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allowing me to defend; to Francesca Chillà, for agreeing to be the chair of my committee; and
to Caroline Muller and Patrice Meunier, who also gave me very useful feedback. I very much
appreciated them making sure that my defense went very smoothly despite the total lockdown and
confinement that were enforced at the time, compelling me to defend online. To quote Philippe’s
words: it is somewhat ironic to have spent nearly three years trying to confine waves, to end up
being confined myself just after writing the thesis. I would like to take this opportunity to thank
all those who attended my defense from home.

I would like to acknowledge the Laboratoire de Physique de l’École Normale Supérieure de
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Notations

Commonly used notations in the manuscript:

Symbol Meaning Symbol Meaning
a Wave generator amplitude Yn 2nd Bessel function of order n
b Buoyancy F Fourier transform
er Radial unit vector Fn Any one of Jn, Yn, H(1)

n , and H
(2)
n

ex x horizontal unit vector H Hankel transform
ey y horizontal unit vector J Cartesian Jacobian
ez Angular unit vector J� Cylindrical Jacobian
eθ Vertical unit vector L Linear equations
f Coriolis frequency N Non-linear equations
g Gravity C Cosine Fresnel integral
k Magnitude of the wave vector F Fresnel integral

kx, ky, kz Cartesian wave numbers S Sine Fresnel integral
l Radial wavenumber α Buoyancy frequency ratio
m Vertical wavenumber β Propagation angle
n Index γ Coriolis frequency ratio
p Pressure field δ Interface width

(p, q) Cavity mode ε Viscosity-based parameter
r Radial coordinate λ Vertical wave length
t Temporal coordinate ψ Streamfunction
vg Group velocity φ Vertical dependence
vr Radial velocity µ Dynamic viscosity
vz Vertical velocity ν Viscosity
vθ Azimuthal (orthoradial) velocity ω Frequency of the wave field
vφ Phase velocity ρ Density

x, y, z Cartesian coordinates ρ̄ Background density
E Ekman number ρ′ Density fluctuation
G Green function σ Growth rate
H

(1)
n 1st Hankel function of order n θ Angular coordinate

H
(2)
n 2nd Hankel function of order n ξ Vorticity
Jn 1st Bessel function of order n ξz Enstrophy
J̃n Asymptotic Bessel function ∆ Laplacian
L Vertical characteristic length ∆h Horizontal Laplacian
N Brunt-Väisälä (buoyancy) frequency ∆� Cylindrical Laplacian
R Radius of the wave generator Γ Dispersion relation parameter
RX Reflexion coefficient of X Γ(...) Asymptotic Bessel integrals
Ro Rossby number Ω Rotation frequency
T Temporal period of the wave field Ξ Triple Bessel integral
TX Transmission coefficient of X ∇ Nabla operator
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Introduction

Geophysical fluids such as the oceans and the atmosphere are density stratified fluids in rotation,
creating anisotropies that support the propagation of waves over large scales, called inertia-gravity
waves. Ubiquitious in the oceans, these waves are believed to play a key role in the transport of
energy and buoyancy across the global ocean, by maintaining the thermohaline circulation and
connecting scales from tidal macroscale energy inputs to turbulent microscale dissipation.

In his abyssal recipes [156], Munk introduced an eddy diffusivity to characterise a uniform uni-
dimensional upwelling over the entire abyssal ocean as a possible mechanism to contribute to drive
oceanic mixing. Since then, oceanographers have tried to provide an even more accurate description
of stratified mixing in the oceans [157, 186, 242]. A recent study from MacKinnon et al. [133] details
internal wave driven mixing in the oceans. They present various generation mechanisms of such
waves in the oceans as well as possible contributions to oceanic mixing: excitation by tidal motion
and interaction with topographies [59], inertial oscillations created in the near-surface mixed layer,
mesoscale interactions with eddies and currents [190], wave-wave interaction, instabilities and wave
breaking [12, 132].

Of primary importance are energy and buoyancy transport phenomenon by inertia-gravity
waves in the oceans as, according to estimates from satellite observations [70, 71], a third of the
3 TW input from tidal forcing is being dissipated on deep ocean topographies, and a significant
part of it is transferred to internal waves [249]. Since about 1 to 2 TW energy is needed to close the
energetic balance in the oceans and help cold and salty water rise to the surface [157], comparable to
inertia-gravity waves total energy, making them a very likely candidate to sustain stratified mixing
and link energy input in the ocean to turbulent mixing. In that sense, internal wave activity is
a major phenomenon connecting large scale events (e.g. tidal forcing) to small scale dissipation
processes (turbulent mixing).

Through linear and non-linear processes, energy can be transported from place to place over
the world and propagate within the oceanic stratification, from the surface to the deep ocean and
vice versa, but also from scale to scale until energy input is being dissipated at the smallest scales.
Thanks to laboratory experiments supported by theoretical and numerical derivations, this thesis
proposes to closely study the effect of geometry on internal waves and energy transport by using an
axisymmetric wave generator [92, 141] to excite cylindrical wave fields, and by investigating how
the transition from two-dimensional Cartesian plane waves to three-dimensional axisymmetric wave
fields impacts classical results on linear propagation and non-linear interactions in internal wave
studies, with a clear link to oceanic applications.
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This manuscript is divided in five parts:

• Internal Waves: From Theory and Experiments to Real-World
The first part gives a broad introduction to internal waves. Chapter 1 presents the physics
of density stratified and rotating fluids, and the theory of inertia-gravity waves in Cartesian,
axisymmetric, and cylindrical geometry. In the following chapter 2, the experimental setup
and methods are detailed. This chapter, notably, describes the wave generator used to
produce axisymmetric wave fields in the laboratory. Then, in chapter 3, we discuss the
relevance of internal waves in geophysical fluids, more particularly the atmosphere and the
oceans, and we explain the importance of studying such phenomena in oceanography and for
climate dynamics. This part led to the publication of a pedagogical article:
[30] S. Boury, S. Joubaud, and M. Le Bars. Pourquoi les meddies existent-ils ? Bulletin de
l’Union des Physiciens, 2020.

• Axisymmetric Waves in the Linear Regime
The second part deals with axisymmetric waves in the linear regime, meaning that the wave
equations we consider are all linearised. The simplest case of uniform density stratification
without rotation is presented in chapter 4, in which modes (radial standing wave fields)
propagating downwards are analytically described and experimentally observed, as well as
the effect of confinement. Chapter 5 then presents the case of two-layer stratifications with
a buoyancy frequency interface, at which the wave can be transmitted and reflected. This
study was extended to the case of real-world stratifications in the Arctic to investigate the
amount of energy transmitted from the surface of the ocean to the deep abyss. Finally,
chapter 6 presents preliminary results on internal wave tunneling in the case of three-layer
stratifications with an intermediate layer at constant density. These works led to two articles,
plus two in preparation:
[33] S. Boury, T. Peacock, and P. Odier. Excitation and resonant enhancement of axisym-
metric internal wave modes. Physical Review Fluids, 4 : 034802, 2019.
[32] S. Boury, P. Odier, and T. Peacock. Axisymmetric internal wave transmission and
resonance in non-linear stratifications. Journal of Fluid Mechanics, 886 : A8, 2020.
[105] C. Jeon, S. Boury, T. Peacock, J.-H. Park, and K.-H. Cho. Observation of spatial and
temporal variability of deep near-inertial waves in the western Arctic Ocean. Geophysical
Research Letters, in preparation.
[37] S. Boury, B.R. Sutherland, P. Odier, and T. Peacock. Axisymmetric internal wave
tunneling. Physical Review Fluids, in preparation.

• Non-Linear Effects and Axisymmetry Breaking
The third part delves further into the non-linear contributions of the internal wave equa-
tions that were left aside in the previous part. The generation of super-harmonics and of
sub-harmonics is explored in chapter 7, with the possibility of self-interaction in linear strat-
ification and the impact of the geometry on the non-linear equations. Chapter 8 presents an
experimental realisation of an axisymmetric inertial wave attractor, in unstratified rotating
fluid, that goes unstable and whose non-linearities result in the creation of vertical vortices
and in axisymmetry breaking. These works will lead to three articles:
[34] S. Boury, T. Peacock, and P. Odier. Experimental self-generation of axisymmetric in-
ternal wave super-harmonics. Physical Review Fluids, in preparation.
[31] S. Boury, P. Maurer, S. Joubaud, T. Peacock, and P. Odier. Triadic resonant insta-
bility in confined and unconfined axisymmetric geometries. Journal of Fluid Mechanics, in
preparation.
[36] S. Boury, I. Sibgatullin, E. Ermanyuk, N. Shmakova, P. Odier, S. Joubaud, and T.
Dauxois. Vortex cluster arising from an axisymmetric wave attractor. Journal of Fluid
Mechanics, in preparation.
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• Energy and Buoyancy Transport in the Arctic: A Case Study
Although indirectly related to internal wave studies, the fourth part describes work under-
taken within the Stratified Ocean Dynamics of the Arctic (SODA) research campaign, in
which I took part in September 2018. Motivated by the increasingly rapid warming of the
Arctic Ocean, the project consisted of deploying five SOLO floats as quasi-Lagrangian par-
ticles in the core of a newly discovered current, the Chukchi Slope Current, to track its
trajectory and provide insights on the transport of heat and nutrients in the cold Arctic
waters. Chapter 9 corresponds to the following article:
[35] S. Boury, R.S. Pickart, P. Odier, P. Lin, M. Li, E.C. Fine, H.L. Simmons, J.A. MacKin-
non, and T. Peacock. Whither the Chukchi Slope Current? Journal of Physical Oceanogra-
phy, 50 : 1717–1732, 2020.

• Conclusion
The fifth part presents our conclusions and discussion on this thesis work and its implications
on the transport of energy and buoyancy in the oceans by inertia-gravity waves. Perspectives
for further studies are also presented.
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Part I

Internal Waves: From Theory
and Experiments to Real-World

15





CHAPTER 1

Theory of Internal Inertia-Gravity Waves

Et comme un éclatant abrégé des saisons,
Mon cœur découvre en soi tropiques et banquises

Voyageant d’̂ıle en cap et de port en surprise
Il démêle un écheveau d’horizons.

Jules Supervielle, Débarcadères.

As any geophysical fluid, the oceans are suitable media for the propagation of particular waves
called internal waves, which have both the properties of gravity waves and inertial waves.

The first ones result from the existence of a vertical anisotropy within the fluid: its density
ρ varies either with altitude, as in the atmosphere, or with depth, as in oceans and lakes [171,
220]. Several origins of such stratifications can be found, the most important being the varying
temperature T and salinity S, the density being a function of T and S. As an example, water is
usually far more salty and colder in the deep regions of the oceans than it is close to the surface, so
that deep oceanic water has the highest density. This property of the fluid allows the propagation
of gravity waves thanks to an oscillatory mechanism involving variations of density and restoring
forces due to gravity, namely the weight and the Archimedes forces.

The second type of waves is a direct consequence of the intrinsic rotation of geophysical fluids,
which is the Earth rotation in the case of the atmosphere and the oceans. In order to take this
phenomenon into account, a pseudo-force is introduced in the Navier-Stokes equations, known
as the Coriolis force, that leads to a horizontal stratification of angular momentum allowing the
propagation of oscillatory movements within the fluid. These motions are called inertial waves.

This chapter derives the fundamentals of internal inertia-gravity waves theory, starting from the
description of the physics of a rotating stratified fluid in section 1.1 to explain the two oscillatory
phenomena due to gravity and inertia. In section 1.2 we derive the mathematical framework
for 2D internal waves in Cartesian geometry, with a translation invariance along the transverse
direction. This analytical derivation is extended in section 1.3 to axisymmetric geometry, which
means in cylindrical coordinates with an invariance by rotation around a symmetry axis. To take
into account the inherent 3D effects, the rotation invariance is relaxed in section 1.4 to consider
fully 3D cylindrical wave fields.

1.1 Physics of a Rotating Stratified Fluid
This section explains how density stratification and rotation help support wave propagation in geo-
physical fluids thanks to theoretical considerations. For further reading, experimental illustrations
of rotating stratified fluid physics can be found in Boury et al. [30].

17



18 CHAPTER 1. THEORY OF INTERNAL INERTIA-GRAVITY WAVES

1.1.1 Physics of a Stratified Fluid
To begin with, we consider a density stratified fluid. This homogeneous medium presents an
anisotropy along the vertical direction, associated to the vertical ascendant z-axis, meaning that
its density ρ is a function of z, noted ρ(z).

In a static mechanical equilibrium, the balance between gravity and pressure forces leads to
the hydrostatic equation

∂p

∂z
= −ρ̄(z)g, (1.1)

where p is the pressure within the fluid, g the gravity acceleration, and ρ̄ the local density at
equilibrium, called background density.

We now consider an elementary volume of fluid located at z = zυ that is assumed to be small
enough to be considered of uniform density. At rest, the parcel of fluid has the same density ρυ as
the background density, ρυ = ρ̄(zυ). To provide some details on the dynamics of such a particle
when moved at an altitude z, a classical mechanics approach can be used. This particle undergoes
a downward gravity force which is, per unit of volume, proportional to its density

P = −ρυgez, (1.2)

and an upward Archimedes force, representing the fluid displaced, proportional to the background
density taken at the particle’s position

Π = ρ̄(z)gez, (1.3)

two vertically-oriented forces whose sum R can be written as

R = (ρ̄(z)− ρυ)gez. (1.4)

Equation (1.4) shows that the overall force points upwards if the system is surrounded by lighter
fluid, and downwards if it is surrounded by heavier fluid, when neglecting all diffusive effects so
that the fluid particle remains at constant density ρυ. At rest, z = zν and, by definition, R = 0
so that the particle’s weight and the Archimedes force exaclty balance each other. As a result,
moving the particle along the vertical axis will change the reaction force R, that draws the particle
back to its equilibrium position z = zυ, starting an oscillatory movement.

In a more quantitative way, according to Newton’s law, the vertical dynamics is given by

ρυ
d2z

dt2 = (ρ̄(z)− ρυ)g. (1.5)

Considering a small displacement δz of the fluid particle along the vertical axis, equation (1.5)
leads to the following development at the lowest non-trivial order

d2δz

dt2 = g

ρυ
(ρ̄(zυ + δz)− ρυ), (1.6)

= g

ρυ

∂ρ̄

∂z

∣∣∣∣
z=zυ

δz +O(δz2), (1.7)

= −N2(zυ)δz +O(δz2). (1.8)

Hence, at order O(δz), equation (1.8) describes a harmonic oscillator of pulsation N , called buoy-
ancy or Brünt-Väisälä frequency, and defined by

N(zυ) =
√
− g

ρ̄(zυ)
∂ρ̄

∂z

∣∣∣∣
zυ

. (1.9)

Note that N is only defined for stratifications with a negative vertical density gradient, which
means fluids in which ρ decreases with altitude, so that N2 ≥ 0. Such a gradient is often given as
a stability condition for the fluid, though opposite gradients can exist locally and trigger mixing
events (see, e.g., the case of Kelvin-Helmholtz billows [230]). In the limit case of an unstratified
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z

zυ t

ρ < ρυ

ρ > ρυ

R

R

Figure 1.1: Oscillating movement due to the balance of weight and Archimedes response, acting
as a restoring force. The resultant R is pointing upwards or downwards if the surrounding fluid is
heavier (ρ > ρυ) or lighter (ρ < ρυ), leading to an harmonic vertical displacement.

homogeneous fluid, there is no gradient of density and N = 0, preventing this oscillatory motion
from existing.

This restoring force leads to an oscillatory system depicted in figure 1.1 and is a key mechanism
of wave propagation in stratified fluids. When lifted above its rest position, the fluid particle
undergoes a downward force and, conversely, when pushed below its rest position, the fluid particle
undergoes an upward force. In both cases, the restoring force R, also called buoyancy, draws the
particle back to its equilibrium position. As this phenomenon is induced by gravity, through weight
and Archimedes forces, these waves are named gravity waves.

1.1.2 Physics of a Rotating Fluid
To investigate the effect of a rotation on the fluid dynamics, we consider an ideal situation by
assuming that the whole fluid is in constant and uniform solid rotation characterized by the rotating
vector Ω = Ωez. In this subsection, to avoid misleading notations, the distinction between the
different frames will be enhanced by using L and R indices to refer to the quantities respectively
expressed in the laboratory frame (L) and in the rotating frame (R).

For purpose of simplifying the discussion, we focus on a small horizontal ring-shaped fluid
particle centred on the rotation axis. In the rotating frame, this fluid particle undergoes the
inertial Coriolis force

C = −2Ωez × vR, (1.10)

which is null when vR = 0 (meaning that the particle is at rest in the rotating frame), though the
solid rotation imposes vL = rυΩeθ in the laboratory frame.

The general expression of vR for a particle located in r = rer is given by the following expression

vR = dr
dt = ∂r

∂t
er + r

∂θ

∂t
eθ = ∂r

∂t
er + rΩR(r)eθ, (1.11)

where ΩR(r) = (ΩL(r)− Ω) is the particle rotation as a function of r. Considering a small radial
displacement δr around the equilibrium position r = rυ, the velocity vR is modified as

vR = ∂(rυ + δr)
∂t

er + (rυ + δr)ΩR(rυ + δr)eθ, (1.12)

and is no longer equal to zero. To give an approximation of the eθ term we recall that, in the
laboratory frame, the angular momentum is conserved

r2
υΩL(rυ) = (rυ + δr)2ΩL(rυ + δr), (1.13)

which means that at order O(δr2) the angular velocity can be approximated by

ΩL(rυ + δr) = ΩL(rυ)
(

1− 2δr
rυ

)
+O(δr2). (1.14)
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As the particle is initially in rotation with the fluid, the angular velocity satisfies ΩL(rυ) = Ω,
leading to the following development

ΩR(rυ + δr) = ΩL(rυ + δr)− Ω = −2Ωδr
rυ

+O(δr2). (1.15)

Using Newton’s law, the radial dynamics of the particle writes at the lowest order in δr

d2δr

dt2 = (−2Ωez × vR) · er, (1.16)

= −2Ωez ×
(
∂δr

∂t
er − 2δrΩeθ

)
· er +O(δr2), (1.17)

= −4Ω2δr +O(δr2), (1.18)
= −f2δr +O(δr2). (1.19)

At order O(δr2), equation (1.19) describes a harmonic oscillator, meaning that the fluid particle
oscillates along the radial direction at the Coriolis frequency f = 2Ω. The elementary ring of fluid,
after being expanded, contracts towards its original radius and, conversely, after being contracted,
expanses in the opposite way.

x

y

Laboratory frame

rυ

x

y

Ω

Rotating frame

Figure 1.2: Oscillating movement induced by the Coriolis force. In the rotating frame (bot-
tom), the action of this force is either centrifugal while the ring-shaped particle is contracting,
or centripetal while it is dilating, leading to a harmonic horizontal displacement. Adapted from
Maurer [140].

The inertial Coriolis force acts as a restoring force, driving an oscillatory system as shown in fig-
ure 1.2. Within geophysical fluids, submitted to rotation, this mechanism leads to the propagation
of inertial waves.

As a result, a combination of the two restoring forces discussed in this section leads to waves
that propagates thanks to gravity and inertia. They are called inertia-gravity waves or internal
waves1, the adjective internal being used to distinguish these waves propagating within the fluid
from surface (or interfacial) waves that can also be driven by gravity forces.

1From now, except when explicitly stated in the text, inertia-gravity waves and internal waves are to be under-
stood with a synonymous meaning.
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1.2 Cartesian Internal Waves
In the previous section we focused on two properties of geophysical fluids, showing that they both
induce harmonic oscillatory movements in response to small spatial perturbations. In this section,
we derive the general theory to describe internal wave propagation in a Cartesian framework.

1.2.1 General Equations
We consider, in a Cartesian domain (ex, ey, ez), a stably stratified fluid in solid rotation at an
angular velocity Ω = f/2, with a density ρ that is a function of the depth z. The dynamics of such
a flow is governed by the Navier-Stokes equation

ρ0

(
∂v
∂t

+ (v · ∇)v
)

= −ρ0fez × v−∇p− (ρ− ρ̄)gez + ρ0ν∆v, (1.20)

the volume conservation for an incompressible fluid2

∇ · v = 0, (1.21)

and the mass conservation, which takes into account the density perturbations

∂ρ

∂t
+ v · ∇ρ = κ∆ρ, (1.22)

where v = (vx, vy, vz) and p are the velocity and the pressure fields, ν stands for the kinematic
viscosity of the fluid, κ for the diffusive coefficient of the stratifying agent. The total density field
ρ(x, y, z, t) = ρ̄(z) + ρ′(x, y, z, t) is expressed as a sum of the background density ρ̄(z) and of a
small perturbation ρ′(x, y, z, t). As the density variations are small in comparison with the mean
density ρ0 in the fluid column, the Boussinesq approximation allows us to consider ρ ≈ ρ0, which is
a constant, in all equations except for the buoyancy term, as written above [211, 254]. As a result,
the system forms a set of five equations for five unknown quantities: the velocity v, the pressure
p, and the density fluctuation ρ′.

To simplify the study, we assume that the flow is y-independent. Note that such an invariance
does not mean that the velocity has no component along the y direction, which intervenes in the
expression of the Coriolis force. Using the volume conservation equation (1.21), we introduce the
stream function ψ and the stream function vector Ψ = (0, 0, ψ) such that3

v = ∇×Ψ + vyey, (1.23)

with
vx = −∂ψ

∂z
and vz = ∂ψ

∂x
, (1.24)

allowing us to rewrite equations (1.20) and (1.22) as the following system

∂2
tzψ + J (ψ, ∂zψ) = −fvy + 1

ρ0
∂xp+ ν∆∂zψ, (1.25)

∂tvy + J (ψ, vy) = f∂zψ + ν∆vy, (1.26)

∂2
txψ + J (ψ, ∂xψ) = − 1

ρ0
∂zp− g

ρ′

ρ0
+ ν∆∂xψ, (1.27)

∂tρ
′ + J (ψ, ρ′) = −∂z ρ̄∂xψ + κ∆ρ′, (1.28)

where J is the Jacobian defined as

J (f, g) = ∂f

∂x

∂g

∂z
− ∂f

∂z

∂g

∂x
. (1.29)

2Compressibility introduces slight changes in the equations and is necessary in order to describe atmospheric
internal waves, as well as for acoustic waves [220].

3The stream function can be defined though the flow is not 2D, as it relies on the translation invariance.
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Note that the derivatives are written using the convention ∂jf = ∂f/∂j, where j is a mute variable.
As the fluid is stratified, based on results from the previous section, we introduce the buoyancy

b and the Brunt-Väisälä frequency N(z) to describe its dynamics

b = −g ρ
′

ρ0
and N(z) =

√
− g

ρ0

∂ρ̄

∂z

∣∣∣∣
z

. (1.30)

The buoyancy b can be interpreted as the norm of the vertical restoring force per unit mass of the
stratified fluid, driving the vertical wave dynamics.

Through the use of cross-derivatives ∂z(1.25)+∂x(1.27), the pressure term can be eliminated
from equations (1.25) to (1.28) so that the system reduces to

∂t∆ψ + J (ψ,∆ψ) = −f∂zvy + ∂xb+ ν∆(∆ψ), (1.31)
∂tvy + J (ψ, vy) = f∂zψ + ν∆vy, (1.32)
∂tb+ J (ψ, b) = −N2(z)∂xψ + κ∆b. (1.33)

1.2.2 Linear Theory and Dispersion Relation
We consider small amplitude waves for which non-linear interactions can be neglected, which means
that the Jacobians J are equal to zero. Under this assumption, the linearised equations obtained
from (1.31), (1.32), and (1.33), write

∂t∆ψ = −f∂zvy + ∂xb+ ν∆(∆ψ), (1.34)
∂tvy = f∂zψ + ν∆vy, (1.35)
∂tb = −N2(z)∂xψ + κ∆b. (1.36)

Looking for a solution as a monochromatic plane wave like ψ = ψ0e
i(ωt−k·r) (and the same for b

and vy) with a wave number k = (l, 0,m) = k(sin β, 0, cosβ), we derive from equations (1.34) to
(1.36) the matrix equation



−k2(iω + νk2) −ifm il

ifm (iω + νk2) 0
−iN2l 0 (iω + κk2)





ψ
vy
b


 =




0
0
0


 , (1.37)

that admits a non-trivial solution if and only if its determinant is equal to zero. This condition
gives the dispersion relation

−k2(iω + νk2)2(iω + κk2)−N2l2(iω + νk2)− f2m2(iω + κk2) = 0. (1.38)

The frequency ω and the wave number k are therefore linked through a relation involving four
parameters: the Coriolis frequency f , the buoyancy frequency N , the kinematic viscosity ν, and
the diffusive coefficient κ. The role and importance of each contribution in the propagation of the
waves will now be discussed.

Inviscid Dispersion Relation in a Stratified Rotating Fluid

For an inviscid (ν = 0) and non-diffusive (κ = 0) fluid, the dispersion relation (1.38) becomes

k2ω2 = N2l2 + f2m2. (1.39)

Due to the y-invariance, the wave vector k is in the vertical plane (ex, ez), and can be expressed
in terms of its amplitude k and an angle β with the vertical axis, giving its direction such as
k = (l, 0,m) = k(sin β, 0, cosβ). Using this notation, equation (1.39) can be written as a constraint
on the propagation angle β

ω2 = N2 sin2 β + f2 cos2 β. (1.40)

This relation (1.40) is illustrated in the series of plots presented in figure 1.3 using polar plots of
ω as a function of the wave vector angle β. Each angle is associated to a unique frequency ω on
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N = 1 & f = 0 N = 1 & f = 0.5

ω

β

N = 1 & f = 1 N = 0.5 & f = 1 N = 0 & f = 1

Figure 1.3: Dispersion relation (1.40) plotted in the (ω, β) polar plane, for dimensionless param-
eters N and f : to each angle β corresponds a unique frequency ω given by the blue curve.

the blue curve, but we note that a given value of ω is associated to different angles β. In the case
N = f , a unique degenerated value of ω is allowed, equal to f and N , and valid for all angles.
This schematic illustrates the symmetry between N and f , as the plots are rotated by 90◦ between
gravity (f = 0) and inertial (N = 0) waves, transiting through the particular case N = f .

Using trigonometric identities, the angle β can be expressed from (1.40) as a function of the
frequencies involved in the problem, ω, N , and f , as

sin β = ±
√
ω2 − f2

N2 − f2 . (1.41)

Equation (1.39) shows that for a same excitation ω correspond four different directions: (l, 0,m),
(−l, 0,m), (l, 0,−m), and (−l, 0,−m). Moreover, equation (1.40) limits the allowed values of ω to
either f < ω < N or N < ω < f . The propagating angle can be determined thanks to equation
(1.41), leading to two different cases as depicted in figure 1.4. When considering the well-known
experimental apparatus of a vertically oscillating cylinder in a 2D salt-stratified fluid, the excited
wave beams align according to the angle β and form a St. Andrew’s cross as shown, for example,
in Mowbray and Rarity [155] and Ermanyuk and Gavrilov [75], and as drawn in the schematic
figure 1.4.
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Figure 1.4: Schematic view of the four directions of propagations created at the same excitation
frequency ω, in the case (a) f < ω < N , and (b) N < ω < f . Parallel blue lines are sections of the
wave isophases planes. Adapted from Maurer [140].

The phase and group velocities can be computed from the dispersion relation (1.39). The phase
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velocity is obtained by determining the propagating velocity of the phase in the exponential term

vφ = ω

k2 k (1.42)

=
√
N2l2 + f2m2 k

k2 , (1.43)

and the group velocity by differentiating ω in respect with k

vg = ml

ωk4 (N2 − f2)(mex − lez). (1.44)

Note that the phase and group velocities are orthogonal (vφ · vg = 0 as k · vg = 0). While true in
the case of wave beams, this observation is not valid anymore when considering standing waves4

obtained in confined domains. For example, Mercier et al. [148] have shown in an experimental
2D study that, for horizontally propagating vertical modes, the group and the phase velocities
are aligned with the horizontal axis and are of same direction. Conversely, we have shown that
for radial modes in a 3D axisymmetric setup and, by extension, vertically propagating horizontal
modes in Cartesian geometry, these two velocities are aligned with the vertical axis and are of
opposite direction [33].

Inviscid Fluid and Viscous Correction

In a viscous fluid, the relation (1.38) is slightly modified and, still considering that the fluid is
non-diffusive (κ = 0), the dispersion relation now writes

k2(iω + νk2)2iω +N2l2(iω + νk2) + f2m2iω = 0, (1.45)

or, in another form

k2ω2 = N2l2 + f2m2 + iν

(
2ωk4 − N2l2k2

ω

)
+ ν2k6. (1.46)

This equation shows that the viscosity adds to equation (1.38) several terms proportional to ν or
ν2. To investigate their role in the propagation of internal waves, we use a development of ω to
the first order of a small viscous parameter ε = νk2/N [42, 140]

ω = ω(0) + εω(1) +O(ε2). (1.47)

From (1.46), the following correction can be deduced

εω(1) = iεk2
(

1− N2

2ω2

(
ω2 − f2

N2 − f2

))
+O(ε2). (1.48)

As ω(1) is purely imaginary, the first order effect of viscosity is to add an attenuating term in
the plane wave formulation proposed before. Note that the higher the wave number k, the more
important the attenuation is. Another method to take into account the viscous correction, in the
particular case of modes discussed in chapter 4, is to expand the vertical wave number m instead
of the frequency ω [32, 35, 110].

Diffusive Effects

The diffusive effects are taken into account through the diffusive coefficient of the stratifying agent,
κ. The complete dispersion relation writes

k2(iω + νk2)2(iω + κk2) +N2l2(iω + νk2) + f2m2(iω + κk2) = 0, (1.49)

which leads to

k2ω2 = N2l2 + f2m2 + ν

(
2ik4ω +N2l2

(1− κ/ν)k2

(iω + κk2)

)
+ ν2k6. (1.50)

4In this manuscript, we make indifferent use of the terms standing wave and mode.
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Assuming that the diffusive correction would be small, a low order development gives

k2ω2 = N2l2 + f2m2 + iν

(
2k4ω −N2l2

(1− κ/ν)k2

ω

)
+ ν2k6. (1.51)

The dispersion relation (1.51) enhances a characteristic number in fluid mechanics, Sc, the Schmidt
number Sc = ν/κ, comparing the viscous effects with the diffusive ones. For salt water, the value
Sc ≈ 700 allows to neglect the diffusive contribution so that the wave propagation is once again
governed by (1.46), relation for a non-diffusive fluid. Though diffusive effects have relevance in the
oceans to describe double diffusive systems, we will only focus on non-diffusive internal waves in
the course of this thesis.

1.3 Axisymmetric Internal Waves
Adding rotation imposes a natural geometry for the system which is cylindrical. Thus, we are
interested in the derivation of similar equations in an axisymmetric framework of unit vectors
(er, eθ, ez). To simplify the study, the fluid is considered to be inviscid (ν = 0) and non-diffusive
(κ = 0), as these corrections can be added in a similar way as in Cartesian geometry. The whole
system is assumed to be in solid rotation at an angular velocity Ω = f/2.

In this section, we derive the equations for axisymmetric internal waves. For us, and during
this entire manuscript, axisymmetric is synonym of θ-independence. As we will see this is a strong
assumption that may not be entirely satisfied by the wave fields. Equations for cylindrical internal
waves, for which we allow an angular dependence, will be discussed in the next section 1.4.

1.3.1 Stream Function Equation
As in Cartesian coordinates, in a cylindrical geometry the fluid dynamics is still given by the
Navier-Stokes equation (1.20), the volume conservation (1.21), and the mass conservation (1.22),
linking the density ρ to the velocity and pressure fields v and p, except that all vectorial quantities
are now defined in cylindrical coordinates such as v = (vr, vθ, vz).

We assume that the problem is axisymmetric, which means that the functions are θ-independent
and only depend on r and z. Such an assumption is equivalent to the y-independence hypothesis
set in the Cartesian framework in section 1.2, and does not mean that the orthoradial velocity vθ
is null. Very similarly to the Cartesian case, the volume conservation equation allows us to define
the stream function ψ associated to a vector Ψ = ψeθ such as5

v = ∇×Ψ + vθeθ. (1.52)

Thus, in the rotating frame, the radial and vertical velocities are given by6

vr = −1
r

∂(rψ)
∂z

and vz = 1
r

∂(rψ)
∂r

. (1.53)

Equations (1.20) and (1.22) then rewrite

∂t

(
1
r
∂z(rψ)

)
+ 1
r
J�

(
rψ,

1
r
∂z(rψ)

)
+ v2

θ

r
= −fvθ + 1

ρ̄
∂rp, (1.54)

∂tvθ + 1
r2J

�(rψ, rvθ) = f∂zψ, (1.55)

∂t

(
1
r
∂r(rψ)

)
+ 1
r
J�

(
rψ,

1
r
∂r(rψ)

)
= −1

ρ̄
∂zp+ b, (1.56)

∂tb+ 1
r
J�(rψ, b) = −N2(z)1

r
∂r(rψ), (1.57)

5The stream function is defined as a vectorial quantity. Though in the Cartesian framework it does not matter
whether we are considering the vectorial or the scalar quantity, this is different in the axisymmetric case.

6Though the radial velocity vr can be written as vr = −∂zψ, we will prefer this equivalent form as it is symmetric
with the expression of the vertical velocity vz .
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where the cylindrical Jacobian7 is defined by

J�(f, g) = ∂f

∂r

∂g

∂z
− ∂g

∂r

∂f

∂z
. (1.58)

Once again, the pressure term is eliminated by adding ∂r(1.54) and ∂z(1.56). A non-trivial
calculus leads to the following system

∂t∆hψ + J�
(
rψ,

∆hψ

r

)
= −

(
2vθ
r

+ f

)
∂zvθ + ∂rb, (1.59)

∂tvθ + 1
r2J

�(rψ, rvθ) = f∂zψ, (1.60)

∂tb+ 1
r
J�(rψ, b) = −N2 1

r
∂r(rψ), (1.61)

with ∆h the azimuthal Laplacian

∆hψ = ∂2ψ

∂z2 + ∂

∂r

(
1
r

∂(rψ)
∂r

)
, (1.62)

= ∂2ψ

∂z2 + ∂2ψ

∂r2 + 1
r

∂ψ

∂r
− ψ

r2 . (1.63)

Contrary to the Cartesian system of equations (1.31), (1.31), and (1.31), non-linearities not only
come from the cylindrical Jacobians J� (equivalent to the Cartesian Jacobians J ), but also from
a self-interacting azimuthal term vθ∂zvθ in equation (1.59).

1.3.2 Linear Theory and Dispersion Relation
Considering waves at low amplitudes, the problem can be first studied without taking into account
the non-linear terms, reducing the system to

∂t∆hψ = −f∂zvθ + ∂rb, (1.64)
∂tvθ = f∂zψ, (1.65)

∂tb = −N2 1
r
∂r(rψ). (1.66)

This system is now very similar to equations (1.34), (1.35), and (1.36), in the inviscid and non-
diffusive limit. Solutions were previously found by considering plane waves, motivated by the
use of Fourier transform on the different equations. Whereas the natural basis in the Cartesian
framework is the exponential series, the use of the cylindrical framework leads to consider the
basis drawn from the Bessel functions Jn8 that appear through a Hankel transform and which are

7The operator J� is the equivalent in axisymmetric coordinates of the Cartesian Jacobian J . Calculations with
the cylindrical Jacobian quickly become tricky. By chance, some properties can be used like the antisymmetry of
the operator

J�(f, g) = −J�(g, f),
its bi-linearity

J�(f + g, h) = J�(f, h) + J�(g, h),
and its distributivity

J�(fg, h) = gJ�(f, h) + fJ�(g, h).

8We recall the general properties of the Bessel functions. The Jn functions are defined as the orthogonal basis
in axisymmetric coordinates for the solutions of the Bessel differential equation

r2 d2f

dr2 + r
df
dr

+ (r2 − n2)f = 0.

Among the mathematical properties of theses functions, we note the recurrence relation

Jn+1(r) =
nJn(r)
r

−
dJn(r)

dr
,

giving us

J1(r) = −
dJ0(r)

dr
and

drnJn(r)
dr

= rnJn−1(r).



1.3. AXISYMMETRIC INTERNAL WAVES 27

natural solutions of the cylindrical Laplacian for the radial dependence (see Appendix C). Thus,
assuming that ψ is a harmonic solution given by a product of a first order Bessel function J1 that
describes the standing wave field structure along the radial direction, and of a monochromatic
plane wave propagating along z, the following expression

ψ(r, z, t) = ψ0J1(lr)ei(ωt−mz) + c.c., (1.67)

is a good ansatz. Note that it respects the condition ψ(r = 0) = 0 imposed by the mass conserva-
tion, avoiding radial velocity at the center of the domain. With the use of a Bessel function of first
order via its definition through a differential equation, the azimuthal Laplacian operator simply
reduces to

∆hψ = −(l2 +m2)ψ = −k2ψ. (1.68)
As a consequence, we derive from the linear equations the following expressions for the stream

function ψ, the orthoradial velocity vθ, and the buoyancy b

ψ(r, z, t) = ψ0J1(lr)ei(ωt−mz) + c.c., (1.69)

vθ(r, z, t) = −fm
ω
ψ0J1(lr)ei(ωt−mz) + c.c., (1.70)

b(r, z, t) = i
lN2

ω
ψ0J0(lr)ei(ωt−mz) + c.c., (1.71)

where J0 and J1 are respectively the first order Bessel functions of degree 0 and 1, as pictured in
figure 1.5(a). Other solutions, the second order Bessel functions Y0 and Y1 (figure 1.5(b)), also
called Neumann functions, are not considered due to their divergence when r goes to zero. Both
the Jn and the Yn functions are real and can be used to describe standing wave fields, as will
be discussed in chapter 4. Other complex solutions called Hankel functions, H(1)

n and H
(2)
n , can

be used to describe wave fields propagating inwards or outwards. They are defined by a linear
combination of Jn and Yn as

H(1)
n = Jn + iYn, (1.72)

H(2)
n = Jn − iYn, (1.73)

with the same divergence at r = 0.
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Figure 1.5: Natural solutions of the Bessel differential equation of orders 0 and 1.

The dispersion relation can be derived by introducing a 2D wave vector k contained in the
vertical plane, k = (l, 0,m) = k(sin β, 0, cosβ) of squared magnitude k2 = l2 +m2. From equations
The orthogonality of the Bessel functions is characterized by the relation

∫ 1

0
rJn(λr)Jn(µr)dr =

δ(λ− µ)
2

(
J ′n(λ)

)2
,

where λ and µ are two zeros of the function Jn.



28 CHAPTER 1. THEORY OF INTERNAL INERTIA-GRAVITY WAVES

(1.59), (1.60), and (1.61), it follows that

k2ω2 = N2l2 + f2m2. (1.74)

Using the angle β, this relation can be written as

ω2 = N2 sin2 β + f2 cos2 β, (1.75)

from which the angle β can be extracted

sin β = ±
√
ω2 − f2

N2 − f2 , (1.76)

exactly as in Cartesian geometry.
The derivation of the stream function and velocities for axisymmetric modes, as well as their

study, will be done in some more details in chapter 4. For additional mathematical information on
the Bessel functions, see Appendix C and the NIST Handbook of Mathematical Functions [163].

1.4 Cylindrical Internal Waves
The derivation of the axisymmetric theory in section 1.3 relies on the strong assumption of a θ-
independent flow. Such an invariance prevents waves of higher complexity from existing, and is
not always true. In this section, we relax this assumption and we derive a more general framework
of fully 3D cylindrical internal waves.

1.4.1 Vorticity Equation
In sections 1.2 and 1.3, the wave equation has been derived using the stream function ψ. As we
already mentioned, the existence of a stream function relies on an invariance with respect to one of
the spatial coordinates, which allows for the definition of a potential, the stream function, to solve
the continuity equation ∇ · v = 0. As there is no invariance in the problem we are now discussing,
no stream function can be used. Instead, we introduce the vorticity ξ as

ξ = ∇× v. (1.77)

This vectorial quantity characterises the propensity of the fluid to follow a rotational movement.
For clarity, we recall the system of equation (1.20), (1.21), and (1.22), in terms of the velocity

and buoyancy fields v and b = bez as follow

∂tv + (v · ∇)v = −fez × v− 1
ρ0
∇p+ b, (1.78)

∂tb + (v · ∇)b = −N2vzez, (1.79)
∇ · v = 0. (1.80)

The pressure term ∇p can be eliminated by taking the curl of equation (1.78) and, after some
algebra, we obtain

∂tξ +∇× [(v · ∇)v] = f∂zv +∇× (bez). (1.81)
Equations (1.79) and (1.81) collapse together using the time derivative of (1.81) and the curl of
(1.79), leading to

∂2
t ξ +N (v,b) = f∂t∂zv−N2∇× (vzez), (1.82)

with the non-linear terms

N (v,b) = ∇× [∂t ((v · ∇)v) + (v · ∇)b] . (1.83)

Then, the curl of (1.83) allows us to write the non-linear equation for vorticity

∂2
t∇× ξ +∇×N (v,b) = f∂t∂zξ −N2∇× [∇× (vzez)] . (1.84)



1.4. CYLINDRICAL INTERNAL WAVES 29

1.4.2 Linear Theory
We first consider low amplitude waves, for which non-linear effects can be neglected. Hence, the
linearised equations are obtained by setting the non-linear term N to zero, leading to the time
evolution equation

∂2
t∇× ξ = f∂t∂zξ −N2∇× [∇× (vzez)] . (1.85)

Using the volume conservation equation ∇ · v = 0, the curl of the vorticity simply writes in terms
of the Laplacian of the velocity. Equation (1.85) writes

∂2
t ∆�v = −f∂t∂zξ +N2∇× [∇× (vzez)] , (1.86)

in terms of the velocities vr, vθ, and vz. We recall that the vectorial cylindrical Laplacian ∆� is
defined involving a coupling between the radial and orthoradial velocities vr and vθ as

∆�v =




∆vr − 1
r2 (vr + 2∂θvθ)

∆vθ − 1
r2 (vθ − 2∂θvr)

∆vz


 , (1.87)

with the cylindrical Laplacian

∆v = 1
r
∂r (r∂rv) + 1

r2 ∂
2
θv + ∂2

zv. (1.88)

From equation (1.86) we obtain an uncoupled equation on the vertical velocity

∂2
t ∆vz + f2∂2

zvz +N2
(

1
r
∂r(r∂rvz) + 1

r2 ∂
2
θvz

)
= 0, (1.89)

and two coupled equations on the radial and orthoradial velocities

∂2
t ∆vr −

1
r2 ∂

2
t (vr + 2∂θvθ) + f∂t∂z

(
1
r
∂θvz − ∂zvθ

)
−N2∂r∂zvz = 0, (1.90)

and
∂2
t ∆vθ −

1
r2 ∂

2
t (vθ − 2∂θvr) + f∂t∂z (∂zvr − ∂rvz)−N2 1

r
∂θ∂zvz = 0. (1.91)

As a result, it appears that the problem can be solved by first studying the behaviour of the vertical
velocity field and then, considering the horizontal velocity field.

1.4.3 Canonical Cylindrical Modes
Vertical Velocity

Solutions of equation (1.89) can be found by extension of the axisymmetric solution derived for the
vertical velocity in section 1.3 using a separation of variables method. Introducing an azimuthal
wave number p ∈ N, we verify that

vz(r, θ, z, t) = v0
zJp(lr)ei(ωt−mz−pθ) + c.c., (1.92)

satisfies equation (1.89), where the wave numbers l and m are linked through the following disper-
sion relation

ω2(l2 +m2) = f2m2 +N2l2. (1.93)

This equation suggests that the influence of the rotation, characterised by the Coriolis frequency
f , is contained in the vertical structure with the vertical wave number m, whereas the influence of
the salt stratification, via the Brunt-Väisälä frequency N , is displayed in the horizontal structure
with the radial wave number l. This is similar to 2D Cartesian and 3D axisymmetric studies, and
we note that there is no direct influence of the azimuthal number p on the dispersion relation.
Nevertheless, at a given l, the nodes and antinodes of the vertical velocity are shifted in the
horizontal plane as p varies, which means that to satisfy relevant boundary conditions, l and p
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have to be set accordingly. Note that for p = 0 the structure of the velocity field is axisymmetric,
and the expression of vz is the same as derived in section 1.3.

Figure 1.6 presents horizontal cross-sections of the unconstraint vertical velocity vz, to illustrate
the radial and azimuthal structure of the first cylindrical modes. We set l = 51 m−1 (corresponding
to a mode 3 in our experiments, as will be shown in chapter 4) and p varying from 0 to 3. The
value p = 0 corresponds to the axisymmetric mode which is θ-independent.
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Figure 1.6: Horizontal cross-sections of the unconstraint vertical velocity vz for cylindrical modes,
with a radial wave number l = 51 m−1 and an azimuthal wave number p varying from 0 to 3.

At large radius, the cylindrical Bessel-shaped wave field can be approximated by a Cartesian
plane wave field. Although equation (1.93) does not involve the azimuthal wave number p, this
dependence is explicit in the plane wave approximation. Close to a given (r0, θ0), the corresponding
Cartesian wave numbers (kx, ky, kz) can be expressed thanks to (l,m, p) through

kx =

√
l2 cos2 θ0 −

(
p

2πr0

)2
(cos2 θ0 − sin2 θ0), (1.94)

ky =

√
l2 sin2 θ0 +

(
p

2πr0

)2
(cos2 θ0 − sin2 θ0), (1.95)

kz = m. (1.96)

Hence, locally, the horizontal structure of the wave field is set by both l and p, and a change in
either l or p leads to a change in kx and ky. This is shown in figure 1.7, in which the cylindrical
wave field is plotted for l = 51 m−1 with p = 10 (top) and p = 20 (bottom). The left pannel
presents the cylindrical wave fields centered on r = 0, and the right pannel presents a closer
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view of the regions indentified by the blue squares on the overall wave field. On these zoomed-in
pictures, we can clearly see that both the along-x and along-y wave lengths are impacted by the
increase of azimuthal wave number p, although the radial wave number l is kept constant. Under
this Cartesian plane wave approximation, one would write the dispersion relation (1.93) as

ω2k2 = f2m2 +N2l2 = f2k2
z +N2(k2

x + k2
y), (1.97)

with kx, ky, and kz previously defined, in order to explicitly state the dependence in p and l.
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Figure 1.7: Horizontal cross-sections of the vertical velocity vz for cylindrical modes, with a
radial wave number l = 51 m−1 and an azimuthal wave number p = 10 (top row) and p = 20
(bottom row). The cylindrical Bessel-shaped wave field is shown on the left, and the zoomed-in
regions corresponding to the blue squares are shown on the right.

Horizontal Velocities

As seen before, the radial and orthoradial velocities are coupled. Hence, a modal decomposition is
not straightforward. Equations (1.90) and (1.91), however, can be solved. To do so, we define the
matrix equation

∂2
t

[
∆− 1

r2 − 2
r2 ∂θ

2
r2 ∂θ ∆− 1

r2

] [
vr
vθ

]
= −f∂t∂z

[ 1
r∂θvz − ∂zvθ
∂zvr − ∂rvz

]
+N2

[
∂r∂zvz

1
r∂θ∂zvz

]
, (1.98)

that can be written as
D
[
vr
vθ

]
= S, (1.99)
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where D is a differential operator and S a source term, representing the coupling to the vertical
velocity, expressed as

D =
[

∂2
t ∆− 1

r2 ∂
2
t − 2

r2 ∂
2
t ∂θ − f∂t∂2

z
2
r2 ∂

2
t ∂θ + f∂t∂

2
z ∂2

t ∆− 1
r2 ∂

2
t

]
, and S =

[− fr ∂t∂z∂θvz +N2∂r∂zvz
−f∂t∂z∂rvz + N2

r ∂θ∂zvz

]
.

(1.100)
We define the rotation matrix R(θ) as

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
, (1.101)

which satisfies R(−θ) = RT (θ) = R−1(θ). This rotation matrix corresponds to the transfer matrix
from polar coordinates (O, er, eθ) to Cartesian coordinates (O, ex, ey), as depicted in figure 1.6.
Then, we can transform the matrix equation (1.98) into

(RDR−1)R
[
vr
vθ

]
= RS. (1.102)

Such a transformation leads us to consider a new matrix differential equation, with the operator
D̃ = RDR−1 and a transformed velocity variable and source term. This new differential operator
writes

D̃ = RDR−1 =
[
∂2
t ∆ −f∂t∂2

z

f∂t∂
2
z ∂2

t ∆

]
, (1.103)

and, defining ux and uy – which are functions of r and θ – as the two components of the transformed
velocity [

ux
uy

]
= R

[
vr
vθ

]
, (1.104)

the new matricial equation writes
D̃
[
ux
uy

]
= RS, (1.105)

and, explicitly
[
∂2
t ∆ −f∂t∂2

z

f∂t∂
2
z ∂2

t ∆

] [
ux
uy

]
=


cos θ

(
− fr ∂t∂θ +N2∂r

)
− sin θ

(
−f∂t∂r + N2

r ∂θ

)

sin θ
(
− fr ∂t∂θ +N2∂r

)
+ cos θ

(
−f∂t∂r + N2

r ∂θ

)

 ∂zvz. (1.106)

The horizontal velocities in polar coordinates (vr, vθ) can be obtained with the inverse transform
of (ux, uy) into (see figure 1.8), and simply write

vr = cos θux + sin θuy, (1.107)
vθ = − sin θux + cos θuy. (1.108)
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Figure 1.8: Transformation between polar and Cartesian coordinates with the transfer matrix
R.

Note that, in the non-rotating case (f = 0), the operator D̃ becomes diagonal and we obtain
uncoupled equations on ux and uy. The system is thus very similar to Cartesian equations, except
that the Laplacian operator ∆ is still in cylindrical coordinates. In this particular case, the system
writes [

∂2
t ∆ 0
0 ∂2

t ∆

] [
ux
uy

]
=
[

cos θN2∂r − sin θN2

r ∂θ
sin θN2∂r + cos θN2

r ∂θ

]
∂zvz. (1.109)
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Though we do not solve the problem, this equation can be discussed in some more details. The
velocities ux and uy are a combination of homogeneous and particular solutions of the matrix
equation (1.109). The homogeneous equations write ∂2

t ∆ux = 0 and ∂2
t ∆uy = 0, therefore it

can be showed that if the amplitude of the velocity field is bounded and is initially zero, then
the homogeneous solution is a time-independent mean flow. Hence, the horizontal velocity is a
combination of mean currents at ω = 0 and the only time varying part is enslaved by the vertical
velocity field, which is the particular solution of the partial differential equation. This solution
is oscillating at a frequency ω and has a vertical wave number m, both set by vz. In the case of
p = 0 (axisymmetric), the system can be solved straightforwardly and the solution is the same as
the one derived in section 1.3.

Kelvin Modes

The solutions of the system of equations (1.89), (1.90), and (1.91) can be derived analytically. They
are known as Kelvin modes9 and form the canonical basis of functions in cylindrical geometry that
satisfy the internal wave equations [95, 96, 150, 226]. The complete non-trivial calculus, presented
in appendix E, yields

vr(r, θ, z, t) = i
mv0

z

4lω [(f − 2ω)Jp−1(lr) + (f + 2ω)Jp+1(lr)] ei(ωt−mz−pθ) + c.c., (1.110)

vθ(r, θ, z, t) = mv0
z

4lω [(2f − ω)Jp−1(lr)− (2f + ω)Jp+1(lr)] ei(ωt−mz−pθ) + c.c., (1.111)

vz(r, θ, z, t) = v0
zJp(lr)ei(ωt−mz−pθ) + c.c.. (1.112)

In their most general shape, i.e. in unconfined domains, these modes are helical with zeros at fixed
radii in the horizontal plane. Their helicity, however, is lost if the modes are vertically confined as
m and p become uncoupled. Note that, by setting p = 0, the velocities (1.110), (1.111), and (1.112)
correspond to the axisymmetric case (see equations (1.69) and (1.70)).

Coercion by Boundary Conditions

In this subsection, we explore the influence of boundary conditions on the allowed values of wave
numbers l, m, and p. A more thorough study adapted to our experimental apparatus is presented
in chapter 4 in the case of purely axisymmetric modes (p = 0).

Let us consider a cylindrical domain of height H and radius R with the revolution axis aligned
with the vertical. Boundary conditions apply at three different boundaries: on the top and bottom
horizontal walls, and on the vertical cylindrical wall.

A the top and at the bottom, static walls impose that

vz(z = 0) = 0 and vz(z = H) = 0, (1.113)

where the first condition is automatically fulfilled when writing the vertical dependence of the
mode as a sine function; the second condition can be solved analytically, leading to

mH = z? = nπ

2 with n ∈ N. (1.114)

As discussed in chapter 4, in our experiments, the constraint will be slightly different as the top
boundary corresponds to the wave generator that is still rigid but oscillating.

The cylindrical boundary is constraining the allowed values of horizontal wave numbers through
the non-penetration condition

vr(r = R) = 0, (1.115)

that can be written
(f − 2ω)Jp−1(lR) + (f + 2ω)Jp+1(lR) = 0. (1.116)

9These modes have been first studied by Lord Kelvin for inertial flows in cylindrical coordinates [226].
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Contrary to the vertical condition (1.114), this equation shows that the horizontal description of
the wave field, contained in the wave numbers l and p, depends on the frequency for inertia-gravity
waves. In the peculiar case of stratified non-rotating fluids, this relation simply writes

Jp−1(lR)− Jp+1(lR) = 0. (1.117)

Note that, for axisymmetric modes (p = 0), the condition reduces to

J1(lR) = 0, (1.118)

for both gravity and inertial waves.
In a more general case, the zeros lR = r? of equation (1.116) can be determined numerically.

We present, in figure 1.9, plots of the left-hand side of equation (1.116) for p = 0 (top left) and
p = 2 (bottom left), both for f = 0, and the three first non-zeros solutions r? as a function of
f/ω (right). The colours stand for the value of p from 0 through 4, and the solid, dashed, and
dotted styles correspond to the first, second, and third solutions, respectively. A vertical dashed
line at f/ω = 1 indicates the cut-off between the gravity-dominated region (f < ω < N) and the
inertia-dominated region (N < ω < f). As expected from the calculus done with the axisymmetric
assumption, for p = 0 the solutions of equation (1.116) do not depend on the frequency, but this
is no longer the case as soon as p 6= 0.
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Figure 1.9: Illustration of condition (1.116) imposed by the cylindrical boundary condition. Left:
plots of (1.116) for f = 0 with p = 0 (top) and p = 2 (bottom). Right: locations r? of the first
(solid line), second (dashed line), and third (dotted line) non-zero nodes of (1.116), for p from 1
through 4. The vertical dashed line helps distinguish the domains f < ω < N and N < ω < f .
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1.5 Conclusion
In this chapter, we presented the general theory of internal inertia-gravity waves in stratified and
rotating fluids. In such media, vertical stratification in density and rotation introduce a vertical
and a horizontal anisotropy that support gravity waves and inertial waves, respectively. Their
dynamics depends on two characteristic frequencies: the Coriolis (or inertial) frequency f , set
by rotation, and the Brunt-Väisälä (or buoyancy) frequency N , set by the density stratification.
These two parameters limit propagating waves to a given range of frequency, so that a wave at
frequency ω can propagate only if f < ω < N or N < ω < f . In the oceans, due to low Coriolis
frequency values, more attention is devoted to the case f < ω < N . In the deep ocean, however,
it is possible to find regions of very weak stratification with N < f .

Different configurations have been explored: 2D Cartesian waves, as a case study, and waves in
cylindrical geometry, among which purely axisymmetric (θ-independent) and cylindrical waves (θ-
dependent). In 3D, such waves, which are the subject of our study, involve different wave numbers:
a radial and an azimuthal wave number, l and p, that set the shape of the Bessel function used
to describe the horizontal structure of the wave field, and a vertical wave number, m, which
parametrises the vertical structure. Wave numbers m and l are linked to the frequencies ω, f , and
N , by the dispersion relation

ω2(l2 +m2) = f2m2 +N2l2, (1.119)

similar to previous 2D Cartesian studies. Interestingly, this relation does not directly involve the
azimuthal quantification p, though the radial wave number l is, actually, a function of p. In this
manuscript, we mainly focus on the case p = 0, corresponding to axisymmetric wave fields as
derived in detail in chapter 4, but we discuss the existence of cylindrical internal waves through
non-linear interactions in chapters 7 and 8.
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CHAPTER 2

Axisymmetric Waves at the Laboratory

Every day is a new day. It is better to be lucky. But I would
rather be exact. Then when luck comes you are ready.

Ernest Hemingway, The Old Man and the Sea

Laboratory internal wave experiments are usually performed using a very simple recipe: water,
salt, rotation, and a generation mechanism. Homogenous anisotropic media are hence created,
with a stable stratification in density (salt) and inertial properties (rotation), and excited through
localised displacements of fluid (e.g. a rising sphere [154]) or periodic oscillatory motions (for
example oscillating cylinders [155], spheres [14], and pendulum [42]). Later on, planar wave gen-
erators have been developed [92] and proven efficient to generate internal waves, first step towards
more complex wave generators.

The setup described here is located at the Laboratoire de Physique de l’ENS de Lyon (Lyon,
France), where all the experiments were performed. Its main difference with other systems lies in
the use of a novel wave generator design able to reliably produce axisymmetric wave fields that
can be customised on wish.

In this chapter, the experimental techniques are presented. Sections 2.1 and 2.2 respectively
depict the tank used to perform the experiments and the wave generator that produces the ax-
isymmetric wave field. The visualisation technique through Particle Image Velocimetry (PIV) is
presented in section 2.3, and data processing methods are explained in section 2.4.

2.1 A Small-scale Ocean in a Laboratory Tank
This section describes the facility used to create an environment suitable for axisymmetric internal
wave propagation. The whole apparatus, as described further, is constituted of a cylindrical tank,
filled with salt-stratified water, placed on a rotating table, and is therefore able to support both
gravity and inertial waves.

2.1.1 A Cylindrical Tank
Experiments were conducted in a cylindrical acrylic tank of diameter 1 m and height 0.65 m,
representing the observation domain. To prevent optical distorsion due to refraction through
the air-acrylic-water curved interface, this cylinder is inserted in a square acrylic tank of base
1 m × 1 m and height 0.65 m. The sizing of the experiments has been previously designed by
Maurer et al. [141] thanks to the proficiency of Denis Letourneau, and has been choosen to be
the largest possible within the weight limit supported by the rotating table (see next subsections).
Four injectors, one in each angle of the square base of the tank, are used to fill the domain with salt

37
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water. Thanks to small apertures at the bottom of the cylindrical tank, both the inside cylinder
and the corners are filled while pumping water into the experiment. The system is presented by a
schematic in figure 2.1. Non-pictured in this figure is the additional inner cylinder added afterwards
to study standing wave structures (see chapter 4). At the top, the fluid is surface free.

Mirror

Injector

Square Tank

Wave Generator

Cylindrical Tank

Figure 2.1: Schematic of the experimental apparatus. A cylindrical tank in inserted in a surrel-
evated square tank. Adapted from [141, 140], courtesy of Denis Letourneau.

2.1.2 Going Stratified: The Double-Bucket Method
As previously mentionned, four injectors placed at the bottom of the tank are used to fill the entire
domain with salt-stratified water. In order to do so, we use the double-bucket method [81, 164] to
produce linearly stratified fluids and, after some modifications, fluids with arbitrary stratification.
The method is derived below.

We consider two filling tanks (labeled 1 and 2) and the apparatus tank as shown in the schematic
in figure 2.2. The temporal variation of the volumes of water in the two filling tanks is linked to
their flow rates Q1 (time-dependent) and Q2 (constant) as

dV1
dt = −Q1 and dV2

dt = Q1 −Q2, (2.1)

considering that the water going out of tank 1 is going in tank 2. Moreover, the water mass ρV
satisfies the following equation in tank 2

d(ρ2V2)
dt = ρ1Q1 − ρ2Q2. (2.2)

These equations lead to

V2(t) = V 0
2 −Q2t+ Φ1(t) with Φ1(t) =

∫ t

0
Q1(u)du. (2.3)
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Hence, the temporal evolution of the density ρ2 in tank 2 is given by
dρ2
dt = ρ1 − ρ2(t)

V2(t) Q1(t) = ρ1 − ρ2(t)
V 0

2 −Q2t+ Φ1(t)Q1(t). (2.4)

Tank 1: Salt water
ρ1, V1(t)

Tank 2: Mixed water
ρ2(t), V2(t)

Apparatus tank

z

Q1(t)

Q2

Figure 2.2: Schematic illustrating the double-bucket method, with water transiting from two
filling tanks 1 and 2 to the experimental apparatus, with a filling from the bottom.

Different kind of stratifications have been used in the experiments, and we refer to them as
linear, bi-linear, and non-linear stratifications. The methods are described below.

Linear Stratification

A linear stratification is defined by its density ρ that increases linearly with depth, which means
a constant buoyancy N . To satisfy this condition while filling the apparatus tank, the density in
tank 2 has to increase linearly with t. Hence, the previous equations gives Q1 = 2Q2. If we choose
V 0

1 = V 0
2 , we obtain that during the whole filling process the volumes of tanks 1 and 2 are the same:

V1(t) = V2(t). The use of a “siphon” to equilibrate the two filling tanks by hydrostatic balance
while filling the apparatus is therefore a simple means to produce high quality linear stratifications.

Bi-linear Stratification

We define, by bi-linear stratification, a stratification with a buoyancy frequency interface such as
the ones we used to explore the transmission properties in chapter 5. Such a stratification has two
layers linearly stratified of buoyancy frequencies N1 and N2. We adapt the filling process for linear
stratification to produce these structures. Our procedure is the following: first, we start filling the
apparatus with a “siphon” to produce a linear stratification N1; then, we stop the filling, close the
siphon, and change the salinity of tank 1 by removing salty water and adding the same amount
of fresh water; finally, we resume filling the apparatus. As the new salinity is lower and we fill
from the bottom, we produce a bottom linear stratification of buoyancy frequency N2 < N1. As
described in chapter 5, we obtain high quality stratifications with sharp interfaces (thickness can
be smaller than 1 cm).

Other Non-Linear Stratifications

Other non-linear stratifications are more complex to produce. In our experiments, we used two
methods: the first one is to regularly stop the tank filling and modify the salinity of the filling
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tanks, the second one is to use a controlable second pump. In the second case, we have to solve
numerically the differential system following this path: N(z) → ρ2(t) → Φ1(t) → Q1(t). Hence
we need two pumps, one between each tank, and the pump that connects the two filling tanks is
controled by computer. Stratifications with buoyancy discontinuities can be produced, with linear
or non-linear variations, as described in chapter 6. For more details on this method, the reader is
refered to [140].

Measuring the Stratification

Density and buoyancy were measured as a function of depth using a calibrated PME conductivity
and temperature probe mounted on a motorized vertical axis: the probe slowly goes down in the
fluid and records conductivity and temperature. Buoyancy frequency is estimated from the mean
value of the N profile obtained from the density function ρ(z) measured from the free surface
to the bottom, actually a couple of centimeters from the bottom of the tank as limited to the
construction of the probe. The stratification is slightly mixed over the top few centimeters, but
the wave generator is immersed at a depth of 2 cm so there is no impact on the experiments. Errors
on the buoyancy frequency are estimated using the standard deviation of this N profile and are
in most cases about 4% of the estimated N value. We usually used buoyancy frequencies in the
range N ' 0.6 rad · s−1 to N ' 1 rad · s−1.

Figure 2.3 presents different experimental realisations of density stratifications measured in
the tank. The classical linear stratification obtained using the double-bucket method is shown
in figure 2.3(a), and a bi-linear stratification obtained by stopping the filling at a given depth is
plotted in figure 2.3(b). Figures 2.3(c) and 2.3(d) present two examples of non-linear stratifications,
with (c) an interrupted stratification suitable for studying tunnel effect (see chapter 6) obtained
by superimposed linear fillings, and (d) an exponential stratification used for focusing of internal
waves (see [140]) obtained using a computer controlled pump.
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Figure 2.3: Examples of experimental stratifications, from left to right: (a) linear, (b) bi-linear,
(c) non-uniform with a constant density layer, and (d) non-uniform with exponential profile.

2.1.3 Going Inertial: The PERPET Facility
Since Maurer’s thesis [140], the experimental appartus presented in figure 2.1 is mounted on a 2 m
rotating table called PERPET (Plateforme d’Études en Rotation de Phénomènes et Écoulements
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de la Terre). This facility can provide a rotation from 0 to 60 rpm, which means that the range of
Coriolis frequency that can be used in the experiments varies from 0 to 12.5 rad · s−1, with an error
of 0.1%. The axis of rotation of the table is aligned with the center of the cylindrical tank, and
with the vertical axis (the angle between the rotation axis and gravity is less than 10−3 degrees).

Electronic systems are all embeded and remotely controlled through a computer located inside
the table.

The whole experiment is shown in the photography in figure 2.4, with the tank mounted on
the rotating table . The particular configuration that can be seen in the tank will be discussed in
chapter 8.

Figure 2.4: Photography of the experimental setup on the rotating table PERPET.

2.2 An Axisymmetric Wave Generator
The double-bucket method and the PERPET facility allow us to produce a stratified rotating fluid
in a cylindrical tank, suitable for internal wave experiments. We now discuss the wave generation
mechanism used to excite axisymmetric wave fields in the experimental domain.

Historically, the long-going tradition of internal wave experiments was initiated by Görtler [91]
and Mowbray & Rarity [155] through the use of oscillating cylinders in density stratified fluids.
Such a device has led to the first experimental verification of the dispersion relation and of the
existence of the Saint Andrew Cross. Later on, paddle generators have been developped to excite
vertical [51] or horizontal [228, 229] two-dimensional standing wave fields, a system improved to
produce amplitude and frequency controlled excitations by a lateral excitation [42]. In most cases,
much of the focus was on two-dimensional internal wave beams generated by excitation methods
such as an oscillating cylinder [155, 223] or moving topography [3, 68]. For modeling purposes, such
a wave field can be treated as nominally invariant in the transverse direction and thus described
in terms of plane waves via Fourier transforms [122, 220].

Axisymmetric wave fields have traditionally been experimentally excited using a vertically
oscillating sphere and exploring the shape of the wave beams [74, 80, 87, 154, 169, 215]. The
radially decreasing amplitude and the viscous decay of the conical wave beam emitted by an
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oscillating sphere has been explored in laboratory experiments by Flynn et al [80] showing good
agreement with theoretical predictions. More sophisticated axisymmetric experimental geometries
have been investigated using a vertically and a horizontally oscillating torus, respectively [66, 76], in
which case a highly non-linear process occurs due to the three-dimensional geometric focusing, able
to transport momentum and break into turbulence. None of these experimental configurations,
however, readily permitted a change in the form nor the wave number of the wave field being
excited.

Based upon previous wave generator technologies and, in particular, the planar wave generator
designed by Gostiaux et al. [92] that has been proven efficient in generating internal wave fields [92,
25, 148, 140], an axisymmetric wave generator has been developed and tested by Maurer et al. [141,
140] with the help of Marc Moulin at the Laboratoire de Physique de l’ENS de Lyon. A photography
of the device is presented in figure 2.5.

Figure 2.5: Photography of the axisymmetric wave generator (reversed).

The generator comprises sixteen, 12 mm thick, concentric PVC cylinders periodically oscillat-
ing, each of them being forced by two eccentric cams. These cams are presented with a schematic
in figure 2.6(left) and shown mounted on the camshaft in the photography in figure 2.6(right).
The disk, with a non-zero eccentricity e, allows for a circular motion to be converted into a uni-
directional translational motion. As can be seen in figure 2.6, the six-branches cam axis is not
aligned with the direction of translation, but is shifted by 15◦. As described in [27], this allows
for a wide variety of configurations as the the eccentricities can be set to introduce a phase shift
between the cylinders, in addition to the oscillating amplitude that can be set for each individual
cylinder. As a result, the vertical displacement of the nth cylinder can be described by

an(t) = An cos(ωt+ αn), (2.5)

with An its amplitude, ω the forcing frequency, and αn a phase shift. For a smooth motion of
the PVC cylinders, a 1 mm gap is kept between each cylinder and the total diameter of the wave
generator is then 402 mm. In the experimental setup, the generator is mounted at the surface of
the water to force downwards internal waves by imposing the vertical velocity at the top boundary.

Once the amplitudes of the cams are set, the wave generator can excite a wide range of wave
fields, all axisymmetric as the forcing cylinders are θ-invariant. As described in chapter 4, the
device is enclosed in a cylindrical tank of the same radius R = 20.4 cm and a volume preservation
over the whole cylindrical domain therefore applies, as

∫ 2π

0

∫ R

0
A(r, θ)rdrdθ = 0. (2.6)
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e

e

Figure 2.6: Left: schematic of the cam system. The eccentricity e can be changed by moving the
light grey part. The rotational motion of the star shaped axis is changed to a translational motion
of the plate (dark grey part). Right: photography of the cams mounted on the camshaft.

In addition, a relevant boundary condition of zero radial velocity has to be satisfied at the cylinder
wall to prevent pumping behaviours and unwanted fluid motions, i.e.

vr(r = R, z, t) = 0. (2.7)

In the particular case of modal forcing, which means forcing by a zeroth order Bessel function
(see chapters 1 and 4), the volume preservation equation is always satisfied if the radial boundary
condition is satisfied too due to integration properties of Bessel functions of the first kind. This leads
to discretised values of the radial wave number l that can be chosen for the generator profile, the
first ones corresponding to mode 1 (l = 19 m−1), mode 2 (l = 35 m−1), and mode 3 (l = 51 m−1).
The generator has been proven efficient in generating these modes, as detailed in chapter 5 and in
Boury et al. [33]. Higher order modes have not been tested due to the discretisation of the Bessel
profile that poorly reproduces short wave lengths when the steepness, product of the wave number
l by the amplitude at the center a, increases. With the smallest steepness for a given amplitude,
the mode 1 is the most reliable to use and experiments were conducted using this mode with
two amplitudes, the first one called low amplitude that prevents nonlinear effects from arising too
quickly in the experiment, and the second one called high amplitude. Results with this confguration
are described in chapters 4, 5, 6, and 7.

A last configuration, with zero amplitude for the five inner cylinders, has been used to produce
inertial wave attractors (chapter 8). The five inner cylinders being removed and the experimental
domain being confined between two PVC cylinders, two boundary conditions must be taken into
account for the radial velocity and, as a consequence, the volume conservation condition cannot be
obtained straightforwardly. To fit our needs, the motion amplitudes of the remaining eleven outer
cylinders have been especially adjusted to cancel the volume of fluid displaced during its motion,
such that the profile A(r) of the generator satisfies

∫ R1

R0

A(r)rdr = 0, (2.8)

with R0 and R1 the radii of the inner and outer cylinders. In order to preserve the boundary
condition of non pumping fluid at the cylinder edges, the radial velocity vr has to be zero at R0
and R1. This condition writes, in terms of the profile A(r), as1

dA
dr (r = R0) = dA

dr (r = R1) = 0. (2.9)

1This relation is only true for axisymmetric modes. In general, for non-axisymmetric modes, the relation between
the vertical amplitude and the radial and vertical velocities is more complicated.
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In order to fulfill these conditions, a Bessel function truncated from R0 to R1 could be used, but
with too many nodes for the discretisation of our wave generator. Instead, the simplest profile
that could be used, a cubic function, was then designed according to these two equations. Note
that the steepness cannot be defined in the same way as the modes for such a profile, so we use
the derivative of the cubic function where its sign changes.

The radial structures of the generator profiles used to force wave fields are presented by schemat-
ics in figure 2.7, and the corresponding steepness and cam amplitudes are listed in table 2.1. The
first three profiles in figure 2.7 correspond to modes 1 through 3, with different radial wave num-
bers, and the fourth profile is the truncated cubic function used for wave forcing in the annular
axisymmetric domain.

Profile mode 1 mode 1 mode 2 mode 3 cubic profile
(high amplitude) (low amplitude) (attractor)

Steepness 0.095 0.048 0.175 0.255 0.030
Cam number Cam amplitude (mm)

1 5 2.5 5 5 0
2 4.9 2.4 4.7 4.5 0
3 4.7 2.3 4 3 0
4 4.3 2.1 2.9 1.2 0
5 3.9 1.9 1.6 −0.6 0
6 3.3 1.6 0.3 −1.7 2.45
7 2.6 1.3 −0.8 −2 2.23
8 1.9 0.9 −1.6 −1.4 1.88
9 1.2 0.6 −2 −0.4 1.43
10 0.5 0.2 −1.9 0.7 0.9
11 −0.2 −0.1 −1.5 1.4 0.35
12 −0.6 −0.3 −0.9 1.5 −0.18
13 −1.2 −0.6 −0.1 0.9 −0.68
14 −1.6 −0.8 0.6 0 −1.1
15 −1.9 −0.9 1.2 −0.8 −1.4
16 −2 −1 1.5 −1.2 −1.55

Table 2.1: Steepness la of the profile, and amplitudes (in mm) of the cams of the generator in
the different mode profiles we used. The first cam is located at r = 0.

2.3 Visualisation: Particle Image Velocimetry

Velocity fields were obtained in all our experiments via Particle Image Velocimetry (PIV), which
principle is illustrated in figure 2.8. The fluid is seeded with tracing particles and successive
snapshots taken at regular time intervals dt are recorded in the observation plane. In this time
interval, the particles undergo a coherent displacement noted dr so that the local velocity is given
by dr/dt. A correlation algorithm is performed over boxes of particles to determine the local
displacement.

In practice, a laser sheet is created by a laser beam (Ti:Sapphire, 2 watts, wave length 532 nm)
going through a cylindrical lens. It can be oriented either horizontally (to measure the radial and
orthoradial velocity) or vertically (to measure the vertical and the radial velocity). Visualisation
of the horizontal plane with the same co-rotating camera embedded on the rotating table is made
possible by the use of a 45◦ mirror placed under the tank.

For the purpose of visualisation, 10 µm diameter hollow glass spheres of volumetric mass
1.1 kg · L−1 are added to the fluid while filling the tank. In some experiments, to obtain good
quality velocity fields near the bottom of the tank and while imaging in a horizontal plane, 10 µm
silver-covered spheres of volumetric mass 1.4 kg · L−1 are added when needed. Images are usu-
ally recorded at 1 Hz, 4 Hz, or 40 Hz, and data processing of the PIV raw images is done using
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Figure 2.7: The four generator configurations of interest with, from top to bottom: mode 1,
mode 2, mode 3, and truncated cubic profile.
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dr

t t + dt

Figure 2.8: Schematic illustration of the PIV technique, with a displaced field of seeding particles
dr (in blue) during dt in a box contained in the observation plane. Adapted from [104].

the CIVx (Correlation Imaging Velocimetry) algorithm [77] thanks to the capabilities of the Pôle
Scientifique de Modélisation Numérique (PSMN) hosted at the ENS de Lyon.

2.4 Fourier, Hankel and Hilbert Filtering
Data processing usually involved a few mathematical operations. In 2D, solutions of linear systems
can be described by plane wave decomposition using Fourier transforms. In the axisymmetric case,
the Fourier transform can only be performed along the vertical axis and for temporal evolution.
The radial description, in terms of Bessel functions, is given by a Fourier-like transform called
the Hankel transform (see [163] and Appendix C). If we consider a radial function f , its direct
transform g is

g(y) = H[f ](y) =
∫ +∞

0
f(x)Jn(xy)√xy dx, (2.10)

and the inverse transform of g is

f(x) = H−1[g](x) =
∫ +∞

0
g(y)Jn(xy)√xy dy. (2.11)

As for the Fourier transform, the combination of the direct and inverse transform gives the original
function back

H−1[H[f ]](x) = f(x). (2.12)

When dealing with propagating wave fields, it is interesting to separate the different components
according to their direction of propagation. An analytical method, called Hilbert Filtering, has
been developed by Mercier et al. [149] and successfully tested in laboratory experiments.

2.5 Numerical Methods
Apart from data processing, our modellings and experimental results are, in some cases, compared
to numerical computations.

We performed several Direct Numerical Simulations (DNS) in 2D to get insights of the re-
sults. These DNS were run in Python using the spectral method based code Dedalus [50],
developped by K. Burns, G. Vasil, J. Oishi, D. Lecoanet, and B. Brown, and available online
(http://dedalus-project.org). In order to apply forcing and boundary conditions accordingly,
we used a CosSin base in the horizontal direction (that corresponds, in 3D, to the radial axis) and
a Chebyshev base in the vertical direction.
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More complex 3D DNS have been run by Ilias Sibgatullin using spectral element method, based
on Nek5000 open solver, to explore the properties of cylindrical inertial wave attractors. They are
mentioned in more details in chapter 8.

We developped several Matlab codes using bvp4c to solve boundary value problems, in order
to investigate properties of non-linear stratifications. For example, in chapter 5, we describe
transmission of internal waves through a buoyancy interface, which means a transition between two
buoyancy frequencies N1 and N2, that can be either sharp or smooth. The sharp case was computed
analytically and checked with the numerics. The smooth case was estimated numerically and then
compared to experimental results. To avoid numerical singularities due to abrupt transitions
between two different values of N , and for a more physical model, our DNS and boundary value
problems were run with buoyancy profiles modelled by hyperbolic tangents.

2.6 Conclusion
In this chapter, we have presented a review of the techniques used to perform laboratory exper-
iments. The apparatus, constituted of a ∼ 600 L tank mounted on a rotating table, allows for
both gravity and inertial wave experiments when filled with salt-stratified water and put in rota-
tion. Additional cylindrical tanks are inserted in the experimental domain to create axisymmetric
boundary conditions and confine the excited wave field. PIV technique is then used to record
velocity fields in vertical and horizontal cross sections.

A novel axisymmetric wave generator, developped by Maurer et al. [141] at the Laboratoire de
Physique de l’ENS de Lyon, has been described. This device is used throughout the thesis with
various configurations, designed according to boundary conditions, to produce modal wave fields
of given radial wave length (see chapter 4), and a cubic profile used for attractor experiments (see
chapter 7), both volume preserving.

Finally, we have described numerical methods used for data processing and numerical simula-
tions used either to do preliminary tests (in 2D) or to complete the experimental study over wider
ranges of parameters (see chapter 7).
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CHAPTER 3

Internal Waves in the Ocean and in the Atmosphere

Stank ha skañv war varlenn an noz
E kouez eur vrumenn hlao,

Ganti blaz c’hwero ar ranngalon.
Troet ar bed da voged briz

Ha teuzet e alan peb tra, peb tra,
Na hent dirazañ na roud a-dreñv,

Dall e valean er vro vud.
Per-Jakez Helias, Maner Kuz – Manoir Secret

As mentioned in the previous chapters, the atmosphere and the oceans are media that can
support internal waves, either gravity waves, due to their inherent stratification in density, or
inertial waves, due to the Earth rotation.

Of primary importance are internal waves in the oceans. Since Munk’s Abyssal Recipes [156] and
Wunsch’s works [157, 249], the importance of internal waves in the global Earth energetic balance
is well known, and the study of dissipation phenomena through wave breaking and turbulence is
a very active field in stratified mixing and oceanography communities. In a recent review paper,
MacKinnon et al. [133] discuss the mechanisms and implications of the dissipation of internal wave
energy in the oceans, reminding the 2± 0.6 TW estimate of turbulent dissipation caused by tidal
flow over topographies, low-frequency lee waves, and near-inertial waves produced by wind forcing
[16, 114, 242].

This chapter explores some properties of the atmosphere and the oceans, from stratification
and rotation in section 3.1 to internal wave generation in section 3.2. More detailed implications
on the dynamics of the oceans are given in section 3.3 before concluding remarks in section 3.4.

3.1 Stratification and rotation

3.1.1 Stratified Fluids
The atmosphere was the first of the geophysical fluids to be accurately sounded. Estimated from
local Earth-based measurements on plains and mountains, and from weather balloon probes, the
atmospheric stratification shows an important thermal variability with altitude. Temperature and
pressure variations help divide the atmosphere into different layers called, starting from the ground:
troposphere, stratosphere, mesosphere, and thermosphere [220]. Figure 3.1 shows a schematic dia-
gram of the atmosphere structure. The density profile of the atmosphere, and its physics, strongly
depend on pressure (which varies over six orders of magnitude) due to air compressibility.
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Figure 3.1: Simplified structure of the Earth’s atmosphere. Adapted from [124, 234].

As to the oceans, the recent use of profiling shipboard devices (e.g. Conductivity-Temperature-
Depth (CTD) casts, or yo-yo probes going up and down) and of profiling floats, such as the
worldwide ARGO program, has led to an increasing knowledge of their properties. Models have
been developped and successfully tested to describe oceanic stratifications. For example, a fairly
accurate parametrisation for density of sea is the equation of state [151, 220]

ρ(T, S) = ρ0 [1− αT (T − T0) + αS(S − S0)] , (3.1)

where ρ0, T0, and S0, are the reference density, temperature, and salinity, and αT and αS are first
order thermodynamic coefficients to take into account the variations of density with temperature
T and salinity S. Density variations with temperature are expressed through αT , which can be
either positive or negative depending on the range of temperatures (fresh water has a minimum
in density at 4◦C). The other coefficient, αS , is always positive so that the saltier the water,
the higher the density. Extracted from [220], figure 3.2 depicts generic profiles of temperature
(solid line) and salinity (dashed line) in the ocean at different locations, from polar regions (a)
to mid-latitudes (b) and tropics (c). In the oceans, in general, temperature variation is the most
important contribution to density changes, especially in the first 500 or 1000 m, in a layer called
thermocline. When salinity variation dominates, a similar layer exists called halocline.

Most of the oceanic stratifications can be divided into three different regions. The first hun-
dred meters below the surface are called the mixed layer, quasi-homogeneous in temperature and
salinity due to interactions with the atmosphere and subsequent mixing events. Then, until 1 km
depth, the pycnocline (combination of thermocline and halocline) is a strongly stratified layer with
buoyancy frequencies of about 10−1 − 10−2 rad · s−1. The deep ocean, which is the remaining
part of the water column, is very weakly stratified and has buoyancy frequencies in the range
10−3 − 10−4 rad · s−1, often with unstratified water at the very bottom. Near the poles, due to
the presence of melting ice at the surface during summer, and of river runoffs throughout the year,
the top layer may differ and be colder and fresher than usual.
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Figure 3.2: Schematic profiles of temperature (solid line) and salinity (dashed line) for oceanic
stratifications at different latitudes: (a) near the poles; (b) at mid-latitudes; (c) around the tropics.
Adapted from [220].

3.1.2 Rotation and f-plane Approximation
The Coriolis force C introduced in chapter 1 is related to the rotation vector Ω = Ωez, with ez
the unit vector along the vertical, and the particle velocity v, by

C = −2Ωez × v. (3.2)

On Earth, however, at a given latitude ϕ the rotation vector ΩT is not aligned with the vertical
axis, except at the poles. As depicted in figure 3.3, one can consider the projection of ΩT over local
z and y axis for a point at latitude ϕ, Ωz = ΩT sinϕ and Ωy = ΩT cosϕ, respectively. A common
approximation, when the height of fluid is small, is to neglect the tangental projection Ωy and only
use the vertical projection Ωz to compute the Coriolis frequency, so that f ≡ f0 = 2Ω sinϕ. This
zeroth order development is called the f -plane approximation (see [18] for more details). At first
order, the variation of f with latitude within a small region can be estimated using a constant
coefficient β as f = f0 + βy, which is called the β-plane approximation.

R

Z

ΩT

zy

x

ϕ

Figure 3.3: f -plane approximation.

The f -plane approximation is valid for polar to mid-latitudes, where variations of f are small
with the latitude1. With an Earth rotation rate of ΩT ' 7.3 · 10−5 rad · s−1, typical values of the
Coriolis frequency f are about 10−4 rad · s−1.

1As detailed in Gerkema et al. [85] and recalled in Beckebanze’s thesis [18], non-physical effects are known to be
created with this approximation, for example when considering internal waves close to the equator.
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3.2 Atmospheric and Oceanic Internal Waves

Internal waves can be excited in a stratified fluid through various processes: it can be an immersed
body moving within the fluid or, the dual situation, the whole fluid itself moving over a rough
topography [220]; but waves can also be generated from free surface activity [187].

In the atmosphere, internal waves can be radiated from large scale storms localised in the
troposphere, as measured by Sentman et al. [206] in a US MidWest thunderstorm, but the most
common generation mechanism is flow moving over the topography. Figure 3.5(left) shows an
example of atmospheric internal waves created in the wake of a flow behind Amsterdam Island,
with a clear spatial lengthscale highlighted by white crests formed by clouds. In both cases, waves
are mostly generated in the lowest layers of the atmosphere and radiated upwards.

Figure 3.4: Satellite photographies of internal waves. Left: atmospheric internal waves, above
Amsterdam island in the Indian Ocean. Source: Wikipedia. Right: oceanic internal waves, around
Cape Cod (MA,USA). Source: Jose da Silva, University of Porto.

As shown by the schematic in figure 3.5, extracted from [133] and based upon [84], a wide
diversity of processes are involved in wave generation in the oceans. Internal waves can be generated
either in deep layers due to the topography of the oceanic floor, or near the surface due to the
ocean-atmosphere interaction. Topographic generation, linked to currents, subduction, and tidal
motions [162], is likely to create near-inertial wave fields (NIW) with a frequency close to the
local Coriolis frequency. Such a generation is of particular importance as, in the global energetic
balance, a large part of the tidal energy is transfered to internal waves before being dissipated in the
oceans [249]. Storms and winds can also generate internal waves in the pycnlocline after having
excited inertial oscillations across the mixed layer. A satellite photography of oceanic internal
waves created near Cape Cod (MA) is presented in figure 3.4(right).

Figure 3.5: Schematic of internal wave generation in the oceans. Extracted from [133]
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Qualitatively, from a remote point of view, huge atmospheric perturbations such as hurri-
canes [113], typhoons, and tropical cyclones [202], taking part in this wave generation, behave
like disk-shaped structures moving at the surface of the ocean (figure 3.6) and are able to excite
wave fields with the same cylindrical symmetry. A first order approximation, supported by in-situ
measurements [113, 202], is to consider purely axisymmetric wave fields described by a linear com-
bination of Bessel functions with various frequencies and wave lengths. Other evidences of such
wave fields can be found in the wake of rising bubbles or falling solids in stratified fluids [154], or
plumes penetrating in a density stratification [13]. These considerations motivate the new wave
generator used in our experimental apparatus and presented in chapter 2.

Figure 3.6: Ophelia hurricane (source: NASA).

3.3 Oceanic Implications

As detailed in section 3.2, internal waves are ubiquitous in the oceans. This activity leads to a
complex dynamics that influences global currents and circulations, and density stratification, as
will be discussed in the following subsections.

3.3.1 Thermohaline Circulation

The world’s oceans are all connected together and water masses can be transfered between them
by currents. The large scale circulation, taking place into this global ocean with a transit time of
about 1000 years, is called the thermohaline circulation, or Great Ocean Conveyor Belt [41]. It
is driven by differences in density between various types of water, due to temperature (thermo)
and salinity (haline). The map in figure 3.7 depicts the common representation of this worldwide
circulation, with warmer and fresher waters at the surface in red, and colder and saltier waters
more in depth in blue, with downwelling and upwelling regions. Allowing for water exchanges and
mixing in a closed loop between the Earth’s oceans, the thermohaline circulation is primordial for
energy transport at the globe scale and, as such, for climate regulation.
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Figure 3.7: Simplified map of the Thermohaline Circulation, also called Great Ocean Conveyor
Belt [41], that transports water masses worldwide. Warm shallow currents are shown in red,
whereas cold and salty deep currents are shown in blue. Downwelling occurs near the poles with
heat release to the atmosphere (source: USGS).

3.3.2 Stratified Mixing

Since the in-situ measurements of Polzin et al. [186] in the Brazil Basin, and Munk and Wunsh’s
collection of data [157], the maintenance of the oceanic stratification and its correlated mixing
processes have drawn increasing attention. Though downwelling (i.e. sinking of heavy water) is
located at high latitudes near the poles, where oceanic water gets colder in contact with the ice,
and also saltier in winter due to brine rejection from sea ice formation, the opposite phenomenon
of upwelling (i.e. rising of light water) is way more diffuse and widely distributed.

In his abyssal recipes, assuming a uniform uni-dimensional upwelling over the entire abyssal
ocean, Munk [156] infered from an advection-diffusion balance the existence of an eddy diffusiv-
ity characterising oceanic mixing. This diffusivity has been consistently measured in the works
of Polzin et al. [186] and Munk and Wunsch [157]. Figure 3.8 reproduces the in-situ eddy diffu-
sivity measurements in the Brazil Basin performed by Polzin et al. [186], showing heterogeneous
and anisotropic variations, influenced by topography: the eddy diffusivity is about an order of
magnitude larger above rough topographies (on the right-handside) than flat topographies (on the
left-handside).

Estimates from Egbert and Ray [71] indicates that 1/3 of the 3 TW input from tidal forcing is
being dissipated on deep ocean topographies, and a significant part of it is transfered to internal
waves [249]. Since about 1 to 2 TW energy is needed to close the energetic balance in the oceans
and help cold and salty water rise to the surface [157], inertia-gravity waves are a very likely
candidate to sustain stratified mixing and link energy input in the ocean to turbulent mixing. In
that sense, internal wave activity is a major phenomenon connecting large scale events (e.g. tidal
forcing) to small scale dissipation processes (turbulent mixing).

The exact mechanisms for stratified mixing, however, remain unknown. Overturnings and
localised mixing events due to instabilities (Kelvin-Helmholtz, Holmboe, Taylor-Caulfield) can
usually be triggered by shear at density interfaces [67], leading to exchanges in the energetic
balance of the stratification [245]. Internal wave breaking has also been pointed as a mechanism
for mixing and triggering turbulent events with decreased Richardson number [236], occuring for
high amplitude waves. Interestingly, in the oceans, a broad diversity of phenomena can lead to
high amplitude internal waves, for example: reflections on a slope [59], attractors [43, 44], focusing
effects [49], constructive interference and resonant cavity-like behaviors [33, 69, 219], and Lee wave
generation and breaking [11, 160]. Subsequently, non-linear behaviours may trigger instabilities
(e.g. Triadic Resonant Instability (TRI) [107]) and cascades to small scales [42]. Such phenomena
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Figure 3.8: In-situ measurements of eddy diffusivity over a longitudinal transect in the Brazil
Basin. Extracted from [186].

are more likely to occur close to rough topographies where inceased eddy diffusivity has been
measured [186], so there is a chance that they have a significant role in oceanic mixing processes.

3.3.3 Arctic Ocean

Since the last decades, the two polar oceans of the Arctic and Antarctic are drawing more and
more attention in a context of increasing global warming. Due to its particular location, confined
between American and Eurasian continental mainlands, and contrary to the Antarctic Ocean,
the Arctic is poorly connected to the “global ocean” and mostly preserved from the activity of
worldwide currents such as the Thermohaline Circulation (figure 3.7).

Figure 3.9: Schematic showing current circulation in the Arctic Ocean. Extracted from [185].
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As illustrated in figure 3.9, the two water inflows in the Arctic Ocean come from the Bering
Strait between Alaska and Siberia (Pacific water entering through the Chukchi Sea) and from
the Fram Strait between Greenland and Norway (Atlantic water flowing into the Arctic basins).
Moreover, the Arctic is also alimented by river runoffs from the continents and by ice melting,
providing additionnal fresh and cold water masses. Fed by several types of water with different
temperature and salinity properties, poorly impacted by global currents and isolated from the
atmosphere with year-round ice coverage, the Arctic Ocean is therefore highly stratified with water
masses of very different temperatures and salinity layered on top of each other (e.g., as detailed in
chapter 9, inflows with warm water with up to 6◦C can exist at ten meter depth though surface
water temperature is about −2◦C).

A simplified representation of oceanic stratification is presented in figure 3.10 for purpose
of comparison. The left pannel shows a typical oceanic stratification that can be found in the
Atlantic or in the Pacific Ocean, with a homogeneous mixed layer on top of a highly stratified
pycnoclyne, and a bottom deep ocean weakly stratified. The right pannel is a schematic of the
Arctic stratification, with fresh water on top (coming from melting ice and river runoffs), on top of
the Pacific and Atlantic Haloclines, followed by a wider layer of Atlantic Water and an even deeper
abyssal Arctic water mass. As such, mixing mechanisms are very important in such a strongly
stratified ocean, where layers alternate between cold fresh waters and warm salty waters.

z
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Atlantic Water
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Figure 3.10: Simplified models of mid-latitude oceanic stratification (e.g. Atlantic and Pacific
Oceans) and of the Arctic Ocean stratification. Adapted from [161].

The reason for the Arctic to be so stratified compared to other oceans is mainly its remote
location and isolation from atmosphere interaction. Ice coverage indeed prevents atmospheric
storms from interacting with the underneath ocean, protecting the stratification from internal
wave generation and subsequent mixing processes. This, however, is due to change as the ice
coverage is shrinking and leaves the Arctic surface open to winds and atmospheric disturbances.
As shown in figure 3.11, Arctic sea ice extent has almost continuously decreased since 1979 (trend
with measurements in September, with a 13.4% decline per decade), and polar oceanographers are
now expecting an ice-free Arctic Ocean during Summer in the horizon 2030. Hence the Arctic, that
used to be preserved from atmosphere influence, is likely to experience strong mixing processes
that will durably impact its stratification over the next century, motivating research campaigns,
and theoretical and experimental studies, amongst which internal wave studies.

Of primary importance are these studies today, as the exact impact on climate change is still
unknown. In the Arctic Ocean, the observed melting rate of sea ice is more important than models
can predict, and the proportion of thin and weak young ice (formed within the last 5 years)
over old ice (present for more than 5 years) keeps increasing [218]. Newly discovered paths for
transports of heat and nutrients in the cold northern regions of the Arctic, such as the Chukchi
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Figure 3.11: Left: average monthly Arctic ice extent from 1979 to 2015 measured in September
(orange curve), and linear fit (blue curve), from: National Snow and Ice Data Center. Right:
photography of melting Arctic ice (SODA research cruise, September 2018).

Slope Current (see [35, 57] and chapter 9), also tend to modify the environment. Warmer polar
oceans with weaker stratifications would durably impact the world wide ecosystem and climate
evolution, with possible feedback on the large scale currents.

3.4 Conclusion
We have presented, in this chapter, general properties on stratification and rotation on Earth’s
geophysical fluids, namely the atmosphere and the oceans, with density variations with salinity
and temperature, and variations of the Coriolis frequency with latitude. In this thesis, however,
we only focus on the oceans and our experimental works do not involve temperature.

Atmospheric and oceanic internal waves are ubiquitous, and have been seen (through satellite
photographies) and measured (in-situ probes) in both media. They can be generated through
various mechanisms, one of them being storms moving over the ocean surface, which motivates the
axisymmetric study of wave fields, more relevant than usual two-dimensional plane waves studies.
In the oceans, this wave activity is believed to be a key phenomenon in stratified mixing, connecting
large scale forcings such as tides to small scale turbulent dissipation. In particular, and due to
renewed climatic conditions, the strongly stratified Arctic Ocean might be highly impacted by
internal wave related processes, making polar studies of primary relevance.
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Part II

Axisymmetric Waves in the
Linear Regime
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CHAPTER 4

Confined Waves and Stationarity

O som das ondas à noite é um som da noite.
Fernando Pessoa, Livro do Desassossego.

Inspired by oceanographic considerations, and building on earlier experiments that used paddle
generators to excite vertical [51] or horizontal [228, 229] modes, the novel internal wave generator
technology of Gostiaux et al. [92] has been used for a variety of studies of two-dimensional internal
wave modes. In all the following chapters, we refer to modes as standing waves produced via the
interference between two waves of the same magnitude but different directions. In doubly-confined
geometries (i.e. sidewalls, top and bottom), two-dimensional modes of various orders, determined
by the combination of stratification, imposed frequency, and dimensions of confinement, have been
studied [21, 220]. The propension of Gostiaux’s generator technology to investigate wave beams
and two-dimensional modes was thoroughly explored by Mercier et al [148]. Such capabilities have
been employed to investigate, for example, the Triadic Resonant Instability (TRI) in a vertical
mode propagating horizontally [107] or the formation of a multilayered stratification [64]. While
theoretical studies for linear stratifications describe such wave fields in terms of the natural modal
basis of sines and cosines, it should be recalled that the modal pattern can be considered as a
combination of plane waves propagating and reflecting from the system boundaries [148].

In this chapter, we investigate axisymmetric modes and perform laboratory experimental re-
alisations of such wave fields. A thorough description of Cartesian modes is drawn in section 4.1
in order to distinguish wave beams from standing wave modes. In section 4.2 we establish the
general theory for axisymmetric modes of internal waves by considering both radial and vertical
confinement as well as weakly viscous effects. Experimental results are presented in section 4.3,
followed by conclusions and discussion in section 4.4.

Results from this chapter have been published in Physical Review Fluids [33].

4.1 Wave Beams vs. Standing Waves

Linear theory of Cartesian internal waves has been reviewed in chapter 1, enhancing particular
solutions of the wave equation in terms of plane wave description. Other solutions exist, expressed
by cosine and sine functions, and provide better description of the wave field when confined,
creating standing waves, as shown in this section.
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4.1.1 Wave Beams and St. Andrew’s Cross
Let’s consider a density stratified fluid of buoyancy frequency N , in solid rotation at Ω so that the
Coriolis frequency f = 2Ω. In an unconfined domain, waves forced at ω such that f < ω < N or
N < ω < f propagate freely along a particular angle β with the vertical axis, set by the dispersion
relation (1.40) and recalled here

sin β = ±
√
ω2 − f2

N2 − f2 . (4.1)

As previously discussed (see chapter 1), this relation allows for the propagation of four different
wave beams along symmetric directions, as experimentally observed by Mowbray and Rarity [154],
whose observations are presented in figure 4.1. These beams form the well-known pattern of a St.
Andrew’s Cross and the wave field can be described, locally, by plane waves

ψ(x, z, t) = ψ0e
i(ωt−lx−mz). (4.2)

The exact profile of the wave beams, however, is not exactly a plane wave and are better described
using the Thomas and Stevenson’s profile [225].

Figure 4.1: Internal wave beams and St. Andrew’s Cross created by a vertically oscillating
cylinder in a stratified fluid at two different excitation frequencies. Extracted from [154].

4.1.2 Cartesian Modes
The plane wave description previously mentioned is valid for unconfined wave fields or, at least,
domains way larger than the wave generation mechanism. This condition is not always fulfilled as,
for example, oceanic waves can be confined due to the finite depth of the oceans and particular
topographies, or, in laboratory experiments, the wave generator and the tank can have the same
aspect ratio. Both cases lead to consider standing wave fields, or modes, that can be either vertical
modes described by

ψV (x, z, t) = ψ0φ
V (z)ei(ωt−lx), (4.3)

or horizontal modes
ψH(x, z, t) = ψ0φ

H(x)ei(ωt−mz). (4.4)

Using these expressions, the propagating part involves only one of the two directions ex or ez.
When inserted in the following linear Cartesian wave equation [48, 220]

∂2
t ∆ψ +N2∂2

xψ + f2∂2
zψ = 0, (4.5)
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the two spatial directions are uncoupled and we obtain equations on φV and φH as

d2φV

dz2 − l
2
(
N2 − ω2

f2 − ω2

)
φV = 0, (4.6)

and
d2φH

dx2 −m
2
(
f2 − ω2

N2 − ω2

)
φH = 0. (4.7)

In order to solve these equations, we need two boundary conditions on φ, that are zero velocity
orthogonal to the solid boundaries. For vertically bounded domains of given height H, the vertical
velocity is zero at z = 0 and z = H, leading to

φVp (z) ∝ sin(mV
p z) with mV

p = pπ

H
, (4.8)

with p ∈ N. Similarly, for horizontally bounded domains of given width L, the lateral velocity is
zero at x = 0 and x = L, and

φHp (x) ∝ sin(lHp x) with lHp = pπ

L
. (4.9)

As the wave equations are linear, the stream function writes as a sum over all possible modes,
which corresponds to a spatial Fourier transform, so that

ψV (x, z, t) =
∞∑

p=0
ψVp sin(mpz)ei(ωt−lpx), (4.10)

and
ψH(x, z, t) =

∞∑

p=0
ψHp sin(lpx)ei(ωt−mpx) (4.11)

where lVp and mV
p are linked through the dispersion relation (and so are lHp and mH

p ).
With the definition of the stream function from equation 1.53, the 2D horizontal and vertical

velocities for a single mode p ∈ N hence writes

vVx (x, z, t) = vVx cos(mV
p z) cos(ωt− lVp x), (4.12)

vVz (x, z, t) = vVz sin(mV
p z) sin(ωt− lVp x), (4.13)

for a vertical mode, and

vHx (x, z, t) = vHx sin(lHp x) sin(ωt−mH
p z), (4.14)

vHz (x, z, t) = vHz cos(lHp x) cos(ωt−mH
p z), (4.15)

for a horizontal mode. This theory has been experimentally verified by Mercier et al. [148] for hor-
izontally propagating vertical modes 1 and 2. Such modes have been used in various experiments,
such as 2D Triadic Resonant Instability (TRI) observation of Joubaud et al. [107].

As detailed in chapter 1, the group and phase velocities vg and vφ are orthogonal for plane wave
beams. This characteristic, however, is not true in the case of standing waves, as these velocities
are summed through the recombination of wave beams and are therefore parallel for modes, aligned
with the direction of propagation. In the case of horizontally propagating wave fields, vg and vφ
share the same orientation. Conversely, in the case of vertically propagating wave fields, they have
opposed orientation as, for instance, a downwards propagating wave field has downward group
velocity but upward phase velocity.

Snapshots of 2D Direct Numerical Simulations (DNS) of downward propagating modal wave
fields in a linear stratification are presented in figure 4.2, showing vertical velocity fields for a
mode 1 (left) and for a mode 2 (right), at ω/N = 0.67. DNS were run in the linear regime (non-
linear terms set to zero) using Dedalus on a SinCos basis in x and a Chebyshev basis in z, with
a 128× 128 nodes resolution. A boundary forcing of sinusoidal shape is applied at the top on the
stream function, to impose the vertical velocity. In both cases, the wave field is a mode (standing
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wave) along the horizontal direction, and is vertically propagating. The wave field is progressively
filling the domain from the top towards the bottom, as the group velocity is oriented downwards.
When established, the vertical wave length of the mode looks badly defined, but converges quickly
towards a given value set by the dispersion relation on top of the domain. The horizontal wave
length, however, remains identical to the forcing when the mode propagates.
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Figure 4.2: Snapshots of vertical velocity fields in a DNS of 2D Cartesian modes in a linear
stratification (at ω/N = 0.67) run using Dedalus. Left: mode 1. Right: mode 2. Both modes are
excited from the top and are propagating downwards.

In doubly confined domains, standing wave field theory has been extended and formulated as
entirely non-propagating modes [228, 220]. We discuss, in the next section 4.2, the axisymmetric
transposition of the Cartesian standing waves.

4.2 Theory of Axisymmetric Modes

The wave generator described in chapter 3 is well designed to excite customisable axisymmetric
wave fields, as the amplitude of each cylinder can be set individually. In particular, Bessel functions,
which are sines and cosines alikes in cylindrical geometry, can be reproduced by setting the correct
amplitudes from a discretised function.

In a previous study, Maurer et al [141] analysed the production of a conical wave field generated
by an axisymmetric moving form at the surface, for which the radial profile was a truncated Bessel
function. Such a wave field is analoguous to the Cartesian wave beams previously described.
Although Bessel functions form a natural basis of study for axisymmetric wave fields, the analytical
form of the wave field for a truncated Bessel function is not so simple because it contains various
radial wave lengths. The stream function is therefore a superposition of Bessel functions, as shown
by Maurer [140]. In previous studies, such conical wave beams have been described in terms of
plane waves with a spherical amplitude decreasing as r−1/2, r being the radial distance from the
sphere, computed from the Green function of the moving source [237], or as infinite sums of Bessel
functions with complex coefficients [60, 220].

An illustration is presented in figure 4.3(a), which displays a vertical cut of the spatial structure
of the wave field studied in [141]. Immediately below the generator (region 1 in figure 4.3(a)), the
wave field preserves its radial form, but further below, the wave field develops a conical beam-
shaped profile (region 2), which can locally be modelled by a plane wave. Finally, due to the
propagation angle set by the dispersion relation and to the finite extent of the wave generator,
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sufficiently far below the oscillating body around the vertical axis the wave field is absent (region
3). Analytically, this evolution of the wave field is a natural consequence of the truncated Bessel
function (i.e. non-zero only over a finite radial interval) forcing being expressed as an integral
over Bessel functions of different wave lengths, with coefficients depending on the spatial forcing.
Axymptotic complex models have been set up to understand the nature of such radiated wave
fields [60, 80, 238].
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Figure 4.3: Schematic representation of the wave field in a vertical cross-section. Left: beams for
downward propagating wave generation in (a) unconfined and (b) confined geometries produced by
a wave generator or an oscillating body (light grey rectangle). Right: (c) phase lines of two different
wave beams allowed by the dispersion relation and (d) phase lines of the wave re-recombination for
vertically propagating horizontal (radial) modes. See chapter 2 for practical details on the wave
generation process.

Starting from the Navier-Stokes equations, this section aims at deriving the rigorous theory for
axisymmetric internal wave fields in confined domains for non-rotating density stratified fluids.

4.2.1 Stream Function Equation
In a cylindrical framework (er, eθ, ez), with ez vertically upwards, small amplitude inertia gravity
waves in an inviscid fluid with a constant background stratification satisfy the following equations
in the Boussinesq approximation

ρ0

(
∂v
∂t

+ (v · ∇) v
)

= −∇p− (ρ− ρ̄)gez, (4.16)

∂ρ

∂t
+ (v · ∇) ρ = 0, (4.17)

∇ · v = 0, (4.18)
where v = (vr, vθ, vz) is the velocity field, p the pressure field, ρ the density field, and ρ̄ the back-
ground density field. The buoyancy frequency N is defined via the relation N2 = (−g/ρ0)∂ρ̄/∂z



66 CHAPTER 4. CONFINED WAVES AND STATIONARITY

with ρ0 being a reference density.
Considering axisymmetric wave fields, we assume that there is no variation in the azimuthal

direction and hence all functions only depend on (r, z, t). The radial and vertical velocities can
be written using the axisymmetric stream function ψ introduced in chapter 1 such that

vr = −1
r

∂(rψ)
∂z

and vz = 1
r

∂(rψ)
∂r

, (4.19)

and, a direct calculus shows that equations (4.16), (4.17), and (4.18) collapse into

∂2
t

(
∂2
zψ + ∂r

(
1
r
∂r(rψ)

))
+N2∂r

(
1
r
∂r(rψ)

)
= 0. (4.20)

Natural axisymmetric solutions of this equation can be found through a Fourier-Hankel decompo-
sition. Using a modal basis, the solutions write as linear combinations of Bessel functions of the
first kind J1 and of the second kind Y1. The later has a singularity at r = 0 so only the J1 function
will be considered. As different radial wave numbers may enter in the decomposition, the stream
function ψ can then be written as a modal sum

ψ(r, z, t) =
∫∫

φ(z)J1(lr) exp(−iωt)dldω. (4.21)

Radial and vertical velocities can be derived from equation (4.21) using classic relations for the
Bessel derivatives, as follows

vr =
∫∫

φ′(z)J1(lr) exp(−iωt)dldω, (4.22)

vz =
∫∫

lφ(z)J0(lr) exp(−iωt)dldω. (4.23)

For a given frequency ω and radial mode l, φ(z) satisfies

ω2φ′′(z)− l2(N2 − ω2)φ(z) = 0. (4.24)

Solutions of equation (4.24) are exponential functions, either complex or real. They can be either
propagative or evanescent waves, depending on the frequency, as long as the vertical wave number
m satisfies the dispersion relation

m2 = l2
N2 − ω2

ω2 . (4.25)

With β = sin−1(l/k) the angle between the vertical axis and the wave vector k = (l, 0,m) of
magnitude k =

√
l2 +m2, the dispersion relation (4.25) simplifies in

sin β = ± ω
N
. (4.26)

According to equation (4.26), internal gravity waves propagate along a direction fixed by the angle
β. As detailed in section 4.1, in a two dimensional geometry, four wave beams on a St Andrew’s
Cross are formed [155, 223]. In a three dimensional axisymmetric geometry, the dispersion relation
sets two cones aligned along the vertical direction and connected by the apex [169, 220].

4.2.2 Radial Confinement
Given the finite spatial extent of the forcing, to generate a modal wave field described by a single
radial Bessel function, confinement can be imposed experimentally to the fluid, as illustrated in
figure 4.3(b). As for planar geometries, confinement prevents the wave from propagating in the
bounded direction. Given the assumption of axisymmetry, we seek a wave field that is radially
confined by a cylinder of radius R equal to the radius of the generator, and vertically propagat-
ing, which is in contrast to the planar scenario that has vertical confinement and permits lateral
propagation [64, 107, 148]. We impose the radial boundary condition

vr(r = R, z) = −
(
∂ψ

∂z

)

(r=R,z)
= 0, (4.27)
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which means that ψ(r = R, z) is a constant, corresponding to a maximum of vertical velocity
and a vanishing radial velocity at the outer boundary, and conserving volume in the domain.
Condition (4.27) limits possible values of the radial wave number l, as the product lR has to be
a zero of the J1 Bessel function, and if the fluid is excited with one of these wavenumbers at
frequency ω, a single propagating mode is expected to result.

Figure 4.3(c) shows the two directions of propagation allowed for the wave beams by the
dispersion relation (1.74), in a vertical planar cross-section, for a wave generation at the surface.
In our experiment, the radial confinement leads to downward propagating modes which are, as
depicted in figure 4.3(c,d) (still in a vertical planar cross-section) a re-combination of conically
propagating beams. Due to the symmetry with respect to the vertical axis, the radial direction
of propagation cancels out and, for a downwards propagating wave at a selected frequency ω and
wavenumber k, the phase and group velocities can be computed from the dispersion relation (1.74)

vφ = 1
2π

∫ 2π

0

Nl

k
(ler +mez)dθ = Nlm

k
ez, (4.28)

vg = 1
2π

∫ 2π

0

mlN2

ωk4 (mer − lez)dθ = −ml
2N2

ωk4 ez. (4.29)

Equations (4.28) and (4.29) show phase and group velocity oriented in opposite directions, illus-
trated in figure 4.1(d), consistent with oceanic signatures identified by oceanographers looking
for internal waves [8, 9]. This feature contrasts with horizontally propagating modes, only rel-
evant in cartesian geometry, which show phase and group velocities pointing towards the same
direction [148].

To investigate the shape of the wave field in the experimental domain, and more specifically
its amplitude, we extend the axisymmetric analysis of Sutherland [220, chapter 5], first derived
for an oscillating cylinder in a two-dimensional geometry, by applying it to our axisymmetric
flat generator in a confined domain. Through a Fourier transform, the time dependency of the
streamfunction can be expressed in complex coordinates as ψ ∝ e−iωt, the velocity field being the
real part of the stream function derivatives. Neglecting rotation and introducing Γ2 = 1−N2/ω2,
the linear system of equations (1.64), (1.65), and (1.66), can be rewritten as a collapsed equation

Γ2 ∂

∂r

(
1
r

∂(rψ)
∂r

)
+ ∂2ψ

∂z2 = 0. (4.30)

Considering that the cylindrical plates of the generator are moving vertically (as described in
chapter 2, and detailed in [141]) and are injecting a vertical velocity aω, with a being a sufficiently
small displacement so that the fluid surface can be considered to reside at z = 0, the boundary
conditions that apply to the streamfunction field are

vz(r, z = 0) =
(

1
r

∂(rψ)
∂r

)

(r,z=0)
= aωJ0(lr), (4.31)

vr(r = R, z) =
(
∂ψ

∂z

)

(r=R,z)
= 0. (4.32)

Equation (4.31) means that the generator imposes its own movement to the fluid at the top of the
domain. The modal boundary condition is expressed by equation (4.32) as detailed before.

For N < ω, the problem can be readily solved via a coordinate transformation: (r′ = Γr, z′ = z)
so that equation (4.30) becomes

∆′hψ = 0, (4.33)
where ∆′h is the horizontal Laplacian. The solution can be obtained using separation of variables.
The radial part of the equation satisfies a Bessel differential equation of first order, leading to
ψ ∝ J1(lr). The vertical component is found to be exponential, and ψ ∝ exp(Γlz) as the amplitude
decreases as z goes to −∞. From the boundary conditions, the different coefficients can be set.
Recasting the solution in the original coordinates, we obtain

ψN<ω(r, z, t) = −aω
l
J1(lr) exp(mz) cos(ωt), (4.34)
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where we define m = Γl, which contains the influence of the stratification.
In the case N > ω, the term 1 −N2/ω2 is negative. We thus define γ2 = ω2/N2 − 1 and, by

analytic continuation, the problem can be solved using the same method as before. Thanks to the
second order derivatives, the problem remains well-defined though we are using complex analysis
and the final stream function belongs to the real space of functions

ψN>ω(r, z, t) = −aω
l
J1(lr) cos(mz − ωt), (4.35)

with m the vertical wave number defined as m2 = −γ2l2. Hence, we obtain two different radial
modes, one being evanescent (4.34) and the other one propagating in the vertical direction (4.35).

Henceforth, we are only considering the case of propagative waves with ω < N . The vertical
velocity being a radial derivative, it behaves as vz ∝ aω

vz(r, z) = 1
r

∂(rψ)
∂r

= aωJ0(lr) cos(mz − ωt), (4.36)

vr(r, z) = ∂ψ

∂z
= −aωm

l
J1(lr) sin(mz − ωt). (4.37)

4.2.3 Vertical Confinement
In our experiments, boundaries at the top (z = 0) and at the bottom (z = −L) are to be taken
into account. This confinement creates a finite domain where a behaviour similar to an opto-
electromagnetic cavity [103] or a Melde’s string for accoustic or mechanical waves [147] can take
place, with different modes and resonances. The total wave field in the cavity is obtained by a
superposition of all the reflected waves, from the top and the bottom of the tank, causing con-
structive or destructive interferences. In this configuration, the generator is continuously exciting
a velocity field given by a stream function ψ1, described in complex notation by

ψ1(r, z, t) = ψ0
1J1(lr)ei(ωt−mz), (4.38)

with ψ0 = aω/l. At z = −L, the downwards wave field ψ1 is reflected into an upwards wave field
ψ2, and at z = 0 (when assuming small amplitude forcing at the surface), the ψ2 stream function
is reflected into another downwards wave ψ3. Repeated reflections occur at z = 0 and z = −L,
and as a result the total stream field is composed of an infinite sum of reflected wave fields.

We denote by odd numbers the downwards waves and by even numbers the upwards waves.
At the boundaries, as well as changing direction, reflection also induces a π phase shift, and if we
assume that there is no dissipation the amplitudes of the stream functions are equal before and
after reflection. Boundary conditions at the top and at the bottom of the tank then apply as

ψ2k−1(z = −L) = ψ2k(z = −L)eiπ, (4.39)
ψ2k+1(z = 0) = ψ2k(z = 0)eiπ, (4.40)

leading to

ψ0
2k = ψ0

2k−1e
−2imL−iπ, (4.41)

ψ0
2k = ψ0

2k+1e
iπ. (4.42)

We deduce that the general expression of these wave amplitudes are

ψ0
2k = ψ0

1e
−2ikmL+(2k−1)π, (4.43)

ψ0
2k+1 = ψ0

1e
−2ikmL+(2k)π. (4.44)

As the tank is filled by infinite wave reflections, we describe the total wave field by a sum over all
the reflected waves

ψ =
∞∑

k=1
ψk = ψ0

1J1(lr)eiπ/2eiωt
sin(m(z − L))
i sin(mL) , (4.45)
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hence the real field becomes

<(ψ) = ψ0
1J1(lr)cos(ωt) sin(m(z − L))

sin(mL) . (4.46)

Waves that contribute to the total wave field interact either constructively or destructively.
In the first case, we would be able to define a temporal and a spatial period, fixed by the wave
parameters ω, l, and m, and by the size of the cavity L, as in any wave resonator. Exact cavity
modes are obtained if the reflection at z = −L produces a reflected wave in phase with the incoming
wave, which means that this position is already a node of the wave field. This resonance condition
can be expressed as

L = n
λ

2 , for n ∈ N, (4.47)

with λ = 2π/m being the vertical wave length. A direct consequence is that the reflection at z = 0
also produces a wave in phase with the incoming wave, so all reflected waves will be interacting
constructively. Therefore, this relation can be written as a condition involving resonant frequencies
ωn

ωn
N

= (Ll)2

π2n2 + (Ll)2 . (4.48)

Similar to electromagnetic waves, the cavity operates as a frequency selector, as a discrete number
of frequencies ωn fulfills the resonance condition. We present in table 4.1 a list of the first ten
resonant frequencies that can be selected in a radial mode 1 configuration with L = 60 cm and
l = 19 m−1.

n 0 1 2 3 4 5 6 7 8 9 10
ωn/N 1 0.964 0.876 0.771 0.672 0.588 0.518 0.460 0.413 0.374 0.341

Table 4.1: First ten resonant frequencies computed for L = 60 cm and l = 19 m−1.

4.2.4 Weakly Viscous Effects
In the preceding derivations, an inviscid fluid was assumed. This made possible the propagation of
a single mode at all frequencies without damping effect, and the existence of exact resonant cavity
modes. As we will see, however, such an approximation is only relevant for a selected range of
frequencies. Inspired by the approach detailed in chapter 1 to quantify the viscous effects on the
wave propagation, we write the vertical wave number as the following expansion

m = m(0) + iεm(1) +O(ε2), (4.49)

with ε = νl2/ω, m(0) being the inviscid wave number (equation (1.74)), and m(1) being the first
order correction. Including viscous terms, equation (4.24) becomes

φ(4)(z)−
(

2l2 − iω
2

ν

)
φ′′(z) + l2

(
l2 + i

N2 − ω2

νω

)
φ(z) = 0. (4.50)

Hence, with the vertical dependence being exp(imz) (complex notation of equation (4.35)) and m
defined as in equation (4.49), one can extract from equation (4.50) the following weakly viscous
correction

iεm(1) = ∓ iεl

2α3
√

1− α2
, (4.51)

where α = ω/N . Hence, at an altitude z below the wave generation source, the weakly viscous
streamfunction ψν writes

ψν(z) = ψ(z) exp(−εm(1)|z|). (4.52)
According to equation (4.52), the typical vertical length of viscous damping 1/εm(1) depends

on the frequency ω and is smaller at low frequencies than at high frequencies. These results will
help understand experimental measurements of the wave field amplitudes when comparing them
to the velocity amplitudes of the generator.
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4.3 Experimental Results
We discuss here the ability and efficiency of the wave generator to produce radial modes. The res-
onance phenomenon, leading to high amplitude wave fields and non-linear effects, is also observed.

4.3.1 Radial Modes
As mentioned in sections 4.1 and 4.2, vertically propagating radial modes created from a top
boundary forcing propagate downwards before being reflected at the bottom and propagating
upwards. Hence we first focus on a regime before reflection happens.
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Figure 4.4: Radial modes 1, 2, and 3, as observed in PIV in the experiment. First column:
generator configuration that sets the mode (see chapter 2). Second column: vertical velocity vz
in a vertical plane. Third and fourth columns: radial velocity vr in a vertical and in a horizontal
plane around mid-depth. Shaded areas are outside of the confining cylinder. For the purpose of
visualisation, negative values of r are used in the vertical PIV plane, leading to antisymmetric
radial velocities as predicted by equation (4.37).

Figure 4.4 presents a summary of the experimental PIV results for the generation of modes
1 through 3 in a linear stratification with ω/N = 0.6 for modes 1 and 2 and ω/N = 0.65 for
mode 3, and a generator amplitude a = 5 mm. The generator plate configuration for each mode
is illustrated in the left hand column, with n nodes for mode n. The vertical cross sectional plots
of the vertical velocity, presented in column 2, possess the horizontal structure of the generator,
increasingly intricate for the higher modes, with associated vertical sequences of maxima and
minima. Columns 3 and 4 in figure 4.4 present vertical and horizontal cross sectional plots of
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the radial velocity component. For every mode, the radial velocity structure possesses a left-right
antisymetry in the vertical plane. The different nodes of radial velocity, which correspond to anti-
nodes of vertical velocity, are also clearly visible in plots of the velocity in the horizontal plane,
presented in column 4; these images also show the form of the generator being reproduced by the
underlying wave field. No orthoradial velocity vθ was observed in the horizontal plane.

In a previous study, Maurer et al [141] experimentally measured the internal wave dispersion
relation for freely propagating waves generated by an axisymmetric wave generator with no lateral
confinement, which was consistent with theoretical predictions. In the modal configuration, how-
ever, the dispersion relation does not explicitly contain an angle of propagation, only a statement
of the vertical wave length as a function of the forcing frequency and horizontal wave number. The
vertical wave number m was measured for different frequencies ω/N for the three modes in our
experiments. Figure 4.5 compares the experimental values of m with the theoretical one extracted
from equation (4.25) given the control parameters. Measurements were performed by looking at
the spatial vertical period of the vertical velocity on PIV images. It shows a good agreement for the
three modes considered in the study, though there is a slight deviation at low frequencies, probably
because of the error in N which was about 10% for mode 1 experiment and 4% for mode 2 and
mode 3 experiments.
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Figure 4.5: Measured values of the vertical wave number (data points) for modes 1, 2, and
3, compared to the theoretical expectations from equation (4.25) (lines). Vertical errors were
determined using measurements of m at different times, and horizontal errors using the standard
deviation on the buoyancy frequencies from the probe profiles.

To quantitatively investigate how close the experiments reproduce the theoretical modal Bessel
profile, figure 4.6 presents radial profiles of vz and vr, fitted to the expected radial dependency of
the Bessel mode, for mode 1, mode 2, and mode 3 configurations. For each tested profile, we looked
for the best fit in amplitude to adjust the analytical Bessel profile. We see that vz(r) ∝ J0(lr) and
vr(r) ∝ J1(lr), with l = 19 m−1, 35 m−1, or 51 m−1, as expected; these horizontal structures are
preserved through the vertical propagation of the wave field as nodes and antinodes almost coincide
along vertical lines. Small deformations sometimes appear close to the boundaries at r = 20 cm,
due to boundary layer effects, but remain localised over a few millimeters. The perturbation
observed symmetrically around 12 cm < |r| < 16 cm is actually caused by laser reflections in the
cylinder, producing locally poor PIV visualisation. Mode 1 is the most accurately reproduced
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compared to modes 2 and 3, which can be explained by the discretisation of the profile and a
diminished number of plates between two nodes when inceasing the mode order.
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Figure 4.6: From top to bottom: examples of experimental velocity profiles (left) vz and (right)
vr for mode 1, mode 2, and mode 3, taken at a given time and altitude, fitted by appropriate
Bessel functions: J0(lr) for vz and J1(lr) for vr, with l = 19 m−1, l = 35 m−1, and l = 51 m−1

respectively.

4.3.2 Generator Efficiency
The efficiency of the wave generator, being the ratio of the amplitude of the waves produced to
the amplitude of the generator motion, is investigated in order to characterize the quality of the
produced wave field. Hence, it is essential to reliably measure the amplitude of the internal wave
field which is, due to unavoidable reflections in closed domains, a delicate task and more challenging
than measuring their frequency or wave length.

A few previous studies have made direct measurements of velocity amplitude, although these
are typically done either at high frequencies or relatively high amplitudes. Mathur & Peacock [139]
studied transmission and reflection of internal wave beams across a transmission region and took a
Fourier transform of the reflected and transmitted wave fields along appropriately chosen transects,
Maurer [140] measured wave amplitudes by looking at the maximum of the velocity over a given
spatial area, and Supekar [219] utilized the distribution of maxima of amplitudes for a velocity
field in a widespread two dimensional beam. In performing our experiments, it was necessary to
more rigorously define our amplitude measurement methodology based on understanding of the
group velocity of the wave fields we were studying.

The procedure to determine the wave amplitude was the following. In a first step, experimental
amplitudes at a given time tm were determined by fitting a Bessel function to the instantaneous
horizontal profile at a given depth zm of the vertical velocity, as illustrated in figure 4.6. The
depth zm chosen for this profile was selected to be 15 cm below the generator, as the wave field
was properly developed at this depth. Since the stratification, the forcing frequency and the radial
wave length are imposed, the only free parameter for the fit is the amplitude of the Bessel function.
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Note that we used the vertical component of the velocity field for this fitting, since it has larger
amplitudes than the radial velocity profile (which is characterized by a node at r = 0) and so was
more amenable to fitting.

Measurements were repeated for all images over a time interval tm ∈ [ti; tf ], with ti being the
time when the wave is expected to first cross the horizontal cross-section at z = zm. The time tf
is the time when the reflected wave is predicted to reach z = zm after returning from the bottom
of the tank, resulting in a disturbance of the wave field. Both ti and tf were estimated using
the group velocity of the wave field established in equation (4.29). This series of measurements
provided a time-series of local wave amplitudes at z = zm. An example of such a time series is
shown in figure 4.7. One would expect this time signal to be sinusoidal. As can be seen in this
example, the growth of the wave amplitude due to the presence of other frequencies associated
with the ramping up of the wave generator can be observed for the first few periods, and the decay
after tf is due to the interfering waves returning out in phase. This illustrates the difficulty of
wave amplitude measurement in a finite size tank.

In a second step, in order to best estimate the wave amplitude of the steady state before the
reflected wave returned (there is some uncertainty on the exact return time), we computed the
RMS value of the time signal over three periods close to tf half-covering each other, the middle one
being just before theoretically seeing the reflected wave, the previous period covering the first half
of this one, and the following period covering the second half of it (these measurement windows
are illustrated by 3 rectangles in figure 4.7). The experimental global amplitude was determined
as the mean value of the 3 RMS values obtained (multiplied by

√
2), and the standard deviation of

these 3 measurements gives an estimate of the associated error. We checked that the method was
sound by repeating some test measurements for other horizontal planes and obtaining consistent
results.
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Figure 4.7: Example of time series of fitted instantaneous Bessel function amplitudes of the
vertical velocity, measured at z = zm = −15 cm for a mode 1 wave. After identifying tf (solid
vertical line), three periods half-covering each other (rectangles) are used to extract the global
wave amplitude via RMS estimates.

The results of our efficiency experiments are presented in figure 4.8 for two different generator
amplitudes. We plot the velocity amplitude normalised by the generator velocity amplitude aω.
From equation (4.52), without dissipation effects, one expects this ratio to be 1 (straight line in
figure 4.8). This proves correct in the high frequency range (0.5 < ω/N < 0.9), except close to
the buoyancy frequency as discussed further. The decrease at low frequency can be interpreted
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by viscous effects. Indeed, when one includes viscous dissipation in the theoretical development,
the expression of the stream function is given by equation (4.52). The curve corresponding to
the vertical velocity extracted from this equation (at a depth of −15 cm since equation (4.52)
depends on z) is plotted in figure 4.8, showing a similar bahaviour as the experimental data points
for the two forcing amplitudes a = 2.5 mm and a = 5 mm. The difference in amplitude may
be ascribed to boundary layer effects. Based on the approach of Beckebanze et al [19], an order
of magnitude calculation of the damping on the boundaries gives an estimate comparable to the
dissipation in the bulk. At very low frequencies (below ω/N = 0.05), the amplitude is so low that
measurements become impossible. Finally, for ω/N = 0.9 to 1, we notice a decrease in amplitude
that is expected, as shown by the theoretical curve, since the waves are evanescent for ω/N > 1.
However, this decrease comes sooner than expected.

To conclude, the generator efficiency was investigated and shows a similar behaviour as the
theoretical prediction in all frequency ranges, providing one takes viscous effects into account. In
addition, we identify a range of frequencies, from ω/N = 0.5 to ω/N = 0.9, where there is a very
good agreement with the theory, making this range suitable for axisymmetric modes experiment
and for resonant enhancement.
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Figure 4.8: Generator efficiency measured at z = −15 cm, for two experiments with a = 5 mm
and a = 2.5 mm. Results are compared to the theoretical predictions in the inviscid case and in
the weakly viscous case (viscous damping curve, computed for N = 0.9 rad · s−1).

4.3.3 Resonance
Having established the response of the stratification to the wave generator forcing, we then con-
ducted experiments to detect resonance for a mode 1 excitation, due to the multiple reflections
of the wave field at the top and bottom boundaries of the tank. These experiments consisted of
measuring the amplitude of the wave by looking for the maximum value of vertical velocity in z and
t at r = 0 (since J0(r = 0) is maximal and equal to 1). The time window for these measurements
was chosen to ensure the establishment of the steady state resonant wave field. In order to allow a
minimum of about 10 back and forth crossings, we chose this time window to be from 280 s after
starting the forcing, based on the minimum value of the group velocity of the waves, to 300 s, end
of the experiment duration.

Our experimental results are presented in figure 4.9, showing the measured velocity amplitude,
normalised by the generator velocity amplitude aω. We performed two sets of experiments : one
with a = 2.5 mm and N ' 0.90 rad · s−1 (blue circles) and another one with a = 5 mm and
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N ' 0.88 rad · s−1 (red squares). The first set of experiments was mainly aimed at identifying
the resonant peaks; the second set was more evenly spread over all frequencies (a hundred values
of ω/N from 0.625 to 1 at a regular interval). In the latter case, however, because of the larger
generator amplitude, all experiments where the frequency was too close to the resonance led to
strong non-linear effects, making the measurement of an amplitude impossible. For this reason,
the corresponding data points are not shown. The theoretical curve for the maximal amplitude
of vertical velocity normalised by the generator, computed from equation (4.46), is also plotted in
figure 4.9 as a solid line.

With the generator configured at low forcing amplitude (a = 2.5 mm), the peaks corresponding
to the first resonant frequencies were observed as predicted by the theory (see table 4.1). The
measured resonance peaks are not exactly centered on the predicted resonant frequencies, but this
is not inconsistent with the characteristic 4% error on N . We see that in the vicinity of resonant
frequencies the wave field reaches twice the amplitude of the generator, and even more for the
highest frequencies. For non-resonant frequencies, however, the wave interaction is destructive and
the measured amplitude is half the amplitude of the generator.
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Figure 4.9: Amplitude measurements of the vertical velocity in the resonant cavity normalised by
the generator velocity amplitude. Yellow line: theoretical amplitude for an infinite sum of waves
as a function of the frequency ω/N . The dots are from three different sets of measurements run
for different buoyancies or amplitudes. Red hatched regions show intervals of frequencies in which
non-linear effects are clearly seen in the experiment for a = 5 mm.

In the vicinity of a resonant excitation frequency, we observed that the wave field amplitude kept
strengthening until it triggered substantial non-linear effects. To illustrate this, figure 4.10 presents
the temporal evolution of a horizontal profile of the vertical velocity component for ω/N = 0.73
(figure 4.10(a), non-resonant), and ω/N = 0.77 (figure 4.10(b), resonant). In the non-resonant
case, each velocity profile has the shape of a Bessel profile, which is conserved during the whole
experiment. No non-linear deformation of the wave field can be observed. The beating behaviour
(i.e. low frequency fading amplitude) is because the reflected wave fields are not perfectly out of
phase, due to the non-resonance condition. In the resonant case, such oscillations do not exist
as all reflections are in phase and interfer constructively. These reflections, however, lead to an
increasing amplitude that quickly triggers non-linear effects in which waves at other frequencies
than ω are excited, after 80 seconds in the example in figure 4.10(b). The Bessel axisymmetric
shape of the profile starts to disappear from the center of the tank due to emerging non-linear
features, as the amplitude is maximum at r = 0. The non-linearities then propagate radially
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towards the boundaries of the cylindrical tank, and the velocity field does not have a modal shape
anymore (after 250 seconds in figure 4.10(b)).

By performing a similar analysis for all frequencies in the large amplitude case (a = 5 mm), we
identified four frequency ranges in which all experiments led to non-linear effects. These ranges
are marked with red hatched zones in figure 4.9. These intervals show a good agreement with
the predicted resonance peaks (table 4.1) and with the increasing amplitude observed for the low
amplitude measurements (a = 2.5 mm).
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Figure 4.10: Temporal evolution of a horizontal profile of vertical velocity located at the center
of the tank, for (a) ω/N = 0.73 (non resonant case) and (b) ω/N = 0.77 (resonance case). These
profiles are measured at mid-depth in the tank for a mode 1 excitation, with a = 5 mm.

4.4 Conclusions and Discussion
We have presented the results of a combined theoretical and experimental study of axisymmetric
internal wave modes, in which we first developed the theoretical framework of radial standing waves
propagating vertically in uniform stratifications, incorporating both radial and vertical confinement
and accounting for the impact of weak viscous damping. Then we presented the results of a
laboratory experimental study of axisymmetric internal wave mode generation. The effect of
rotation was not explored in our experiments, but the governing equations predict qualitatively
similar behaviour as in the non-rotating case, the impact of rotation being foremost to influence the
vertical wavenumber of the wave field for a given forcing frequency and buoyancy frequency [141,
169]. The experimental wave fields were produced using a novel configuration of internal wave
generator technology that has previously been primarily used to excite nominally planar wave
fields; in our experiments the arrangement directly excited the Bessel functions that are the natural
basis of axisymmetric modes.

For the basic structure of the wave fields, there was very good qualitative and quantitative
agreement between experiments and theory. Modes 1 through 3 were excited, leading to vertical
and radial velocity profiles consistent with associated Bessel function forcing, and confirming the
expected dispersion relation. As an additional component of these studies, we determined the
efficiency of modal excitation by carefully studying the fluid system response to the generator
forcing, fitting the PIV data to Bessel functions. A range of frequencies, from ω/N = 0.5 to 0.9,
was identified as being particularly suitable for studying axisymmetric modes as in this frequency
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range the wave field is attenuated very little and has an almost full response to the forcing amplitude
of the generator.

Having established the ability to excite vertical modes, the role of vertical confinement was
then investigated. Such confinement has the potential to generate a resonance effect when re-
flected modes constructively interfere with each other. The resonance conditions for our system
were determined and a series of experiments with different forcing amplitudes were performed.
The experimental results on the wave field amplification aligned well with resonance predictions
that incorporates weakly viscous correction for the wave field. Further refinement to account for
the enhanced attenuation by boundary layers effects, or the effects of near surface and near bot-
tom homogeneous fluid layers due to the filling process or diffusion could account for the minor
discrepancies observed. Within the bounds of resonant peaks, the wave field was seen to amplify
sufficiently to trigger non-linear effects that then eroded the linear wave field structure outwards
from the centerline of the experimental domain, ultimately leading to a fully non-linear wave field
throughout the experimental domain.

While there have been a number of nominally two-dimensional experimental studies comparing
plane wave or mode behaviour with theoretical models, considering both their spatiotemporal
form and transition to non-linear phenomena, there have been few such studies for axisymmetric
geometries and most of them have been limited to the wave field excited by a vertically oscillating
sphere. Axisymmetric wave fields are arguably more relevant as fundamental configurations for
studying scenarios such as the excitation of atmospheric internal wave fields by storm cells [8] and
the excitation of near-inertial wave fields in the ocean by surface storms [10]. This kind of laboratory
experiments may also help to shed light on the resonance of seiches in appropriately shaped water
basins, lakes, and estuaries [52, 94]. The experimental apparatus and consequent studies presented
here demonstrate a new ability to excite axisymmetric wave fields and pure radial modes, opening
the path to investigation of linear (e.g. internal wave transmission) and non-linear (e.g. TRI)
internal wave phenomena in axisymmetric geometries. For example, inertial wave breaking and
rotating turbulence, which was studied by Duran-Matute et al [66] using an oscillating torus, could
be further investigated using our configuration with any desired combination of Bessel modes.
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CHAPTER 5

Propagation in Non-Linear Stratifications

À la hâte coupez vos désirs trois-mâts échappés danseurs fous
La mer n’a plus de couleur venez voir la mer des algues

André Breton, Les Champs Magnétiques.

Inertia-gravity waves are known to be a significant vector for energy and momentum transfer
in the ocean and atmosphere [220]. While a substantial amount of progress in understanding
of their roles has been achieved via plane wave models, a planar geometry is not necessarily
appropriate for studies pertaining to natural phenomena such as oceanic internal wave generation
by hurricanes [113] and tropical cyclones [202], and atmospheric generation by thunderstorms [206].
Furthermore, Warren et al. [240] noted that a vertical disturbance of small spatial extent compared
to the horizontal dimension of the system in a stably stratified fluid like the atmosphere leads to
the emission of an axisymmetric perturbation. As such, and as discussed in some more details
in chapter 3, axisymmetry is a reasonable approximation to consider for inertia-gravity waves
generated by localised disturbances in either the atmosphere or the ocean.

When to consider energy transfer processes and wave propagation in the oceans and atmosphere,
an important feature is the vertical form of the density-gradient, as shown in the works of King et
al. [109] and Paoletti et al. [167] with numerical and in-situ studies of exponentially decaying buoy-
ancy frequency. The influence of non-uniform stratifications has been studied for planar geometry,
determining transmission and reflection coefficients for stratifications with sharp [158, 138] and
smooth [45, 138] discontinuities. Numerical and experimental studies show good agreement with
the theoretical predictions, considering two different scenarios: one with freely propagating inci-
dent waves [224, 138], a configuration relevant to the atmosphere, and another with parametric
subharmonic instability in a forced, upper stratification layer [86], relevant to an ocean configura-
tion. In the latter case, the finite extent of the upper layer leads to interferences between downard
and upward waves reflected at the top and bottom boundaries, a phenomenon similar to resonant
cavities as in optics [172] or Helmoltz cavities for sound waves [193, 153]. Such a resonant be-
haviour – by which we mean constructive interference1 – has been observed by Sutherland and
Yewchuck [224] and has been proven capable of triggering high amplitude wave fields [33].

Results from this chapter have been published in Journal of Fluid Mechanics[32].
Results from CPIES data are in preparation for Geophysical Research Letters [105].

1The use of the term resonance is ambiguous, as it can refer to two different phenomena in the physics of
waves. Historically, resonance has been first used to describe cavities in which constructive interference occur due to
reflection processes [172, 193, 153]. Later, it has been used to characterise the Triadic Resonant Instability (TRI)
with a condition on the frequencies and wave vectors created through non-linearities [107, 27, 42, 140]. In this
chapter, we refer to resonance in the sense of constructive interference.
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5.1 A First Glance at Cartesian Wave Transmission
In non-rotating buoyant flows, the internal wave dispersion relation

sin β = ± ω
N
, (5.1)

means that, for a given frequency ω, a change in buoyancy frequency N leads to a change in the
angle of propagation β, as observed in various studies [86, 138]. As a consequence, a buoyancy
interface creates wave beams with a different inclination, and propagation in non-linear strati-
fications leads to non-zero curvature of the wave beams as they follow the evolving gradient of
density [140].

When dealing with modes, the problem is different because boundary conditions impose the
wave field structure along given directions. In order to get a first intuition of the phenomenon,
we run 2D DNS of downward propagating horizontal modes in Cartesian geometry, with f = 0
and linear and bi-linear stratification. DNS were run using Dedalus in a horizontal SinCos basis
and vertical Chebyshev basis, with a 128× 128 nodes resolution. A sinusoidal forcing is applied at
the top boundary. Figure 5.1 presents snapshots of the results in two different stratifications: in
figure 5.1(left), the stratification is linear with a constant N and the wave field is forced at ω/N =
0.1; in figure 5.1(right), the stratification is bi-linear with layers of different buoyancy frequencies,
N1 and N2, on top of each other, and a forced wave field at ω/N1 = 0.5 and ω/N2 = 0.67. After
crossing the interface (dashed line in figure 5.1), the velocity field develops a horizontal structure
in the bottom layer similar to the forcing in the top layer, but a different vertical structure. Note
that, in these numerical simulations, the vertical wave length is badly defined in the whole domain
(figure 5.1(left)) and in the top region (figure 5.1(right)) due to reflection of the wave field, at the
bottom of the tank and at the interface, respectively.
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Figure 5.1: Snapshots of vertical velocity fields in a DNS of 2D Cartesian modes run using
Dedalus. Left: in a linear stratification (at ω/N = 0.5). Right: in a bi-linear stratification with
N1 for z ∈ [0;−22] and N2 for z ∈ [−22;−60] (at ω/N1 = 0.5 and ω/N2 = 0.67). The dashed line
shows the interface between N1 and N2.

The existence of reflected and transmitted wave beams at a buoyancy interface has been studied
in 2D for planar wave fields [138, 219], but the dynamics of modes has not been deeply investi-
gated. Furthermore, extending results from 2D Cartesian waves to 3D axisymmetric modes is not
intuitive due to the geometry and non-uniform amplitudes. In the next sections, we delve fur-
ther into transmission properties of axisymmetric wave fields with theoretical considerations and
experimental evidence.
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5.2 Axisymmetric Wave Transmission
Focusing on an inviscid Boussinesq fluid rotating at an angular velocity Ω, with a density stratifi-
cation ρ(z) where z is the ascendent vertical, small amplitude internal waves satisfy the following
equation in cylindrical coordinates [33, 141]

∂2

∂t2

(
∂2ψ

∂z2 + ∂

∂r

(
1
r

∂(rψ)
∂r

))
= −f2 ∂

2ψ

∂z2 −N
2 ∂

∂r

(
1
r

∂(rψ)
∂r

)
, (5.2)

in which f = 2Ω is the Coriolis frequency, and N =
√

(−g/ρ0)∂ρ̄/∂z is the z-dependent buoyancy
frequency, ρ0 being the reference density. The stream function ψ is defined so that the radial and
vertical velocities vr and vz are

vr = −1
r

∂(rψ)
∂z

and vz = 1
r

∂(rψ)
∂r

. (5.3)

In the configuration of a horizontal forcing in a linear stratification (N is a constant), the
solutions of equation (5.2) can be expressed as a product of two decoupled functions: a radial
part depending on the radius r, and a vertical part depending on the depth z. The cylindrical
geometry leads to a natural decomposition over Bessel functions for the radial component and
exponentials for the vertical component. Using a complex notation, as discussed in chapter 4, the
stream function can therefore be written as a sum of cylindrical modes of the form [33]

ψ(r, z, t) = ψ0J1(lr)ei(mz−ωt), (5.4)

with ψ0 a constant amplitude, ω the wave frequency, and l and m its radial and vertical wavenum-
bers. The radial dependence is expressed through a first order Bessel function of the first kind
J1, corresponding to a non-divergent mode. In the case of either a free propagating or evanescent
wave, the vertical dependence can be written with an exponential. For a more general framework
in further sections, for example while considering vertically confined wave fields, the vertical com-
ponent will be noted φ. As in cartesian geometry, the parameters ω, l, and m are linked through
the internal wave dispersion relation [33, 141]

m = ±l
(
ω2 −N2

f2 − ω2

)1/2

, (5.5)

derived from (5.2), (5.3) and (5.4).
In the next two sections, we discuss the two scenarios presented in figure 5.2, initially assuming

a sharp interface (discontinuity between two different buoyancy frequencies N1 and N2, with N1 >
N2). Figure 5.2(a) shows the transmission of a free incident wave ψI , which is more relevant to
the modeling of atmospheric internal waves, whereas figure 5.2(b) shows the transmission of an
incident wave confined from above, which is closer to an oceanic situation with a surface forcing.

5.2.1 Transmission of a Free Incident Wave
Sharp Interface

Linear vertical propagation of radial modes has been extensively studied by [33]. In this section, we
consider a horizontal interface located at z = 0 that splits the domain into two media of constant
buoyancy frequency N : N1 in the upper layer (z > 0), N2 in the lower layer (z < 0), the density
being continuous at the interface (figure 5.2(a)). We assume a larger buoyancy frequency in the
upper layer so that N1 > N2. As depicted in figure 5.2(a), a free incident wave ψI reaching the
interface leads to a reflected wave ψR in the upper region, and a transmitted wave ψT in the lower
region. The total wavefield can be described by ψ1 = ψI + ψR in the upper region, where ψI is
known, and by ψ2 = ψT in the lower region.

We define the transmission coefficients as the ratios of the velocities above and under the
interface, as

Tvz =
∣∣∣∣
vTz
vIz

∣∣∣∣ and Tvr =
∣∣∣∣
vTr
vIr

∣∣∣∣ , (5.6)
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Figure 5.2: Transmission of a radial mode J1 across a buoyancy frequency interface. The z axis
is located at r = 0. In both cases, the interface is modeled by a sharp discontinuity in buoyancy
frequency, and the blue pattern represents a Bessel shaped wave field. (a) free incident wave ψI
reaching the interface, leading to a reflected wave ψR and a transmitted wave ψT . (b) a confined
incident wave ψI , located between the surface at z = 0 and the interface at z = −L, is an infinite
sum of waves being reflected at z = 0 and at z = −L, and leads to a transmitted wave ψT .

and

Rvz =
∣∣∣∣
vRz
vIz

∣∣∣∣ and Rvr =
∣∣∣∣
vRr
vIr

∣∣∣∣ , (5.7)

where the notation I, R, and T , indicates that the vertical velocity vz or the radial velocity vr is
computed from the stream function ψI , ψR, and ψT , respectively (see figure 5.2). These velocities
are taken at the interface, which means in the limit z → 0.

Transmission and reflection properties can be derived by applying boundary conditions at
the interface: continuity of the total vertical velocity field vz and the pressure p derived from
ψ1 and ψ2 [138]. As in cartesian geometry, these quantities can be obtained using the linearised
Navier-Stokes equations [13]. The transmission and reflection coefficients for the radial and vertical
velocities vr and vz, and the flux of the energy j = pvz across the interface, can therefore be derived,
respectively

Tvr =
∣∣∣∣

2m2
m1 +m2

∣∣∣∣ , Tvz =
∣∣∣∣

2m1
m1 +m2

∣∣∣∣ , and Tj =
∣∣∣∣

4m1m2
(m1 +m2)2

∣∣∣∣ , (5.8)

and

Rvr =
∣∣∣∣
m1 −m2
m1 +m2

∣∣∣∣ , Rvz =
∣∣∣∣
m2 −m1
m1 +m2

∣∣∣∣ , and Rj =
∣∣∣∣
(m1 −m2)2

(m1 +m2)2

∣∣∣∣ , (5.9)

where m1 and m2 are the vertical wavenumbers corresponding to regions 1 and 2, given by the
dispersion relation (5.5). These coefficients are the same as in cartesian geometry for a plane
wave beam crossing a density gradient interface [138], suggesting that the radial dependence does
not affect wave properties at the interface though it still shapes the wavefield and the energy
distribution. Colormaps of the transmission and reflection coefficient for the vertical velocity, Tvz
and Rvz , are presented in figure 5.3 as functions of N1/N2 and ω/N1. A maximum of transmission
of vertical velocity appears for ω/N1 = N2/N1, when the wave just becomes evanescent in the lower
region. This evanescence transition is clearly identified in the reflection coefficient, showing a total
reflection of the wave field for ω/N1 > N2/N1. The high value of transmission of vertical velocity
can be explained by the vertical co-oscillation imposed to the bottom layer by the interface.
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Figure 5.3: Colormaps of (a) the transmission coefficient Tvz and (b) the reflection coefficient
Rvz in vertical velocity, in the plane (ω/N1, N1/N2). The Coriolis frequency is set to be f = 0.

Smooth Interface

Following the approach of Mathur and Peacock [138], the propagation of the wave across a physical
smooth interface of finite-width transition region δ is investigated using the buoyancy frequency
profile

N2(z) =
(
N2

1 +N2
2

2

)
+
(
N2

1 −N2
2

2

)
tanh

(z
δ

)
, (5.10)

for which N is assumed to be constant far from the transition region and continuously going from
N1 to N2 at the interface located at z = 0.

In a similar way as done by Mathur and Peacock [138] and Nault and Sutherland [158], the
wave behaviour close to the interface is explored through a numerical approach. As the buoyancy
frequency profile does only depend on z, the radial part is still described by a first order Bessel
function J1. We use an ansatz describing the stream function as

ψ(r, z, t) = φ(z)J1(lr)eiωt, (5.11)

where the vertical dependence is no longer described by an exponential as in (5.4) but by a z-
dependent function φ. This function is found to satisfy the differential equation

φ′′ + γ(z)φ = 0 with γ(z) = l2
(
ω2 −N2(z)
f2 − ω2

)
, (5.12)

where φ′′ stands for the second order derivative of φ, and γ is a function of z that replaces the m
wave number given in the sharp interface study. Far from the interface, the wave field is expected
to behave vertically as a Fourier mode, which implies an asymptotic form

φ̃(z) =
{
φI0e

im1z + φR0 e
−im1z if z = z+,

φT0 e
im2z if z = z−,

(5.13)

where φI0, φR0 , and φT0 are constants describing the amplitudes of the incoming, reflected, and trans-
mitted waves, m1 and m2 are the vertical wave lengths corresponding to the media of buoyancy
frequencies N1 and N2 defined by (5.5), and z+ and z− are two locations far from the interface re-
spectively above and below it. The asymptotic expression φ̃ can be written as boundary conditions
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for φ

φ = φ̃ at z = z+, (5.14a)
φ′ = im2φ̃ at z = z−. (5.14b)

Thus, we obtain a boundary value problem that can be solved numerically, giving the z-dependent
function φ and allowing for the computation the transmission and reflection coefficients.

Weakly Viscous Correction

As discussed in chapter 4, viscous damping for radial modes has to be considered while using
frequencies such as ω/N < 0.5. The weakly viscous correction can be described by assuming
that the first order correction in ε = νl2/ω for a vertical dependence of the stream functions as
φ(z) ∝ eimz takes the form [33]

m = m(0) + iεm(1) +O(ε2), (5.15)

with m(0) being the inviscid vertical wave number defined by equation (5.5), and m(1) the correction
term

iεm(1) = ∓ iεl

2(1− γ2)α3
√

1− α2
, (5.16)

where α = ω/N and γ = f/ω. Hence, after propagating over a distance z, the weakly viscous
streamfunction ψν is written

ψν(z) = ψ(z) exp(−εm(1)|z|). (5.17)

A more general calculation of the viscous correction, for arbitrary z-dependent stratifications, can
be found in Kistovich and Chashechkin [110].

Using the above expressions, the transmission coefficient can be computed numerically and
compared to the inviscid case. The problem is solved as a boundary value problem, using a similar
system as proposed before (5.14). Yet, as φ is now driven by a fourth order differential equation
[33], the boundary value problem requires four conditions to be closed

φ = φ̃ at z = L, (5.18a)

φ′′ = −(m(0)
1 + εm

(1)
1 )2φ̃ at z = L, (5.18b)

φ′ = i(m(0)
2 + εm

(1)
2 )φ̃ at z = z−, (5.18c)

φ′′ = −(m(0)
2 + εm

(1)
2 )2φ̃ at z = z−. (5.18d)

5.2.2 Transmission of a Confined Incident Wave

Sharp Interface

In the previous section, semi-infinite domains were implicitly assumed. Such situations can be
found in the atmosphere, as discontinuities in the buoyancy frequency profile are likely to be far
from a source of internal waves. In the oceans, however, strong stratifications are often found
close to the surface [33], so the upper layer cannot be modeled by a region that extends vertically
without boundaries.

We therefore consider a sharp interface between N1 and N2 at z = −L, and an upper rigid
boundary (the ocean surface) at z = 0, as presented in figure 5.2(b). Analytically, this problem
can be solved as in the case of a semi-infinite domain, except that the boundary conditions are
different because the incoming wave ψI is not known. Instead, the total field at z = −L is known
and its vertical dependence satisfies: φ(z = −L) = φ0 = φI0e

−iLm1 + φR0 e
iLm1 . The following

transmission coefficients are derived using the same continuity properties at the interface as in the
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previous section

Tvr =
∣∣∣∣
vTr
vIr

∣∣∣∣ =
∣∣∣∣∣

[
cos(Lm1) + i

(
m1
m2

)
sin(Lm1)

]−1
∣∣∣∣∣ , (5.19)

Tvz =
∣∣∣∣
vTz
vIz

∣∣∣∣ =
∣∣∣∣∣

[
cos(Lm1) + i

(
m2
m1

)
sin(Lm1)

]−1
∣∣∣∣∣ , (5.20)

and Tj =
∣∣∣∣∣

[
cos(2Lm1) + i

(
m2

1 +m2
2

2m1m2

)
sin(2Lm1)

]−1
∣∣∣∣∣ , (5.21)

with m1 = ±l
(
N2

1
ω2 − 1

)1/2

and m2 = ±l
(
N2

2
ω2 − 1

)1/2

. (5.22)

where the vTr and vTz are the transmitted radial and vertical velocities respectively, and vIr and
vIz are the incoming radial and vertical velocities for the total wavefield in the upper region (see
figure 5.2). All velocities are taken at the interface, which means in the limit z → −L. In
equation (5.22) we recall the result from equation (5.5) in the non-rotating case (f = 0).

Expressions (5.19), (5.20), and (5.21), involve different experimentally tunable variables: the
buoyancy frequencies of the two layers N1 and N2, the frequency of the wave ω, the depth L
of the interface, and the radial wave number l. These parameters can be reduced to three non-
dimensionalised parameters: L × l, ω/N1, and N2/N1. Figure 5.4 presents colormaps of the
transmission coefficient for vertical velocity Tvz , as a function of these different parameters. Clear
peaks appear, with large amplitudes due to a constructive interference effect between upwards and
downwards propagating waves in the upper layer. Figure 5.4(a) shows the transmission coefficient
as a function of ω/N1 and N2/N1 for a fixed value of L × l (= 3.23). Transmission is generally
higher for cases where waves can propagate in both regions (ω < N2 < N1) and drops off for
evanescent frequencies in the lower region (N2 < ω < N1). Maxima of transmission appear
for well-defined values of ω/N1 at a given N2/N1. The curves defining maxima of transmission
are continuous between the evanescent and the propagating regions. Figure 5.4(b) shows the
transmission coefficient as a function of ω/N1 and L× l for a fixed value of N2/N1 (= 0.74). The
cut-off between the propagating and evanescent regions is now observed at ω/N1 = N1/N2 = 0.74.
The resonant interference peaks are expected to be less numerous as N2/N1 → 1 or as L× l → 0.
The study of the transmission coefficient in radial velocity Tvr shows similar behaviour.

Smooth Interface

As in the freely incoming wave case, these results can be extended to the case of a smooth interface
through the same method, simply by changing the boundary condition at the surface:

φ̃(z) =
{
φ0 if z = L,

φT0 e
im2z if z = z−,

(5.23)

where z− is a location far from the interface in the lower layer, leading to a new set of boundary
conditions for the numerical computation.

Weakly Viscous Correction

The transmission mechanism involved in the confined configuration is supposed to result from an
infinite number of reflection in the upper layer. Such a condition, however, is not truly satisfied in
the case of a viscous fluid, as the amplitude of the wave field decreases and vanishes after a finite
number of reflections. Once again, the problem is solved numerically after finding out the correct
boundary conditions, using the first order developpement of the vertical wave number m [33].

5.3 Apparatus Configuration
The experiments did not involve rotation (f = 0), so the waves were purely internal gravity waves.
Note that adding rotation at fixed values of N , ω, and l, would only change the vertical wave



86 CHAPTER 5. PROPAGATION IN NON-LINEAR STRATIFICATIONS

(a) ω > N2

ω < N2

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω/N1

N
2/

N
1

0 1 2 3 4 5
Tvz

(b)

ω > N2 ω < N2

0 0.2 0.4 0.6 0.8 10

3.5

7

10.5

14

17.5

ω/N1

L
×

l
0 1 2 3 4 5

Tvz

Figure 5.4: Colormaps of the transmission coefficient Tvz as a function of (a) ω/N1 and N1/N2
at a given L× l = 3.23, and (b) ω/N1 and L× l at a given N2/N1 = 0.74. Dashed lines show the
cuts at (a) N2/N1 = 0.74 and (b) L× l = 3.23. The Coriolis frequency is set to be f = 0.

number m and not the physics involved in the linear theory (see equation (5.5)).
We set the wave generator’s configuration to be a mode 1 profile, with a radial wave length of

l = 19 m−1, as presented in chapter 2 figure 2.7. We use a generator amplitude a = 2.5 mm, which
is low enough to limit non-linear effects (see chapter 7 on non-linear effects for more details).

The tank is filled with salt-stratified water in a bi-linear stratification, as described in chapter 2
figure 2.3(b), using a filling process based on the double bucket method [81, 164]. In order to
obtain bi-linear stratifications, when required we stopped the filling, to change the filling tank
density difference by removing salt water and adding fresh water without changing the density in
the mixing tank. We then re-started the filling, which gave us a sharp but buoyancy frequency
interface at the desired depth. In our experiments, we decided to use a stronger stratification in
the upper layer (N1 > N2), as in the theory, because we wanted to look at transmission when the
wave field in the lower layer was either propagating or evanescent. Such a configuration is also
more common in the ocean, where the buoyancy frequency is larger in the pycnocline than deeper.

Experiments were conducted over a period of time up to 40 hours during which the interface
becomes less sharp due to diffusive effects (we estimate the width of the interface to increase at a
rate of about 1 cm/day). Due to the configuration of the apparatus, the stratification could not
be measured at different times while running the experiment because the presence of the generator
prevented access to the domain of interest by the conductivity probe. As detailed later in the
result section, however, we conducted systematic repeated experiments showing that any evolution
of the stratification did not impact the experimental results.

5.4 Experimental Results

5.4.1 Transmission of a Free Incident Wave
We first quantified the transmission coefficient for the vertical velocity field in the case of a freely
incoming wave. To conduct this experiment, a two-layer stratification is used and a range of forcing
frequencies is explored. For each frequency, the transmission coefficient is extracted from the PIV
data by looking at the vertical velocity below the interface.

Figure 5.5 presents the stratification used to conduct this study. The first two plots show
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the density profile ρ(z) computed from the measurements of the C/T probe, and the buoyancy
frequency profile N(z) subsequently derived. The density curve shows two layers of linear stratifi-
cation, one from 0 to 30 cm and one from 30 to 60 cm. The buoyancy frequency profile confirms
this trend, showing two constant values for the density gradient: N1 = 0.94 ± 0.02 rad · s−1 and
N2 = 0.62± 0.05 rad · s−1. We indicate by a dashed line the interface between these two domains,
and by a straight line the top of the tank. Two to three centimeters are missed in the measurements
at the bottom of the tank, due to the configuration of the probe. On the buoyancy frequency curve,
we fit the N profile with our models for a sharp and a smooth interface (equation (5.10)) with the
same distance L = 30 cm from the generator, and a width δ = 1 cm. No error is given on these
lengths because it does not impact the transmission coefficient error, as we will discuss later. A
small bump in the stratification is present at 42 cm below the generator: its width on the N profile
is exaggerated because of the averaging process used to compute the buoyancy frequency and, as
can be seen in figure 5.5(c), it does not affect the velocity field. However, to get the most accurate
evaluation of N2, we used the mean value and the standard deviation in the interval [31; 41] cm.
The N1 profile was estimated in the [3; 28] cm interval.

Figure 5.5(c) presents a PIV snapshot of the vertical velocity field after the wave field crossed
the buoyancy frequency interface. The mode 1 shape of the generator in a horizontal plane is
visible at the top due to a parallax effect. Through the interface, we see that the radial wave
length, given by the horizontal nodes and antinodes of the field, is conserved. The vertical wave
number, given by the vertical nodes and antinodes [33], changes when the wave field crosses the
interface, and is lower in the bottom layer than in the top one. Such a behaviour is expected, as
the vertical wave number m is fixed by the buoyancy frequency N and in our experiment we set
N2 < N1.
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Figure 5.5: From left to right: (a) density profile ρ(z), (b) buoyancy frequency profile N(z) and
fits (with N1 = 0.94± 0.02 rad · s−1, N2 = 0.62± 0.05 rad · s−1, L = 30 cm, width δ = 1 cm), and
(c) example of vertical PIV cross-section of the vertical velocity field (ω/N1 ' 0.4). The generator
is located at the top (z = 0). The dashed line indicates the interface.

To ensure that the interface does not affect the modal shape of the field, we present in figure 5.6
horizontal profiles of the radial and vertical velocity fields in the upper layer and in the lower layer.
Without any regard on the amplitude, as the profiles were taken at random times, we see that
in both cases the fits with the expected Bessel functions respectively J0(lr) and J1(lr), with
l = 19 m−1, agree well with the experimental profiles.
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Figure 5.6: Experimental profiles and fits by Bessel functions: (a) vertical velocity in the upper
layer, at z ' −15 cm; (b) vertical velocity in the lower layer, at z ' −35 cm; (c) radial velocity in
the upper layer, at z ' −15 cm; (d) radial velocity in the lower layer, at z ' −35 cm. Profiles are
taken at random times.

The transmission properties are investigated using the stratification from figure 5.5, by pro-
ducing mode−1 wave fields first for increasing frequencies ω = 0.3 to 0.98 rad · s−1 (labelled by
ω↗), then for decreasing frequencies ω = 0.96 to 0.28 rad · s−1 (labelled by ω↘). As no direct
measurement of the stratification can be performed inside the cylinder due to the lateral, top, and
bottom boundaries, this protocol serves as a check that the stratification does not change while
running the experiment. Because we only want to investigate the transmission of the wave field,
short-time measurements are done with excitations of 100 s, at 20 min intervals each, to ensure
that the fluid is initially at rest for each measurement. We measure the amplitude in the lower
region, after the wave has crossed the interface. To this extent, the selection procedure described
in [33] is adapted.

We consider the time series obtained by fitting horizontal cuts of vertical velocity for Bessel
functions of radial number l = 19 m−1. These cuts are taken at a depth zm, a few centimeters
below the interface. In this time series, we pick three different time windows of one-period width,
starting at a time when vz = 0, half-covering each other. The middle time window is chosen to be
the last one before the wave reflected at the bottom returns at z = zm. This returning time, tf , is
determined using the group velocity

vg = −ml
2N2

ωk4 ez, (5.24)

computed in both layers. Figure 5.7 shows examples of (a) timeseries at ω/N1 = 0.89 and (b)
timeseries at ω/N1 = 0.50 , with the three different time windows used to estimate the amplitude in
both cases. The wave field in figure 5.7(a) is evanescent in the lower region, so there is theoretically
no reflected wave. In this case, the time tf is taken just before seeing non-linearities. In the
measurement region, the temporal evolution of the amplitude is nearly sinusoidal. In figure 5.7(b),
the amplitude is still growing after the returning time. It can be due to the reflected wave, or to
a non-fully established wave field.

For each of the three time windows defined, the RMS value of the time signal during the chosen
time windows is computed. The wave amplitude is then defined as the average of the three values
obtained, multiplied by

√
2 since the signal is fairly sinusoidal. The standard deviation between

these three values gives an estimate of the measurement error. The need of such a process is
justified by the fact that for some frequencies, the wave field is not fully developped when reaching
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the interface (figure 5.7). Given this situation, measuring the right amplitude is difficult even when
the profiles are well fitted by the theoretical Bessel functions.
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Figure 5.7: Timeseries of the amplitude of the vertical velocity over 100 s, (a) at ω/N1 = 0.89
and (b) at ω/N1 = 0.50. The black solid line indicates the time tf used to compute the amplitude.
Rectangles show the three periods used to estimate the wave amplitude from RMS.

Direct comparison between the amplitude of the wave field above and under the interface is not
possible, because the multiple reflections within the relatively narrow top layer make it infeasable
to extract the amplitude of the incident wave alone. However, we have shown in [33] that for
frequencies above ω/N ' 0.3, the experimental amplitude of an incident mode is well predicted by
the generator amplitude aω, corrected with the theoretical viscous damping coefficient

vz,inc = aω × exp(−εm(1)
1 L), (5.25)

where m
(1)
1 is defined in section 5.2.1. Therefore, to estimate the transmission coefficient, we
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compare the measured transmitted amplitude vz,mes to the theoretical incident amplitude vz,inc.

Tvz = vz,mes
vz,inc

= vz,mes

aω × exp(−εm(1)
1 L)

. (5.26)

The experimental transmission data points are presented in figure 5.8. To scale the frequencies
as a non-dimensional parameter, we use the mean value of the buoyancy frequency N1. We note
that, as the two sets of measurements ω↗ and ω↘ nicely follow the same trend, the influence of
the forcing on the stratification can be considered as negligible. In order to draw comparisons with
theoretical predictions, we must first make some considerations on the control parameters. The
shape of the theoretical curves is controlled by various parameters: the position of the interface
L, its width δ, and the buoyancy frequencies of the two layers N1 and N2. We studied the impact
of these parameters by computing different curves for the smooth interface with a weakly viscous
correction using the method explained in sections 5.2.1 and 5.2.1. We found out that the distance
L mainly controls the viscous damping observed at low frequencies, as the amplitude of the wave is
greatly attenuated for ω/N1 < 0.5, as discussed in [33]. The width δ changes the height of the peak
in the transmission curve, located at ω/N1 = N2/N1. However, as the interface is really sharp in
our experiment (δ = 1 cm), its impact is negligeable. To investigate the influence of the boyancy
frequencies, we looked at the ratio N2/N1. We found that the transmission curve is very sensitive
to a slight change in the buoyancy frequencies, as it shifts the position of the transmission peak
and defines the range of frequencies for which the wave is transmitted or fully reflected.

As discussed at the beginning of this section, we measured N1 = 0.94 ± 0.02 rad · s−1 and
N2 = 0.62 ± 0.05 rad · s−1. As a result, we have N2/N1 = 0.66 ± 0.06. Due to the fairly large
uncertainty on this value, however, we decided to compute numerically the transmission curves for
a smooth interface with a weakly viscous correction, leaving the ratio N2/N1 as a free parameter
that we adjust by ensuring that the position of the transmission peak in this curve corresponds to
the data. This adjusted curve is shown in figure 5.8. The resulting fitted value of N2/N1 is 0.73,
which is within the uncertainty of our experimental estimate for this ratio.

We can now discuss how the experimental data points compare with the theory for a smooth
interface and weak viscous effects. The general trend is very similar, with an increased transmission
as the frequency is increased, until one reaches a maximum of Tvz = 2 at a frequency close to the
buoyancy frequency of the lower layer, as expected since the waves then become evanescent in this
region. Then, one observes a sharp decrease of the transmission. Above ω/N1 ' 0.5, which is
the region of interest with the maximum of transmission, the experimental data points show good
agreement with the theoretical curve. In contrast, in the region 0.3 < ω/N1 < 0.5, the data points
are below the theoretical prediction. We assume that this trend for low values of ω/N1 is due
to the poor efficiency of the apparatus at these frequencies, because of boundary layer damping
effects on the cylinder [19, 33], which are not taken into account in our weakly viscous model. An
order of magnitude of these effects gives, at low frequency, a damping in amplitude up to a factor
2, relevant to what is observed.

5.4.2 Transmission of a Confined Incident Wave
We now focus on the confined wave configuration. Figure 5.9 shows the experimental stratification
used in this study, with (a) the density and (b) the buoyancy frequency profiles, computed as
in the previous section. We use a two-layer stratification: the top layer is from 0 to 17 cm, with
N1 = 1.17±0.07 rad · s−1, and the bottom layer is from 17 to 60 cm, withN2 = 0.85±0.03 rad · s−1.
A dashed line indicates the location of the interface, and a straight line shows the water surface.
The buoyancy frequency profile is fitted with a sharp interface curve and a smooth interface curve,
with the same distance L = 17 cm, and a width δ = 3 cm for the smooth interface. We see an
important mixed layer at the surface, which is part of the upper layer and we make sure that
N1 is estimated outside this layer. We compute N1 in the interval [2; 15] cm and N2 using the
interval [22; 53] cm. Figure 5.9(c) presents an example of a PIV field for the vertical velocity in
this experiment. Between the generator, at the surface, and the interface, we can see that the wave
field has a smaller vertical wave length than below the interface, consistent with N2 < N1, as in
the previous experiment.
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Figure 5.8: Experimental transmission curve. We fit the experimental data with a theoretical
curve computed for a smooth interface with viscosity (straight line). The vertical dashed line shows
the value N2/N1 = 0.73 used to fit the data.
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Figure 5.9: From left to right: (a) density profile ρ(z), (b) buoyancy frequency profile N(z) and
fits (with N1 = 1.17 ± 0.07 rad · s−1, N2 = 0.85 ± 0.03 rad · s−1, L = 17 cm, width δ = 3 cm),
and (c) example of vertical PIV cross-section of the vertical velocity field (ω/N1 ' 0.36). The
generator is located at the top (z = 0). The dashed line indicates the interface.
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Mode−1 wave fields for 65 values of frequency from ω = 0.2 to 1.09 rad · s−1 are produced.
Given the previous results on transmission in a non-resonant case, we assume that the stratification
does not change in our experiment and we only perform the measurements by increasing the
frequency. We also use short-time excitations of 100 s at 20 min interval each. Amplitudes are
measured below the interface in a similar selection process as before, but the position of the interface
closer to the generator allows for several back and forth reflections in the upper layer. Measurements
are compared to the theoretical generator amplitude (5.25) to compute the transmission coefficient.

Results are presented in figure 5.10. Measurements of the transmission coefficient are plotted as
a function of ω/N1, using the mean value of N1. As in the previous section, we must also investigate
the influence of the different parameters L, δ, N1, and N2, on the theoretical transmission curve
for a confined incident wave, a smooth interface and weekly viscous effects obtained following
the method described in section 5.2.2. The length L contributes to the peak positions in the
propagating region ω < N2. The width of the interface δ has little impact because the interface
is relatively sharp. In contrast, the buoyancy frequencies N1 and N2 mainly control the shape of
the curve, as they change the position of the peaks, their amplitude, as well as the limit between
the propagating and evanescent transmissions. Using the C/T probe, we measure N1 = 1.17 ±
0.07 rad · s−1 and N2 = 0.85± 0.03 rad · s−1, which gives us a ratio N2/N1 going from 0.8 to 0.66.
As a result, several theoretical curves for a smooth interface with viscosity, numerically computed,
are presented in figure 5.10, one for the central value of N2/N1, namely 0.73, and two others for the
extreme values of the ratio, 0.66 and 0.8. It shows that although the different theoretical curves
always present the same trend, with various peaks, the position and height of the peaks can vary
a lot by slightly varying the ratio N2/N1.

Experimental data display the same qualitative behaviour as theoretical predictions. For
ω/N1 ∈ [0.17; 0.74], the transmission coefficient increases non-monotonically with local extrema.
As in the previous section, measurements at low frequencies show a smaller transmission than
the expected value, also probably due to boundary layer damping effects [19, 33]. The most sig-
nificant features, however, occur at higher frequencies and are therefore unaffected by this. For
ω/N1 > 0.74 the transmission coefficient is globally decreasing as the waves become evanescent in
the lower region. For a given range of frequencies ω/N1 ∈ [0.77; 0.84], however, non-linear effects
are triggered and no amplitude can be measured as the wave field is no longer described by our
model. This area is indicated by a shaded area in figure 5.10 and corresponds to the expected res-
onant interference peak of the theoretical curves. Snapshot examples of the vertical velocity field
are given in figure 5.11 for three different situations after 34 periods of excitation: figure 5.11(a)
shows propagating waves in both layers at ω/N1 = 0.7, while in figure 5.11(b) and 5.11(c) waves are
evanescent in the lower layer at ω/N1 = 0.8 and ω/N1 = 0.9, respectively. In contrast to the images
presented in figures 5.11(a) and 5.11(c), the image presented in figure 5.11(b) shows small-scale
disturbances of the wave field resulting from non-linear effects due to constructive interference in
the upper layer, representing the typical behaviour observed within the hatched region identified
in figure 5.10.

5.5 Applications to Ocean

In this section, we present applications of our study to real oceanic stratifications by first using the
two-layer model previously developped, and then extending the boundary value problem solving
tool to more complex non-linear stratifications.

5.5.1 An Ideal Bi-Linear Stratification in the Arctic
An interesting application of our confined layer studies is to relate our findings to a scenario
that has a strong upper ocean stratification overlying a weaker deep ocean stratification. Fig-
ure 5.12 presents an example of density and buoyancy frequency profiles taken at 159◦57.111′ W,
73◦32.439′ N during the Stratified Ocean Dynamics of the Arctic (SODA) research cruise, on the
R/V Sikuliaq, in September 2018. A very simple model can be used to describe this stratifica-
tion at first order: a Melting Layer (ML) at the surface issued from ice melting with a strong
density gradient, and a bi-linear stratification with two buoyancy frequencies N1 and N2 below.
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Using equation (5.10), such a profile can be fitted with N1 ' 0.011 rad · s−1 in the upper layer,
N2 ' 0.001 rad · s−1 in the lower layer, L ' 250 m from the Melting Layer (ML) to the center
of the Interface Region (IR) which has a width δ ' 150 m. Note that such parameters cannot
be obtained in our experiments, due to its size and to the range of buoyancy frequencies we are
able to produce (here, N1 and N2 are of the same order of magnitude), but the physics involved
remains the same.
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Figure 5.12: Example of (a) density profile and (b) buoyancy profile, from in-situ measurements.
Different layers can be identified between dashed lines, from top to bottom: Melting Layer (ML),
N1 linear layer (N1), Interface Region (IR), and N2 linear layer (N2).

As shown by our study, constructive interference effects may appear and produce high trans-
mission coefficient value for confined internal waves. These effects, however, arise only when the
vertical wave length 2π/m1 is larger than the interface width [138]. Upon the contrary, the in-
terface acts as a smooth density change for the wave and internal waves pass through relatively
unaffected. Re-writing equation (5.5) in terms of the radial wave length 2π/l as

2π
m1

= 2π
l

(
ω2 − f2

N2
1 − ω2

)1/2

, (5.27)

we explore the range of parameters (ω; 2π/l) by plotting the quantity log(2π/m1) for propagating
waves in the upper layer, which means f < ω < N1, in figure 5.13. The Coriolis frequency is set
to be f = 1.24 · 10−4 rad · s−1, a typical value in this region [56].

Near-inertial wave generation, with frequencies close to f are found to be easily excited in
the Arctic Ocean [56], with a small vertical wave length as illustrated in figure 5.13. In this
configuration, the factor ω2 − f2 is of the order of f2 (10−8 rad2 · s−2). Since N1 � ω, the factor
N2

1 − ω2 is of the order of N2
1 (10−4 rad2 · s−2), yielding l/m1 ' 10−2. Hence, to obtain vertical

wave lengths of the order of 100 m, the radial wave length has to be of the order of 10 km, which can
be produced by storms of large extent. Higher frequency waves can also be produced [20, 53, 184],
with a frequency of the same order of magnitude than the buoyancy frequency N2. Hence, the
term ω2 − f2 is of the order of N2

2 (10−6 rad2 · s−2), yielding l/m1 ' 10−1. As a result, resonant
interference waves with vertical wave length of the order of 100 m can have small radial wave length
(of the order of 1 km).

Following the approach of Ghaemsaidi et al. [86], we present in figure 5.14 numerical compu-
tation of the transmission coefficient for the Arctic stratification (figure 5.12) for three different
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frequencies, two of them being near-inertial at ω = 1.05f and ω = 1.1f , and the third one corre-
sponding to a higher frequency with ω = N2/2. A resonant cavity effect, in the sense of constructive
interference with sequential peaks of high transmission rate of internal waves, occurs for ω = N2/2,
for both small or large radial wave lengths. For near-inertial waves, however, the transmission co-
efficient is almost constant until the vertical wave length is larger than 10 km, meaning that this
enhancement is only relevant for large wave length storms. In both scenarios the enhancement can
be several times, even over an order of magnitude.

5.5.2 In-situ Measurements: CTD and PDS-CPIES

In late summers 2017 and 2018, Current-and-Pressure recording Inverted Echo Sounders (CPIES)
with embedded Popup Data Shuttles (PDS) were deployed during research campaigns in the Arctic
on the R/V Aaron and R/V Sikuliaq (see Jeon et al. [105]).

Figure 5.15: Photography of a PDS-CPIES ready to be deployed, on the R/V Sikuliaq rear deck.

CPIES are moorings dropped on the oceanic floor with a scheduled date of release and recovery,
about two years after deployment. They record temperature, salinity, pressure, sea-surface activity
(echo sounder), and horizontal currents (velocimeter). A PDS-CPIES is an updated version of the
CPIES equipped with four data shuttles (PDS) used to retrieve data at scheduled dates earlier
than the usual recovery date of the main CPIES mooring (for furter details on the PDS-CPIES
measurements, see [105]). A photography of the device is presented in figure 5.15. We refer to
PDS-CPIES using the acronym AES (Arctic Echo Sounder).

A total of six AES have been deployed in the Arctic in 2017 and 2018, in the Northwind Abyssal
Plain (AES 1 through 3) and in the South-West edge of the Canada Basin (AES 4 through 6),
as shown in figure 5.16. The AES are located near rough topographies in order to investigate
near-inertial wave (NIW) generation in the Arctic Ocean. At deployment locations, Conductivity-
Temperature-Depth (CTD) casts were performed to know the stratification properties in the vicin-
ity of the mooring.
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Figure 5.16: Arctic PDS-CPIES with (a) large-scale map, and (b) close look at the Chukchi Sea
and Canada Basin with AES deployment locations. From [105].

5.5.3 PDS-CPIES and Near-Inertial Waves Transmission
Internal wave signals have been recorded by AES with different amplitudes [105]. Through a
power-spectrum analysis, their frequency can be estimated and are presented for AES 3, 5, and 6,
in table 5.1 in terms of the local Coriolis frequency. As explained in chapter 3, using the f -plane
approximation, the local Coriolis frequency f is a function of the latitude and this variability must
be taken into account.

AES # 3 5 6
Local f (×10−4 rad · s−1) 1.405 1.399 1.397

NIW frequency 1.02f 1.03f 1.06f

Table 5.1: Near-inertial wave frequency recorded at location of AES 3, 5, and 6, in terms of the
local Coriolis frequency.

Not only the Coriolis frequency may differ betwen two moorings, but also the density stratifica-
tion and the buoyancy frequency N . In the previous section, we explored the capability of our model
to describe the Arctic stratification as a two-layer system, independently of of small features. The
bottom part of it, below 400 m depth, was approximated to be at constant N2 � 0.001 rad · s−1,
though many small features exist and can impact wave transmission, motivating a separate study.
Figure 5.17 presents density (left pannel) and buoyancy (right pannel) profiles at AES 3, 5, and
6. Though mostly similar, these profiles shows small differences in terms of vertical extent (AES
6 stops sooner) and fluctuations.

The boundary value problem solver developed for bi-linear stratification has been improved to
investigate a wide variety of non-linear stratification, so that a smoothed profile of the stratifications
in figure 5.17 can be used directly in the code. This process gives us, for given Coriolis and NIW
frequencies (table 5.1), a numerical estimate of the transmission coefficient for radial velocity
between 400 m depth and the bottom of the water column. Our results, presented in figure 5.18,
show a weak variability between the three AES, and a resonant behaviour that may be caused by
small scale layered patterns in the stratification. Such a study is a first step in the understanding
of wave transmission in the Arctic Ocean, and will, in future work, be compared to actual AES
measurements of internal wave amplitudes and estimates of forcing from atmospheric activity using,
for example, a slab model [58].

5.6 Conclusions and Discussion
We have presented an experimental study of the propagation of axisymmetric internal wave modes
across a buoyancy interface in stratified non-rotating flows. To support our laboratory experiments,
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we develop a theoretical framework for freely incoming waves and for confined waves, as they
represent qualitatively two different scenarios that have relevance to the atmosphere and ocean,
respectively.

In this study we find that, despite the additional geometric complexity, with associated features
such as inhomogeneous spatial distribution of energy flux, results for plane waves can be generalised
to axisymmetric wave fields. For a free incident wave, we show that the maximum of transmission
(shown by a maximum of vertical displacement) occurs when the frequency of the wave is equal to
the buoyancy frequency of the lower layer. For a confined incident wave, we identify the existence
of a constructive interference effect in the upper layer, leading to larger transmission coefficients
and potentially non-linear effects. For both scenarios, theory and experiments show excellent
qualitative, and good quantitative, agreement, especially within the range of frequencies containing
the resonant interference peaks and the enhanced transmission.

This kind of study can help to shed light on in-situ measurements of internal waves signals,
for example near-inertial waves in strongly stratified regions such as the Arctic Ocean. Different
scenarios can be investigated, such as high frequency internal waves generated by storms at the
ocean surface and travelling downwards, or near-inertial waves produced by tides and topography
in the deep ocean and travelling upwards. In particular, this latter type of waves can therefore be
enhanced through transmission processes and lead to strong signals though the generation process
might be of very low amplitude.

Via a similar mechanism that small-extent staircase stratifications can create selective trans-
mission of internal waves [86], we show that surface forced non-linear stratifications can potentially
give rise to enhanced transmission due to resonant interference effect of internal waves to the deep
ocean. Nevertheless, for small scale waves of wave length below 10 km, these effects seem to be
limited to high frequencies, while no effect is observed for near-inertial waves. For the latter type
of waves, enhanced transmission can however also be observed in the case of very large size dis-
turbances of wave length above 20 km. We notice that the process involves higher amplification
factors as frequency increases, while becoming more selective in terms of wave length.

These studies could be extended to more complex cases with various layers of different buoyancy
frequencies, as long as the thickness of the interfaces remains small compared to the vertical wave
length [158, 86]. For a given wave, generated by a storm and observed near the ocean surface, it
could help predict the amount of energy that will be carried down towards the deep ocean, as well
as the ranges of wave lengths more likely to be transmitted. Such a selection process would lead
to a change in the wave features as it travels downwards. Enhanced amplitudes generated by such
constructive interference behaviours can also trigger non-linear effects [33] producing smaller scale
waves. The mechanisms involved are still to be explained for axisymmetric geometry, and could
lead to mixing events, changing the stratification, with subsequent feed-back effects on the wave
propagation.
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CHAPTER 6

Internal Wave tunneling

La realidad no suele coincidir con las previsiones; con lógica perversa,
prever un detalle circunstancial es impedir que este suceda.

Jorge Borges, Ficciones.

In the previous chapter, we derived the theory of axisymmetric internal wave transmission
accross buoyancy interfaces, and showed experimental evidence of this phenomenon. In oceanic
stratifications, however, constant density layers can exist, especially near the surface in the wind-
mixed layer, in which waves are evanescent. Such layers can be either at the very bottom of the
stratification in the deep ocean [105], or inserted in the stratification such as, for example, staircase
stratifications observed in the Arctic [86]. These layers may have non-zero buoyancy frequency,
but the stratification can be so weak that the wave field becomes evanescent.

For non-rotating fluids, unstratified regions should be, in theory, wave-free, and an incoming
wave should be damped quickly. Nevertheless, due to the decaying amplitude of the exponential
term, the waves are actually damped over a given length scale and still penetrate the layer. As a
result, if the layer is thin enough, a downward propagating incoming wave field arriving from the
top can still be seen below, and may propagate through with a lower amplitude: this phenomenon
is called tunnel effect and its counterpart in quantum mechanics has been widely studied.1

In this chapter, we expand previous results from Sutherland and Yewchuk [224] who first saw
evidence of internal wave tunneling in laboratory experiments, with Cartesian plane waves, as
detailed in section 6.1. We then derive the theory of axisymmetric internal wave tunneling in
section 6.2 and show experimental realisations of this phenomenon in section 6.3. Section 6.4
presents our conclusions and discussion.

Results from this chapter are in preparation for Physical Review Fluids [37].

6.1 Evidence of Cartesian Internal Wave tunneling
If we consider a density stratified fluid without rotation, internal waves can only be excited if their
frequency ω is smaller than the buoyancy frequency N : according to the dispersion relation, waves
are propagating below, and evanescent above. The experiments on wave transmission presented
in chapter 5, however, show that the transmission coefficient measured below the interface in the
evanescent region is non-zero because we can still measure an amplitude, which means that the

1Although it is often associated to quantum mechanics, the tunnel effect is not confined to this application. It
is, in fact, a property of wave fields and can therefore be applied to various problems in physics.
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wave velocity is not zero and that part of the wave field can penetrate. Due to evanescent damping,
it quickly dissipates and, as the dispersion relation writes

m2 = l2
(
N2

ω2 − 1
)
, (6.1)

with m and l the vertical and horizontal wave numbers, the characteristic length for this evanescent
dissipation can be estimated to be

Ld = 1
m

= 1
l

ω√
ω2 −N2

, (6.2)

when ω > N . In chapter 5, we considered a semi-infinite bottom layer. Measurements at a distance
from the interface larger than Ld would then show a wave amplitude that is almost zero, and waves
no longer exist. Would the stratification change further below, it would remain unperturbed. But
in the case of a thin layer of vertical extension smaller than Ld in which ω > N , the amplitude of
the wave field is not zero at the bottom boundary of this layer. In the bottom layer, the problem
can be formulated as if the non-zero evanescent wave field acts as a forcing located at the top, of
same frequency and wave lengths, but of reduced amplitude. Such a forcing may repeat through
multiple layers in staircase stratification [45, 222]. Performing experiments in 2D geometry with a
vertically oscillating cylinder in a salt-stratified fluid, Sutherland and Yewchuk [224] have shown
evidence that, in agreement with theoretical and numerical predictions, downward propagating
wave beams can tunnel through evanescent layers.
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Figure 6.1: tunneling of a horizontal cosine mode across a layer of constant density, represented
by the hatched region between L1 and L2: (a) schematic of the phenomenon, where the blue
pattern represents a cosine shaped wave field, with a free incident wave ψI reaching the interface,
leading to a reflected wave ψR and a transmitted wave ψT ; (b) density profile; (c) buoyancy profile
modeled using two hyperbolic tangents.

A schematic of the phenomenon is presented in figure 6.1(a), where a 2D cosine horizontal mode
is propagating downwards, reaching the layer of constant density (hatched region), to be reflected
and transmitted. Idealised density and buoyancy profiles are shown in figures 6.1(b) and 6.1(c).
A corresponding two-dimensional inviscid DNS showing internal wave tunneling is presented in
figure 6.2. As before, the DNS were run using Dedalus in a horizontal SinCos basis and vertical
Chebyshev basis, with a 128 × 128 nodes resolution. A sinusoidal forcing is applied at the top
boundary, corresponding to a mode 1 in figure 6.2(left) and to a mode 2 in figure 6.2(right). We
set the Coriolis frequency f = 0, and we choose the buoyancy frequency profile to be constituted
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of three layers

N =
{
N1 = 0.8 rad · s−1 for z ∈ [−60; −30] ∪ [−30; 0],
N2 = 0.1 rad · s−1 for z ∈ [−30; −20].

(6.3)

For numerical purposes and to take into account the finite width of the interfaces, we choose to
use a sum of two hyperbolic tangents to model the stratification. The forcing frequency is set
at ω/N1 = 0.75 and, as a consequence, ω/N2 = 6. In both figures, the dashed lines identify the
limits of the domain with N = N2 where waves are evanescent. Above and below, in the regions
where N = N1, waves are propagating. In these two DNS, the mode develops in the top region
and propagates downwards until it reaches the first interface and becomes evanescent. Then,
accordingly, we can see a very clear decaying amplitude from the boundary at z = −20 cm to the
boundary at z = −60 cm. Below, the wave can propagate downwards again and its amplitude
remains constant, as expected for inviscid flows. In the three layers, the horizontal structure
is preserved (same nodes), but the vertical structure is not. As described by Sutherland and
Yewchuk [224], the waves are not stopped at the top interface but go through the evanescent layer
until they reach the bottom propagating region, in which their original structure is re-established
at a lower amplitude.
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Figure 6.2: Snapshots of vertical velocity fields in a DNS of 2D Cartesian modes run using
Dedalus. Left: mode 1 forcing. Right: mode 2 forcing. The dashed lines show the interfaces
between N1 for z ∈ [−60; −30] ∪ [−30; 0] and N2 for z ∈ [−30; −20].

In the next sections, we will extend these results analytically (section 6.2) and experimentally
(section 6.3) to the case of axisymmetric waves.

6.2 tunneling Effect for Axisymmetric Waves

6.2.1 Governing Equations
As previously discussed in chapters 1, 4, and 5, the linear differential equation for internal waves,
in a rotating density stratified fluid, writes in axisymmetric coordinates

∂2

∂t2

(
∂2ψ

∂z2 + ∂

∂r

(
1
r

∂(rψ)
∂r

))
= −f2 ∂

2ψ

∂z2 −N
2 ∂

∂r

(
1
r

∂(rψ)
∂r

)
, (6.4)
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where ψ is the stream function, f the Coriolis frequency, and N the buoyancy frequency which is
assumed to be a function of z. We consider, in this section, that N is constant by steps. Over one
of these sections, the solution of equation (6.1) writes

ψ(r, z, t) = ψ0J1(lr)ei(mz−ωt), (6.5)

with
m2 = l2

(
ω2 −N2

f2 − ω2

)
. (6.6)

As previously mentioned, in the case where f < N , the dispersion relation (6.3) describes two
kinds of waves: either ω ∈ [f ; N ] and the waves are propagating, or ω /∈ [f ; N ] and the waves are
evanescent. A similar result is obtained in the case f > N . From now, we will set f = 0 and only
consider non-rotating fluids, but our results naturally extend to the case f 6= 0.

6.2.2 Three-Layered Problem
We consider the following density profile, in which the buoyancy frequency N is function of depth

N2(z) = N2
0

[
tanh

(
z − L1
δ

)
+ tanh

(
L2 − z
δ

)]
+N2

2 , (6.7)

where N0 and N2 are reference buoyancy frequencies, L1 and L2 are (positive) locations of inter-
faces, and δ is a small length scale corresponding to the width of the interface. Such a profile
is constituted of three layers, labeled I, II, and III, from top to bottom: a stratified layer at
N = N1 ≡

√
N2

0 +N2
2 for z > −L1, a weakly stratified layer at N = N2 for z ∈ [−L2; −L1]

of vertical extension ∆L = L2 − L1, and another stratified layer at N = N1 for z < −L2. For
theoretical convenience, although it may not be true in the experiments, we consider that the two
stratified layers have the same buoyancy frequency N0 and that the interfaces have the same width
δ. Note that the additional constant term N2 could also be set to zero this profile to model zero
buoyancy frequency in the central region.
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Figure 6.3: Real part of the streamfunction obtained by solving the uni-dimensional boundary
value problem derived from equation (6.9) in a three-layered stratification, with (a) ω < N2 < N1
and (b) and (c) N2 < ω < N1. The dashed lines indicate the interfaces between the different layers,
and the hatched region the evanescent layer. Total depth is normalised to be 1.

Solutions of the wave equation (6.4) can be found by a separation of variables method (see
chapter 4) and we write them using a function φ that contains the vertical dependence in z as

ψ(r, z, t) = φ(z)J1(lr)eiωt. (6.8)
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As stated in chapter 5, φ satisfies the following second order differential equation that involves a
z-dependent parameter

φ′′ + γ(z)φ = 0 with γ(z) = l2
(
N2(z)
ω2 − 1

)
. (6.9)

In a model case of sharp interfaces between N = N1 and N = N2 regions, this equation can
be solved independently in each layers and then reconnected thanks to continuity relations (see
chapter 5 and [65, 224]). The study of smooth interfaces could be done using numerical boundary
value problem solvers.

As two values of buoyancy frequency are involved in the problem, the solution will change
depending on the value of ω. As summarised in table 6.1, if ω < N2 < N1, the wave is always
propagating, whereas if N2 < N1 < ω the wave is always evanescent and cannot even be excited
by the generator. An illustration of the first two cases is shown in figure 6.3, with the real part
of the stream function computed by finding the numerical solution of a boundary value problem
based on equation (6.9), using the method described in chapter 5. In the three regions delimited by
the dashed lines, the buoyancy frequencies are N1 = 1 rad · s−1 in the top and bottom layers, and
N2 = 0.6 rad · s−1 in the middle layer. In figure 6.3(a), the wave frequency ω = 0.4 rad · s−1 leads
to propagating waves in both regions. On the contrary, in figure 6.3(b) and (c), ω = 0.8 rad · s−1

and the wave is evanescent in the intermediate layer. In this inviscid model, the transmitted
amplitude is not affected in the first situation in figure 6.3(a), but a significant decay is observed
after the wave tunnels in figure 6.3(b). In figure 6.3(c), the evanescent layer is too large for the
wave to go through, and no amplitude is detected below. Note that these results are not specific
to the axisymmetric configuration and also apply to the Cartesian case.

Frequency ω Layer I Layer II Layer III
ω < N2 < N1 Propagating Propagating Propagating
N2 < ω < N1 Propagating Evanescent Propagating
N2 < N1 < ω Evanescent Evanescent Evanescent

Table 6.1: Different kinds of solutions for the three-layered problem, depending on the value of
ω compared to the buoyancy frequencies N1 and N2.

We now focus on the intermediary case, N2 < ω < N1, for which the wave field is propagating
in both the top and the bottom layer, but evanescent in between.

Solution in the Top Layer

The top layer of buoyancy frequency N1, from z = 0 to z = −L1, corresponds to the forcing layer:
the wave generator, on top, excites the wave field as described in chapters 2, 4, and 5. In the case
of propagating wave fields in a semi-infinite layer, forced at frequency ω < N1, the axisymmetric
stream function ψI is described by a Bessel function from equation (6.8) in the case of a mode,
and by decomposition over the basis of Bessel functions in the case of a conical wave field.

As detailed in chapter 5, the interface at depth L1 produces a transmitted wave field, which
is discussed later, as well as a reflected wave field. The complete solution ψI in the top layer, is
therefore a sum of a downward propagating incoming wave and of an upward propagating reflected
wave, so that

ψI(r, z, t) = ψII J1(lII r) exp(i(ωII t−mI
I z)) + ψRI J1(lRI r) exp(i(ωRI t−mR

I z)), (6.10)

where lII and mI
I are the radial and vertical wave numbers of the incoming wave, ωII = ω its

frequency, ψII its amplitude, and lRI , mR
I , ωRI , and ψRI the same quantities for the reflected wave.

Results from the previous chapter allow us to drop the I and R exponents for all quantities except
the amplitudes. Note that in the case of a confined incident wave, the model will be different as
shown by the study presented in chapter 5 for transmission of internal waves across a buoyancy
frequency interface.
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Solution in the Transient Layer

The wave transmitted from the top layer to the transient layer is assumed to be evanescent.
Introducing the dissipative length scale Ld (see equation (6.2)), the solution ψII writes

ψII(r, z, t) = ψ0
IIJ1(lIIr) exp(iωIIt)ez/Ld , (6.11)

where lII is the radial wave number, ωII the frequency, and ψ0
II is defined as the transmitted

amplitude from the top layer (see chapter 5).
It is important to discuss the effect of the width of this layer, called LII. As explained in

section 6.1, if Ld � LII, then the wave will be entirely dissipated when it reaches the interface
between regions II and III, and there would not be tunneling effect. In the opposite situation, the
wave will reach the interface with a decreased amplitude and be transmitted to region III, but also
be reflected exactly as occurs in the top layer. This reflected wave, however, is assumed to be of
sufficiently small amplitude to be neglected in our calculation.

Solution in the Bottom Layer

In the bottom layer we consider, in this model, a semi-infinite domain so that the wave can
propagate freely from a forcing at the interface. There is no returning wave and the solution ψIII
writes

ψIII(r, z, t) = ψ0
IIIJ1(lIIIr) exp(iωIIIt−mIIIz), (6.12)

where lIII and mIII are the radial and vertical wave numbers, ωIII the frequency, and ψ0
III the wave

amplitude.

Continuity Relations and Complete solution

Vertical velocity and pressure field are continuous at the interfaces (see chapter 5 and [65, 224]),
which gives continuity relations on the derivatives of the stream functions. These relations are
satisfied for all spatial point of the interface and for all times, so they must be independent of the
radial coordinate r and time t. Hence, we obtain that

ωI = ωII = ωIII, (6.13)

and
lI = lIII, (6.14)

from what follows, using the dispersion relation recalled in equation (6.6), the relation on vertical
wave numbers is

mI = mIII, (6.15)
since the buoyancy frequency is the same in regions I and III.

Using these relations, the complete solution can be written as

ψI(r, z, t) = J1(lr)eiωt
(
ψRI e

−imz + ψII e
imz
)
, (6.16)

ψII(r, z, t) = J1(lr)eiωtψ0
IIe

z/Ld , (6.17)
ψIII(r, z, t) = J1(lr)eiωtψ0

IIIe
−imz. (6.18)

The transmission coefficient T of the wave field across the buoyancy frequency gap, defined as
the ratio ψ0

III/ψ
I
I , can be obtained using the continuity relations of vertical velocity and pressure

at the two interfaces. In this model, we obtain

Tω>N2 =
∣∣∣∣

2mLd
mLd − 1

∣∣∣∣ exp
(
−|∆L|

Ld

)
, (6.19)

valid for N2 < ω < N1. This coefficient is identical whether considering the transmission of ψ, vz,
and vr. If the forcing frequency is such that ω < N2 < N1, meaning that the wave is propagating
in the three regions, this model leads to a different result

Tω<N2 =
∣∣∣∣

2m1
m1 +m2

∣∣∣∣ , (6.20)
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where m1 and m2 are the vertical wave numbers associated to N1 and N2 respectively. In this
unconfined inviscid model, when waves are propagating in the three regions, the second interface
has no influence on the amplitude of the wave field as the transmission coefficient is the same as
derived in chapter 5 for the vertical velocity. An explanation for that is that there should be a
reflected wave propagating upwards in the layer at N2 that cannot be neglected if the wave is
propagating.
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Figure 6.4: Colormaps of the transmission coefficient Tvz as a function of (a) ω/N1 and N1/N2
at a given ∆L × l = 2.66, and (b) ω/N1 and ∆L × l at a given N2/N1 = 0.5. Dashed lines show
the cuts at (a) N2/N1 = 0.5 and (b) ∆L× l = 2.66.

The transmission coefficient for vertical velocity Tvz = Tω>N2 defined by equation (6.19) de-
pends on various parameters that can be tuned in the experiments: the two buoyancy frequencies
N1 and N2, the forcing frequency ω, the radial wave number l, and the vertical dimension of the
evanescent region ∆L. These parameters collapse into three dimensionless variables ω/N1, N2/N1,
and ∆L × l and we can plot colormaps of the transmission coefficient to study their influence,
similarly to chapter 5 and [32]. They are presented in figure 6.4 with Tvz as a function of (a)
ω/N1 and N1/N2 at a given ∆L× l = 2.66, and (b) ω/N1 and ∆L× l at a given N2/N1 = 0.5. A
solid white line indicates the transition between fully propagating (ω < N2 < N1) and tunneling
(N2 < ω < N1) regions. Due to the divergence of the ratio in equation (6.19), an increased trans-
mission amplitude appears when ω/N comes closer to given values set by the buoyancy frequencies,
for example when ω/N1 → 0.8 in figure 6.4(b) for ∆L × l = 2.66. This peak is shifted to lower
frequencies ω when the ratio N2/N1 decreases, and its width and amplitude increase for lower
values of ∆L× l.

6.3 Experimental Realisation

We perform experiments of internal wave tunneling in axisymmetric geometry in two different
configurations. In one case, we use the wave generator in an unconfined domain to produce a
conical wave beam that remains close to the plane waves studied in [224]. In the other case, we re-
use the setup from chapters 4 and 5 to study internal wave mode tunneling. The same stratification
has been realised for both configurations.
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6.3.1 Stratification
Thanks to the filling process based upon the double-bucket method and described in chapter 2, we
produced a non-linear stratification constituted of different layers, as presented in figure 6.2, with
density profile 6.2(a) and buoyancy profile 6.2(b). The top and the bottom layers are stratified, with
N = 0.80±0.05 rad · s−1 and N = 0.92±0.07 rad · s−1 respectively. In between, over ∆L ' 10 cm
from z = 23 cm to z = 33 cm, is a weakly stratified region with N = 0.48±0.08 rad · s−1 evidenced
by the hatched region in figure 6.2.
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Figure 6.5: Example of a non-linear stratification with a constant density layer. Left (a): density
profile. Right (b): buoyancy frequency profile in the experiment and in the DNS. The hatched
region between z = 23 cm and z = 33 cm corresponds to the almost constant density layer in
which we can approximate N ' 0.

Although the ideal stratification to perform internal wave tunneling experiments would be with
N2 = 0, here the density is still increasing with depth between the two interfaces. In figure 6.2(b),
probe measurement of the buoyancy profile shows two constant buoyancy layers at the top and at
the bottom, but a non-linear and non-zero buoyancy in between. This is due to the filling process,
but can also be due to probe errors as the densitymeter measured nearly equal densities at the
boundaries of this layer while filling the tank. With such a stratification, the range of frequencies
for which tunneling is predicted to happen is ω ∈ [0.48; 0.8].

6.3.2 Wave tunneling: Case of Conical Beam
The first series of experiments mimmic the Cartesian plane wave works from Sutherland and
Yewchuk [224]. The wave generator is not confined, and therefore produces a conical wave field
propagating downards. Our results are presented in figure 6.6 in the first row (vertical velocity)
and third row (radial velocity) where each column is a different forcing frequency, from left to
right, ω = 0.304 rad · s−1, ω = 0.464 rad · s−1, and ω = 0.624 rad · s−1.

Second and fourth rows in figuree 6.6 present the vertical and the radial velocity obtained from
Direct Numerical Simulations made in axisymmetric geometry, for comparison purposes. These
DNS were run by Bruce Sutherland, solving the 2D axisymmetric equations for vorticity and
buoyancy on a finite-difference staggered grid. The stream function is then found from the vorticity
by performing a Fourier-Bessel transform, solving the Laplacian and then inverting in spectral
space. The forcing is applied to the buoyancy field, which is a proxy for vertical displacement as
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b ∝ vz ∝ J0(lr)ei(ωt−mz) in the linear regime. It is applied at a depth z = 0 in a domain ranging
vertically from z = −H to z = +H. For z > 0, viscosity increases linearly from 0.01 cm2 · s−1 to
1 cm2 · s−1 at the top. In this way, upward propagating waves in this artificial half of the domain
are damped, and so do not reflect back into the lower half of the domain that corresponds to the
experimental region. The dimensions used in the simulation are the same as the experimental tank,
with 128 grid points in the radial direction and 256 in the vertical lower half direction. The Bessel
transform is performed using 50 zeros of the Bessel function. The time step was 0.001 s, small
enough to deal with the high viscosity in the upper domain. In all three simulations presented in
figure 6.6 rows 2 and 4, the amplitude of the forcing to the vertical displacement was a = 5 mm
and the total running time was about 30 minutes.

6.3.3 Wave tunneling: Case of Axisymmetric Modes
We now focus on internal wave tunneling in the case of axisymmetric modes. Figure 6.7 presents
similar results to the ones in figure 6.6, but in a radially confined case. The generator is set in
a mode 1 configuration at low amplitude (a = 2.5 mm) and the forcing frequencies are, from left
to right: ω = 0.304 rad · s−1, ω = 0.464 rad · s−1, and ω = 0.624 rad · s−1. In the three cases, we
see that the mode is established in the top region and tunnels through the intermediate region
to propagate in the bottom layer. As predicted by the theory, the mode structure is preserved in
both layers but the amplitudes have decreased in the bottom region due to the evanescent transit
in the middle region.

The tunneling phenomenon reduces the amplitude of the mode, as the velocity is smaller in the
bottom layer than in the top layer, but the shape of the mode itself is not affected. In figure 6.8
are presented horizontal profiles of the vertical and radial velocity fields above and below the
evanescent region, in the experiment at ω = 0.624 rad · s−1, corresponding to the third column of
figure 6.7. On the profiles, taken at z ' −10 cm and at z ' −40 cm for the above and below cuts,
are superimposed the fits from the expected Bessel functions, respectively J0(lr) for the vertical
velocity and J1(lr) for the radial velocity, with l = 19 m−1 as set by the generator. Qualitatively,
the fits agree well with the experimental profiles in both regions.

6.3.4 Amplitude Measurements
To investigate in some more details the effect of the buoyancy gap on the amplitude, we run a set of
39 experiments from ω = 0.160 rad · s−1 to ω = 0.768 rad · s−1 and we adapt the method presented
in chapters 4 and 5 to measure the amplitude of the transmitted wave in our experimental setup.
Horizontal cuts of vertical velocities at various times are fitted by a Bessel function (as in 6.8(b))
a few centimeters below the tunneling region, giving amplitude measurements as a function of
time. The timeseries obtained by this process are quasi-sinusoidal and can be used to determine
the amplitude of the wave field. The wave being reflected at the bottom boundary, measurements
have to be performed before a returning time, noted tf , determined using the group velocity in the
top layer

vg = −ml
2N2

1
ωk4 ez. (6.21)

This returning time is therefore underestimated as the group velocity is lower in the evanescent
region. Estimates of the vertical velocity amplitude are obtained from three overlaping periods,
the last one containing tf . We compute Root Mean Square (RMS) values over each of these
periods and the amplitude is then given by the mean value of the three RMS and the error by the
standard deviation. Figure 6.9 shows an example of a timeseries at ω = 0.624 rad · s−1, with the
returning time indicated by the vertical solid line and the three different time windows used to get
an estimate of the amplitude. Later times of the experiment are not considered as constructive or
destructive interference may give wrong estimates and non-linearities may arise.

Transmission coefficient measurements are presented in figure 6.10, where the amplitude of the
vertical velocity measured in the experiment has been normalised by its amplitude at the generator
aω. The experimental data (green dots), obtained thanks to the process previously described, are
superimposed to the theoretical prediction (solid purple line). The parameters have been adjusted
to N1 = 0.9 rad · s−1, N2 = 0.45 rad · s−1, and ∆L = 14 cm to find the best fit to the data points,
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Figure 6.6: Examples of velocity fields for, from left to right: ω = 0.304 rad · s−1, ω =
0.464 rad · s−1, and ω = 0.624 rad · s−1. First row is the vertical velocity and third row is the
radial velocity, from PIV fields filtered at the forcing frequency. Second row is the vertical velocity
and fourth row is the radial velocity obtained in DNS. Fields are taken 120 s after the generator
has been started.
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Figure 6.7: Examples of velocity fields for, from left to right: ω = 0.304 rad · s−1, ω =
0.464 rad · s−1, and ω = 0.624 rad · s−1. First row is the vertical velocity and third row is the
radial velocity, from PIV fields filtered at the forcing frequency. Second row is the vertical velocity
and fourth row is the radial velocity obtained in DNS. Fields are taken 120 s after the generator
has been started.
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Figure 6.8: Experimental profiles and fits by Bessel functions for ω = 0.624 rad · s−1, with: (a)
vertical velocity in the top layer, at z ' −10 cm; (b) vertical velocity in the bottom layer, at
z ' −40 cm; (c) radial velocity in the top layer, at z ' −10 cm; (d) radial velocity in the bottom
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Figure 6.9: Timeseries of the amplitude of the vertical velocity over 100 s at ω = 0.624 rad · s−1.
The black solid line indicates the time tf used to compute the amplitude. The three rectangles
show the periods that are used to estimate the wave amplitude from RMS.
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and are all consistent with the stratification showed in figure 6.5. The use of a slightly larger value
of the gap ∆L between the two layers can result from the fact that no viscous damping effects
are taken into account in the model. A vertical dashed line indicates the value of N2/N1. Results
for ω < N2 are not considered because the theory does not apply and, as observed in [32, 33]
and chapters 4 and 5, measurements are not satisfying for small frequency ratios. In the range of
frequency going from N2 to N1, the values of transmission coefficient estimated in the experiment
agree well with the theoretical curve and qualitatively validate our model.
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Figure 6.10: Comparison between the transmission coefficient Tvz measured in the experiment
(green dots) and its theoretical prediction (solid purple line) obtained from equation (6.19) with
N1 = 0.9rad · s−1, N2 = 0.45 rad · s−1, and ∆L = 14 cm.

Despite the qualitative agreement of the experiment with our model, some discrepancies are
visible, the most important one being the truncated peak around from ω/N1 = 0.75 to 0.82, where
the amplitude saturates although the theory predicts a peak.

Various reasons can explain such a difference between the theory and the experiment. First of
all, the theory can be improved by taking into account the forced upper layer configuration (see
chapter 5), as the first interface is close to the generator and the wave can be reflected several
times in the top layer before being transmitted. A similar phenomenon could be considered in
the evanescent layer as well, especially for frequencies for which the dissipative length Ld becomes
larger than the tunneling layer vertical extension ∆L. These two phenomena could lead to either
increased or descreased amplitudes due to constructive or destructive interference, and possibly
to non-linear behaviours that saturate the wave amplitude at finite value as observed in previous
experiments from chapters 4 and 5, although we were not able to state it clearly from the raw
velocity fields. In addition, taking a close look at the stratification, the values of N1 and especially
N2 are difficult to estimate and it is very likely that the range of frequency for which the waves
are evanescent in the middle layer is smaller or larger than stated above.

6.4 Conclusions and Discussion

We have presented, in this section, preliminary results on internal wave tunneling in axisymmetric
geometry. We first derived a simple model of transmission across a three-layered stratification in
the case of an intermediary evanescent layer, and we have found that experimental measurements
of the transmission coefficient agree well with the theoretical prediction.
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Some disagreements can be pointed out. The most important one is the existence of a peak
in transmission at a given forcing frequency between N2 and N1, predicted by the theory and
barely observed in the experiments. Moreover, the parameters used for the theoretical prediction
do not exactly correspond to the stratification, although they are still close, and additional viscous
decrease in amplitude should be taken into account to get a better estimate of the transmission
coefficient at a given depth.

As mentioned in [86, 224, 221], incursions of weakly stratified regions exist in oceanic strat-
ifications, from isolated layers to staircases stratifications. Such density profiles can result from
processes such as double diffusion [200] in a salt and temperature stratified media, sometimes
coupled to non-linear wave-wave interactions [101]. Examples of these stratifications have been
observed both in warm regions (e.g. in the Tyrrhenian Sea [106, 152] and in the Caribbean
Sea [117, 143, 201]) and cold regions (in the Arctic Ocean [191, 233, 231, 247]). As discussed in
chapter 3, the shrinking ice coverage of the Arctic leads to enhanced generation of inertia-gravity
waves by wind-driven events at the ocean surface, that can propagate through the stratifica-
tion [105, 191, 192, 189]. This work is therefore complementary to the study of axisymmetric
internal wave transmission across buoyancy interfaces [32] and helps understand the complexity of
the Arctic Ocean and possible impacts of climate change on its re-stratification.

Further work can be undertaken to complement this study. Direct Numerical Simulations such
as those presented in figure 6.7 can be used to provide additional measurements of the transmission
coefficients at various frequencies, using the same method, to check the relevance of the model.
The difference between a confined and an unconfined top layer could also be explored, as well as
possible resonant interference in the middle region, to determine whether this behaviour contributes
significantly to the transmision coefficient (as was the case for a buoyant interface, see chapter 5
and [32]) or not. And, lastly, the transition between the intervals ω < N2 < N1 and N2 < ω < N1
could be discussed, with a theory involving doubly-confined layers and constructive-destructive
interference behaviours in the top two layers of the stratification.
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CHAPTER 7

Challenging Non-Linear Effects

Le città come i sogni sono costruite di desideri e di paure,
anche se il filo del loro discorso è segreto, le loro regole assurde,

le prospettive ingannevoli, e ogni cosa ne nasconde un’altra.
Italo Calvino, Le Città Invisibili.

In two-dimensional stratified fluids, wave-wave interaction has been proven capable to produce
higher frequency harmonics, either through the forced interaction of two different waves [101], or
through the self-interaction of the wave itself [221, 16]. Extending these works to three-dimensional
wave fields, however, remains challenging, and poorly studied experimentally. Closed domains, such
as the resonant cavity described in [33], are capable of producing enhanced amplitude wave fields
and non-linear interactions either in linear or non-linear stratifications [33, 32], and could possibly
lead to Triadic Resonant Interactin (TRI) or Super-Harmonic Generation (SHG).

In the previous chapters, we always focused on the linearised wave equations. In this process,
we set the Jacobians and other product terms equal to zero, leading to the following linear system
of equations

∂t∆hψ = ∂rb, (7.1)
∂tvθ = 0, (7.2)

∂tb = −N2 1
r
∂r(rψ). (7.3)

Equation (7.2) is self-consistent, and gives an orthoradial velocity that does not evolve in time.
Cross-derivatives of equations (7.1) and (7.3) give a linear equation on ψ that writes

L[ψ] = 0, (7.4)

where L is defined as
L[ψ] = ∂2

t ∆hψ +N2∂r

(
1
r
∂r(rψ)

)
. (7.5)

As discussed in Maurer et al. [141] and in Boury et al. [33], the linear solution of equations (7.2)
and (7.4) that fulfills the boundary conditions imposed by an axisymmetric forcing at the surface
and zero velocity normal to the other sides, with no orthoradial velocity, is described by Bessel
functions of zeroth and first order, respectively J0 for the vertical velocity and J1 for the radial
velocity. The frequency ω is linked to the radial and vertical wave numbers l and m through the
dispersion relation for gravity waves, which is a direct consequence of the linear operator L.

The non-linear terms, however, are of primary importance to describe stratified mixing pro-
cesses. To date, non-linear interactions have been extensively studied in two-dimensionnal cartesian
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geometry (for instance in [107, 251, 43, 221, 235]) but three-dimensional studies remain marginal
(for example, see the recent work of [208]). More relevant to geophysics, as they mimic the ge-
ometry of the wave source in unconfined domains, 3D and, more particularly, axisymmetric wave
fields are still challenging to study when dealing with linear and non-linear phenomena. Classical
generation mechanisms, such as vertically oscillating spheres [154, 74], prevent from studying 3D
non-linearities in their whole complexity as they usually generate localised 3D wave fields. Instead,
Maurer et al.’s axisymmetric wave generator [141], built upon the technology of Gostiaux et al.’s
planar generator [92], has been proven capable of exciting pure axisymmetric wave fields shaped
as Bessel functions [33], that can lead to more targeted studies of non-linear effects.

Based upon this new generator technology and preliminary studies of non-linearities in axisym-
metric geometry [140], we explore in this chapter two phenomena observed in our experimental
setup: Super-Harmonic Generation (SHG) and Triadic Resonant Instability (TRI).

Results from the first half of this chapter are in preparation for Physical Review Fluids [34].
Results from its second half are in preparation for Journal of Fluid Mechanics [31].

7.1 A Criterion for Linearity vs. Non-Linearity
To begin with, we use a scale analysis to derive a qualitative criterion allowing us to discriminate
whether the forcing amplitude is low enough to delay the growth of non-linearities.

In the previous chapters, all non-linear terms in the internal wave equation were neglected and
the study only focused on the linear equation. The complete equation, including both linear and
non-linear terms, can be obtained starting from the following set of equations

∂t∆hψ + J�
(
rψ,

∆hψ

r

)
= −

(
2vθ
r

+ f

)
∂zvθ + ∂rb, (7.6)

∂tvθ + 1
r2J

�(rψ, rvθ) = f∂zψ, (7.7)

∂tb+ 1
r
J�(rψ, b) = −N2 1

r
∂r(rψ), (7.8)

coupling the axisymmetric stream function ψ to the azimuthal velocity vθ and the buoyancy field
b. As discussed in chapter 1, the Laplacian ∆hψ is defined by

∆hψ = ∂2ψ

∂z2 + ∂

∂r

(
1
r

∂(rψ)
∂r

)
= ∂2ψ

∂z2 + ∂2ψ

∂r2 + 1
r

∂ψ

∂r
− ψ

r2 , (7.9)

and the cylindrical Jacobian J� of two functions f and g is a non-linear operator given by

J�(f, g) = ∂f

∂r

∂g

∂z
− ∂g

∂r

∂f

∂z
. (7.10)

After some calculus, these equations collapse into

∂2
t ∆hψ +N2∂r

(
1
r
∂r(rψ)

)
+ f2∂2

zψ = N [ψ, vθ, b], (7.11)

where N denotes the non-linear terms

N [ψ, vθ, b] = −∂tJ�
(
rψ,

∆hψ

r

)
− f∂z

1
r2J

�(rψ, rvθ)− ∂r
(

1
r
J�(rψ, b)

)
− 1
r
∂t∂zv

2
θ . (7.12)

Let’s now consider a scale analysis. The stream function amplitude ψ0 is a relevant scaling to
be considered. As all frequencies are of the same order of magnitude, ω, N , and f , are assumed
to have the same scaling in 1/T with T the period of the forcing. Disregarding boundary layer
effects, the r and z derivatives are also assumed to have the same scaling in 1/L, with L a given
lengthscale. Under these assumptions, the linear part of the equation scales as

ψ0
T 2L2 , (7.13)
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and all non-linear terms scale as
ψ2

0
TL4 . (7.14)

Non-linear terms have to be taken into account as soon as both scalings are of the same order
of magnitude, but they can be neglected if

ψ0
T 2L2 �

ψ2
0

TL4 , (7.15)

which means
L2

ψ0T
� 1. (7.16)

The lengthscale L can be set so that L ∼ 1/l, l being the radial wave number. Given that ψ0
is the amplitude of the stream function, the amplitude of the vertical velocity is ψ0l with l the
radial wave number and the amplitude of the vertical displacement is ψ0l/ω ∼ ψ0lT . Setting a the
amplitude of the wave generator, a criterion stating that non-linear effects are small is

a� 1/l. (7.17)
For example, in our classical experimental setup, we have l = 19 m−1 (1/l = 5 cm). The generator
amplitude should be one order of magnitude lower to prevent non-linear effects to appear too early
so that they can be neglected compared to the linear wave field, which means a few millimeters.
As we usually have a = 2.5 mm, this condition is satisfied.

7.2 Non-Linearities in Cartesian Geometry
We first focus on the case of non-linearities in Cartesian geometry. In a two-dimensional geometry,
the non-linear equations, recalled from chapter 1, are

∂t∆ψ + J (ψ,∆ψ) = −f∂zvy + ∂xb, (7.18)
∂tvy + J (ψ, vy) = f∂zψ, (7.19)
∂tb+ J (ψ, b) = −N2∂xψ. (7.20)

The Jacobians, cross-products of derivatives of the stream function and of the buoyancy field,
contain all the non-linear physics. These terms can be computed using the plane wave solution of
the linearised equations, written as

ψ(x, z, t) = ψ0e
i(ωt−k·x), (7.21)

vy(x, z, t) = −fmψ0
ω

ei(ωt−k·x), (7.22)

b(x, z, t) = −N
2lψ0
ω

ei(ωt−k·x), (7.23)

leading to
J (ψ,∆ψ) = 0, (7.24)
J (ψ, vy) = 0, (7.25)
J (ψ, b) = 0, (7.26)

As a result, in a linear stratification (constant N) and homogeneously rotating fluid (constant f),
all self-interacting1 terms for 2D Cartesian wave fields are zero. Note that a direct consequence
of this result is that there is no non-linear behaviour due to self-interaction in a linearly stratified
fluid, and Cartesian self-interaction are only observed in non-linear stratifications [16]. Non-linear
interactions, however, can still exist in linear stratifications in two-dimensonal Cartesian geometry
if they involve different waves, as in triadic interaction [21, 107].

1From now on, we will use the term “self-interaction” in a very specific way. A wave field can locally self-interact
with itself, meaning that it virtually interacts with a wave field of same amplitude, same frequency, and same
wave numbers (in magnitude). In Cartesian geometry, a plane wave can self-interact, as can a standing wave field
(described by cosine or sine functions); but a wave beam (described by a sum of plane waves of varying wave lengths
in the transerse direction) will not self-interact per se as there would be additional cross-interactions between the
plane waves of different transverse wave lengths.
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7.3 Experimental Configuration
In the following sections, we explore non-linear phenomena in a linear stratification and axisym-
metric geometry. All experiments were conducted with the generator set into a radial mode 1
profile, at low amplitude (a = 2.5 mm), low enough to delay non-linearities from appearing and
allowing for weakly non-linear study of the wave field.

Different sets of experiments were undertaken, for two ranges of ω/N : a first study at low
ω/N (between 0.3 and 0.5) to delve into self-interaction and the generation of super-harmonics
(section 7.4), and a second study at high values of ω/N (between 0.8 and 1) to explore triadic
resonant instability (section 7.5).

7.4 Super-Harmonic Generation by Self Interaction
Through the use of an oscillating sphere and the study of the radiated conical wave field, Er-
manyuk et al. [74] have shown that the first harmonic created by non-linear interaction is likely
to present a non-trivial structure with a symmetry breaking, e.g. dipolar or quadripolar. In their
study, however, the radiated wave field cannot be decomposed over a single Bessel function and the
different components of the wave field, which can be extracted through a Fourier-Hankel transform
[141], can interact together via the non-linear terms of the wave equation. In the present study,
we consider a pure axisymmetric wave field shaped as a radial standing wave, called a mode, and
discuss what is, to our knowledge, the first experimental observation of superharmonic generation
through self-interaction of axisymmetric gravity waves.

7.4.1 Non-Linear Problem
Back to equations (7.6), (7.7), and (7.8), the same cross derivation that led to the linear system
can be used to derive the full non-linear equation

L[ψ] = N [ψ, vθ, b], (7.27)

where L is still defined by equation (7.5) and N is the non-linear operator

N [ψ, vθ, b] = −∂tJ�
(
rψ,

∆hψ

r

)
− ∂r

(
1
r
J�(rψ, b)

)
− 1
r
∂t∂zv

2
θ . (7.28)

As discussed in section 7.1, when the velocity amplitudes become too large, these non-linear terms
cannot be neglected. If we consider the axisymmetric linear solution previously derived, we note
that vθ = 0 so N [ψ, vθ, b] = N [ψ, b]. The non-linear right-hand side of equation (7.27) therefore
becomes only dependent on two Jacobians that can be evaluated. Using that [163]

∂(J0(lr))
∂r

= −lJ1(lr), ∂(rJ1(lr))
∂r

= lrJ0(lr), and ∂(r−1J1(lr))
∂r

= −lr−1J2(lr),
(7.29)

and the linear solution for ψ and b, the non-linear terms write

∂tJ�
(
rψ,

∆hψ

r

)
= C

[J1(lr)]2

r
cos(2ωt− 2mz), (7.30)

∂r

(
1
r
J�(rψ, b)

)
= C

[
cos2(ωt−mz)J0(lr)∂rJ0(lr) + sin2(ωt−mz)J1(lr)∂rJ1(lr)

]
,(7.31)

with
C = 2ω(l2 +m2)mψ2

0 . (7.32)

As a result, the right-hand side of equation (7.27) writes

N [ψ, b] = CJ1(lr)
[
J2(lr) sin2(ωt−mz)− J1(lr) cos2(ωt−mz)

]
6= 0 (7.33)
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In the general case, inspired by the work of Thorpe [227], we write ψ as a sum over possible
solutions of various frequencies ωj as

ψ(r, z, t) =
∑

j

χj(r, z) cos(ωjt), (7.34)

very much like a Fourier Transform, with χj , j ∈ Z, a spatial function. The linear part of equation
(7.27) therefore writes

L[ψ] =
∑

j

[
(N2 − ω2

j ) ∂
∂r

(
1
r

∂(rχj)
∂r

)
− ∂2χj

∂z2

]
cos(ωjt). (7.35)

As the non-linear terms are only second order products of the stream function, we assume the
following development

N [ψ] =
∑

g,h

Cg,h(r, z) cos((ωg + ωh)t), (7.36)

where ωg and ωh are frequencies, and Cg,h is a spatial fonction. Projection of equation (7.28) over
frequencies leads to

∀j ∈ Z, (N2 − ω2
j ) ∂
∂r

(
1
r

∂(rχj)
∂r

)
− ∂2χj

∂z2 = Cj , (7.37)

where Cj is defined as the function Cg,h where g and h verify ωj = ωg + ωh. The Cj functions act
over the modes as forcing terms produced by non-linear wave-wave interactions. The impact of
this forcing term can be further explored in theory using the Green functions (see appendix) and
an expansion of the stream function, or with Direct Numerical Simulations, which is beyond the
scope of this study.

7.4.2 Non-Linear Forcing and Green Functions
Inspired by the approach of [237, 74, 238], we compute the Green function of the linear operator
L in cylindrical coordinates (for more details on the calculus, see [4, 163]). In the axisymmetric
case, without θ-dependence, this Green function can be written as follows

G(r, t; r′, t′) = G0
4π2

∫ +∞

−∞
eiω(t−t′)

∫ +∞

−∞
eim(z−z′)[J1(lr<)Y1(lr>)]dmdω, (7.38)

where G0 is a normalisation coefficient, and ω, l, and m satisfy the dispersion relation for internal
waves. The radial dependence is expressed through the first order Bessel functions J1 and Y1,
two analytical solutions of the radial part of the wave equation [33]. The variables are noted t,
r = (r, θ, z), t′, and r′ = (r′, θ′, z′), and we use the notation r< = min(r, r′) and r> = max(r, r′).

From the wave equation and the top boundary forcing, the linear wave field can be obtained
as a solution of the problem

{
L[ψ, b] = 0 for r ∈ C
ψ = δ(z)J0(lr) cos(ωt) for r ∈ ∂C, (7.39)

where C = {(r, θ, z) ∈ [0; R]× [0; 2π]× [0; −L]} is the cavity domain and ∂C stands for its bound-
aries. The forcing at the top boundary is expressed by a Dirac distribution δ(z). Equation 7.39
admits for solution

ψ(z, r, t) =
∫

∂C×R
δ(z′)J0(lr′) cos(ωt′)∂G

∂n (r, t; r′, t′)dS′dt′, (7.40)

while integrating over the boundary ∂C.
A small parameter ε = ψ0T/L

2 characterizing the contribution of non-linear terms can be
defined from the derivation proposed in chapter 7 section 7.1 as well as in [35], allowing to write
the stream function with a similar development as in Husseini et al. [101] in the following expansion

ψ = εψ(1) + ε2ψ(2) +O
(
ε3) , (7.41)
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where ψ(1) is the solution to the linear problem previously discussed. Considering that the second
order terms come from the non-linear term

N [εψ(1), εb(1)] = ε2CJ1(lr)
[
J2(lr) sin2(ωt−mz)− J1(lr) cos2(ωt−mz)

]
, (7.42)

at lowest order, the weakly non-linear correction ψ(2) can be found by defining a new Green problem
where the non-linear self-interaction of the linear term acts as a forcing field over the whole domain

{
L[ε2ψ(2), ε2b(2)] = ε2N [ψ(1), b(1)] for r ∈ C
ψ = 0 for r ∈ ∂C, (7.43)

whose solution is found analytically as

ε2ψ(2)(r, z, t) = ε2
∫

C×R
N [ψ(1), b(1)]G(r, t; r′, t′)dr′dz′dt′. (7.44)

This expression predicts that the wave created through self-interaction is a first harmonic at 2ω,
or a mean flow at zero frequency. The spatial dependence, however, being coupled between l and
m, cannot be directly infered.

7.4.3 Wave Resonator and Mode Selection
Cylindrical cavities have been demonstrated to produce enhanced modal wave fields in Boury et
al. [33], likely to trigger instabilities at high frequencies. In such a confined configuration, radial
and vertical modes can be excited if they satisfy the boundary condition, namely a zero orthogonal
velocity at the boundaries. A cavity mode is therefore described by a stream function

ψ(r, z) = ψ0J1(lr) sin(mz). (7.45)

As we will see next, the radial confinement sets the possible values of l, and so does the vertical
confinement for the values of m.

Radial Confinement

The cylinder imposes a radial confinement within a radius R. As such, modes of radial wave
number lp, p ∈ N∗, are selected with the boundary condition stating that the radial velocity is
zero at the boundary

vr(r = R, z, t) =
(
−1
r

∂(rψ)
∂z

)

r=R
= 0, (7.46)

equivalent to
J1(lpR) = 0. (7.47)

If j1,p is the pth zero of the 1st order Bessel function J1, then the values of lp are given by

∀p ∈ N∗, lp = j1,p
R
. (7.48)

Table 7.1 presents the first zeros of the J1 Bessel function, extracted from [17], and the corre-
sponding radial wave numbers for a cylindrical confinement of radius R = 20 cm. An experimental
visualisation of these radial modes for p = 1, 2, and 3, can be seen in figure 4.4 and found in
Boury et al. [33].

p 1 2 3 4 5
j1,p 3.83 7.02 10.17 13.32 16.47
lp 19.15 35.10 50.85 66.60 82.35

Table 7.1: First zeros of the J1 Bessel function and associated radial wave number for R = 20 cm.
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Vertical Confinement

The upper and lower boundaries, set, respectively, by the bottom of the tank and the wave gener-
ator, impose a vertical confinement (cavity) over a given height L. The vertical modes are found
by stating that, at z = 0 – neglecting the generator motion which is at low amplitude – and at
z = −L, the vertical velocity is zero

vz(z = 0) =
(

1
r

∂(rψ)
∂r

)

z=0
= 0 and vz(z = −L) =

(
1
r

∂(rψ)
∂r

)

z=−L
= 0, (7.49)

which justifies that the vertical dependence of ψ is described by a sine function, and which also
means

sin(mL) = 0. (7.50)

As a consequence, vertical modes should have a half-integer number of vertical wave lengths in the
cavity. It follows that the vertical wave number mq, q ∈ N∗, is given by

∀q ∈ N∗, mq = πq

L
. (7.51)

Table 7.2 gives the smallest vertical wave numbers that can be found in a resonant cavity of height
L = 60 cm.

q 1 2 3 4 5 6 7 8 9
mq 5.23 10.47 15.70 20.93 26.17 31.40 36.63 41.87 47.1

Table 7.2: Lowest vertical wave numbers mq for L = 60 cm.

Cavity Modes

Each mode in the cavity is designated by a couple (p, q) ∈ N∗2, so that its radial wave number is
lp and its vertical wave number is mq. A mode (p, q) has a given frequency ωp,q fixed by the linear
dispersion relation for internal waves as

ωp,q
N

=
(

l2p
l2p +m2

q

)1/2

. (7.52)

We present in table 7.3 the values of ωp,q/N corresponding to modes (p, q) in a cavity of radius
R = 20 cm and height L = 60 cm.

ωp,q/N p = 1 p = 2 p = 3 p = 4 p = 5
q = 1 0.9647 0.9891 0.9948 0.9969 0.9980
q = 2 0.8774 0.9583 0.9795 0.9879 0.9920
q = 3 0.7733 0.9128 0.9555 0.9733 0.9823
q = 4 0.6750 0.8589 0.9247 0.9540 0.9692
q = 5 0.5905 0.8017 0.8892 0.8307 0.9530
q = 6 0.5207 0.7453 0.8509 0.9045 0.9344
q = 7 0.4633 0.6919 0.8114 0.8762 0.9137
q = 8 0.4159 0.6424 0.7720 0.8466 0.8914
q = 9 0.3766 0.5975 0.7336 0.8165 0.8680

Table 7.3: Values of ωp,q corresponding to modes (p, q) of radial wave number lp and vertical
wave number mq for R = 20 cm and L = 60 cm.

As shown in equation (7.36), a non-linear wave-wave interaction produces a wide range of waves
that can be projected over the appropriate basis of linear solutions (7.45). With non-zero non-
linear terms, as shown in equation (7.33), harmonic modes can be fed by an excitation mode. A
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mode at frequency ω is therefore in resonance with the nth harmonic, n ∈ N∗, if there exists a
couple of non-zero integers (p, q) such that

nω = ωp,q. (7.53)

In particular, a mode excited at frequency ω is in non-linear resonance with its first harmonic if
twice the forcing frequency 2ω is close to a frequency ωp,q that corresponds to a mode (p, q). We
will verify that in the following sections.

7.4.4 Axisymmetric Non-Linear Wave Generation
We run a set of nine experiments indexed from 0 to 9, with forcing frequency from ω/N = 0.305
to 0.449, using a mode 1 configuration at the generator [33]. For each frequency, long term forcing
of the cavity, up to 10 minutes, leads to non-linear wave-wave interactions, where higher frequency
waves are created. This phenomenon is illustrated in figure 7.1, showing frequency spectrum from
experiment number 9 at ω/N = 0.449. The spectrum contains not only the forcing frequency
at ω/N , but also a mean flow at ω = 0 and harmonics at 2ω/N , 3ω/N , and so on. Here, the
first harmonic would be propagating as ω/N < 0.5 and therefore 2ω/N < 1. This behaviour is
observed for all frequencies, regardless of any resonant cavity aspect identified in Boury et al. [33].
In the performed experiments, due to the range of frequencies choosen, the first harmonic at
2ω/N is always propagating and, except for experiments 1 and 2, the second harmonic at 3ω/N is
evanescent.

0 0.5 1 1.5 2 2.5 3 3.5 40
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v z
]

TF[vz]
ω
2ω
3ω
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Figure 7.1: Example of Fourier transform performed over the last two minutes of the experiment
with a forcing at ω/N = 0.449. The solid line shows the cut-off frequency at N . Dashed, dashed-
dotted, and dotted lines show ω, 2ω, and 3ω frequencies.

Figure 7.2 gives snapshot examples of such an experiment, for a forcing at ω/N = 0.449
corresponding to the spectrum presented in figure 7.1. The first row shows the wave field filtered
at the forcing frequency ω with, from left to right, vz and vr in the vertical plane, and vr and vθ in
the horizontal plane. The excited wave field corresponds to a mode 1 and presents all features of
an axisymmetric wave field [33]: right-left symmetry of vz and right-left antisymmetry of vr in the
vertical plane, invariance by rotation of center (0, 0) for vr in the horizontal plane, and a negligible
orthoradial velocity vθ when observed in the horizontal plane (vr dominates vθ by a factor ∼ 10 in
magnitude).

The first harmonic created at 2ω/N is filtered and shown in the second row of figure 7.2.
Though no spatial wave lengths can be directly infered from the wave field, we notice that the
created harmonic field shares the same axisymmetric properties as the excitation wave field. The
right-left symmetry/antisymmetry of vz and vr in the vertical plane is also consistent with an
axisymmetric description of the wave field. More specifically, a zero of radial velocity is observed
at the center of the experimental domain whereas filtered wave fields in Triadic Resonant Instability
(TRI) [140] have shown, in some cases, non-zero velocity, breaking the axisymmetry of the system.
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The orthoradial velocity vθ is, as compared to the excitation wave field, a noisy signal and does
not show either any symmetry breaking.
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Figure 7.2: Velocity fields in experiment 9, at forcing frequency ω/N = 0.449. The first row
shows the filtered wave field at ω and the second row shows the filtered wave field at 2ω. From left
to right: vz, vr in a vertical cross-section, and vr, vθ in a horizontal cross section. Visualisation
time is about 9 minutes after the generator started to excite the wave field.

7.4.5 Proper Orthogonal Decomposition
In order to describe quantitatively the wave field at a given frequency and, more particularly, the
wave field created in the harmonic at twice the forcing frequency, we used a Proper Orthogonal
Decomposition (POD) method to fit our needs. As we know which basis to use (see previous
sections and table 7.3), the POD process simply consists in projecting the experimental wave field
over an orthogonal basis built accordingly.

The series of {r 7→ J0(lpr) | p ∈ N∗} and {z 7→ sin(mqz) | q ∈ N∗} forms an orthogonal basis
in axisymmetric geometry, which are of relevance for this study. A direct consequence is that
the stream function can be written in terms of normalised modes (p, q), denoted ψp,q, in the
axisymmetric domain (r, θ, z) ∈ C = [0; R]× [0; 2π]× [0; −L], defined as

ψp,q(r, z) = ψ0
p,qJ1(lpr) sin(mqz), with ψ0

p,q = 1
J ′1(lpR)

√
2
Lπ

, (7.54)

satsifying the condition ∫

C
[ψp,q(r, z)]2 rdr dθ dz = 1, (7.55)

from which we can derive the vertical and radial velocities associated to a mode (p, q) as

vp,qz (r, z) = 1
r

∂(rψp,q)
∂r

= −lpψ0
p,qJ0(lpr) sin(mqz), (7.56)

vp,qr (r, z) = −1
r

∂(rψp,q)
∂z

= mqψ
0
p,qJ1(lpr) cos(mqz). (7.57)

Hence, the kinetic energy contained in one mode (p, q) is given by

Kp,q =
[∫

C
vz(r, z) · vp,qz (r, z)rdr dθ dz

]2
+
[∫

C
vr(r, z) · vp,qr (r, z)rdr dθ dz

]2
, (7.58)
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which, accounting for the discretisation of our domain, can be written as follows

Kp,q =
[∑

r,z

2πrvz(r, z) · vp,qz (r, z)
]2

+
[∑

p,q

2πrvr(r, z) · vp,qr (r, z)
]2

. (7.59)

As a result, if we note K0 the kinetic energy of the total wave field, the fraction of energy in a
mode (p, q) is given by the scalar product (7.59) normalised by K0. The higher the quantity, the
more dominant the mode is in the observed field. Note that the prefactors for vz,p,q and vr,p,q can
differ if the normalisation process is directly applied to the stream function or to the velocities.

The left panel of figure 7.3 shows an example of such a POD decomposition using the excitation
wave field previously presented in the top part of figure 7.2, and the right panel of figure 7.3 shows
the decomposition of the first harmonic wave field, respectively at ω/N = 0.449 and 2ω/N =
0.898. Figure 7.3 (top) depicts the colormap of the energetic distribution onto different modes and
figure 7.3 (bottom) plots the kinetic energy contained in every tested mode as a function of the
quantity p.q, defined as p.q = p + 0.1q, used to identify the different modes with a single number
or, in other words, to transform the 2D plot of the top row of figure 7.3 into the more easily
quantifiable 1D plot of the bottom of figure 7.3. As expected, figure 7.3 (left) shows that nearly all
the energy of the wave field produced by the generator lies in a radial mode 1 wave, more exactly a
(1, 7) mode, that can be clearly identified in figure 7.2 with 7 zeros along the vertical direction and
one along the horizontal direction. In addition, while the filtered wave field at 2ω/N in figure 7.2
does not explicitly displays a mode, we see from figure 7.3 (right) that the energy is mostly split
into mode (1, 2) (47%), mode (3, 5) (32%), and mode (5, 8) (8%), the other contributions being
negligible. The first harmonic generated in experiment 9 can therefore be described as a sum
of modes (1, 2), (3, 5) and (5, 8) with given prefactors to account for the distribution of energy
between the three modes.
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Figure 7.3: POD performed on experiment number 9. Top row is the colormap of the energy
distribution in the different modes in the (p, q) plane, and the bottom row is the transposition of
this 2D plot into a 1D plot of axis p.q = p + 0.1q. Left: POD over the filtered wave field at the
excitation frequency ω/N = 0.449. Right: POD over the filtered wave field at the first harmonic
2ω/N = 0.898.
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7.4.6 Observation of Super-Harmonics
The POD discrimination process is applied to experiments 1 to 9 and its results are summarised
in tables 7.4 and 7.5.

In some cases, the first harmonic generated by the non-linear wave-wave interaction can be
clearly identified by eye as a single mode (p, q), as shown for two experiments at 2ω/N = 0.755
and 2ω/N = 0.791, respectively in figures 7.4 and 7.5, with the generation of a mode (1, 3) and a
mode (2, 6) respectively. In these cases, this clearly observed mode is the one identified as the most
energetic in the POD decomposition. Figure 7.6 illustrates this point with experiment 5 and 6,
showing a single mode containing about 80 to 90% of the total kinetic energy of the first harmonic.
The remaining fraction of energy, from 10 to 20%, is sparsely distributed into lower modes that
only contain less than 5% energy each and do not contribute to the general aspect and behaviour
of the wave field. In other cases, as described in the previous section for experiment 9, the energy
is more evenly distributed between several modes.
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Figure 7.4: Velocity fields in experiment 6, with 2ω/N = 0.791, with generation of a mode (1, 3).

The structure of the generated harmonic modes does not always match the one of the excitation
mode. For example, experiments 3 and 6 lead to generation of a dominant mode with a radial
structure similar to the excitation wave field (l1 = 19 m−1), whereas experiments 2, 5, and 8
generate a dominant higher order radial structure (l2 = 35 m−1). For a given radial structure,
we note that the vertical wave number increases with the frequency 2ω/N , consistently with the
dispersion relation. Interestingly, the mode frequencies are not ordered by lower p or lower q but
seem randomly distributed: for example, by increasing ω, the harmonics can be dominated by a
radial mode 1, then a radial mode 2, and then a radial mode 1 again.

Table 7.5 reproduces the theoretical results of table 7.3, highlighting the frequencies corre-
sponding to the observed modes of experiments 1 to 9, which can be compared to the values in
table 7.4. This comparison shows that, when a dominant mode (p, q) is observed, the frequency of
the harmonic (third column in table 7.4) is close to the frequency of the same mode (p, q) stated by
the dispersion relation (table 7.5). For instance, in experiment 6, 78% of the energy of the super-
harmonic is in a mode (1, 3), which is the mode observed in figure 7.4, and the frequency predicted
for such a mode is ω1,3/N = 0.773 according to table 7.4, close to the harmonic frequency observed
in the experiment 2ω/N = 0.791 (table 7.4). Similarly, in experiment 5, 82% of the energy of the
super-harmonic is in a mode (2, 6), which is the mode observed in figure 7.5, and the frequency
predicted for such a mode is ω2,6/N = 0.745, also close to the harmonic frequency observed in the
experiment 2ω/N = 0.755.

To generalize this observation, we summarized our results in figure 7.7. The blue circles show,
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Figure 7.5: Velocity fields in experiment 5, with 2ω/N = 0.755, with generation of a mode (2, 6).
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Experiment ω/N 2ω/N (p, q) [%]
1 0.309 0.618 (1, 5) [61%] (2, 9) [18%]
2 0.327 0.654 (2, 8) [61%] (1, 4) [10%]
3 0.345 0.690 (1, 4) [89%]
4 0.364 0.728 (1, 4) [22%] (2, 7) [21%]
5 0.382 0.764 (2, 6) [82%]
6 0.400 0.800 (1, 3) [78%]
7 0.418 0.836 (2, 5) [35%] (1, 3) [14%] (3, 7) [8%]
8 0.436 0.872 (2, 4) [69%] (3, 6) [9%]
9 0.456 0.912 (1, 2) [47%] (3, 5) [32%] (5, 8) [8%]

Table 7.4: Forcing frequencies and their first harmonics, with identified dominating modes (in %
of kinetic energy) using POD.

ωp,q/N p = 1 p = 2 p = 3 p = 4 p = 5
q = 1 0.9647 0.9891 0.9948 0.9969 0.9980
q = 2 0.8774 [9] 0.9583 0.9795 0.9879 0.9920
q = 3 0.7733 [6,7] 0.9128 0.9555 0.9733 0.9823
q = 4 0.6750 [2,3,4] 0.8589 [8] 0.9247 0.9540 0.9692
q = 5 0.5905 [1] 0.8017 [7] 0.8892 [9] 0.8307 0.9530
q = 6 0.5207 0.7453 [5] 0.8509 [8] 0.9045 0.9344
q = 7 0.4633 0.6919 [4] 0.8114 [7] 0.8762 0.9137
q = 8 0.4159 0.6424 [2] 0.7720 0.8914 [9] 0.8914
q = 9 0.3766 0.5975 [1] 0.7336 0.8165 0.8680

Table 7.5: Reproduction of table 7.3, showing the modes (p, q) identified in the POD. Bold
red values of ωp,q/N are the theoretical frequencies corresponding to the modes observed in the
experiments. The associated experiments are indicated between brackets.

in the phase space (x = ω/N, y = p.q), all the theoretical cavity modes that can be created
according to table 7.3 (for p = 1 through 5 and q = 1 through 9). In parallel, each first harmonic
frequency for experiment 1 to 9 is represented by a vertical dashed line at constant ω/N . At
each of these frequencies, modes extracted from the POD projection of the filtered harmonic
wave fields are represented by red dots in the phase space, where the colour intensity shows the
energetic contribution of each dominant mode. To guide the eye, black rectangles link together an
experimentally observed mode with its theoretical counterpart whose frequency is within 1 to 7%
of the experimental frequency in all cases. This margin is of the order of the error on the buoyancy
frequency N measured with the probe (about 4%). On a vertical dashed line, when a single red
dot is plotted (see for example experiment 5), it means that the harmonic wave field looks like a
single mode which, as shown by the linking rectangle, corresponds to the mode selected by the non-
linear interaction. On the contrary, when several dots appear for a given harmonic frequency (see
for example experiment 1), resonant conditions stated by the dispersion relation are not exactly
fulfilled and the harmonic wave field is a combination of two or more modes, the system being
unable to select a proper one.

Modes of lowest radial wave numbers seem likely to be selected through this weakly non-linear
interaction and, indeed, the most energetic modes are for p = 1 and p = 2, whereas the few
contributions observed at p = 3 and beyond are usually small. This behaviour can be explained
by the resistance of the stratification against vertical motions, which makes the transfer of energy
more efficient to lower radial modes and, especially, to a mode p = 1 whose structure is already
forced by the wave generator. Higher modes, for p > 5 and q > 9, could also exist in the harmonic
wave field, but, for clarity, they are not displayed in figure 7.7. When sounded, all of these modes
show very little contribution to the overall kinetic energy (about a few percents maximum).
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7.4.7 Discussion

This study presents, to our knowledge, the first experimental evidence of internal wave harmonics
created by weakly non-linear internal wave self-interaction in a linear stratification. As the excited
wave field has a frequency below N/2, the first harmonic created can always propagate and the
experimental PIV velocity fields display coherent structures when filtered at the harmonic frequency
2ω/N . With a simple analytical argument, we show that the confined domain provides restrictive
boundary conditions so that the non-linear wave field has to satisfy a given set of constraints,
leading to a discrete collection of radial and vertical wave numbers that can be predicted. The
modes, or standing waves, defined by these relations constitute an excellent description of the first
harmonic field in terms of a sum of several contributions.

Interestingly, and as recalled in section 7.2, self-interacting non-linear terms (the Jacobians) are
null when computed using plane waves in Cartesian geometry. Hence, such a non-linear interac-
tion cannot exist in linearly stratified fluids and, to obtain super-harmonics as in [16], a non-linear
buoyancy frequency profile is required. This study shows that in axisymmetric geometry, however,
self-interaction and super-harmonics generation is a common process even with linear stratifica-
tions. From a theoretical point of view, the exact generation process is not fully understood yet. A
more detailed study, using Green functions, could be undertaken to derive the exact forcing terms
that generate super-harmonics, but falls beyond the scope of this work.

Through a Proper Orthogonal Decomposition technique, we show that a mode selection occurs
in the generation process the harmonic wave field. For some frequencies, the first harmonic re-
produces almost perfectly a mode, both in the vertical and in the radial directions and, in other
cases, the first harmonic is a sum of modal wave fields. Moreover, in all cases, the newly generated
wave field remains axisysmmetric. Modes of lowest radial wave numbers seem likely to be selected
through this weakly non-linear interaction and, indeed, the most energetic modes are for p = 1
and p = 2, whereas the few contributions observed at p = 3 and beyond are usually small. This
behaviour can be explained by the resistance of the stratification against vertical motions, which
makes the transfer of energy more efficient to lower radial modes and, especially, to a mode p = 1
whose structure is already forced by the wave generator. Higher modes, for p > 5 and q > 9, could
also exist in the harmonic wave field, but, for clarity, they are not displayed in figure 7.7. When
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tested using the POD decomposition, all of these modes show very little contribution to the overall
kinetic energy (about a few percents maximum).

In such an experiment, other non-linear phenomena such as wave breaking or Triadic Resonant
Instability (TRI), might occur. The underlying mechanisms, however, are likely to be different as,
for example, they yield to the generation of sub-harmonics in the case of TRI, or they may involve
a symmetry breaking [140] and a fully developped cylindrical wave field with potential orthoradial
velocities, as we will discuss in the next section.

7.5 Sub-Harmonics and Triadic Resonant Instability

The dual phenomenon of the Super-Harmonic Generation (SHG) investigated in the previous
section is a sub-harmonics generation mechanism called Triadic Resonant Instability (TRI). As
previously observed in various configurations [21, 145, 146, 213, 228], and shown in figure 7.8 re-
produced from Joubaud et al. [107], TRI is characterised by the non-linear breaking of an energetic
internal wave (usually called mother wave) into two waves of smaller frequency (daughter waves).
A key feature of TRI is that the triad of waves is in resonance, which means their frequencies ω
and wave vectors k are linked through a linear relation

ω0 = ω1 + ω2, (7.60)
k0 = k1 + k2, (7.61)

where ω0 and k0 (respectively ω1, ω2 and k1, k2) are related to the mother wave (respectively the
daughter waves). Snapshots of density gradient presented in figure 7.8 (top row) at different times
show an example of such a non-linear interaction, for a vertical mode horizontally propagating
in Cartesian two-dimensional geometry (from [107]). The filtered wave fields after 40 periods of
forcing at the three resonant frequencies (figure 7.8 (bottom row)) show different wave patterns
corresponding to the mother and daughter wave fields. Interestingly, although the excitation wave
field is a vertical mode, the two sub-harmonics do not have any modal structure.
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Figure 7.8: Snapshots of vertical density gradient, showing non-linear triadic interaction fed
by a vertical mode horizontally propagating in Cartesian two-dimensional geometry. Top row:
instantaneous field at different times, after 20, 30, and 40 forcing periods. Bottom row: filtered
fields at the forcing frequency ω0 and at the sub-harmonics frequencies ω1 and ω2, taken after 40
periods of forcing. Extracted from [107].
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Numerous studies have been conducted on this non-linear phenomenon in 2D geometries [28,
107, 21], either experimental or theoretical. The cylindrical counterpart, however, is poorly doc-
umented. The existence of resonant triads in cylindrical geometry has been explored in the case
of the elliptic instability and later extended to the Kelvin mode of azimuthal wave number p = 1
(see chapter 1 and appendix E), issued from the elliptic instability or from a precessional forc-
ing [5, 6, 72, 88, 116, 115, 150]. Recent works have shown that TRI occurs in 3D geometries
with axisymmetric excitations [140, 208], and that its characteristics are likely to be similar to
the Cartesian case but they only focus on wave fields of small spatial extension. Although they
both show evidence of symmetry breaking, these experimental studies show different results on
the resonance condition: the equalities on frequencies and vertical wave numbers are satisfied, but
while Maurer [140] did not measure a resonance condition on the radial wave number, Shmakova
and Flór [208] managed to measure a condition on the horizontal wave number and found that
they satisfy the resonant condition m0 = ±m1 ±m2. In both cases the wave field is described by
a combination of truncated Bessel functions that can be asymptotically approximated by plane
wave beams, leaving open the question of exact resonance condition in cylindrical geometry. To
date, 3D TRI has only been experimentally observed and studied locally and no exact derivation
of cylindrical TRI has been undertaken.

In the present section, we first derive the theory for Cartesian 2D TRI and we extend it to
axisymmetric and cylindrical geometry. Then, we present an experimental study of the generation
of sub-harmonics in confined domains (the cavity) and in unconfined domains. The triadic resonant
relations are further discussed, as well as the influence of the boundary conditions imposed by the
horizontal (top and bottom) and cylindrical walls on the sub-harmonic properties.

7.5.1 Cartesian Two-Dimensional TRI

Triadic Resonant Interaction is depicted as the interaction of three waves, the mother wave at
(ω0,k0), excited by the generation mechanism, and two daughter waves at (ω1,k1) and (ω2,k2),
that grow out of noise. To investigate the TRI problem, we therefore assume that the total wave
field is a sum of three interacting propagative waves with time-varying amplitudes

ψ(x, z, t) =
2∑

p=0
ψ0
p(t)ei(ωpt−kp·r) + c.c., (7.62)

vy(x, z, t) =
2∑

p=0
v0
y,p(t)ei(ωpt−kp·r) + c.c., (7.63)

b(x, z, t) =
2∑

p=0
b0
p(t)ei(ωpt−kp·r) + c.c.. (7.64)

Resonance Condition

Isolating the linear and non-linear contributions in equations (7.18), (7.19), and (7.20), we can
write these three equations under the form

2∑

p=0
Ape

i(ωpt−kp·r)

︸ ︷︷ ︸
Linear terms

=
2∑

m=0

2∑

n=0
Bmne

i((ωm+ωn)t−(km+kn)·r)

︸ ︷︷ ︸
Non−linear terms

, (7.65)

where Ap and Bmn are amplitudes independent on spatial variables, but eventually time-dependent
if we are studying the growth of the instability. As discussed in 7.2, Bmm = 0 because of the
antisymmetry of the jacobian J . Note that the result still holds if we consider the viscous equations
(ν 6= 0) as follows. The coefficients Ap and Bmn can be computed exactly as, on the first hand,
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the computation of the linear terms gives

J (∆ψ,ψ) = −∂t∆ψ − f∂zvy + ∂xb+ ν∆2ψ (7.66)

=
2∑

p=0

(
k2
p(ψ̇0

p + iωpψ
0
p) + ifmpv

0
y,p − ilpb0

p + νk4
pψ

0
p

)
ei(ωpt−kp·r) + c.c., (7.67)

J (vy, ψ) = −∂tvy + f∂zψ + ν∆vy (7.68)

=
2∑

p=0

(
− ˙v0

y,p − iωpv0
y,p − ifmpψ

0
p − νk2

pv
0
y,p

)
ei(ωpt−kp·r) + c.c., (7.69)

J (b, ψ) = −∂tb−N2(z)∂xψ (7.70)

=
2∑

p=0

(
−ḃ0

p − iωpb0
p + iN2lpψ

0
p

)
ei(ωpt−kp·r) + c.c., (7.71)

and, on the other hand, the direct calculus of the non-linear terms writes

J (∆ψ,ψ) =
2∑

p=0

2∑

q=0
−(mplq − lpmq)k2

pψ
0
pψ

0
qe
i((ωp+ωq)t−(kp+kq)·r) + c.c., (7.72)

J (vy, ψ) =
2∑

p=0

2∑

q=0
(mplq − lpmq)v0

y,pψ
0
qe
i((ωp+ωq)t−(kp+kq)·r) + c.c., (7.73)

J (b, ψ) =
2∑

p=0

2∑

q=0
(mplq − lpmq)b0

pψ
0
qe
i((ωp+ωq)t−(kp+kq)·r) + c.c.. (7.74)

For each equality, the jth coefficient of the Fourier transform (j = 0, 1, or 2) can be rigorously
identified by multiplying the equation by ei(ωjt−kj·r) and by integrating the obtained equation over
the space-time domain. Such an integral backs on the following property of a mathematical basis
of a linear vectorial space

∫

R4
ei(ωjt−kj·r) · ei(ωpt−kp·r)dtdr = δ(ωj − ωp)δ3(kj − kp). (7.75)

Therefore, the integration over the linear terms gives only the corresponding Fourier coefficient.
The contribution on a single mode ω0 can be written

A0 =
2∑

m=0

2∑

n=0
Bmnδ(ωm + ωn − ω0)δ(km + kn − k0). (7.76)

As m 6= n and ωp 6= 0, the unique solution that allows an interaction between the waves is given
by the resonance condition

ω0 = ω1 + ω2, (7.77)
k0 = k1 + k2, (7.78)

and we obtain, using the notations of equation (7.76), coupled equations of the form

A0 = B12, (7.79)

that are, explicitly

−k2
0(ψ̇0

0 − iω0ψ
0
0)− ifm0v

0
y,0 + il0b

0
0 − νk4

0ψ
0
0 = (m1l2 − l1m2)k2

1ψ
0
1ψ

0
2 , (7.80)

− ˙v0
y,0 − iω0v

0
y,0 − ifm0ψ

0
0 − νk2

0v
0
y,0 = (m1l2 − l1m2)v0

y,1ψ
0
2 , (7.81)

−ḃ0
0 − iω0b

0
0 + iN2l0ψ

0
0 = (m1l2 − l1m2)b0

1ψ
0
2 . (7.82)
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Similar equations can be obtained on (ψ0
1 , v

0
y,1, b

0
1) and (ψ0

2 , v
0
y,2, b

0
2), by a circular permutation of

the indices 0, 1, and 2. Following the approach used in [28, 27, 140], we neglect the forcing term
applied at a boundary (wave generator) in order to derive these equations.

When TRI occurs, the previous relations are verified between the primary wave (mother wave)
and the secondary ones (daughter waves). As shown from experiments, the three waves respect
both the temporal and the spatial resonance for the planar Cartesian case [27, 107, 140, 142]. Note
that these results can be obtained whether considering exponential propagative waves or sine and
cosine modes.

Polarisation Relations

For slow varying amplitudes, we can write ψ̇0
p � ω0ψ

0
p (and similarly for v0

y,p and b0
p), i.e. the

characteristic time of the variation of the field amplitude is small compared to the temporal period
of the waves. Therefore, in the inviscid limit, equations (7.80), (7.81), and (7.82) lead to the
polarisation relations

v0
y,p = fmp

ωp
ψ0
p and b0

p = −N
2lp
ωp

ψ0
p, (7.83)

from which we can recover the dispersion relation for internal waves after re-injecting the ampli-
tudes v0

y,p and b0
p in the wave equations.

Growth Rate

Using the same time scale separation, we can write

v̇0
y,p = fmp

ωp
ψ̇0
p and ḃ0

p = −N
2lp
ωp

ψ̇0
p, (7.84)

in order to find the temporal evolution equation for the wave field. These equations are obtained by
injecting the expression for v0

y,p and b0
p from equation (7.83), and v̇0

p and ḃ0
p from equation (7.84),

into equations (7.80), (7.81), and (7.82). The complete calculus leads to a second order differential
equation on ψ0

p whose solutions are growing and decaying exponentials, such as

ψ1,2 = ψ+
1,2e

+σ+t + ψ−1,2e
−σ−t, (7.85)

where ψ+
1,2 and ψ−1,2 are growing and decaying amplitudes for the two daughter waves, and σ+ is

the growth rate. The coefficient σ− stands for decaying wave fields, and is not to be taken into
account for the growth of the instability. The non-rotating (N 6= 0 and f = 0) solution has been
explored by Bourget et al. [28] and the non-stratified (N = 0 and f 6= 0) solution by Bordes et
al. [26]. In the more general case of inertia-gravity waves (N 6= 0 and f 6= 0), the growth rate has
been computed by Maurer et al. [142]. For further details on the calculus and on the onset of the
instability, the reader is refered to [140]. Note that the size of the interaction region also matters,
which is discussed in more detail in [27, 140].

7.5.2 Axisymmetric TRI
As evidenced by Maurer [140] and Shmakova and Flór [208], Triadic Resonant Interaction occurs
in cylindrical geometry. In both cases, although the forcing is axisymmetric (cylindrical wave gen-
erator [140] and vertically oscillating torus [208]), which ensures that the forcing mother field is
axisymmetric, there are no prescriptions on the daughter waves to be axisymmetric. Experimental
observations themselves are contradictory: if Shmakova and Flór [208] observed an axisymmetric
wave field, the focusing configuration with the wave generator showed symmetry breaking high-
lighted by a non-zero radial velocity at the center in Maurer’s experiments [140]. In this subsection,
we assume that the wave field remains axisymmetric and we derive the corresponding theory for
Triadic Resonant Instability using a similar method as in Cartesian. We also extend the results to
the case of cylindrical wave fields (Kelvin modes) with an azimuthal wave number.
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Resonance Condition

The set of equations (1.59), (1.60), and (1.61), derived in chapter 1, governing inertia-gravity wave
dynamics, can be split into a linear left-hand side and a non-linear right-hand side, so that we
write when taking into account the viscous terms

∂t∆hψ + f∂zvθ − ∂rb− ν∆2
hψ = −J�

(
rψ,

∆hψ

r

)
− 2vθ

r
∂zvθ, (7.86)

∂tvθ − f∂zψ − ν∆hvθ = − 1
r2J

�(rψ, rvθ), (7.87)

∂tb+N2 1
r
∂r(rψ) = −1

r
J�(rψ, b). (7.88)

We consider a wave field composed of three axisymmetric components as follows

ψ(r, z, t) =
2∑

p=0
ψ0
p(t)J1(lpr)ei(ωpt−mpz) + c.c., (7.89)

vθ(r, z, t) =
2∑

p=0
v0
θ,p(t)J1(lpr)ei(ωpt−mpz) + c.c., (7.90)

b(r, z, t) =
2∑

p=0
b0
p(t)J0(lpr)ei(ωpt−mpz) + c.c.. (7.91)

solution of the linear equations. Using the same approach as for Cartesian TRI, we explicitly
calculate the linear and non-linear terms in order to do the projection over the axisymmetric basis
of exponentials and Bessel functions. The computation of the linear terms on the left-hand side
yields

J�
(
rψ,

∆hψ

r

)
+ 2vθ

r
∂zvθ = −∂t∆hψ − f∂zvθ + ∂rb+ ν∆2

hψ, (7.92)

=
2∑

p=0

(
k2
p(ψ̇0

p + iωpψ
0
p) + ifmpv

0
θ,p − ilpb0

p + νk4
pψ

0
p

)
(7.93)

×J1(lpr)ei(ωpt−mpz) + c.c., (7.94)

1
r2J

�(rψ, rvθ) = −∂tvθ + f∂zψ + ν∆hvθ, (7.95)

=
2∑

p=0

(
− ˙v0

θ,p − iωpv0
θ,p − ifmpψ

0
p − νk2

pv
0
y,p

)
(7.96)

×J1(lpr)ei(ωpt−mpz) + c.c., (7.97)

1
r
J�(rψ, b) = −∂tb−N2 1

r
∂r(rψ). (7.98)

=
2∑

p=0

(
−ḃ0

p − iωpb0
p + iN2lpψ

0
p

)
(7.99)

×J0(lpr)ei(ωpt−mpz) + c.c. (7.100)
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and, for the non-linear terms on the right-hand side

J�
(
rψ,

∆hψ

r

)
+ 2vθ

r
∂zvθ =

2∑

p=0

2∑

q=0
[lqmpJ1(lpr)J2(lqr)− lpmqJ0(lpr)J1(lqr)] (7.101)

×ψ0
pψ

0
qk

2
qe
i((ωp+ωq)t−(mp+mq)z), (7.102)

1
r2J

�(rψ, rvθ) =
2∑

p=0

2∑

q=0
[mplqJ1(lpr)J0(lqr)− lpmqJ0(lpr)J1(lqr)] (7.103)

×iψ0
pv

0
θ,qe

i((ωp+ωq)t−(mp+mq)z), (7.104)

1
r
J�(rψ, b) =

2∑

p=0

2∑

q=0
[mplqJ1(lpr)J1(lqr)−mqlpJ0(lpr)J0(lqr)] (7.105)

×iψ0
pb

0
qe
i((ωp+ωq)t−(mp+mq)z). (7.106)

We now generalise the projection method used in the previous subsection for Cartesian TRI.
The Fourier-Hankel scalar product allows for the identification of the coefficients thanks to the
mathematical identity of orthogonality of exponentials and Bessel functions. Using the notation
ψnj(r, z, t) = Jn(ljr)ei(ωjt−mjz), we have

〈ψnj , ψnp〉 = 1
R2

∫ R

0
Jn(ljr)Jn(lpr)r dr

∫

R2
ei(ωjt−mjz) · ei(ωpt−mpz)dtdz, (7.107)

= 1
2 [J ′n(ljR)]2 δ(lj − lp)δ(ωj − ωp)δ(mj −mp), (7.108)

where R is the radius of the cylinder (hence, by construction, ljR are zeros of the Bessel functions).
From the projection, we obtain two conditions for resonance on the frequencies and on the vertical
wave numbers, identical to the ones displayed in equations (7.77) and (7.78) using plane wave
Cartesian formulation

ω0 = ω1 + ω2, (7.109)
m0 = m1 +m2. (7.110)

The radial dependence, however, is more complex. Integration over the radial coordinates yields

k2
0(ψ̇0

0 + iω0ψ
0
0) + ifm0v

0
θ,0 − il0b0

0 + νk4
0ψ

0
0 = 2ψ0

1ψ
0
2k

2
2

[J ′1(l0R)]2
[m1l2Ξ112 −m2l1Ξ101] ,(7.111)

− ˙v0
θ,0 − iωpv0

θ,0 − ifm0ψ
0
0 − νk2

0v
0
θ,0 =

2iψ0
1v

0
θ,2

[J ′1(l0R)]2
[m1l2Ξ110 −m2l1Ξ101] ,(7.112)

−ḃ0
0 − iω0b

0
0 + iN2l0ψ

0
0 = 2iψ0

1b
0
2

[J ′0(l0R)]2
[m1l2Ξ011 −m2l1Ξ000] ,(7.113)

where we define
∀(h, i, j) ∈ N3, Ξhij = 1

R2

∫ R

0
Jh(l0r)Ji(l1r)Jj(l2r)r dr. (7.114)

Hence, a sufficient condition for radial resonance is that the right-hand side of equations (7.111),
(7.112), and (7.111) is non-zero, so that a forcing is exerted on the linear equation. This is ensured
if the terms Ξhij for (h, i, j) ∈ N3 involved in these equations are non-zero. According to previous
works on TRI in Cartesian geometry, and based on the observations of Shmakova and Flór [208],
the solution given by the resonance relation l0 = l1 +l2 is likely to satisfy this condition. Its unicity,
however, is still to be verified.

Numerical Investigation of the Radial Condition

The coefficients Ξhij involed in equations (7.111), (7.112), and (7.113), can be numerically inves-
tigated. Figure 7.9 presents colormaps of the normalised absolute value of these coefficients (i.e.
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the ratio |Ξhij |/max(|Ξhij |)) for: (a) |Ξ112|; (b) |Ξ110|; (c) |Ξ011|; (d) |Ξ101|; (e) |Ξ000|. The last
colormap (f) shows the product of the first three quantities, also normalised. All quantities are
plotted as a function of l1/l0 and l2/l0, with l1/l0 and l2/l0 going from 0 to 2. The plots can be
extended by symmetry and one can get the complete diagram for l1/l0 and l2/l0 going from −2
to +2. We can see that, although the five coefficients |Ξ112|, |Ξ110|, |Ξ011|, |Ξ101|, and |Ξ000|, have
different behaviours at a random location in the parameter space (l1/l0, l2/l0), they generally show
maximum values on the diagonals such that ±l1 ± l2 = l0. Their product is even more eloquent,
as there is a clear maximum for ±l1 ± l2 = l0 whereas the product is almost zero everywhere else.
From these observations, we conjecture that the most likely values for radial wave numbers in
TRI, for which relations (7.111), (7.112), and (7.113) have non-zero right-hand sides, satisfy the
relation l0 = l1 + l2, as shown experimentally by [208] and as already observed for Cartesian plane
waves where it can be analytically demonstrated that ±l1 ± l2 = l0 is a necessary condition (see
equation (7.78)).
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Figure 7.9: Colormaps of the normalised coefficients |Ξhij | as a function of wave number ratios
l1/l0 and l2/l0 with: (a) |Ξ112|; (b) |Ξ110|; (c) |Ξ011|; (d) |Ξ101|; (e) |Ξ000|; (f) product of the five
previous quantitites.

Asymptotics

A possible way to investigate further the radial resonance condition is to use an asymptotic de-
velopment of the Bessel functions. At a given radial wave number l, for large values of lr, the
functions Jn can be approximated by the functions J̃n defined as follows [163]

∀n ∈ N, ∀r ∈ R∗, J̃n(lr) =
√

2
πlr

cos
(
lr − π

2

(
n+ 1

2

))
, (7.115)
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from what we deduce

∀r ∈ R∗, J̃0(lr) =
√

2
πlr

cos
(
lr − π

4

)
and J̃1(lr) =

√
2
πlr

sin
(
lr − π

4

)
. (7.116)

These approximations are presented in figure 7.10 for (a) n = 0 and (b) n = 1. As can be seen in
these plots, the values of lr for which the approximation (7.115) is valid is lr > 1 for J0 and lr > 3
for J1, thus, in general, this constitutes a good approximation of the Bessel functions. Compared
to our experimental configuration of a radial mode 1 with l = 19 m−1, this means that the profile
is very well approximated by this decaying cosine for r > 15 cm, and sooner for higher order radial
modes.

0 5 10 15 20 25

−1

0

1
(a)

lr

A
m

pl
itu

de

J0(lr)
J̃0(lr)

0 5 10 15 20 25

−1

0

1
(b)

lr

J1(lr)
J̃1(lr)

Figure 7.10: Plots of the functions (a) J0 and (b) J1 (solid line) with the asymptotics approxi-
mation J̃0 and J̃1 (dashed lines).

The coefficient Ξhij previously defined in equation (7.114) can be rewritten, using this asymp-
totic formulation, as

∀(h, i, j) ∈ N3, Ξhij ' lim
ε→0

1
R2

∫ R

ε

J̃h(l0r)J̃i(l1r)J̃j(l2r)r dr. (7.117)

Using the definition from equation (7.115) and trigonometric relations, we find that the coefficient
Ξhij can be expressed as a sum of integrals over approximated Bessel functions

∀(h, i, j) ∈ N3, Ξhij ' Γ(1, h, i, j) + Γ(0, h, i,−j) + Γ(0, h,−i, j) + Γ(−1, h,−i,−j), (7.118)

where, given (a, b, c, d) ∈ Z4, we write

Γ(a, b, c, d) = lim
ε→0

1
R2

∫ R

ε

1
2π

√
lbcd
l0l1l2

J̃a+b+c+d(lbcdr) dr, (7.119)

with, using the sign function, the radial interaction wave number labc defined by

lbcd = sign(b)l0 + sign(c)l1 + sign(d)l2. (7.120)

Note that the four Γ integrals are linked to four different radial interaction wave number labc as
shown in table 7.6. Interestingly, the cases lbcd = 0 correspond to the four possible triads that can
be obtained.

Γ(a, b, c, d) Γ(1, h, i, j) Γ(0, h, i,−j) Γ(0, h,−i, j) Γ(−1, h,−i,−j)
lbcd l0 + l1 + l2 l0 + l1 − l2 l0 − l1 + l2 l0 − l1 − l2

Table 7.6: Radial interaction wave number lbcd corresponding to the different Γ integrals.
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Thanks to trigonometric relations and change of variables, these Γ integrals can be explictly
described by a sum of Fresnel integrals C and S (see appendix D and [163]) as follows

Γ(a, b, c, d) = ΓC(a, b, c, d) + ΓS(a, b, c, d), (7.121)

with
ΓC(a, b, c, d) =

√
2

π3R3l0l1l2
cos
(
π

2

(
a+ b+ c+ d+ 1

2

))
C (l∗bcd)
l∗bcd

, (7.122)

and
ΓS(a, b, c, d) =

√
2

π3R3l0l1l2
sin
(
π

2

(
a+ b+ c+ d+ 1

2

))
S (l∗bcd)
l∗bcd

, (7.123)

where, for the sake of clarity, we use the notation

l∗bcd =
√

2R|lbcd|
π

, (7.124)

for the reduced interaction radial wave number l∗.
If l0, l1, and l2 are linked by a triadic relation so that lbcd = 0 for given (b, c, d) ∈ Z3, then one

of the four Γ integrals has a reduced interaction radial wave number l∗bcd equal to zero whereas the
three other have non-zero reduced interaction radial wave numbers. The corresponding disjonctive
case study is presented in table 7.7. The reduced interaction radial wave numbers l∗ are therefore

Triadic relations: If... l0 + l1 + l2 = 0 l0 + l1 − l2 = 0 l0 − l1 + l2 = 0 l0 − l1 − l2 = 0
Then l0 + l1 + l2 = 0 2l2 2l1 2l0
Then l0 + l1 − l2 = −2l2 0 2l0 2l1
Then l0 − l1 + l2 = −2l1 2l0 0 2l2
Then l0 − l1 − l2 = 2l0 −2l1 −2l2 0

Table 7.7: Disjunctive case study showing the values of l0± l1± l2 when a triadic relation between
the radial wave numbers is satisfied.

either 0 or have relatively high values (l∗ � 1) as, for example, typical values for l0, l1, and l2 are
19, 35, or 51 m−1 for cavity modes. By studying the limits of x 7→ C(x)/x and x 7→ S(x)/x, we
deduce that ΓS always goes to zero (and exactly zero if l∗ = 0) and that ΓC is equal to 1 if l∗ = 0
and goes to zero for the three others. Hence, the only contributing Γ integral is the one for which
l∗ = 0, and we can write

|Ξhij | '
1√

π3R3l0l1l2
, (7.125)

for (hij) = (112), (110), (011), (101), and (000) (that correspond to Ξhij involved in equa-
tions (7.111), (7.112), and (7.113)). The five Ξ integrals are therefore non-zero, and have ap-
proximatively the same norm. It can also be shown that they are maximal since d[C(x)/x]/dx = 0
for x = 0 (see appendix D). In this case, when the three radial wave numbers are linked by a linear
relation of the form l0 = ±l1 ± l2, the system of equations (7.111), (7.112), and (7.113) reduces
to a system similar to (7.80), (7.81), and (7.82), allowing for the same resolution method as in
Cartesian geometry. Although the result is approximate, this is an interesting finding that may
contribute to the derivation of the resonance relation.

Polarisation Relations and Growth Rate

A similar method as previously explained for Cartesian plane waves can be used in axisymmetric
geometry to derive the following polarisation relations

v0
θ,p = fmp

ωp
ψ0
p and b0

p = −N
2lp
ωp

ψ0
p, (7.126)

as already predicted by the linear theory (see chapter 1) and identical to the ones derived for plane
waves in equation (7.83). The time scale separation method, not derived in the present manuscript,
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can be applied to derive the growth rate of the instability. A difference can be highlighted, as the
growth rate here depends on the coefficients Ξhij and is therefore not identical to the growth rate
in Cartesian coordinates.

7.5.3 Sub-Harmonics Generation in Confined Domain
We performed experiments for values of ω/N from 0.82 to 0.92, with a low amplitude (a = 2.5 mm)
mode 1 configuration at the generator [33]. In several experiments, towards the end of the 10
minutes forcing one can observe the creation of sub-harmonics as presented in the spectrum in
figure 7.11 computed using the last two minutes of the acquisition. Two daughter waves are
created at frequencies smaller than the imposed forcing (ω1/N = 0.36 and ω2/N = 0.55) that
satisfy the triadic resonant condition ω1 + ω2 = ω0, as ω1 = 0.4ω0 and ω2 = 0.6ω0.
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Figure 7.11: Fourier transform performed over the last two minutes of the experiment with a
forcing at ω/N = 0.91. From left to right: the dash-dotted line shows ω1, the dotted line shows
ω2, both sub-harmonics, and the dashed line shows the forcing frequency ω0, and the solid line
shows the buoyancy frequency N

Filtered wave fields at the three frequencies ω0, ω1, and ω2, are presented in figure 7.12, with the
vertical velocity on top of the radial velocity. On the left, the mother wave shows high amplitude of
about 4 mm · s−1, and is close to be a cavity mode (1, 2). The center and left columns are the two
daughter waves identified from the spectrum 7.11, at ω1 and ω2 respectively. We identify 1 vertical
wave length in the fields at ω0, 5 in the fields at ω1, and 5 in the fields at ω2: hence the resonance
condition is not satisfied for the vertical wave numbers, as we have m0±m2±m1 6= 0. Nevertheless,
this is not observed in all our experiments with sub-harmonic generation as sometimes we have
m0 = m1 + m2 consistent with experimental data of Maurer [140] and Shmakova et al. [208]. As
regards the radial direction, we see different patterns in the filtered wave fields: the fields at ω0
and ω1 look like a radial mode 1, but the field at ω2 looks like a radial mode 2. This behaviour,
however, is not a strong feature of the sub-harmonics generation via TRI, as some experiments
only show radial mode 1 patterns.

In general, we observe that in this confined configuration, the resonant conditions are not
satisfied. The reason could be that the selected frequencies and wave lengths are likely to be linked
to the boundary conditions. As can be seen in figure 7.12, in the vertical plane, the sub-harmonics
can be identified as cavity modes. For example, in figure 7.12, the field at ω1 is a mode (1, 10)
and the field at ω2 is a mode (2, 10). Results from section 7.4 on SHG can be extended to this
problem: the frequencies associated to these cavity modes (1, 10) and (2, 10) are ω1,10/N = 0.34
and ω2,12/N = 0.56, close to the experimental values of ω1/N = 0.36 and ω2/N = 0.55.

Contrary to the observations of Maurer [140] in his focusing experiments, but in agreement
with Shmakova and Flór [208], we did not see any axisymmetry breaking in our experimental wave
fields. Due to the poor visualisation in the horizontal plane, however, this statement could not
be further explored. Our conjecture is that the presence of a cylindrical boundary at fixed radius
might prevent the daughter waves from breaking the symmetry in a similar way as in Maurer’s
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observations in which non-zero radial velocity was detected [140]: such velocities, indeed, could
not be described by the Bessel functions we used and could be contradictory to the condition of
zero radial velocity at the cylindrical bound.

The mother and daughter waves are not always satisfying the TRI relations on the wave num-
bers, particularly the radial wave number, which means that the boundary conditions that set the
cavity mode are, in that sense, “stronger” than the resonance conditions. In addition, part of the
velocity fields are blurred, for example the vertical velocity at ω1 and ω2 close to r = 0 cm at the
top and at the bottom of the tank (figure 7.12). This is likely due to the presence of other modes or
to exchanges between the cavity mode and another wave field set by the TRI conditions. Similarly
to Super-Harmonic Generation, the existence of resonance conditions in TRI may prescribe the
cavity modes allowed for non-linear interaction.
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Figure 7.12: Vertical velocity (top row) and radial velocity (bottom row) after 9 minutes of
forcing in the experiment. From left to right, fileds are filtered at ω0, ω1 = 0.4ω0, and ω2 = 0.6ω0.

7.5.4 Unconfined Wave Fields, Rotation, and Symmetry Breaking
At the end of his PhD [140], Paco Maurer did some experiments involving density stratified and
rotating fluid, generating axisymmetric inertia-gravity waves in an unconfined domain. The aim of
these preliminary experiments was to trigger TRI with high sensitivity in the regime (ω/f, ω/N) in
which it is the most likely to occur [142]. Incidently, some of his experiments have shown resonant
triads in cylindrical geometry, with a symmetry breaking. This subsection focuses on the analysis
of one of these experiments, run at buoyancy frequency N = 0.97 rad · s−1 and Coriolis frequency
f = 0.294 rad · s−1. The forcing imposed at frequency ω0 = 0.80 rad · s−1 is a truncated Bessel
function with a wave number l0 = 42 m−1 and an amplitude a = 15 mm.

In order to discuss the frequency content and the transition between the linear and the non-
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linear regime, we can compute the time-frequency diagram SK [79] of the kinetic energy in the
vertical plane K = ρ0(v2

r + v2
z)/2, given by

SK(ω, t) =
〈∣∣∣∣
∫ +∞

−∞
K(r, z, t)eiωuh(t− u) du

∣∣∣∣
2〉

, (7.127)

where h is a Hamming window whose length can be tuned. On this diagram, presented in fig-
ure 7.13, we can see a peak at the forcing frequency ω0 = 0.80 rad · s−1 almost from the beginning
of the experiment. After 200 s of forcing, two peaks appear and start growing at smaller frequen-
cies, respectively ω1 = 0.30 rad · s−1 and ω2 = 0.50 rad · s−1. Hence, these three frequencies satisfy
the triadic resonant condition ω0 = ω1 + ω2.
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Figure 7.13: Time-frequency diagram computed for the experiment. The buoyancy frequency
is N = 0.97 rad · s−1 and the Coriolis frequency f = 0.294 rad · s−1. Forcing was imposed at a
frequency ω0 = 0.80 rad · s−1.

Velocity fields filtered at the frequencies associated with the observed TRI satisfying the res-
onance condition are presented in figure 7.14. In the vertical cross-section, we can estimate the
vertical wave length and associated wave number mj for j ∈ {0, 1, 2}. These values are presented
in table 7.8. From our estimates, we verify the resonance condition on the vertical wave number
as we have m0 ' m1 −m2.

Field at frequency ωj ω0 ω1 ω2

Vertical wave length (m) 0.40± 0.04 0.10± 0.02 0.13± 0.02
Corresponding wave number mj (m−1) 15.7 62.8 48.4

Table 7.8: First zero rj measured in the experiment and corresponding radial wave number lj for
the radial velocity fields filtered at ωj , with j ∈ {0, 1, 2}.

The radial wave fields are described by Bessel functions of the first kind J1 and are therefore
of the form J1(ljr) for j ∈ {0, 1, 2}. According to Beattie [17], the first zero of this Bessel function
is equal to 3.83. For each value of j, the location rj of the first zero can be identified in these
velocity fields, and the corresponding wave number lj can then be deduced (lj = 3.83/rj). These
numbers are presented in table 7.9 for the three frequencies identified in figure 7.14. The radial
wave number l0 = 42 m−1 obtained for the mother wave is consistent with the imposed forcing.
The two radial wave numbers for the daughter waves are close to satisfy the resonance relation
l0 ' l1 + l2.

Furthermore, there is a clear symmetry breaking as the velocity fields for the daughter waves
at ω1 and ω2 start rotating clockwise and anti-clockwise respectively, meaning that there is an
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Figure 7.14: Radial velocity fields in an experiment run by Paco Maurer, with no confining
cylinder, buoyancy frequency N = 0.97 rad · s−1 and Coriolis frequency f = 0.294 rad · s−1. From
left to right: mother wave at ω0 = 0.80 rad · s−1, and daughter waves at ω1 = 0.50 rad · s−1 and
ω2 = 0.30 rad · s−1. The first two rows show the vertical and the radial velocities in the vertical
cross-section, and the third row shows the radial velocity in the horizontal cross-section.

Field at frequency ωj ω0 ω1 ω2

First zero identified rj (m) 0.09± 0.01 0.12± 0.01 0.33± 0.03
Corresponding wave number lj (m−1) 42 32 12

Table 7.9: First zero rj measured in the experiment and corresponding radial wave number lj for
the radial velocity fields filtered at ωj , with j ∈ {0, 1, 2}.
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azimuthal wave number p1 = +1 and p2 = −1 respectively. The natural conjecture from this
result is that a similar resonant condition would exist on the azimuthal wave number, as p0 = 0,
such that p0 = p1 + p2. Using the cylindrical formalism derived in chapter 1, and a similar
approach for TRI theory, this condition would be a direct consequence of the scalar product over
the orthoradial coordinate θ.

7.5.5 Discussion and Further Work
We have derived the equations for Triadic Resonant Interaction (TRI) in axisymmetric geometry,
following a similar method as used to deal with Cartesian plane waves. We have shown that,
analytically, the resonance condition is the same in both geometries for the frequencies and the
vertical wave numbers. A numerical study, supported by previous laboratory experiments [140,
208], led us to the conclusion that the resonance condition in axisymmetric geometry is likely to
be the same in axisymmetric geometry, and we write

ω0 = ω1 + ω2, (7.128)
m0 = m1 +m2, (7.129)
l0 ' l1 + l2, (7.130)

where the indices 0, 1, and 2, stand for the mother wave and the two daughter waves respectively.
Our experimental study of TRI in confined axisymmetric domain, however, shows that the

cavity sets the spatial shape of the wave field and that the daughter waves are cavity modes.
A similar behaviour may likely be found for Cartesian waves, although it has not been tested
yet. Hence, in the confined case, only the resonance condition on the frequencies is satisfied.
Interestingly, though Shmakova and Flór verified the resonance condition in their experiment [208],
Maurer could not verify it and observed instead a symmetry breaking [140]. Adding rotation, the
daughter wave fields are not axisymmetric anymore but cylindrical, with an azimuthal periodicity.
The observation and understanding of TRI in large axisymmetric unconfined domains with and
without rotation is, therefore, still a challenge.

7.6 Beating Behaviour
We now focus on the remaining frequency information that can be identified in the experiments.
As mentioned in chapter 4 while studying confined modes in the wave resonator created by the
cylindrical boundary, the bottom of the tank, and the wave generator at the top, a beating phe-
nomenon may appear (see figure 4.10(a)). This periodically fading velocity is associated with a
modulated amplitude, as can be seen in the time series of the vertical velocity vz, presented in
figure 7.15(a), computed over the whole experimental domain, when excited with a radial mode 1
forcing at low amplitude (a = 2.5 mm · s−1) in a linear stratification (N = 0.91 rad · s−1).

The spectral information of this experiment is shown in figure 7.15(b). It reveals a strong peak
at ω0 = 0.797 rad · s−1, corresponding to the forcing frequency. As expected from the non-linear
theory discussed in section 7.4, super-harmonics are generated and appear at integer multiples
of the forcing frequency past the solid line indicating the buoyancy frequency N . Close to ω0,
and still below N , a smaller peak can be seen at a frequency of 0.88 rad · s−1. Although the
harmonics correspond to evanescent waves, these two peaks at 0.797 and 0.88 rad · s−1 are related
to propagating waves, and are responsible for the beating beahaviour observed in figure 7.15(a).
According to table 7.3, the secondary peak is identical to a cavity mode at ω1,1. This phenomenon
is observed in all experiments (see, for example, the two small peaks observed close to the forcing
frequency in figure 7.1 on SHG), which means that the wave field adjusts itself to the cavity and,
as the experiment is conducted, energy is transfered between the forcing frequency and the cavity
mode. This is illustrated by the time-frequency spectrum presented in figure 7.16, showing the
temporal evolution of the frequency content in the vertical velocity field.

The existence of the frequency ω1,1 can be confirmed by a quick calculation using the modulation
frequency ωmod. From figure 7.1(a), the modulation period of the beating pattern is Tmod = 75 s,
meaning that ωmod = 2π/Tmod = 0.084 rad · s−1. This frequency corresponds to the frequency



7.6. BEATING BEHAVIOUR 145

0 100 200 300 400 500 600
−4

−2

0

+2

+4
(a)

t (s)

v z
(m

m
·s

−
1 )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

500

1,000

ωmod(b)

ω (rad · s−1)

T
F[

v z
]

TF[vz]
ω0
ω1,1
N
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shift between the forcing frequency and the cavity resonant frequency, as observed in figure 7.15(b).
Accordingly, we obtain that ωmod = ω1,1 − ω0 = 0.074rad · s−1.

We interpret the presence of a mode (1, 1) as follows. To satisfy the boundary conditions,
the chosen radial profile is a radial mode 1 as it already corresponds to the excitation wave field.
The vertical profile, which has to agree with the boundary conditions, can be shifted to either a
mode with an odd or an even number of half vertical wave lengths. The reflection at the bottom,
however, introduces a phase shift in the wave field, meaning that an even number of half wave
lengths, although it satisfies the boundary conditions at the bottom and at the top, leads to
destructive interference, and the odd wave number that leads to constructive interference is then
more likely to be selected. As an example, in figure 7.15(b), the frequency ω1,1 corresponding to
a mode (1, 1) appears instead of the frequency ω1,2 that would be associated to a non-resonant
mode (1, 2).

7.7 Conclusions and Discussion
As pictured in figure 7.17, two phenomena are likely to appear during non-linear interactions and
are used to describe the total wave field, namely Super-Harmonic Generation (SHG) and Triadic
Resonant Instability (TRI). In the SHG case, the self-interaction of an internal wave at ω0 creates
super-harmonics, which means waves at nω0 with n ∈ N. In the TRI case, starting from an
internal wave at ω0, non-linear processes create two waves at lower frequency, ω1 and ω2, such that
ω1 + ω2 = ω0. These two non-linear interactions can occur simultaneously.
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Figure 7.17: Schematic of the non-linear interaction from the set of internal wave equations,
leading to either a three wave interaction (Triadic Resonant Instability (TRI)) or self-interaction
(Super-Harmonic Generation (SHG)).

The prevalence of a phenomenon over the other can be explained by simple considerations.
SHG is better observed at low forcing frequencies, for which the primary wave field and at least
the first super-harmonic are propagating. In such a configuration, ω0/N < 0.5, and the excited
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waves at ω0 are more horizontal than vertical (in the non-rotating stratified case), producing shear
on the different layers of the stratification. On the contrary, TRI only occurs at high frequencies,
with ω0/N > 0.7. The excited wave field is then more vertical than horizontal and is penetrating
more into the stratification, bending the layers of the stratification and producing instabilities at
larger scales. From the criterion derived in section 7.1, as the vertical and the horizontal velocities
depend on the frequency, we infer that SHG is better generated by non-linearities on the horizontal
velocity, whereas TRI is generated by non-linearities coming from the vertical velocity.

It is important to note that these two non-linear mechanisms are not unique to axisymmetric
internal waves. Triadic Resonant Instability (TRI) and Parametric Sub-harmonic Instability (PSI)
have been first observed experimentally in two-dimensional Cartesian setups, and were therefore
expected to be detected in our three-dimensional setup. Super-Harmonic Generation (SHG), how-
ever, is more specific to the axisymmetric configuration as the excitation of super-harmonics in
linear stratification cannot occur with Cartesian plane waves, but directly comes to existence due to
non-zero self-interaction terms with cylindrical wave fields. Nonetheless, although we have shown
that the confined configuration (cavity) imposes the spatial shape of the wave field in TRI as in
SHG, the relationship between the wave vectors in the unconfined geometry is still unclear as we
have no exact proof of the resonant condition on the radial wave numbers.

The importance of SHG and TRI can henceforth be discussed. On the one hand, TRI is
considered to be a key step in the non-linear cascade that would transfer energy from scale to
scale [21, 253, 235]. Ongoing works on wave attractors have, indeed, proven experimentally the
existence of an internal wave cascade [42]. On the other hand, SHG has recently been proposed
as a step from which energy transfer can then downscale to reach the dissipation scale [239]. In
the ocean, tidal excitation of semidiurnal modes could excite super-harmonics from near-inertial
waves [62, 257]. In both TRI and SHG, waves at various frequencies are created out of non-linear
interactions and energy is transferred between frequencies and scales, preliminary to mixing and
dissipation events at small scales.
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CHAPTER 8

Inertial Wave Attractors

C’est la tempête et le tonnerre. Pourquoi pas le silence
Du déluge, car nous avons en nous tout l’espace rêvé

Pour le plus grand silence et nous respirerons
Comme le vent des mers terribles, comme le vent

Qui rampe lentement sur tous les horizons.
Paul Éluard, Capitale de la douleur.

In the previous chapters, we have shown that the dispersion relation sets the angle of propaga-
tion of internal wave beams, and we have performed experimental studies of this phenomenon in
non-rotating stratified fluids, where the angle of propagation β with respect to the vertical axis is
given by

sin β = ω

N
. (8.1)

For non-stratified rotating fluids, a dual relation exists and the angle β is then given by the ratio
of the wave frequency ω to the Coriolis frequency f as

cosβ = ω

f
. (8.2)

Due to this relation, and as partially explored in the previous chapters, a rich variety of wave
motions is encountered in rotating and stratified fluids as identified in early pioneering studies, and
explored in details in subsequent literature: normal modes in bounded domains of simple geometry
(sphere, cylinder, rectangular box) [7, 144, 145, 127, 23, 118, 24, 248], wave beams emanating from
isolated oscillatory sources [91, 99, 225, 155], and webs of wave beams (wave attractors) in bounded
domains with sloping walls [214, 40, 216, 217, 131, 129, 134], the latter configuration being the
focus of the present chapter.

The propagation angle β being fixed only by a ratio of frequencies, a very specific law emerges
for internal wave reflection upon a solid wall [173, 73, 135, 128]. In two-dimensional domains,
a focusing-defocusing effect has been predicted and observed [59] and, in closed domains, the
iteration of reflections leads to limit cycles called wave attractors. The branches of the attractor
show increased density of energy that may trigger instabilities and, enventually, wave breaking
and energy cascade [42]. In three-dimensional geometries, the variety of possible configurations is
significantly enriched involving the possibility of wave-energy trapping upon limit cycle [97, 181]. In
the case of a rotating spherical layer, theory predicts the formation of attractors in the meridional
plane [130, 188] and the literature on the linear dynamics of inertial wave attractors in such layers
usually considers the motions in the ring-shaped meridional slices [83, 63, 195, 194, 197] and
disregards the azimuthal coordinate. The proposed study aims at triggering an instability in the
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horizontal cross-section of an inertial wave attractor to study the azimuthal destabilisation and to
delve into the symmetry breaking that occurs in the non-linear regime.

This chapter starts by a brief reminder on the general theory of internal wave attractors in
section 8.1. Section 8.2 presents the experimental configuration used to perform this study, adapted
from the cylindrical domain presented in chapter 2. Our results are detailed in section 8.3, with
the study of the linear and non-linear regimes of the inertial wave attractor. Conclusions and
discussion on the experiment are presented in section 8.4.

Results from this chapter are in preparation for Journal of Fluid Mechanics [36].

8.1 Theory of Internal Wave Attractors

8.1.1 Reflection of Internal Wave Beams
In optics and acoustics, wave reflection is governed by the well-known Snell-Descartes law, defining
specular reflection. Considering the normal n of the material surface, the angle between n and the
incoming wave beam is the same as between n and the reflected beam. As detailed in chapters 1
and 4, however, internal wave beams propagate along particular directions whose angles are set
by the dispersion relation. These angles may differ from the one predicted by the Snell-Descartes
law for a reflected wave beam. As detailed in [42, 171, 174], reflection of internal wave beams
leads to two phenomena, the first one being non-specular reflection, and the second one being
focusing-defocusing (see illustration in figure 8.1).

(a) Specular Reflection

n

(b) Non-Specular Reflection

n
α

Figure 8.1: Left: specular reflection (Snell-Descartes law) of an internal wave beam on a vertical
wall, where incidence and reflection angle are equal. Right: non-specular reflection of an internal
wave beam, where the propagation angles before and after reflection are set by the dispersion
relation.

Let us consider a material boundary, or a wall, inclined by an angle α with respect to the
vertical (see figure 8.1(b)), and an incoming wave beam and a reflected wave beam, respectively
described by the stream functions ψi and ψr. In Cartesian coordinates, they write

ψi(x, z, t) = ψ0
i e
i(ωit−ki·x), (8.3)

ψr(x, z, t) = ψ0
re
i(ωrt−kr·x), (8.4)

with ψ0
i and ψ0

r two constant amplitudes, ωi and ωr the wave frequencies, and ki and kr the wave
vectors. Hence, the velocity field can be derived from the total stream function ψ = ψi + ψr.

On the wall, the non-penetration boundary condition imposes that the normal velocity u · n
must be zero, where n = −(cosα, sinα). By defining coordinates attached to the wall (x̃, z̃),
corresponding velocity components (ũ = −∂z̃ψ, w̃ = ∂x̃ψ), and wave vector k = (kx̃, kz̃), the
boundary condition writes ũ = 0 at x̃ = 0 which means, in terms of stream function

kz̃,iψ
0
i e
i(ωit−ki·x) + kz̃,rψ

0
re
i(ωrt−kr·x) = 0. (8.5)
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This relation must be satisfied at x̃ = 0 for all z̃ and at all times t, leading to the following set of
relations between the incoming and reflected quantities

ωi = ωr, (8.6)
kz̃,i = kz̃,r, (8.7)
ψ0
i = ψ0

r , (8.8)

and, by geometrical construction, the horizontal along-slope components of the wave vectors are
given by [42]

kx̃,i = kz̃,i tan(β − α), (8.9)
kx̃,r = kz̃,r tan(β + α). (8.10)

Hence, we define the focusing-defocusing coefficient γ to be the ratio between the norms of the two
wave vectors ki and kr

γ = kr
ki

=
∣∣∣∣
cos(β − α)
cos(β + α)

∣∣∣∣ . (8.11)

From an energetic point of view, we can compute the density of kinetic energy in the incoming
wave beam

Ki = 1
2
(
u2
i + w2

i

)
= 1

2

(
(∂zψi)2 + (∂xψi)2

)
= 1

2k
2
i

∣∣ψ0
i

∣∣2 , (8.12)

and in the reflected wave beam

Kr = 1
2
(
u2
r + w2

r

)
= 1

2

(
(∂zψr)2 + (∂xψr)2

)
= 1

2k
2
r

∣∣ψ0
r

∣∣2 . (8.13)

Therefore, the densities of kinetic energy are linked by the relation

Kr = γ2Ki, (8.14)

leading to focusing (γ > 1) or defocusing (γ < 1) effect as the wave beam is reflected over the
slope boundary. This phenomenon is illustrated in figure 8.1. In the case of a vertical wall
(figure 8.1(a)), α = 0 and γ = 1, corresponding to a specular reflection with no focusing effect. For
α 6= 0 (figure 8.1(b)), the reflection is non-specular with focusing or defocusing effect. The present
calculation can be derived for an inclination of any of the four walls on which reflection occurs.

8.1.2 Limit Cycles
The study of internal wave reflection on an inclined boundary shows that reflections on horizontal
or vertical walls are always specular, whereas reflections on inclined walls are non-specular. In the
case of a confined trapezoidal domain, the subsequent reflections may lead to a closed limit cycle
in which the focusing effect will increase the density of energy: such cycles are called attractors.
Figure 8.2 shows examples of these limit cycles for inertial waves (N = 0 and f 6= 0) with:
figure 8.2(a) ω/f = 0.406, (b) ω/f = 0.224, and (c) ω/f = 0.680. Depending on the frequency,
the limit cycle can be constituted of four reflections or more.

The variety of shapes of internal wave attractors in a closed trapezoidal domain of width L
and maximum height H depends on the following three non-dimensional parameters: the aspect
ratio L/H of the domain, the angle α of the inclined wall, and the angle β of propagation of waves
(with tan2 β = (ω2 − f2)/(N2 − ω2). Maas et al. [129] have shown that the control parameters
of such a system can be actually reduced to two non-dimensional numbers d = 1 − (2L/H) tanα
and τ = (2L/H)× 1/ tan β. They have summarised the variety of shapes of the attractors in the
(d, τ) diagram reproduced in figure 8.3, where the greyscale shows the logarithm of −Λ, with Λ
the Lyapunov exponent of the trajectories, as defined in [131]. High values of |Λ| correspond to
regions where attractors exist. These regions are labelled by two numbers (p, q) ∈ N2, where p
indicates the number of reflections at the top boundary and q the number of reflections on the
vertical boundary. For example, figure 8.2(a) corresponds to a (1, 1) attractor, figure 8.2(b) to a
(3, 1) attractor, and figure 8.2(c) to a (1, 2) attractor. From now, we only consider (1, 1) attractors
with pure inertial waves.
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(a) (b) (c)

Figure 8.2: Examples of limit cycles obtained by ray tracing converging towards inertial wave
attractors, with a (1, 1) attractor at (a) ω/f = 0.406, a (3, 1) attractor at (b) ω/f = 0.153 and a
(1, 2) attractor at (c) ω/f = 0.650. Bottom slope is at α = 45◦, in a domain of L = 20 cm width
by H = 40 cm height, corresponding to the experimental apparatus described later.
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Figure 8.3: Reproduction of the (d, τ) diagram extracted from [129]. The greyscale shows log(−Λ)
with Λ the Lyapunov exponent of the trajectories. The white regions correspond to high values
of |Λ|, meaning that attractors can exist for these values of (d, τ). The different labels on the
attractive regions (1, 3), (1, 1), (2, 1), etc, correspond to the shape of the attractor. See [42, 129]
for more details.
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8.1.3 Instability of Wave Attractors
Triadic Resonant Instability (TRI), as previously described in chapter 7, has been proven to be
efficiently triggered in the attractor branches as the energy density gradually increses after a
few focalising cycles [42, 203]. The non-linear fate of the two-dimensional (1, 1) attractor, and
subsequent feedback, has been explored experimentally and numerically in density stratified fluids
in trapezoidal domains [44, 203] and in rotating tilted square domains [108]. Recently, scaling laws
in terms of Reynolds and Rossby numbers for the amplitude of the attractor branches have been
proposed and tested experimentally in both the linear and non-linear regimes [47], providing better
understanding of their dynamics.

Of particular interest are wave attractors to study non-linear phenomena and internal wave
breaking. The instability that develops in the most energetic branches has been shown capable
of feeding a triadic cascade, bringing energy from the forcing scale down to smaller scales and,
eventually, to the scale of turbulence [42, 43]. These processes, however, may be different in three-
dimensional axisymmetric geometry: although instabilities are still predicted, geometric effects
might re-stabilise the attractor and delay the onset of the cascade.

8.2 Experimental Configuration
To conduct the experiments, the apparatus used in the previous chapters has been slightly modified
and is presented in figure 8.4. The experimental fluid domain is bounded by two vertical acrylic
cylinders, by the wave generator at the top, and by an acrylic conical surface at the bottom. The
outer and inner radii of the domain are R1 = 20.2 cm and R0 = 5 cm, respectively. The generatrix
of the conical bottom surface has an inclination of 45◦, and the apex of the cone can point either
upwards or downwards.

(a) z

r

40 cm

Inner cylinder : 10 cm
Outer cylinder : 40.4 cm

Wave
generator

Motor

(b) z

r

40 cm

Inner cylinder : 10 cm
Outer cylinder : 40.4 cm

Wave
generator

Motor

Figure 8.4: Schematic illustration of the experimental apparatus configuration: (a) upside-
oriented cone, (b) downside-oriented cone. Note that the amplitude of the wave generator is
greatly exagerated and the upper bound of the fluid domain is nearly flat.

In a vertical (meridional) cross-section of the setup, two trapezoidal domains are facing each
other as shown in figure 8.4. The depth of fluid measured along the generatrix of the outer cylinder
is H = 40 cm. In a horizontal (equatorial) cross-section, the experimental domain is a ring of width
L = R1−R0. The whole setup is inserted into a square acrylic tank of 100 cm × 100 cm horizontal
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section and 65 cm height, as used in [33]. Each part of the facility is rigidly fixed to prevent any
parasitic vibration when the whole setup mounted on the rotating table is brought to rotation at
angular velocity Ω. The axis of rotation of the table coincides with the symmetry axis of the setup.

The axisymmetric wave generator was set into a cubic profile configuration of low amplitude,
and the cylinders have been lowered down with extensions made of 20 cm long aluminium rods.
These 20 cm reduce the experimental domain to a 40 cm tall region, so that the tank is only
partially filled with water in order to prevent water from going out of the experiment by centrifugal
force even at the highest rotation rates of 30 rpm. As discussed in chapter 2, the cubic profile has
been chosen because it is the closest to a radial mode 1 confined between two cylinders, still
satisfying the zero radial velocity boundary condition and the volume conservation condition.

Experiments were run with fresh water (N = 0 rad · s−1) in rotation at relatively high Coriolis
frequency, from f = 2π/3 rad · s−1 (20 rpm) to f = π rad · s−1 (30 rpm). As a result, the Ekman
number in the experiments is reasonably low (E = ν/2ΩL2 ' 10−5) so the impact of viscosity on
the non-linear energy transfer can be neglected.

8.3 Experimental Results
The setup is designed to allow for the non-linear coupling between inertial wave attractors in vertical
(meridional) cross-sections, and two-dimensional manifold in horizontal (equatorial) cross-sections.
This coupling and its strength as well as the location of the onset of instabilities are linked to the
axisymmetric geometry of the experiment and to the two configurations of the inclined boundary
that can be oriented in two different ways (upside-oriented cone or downside-oriented cone).

We first note that a radial focusing-defocusing effect occurs, inherent to the cylindrical geometry
of the system: when propagating inwards (smaller r), the energy density increases whereas, when
propagating outwards (larger r), the energy density decreases. This phenomenon has been shown
efficient to trigger instabilities in this geometry, in the case of an oscillating torus [208] or with a
ring shaped wave generator [140]. This geometrical convergence of waves propagating from larger
to smaller radial coordinate is superimposed to the focusing or defocusing reflection on the cone
at the bottom boundary of the domain. Figure 8.5 illustrates the phenomenon of (a) focusing
reflection and (b) defocusing reflection for waves propagating towards the center of the domain
r = 0. In the focusing case in figure 8.5(a), the width of the beam is larger before reflection than
after (δi > δr) while it is the opposite in the defocusing case in figure 8.5(b). In our setup, for
a (1, 1) attractor, two branches have a radial focusing and two branches have a radial defocusing
and, depending of the orientation of the bottom cone, either focusing or defocusing effect is added
by the bottom slope reflection.

(a) Focusing

r

z δr
δi

(b) Defocusing

r

z δi
δr

Figure 8.5: Reflections on the bottom cone in (a) focusing case, and (b) defocusing case for beams
propagating inwards, showing its width before and after reflection, δi and δr. In the experiment,
either one configuration or the other is used.
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To prove the existence of an axisymmetric inertial wave generator in the linear regime, we use
both configurations presented in figure 8.4. To study the non-linear behaviour of the attractor,
however, we only focus on the configuration in which the cone is oriented so that the apex points
upwards (figure 8.4(a)), leading to an additional focusing of the wave beam as it goes inwards. On
the contrary, if the appex points downwards, the radial focusing and reflexion defocusing effects
act in opposition, creating a more uniform distribution of energy in the experimental domain and
less localised instabilities.

8.3.1 Linear Regime: Existence of an Axisymmetric Attractor
After a few forcing periods T (with T = 2π/ω0, where ω0 is the forcing frequency), the attractor
establishes itself in the linear regime. The focusing effect downscales the wave motion from the
global forcing scale L to the scale associated with the width of the wave beams, called λh and
defined by λh = 2π/kh, kh being the horizontal wave number [195, 98, 93]. This scale λh can
be predicted from the geometry of the system and measured in attractor experiments [44, 203].
Due to the double focusing effect that increases the forced wave amplitude, waves at smaller
frequencies appear even in the first cycles of the attractor due to Triadic Resonant Instability but
their amplitude is weak compared to the forcing and they are therefore neglected in the first stages
of the experiment.
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Figure 8.6: Experimental velocity fields observed in PIV after 17 periods of forcing at ω0 =
1.7 rad · s−1, filtered over 4 periods at ω = ω0. Gray shaded area is out of the experimental domain.
From left to right: vr, vθ, and vz. Straight lines on the right plot show the theoretical attractor.
First row: upside-oriented cone (figures 8.4(a) and 8.5(a)). Second row: downside-oriented cone
(figures 8.4(b) and 8.5(b)).
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Figure 8.6 shows a typical wave pattern observed in the quasi-linear regime: the wave motion
has a high amplitude about 4 mm · s−1 while the small-amplitude daughter waves generated at
the initial stage of TRI are filtered out. We observe thus only the motion corresponding to the
forcing frequency ω = ω0. The radial and azimuthal velocities, observed in the horizontal plane,
depict a nearly axisymmetric wave pattern. In the vertical plane, the structure of a classical two-
dimensional attractor is seen (e.g. see [47]), with superimposed geometrical prediction obtained by
ray tracing (trapezoidal cycles in solid line, righthand-side of figure 8.6). The observed attractor
is consistent with Direct Numerical Simulations run previously to the experimental study by Ilias
Sibgatullin et al. [209]. Note that the white lines observed in the configuration in which the cone
points downward are due to the boundaries of the cone and have no physical meaning.

8.3.2 Non-Linear Regime: Instability and Coherent Structures
When the fluid is forced steadily, the attractor soon reaches a saturated regime and becomes
unstable. The temporal evolution of the kinetic energy Ek of the attractor filtered at the forcing
frequency, computed in a vertical cross-section and normalised by its overall mean value Ek, is
shown in figure 8.7. The kinetic energy starts growing and, after a few forcing periods (about
5T ), the saturated regime appears. Until the end of the experiment, the energy keeps oscillating
around its mean value. This mean value is fluctuating at a larger time scale, both at low and high
frequencies, pointing towards highly non-linear phenomena.
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Mean kinetic energy

Figure 8.7: Temporal evolution of the kinetic energy of the inertial wave attractor filtered at
the forcing frequency, computed in the vertical cross-section. The instantaneous fluctuations are
shown by the blue curve, and the mean energy (sliding average computed over 4 periods) is shown
in orange.

This unstable and non-linear behaviour can be seen in the frequency analysis presented in
figure 8.8, showing time-frequency spectra [79] (top row) and frequency spectra at different times
of the experiment (bottom row), both in the vertical cross-section (left) and in the horizontal
cross-section (right).

At the begining of the experiment, a clear peak is identified at the forcing frequency ω0, and
remains approximatively at the same amplitude. Soon, the frequency content is more important
almost everywhere but quickly saturates. At very low frequency, close to zero, a peak appears
and increases during the experiment, reaching saturation at about 100 forcing periods, of similar
magnitude as the forcing frequency peak in the horizontal plane. We note that a small peak
is present in the horizontal plane at the rotation frequency but we believe this comes from the
rotating table. Super-harmonics also appear in the spectra and are likely due to the wave-wave
self-interaction described in chapter 7, but we did not investigate this further. These spectra can
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be understood in more details by filtering the wave fields at the main frequencies appearing in
figure 8.8, i.e. the forcing frequency ω = ω0, and the very low frequency, as follows.
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Figure 8.8: Top: time frequency spectra. Bottom: cuts at different times in the time frequency
spectra above. Left: data from the vertical cross-section. Right: data from the horizontal cross-
section. In the bottom pannel, the dashed line indicates the forcing frequency ω0 and the dotted
line marks the rotation rate Ω.

Figure 8.9 presents snapshots of the velocity fields filtered at the forcing frequency with, from
left to right, radial velocity vr, azimuthal velocity vθ, and vertical component of the vorticity ξz,
in the horizontal plane, and vertical velocity vz in the vertical plane. The three rows present three
different times in the experiment. In the first row, at 17T , the attractor is in a quasi-linear regime
and the velocity fields are the ones presented in figure 8.6. Almost all kinetic energy injected by
the generator is feeding the forcing mode, shown in 8.9, with the structure of the (1, 1) attractor
in the vertical plane and a nearly axisymmetric pattern in the horizontal plane shown by rings of
opposite signs. Concentric rings of vorticity, remnent of the oscillating branches of the attractor,
can be seen. As expected, we observe that the magnitude of the velocities is higher close to the
inner cylinder than close to the outer cylinder, due to the radial geometric focusing effect. The
second row, at 50T , shows the destabilisation of the inertial wave attractor that is no longer
axisymmetric as discretised patterns gradually appear around the inner cylinder. Filtering out the
other frequencies created through non-linear interaction, we still observe the structure of the (1, 1)
attractor in the vertical velocity field in the vertical cross-section. Close to the outer cylinder, in
the horizontal cross-section, the velocity and vorticity fields remain qualitatively axisymmetric as
the amplitude is weaker. In the last row, at 150T , close to the end of the experiment, we note the
presence of a θ-periodic structure in the horizontal plane with eight patterns in the velocity and
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vorticity fields. The shape of the attractor is less clear but still visible in the vertical plane. As
already stated for the velocity fields taken at 50T , the outer region remains quasi-axisymmetric
and the two branches of the attractor that it contains are still well defined.

t
=

17
T

20

10

0

10

20

r
(c

m
)

0

−10

−20

−30

−40

z
(c

m
)

t
=

50
T

20

10

0

10

20

r
(c

m
)

0

−10

−20

−30

−40

z
(c

m
)

t
=

15
0T

20 10 0 10 20

20

10

0

10

20

r (cm)

r
(c

m
)

20 10 0 10 20
r (cm)

−4 −2 0 +2 +4
Velocity amplitude (mm · s−1)

20 10 0 10 20
r (cm)

−1 −0.5 0 +0.5 +1
Vorticity (s−1)

5 10 15 20

0

−10

−20

−30

−40

r (cm)

z
(c

m
)

−4 −2 0 +2 +4
vz (mm · s−1)

vr vθ ξz vz

Figure 8.9: Velocity fields filtered at ω = ω0. First three columns, from left to right: vertical
velocity, azimuthal velocity, and vertical component of the vorticity, in the horizontal cross-section;
fourth column: vertical velocity in the vertical cross-section. Top row to bottom show different
times, at 17T , 50T , and 150T .

The zero frequency component is investigated in some more details in figure 8.10, presenting,
from left to right, radial velocity vr, azimuthal velocity vθ, and vertical component of the vorticity
ξz, in the horizontal plane, and vertical velocity vz in the vertical plane, filtered at ω = 0, each row
corresponding to a different time in the experiment (at 17T , 50T , and 150T , as in figure 8.9, for
purpose of comparison). As highlighted by the first row, in the linear regime of the wave attractor,
only noise is visible at zero frequency at the begining of the experiment. A vertical flow, however,
starts to develop in the vertical plane. Later on, at 50T , we observe a clear transient regime
with patches gradually appearing in the horizontal plane from the top-left corner. At the end of
the experiment, in the bottom row at 150T , a well-established manifold can be seen. The pattern
observed in the horizontal plane and seen in the last row of figure 8.10 is constituted of an ensemble
of eight self-organised vortices, fully established after about 100 periods of forcing, and stable for
the remaining duration of acquisition. These vortices are stable in time, always characterised by
a positive vorticity and therefore rotating in the same direction, with a magnitude that does not
fluctuate in time. Interestingly, these structures have a different dynamics from inertial waves that
is to be further explored and even more intriguing since they are not exactly at zero frequency:
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the filtering process, indeed, has a frequency band width of 5 10−2 rad · s−1. From the second and
third rows in figure 8.10, we observe that the locations of the center of the vortices is not always
the same: the whole structure seems to have rotated (either clockwise or anti-clockwise) as, for
example, the cores of the vortices almost align with the r = 0 axis at 150T but not at 50T . This
is also visible on the radial velocity plots, as the colours for corresponding patches are inversed for
50T and 150T .
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Figure 8.10: Velocity fields filtered at ω = 0. First three columns, from left to right: vertical
velocity, azimuthal velocity, and vertical component of the vorticity, in the horizontal cross-section;
fourth column: vertical velocity in the vertical cross-section. Top row to bottom show different
times, at 17T , 50T , and 150T .

The structures observed in the vertical plane are reminiscent of the Taylor columns. There
is, however, an important distinction, as the Taylor columns are formed as a consequence of a
slow motion of perturbation imposed to the rotating fluid, whereas the coherent structures seen
in figure 8.10 arise due to a non-linear process that drains energy from the wave field towards the
two-dimensional manifold observed at very low frequency.

8.3.3 Temporal Evolution of the Instability
The manifold observed in the horizontal plane gradually appear while inertial waves are being
excited. At a given time, the structure may not be entirely present in the domain as shown in
the second row of figures 8.9 and 8.10. Another example is presented in figure 8.11, with the
instantaneous radial velocity field in the horizontal cross-section at 75T . The structure is mostly



160 CHAPTER 8. INERTIAL WAVE ATTRACTORS

present in the top-left corner, whereas it is less clear in the bottom-right corner.
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Figure 8.11: Unfiltered radial velocity field in a horizontal cross-section, during the formation of
coherent structures at t = 75T . The dashed circle indicates the location of the sampling pattern
used in figure 8.12.
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Visual evidence of the transient regime can be seen in figure 8.12, which presents the temporal
evolution of the radial structure measured by sampling the pattern at constant radius between
R0 and R1, as shown by the dashed line superimposed to the radial velocity field at t = 75T in
figure 8.11. The eight vortices observed in figure 8.10 at the end of the experiment start to grow
from one side of the inner cylinder and self-organise until being stably structured along a circle.
After 100T , the whole system of vortices is fully established and shows a clear anticyclonic rotation
at 1.05 10−2 rad · s−1. The solid line added to figure 8.12 helps the reader see the constant drift of
the radial velocity paterns as the experiment is run. Hence, the fields seen in figure 8.9 are likely
not at zero frequency, but their frequency is too low to be distinguished from a zero frequency in
the filtering process.

The evolution of the azimuthal velocity, complementary to the behaviour of the radial velocity,
can be further explored. A surface plot of the zonally-averaged azimuthal velocity v̂θ, corresponding
to

v̂θ(r, t) = 1
2π

∫ 2π

0
vθ(r, θ, t)dθ, (8.15)

is presented in figure 8.13 as a function of relative radial location (r −R0)/(R1 −R0) and dimen-
sionless time t/T . This spatio-temporal plot shows that, at the begining of the experiment, a peak
of positive azimuthal velocity appears close to the inner cylinder at (r − R0)/(R1 − R0) ' 0.2,
closely followed by a small peak of negative vorticity at (r−R0)/(R1−R0) ' 0.4. Then, these two
peaks move away from the center of the domain as, during the growth of the instability, a dual cir-
culation establishes with cyclonic velocity close to the inner cylinder and anticyclonic velocity a bit
further out. This pattern seems to be very stable in time, and the extrema of the zonally-averaged
azimuthal velocity remain at constant radius over the last 100 forcing periods of the experiment.
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Figure 8.13: Spatio-temporal surface plot of the zonally-averaged azimuthal velocity, as a function
of dimensionless time t/T and relative radial location (r −R0)/(R1 −R0).
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For better insight into the dynamics of the process, we consider the time-evolution of the
zonally-averaged enstrophy-based Rossby number Roens, defined by

Roens = 〈ξz〉2Ω , (8.16)

where the zonally average vorticity 〈ξz〉 is a proxy for the entrophy. The corresponding spatio-
temporal surface plot is presented in figure 8.14 as a function of dimensionless time t/T and relative
radial location (r −R0)/(R1 −R0). For (r −R0)/(R1 −R0) ' 0.26 (r ' 9 cm), a peak of Rossby
number up to 0.04 is clearly observed after ∼ 75 forcing periods and, as the previous quantities
presented in figures 8.12 and 8.13, the structure remains stable after 100 periods of forcing. This
distance from the center of the experiment corresponds to the location of the centers of the vorticies
identified in the PIV fields shown in figure 8.10. The value of the enstrophy-based Rossby number
is consistent with the estimate that can be computed from the velocity of the radial structures by
comparing the characteristic frequency of the structures to the Coriolis frequency

Rostruct = structure frequency
Coriolis frequency =

Umax
n

2πr∗

2Ω ∼ 10−2, (8.17)

where Umax is the maximal velocity amplitude measured in the horizontal plane, r∗ = 9 cm is
the radial location of the center of the vortices, and n = 8 is the number of structures (vortices)
observed in the experiment.
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Figure 8.14: Spatio-temporal surface plot of the zonally averaged enstrophy-based Rossby num-
ber, as a function of dimensionless time t/T and relative radial location (r −R0)/(R1 −R0).

Figure 8.15 shows typical PDFs of ξz/(2Ω) at different stages of the development of the co-
herent vortex structures, computed over the wave field filtered at the forcing frequency ω = ω0
in figure 8.15(a), and filtered at zero frequency ω = 0 in figure 8.15(b). The PDFs at the forcing
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frequency (figure 8.15(a)) are slighlty skewed with higher values of positive vorticity than negative
vorticity, due to the presence of the instability close to the inner cylinder. For the PDFs computed
with the wave field filtered at zero frequency (figure 8.15(b)), however, a clear skewness is visible
at late times pointing towards a significant symmetry breaking. This skewness is related to the
creation of the eight vortices as seen in figure 8.10. For these PDFs, we see an increased distribution
of negative and positive vorticities with a large tail that quickly develops up to ξz/f ' 0.3 as soon
as the vortices are formed, and that remains stable afterwards. Note that, initially, the PDF at
zero frequency has a sharp peak at zero, contrary to the PDF at the forcing frequency.

There exists a literature work on the conditions corresponding to the cyclonic-anticyclonic
symmetry breaking, starting with pioneering works of [38, 170]. The literature is briefly reviewed
in [89], with the conclusion that instability of anticyclonic vortices appears if ξz/(2Ω) ' −1, i.e.
when the vorticity in the vortex core is comparable to 2Ω and has the opposite sign. As can be
seen in figure 8.15, however, our experimental data yield |ξz/(2Ω)| < 0.4. In our experiment, the
overall symmetry breaking is manifested in the data filtered at zero frequency, with the asymmetric
PDFs of relatively large tail in positive vorticities compared to negative vorticites (figure 8.15(b)),
and with a slow cyclonic precession of the whole pattern of coherent structures (see figure 8.12 on
temporal drift of the radial structures).
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150T ) computed over the experimental domain in the horizontal cross-section for the wave field
(a) filtered at ω = ω0, and (b) filtered at ω = 0.
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8.3.4 Variability of the Number of Vortices
In our experiment, 8 vortices were observed equally spaced around the central cylinder. If this
seems to be a consistent behaviour in our setup, the number of vortices, however, depends on
the geometry and of the forcing amplitude. Direct Numerical Simulations run by Ilias Sibgatullin
with Nek5000 open solver based code, help shed light on this phenomenon. Figure 8.16 shows
the vorticity field in the outputs of two different simulations at a time when the steady state is
reached. In figure 8.16(a), the configuration is the same as in the experimental setup (R0 = 5 cm,
R1 = 20 cm and a = 2.5 mm), and we can see the development of six vortices. In figure 8.16(b),
the domain is slightly larger (R0 = 10 cm and R1 = 30 cm), and the forcing amplitude is also
higher (a = 6 mm), but the ratio ω0/Ω remains unchanged. We can see, in this second picture,
four vortices equally distant from each other and the vortices themselves are bigger than in the
latter case. The number of structures observed shows therefore some variability depending on
the geometric configuration and the forcing, but the non-linear regime is always characterised by
the growth of several vortices and an azimuthal symmetry breaking. At this stage, no precise
characterisation of this variability has been found.
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Figure 8.16: Snapshots adapted from DNS run by Ilias Sibgatullin. Left: configuration with
R1 = 5 cm, R1 = 20 cm, a = 2.5 mm. Right: configuration with R1 = 10 cm, R1 = 30 cm,
a = 6 mm.

8.4 Conclusions and Discussion
This experimental study provides evidence of the existence of three-dimensional axisymmetric
inertial wave attractors, in agreement with Direct Numerical Simulations and two-dimensional ray
tracing theory. Two configurations are explored, depending on the orientation of the bottom slope:
a radially and reflection focusing configuration and a less energetic radially focusing and reflection
defocusing configuration. As predicted from DNS run by Ilias Sibgatullin, the attractor establishes
in the linear regime and remains axisymmetric until its destabilisation.

In the doubly-focusing configuration, the non-linear regime is reached soon after the begining
of the experiment, triggering instability close to the center of the cylindrical domain. The onset
of instabilities leads to symmetry breaking as the θ-invariance is lost, and vortices at very low
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frequency gradually appear to constitute a ring of equally distant coherent structures. Depending
on the amplitude, the number of structures present in the system varies, but our results always
show an even number of them.

The existence of such azimuthal structures, which had not been observed before, is linked to an
enstrophy-based Rossby number that grows and saturates at Roξz ' 0.04, below its critical value
for maximum rate of energy transfer Roc ' 0.2 [29]. The non-linear regime can be described as
a new steady state of the system, with saturated Rossby number, velocities, and kinetic energy,
meaning that the instability and its mechanism leads the system to a bifurcated stable state with
well-defined vortices. Interestingly, although an azimuthal periodicity depending on the forcing
amplitude appears in the horizontal plane, there is no remarkable asymmetry between cyclonic and
anticyclonic vorticities. Only a slow overall anticyclonic rotation, associated to a low frequency, is
experimentally observed for the complete collection of vortices, and remains without explanation.

The findings presented in this study raise a number of interesting issues, in particular, [i] how
the saturated vortex regime depends on the key parameters of the problem (Rossby and Ekman
numbers, geometric aspect ratio and the particular type of forcing), [ii] whether or not the observed
regime might be relevant to realistic geo- and astrophysical systems. Cyclonic clusters arranged in
form of regular polygones have been reported for the polar regions of large planets, e.g. Jupiter
[2], demonstrating remarkably persistent long-term behavior [1]. It has been argued that although
the global pattern of the Jovian atmosphere with circumpolar cyclones and alternating flows near
the equator is captured by shallow-water models (e.g.[54, 205]) the key puzzle remains [2]: “The
manner in which the cyclones persist without merging and the process by which they evolve to
their current configuration are unknown”. The “toy system” proposed here may help to shed light
on the issues related to the stability of polygonal vortex clusters and their possible existence in the
interiors of natural systems admitting the existence of inertial wave attractors.

The fate of these structures, however, is still to be determined. Would they last forever? Would
the number of structures always adapt to the forcing amplitude or would a triadic cascade start
at very high amplitudes? What are the mechanisms behind the formation of these vortices? DNS
are currently used to help answer these questions.
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Part IV

Energy and Buoyancy Transport
in the Arctic: A Case Study
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CHAPTER 9

The Chukchi Slope Current

On était bien surpris par cette plaine grise
d’où Galilée jadis jeta ses petits pots

nous avions aussi froid que nus sur la banquise
quand les grêlons fin mars mitraillaient les bateaux

Raymond Queneau, Cent-mille milliards de poèmes.

Connecting theory and laboratory experiments to real-world is challenging but it is a prereq-
uisite to deal with major issues in oceanography such as stratified mixing, ice melting, waves and
currents, or climate changing. During my PhD, I had the oportunity to be involved in a research
cruise on a small ice capable scientific boat, the R/V Sikuliaq (e.g. see [112]), shown in figure 9.1.

Figure 9.1: The R/V Sikuliaq surrounded by sea ice in the Arctic Ocean. Photography by
Thomas Moore, ArcticMix research campaign, 2015.
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This research campaign was part of the Stratified Ocean Dynamics of the Arctic (SODA)
program [120] and consisted in a five week cruise in the Arctic Ocean in the month of September
2018. It departed from Nome, AK (USA), went North through the Bering Strait, and operated
along the shelfbreak of the Chukchi Sea in the North-West edge of the Canada Basin. This cruise
was the opportunity for me to have a direct contact with oceanography and in-situ measurements,
participating into a collective life onboard a research vessel. I was more particularly involved in two
different projects: the detection of near-inertial waves in the deep ocean [105], and the investigation
of the fate of the Chukchi Slope Current [35] – a project I was in charge of – detailed in the current
chapter.

Non-directly related to internal waves, this chapter presents results from a field study conducted
during this campaign and is organised as follows. Section 9.1 briefly introduces the context and
the goals of the ONR funded SODA program. Sections 9.2 and further are the latest version of
the manuscript we submitted on our study of the Chukchi Slope Current.

Results from this chapter are published in Journal of Physical Oceanography [35].

9.1 Stratified Ocean Dynamics of the Arctic (SODA)
Throughout the year, seasonal sea-ice coverage of the Arctic Ocean impacts its structure and its
dynamics. Current models are based on weak seasonality with long periods of ice coverage that
preserves the ocean from atmospheric disturbances. As detailed in chapter 3, due to rapidly chang-
ing climate conditions, the Arctic is significantly warming up (as detailed in [120], see e.g. [165] for
year 2015) with several consequences on sea-ice distribution: its summer and winter extension is
shrinking, its thickness is reducing, and the ice is on average younger than before which means that
old compact ice is melting while new thin ice easily subject to cracking and melting is formed. A
diminished and thinner ice-coverage has consequences on the energy transfer from the atmosphere
to the ocean, and is likely to have implications in mixing processes.

The Stratified Ocean Dynamics of the Arctic (SODA) program [120] is a joint effort to improve
our understanding of the Arctic Ocean in the upper Beaufort Sea region, and of the complex
interplay between ice coverage, currents, and stratification. According to the technical report from
Lee et al. [120], the program focuses on the response to changes in inflow and surface forcing,
addressing three key oceanographic properties: buoyancy, momentum, and heat. Several cruises
are planned for deployment, recovery, and ship surveys, from 2016 through 2021, amongst which
the 2018 cruise on the R/V Sikuliaq.

9.2 Whither the Chukchi Slope Current?
Pacific waters enter the western Arctic Ocean through Bering Strait, supplying nutrients, carbon,
heat, and freshwater [125] to the Chukchi Sea and ultimately the interior basin. It is now well
established that these waters progress through the Chukchi Sea via three main pathways: a western
branch flowing into Herald Canyon, a central branch flowing between Herald and Hanna shoals,
and an eastern branch situated adjacent to the Alaskan coast that feeds Barrow Canyon [243]
(figure 9.2). Some portion of the western and central branches are believed to turn east before
entering the Canada Basin, augmenting the flow through and out of Barrow Canyon [90, 176].

Different seasonal water masses are found in the Chukchi Sea. In winter and early spring much
of the shelf contains newly ventilated winter water (WW) near the freezing point [176, 166]. This
water is subsequently warmed via mixing and solar heating, becoming what is known as Remnant
Winter Water (RWW) [90]. Later in the summer season two types of water enter the Chukchi Sea
from the south. The warmest of these is Alaskan Coastal Water (ACW) which originates from
runoff into the Gulf of Alaska and flows northward in the Alaskan Coastal Current (ACC) [168].
The second summer water mass is Bering Summer Water (BSW), which is a mixture of Anadyr
water and central Bering shelf water [55]. Finally, a combination of sea ice melt water and river
runoff (referred to as MWR) provides fresh water to the surface layer. How and where these water
masses exit the Chukchi Sea into the Canada Basin is a subject of ongoing study.
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Recent attention has been placed on Barrow Canyon and the fate of the water draining through
the canyon. Originally it was thought that most of the water turned eastward, forming the Beaufort
Shelfbreak Jet [175]. Mooring data from the Shelfbreak Jet, however, revealed that the volume flux
of the jet is substantially less than the transport through Bering Strait [159]. This discrepancy has
been reconciled with the recent discovery of the Chukchi Slope Current (CSC). Using shipboard
acoustic Doppler current profiler (ADCP) data from 46 transects collected between 2002 and 2014,
Corlett and Pickart [57] provided evidence of a westward-flowing current over the continental slope
of the Chukchi Sea transporting 0.50 Sv of Pacific water. They demonstrated that the CSC closes
the mass budget of the Chukchi shelf inflows and outflows. The hydrographic data revealed that,
during the summer and early fall, the CSC advects mainly RWW. However, the relative presence
of the different Pacific water masses in the current varies from month to month.

?

180◦ W 170◦ W 160◦ W 150◦ W

70◦ N

Figure 9.2: Schematic representation of the general circulation in the Chukchi Sea, adapted from
[57]. The ultimate destination of the Slope Current is currently unknown, hence the reason for
the question mark. The dashed yellow rectangle shows the location of the ADCP measurements
shown in figure 9.3.

The year-round presence of the CSC was recently confirmed by Li et al. [121] using data from
a mooring array deployed 100 km to the west of Barrow Canyon from 2013-2014. Li et al. [121]
calculated a mean Pacific water transport of 0.57 Sv, in line with the shipboard estimate from
Corlett and Pickart [57]. The seasonality and mesoscale spatial and temporal variability of the
CSC was also investigated by Li et al. [121]. They determined that the current is surface intensified
in summer and fall with a larger transport, and mid-depth intensified in winter and spring, as it
moves shoreward, with a smaller transport. On shorter timescales the CSC was found to vary
in concert with the Chukchi Shelfbreak Jet, which is located farther inshore and typically flows
eastward. The dominant mode of variability was associated with two “extreme states”, one in
which the CSC is strong and the Shelfbreak Jet is reversed (flowing to the west), and the other in
which the CSC is weak and the Shelfbreak Jet flows strongly to the east. Using reanalysis wind
data and a simple model, Li et al. [121] demonstrated that these two states are dictated by the



172 CHAPTER 9. THE CHUKCHI SLOPE CURRENT

wind stress curl over the Chukchi shelf. In the first state, the wind stress curl over the shelf is
positive which leads to a drop in sea surface height on the shelf; this in turn drives westward flow
at the edge of the shelf via geostrophic set up. In the second extreme state the curl is negative,
and the associated increase in sea surface height on the shelf intensifies the Shelfbreak Jet and
weakens the CSC.

While both Corlett and Pickart [57] and Li et al. [121] argued that the CSC emanates from
Barrow Canyon, they did not have direct evidence of this. However, surface drifter data suggests
that this is the case [212]. In addition, results from two recent model studies support the notion
that the current forms from the outflow from the canyon. First, Spall et al. [210] demonstrated
that the majority of the volume flux leaving the Chukchi shelf occurs in Barrow Canyon via non-
linear advection. This outflow subsequently divides, with a portion forming the eastward-flowing
Beaufort Shelfbreak Jet and the majority of it forming the westward-flowing CSC. The model CSC
was found to transport around 0.5 Sv, consistent with in-situ measurements [57, 121]. This result
is in contrast to the off-shelf subduction mechanism proposed by Timmermans et al. [232]. Second,
the model results of Watanabe et al. [241] also showed evidence of the CSC, which was responsible
for a plume of Pacific water extending along the slope toward the Northwind Ridge.

The observational study of Corlett and Pickart [57] revealed a second region of westward flow
at the seaward edge of their mean transect across the Chukchi slope, which they interpreted to be
the southern edge of the Beaufort Gyre. The model study of Spall et al. [210] showed a similar
distinction between the CSC and the gyre. This interpretation was supported by different model
runs which isolated the two circulation features. At this point, however, it is unclear what the fate
of the CSC is and how the water masses within the current are modified upon leaving the shelf.
Does the CSC remain a distinct feature on the continental slope? The surface drifter results of
Stabeno et al. [212] suggests that this may be the case. Does the CSC ultimately get entrained in
the Beaufort Gyre? What is the fate of the heat carried by the current? These questions motivate
further investigation of the current and its downstream evolution.

In this paper we present the results of a study of the CSC using five profiling floats configured
to be quasi-Lagrangian particles following the current. This is the first observational effort to
address the fate of the Pacific water as it advects westward away from Barrow Canyon. Section
2 describes the data sources and methods used, namely the shipboard velocity and hydrographic
data in addition to the array of profiling floats. In section 3 we first describe the basic state of
the CSC as it was observed in September 2018, mapping the current and its properties along the
western part of the Chukchi shelfbreak to the Northwind Ridge. This is followed by an analysis
of the profiling float data showing the course of the current, including two instances in which the
CSC was abruptly altered. Our conclusions are drawn in section 4.

9.3 Data Sources and Methods

The in-situ data presented in this study were collected during the Stratified Ocean Dynamics of the
Arctic (SODA) cruise on the R/V Sikuliaq from 1 – 30 September 2018 (SKQ201819S). Additional
data from the HLY1801 cruise on the USCGC Healy from 4 – 24 August 2018 are included.

9.3.1 Shipboard ADCP

Shipboard acoustic Doppler current profiler (ADCP) measurements of the current were obtained
for nine transects across the Chukchi shelfbreak/slope during SKQ201819S. The data were ac-
quired using the University of Hawaii Data Acquisition System (UHDAS) and processed using the
Common Ocean Data Access System (CODAS). We use the data from the 300 kHz instrument,
sampling at 1.1 Hz, which had reliable coverage in the upper 80 m of the water column. The accu-
racy is estimated to be ±2 cm · s−1. An additional ADCP transect across the shelfbreak/slope was
obtained from HLY1801, using a 150 kHz instrument. The reader is referred to Li et al. [123] for
information regarding the collection and processing of those data. Bathymetry along the transects
was obtained by the echosounders on the two vessels.
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9.3.2 SOLO Floats
Five Argo SOLO floats were deployed on 6 September while occupying a transect across the
CSC. The deployment details are presented in Table 9.1. All of the floats were equipped with Sea-
Bird Electronics (SBE 41) conductivity-temperature-depth (CTD) sensors, providing hydrographic
profiles throughout their rise and fall. SOLO sensor accuracies are ±0.002◦C for temperature,
±0.01 PSU for corrected salinity, and ±2.4 dbar for pressure. Their records were transmitted with
UTC time and position via Iridium satellite. The floats were configured to profile down and up
to depths of 80 − 100 m in order to stay in the core of the surface-intensified CSC. Each profile
took roughly two hours to complete, of which one hour was spent at the surface for operational
reasons, 25 min was spent on descent and ascent, and approximately 10 min was spent at the
deepest descent depth. It took a few profiles to achieve the target depth of around 80 m, with the
initial dives being as deep as 250 m, then closing in on the desired maximum depth over a few (3-5)
profiles. The deployment of the floats was conducted in two steps. First, a transect across the
current was carried out by the ship starting from the 100 m isobath and extending to the 2500 m
isobath. This provided information on the lateral and vertical structure of the CSC. Based on
this information, the floats were then deployed in the central portion of the current on a return
transect a few hours later (transect 4 in figure 9.3).

Name Float ID Latitude (N) Longitude (W) Release Time (UTC) Ocean Depth
A 11012 73◦12.971′ 159◦44.281′ 09/06 at 1 : 36 a.m. 1001 m
B 11014 73◦11.710′ 159◦48.981′ 09/06 at 1 : 55 a.m. 482 m
C 11015 73◦10.365′ 159◦53.431′ 09/06 at 2 : 14 a.m. 386 m
D 11016 73◦09.091′ 159◦57.780′ 09/06 at 2 : 32 a.m. 338 m
E 11018 73◦07.808′ 160◦02.455′ 09/06 at 2 : 41 a.m. 293 m

Table 9.1: SOLOS float deployment information.

The SOLO floats were thus used in a novel way, as quasi-Lagrangian particles in the current.
The current being surface-intensified and the floats being set in a rapid shallow profiling mode,
they are for most of the time in, or at least advected by the current, as long as the current exists.
As a result, local temperature and salinity measurements were transmitted as a function of depth
at different positions of the current, and the different profiles across the current are expected to
be correlated.

9.3.3 Fast CTD
The Scripps Institution of Oceanography “Fast CTD” (FCTD) (see e.g. [182]) was deployed to
collect high resolution conductivity and temperature measurements along several transects. The
FCTD profiles at 5 m · s−1 up and down from the end of a 32 foot long boom deployed from
the starboard quarter. A Sea-Bird Electronics (SBE 39) CTD sensor on a streamlined drop body
samples at 16 Hz with an accuracy of ±0.002◦C for temperature, ±0.0003 S ·m−1 for conductivity,
and ±1 m for depth. At a typical steaming speed of 3–4 knots, profiles down to 300 m depth were
spaced 400 m laterally.

9.3.4 Ancillary Data
To assess the impact of wind forcing on the CSC during our study period, we use the European
Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis 10 m wind prod-
uct [22, 61]. The horizontal resolution is 0.75◦ × 0.75◦, and the temporal resolution is 6 hr. These
data were used to compute 6-hourly maps of the wind stress curl.

We also use the daily gridded surface geostrophic velocity data for the domain encompass-
ing the float trajectories, provided by Copernicus Marine and Environment Monitoring Service
(CMEMS, http://marine.copernicus.eu/). This product is gridded from multiple altimeter
missions, which are all homogenized to the reference mission Jason-2. The horizontal resolution is
0.25◦.
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Information is used from two previous field programs that addressed aspects of the CSC. The
first is the year-long mooring array mentioned in the introduction (see Li et al. [121]). This
consisted of five moorings deployed from October 2013 to September 2014, spanning the outer
shelf to upper slope near 157◦W. This provided a year-long view of both the CSC and the Chukchi
Shelfbreak Jet. A description of the array, including the instrumentation, data processing, and
accuracy of the measurements, can be found in Li et al. [121]. The second field program was
carried out in September 2002 aboard the Healy. It included a shipboard survey of a mid-depth
anti-cyclone of Pacific WW that was embedded on the seaward side of the CSC. The eddy was first
identified using expendable bathythermographs (XBTs), then it was mapped at high-resolution
using expendable CTDs. The survey took roughly a day to complete and included shipboard
ADCP measurements, thus providing a three-dimensional view of the eddy interacting with the
CSC. The reader is referred to Scott et al. [204] for details.

9.4 Results

9.4.1 Vertical Transects
During the two cruises, nine transects were occupied across the continental slope of the Chukchi
Sea, providing the opportunity to map the CSC (figure 9.3). Eight of the transects were done on
SKQ201819S, which are numbered 1 to 8 progressing downstream, with transect 4? corresponding
to a repeat of transect 4 during which the SOLO floats were deployed. Transect 0 was occupied
on HLY1801 roughly two weeks before the first SKQ201819S section. Information regarding the
transects is presented in table 9.2. The chronological order of the SKQ201819S sections is as
follows: 6, 8, 7, 5, 4 and 4? (i.e. back and forth), 3, 2, and 1.

Figure 9.3 displays the velocity vectors averaged over the top 80 m, where the flow directed
away from Barrow Canyon is coloured blue, and the flow directed towards the canyon is coloured
red. The latter condition occurs on the shoreward ends of sections 1, 2, 3, 4, and 6. All of these
sections extend onto the outer shelf, indicating that the eastward flow is associated with the Chukchi
Shelfbreak Jet. Farther offshore the flow is consistently directed away from the canyon, associated
with the CSC. The vertical sections of cross-track velocity from the shipboard ADCP confirm this
interpretation. A typical example is shown in figure 9.4, showing a vertical section of cross-track
velocity for transect 4?. It reveals the bottom-intensified eastward flow of the Shelfbreak Jet, and,
offshore of this, the surface-intensified westward flow of the CSC. This is the cannonical situation
for this time of year, as demonstrated by previous shipboard measurements [57] and mooring data
[121].

In order to quantify the transport of the CSC in the SKQ201819S transects, we implemented
the following objective approach (the HLY1801 section was not considered since it was non-synoptic
with the rest of the data set). Using the ADCP data in the top 20 m (since the CSC is surface-
intensified in this season), we identified the core of the CSC and took the width of the current to
be where the velocity dropped to 20% of the peak value. We have marked the lateral boundaries
of the CSC based on this criterion, in figure 9.3 with green dots, and in figure 9.4 using dashed
lines. The westward flow offshore of the CSC is likely the southern edge of the Beaufort Gyre (see
Corlett and Pickart [57] and Spall et al. [210]). On two of the nine transects the 20% condition
was not met on the seaward side of the CSC (i.e. the flow remained fairly strong until the edge of
the section). In these two instances (sections 2 and 3) the edge of the CSC was taken to be the
offshore end of the transect.

The along-slope volume flux of the CSC for the nth transect is given by

Φ(n) =
∫ xR

xL

∫ z=80 m

z=0 m
u

(n)
c,⊥dxdz, (9.1)

where u
(n)
c,⊥ is the CSC velocity orthogonal to the considered transect, and xL and xR the left

and right bounds of the CSC as previously defined. The integration area is therefore delimited
horizontally by the bounds marked on figure 9.3 for each transect, and a vertical extension from
the surface to 80 m. Each of the ADCP sections was extrapolated to the sea surface using an
objective Laplacian-Spline scheme (e.g. [177]). The CSC of course extends deeper than 80 m (see
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Figure 9.3: Overview of the southwest portion of the Canada Basin. The orange line segments
show the ship track. The arrows represent the depth-averaged flow over the upper 80 m, coloured
from blue to red depending on whether the flow is heading West (blue, associated to the CSC) or
East (red, associated to the SJ). The different currents in the region are: the Shelfbreak Jet, the
Chukchi Slope Current, and the southern edge of the Beaufort Gyre. Transects from upstream
to downstream (in the sense of the CSC) are numbered from 0 to 8. The green dots indicate the
estimated limits of the CSC on the different transects (see text).
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Figure 9.4: Vertical section of cross-track velocity for transect 4?. Positive velocity is northwest-
ward (away from Barrow Canyon). The dashed lines indicate the lateral bounds of the Chukchi
Slope Current, determined using the procedure described in the text. The labels denote the Chukchi
Slope Current (CSC) and Chukchi Shelfbreak Jet (SBJ). The letters on top, from A through E,
indicate the float deployment locations.
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Transect Cruise FCTD Time (UTC) End points
0 HLY1801 No 08/19 – 05 : 57 (72.84◦ N, 157.1◦ W)

to 08/19 – 14 : 12 (72.34◦ N, 158.2◦ W)
1 SKQ201819S Yes 09/07 – 15 : 30 (72.86◦ N, 158.1◦ W)

to 09/08 – 00 : 00 (72.46◦ N, 158.8◦ W)
2 SKQ201819S Yes 09/06 – 22 : 50 (73.12◦ N, 169.2◦ W)

to 09/07 – 08 : 24 (72.61◦ N, 159.9◦ W)
3 SKQ201819S Yes 09/06 – 12 : 30 (72.89◦ N, 161.0◦ W)

to 09/06 – 22 : 33 (73.12◦ N, 159.2◦ W)
4 SKQ201819S No 09/05 – 17 : 16 (72.99◦ N, 160.6◦ W)

to 09/05 – 19 : 55 (73.52◦ N, 158.6◦ W)
4? SKQ201819S No 09/05 – 22 : 19 (73.52◦ N, 158.6◦ W)

to 09/06 – 12 : 30 (72.89◦ N, 161.0◦ W)
5 SKQ201819S No 09/05 – 09 : 36 (73.54◦ N, 159.9◦ W)

to 09/05 – 16 : 48 (72.99◦ N, 160.6◦ W)
6 SKQ201819S No 09/04 – 00 : 00 (72.95◦ N, 161.6◦ W)

to 09/04 – 13 : 12 (73.96◦ N, 160.1◦ W)
7 SKQ201819S No 09/04 – 23 : 16 (73.55◦ N, 162.4◦ W)

to 09/05 – 09 : 36 (73.54◦ N, 159.9◦ W)
8 SKQ201819S No 09/04 – 19 : 12 (73.96◦ N, 160.1◦ W)

to 09/04 – 23 : 16 (73.55◦ N, 162.4◦ W)

Table 9.2: Records of the different transects. Transect 4? corresponds to the SOLO deployments.

[57, 121]), but we are limited here by the range of the 300 kHz ADCP. To account for this we
used the data from a year-long array of five moorings described in section 9.3.4, which was located
25 km to the east of transect 0. These data indicate that, for the month of September, integrating
to 80 m accounts for 72% of the CSC transport. As such, we scaled-up our estimates by a factor of
1/0.72 = 1.39. The resulting CSC transports for the SKQ201819S transects are given in table 9.3
and shown in figure 9.5(a). The measured volume flux systematically decreased from 1.95 Sv
(transect 6) to zero (transect 1) over the course of the experiment with an average value of 1.03 Sv
for the 9 transects. The mean is substantially larger than the year-long mean value reported
by Li et al. [121] (0.57 Sv) and the summertime mean value given by Corlett and Pickart [57]
(0.50 Sv). The latter of these two values, however, represent the Pacific water component of the
current, i.e. excluding the meltwater and riverine contributions that are mainly present in the
upper layer. While we have no way of extracting the Pacific water contribution, we note that the
full transport of the CSC for the month of September 2014 reported by Li et al. [121] was 0.99 Sv,
which is in line with the mean value reported here for the September 2018 survey.

Why is there such a large range of transport values in the SKQ201819S data set? We argue
that this is due to the variable wind forcing during the survey. As noted in the introduction, Li et
al. [121] demonstrated that the strength of the CSC is strongly modulated by the wind stress curl on
the Chukchi shelf via geostrophic set up. When the wind stress curl is positive, the corresponding
drop in sea surface height (leading to a sea surface gradient across the Chukchi slope) results in
a stronger CSC. When the wind stress curl is negative on the shelf the opposite happens and the
CSC weakens or reverses. To assess this effect in our data set, we constructed a time series of
average wind stress curl over the same region of the shelf considered by Li et al. [121], presented
in figure 9.5(b). Our study reveals that there was a prolonged period of positive wind stress
curl during the first part of the SKQ201819S survey, followed by a prolonged period of negative
wind stress curl during the later part of the survey. This result is corroborated by considering
the gridded absolute geostrophic velocity productThe results in figure 9.5 reveals that there is a
general consistency between the wind stress curl and the CSC transport in line with the previous
results of Li et al. [121]. That is, the current tends to be strong during periods of positive curl,
and weak (or reversed) during periods of negative curl.

This result is corroborated by considering the gridded absolute geostrophic velocity product
from altimetry described in section 9.3.4. Since the CSC is surface-intensified at this time of year,



9.4. RESULTS 177

the daily satellite-derived velocity data contains a signal of the current. As such, for each of the
SKQ201819S transects in figure 9.3 we computed the width-integrated surface current normal to
the transect between the endpoints of the CSC determined above (green curve in figure 9.5(a)).
This quantity revealed the same trend as was found for the ADCP-derived transports (black curve
in figure 9.5(a)), providing compelling support for the role of the wind stress curl in dictating the
transport of the CSC during the shipboard survey.
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Figure 9.5: Top: (a) Volume transport of the CSC using the SKQ201819S shipboard ADCP
data (black symbols) and laterally integrated cross-track surface velocity over the width of the
CSC (green symbols). Bottom: (b) Wind stress curl every 6 hours averaged over the northeast
Chukchi shelf (see text). The time of occupation of the SKQ201819S transects are shaded grey
and numbered along the top.

Transect Volume transport (Sv) Laterally integrated surface
geostrophic velocity (×104m2 · s−1)

1 1.947 1.651
2 1.683 1.152
3 1.022 0.978
4 1.336 0.945
4? 1.003 0.687
5 1.259 0.833
6 0.508 0.362
7 0.496 0.351
8 0.009 0.027

Table 9.3: Volume transport for the different transects.

9.4.2 Float Data
Figure 9.6 presents the trajectories of the SOLO floats after they were deployed on 6 September on
transect 4? within the CSC (figure 9.3). The initial deployment positions of the floats favored the
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inshore side of the current, due to the fact that the current had shifted a bit offshore subsequent
to the occupation of transect 4 that was used to determine the launch positions. The deployment
transect is indicated as line (i) in figure 9.6. The floats transmitted their first data a few hours
after deployment. Their trajectory can be divided into three main phases: an initial very coherent
motion, followed by a disruption, and finally a reappearence of a coherent behaviour.

Before Northwind Ridge: Initial Coherent Motion

Traveling along the continental slope the floats stayed together in a very coherent fashion. Shortly
after deployment, the floats encountered Hanna Canyon near 161◦ W. Previous studies have shown
that the behaviour of a current impinging upon a canyon depends on both the canyon topography
and the stratification of the water column (e.g. [100, 111, 244]). The pertinent parameter is the
ratio of the width of the canyon, W , and the internal Rossby radius of deformation, R = NH/f ,
where N is the buoyancy frequency, H is the water depth, and f is the Coriolis parameter. If
this ratio is larger than two, then the canyon is considered dynamically wide and the incident
current will feel the entire canyon. The width of Hanna Canyon is approximately 100 km. We
used the mooring data of Li et al. [121], described in section 9.3.4, to estimate R, and found it
to be 15-20 km. Hence, Hanna Canyon is dynamically wide. As such, a current encountering the
canyon should not simply follow the isobaths around the canyon, but instead get partially diverted
into the canyon and progress across isobaths to its downstream flank [102]. As discussed in [102],
when the current encounters the downstream flank, the water column compresses, and, in order to
conserve potential vorticity, this induces a negative relative vorticity which causes the current to
divert back offshore into deeper water.

This scenario is consistent with the behaviour of the CSC in figure 9.6. When the floats first
encounter Hanna Canyon they flow into deeper water; i.e. they are unable to stay on an isobath
and subsequently cross to the other side of the canyon. As this happens they progress into shallower
water until about 162◦ W (figure 9.6), at which point they turn anti-cyclonically into deeper water
again. This northward excursion appears to be critical to the fate of the CSC; we return to this
in the discussion section. It is worth noting as well that the wind stress curl was weak throughout
this time period, implying that wind did not play a role in this change in the float trajectories.

On 10 September, roughly four days after their release, the floats passed over the Northwind
Ridge. Importantly, the floats were shoreward enough that they did not feel the topography of
the ridge. That is, the floats continued to flow into deeper water after exiting Hanna Canyon as
they flowed past line (ii) in Figure 9.6. During these first four days, the fastest floats were A
and B, originally deployed around the 1000 m and the 500 m isobaths. Floats D and E, deployed
farther onshore, were the slowest. This difference between the float velocities reveals the structure
of the current, stronger offshore around the 1000 m isobath. As they were advected by the CSC,
the floats did not stay in the same cross-shelf configuration and their trajectories crossed each
other. This means that, due to the complexities of the CSC structure interacting with the vertical
profiling action of the floats, two different floats can pass through the same location at different
times. Float E had the least coherent motion, crossing twice over the other trajectories while still
remaining in the current. Before leaving the edge of the Canada Basin and crossing the Northwind
Ridge (the location labeled as line (ii) in figure 9.6) at the end of the fourth day, the fastest floats
had migrated onshore and the slowest offshore. All floats went through line (ii) within a few hours
time difference, which indicates a very coherent CSC during this time window.

Figure 9.7 (left) presents the temperature profiles of all five floats during their passage along the
edge of the Canada Basin. The first profile is taken at deployment location (line (i) in figure 9.6).
The first 100 hours of each data set roughly correspond to the trajectory before the floats escape
the Canada Basin going over the Northwind Ridge (74◦06′ N, line (ii) in figure 9.6). All of the
time series have a very coherent structure with cold water at the surface, above a layer of warm
water up to 5.5◦C between 20 and 40 m. After 50 hours the three floats at the outer edge of the
current – A, C, and D – show the appearance of cold water, centered around 30 m (figure 9.7). This
happened when the floats reached 162◦ W and started heading north into deeper water instead of
going West.

Figure 9.8 shows a temperature-salinity (TS) plot from the five floats at different locations. In
figure 9.8(a) float profiles are taken at the deployment location (line (i) in figure 9.6). As noted
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Figure 9.6: Trajectories of the five SOLO floats (A – E) superimposed onto the ADCP data and
ship transects, indicating the path of the CSC, following the shelfbreak from the Canada Basin to
the Northwind Basin. Sections (i) to (v) are relevant delimitations for the different parts of the
float trajectories (see explanation throughout the text). Bottom-left inset: Enlarged view of the
SOLO float trajectories from 74◦ N to 75◦ N. The size of the dots represents the instantaneous
velocities of the floats (see the legend).



180 CHAPTER 9. THE CHUKCHI SLOPE CURRENT

in the introduction, upon deployment the floats initially profiled as deep as 250 m, and these
deeper data are included in figure 9.8(a). It reveals that the CSC was advecting MWR at the
surface, ACW and BSW below this in the core of the current (20-40 m depth), and RWW deeper
than 100 m. Notably, Corlett and Pickart [57] saw very little ACW in their vertical sections,
whereas our results demonstrate that, at times, the CSC can advect a large amount of this warm
water westward. This is contrary to the common notion that the ACC mostly feeds the Beaufort
Shelfbreak Jet. It also provides further evidence that the CSC emanates from the outflow from
Barrow Canyon (see also [210, 121]). Since the floats profiled to deeper depths at the start of their
mission, they measured the presence of Atlantic Water (AW) in figure 9.8(a). Both Corlett and
Pickart [57] and Li et al. [121] found that the CSC advected AW at depth, and the reason for this
remains unexplored. At line (ii) the CSC was still advecting ACW (figure 9.8(a)), but one also
sees the presence of MWR between 0◦C and −1◦C in the salinity range 28–30. This is the same
cold water mentioned above measured by the offshore floats A, C, and D starting around 50 hours.
The water likely originated from the interior of the Canada Basin resulting from local ice melt.

After Northwind Ridge: Possible Disruption by an Eddy

After passing the Northwind Ridge, the floats proceeded northwest following the bathymetry until
around 13 September when they were nearly arrested on the edge of the Northwind Abyssal Plain,
around 74◦20′ N (line (iii) in figure 9.6). Starting from the East, the floats peeled off one after the
other and followed more intricate trajectories; during this time only float B remained relatively
close to following an isobath. This is also the time that the warm water signature disappeared
rapidly in the float profiles (figure 9.7, dashed line), even showing the presence of WW below
40 m depth for floats C and E. As shown in figure 9.7, this transition to cold water occurred very
abruptly, over a period of 2 to 10 hours. This state persisted for approximately four days until
floats A, C, and E, veered back into shallower water and started to follow the bathymetry again.
By contrast, float D permanently left the region and proceeded into the Northwind Abyssal Plain.
During this period, the float velocities dropped from 1 m · s−1 to 0.1–0.2 m · s−1, which is nearly
an order of magnitude smaller, as shown in the inset of figure 9.6. Such a large decrease in velocity,
together with the wandering motion experienced by the floats, show that the current was strongly
perturbed.

This region of altered behavior, between 74◦20′ N and 75◦ N, is depicted with TS plots in
figure 9.8. In 9.8(c), one sees a pronounced difference in the TS characteristics. The water com-
position measured by the floats is now mainly MWR with RWW and some BSW, indicative of
strong mixing and influx of cold water into the CSC. A standard feature of figure 9.8(c) is the
absence of the relatively warm ACW peak, these waters having undergone substantial change in
properties due to mixing processes. When the floats enter the main part of the current again, this
hydrographic structure is still present, although some of the cold, fresh MWR measured upstream
reappears (compare 9.8(b) and 9.8(d)). Vertically averaged temperature signals in figure 9.7 (right)
show a clear cold signature at the beginning of the perturbed period, with a drop of about 3◦C in
the core of the CSC (from 20 to 40 m depth, in red). Table 9.4 presents the densities and tem-
peratures averaged in the vertical from 20 to 40 m depth for the 5 floats from deployment to line
(iii), and from line (iii) to line (iv), and for floats A, B, and E from line (iv) to (v), as their profiles
show clear signature of the CSC. These three regions – corresponding to the well-established CSC,
the period of disruption, and the re-established CSC, respectively – have no significant variation
in the mean density, but there is a drop in the mean temperature, from 1.25◦C to 0.16◦C, during
the perturbed state. When the current re-establishes, the temperature slightly rises from 0.16◦C
to 0.35◦C. This variation supports the idea that a cold water mass of about the same density
influenced the CSC between locations (iii) and (iv). After this event, the average temperature of
the CSC is lower than before. Furthermore, the TS plots in figures 9.8 indicate that the upper layer
of the stratification remained unchanged, which is confirmed by the nearly constant heat content
in the top 10 m (in blue in figure 9.7 (right)). As a result, the water column sees supply of cold
water from the surroundings, pointing towards a horizontal exchange process rather than vertical
mixing for which the vertically averaged heat content would have remain unchanged.

What was the reason for this sudden offshore excursion of the floats and change in hydrographic
character? Examination of the wind field during this time indicates that the wind stress curl over
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Figure 9.7: Left : Depth-time plot of temperature (color) and density (white contours, kg ·m−3)
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Figure 9.8: Temperature-salinity (TS) plots of the five floats (a) at deployment location on
the shelfbreak of the Canada Basin, from 250 m deep profiles (location (i) in figure 9.6); (b) at
74◦06′ N, just after leaving the Canada Basin and the Northwind Ridge (location (ii) in figure 9.6),
from 80 m depth profiles; (c) at 72◦20′ N, during the interaction with the eddy (location (iii) in
figure 9.6); and (d) at 75◦ N, after the eddy event (location (iv) in figure 9.6). The thick lines show
boundaries between water masses and are taken from [57] Fig.3. The water mass abbreviations
are MWR = sea ice melt water / river runoff; ACW = Alaskan Coastal Water; BSW = Bering
Summer Water; RWW = Remnant Winter Water; and AW = Atlantic Water; WW = Winter
Water. A “ghost profile” (float B, before the eddy event) shows the original TS structure of the
CSC.
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Region (see figures 9.6 and 9.7) Mean density Mean temperature
ρ (×103 kg ·m−3) T (◦C)

From (i) to (iii) (in the CSC) 1.0240 1.251
From (iii) to (iv) (eddy disruption) 1.0235 0.162
From (iv) to (v) (back in the CSC) 1.0236 0.346

Table 9.4: Densities and temperatures averaged in the vertical between 0 m and 80 m from the
profiles in figure 9.7 in the different regions. Last line concerns only floats A, B, and E.

the Chukchi shelf was positive. Such forcing would tend to cause the CSC to proceed farther
shoreward; hence this cannot explain the offshore excursion. We postulate that an anti-cyclonic
eddy impinged upon the CSC from offshore, perturbing the CSC and mixing the water within the
current with surrounding water masses. We note that mid-depth-intensified anti-cyclonic eddies
are very common in this region [78, 136, 137, 180, 183, 256]. Two examples of interactions of these
features with the offshore side of the CSC are shown in figure 9.9. Figures 9.9 (a) and (b) show
along-slope velocity and temperature measurements made in August 2004 [204], in the area near
transect 8 in our study (see section 2d for a description of the data). The presence of a cold core
eddy, with a core temperature near −1.8◦C, interacting with the CSC is clearly seen. Anomalously
cold water in such a feature mixing with the CSC could help explain the sudden drop in temperature
recorded by the floats near line (iii)(figure 9.7). Figures 9.9 (c) and (d) show along-slope velocity
and temperature from a shipboard CTD section occupied in August 2017, roughly corresponding
to transect 5 in the present survey. In this section, a warm-core anti-cyclone is centered near
80 m water depth. In both cases, the familiar widening of the isopycnals is associated with the
azimuthal flow of the eddy. However, in both instances the onshore side of the eddy is essentially
merged with the offshore side of the CSC. One can envision a float getting entrained and mixed
into the eddy, and subsequently getting deflected offshore. Such a scenario is consistent with the
fact that, after section (iii), the offshore-most SOLO float underwent the largest excursion, while
the onshore-most float remained unperturbed. We note that cold core anti-cyclones are far more
common than warm core anti-cyclones [255], so it is more likely for the CSC to be impacted by a
cold core in the manner seen in our data.

Farther North: Resurrection of the CSC

After wandering for four days, three of the floats – A, C, and E – came back into the restored CSC,
joined five days later by a fourth one – B –, while the outer-most float – D – was permanently
expelled from the current. The reconnection of the four floats infers that the CSC was well re-
established for several days beyond 75◦N (line (iv) in figure 9.6). These four floats headed north,
generally following the bathymetry, at 165◦ W, but slower than before the disruption of the CSC
due to the presumed interaction with an eddy. Furthermore, the warm temperature signal for the
returning floats was not as strong as before the interruption. As shown in figure 9.7, the warm
water signature went up to 3◦C instead of 5◦C. In addition, occurrences of warm water were
less continuous as we can identify some smoothly varying features and some strongly intermittent
patches within the current (especially for float C). We note that the decrease in velocity, along with
the change in temperature of the current from warm to cold, could be explainable by a temporal
change in the CSC rather than a consequence of the eddy encounter. Since the floats spent roughly
4-5 days seaward of the main flow of the CSC, it could be that during this intervening period the
current slowed and cooled due to other reasons. For example, the wind stress curl on the Chukchi
shelf transitioned from positive to negative as the floats were re-joining the current, which would
tend to weaken the CSC.

On 24 September the two leading floats C and E took different paths: C started to progress into
the Northwind Abyssal Plain to the east before going back to the west; E progressed northward
more in line with the bathymetry towards the Chuckhi Plateau. Later on, floats A and B did a
short excursion into the Northwind Abyssal Plain as well. Overall, these float trajectories suggest
that at least part of the water in the CSC is able to get entrained into the edge of the Beaufort
Gyre in this general vicinity. We identified the corresponding location (line (v)) in figure 9.6 as the
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Figure 9.9: Vertical sections from an occupation near transect 8 in September 2004 showing a
cold core eddy (top row, (a) and (b)) [204] and near transect 5 in August 2017 showing a warm
core eddy (bottom row, (c) and (d)). (a) and (c): absolute geostrophic velocity (color) overlain
by potential density (contours, kg ·m−3). Positive velocity is northwestward (away from Barrow
Canyon). The labels denote the Chukchi Slope Current (CSC) and the anti-cyclonic eddy. CTD
Station locations are marked along the top. (b) and (d): potential temperature (color) overlain by
potential density (contours).
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end of a coherent and localized CSC current, around 75◦30′ N, which can be seen as transition to a
more widespread outflow towards the Northwind Abyssal Plain and the Chukchi Plateau. Around
10 October we lost track of the floats likely because of ice coverage in this region. Interestingly,
warm water was still measured in the last few profiles.

9.5 Summary and Conclusions

We have presented results from a field study investigating the evolution and fate of the Chukchi
Slope Current (CSC). A novel method was employed using profiling SOLO floats as quasi-Lagrangian
particles deployed across the current. In addition to this, velocity data were collected along sev-
eral transects using the shipboard ADCP. The transect data showed good agreement with earlier
measurements of the CSC during this time of year, revealing a strong surface intensified current
flowing westward along the continental slope. The corresponding volume flux estimates ranged
from near zero to nearly 2 Sv. This wide range can be explained by the variation in wind forcing
during the cruise: the first part of the survey was characterized by positive wind stress curl on
the Chukchi shelf, which is conducive for a strong CSC, while the latter part of the survey was
characterized by negative wind stress curl on the shelf, which weakens or reverses the CSC.

The float trajectories were characterized into three basic regimes. Initially the floats traveled
rapidly in the CSC, turning sharply to the north as they negotiated Hanna Canyon. This path
is consistent with the shipboard ADCP transect data. The next phase occurred after the floats
passed the Northwind Ridge. At this point they abruptly slowed, and four of them veered offshore
(only the shoreward-most float continued to follow an isobath). We argue that this interruption
was likely caused by the CSC interacting with a cold-core, anti-cyclonic eddy at the offshore edge
of the current. While not identified in our data set, such eddies are common in this region, and
are known to come in contact with the CSC. This presumed encounter with the eddy permanently
expelled the offshore-most float from the CSC, but the three other floats eventually re-joined the
CSC and proceeded northward again. During the final phase, the floats started to diverge and take
more chaotic trajectories, entering the western side of the Northwind Abyssal Plain. It is likely
that the floats were becoming entrained into the edge of the Beaufort Gyre at this point.

The water mass structure measured by the floats also varied along their pathways. During
the initial phase, the CSC was advecting a range of Pacific summer and winter waters, including
the very warm and relatively fresh Alaskan Coastal Water (ACW) in the depth range 20− 40 m.
This supports the notion that the CSC originates from the outflow from Barrow Canyon, which has
been argued in previous studies. During the eddy encounter the ACW signature disappeared. This
provides supporting evidence that the floats were pulled out of the core of the CSC by the anti-
cyclone. After the three floats re-joined the CSC, the ACW signature did not re-appear. Instead,
the water mass occupying this depth range was predominantly Bering Summer Water (BSW). It
is not clear if the floats simply measured a different part of the CSC upon rejoining the current,
or if lateral mixing during the eddy encounter converted the ACW to BSW. In any case, the CSC
continued to advect warm water to the north until the current eventually subducted under the ice.

Our results have provided new observational insights regarding the fate of the CSC. The previ-
ous study of Corlett and Pickart [57] showed that the current typically resides on the upper con-
tinental slope (median isobath of 238 m), consistent with the surface drifter results of Stabeno et
al. [212]. Notably, the orientation of the isobaths on the upper Chukchi slope (shallower than about
300 m) are oriented more zonally to the west of the Northwind Ridge than those of the deep slope
(deeper than about 400 m). This suggests that when the CSC is located over relatively shallow
depths it might continue westward toward the East Siberian Sea, while in those cases when it is
situated in deeper water it will flow more northward into the Chukchi Borderland. The results of
Corlett and Pickart [57] suggest that the former scenario might be more common, although the
divergence of the isobaths could lead to a bifurcation of the current.

The float trajectories presented here suggest that there is another aspect of the topography
that could play a critical role in the fate of the CSC: in particular, Hanna Canyon. Consistent
with the numerical study of Hyun [102], as the CSC encountered the dynamically wide canyon
it flowed across isobaths to the far side of the canyon, before turning anti-cyclonically to the
north. This abrupt turn was likely due to the current trying to conserve its potential vorticity
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when experiencing layer compression as it flowed up the far side of the canyon. A nearly identical
northward excursion of the CSC on the western flank of Hanna Canyon was reported by Scott et
al. [204]. While other factors such as wind [121] and instabilities [57] undoubtedly influence the
path of the CSC, the evidence presented here in conjunction with the previous observations of
Scott et al. [204] implicate the topography of the canyon as a major factor. This is supported by
the fact that when the SOLO floats turned offshore, the wind stress curl on the Chukchi shelf was
in fact conducive to drive an onshore excursion of the CSC.

It is intriguing to think that a local bathymetric feature such as Hanna Canyon could help
dictate the downstream path of the CSC, and in turn influence the fate of most of the Pacific-
origin water entering the Arctic Ocean. If the CSC were to remain on the upper Chukchi slope
it would flow towards the Eurasian Arctic. By contrast, if it gets diverted to the north – the fate
suggested by the float data presented here – it would be more apt to get entrained in the Beaufort
Gyre, trapping the water in the Amerasian Arctic. Further work will be necessary to better
determine the likelihood of these different scenarios, as well as the role of CSC-eddy interaction in
altering the current and the water masses it advects.
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CHAPTER 10

Conclusion

La mer est ton miroir ; tu contemples ton âme
Dans le déroulement infini de sa lame

Charles Baudelaire, Les Fleurs du Mal.

The main objective of this thesis was to investigate energy and buoyancy transfer by axisym-
metric inertia-gravity waves in regards to oceanic applications. Such waves can be created by
atmospheric storms at the surface of the ocean or by tides over topography in the abyss, and are
likely to be involved in mixing of highly stratified regions such as the Arctic Ocean. To improve
our understanding of these waves, we first derived the theoretical framework in part I, then we
explored the linear and non-linear regimes in parts II and III. An in-situ oceanographic study on
energy transport in the Arctic is presented in part IV.

First, we chose to focus on the linear regime of axisymmetric internal waves by assuming
that all non-linear terms involved in the equations are negligible. Willing to understand wave
propagation through non-uniform stratifications, we identified the different scenarios that could
be found in real-world density profiles: there can be domains of constant buoyancy frequency,
transitions between such regions, and inclusions of weakly – or even un- – stratified layers. Hence,
we studied wave fields in three different idealised configurations: a linear stratification (chapter 4),
a bi-linear stratification (chapter 5), and a gapped stratification (chapter 6).

Previous experiments [141, 140] have studied fields generated by an axisymmetric wave gen-
erator and shown that they can be decomposed over the basis of Bessel functions thanks to a
Hankel transform. Since the behaviour of any wave field is given by the sum of all its modal
contributions, we studied wave fields shaped as a single Bessel function in order to provide a more
accurate description of axisymmetric wave dynamics. This was made possible by confining the
wave field radially with a cylinder of the same diameter as the generator. We characterised radial
modes (standing waves) propagating downwards in this geometry, and we developped a method
for amplitude measurements based on Root Mean Square values. Additional reflections at the top
and at the bottom of the confined domain led to the observation of cavity resonant effects as in
electromagnetism and optics, with beating behaviour (chapter 7) or constructive and destructive
interference (chapters 4 and 5) that produces high amplitude wave fields.

After studying linear stratifications, we naturally focused on the dynamics of internal waves in
bi-linear stratifications, i.e. in stratifications with a layer on top of another layer at two different
buoyancy frequencies. A downward propagating mode has been studied, to delve into transmission
and reflection properties across such a buoyant interface in two different cases: a free incoming
wave arriving from a semi-infinite layer, and a confined wave field reflected in the top layer while
being continuously forced. We derived the theory to predict transmission coefficients in velocity
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and energy and checked the validity of the theoretical and numerical model thanks to experimen-
tal measurements before applying it to a real oceanic stratification approximated by two layers.
These results help understand the propagation of waves from the surface of the ocean through
the pycnocline, and can predict the amount of energy transferred to the deep ocean. Thanks to
in-situ measurements of Arctic near-inertial waves [105], we extended this work to study transmis-
sion in complex non-linear stratifications using numerical methods to explain the impact of the
stratification on the presence or absence of wave signals.

Motivated by the presence of gaps in real-world stratifications, i.e. layers of weak or even
zero buoyancy frequency, we studied their impact on wave propagation. As observed in Cartesian
geometry [45, 224], waves can go through a constant density layer by a phenomenon called internal
wave tunneling. We numerically checked the existence of the phenomenon and we ran experiments
in such stratifications to find evidence of axisymmetric internal wave tunneling. A simple model
of amplitudes transmitted through the finite layer has been developed and verified experimentally.
Complementary to the two previous works on linear and bi-linear stratifications, this study can
find application in most layered and staircase stratifications. Combined with the previous findings
on wave dynamics in linear and bi-linear stratifications, this work provides a better description of
propagation of axisymmetric internal waves in geophysical fluids.

Having explored the linear regime on internal waves, the next step was to look at the non-linear
effects. Two different configurations were used to challenge non-linearities in axisymmetric geome-
try: the confined and unconfined domain with a Bessel forcing at the top of the tank (chapter 7),
and a doubly confined domain made of two cylinders to create and study inertial wave attractors
from a cubic forcing at the top (chapter 8).

Non-linear effects have been studied in a linear stratification and a surprising discovery was
the generation of super-harmonics by self-interaction of the wave field. Contrary to Cartesian
geometry, in which super-harmonics can only be created in non-linear stratifications because all
the self-interacting Jacobians of the wave equation are zero otherwise, we showed theoretically
and experimentally that the cylindrical geometry made this self-interaction possible. The wave
field of the super-harmonics generated through this process remained axisymmetric and can be
described by cavity modes, which are radially and vertically standing wave fields of wave lengths
and frequency set by the cavity boundaries. We adapted a projection method to study the energetic
distribution of the modes created and showed that the governing feature is the double frequency
set by non-linear wave-wave interaction.

Inspired by Cartesian plane wave studies on Triadic Resonant Instability, we also looked for
sub-harmonics generation with wave triads in linearly stratified fluids. They were observed in
the confined setup and we showed that, although the frequencies satisfy the resonant condition
ω0 = ω1 +ω2, this is not the case for wave numbers because of the confinement. With experiments
in stratified rotating fluids, however, we showed that the resonant conditions are satisfied in 3D
axisymmetric unconfined geometries. Some theoretical developments were proposed to study the
non-trivial radial condition.

The non-linear beating behaviour, evidenced in the experiments of modes in a cavity, were also
discussed. Such a phenomenon can be observed when the wave frequency does not match with
a cavity frequency. We briefly described this observation and the modulation of the wave field
created by this kind of interaction between two modes.

To delve into non-linear in even more complex cylindrical configurations, we performed exper-
iments of inertial wave attractors in a novel axisymmetric trapezoidal geometry. The attractor
is first axisymmetric in the linear regime, then undergoes a non-linear destabilisation in which
vortices are created. These structures evolving at very low frequency gradually appear close to the
former most energetic branch, and seem to re-stabilise the system in a different state with energy
exchanges between a forcing at non-zero frequency and these columnar slowly rotating vortices.
Our experimental study is supported by Direct Numerical Simulations run by that show the same
behaviour as observed in our setup.

As regards the connection to ocean, in September 2018, I took part in a five week research cruise
of the Stratified Ocean Dynamics of the Arctic (SODA) program on the R/V Sikuliaq. The newly
discovered Chukchi Slope Current [57] in the shelfbreak of the Chukchi Sea has been investigated
thanks to a novel method of five quasi-Lagrangian floats deployed in the core of the current. GPS
trajectories of the floats, combined with the temperature and salinity profiles they recorded along
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their travel were used to provide information on the complex dynamics of the Arctic region and
on the fate of heat content carried by Pacific waters in the Arctic Ocean. We discovered that the
Chukchi Slope Current goes far North and can be strongly impacted by oceanic events, such as
eddy disruption.

Perspectives
Upon the findings of this thesis, made possible by the capabilities of the axisymmetric wave gener-
ator, several phenomena have been observed but are not completely understood or are rising new
questions. Hence, this work opens to various interesting problems and here are a few of them.

Non-Uniform Stratifications

We explored layered stratifications, with continuous buoyancy interfaces. Thanks to the computer
controlled double-bucket filling process, more complex profiles could be studied such as the ex-
ponential buoyancy frequency used in focusing experiments [140]. This can be done in Cartesian
geometry as well as in axisymmetric geometry, and could help understand propagation of internal
waves through more complex stratifications.

Super-Harmonics in Unconfined Geometry

Non-linear self-interaction of the wave is possible in linearly stratified fluids for axisymmetric ge-
ometry. In our study, we discussed Super-Harmonic Generation in cavity, meaning a fully confined
geometry, and we have shown that cavity modes are created at integer multiples of the forcing
frequency. This result is to be put in parallel with the case of Triadic Resonant Instability: for
confined TRI, we observed the excitation of cavity modes that do not satisfy the resonance condi-
tion on wave numbers but only on frequencies, whereas for unconfined TRI the resonance condition
is satisfied both for the wave numbers and the frequencies. A similar discussion arises for SHG,
for which we could have a resonance condition on wave numbers satisfied in unconfined geometry
with. This would give, for example, the creation of vertical wave numbers of 2m0 starting from
a wave field at m0, and imply a relation on the radial wave numbers as well that could be tested
experimentally.

Exact Derivation of Triadic Resonant Interaction

Our understanding of the Triadic Resonant Interaction in axisymmetric geometry has improved,
but we still lack an exact analytical derivation of the resonance condition for the radial wave
number. In unconfined cases, we have verified experimentally our assumptions that the relationship
between l0, l1, and l2 is the same as in Cartesian, and a more established theoretical study would
be useful to confirm this conjecture.

Moreover, the solution of internal waves equations in cylindrical geometry, i.e. without pre-
scribing the independence in the azimuthal coordinate, shows that non-axisymmetric wave fields
can exist. They have been observed experimentally, but are still non entirely described theoreti-
cally. When involved in TRI, the azimuthal wave numbers appearing with non axisymmetric wave
fields also satisfy a resonance condition, but this will likely impact the condition on the radial wave
numbers. A more detailed theoretical study could be undertaken to target this problem.

Towards Other Geometries

The goal of this thesis was to investigate the impact of a change of geometry on internal wave
dynamics. To this extent, we studied an axisymmetric domain, but other geometries might display
interesting features. We can think, for example, of conical, spherical, or ellipsoidal geometries,
that could be studied numerically and theoretically on the basis of the present work.

Notably, we have made a very interesting theoretical and experimental discovery that Bessel
function internal waves can self-interact to excite superharmonics, even in linearly stratified fluids.
This is an important difference with Cartesian plane waves, for they can only self-interact in non-
uniform stratifications to generate super-harmonics. In other geometries, this question has not
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been explored: does this happen in spheres? Could this be a new mechanism for the breakdown
of spherical modes in spherical and elliptical systems such as stars and planetary cores?

Stability of Inertial Wave Attractors

We have run a set of experiments showing the existence of axisymmetric inertial wave attractors
in a linear regime, but also their possible destabilisation through non-linear processes and their
re-stabilisation with the creation of vortices rotating at very low frequency. The origin and the
exact mechanisms involved in such a dynamic are still unknown, and could be the subject of further
studies. A change in the forcing could also be investigated, as already mentioned for positive and
negative nutation [209], and this is likely to excite rim currents in enclosed basins. These works
would have direct oceanographic applications.

Fate of Energy in the Arctic

Near-inertial waves in the Arctic are now detected thanks to a novel cost-effective facility of PDS-
CPIES. The project is still on-going and has various objectives on understanding the transmission
of near-inertial waves and the impact of sea-ice coverage. Additional studies with these sensors
could be conducted in other regions of the world to monitor wave and current activity in remote
regions.

Lastly, the quasi-Lagangian floats deployed in the core of the Chukchi Slope Current revealed
its trajectory North of the Northwind Ridge and possible interactions with eddies. The fate of the
current, however, is not entirely understood. As we lost track of the floats, we could not state
whether the current is going further North or is going back into the Canada Basin at some latitude.
Furthermore, the data were acquired at a given time and under specific oceanic conditions, so we
could not discuss the repeatability. The Chukchi Slope Current is already known to have a seasonal
behaviour along the shelfbreak of the Canada Basin, and there is a chance that its fate North of the
Ridge would have significant variability and seasonality, for example switching from going North
to going West. These open questions could lead to new field studies using floats and moorings
deployments.
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APPENDIX A

Vectorial Calculus in Cylindrical Coordinates

Y nos vamos corriendo
a la oficina,

al taller,
a la fábrica,

a comenzar de nuevo el infinito
número 1 de cada d́ıa.

Pablo Neruda, Odas Elementales.

In this appendix, for the sake of clarity, we briefly remind the reader how vectorial operators
are written in cylindrical coordinates.

A.1 Cylindrical Basis
Figure A.1 shows in the left-hand side the basis (ex, ey, ez) of Cartesian coordinates (x, y, z),
and in the right-hand side the basis (er, eθ, ez) of cylindrical (or polar) coordinates (r, θ, z). We
recall that, in all this manuscript, we denote the particular case of θ-invariant geometry using the
adjective axisymmetric.

O

z

y

x

ez
ey

ex

O x

y

z

r

θ

ereθ

ez

Figure A.1: Left: Cartesian coordinates (x, y, z). Right: Cylindrical (polar) coordinates (r, θ, z).

The z coordinate remains unchanged. In the horizontal plane, the transformation of coordinates
from Cartesian to cylindrical can be done by the rotation matrix R(θ) defined as

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
, (A.1)
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which satisifies R(−θ) = RT (θ) = R−1(θ) (see chapter 1). Hence, the coordinates x, y, r, and θ,
are linked through the relation x = r cos θ and y = r sin θ.

A.2 Differential Operators
We consider V a scalar function, and A a vector, both depending on (r, θ, z). The formulaes for
differential (and vectorial) operators are recalled below

∇V = ∂V

∂r
er + 1

r

∂V

∂θ
eθ + ∂V

∂z
ez, (A.2)

∇ ·A = 1
r

∂rAr
∂r

+ 1
r

∂Aθ
∂θ

+ ∂Az
∂z

, (A.3)

∇×A =
(

1
r

∂Az
∂θ
− ∂Aθ

∂z

)
er +

(
∂Ar
∂z
− ∂Az

∂r

)
eθ + 1

r

(
∂rAθ
∂r

− ∂Ar
∂θ

)
ez, (A.4)

∆V = 1
r

∂

∂r

(
r
∂V

∂r

)
+ 1
r2
∂2V

∂θ2 + ∂2V

∂z2 , (A.5)

∆A = ∆�A =
[
∆vr −

1
r2 (vr + 2∂θvθ)

]
er +

[
∆vθ −

1
r2 (vθ − 2∂θvr)

]
eθ + ∆vzez. (A.6)

The common operations involving gradient and curls still hold, which means that for V and
W two scalar fields and A and B two vectorial fields, the first derivatives of their products can be
expressed as

∇ (VW ) = V∇W +W∇V, (A.7)

∇ (A ·B) = A · (∇×B) + B · (∇×A) + (A · ∇) B + (B · ∇) A, (A.8)

∇ · (VA) = V∇ ·A + A · (∇V ) , (A.9)

∇× (VA) = (∇V )×A + V (∇×A) , (A.10)

∇ · (A×B) = B · (∇×A)−A · (∇×B) , (A.11)

∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B · ∇) A− (A · ∇) B, (A.12)

and, the second derivatives of the fields are

∇ · (∇V ) = ∇2V = ∆V, (A.13)

∇× (∇V ) = 0, (A.14)

∇ · (∇×A) = 0, (A.15)

∇× (∇×A) = ∇ (∇ ·A)−∇2A. (A.16)

The material derivative can also be derived from the previous relations and

(A · ∇) B =
(
Ar

∂Br
∂r

+ Aθ
r

∂Br
∂θ

+Az
∂Br
∂z
− AθBθ

r

)
er (A.17)

+
(
Ar

∂Bθ
∂r

+ Aθ
r

∂Bθ
∂θ

+Az
∂Bθ
∂z

+ AθBr
r

)
eθ (A.18)

+
(
Ar

∂Bz
∂r

+ Aθ
r

∂Bz
∂θ

+Az
∂Bz
∂z

)
ez. (A.19)
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Basics of Trigonometry

It is the uncertainty that charms one.
A mist makes things wonderful.

Oscar Wilde, The picture of Dorian Gray.

Circular functions, i.e. sine, cosine, tangent, and cotangent, are used in this thesis to describe
the oscillatory behaviour of wave fields. In chapter 7, especially, these functions are involved in
non-linear calculus and are either linearised or factorised thanks to well-known properties and
relations. For convenience, some of them are recalled in this appendix.

B.1 Trigonometric Circle

Figure B.1 illustrates the definition of the 2π-periodic circular functions sine, cosine, tangent, and
cotangent. Tangent and cotangent are related to sine and cosine functions through the relations
tan θ = sin θ/ cos θ for θ ∈ [0; 2π] \ {π/2; 3π/2} and cotan θ = cos θ/ sin θ for θ ∈]0; 2π[\ {π}.

O

y

x

cotan θ

cos θ

sin θ tan θθ

1

1

Figure B.1: Unit circle defining the sine, co-
sine, tangent, and cotangent, of an angle θ.

θ (rad) 0 π
6

π
4

π
3

π
2

θ (◦) 0 30◦ 45◦ 60◦ 90◦

sin θ 0 1
2

√
2

2

√
3

2 1
cos θ 1

√
3

2

√
2

2
1
2 0

tan θ 0 1√
3 1

√
3 ∞

cotan θ ∞
√

3 1 1√
3 0

Table B.1: Most common trigonometric values
of the first quadrant θ ∈ [0; π/2].
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B.2 Common Circular Relations

B.2.1 Sums and Products
In this section, we assume that the arguments of the different functions are taken in the appro-
priate domain of definition, avoiding singularities. Squared circular functions satisfy the following
relations

cos2 θ + sin2 θ = 1, 1 + tan2 θ = 1
cos2 θ

, and 1 + cotan2 θ = 1
sin2 θ

. (B.1)

The sums of arguments lead to

cos(a+ b) = cos a cos b− sin a sin b, (B.2)

sin(a+ b) = cos a sin b+ cos b sin a. (B.3)

Sine-cosine products can be linearised thanks to

2 cos a cos b = cos(a− b) + cos(a+ b), (B.4)

2 sin a sin b = cos(a− b)− cos(a+ b), (B.5)

2 sin a cos b = sin(a− b) + sin(a+ b), (B.6)

and sums can be factorised using

cos p+ cos q = 2 cos
(
p+ q

2

)
cos
(
p− q

2

)
, (B.7)

cos p− cos q = −2 sin
(
p+ q

2

)
sin
(
p− q

2

)
, (B.8)

sin p+ sin q = 2 sin
(
p+ q

2

)
cos
(
p− q

2

)
. (B.9)

B.2.2 Complex Exponential
The complex exponential, used throughout the manuscript in the complex formalism for writing
wave fields (e.g. plane waves) is defined by

eiθ = cos θ + i sin θ, (B.10)

from which can be deduced the two Euler’s formulae

cos θ = eiθ + e−iθ

2 and sin θ = eiθ − e−iθ
2i . (B.11)



APPENDIX C

Bessel and Hankel Functions

Une mer qu’aucun bord n’arrête
S’étendait bleue à l’horizon

Alphonse de Lamartine, Méditations Poétiques.

The variable separation method used to solve the tri-dimensional differential equation for
inertia-gravity waves in a rotating and stratified fluid leads to a second order differential equa-
tion in the radial coordinate. This equation does not have trivial solutions unlike the vertical
or temporal equations do. Nonetheless, its complete solutions have already been studied and are
known as Bessel functions. This appendix summarises their main properties, which are useful in
this thesis. A more complete description can be found in the NIST Handbook [163].

C.1 Bessel Differential Equation

C.1.1 A Second Order Differential Equation
For a given parameter n ∈ N, the Bessel differential equation of rank n is

r2 d2f

dr2 + r
df
dr + (r2 − n2)f = 0. (C.1)

The case n = 1 is naturally obtained from the wave equation as it appears in writing down the
Laplacian operator in axisymmetric coordinates. Note that this equation can be extended to
non-integer parameters n.

C.1.2 A Mode Basis: Bessel Functions
As the equation (C.1) is of order two, the associated vectorial space of solutions is described by two
orthonormal vectors. Any linear combination of these two functions satisfies the Bessel equation.

A first couple of orthonormal solutions is known as the Bessel functions of first and second kind,
Jn and Yn, also called Bessel and Neumann functions. They are real solutions, and they represent
a modal evolution of a wave field with fixed nodes and anti-nodes. While the Jn functions are
bounded in magnitude for every order n, the Yn functions diverge at r = 0.

These functions are originally defined over R+ as the radial coordinate is, but can be analytically
extended to R by symmetry

∀r ∈ R, Jn(−r) = Jn(r) and ∀r ∈ R, Yn(−r) = Yn(r). (C.2)
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Symmetry also applies to define these functions for n < 0, as

J−n = (−1)nJn and Y−n = (−1)nYn. (C.3)

Plots of the solutions Jn and Yn for n ∈ {0, 1, 2, 3} for r ∈ [0; 25], are presented in figures C.1(a)
and C.1(b), respectively.
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Figure C.1: Natural solutions of the Bessel differential equation of orders 0, 1, 3, and 3, for (a)
Jn functions and (b) Yn functions.

In the manuscript, we refer to the Jn and Yn functions as Bessel functions.

C.1.3 A Propagative Basis: Hankel Functions
Another orthonormal basis can be set up with the complex functions known as Bessel functions of
the third and fourth kind, or Hankel functions of the first and second kind, H(1)

n and H
(2)
n . Both

of them diverge at r = 0, similarly to the Yn function. They satisfy the same symmetry properties
as mentioned above for the Bessel functions.

We refer to the H(1)
n and H

(2)
n functions as Hankel functions.

C.1.4 Connection Formulae
As the vectorial space of solutions is of dimension 2, the Hankel and Bessel functions can be
expressed in terms of each other allowing to go from one basis to the other. They are connected
by the following relations

H(1)
n = Jn + iYn, (C.4)

H(2)
n = Jn − iYn, (C.5)

and

Jn = 1
2(H(1)

n +H(2)
n ), (C.6)

Yn = 1
2i (H

(1)
n −H(2)

n ). (C.7)

These relations are analoguous to the connection between the cosine-sine basis and the expo-
nentials in cartesian coordinates. As the solution for the wave field is given by the real part of the
whole field, a description in terms of cosine and sine gives a mode (the spatial propagation is not
coupled with the temporal evolution) whereas the exponentials give a propagative field coupling
time and space variations. The distinction is identical here with the real Bessel functions and the
complex Hankel ones, as detailed in table C.1.
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Cartesian Axisymmetric
ψ <(ψ) ψ <(ψ)

Modes ∝ cos(lr)e−iωt ∝ cos(lr) cos(ωt) ∝ Jn(lr)e−iωt ∝ Jn(lr) cos(ωt)
∝ sin(lr)e−iωt ∝ sin(lr) cos(ωt) ∝ Yn(lr)e−iωt ∝ Yn(lr) cos(ωt)

Propagating ∝ ei(lr−ωt) ∝ cos(lr − ωt) ∝ H(1)
n (lr)e−iωt ∝ <(H(1)

n (lr)e−iωt)
∝ e−i(lr+ωt) ∝ cos(lr + ωt) ∝ H(2)

n (lr)e−iωt ∝ <(H(2)
n (lr)e−iωt)

Table C.1: Cartesian vs. axisymmetric functions, describing modes and propagating waves.

C.2 Series Expansion
Solutions of the Bessel differential equation can be found using a series expansion. This method
holds for bounded series and we have

∀n ∈ N, ∀r ∈ R, Jn(r) =
∞∑

p=1

(−1)p
p!(n+ p)!

(r
2

)2p+n
. (C.8)

C.3 Asymptotics

For large values or r, the functions Jn can be approximated by the functions J̃n defined as follows

∀n ∈ N, ∀r ∈ R∗, J̃n(r) =
√

2
πr

cos
(
r − π

2

(
n+ 1

2

))
. (C.9)

These approximations are presented in figure C.2 for (a) n = 0 and (b) n = 1.
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Figure C.2: Plots of the functions (a) J0 and (b) J1 (solid line) with the asymptotics approxi-
mation J̃0 and J̃1 (dashed lines).

C.4 Orthogonality

C.4.1 Norms
For a given n ∈ N, we have ∫ +∞

0
Jn(r)dr = 1. (C.10)

This holds for Bessel functions of the first kind but, because of the divergence at r = 0 of the Yn
functions, the integrals of Yn, H(1)

n , and H
(2)
n do not have a finite value.
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C.4.2 Orthogonalities
Integral relations on the Bessel functions help define different kinds of orthogonalities.

Local orthogonality

Let λ and µ two zeros, eventually identical, of Jn. Then
∫ 1

0
rJn(λr)Jn(µr)dr = δ(λ− µ)

2 (J ′n(λ))2
. (C.11)

Index orthogonality

If n, m, and l are integers such as n+m+ l > −1, then
∫ +∞

0

1
r
Jn+2l+1(r)Jn+2m+1(r)dr = δl,m

2(n+m+ l + 1) . (C.12)

C.5 Integral and Derivative Relations

Let F be a Bessel or a Hankel function. Starting from the differential equation (C.1), the following
recurrence relation can be derived

Fn+1(r) = nFn(r)
r

− dFn(r)
dr . (C.13)

This recurrence relation is the key point to link the different orders of the basis functions. Their
sum and differences satisfy

Fn−1(r) + Fn+1(r) = 2n
r
Fn(r), (C.14)

Fn−1(r)−Fn+1(r) = 2dFn(r)
dr , (C.15)

and the first derivative gives

dFn(r)
dr = Fn−1(r)− n

r
Fn(r), (C.16)

dFn(r)
dr = −Fn+1(r) + n

r
Fn(r). (C.17)

Higher derivation orders can also be expressed and, for k ∈ N
(

1
r

d
dr

)k
(rnFn(r)) = rn−kFn−k(r), (C.18)

(
1
r

d
dr

)k
(r−nFn(r)) = (−1)kr−(n+k)Fn+k(r). (C.19)

Hence, zeroth and first order functions can be linked thanks to the very useful relations

F1(r) = −dF0(r)
dr and 1

r

d(rF1(r))
dr = F0(r). (C.20)

C.6 Radial-Like Fourier Transform: the Hankel Transform

For a given integer n, the family of Bessel functions B = {r 7→ Jn(lr), l is a zero of Jn} is a basis
of the vectorial space of continuous and derivative functions, as described previously. Therefore, a
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function from this particuliar vectorial space can be decomposed over the family B. This decom-
position is called the Hankel transform and is very similar to the Cartesian Fourier transform. The
direct transform is

g(y) = H[f ](y) =
∫ +∞

0
f(x)Jn(xy)√xy dx, (C.21)

and the inverse transform is

f(x) = H−1[g](x) =
∫ +∞

0
g(y)Jn(xy)√xy dy. (C.22)

As a trivial property, the combination of the direct and inverse transform returns the initial function

H−1[H[f ]](x) = f(x). (C.23)
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APPENDIX D

Fresnel Integrals

On ne découvre pas de terre nouvelle sans consentir
à perdre de vue, d’abord et longtemps, tout rivage.

André Gide, Les Faux-Monnayeurs.

Integrating the asymptotic Bessel approximations J̃n defined in appendix C leads to particular
functions called Fresnel integrals. They have been first introduced by Augustin Fresnel to describe
the interference pattern at the edge of a shadow [82]. The present appendix, based on the NIST
Handbook [163], goes through some of their properties that are used in the discussion of non-linear
sub-harmonic generations in chapter 7. Additional properties and relations on these functions can
be found in [163].

D.1 Fresnel Integrals

D.1.1 Definition and Properties
The Fresnel integral F, and the cosine and sine Fresnel integrals C and S, respectively, are defined
for x ∈ R as follows1

F(x) =
∫ ∞

x

e
1
2 iπt

2
dt, (D.1)

C(x) =
∫ x

0
cos
(

1
2πt

2
)

dt, (D.2)

S(x) =
∫ x

0
sin
(

1
2πt

2
)

dt. (D.3)

These three functions are linked by

C(x) + iS(x) = 1
2(1 + i)− F(x), (D.4)

meaning, in particular, that

|F(x)|2 =
(

C(x)− 1
2

)2
+
(

S(x)− 1
2

)2
. (D.5)

1These integrals are actually defined for variables z ∈ C, but this is beyond our interests.
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A graphical representation of these functions is shown in figure D.1 with (a) the plot of |F|2 for
x ∈ [−10; 10], and (b) the plots of C and S for x ∈ [0; 5]. The plot of the squared magnitude of F
shows a clear limit towards 2 for x goes to −∞, whereas is quickly goes to zero for positive values
of x. As specified in the introduction of this appendix, the shape of this function is reminiscent
of the interference pattern at the edge of a shadow in optics [82]. The cosine and sine Fresnel
integrals, on the contrary, are oscillating around 1/2 for positive values of x.
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Figure D.1: Plots of the Fresnel integrals, with (a) the squared magnitude of the Fresnel integral,
|F|2, and (b) the cosine and sine Fresnel integrals C and S. The dashed lines indicate the limits of
the functions.

Amongst other properties, note that C and S satisfy symmetry relations

C(−x) = −C(x), (D.6)
S(−x) = −S(x), (D.7)

and that they have the following limits

lim
x→∞

C(x) = 1
2 , (D.8)

lim
x→∞

S(x) = 1
2 . (D.9)

D.1.2 Relation to Asymptotics Bessel Functions
Using trigonometric relations, we derive that for all x ∈ R and all n ∈ N

∫ x

0
J̃n(r)dr =

∫ x

0

√
2
πr

cos
(
r − π

2

(
n+ 1

2

))
dr, (D.10)

= 2C
(

2x2

π

)
cos
(
π

2

(
n+ 1

2

))
− 2S

(
2x2

π

)
sin
(
π

2

(
n+ 1

2

))
. (D.11)

D.2 Series Expansions
The cosine and sine Fresnel integrals have the following series expansions

∀x ∈ R, C(x) =
∞∑

p=0

(−1)p
( 1

2π
)2p

(2p)!(4p+ 1) x
4p+1, (D.12)

∀x ∈ R, S(x) =
∞∑

p=0

(−1)p
( 1

2π
)2p+1

(2p+ 1)!(4p+ 3)x
4p+3. (D.13)
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D.3 Modified Fresnel Integrals
We define the modified cosine and sine Fresnel integrals as x 7→ C(x)/x and x 7→ S(x)/x for x ∈ R.
Given the series expansions of the Fresnel integrals, these two functions are well-defined and, in
particular, have no singularity at x = 0. Figure D.2 presents plots of the modified Fresnel integrals
for (a) x ∈ [0; 30], and (b) x ∈ [0; 5] (zoomed-in version). The limit at x → 0 can be clearly
observed, as well as the rapid decay of the modified cosine Fresnel integral when increasing x.
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Figure D.2: Plots of the modified cosine and sine Fresnel integrals, for (a) x ∈ [0; 30], and (b)
x ∈ [0; 5]. The limits can be clearly identified.

These two functions have the following limits

lim
x→0

C(x)
x

= 1, (D.14)

lim
x→∞

C(x)
x

= 0, (D.15)

and

lim
x→0

S(x)
x

= 0, (D.16)

lim
x→∞

S(x)
x

= 0. (D.17)
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APPENDIX E

Kelvin Modes

Cuando llegó a la mancha verde entró en un mundo
donde el olor del tomillo y de la salvia era una misma

materia con el fuego del sol y la brisa del mar.
Julio Cortázar, Todos los fuegos el fuego.

In this appendix, we present the calculus leading to the radial, azimuthal, and vertical velocities
(vr, vθ, vz) presented at the end of chapter 1 and known as Kelvin modes. These modes are cylin-
drical, with an azimuthal periodic dependence through a wave number p. In the case p = 0, these
modes are purely aisymmetric and correspond to the modes discussed throughout the manuscript.
The resolution of the wave equations presented here are based on a separation variable method
and on properties of Bessel functions (see appendix C and [163] for more details).

E.1 Differential Equations
As detailed in chapter 1, three velocity equations can be derived using the vorticity equation. Two
of them couple the radial and orthoradial velocities vr and vθ, with vz acting as a forcing term
that can be determined independently thanks to a third equation. They are recalled as follows

∂2
t ∆vr −

1
r2 ∂

2
t (vr + 2∂θvθ) + f∂t∂z

(
1
r
∂θvz − ∂zvθ

)
−N2∂r∂zvz = 0, (E.1)

∂2
t ∆vθ −

1
r2 ∂

2
t (vθ − 2∂θvr) + f∂t∂z (∂zvr − ∂rvz)−N2 1

r
∂θ∂zvz = 0, (E.2)

∂2
t ∆vz + f2∂2

zvz +N2
(

1
r
∂r(r∂rvz) + 1

r2 ∂
2
θvz

)
= 0. (E.3)

E.2 Vertical Velocity Field

We first focus on equation (E.3) satisfied by the vertical velocity vz. As mentioned in chapters 1
and 4, it can be solved by using a variable separation method if the boundary conditions are
differentiable. In this section, we conduct the whole calculus and show that it naturally leads to
the internal wave dispersion relation.

Let’s assume that vz writes

vz(r, θ, z, t) = R(r)Θ(θ)Z(z)T (t), (E.4)
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where R, Θ, and Z are spatial functions for the radial, azimuthal, and vertical directions, respec-
tively, and T is a temporal function. Equation (E.3) can then be rewritten

(N2T + T ′′)
(
r2R′′ΘZ + rR′ΘZ +RΘ′′Z

)
+ (f2T + T ′′)r2RΘZ ′′ = 0, (E.5)

where the primed quantities stand for derivatives. Hence, for t such that T (t) 6= 0, we can write

T ′′

T
= −N

2 (r2R′′ΘZ + rR′ΘZ +RΘ′′Z
)

+ f2r2RΘZ ′′

r2R′′ΘZ + rR′ΘZ +RΘ′′Z + r2RΘZ ′′ . (E.6)

The left-hand side of this equation is a temporal function, whereas the right-hand side only depends
on spatial variables. These two quantities are therefore constant, and if we note Λt this constant
we will write the time-evolution equation

T ′′ − ΛtT = 0, (E.7)

and the DEcoupled spatial equation
(
N2 + Λt

) (
r2R′′ΘZ + rR′ΘZ +RΘ′′Z

)
+
(
f2 + Λt

)
r2RΘZ ′′ = 0. (E.8)

Similarly, for z such that Z(z) 6= 0 we can write that

Z ′′

Z
= −

(
N2 + Λt

) (
r2R′′Θ + rR′Θ +RΘ′′

)

(f2 + Λt) r2RΘ , (E.9)

where the left-hand side is a function of the vertical coordinate z and the right-hand side is a
function of the horizontal coordinates r and θ. Again, these two quantities are equal to a constant
Λz and we have the vertical equation

Z ′′ − ΛzZ = 0, (E.10)

and the horizontal equation
(
N2 + Λt

) (
r2R′′Θ + rR′Θ +RΘ′′

)
− Λz

(
f2 + Λt

)
r2RΘ = 0. (E.11)

For θ such that Θ(θ) 6= 0 we can rewrite this equation as

Θ′′
Θ =

Λz
(
f2 + Λt

)
r2R−

(
N2 + Λt

) (
r2R′′ + rR′

)

(N2 + Λt)R
, (E.12)

with the left-hand side being a function of θ while the right-hand side is a function of r. They are
both equal to a constant Λθ, which leads to two decoupled equation, one azimuthal

Θ′′ − ΛθΘ = 0, (E.13)

and another one radial

r2R′′ + r′R′ +
(

Λz
f2 + Λt
N2 + Λt

r2 + Λθ
)
R = 0. (E.14)

This decomposition gives us three constant Λt, Λz, and Λθ, that set the shape of the wave
field. In particular, we should pay attention to their real and imaginary parts, as this will change
the solution of the equations from damped or growing exponentials to periodic oscillations. We
first note that Θ is a 2π-periodic function by definition, hence from equation (E.13) we have Λθ
negative and more exactly, we can write Λθ = −p2 with p ∈ Z, leading to

Θ′′ + p2Θ = 0, (E.15)

that can be solved into
Θ(θ) = Θ0e

−ipθ + c.c., (E.16)
with Θ0 a constant.
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From equation (E.7) follows the temporal evolution of the system, which is periodic by definition
as we are looking for a wave phenomena. Thus, the constant Λt is also negative and can be written
Λt = −ω2 with ω ∈ R a frequency, so that

T ′′ + ω2T = 0, (E.17)

and
T (t) = T0e

iωt + c.c., (E.18)

with T0 a constant.
We now write the radial equation as

r2R′′ + r′R′ +
(
Λrr2 + Λθ

)
R = 0, (E.19)

were the constant Λr is defined by

Λr = Λz
f2 + Λt
N2 + Λt

= Λz
f2 − ω2

N2 − ω2 . (E.20)

Two cases can be studied, as follows:

1. If Λr > 0, we can write Λr = l2 and equation (E.19) becomes

r2R′′ + r′R′ +
(
l2r2 − p2)R = 0, (E.21)

known as the Bessel equation (see appendix C and the NIST Handbook [163]). Only one of
its solutions is not diverging, hence we have

R(r) = R0Jp(lr), (E.22)

with R0 a constant.

2. On the contrary, if Λr < 0, then we write Λr = −l2 and equation (E.19) becomes

r2R′′ + r′R′ −
(
l2r2 + p2)R = 0, (E.23)

which is a modified Bessel equation [163]. Its solutions are noted Ip and Kp. The Kp solution
diverges as r → 0, and the Ip solution diverges as r → +∞, and they will therefore not be
considered.

The vertical function Z can now be studied in more detail. Equation (E.10) leads, again, to
two different cases which are both physical solutions:

1. If Λz < 0, then we write Λz = −m2 and equation (E.10) becomes

Z ′′ +m2Z = 0, (E.24)

that has oscillatory solutions, and

Z(z) = Z0e
−imz + c.c., (E.25)

with Z0 a constant.

2. If Λz > 0, then we write Λz = m2 and equation (E.10) leads to

Z ′′ −m2Z = 0, (E.26)

that has exponential solutions as

Z(z) = Z+
0 z

mz + Z−0 z
−mz, (E.27)

with Z+
0 and Z−0 two constants.
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In both cases, the dispersion relation given by equation (E.20) and that can be re-written

Λz = l2
N2 − ω2

f2 − ω2 , (E.28)

is satisfied, meaning that Λz < 0 imposes either f < ω < N or N < ω < f (propagating waves),
whereas Λz > 0 requires either ω < min(f,N) or ω > max(f,N) (evanescent waves). This is
further discussed in chapter 1. As a result, for propagating waves, the vertical velocity field writes

vz(r, θ, z, t) = v0
zJp(lr)ei(ωt−mz−pθ), (E.29)

with v0
z a constant, ω the wave frequency, and l, m, and p the radial, vertical, and azimuthal wave

numbers, respectively.

E.3 Radial and Azimuthal Velocity Fields

Equation (E.3) on the vertical velocity being solved, we can now focus on the equations coupling
the horizontal velocities vr and vθ, given by (E.1) and (E.2). To proceed, we will assume that
these two velocities can be written under the following form

vr(r, θ, z, t) =
[
B

dJp(lr)
dr + C

Jp(lr)
r

]
ei(ωt−mz−pθ), (E.30)

vθ(r, θ, z, t) =
[
D

dJp(lr)
dr + E

Jp(lr)
r

]
ei(ωt−mz−pθ), (E.31)

where (B,C,D,E) ∈ C4 are constants. The reason for such a decomposition, not discussed further
here, comes from Fourier transforms (for the temporal, vertical, and azimuthal dependence), and
from a Hankel transform (for the radial dependence). In what follows, for consistency, we will note
A = v0

z the real amplitude of the vertical velocity field. Indices r and i will be used for real and
imaginary parts of the different coefficients B, C, D, and E.

E.3.1 Radial Equation

Replacing vr and vθ in equation (E.1) by their form (E.30) and (E.31), with vz known thanks to
equation (E.29), leads to an equation that only depends on r. Using the differential equation of
which Bessel functions are solutions, as well as the recurrence relation between Bessel functions
of different orders, this equation can be written as a sum of terms proportional to Jp(lr) and of
terms proportional to Jp+1(lr) (calculus not shown here). To satisfy the equation, the prefactors
of these two functions have to be zero at all radial position, hence this “projection” over Jp+1 and
Jp gives the following system

0 = −2Cr − 2pDi, (E.32)
0 = −ωk2Br + fm2Di, (E.33)
0 = −2Ci + 2pDr, (E.34)
0 = −ω2k2Bi − ωfm2Dr +N2mA, (E.35)
0 = −2pCr − 2p2Di − 2p2Br − 2pEi, (E.36)
0 = −ωk2pBr + fmpDi − ωk2Cr + fm2Ei, (E.37)
0 = −2pCi + 2p2Dr − 2p2Bi + 2pEr, (E.38)
0 = −ω2k2pBi − ωfm2pDr + pm(fω +N2)A− ω2k2Ci − ωfm2Er. (E.39)
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E.3.2 Azimuthal Equation
We apply the same method to the azimuthal equation (E.2), from which we can derive the following
system of equations

0 = −2Er + 2pBi, (E.40)
0 = −ωk2Dr − fm2Bi + fmA, (E.41)
0 = −2Ei − 2pBr, (E.42)
0 = −ωk2Di + fm2Br, (E.43)
0 = −2Er + 2p2Bi − 2p2Dr + 2pCi, (E.44)
0 = −ω2k2pDr − ωfmpBi + pm(fω +N2)A− ω2k2Er − ωfm2Ci, (E.45)
0 = −2pEi − 2p2Br − 2p2Di − 2pCr, (E.46)
0 = −ωk2pDi − fm2pBr − ωk2Ei + fm2Cr. (E.47)

E.3.3 Horizontal Velocities
The two previous systems of 8 equations (E.32)–(E.39) and (E.40)–(E.47) are equivalent, and lead
to the same solutions. We first obtain that

Br = Cr = Di = Er = 0, (E.48)

and the complete resolution of the system yields

B = iBi = −im
l2
v0
z , (E.49)

C = iCi = ip
fm

ωl2
v0
z , (E.50)

D = Dr = fm

ωl2
v0
z , (E.51)

E = Er = −pm
l2
v0
z . (E.52)

The two horizontal velocities can therefore be written

vr(r, θ, z, t) = −im
l2
v0
z

[
dJp(lr)

dr − pf

ω

Jp(lr)
r

]
ei(ωt−mz−pθ), (E.53)

vθ(r, θ, z, t) = m

l2
v0
z

[
f

ω

dJp(lr)
dr − pJp(lr)

r

]
ei(ωt−mz−pθ). (E.54)

E.4 Complete Solution and Representations
Expressions (E.53) and (E.54) can be further simplified by using recurrence relations on Bessel
functions (see appendix C), namely

dJp(lr)
dr = l [Jp−1(lr)− Jp+1(lr)] , (E.55)

1
r
Jp(lr) = l

2p [Jp−1(lr) + Jp+1(lr)] . (E.56)

As a result, we can finally write the radial, azimuthal, and vertical velocities in their complete
form

vr(r, θ, z, t) = i
mv0

z

4lω [(f − 2ω)Jp−1(lr) + (f + 2ω)Jp+1(lr)] ei(ωt−mz−pθ) + c.c., (E.57)

vθ(r, θ, z, t) = mv0
z

4lω [(2f − ω)Jp−1(lr)− (2f + ω)Jp+1(lr)] ei(ωt−mz−pθ) + c.c., (E.58)

vz(r, θ, z, t) = v0
zJp(lr)ei(ωt−mz−pθ) + c.c.. (E.59)
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Figure E.1: Velocities of various Kelvin modes shown in the horizontal plane. From left to right:
radial velocity vr, azimuthal velocity vθ, and vertical velociry vz. From top to bottom: p = 1
through 4. All velocity fields are plotted for ω/f = 1, and the magnitude is indicative.
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The corresponding wave field is helical and known as a Kelvin mode that has a given periodicity
in the azimuthal coordinate θ. Note that the previous resolution of the system of equation does
not take into account the physical boundaries imposed to the fluid and may therefore have to be
adapted. Figure E.1 presents the horizontal structure of the velocity field for p = 1 through 4 at
ω/f = 1. As previously discussed, the case p = 0 is axisymmetric. The radial and the azimuthal
velocities are in phase opposition regarding their variations with the angle θ, and so are the radial
and the vertical velocities.



216 APPENDIX E. KELVIN MODES



Bibliography

217





Bibliography

[1] A. Adriani, A. Bracco, D. Grassi, M. L. Moriconi, A. Mura, G. Orton, F. Altieri, A. Inger-
soll, J. Lunine, A. Migliorini, R. Noschese, A. Cicchetti, F. Tosi, C. Plainaki, B.M. Dinelli,
D. Turrini, G. Filacchione, G. Piccioni, and S.J. Bolton. Two-year observations of the jupiter
polar regions by jiram on board juno. Journal of Geophysical Research: Planets, page (in
press), 2020.

[2] A. Adriani, A. Mura, G. Orton, C. Hansen, F. Altieri, M.L. Moriconi, J. Rogers, G. Eichstädt,
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