streaming AMP for online learning

In learning applications, it is sometimes advantageous for speed or generalization concerns to
only treat a subset of examples at the time - making for instance the SGD algorithm the most
popular training algorithm in deep learning. Sometimes also, the size of the current data sets may
exceed the available memory. Methods implementing a step-by-step learning as the data arrives
are referred as online, streaming or mini-batch learning, as opposed to offline or batch learning.

In [85], a mini-batch version of the AMP algorithm is proposed. On the example of the GLM,
one imagines receiving at each iteration a subset of the components of y to reconstruct x. We
denote by y(k) these successive mini-batches. Bayes formula gives the posterior distribution over
x after seeing k mini-batches

p(x|y(k), {y(k−1), · · · y(1)}) =
p(y(k)|x)p(x|{y(k−1), · · · y(1)})∫

dx p(y(k)|x)p(x|{y(k−1), · · · y(1)})
. (3.75)

This formula suggests the iterative scheme of using as a prior on x at iteration k the posterior
obtained at iteration k − 1. This idea can be implemented in different approximate inference
algorithms, as proposed by [20] using a variational method. In the regular version of AMP an
effective factorized posterior is given at convergence by the input update functions (3.35)-(3.37):

p(x|y,W) '
N∏
i=1

1
Zx(λi, σi)

px(xi)e−
(λi−xi)

2
2σi . (3.76)

Plugging this posterior approximation in the iterative scheme yields the mini-AMP algorithm using
the converged values of λ(`)i and σ(`)i at each anterior mini-batch ` < k to compute the prior

p(k)
x (x) = p(x|{y(k−1), · · · y(1)},W) '

N∏
i=1

1
Zx,i

px(xi) e
−
k−1∑̀
=1

(λ(`),i−xi)
2

2σ(`),i
, (3.77)

where the Zx,i normalize each marginal factor. Compared to a naive mean-field variational approx-
imation of the posterior, AMP takes into account more correlations and is indeed found to perform
better in experiments reported by [85]. An other advantage of the AMP based online inference is
that it is amenable to theoretical analysis by a corresponding State Evolution. In Chapter 6, we
follow the lines of [85] to derive a streaming version of the Cal-AMP algorithm (see next section),
for the training of minimal models of neural networks.

3.5.2 A special special case of GAMP: Cal-AMP

The calibration AMP algorithm was introduced in [130, 131], relatively to the problem of blind
calibration. In the generic setting of the inference of an unknown signal from a set of observations,

32

3.5 Extensions of interest for this thesis

one can imagine a situation where the channel is not perfectly known and needs to be calibrated.
For the GLM problem, a possible formalization of this uncertainty is the addition of unobserved
calibration variables, noted s ∈ RM here, in the channel likelihood:

psout(y|Wx, s) =
M∏
µ=1

psout(yµ|wTµx, sµ) ⇐⇒ yµ = g(wTµx; εµ, sµ), εµ ∼ pε(εµ) ∀µ. (3.78)

The recovery of the value of s will only be feasible if multiple observations {y(k)} are available. If
a set of complementary pairs {x(k), y(k)} is furthermore available a priori, then one can imagine a
supervised procedure to calibrate s before dealing with the original problem of reconstruction of
x. Otherwise, a blind calibration has to be attempted.

A Bayesian inference approach was proposed in [130, 131], using P observations {y(k)}
P
k=1 to

compute simultaneously, in the Bayes-optimal setting, the MMSE estimators of the input signals
{x(k)}Pk=1 and the calibration s. The posterior distribution examined including prior distributions
is

p({x(k)}Pk=1, s|y,W) = 1
Z(W, {y(k)}

P
k=1)

P,M∏
k,µ=1

psout(y(k)µ|w
>
µ x(k), sµ)

P,N∏
k,i=1

px(x(k)i)
M∏
µ=1

ps(sµ).

(3.79)

The Cal-AMP algorithm was derived following the steps of Section 3.3 (see [131] for details of this
derivation). It is closely related to the GAMP for the reconstruction of the {x(k)}Pk=1, with two
main differences. First it considers P observations and P signals to reconstruct simultaneously
where AMP only has one, thereby multiplying the number of update equations. Second, the update
output functions (3.38)-(3.40) are modified so as to take into account the effective output channel
with uncertain calibration variables

pout(y|z) =
∫

ds psout(y|z, s)ps(s). (3.80)

The proposed strategy is numerically tested in [130, 131] for a series of sub-problems, and succeeds
at the reconstruction task when M and/or P are large enough.

In Chapter 6, we re-derive the algorithm using a slightly less factorized version of the posterior
(recovering the algorithm of [130, 131] as a particular case). This is the starting point towards the
analysis of Bayesian learning in multi-layer neural networks, an ongoing work presented in this last
Chapter.

3.5.3 Algorithms and free energies beyond i.i.d. matrices

The derivations outlined in the previous Sections of the equivalent replica, TAP and AMP equations
required the weight matrices to have Gaussian i.i.d. entries. Different weight statistics are a priori
feasible if one finds a way to perform the corresponding disorder average in the replica computation
or to evaluate the corresponding Onsager term in the TAP equations. For AMP however one
considers a high connectivity limit of the BP equations relying on the independence of incoming
messages at each variable or factor node. This high connectivity limit, albeit introducing short
loops, turns out correct in the examined models with i.i.d. weights as suggests the consistency
between AMP, TAP and replica equations. Rigorous proof were also given for the SK model [143]
and the GLM [9]. Nevertheless, this derivation may appear incorrect for correlated weight matrices
that are promoting dependencies between messages.

Efforts to broaden in practice the class of matrices amenable to such mean-field treatments lead
to a series of works in statistical physics and signal processing with related propositions. Parisi and
Potters pioneered this direction by deriving mean-field equations for orthogonal weight matrices
using a high-temperature expansion [111]. The adaptive TAP approach proposed by Opper and
Winther [107, 108] further allowed for inference in densely connected graphical models without
prior knowledge on the weight statistics. The Onsager term of these TAP equations was evaluated
using the cavity method for a given weight sample. The resulting equations were then understood

33

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

to be a particular case of the Expectation Propagation (EP) [92] - belonging to the class of message
passing algorithms for approximate inference - yet applied in densely connected models [109]. An
associated approximation of the free energy called Expectation Consistently (EC) was additionally
derived from the EP messages. Subsequently, Kabashima and collaborators [135, 136, 66] focused
on the perceptron and the GLM to propose TAP equations and a replica derivation of the free
energy for the ensemble of orthogonally invariant random weight matrices. In the singular value
decomposition of such weight matrices W = U S V > ∈ RM×N the orthogonal basis matrices U and
V are drawn uniformly at random from respectively O(M) and O(N), while the diagonal matrix of
singular values S has an arbitrary spectrum. The consistency between the EC free energy and the
replica derivation for orthogonally invariant matrices was verified by [68] for signal recovery from
linear measurements (the GLM without G). From the algorithmic perspective, Fletcher, Rangan
and Schniter [117, 129] applied the EP to the GLM to obtain the (Generalized) Vector-Approximate
Message Passing (G-VAMP) algorithm. Remarkably, these authors proved that the behavior of the
algorithm could be characterized in the thermodynamic limit, provided the weight matrix is drawn
from the orthogonally invariant ensemble, by a set of scalar State Evolution equations similarly to
the AMP algorithm. These equations are again related to the saddle point equations of the replica
free energy. Concurrently, Opper, Cakmak and Winther proposed an alternative procedure for
solving TAP equations with orthogonally invariant weight matrices in Ising spin systems relying
on an analysis of iterative algorithms [103].

Below we present the aforementioned free energy as proposed by [135, 136, 66], and the G-
VAMP algorithm of [129].

Replica free energy for the GLM in the Bayes Optimal setting

Consider the ensemble of orthogonally invariant weight matrices with spectral density
∑N
i=1 δ(λ−

λi)/N of their ‘square’ WW> converging in the thermodynamic limit N → +∞ to ρλ(λ). The
quenched free energy of the GLM in the Bayes optimal setting derived in [66, 136] writes

−f = extrqq̂
[
−1

2qq̂ + Ix(q̂) + Jz(q0, q, α, ρλ)
]

(3.81)

Jz(q0, q, α, ρλ) = extruû
[
Fρλ,α(q0 − q, û/λ0) + ûq0

2 − αûu

2λ0
+ αIz(q0λ0/α, u)

]
, (3.82)

where Ix and Iz were defined as (3.73)-(3.74) and the spectral density ρλ(λ) appears via its mean
λ0 = Eλ[λ] and in the definition of

Fρλ,α(q, u) = 1
2extrΛq,Λu

[
−(α− 1) log Λu − Eλ log(ΛuΛq + λ) + Λqq + αΛuu

]
−1

2(log q + 1) + α

2 (log u+ 1). (3.83)

Gaussian random matrices are a particular case of the considered ensemble. Their singular values
are characterized asymptotically by the Marcenko-Pastur distribution [86]. In this case, one can
check that the above expression reduces to (3.72). More generally, note that Jz generalizes Iz.

Vector Approximate Message Passing for the GLM

The VAMP algorithm consists in writing EP [92] with Gaussian messages on the factor graph
representation of the GLM posterior distribution given on Figure 3.2. The estimation of the signal
x is decomposed onto four variables, two duplicates of x itself and two duplicates of the linear
transformation z = Wx. The potential functions ψx and ψz of factors connecting copies of the
same variable are Dirac distributions enforcing their equality. The factor node linking z(2) and
x(2) is assumed Gaussian with variance going to zero. The procedure of derivation, equivalent to
the projection of the BP algorithm on Gaussian messages, is recalled in Appendix A and leads to
Algorithm 2. Like for AMP, the algorithm features some auxiliary variables introduced along the
derivation. At convergence the duplicated x̂1, x̂2 (and ẑ1, ẑ2) are equal and either can be returned
by the algorithm as an estimator. For readability, we omitted the time indices in the iterations
that here simply follow the indicated update.

34

3.5 Extensions of interest for this thesis

z(1) z(2)

x(1) x(2)

px(x(1))

pout(y|z)

ψx(x(1), x(2)) =
δ(x(1) − x(2))

ψz(z(1), z(2)) =
δ(z(1) − z(2))

lim
∆→0

N (z(2);Wx(2),∆)

Figure 3.2: Factor graph representation of the GLM for the derivation of VAMP

Algorithm 2 Vector Approximate Message Passing
Input: vector of observations y ∈ RM and weight matrix W ∈ RM×N :
Initialize: Ax1 , Bx1 , Az1, Bz1
repeat

x̂1 = fx1 (Bx1 , Ax1) , Cx1 = fx2 (Bx1 , Ax1) (3.84)

Ax2 = Cx1
−1 −Ax1 , Bx2 = Cx1

−1x̂2 −B
x
1 (3.85)

ẑ1 = fz1 (Bz1, Az1) , Cz1 = fz2 (Bz1, Az1) (3.86)

Az2 = Cx1
−1 −Az1 , Bz2 = Cx1

−1x̂2 −B
z
1 (3.87)

x̂2 = gx1 (Bx2 , Ax2 , Bz2, Az2) , Cx2 = gx2 (Bx2 , Ax2 , Bz2, Az2) (3.88)

Ax1 = Cx2
−1 −Ax2 , Bx1 = Cx2

−1x̂1 −B
x
2 (3.89)

ẑ2 = gz1(Bx2 , Ax2 , Bz2, Az2) , Cz2 = gz2(Bx2 , Ax2 , Bz2, Az2) (3.90)

Az1 = Cx2
−1 −Az2 , Bz1 = Cx2

−1x̂1 −B
z
2 (3.91)

until convergence
Output: signal estimate x̂1 ∈ RN , and estimated covariance Cx1 ∈ RN×N

For a given instance of the GLM inference problem, i.e. a given weight matrix W , one can
always launch either the AMP algorithm or the VAMP algorithm to attempt the reconstruction.
If the weight matrix has i.i.d. zero mean Gaussian entries, the two strategies are conjectured to be
equivalent and GAMP can be provably convergent for certain settings [116]. If the weight matrix
is not Gaussian but orthogonally invariant, then only VAMP is expected to always converge. More
generally, even in cases where none of these assumptions are verified, VAMP has been observed to
have less convergence issues than AMP.

Like for AMP, a State Evolution can also be derived for VAMP (which was actually directly
proposed for the multi-layer GLM [38]). It rigorously characterizes the behavior of the algorithm
when W is orthogonally invariant. One can also verify that the SE fixed points can be mapped
to the solutions of the saddle point equations of the replica free energy (3.81) (see Section 1 of
Supplementary Material of [40]); so that the robust algorithmic procedure can advantageously be
used to compute the fixed points to be plugged in the replica potential to approximate the free
energy.

35

3 Selected overview of mean-field treatments: free energies and algorithms
(Techniques)

3.5.4 Model composition

Another recent and ongoing direction of extension of mean-field methods is the combination of
solutions to elementary models to tackle more sophisticated inference questions. The graphical
representations introduced in Section 2.1.1 are here of great help. In a complicated joint probability
distribution, it is sometimes possible to identify well-known sub-models, such as the GLM or the
RBM already discussed in this thesis. Understanding how and when it is justified to plug-in
different solutions is of course non-trivial and a very promising direction of research. For instance,
in Chapter 4, we perform an ad hoc combination of the RBM and GLM model to design a practical
algorithm operating on arbitrary (real) data sets, albeit not yet analyzable. An instead theoretically
grounded extension in this direction is the treatment of multi-layer GLMs, or in other words multi-
layer neural networks. In [84] a multi-layer version of AMP is derived, assuming Gaussian i.i.d
weight matrices, along with a State Evolution and a free energy. In [38], the multi-layer version of
the VAMP algorithm is derived with the corresponding State Evolution for orthogonally invariant
weight matrices. In Chapter 5, we derive the corresponding replica free energy. Yet another
example, in Chapter 6, we derive AMP and SE while combining a calibration problem with a
GLM. The derivation presented there will follow the lines of ML-AMP although in a slightly more
general case.

36

Part II

Contributions

37

4 Mean-field inference for (deep) unsupervised
learning

Unsupervised learning often consists in fitting a parametric probabilistic model to a collection
of empirical samples. To this end, neural networks are a precious tool. They can define joint
probability distributions with complex correlations able to reproduce data from the real world
such as images or sounds. As exact inference on large neural networks is almost never possible,
it is interesting to consider mean-field methods in this context. They are precisely designed to
exploit structures and properties of interactions in large graphs. Yet, they also rely on certain
assumptions of randomness and homogeneity which can be broken when parameters are chosen by
a training algorithm. In this Chapter, we show that mean-field methods can indeed be helpful in
the unsupervised training and downstream application of a class of neural network models called
Boltzmann machines. In a first Section, we present the derivation of mean-field equations for
approximate inference in Boltzmann machines. In particular, we generalize the usual case of binary
variables to arbitrary real-valued variables. In a second Section, we leverage the formalism derived
in the first Section to propose a new training algorithm for Restricted Boltzmann Machines. We
verify numerically that the mean-field strategy achieves state-of-art performance. These two first
sections are based on the publications [42] and [150]. In a third Section, we discuss an application
where the representative power of RBMs can be exploited through mean-field inference for a
reconstruction task. The designed method successfully integrates unsupervised learning to improve
Bayesian reconstruction. This project was led by E. W. Tramel and published in [151]. Finally, as
perspectives, we hint at further directions leveraging mean-field methods for the nowadays more
common feed forward models used for unsupervised learning.

4.1 Mean-field inference in Boltzmann machines

We start by presenting mean-field approximations for Boltzmann machines with an arbitrary archi-
tecture before turning to the specific case of the Restricted and Deep Boltzmann machines - RBMs
and DBMs - that are of special interest in machine learning. To derive TAP free energies, we choose
here the formalism of Georges-Yedidia [47] which allows to compute systematically corrections to
the naive mean-field approximation by the addition of orders to the expansion.

4.1.1 Georges-Yedidia expansion for binary Boltzmann machines

We consider the binary vector x ∈ {0, 1}N following the distribution defined by a Boltzmann
machine with symmetric weight matrix W ∈ RN×N and bias vector b ∈ RN ,

E(x) = −b>x− 1
2x
>Wx , p(x) = 1

Z
e−βE(x). (4.1)

This model is closely related to the pairwise Ising model for which the TAP equations [144], the
Plefka expansion [114] and the Georges-Yedidia expansion [47] were originally derived. The only
difference consists in assuming xi = 0 or 1 instead of xi = ±1. The derivation already outlined in
Section 3.2.1 can be found in detail for this original case in different references including [105] and
[159]. Following these steps we obtain the Georges-Yedidia expansion for the binary Boltzmann

39

4 Mean-field inference for (deep) unsupervised learning

machine for xi ∈ {0, 1} up to the third order as a function of the marginals (or magnetizations),

−βG(m) =−
N∑
i=1

mi logmi + (1−mi) log(1−mi) + β

N∑
i=1

bimi + β
∑
(ij)

Wijmimj (4.2)

+ β2

2
∑
(ij)

W 2
ij(mi −mi

2)(mj −mj
2)

+ 2β3

3
∑
(ij)

W 3
ij(mi −mi

2)(1/2−mi)(mj −mj
2)(1/2−mj)

+ β3
∑
(ijk)

WijWjkWki(mi −mi
2)(mj −mj

2)(mk −mk
2) + · · ·

where the summation over (ij) runs over distinct pairs of connected variables and similarly (ijk)
runs over distinct triplets of interconnected variables. Note that in the above energy definition (4.1)
we assumed a fully connected graph of connections, yet any other architecture can be recovered
by setting some entries of W to zero. To recover an approximation of the free energy, we must fix
the values of the marginals by finding the stationary points m∗i of G,

∂G(m)
∂mi

∣∣∣∣
m∗
i

= 0 ∀i = 1 · · ·N ⇒ G(m∗). (4.3)

These conditions can be formulated as a set of self-consistent equations verified by the m∗i (noted
simply mi in the following),

mi = σ
(
βbi +

∑
j∈∂i

βWijmj − β2W 2
ij(mj − 1/2)(mi −mi

2) (4.4)

+ 2β3

3
∑
j∈∂i

W 3
ij

[
2(1/2−mi)2 − (mi −mi

2)
]

(mj −mj
2)(1/2−mj)

+ β3

2
∑

(jk)∈∂i

WijWjkWki(1/2−mi)(mj −mj
2)(mk −mk

2) + · · ·
)

where σ(x) = (1+e−x)−1 is the sigmoid function, and (jk) ∈ ∂i corresponds to the set of connected
pairs of variables that are also connected to variable i. A truncation of the expansion (4.2) at a
given order is reflected by a truncation of the sigmoid argument in (4.4). We refer to the resulting
set of equations as the TAP equations of a given order, allowing to compute the corresponding
TAP free energy of a given order. In particular, the naive mean-field approximation discussed in
Section 3.1 is recovered by keeping only the first order.

4.1.2 Georges-Yedidia expansion for generalized Boltzmann machines

The binary variable case presented above can be recovered from a more general setting considering
the xi-s to be a priori real-valued. Formally we consider now x ∈ RN governed by the energy
function and parametrized distribution

E(x) = −
∑
(ij)

Wijxixj −
1
β

log px(xi; θi) , p(x) = 1
Z
e
β
2 x
>Wx

N∏
i=1

px(xi; θi), (4.5)

where px(xi; θi) is an arbitrary prior distribution with parameter θi. For Bernoulli prior with
parameter σ(βbi) we recover the measure of binary Boltzmann machine. However we choose
here a prior that does not depend on the temperature a priori. We now derive the Georges-
Yedidia expansion for this general case following the outline discussed in 3.2.1, and highlighting
the differences with the binary case.

We note that inference in the generalized fully connected Boltzmann machine is somehow related
to the symmetric rank-1 matrix factorization problem, which also features pairwise interactions.

40

4.1 Mean-field inference in Boltzmann machines

Similarly, inference for the bi-partite RBM maps to the asymmetric rank-1 matrix factorization.
However, conversely to the Boltzmann inference, these factorizations are reconstruction problems.
The mean-field techniques, derived in [80, 81], allow there to compute the MMSE estimator of
unknown signals from approximate marginals. Here our main goal is to evaluate the free energy.

Minimization for fixed marginals

While fixing the value of the first moment is sufficient for binary variables, we now need more than
one constraint in order to minimize the Gibbs free energy at a given value of the marginals. In the
same spirit of the AMP algorithm we assume a Gaussian parametrization of the marginals. We
note a the first moment of x and c its variance. We wish to compute the constrained minimum
over the distributions q on RN

G(a, c) = min
q

[
〈E(x)〉q −H(q)/β | 〈x〉q = a , 〈x2〉q = a2 + c

]
, (4.6)

where the notation of squared vectors corresponds here and below to the vectors of squared entries.
It is equivalent to an unconstrained problem with Lagrange multipliers λ(a, c, β) and ξ(a, c, β)

G(a, c) = min
q

[
〈E(x)〉q −H(q)/β − λ>(〈x〉q − a)/β − ξ(〈x2〉q − a2 − c)/β

]
. (4.7)

The terms depending on the distribution q in the the functional to minimize above can be inter-
preted as a Gibbs free energy for the effective energy functional

Ẽ(x) = E(x)− λ>x/β − ξ>x2/β. (4.8)

The solution of the minimization problem (4.10) is therefore the corresponding Boltzmann distri-
bution

qa,c(x) = e−βẼ(x)

Z̃
= 1
Z̃
e−βE(x)+λ(a,c,β)>x+ξ(a,c,β)>x2

(4.9)

and the minimum G(a, c) is

−βG(a, c) = −λ>a− ξ>(a2 + c) + log
∫

dx e−βE(x)+λ>x+ξ>x2

= log
∫

dx e−βE(x)+λ>(x−a)+ξ>(x2−a2−c), (4.10)

where the Lagrange multipliers λ(a, c, β) and ξ(a, c, β) enforcing the constraints are still implicit.
Defining a functional G̃ for arbitrary vectors λ̃ ∈ RN and ξ̃ ∈ RN ,

−βG̃(a, c, λ̃, ξ̃) = log
∫

dx e−βE(x)+λ̃>(x−a)+ξ̃>(x2−a2−c), (4.11)

we have

ai = 〈xi〉qa,c ⇒ −β
∂G̃

∂λ̃i

∣∣∣∣∣
λ,ξ

= 0, − β ∂2G̃

∂λ̃2
i

∣∣∣∣∣
λ,ξ

= 〈x2
i 〉qa,c − a2

i > 0, (4.12)

ci + a2
i = 〈x2

i 〉qa,c ⇒ −β
∂G̃

∂ξ̃i

∣∣∣∣∣
λ,ξ

= 0, − β ∂2G̃

∂ξ̃2
i

∣∣∣∣∣
λ,ξ

= 〈(x2
i)2〉qa,c − (ci + a2

i)2 > 0. (4.13)

Hence the Lagrange multipliers are identified as minimizers of −βG̃ and

−βG(a, c) = −βG̃(a, c, λ(a, c, β), ξ(a, c, β)) = min
λ̃,ξ̃
−βG̃(a, c, λ̃, ξ̃). (4.14)

The true free energy F = − logZ/β would eventually be recovered by minimizing the constrained
minimum G(a, c) with respect to its arguments. Nevertheless, the computation of G and G̃ involves
an integration over x ∈ RN and remains intractable. The following step of the Georges-Yedidia
derivation consists in approximating these functionals by a Taylor expansion at infinite temperature
where interactions are neutralized.

41

4 Mean-field inference for (deep) unsupervised learning

Expansion around β = 0

To perform the expansion we introduce the notation A(β, a, c) = −βG(a, c). We also define the
auxiliary operator

U(x;β) = −1
2x
>Wx+ 1

2 〈x
>Wx〉qa,c −

N∑
i=1

∂λi
∂β

(xi − ai)−
N∑
i=1

∂ξi
∂β

(x2
i − a2

i − ci), (4.15)

that allows to write concisely for any observable O the derivative of its average with respect to β,

∂〈O(x;β)〉qa,c
∂β

=
〈
∂O(x;β)
∂β

〉
qa,c

− 〈U(x;β)O(x;β)〉qa,c . (4.16)

To compute the derivatives of λ and ξ with respect to β we note that

∂A

∂ai
= −β ∂G̃

∂ai
= −λi(β, a, c)− 2aiξi(β, a, c) , (4.17)

∂A

∂ci
= −β ∂G̃

∂ci
= −ξi(β, a, c), (4.18)

where we used that ∂G̃/∂λ̃i = 0 and ∂G̃/∂ξ̃i = 0 when evaluated for λ(a, c, β) and ξ(a, c, β).
Consequently,

∂ξi
∂β

= − ∂

∂ci

∂A

∂β
,

∂λi
∂β

= − ∂

∂ai

∂A

∂β
+ 2ai

∂ξi
∂β

. (4.19)

We can now proceed to compute the first terms of the expansion that will be performed for the
functional A.

Zeroth order Substituting β = 0 in the definition of A we have

A(0, a, c) = −λ(0, a, c)>a− ξ(0, a, c)>(a2 + c) + log Z̃0(λ(0, a, c), ξ(0, a, c)), (4.20)

with

Z̃0(λ(0, a, c), ξ(0, a, c)) =
∫

dx eλ(0,a,c)>x+ξ(0,a,c)>x2
N∏
i=1

px(xi; θi) (4.21)

=
N∏
i=1

∫
dxi eλi(0,a,c)xi+ξi(0,a,c)x

2
i px(xi; θi). (4.22)

At infinite temperature the interaction terms of the energy do not contribute so that the integral
in Z̃0 factorizes and can be evaluated numerically in the event that it does not have a closed-form.

First order We compute the derivative of A with respect to β. We use again that λ(a, c, β) and
ξ(a, c, β) are stationary points of G̃ to write

∂A

∂β
= −β ∂G̃

∂β
= ∂

∂β

[
log
∫

dx e−βE(x)+λ(a,c,β)>(x−a)+ξ(a,c,β)>(x2−a2−c)
]

(4.23)

=
〈
∂

∂β
(−βE(x)) + ∂λ

∂β

>
(x− a) +

∂ξ

∂β

>

(x2 − a2 − c)
〉
qa,c

(4.24)

= 1
2 〈x
>Wx〉qa,c . (4.25)

At infinite temperature the average over the product of variables becomes a product of averages
so that we have

∂A

∂β

∣∣∣∣
β=0

= 1
2a
>Wa =

∑
(ij)

Wijaiaj . (4.26)

42

4.1 Mean-field inference in Boltzmann machines

Second order Using the first order derivative of A we can compute the derivatives of the La-
grange parameters (4.19) and the auxillary operator at infinite temperature,

∂ξi
∂β

∣∣∣∣
β=0

= 0 , ∂λi
∂β

∣∣∣∣
β=0

= −
∑
j∈∂i

Wijaj , U(x; 0) = −
∑
(ij)

Wij(xi − ai)(xj − aj).

The second order derivative is then easily computed at infinite temperature

∂2A

∂β2

∣∣∣∣∣
β=0

= 1
2

∂

∂β

(
〈x>Wx〉qa,c

)∣∣∣∣
β=0

= −1
2 〈U(x; 0)(x>Wx)〉β=0

qa,c (4.27)

=
∑
(ij)

W 2
ij〈(xi − ai)xi(xj − aj)〉β=0

qa,c =
∑
(ij)

W 2
ijcicj . (4.28)

TAP free energy for the generalized Boltzmann machine

Stopping at the second order of the systematic expansion, and gathering the different terms derived
above we have

−βG(a, c) = −λ(0, a, c)>a− ξ(0, a, c)>(a2 + c) + log Z̃0(λ(0, a, c), ξ(0, a, c)) (4.29)

+ β
∑
(ij)

Wijaiaj + β2

2
∑
(ij)

W 2
ijcicj ,

where the values of the parameters λ(0, a, c) and ξ(0, a, c) are implicitly defined through the station-
ary conditions (4.12)-(4.13). The TAP approximation of the free energy also requires to consider
the stationary points of the expanded expression as a function of a and c.

This second condition yields the relations

−2ξi(0, a, c) = −β2
∑
j∈∂i

W 2
ijcj = Ai (4.30)

λi(0, a, c) = Aiai + β
∑
j∈∂i

Wijaj = Bi (4.31)

where we define new variables Ai and Bi. While the extremization with respect to the Lagrange
multipliers gives

ai = 1
Zxi

∫
dxi xipx(xi; θi)e−

Ai
2 x

2
i+Bixi = fx1 (Bi, Ai; θi), (4.32)

ci = 1
Zxi

∫
dxi x2

i px(xi; θi)e−
Ai
2 x

2
i+Bixi − a2

i = fx2 (Bi, Ai; θi), (4.33)

where we introduce update functions fx1 and fx2 with respect to the partition function

Zxi (Bi, Ai; θi) =
∫

dxi px(xi; θi)e−
Ai
2 x

2
i+Bixi . (4.34)

Finally we can rewrite the TAP free energy as

−βG(a, c) = −B>a+A>(a2 + c)/2 +
N∑
i=1

log Z̃i
x(Bi, Ai; θi) (4.35)

+ β
∑
(ij)

Wijaiaj + β2

2
∑
(ij)

W 2
ijcicj ,

with the values of the parameters set by the self-consistency conditions (4.30), (4.31), (4.32) and
(4.33), which are the TAP equations of the generalized Boltzmann machine at second order. Note
that the naive mean-field equations are recovered by ignoring the second order terms in β2.

43

4 Mean-field inference for (deep) unsupervised learning

Relation to message passing The TAP equations obtained above must correspond to the
fixed points of the Approximate Message Passing (AMP) following the derivation from Belief
Propagation (BP) that was presented in Section 3.3.3. In the Appendix B of [150] we derive the
relaxed-BP equations for the generalized Boltzmann machine:

B
(t)
i→j =

∑
k∈∂i\j

βWika
(t)
k→i, A

(t)
i→j = −

∑
k∈∂i\j

β2W 2
ikc

(t)
k→i, (4.36)

a
(t)
i→j = fx1 (B(t−1)

i→j , A
(t−1)
i→j ; θi), c

(t)
i→j = fx2 (B(t−1)

i→j , A
(t−1)
i→j ; θi). (4.37)

To recover the TAP equations for them we define

B
(t)
i =

∑
k∈∂i

βWika
(t)
k→i, A

(t)
i = −

∑
k∈∂i

β2W 2
ikc

(t)
k→i, (4.38)

a
(t)
i = fx1 (B(t−1)

i , A
(t−1)
i ; θi), c

(t)
i = fx2 (B(t−1)

i , A
(t−1)
i ; θi). (4.39)

As B(t)
i = B

(t)
i→j + βWija

(t)
j→i and A

(t)
i = A

(t)
i→j − β2W 2

ijc
(t)
j→i we have by developing fx2 that c(t)i =

c
(t)
i→j +O(β) so that

A
(t)
i = −β2

∑
j∈∂i

W 2
ijc

(t)
j + o(β2). (4.40)

By developing fx1 we also have

a
(t)
k = fx1 (B(t−1)

k→j + βWkja
(t−1)
j→i , A

(t−1)
k→j − β

2W 2
kjc

(t−1)
j→k ; θi) (4.41)

= a
(t)
k→j + ∂fx1

∂Bk
βWkja

(t−1)
j→k +O(β2), (4.42)

with ∂fx1
∂Bk

(B(t−1)
k , A

(t−1)
k ; θk) = c

(t)
k . Finally, by replacing in the definition of Bi the messages we

obtain

B
(t)
i =

∑
k∈∂i

βWika
(t)
k→i =

∑
k∈∂i

βWika
(t)
k − βWkic

(t)
k a

(t−1)
i→k . (4.43)

As a(t−1)
i→k = a

(t−1)
i +O(β) and using the definition of A(t)

i , we finally recover

B
(t)
i =

∑
k∈∂i

βWika
(t)
k +A

(t)
i a

(t−1)
i . (4.44)

Hence we indeed recover the TAP equations as the AMP fixed points in (4.39), (4.40) and
(4.44). Beyond the possibility to cross-check our results, the message passing derivation also
specifies a scheme of updates to solve the self-consistency equations obtained by the Georges-
Yedidia expansion. In the applications we consider below we should resort to this time indexing
with good convergence properties [17].

Solutions of the TAP equations As already discussed in Section 3.2, the TAP equations do not
necessarily admit a single solution. In practice, different fixed points are reached when considering
different initializations of the iteration of the self-consistent equations. In the applications of the
TAP formalism discussed in the remaining of this Chapter we will discuss the strategy we adopt
to take into account this multiplicity.

4.1.3 Application to RBMs and DBMs

Generalized Restricted Botlzmann Machines

In machine learning applications the bipartite architecture of RBMs, that we recall on Figure 4.1,
is of particular interest. Traditionally they have binary units, yet they can be generalized to

44

4.1 Mean-field inference in Boltzmann machines

t1

t2

x1

x2

x3

RBM

x1

x2

x3

t
(1)
1

t
(1)
2

t
(2)
1

t
(2)
2

t
(2)
3

t
(3)
1

t
(3)
2

DBM

Figure 4.1: Graphical models for the Restricted
Boltzmann Machine and the Deep Boltzmann Machine

x(1) x(2)

px(x
(1))

ψx(x
(1), x(2)) =

δ(x(1) − x(2))

ψout(x
(2)) =

e
x(2)>Wx(2)+b>x(2)

Figure 4.2: Fully connected
BM factor graph for adaTAP

arbitrary domains (sometimes then called GRBM) following the extension we discussed above.
The corresponding measure for a model with N input (or visible) units and M hidden units is

p(x, t; θ) =
N∏
i=1

px(xi; θxi)
M∏
α=1

ph(tα; θhα)exW t
, (4.45)

where the weight matrix W has dimension N ×M and the temperature is set as β = 1. Note that
the expansion at small β can equivalently be interpreted as a small weight expansion here. We
use the notation θ for the collection of all the parameters of the model including θx = (θx1 , · · · θxN),
θh = (θh1 , · · · θhM) and W . The TAP free energy (4.35) is rewritten as

−GRBM(ax, cx, ah, ch) =
N∑
i=1
−Bxi axi +Axi (axi

2 + cxi)/2 + logZxi (Bxi , Axi ; θxi)) (4.46)

+
M∑
α=1
−Bhαahα +Ahα(ahα

2 + chα)/2 + logZhα(Bhα, Ahα; θhα))

+
∑
(iα)

Wiαa
x
i a
h
α +

∑
(iα)

W 2
iαc

x
i c
h
α,

where the sums over (iα) runs over all i-s and α-s and

Zxi (Bxi , Axi ; θxi) =
∫

dx px(x; θxi) e−A
x
i x

2/2+Bxi x, (4.47)

Zhα(Bhα, Ahα; θhα) =
∫

dt ph(t; θhα) e−A
h
αt

2/2+Bhαt. (4.48)

The values of the parameters are computed by running Algorithm 3 corresponding to AMP, where
the differentiated visible and hidden update functions, fx1 , fx2 and fh1 , fh2 , are following the usual
definition with respect to the partitions Zxi and Zhα.

Deep Botlzmann Machines

It is also possible to define deep models of Boltzmann machines by considering several stacked
hidden layers. A Deep Boltzmann Machines (DBM) [123] with L hidden layers defines the distri-
bution

p(x, t(1), .., t(L); θ) = 1
Z
e
x>Wt(1)+

L−1∑̀
=1

t(`)
>
W (`)t(l+1) N∏

i=1
px(xi; θxi)

L∏
l=1

Ml∏
α=1

p(`)
α (t(`)α ; θhα

(`)). (4.49)

45

4 Mean-field inference for (deep) unsupervised learning

Here again the specific architecture considered can be interpreted as a particular case of the general
fully connected Boltzmann machine. The corresponding TAP free energy writes

−GDBM(ax, cx, {ah,`, ch,`}L`=1) =
N∑
i=1
−Bxi axi +Axi (axi

2 + cxi)/2 + log Z̃0,x
i (Bxi , Axi ; θxi)) (4.50)

+
L∑
`=1

M∑
α=1
−Bh,`α ah,`α +Ah,`α (ah,`α

2 + ch,`α)/2 + log Z̃0,h,`
α (Bh,`α , Ah,`α ; θh,`α))

+
∑
(iα)

W
(1)
iα a

x
i a
h,1
α +

∑
(iα)

W
(1)
iα

2
cxi c

h,1
α ,

+
L−1∑
`=1

∑
(αβ)

W
(`)
αβ a

h,`
α ah,`+1

β +
∑
(αβ)

W
(`)
αβ

2
ch,`α ch,`+1

β

 ,

and the corresponding AMP algorithm straightforwardly follows from Algorithm 3. The DBM is
also bipartite, with connections only between layers of even depth and odd depth. Therefore the
TAP parameters of even and odd layers can be updated sequentially, as for the hidden and input
parameters of the RBM.

Algorithm 3 TAP solutions for GRBMs

Input: W , θx, θh, ax,(0), cx,(0), τ
Initialize: t = 0

repeat
Hidden Side Updates
A
h,(t+1)
α = −

∑
iW

2
iαc

x,(t)
i

B
h,(t+1)
α = A

h,(t+1)
α a

h,(t)
α +

∑
iWiαa

x,(t)
i

a
h,(t+1)
α = fh1 (Bh,(t+1)

α , A
h,(t+1)
α ; θhα)

c
h,(t+1)
α = fh2 (Bh,(t+1)

α , A
h,(t+1)
α ; θhα)

Visible Side Updates
A
x,(t+1)
i = −

∑
αW

2
iαc

h,(t+1)
α

B
x,(t+1)
i = A

x,(t+1)
i a

x,(t)
i +

∑
αWiαa

h,(t+1)
α

a
x,(t+1)
i = fx1 (Bx,(t+1)

i , A
x,(t+1)
i ; θxi)

c
x,(t+1)
i = fx2 (Bx,(t+1)

i , A
x,(t+1)
i ; θxi)

t = t+ 1
until Convergence or t = τ

Algorithm 4 AdaTAP for binary BMs
Input: J , b, τ
Initialize: t = 0, A(0)

1 , B(0)
1

repeat
Prior Updates
a

(t+1)
1,i = σ(B(t)

1,i −A
(t)
1,i/2)

c
(t+1)
1,i = a

(t+1)
1,i (1− a(t+1)

1,i)
A

(t+1)
2,i = 1/c(t+1)

1,i −A(t+1)
1,i

B
(t+1)
2,i = 1/(1− a(t+1)

1,i)−B(t+1)
1,i

Interaction Updates
C(t+1)

2 = (A(t+1)
2 − J)−1

a
(t+1)
2,i =

∑
j

(
C(t+1)

2

)
ij

(
B

(t+1)
2,j + bj

)
A

(t+1)
1,i = 1/

(
C(t+1)

2

)
ii
−A(t+1)

2,i

B
(t+1)
1,i = a

(t+1)
2,i /

(
C(t+1)

2

)
ii
−B(t+1)

2,i
t = t+ 1

until Convergence or t = τ

4.1.4 Adaptive-TAP fixed points for binary BM

As already discussed in Sections 3.1 and 3.2, for certain weight statistics, there exists an order of
truncation of the Georges-Yedidia expansion which results in exact inference in the thermodynamic
limit. In the general case nevertheless, the truncation is ad-hoc and adding orders allows to improve
the accuracy of the approximation. Alternatively, one can prefer the adaptive TAP (adaTAP)
strategy [108, 107, 109] which computes an Onsager correction to the naive mean-field adaptively
to a given weight matrix and without any assumption on the underlying statistics of its entries.

The adaTAP equations originally derived by the cavity method [90] can also be recovered via
different equivalent variants of message passing. We choose here the conventions of the VAMP [117]
procedure, originally applied to the GLM. We focus on the case of the fully connected Boltzmann
machine with binary units x ∈ {0, 1}N and weight matrix J ∈ RN×N and biases b ∈ RN . Using
the factor graph of Figure 4.2, we follow the steps described in Appendix A to obtain Algorithm 4,

46

4.2 Applications to Boltzmann machine learning with hidden units

where the input and output update functions were directly replaced, following the usual definitions:

Input functions

a1,i = fx1 (B1,i, A1,i) = 1
Zxi

∫
dx x

(
1
2δ(x) + 1

2δ(x− 1)
)
e−A1,ix

2/2+B1,ix (4.51)

c1,i = fx2 (B1,i, A1,i) = 1
Zxi

∫
dx x2

(
1
2δ(x) + 1

2δ(x− 1)
)
e−A1,ix

2/2+B1,ix (4.52)

Output/Interaction functions

a2,i = gx1 (B2, A2) = 1
Zout

∫
dx xiψout(x)e−x

>A
2
x/2+B>2 x (4.53)

C2 = gx2 (B2, A2) = 1
Zout

∫
dx xx>ψout(x)e−x

>A
2
x/2+B>2 x (4.54)

with the interaction potential ψout(x) = e
x>Wx+b>x and A2 = diag(A2) the diagonal matrix

with entries equal to the A2,i. Compared to the VAMP Algorithm 2, we restrict the estimated
covariances to be diagonal except for C2, a common simplification.

The bottleneck in the execution time of Algorithm 4 is the evaluation of the matrix inverse
in the update of C2 which has a typical complexity of O(N3), and must be repeated at each
iteration. Hence the price to pay for the adaTAP/VAMP algorithm is a significant increase of the
computation time.

4.2 Applications to Boltzmann machine learning with hidden units

Boltzmann machines are used as parametric probabilistic models for unsupervised learning. The
idea is to fit the weights and biases (or more generally local parameters for non-binary BMs) to
a set of training data points so that the BM measure mimics the empirical data distribution. To
achieve this goal the common objective of learning is to maximize the log-likelihood, yet an exact
implementation of this approach is computationally intractable for all but the smallest models.

In the statistical physics community, Boltzmann machines typically do not feature any hidden
units. This fully-visible Boltzmann architecture is justified as it corresponds to the model of
maximum entropy under the constraint of fixed first and second moments. In fact the process
of learning weights from a set of configurations at equilibrium is referred to as the inverse Ising
problem in the physics literature. Learning algorithms based on sophisticated extensions of mean-
field methods have been developed for these fully-visible Boltzmann machines(see [100] for a recent
review). However, since they only include couplings between pairs of variables such models cannot
successfully capture higher-order correlations. Conversely, in the RBM, the hidden layer mediates
interactions between all the visible units and drastically increases the representative power of the
model.

In the machine learning community fast approximate Monte Carlo methods, specifically con-
trastive divergence (CD)[55] and persistent CD (PCD) [98, 145], have made large-scale training of
RBMs possible. These rather crude methods have popularized RBMs even though the reason of
their efficiency remains unclear. We propose to examine an alternative strategy based on mean-
field approximations. In the 80s and 90s, this direction was already investigated in a number of
previous works [113, 54, 43, 70], albeit in small models with binary units and for artificial data sets
very different from modern machine learning benchmarks. More recently, a deterministic training
based on naive mean-field [157, 145] was tested in the large-scale and found to provide poor per-
formance when compared to both CD and PCD. Here we show that going beyond naive mean-field
allows to bridge the gap in efficiency with the approximate Monte Carlo methods. Additionally
the deterministic mean-field framework offers a tractable way of evaluating the learning success by
exploiting the mean-field observables.

47

4 Mean-field inference for (deep) unsupervised learning

4.2.1 Mean-field likelihood and deterministic training

Mean-field likelihood

In RBMs, the log-likelihood of a training set
∑P
k=1 log p(x(k); θ)/P, follows from the marginalization

over the hidden units of the definition (4.45),

log p(x; θ) =
N∑
i=1

log px(xi; θxi) +
M∑
α=1

∫
dtα log ph(tα; θhα)e

∑
i
Wiαtαxi − logZ(θ). (4.55)

The log-partition it involves is nothing else but the intractable free energy of the RBM discussed in
the beginning of this Chapter. It can be estimated using advanced, yet unfortunately costly, Monte
Carlo methods such as Annealed Importance Sampling (AIS) [126]. Practitioners often prefer to
monitor the surrogate pseudo-likelihood.1 Instead, we propose to leverage mean-field inference to
estimate this objective of learning and among other applications, help comparing different training
algorithm quantitatively.

To compute the TAP free energy introduced in the previous Section, one needs to solve the
TAP equations using Algorithm 3 and plug the solutions into the definition (4.46). We consider the
TAP solutions resulting from initializations of the inference algorithm in data points of the training
(or testing) set, ax,(0) = x(k) and cx,(0) = 0 and average them uniformly. This choice follows from
that the trained RBM will be used in a space of configurations neighboring the real data. Below,
we investigate numerically the properties of the TAP solutions in learning experiments, and in
particular find that their number grows as the weight magnitude (playing the role of an inverse
temperature here) increases along the training.

The distribution of the weight entries after learning usually results from successive parameter
updates and is a priori unknown. Therefore, the order of truncation of the small weight expansion
is inevitably ad-hoc and the accuracy of the approximation hard to estimate. Alternatively, the
AdaTAP free energy could be considered, yet at a higher computational cost as discussed in
Section 4.1.4. In the numerical experiments presented in the following, we compare different orders
and find that, albeit heuristic, the second order truncation yields a practical effective scoring of
the learning process.

Mean-field training algorithm

The usual strategy for training RBMs consists in an approximate gradient ascent of the log-
likelihood. The popular CD and PCD algorithms [55, 145] use fast Monte Carlo approximations of
the gradients of logZ(θ). Alternatively we consider the gradients of the TAP free energy truncated
at second order (4.46), which yields

∆θxi =
〈

∂

∂θxi
log px(xi; θxi)

〉
x

− ∂

∂θxi
logZxi (Bxi , Axi ; θxi) , (4.56)

∆θhα =
〈

∂

∂θhα
log p(tα|x; θ)

〉
x

− ∂

∂θhα
logZhα(Bhα, Ahα; θhα) , (4.57)

∆Wiα = xif
h
1 (

N∑
i=1

Wiαxi, 0; θhα)−
∑
(iα)

(
axi a

h
α +Wiαc

x
i c
h
α

)
. (4.58)

These directions of increment can be seen as approximations of the exact likelihood gradients or
exact gradients of the mean-field likelihood. The latter can be regarded in itself as an objective of
learning. The first term of the three gradients depend on the data point x and can be evaluated
exactly. In practice we consider training with mini-batches over which these data-dependent terms
are averaged. The second term in the gradient requires to compute TAP solutions, and corresponds
to the part evaluated by Monte Carlo in CD. We compare multiple procedures:

1The pseudo likelihood consists in assuming p(x) ≈
∏N

i=1 p(xi|x\i), where x\i stands for all the components of
x expect the i-th, and the conditional probabilities have a closed form expression. Note however that its evaluation
for one given x still requires as many operations as the size of the data space which is typically of a few hundreds.

48

4.2 Applications to Boltzmann machine learning with hidden units

• TAP-τ . We initialize the TAP inference in the data points of the mini-batch considered at
the given parameter update and average the gradients over the TAP solutions retrieved after
a given number τ of iterations of Algorithm 3. We speed up the gradient evaluation by an
early stopping after τ steps, instead of converging the inference at each parameter update.

• Persistent-TAP-τ (P-TAP-τ). We initialize the TAP inference at the very beginning of
training in a collection of randomly selected training data point (typically as many as the
size of a mini-batch), and iterate the TAP inference for a few steps at each parameter update,
always conserving the TAP solutions of the previous update as the initialization of the next
one. Since the model parameters are only slightly changing between updates, TAP fixed
points of neighboring steps of the gradient ascent are expected to be closely related, and the
convergence from one to the next within a few iterations.

These strategies are comparable to CD-τ [55] and P-CD [145] where iterations of the inference
algorithm are replaced by Gibbs sampling on the RBM.

In Algorithm 5, we summarize the mean-field training. The learning rate is noted γ. We
include an `2 penalty with a coefficient ε, also called weight decay, promoting small weights; it is a
common regularization of training for generalization that is all the more interesting here since the
TAP likelihood relies on a small weight expansion. We also consider a momentum term involving
the previous weight updates with a parameter η, known to speed up the training.

Algorithm 5 GRBM Mean-field training
Input: {x(k)}Pk=1

Initialize: W (0)
iα ∼ N (0, σ), θx,(0), θh,(0), t = 0

repeat
for All mini-batches {x(k)}Kk=1 do

if Persistent and t > 0 then
a

(t+1)
(k) , c

(t+1)
(k) , B

(t+1)
(k) , A

(t+1)
(k) ← Alg. 3(W (t), θ(t), a

x,(t−1)
(k) , c

x,(t−1)
(k) , τ) ∀k

else
a

(t+1)
(k) , c

(t+1)
(k) , B

(t+1)
(k) , A

(t+1)
(k) ← Alg. 3(W (t), θ(t), x(k), 0, τ) ∀k

end if
W

(t+1)
iα ←W

(t)
iα + γ∆W (t)

iα + γεW 2
iα

(t) + η∆W (t−1)
iα

θhα
,(t+1) ← θhα

,(t) + γ∆θhα
,(t)

θxi
,(t+1) ← θxi

,(t) + γ∆θxi
,(t)

t = t+ 1
end for

until Convergence

bin-MNIST CalTech-silh. bin-MNIST real-MNIST CBCL
Visible N 784 784 784 784 361
Hidden M 500 500 500 100,500 256
Batch K 100 256 100 100 20
Prior Vis. B. B. B. Tr. Gauss.-B. Tr. Gauss.
Prior Hid. B. B. B. B. B.
Learning γ 0.005 0.01 0.005 10−2, 10−5 0.005
Decay ε 0.001 0.001 0.001 0.001 0.01
Momentum η 0 0 0.5 0.5 0.5
Fig. 4.3a 4.4 4.3b 4.4b 4.5a 4.6a 4.6b

Table 4.1: Parameter settings for GRBM trainings.

49

4 Mean-field inference for (deep) unsupervised learning

T
A

P
lo

g
-l
ik

el
ih

o
o
d

<latexit sha1_base64="3saUjhatxytXNqXHlPcCRSGFdHI=">AAAB+3icbVDLSgMxFL3js9bXWJdugkVwY5mpgi4rblxW6AvaoWQyaRuaSYYkI5ahv+LGhSJu/RF3/o1pOwttPXDhcM69yb0nTDjTxvO+nbX1jc2t7cJOcXdv/+DQPSq1tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPx3cxvP1KlmRQNM0loEOOhYANGsLFS3y01buuIy+EFZ2P7yEjKqO+WvYo3B1olfk7KkKPed796kSRpTIUhHGvd9b3EBBlWhhFOp8VeqmmCyRgPaddSgWOqg2y++xSdWSVCA6lsCYPm6u+JDMdaT+LQdsbYjPSyNxP/87qpGdwEGRNJaqggi48GKUdGolkQKGKKEsMnlmCimN0VkRFWmBgbV9GG4C+fvEpa1Yp/Wak+VMu1qzyOApzAKZyDD9dQg3uoQxMIPMEzvMKbM3VenHfnY9G65uQzx/AHzucPS9GT6w==</latexit>

P
se

u
d
o

lo
g-

li
k
el

ih
o
o
d

<latexit sha1_base64="dmmrp7N8nNMD5g5+tRYncRDv9xE=">AAAB/nicbVDLSgMxFL3js9bXqLhyEyyCG8tMFXRZcOOygn1AO5RMJtOGZpIhyQhlKPgrblwo4tbvcOffmLaz0NYDFw7n3Jvce8KUM20879tZWV1b39gsbZW3d3b39t2Dw5aWmSK0SSSXqhNiTTkTtGmY4bSTKoqTkNN2OLqd+u1HqjST4sGMUxokeCBYzAg2Vuq7xw1Ns0giLgcXnI3sO0Mpo75b8areDGiZ+AWpQIFG3/3qRZJkCRWGcKx11/dSE+RYGUY4nZR7maYpJiM8oF1LBU6oDvLZ+hN0ZpUIxVLZEgbN1N8TOU60Hieh7UywGepFbyr+53UzE98EORNpZqgg84/ijCMj0TQLFDFFieFjSzBRzO6KyBArTIxNrGxD8BdPXiatWtW/rNbua5X6VRFHCU7gFM7Bh2uowx00oAkEcniGV3hznpwX5935mLeuOMXMEfyB8/kDLjSVlA==</latexit>

(a) MNIST

T
A

P
lo

g
-l
ik

el
ih

o
o
d

<latexit sha1_base64="3saUjhatxytXNqXHlPcCRSGFdHI=">AAAB+3icbVDLSgMxFL3js9bXWJdugkVwY5mpgi4rblxW6AvaoWQyaRuaSYYkI5ahv+LGhSJu/RF3/o1pOwttPXDhcM69yb0nTDjTxvO+nbX1jc2t7cJOcXdv/+DQPSq1tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPx3cxvP1KlmRQNM0loEOOhYANGsLFS3y01buuIy+EFZ2P7yEjKqO+WvYo3B1olfk7KkKPed796kSRpTIUhHGvd9b3EBBlWhhFOp8VeqmmCyRgPaddSgWOqg2y++xSdWSVCA6lsCYPm6u+JDMdaT+LQdsbYjPSyNxP/87qpGdwEGRNJaqggi48GKUdGolkQKGKKEsMnlmCimN0VkRFWmBgbV9GG4C+fvEpa1Yp/Wak+VMu1qzyOApzAKZyDD9dQg3uoQxMIPMEzvMKbM3VenHfnY9G65uQzx/AHzucPS9GT6w==</latexit>

P
se

u
d
o

lo
g-

li
k
el

ih
o
o
d

<latexit sha1_base64="dmmrp7N8nNMD5g5+tRYncRDv9xE=">AAAB/nicbVDLSgMxFL3js9bXqLhyEyyCG8tMFXRZcOOygn1AO5RMJtOGZpIhyQhlKPgrblwo4tbvcOffmLaz0NYDFw7n3Jvce8KUM20879tZWV1b39gsbZW3d3b39t2Dw5aWmSK0SSSXqhNiTTkTtGmY4bSTKoqTkNN2OLqd+u1HqjST4sGMUxokeCBYzAg2Vuq7xw1Ns0giLgcXnI3sO0Mpo75b8areDGiZ+AWpQIFG3/3qRZJkCRWGcKx11/dSE+RYGUY4nZR7maYpJiM8oF1LBU6oDvLZ+hN0ZpUIxVLZEgbN1N8TOU60Hieh7UywGepFbyr+53UzE98EORNpZqgg84/ijCMj0TQLFDFFieFjSzBRzO6KyBArTIxNrGxD8BdPXiatWtW/rNbua5X6VRFHCU7gFM7Bh2uowx00oAkEcniGV3hznpwX5935mLeuOMXMEfyB8/kDLjSVlA==</latexit>

(b) Caltech 101 - Sihouette

Figure 4.3: Evolution of the normalized pseudo-log-likelihood and mean-field-log-likelihood over
test sets during training for different training procedures (averages over 10 independent trainings with
standard deviations reported as error bars). Hyperparameters of training are given in Table 4.1. (a)
The naive mean-field appears as the least efficient, while others are approximately equivalent. (b)
Persistent mean-field algorithms have difficulties in the likelihood in the first epochs of training. The
complexity of the training set, 101 classes unevenly represented over only 4 100 training points, might
explain this unexpected behavior. The persistent chains all converge to similar non-informative blurs
in the earliest training epochs. Nevertheless,these algorithms eventually reach identical likelihood to
the rest of the algorithms tested.

4.2.2 Numerical experiments

We reproduce here some of the numerical experiments published in [42] and [150].

Comparing orders of truncations and different gradient strategies on binary RBMs

In a first set of experiments we focus on binary RBMs to validate the proposed mean-field deter-
ministic training, for which we provide a public Julia package [149]. We use two different data
sets. The MNIST data set2 contains handwritten digit images labeled from 0 to 9. Each image is
comprised of 28× 28 pixels taking values in the range [0, 255]. The MNIST data set was binarized
by setting all non-zero pixels to 1. The 28 × 28 pixel version of the Caltech 101 Silhouette data
set3 consists of black regions of a primary foreground scene objects on a white background, la-
beled among 101 object classes according to the object in the original picture. Following previous
studies evaluating RBMs on these data sets, we fix the number of RBM hidden units to 500. To
compare RBM training approaches we do not include momentum nor adaptive learning rates here.
When comparing learning procedures on the same plot, all free parameters of the training were set
identically as reported in Table 4.1.

We test performances for mean-field trainings comparing the first-order (MF), second-order
(TAP2), and third-order (TAP3) small weight expansions, with either persistent (prefix P) or
reinitialized inference at each update. The inference algorithm is run for τ = 3 iterations for all
mean-field trainings expect for one of them (P-TAP2-30) where we wait for τ = 30 iterations
each time. For benchmark, we also train RBM models using CD-1, following the prescriptions of
[53], and PCD, as implemented in [145]. On Figure 4.3a and 4.3b we report the evolution of the
pseudo log-likelihood (left panels) and the second order mean-field likelihood (right panels). The
ascent of the log-likelihood surrogates over training epochs is very similar across all methods. The
mean-field trainings do maximize the pseudo-likelihood and, reciprocally, the approximate Monte
Carlo trainings do maximize the TAP-likelihood. On MNIST, we compare the different orders of
truncation of the mean-field expansion. As expected by design, the persistent TAP2 algorithm
with 30 iterations of the inference (P-TAP2-30) achieves the best maximization of the TAP log-
likelihood. However, P-TAP2, with only 3 iterations, achieves a very close performance, making it
preferable for faster training. Moreover, we note that P-TAP2 demonstrates improvements in terms
of pseudo-likelihood with respect to P-MF, in agreement with the previously noted disappointment

2http://yann.lecun.com/exdb/mnist/
3http://www.vision.caltech.edu/Image_Datasets/Caltech101/

50

http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/Image_Data sets/Caltech101/

4.2 Applications to Boltzmann machine learning with hidden units

(a) Peristent chains at 50 epochs of training

0 10 20 30 40 50
Epoch

0.92

0.94

0.96

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

MNIST

TAP2

P-TAP2

P-TAP2-30

P-TAP3

PCD

CD-1

0 20 40 60 80 100
Epoch

0.62

0.64

0.66

0.68

CalTech Silhouette 101

direct

(b) Downstream classification

Figure 4.4: Additional elements of comparison between training algorithms. Hyperparameters of
training are given in Table 4.1. (a) 24 randomly selected persistent chains used to compute parameter
updates in Algorithm 5 . Top: PCD, Middle: PMF, Bottom: P-TAP2. (b) Classification accuracy
achieved by a logistic regression on the hidden representation at different stage of learning.

of naive mean-field [157, 145] and the improvements brought by the consideration of the second
order observed in toy examples [43, 70]. However, the P-TAP3 does not yield significantly better
pseudo-likelihood results than P-TAP2. The third order term of the small weight expansion, given
by (4.2) for fully connected binary BMs, does not feature the triangular diagrams for the bipartite
RBM. As a result it sums over as many terms as the second order, but at a higher order in the
small Wiα-s, and is finally expected to be sub-leading. In the following we mainly focus on the
second order expansion.

On Figure 4.4 we examine further the quality of the different trainings. The persistent chains
in Figure 4.4a gives an idea of the performance of the RBM as a generative model. The PCD
samples and the P-TAP2 marginal means are recognizable digits. While the chains extracted from
a P-MF training are of poorer quality, with half of them featuring non-identifiable digits. Here we
further confirm the necessity to include the second order of the expansion to achieve competitive
training. On Figure 4.4b we also evaluate these RBM training algorithms through the prism of
a downstream task. We consider the supervised classification, via logistic regression, of the two
data sets from the learned hidden marginals ah(x) = p(t|x; θ), interpreted as learned features.
The MNIST classification accuracy of the RBMs trained with the P-TAP2 algorithms is roughly
equivalent with that obtained when using PCD training, while CD-1 training yields markedly
poorer classification accuracy. The slight decrease in performance of CD-1 and TAP2 along the
training might be emblematic of over-fitting by the non-persistent algorithms, although no decrease
in the TAP-likelihood of the test set was observed. For the Caltech 101 Silhouettes data set, the
classification task is a priori much more difficult. The persistent algorithms do not yield better
results on this task. However, we observe that the performance of deterministic mean-field RBM
trainings is at least comparable with both CD-1 and PCD.

Lastly, we note the computation times for each of these approaches. For a Julia implementation
of the tested RBM training techniques running on a 3.2 GHz Intel i5 processor, the average wall
times for fitting a single 100-sample batch normalized against the model complexity are 14.10 ±
0.97 µs/batch/unit for PCD, which uses only a single sampling step, 21.25±0.22 µs/batch/unit for
PMF, 37.22 ± 0.34 µs/batch/unit for P-TAP2, and 64.88 ± 0.45 µs/batch/unit for P-TAP3, each
of which use 3 inference iterations. Run times of the P-MF and P-TAP2 approaches are therefore
comparable with PCD.

Annealed importance sampling and AdaTAP, pushing precision further?

On Figure 4.5a we compare the evolution for the previously considered likelihood surrogates: the
TAP log-likelihood and the pseudo-likelihood, to the Annealed Importance Sampling (AIS) [99]
estimation of the likelihood as implemented in [126]. By considering Markov Chains at multiple
temperatures, AIS produces an accurate, albeit costly, Monte Carlo approximation of partition
functions. We find that during the considered mean-field training all three measures have the

51

4 Mean-field inference for (deep) unsupervised learning

0 50 100
epoch

−0.20

−0.15

−0.10

lo
g-

li
ke

li
h

o
o
d

TAP

AIS

pseudo

(a) Estimation

5 10 15 20
Training Epochs

−0.26

−0.24

−0.22

−0.20

−0.18

P
se

u
d

o
L

o
g
−

L
ik

e
li
h

o
o
d

adaTAP− 3

adaTAP− 10

adaTAP− 100

TAP− 3

TAP− 10

TAP− 100

101 102

Batchsize

10−3

10−2

10−1

100

101

T
im

e
(s

)

adaTAP

TAP

(b) Adaptive TAP training

Figure 4.5: (a) Comparison for the mean-field training of a binary RBM on MNIST of likelihood
estimates. The AIS results are averaged over 100 runs. For each run, 14 500 intermediate distribu-
tions are generated between the initial and target distribution using the same schedule as in [126].
The pseudo-likelihood is computed using a stochastic approximation over 100 of the 784 pixels. Hy-
perparameters of training are given in Table 4.1. (b) Left: Evolution of the pseudo-likelihood along
the training of a binary RBM with 784 visible units and 500 hidden units, on the 5000 first images of
binary-MNIST, with a learning rate of 0.001 and batches of size 100. Different number of iterations τ
of the TAP inference (Algorithm 3) and adaTAP inference (Algorithm 4) are compared. In all cases,
a damping of 0.5 is used. Right: Computation time for one iteration of the inference algorithm, as
a function of the batch size. Time is reported in seconds for identical experimental settings.

same qualitative behavior as a function of epochs, indicating that they are consistent in evaluating
or guiding the training.

In the experiments presented above we found no improvement in mean-field training with the
inclusion of the third order of the expansion. We investigate here whether replacing the inference
based on the truncated expansion by the theoretically more principled adaTAP makes a difference.
On Figure 4.5b the different curves correspond to different strategies of estimation of the likelihood
gradients, with either TAP (Algorithm 3) or adaTAP (Algorithm 4) inference, again for a binary
RBM training. All methods yield comparable results in terms of training performance, except for
adaTAP with only three iterations of inference, which shows a poorer performance. Meanwhile,
we also compare computational costs of the inference procedures. The need for a matrix inversion
for each batch element makes adaTAP 3 orders of magnitude slower than TAP. Unfortunately the
greater cost of the more accurate adaTAP is not compensated here by gains in training quality.
Yet we simply replaced the TAP solutions by the AdaTAP fixed points in the mean-field gradients
derived from the TAP free energy. It would be interesting to test whether using the gradients
of the adaTAP free energy would yield any different outcome in terms of performance. Still, the
computational time of the method would remain an issue.

Efforts to increase the accuracy beyond the heuristic application of the TAP approximation are
therefore not paid by great improvements. We thus conclude that, as far as proposing a tractable
and efficient training algorithm for RBMs, the TAP inference is well indicated.

Beyond the binary RBMs

We now consider the mean-field training (now fixed at the second order) of real-valued RBMs.
This extension allows to go beyond toy examples and consider the unsupervised learning of real-
valued data sets. We use the MNIST data set without binarization. We keep binary hidden units
and choose truncated Gauss-Bernoulli real-valued units to account for the image sparsity. We also
consider the CBCL face database4. It consists of both face and non-face 8-bit gray-scale 19 × 19
pixel images. For our experiments, we utilize only the face images, on which we train an RBM
with binary hidden units and truncated Gaussian visible units. The detail of the corresponding
update functions for mean-field inference can be found in Appendix C of [150]. The real-valued
case necessitates to pay careful attention to a few numerical issues also discussed in Appendix B
and C of [150]. In particular, they are the reason we consider distributions with bounded support.

4http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html

52

http://cbcl.mit.edu/software-data sets/heisele/facerecognition-database.html

4.2 Applications to Boltzmann machine learning with hidden units

20 40 60 80 100

Training Epochs

�0.70

�0.65

�0.60

�0.55

�0.50

�0.45

�0.40

�0.35

�0.30
N

or
m

al
iz

ed
T

A
P

L
og

-l
ik

el
ih

oo
d

NH = 100 NH = 500

(a) real-MNIST

100 200 300 400 500

Training Epochs

�0.30

�0.25

�0.20

�0.15

�0.10

�0.05

N
or

m
al

iz
ed

T
A

P
L

og
-l

ik
el

ih
oo

d

NH = 256

(b) CBCL

Figure 4.6: Top row: Normalized (per-unit) TAP log-likelihood estimate computed for 10, 000
training data samples for MNIST and 2, 400 training samples for CBCL . The TAP free energy is
estimated using the converged TAP solutions from initial conditions drawn from the data samples.
Solid lines indicate the average normalized TAP log-likelihood over the tested training samples and
shaded regions indicate standard error. Bottom row: Free energy estimates of TAP solutions as
a function of training epochs. In the case of the MNIST experiments, the number of hidden units
considered is M = NH = 100. Among the same TAP solutions as above, we retrieve the unique ones
and follow their number (green line) along the training. We report as transparent blue dots their
TAP free energy. The estimate of the total free energy via uniform averaging is given as a red line.
Hyperparameters of training are given in Table 4.1. This experiment was led by E. W. Tramel and
A. Manoel.

On the top row of Figure 4.6, we report the normalized TAP likelihood over successful trainings
on both real-valued data sets.

In Appendix E of [150], we also demonstrate how the mean-field inference can be leveraged to
train Deep Boltzmann Machines and report experiments for binary units trained on binary MNIST.
The difference between DBMs and RBMs lies in the fact that beyond the log-partition, the data
dependent terms in the likelihood and its gradients become intractable while they had closed-forms
in the RBMs (4.55) and (4.56)-(4.58). This data-dependent terms are commonly approximated
using the naive mean-field (i.e. first order) inference [123]. Instead we propose to consistently
approximate the log-partition and the data-dependent term with the more powerful second-order
TAP expansion. We report successful TAP likelihood maximization by the proposed algorithm.
Yet DBMs are famously hard to train [126, 124, 97, 24], they require a layer-wise pre-training
phase or the implementation of sophisticated tricks of weight tying. The proposed algorithm does
not escape these limitations. Consequently, feed forward neural networks, VAEs [71, 120] and
GANs [50], are currently preferred to exploit the advantage of deep architectures in unsupervised
learning.

Probing the TAP solutions

The evaluation of unsupervised learning models is an open direction of research [122]. The deter-
ministic mean-field framework provides a tractable estimate of the likelihood, but also allows to
further characterize the learning state of BMs by looking at the TAP solutions. These attractors
of the TAP inference gives an intuition on the representational power of a GRBM with a given set
of parameters.

Previously, we examined the visual quality of the learned marginal means at the end of training
(Figure 4.4a). On Figure 4.7, we use a two-dimensional embedding to compare the locations in
configuration space of training data points, used as initializations of mean-field inference, and the
corresponding TAP solutions, along the training on the real-valued data sets. At the beginning

53

4 Mean-field inference for (deep) unsupervised learning

Epoch 1 Epoch 3 Epoch 25 Epoch 100

Isomap Dim. 1

Is
om

ap
D

im
.2

Class ‘3’ Digits
Class ‘6’ Digits
Class ‘7’ Digits

Isomap Dim. 1

Is
om

ap
D

im
.2

Class ‘3’ Digits
Class ‘6’ Digits
Class ‘7’ Digits

Isomap Dim. 1

Is
om

ap
D

im
.2

Class ‘3’ Digits
Class ‘6’ Digits
Class ‘7’ Digits

Isomap Dim. 1

Is
om

ap
D

im
.2

Class ‘3’ Digits
Class ‘6’ Digits
Class ‘7’ Digits

(a) real-MNIST

Epoch 1 Epoch 3 Epoch 25 Epoch 100

Isomap Dim. 1

Is
om

ap
D

im
.2

Data Points

Isomap Dim. 1

Is
om

ap
D

im
.2

Data Points

Isomap Dim. 1

Is
om

ap
D

im
.2

Data Points

Isomap Dim. 1

Is
om

ap
D

im
.2

Data Points

(b) CBCL

Figure 4.7: Comparison of initial conditions (colored dots) and converged TAP solutions (black
dots) for the tested data sets at different stages of training. For each data set, a two-dimensional
Isomap embedding is calculated over the initialization data. Subsequently, the TAP solutions a(k)
are embedded in the same space. In each case, all initial variances are set to 0. Also, a random
selection of the TAP solution marginals are plotted as images. (a) real-MNIST: Here, the ∼3,100
digits corresponding to the classes ‘3’, ‘6’, and ‘7’ are drawn from the first 10,000 training samples of
the MNIST data set as initializations. A reduced set of labels is used for readability. (b) CBCL: All
available training face images are used as initializations. This experiment was led by E. W. Tramel
and A. Manoel.

of training there are very few unique fixed points for the different initializations. The RBMs are
not able to grasp the variety in the training data and has learned some kind of average. As the
training progresses there are more and more TAP solutions that populate more evenly the space
spanned by the training data points. The GRBM learns different representations rendering the
complexity of the data. This observation is consistent with the intuition that the weight magnitude
growing during the training is playing the role of an effectively decreasing temperature, inducing a
multiplication of the TAP solutions as observed for the SK model [90]. Although we do not enter
such a phase in our experiment, we could imagine the case where each initialization will lead to a
different fixed point. This regime can be interpreted as an overtraining where the GRBM is merely
memorizing the training data.

On the bottom row of Figure 4.6 we provide a quantitative analysis. We report the number
of TAP solutions and their corresponding TAP free energies for the training of the GRBMs on
real-MNIST and CBCL. We observe a fast growth in the number of fixed points at the beginning
of training, followed by a relative stabilization. Moreover we note that the free energies of the
different TAP solutions are concentrated compared to the overall evolution of the uniform average
along the training. This implies that a weighted average would not result in a very different esti-
mation of the overall free energy.

We have confirmed in numerical experiments that the mean-field free energy at second order
allows to design an efficient training algorithm for BMs with hidden units. Moreover, the determin-
istic framework enables to track the progress of learning by choosing as an objective the tractable
mean-field likelihood and by offering the TAP solutions as probes of the learned representations.
There are no straightforward equivalent of these analyses using sampling. In the next Section, we
show that mean-field BMs can also be advantageous in following applications, here as priors for
Bayesian inference.

54

4.3 Application to Bayesian reconstruction

t1

t2

pt(tα)
∀α = 1 · · ·NH

x1

x2

x3

px(xi)
∀i = 1 · · ·N

ψiα(xi, tα)
pout(yµ|fµ>x)
∀µ = 1..M

exact posterior

x1

x2

x3

ψi,RBM(xi) =

px(xi)e
−Ax

i x
2
i+B

x
i xi

∀i = 1 · · ·N
pout(yµ|fµ>x)
∀µ = 1..M

approximate posterior
outer loop

t1

t2

pt(tα)
∀α = 1 · · ·NH

x1

x2

x3

ψi,RBM(xi) =

px(xi)e
−(xi−λi)

2/2σi

∀i = 1 · · ·N
ψiα(xi, tα)

approximate RBM
inner loop

Figure 4.8: Left: Factor graph of the exact posterior including observations and RBM prior.
Middle: Approximate posterior after mean-field inference in the RBM leading to an effective prior
as seen by the outer loop of the algorithm. Right: Effective RBM factor graph incorporating
information about the observations using the approximate posterior coming from the message passing
on the CS problem.

4.3 Application to Bayesian reconstruction

We return here to the general problem of estimating an unknown signal x0 from observations
y through a channel p(y|x) discussed in Section 2.1.3. Under the Bayesian paradigm, a prior
distribution on the signal px(x) that incorporates available information about the typical signal is
used to help the reconstruction. Given the recent progress of unsupervised learning, an idea is to
take advantage of a set of samples of the signal and learn a generative model to serve as a prior
in Bayesian reconstruction. A potential hurdle to the approach remains that the joint distribution
defined by the prior may be very informative only at the cost of being intractable and difficult to
articulate in the Bayesian inference. Here we demonstrate on the example of an RBM prior for
Compressed Sensing (CS) how mean-field methods, here envisaged through Approximate Message
Passing, allow the implementation of such a program. This project was led by E. W. Tramel,
so that we only review the main concepts and results here, and refer to the publication [151] for
further details. In [150], we also apply this strategy in a denoising problem.

4.3.1 Combining CS and RBM inference

Compressed sensing consists in the reconstruction of a sparse signal x0 ∈ RN from noisy linear
measurements y ∈ RM . It is a special case of the GLM introduced in Section 3.3.1, with a Gaussian
channel

pout(y|Fx) =
M∏
µ=1
N (yµ; f>

µ
x,∆) , (4.59)

where we note F the measurement matrix (with rows fµ) with i.d.d. Gaussian entries of zero mean
and variance 1/N . Compared to the usual setting, we add here an RBM to model the correlations
between the components of x resulting in the posterior

p(x|y) = 1
Z(θ)px(xi)pout(y|Fx)

∫
dt pt(t) ex

>Wt (4.60)

corresponding to the factor graph on the left of Figure 4.8. Considering both problems separately
the mean-field inference of the CS problem is possible following the AMP Algorithm 1, while the
mean-field inference of the RBM is realized by Algorithm 3. Both of these iterative procedures
output factorized approximate marginals of x. As a result they can heuristically be nested to design
Algorithm 6, taking into account alternatively the observations y and the RBM prior information
as schematized on the middle and right of Figure 4.8. In the Algorithm we have replaced the
channel output functions following definitions 3.39-3.40,

gout(yµ, ωµ, Vµ) = (yµ − ωµ)/(Vµ + ∆) , ∂ωgout(yµ, ωµ, Vµ) = 1/(Vµ + ∆). (4.61)

55

4 Mean-field inference for (deep) unsupervised learning

Algorithm 6 AMP for CS with RBM prior

Input: y, F , W , θx, θh,
Initialize: x̂i, Cxi ∀i and ωµ, Vµ ∀µ, t = 0

repeat(outer loop)

Update V
(t)
µ =

N∑
i=1

F 2
µiC

x
i

(t) , ω
(t)
µ =

N∑
i=1

Fµix̂
(t)
i −

N∑
i=1

F 2
µiC

x(t)
i (yµ−ω(t−1)

µ)/(V (t−1)
µ +∆)

Update σ
(t)
i

−1
= −

M∑
µ=1

F 2
µi/(V

(t)
µ + ∆) , λ

(t)
i = x̂

(t)
i +σ

(t)
i

M∑
µ=1

Fµi(yµ−ω(t)
µ)/(V (t)

µ + ∆)

run (inner loop)
Initialize c

x,(0)
i = fx2 (λ(t)

i , σ
(t)
i , 0, 0) , a

x,(0)
i = fx1 (λ(t)

i , σ
(t)
i , 0, 0)

Converge axi , cxi ← Alg. 3(W , θx, θh, ax,(0), cx,(0)) .

Update x̂
(t+1)
i = γx̂

(t)
i + axi , Cxi

(t+1) = γCxi
(t) + cxi

t = t+ 1
until Convergence
Output: x̂

The input update functions used to initialize and run Algorithm 3 take as argument the mean-field
parameters coming from the RBM and the CS inference. They are given by,

Zxi (λi, σi, Axi , Bxi) =
∫

dx px(x) e−(x−λi)2/2σi e−A
x
i x

2
i /2+Bxi xi , (4.62)

fx1 (λi, σi, Axi , Bxi) = 1
Zxi

∫
dx x px(x) e−(x−λi)2/2σi e−A

x
i x

2
i /2+Bxi xi , (4.63)

fx2 (λi, σi, Axi , Bxi) = 1
Zxi

∫
dx x2 px(x) e−(x−λi)2/2σi e−A

x
i x

2
i /2+Bxi xi . (4.64)

In the last line of the outer loop, the update of the means and variance x̂i and Cxi involve a damping
parameter γ between 0 and 1, which is found to stabilize the reconstruction in experiments. In
the next section we review the performance of the proposed Algorithm for the reconstruction of
MNIST digits.

Finally, we note that the construction of Algorithm 6 is heuristic and one could have considered
for instance parallel updates rather than nested loops. The theoretical analysis of such an algorithm
remains an open direction of research. In particular, future works should clarify whether, under
the teacher-student scenario, a State Evolution can be derived and whether it is consistent with a
replica computation.

4.3.2 Numerical experiments

To test the performances of the proposed strategy we focus on the MNIST data set featuring sparse
images of handwritten digits. A vanilla AMP implementation of CS consists in assuming a sparse
prior on the images and run the GLM Algorithm 1. We consider here such an implementation,
where we use a Gaussian-Bernoulli prior with sparsity level ρi computed for each of the 784 pixels
by an empirical average over the training data. In this sense, the prior is not identical across
components of the signal but it does not take into account correlations. This method will serve as
a reference case for the following two other implementations with RBM priors.

The idea to exploit RBMs in CS applications was pioneered by [36] and [148], who trained
binary RBMs (BRBM) using Contrastive Divergence to locate the support of the non-zeros entries
of sparse signals, and combined it with an AMP reconstruction. The knowledge of the location of
the non-zeros entries indeed allows to solve the CS problem as soon as their number K is matched
by the number of measurements M , which is an information theoretic threshold. We consider this

56

4.4 Perspectives

0.10 0.15 0.20 0.25 0.30 0.35
0.05

0.10

0.15

0.20

0.25

0.30

0.35
α

=
M
/N

0.10 0.15 0.20 0.25 0.30 0.35
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.10 0.15 0.20 0.25 0.30 0.35
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.10 0.15 0.20 0.25 0.30 0.35

ρ = K/N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

α
=
M
/N

0.10 0.15 0.20 0.25 0.30 0.35

ρ = K/N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.10 0.15 0.20 0.25 0.30 0.35

ρ = K/N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

<−50

−40

−30

−20

>−10

< 0.8

0.85

0.9

0.95

1.0

<−50

−40

−30

−20

>−10

< 0.8

0.85

0.9

0.95

1.0

<−50

−40

−30

−20

>−10

< 0.8

0.85

0.9

0.95

1.0

α
=

0.
02

non-i.i.d. BRBM GRBM

α
=

0.
04

α
=

0.
06

α
=

0.
08

α
=

0.
10

Figure 4.9: Left: CS reconstruction performance over the first 1, 000 digit images of the MNIST
test set in the plane sparsity ρ-measurement ratio α. Results for non-i.i.d. factorized prior, the
binary RBM and the GRBM are on the left, center, and right, respectively. The M = K information
theoretic transition is indicated by the black dotted line, and the AMP transition for i.i.d factorized
prior [77] by the solid one. Top: Average reconstruction accuracy in MSE measured in dB. Bottom:
Average reconstruction correlation (x0−x̄0)T (x̂− ¯̂x)/σx0

σx̂ with original digit image. Right: Visual
comparison of reconstructions for a single digit image (ρ = 0.25) for small values of α.

strategy albeit using the deterministic mean-field training for RBMs discussed at the beginning of
this Chapter. Finally, we consider the strategy of combination derived in the previous Section with
a GRBM with truncated Gauss-Bernoulli visible units. The hyperparameters of training can be
found in [151].

In the reconstruction experiments we consider the testing samples of MNIST, which were not
seen by the RBMs at learning time. We recall that the measurement matrix has i.i.d Gaussian
entries with zero mean and variance 1/N . We choose a channel noise of ∆ = 10−8. We compare
the performances of three approaches on Figure 4.9, as a function of the sparsity level ρ = K/N
and the measurement ratio α = M/N . We observe an improvement of the reconstruction as the
priors become more informative. In particular, for the GRBM, a near perfect reconstruction can
be reached even below the ‘information theoretic threshold’. Not only the support is correct, but
the values of the pixels as well are well recovered below the oracle K = M . The parameters of the
RBM learned on the training set of MNIST are pointing towards a reconstructed signal very close
to the ground-truth signal even when the information available is strictly insufficient to determine
it exactly. On the right of the Figure, we also provide images for the reconstruction of a given
MNIST digit with the three different approaches as a function of the measurement ratio. Both
reconstruction algorithms involving RBMs manage to clearly reconstruct a ‘6’ for α ≈ 0.25ρ. The
GRBM further offers a reconstructed signal visually better than the BRBM.

Here we took advantage of the mean-field inference on real-valued BMs to derive a practical
algorithm incorporating a learned prior in a Bayesian reconstruction problem. When a set of
training examples of the signal is available, such a strategy should enable great economies in
terms of the new information to acquire to reconstruct new samples, pushing further the idea of
compressed sensing. There is a growing body of works investigating such scenarios. In the last
paragraph of the following perspectives we discuss why we expect mean-field approaches to be
especially relevant here.

4.4 Perspectives

Statistical physics theory of Restricted Boltzmann Machines

We presented in this Chapter contributions leveraging mean-field approximations to exploit the
representational power of Boltzmann machines with hidden units in practical machine learning
applications. Meanwhile, the recent craze for deep learning also motivated theoretical studies of

57

4 Mean-field inference for (deep) unsupervised learning

RBMs following the statistical physics tradition and using similar tools.
Studying an ensemble of RBMs with random parameters, Tubiana and Monasson [152] evi-

denced different regimes of typical pattern of activations in the hidden units controlled by param-
eters as the sparsity of the weights, their strength (playing the role of an effective temperature) or
the type of prior for the hidden layer. Their study contributes to the understanding of the con-
ditions under which the RBMs can represent high-order correlations between input units, albeit
without including data and learning in their model. Barra and collaborators [10, 11], exploited the
connections between the Hopfield model and RBMs to characterize RBM learning understood as an
associative memory. They characterize the retrieval phase of RBMs. Mézard [87] also re-examined
retrieval in the Hopfield model using its RBM representation, showing in particular that the addi-
tion of correlations between memorized patterns could still allow for a mean-field treatment at the
price of a supplementary hidden layer in the BMs representation. This result remarkably draws
a theoretical link between correlations in the training data and the necessity of depth in neural
network models.

While the above results do not include characterization of the learning, a few others were able
to discuss the dynamics of training. Huang [62] studied the Bayesian leaning of a RBM with a
single hidden unit and binary weights. Decelle and collaborators [32, 31] introduced an ensemble
of RBMs characterized by the spectral properties of the weight matrix and derived the typical
dynamics of the corresponding order parameters during learning driven by data. Finally, Barra
and collaborators [10] empirically study a teacher-student scenario of unsupervised learning by
maximum likelihood on samples of an Hopfield model which they can compare to their theoretical
characterization of the retrieval phase.

Feed forward generative models

While BMs are a natural interest of statistical physicists given its relations to inverse Ising prob-
lems and the Hopfield model, current state-of-the-art in unsupervised learning relies on feed for-
ward neural networks used as VAEs [71, 120] or GANs [50]. These probabilistic models also
define powerful but intractable probability distributions. Recent advances in mean-field theory
and message-passing on multi-layer networks offer an interesting toolbox to design practical al-
gorithms or develop a theoretical understanding of these models. Below, we give one example
of practical application we started to investigate and comment on one direction of research of
particular interest in our views.

An attempt at VAE training Similarly to RBMs, feed forward generative models can be
trained for density modelling by maximum likelihood. Again as for RBMs, this objective is nev-
ertheless intractable and in practice approximated. In VAEs, a variational lower bound of the
likelihood is parametrized by an auxiliary neural network, itself optimized in parallel of the train-
ing of the generative model. Instead the likelihood and its gradients could be approximated by
mean-field methods allowing for a learning procedure similar to the RBM training algorithm pre-
sented in Section 4.2. Indeed the likelihood of the feed forward architecture is directly related to
the Bethe free energy corresponding to the recently derived multi-layer AMP of [84]. Nevertheless,
running preliminary experiments in this direction on a single layer VAE, we encountered numerical
problems. After a few epochs of learning the AMP algorithm had convergence issues, probably due
to building correlations in the weights [116]. Although not obvious at the time, it seems that the
ML-VAMP algorithm [38] could alternatively be used to compute the TAP solutions bypassing this
difficulty. In [110], the authors demonstrate a successful inference for an in-painting experiment in
a deep generative model trained on MNIST as a VAE.

GANs and VAEs as learned priors for pratice and theory In the line of the application
presented in Section 4.3, several works have also investigated using feed forward generative models
for inference tasks, and in particular for compressed sensing [18, 51, 52, 93]. In these works the
inference is performed via gradient descent using back-propagation to compute gradients with
respect to the input of the deep generative models. Using again the recently derived multi-layer
version of AMP and VAMP, it would be interesting to replicate these propositions in the mean-field
framework and compare empirical performances of the different algorithms.

58

4.4 Perspectives

A relevant property of these algorithms is that they can be characterized by State Evolution
equations, paving the way to a theoretical teacher-student analysis of the reconstruction in these
kind of settings, in the lines of the analysis performed for vanilla CS [77, 160]. More generally, these
multi-layer models offer indeed interesting possibilities to build scenarios with non-trivial priors
remaining tractable in the mean-field framework. In the next Chapter, we put in application
this observation to design model experiments of deep learning trainings. Recently, [6] also took
advantage of the method to extend the mean-field theory of low-rank matrix factorization to
structured priors.

59

5 Mean-field inference for information theory
in deep supervised learning

In networks made of thousands of neurons, we must find aggregated quantities to describe and hope-
fully explain the learning process. In particular, their generalization ability, remains a great puzzle
[161]. Recently, it was proposed to consider the mutual information between random variables
defined as the layers of a neural network [147]. The idea stems from the Information Bottleneck
principle [146] proposing an information based objective for learning useful representations in prob-
abilistic graphical models. Yet the verification of its relevance in practice requires the computation
of mutual information for high-dimensional variables, a notoriously hard inference problem. Pio-
neering works in this direction focused either on small network models with discrete (continuous,
eventually binned) activations [137], or on linear networks [128]. Using mean-field inference we
are able to approximate mutual informations for a class of deep neural networks trained in the
teacher-student scenario. This strategy allows us to capture some of the key properties of the
deep learning setting that are usually difficult to include in tractable frameworks: non-linearities,
arbitrary large width and depth, correlations in the input data and trainable weights.

In the first Section of this Chapter we present the extension to multi-layer networks of the
mean-field approximation for entropies of [66, 135, 136]. In the following Section we describe
how the resulting formula can be leveraged to study learning in a teacher-student scenario, and
examine numerical experiments. The ideas presented in these two first parts were published in
[40]. In a last Section we discuss more generally the potentialities and difficulties surrounding
the information theoretic approach to deep learning theory, through presenting original numerical
results and summarizing the debate that took place in the literature. This last part is un-published
and results from a collaboration with Léon Bottou.

5.1 Mean-field entropy for multi-layer models

5.1.1 Extension of the replica formula to multi-layer networks

Multi-layer model

We consider the following statistical model involving a stochastic neural network of arbitrary depth
`,

W (k) ∼ p(k)
W (W (k)) ∀k = 1, · · · ` (5.1)

t(0) = x ∼ px(x) =
N0∏
i=1

px(xi) (5.2)

t(k) ∼ p(k)
out(t(k)|W (k)t(l−1)) =

Nl∏
µ=1

p
(k)
out(t(k)

µ |w(k)
µ

>
t(l−1)) ∀k = 1, · · · ` (5.3)

where the weight matrices are independent samples from the orthogonal invariant ensemble. This
means that in their singular value decomposition W (k) = U (k)S(k)V (k)> ∈ RNl×Nl−1 , the basis
matrices are Haar distributed: drawn uniformly from the set of orthogonal matrices O(Nl) and
O(Nl−1). We further assume the ratios α̃k = Nk/N0 to be fixed when N0 is varied. In the following
we consider a fixed realization of the weight matrices, playing the role of quenched disorder. The
model then defines a Markov Chain following the graphical model represented on Figure 5.1a. The
distribution of a given variable t(k) is intractable since it requires to marginalize over the inputs
and the preceding layers in the Markov Chain.

Replica formula

One-layer For a single layer, the described model corresponds to a GLM (see 3.3.1) of output t(1)

with orthogonally invariant weight matrix, for which the posterior p(x|W (1), t(1)) given by Bayes

61

5 Mean-field inference for information theory in deep supervised learning

x

W (1)

t(1)

W (2)

t(2)

W (`)

t(`)

W (k) = U (k)S(k)V (k)>

(a)

p
(3)
out(t

(3)
µ |w(3)>t(2))

µ = 1 · · ·N3

t
(2)
1

t
(2)
2

t
(2)
3

p
(2)
out(t

(2)
µ |w(2)>t(1))

µ = 1 · · ·N2

t
(1)
1

t
(1)
2

p
(1)
out(t

(1)
µ |w(1)>x)

µ = 1 · · ·N1

x1

x2

x3

x4

px(xi)
i = 1 · · ·N

(b)

Figure 5.1: (a) Multi-layer stochastic neural network with orthogonally invariant weights: the matrices
U(k) and V (k) are independent samples of the Haar measure. (b) Factor graph representation of the
3-layer GLM posterior distribution p(x|W (1),W (2),W (3), t(3)).

rule is explicit up to an intractable partition function Z(t(1),W (1)). The corresponding quenched
free energy, averaged over the realizations of the weight matrices, can however be approximated
using a replica computation in the thermodynamic limit N0 → +∞ following [66, 135, 136] as
already discussed in Section 3.5.3. In the Bayes optimal setting, where the model generating the
observations and the model used for reconstruction are identical, this free energy is in fact equal
to the entropy of the output averaged over the disorder:

Z(t(1),W (1)) =
∫

dx pout(t(1)|W (1)x)px(x) = p(t(1)|W (1)), (5.4)

EW (1),t(1)

[
logZ(t(1),W (1))

]
= EW (1)

[∫
dt(1) p(t(1)|W (1)) log p(t(1)|W (1))

]
= −EW (1)

[
H(t(1)|W (1))

]
. (5.5)

In the infinite-size limit the self-averaging property of the free energy ensures that the entropy
for a given realization of the weight concentrates, this remains approximately true for large mod-
els. Hence the replica symmetric formula of [66, 135, 136] enables an asymptotic evaluation of
H(t(1)|W (1)). Note that there is no replica symmetry breaking in a Bayes optimal setting.

Compare to [66, 135, 136] and Section 3.5.3 we start by rewriting the single layer free energy
(3.81) as

f = lim
N0→∞

1
N0

H(t(1)|W (1)) (5.6)

= −extrq,q̂,u,û
[
−1

2qq̂ + ûq0

2 − αûu

2λ0
+ Fρλ,α(q0 − q, û/λ0) + Ix(q̂) + αIz(q0λ0/α, u)

]
(5.7)

= extrA,V,Ã,Ṽ
[
φ(A, V, Ã, Ṽ)

]
1 (5.8)

with

φ(A, V, Ã, Ṽ) = 1
2

[
Ã(q0 − V)− αAṼ + F̃W (AV)

]
− Ix(Ã)− αIz(q0λ0/α, Ṽ − q0λ0/α)

where 2

F̃W (1)(x) = min
θ

{
2αθ + (α− 1) log(1− θ) + EλW log[xλW + (1− θ)(1− αθ)]

}
. (5.9)

1The change of variable to recover the equivalence of the potentials is A = û/λ0, V = q0 − q, Ã = q̂ and
Ṽ = u− λ0q0/α.

2The new auxiliary function is related to the former as F̃W (AV) = F̃W (û(q0 − q)/λ0) = Fρλ,α(q0 − q, û/λ0).

62

5.1 Mean-field entropy for multi-layer models

The replica symmetric potential can furthermore be restated in terms of a scalar mutual information
and conditional entropy

φ(A, V, Ã, Ṽ) = 1
2

[
−ÃV − αAṼ + F̃W (AV)

]
+ I(x;x+ ξ0√

A
) +H(t1|ξ̃1; Ṽ ; ρ̃) , (5.10)

where ξ0 and ξ̃1 are standard Gaussian variables, ρ̃ = λ0q0/α, x follows px(x) and t1 follows
p(t1|ξ1;V, q0) =

∫
Dξ̃ pout(t1|

√
q0 − V +

√
V ξ̃).

Multi-layer We wish now to estimate the entropy at the next layer H(t(2)|W (1),W (2)). The
replica potential for the reconstruction of t(1) knowing t(2) is according to the single-layer GLM
formula

φ2(A2, V2, Ã2, Ṽ2) = 1
2

[
−Ã2V2 − α2A2Ṽ2 + F̃W (A2V2)

]
+ I(t1; t1 + ξ1√

A2
) +H(t2|ξ̃2;V2; ρ̃2) ,

with ξ1 and ξ̃2 standard Gaussian variables, ρ̃1 = λ1q1/α1, α1 = N1/N0, λ1 = Eλ
W (1) [λW (1)] and

q1 =
∫

dt1 p(1)
out(t1). Using the identity I(x; y) = H(x) −H(x|y) and the analytical expression of

the entropy of a Gaussian distribution we have

I(t1; t1 + ξ1√
Ã2

) = H
(
t1 + ξ1√

Ã2

)
−H

(ξ1√
Ã2

)
= H

(
t1 + ξ1√

Ã2

)
− 1

2 log(2πeÃ−1
2). (5.11)

Yet the variable t1 is itself the output of a GLM so that the entropy H
(
t1 +ξ1/

√
Ã2
)

is again given
by the single layer formula simply with the additional noise ξ1. Applying this recursive heuristic
argument leads to a replica formula with an additive potential over the layers,

lim
N0→∞

1
N0

H(t(`)) = min extrA,V ,Ã,Ṽ φ`(A, V , Ã, Ṽ), (5.12)

with four `-dimensional vectors A, V , Ã, Ṽ , and

φ`(A, V , Ã, Ṽ) = I
(
t0; t0 + ξ0√

Ã1

)
− 1

2
∑̀
k=1

α̃k−1
[
ÃkVk + αkAkṼk − FW (k)(AkVk)

]
+

`−1∑
k=1

α̃k

[
H(tk|ξ̃k; Ãk+1, Ṽk, ρ̃k)− 1

2 log(2πeÃ−1
k+1)

]
+ α̃`H(t`|ξ̃`; Ṽ`, ρ̃`), (5.13)

where αk = Nk/Nk−1, α̃k = Nk/N0, ρk =
∫

dt p(k−1)
out (t) t2, ρ̃k = Eλ

W (k) [λW (k)]ρk/αk, and ξ̃k-s are
standard Gaussian variables. In the computation of the conditional entropies in (5.13), the scalar
tk-variables are generated from p(t0) = px(t0) and

p(tk|ξ̃k; Ã, Ṽ , ρ) = Eξ̃,z̃ p
(k)
out(tk + ξ/

√
Ã|
√
ρ̃− Ṽ ξ̃k +

√
Ṽ z̃), ∀k = 1, . . . , `− 1, (5.14)

p(t`|ξ̃`; Ṽ , ρ̃) = Ez̃ p(`)
out(t`|

√
ρ̃− Ṽ ξ̃` +

√
Ṽ z̃), (5.15)

where ξ and z̃ are independent standard Gaussian random variables. Finally, the function FW (k)(x)
depends on the distribution of the eigenvalues of W (`)>W (`) following the definition (5.9).

The heuristic procedure of derivation presented here gives an intuition for the result of the care-
ful replica computation of [66] applied to the multi-layer GLM factor graph of p(x|{W (k)}, t(`))
represented on Figure 5.1b. The computation of the entropy of the output of a multi-layer net-
work in the large dimensional limit, a computationally difficult task, has thus been reduced to an
extremization of a function of 4` variables, that requires evaluating single or bidimensional inte-
grals. This extremization can be done efficiently by means of a fixed-point iteration starting from
different initial conditions, as detailed in the Supplementary Material of [40] and supported in the
dedicated package [83].

63

5 Mean-field inference for information theory in deep supervised learning

10−1 100 101

weight scaling σ

−1.5

0.0

1.5

3.0

4.5

H
(T

1
)

linear-linear network

Kraskov et al.

Kolchinsky et al.

replica

10−1 100 101

weight scaling σ

−2.5

0.0

2.5

5.0

H
(T

2
)

Kolchinsky et al.
parametric

exact

10−1 100 101

weight scaling σ

−1.5

0.0

1.5

3.0

H
(T

1
)

hardtanh-hardtanh network

linear approx.

10−1 100 101

weight scaling σ

−4.0

−2.0

0.0

2.0

4.0

H
(T

2
)

10−1 100 101

weight scaling σ

−1.5

0.0

1.5

3.0

H
(T

1
)

ReLU-ReLU network

1/2 linear approx.

linear approx.

10−1 100 101

weight scaling σ

−2.5

0.0

2.5

5.0

H
(T

2
)

Figure 5.2: Entropy of latent variables in stochastic networks with equally sized layers N0 = N1 =
N2 = 1000, standard Gaussian inputs px = N (x; 0, IN), i.i.d weight entries drawn from N (Wiµ; 0, σ/N),
as a function of the weight scaling parameter σ. Left column: linear network. Center column:
hardtanh-hardtanh network. Right column: relu-relu network.

Validity of the formula The formula (5.12) is conjecture to give an exact limit of the entropy
density given weight matrices are independent samples of the orthogonally invariant ensemble. Co-
authors in [40] rigorously proved the replica formula in 2-layer networks, for the restricted ensemble
of weight matrices with Gaussian i.i.d entries. Although a general proof remains today out of reach,
there are reasons to believe that the presented proof can be extended to an arbitrary number of
layers, still in the case of Gaussian matrices. Further credentials to the result of the replica
computation are coming from its agreement with different heuristics. The saddle point equations
associated with the extremization of the replica potential (5.13) can be shown to recover fixed
points of the ML-AMP [84] and ML-VAMP [38] algorithms for inference in multi-layer GLMs. In
a related contribution, Reeves [118] also proposed a formula for the mutual information between
adjacent layers (closely related to the entropy of the output) in deep networks, using different
information-theoretic arguments. It similarly exhibits layer-wise additivity, and the two formulas
are conjectured to be equivalent.

5.1.2 Comparison with non-parametric entropy estimators

The proposed strategy to approximate the entropy in multi-layer networks exploits the knowledge
of the underlying model (input distribution, weight matrices, stochastic activations etc.) and
produces an estimator of great accuracy for large neural networks.

The approach of non parametric estimation is entirely different. It relies only on a set of samples
drawn from the distribution of interest to evaluate its entropy. The kernel-density approach of
Kolchinsky et. al. [74] consists in fitting a mixture of Gaussians (MoG) to the samples and
subsequently compute an upper bound on the entropy of the MoG [72]. The method of Kraskov
et al. [76] uses nearest neighbor distances between samples to directly build an estimate of the
entropy. Both methods require the computation of the matrix of distances between samples. It is
unfortunately computationally hard to test how these estimators behave in high dimension as even
for a known distribution the computation of the entropy is intractable in most cases. The replica
method proposed here offers a valuable point of comparison for cases where it is rigorously exact.

We place ourselves in the setting of the rigorous Theorem of [40] to numerically test the different
estimators (see Figure 5.2). The weight matrices entries are i.i.d. Gaussian with mean 0. Their
standard-deviation is rescaled by a factor 1/

√
N and then multiplied by a coefficient σ varying

between 0.1 and 10, i.e. around the recommended value for initialization in the training of deep
neural networks. An additive white Gaussian noise of small variance (∆ = 10−5) is added right

64

5.2 Mean-field information trajectories over training of deep networks

before the activation function

t(1) = f(W1X + ε1) with ε1 ∼ N (0,∆IN), (5.16)

t(2) = f(W2f(W1X) + ε2) with ε2 ∼ N (0,∆IN). (5.17)

The non-parametric estimators [74, 76] were evaluated using 1000 samples, as the cost of computing
pairwise distances is significant in high dimension. The entropy estimate is stable over independent
draws of a sample of this size (error bars smaller than marker size). On Figure 5.2, we compare
the different estimates of H(t(1)) and H(t(2)) for different activation functions: linear, hardtanh or
relu. The hardtanh activation is a piecewise linear approximation of the tanh, hardtanh(x) =−1
for x<−1, x for −1<x<1, and 1 for x>1, for which the integrals in the replica formula can be
evaluated faster than for the tanh.

In the linear and hardtanh case, the non-parametric methods are following the tendency of the
replica estimate when σ is varied, but appear to systematically over-estimate the entropy. For
linear networks with Gaussian inputs and additive Gaussian noise, every layer is also a multivari-
ate Gaussian and therefore entropies can be directly computed in closed form (exact in the plot
legend). When using the Kolchinsky estimate in the linear case we also check the consistency of
two strategies, either fitting the MoG to the noisy sample or fitting the MoG to the deterministic
part of the t(`) and augment the resulting variance with ∆, as done in [74] (Kolchinsky et al. para-
metric in the plot legend). In the network with hardtanh non-linearities, we check that for small
weight values, the entropies are the same as in a linear network with same weights (linear approx
in the plot legend, computed using the exact analytical result for linear networks and therefore
plotted in a similar color to exact). Lastly, in the case of the relu-relu network, we note that
non-parametric methods are predicting an entropy increasing as the one of a linear network with
identical weights, whereas the replica computation reflects its knowledge of the cut-off and accu-
rately features a slope equal to half of the linear network entropy (1/2 linear approx in the plot
legend). While non-parametric estimators are powerful tools able to approximate entropies from
the mere knowledge of samples, they inevitably introduce estimation errors. The replica method is
taking the opposite view. While being restricted to a class of models, it can leverage its knowledge
of the neural network structure to provide a reliable estimate. To our knowledge, there is no other
entropy estimator able to incorporate this information about the underlying multi-layer model.

5.2 Mean-field information trajectories over training of deep networks

The information bottleneck theory [146] applied to neural networks consists in computing the
mutual information between the data and the hidden learned representations on the one hand, and
between labels and again hidden learned representations on the other hand [147, 137]. A successful
training will maximize the information with respect to the labels it learns to predict. Tishby and
collaborators argue that it should simultaneously minimize the information with respect to the
input data. The idea is that by getting rid of unecessary information from the input to predict
the output, deep neural networks would prevent overfitting and lead to a good generalization.
While this intuition suggests new learning algorithms and regularizers [23, 2, 4, 1, 74, 12, 162],
we can also hypothesize that this mechanism is already at play in a priori unrelated commonly
used optimization methods, such as the simple stochastic gradient descent (SGD), which already
yield very good capacities of generalization. This fact was first claimed by [137]. In this work,
numerical experiments were run on very small neural networks, to allow for entropy estimation by
binning of the hidden neurons activities. Afterwards, the authors of [128] reproduced the results of
[137] on small networks using the continuous entropy estimator of [74], but found that the overall
behavior of mutual information during learning is greatly affected when changing the nature of non-
linearities. Additionally, these authors investigate the training of larger linear networks on i.i.d.
normally distributed inputs where entropies at each hidden layer can be computed analytically for
an additive Gaussian noise. The replica estimator we derived allows us to evaluate entropies and
mutual informations in non-linear networks larger than in [128, 137], provided that the training
data has a distribution belonging to a certain class and that weight matrices verify the assumptions
of the formula.

65

5 Mean-field inference for information theory in deep supervised learning

x

W (1)

t(1)

W (`)

t(`)

W (`+1)

ŷ

y

z

W̃
(1)

t̃
(1)

W̃
(p)

t̃
(p)

W̃
(p+1)

Figure 5.3: Graphical representation of a teacher model generating a synthetic data set of input-output
pairs {x, y} and a student model with learnable parameters trained to recover the input-output mapping.

5.2.1 Tractable deep learning models

Revisited teacher-student scenario The multi-layer model presented above can be leveraged
to simulate a prototypical setting of deep supervised learning on synthetic data sets amenable
to the replica computation of entropies and mutual informations. We consider a teacher model
generating input-output pairs {x, y} from a vector latent variable z with separable prior distribution
pz(z) =

∏N0
i=1 pz(zi). The rule generating the target outputs y can be chosen arbitrarily (in blue

on the Figure 5.3). However we impose that the model transforming z into x is a multi-layer
neural networks with orthogonally invariant weight matrices (in black). This teacher model can
be sampled from to generate a training data set. Subsequently, a student deep neural network (in
red) is trained on the synthetic data set, under the weight constraint described below, to predict
at its output ŷ the target y from the input x.

A more traditional teacher-student scenario would consist in a matched setting; where the
teacher would be itself a feed forward neural network from the input x, following a simple prior
distribution px(x), to the target output y. The advantage of the proposed setting is that it allows
to consider synthetic inputs x featuring some structure. In fact the generative network from z to
x is corresponds to the common architecture of VAEs [71, 120] and GANs [50]. Via unsupervised
learning adjusting the weights {W̃ (1), · · · , W̃ (p)} these generative models can generate samples
mimicking real images.

Weight constraint At the start of a neural network training, weight matrices initialized as
i.i.d. Gaussian random matrices satisfy the necessary assumptions of the replica formula. In
their singular value decomposition W (`) = U (`)S(`)V (`)> the matrices U (`) ∈ O(N`) and V (`) ∈
O(N`−1), are typical independent samples from the Haar measure across all layers. To make sure
weight matrices remain close enough to this assumption during learning, we define a custom weight
constraint which consists in keeping U (`) and V (`) fixed while only the matrix S(`), constrained to be
diagonal, is updated. The number of parameters is thus reduced from N`×N`−1 to min(N`, N`−1).
We refer to layers following this weight constraint as USV-layers.

The relatively small number of degrees of freedom implies that USV-layers are harder to train
than usual. In practice, we notice that they tend to require more parameter updates. Also,
interleaving linear USV-layers to increase the number of parameters between non-linearities can
significantly improve the final result of training. We conduct an experiment on the MNIST data
set. The best train and test, losses and accuracies, for the different architectures are given in
Table 5.1 and some learning curves are displayed on Figure 5.4. As expected we observe that
USV-layers are achieving better classification success than the random projections, yet worse than
the unconstrained fully connected layer. Stacking USV-layers to increase the number of trainable
parameters allows to reach very good training accuracies, nevertheless, the testing accuracies do
not benefit to the same extent from these additional parameters. On Figure 5.4, we observe that
the version of the experiment with many (6) USV-layers overfits the training set (green curves
with testing losses growing towards the end of learning). Adding explicit regularizers might allow
to improve the generalization performances of models with USV-layers. This experiment confirms
that USV-layers can learn to represent complex functions despite their restriction.

We further note that such a product decomposition is reminiscent of a series of works on

66

5.2 Mean-field information trajectories over training of deep networks

0 250 500 750 1000 1250 1500
epochs

0.0

0.2

0.4

0.6

lo
ss

Training Loss

random proj

unconstrained

2 USV-layers

3 USV-layers

6 USV-layers

0 250 500 750 1000 1250 1500
epochs

0.2

0.4

0.6

lo
ss

Testing Loss

0 250 500 750 1000 1250 1500
epochs

0.85

0.90

0.95

1.00

ac
cu

ra
cy

Training Accuracy

0 250 500 750 1000 1250 1500
epochs

0.85

0.90

0.95

ac
cu

ra
cy

Testing Accuracy

Figure 5.4: Training and testing curves for the training of a two-layer neural net on the classification of
MNIST (60 000 training images and 10 000 testing images), featuring one non-linear (relu) hidden layer
of 500 neurones and a softmax output layer. The 500×10 parameters of the weight matrix of the output
layer are all being learned in all the versions of the experiments. Conversely, before the relu layer, we
either (1) do not learn at all the 784× 500 parameters which then define random projections, (2) learn
all of them as a traditional fully connected network, (3) use a combination of 2 (3a), 3 (3b) or 6 (3c)
consecutive USV-layers (without any intermediate non-linearity). For each version of the experiment the
outcomes of two independent runs are plotted with the same color, it is not always possible to distinguish
the two runs as they overlap.

First layer type #train params Train loss Test loss Train acc Test acc

Random (1) 0 0.1745 0.1860 95.05 (0.09) 94.61 (0.02)
Unconstrained (2) 784 × 500 0.0012 0.0605 100. (0.00) 98.18 (0.06)
2-USV (3a) 2 × 500 0.0758 0.1326 97.80 (0.07) 96.10 (0.03)
3-USV (3b) 3 × 500 0.0501 0.1238 98.62 (0.05) 96.35 (0.04)
6-USV (3c) 6 × 500 0.0092 0.1211 99.93 (0.01) 96.54 (0.17)

Table 5.1: Training results for MNIST classification of a fully connected 784-500-10 neural net with a
ReLU non linearity. The different rows correspond to different specifications of trainable parameters in
the first layer (1, 2, 3a, 3b, 3c) describe in the caption of Figure 5.4. We use plain SGD to minimize
the cross-entropy loss. All experiments use the same learning rate 0.01 and batchsize of 100 samples.
Results are averaged over 5 independent runs, and standard deviations are reported in parentheses.

adaptive structured efficient linear layers (SELLs and ACDC) [94, 158] motivated this time by
speed gains. In these layers only diagonal matrices are learned and the matrices U (`) and V (`) are
permutations of Fourier or Hadamard matrices, so that the matrix multiplication can be replaced
by fast transforms.

Following information during training Combining the teacher-student approach with the
learning of USV-layer in the student, we are able to evaluate the entropy H(t(k)) at any layer of
the student model during training. Indeed the Markov Chain starting at the latent variable z,
running through the teacher generative model and the student network (see Figure 5.3) fulfills the
assumptions of the multi-layer model defined in Section 5.1.1. In particular, the initial distribution
pz(z) is separable.

The mutual information between two continuous random variables x and y with joint density

67

5 Mean-field inference for information theory in deep supervised learning

px,y(x, y) and marginals px(x) and py(y) is defined by

I(x; y) =
∫
dxdypx,y(x, y) log px,y(x, y)

px(x)py(y) . (5.18)

It quantifies the level of dependence of its two arguments. It is always positive and equal to zero
if and only x and y are independent. The above definition can be considered as a generalization
of the formula for discrete random variables following the definition of the differential entropy. An
equivalent expression is I(x; y) = H(y) − H(y|x). The extension to continuous random variable
may however be ill-defined as the previous integral can diverge.

To access mutual informations in deep neural networks, from the replica formula for entropies,
we need to compute the conditional entropies between adjacent layers. Considering neural networks
of large width, we use the central limit theorem to reduce their evaluation to a 2-dimensional
integral

H(t(k)|t(k−1)) =
∫
RNk

dt
∫
RNk−1

dt′ pout

(
t|Wt′

)
p(k−1)(t′) log pout(t|Wt′) (5.19)

= Nk

∫
dz N (z; 0, ρ̃(k))

∫
dh pout(h|z), (5.20)

from which we deduce I(t(k); t(k−1)) = H(t(k))−H(t(k)|t(k−1)).
While we have defined our student model as a priori stochastic, traditional feed forward neural

networks are deterministic. In the numerical experiments presented in the next Section, we train
and test networks without injecting noise, and only assume a noise model in the computation
of information-theoretic quantities. We choose to add a white Gaussian noise of small variance
(∆ = 10−5) right before the last activation function of the Markov Chain. This addition is
necessary for conditional entropies, and consequently mutual informations, to remain finite. Our
choice attempts to stay as close as possible to deterministic neural networks, yet remains inevitably
somewhat arbitrary. This issue will be discussed in Section 5.3. Note that for the computation of
H(t(k)) the mapping between x and t(k−1) is kept deterministic, which allows to follow the mutual
information with the input layer given the identity

I(t(k);x) = H(t(k))−H(t(k)|x) = H(t(k))−H(t(k)|t(k−1)) = I(t(k); t(k−1)). (5.21)

5.2.2 Training experiments

Using a dedicated python package [41], interfacing the package [83] for replica computations, we
run training experiments on different instances of the deep learning models defined above. We
seek to study the simplest possible training strategies achieving good generalization. Hence for all
experiments we use plain stochastic gradient descent (SGD) with constant learning rates, without
momentum and without any explicit form of regularization. The sizes of the training and testing
sets are taken equal and scale typically as a few hundreds times the size of the input layer.

Linear trainings

In our first experiment we check on linear networks a potential caveat of our strartegy. For the
replica formula to be correct, additionally to the restriction to USV-layers, the different matrices
S(`) should remain sufficiently uncorrelated during the learning. By focusing on linear networks
trained on Gaussian i.i.d input data, the replica prediction can be compared to a closed form
expression. We consider the training of a 4-layer linear network, on a synthetic data set of Gaussian
inputs and outputs generated by a linear teacher (see Figure 5.5 for details). We repeat the training
experiment for increasing layer width N , and report the maximum and the mean value of the
squared error on the estimation of the I(x; t(`)) over all epochs of 5 independent training runs. We
find that even if errors tend to increase with the number of layers, they remain objectively very
small and decrease drastically as the size of the layers increases. Results therefore demonstrate
(i) that the replica formula remains correct throughout the learning of the USV-layers and (ii)
that the replica method gets closer and closer to the exact result in the limit of large networks, as

68

5.2 Mean-field information trajectories over training of deep networks

0 150 300 450
0.0

0.5

lo
ss

N = 1500

test loss

train loss

0 150 300 450
epochs

4.0

4.4

4.8

5.2

I
(X

;T
i)

T1 T2 T3

500 1000 1500
layers size N

0

2

4

6

8

(Î
re

p
−
I e

x
a
ct

)2

×10−13 layer 1

max

mean

500 1000 1500
layers size N

0.0

0.2

0.4

0.6

0.8

(Î
re

p
−
I e

x
a
ct

)2

×10−4 layer 2

max

mean

500 1000 1500
layers size N

0.0

0.3

0.6

0.9

1.2

(Î
re

p
−
I e

x
a
ct

)2

×10−4 layer 3

max

mean

Figure 5.5: Training of a 4-layer linear students of varying size on a regression task generated by a
linear teacher. The teacher of outputNy = 4 is y = W̃x + ε, with input x ∼ N (x; 0, IN) of size N .
The random teacher matrix W̃ has i.i.d. normally distributed entries of mean 0 and variance 1/N .
The noiseε follow sN (ε; 0, 0.01IN). The student network has 3 USV-layers, plus one fully connected
unconstrained layer x → t(1) → t(2) → t(3) → ŷ. The training on the regression task is done using
plain SGD for the MSE loss (ŷ − y)2. Upper-left: MSE loss on the training and testing sets during
training by plain SGD for layers of size N = 1500. Best training loss is 0.004735, best testing loss is
0.004789. Lower-left: Corresponding mutual information evolution between hidden layers and input.
Center-left, center-right, right: maximum and squared error of the replica estimation of the mutual
information as a function of layers size N , over the course of 5 independent trainings for each value of
N for the first, second and third hidden layer.

x

S(1)

t(1)

S(2)

t(2)

S(3)

t(3)

S(4)

t(4)

W (5)

ŷ

y

z

W̃
(1)

Figure 5.6: Graphical model representation of the teacher and student model for the learning exper-
iments of non-linear networks, corresponding to results presented on Figure 5.7 and Figure 5.8. The
simple generative model is x = W̃z + ε with normally distributed latent representation z ∼ N (0, IN0)
of size N0 = 100, data x of size N1 = 500 generated with matrix W̃

gen
with i.i.d. normally distributed

entries of variance as 1/N0 and noise ε ∼ N (ε; 0, 0.01IN1). We then train a student to solve the binary
classification problem of recovering the label y = sign(z1) (in blue). Note that the rest of the initial code
(z2, ..zN0) acts as noise/nuisance with respect to the learning task. The dimensions of the student layers
(in red) are 500-1000-500-250-100-2, with 4-USV layers with only matrices S(l) as trainable parameters
and one unconstrained fully-connected layer before the output.

theoretically predicted (5.12). In the following, we assume that it is also the case for non-linear
networks.

Concerning the application of the information-bottleneck ideas to deep learning, a similar ex-
periment of linear network training was studied in [128]. In agreement with their observations, we
find that the mutual informations I(x; t(`)) keep on increasing throughout the learning (bottom
left pannel of Figure 5.5), without compromising the generalization ability of the student.

Non linear trainings

Finally, we apply the replica formula to estimate mutual informations during the training of non-
linear networks on correlated input data. We design a synthetic problem of classification described
on Figure 5.6. In the following we vary activation functions and weight initializations for the student
of fixed architecture. For training, we use plain SGD but this time to minimize the cross-entropy
loss1. We start with the comparison of two students with activations either linear-relu-linear-

1The cross-entropy loss has been found to be more effective than the mean square error in classification tasks.
For a problem with M categories, the training outputs are encoded in vectors y ∈ {0, 1}M with only one non-zero

69

5 Mean-field inference for information theory in deep supervised learning

0 500 1000
epochs

0.0

0.2

0.4

0.6

lo
ss

test loss

train loss
0.7

0.8

0.9

1.0

ac
cu

ra
cy

train acc

test acc

0 500 1000
epochs

19

20

21

I
(X

;T
1
)

layer 1 - linear

0 10
21.20

21.25

0 500 1000
epochs

8

9

10

I
(X

;T
2
)

layer 2 - relu

0 10

10.80

10.85

0 500 1000
epochs

6.0

7.0

8.0

I
(X

;T
3
)

layer 3 - linear

0 10

8.6

8.7

0 500 1000
epochs

2.4

2.5

2.6

I
(X

;T
4
)

layer 4 - relu

0 10

2.675

2.680

2.685

0 1000 2000
epochs

0.0

0.2

0.4

0.6

lo
ss

test loss

train loss

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

train acc

test acc

0 1000 2000
epochs

20

20

20

21

I
(X

;T
1
)

layer 1 - linear

0 15

21.27

21.28

0 1000 2000
epochs

11

12

13

14

I
(X

;T
2
)

layer 2 - hardtanh

0 100 200

13.6

13.8

0 1000 2000
epochs

8.0

9.0

I
(X

;T
3
)

layer 3 - linear

0 10
9.570

9.575

9.580

0 1000 2000
epochs

3.8

4.0

4.2

4.4

I
(X

;T
4
)

layer 4 - hardtanh

0 100

4.24

4.28

Figure 5.7: Training of two student models on a binary classification task with correlated input data
and either relu (top) or hardtanh (bottom) non-linearities. Left: training and generalization cross-
entropy loss (left axis) and accuracies (right axis) during learning. Best training-testing accuracies are
0.995 - 0.991 for relu version (top row) and 0.998 - 0.996 for hardtanh version (bottom row). Remaining
columns: mutual information between the input and successive hidden layers. Insets zoom on the first
epochs.

relu-softmax2 (top row of Figure 5.7) or linear-hardtanh-linear-hardtanh-softmax (bottom row).
Because USV-layers only feature O(N) parameters instead of O(N2) we observe that they require
more iterations to train in general. In the case of the relu network, adding interleaved linear
layers was key to successful training with 2 non-linearities, which explains the somewhat unusual
architecture proposed. For the student model using hardtanh, this was actually not an issue (see
the following experiment), however, we consider a similar architecture for fair comparison. This
experiment is reminiscent of the setting of [137], yet now tractable for networks of larger sizes. For
both types of non-linearities we observe that the mutual information between the input and all
hidden layers decrease during the learning, except for the very beginning of training where we can
sometimes observe a short phase of increase (see zoom in insets). For the hardtanh layers this phase
is longer and the initial increase of noticeable amplitude. In this particular experiment, the claim
of [137] that compression can occur during training even with non double-saturated activation
seems corroborated (a phenomenon that was not observed by [128]). Yet we do not observe that
the compression is more pronounced in deeper layers and its link to generalization remains elusive.
For instance, we do not see a delay in the generalization w.r.t. training accuracy/loss in the student
model with hardtanh despite of an initial phase without compression in two layers.

Futhermore, we find that changing the weight initialization can drastically change the behav-
ior of mutual informations during training while resulting in identical training and testing final
performances. In an additional experiment, we consider a similar setting to the classification on
correlated data presented above. On Figure 5.8 we compare 3 identical students with activations
hardtanh-hardtanh-hardtanh-hardtanh-softmax. Initial weight entries are sampled from a zero-
mean Gaussian with variance 4/N`−1 (for the model presented at the top row), 1/N`−1 (middle
row), and 0.25/N`−1 (bottom row). The first column shows that training is delayed for the weight
initialized at smaller values, but eventually catches up and reaches accuracies superior to 0.97 both

entry at the position of the target class. The trained neural network has an ouput ŷ ∈ [0, 1]M , with components
summing to one, interpreted as a probability distribution over the classes. The cross-entropy loss is then defined as

`(y, ŷ) = −
M∑
µ=1

yµ log ŷµ.

2The softmax activation precisely allows the interpretation of the output as a probability vector. For a pre-
activation vector z ∈ RM , ŷ = softmax(z) = ez/

∑M
µ=1 ezµ .

70

5.3 Mean-field information trajectories over training of deep networks

0 1000 2000
epochs

0.00

0.25

0.50

lo
ss

test loss

train loss 0.6

0.8

1.0

ac
cu

ra
cy

train acc

test acc

0 1000 2000
epochs

19

20

20

I
(X

;T
1
)

0 1000 2000
epochs

13.5

14.0

14.5

I
(X

;T
2
)

0 1000 2000
epochs

7.5

8.0

8.5

I
(X

;T
3
)

0 1000 2000
epochs

3.5

4.0

I
(X

;T
4
)

0 1000 2000
epochs

0.00

0.25

0.50

lo
ss

0.6

0.8

1.0

ac
cu

ra
cy

0 2000
epochs

18

18

I
(X

;T
1
)

0 2000
epochs

11.0

11.5

12.0

I
(X

;T
2
)

0 2000
epochs

5.5

6.0

6.5

I
(X

;T
3
)

0 2000
epochs

2.5

3.0

I
(X

;T
4
)

0 1000 2000
epochs

0.25

0.50

lo
ss

0.6

0.8

ac
cu

ra
cy

0 2000
epochs

18

19

I
(X

;T
1
)

layer 1 - hardtanh

0 2000
epochs

11.8

12.0

I
(X

;T
2
)

layer 2 - hardtanh

0 2000
epochs

6.9

7.0

I
(X

;T
3
)

layer 3 - hardtanh

0 2000
epochs

2.9

3.0

3.1

I
(X

;T
4
)

layer 4 - hardtanh

Figure 5.8: Learning and hidden-layers mutual information curves for a classification problem with
a student using hardtanh activations. Top: Initial weights at layer ` of variance 4/N`−1, best train-
ing accuracy 0.999, best test accuracy 0.994. Middle: Initial weights at layer ` of variance 1/N`−1,
best train accuracy 0.994, best test accuracy 0.9937. Bottom: Initial weights at layer ` of variance
0.25/N`−1, best train accuracy 0.975, best test accuracy 0.974. The overall direction of evolution of the
mutual information can be flipped by a change in weight initialization without changing drastically final
performance in the classification task.

in training and testing. Meanwhile, mutual informations have different initial values for the differ-
ent weight initializations and follow very different paths. They either decrease during the entire
learning, or on the contrary are only increasing, or actually feature an hybrid path. We further
note that it is to some extent surprising that the mutual information would increase at all in the
first row if we expect the hardtanh saturation to instead induce compression.

These observed differences and non-trivial observations raise numerous questions, and suggest
that within the examined setting, a simple information theory of deep learning remains out-of-
reach. In the next Section, we will discuss more thoroughly hurdles in the success of this strategy
and in particular the necessity of a noise regularization of the mutual information. To conclude
this Section, we check that qualitative behaviors discussed above are robust to a modification of
the amplitude of the injected noise a posteriori. In all the previous experiments we had added a
Gaussian noise of variance ∆ = 10−5 to regularize the computation of the mutual information.
Here we verify on still the same problem described on Figure 5.6, with hardtanh activations, that
going to smaller levels of noise does not change the qualitative picture. On Figure 5.9, we compare
the mutual information evolution during learning while varying ∆. As ∆ decreases we observe that
the average level of mutual information is increasing as expected (it should diverge at zero noise),
yet the relative evolution is qualitatively unchanged.

0 2000 4000
epochs

0.0

0.2

0.4

0.6

lo
ss

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

0 5000
epochs

20

30

40

50

I
(X

;T
1
)

layer 1 - hardtanh

0 5000
epochs

10

20

30

40

I
(X

;T
2
)

layer 2 - hardtanh

0 5000
epochs

10

15

20

I
(X

;T
3
)

layer 3 - hardtanh

0 5000
epochs

4

6

8

10

I
(X

;T
4
)

layer 4 - hardtanh

1.00E-05

1.00E-06

1.00E-10

Figure 5.9: Learning and hidden-layers mutual information curves for a classification problem with
correlated input data, using a 4-USV hardtanh layers and 1 unconstrained softmax layer for different
levels of regularizing noise: ∆ = 10−5 (blue), ∆ = 10−6 (orange), ∆ = 10−10 (green).

71

5 Mean-field inference for information theory in deep supervised learning

W (`)

z(`)

ε(`)

z̃(`)

f (`)(·)

t(`)

W (`+1)

Figure 5.10: Representation as graphical model of the assumed noise injection at each layer of the
stochastic neural networks studied in Section 5.3.1.

5.3 Further investigation of the information theoretic analysis of deep
learning

While a few experimental works claimed to have verified that SGD training of deep neural networks
leads to compression of the information in hidden layers [137, 102], others have nonetheless pointed
out caveats in the application of these information theoretic ideas to the traditional supervised deep
learning setting [128, 48, 73, 40]. As already mentioned, the key issue lies in the definition of the
mutual information in deterministic neural networks.

In a feed forward deep neural network used for supervised learning the mapping between the
entry x and the `-th hidden layer t(`) is typically deterministic. Consequently the conditional
density p(t(`)|x) is a Dirac with entropy H(t(`)|x) diverging to −∞ and, as noted by [128, 48],
I(x; t(`)) is effectively +∞. An intuitive way to attempt to regularize this mutual information
is to quantize the continuous random variables and resort to the definition in the discrete case,
which is always well defined. This is the strategy adopted by [137]. Nevertheless [128] showed
that for the same training run a compression phase could be either present or absent when using
different conventions for partitioning continuous intervals. Hence the regularization of the mutual
information a posteriori of learning does not yield robust observations.

Conversely we can examine the training of neural networks for which mutual information are
directly well defined. While discrete activations are problematic to study gradient based training
algorithms, the addition of noise in a continuous neural network during the learning phase is a
common form of regularization to promote generalization that also avoids the divergence of mutual
information.

5.3.1 Mutual information in noisy trainings

We consider the addition of noise in the layers of neural networks during training aiming at reg-
ularization. The intuition behind this strategy is to force the learning towards a solution that is
robust to variations around the training samples and therefore will also be effective on unseen test
samples. Dropout [59, 142] and batch-normalization [64] are two specific protocols of noise injec-
tion during training that lead to significant improvements of performances of deep learning models
and are widely adopted by practitioners. They involve both multiplicative and additive noises. We
imagine a small experiment with different stochastic deep neural networks and a non-parametric
estimator of mutual information. Resorting to the latter, rather than the replica formula consid-
ered in Section 5.1, allows to relax the restrictions to synthetic data sets and USV-layers, yet we
will see at the cost of a loss in sensitivity. We describe how the estimator of [72] can be used to
compute information observables for a variety of noises, before examining numerical results on the
MNIST data set.

Non-parametric estimation

We assume that noise is added at each layer to the pre-activations denoted z(`), in the form of a
standard Gaussian white noise ε(`) scaled by a function of z(`). Formally we have the recursion

z(`) = W (`)t(`−1) , z̃(`) = z(`) + n(z(`))ε(`) , t(`) = f(z̃(`)), (5.22)

where the function n(·) fixing the amplitude of the noise and the activation f(·) are applied
component-wise (see Figure 5.10).

We can compute an upper and lower bound of I(x, z̃(`)) following [72, 128] from empirical
samples. The injected noise need not be additive Gaussian and these bounds can be derived for
an arbitrary noise scaling function. We consider a set of P training examples {x(k)}Pk=1, that are

72

5.3 Further investigation of the information theoretic analysis of deep learning

transformed by the neural network up to the layer ` into z
(`)
(k). The distribution of the following

noised pre-activation z(`) can be interpreted as a mixture of distributions with centroids {z(`)
(k)}

P
k=1,

pz̃(`)(z̃(`)) = 1
P

P∑
k=1

p
(
z̃(`)|z(`)

(k)

)
= 1
P

P∑
k=1

N∏̀
i=1
N
(
z̃

(`)
i ; z(`)

k,i , n(z(`)
k,i)2

)
. (5.23)

Following [128] we therefore use the mutual information estimator for mixtures of [72],

Î(z(`); z̃(`)) = −
P∑
k=1

1
P

log
P∑

k′=1

1
P

exp
(
−D

(
p(z̃(`)|z(`)

(k)) || p(z̃
(`)|z(`)

(k))
))

, (5.24)

where D is a generalized distance between probability densities. We further use the results of
[72] showing that the estimator is an upper bound when using as a distance the Kullback-Leibler
divergence, and is a lower bound for the Chernoff α-divergence. Plugging-in our notations and the
definitions of distances we obtain the following expressions, for the upper bound

Îup(z(`); z̃(`)) = −
P∑
k=1

1
P

log
P∑

k′=1
exp

(
−

[
N∑̀
i=1

log

∣∣∣∣∣∣ n(z(`)
k,i)

n(z(`)
k′,i)

∣∣∣∣∣∣+ 1
2

(
n(z(`)

k,i)2

n(z(`)
k′,i)2

− 1
)

(5.25)

+
(z(`)
k,i − z

(`)
k′,i)2

2n(z(`)
k′,i)2

])
,

and for the lower bound

Îlow(z(`); z̃(`)) = −
P∑
k=1

1
K

log
P∑

k′=1
exp

(
−

[
N∑̀
i=1

1
4

(z(`)
k,i − z

(`)
k′,i)2

n(z(`)
k′,i)2 + n(z(`)

k′,i)2
(5.26)

+1
2 log 1

2
n(z(`)

k′,i)2 + n(z(`)
k′,i)2

|n(z(`)
k′,i)n(z(`)

k′,i)|

])

where we considered the Chernoff 1/2-divergence for the lower bound.
We will only consider noises with zero mean so that, along the feed forward pass, the succes-

sive linear mixing of the products with weight matrices approximately makes z(`) a deterministic
function of x (that is the transformation of x by the neural network without the noise injection).
Hence we expect, following the same argument as (5.21), that I(z̃(`); z(`)) ' I(z̃(`);x). Beyond
this heuristic argument, the data processing inequality [29] ensures that I(z̃(`); z(`)) ≥ I(z̃(`);x),
so that a drop of the first mutual information is reflected in the second if they are of comparable
order of magnitude.

Thus we have a strategy to estimate mutual informations between layers from a set of P samples.
This allows to consider ‘real’ data sets, of natural images for instance, and arbitrary architectures
and training algorithm. However, the non-parametric strategy will suffer from two limitations.
First, its approximation of the density as a mixture over the P samples limits its sensitivity to
large mutual informations

Î(z(`); z̃(`)) ≤ H(z(`)) = −
P∑
k=1

p
(
z

(`)
(k)

)
log p

(
z

(`)
(k)

)
= −

P∑
k=1

1
P

log 1
P

= logP. (5.27)

The bound is saturated when the noised representations z̃(`) of the different samples are well
separated, as also noted by [48]. Otherwise the estimator (5.24) examines the overlaps of the
mixture components from the pairwise distances to evaluate the mutual information. This points
at the second limitation of the procedure: the memory (and computational) burden in P 2. While
a large number of samples P is desirable to increase the sensitivity of the estimator upper-bounded
by logP , the cost scales quadratically. This issue worsens as the dimension of variables increase
as overlaps are typically vanishing.

73

5 Mean-field inference for information theory in deep supervised learning

Numerical experiments on MNIST

We run experiments training deep neural networks to solve the benchmark task of classifying the
handwritten digits of the MNIST data set. We adopt a unique architecture with 5 hidden layers
and 20 fully connected neurons in all hidden layers, with either tanh or relu activations, and 10
output softmax neurons to predict the 10 digit classes. The trainings are done with mini-batch
stochastic gradient descent (batch-size of 100 and learning rate of 0.01) without other forms of
regularization besides the noise injection under study.

We consider both additive and multiplicative noises via different noise scaling functions: either
constant n(zi) = σ0, linear n(zi) = σ0|zi|, quadratic n(zi) = σ0z

2
i , or exponential n(zi) = σ0(e|zi|−

1). We select the optimal value for the parameter σ0 in terms of the best accuracy achieved on the
MNIST test data set, and report the values of the upper bound and lower bounds (5.25)-(5.26) for
the last hidden layer during the training on Figure 5.11 for tanh activations and Figure 5.12 for
relu activations. For stochastic deep networks with tanh activation, we observe a clear compression
during the learning for multiplicative noises, and a slight compression in a second phase of training
for the constant noise. Unfortunately, for the unbounded relu activation the estimator hits the
limitation of the non-parametric approach induced by the size of the sample P = 5000. Increasing
the sample size comes with costs scaling as P 2 while only yielding a sensitivity growing as log(P).
Therefore, the experiment is non-conclusive for relus: there may or may not be compressions
happening above the log(P) bound. We are unable to further comment on the necessity for
saturated activations to observe compressions, but we further investigate the case of the tanh
activations.

Saxe and collaborators [128] argued that the loss of information in stochastic tanh networks
results form the interplay of the saturation of the tanh activation and the blurring induced by noise.
During neural network training, the weight magnitudes, initialized at small values, typically grow
and with them the pre-activations as well. In turns, the amplitude of multiplicative noises follows
this evolution. Therefore the greater information drops observed for the latter types of noises are
expected. Similarly the initial phase of increase of the mutual information for the constant noise
can be understood as the improvement of an effective signal-to-noise ratio as the pre-activations
grow at the beginning of training while the noise is fixed.

To assess whether this geometric interpretation of information trajectories is sufficient we also
report mutual informations for a network of similar architecture but with Gaussian random weight
matrices of same variance. Thereby we test whether the mere increase of the weights amplitude
explains the compression. For all noises, the random network transmits more information than
the trained one, and the upper bound of the estimator is almost always saturated for the random
network. Hence, the compression seen during training may be due to saturations yet ‘organized’
by the learning.

5.3.2 Discussion

The concepts and preliminary results reported by [147, 137] have spurred a significant interest
in the deep learning community to the information theoretic analysis of neural network training.
Nevertheless, the observables proposed as relevant - mutual informations between hidden layers
and inputs or outputs - are ill-defined in deterministic neural networks that are commonly used
for prediction in supervised learning. The application of the information bottleneck concepts to
learning of purely deterministic rules also suffer some caveats investigated by [73]. Otherwise, it is
possible to regularize the definition of mutual informations by discretization [137] or by assuming
noisy activations [74, 128]. Yet the outcome of experiments sometimes depends on this arbitrary
choice of regularization [128]. It was argued that the observed compressions in this context can
nonetheless be interpreted as a measure of the clustering of the representations learned by the
network [48]. Indeed, using discretization or the non-parametric estimate with added noise, we
understand that overlaps in the hidden activation patterns of different inputs induce a drop of
mutual information. The choice of characteristic strength of the regularization (bins spacing, noise
amplitude etc.) then controls the scale of the clustering being probed. The above cited works could
not observe compressions in this setting for unbounded activations, but we note that their estimator
suffers from a limited sensitivity to high mutual information and interesting phenomenology may
be hidden above the limiting upper bound. In particular, in Section 5.2.2, we report compressions

74

5.3 Further investigation of the information theoretic analysis of deep learning

0.0 0.1 0.2 0.3 0.4
noise amplitude σ0

0.940

0.945

0.950

0.955

0.960

0.965

va
lid

at
io

n
ac

cu
ra

cy

cst

lin

quad

exp

102

epochs

4

6

8

Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.15

trained

random

ln(P)

102

epochs

4

6

8

Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.30

trained

random

ln(P)

102

epochs

4

6

8

Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.20

trained

random

ln(P)

102

epochs

4

6

8

Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.05

trained

random

ln(P)

Figure 5.11: Results for 5-hidden layer network with tanh activation on MNIST Left: Average and
standard deviation of the best accuracy on the MNIST test set over 10 runs for the different types of
noise as a function of the noise amplitude parameter σ0. Right: Evolution the mutual information
bounds for P = 5000 at the last hidden layer over the course of training for the different noises at the
selected value of σ0 (solid lines with solid colored region in between). The dashed lines and regions
corresponds to the bounds computed for an identical network with random Gaussian weight matrices of
same variance as the trained weight matrix at the same epoch.

0.0 0.2 0.4
noise amplitude σ0

0.956

0.958

0.960

0.962

0.964

0.966

0.968

0.970

va
lid

at
io

n
ac

cu
ra

cy

cst

lin

quad

102

epochs

4

6

8

Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.35

trained

ln(P)

102

epochs

4

6

8
Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.07

trained

ln(P)

102

epochs

4

6

8

Î
(z

(5
) ;
z̃(

5
))

σ0 = 0.03

trained

ln(P)

Figure 5.12: Results for 5-hidden layer network with relu activation on MNIST Left: Average and
standard deviation of the best accuracy on the test set over 10 runs for the different types of noise as a
function of the noise amplitude parameter σ0. Here, there is no training with exponential noise, unstable
for the unbounded relu activations. Right: Evolution of the mutual information bounds for P = 5000
at the last hidden layer over the course of training for the different noises at the selected value of σ0
(solid lines with solid colored region in between). The upper bound of the non-parametric estimator is
saturated.

during the training of relu networks on synthetic data sets, using the mutual information estimator
based on the replica method. The issue of definition can also be circumvented by considering neural
networks in the learning phase regularized by the addition of noise. On the example of the MNIST
classification, using the non-parametric estimator [72], we observed that tanh activated network
display varying level of compression but we are not able to draw conclusions for the case of relu
activations.

Therefore we are recalled to the complexity of the estimation of mutual informations that
appears as a serious obstacle to the validation of a theory of deep learning based on information
theoretic principles. Non parametric methods are generic strategy of evaluation yet they are found

75

5 Mean-field inference for information theory in deep supervised learning

insufficient to investigate all the interesting cases and suffer in particular when the dimension of
the problem (i.e. the size of the hidden layers) increases. Using advanced methods from statistical
physics we were able to follow precisely information trajectories for certain models of classification
experiments - for different non-linear activations and for hidden layer of high dimensions. Still,
these models are constrained to have weight matrices with a reduced number of degrees of freedom,
while the concept of over-parametrization emerges as a key component to the success of deep
learning (see e.g. [141, 46] for a discussion of the state-of-understanding and recent results).
Another a priori promising non-parametric estimator, MINE [12], relies on the optimization of a
deep neural network. Yet its accuracy in high-dimension remains unverified. Albeit the replica
formula could offer an interesting point of comparison in cases where it is known to be exact, it
seems difficult to obtain convincing guarantees for the MINE estimator while it relies on neural
network optimization. Our aim would precisely be to use it to explain what remains to this day
mysterious in deep learning.

The concept of progressive invariance learned by the hidden representation remains a key
intuition of the community to justify the advantage of deep neural networks. Yet the information
theoretic lense as formulated by [147, 137], which could have yielded a quantitative verification,
incurs conceptual and practical problems hard to resolve. A related yet different proposition was
made by [140], with interesting results for the unsupervised learning of a certain class of deep neural
networks with binary units. It remains to understand if the theory can be robustly generalized
and tested on real valued feed forward neural networks used in supervised learning.

76

6 Towards a model for deep Bayesian (online)
learning

One of the great successes of the statistical physics approach to neural networks learning theory
initiated by Gardner [44] is the prediction of learning curves in the teacher-student scenario. It
corresponds to the computation of the optimal generalization errors under the Bayesian learning
paradigm as a function of parameters of the model such as the size of the training set or the level
of noise in the teacher mapping from input to outputs. Following early works on the single layer
perceptron, variations of a simple two-layer architecture were also considered: the (tree) committee
machine [156, 95, 106, 37, 96, 7]. In this model, only the first layer connecting the inputs to the
hidden units is trained while the second layer has fixed weights. A current challenge in learning
theory is to conduct similar analyses for neural networks with learnable parameters distributed in
multiple layers.

To this aim, the possibility of decomposing complicated inference tasks into simpler well-known
blocks is a promising lever. Let us rapidly examine the supervised learning of a two-layer feed
forward neural network. A training set of P input-output pairs {x(k), y(k)}

P
k=1 is generated using

two weight matrices and noisy activation functions:

∀k = 1 · · ·P, x0,(k) ∼ px0(x(k)) (6.1)

y(k) = g(W0
(2)g(W0

(1)x(k); ε1); ε2), ε1,2 ∼ pε(ε1,2) (6.2)

with dimensions x0,(k) ∈ RN , y(k) ∈ RQ, W0
(1) ∈ RM×N , W0

(2) ∈ RQ×M . Introducing the
intermediate layer variables t ∈ RM , and the matrix notations X ∈ RN×P , T ∈ RM×P and
Y ∈ RQ×P gathering the P samples, we can decompose the student model as

Y = g(W (2)T ; ε2) factorization to recover T and W (2) from observed Y , (6.3)

T = g(W (1)X; ε1) vectorized GLM to recover W (1) from observations T . (6.4)

The GLM model is rather straightforward to solve and combine following the recent multi-layer
developments of AMP [84] and VAMP [38]. However, the matrix factorization problem, arising from
the ignorance of the hidden states as the first layer weights are unknown, is more complicated. At
finite rank, it can be solved by message passing and rigorously characterized in the thermodynamic
limit [80, 81, 67], which corresponds in our problem to a number M of hidden units remaining
finite as the other dimensions are growing to infinity. Assuming few hidden units should therefore
allow us to analyse the learning in the teacher-student scenario of this two-layer neural network by
composing the low-rank matrix factorization analysis with a GLM. However, to be able to consider
a number of hidden units of same order as the number of inputs and outputs, which is a situation
closer to the practical usage of deep neural networks, a surrogate to the analysis of high-rank
matrix factorization is needed. We formulate here a proposition towards this goal.

In this Chapter, we present in a first Section new results for GLMs with calibration variables.
In a second Section we illustrate the newly derived algorithms and analyses with the example of
gain calibration. Finally, we propose in a last Section a direction of research that should allow us
to leverage these advances to treat in a constrained setting a high rank matrix factorization and
the learning of multi-layer neural networks.

6.1 Cal-AMP revisited

We recall the blind calibration problem for the GLM already discussed in Chapter 3 Section 3.5.2.
We have access to P observations y(k) ∈ RM gathered in a matrix Y ∈ RM×P . They were generated
from the P unknown signals x0,(k)RN , similarly noted X0 ∈ RN×P , linearly mixed by a known
weight matrix W , and pushed through a noisy channel denoted psout,0 (equivalent to a stochastic

77

6 Towards a model for deep Bayesian (online) learning

pout(yµ|wµ
>X)

µ = 1 · · ·M
x1

x2

x3

x4

px(xi)
i = 1 · · ·N

(a)

x1

x2

x3

x4

px(xi)
i = 1 · · ·N

s1

s2

ps(sµ)
µ = 1 · · ·M

psout(yµ|wµ
>X, sµ)

µ = 1 · · ·M

(b) .

Figure 6.1: (a) Factor graph of the GLM on vector variables corresponding to the joint distribution
(6.10). (b) Factor graph for the GLM on vector variables with not perfectly known channel including
calibration variables, corresponding to the joint distribution (6.9).

activation g0(·) further down this Section). The channel is not perfectly known and depends on
the realization of a calibration s0 ∈ RM . Under the teacher model including prior distributions,

s0 ∼ ps0(s0) (6.5)

∀k = 1 · · ·P, x0,(k) ∼ px0(x0,(k)) =
N∏
i=1

px0(x0,i,(k)) (6.6)

y(k) ∼ p
s
out,0(y(k)|Wx0,(k), s0) =

M∏
µ=1

psout,0(y(k),µ|Wx0,(k), s0,µ) (6.7)

we are interested in the estimation of the unknown signal and calibration variable under a student
model for priors and channel,

p(X, s|Y ,W) = 1
Z(Y ,W)px(X)ps(s)psout(Y |WX, s) (6.8)

= 1
Z(Y ,W)

N∏
i=1

px(xi)
M∏
µ=1

ps(sµ)psout(yµ|w
>
µX, sµ), (6.9)

with xi ∈ RP , and y
µ
∈ RP . Note that the distribution could be further factorized over the index

k of the P observations given the teacher model. The corresponding message passing was derived
in [130, 131]. Here we instead restrict to the level of factorization above and consider the AMP
algorithm on vector variables.

6.1.1 Derivation through AMP on vector variables

AMP for reconstruction of multiple samples

Before specializing to the calibration problem we are interested in, we present the AMP algorithm
on vector variables. Without the calibration variable, the posterior measure we are interested in is

p(X|Y ,W) = 1
Z(Y ,W)

N∏
i=1

p(xi)
M∏
µ=1

pout(yµ|w
>
µX/

√
N), xi ∈ RP , y

µ
∈ RP . (6.10)

where the known entries of matrix W are drawn i.i.d from a standard normal distribution (note that
the scaling in 1/

√
N is here made explicit). The corresponding factor graph is given on Figure 6.1a.

This setting was actually recently treated for a model of the committee machine in [7]. The major
difference with the fully factorized version on scalar variables is that we consider covariance matrices

78

6.1 Cal-AMP revisited

between variables coming from the P observations instead of assuming complete independence.
We shall recall here the main steps of the derivation, which will be useful both in the following
derivation of the State Evolution, and in the presentation of the derivation of the AMP algorithm
in combined models.

Belief propagation The belief propagation algorithm is identical to the algorithm presented in
Section 3.3.2, except that messages are functions of variables in RP :

m̃
(t)
µ→i(xi) = 1

Zµ→i

∫ ∏
i′ 6=i

dxi′ pout

y
µ
|
∑
j

Wµj√
N
xj

∏
i′ 6=i

m
(t)
i′→µ(xi′) (6.11)

m
(t+1)
i→µ (xi) = 1

Zi→µ
px(xi)

∏
µ′ 6=µ

m̃
(t)
µ′→i(xi). (6.12)

To improve readability we drop the time indices in the following derivation, and only specify them
in the final algorithm.

Relaxed BP We will now develop messages keeping only terms up to order O(1/N) as we take
the thermodynamic limit N → +∞ (at fixed α = M/N). At this order, we will find that it
is consistent to consider the messages to be approximately Gaussian, i.e. characterized by their
means and co-variances. Thus we define

x̂i→µ =
∫

dx x mi→µ(x)

Cx
i→µ =

∫
dx xxT mi→µ(x)


ωµ→i =

∑
i′ 6=i

Wµi′√
N
x̂i′→µ

V
µ→i =

∑
i′ 6=i

W 2
µi′

N
Cx

i′→µ,
(6.13)

where ωµ→i and V
µ→i are related to the intermediate variable zµ = w>µX.

Expansion of m̃µ→i We defined the Fourier transform p̂out of pout(yµ|zµ) with respect to its
argument zµ = w>µX,

p̂out(yµ|ξµ) =
∫

dzµ p̂out(yµ|zµ) e−iξ
>
µ
zµ . (6.14)

Using reciprocally the Fourier representation of pout(yµ|zµ),

pout(yµ|zµ) = 1
(2πM)

∫
dξ
µ
p̂out(yµ|ξµ) eiξ

>
µ
z
µ , (6.15)

we decouple the integrals over the different xi′ in (6.11),

m̃µ→i(xi) ∝
∫

dξ
µ
p̂out

(
y
µ
|ξ
µ

)
e
i
Wµi√
N
ξ>
µ
xi
∏
i′ 6=i

∫
dxi′ mi′→µ(xi′)e

i
W
µi′√
N
xiξ
>
µ
xi′ (6.16)

∝
∫

dξ
µ
p̂out

(
y
µ
|ξ
µ

)
e
iξ>
(
Wµi√
N
x
i
+ω

µ→i

)
− 1

2 ξ
>V −1

µ→i
ξ

(6.17)

where developing the exponentials of the product in (6.11) allows to express the integrals over the
xi′ as a function of the definitions (6.13), before re-exponentiating to obtain the final result (6.17).
Now reversing the Fourier transform and performing the integral over ξ we can further rewrite

m̃µ→i(xi) ∝
∫

dzµ pout

(
y
µ
|zµ
)
e
− 1

2

(
z
µ
−
Wµi√
N
x
i
−ω

µ→i

)>
V −1
µ→i

(
z
µ
−
Wµi√
N
x
i
−ω

µ→i

)
(6.18)

∝
∫

dzµ Pout(zµ;ωµ→i, V µ→i)e
(
z
µ
−ω

µ→i

)>
V −1
µ→i

Wµi√
N
x
i
−
W2
µi

2N x>
i
V −1
µ→i

x
i , (6.19)

79

6 Towards a model for deep Bayesian (online) learning

where we are led to introduce the output update functions

Pout(zµ;ωµ→i, V µ→i) = pout

(
y
µ
|zµ
)
N (zµ;ωµ→i, V µ→i) , (6.20)

Zout(yµ, ωµ→i, V µ→i) =
∫

dzµ pout

(
y
µ
|zµ
)
N (zµ;ωµ→i, V µ→i) , (6.21)

gout(yµ, ωµ→i, V µ→i) = 1
Zout

∂Zout

∂ω
and ∂ωgout =

∂gout

∂ω
, (6.22)

where we recall that N (z;ω, V) is the multivariate Gaussian distribution of mean ω and covari-
ance V . Further expanding the exponential in (6.19) up to order O(1/N) leads to the Gaussian
parametrization

m̃µ→i(xi) ∝ 1 +
Wµiµi√
N

gout
1xi +

Wµiµi
2

2N xi
T (goutgout

T + ∂ωgout
1)xi (6.23)

∝ eBµ→i
T x

i
− 1

2xi
TA

µ→i
x
i , (6.24)

with  Bµ→i = Wµiµi√
N
gout(yµ, ωµ→i, V µ→i)

A
µ→i = −Wµiµi

2

N ∂ωgout(yµ, ωµ→i, V µ→i).
(6.25)

Consistency with mi→µ Inserting the Gaussian approximation of m̃µ→i in the definition of
mi→µ, we get the parametrization

mi→µ(xi) ∝ px(xi)
∏
µ′ 6=µ

e
B
µ′→i

T x
i
− 1

2xi
TA

µ′→i
x
i ∝ px(xi)e

− 1
2 (x

i
−λ

i→µ)Tσ−1
i→µ

(x
i
−λ

i→µ) (6.26)

with 
λi→µ = σ

i→µ

(∑
µ′ 6=µBµ′→i

)
σ
i→µ =

(∑
µ′ 6=µAµ′→i

)−1
.

(6.27)

Closing the equations Ensuring the consistency with the definitions (6.13) of mean and
covariance of mi→µ we finally close our set of equations by defining the input update functions

Zx =
∫

dx px(x)e− 1
2 (x−λ)>σ−1(x−λ) (6.28)

fx1(λ, σ) = 1
Zx

∫
dx x px(x)e−

1
2 (x−λ)>σ−1(x−λ) (6.29)

fx
2
(λ, σ) = 1

Zx

∫
dx xx> px(x)e−

1
2 (x−λ)>σ−1(x−λ) − fx1(λ, σ)fx1(λ, σ)>, (6.30)

so that{
x̂i→µ = fx1(λi→µ, σi→µ)
Cx

i→µ = fx
2
(λi→µ, σi→µ). (6.31)

Approximate message passing Given the scaling of the weights it is possible to further sim-
plify the algorithm by considering the approximated marginals

mi(xi) = 1
Zi
px(xi)e

− 1
2 (x−λi)

>σ−1
i

(x−λi) with


λi = σ

i

(
M∑
µ=1

Bµ→i

)

σ
i

=
(
M∑
µ
A
µ→i

)−1

.

(6.32)

80

6.1 Cal-AMP revisited

Defining likewise parameters ωµ, V
µ

and x̂i, Cxi, and considering their relations to the original
λi→µ, σ

i→µ, ωµ→i, V µ→i, x̂i→µ and Cx
i→µ we get the vectorized AMP for the GLM presented in

Algorithm 7. Note that this step was detailed for Boltzmann machines in Section 4.1.2.

Algorithm 7 Approximate Message Passing for vectors
Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :
Initialize: x̂i, Cxi ∀i and goutµ, ∂ωgout

µ
∀µ

repeat
1) Estimate mean and variance of zµ given current x̂i

V (t)
µ

=
N∑
i=1

W 2
µi

N
Cx

i

(t) (6.33)

ω(t)
µ =

N∑
i=1

Wµi√
N
x̂

(t)
i −

N∑
i=1

W 2
µi

N
(σ(t)
i

)−1Cx(t)
i
σ
i
gout

(t−1)
µ

(6.34)

2) Estimate mean and variance of the gap between optimal zµ and ωµ given y
µ

∂ωgout
(t)
µ

= ∂ωgout(yµ, ω
(t)
µ , V (t)

µ
) (6.35)

gout
(t)
µ

= gout(yµ, ω
(t)
µ , V (t)

µ
) (6.36)

3) Estimate mean and variance of xi given current optimal zµ

σ(t)
i

=

− M∑
µ=1

W 2
µi

N
∂ωgout

(t)
µ

−1

(6.37)

λ
(t)
i = x̂

(t)
i + σ(t)

i

 M∑
µ=1

Wµi√
N
gout

(t)
µ

 (6.38)

4) Estimate of mean and variance of xi augmented of the information about the prior
Cx

i

(t+1) = fx
2
(λ(t)
i , σ(t)

i
) (6.39)

x̂
(t+1)
i = fx1(λ(t)

i , σ(t)
i

) (6.40)

until convergence

Treatment of calibration variables

Heuristic derivation To include calibration variables, we need to consider the factor graph on
Figure 6.1b and augment the belief propagation with a set of messages related to the sµ. Without
going back through the entire derivation the final algorithm can easily be guessed. The posterior
distribution on X in the presence of the calibration variable s is a special case of the GLM on
vector variables examined above with the effective channel

pout(yµ|wµ
>X) =

∫
dsµ psout(yµ|wµ

>X, sµ)ps(sµ). (6.41)

Thus to reconstruct X one can directly use Algorithm 7, with output functions (6.20)-(6.22) that
will include a marginalization over s:

Zout(yµ, ωµ, V µ) =
∫

dzµ
∫

dsµ psout

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ). (6.42)

The estimate of a variable constructed by (sum-product) AMP is always the mean of the approx-
imate posterior marginal distribution. For the calibration variable, the AMP posterior is already

81

6 Towards a model for deep Bayesian (online) learning

displayed in the above Zout,

ms
µ(sµ) = 1

Zout

∫
dzµ psout

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ). (6.43)

So that at convergence of Algorithm 7, we can compute the estimate and uncertainty on the
calibration variable

ŝµ = fs1 (y
µ
, ωµ, V µ) = 1

Zout

∫
dsµ sµ

∫
dzµ psout

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ) (6.44)

Csµ = fs2 (y
µ
, ωµ, V µ) = 1

Zout

∫
dsµ s2

µ

∫
dzµ psout

(
y
µ
|zµ, sµ

)
ps(sµ)N (zµ;ωµ, V µ)− ŝ2

µ.

(6.45)

Relation to original Cal-AMP derivation In [130, 131], the Cal-AMP algorithm was derived
from the belief propagation equations on the scalar variables of the fully factorized distribution
(over N , M and P). It is equivalent to Algorithm 7 if covariance matrices V

µ
, ∂ωgout

µ
, σ

i
, Cx

i
are

assumed to be diagonal. However, we recall that BP is only exact on a tree, where the incoming
message at each node are truly independent. On the dense factor graph of the GLM on scalar
variables, this is approximately exact in the thermodynamic limit due to the random mixing, and
small scaling, of the weight matrix W . Here by considering the reconstruction of P samples at
the same time, sharing a given realization s of the calibration variable, additional correlations may
arise. Writing the message passing on the vector variables in RP allows not to neglect them.

6.1.2 State Evolution for Cal-AMP

In the thermodynamic limit, recall that the performance of the AMP algorithm can be characterized
by a set of simpler equations corresponding to an averaging over the disorder (here X0, Y and
W), referred to as State Evolution. In Chapter 3 we have seen that there are two ways of deriving
the State Evolution, either from the direct averaging of the AMP steps or from the saddle point
equations of the replica free energy associated with the problem under the Replica Symmetric (RS)
ansatz. In [7], the teacher-student matched setting of the GLM on vectors is examined through
the replica approach and the Bayes optimal State Evolution equations are obtained through this
second strategy. In the following we present the alternative derivation of the State Evolution
equations from the message passing and without assuming a priori matched teacher and student.
To this end, our starting point will be the r-BP equations. Ultimately, we also introduce new State
Evolution equations following the reconstruction of calibration variables.

State Evolution derivation in mismatched setting

Defintion of the overlaps The overlaps are here P × P matrices

q = 1
N

N∑
i=1

x̂ix̂
T
i , m = 1

N

N∑
i=1

x̂ix0,i
T , q

0
= 1
N

N∑
i=1

x0,ix0,i
T . (6.46)

Output parameters Under Gaussian statistics of the entries of W , the variable ωµ→i defined
in (6.13) is a sum of independent Gaussian variables and follows itself a Gaussian distribution. Its
first and second moments are

EW
[
ωµ→i

]
= 1√

N

∑
i′ 6=i

EW
[
Wµi

]
x̂i′→µ = 0 , (6.47)

82

6.1 Cal-AMP revisited

EW
[
ωµ→iω

T
µ→i

]
= 1
N

∑
i′ 6=i

EW
[
W 2
µi

]
x̂i′→µx̂

T
i′→µ = 1

N

N∑
i=1

x̂i→µx̂
T
i→µ +O

(
1/N

)
(6.48)

= 1
N

N∑
i=1

x̂ix̂
T
i − ∂λf

x

1σiBµ→ix̂
T
i −

(
∂λf

x

1σiBµ→ix̂
T
i

)T
+O

(
1/N

)
(6.49)

= 1
N

N∑
i=1

x̂ix̂
T
i +O

(
1/
√
N
)

(6.50)

where we used the fact that Bµ→i defined in (6.25) is of order O(1/
√
N). Similarly, the variable

zµ→i =
∑
i′ 6=i

Wµi′√
N
xi′ is Gaussian with first and second moments

EW
[
zµ→i

]
= 1√

N

∑
i′ 6=i

EW
[
Wµi

]
x0,i′ = 0 , (6.51)

EW
[
zµ→iz

T
µ→i

]
= 1
N

N∑
i=1

x0,ix0,i
T +O

(
1/
√
N
)
. (6.52)

Furthermore, their covariance is

EW
[
zµ→iω

T
µ→i

]
= 1
N

∑
i′ 6=i

EW
[
W 2
µi

]
x0,i′ x̂

T
i′→µ = 1

N

N∑
i=1

x0,i′ x̂
T
i→µ +O

(
1/N

)
(6.53)

= 1
N

N∑
i=1

x0,i′ x̂
T
i − x0,i′∂λf

x

1σiB
T
µ→i +O

(
1/N

)
(6.54)

= 1
N

N∑
i=1

x0,i′ x̂
T
i +O

(
1/
√
N
)
. (6.55)

Hence we find that for all µ-s and all i-s, ωµ→i and zµ→i are approximately jointly Gaussian
in the thermodynamic limit following a unique distribution N

(
zµ→i, ωµ→i; 0, Q

)
with the bloc

covariance matrix

Q =

 q0
m

m> q

 . (6.56)

For the variance message V
µ→i, also defined in (6.13), we have

EW
[
V
µ→i

]
=
∑
i′ 6=i

EW

[
Wµi

N

2
]
Cx

i′→µ =
N∑
i=1

1
N
Cx

i→µ +O
(
1/N

)
(6.57)

=
N∑
i=1

1
N
Cx

i
+O

(
1/
√
N
)
, (6.58)

where using the developments of λi→µ and σ
i→µ (6.27), along with the scaling of Bµ→i in O(1/

√
N)

we replaced

Cx
i→µ = fx

2
(λi→µ, σi→µ) = fx

2
(λi, σi)− ∂λf

x

2
σ
i
BTµ→i = fx

2
(λi, σi) +O

(
1/
√
N
)
. (6.59)

Futhermore, we can check that

lim
N→+∞

EW
[
V 2
µ→i − EW

[
V
µ→i

]2]
= 0, (6.60)

83

6 Towards a model for deep Bayesian (online) learning

meaning that all V
µ→i concentrate on their identical mean in the termodynamic limit, which we

note

V =
N∑
i=1

1
N
Cx

i
. (6.61)

Input parameters Here we use the re-parametrization trick to express y
µ

as a function g0(·)
taking a noise εµ ∼ pε(εµ) as a second input: y

µ
= g0(w>µX0, s0,µ, εµ). Following (6.25) and (6.32),

σ−1
i
λi =

M∑
µ=1

Wµi√
N
gout

(
y
µ
, ωµ→i, V µ→i

)
(6.62)

=
M∑
µ=1

Wµi√
N
gout

g0

∑
i′ 6=i

Wµi′√
N
x0,i′ + Wµi√

N
x0,i, εµ

 , ωµ→i, V µ→i

 (6.63)

=
M∑
µ=1

Wµi√
N
gout

g0

∑
i′ 6=i

Wµi′√
N
x0,i′ , sµ, εµ

 , ωµ→i, V µ→i


+

M∑
µ=1

W 2
µi

N
∂zgout

(
g0

(
zµ→i, sµ, εµ

)
, ωµ→i, V µ→i

)
x0,i. (6.64)

The first term is again a sum of independent random variables, given the Wµi are i.i.d. with
zero mean, of which the messages of type µ → i are assumed independent. The second term has
non-zero mean and can be shown to concentrate. Finally recalling that all V

µ→i also concentrate
on V we obtain the distribution

σ−1
i
λi ∼ N (σ−1

i
λi; αm̂x0,i,

√
αq̂IP) (6.65)

with

q̂ =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q)gout(g0 (z, s0, ε) , ω, V)× (6.66)

gout(g0 (z, s0, ε) , ω, V)T ,

m̂ =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q)∂zgout(g0 (z, s0, ε) , ω, V). (6.67)

For the inverse variance σ−1
i

one can check again that it concentrates on its mean

σ−1
i

=
M∑
µ=1

Wµi
2

N
∂ωgout(yµ, ωµ→i, V µ→i) ' αχ̂ (6.68)

χ̂ = −
∫

dε pε(ε)ds0 ps0(s0)
∫

dε dz N (z, ω; 0, Q)∂ωgout(g0 (z, s0, ε) , ω, V) . (6.69)

Closing the equations These statistics of the input parameters must ensure that consistently

V = 1
N

N∑
i=1

Cx
i

= Eλ,σ
[
fx

2
(λ, σ)

]
, (6.70)

q = 1
N

N∑
i=1

x̂ix̂
>
i = Eλ,σ

[
fx

1
(λ, σ)fx

1
(λ, σ)>

]
, (6.71)

m = 1
N

N∑
i=1

x̂ix0,i
> = Eλ,σ

[
fx

1
(λ, σ)x0,i

>
]
, (6.72)

84

6.1 Cal-AMP revisited

which gives upon expressing the computation of the expectations

V =
∫

dx0 px0(x0)
∫
Dξ fx

2

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)
, (6.73)

m =
∫

dx0 px0(x0)
∫
Dξ fx1

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)
x0
> , (6.74)

q =
∫

dx0 px0(x0)
∫
Dξ fx1

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)
×

fx1

(
(αχ̂)−1

(√
αq̂ξ + αm̂x0

)
; (αχ̂)−1

)>
. (6.75)

The State Evolution analysis of the GLM on the vector variables finally consists in iterating the
equations (6.66), (6.67), (6.69), (6.73), (6.74) and (6.75) until convergence.

Reconstruction of the calibration variable In parallel, one can follow the reconstruction of
s by introducing the scalar overlaps

r = 1
M

M∑
µ=1

ŝ2
µ, ν = 1

M

M∑
µ=1

ŝµs0,µ, r0 = 1
M

M∑
µ=1

s2
0,µ. (6.76)

Recalling the definition of the estimator ŝ (6.44), and after following the steps of the above deriva-
tion, one can see that the overlaps can be computed from the State Evolution variables

r =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q) ŝ
(
g0 (z, s0, ε) , ω, V

)2
, (6.77)

ν =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q) ŝ
(
g0 (z, s0, ε) , ω, V

)
s0. (6.78)

Performance analysis The mean squared error (MSE) on the reconstruction of X by the AMP
algorithm is then predicted by

MSE(X) = q − 2m+ q0, (6.79)

where the scalar values used here correspond to the (unique) value of the diagonal elements of the
corresponding overlap matrices. The fixed points of the iterated equations can subsequently be
plugged into (6.77) and (6.78) to compute the MSE in the reconstruction of the calibration variable

MSE(s) = r − 2ν + r0. (6.80)

Bayes optimal State Evolution

Similarly to the scalar case, the equation can be greatly simplified in the Bayes optimal setting
where the statistical model used by the student (priors px and ps, and channel pout) is known to
match the teacher. In this case, one can prove that

q = m, V = q
0
−m, q̂ = m̂ = χ̂ and r = ν. (6.81)

And the State Evolution can be reduced to a set of three equations

r =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q) ŝ
(
g0 (z, s0, ε) , ω, q

0
−m

)2
, (6.82)

m =
∫

dx0 px0(x0)
∫
Dξ fx1

(
(αm̂)−1

(√
αm̂ξ + αm̂x0

)
; (αm̂)−1

)
x0
> (6.83)

m̂ =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q)gout

(
g0 (z, s0, ε) , ω, q

0
−m)

)
× (6.84)

gout

(
g0 (z, s0, ε) , ω, q

0
−m)

)
,

85

6 Towards a model for deep Bayesian (online) learning

with the bloc covariance matrix

Q =

 q0
m

m> m

 . (6.85)

6.1.3 Online algorithm and analysis

Additionally, we consider the analysis of the online reconstruction of the calibration variable as the
observations y(k) ∈ RM are treated successively. For the problem of the reconstruction of x0 in the
classic GLM problem, we have already discussed in Chapter 3, Section 3.5.1 the streaming AMP
algorithm and corresponding State Evolution proposed in [85]. The idea was to use as an effective
prior at step k + 1 the approximate posterior marginal constructed by AMP at step k. Here we
readily adapt this strategy by using at step k + 1 as an effective prior on sµ the approximate
posterior at step k.

Approximate message passing The AMP algorithm consists here in restarting Cal-AMP for
a single sample at each new observation y(k), while updating the prior used for the calibration
variable. From the definition of the approximate posterior (6.43), we obtain the recursion on the
effective prior p(k+1)

sµ on sµ:

p(k+1)
sµ (sµ) = ms,(k)

µ (sµ) (6.86)

= 1
Z(k)

out

∫
dz(k),µ p

s
out

(
y(k),µ|z(k),µ, sµ

)
p(k)
sµ (sµ)N (z(k),µ;ω(k),µ, V(k),µ), (6.87)

where the output variables ω(k),µ and V(k),µ correspond to the values at convergence (or at the
last iteration tmax) of the Cal-AMP algorithm at the previous step (k). In the Section 6.2, we will
examine the gain calibration problem and specify effective strategies to implement this recursion
within the AMP algorithm.

State Evolution The streaming State Evolution analysis of the calibration reconstruction is
also adapted using the above recursion. Note that the effective prior at a given step P depends on
the output variables of the algorithm for all the previously seen samples - expending the recursion
above we have:

p(P)
sµ (sµ) = 1

Z(P)
out

∫ P∏
k=1

(
dz(k),µ p

s
out

(
y(k),µ|z(k),µ, sµ

)
N (z(k),µ;ω(k),µ, V(k),µ)

)
ps(sµ) (6.88)

Z(P)
out = Z(P)

out ({y(k),µ, ω(k),µ, V(k),µ}Pk=1) (6.89)

where again for each k the output variables ω(k),µ and V(k),µ are the converged values for the
corresponding step k. The dependence of the normalization of Z(P)

out on the output variables (6.89)
is reflected in the definitions at step P of gout

(P) and ŝ(P). Therefore, the State Evolution involving
the output functions will feature an averaging on all the output variables relative to the already

86

6.2 Experimental validation on gain calibration

processed samples. In the Bayes optimal setting, it becomes

r(P) =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q
(P)

) (6.90)

P−1∏
k=1

∫
dω(k) dz(k) N (z(k), ω(k); 0, Q

(k)
) ŝ(P) (g0 (z, s0, ε) , ω, q0 −m

)2
,

m(P) =
∫

dx0 px0(x0)
∫
Dξ fx1

(
(αχ̂)−1

(√
αm̂ξ + αm̂(P)x0

)
; (αm̂(P))−1

)
x0 , (6.91)

m̂(P) =
∫

dε pε(ε)ds0 ps0(s0)
∫

dω dz N (z, ω; 0, Q
(P)

)

P−1∏
k=1

∫
dω(k) dz(k) N (z(k), ω(k); 0, Q

(k)
) gout

(P) (g0 (z, s0, ε) , ω, q0 −m
)2
, (6.92)

where the bloc covariance matrices similar to (6.85) are function of the fixed points of each step.
In the following Section we will discuss how to implement this State Evolution in practice, focusing
on the specific problem of gain calibration.

6.2 Experimental validation on gain calibration

6.2.1 Setting and update functions

As a test case, we consider the following problem of gain calibration. The input signal is known
to be ρ-sparse and distributed according to a Gauss-Bernoulli distribution. Each component of
the output includes a division by a calibration variable that is uniformly distributed in a positive
interval [a, b]:

∀i = 1 · · ·N , px0(xi) =
P∏
k=1

(
ρN (x(k),i; 0, 1) + (1− ρ) δ(x(k),i)

)
, (6.93)

∀µ = 1 · · ·M , ps0(sµ) = 1[a,b]/(b− a) , 0 < a < b, (6.94)

y
µ

= 1
s0,µ

(w>µX0 + ε) , ε ∼
√

∆N (ε, 0, IP) . (6.95)

Output functions In this setting the output functions have analytical expressions. The channel
distribution and partition function are

pout(yµ|zµ) =
∫ b

a

dsµ ps(sµ)(sµ)PN (zµ; sµyµ,∆), (6.96)

Zout(y, ω, V) =
∫

dz pout(y|z) =
∫ b

a

ds ps(s)(s)PN (z; sy,∆) (6.97)

which gives

gout(y, ω, V) = 1
Zout

∂ωZout = (V + ∆IP)−1(ŝ(y, ω, V)y − ω), (6.98)

∂ωgout(y, ω, V) = Cs(y, ω, V)(V + ∆IP)−1yy>(V + ∆IP)−1 − (V + ∆IP)−1. (6.99)

These expressions involve the estimate and variance of the calibration variables under the posterior
which can be computed as

ŝ(y, ω, V) = fs1 (y, ω, V) =
∫ b
a

ds (s)P+1N (z; sy,∆)∫ b
a

ds (s)PN (z; sy,∆)
= I(P + 1, ν, δ, a, b)

I(P, ν, δ, a, b) , (6.100)

Cs(y, ω, V) = fs2 (y, ω, V) = I(P + 2, ν, δ, a, b)
I(P, ν, δ, a, b) − ŝ(y, ω, V)2, (6.101)

87

6 Towards a model for deep Bayesian (online) learning

where

I(P, ν, δ, a, b) =
∫ b

a

ds sP e− 1
2δ (s−ν)2

, (6.102)

δ = (y>(V + ∆IP)−1y)−1 , (6.103)
δ−1ν = y>(V + ∆IP)−1ω (6.104)

and I(P, ν, δ, a, b) can be computed using gamma functions as explained in [130, 131].

Input functions For a Gauss-Bernoulli prior on the entries of X, and assuming the AMP
variances σ

i
are diagonal matrices, the input update functions can be written component-wise

with scalar arguments:

fx1 (λ, σ) =
(
ρ

λ

(1 + σ)3/2 e
− λ2

2(1+σ)

)/ρ e−
λ2

2(1+σ)

(1 + σ)1/2 + (1− ρ)e
−λ2

2σ

σ1/2

 , (6.105)

and

fx2 (λ, σ) =
(
ρ

1σ(1 + σ) + (1λ)2

(1 + σ)5/2 e−
λ2

2(1+σ)

)/ρ e−
λ2

2(1+σ)

(1 + σ)1/2 + (1− ρ)e
−λ2

2σ

σ1/2

 − fx1,k2.

(6.106)

so that x̂i,k = fx1 (λi,k, σi,kk) and Cxi,kk = fx2 ((λi,k, σi,kk).

Algorithm 8 Offline Gain Calibration State Evolution
Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :

Initialize:
t = 0, m(0) = 0, V (0) = q0 = ρ,
∀µ = 1 · · ·NMC s0,µ ∼ ps0(s0,µ)
repeat

1) Draw Monte Carlo samples for update of m̂ (6.92) and r (6.90)
∀µ = 1 · · ·NMC

zµ, ωµ ∼ N (zµ, ωµ; 0, Q(t))
ε ∼ pε(ε)
y
µ

= g0(zµ, s0,µ, ε)
with Q(t) =

 q0IP m(t)IP

m(t)IP m(t)IP

 ∈ R2P×2P

2) Compute integrands
2.2) Compute ŝµ(y

µ
, zµ, ωµ, V

(t)) (6.100)
2.3) Compute goutµ(y

µ
, zµ, ωµ, V

(t)) (6.98)
3) Update r and m̂

r(t) = 1
NMC

NMC∑
µ=1

(
ŝ(t)
µ

)2
m̂(t) = 1

NMC

NMC∑
µ=1

(
goutµ

)2

3) Update m(t+1) by numerical integration using (6.91), and V (t+1) = q0 −m(t+1).
t = t+ 1

until convergence
Output: time series {V (t),m(t), m̂(t) ; t = 1 · · · tmax}

88

6.2 Experimental validation on gain calibration

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 2

αCS

αmin

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 5

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 10

10−17

10−13

10−9

10−5

10−1

1
−

cc
(x̂
,x

0
)

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 2

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 5

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 10

αCS

αmin

10−13

10−10

10−7

10−4

10−1

1
−

cc
(x̂
,x

0
)

Figure 6.2: Normalized cross correlation between Cal-AMP estimate X̂ and teacher signal X
0

for the gain calibration problem with calibration variables uniformly distributed in [0.95, 1.05] and
N = 103. Diagrams are plotted as a function of the measurement rate α = M/N and the sparsity
level ρ for the offline (top row) and online (bottow row) algorithms, for increasing number of
available samples P . The blue line αCS is the phase transition threshold for a perfectly calibrated
channel. The pink line αmin marks the strict lower bound on the number of measurements necessary
for reconstruction. The online Cal-AMP requires more samples than the offline version to achieve
comparable errors, nevertheless above the transition relatively low errors are already reached at
P = 10. We note that the algorithms are sometimes unstable at low ρ, leading to unexpectedly high
MSEs (top left corner of top right diagram).

6.2.2 Offline results

The offline AMP algorithm is directly given by Algorithm 7 replacing the values of the output
and input functions presented in the previous paragraph. In our numerical tests, we additionally
impose that co-variance matrices V

µ
, ∂ωgout

µ
and σ

i
are diagonal. This assumption lightens

numerics so as to consider larger number of samples P . It also allows a comparison with the
results of [130, 131]. Under the assumption of diagonal covariance matrices, the State Evolution
equations (6.83), (6.84) involve P ×P matrices proportional to the identity (given the P examples
are statistically equivalent). Therefore it is sufficient to consider the update of one diagonal element
noted respectively m and m̂. While the update of m only requires a two dimensional integral that
can be performed numerically, we resort to a Monte Carlo for the update of m̂. The procedure is
described in Algorithm 8.

On the top row of Figure 6.2 and respectively of Figure 6.3, we report the performance of
reconstruction by the Cal-AMP algorithm of the signal X0 and the calibration variable s0, in the
plane ρ − α, for different values of P . These phase diagrams are similar to the ones reported in
[130, 131] and will be compared with the online case described in the next Section. On Figure 6.4a,
we check numerically that the derived State Evolution predicts the behavior of the AMP algorithm
for gain calibration. The MSEs of the two procedures are indeed consistent along the iterations of
the algorithm. On Figure 6.4b, we also report an almost perfect agreement of the fixed points of
SE and AMP in terms of the MSE on X as we vary the number of samples P .

89

6 Towards a model for deep Bayesian (online) learning

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 2

αmin

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 5

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 10

10−11

10−8

10−5

10−2

1
−

cc
(ŝ
,s

0
)

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 2

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 5

0.0 0.5 1.0
ρ

0.0

0.5

1.0

1.5

2.0

α

P = 10

αmin

10−13

10−10

10−7

10−4

10−1

1
−

cc
(ŝ
,s

0
)

Figure 6.3: Normalized cross correlation between Cal-AMP estimate ŝ and teacher signal s0 for the
gain calibration problem with calibration variables uniformly distributed in [0.95, 1.05] and N = 103.
Diagrams are plotted as a function of the measurement rate α = M/N and the sparsity level ρ for the
offline (top row) and online (bottow row) algorithms, for increasing number of available samples
P . The pink line αmin marks the strict lower bound on the number of measurements necessary for
reconstruction. Results are similar to the diagrams in terms of errors on the signal X̂ of Figure 6.2.

6.2.3 Online results

The online algorithms include supplementary operations to update the effective prior on the cali-
bration variable from one step to the next. In this setting the recursion is

p(k+1)
sµ (sµ) = 1

Z(k+1)
out

∫
dz(k),µ N (y(k),µ; z(k),µ/sµ,∆)N (z(k),µ;w(k),µ, V(k),µ)p(k)

sµ (sµ),

(6.107)

∝ sµ e
−

(sµ−ν(k),µ)2

2δ(k),µ p(k)
sµ (sµ) (6.108)

so that

p(P)
sµ (sµ) ∝ sPµ e

−
(s−Λ(P),µ)2

2Σ(P),µ with


Σ−1

(P),µ =
P∑
k=1

δ−1
(k),µ

Λ(P),µ = Σ(P),µ

(
P∑
k=1

δ−1
(k),µν(k),µ

)
,

(6.109)

yielding a posterior on the calibration variable at step P with an identical form to the posterior of
the offline algorithm (albeit with parameters computed differently). Therefore ŝµ and Csµ can still
be computed analytically following (6.100) and (6.101). We provide a pseudo-code for the online
Cal-AMP in Algorithm 10 and a pseudo-code for online SE in Algorithm 9.

On the bottom rows of Figure 6.2 and 6.3 we plot phase diagrams obtained with online Cal-
AMP. Compared to the offline diagrams we find that the reconstruction requires more samples to
achieve comparable levels of accuracy. On Figure 6.4c and 6.4d we check the consistency of the
Cal-AMP and SE fixed points in terms of MSE on X.

90

6.2 Experimental validation on gain calibration

0 100 200
iterations t

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(x̂

)

α = 0.75
ρ = 0.50

P = 1

P = 2

P = 3

P = 4

P = 5

se

amp

(a) Offline

1 2 3 4
samples P

10−9

10−7

10−5

10−3

10−1

M
S

E
(x̂

)

α = 0.50α = 0.50

α = 0.65

α = 0.50

α = 0.65

α = 0.75

α = 0.50

α = 0.65

α = 0.75

α = 0.85

se

amp

(b) Offline

0 50 100
iterations t

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
S

E
(x̂

)

α = 1.40
ρ = 0.50

P 0

P 1

P 2

P 3

P 4

P 5

P 6

se

amp

(c) Online

0 2 4 6 8
samples P

10−9

10−8

10−7

10−6

10−5

10−4

10−3

M
S

E
(x̂

)

α = 0.75

α = 1.40

α = 2.00

se

amp

(d) Online

Figure 6.4: Comparison of mean squared errors on the signal X obtained with Cal-AMP and
predicted by SE for the gain calibration problem with calibration variables uniformly distributed in
[0.95, 1.05] and N = 104. Along the iterations of the algorithm and comparing fixed points we find
a very good agreements of the two procedures. Nevertheless, the Monte Carlo integration in the SE
does not allow for great numerical precision for low errors and we start seeing discrepancies between
SE and AMP for errors below 10−8.

Algorithm 9 Online Gain Calibration State Evolution
Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :
Initialize: t = 0,
∀µ = 1 · · ·NMC

s0
µ ∼ ps0(s0

µ)
Λ0,µ = 0 , Σ0,µ = 0

for k = 1 · · ·P do
Initialize: t = 0, m(0)

(k) = 0, V (0)
(k) = q0 = ρ

repeat
1) Draw Monte Carlo samples for update of m̂ (6.92) and r (6.90)
∀µ = 1 · · ·NMC

zµ,k, ωµ,k ∼ N (zµ,k, ωµ,k; 0, Q(t)
(k)

)
ε ∼ pε(ε)
yµ,k = g0(zµ,k, s0

µ, ε)
with Q(t)

(k)
=

 q0 m
(t)
(k)

m
(t)
(k) m

(t)
(k)


2) Following step (2) of Algorithm 10 with

- samples of previous steps {yµ,l, zµ,l, ωµ,l}l≤k−1 at convergence
- current yµ,k, zµ,k, ωµ,k
- current V (t)

(k)

2.1) Update Λk,µ,Σk,µ
2.2) Compute ŝµ
2.3) Compute goutµ,k

3) Update r(k) and m̂(k)

r
(t)
(k) = 1

NMC

NMC∑
µ=1

(
ŝ(t)
µ

)2
m̂

(t)
(k) = 1

NMC

NMC∑
µ=1

(
goutµ,k

)2

4) Update m(t+1)
(k) by numerical integration using (6.91), and V

(t+1)
(k) = q0 −m(t+1)

(k) .
t = t+ 1
until convergence

end for
Output: time series {V (t)

(k) ,m
(t)
(k), m̂

(t)
(k) ; t = 1 · · · tmax}Pk=1

91

6 Towards a model for deep Bayesian (online) learning

Algorithm 10 Online Gain Calibration Approximate Message Passing
Input: matrix Y ∈ RM×P and matrix W ∈ RM×N :
Initialize: Λ0,µ = 0, Σ0,µ = 0,
for k = 1 · · ·P : do

Initialize: x̂i,k, Cxi,k ∀i and goutµ,k, ∂ωgoutµ,k ∀µ
repeat
1) Estimate mean and variance of z(k) given current x̂(k)

V
(t)
µ,k =

N∑
i=1

W 2
µiC

x
i

(t) (6.110)

ω
(t)
µ,k =

N∑
i=1

Wµix̂
(t)
i,k −

N∑
i=1

W 2
µiC

x(t)
i,kgout

(t−1)
µ,k (6.111)

2) Exploit current y(k) and inherited Λk−1,µ,Σk−1,µ

2.1) Update recursion parameters given y(k)

δ
(t)
µ,k

−1
= y2

µ,k/(V
(t)
µ,k + ∆) (6.112)

ν
(t)
µ,k = δµ,kyµ,kω

(t)
µ,k/(V

(t)
µ,k + ∆) (6.113)

Σ(t)
k,µ = Σk−1,µ + δ

(t)
µ,k (6.114)

Λ(t)
k,µ = Σk,µ

(
Σk−1,µΛk−1,µ + δ

(t)
µ,kν

(t)
µ,k

)
(6.115)

2.2) Update estimates ŝ and Cs

ŝ(t)
µ = I(k + 1,Λk,µ,Σk,µ, a, b)

I(k,Λk,µ,Σk,µ, a, b)
(6.116)

Cs(t)
µ = I(k + 2,Λk,µ,Σk,µ, a, b)

I(k,Λk,µ,Σk,µ, a, b)
(6.117)

2.3) Update gout and ∂ωgout

∂ωgout
(t)
µ,k = Cs(t)

µ y2
µ,k/(V

(t)
µ,k + ∆)2 − (V (t)

µ,k + ∆)−1 (6.118)

gout
(t)
µ,k = (ŝ(t)

µ yµ,k − ω(t)
µ,k)/(V (t)

µ,k + ∆), (6.119)

3) Estimate mean and variance of x given current optimal z

σ
(t)
i,k =

− M∑
µ=1

W 2
µi∂ωgout

(t)
µ,k

−1

(6.120)

λ
(t)
i,k = x̂

(t)
i,k + σ

(t)
i,k

 M∑
µ=1

Wµigout
(t)
µ,k

 (6.121)

4) Estimate of mean and variance of x augmented of the information about the prior
Cxi,k

(t+1) = fx2 (λ(t)
i,k, σ

(t)
i,k) (6.122)

x̂
(t+1)
i,k = fx1 (λ(t)

i,k, σ
(t)
i,k) (6.123)

t = t+ 1

until convergence
end for
Output: Estimates and variances x̂i, Cxi, ŝµ, Csµ

92

6.3 Matrix factorization model and multi-layer networks

6.3 Matrix factorization model and multi-layer networks

We now return to our original problem of interest, which is to find a tractable setting to perform
and analyze high-rank matrix factorization, a necessary milestone on the road to the characteri-
zation of learning in multi-layer neural networks. We identify a constrained formulation of matrix
factorization that can be approached as a multi-layer GLM including calibration variables. We
demonstrate a principle of derivation of the AMP algorithm for multi-layer GLM and deduce from
it the AMP algorithm for the constrained matrix factorization.

6.3.1 Constrained matrix factorization

We consider the problem of recovering matrices W 0 ∈ RQ×N and X0 ∈ RN×P after observation of
their product through a noisy (non-linear) channel while introducing a constraint:

Y = g0(W 0X0; ε), s.t. W 0 = Φ1 S0 Φ0. (6.124)

As usual g0(·) stands for the channel and incorporates a noise ε ∈ RQ×P drawn from a simple
distribution pε(ε). The matrices Φ0 ∈ RM×N and Φ1 ∈ RQ×M of the constrained form of W 0
are known, while the matrix S0 ∈ RM×M is diagonal and encloses the degrees of freedom of W 0.
Considering the teacher-student matched setting, the posterior joint distribution we are going to
be interested in is

p(X,S|Φ0,Φ1, Y) = 1
Z

∫
dU p2

out(Y |Φ1U)p2
out(U |Φ0X, s)px(X)px(S) (6.125)

with the distributions of the right hand-side assumed to factorize over their inputs and the cor-
responding factor graph represented in Figure 6.5a. In the following we will assume that N , M
and Q are large but maintain fixed ratios α0 = M/N and α1 = Q/N . Thus we are considering
extensive rank matrix factorization, while easing the inference problem by reducing the number of
free variables in one of the factors.

The advantage of the chosen constrained model is that it can be interpreted as the combination
of two GLM models:

Y = g0,2(Φ1 U ; ε) usual GLM with prior on signal U coming from the first layer,

U = g0,1(Φ0X; S) GLM with calibration variables.

The inference of X and S can therefore be tackled using the recent progresses around multi-
layer models. In the following we start by recalling and straightforwardly extending the ML-AMP
algorithm [84] introduced at P = 1 to arbitrary P . In a second step we re-introduce the calibration
variables to obtain the AMP algorithm for the constrained matrix factorization under scrutiny.

6.3.2 Multi-layer vectorized AMP

The derivation of the multi-layer AMP on vector variables follows identical steps to the derivation
of the single layer presented in Section 6.1.1 starting with a larger collection of messages. Without
conducting the lengthy procedure, one can form an intuition for the resulting algorithm starting
from the single-layer AMP. We discuss here this intuition focusing on the 2-layer case.

We are now considering the factor graph of Figure 6.5b and the resulting Algorithm 11. Com-
pared to the single-layer case, an interface with a set of hidden variables uµ is inserted between
the signals xi and the observations y

a
. In the neighborhood of the inputs xi the factor graph is

identical to the single-layer and the input functions can be defined from a normalization partition
identical to (6.28),

Zx(λi, σi) =
∫

dxi px(xi)e
− 1

2 (xi−λi)
>σ−1

i
(xi−λi), (6.126)

93

6 Towards a model for deep Bayesian (online) learning

p2out(ya|Φ
1
a

>
U)

a = 1 · · ·Q

u1

u2

x1

x2

x3

x4

px(xi)
i = 1 · · ·N

s1

s2

p1,sout(uµ|Φ0
µ

>
X, sµ)

µ = 1 · · ·M

(a)

p2out(ya|Φ
1
a

>
U)

a = 1 · · ·Q

u1

u2

x1

x2

x3

x4

px(xi)
i = 1 · · ·N

p1out(uµ|Φ0
µ

>
X)

µ = 1 · · ·M

(b)

Figure 6.5: (a) Factor graph representation of the proposed constrained matrix factorization setting
corresponding to the joint distribution (6.125) with factorization on N , M and Q and with the
notation sµ = Sµµ. (b) Factor graph representation of a generic 2-layer GLM with vector variables.

yielding updates (6.149)-(6.150). Similarly, the neighborhood of the observations y
a

is also un-
changed and the updates (6.139) and (6.140) are following from the definition of

Zyout(ω2
a, V

2
a
) =

∫
dza p2

out(ya|za) e
1
2 (za−ω2

a)>V 2
a

−1(za−ω2
a), (6.127)

identical to the single layer (6.21). At the interface however, the variables uµ play the role of
outputs for the first GLM and of inputs for the second GLM, which translates into a normalization
partition function of mixed form

Zuout(ω1
µ, V

1
µ
, λ1
µ, σ

1
µ
) =

∫
dzµ

∫
duµ p1

out(uµ|zµ) × (6.128)

e
− 1

2

(
u
µ
−λ1

µ

)>
σ1
µ

−1
(
u
µ
−λ1

µ

)
e

1
2

(
z
µ
−ω1

µ

)>
V 1
µ

−1
(
z
µ
−ω1

µ

)
.

Updates (6.145) and (6.146) are obtained by considering that the second layer acts as an effective
channel for the first layer, i.e. from the normalization interpreted as

Zuout(ω1
µ, V

1
µ
, λ1
µ, σ

1
µ
) =

∫
dzµ peff

out(zµ) e
1
2

(
zµ−ω

1
µ

)>
V 1
µ

−1
(
zµ−ω

1
µ

)
. (6.129)

Finally, update equations (6.151) and (6.152) are in turn derived considering the first layer defines
an effective prior for the hidden variables and the normalization as

Zuout =
∫

duµ peff
u (u) e−

1
2

(
uµ−λ

1
µ

)>
σ1
µ

−1
(
uµ−λ

1
µ

)
. (6.130)

The rest of the algorithm updates follows as usual from the self-consistency between the different
variables introduced as they correspond to different parametrization of the same marginals. The
schedule of updates and the time indexing reported in Algorithm 11 results from the entire deriva-
tion starting from the BP messages. The generalization of the algorithm to an arbitrary number
of layers is easily obtained repeating the heuristic arguments presented here. Lastly, note that the
corresponding State Evolution equations can be derived following identical steps as presented in
Section 6.1.2.

6.3.3 AMP for constrained matrix factorization

We have already argued that the constrained matrix factorization problem of interest here (6.124)
can be interpreted as the combination of two GLM models. It is in fact covered by the two-layer
AMP algorithm presented in the previous Section, for the interface channel

p1
out(uµ|z1

µ) =
∫

dsµ p1,s
out(uµ|z1

µ)ps(sµ) =
∫

dsµ δ(uµ − sµzµ)ps(sµ), (6.131)

94

6.3 Matrix factorization model and multi-layer networks

and to which we should add the equations of estimation of the calibration variables. The interface
partition function is

Zuout =
∫
du

∫
dz1
µp

1
out(z1

µ|u)N (z1
µ;λ1

µ, σ
1
µ
)N (u;ω1

µ, V
1
µ
) (6.132)

=
∫
du

∫
dz1
µ

(∫
dsµps(sµ)δ(z1

mu− sµu)
)
N (z1

µ;λ1
µ, σ

1
µ
)N (u;ω1

µ, V
1
µ
) (6.133)

=
∫
du

∫
dsµps(sµ)N (sµu;λ1

µ, σ
1
µ
)N (u;ω1

µ, V
1
µ
) (6.134)

=
∫
dsµps(sµ)N (λ1

µ; sµω1
µ, σ

1
µ

+ s2
µV

1
µ
), (6.135)

where we changed the convention by adding the normalizations of the Gaussian measures compared
to (6.128) (an operation that does not affect the definition of the update functions). For the
calibration variables, the approximate posterior provided by AMP is therefore

ms
µ(sµ) = 1

Zuout
ps(sµ)N (λ1

µ; sµω1
µ, σ

1
µ

+ s2
µV

1
µ
). (6.136)

The update functions derived from Zuout can be written in terms of expectations over this posterior.
They are given in Appendix B.

95

6 Towards a model for deep Bayesian (online) learning

Algorithm 11 Generalized Approximate Message Passing for the 2-layer GLM

Input: matrix Y ∈ RM×P and matrices Φ0 ∈ RM×N , Φ1 ∈ RQ×M :
Initialize: x̂i, Cxi ∀i, ûµ, Cu

µ
, g1

outµ
, ∂ωg1

out
µ
∀µ, g2

outa
, ∂ωg2

out
a
∀µ and t = 0.

repeat
1) Update auxiliary variables of second layer:

ω2
a

(t) =
∑
µ

Φ1
aµ√
N
û(t)
µ −

∑
µ

(Φ1
aµ)2

N
σ1
µ

(t−1)−1
Cu

µ

(t)σ1(t−1)
µ

g2
outa

(t−1) (6.137)

V 2
a

(t) =
∑
µ

(Φ1
aµ)2

N
Cu

µ

(t) (6.138)

g2
outa

(t) = g2
out(ya, ω

2
a

(t)
, V 2

a

(t)) (6.139)

∂ωg
2
out

a

(t) = ∂ωg
2
out(ya, ω

2
a

(t)
, V 2

a

(t)) (6.140)

λ1
µ

(t) = σ1
µ

(∑
a

Φ1
aµ√
N
g2

outa
(t) −

(Φ1
aµ)2

N
∂ωg

2
out

a

(t)
ûµ

)
(6.141)

σ1
µ

(t) =
(
−
∑
a

(Φ1
aµ)2

N
∂ωg

2
out

a

(t)
)−1

(6.142)

1) Update auxiliary variables of first layer:

ω1
µ

(t) =
∑
i

Φ0
µi√
N
x̂

(t)
i −

∑
i

(Φ0
µi)

2

N
σ0
i

(t−1)−1
Cx

i
σ0(t−1)
i

g1
outµ

(t−1) (6.143)

V 1
µ

(t) =
∑
i

(Φ0
µi)

2

N
Cx

i

(t) (6.144)

g1
outµ

(t) = g1
out(ω1

µ
(t)
, V 1

µ

(t)
, λ1
µ

(t)
, σ1
µ

(t)) (6.145)

∂ωg
1
out

µ

(t) = ∂ωg
1
out(ω1

µ
(t)
, V 1

µ

(t)
, λ1
µ

(t)
, σ1
µ

(t)) (6.146)

σ0
i

(t) =

−∑
i

(Φ0
µi)

2

N
∂ωg

1
out

µ

(t)

−1

(6.147)

λ0
i = σ0

i

∑
µ

Φ0
µi√
N
g1

outµ
(t) −

(Φ0
µi)

2

N
∂ωg

1
out

µ

(t)
x̂i

 (6.148)

3) Update means and variances of variables of both layers, x and u:

x̂
(t+1)
i = fx1

(
λ0
i

(t)
, σ0
i

(t)
)

(6.149)

Cx
i

(t+1) = fx2

(
λ0
i

(t)
, σ0
i

(t)
)

(6.150)

û(t+1)
µ = fu1

(
ω1
µ

(t)
, V 1

µ

(t)
, λ1
µ

(t)
, σ1
µ

(t)
)

(6.151)

Cu
µ

(t+1) = fu2

(
ω1
µ

(t)
, V 1

µ

(t)
, λ1
µ

(t)
, σ1
µ

(t)
)

(6.152)

t = t+ 1
until convergence
Output: signal estimate x̂1 ∈ RN , and estimated covariance Cx1 ∈ RN×N

96

6.4 Towards the analysis of learning in multi-layer neural networks

6.4 Towards the analysis of learning in multi-layer neural networks

The presented elementary matrix factorization can be used in turn as a building block to study
learning in multi-layer neural networks under the teacher-student paradigm. To conclude this
Chapter we discuss how we believe this study could be done.

The statistical model we previously investigated as an example of matrix factorization (6.124)
can be interpreted as a very simple feed forward generative model used in modern machine learning.
Namely, a latent variable with a separable prior x ∈ RN is transformed by a stochastic single layer
neural network with weight matrix W (parametrized by s) to create a data point y ∈ RQ. Usually,
such a model is trained to fit an arbitrary (real) data set by a gradient descent following either the
Generative Adversarial Networks [50] interpretation and the adversarial objective or the Variational
Autoencoder interpretation [71, 120] and the maximum likelihood objective. In the constrained
setting we have described, with a reduced number of degrees of freedom of the weight matrix W ,
the AMP algorithm is also a learning algorithm returning the mean a posteriori Ŵ = Φ1ŜΦ0 as
appropriate network parameters.

This interpretation is interesting for several reasons. On Figure 6.6a, we represent the graphical
model for the single-layer teacher generative model and the factor graph for the AMP inference
of the student (only factorized at the level of the matrices). In the teacher-student scenario, the
theoretical performance of AMP can be tracked on a single instance by comparing the reconstructed
Ŵ to the teacher W 0 and cross-checked by the State Evolution. These tools will thereby allow to
conduct a theoretical analysis of unsupervised learning in a simple model. Moreover, AMP can also
be a practical learning algorithm on arbitrary data (not generated from a teacher) and should be
compared with other learning techniques. While it is likely that a message passing implementation
of learning would be cumbersome compared to SGD, it could be more efficient in various ways. For
instance, AMP may need less samples than gradient descent to reach a similar quality of training.

Furthermore, the case study can be extended to deep generative neural networks with con-
strained weight matrices by stacking the elementary model as represented on Figure 6.6b. The
juxtaposition of models can again be interpreted as a special case of the multi-layer vectorized
GLM and the inference can be performed by extending the 2-layer vectorized AMP Algorithm 11
to an arbitrary number of layers. The graphical representations (see Figure 6.6b) of the teacher
generative model and the posterior distribution now include variables for the hidden layers noted
T , which are new interface variables in the AMP inference.

Finally, the considered model comprises deep supervised learning as a special case. In fact, by
fixing the values of the inputs X to the value of a training set with the corresponding outputs Y ,
the inference problem is only simpler. It consists in learning solely the weights of the deep neural
network, corresponding to the supervised setting. Such scenario should therefore allow to replicate
the statistical physics analyses of learning in simple architectures (perceptrons and committee
machines) in deep networks. In particular it could enable the computation of learning curves
predicting optimal generalization errors in the multi-layer case, albeit in the constrained regime
of learning, with only the singular values of the weights as adjustable parameters. As traditional
generalization bounds relying on worst case guarantees are found irrelevant in deep learning, the
proposed case study appears as an interesting preliminary test to determine whether the statistical
physics approach could be more informative here. Potentially, it could provide a scale to measure
the performance of the currently popular training algorithms that were introduced empirically,
such as SGD.

97

6 Towards a model for deep Bayesian (online) learning

s0

YX0

s

X U

(a) single-layer

X0

s01

T 01

s02

T 02

s03

Y

X

s1

U1 T 1

s2

U2 T 2

s3

U3

(b) multi-layer

Figure 6.6: Teacher-student models for unsupervised learning Top row: Directed graphical
model representations of the single-layer and multi-layer teacher generative models for synthetic
data set Y . Bottom row: Corresponding factor graphs for inference of the latent representations
and network parameters.

98

Conclusion and outlook

In this dissertation, we used different mean-field free energies and algorithms to answer various
questions around the training of neural networks. In Chapter 4, we showed that the TAP free
energy and the approximate message passing algorithms are of practical interest to train Boltzmann
machines. They can also be leveraged to exploit learned RBMs as priors in Bayesian problems.
A straightforward perspective of these results is to now consider, through the same lense, the
feed forward models used in unsupervised learning. Here also, mean-field methods could yield
alternative algorithms competitive with the state-of-the art. In Chapter 5, we used a replica
computation to test the relevance of information theory to explain the generalization paradox
in deep learning. With this strategy we were able to probe prototypes of learning experiments
with large networks and non-linearities. Our findings both confirmed and confounded some of
the previous claims in the literature, finally pointing out the caveats of the proposed approach.
Chapter 6 is in itself a perspective. We identified a direction that could lead to an analysis
of learning in multi-layer networks along the lines of the original statistical mechanics of the
perceptron. We validated the first step of this proposed program by deriving the State Evolution
corresponding to the Cal-AMP algorithm, which allows to infer parameters in the channel of a
GLM.

On the edge of validity

Nonetheless, we have also touched upon the limitations of the mean-field approach. In Chapter 5,
we had to consider a restricted setting of learning in order to guarantee the accuracy of the replica
formula of the entropy. Only the spectrum of the weight matrices was learned, which effectively
reduced the number of degrees of freedom. A similar restriction is also included in the proposed
direction to study multi-layer Bayesian learning in Chapter 6. Additionally, for both of these
analyses, we can only consider synthetic data sets with specific distributions.

More generally, the temptation to apply abusively results from one field to the other can be a
dangerous pitfall of the interdisciplinary approach. We could mention here the characterization of
the dynamics of optimization, an open question that we did not tackle in this dissertation. While
physicists have extensively studied Langevin dynamics with Gaussian white noise, the continuous
time limit of SGD is unfortunately not an equivalent in the general case. While some works attempt
to draw insights from this analogy using strong assumptions (e.g. [25, 65]), others seek precisely
to understand the differences between the two dynamics in neural networks optimization (e.g.
[8, 138]). Alternatively, [82] gained insights on the dynamics of gradient descent (and Langevin)
in a different high-dimensional non-convex optimization problem inspired by the physics of spin
glasses. This last work illustrates the modelling tradition of theoretical physics. One can learn from
models a priori far from the exact neural networks desired, but that retain some key properties,
while being amenable to theoretical characterization. Another example of this approach is [155].

Thus the mean-field approach will certainly not provide complete answers to the still numerous
puzzles on the way towards a deep learning theory. Yet, combined with the modelling tradition
of physics, it will still probably provide many more interesting intuitions. More specifically, the
different contributions presented in this dissertation, point us towards a promising set up to study
the impact of structure in data, which we propose as a final outlook.

One outlook

In the complicated story behind generalization, more and more works are trying to disentangle
the role played by optimization algorithms (e.g. [132]) and regularization methods (e.g. [127]),
but the role played by data structure, while certainly important [161], is harder to probe. In the
teacher-student scenario, one considers learning on synthetic datasets. In the classical literature,
data points are typically distributed as random white noise. This choice is merely the simplest to

99

Towards a model for deep Bayesian (online) learning

8
<
:

; cat
; deer
; dog

9
=
;

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t1
<latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit>

tL
<latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit>

ŷ
<latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit><latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit><latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit><latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit>

W (1)
<latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit><latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit><latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit><latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit>

W (2)
<latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit><latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit><latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit><latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit>

W (L)
<latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit><latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit><latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit><latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit>

x
<latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit>

t1
<latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit>

tL
<latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit>

x
<latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit>

y
<latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit><latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit><latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit><latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit>

W
(1)
⇤

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W
(2)
⇤

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W
(L)
⇤

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

arbitrary

Student

learning
from synthetic data

Teacher

t1
<latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit>

tL
<latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit>

x
<latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit>

W
(1)
⇤

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W
(2)
⇤

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W
(L)
⇤

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

z
<latexit sha1_base64="wFWaygzE2cXN9wVruiaSGnuoJPo=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMl00g6dTMLMjVBD/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTm9zvPHJtRKzucZpwP6IjJULBKFrpoR9RHAdh9jQbVGtu3Z2DrBKvIDUo0BxUv/rDmKURV8gkNabnuQn6GdUomOSzSj81PKFsQke8Z6miETd+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xeiuG1nwmVpMgVW3wUppJgTPLzyVBozlBOLaFMC5uVsDHVlKEtqWJL8JZPXiXti7pn+d1lreEWdZThBE7hHDy4ggbcQhNawEDBM7zCm2OcF+fd+ViMlpxi5xj+wPn8AfrbkQw=</latexit><latexit sha1_base64="wFWaygzE2cXN9wVruiaSGnuoJPo=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMl00g6dTMLMjVBD/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTm9zvPHJtRKzucZpwP6IjJULBKFrpoR9RHAdh9jQbVGtu3Z2DrBKvIDUo0BxUv/rDmKURV8gkNabnuQn6GdUomOSzSj81PKFsQke8Z6miETd+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xeiuG1nwmVpMgVW3wUppJgTPLzyVBozlBOLaFMC5uVsDHVlKEtqWJL8JZPXiXti7pn+d1lreEWdZThBE7hHDy4ggbcQhNawEDBM7zCm2OcF+fd+ViMlpxi5xj+wPn8AfrbkQw=</latexit><latexit sha1_base64="wFWaygzE2cXN9wVruiaSGnuoJPo=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMl00g6dTMLMjVBD/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTm9zvPHJtRKzucZpwP6IjJULBKFrpoR9RHAdh9jQbVGtu3Z2DrBKvIDUo0BxUv/rDmKURV8gkNabnuQn6GdUomOSzSj81PKFsQke8Z6miETd+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xeiuG1nwmVpMgVW3wUppJgTPLzyVBozlBOLaFMC5uVsDHVlKEtqWJL8JZPXiXti7pn+d1lreEWdZThBE7hHDy4ggbcQhNawEDBM7zCm2OcF+fd+ViMlpxi5xj+wPn8AfrbkQw=</latexit><latexit sha1_base64="wFWaygzE2cXN9wVruiaSGnuoJPo=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLgxmUF+8A2lMl00g6dTMLMjVBD/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTm9zvPHJtRKzucZpwP6IjJULBKFrpoR9RHAdh9jQbVGtu3Z2DrBKvIDUo0BxUv/rDmKURV8gkNabnuQn6GdUomOSzSj81PKFsQke8Z6miETd+Nk88I2dWGZIw1vYpJHP190ZGI2OmUWAn84Rm2cvF/7xeiuG1nwmVpMgVW3wUppJgTPLzyVBozlBOLaFMC5uVsDHVlKEtqWJL8JZPXiXti7pn+d1lreEWdZThBE7hHDy4ggbcQhNawEDBM7zCm2OcF+fd+ViMlpxi5xj+wPn8AfrbkQw=</latexit>

y
<latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit><latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit><latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit><latexit sha1_base64="Z88nNPeM+ejMQyUlsq4q2PO/v68=">AAAB8HicbVBNS8NAFHzxs9avqkcvi0XwVBIR1FvBi8cKxhbbUDbbTbt0swm7L0IJ/RdePKh49ed489+4aXPQ1oGFYeY9dt6EqRQGXffbWVldW9/YrGxVt3d29/ZrB4cPJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8U/jtJ66NSNQ9TlIexHSoRCQYRSs99mKKozDKJ9N+re423BnIMvFKUocSrX7tqzdIWBZzhUxSY7qem2KQU42CST6t9jLDU8rGdMi7lioacxPks8RTcmqVAYkSbZ9CMlN/b+Q0NmYSh3aySGgWvUL8z+tmGF0FuVBphlyx+UdRJgkmpDifDITmDOXEEsq0sFkJG1FNGdqSqrYEb/HkZeKfN64b3t1FvemWbVTgGE7gDDy4hCbcQgt8YKDgGV7hzTHOi/PufMxHV5xy5wj+wPn8AWPqkN8=</latexit>

Teacher

W̃
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

t1
<latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit><latexit sha1_base64="GjwZuyzEF+si4T7orczJ1Cx1mes=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbQlLLZbtqlm03YfRFK6N/w4kHFq7/Gm//GTZuDtg4sDDPv8WYnTKUw6LrfTmVtfWNzq7pd29nd2z+oHx49miTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJbeF3nrg2IlEPOE15P6YjJSLBKFopCGKK4zDKcTbwBvWG23TnIKvEK0kDSrQH9a9gmLAs5gqZpMb0PDfFfk41Cib5rBZkhqeUTeiI9yxVNOamn88zz8iZVYYkSrR9Cslc/b2R09iYaRzaySKjWfYK8T+vl2F03c+FSjPkii0ORZkkmJCiADIUmjOUU0so08JmJWxMNWVoa6rZErzlL68S/6J50/TuLxstt2yjCidwCufgwRW04A7a4AODFJ7hFd6czHlx3p2PxWjFKXeO4Q+czx+I1JF+</latexit>

tL
<latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit><latexit sha1_base64="0IrYteFb6SejKkaTptbXyDqFcgo=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjx4qGBsoSlls920SzebsPsilNC/4cWDild/jTf/jZs2B60OLAwz7/FmJ0ylMOi6X05lZXVtfaO6Wdva3tndq+8fPJgk04z7LJGJ7obUcCkU91Gg5N1UcxqHknfCyXXhdx65NiJR9zhNeT+mIyUiwShaKQhiiuMwynE2uB3UG27TnYP8JV5JGlCiPah/BsOEZTFXyCQ1pue5KfZzqlEwyWe1IDM8pWxCR7xnqaIxN/18nnlGTqwyJFGi7VNI5urPjZzGxkzj0E4WGc2yV4j/eb0Mo8t+LlSaIVdscSjKJMGEFAWQodCcoZxaQpkWNithY6opQ1tTzZbgLX/5L/HPmldN7+680XLLNqpwBMdwCh5cQAtuoA0+MEjhCV7g1cmcZ+fNeV+MVpxy5xB+wfn4BrGlkZk=</latexit>

ŷ
<latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit><latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit><latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit><latexit sha1_base64="4u0L09J3REqFw4Fk2PhpQjE57w4=">AAAB+HicbVBNS8NAFHypX7V+RT16WSyCp5KIoN4KXjxWMFpoQtlsN+3SzSbsbgoh5J948aDi1Z/izX/jps1BWwcWhpn3eLMTppwp7TjfVmNtfWNzq7nd2tnd2z+wD48eVZJJQj2S8ET2Q6woZ4J6mmlO+6mkOA45fQqnt5X/NKNSsUQ86DylQYzHgkWMYG2koW37MdaTMCr8CdZFXpZDu+10nDnQKnFr0oYavaH95Y8SksVUaMKxUgPXSXVQYKkZ4bRs+ZmiKSZTPKYDQwWOqQqKefISnRllhKJEmic0mqu/NwocK5XHoZmscqplrxL/8waZjq6Dgok001SQxaEo40gnqKoBjZikRPPcEEwkM1kRmWCJiTZltUwJ7vKXV4l30bnpuPeX7a5Tt9GEEziFc3DhCrpwBz3wgMAMnuEV3qzCerHerY/FaMOqd47hD6zPH7m/k90=</latexit>

W (1)
<latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit><latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit><latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit><latexit sha1_base64="cbOjG/XdJK7bohff8J1Z0Sls7fs=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxzmaDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar2Jjxs=</latexit>

W (2)
<latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit><latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit><latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit><latexit sha1_base64="2DhrG2ohFmeaX2XdMnQ7lKht4A4=">AAAB7nicdVBNS8NAEJ34WetX1aOXxSJUkJLE0NZbwYvHCrYptLFstpt26eaD3Y1QQn+EFw+KePX3ePPfuGkrqOiDgcd7M8zM8xPOpDLND2NldW19Y7OwVdze2d3bLx0cdmScCkLbJOax6PpYUs4i2lZMcdpNBMWhz6nrT65y372nQrI4ulXThHohHkUsYAQrLbnuXVaxz2aDUtmsXjZqtlNDZtU065Zt5cSuOxcOsrSSowxLtAal9/4wJmlII0U4lrJnmYnyMiwUI5zOiv1U0gSTCR7RnqYRDqn0svm5M3SqlSEKYqErUmiufp/IcCjlNPR1Z4jVWP72cvEvr5eqoOFlLEpSRSOyWBSkHKkY5b+jIROUKD7VBBPB9K2IjLHAROmEijqEr0/R/6RjVy3Nb5xy83wZRwGO4QQqYEEdmnANLWgDgQk8wBM8G4nxaLwYr4vWFWM5cwQ/YLx9Ar8Pjxw=</latexit>

W (L)
<latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit><latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit><latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit><latexit sha1_base64="ztMo5eXVKofLTAYsbtunazYPbgY=">AAAB7nicdVBNS8NAEJ3Ur1q/qh69LBahgpQkhrbeCl48eKhgm0Iby2a7bZduPtjdCCX0R3jxoIhXf483/42btoKKPhh4vDfDzDw/5kwq0/wwciura+sb+c3C1vbO7l5x/6Ato0QQ2iIRj0THx5JyFtKWYorTTiwoDnxOXX9ymfnuPRWSReGtmsbUC/AoZENGsNKS696l5evTWb9YMisX9artVJFZMc2aZVsZsWvOuYMsrWQowRLNfvG9N4hIEtBQEY6l7FpmrLwUC8UIp7NCL5E0xmSCR7SraYgDKr10fu4MnWhlgIaR0BUqNFe/T6Q4kHIa+LozwGosf3uZ+JfXTdSw7qUsjBNFQ7JYNEw4UhHKfkcDJihRfKoJJoLpWxEZY4GJ0gkVdAhfn6L/SduuWJrfOKXG2TKOPBzBMZTBgho04Aqa0AICE3iAJ3g2YuPReDFeF605YzlzCD9gvH0C5quPNg==</latexit>

x
<latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit><latexit sha1_base64="mWE5J8aOSebtz9oAJbys/42ybqI=">AAAB8HicbVBNS8NAFHypX7V+VT16WSyCp5KIoN4KXjxWMLbYlrLZbtqlm03YfRFL6L/w4kHFqz/Hm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h/cmzjVjPsslrFuB9RwKRT3UaDk7URzGgWSt4Lxde63Hrk2IlZ3OEl4L6JDJULBKFrpoRtRHAVh9jTtV2tu3Z2BLBOvIDUo0OxXv7qDmKURV8gkNabjuQn2MqpRMMmnlW5qeELZmA55x1JFI2562SzxlJxYZUDCWNunkMzU3xsZjYyZRIGdzBOaRS8X//M6KYaXvUyoJEWu2PyjMJUEY5KfTwZCc4ZyYgllWtishI2opgxtSRVbgrd48jLxz+pXde/2vNZwizbKcATHcAoeXEADbqAJPjBQ8Ayv8OYY58V5dz7moyWn2DmEP3A+fwBiZpDe</latexit>

Student
Generative model

with tunable complexity

learned
from real dataset

Classical scenario Generalization with teacher learned on real dataset

synthetic dataset
synthetic dataset:
inputs ressembling

real dataset

{xk;yk}1kK
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

real dataset

learning
from synthetic data

{xk;yk}1kK
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6.7: Left: The traditional teacher-student scenario consists in trying to recover the pa-
rameters W∗ of a teacher from a synthetic dataset generated by the latter used to train a student
with same architecture. Right: To study the role of structure in natural data (e.g. images), one
could study the training of a student network on a dataset remaining synthetic but generated by a
teacher of controlled complexity trained on real data with state-of-the art technique in unsupervised
learning.

allow for analytical computations of interesting observables such as learning curves. An exciting
direction is instead to introduce some tunable structure in the synthetic data. This strategy was
already adopted in [69, 26, 28]. These works used mixture of Gaussians or parametric manifolds,
which can be more or less clustered, to derive theoretical learning properties as a function of the
data properties using mean-field methods.

In Chapter 5, we further generalized the classical matched teacher-student scenario to include
generative models. Although it was not the case in the experiments run in this Chapter, these gen-
erative models can be trained following state-of-the art unsupervised learning methods to produce
synthetic datasets looking like real ones (images, sounds, texts etc.), as sketched on Figure 6.7.
Following ideas developed in Chapters 4 and 5, mean-field inference should remain efficient in
these models during learning with usual algorithms such as SGD. Additionally, the perspectives of
Chapter 6 envisage also the analysis of a Bayesian learning of the weights using message passing
algorithms and State Evolutions, both in the generative model and in the student network.

The combination of these different ideas pushes the idea of modeling learning tasks in an
exciting direction. The progress in mean-field inference in compositional models will possibly allow
a theoretical characterization of these teacher-student settings. Even if not, the empirical study of
tunable sophisticated scenarios mimicking real learning tasks should improve our understanding,
among other points, of the role of data structures in deep learning.

100

Appendix

101

A Vector Approximate Message Passing for the GLM

z(1) z(2)

x(1) x(2)

px(x(1))

pout(y|z)

ψx(x(1), x(2)) =
δ(x(1) − x(2))

ψz(z(1), z(2)) =
δ(z(1) − z(2))

lim
∆→0

N (z(2);Wx(2),∆)

Figure 8: Factor graph representation of the GLM for the derivation of VAMP

A Vector Approximate Message Passing for the GLM

We recall here a possible derivation of G-VAMP discussed in Chapter3 Algorithm 2 . We consider
a projection of the BP equations for the factor graph Figure 8.

Gaussian assumptions We start by parametrizing marginals as well as messages coming out
of the Dirac factors. For a = 1, 2:

mx,(a)(x(a)) = N (x(a), x̂(a), Cx(a)) , mz,(a)(z(a)) = N (z(a), ẑ(a), Cz(a)) , (153)

and

m̃ψx→x(a)(x(a)) ∝ e−
1
2x

(a)>A(a)
x
x(a)+B(a)

x

>
x(a)

, (154)

m̃ψz→z(a)(z(a)) ∝ e−
1
2 z

(a)>A(a)
z
z(a)+B(a)

z

>
z(a)

. (155)

Self consistency of the parametrizations at Dirac factor nodes Around ψx the message
passing equations are simply

m̃ψx→x(2)(x(2)) = mx(1)→ψx(x(2)), m̃ψx→x(1)(x(1)) = mx(2)→ψx(x(1)) (156)

and similarly around ψz. Moreover, considering that messages are marginals to which the contri-
bution of the opposite message is retrieved we have

mx(1)→ψx(x(1)) ∝ mx,(1)(x(1))/m̃ψx→x(1)(x(1)), (157)

mx(2)→ψx(x(2)) ∝ mx,(2)(x(2))/m̃ψx→x(2)(x(2)) . (158)

Combining this observation along with (156) leads to updates (3.89) and (3.85) The same reasoning
can be followed for the messages around ψz leading to updates (3.91) and (3.87).

Input and output update functions The update functions of means and variances of the
marginals are deduced from the parametrized message passing. For the variable x(1) taking into
account the prior px, the updates are very similar to GAMP input functions:

x̂(1) ∝
∫

dx(1) x(1)px(x(1))m̃ψx→x(1)(x(1)) (159)

= 1
Z(1)
x

∫
dx(1) x(1)px(x(1))e−

1
2x

(1)>A(1)
x
x(1)+B(1)

x

>
x(1)

= fx1 (B(1)
x , A(1)

x
) , (160)

Cx(1) = 1
Z(1)
x

∫
dx(1) x(1)x(1)>px(x(1))e−

1
2x

(1)>A(1)
x
x(1)+B(1)

x

>
x(1)

(161)

− fx1 (B(1)
x , A(1)

x
)fx1 (B(1)

x , A(1)
x

)
>

= fx2 (B(1)
x , A(1)

x
) , (162)

103

Towards a model for deep Bayesian (online) learning

where Z(1)
x is as usual the partition ensuring the normalization.

Similarly for the variable z(1), the update functions are very similar to the GAMP output
functions including the information coming from the observations:

ẑ(1) ∝
∫

dz(1) pout(y|z(1))m̃ψz→z(1)(z(1)) (163)

= 1
Z(1)
z

∫
dz(1) pout(y|z(1))e−

1
2 z

(1)>A(1)
z
z(1)+B(1)

z

>
z(1)

= fz1 (B(1)
z , A(1)

z
) , (164)

Cz(1) = 1
Z(1)
z

∫
dz(1) z(1)z(1)>pout(y|z(1))e−

1
2 z

(1)>A(1)
z
z(1)+B(1)

z

>
z(1)

(165)

− fz1 (B(1)
z , A(1)

z
)fz1 (B(1)

z , A(1)
z

)
>

= fz2 (B(1)
z , A(1)

z
) . (166)

Linear transformation For the middle factor node we consider the vector variable concatenat-
ing x̄ = [x(2)z(2)] ∈ RN+M . The computation of the corresponding marginal with the message
passing then yields

mx̄(x̄) ∝ lim
∆→0

N (z(2);Wx(2),∆I
M

)e−
1
2x
>A(2)

x
x+B(2)

x

>
x
e
− 1

2 z
>A(2)

z
z+B(2)

z

>
z
. (167)

The means of x(2) and z(2) are then updated through

x̂(2), ẑ(2) = arg min
x,z

[
‖Wx− z‖2/∆ + x>A(2)

x
x− 2B(2)

x

>
x+ z>A(2)

z
z − 2B(2)

z

>
z

]
, (168)

at ∆ → 0. At this point it is advantageous in terms of speed to consider the singular value
decomposition W = USV > and to simplify the form of the variance matrices by taking them
proportional to the identify, i.e. A(2)

z
= A

(2)
z I

M
etc. Under this assumption the solution of the

minimization problem is

x̂(2) = gx1 (B(2)
x , A(2)

x , B(2)
z , A(2)

z) = V D
(
A(2)
z

−2
SU>B(2)

z +A(2)
x

−2
V >B(2)

x

)
, (169)

ẑ(2) = gz1(B(2)
x , A(2)

x , B(2)
z , A(2)

z) = Wgx1 (B(2)
x , A(2)

x , B(2)
z , A(2)

z) , (170)

with D a diagonal matrix with entries Dii = (A(2)
z

−1
S2
ii+A

(2)
x

−1
)−1. The scalar variances are then

updated using the traces of the Jacobians with respect to the B(2)-s

Cx(2) = A
(2)
x

N
tr
(
∂gx2/∂B

(2)
x

)
I
N

= 1
N

N∑
i=1

(A(2)
z

−1
S2
ii +A(2)

x

−1
)−1I

N
(171)

= gx2 (B(2)
x , A(2)

x , B(2)
z , A(2)

z) (172)

Cz(2) = A
(2)
z

M
tr
(
∂gz2/∂B

(2)
z

)
I
M

= 1
M

N∑
i=1

Sii(A(2)
z

−1
S2
ii +A(2)

z

−1
)−1I

M
(173)

= gz2(B(2)
x , A(2)

x , B(2)
z , A(2)

z). (174)

B Update functions for constrained matrix factorization

We consider the interface partition function

Zuout =
∫
dsµps(sµ)N (λ1

µ; sµω1
µ, σ

1
µ

+ s2
µV

1
µ
), (175)

from which we deduce the approximate posterior provided by AMP

ms
µ(sµ) = 1

Zuout
ps(sµ)N (λ1

µ; sµω1
µ, σ

1
µ

+ s2
µV

1
µ
). (176)

The update functions derived from Zuout are written in terms of expectations over this posterior.
104

B Update functions for constrained matrix factorization

Estimate ŝ and variance Cs of the calibration variable

ŝµ = Emsµ
[
sµ
]
, Csµ = Emsµ

[
s2
]
− ŝ2

µ. (177)

Output update functions g1
out and ∂ωgout

1

g1
out(ω1

µ, V
1
µ
, λ1
µ, σ

1
µ
) = ∂ω logZuout (178)

= 1
Zuout

∫
dsµ ms

µ(sµ) sµ(s2
µV

1
µ

+ σ1
µ
)−1(λ1

µ − sω1
µ) , (179)

∂ωg
1
out(ω1

µ, V
1
µ
, λ1
µ, σ

1
µ
) = −Emsµ

[
s2
µ(s2

µV
1
µ

+ σ1
µ
)−1
]
− g1

outg
1
out
> (180)

+Emsµ
[
s2
µ(s2

µV
1
µ

+ σ1
µ
)−1(λ1

µ − sµω1
µ)(λ1

µ − sµω1
µ)>(s2

µV
1
µ

+ σ1
µ
)−1
]
.

Input update functions fu1 and fu2

fu1 (ω1
µ, V

1
µ
, λ1
µ, σ

1
µ
) = σ1

µ
∂λ logZuout + λ1

µ (181)

= −σ1
µ
Emsµ

[
(s2
µV

1
µ

+ σ1
µ
)−1(λ1

µ − sω1
µ)
]

+ λ1
µ (182)

fu2 (ω1
µ, V

1
µ
, λ1
µ, σ

1
µ
) =σ1

µ
− σ1

µ

2Emsµ
[
(s2
µV

1
µ

+ σ1
µ
)−1
]

(183)

+ σ1
µ

2Emsµ
[
(s2
µV

1
µ

+ σ1
µ
)−1(λ1

µ − sµω1
µ)(λ1

µ − sµω1
µ)>(s2

µV
1
µ

+ σ1
µ
)−1
]

− σ1
µ

2
fu1 f

u
1
>.

These updates do not have a closed form, yet they only require a one-dimensional numerical
integral over the calibration variables and therefore remain tractable. Note that here again the
corresponding State Evolution can be derived by combining the results from the multi-layer version
and the Cal-AMP problem. In the same manner, the online AMP and SE shall be easily written.

105

Bibliography
[1] Alessandro Achille and Stefano Soatto. Emergence of Invariance and Disentangling in Deep

Representations. Journal of Machine Learning Research, 19(50):1–34, 2018.

[2] Alessandro Achille and Stefano Soatto. Information Dropout: Learning Optimal Represen-
tations Through Noisy Computation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12):2897–2905, dec 2018.

[3] David H Ackley, Geoffrey E Hinton, and J Sejnowski. A Learning Algorithm for Boltzmann
Machine. Cognitive Science, 9:147–169, 1985.

[4] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Variational information
bottleneck. International Conference on Learning Representations (ICLR), pages 1–13, 2017.

[5] Daniel J. Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite numbers of
patterns in a spin-glass model of neural networks. Physical Review Letters, 55(14):1530–
1533, 1985.

[6] Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, and Lenka Zdeborová.
The spiked matrix model with generative priors. arXiv preprint, 1905.12385, 2019.

[7] Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris, and
Lenka Zdeborová. The committee machine: Computational to statistical gaps in learning a
two-layers neural network. In Neural Information Processing Systems 2018, number NeurIPS,
pages 1–44, 2018.

[8] Marco Baity-Jesi, Levent Sagun, Mario Geiger, Stefano Spigler, G. Ben Arous, Chiara Cam-
marota, Yann LeCun, Matthieu Wyart, and Giulio Biroli. Comparing Dynamics: Deep
Neural Networks versus Glassy Systems. Proceedings of the 35th International Conference
on Machine Learning, PMLR(80):314–323, 2018.

[9] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Phase
Transitions, Optimal Errors and Optimality of Message-Passing in Generalized Linear Mod-
els. Proceedings of the 31st Conference On Learning Theory, PMLR 75:728–731, aug 2018.

[10] Adriano Barra, Giuseppe Genovese, Peter Sollich, and Daniele Tantari. Phase transitions in
restricted Boltzmann machines with generic priors. Physical Review E, 96(4):1–5, 2017.

[11] Adriano Barra, Giuseppe Genovese, Peter Sollich, and Daniele Tantari. Phase diagram
of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors.
Physical Review E, 97(2), 2018.

[12] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and R Devon Hjelm. MINE: Mutual Information Neural Estimation. In-
ternational Conference on Machine Learning (ICML), pages 1–17, 2018.

[13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review
and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, aug 2013.

[14] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-Wise
Training of Deep Networks. Advances in neural information processing systems, 19(1):153,
2007.

[15] Hans Bethe. Statistical Theory of Superlattices. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 150(871):552, 1935.

[16] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for
Statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

107

Bibliography

[17] Erwin Bolthausen. An iterative construction of solutions of the tap equations for the
Sherrington-Kirkpatrick model. Communications in Mathematical Physics, 325(1):333–366,
2014.

[18] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G. Dimakis. Compressed Sensing us-
ing Generative Models. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pages 537—-546, 2017.

[19] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceed-
ings of COMPSTAT’2010, pages 177–186. Physica-Verlag HD, Heidelberg, 2010.

[20] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan.
Streaming Variational Bayes. Neural Information Processing Systems 2013, pages 1–9, 2013.

[21] Giuseppe Carleo, Ignacio Cirac, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-
Maranto, and Lenka Zdeborová. Machine learning and the physical sciences. arXiv preprint,
1903.10563, 2019.

[22] Tommaso Castellani and Andrea Cavagna. Spin-glass theory for pedestrians. Journal of
Statistical Mechanics: Theory and Experiment, (5):215–266, 2005.

[23] Matthew Chalk, Olivier Marre, and Gasper Tkacik. Relevant sparse codes with variational
information bottleneck. In Advances in Neural Information Processing Systems 29, pages
1957—-1965, 2016.

[24] Kyung Hyun Cho, Tapani Raiko, and Alexander Ilin. Gaussian-Bernoulli deep Boltzmann
machine. Proceedings of the International Joint Conference on Neural Networks, pages 1–9,
2013.

[25] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The Loss Surfaces of Multilayer Networks. In Artificial Intelligence and Statistics, volume
38 PMLR, pages 192–204., 2015.

[26] Sueyeon Chung, Daniel D. Lee, and Haim Sompolinsky. Classification and Geometry of
General Perceptual Manifolds. Physical Review X, 8(3):31003, 2018.

[27] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In International Conference on Artificial Intelligence and
Statistics, pages 215–223, 2011.

[28] Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and Geom-
etry of Object Manifolds in Deep Neural Networks. bioRxiv, 10.1101/64, 2019.

[29] Thomas M. Cover and Joy a. Thomas. Elements of Information Theory. Wiley-Interscience,
1991.

[30] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2(4):303–314, dec 1989.

[31] A. Decelle, G. Fissore, and C. Furtlehner. Thermodynamics of Restricted Boltzmann Ma-
chines and Related Learning Dynamics. Journal of Statistical Physics, 172(6):1576–1608,
2018.

[32] Aurélien Decelle, Giancarlo Fissore, and Cyril Furtlehner. Spectral dynamics of learning in
restricted Boltzmann machines. EPL (Europhysics Letters), 119(6):60001, sep 2017.

[33] C De Dominicis and A P Young. Weighted averages and order parameters for the infinite
range Ising spin glass. Journal of Physics A: Mathematical and General, 16(9):2063–2075,
1983.

[34] David L. Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for
compressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919,
nov 2009.

108

B Bibliography

[35] D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, apr 2006.

[36] A. Dremeau, Cédric Herzet, and Laurent Daudet. Boltzmann Machine and Mean-Field Ap-
proximation for Structured Sparse Decompositions. IEEE Transactions on Signal Processing,
60(7):3425–3438, jul 2012.

[37] A Engel and C Van den Broeck. Statistical Mechanics of Learning. Cambridge University
Press, Cambridge, 2001.

[38] Alyson K. Fletcher, Sundeep Rangan, and Philip Schniter. Inference in Deep Networks
in High Dimensions. 2018 IEEE International Symposium on Information Theory (ISIT),
1(8):1884–1888, jun 2018.

[39] Marylou Gabrié, Varsha Dani, Guilhem Semerjian, and Lenka Zdeborová. Phase transi-
tions in the q-coloring of random hypergraphs. Journal of Physics A: Mathematical and
Theoretical, 50(50), 2017.

[40] Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent
Krzakala, and Lenka Zdeborová. Entropy and mutual information in models of deep neural
networks. In Advances in Neural Information Processing Systems 31, pages 1826—-1836,
mar 2018.

[41] Marylou Gabrié, Andre Manoel, Gabriel Samain, and Florent Krzakala. Learning Synthetic
Data https://github.com/marylou-gabrie/learning-synthetic-data, 2018.

[42] Marylou Gabrié, Eric W. Tramel, and Florent Krzakala. Training Restricted Boltzmann
Machines via the Thouless-Anderson-Palmer Free Energy. Advances in Neural Information
Processing Systems 28, pages 640—-648, jun 2015.

[43] Conrad C Galland. The limitations of deterministic Boltzmann machine learning. Network,
4:355–379, 1993.

[44] Elisabeth Gardner. Maximum Storage Capacity in Neural Networks. Europhysics Letters
(EPL), 4(4):481–485, aug 1987.

[45] Elisabeth Gardner. The space of interactions in neural network models. Journal of Physics
A: General Physics, 21(1):257–270, 1988.

[46] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane
D’Ascoli, Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of gen-
eralization with number of parameters in deep learning. arXiv preprint, 1901.01608, 2019.

[47] A Georges and J S Yedidia. How to expand around mean-field theory using high-temperature
expansions. Journal of Physics A: Mathematical and General, 24(9):2173–2192, 1999.

[48] Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian
Kingsbury, and Yury Polyanskiy. Estimating Information Flow in Neural Networks. arXiv
preprint, 1810.05728, 2018.

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[50] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. Neural
Information Processing Systems, pages 1–9, 2014.

[51] Paul Hand, Oscar Leong, and Vladislav Voroninski. Phase Retrieval Under a Generative
Prior. In Neural Information Processing Systems 2018, number NeurIPS, 2018.

[52] Paul Hand and Vladislav Voroninski. Global Guarantees for Enforcing Deep Generative Pri-
ors by Empirical Risk. In Proceedings of the 31st Conference On Learning Theory, volume 75,
pages 970–978, 2018.

109

Bibliography

[53] Geoffrey Hinton. A Practical Guide to Training Restricted Boltzmann Machines A Practical
Guide to Training Restricted Boltzmann Machines. Computer, 9(3):1, 2010.

[54] Geoffrey E. Hinton. Deterministic Boltzmann learning performs steepest descent in weight-
space. Neural computation, 1(1):143–150, 1989.

[55] Geoffrey E. Hinton. Training products of experts by minimizing Contrastive divergence.
Neural computation, 14:1771–1800, 2002.

[56] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527–1554, 2006.

[57] Geoffrey E. Hinton and Ruslan R Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 313(5786):504–507, jul 2006.

[58] Geoffrey E Hinton and Ruslan R Salakhutdinov. Replicated softmax: an undirected topic
model. In Advances in neural information processing systems, pages 1607–1614, 2009.

[59] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detec-
tors. arXiv preprint, 1207.0580, 2012.

[60] J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the United States of America,
79(8):2554–2558, 1982.

[61] Kurt Hornik. Approximation Capabilities of Multilayer Neural Network. Neural Networks,
4(1989):251–257, 1991.

[62] Haiping Huang. Statistical mechanics of unsupervised feature learning in a restricted Boltz-
mann machine with binary synapses. Journal of Statistical Mechanics: Theory and Experi-
ment, 2017(5), 2017.

[63] Yukito Iba. The Nishimori line and Bayesian statistics. Journal of Physics A: Mathematical
and General, 32(21):3875–3888, may 1999.

[64] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning, volume 37, pages 448–456, 2015.

[65] Stanis law Jastrzȩbski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three Factors Influencing Minima in SGD. arXiv preprint,
1711.04623:1–21, 2017.

[66] Yoshiyuki Kabashima. Inference from correlated patterns: A unified theory for perceptron
learning and linear vector channels. Journal of Physics: Conference Series, 95(1):012001,
jan 2008.

[67] Yoshiyuki Kabashima, Florent Krzakala, Marc Mézard, Ayaka Sakata, and Lenka Zdeborová.
Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization. IEEE
Transactions on Information Theory, 62(7):4228–4265, 2016.

[68] Yoshiyuki Kabashima and Mikko Vehkapera. Signal recovery using expectation consistent
approximation for linear observations. IEEE International Symposium on Information The-
ory - Proceedings, pages 226–230, 2014.

[69] Jonathan Kadmon and Haim Sompolinsky. Optimal architectures in a solvable model of deep
networks. In Advances in Neural Information Processing Systems 29, number Nips, 2016.

[70] Hilbert J Kappen and Francisco De Borja Rodŕıguez. Boltzmann Machine Learning Us-
ing Mean Field Theory and Linear Response Correction. Advances in Neural Information
Processing Systems 10, pages 280–286, 1998.

110

B Bibliography

[71] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International
Conference on Learning Representations (ICLR), number Ml, pages 1–14, dec 2014.

[72] Artemy Kolchinsky and Brendan D. Tracey. Estimating mixture entropy with pairwise dis-
tances. Entropy, 19(7):1–18, 2017.

[73] Artemy Kolchinsky, Brendan D. Tracey, and Steven Van Kuyk. Caveats for information bot-
tleneck in deterministic scenarios. In International Conference on Learning Representations,
number 1, pages 1–23, 2019.

[74] Artemy Kolchinsky, Brendan D. Tracey, and David H. Wolpert. Nonlinear Information
Bottleneck. arXiv preprint, 1705.02436, may 2017.

[75] Daphne Koller and Nir Friedman. Probabilistic Graphical Models Principles and Techniques.
MIT Press, 2009.

[76] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual informa-
tion. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary
Topics, 69(6):16, 2004.

[77] Florent Krzakala, Marc Mézard, Francois Sausset, Yifan Sun, and Lenka Zdeborová. Prob-
abilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold
achieving matrices. J. Stat. Mech, 2012.

[78] Hugo Larochelle and Yoshua Bengio. Classification using discriminative restricted Boltzmann
machines. In Proceedings of the 25th international conference on Machine learning, pages
536–543. ACM, 2008.

[79] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[80] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborova. MMSE of probabilistic low-
rank matrix estimation: Universality with respect to the output channel. 2015 53rd Annual
Allerton Conference on Communication, Control, and Computing, Allerton 2015, pages 680–
687, 2016.

[81] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Constrained Low-rank Matrix
Estimation: Phase Transitions, Approximate Message Passing and Applications. Journal of
Statistical Mechanics: Theory and Experiment, 2017(7):1–64, 2017.

[82] Stefano Sarao Mannelli, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová.
Passed & Spurious: analysing descent algorithms and local minima in spiked matrix-tensor
model. In Proceedings of the 36th International Conference on Machine Learning,, pages
PMLR 97:4333–4342, 2019.

[83] Andre Manoel, Marylou Gabrié, and Florent Krzakala. Deep Neural Networks Entropy from
Replicas https://github.com/sphinxteam/dnner, 2018.

[84] Andre Manoel, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Multi-layer gen-
eralized linear estimation. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 2098–2102. IEEE, jun 2017.

[85] Andre Manoel, Florent Krzakala, Eric W. Tramel, and Lenka Zdeborová. Streaming Bayesian
inference: Theoretical limits and mini-batch approximate message-passing. 55th Annual
Allerton Conference on Communication, Control, and Computing, Allerton 2017, 2018-
Janua(i):1048–1055, 2018.

[86] V A Marčenko and L A Pastur. DISTRIBUTION OF EIGENVALUES FOR SOME SETS
OF RANDOM MATRICES. Mathematics of the USSR-Sbornik, 1(4):457–483, apr 1967.

[87] Marc Mézard. Mean-field message-passing equations in the Hopfield model and its general-
izations. Physical Review E, 95(2):1–15, 2017.

111

Bibliography

[88] Marc Mézard and Andrea Montanari. Information, Physics, and Computation. Oxford
University Press, 2009.

[89] Marc Mézard and Giorgio Parisi. The Bethe lattice spin glass revisited. The European
Physical Journal B, 20(2):217–233, mar 2001.

[90] Marc Mézard, Giorgio Parisi, and Miuel Virasoro. Spin Glass Theory and Beyond, volume 9
of World Scientific Lecture Notes in Physics. WORLD SCIENTIFIC, nov 1986.

[91] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and Algorithmic Solution of
Random Satisfiability Problems. Science, 297(5582):812–815, aug 2002.

[92] Thomas P Minka. A family of algorithms for approximate Bayesian inference. PhD Thesis,
2001.

[93] Dustin G. Mixon and Soledad Villar. SUNLayer: Stable denoising with generative networks.
arXiv preprint, 1803.09319, 2018.

[94] Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. ACDC: A Struc-
tured Efficient Linear Layer. International Conference on Learning Representations (ICLR),
pages 1–12, nov 2016.

[95] Rémi Monasson and Riccardo Zecchina. Weight Space Structure and Internal Representa-
tions: a Direct Approach to Learning and Generalization in Multilayer Neural Networks.
Physical Review Letters, 75(12):2432–2435, 1995.

[96] Rémi Monasson and Riccardo Zecchina. Learning and Generalization Theories of Large
Committee-Machines. Modern Physics Letters B, 09(30):1887–1897, 2004.

[97] Grégoire Montavon and Klaus Robert Müller. Deep Boltzmann machines and the centering
trick. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU:621–637, 2012.

[98] Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):71–
113, 1992.

[99] Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139,
2001.

[100] H. Chau Nguyen, Riccardo Zecchina, and Johannes Berg. Inverse statistical problems: from
the inverse Ising problem to data science. Advances in Physics, 66(3):197–261, 2017.

[101] Hidetoshi Nishimori. Statistical Physics of Spin Glasses and Information Processing: An
Introduction. Clarendon Press, 2001.

[102] Morteza Noshad, Alfred O. Hero, Yu Zeng, and Alfred O. Hero. Scalable Mutual Information
Estimation using Dependence Graphs. arXiv preprint, 1801.09125, 2018.

[103] Manfred Opper, Burak Çakmak, and Ole Winther. A theory of solving TAP equations for
Ising models with general invariant random matrices. Journal of Physics A: Mathematical
and Theoretical, 49(11):114002, mar 2016.

[104] Manfred Opper and David Haussler. Calculation of the learning curve of Bayes optimal
classification algorithm for learning a perceptron with noise. In COLT ’91 Proceedings of the
fourth annual workshop on Computational learning theory, pages Pages 75–87, 1991.

[105] Manfred Opper and David Saad. Advanced mean field methods: Theory and practice. MIT
press, 2001.

[106] Manfred Opper and Ole Winther. Mean field approach to bayes learning in feed-forward
neural networks. Physical Review Letters, 76(11):1964–1967, 1996.

112

B Bibliography

[107] Manfred Opper and Ole Winther. Adaptive and self-averaging Thouless-Anderson-Palmer
mean-field theory for probabilistic modeling. Physical Review E, 64(5):056131, oct 2001.

[108] Manfred Opper and Ole Winther. Tractable approximations for probabilistic models:
The adaptive Thouless-Anderson-Palmer mean field approach. Physical Review Letters,
86(17):3695–3699, 2001.

[109] Manfred Opper and Ole Winther. Expectation consistent free energies for approximate
inference. Advances in Neural Information Processing Systems, 17:1001–1008, 2005.

[110] Parthe Pandit, Mojtaba Sahraee, Sundeep Rangan, and Alyson K. Fletcher. Asymptotics of
MAP Inference in Deep Networks. arXiv preprint, 1903.01293, 2019.

[111] Giorgio Parisi and Marc Potters. Mean-field equations for spin models with orthogonal
interaction matrices. Journal of Physics A: Mathematical and General, 28(18):5267–5285,
sep 1995.

[112] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Elsevier, 1988.

[113] Carsten Peterson and James R. Anderson. A mean field theory learning algorithm for neural
networks. Complex systems, 1:995–1019, 1987.

[114] T Plefka. Convergence condition of the TAP equation for the infinite-ranged Ising spin glass
model. Journal of Physics A: Mathematical and General, 15(6):1971–1978, 1982.

[115] Sundeep Rangan. Generalized Approximate Message Passing for Estimation with Random
Linear Mixing. In 2011 IEEE International Symposium on Information Theory Proceedings,
pages 2168–2172. IEEE, jul 2011.

[116] Sundeep Rangan, Philip Schniter, and Alyson Fletcher. On the convergence of approximate
message passing with arbitrary matrices. IEEE International Symposium on Information
Theory - Proceedings, pages 236–240, 2014.

[117] Sundeep Rangan, Philip Schniter, and Alyson K. Fletcher. Vector approximate message
passing. In 2017 IEEE International Symposium on Information Theory (ISIT), volume 1,
pages 1588–1592. IEEE, jun 2017.

[118] Galen Reeves. Additivity of information in multilayer networks via additive Gaussian noise
transforms. 55th Annual Allerton Conference on Communication, Control, and Computing,
Allerton 2017, 2018-Janua:1064–1070, 2018.

[119] Galen Reeves and Henry D Pfister. The replica-symmetric prediction for compressed sensing
with Gaussian matrices is exact. In 2016 IEEE International Symposium on Information
Theory (ISIT), pages 665–669. IEEE, jul 2016.

[120] D J Rezende, S Mohamed, and D Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. Proceedings of The 31st International Conference in
Machine Learning, Beijing China, 32:1278–, 2014.

[121] S Robbins, H Monro. A stochastic approximation method. Statistics, pages 102–109, 1951.

[122] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly, Olivier
Bachem, and Mario Lucic. Assessing Generative Models via Precision and Recall. Neural
Information Processing Systems 2018, (NeurIPS):1–10, 2018.

[123] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann Machines. Artificial Intelligence
and Statistics, 5(2):448–455, 2009.

[124] Ruslan Salakhutdinov and Geoffrey Hinton. An Efficient Learning Procedure for Deep Boltz-
mann Machines. Neural Computation, 24(8):1967–2006, 2012.

113

Bibliography

[125] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted Boltzmann machines
for collaborative filtering. In Proceedings of the 24th international conference on Machine
learning, pages 791–798. ACM, 2007.

[126] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of Deep Belief Networks.
Proceedings of the 25th international conference on Machine learning, pages 872–879, 2008.

[127] Shibani Santurkar, Dimitris Tsipras, and Andrew Ilyas. How Does Batch Normalization Help
Optimization ? In Neural Information Processing Systems, 2018.

[128] Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan D Tracey, and David D Cox. On The Information Bottleneck Theory of Deep Learning.
International Conference on Learning Representations 2018, pages 1–27, 2018.

[129] Philip Schniter, Sundeep Rangan, and Alyson K. Fletcher. Vector approximate message
passing for the generalized linear model. In 2016 50th Asilomar Conference on Signals,
Systems and Computers, pages 1525–1529. IEEE, nov 2016.

[130] Christophe Schülke, Francesco Caltagirone, Florent Krzakala, and Lenka Zdeborová. Blind
Calibration in Compressed Sensing using Message Passing Algorithms. Advances in Neural
Information Processing Systems 26, pages 1–9, 2013.

[131] Christophe Schülke, Francesco Caltagirone, and Lenka Zdeborová. Blind sensor calibration
using approximate message passing. Journal of Statistical Mechanics: Theory and Experi-
ment, 2015(11):P11013, nov 2015.

[132] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,
and George E. Dahl. Measuring the Effects of Data Parallelism on Neural Network Training.
arXiv preprint, 1811.03600, 2018.

[133] Claude E Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(July 1928):379–423, 1948.

[134] David Sherrington and Scott Kirkpatrick. Solvable Model of a Spin-Glass. Physical Review
Letters, 35(26):1792–1796, dec 1975.

[135] Takashi Shinzato and Yoshiyuki Kabashima. Perceptron capacity revisited: classifica-
tion ability for correlated patterns. Journal of Physics A: Mathematical and Theoretical,
41(32):324013, aug 2008.

[136] Takashi Shinzato and Yoshiyuki Kabashima. Learning from correlated patterns by simple
perceptrons. Journal of Physics A: Mathematical and Theoretical, 42(1):015005, jan 2009.

[137] Ravid Shwartz-Ziv and Naftali Tishby. Opening the Black Box of Deep Neural Networks via
Information. arXiv preprint, 1703.00810, 2017.

[138] Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A Tail-Index Analysis of Stochastic
Gradient Noise in Deep Neural Networks. 2019.

[139] Paul Smolensky. Information Processing in Dynamical Systems: Foundations of Harmony
Theory. In Parallel Distributed Proceuing: Explorations in the Microstructure of Cognition.
Volume I: Foundations, chapter 6. MIT Press, Cambridge, Massachusetts, 186.

[140] Juyong Song, Matteo Marsili, and Junghyo Jo. Resolution and relevance trade-offs in deep
learning. Journal of Statistical Mechanics: Theory and Experiment, 2018(12):123406, dec
2018.

[141] Stefano Spigler, Mario Geiger, Stéphane D’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu
Wyart. A jamming transition from under- to over-parametrization affects loss landscape and
generalization. arXiv preprint, 1810.09665, 2018.

114

B Bibliography

[142] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 15:1929–1958, 2014.

[143] Michel Talagrand. The Parisi formula. Annals of Mathematics, 163(1):221–263, jan 2006.

[144] D. J. Thouless, P. W. Anderson, and R. G. Palmer. Solution of ’Solvable model of a spin
glass’. Philosophical Magazine, 35(3):593–601, 1977.

[145] Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the
likelihood gradient. ICML; Vol. 307, page 7, 2008.

[146] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
In Proc. of the 37-th Annual Allerton Conference on Communication, Control and Comput-
ing, pages 368–377, 1999.

[147] Naftali Tishby and Noga Zaslavsky. Deep Learning and the Information Bottleneck Principle.
2015 IEEE Information Theory Workshop, ITW 2015, 2015.

[148] Eric W. Tramel, Angélique Drémeau, and Florent Krzakala. Approximate message passing
with restricted Boltzmann machine priors. Journal of Statistical Mechanics: Theory and
Experiment, 2016(7):073401, jul 2016.

[149] Eric W. Tramel, Marylou Gabrié, and Florent Krzakala. Boltzmann.jl,
https://github.com/sphinxteam/Boltzmann.jl, 2015.

[150] Eric W. Tramel, Marylou Gabrié, Andre Manoel, Francesco Caltagirone, and Florent Krza-
kala. Deterministic and Generalized Framework for Unsupervised Learning with Restricted
Boltzmann Machines. Physical Review X, 8(4):041006, oct 2018.

[151] Eric W. Tramel, Andre Manoel, Francesco Caltagirone, Marylou Gabrié, and Florent Krza-
kala. Inferring sparsity: Compressed sensing using generalized restricted Boltzmann ma-
chines. In 2016 IEEE Information Theory Workshop (ITW), pages 265–269. IEEE, sep 2016.

[152] J. Tubiana and R. Monasson. Emergence of Compositional Representations in Restricted
Boltzmann Machines. Physical Review Letters, 118(13), 2017.

[153] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. Mathematics of Deep Learning.
arXiv preprint, 1712.04741, dec 2017.

[154] Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Foundations and Trends R© in Machine Learning, 1:1–305, 2008.

[155] Chuang Wang, Hong Hu, Yue M. Lu, and John A Paulson. A Solvable High-Dimensional
Model of GAN. arXiv preprint, 1805.08349, 2018.

[156] Timothy L.H. Watkin, Albrecht Rau, and Michael Biehl. The statistical mechanics of learning
a rule. Reviews of Modern Physics, 65(2):499–556, 1993.

[157] Max Welling and Ge Hinton. A new learning algorithm for mean field Boltzmann machines.
Artificial Neural Networks—ICANN 2002, pages 351–357, 2002.

[158] Zichao Yang, Marcin Moczulski, Misha Denil, Nando De Freitas, Alex Smola, Le Song, and
Ziyu Wang. Deep Fried Convnets. Proceedings of the IEEE International Conference on
Computer Vision, 2015 Inter:1476–1483, 2015.

[159] Francesco Zamponi. Mean field theory of spin glasses. arXiv preprint, 1008.4844, 2010.

[160] Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds and
algorithms. Advances in Physics, 65(5):453–552, sep 2016.

115

Bibliography

[161] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing Deep Learning Requires ReThinking Generalization. International Conference on
Learning Representations 2017, pages 1–15, 2017.

[162] Shengjia Zhao, Jiaming Song, and Stefano Ermon. InfoVAE: Information Maximizing Vari-
ational Autoencoders. arXiv preprint, 1706.02262, 2017.

116

117

RÉSUMÉ

Les algorithmes d’apprentissage automatique utilisant des réseaux de neurones profonds ont récemment révolutionné
l’intelligence artificielle. Malgré l’engouement suscité par leurs diverses applications, les excellentes performances de
ces algorithmes demeurent largement inexpliquées sur le plan théorique. Ces problèmes d’apprentissage sont décrits
mathématiquement par de très grands ensembles de variables en interaction, difficiles à manipuler aussi bien analytique-
ment que numériquement. Cette multitude est précisément le champ d’étude de la physique statistique qui s’attelle à
comprendre, originellement dans les systèmes naturels, comment rendre compte des comportements macroscopiques à
partir de cette complexité microscopique. Dans cette thèse nous nous proposons de mettre à profit les progrès récents
des méthodes de champ moyen de la physique statistique des systèmes désordonnés pour dériver des approximations
pertinentes dans ce contexte. Nous nous appuyons sur les équivalences et les complémentarités entre les algorithmes
de passage de message, les développements haute température et la méthode des répliques. Cette stratégie nous
mène d’une part à des contributions pratiques pour l’apprentissage non supervisé des machines de Boltzmann. Elle
nous permet d’autre part de contribuer à des réflexions théoriques en considérant le paradigme du professeur-étudiant
pour modéliser des situations d’apprentissage. Nous développons une méthode pour caractériser dans ces modèles
l’évolution de l’information au cours de l’entraı̂nement, et nous proposons une direction de recherche afin de généraliser
l’étude de l’apprentissage bayésien des réseaux de neurones à une couche aux réseaux de neurones profonds.

MOTS CLÉS

Systèmes désordonnés, inférence, apprentissage automatique, passage de message, méthode des
répliques

ABSTRACT

Machine learning algorithms relying on deep neral networks recently allowed a great leap forward in artificial intelligence.
Despite the popularity of their applications, the efficiency of these algorithms remains largely unexplained from a theoreti-
cal point of view. The mathematical descriptions of learning problems involves very large collections of interacting random
variables, difficult to handle analytically as well as numerically. This complexity is precisely the object of study of statis-
tical physics. Its mission, originally pointed towards natural systems, is to understand how macroscopic behaviors arise
from microscopic laws. In this thesis we propose to take advantage of the recent progress in mean-field methods from
statistical physics to derive relevant approximations in this context. We exploit the equivalences and complementarities
of message passing algorithms, high-temperature expansions and the replica method. Following this strategy we make
practical contributions for the unsupervised learning of Boltzmann machines. We also make theoretical contributions con-
sidering the teacher-student paradigm to model supervised learning problems. We develop a framework to characterize
the evolution of information during training in these model. Additionally, we propose a research direction to generalize the
analysis of Bayesian learning in shallow neural networks to their deep counterparts.

KEYWORDS

Disordered systems, inference, message passing, replica method

	Acknowledgements
	Foreword
	Index of notations and abbreviations
	I Background
	Machine learning with neural networks and mean-field approximations (Context and motivation)
	Neural networks for machine learning
	Supervised learning
	Unsupervised learning

	A brief history of mean-field methods for neural networks

	Statistical inference and statistical physics (Fundamental theoretical frameworks)
	Statistical inference
	Statistical models representations
	Some inference questions in neural networks for machine learning
	Challenges in inference

	Statistical physics of disordered systems

	 Selected overview of mean-field treatments: free energies and algorithms (Techniques)
	Naive mean-field
	Variational derivation
	When does naive mean-field hold true?

	Thouless Anderson and Palmer equations
	Outline of the derivation
	Illustration on the Boltzmann machine and important remarks
	Generalizing the Georges-Yedidia expansion

	Belief propagation and approximate message passing
	Generalized linear model
	Belief Propagation
	(Generalized) approximate message passing

	Replica method
	Steps of a replica computation
	Assumptions and relation to other mean-field methods

	Extensions of interest for this thesis
	Streaming AMP for online learning
	A special special case of GAMP: Cal-AMP
	Algorithms and free energies beyond i.i.d. matrices
	Model composition

	II Contributions
	Mean-field inference for (deep) unsupervised learning
	Mean-field inference in Boltzmann machines
	Georges-Yedidia expansion for binary Boltzmann machines
	Georges-Yedidia expansion for generalized Boltzmann machines
	Application to RBMs and DBMs
	Adaptive-TAP fixed points for binary BM

	Applications to Boltzmann machine learning with hidden units
	Mean-field likelihood and deterministic training
	Numerical experiments

	Application to Bayesian reconstruction
	Combining CS and RBM inference
	Numerical experiments

	Perspectives

	Mean-field inference for information theory in deep supervised learning
	Mean-field entropy for multi-layer models
	Extension of the replica formula to multi-layer networks
	Comparison with non-parametric entropy estimators

	Mean-field information trajectories over training of deep networks
	Tractable deep learning models
	Training experiments

	Further investigation of the information theoretic analysis of deep learning
	Mutual information in noisy trainings
	Discussion

	Towards a model for deep Bayesian (online) learning
	Cal-AMP revisited
	Derivation through AMP on vector variables
	State Evolution for Cal-AMP
	Online algorithm and analysis

	Experimental validation on gain calibration
	Setting and update functions
	Offline results
	Online results

	Matrix factorization model and multi-layer networks
	Constrained matrix factorization
	Multi-layer vectorized AMP
	AMP for constrained matrix factorization

	Towards the analysis of learning in multi-layer neural networks

	Conclusion and outlook
	Appendix
	Vector Approximate Message Passing for the GLM
	Update functions for constrained matrix factorization

	Bibliography

