
HAL Id: tel-02922470
https://theses.hal.science/tel-02922470v1

Submitted on 26 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neuromorphic analysis of hemodynamics using
event-based cameras

Xavier Berthelon

To cite this version:
Xavier Berthelon. Neuromorphic analysis of hemodynamics using event-based cameras. Computer
Vision and Pattern Recognition [cs.CV]. Sorbonne Université, 2018. English. �NNT : 2018SORUS404�.
�tel-02922470�

https://theses.hal.science/tel-02922470v1
https://hal.archives-ouvertes.fr


Sorbonne Université

Ecole doctorale Sciences mécaniques, acoustique, électronique & robotique

de Paris

Institut de la Vision – Equipe Vision et Calcul Naturel

Neuromorphic analysis of hemodynamics

using event-based cameras

Thèse de Doctorat

par Xavier Berthelon

Dirigée par Pr. Ryad Benosman

Présentée et soutenue publiquement le 22 Novembre 2018

Devant un jury composé de :
Prof. Jacques Duranteau Rapporteur

Prof. Claude Boccara Rapporteur

Prof. Stéphane Régnier Examinateur

Associate Prof. Guillaume Chenegros Examinateur

Prof. Ryad Benosman Directeur de thèse



Xavier Berthelon: Neuromorphic analysis of hemodynamics using event-
based cameras , How asynchronous sensors open new perspectives in
premature shock detection with an estimation of erythrocytes velocity
and density within blood capillaries., © October 2018



Time is an illusion. Look deep into nature, and then you will
understand everything better.

– Albert Einstein





A B S T R A C T

The micro-circulation plays a crucial role in the exchange of molecules
between blood cells and organic tissues. Both acute and chronic ill-
nesses can cause a degradation of the micro-circulatory network. The
main alterations are characterized by a reduction of the velocity of red
blood cells and perfusion density of capillaries. The understanding of
such deregulation is crucial in the pathophysiology of many diseases.
Despite the recent development of some technical devices to study
the micro-circulation, there is no ideal tool to evaluate the micro-
circulation at bedside. In this thesis, we present an innovative method
which couples asynchronous time-based image sensors, built based
on the working principle of the human retina, with medical imaging
devices. Thanks to the high temporal resolution of these cameras, we
estimate red blood cells velocities and densities within capillaries in
real time and show for instance that during a hemorrhagic shock, our
system estimates deregulation of the micro-circulation within min-
utes. Such a quick diagnosis could improve the evaluation of patients’
states and real-time adaptation of hemodynamic treatments.

R É S U M É

La micro-circulation joue un role essentiel dans l’échange de molécules
entre le sang et les tissus. Certaines maladies aiguës ou chroniques
peuvent altérer cette micro-circulation. Les dysfonctionnements sont
alors caractérisés par une baisse de la vitesse des globules rouges
ainsi que par une diminution de la densité de perfusion des capil-
laires. La compréhension de ces perturbations est essentielle dans
la physiopathologie de nombreuses maladies. Malgré les avancées
technologiques récentes, aucun outil n’est aujourd’hui disponible au
chevet du patient pour évaluer l’état de la micro-circulation en temps
réel. Dans cette thèse, nous présentons une méthode innovante as-
sociant une caméra évènementielle asynchrone, fonctionnant sur le
même principe que la rétine humaine, à des dispositifs d’imagerie
médicale. Grâce a la grande résolution temporelle de ces caméras,
nous pouvons déterminer la vélocité et la densité des globules rouges
dans les capillaires sanguins en temps réel. Nous montrons par ex-
emple que durant un choc hémorragique, ce système est capable
de détecter une détérioration de la micro-circulation en l’espace de
quelques minutes. Cette évaluation rapide pourrait considérablement
améliorer l’appréciation de l’état des patients et permettre une adap-
tation des traitements en temps réel.
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A D E E P U N D E R S TA N D I N G O F T H E
M I C R O - C I R C U L AT I O N : A M E D I C A L N E E D

The cardiovascular system is the organ responsible for blood trans-
portation to the entire body. Each day, the heart beats over 100 000

times and pumps around 7 500 liters of blood through a network of
vessels 100 000 kilometers long. The primary function of this complex
structure is to convey, via the red blood cells, oxygen, hormones, and
nutrients to other organs in order to provide nourishment, help in
fighting diseases, stabilize temperature, pH and maintain homeosta-
sis. The cardiovascular system can be seen to function in two parts: a
macro-circulatory network connected to a micro-circulatory network.

Figure 1: Human anatomical chart of blood vessels with major organs [1].

The microcirculatory network

The micro-circulation is the place for the exchange of molecules
between erythrocytes and tissues. It is composed of a branching net-
work of vessels classified as arterioles, venules, and capillaries. Ade-
quate blood flow within this network is, therefore, an essential pre-
requisite for proper organ perfusion and function [65].

Many pathologies can lead to a deregulation of the micro-circulation
[11]. On the one hand, chronic illnesses such as diabetes [42] or car-
diovascular diseases [59] are known sources of abnormalities in the
perfusion of micro-vessels. On the other hand, acute illnesses such
as the different types of shock also contribute to a deterioration of
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the micro-circulation [24, 62]. For instance, a direct consequence of
a hemorrhagic shock is a sudden reduction of the blood volume [20]
which rapidly leads to a degradation of the micro-circulatory network
[40, 55, 61]. Dysfunctions are characterized by heterogeneous abnor-
malities in blood flow. Micro-vessels are in these cases non-perfused,
hypo-perfused or on the opposite hyper-perfused locally [13, 24].

For several years now, many technical solutions have been devel-
oped to estimate the dynamic parameters of the micro-circulation
with quantitative tools [18, 19, 46]. However, current technical solu-
tions have major limitations in term of temporal or spatial resolution
and are often subject to heavy off-line processing [67]. This prevents
the use of micro-hemodynamic data to guide clinicians during resus-
citation. This analysis is supported by the work of S. Eriksson et. al
in "Non-invasive imaging of micro-circulation: a technology review"
[17], which states that there is a growing need for medical imaging
techniques which would allow a non-invasive study of blood flow.
Ideally, the measurement should be "fast to decrease vulnerability to
motion artifacts and making it possible to study dynamic processes.". The
dynamic morphological parameters that are of interest are the follow-
ing:

• Vessel density within the field of view,

• Rate of perfused vessels,

• Dynamic measurements of micro-circulatory blood flow veloc-
ity and blood cell concentration.

However, as mentioned in the study previously cited, no non-invasive
technique today can determine blood flow parameters such as speed
or cell density in-vivo with a high temporal resolution and real-time
data processing. Current image acquisition methods either lack the
required temporal resolution and can only measure global variables
or they acquire sequences of frames at a high rate, thus requiring
heavy off-line post-processing. To solve this issue, two solutions are
therefore possible:

• First, increase the computing power in order to process a tremen-
dous amount of information in real-time. This solution is the
most straightforward but requires expensive, bulky, energy con-
suming processors. Such a quick fix is not worth considering.

• Second, increase the temporal resolution without increasing the
data load. Frames recorded in medical imaging often carry much
redundant information from the static components of the scene.
A method that would acquire only the time-varying signal can
drastically reduce the amount of information recorded and there-
fore allow an increase of the temporal resolution.
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Event-based cameras

Event-based sensors have recently gained popularity as they record
information in a sparse manner. These new bio-inspired cameras were
designed according to the working principle of the human retina [12,
38, 39]. Most biological sensors, such as the human eye, are more effi-
cient than their artificial counterparts. When dealing with daily tasks
that involve real-time processing of the information, perception or
motion control, they are orders of magnitude more energy-efficient.
We have very little knowledge of the reason for this superiority, yet a
possible clue might be the difference between the hardware architec-
ture and style of computation between the biological systems and the
state-of-the-art synchronous artificial sensors. Cameras have always
been designed to record frames with a fixed sampling rate, while
most biological sensors, such as the retina, handle the information in
a sparse asynchronous fashion.

Studies on the human retina show that there are about a million
retinal ganglion cells that exit the optic nerve. They are divided into
two groups as described in [66]:

• The "Magno-cellular" system, which is oriented towards global
detection, depth, and motion. These cells, represented on Fig-
ure.2 on the right side, have a large receptive field, short latency
and generate transient responses to changes in a visual scene.
This is referred to as the "where" system and represent about
20% of the retinal ganglion cells.

• The "Parvo-cellular" system handles the more detailed informa-
tion such as color, texture or spatial information. Parvo-cells,
represented on Figure.2 on the left side, are located mainly in
the fovea and represent 80% of the retinal ganglion cells. Their
receptive fields are smaller, but they have longer latency and
compose the "what" system.

Conventional frame-based cameras can be associated with the Parvo-
cellular system as they capture the detailed information of a visual
scene but neglect its dynamic components mostly perceived by the
Magno-cells. In an attempt to replicate how the "where" system works,
a first line a dynamic vision sensors (DVS) [35, 36] has been devel-
oped. These neuromorphic cameras are composed of an array of fully
independent and asynchronous pixels, sensitive only to light varia-
tions. However detailed information perceived by the Parvo-cells are
here discarded. In order to combine both perceptions from the "what"
and "where" systems, extensive work has led to the developement of
a second generation of neuromorphic sensors called asynchronous
time-based image sensors [52].
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Figure 2: Left: Parvo-cell sensible to global detection, depth and motion.
Right: Magno-cell, sensible to colors, textures and fine details.

An ATIS camera, shown on Figure.3.a, is an Asynchronous Time-
based Image Sensor that detects relative changes in log pixel lumi-
nance over time. It is composed of a 304×240 array of asynchronous
pixels. Each one of them has two coupled detection units:

• A change detector unit (PD2 on Figure.3.b) with a fill factor of
10% of the total pixel surface. This unit is a fast continuous loga-
rithmic photoreceptor with asynchronous event-driven process-
ing. A change of illuminance recorded will result in a change
of the photocurrent Iph. This photocurrent is monitored con-
tinuously and sent to two voltage comparators which generate
ON and OFF events, as shown on Figure.3.c, when there is a
significant increase or decrease of the photocurrent.

• An integrating PWM exposure measurement unit (PD1 on Fig-
ure.3.b) with a fill factor of 20% of the total pixel surface. This
part of the pixel triggers a gray level value measurement when-
ever an event is created. The computation relies on a time inte-
gration of the incoming signal which is inversely proportional
to the gray level value.

As soon as a variation of light is detected, the process of communi-
cating this change event off-chip is initiated. Off-chip communication
executes with low latency (on the order of microseconds), ensuring
that the time at which a change event is read out from the ATIS in-
herently represents the time at which the change was detected. This
asynchronous low-latency readout scheme provides the high tempo-
ral resolution change detection data. Let e(p, t) be an event occurring
at time t at the spatial location p = (x,y)T . A positive change of con-
trast results in an ON event (polarity=+1), and a negative change of
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Figure 3: a) Picture of the Asynchronous Time Based Image Sensor. b) Single
pixel layout. c) Pixel circuit and corresponding cells in the human
retina. The voltage comparators on the right act as ganglion cells.

contrast in an OFF event (polarity=-1) as presented on Figure.4.

The threshold τ beyond which a change of luminance is high enough
to create an event is tuned according to the scene. Smaller intensity
fluctuations are not recorded and do not generate any event. Unlike
for frame-based cameras, the redundant information is not recorded.
For low contrasts, the value of parameter τ is decreased in order to
detect smaller intensity variations.

On Figure.5 is shown a comparison between a frame-based acqui-
sition with a fixed sampling rate and an event-based acquisition over
time. The amount of information contained in both acquisitions is
identical, yet the quantity of useful information contained in the event
based recording is increased thanks to the greater temporal resolu-
tion.

The event-based acquisition paradigm allows us to go beyond the
current conventional methods used in bio-medical imaging thanks to
its high temporal resolution [50, 51]. A complete review of the history
of these sensors can be found in [53].
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Figure 4: a) Detection principle of the Atis camera. b) gray level and event
base representation of a scene over 500ms.

Figure 5: Comparison between a frame-based (left) and event-based (right)
acquisitions.

Medical imaging

In order to observe dynamics at the cellular scale, we need to in-
vestigate the best candidate among today’s medical imaging tech-
niques. Current methods in the field of microscopy can be divided
into two groups. The first one gathers macroscopic methods such as
laser Doppler imaging [21], laser speckle imaging [32] or diffuse op-
tical imaging [16] which have a large penetration depth but at the
cost of a poor spatial resolution. Their resolution of hundreds of
µm to mm is not sufficient to image individual cells. The second
group is the microscopic techniques such as two-photon microscopy
[9] or confocal microscopy that can reach a micron-scale resolution
with a penetration depth of several tens of µm, a smaller field of
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view (200µm× 200µm) and offline image processing. Red blood cells
imaging requires a technique with a micron-scale spatial resolution
that can image in depth within a few hundred microns. Optical coher-
ence tomography (OCT) methods offer a good compromise between a
wide field of view, good spatial resolution and penetration depth [23,
25]. In particular, full-field optical coherence tomography (FFOCT),
a variant of OCT, has been developed to provide a stack of en-face
images in depth with a cellular resolution on biological samples [14,
15, 68]. This non-invasive technique requires no contrast agent and is
conventionally used to image a variety of biological samples from the
cornea and the retina to the brain or gastrointestinal tissues [41, 56,
73].

Conventional FFOCT has initially been developed to study static
samples. Indeed, mathematical recombination of several frames is re-
quired in order to observe a single depth plan, and any dynamic ar-
tifact generates motion blur on the reconstruction. Recently though,
studies have been carried out on motion estimation using OCT tech-
niques. This includes Doppler-OCT which records shifts in frequency
of laser radiation scattered by moving particles [30]. OCT angiogra-
phy aims to suppress static scattering from the tissue sample, in order
to keep only the dynamic scattering components [26]. Another tech-
nique is dynamic light scattering optical coherence tomography [28].
There is also OCT velocity techniques based on Mie scattering which
aim to study red blood cell speed and flux [29]. More recently devel-
oped, dynamic full-field OCT (DFFOCT) is a technique used to reveal
subcellular metabolic contrast by exploiting the time dependence of
the interferometric signals [2]. However, these dynamic approaches
are limited by the frame rate of the camera used which cannot go
beyond several hundred frames per second (250-600 Hz) [26, 28–30,
58]. A large amount of acquired data generally prevents the estimate
of velocities and direction of motion in real time for single particles
[43].

For the first time, we propose in this work to couple an optical
coherence tomography technique with an asynchronous sensor in
order to image moving objects. Event-based vision has previously
been used in microscopy to compute optical flow at several kHz [5]
and to track micro-particles using an event-based Hough transform
[44]. However, existing methods have been developed for transmis-
sion microscopy to operate on a single depth plane and only on ex-
vivo, fluorescent, controlled samples. In the first part of this thesis,
we show how the high temporal resolution and sparse nature of the
data recorded by an event-based camera allow the observation of dy-
namic components at a microscopic scale with a FFOCT setup. The
major challenge that has arisen is the sensitivity of the camera to
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low contrasts with low levels of light. This has led to the develop-
ment of a new generation of event-based sensors. We will see in the
second part of this thesis how we improved our hardware. Firstly
we designed a new version of the sensor and increased its signal to
noise ratio (SNR) by reducing thermal noise. Additionally, we devel-
oped a portable micro-circulation device, less bulky than a complete
FFOCT setup. This equipment is meant for a day to day use in care
facilities to monitor the dynamic morphological parameters of micro-
circulation, that is to say, the dynamic measurements of blood flow
velocity and blood cell concentration. Finally, we will focus on the bi-
ological results in a small animal in-vivo. The event-based algorithms
used for tracking and velocity estimation were initially design for
robotic vision and the observation of biological samples called for an
adaptation of our algorithms. We show that during a hemorrhage sim-
ulation, our method estimates abnormalities in the micro-circulatory
network more quickly than any current technology. This allows an
early detection of hemorrhagic shocks.



Part I

F U L L - F I E L D O C T W I T H A N E V E N T B A S E D
C A M E R A





1
P H Y S I C A L P R I N C I P L E O F F F O C T

Optical Coherence Tomography (OCT) is an imaging method that
captures micrometer-resolution images from a scattering sample. In
the field of medical imaging devices, OCT and by extension its Full-
Field version (FFOCT) fill a gap, both in terms of penetration depth
and spatial resolution, as seen on Figure.6. Indeed, it can image struc-
tures in depth up to several hundred microns, thus surpassing con-
focal microscopy. The spatial resolution is however decreased and
limited to samples in the order of 10µm for OCT and 1µm for FFOCT.
Techniques such as Magnetic Resonance Imaging (MRI), Ultrasounds
or High-resolution Computed Tomography (CT) scan, on the oppo-
site, have a greater penetration depth but at the cost of a poorer spa-
tial resolution.

Figure 6: Spatial resolution and penetration depth of modern medical imag-
ing techniques.

The OCT has, like ultrasounds, an acquisition time short enough
to support tomographic imaging (imaging by section) at video rates.
This makes OCT more tolerant to sample/subject motion than either
CT or MRI. Additionally, OCT techniques are non-invasive and re-
quire no use of external contrast agents. The method relies on non-
ionising radiations at biologically safe levels which enables long ex-
posure times. Last point of comparison, the complexity of OCT, closer
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14 physical principle of ffoct

to ultrasounds than it is to CT or MRI, makes it possible to design rel-
atively low-cost and portable scanners.

1.1 interferometry and oct

OCT works similarly to ultrasound, with light waves instead of sound.
The light sent to the sample is back-scattered at different depths. The
time-delay from the reflected light wave is used to reconstruct a depth
profile of the sample structure. Due to the high velocity of light com-
pared to sound waves, time delays cannot be measured in the same
fashion. Therefore OCT methods rely on interferometry, which uses
waves superimposition, to determine these delays. The initial light
beam is divided in half and sent to both the biological sample and a
flat reflecting component called the reference mirror. Thanks to its
wave-like properties, the back-scattered light that has traveled the
same optical path in both arms can interfere. In other words, waves
with identical frequencies and phase will add each other while waves
with opposite phases will cancel out as seen on Figure.7.

Figure 7: Principle of constructive and destructive interferences. Two waves
in phase add with one another and two waves out of phase cancel
out. The resulting interference pattern is an alternate of bright and
dark stripes.

The time delays correspond to the phase shifts in the interference
pattern. With a perfectly coherent (single frequency) light source, we
observe alternating black and white patterns as shown on Figure.7.
This region where interference occur is called the coherent length
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and is inversely proportional to the spectral width of the light source.
In other words, a monochromatic light source has an infinite coher-
ent length while a completely incoherent light source has an infinitely
small coherent length. OCT uses a broad spectrum light source as the
axial resolution of this imaging technique is governed by the coherent
length of the illumination. Initially, the first setups were using super-
luminescent diodes providing a 10 to 15µm axial resolution.

1.2 full-field optical coherence tomography

In FFOCT, a stack of en-face images is captured by the camera. The
light source is incoherent, and the microscope is based on a Linnik in-
terferometer, that is to say, a bulk Michelson interferometer with two
immersion microscope objectives in both arms, as seen on Figure.8. In
addition to a conventional Michelson interferometer, the optical path
length, as well as the focusing in both arms, can be adjusted individu-
ally. Axial and transverse resolutions are independent in FFOCT and
can be separately optimized as follow:

• The numerical aperture (NA) of the microscope objective de-
fines the transverse resolution. In conventional OCT, cross-sectional
(x,z) images are obtained by scanning the beam in the trans-
verse direction (x). Therefore a large depth of field is necessary,
at least equal to the size of the image in depth (z). Low-NA ob-
jectives must be used which limits the transverse resolution. In
FFOCT, as en-face images are directly recorded, high-NA objec-
tives can be used, thus increasing the transverse resolution to
1, 5µm.

• Axial resolution is governed by the coherent length of the light
source, which is inversely proportional to the spectral band-
width. With incoherent light source, FFOCT benefits from a
spectrum width of several hundred nm which yields a theoret-
ical axial resolution of 0, 7µm in water. However, the axial reso-
lution may be degraded by dispersion mismatch when imaging
in depth inside tissues.

In order to reconstruct a full 3D volume, the sample is translated
step by step (one µm) in the axial direction (z). At each depth, the to-
mographic signal is extracted by computing the amplitude of the in-
terference signal using the principle of phase-shifting interferometry.
In other words, the tomographic image is obtained by a mathematical
combination of at least two frames with a known phase shift between
the images. Our setup is using a four images reconstruction method.
To create the modulation, the mirror in the reference arm is attached
to a piezoelectric actuator (PZT) that oscillates to generate a phase
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Figure 8: Full-field OCT principle using a Linnik interferometer. The light
source is sent to both the reference arm and the sample. Light
backscattered by the sample that has traveled the same optical path
length as in the reference arm interferes. The signal is captured by
a CCD camera and the sample is scanned along the z axis for a full
volume reconstruction.

shift of π/2. The signal on the CCD camera is the sum of the inter-
ference image formed by the uniform image of the reference mirror
and the sample’s image upon which is superimposed the incoherent
light from reflections and backscattering from different depths of the
sample. Without any modulation, the intensity I on a pixel (x,y) is

I(x,y) = I0(x,y) +A(x,y)cosφ(x,y), (1)

with I0 the average of the intensity, A the amplitude of the interfer-
ence signal and φ the phase difference between light waves from the
sample and the reference mirror. To get rid of the background illumi-
nation, a know phase shift is introduced by the PZT. The time-varying
intensity on the pixel (x,y) becomes

I(x,y, t) = I0(x,y) +A(x,y)cos[φ(x,y) +βsin(2πft+α)], (2)

with β the amplitude of the induced phase shift, α a relative phase
and f is the frequency of the modulation. For a single tomographic
image, we record four frames with a fixed phase shift, giving different
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interference patterns as seen on Figure.9. A CCD camera is synchro-
nized with the PZT and driven at a frequency 4f = 4/T to acquire
one image for each phase shift.

Figure 9: Four consecutive interference patterns acquired for a single depth
image. The phase shift induced by the PZT in between the image
is known which enables a tomographic reconstruction (slice im-
age on the right) thanks to a mathematical recombination of the
images.

In practice, a set of N series of four images is acquired and accu-
mulated in order to increase the signal to noise ratio of the interfer-
ometric images before their recombination. The signal on a pixel of
these accumulated images (E1,E2,E3 and E4) is the integration of the
signal I(x,y, t) over the four quarters of the modulation period:

Ei(x,y) = N
∫ iT/4
(i−1)T/4

I(x,y, t)dt, i = 1, 2, 3, 4. (3)

Thanks to a mathematical combination of the images Ei, we can
compute the signal A(x,y). By tuning both the modulation amplitude
of the PZT (β) and the relative phase (α) [15] we get the following
relation:

A2(N/2f)2 ' (E1 − E2 − E3 + E4)
2 + (E1 − E2 + E3 − E4)

2. (4)

This represents the tomographic image at a given depth.
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1.3 coupling of the atis with the ffoct microscope

We previously stated that FFOCT has initially been designed for static
imaging only. Dynamic FFOCT is booming right now [2, 31, 64], yet
the process of phase-shifting interferometry requires the combination
of several interference images which does not tolerate well sample
motion. Current cameras used in this field are limited to frame rates
of 250 to 700Hz. After the four frames association, this corresponds to
a maximum imaging rate of 60 to 175Hz. Conventional CCD sensors
used in OCT have pixels with a pitch of 5µm. In order not to suffer
from motion blur, the same object has to be imaged on the same pixel
within the acquisition time of the four frames. Let us assume that
the acquisition rate is 700Hz, corresponding to an imaging speed of
175Hz. Then the object must not travel more than 5µm at the sen-
sor plan during the 6ms of a single frame acquisition. In FFOCT, the
microscope objectives used are ×10 water immersion objectives. This
gives a traveling distance of 0.5µm at the sample level. As a result, the
maximum speed that can be recorded without motion blur in FF-OCT
is 0.08mm/s which is rather slow compared to the typical speed of
erythrocytes inside capillaries: around 3mm/s [10]. Ultra-high speed
cameras such as those manufactured by Hamamatsu can record up
to thousands of frames per second, however it often is on a buffer of
the camera and the amount of information to deal with is substantial.
The transfer of data as well as the processing takes time and is energy
intensive.

Another issue of silicon-based CCD cameras is their full well ca-
pacity (FWC) which is rather low. The FWC defines the amount of
charge an individual pixel can hold before saturating and is a crucial
parameter in detection sensitivity. To compensate for this low FWC,
N images are often accumulated as described in the previous section.
This limits even more the acquisition speed which gets divided by
the number of accumulations.

The incoming signal on the camera in FF-OCT is the sum of the in-
terferometric signal and the intensity of the static background signal,
i.e. the light that does not interfere. This background signal is time
independent. Therefore, when using an event based camera, only the
variations in the interferometric signal at a given depth are recorded
in the form of events. A scan can then be performed along the z-axis
to image different planes inside a 3D volume.

In conventional FF-OCT imaging, a piezoelectric chip is used to
move the reference mirror and create a phase modulation to recon-
struct images from a mathematical combination of several frames.
When studying dynamic movements, such a reconstruction induces
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motion blur as objects are not imaged on the same pixel on two con-
secutive frames. With our method, we track only the movements of
the pattern of interference with an event-based camera. We tune the
value of τ, which is the detection threshold for event-based cameras,
so that the changes of intensity coming from objects outside the co-
herence volume (the area where the interfering light is back-scattered)
are below this threshold and do not generate events. The value of τ
strongly depends on the imaging depth and will be fine-tuned ac-
cordingly.

Event-based cameras detect significant amplitude changes, enabling
scene driven acquisitions. Their strongest advantage compared to
frame based devices is their increased temporal resolution as no re-
dundant information is recorded. When dealing with the output of a
FFOCT microscope, only the time-varying signal related to the pat-
tern of interferences will be recorded. In the next chapter of this
thesis, we will perform experiments with this setup and assess its
performances with two algorithms: an event-based optical flow and
a tracking algorithm. We will investigate if the recording of the dy-
namics of the pattern of interference alone is enough to measure a
velocity in depth, as well as a density of particles, and what are the
physical limitations of this setup.





2
M I C R O - C I R C U L AT I O N M O D E L

We designed a micro-circulation model with a microfluidic chip and
calibrated micro-particles. The aim of this setup is to analyze the flow
and density of particles inside a volume in real time with the event-
based camera. The reasons why we needed at first a micro-circulation
model are the following:

• Due to hardware constraints on the FFOCT setup, it was easier
to start with a sample that can be easily controlled and used
repeatedly in order to develop and test our algorithms.

• The spatial resolution of the ATIS camera as well as the size of
its pixels reduce the field of view and limit the observation of
tiny structures given the microscope objectives provided with
the FFOCT device.

• A precisely controlled sample was necessary in order to prop-
erly calibrate the camera and test its performances when pushed
to the limits.

2.1 experimental setup

We adapted a commercially available FFOCT scanner (LLTech SAS)
as shown on Figure.10. The microscope lenses used are ×10 water
immersion lenses with a 0.3 N.A. The resolution of the system is
1.5µm lateral and 1µm axial.

Figure 10: Full-field OCT device from LLTech SAS.
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The event-based camera has a resolution of 304× 240 pixels, which
represents a field of view of 0.72× 0.91mm. A PMMA microfluidic
chip (provided by MicroFluidic ChipShop) with a channel of section
S = 2500µm× 150µm is set under the microscope objective to observe
red polyethylene microspheres, as shown on Figure.11. The diameter
of these micro-particles ranges from 30µm to 45µm and they flow in a
0.1% Tween solution. We control the flow with a plastic syringe filled
with a solution of water and calibrated micro-particles and connect
it to a syringe pump. This syringe pump provides a ground truth
flow with a maximum error of 0.1ml/h. From this ground truth we
deduce the theoretical average speed in the field of view according to
the equation:

vavg =
Flow

ChannelSection
(5)

At any depth inside the channel the expected velocity of particles
is given by v = vm(1− r2

R2
) with vm = 2vavg, the maximum velocity

at the center of the channel, r the radial coordinate (equal to zero at
the center of the channel) and R the radius of the channel (150µm).
Close to the edges, the particles are almost at a standstill, and in the
middle of the channel the velocity is maximum.

Figure 11: Schematic representation of the FF-OCT microscope coupled
with the ATIS camera together with a microfluidic chip and sy-
ringe pump.

We perform a set of experiments for which we record the optical
flow and density of particles at a depth of 50, 70 or 100µm. This cor-
responds to the typical depths of the very first blood capillaries in the
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human body. The influence of the imaging depth on the results will
be further discussed. On Figure.12 is shown a spatiotemporal repre-
sentation of events (in blue) generated by moving particles inside the
channel of the microfluidic chip. The vertical axis represents the time
and the two other the xy plane.

Figure 12: 3D visualisation of events generated over time by the movement
of small particles (grey circles moving from right to left). The
vertical axis is the time, the other two are the xy plane. The blue
dots are both positive and negative events.

2.2 measure of the optical flow

Optical flow represents the distribution of apparent velocity of objects
in an image. The optical flow of an object is characterized by a vector
whose norm is proportional to the speed and whose angle is related
to the direction of the object’s movement. Before putting equations on
the table let us visualize in a simple way how the event-based optical
flow is computed.

Let us assume that pixel A on Figure.13 triggers an event at time
T1. We then have a look at the behavior of the pixel’s direct neighbors
(B, C, D, and E) during a short period of time. If another pixel (for
instance B) generates an event at time T2, we can compute the first vec-
torial component of the optical flow, which is inversely proportional
to the time lapse in between the two events. If a second neighbor (for



24 micro-circulation model

instance E) triggers an event during the observation period, we get a
second vectorial component for the flow. Their combination gives the
local optical flow vector.

Figure 13: Principle of the optical flow computation. After pixel A triggers
an event, we observe its neighbors. The following first two events
generated give the vectorial components of the optical flow vec-
tor which are inversely proportional to the time lapse between
events.

We now generalize the methodology previously described through
the adaptation of an event based visual flow algorithm [6] for which
a function Σe, as shown on Figure.14, maps to each event p its time t:

Σe : N2 → R

p 7→ Σe(p) = t
(6)

The surface of active events Σe is derived to provide an estimation
of the orientation and amplitude of the motion. If we consider a small
displacement ∆p from the location p we can write:

Σe(p +∆p) = Σe(p) +∇ΣTe∆p + ◦(‖∆p‖) (7)

with ∇Σe = (∂Σe∂x , ∂Σe∂y )T . The principle of the event based optical
flow algorithm conventionally uses a continuous formulation of the
time surface enveloppe of events. As expected, the camera provides a
discrete information of spatial locations in the form of events. How-
ever for better clarity and generalization purposes we will use partial
derivatives. Both partial derivatives are functions of a single variable
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Figure 14: Illustration of the principle of the optical flow computation. The
surface of active events Σe provides an estimate of the amplitude
and direction of motion.

x or y and, as time is a strictly increasing function, the derivatives of
the surface Σe are never equal to zero at any point. The inverse func-
tion theorem can therefore be used around the location p = (x,y)T .

∂Σe
∂x (x,y0) =

dΣe|y=y0
dx (x) = 1

vx(x,y0)
∂Σe
∂y (x0,y) =

dΣe|x=x0
dy (y) = 1

vy(x0,y)

(8)

with Σe|y=y0 and Σe|x=x0 the values of Σe respectively restricted
to y and x. We obtain the inverse pixellic velocity of events V.S. time,
thus providing both the rate and the direction for every incoming
event in s/pixels:

∇Σe =
( 1
vx

,
1

vy

)T
. (9)

This information allows us to represent the optical flow of the event
at location p +∆p by a vector (vx, vy). The current limitation of this
approach is the 2D velocity detection although it may be computed
in multiple planes. This method, however, shows great potential for a
3D absolute velocity reconstruction providing that the vz component
of the speed is given.

In a first experiment, we estimate the performances of our system
on speed measurement.

On Figure 15 is shown data from an event-based recording of mi-
croparticles moving from right to left, all in the same direction and
at the same speed. The arrows represented on the events are the com-
puted optical flow vectors (vx, vy) described in the previous section.
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Figure 15: Optical flow for particles moving from right to left over a time
window of 15ms. Both axes on the left image are the x and y
plane. The black and white dots represent negative and positive
events respectively.

The flow is laminar with a maximum Reynolds number of 4.1 and
ranges from 0.1ml/h to 9ml/h. We estimate the optical flow on a set
of 20 recordings lasting 1 minute each for various values of the flow
at a depth of 50µm and 100µm. The expected speed at these depths
is identical and ranges from 0.4mm/s to 6.7mm/s.

Figure 16: Speed of microparticles according to the flow at 50µm on the left
and 100µm on the right. In blue, the theoretical speed according
to the rate of the syringe pump, in red the estimated speed. The
shaded areas on both curves correspond to the measurement er-
ror. Results divert from the ground truth above 6.5ml/h at 50µm

and above 4.5ml/h at 100µm.

Figure 16 shows the theoretical value of particle speed in blue and
the estimated optical flow in red, in the horizontal direction. We com-
pute the measurement error from the ground truth, provided by the
syringe pump, and estimate it using the averaged squared deviation
for the optical flow. At 50µm deep, the estimated speeds for particles
below 6ml/h is close to the ground truth with a maximum differ-
ence of 6%. At 100µm deep, the estimated speed for particles below
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4.5ml/h is close to the ground truth. The influence of depth on the
accuracy will be further discussed. In general, the measured speeds
are smaller than the ground truth, as friction forces inside the fluid
are not accounted for in the ground truth. At any time, as particles
are free to move in any direction inside the channel, they may enter
or leave the coherence volume. Particles moving in the axial direction
have a different speed than particles staying within the coherence vol-
ume. Indeed their horizontal component is smaller. However, these
particles cross the coherence volume at high speed thus appearing on
a tiny time scale in the data and do not affect our computation since
the number of occurrences detected is lower than 4%. The process
reaches its limits at 6.5ml/h where velocities are too high even for
the event-based camera to trigger a significant change of contrast.

Figure 17: Map of the optical flow around an air bubble (grey circle). The
two axes are the x and y plane. Each arrow represents the mean
velocity of a particle at a given time accumulated over a time
window of two minutes. The color bar represents the angle of the
optical flow vector from 90 degrees to -90 degrees.

Figure 17 shows a map of the visual optical flow accumulated over
two minutes for particles flowing around an air bubble (grey circle)
created inside the channel of the microfluidic chip at 50µm in depth.
Each arrow represents the optical flow of a single particle at different
positions during a two minutes recording. Their color depends on the
angle of the optical flow vector which varies between 90 degrees (red)
and -90 degrees (blue).

Figure 18 shows the values of the local angle and norm of the op-
tical flow for each square of Fig. 17. The error is computed using the
averaged squared deviation. The standard deviation for the norm of
the optical flow in square 4 has a higher value due to the low number
of vectors inside this region.



28 micro-circulation model

Figure 18: On the left, the mean angle value of the optical flow inside each
square. On the right, the mean norm of the optical flow inside
each square.

2.3 density of particles

Visual tracking using event-based sensors has been widely developed
for macro-applications in broad daylight [47, 54]. A moving object
generates a cloud of events that represent the spatial distribution of
the observed shape. If we assume that these events are normally dis-
tributed, we can mathematically represent the cloud of events by a
bivariate normal distribution β(µ,σ) [27], where µ is the current lo-
cation of the tracker and σ the covariance matrix that determines the
size and orientation of the tracker:

σ(t) =

[
σ2x(t) σxy(t)

σxy(t) σ2y(t)

]
(10)

Every incoming event will affect the gaussian tracker’s shape and
position so that it best fits the event cloud’s spatial distribution. When
an event occurs, the probability that it belongs to an existing tracker
i is given by:

Pi(p) =
1

2π
|βi|

− 1
2 e−

1
2 (p−µi)Tβ−1(p−µi) (11)

with p = (x,y)T the spatial position of the event. When the proba-
bility is above a predefined threshold, the tracker with the highest
probabilty updates its location (µ) as follows:

µ = αµ+ (1−α)p (12)
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where α is an update factor set experimentally according to the mean
number of events of a considered scene. We define the activity A of a
tracker as:

Ai(t) =

{
Ai(t−∆t)e

−∆t
δ + Pi(p), if e(p, t) ∈ trackeri

Ai(t−∆t)e
−∆t
δ , otherwise.

(13)

with ∆t the time difference between current and previous events and
δ the temporal activity decrease. A tracker can be in either of these
three states (as shown on Figure.19):

• inactive : its activity is low and the tracker is not visible

• active : its activity is high, the Gaussian blob is following an
object and is visible

• paused : its activity is not high enough to appear visible, how-
ever the tracker updates its position with incoming events

Figure 19: Activation scheme of trackers. (A) A tracker is initialized with
a set of parameters. (B) It starts following an event cloud. (C) If
its activity is sufficient, the tracker becomes active and switches
to the visible layer. (C) The tracker follows the event cloud. (D)
When the activity decreases, the tracker is switched back to the
hidden layer. (E) It still updates its position according to the event
cloud. Depending on the activity, the tracker may become visible
again (F) or is deleted (G).
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The Gaussian blob tracking algorithm allows the estimation of a
particle density and therefore counting the number of particles in a
solution (Fig. 20).

Figure 20: On the left, Gaussian blob tracking for microparticles over a time
window of 20ms. The axes are the x and y plane. The black and
white dots represent negative and positive events respectively. On
the right are zooms on two particles. The blue circles represent
the active blobs which are tracking microspheres.

We used solutions with different concentrations varying from 9 000

particles/ml to 28 000 particles/ml. The flow rate and the number
of particles per ml are known, and we assume that, given the lami-
nar flow, the particles are evenly distributed inside the channel of the
microfluidic chip. We can therefore compute the theoretical concen-
tration in microparticles within our coherence volume which will be
our ground truth. Figure 21 shows results for five different concen-
trations. For each experiment the flow is set to 2ml/h, representing a
movement of 3mm/s at a depth of 70µm.

Since we know that particles move in the same direction, we can
count them using the number of active trackers that cross virtual ver-
tical lines in the field of view. This operation is performed over ten
lines across our image, giving a robust estimate of the number of par-
ticles. For high concentrations of microspheres i.e. more than 30 000

particles/ml, we tend to miss particles when they overlap with one
another, and only one tracker becomes active for the pair. We have a
difference of 10% or more with the ground truth.

It is important to emphasize that the chosen speed of 3mm/s at
around 70µm corresponds to the natural velocity of blood cells in-
side capillaries. This is the target application of this work as conven-
tional cameras cannot estimate velocities beyond 1.8mm/s for single
particles at a microscopic level even with offline processing.
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Figure 21: Density of -particles measured for different concentrations. In
blue is the measured density of particles per ml. The red lines
represent the error to the true value.

2.4 influence of depth and computational cost

The maximum penetration depth of the FF-OCT setup varies between
200 to 1000µm , depending on the sample (specifications provided by
LLTech SAS). The resolution degrades with depth for imaging in scat-
tering media because of the coherent detection of multiply scattered
light. This is a common phenomenon in all OCT imaging systems.
The interferometric signal becomes weaker as the imaging depth in-
creases. The value of τ, previously introduced in section 2.2, defines
how sensitive to contrast differences the pixels are. When the signal
becomes weaker, the value of τ has to decrease in order to gener-
ate events when smaller light variations occur. As a consequence, we
raise the SNR and results divert from the ground-truth. On Fig. 22 is
shown the mean error of our measurements regarding the theoretical
value for the flow (blue line) and the density of particles (red line)
for a set of 10 recordings at the depths of 0, 50, 100 and 150 µm in a
scattering medium (water with a drop of milk). We observe that we
have an error above 10% when imaging deeper than 120µm for our
experiments. However, our aim is to image blood capillaries which
can be found within the first 100µm of the human tissues.

We set a time interval ∆tb containing a certain number of events.
Let ∆tc be the computational time required to process our algorithms
using the content of the first time interval. We can set an efficiency
ratio r such as: r = ∆tc

∆tb
. If r < 1 the computation can be performed

in real time. We cut all the data from the experiments at 4ml/h into
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Figure 22: Error regarding the reference value for the optical flow (blue line)
and the particle density (red line) depending on the imaging
depth. For depths greater than 120µm this error exceeds 10% of
the reference value.

time bins of ∆tb = 100ms. On Fig. 23 is shown in blue the number of
events per bin and in red the corresponding efficiency ratio.

Figure 23: Top: in blue is the number of event per bin for the experimental
data at 4ml/h. Bottom: in red is the computational ratio r. The
maximum value is 0.45 and the mean value is 0.23 indicating a
real time computation.

On average, the mean number of events per bin of 100ms is 7440,
and the efficiency ratio is equal to 0.231, meaning that we can process
data on average 4.3 times faster than real time. From this data, we es-
timate the mean processing time for a single event : 3.1µs. This gives
a theoretical upper limit for online processing of 32000 events per bin
of 100ms beyond which the information cannot be processed in real
time anymore. However, this number of events per bin is way above
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the typical values obtained with our recordings.

The work presented here has been supported by the European Re-
search Council Helmholtz (ERC) (610 110, Synergy grant), and results
have been published in 2017 in Optics Express [7].

SUMMARY
The theory for red blood cell study has now been fully established
with the association of an event-based device and a medical imag-
ing technique. We have just shown that the combination of FF-OCT
with an event-based sensor allows the capture of fast-moving objects
with high accuracy at a depth up to 120µm. The low data rate allows
tracking and motion estimation in real time at the native resolution
of the sensor at low computational costs for flows as high as 6.5ml/h
and velocities of 4.5mm/s, going beyond existing limitations of the
FF-OCT and other medical imaging techniques for this application.
Currently, the camera’s sensitivity to low contrasts limits the observa-
tion of smaller structures of interest such as red blood cells in-vivo.

Indeed when the particles exceed 6.5mm/s, the change of illumina-
tion is not high enough to trigger an event, although the limit in the
temporal resolution of the camera is not reached. The useful signal
is drowned in the noise, and fine-tuning of the detection threshold is
not possible anymore to retrieve only light variations from the inter-
ferometric signal.

The two possible solutions are the following: increase the signal or
reduce the noise.

• Increasing the signal would require a stronger illumination. This
is not a viable solution as biological samples can suffer from
photo-bleaching or heat up and deteriorate due to a powerful
light source.

• Reducing the noise means reducing the number of random pix-
els that trigger events when no light variations occur. The main
source of noise with an event-based camera is thermal noise.

In the next part of this thesis, we will detail the development of a
new type of asynchronous sensors, more sensitive to low contrasts. In
a first part, we will take a look at the Helmtest camera which was de-
veloped with a cooling system. The aim of this prototype is to assess
whether or not thermal noise has a significant impact on the signal
and needs to be reduced. In the meantime, we realised that a com-
plete FFOCT setup is bulky and cannot be used in daily routines at
the patients’ bedside for monitoring. We developed a compact hand-
held device to study hemodynamics related to the micro-circulation.
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D E V E L O P M E N T O F A C O O L E D E V E N T- B A S E D
S E N S O R

3.1 low light helmtest camera

The primary source of noise in conventional cameras is thermal noise,
also known as Johnson-Nyquist noise. It represents the electronic arti-
facts generated by the agitation of the charge carriers. As a result, the
electrons within the photo-diode are more likely to cross the energy
barrier without the help of any energy from the photons. These elec-
trons are responsible for noise events. A reduction of the temperature
forces electrons to cross their energy barrier only when a sufficient
amount of energy from the photons is transmitted. For this reason,
high-speed frame-based cameras are often cooled down in order to
reduce this agitation and increase their signal to noise ratio. We will
investigate in this chapter if the same behavior occurs with event-
based sensors and highlight, if there is any, the benefits of using a
cooling system for noise reduction.

The Helmtest camera shown on Fig.24.a and Fig.24.b is an asyn-
chronous camera composed of a 62×62 array of fully independent
pixels.

Figure 24: a) Helmtest camera, b) photography of the Helmtest chip on the
PCB, c) electronic detail of the pixel, d) layout of the low light
pixel.
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These pixels were designed in a similar fashion to the ATIS cam-
era with an increased fill factor. Each one is a change detector unit
with a 60µm× 60µm pitch. While the photosensitive area previously
occupied 11% of the pixel’s surface, it is now 60%.

Each pixel has a change detector unit. This unit, shown on Fig.24.d,
is a fast continuous logarithmic photo-receptor with asynchronous
event-driven signal processing. Its working principle is similar to the
ATIS camera: a change of illuminance results in a change of the photo-
current. This photo-current Iph is continuously monitored and sent
to two voltage comparators which generate ON and OFF events when
there is a significant increase or decrease in the photo-current.

For the characterization of this sensor we used a modular integrat-
ing sphere from Thorlabs shown on Fig.25. The light source is a warm
white 570mW LED which spectrum ranges from 400nm to 800nm as
shown on Fig.26. The homogeneity of the light pattern is guaran-
teed at 2% and the output light power is controlled using a Thorlabs
power-meter.

Figure 25: Modular integrating
sphere from Thorlabs.

Figure 26: Spectrum of the warm
white LED used for the
experiments.

Low light conditions are often encountered in microscopy, which is
the reason why we developed this new sensor. We use for the charac-
terization of the camera two different illuminances:

• A low illumination of 2lux.

• A high illumination of 10lux.

These two levels of light are the lowest values at the sensor plan in re-
spectively reflection and transmission microscopy that we measured
in our setups.

We ensure that the sensor is well illuminated and at a fixed distance
from the integrating sphere. The LED is supplied with DC current
in order to avoid any blinking artifact, and its power is controlled
with an external generator that sends rectangular type signals at a
frequency of 200Hz. In this respect, we can precisely control the time
variations of the illuminance.
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We study here the event-probability after a homogeneous bright-
ness change. The event probability P(evt) is defined as the ratio be-
tween the number of times a pixel was triggered during a set of sim-
ulations Ntrigger and the number of simulations Nsimu:

P(evt) =
Ntrigger

Nsimu
(14)

It may happen that some pixel generate more events than they
should for instance when they are defective. In this case, the probabil-
ity is often much higher than 1. The frequency at which the change
of illuminance occur is 200Hz, therefore, the frequency of the polarity
inversion in a stream of events for one pixel should not exceed this
value (ON events for the increase of illuminance followed by OFF
events). In practice, due to noise, this value may exceed this upper
limit. However, we assume that the pixels which record inversions
of polarity more than two times above the upper limit over time are
defective. Those faulty units will be discarded for this study.

We define the contrast variation Θ as the % of illuminance change
with respect to an initial background. In other words:

Θ =
|I2 − I1|

I1
(15)

with I1 the background illuminance and I2 the illuminance after
the change of contrast. Again, this contrast ranges between 0 when
the light level remains the same to 1 when the scene is completely
dark or when the new illuminance is twice as bright (maximum value
in this study). We noticed consistent results no matter if the varia-
tions are an increase or decrease of the base light level. The results
presented in this paper are for an increase of the light level.

For the Atis camera, the event probability vs. contrast variation has
been measured in [49] at different light levels including 2lux and 10

lux as shown on Figure.27.
In this study, we set the detection threshold τ previously intro-

duced in Chapter.2 to its minimum value in order to detect the small-
est contrast variations possible. The value of n enables the detection
of contrast variations down to 10%. Any further reduction of this
threshold results experimentally in a massive increase of the noise
and a complete loss of the signal no matter if the cooling system is on
or off. This is due to the physical parameters of the electronics used
in the sensor.

Plotting the event probability vs. contrast variation would result
in an ideal noise-free world in a step function: 0% to 100% with an
infinite slope when the minimum detection threshold is reached. It
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Figure 27: Response of the sensor in % for the ATIS camera for different
variations of contrast. This image is taken from [49]

turns out that the real data are described by an "S-shaped" curve due
to noise. The steeper is the slope, the closer it is to a noise-free ac-
quisition. On Figure.27 we see that the slope of the curve decreases
with the background light level. In other words, when reaching low
light levels, the recordings are more noise polluted. We will investi-
gate now how we can reduce this noise when recording variations
of contrast by using the Helmtest camera and a Peltier based cooling
system.

3.2 description of the cooling system

In order to reduce thermal noise, we add at the back of the sensor a
cooling system with two Peltier coolers, as seen of Figure.28, together
with a radiator and a fan for convection. The Peltiers are stacked
together using thermal glue, and a hole in the FPGA is enabling direct
contact between the sensor and the coolers.

The Peltier effect is characterized by the creation of a cooling/heat-
ing effect at the junction of two materials when an electrical current
flows through a circuit consisting of two different semiconductors.
The Peltier effect can be considered as a counterpart to the Seebeck
effect: in a closed thermoelectric circuit, the Seebeck effect will drive
a current. This current will in turn (by the Peltier effect) systemat-
ically transfers heat from the hot to the cold junction as shown on
Figure.29. By creating a current flow with an external power source,
one can force displacement of the charge carriers within the semi-
conductors and therefore control the temperature difference between
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Figure 28: On the left is a stack of 2 Peltiers coolers mounted with a radiator
in order to maximize heat dissipation. On the right is the system
mounted on the PCB with a small fan to force convection.

the two surfaces. The greater is the current, the more critical the heat
transfer is. This effect is increased when two different semiconductors
are used.

Figure 29: Physical principal of the Peltier effect where an external source
of power forces a current flow in a closed thermoelectric circuit
thus generating a heat transfer from the cold side to the hot side.

Although the temperature difference generated by the Peltier effect
can be computed other phenomenon such as Joule heating or thermal
gradient may influence the absolute value on the cold or hot side. In
order to be accurate, we will measure for our experiments the tem-
perature with a probe located at the junction between the sensor and
the Peltier.

In order to look at the effect of the cooling system on the pixels’
responses, we need to investigate in a first time if there is an optimal
cooling temperature. It is characterized by the following points:

• An improvement of the signal to noise ratio thanks to the reduc-
tion of thermal noise.
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• The absence of condensation on our device, that is to say, a
cooling temperature above the dew point.

To determine the dew point, we need to measure the relative hu-
midity around the sensor. We use for that a psychrometer system
where two thermometers (dry and wet) measure the room tempera-
ture. The disparity between the temperatures measured gives an es-
timate of the relative humidity. Here, the temperature with the dry
thermometer is 20.1◦ while it is 10.4◦ with its wet counterpart. From
a standard psychrometric chart, this indicates a relative humidity of
28% [22].

We now compute the dew point temperature Tr as follow:

Tr =
bα(T ,RH)
a−α(T ,RH)

(16)

with b = 237, 7◦, a = 17, 27◦ and α a function of the room tempera-
ture T and the relative humidity RH defined by:

α(T ,RH) =
aT

b+ T
+ ln(RH) (17)

The dew point is here 1.1◦ which sets the limit for the cooling sys-
tem beyond which condensation will start to appear on the sensor.

The best cooling temperature is when the signal to noise ratio is
the greatest. Let’s measure this signal to noise ratio (SNR) value for
a range of power supplies to the Peltier coolers from 0W to 16W.
We define the SNR as the ratio between the number of evt/µs of the
global signal Nsignal divided by the noise level Nnoise:

SNR =
Nsignal

Nnoise
(18)

The noise level Nnoise is the number of events generated each
micro-second without any signal, in other words without light varia-
tions, in the scene. We first measure this noise under low illumination
and then observe a fast rotating fidget spinner under the same light
conditions. The speed rotation of the fidget spinner is externally mon-
itored with a motor in order to be identical during each experiment
and the temperature at the back of the sensor is controlled with a
probe. Between each acquisition, the current supply of the Peltier sys-
tem is adjusted and we wait for the temperature to stabilize before
recording. On Fig.30 are shown the values of the SNR and the sensor
temperature according to the power supply.

We see that the temperature decreases with the power supply up to
9W after which it rises again. This is due to a lack of heat dissipation
in our system. The hot side of the Peltier coolers prevents any further
reduction of the local temperature. As expected the SNR is maximum
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Figure 30: In orange is the temperature at the sensor plan in degrees, de-
pending on the power supply in watts. The green curve is the
corresponding SNR and the blue curve delimits the dew point.

right before we reached the dew point. We will therefore cool down
the sensor to 1.5◦ when performing experiments with the cooling
system.

With the example of the fidget spinner, we have at 1.5◦ a noise
level of 0.57evt/µs while it is 0.87evt/µs when the cooling system is
off. This gives a 30% attenuation of the noise level. With the activation
of the Peltier coolers, the SNR was raised by a factor of 1.3.

Let us now focus on the effect of the cooling system on noise reduc-
tion alone for different levels of illuminance. On Table.1 we see the
results for both a low and higher illuminance. In both cases, Nnoise
drops by 30% with the activation of the Peltier coolers.

Table 1: Effect of the cooling system on the number of noise events.

Low illuminance Higher illuminance

Regular Cooled Regular Cooled

Nnoise 0.18 0.125 0.082 0.058

Std 8% 9% 9% 12%

In another experiment we investigate the effect of cooling the sen-
sor on signal detection for a set of contrast variations. As previously
done, we study the event probability for the Helmtest camera under
a low and higher illuminations with variations of contrast ranging
from 0% to 50%. The results are displayed on Fig.31 and Fig.32 with
a smoothing spline fitting curve model.
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Figure 31: Event probability vs. stimulus contrast for a low level of light.

Figure 32: Event probability vs. stimulus contrast for a high level of light.

Without the cooling system, we see that the "S-shaped" curves have
a slight slope meaning that the recordings are noise polluted. When
the sensor is cooled down, the event probability is raised, and the
detection function becomes closer to a step function. We gain in de-
tection sensitivity by cooling the sensor.

3.3 experimental results

We now test the effect of the cooling system on a practical applica-
tion of event-based optical flow computation, which is often used in
microscopy to estimate particle velocity and direction of motion.

We record for this experiment a rotating fan, shown on Fig.33, and
compute the optical flow angle and norm [6] at the upper edge of
the blade under low light conditions. On Fig.36 is the optical flow
computed at 275 rotations per minute (RPM) with the cooling system
on and off. The color of the flow represents the value of the vector’s
angle: from dark blue for 0 degrees to yellow, 360 degrees. At first
glance, we clearly see that the optical flow seems less disrupted and



3.3 experimental results 45

Figure 33: Setup used to compute the optical flow on a rotating fan under
a low illumination. The output of the integrating sphere is moni-
tored with a Thorlabs power-meter.

more complete on the recording with the cooling system on. We now
measure both the norm and angle of the optical flow at the upper
edge of the blade for a range of 275 RPM to 1730 RPM. Results are
shown on Fig.34 and Fig.35.

The yellow data correspond to the reference value for the norm
and angle of the optical flow. The dark red data correspond to the
recordings without the cooling system, and the dark blue data with
the cooling system activated. Beyond 625 RPM and without the cool-
ing system, the signal is too weak. Moreover, unlike for the angle
value, the norm of the optical flow is underestimated when no cool-
ing is activated. Once the Peltier coolers are on, the SNR increases
and the measure of the optical flow is improved. Above 1730 RPM
the norm of the optical flow overshoots and diverts from the ground-
truth. At this rate, the number of events used to compute the flow is
drastically reduced, and as expected we lose precision. However, we
gained a factor 3 in the detection sensitivity by merely cooling down
the sensor.
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Figure 34: Measure of the angle of the optical flow vector for different rotat-
ing speeds. The dark blue data are results with the cooling system
and the dark red ones without. The yellow line corresponds to the
reference value.

Figure 35: Computation of the norm of the optical flow with (dark blue)
and without (dark red) the cooling system. The yellow data cor-
respond to the reference value.

Additional experiments show that results are consistent on other
regions of the optical flow map.
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Figure 36: Representation of the fan’s optical flow at 275 RPM with both the
cooling system on (top section) and off (bottom section). Areas 1,
2 and 3 are three zooms with at the bottom the mean optical flow
for the widow, superimposed with the ground-truth in red. The
colors correspond to the angle of the optical flow, from dark blue
for 0 degrees to yellow for 360 degrees. N err. is the error of the
norm from the ground-truth and A err. the error on the angle of
the flow.

Let us now look at the effect of cooling the sensor on another appli-
cation geared toward microscopy. We use for that a reflection based
microscope to observe small particles floating in water. Flow is in-
duced inside a microfluidic chip with a syringe as shown on Figure.37.
We tune the light power to be 2 lux at the sensor plane and use an
event-based blob tracking algorithm similar to the one described in
[27]. Any object moving in the field of view generates a cloud of
events that can be represented by a bivariate normal distribution, in
other words a blob, that updates its position with each new event.
Each micro-particle is assigned with a blob tracker (in green on Fig-
ure.38), provided that enough events are generated. This enables us
to track and count the number of particles Nparticule that cross the
field of view. For that, we increment a counter when the center of a
tracker crosses a virtual line (in red on Figure.38).

We can fine-tune the parameters of the algorithm in order to as-
sociate a tracker when very few events are generated, however we
become very sensitive to noise. Indeed many trackers are falsely cre-
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Figure 37: Event probability vs. stimulus contrast for a low level of light.

ated due to noise events, and the number of actual particles is over-
estimated. This limitation sets the lower boundary for the fine tuning
of the algorithm. As a result, for high particle velocities and without
the cooling system, no trackers are generated, and we miss objects
that cross the field of view. Results are shown on Table.2 for a slow
velocity (flow of 3ml/h), a medium velocity (flow of 9ml/h) and a
high velocity (flow of 15ml/h).

Figure 38: Event probability vs. stimulus contrast for a low level of light.

Table 2: Effect of the cooling system on particle counting

Slow oooo Mediumoooooo Fastooo

Hot Cold Hot Cold Hot Cold

Nparticule 250 243 430 802 320 1040

Error 3% 4% 43% 8% 75% 17%
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When the cooling system is activated, the noise is reduced. Parti-
cles are not generating more events, but we can lower the number
of minimum events to create a tracker without being noise polluted.
Counting particles flowing with higher velocities is now possible.

3.4 discussion and further improvements

It was a crucial step to work on a new version of the sensor which
does not require high levels of light in order to perform well. In-
deed, such an illuminance cannot always be reached especially in
microscopy and biology where side effects such as photo-bleaching
must be avoided. The Helmtest event-based camera we presented
here shows a significant improvement in low light conditions and
with low contrast variations. That makes it a potential candidate for
any medical imaging device with a low light input source, like for
instance reflection based microscopes. We showed with a computa-
tion of the optical flow and with the use of a tracking algorithm that
cooling the sensor also significantly increases our detection capacity.

However a full calibration of a camera would require more exten-
sive work. Indeed, the results presented here have been obtained with
a given set of parameters which were of interest for this thesis. In par-
ticular, the camera’s internal electrical components are tuned via a
set of analogical values called "bias". They correspond to a set of volt-
age values that set the physical limits of the electronics. Depending
on their values, properties of the pixels such as the detection thresh-
old, the latency, the refractory period and many others may change.
For our experiments, we have been working with a fixed set of bias
with the hypothesis that the camera’s parameters would remain un-
changed when the temperature fluctuates. In order to gain in accu-
racy, a measure of those parameters with and without the cooling
system activated would be necessary.

To sum up, thermal noise can be reduced with a cooling system in
event-based sensors. The version we designed showed an increase of
the SNR when the chip was cooled down which enabled a finer tun-
ing of the algorithms. Yet, this camera remains a university project
and as such is limited compared to firm made devices. The pixel
pitch, for instance, is quite large compared to the state of the art asyn-
chronous sensors. This limits the observation of small structures. The
handheld microcirculation device, which will presented in the next
chapter, has a magnification of ×20 and a minimum pixel pitch of
30µm is necessary.
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The use of a bulky microscope such as a FFOCT device is not a viable
solution for day-to-day monitoring of the micro-circulation. We have
used this methodology to develop a first proof of concept, yet we now
need to move on to a more compact system for our target application:
observing the microcirculation at the patient’s bedside. Twenty years
ago, Groner et al. introduced Orthogonal Polarization Spectral (OPS)
imaging, allowing the development of a hand-held microscope to
study blood capillaries [19]. This opened new perspectives in the field
of micro-circulation study in care facilities, especially regarding the
monitoring of diseases and therapy during surgery. Moreover, several
studies have shown the benefits of sub-lingual micro-circulation mon-
itoring during sepsis, shock and resuscitation [57, 69]. It was shown
that the blood flow is mainly altered within the smallest capillaries,
making their study of the utmost importance [34].

The principle of OPS imaging relies on the polarized illumination
of a biological sample. The back-scattered light goes through an an-
alyzer (polarizer orthogonal to the polarization of the incident light)
before being captured by the camera. Any direct reflection is there-
fore filtered as the polarization state is not altered. On the opposite,
the light that has been diffracted by the sample gets depolarized and
passes through the analyzer. This process allows the observation of
subsurface structures.

The main drawback of this method is the significant attenuation of
light power due to the analyzer which cuts of most of the signal. The
weak amount of light captured by the camera makes this imaging
technique more subject to motion blur induced by the movements of
the device, of the tissues and of the flow of red blood cells. In larger
vessels, the granular aspect of the blood flow is harder to observe
making it increasingly difficult to estimate accurate velocities.

In the light of these limitations, a novel imaging modality known as
Sidestream Dark Field (SDF) imaging was developed by Goeghart et
al. in order to study sub-lingual micro-circulation [18]. We used this
imaging modality to develop our hand-held micro-circulation device.
The target is to develop a complete setup accessible at the patient’s
bedside which can be operated by any professional from the medical
world [63].

51
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4.1 sidestream dark field microscopy

In SDF imaging, the incident light forms a ring-shape around the area
of interest. LEDs are arranged in a circle all around the optical sys-
tem and shine on the outer boundaries of the region of interest as
seen on Figure.39. The light will diffuse inside tissues and illuminate
the sample thanks to the principle of diffraction. In this respect, the
lenses that capture light back-scattered by the biological sample are
isolated from any specular (mirror-like) reflection.

Figure 39: Principle of Sidestream Dark Field imaging. Left: Ring-shaped
light source. Right: Principle of illumination on a biological sam-
ple. Light diffuses inside the tissues and is back-scattered to the
camera.

The LEDs emit at a central wavelength of 530nm. This ensures
a sufficient optical absorption by the (de)oxyhemoglobin-containing
red blood cells in contrast with the rest of the tissue embedding the
micro-circulation. This creates contrast as the RBCs appear darker
than the background.

4.2 optical setup

The optical setup used in our device is based on the conventional
reflection-based optical microscope scheme. Its development was partly
done by Christophe Leroy-Dos Santos for the illumination part of the
system as well as the 3D design of the casing. The sample is illumi-
nated by three LEDs emitting at a central wavelength of 530nm. A
bundle of 24 optical fibers (in green on Figure.40) are arranged in a
circle in a similar fashion as what is shown on Figure.39. This pro-
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vides a ring-shape illumination on the tissues. To ensure maximum
throughput of light, an elliptic mirror (in gray on Figure.40) is embed-
ded in the terminal part of the micro-circulation device. Its role is to
focus a maximum of light rays onto the sample.

The optical alignment that captures the back-scattered light is com-
posed of the following components:

• A glass cover sapphire window located at the object plane and
represented in purple on Figure.40. This window will be placed
directly in contact with the tissues and separates the sample
from the rest of the optical system.

• A molded aspheric lens of focal length 5mm, represented in
blue on Figure.40.This lens acts as the objective-lens in a conven-
tional optical microscope scheme. Its numerical aperture is 0.15
and has an anti-reflective coated.

• An achromatic lens of focal length 100mm, represented in or-
ange on Figure.40. This lens is our eyepiece-lens and will create
an image at the sensor plane.

• A Varioptic liquid lens that enables auto-focusing, represented
in yellow on Figure.40. The working principle, as well as focus-
ing properties of this component, will be further detailed in the
next chapter.

Figure 40: Drawing of the micro-circulation device with its optical setup. In
green is the bundle of optical fibers. In gray is the elliptic mirror
that ensures a proper annular illumination. In purple is the cover
glass window. In blue is the objective lens. In red is the eyepiece
lens. In yellow is the liquid lens.
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The optical system was initially designed with Zemax in order to
evaluate its performances in term of spatial resolution, aberrations
and estimate other physical properties such as the zoom. Both models
for the lenses and the glass window were provided by the manufac-
turing company, and we approximated the liquid lens by two liquids
enclosed between two cover windows. The two liquids are immisci-
ble and have different refractive index n. The first one is a non-polar
hydrophobic oil for which noil = 1.477 and the second is a polar wa-
ter solution for which nwater = 1.388. The optical indexes of all the
components were provided by Varioptic. In the real model, both liq-
uids have the same density in order to avoid any deformation of the
meniscus due to the gravity. More details on the working principle of
the liquid lens will be given in the next chapter. The total magnifica-
tion is ×20.

We will now have a look at several parameters to characterize our
optical system:

• The Point Spread Function (PSF) : it is the irradiance distribu-
tion that results from a single point source in object space. The
PSF gives an estimate of the spatial resolution of a system.

• The Geometric Encircled Energy (GEE) : it corresponds to the
light power distribution when moving away from the focus
point.

• The Optical Path Difference (OPD) Fan and the Ray Aberration
Fan : OPD is a plot of the optical path difference as a function
of the pupil coordinate, and Ray fan is a plot of the aberrations
as a function of the pupil coordinate.

In the real world, although an object is a point, its image formed
through an optical system is never a point as well. The two reasons
for this are firstly the aberrations of the system which spread the im-
age on a finite area and secondly the diffraction effects which also
spread the image. Our setup is not diffraction limited, meaning that
the image of a point is larger than the Airy disk reference that would
be formed by an ideal aberration-free system. Here, mainly the aber-
rations are responsible for the formation of the image. We therefore
compute the geometric PSF: many rays from a single point source in
object space are launched, go through the system and finally the (x,y)
coordinates of all the relative rays are plotted. On Figure.41 is shown
the PSF for two points in the object space. The first one is on the opti-
cal axis, the second is off-axis, 0.13mm away both on the x and y axis,
which corresponds to the limit of our field of view.

On the optical axis, we see that the geometrical radius is 16.1µm
meaning that an object point will roughly give a point as an image
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Figure 41: Point Spread Function of two object points: on the left is a point
on the optical axis, on the right is an object 0.13mm along the
x and y axis. The system is not diffraction limited as the PSF is
larger than the Airy disk (black circle).

(the pixel pitch is 11µm). At the edges of the field of view, the geo-
metrical radius increases to 61.1µm, and a blurry spot will be formed.
Small structures will be harder to image the further we move away
from the optical axis.

The GEE is shown on Figure.42. The blue curve is for the object
on the optical axis and the green curve for the object off-axis. For the
object on axis, 70% of the light power will be focused on a single pixel
and 95% of the energy will be contained within the direct neighbor
pixels. For an object off axis, the total light power will be distributed
over a region of 5× 5 pixels. This result is in line with the PSF shown
in the previous section.

The OPD fan is a plot in both the x and y directions of the optical
path difference as a function of the pupil coordinate. In a perfect op-
tical system, the optical path of the wavefront is identical to that of
an aberration-free spherical wavefront in the exit pupil. The OPD fan
for our system is shown on Figure.43.
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Figure 42: Fraction of enclosed energy with respect to the radius from the
centroid. The blue curves correspond to the image on the optical
axis and the green curve to the image off axis.

Figure 43: Optical path difference: on the left, on axis, and on the right, off
axis.

Let us finally look at the ray fan. Generally, when a ray passes
through the optical system, its point of intersection in the image field
falls on some small but nonzero distance away from the chief ray.
Once again, in a perfect optical system, the ray aberrations should be
zero across the pupil. We show on Figure.44 the ray fan for an object
on axis and an object off axis.
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Figure 44: Ray fan: on the left on axis and on the right off axis.

When fully assembled with the event-based camera, the system
looks like on Figure.45 and Figure.46.

Figure 45: Micro-circulation prototype for sub-lingual capillaries imaging.
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Figure 46: Exploded view of the micro-circulation prototype for sub-lingual
capillaries imaging. The colors of the optical components are the
following: purple for the glass window, blue for the objective lens,
green for the optical fiber bundle, orange for the eyepiece lens
and yellow for the liquid lens.

4.3 autofocus with the liquid lens

The liquid lens previously described in this chapter helps to reduce
defocus. Defocus is the principal optical aberration in our optical
setup when looking at capillaries located at different depths. Indeed,
blood capillaries inside the mouth are located within the first few
hundred microns of the tissues’ mucous membrane. Depending on
the region of interest, our system needs to adjust itself to the proper
imaging depth in order to have a sharp image.
There are two methods to tune the focus: either change the focal
length or the distance between the camera and the object. Here we
use a tunable liquid lens as moving the camera would create motion
artifacts. Based on collaborative work with G. Haessig in "A Spiking
Neural Network Model of Depth from Defocus for Event-based Neuromor-
phic Vision" which is currently pending publication, we adapted the
algorithm to perform auto-focus. The principle relies on the assump-
tion that sharpness is reached when the size of the blur spot is mini-
mal. The advantage of our method lies in the simplicity of the focus
detection, while conventional frame recording methods use focus de-
tection algorithms based on auto-correlation or convolution such as
Log-histogram, variance or energy of the image [48, 70, 74].
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When an object is located before or after the focus point, it will
form a blurry image of size s. Geometrical optic relations (Figure 47)
give :

s =
f2

N
× |z− d|

(d− f)z
(19)

with N the numerical aperture of the system, f the focal length, d
the position of the point in focus and z the position of the object. N is
defined as the ratio of the focal length divided by the aperture of the
system.

Figure 47: Top: Stigmatic optical system. Bottom: Principle of depth from
defocus.

A real optical system has a finite aperture size, limited by the di-
mensions of the optics. The spatial resolution is also limited by the
pixel size below which it is not possible to distinguish focus. This rep-
resents the circle of confusion, C, of the camera as shown on Figure
47. As a consequence, a range of several points will form an image
"in focus" (the image spot size is smaller than the circle of confusion)
on the detector for a given focal length. This range is called depth of
field, and the two limiting points are the values of zclose and zfar for
which s = C, i.e.

zclose/far =
d

1± CN(d−f)
f2

(20)
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The depth of field is then given by computing the difference be-
tween zclose and zfar:

DoF = |zf− zc| = 2× CNd(d− f)

f2 −
(CN(d−f))2

f2

(21)

The size of the blur spot of an out of focus object grows with the
distance respectively to the depth of field (DoF) zone. In other words,
when the object is in focus, the image spot will have its minimum size
and the contrast will be maximum (sharp edges). When we sweep the
focal length of the liquid lens over its dynamic range, objects will suc-
cessively appear out of focus, then in focus and out of focus again.
The blurry spot around the object will therefore shrink until the ob-
ject is sharp and grow again. Our aim is here to stop when the object
is precisely in focus.

We study the size modification of a blur spot when an object is in
or out of focus. Let us consider a small luminous object that will suc-
cessively be out of focus, in focus and out of focus again. We record
over time local changes of the luminance as shown on Figure 48. The
size s(t) of the defocus blur at the sensor plane will vary according
to the equation 19. Due to the aberrations, diffraction phenomenon
and non-idealities of the lenses, a Gaussian point spread function is
commonly used to describe the defocus blur spot [37]. The spread
parameter σ(t) is proportional to the diameter s(t) of the ideal blur
circle, i.e. σ(t) = αs(t). The resulting intensity onto the sensor, at a
pixel (xi,yi) is:

Ii,j(x,y, t) = A. exp
(
−

r2i
2σ(t)2

)
. (22)

with r2i = (x− xi)
2+(y−yi)

2 and A the amplitude. At the pixel level
the evolution of the intensity will depend on how close to the object
it is located. As a function of time, the standard deviation in I can
be used to determine the time t at which an event is triggered by the
pixel, assuming σ is invertible i.e.:

t = σ−1

(√
r2i

2
(
logA− log Ii,j(x,y, t)

)) (23)

We are dropping subscripts (i, j) for readability purpose as what
we are describing is true for any pixel in the sensor. Hence, given the
intensity at an arbitrary time t0, if the variations of its log reach some
threshold ±n, then:

log
I(x,y, t)
I(x,y, t0)

= ±n and log I(x,y, t) = log I(x,y, t0)±n. (24)
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Figure 48: (a) Successive snapshots of a sphere when sweeping the focus
range. The red line represents a line of pixels in the y-direction.
(b) Variations of the intensity profile along the red y-axis on the
above snapshots. (c) Events corresponding to the sweeping of the
focus range, in black are OFF events and in white ON events.
(d) Representation of spikes among a single pixel, according to
the driving current of the liquid lens. Here, the focus point is
estimated to be at 22.6cm from the sensor.

This gives the time when an event is emitted according to (23):

t = σ−1

(√
r2

2(logA− log I0 ∓n)

)
(25)

The sign of n is chosen according to the polarity of the spiking
event, itself related to the sign of the intensity’s derivative:

sign(n) = sign(p) = sign

(
dI

dt

)
(26)

When the derivative is positive the polarity will be +1 (ON event)
and -1 when negative (OFF event). (25) is telling us when an event
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will be emitted w.r.t. n and to a reference event measured at t0. As
we reach focus, the value of σ will be constant for small duration
of time, therefore the derivative of I, dIdt is equal to 0, followed by a
polarity change as shown in Fig.48(c) and expressed in the temporal
domain in Fig.48(d) around 50ms. The detection of focus can then be
determined by detecting the time tf of the polarity change that can
be estimated from the average timing between the consecutive ON
and OFF events.

We now know the exact time of focus which corresponds to a fixed
value for the focal length of the liquid lens.

We use in our system a focus-tunable liquid lens with a 3.9 mm
clear aperture and focus range of −5 to 15 mm. The electrically con-
trollable lens has an electromagnetic actuator which changes the shape
of the lens, resulting in a change of the focal length as shown on Fig-
ure.49. The physical principle relies on the modification of the surface
tension of the enclosed liquids, depending on the amplitude of the
voltage applied.

Figure 49: Working principle of the liquid lens. The voltage difference in-
duced by the actuator forces the shape of the water/oil diopter
to change.

The actuator is current controlled, designed such as the focal length
fll is inversely proportional to the current:

Ic(t) = γ/fll(t), (27)
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with γ fixed. We control the lens with a triangular signal Ic(t) and
since we know the time of focus tf we can get back to the value of
the current and set the proper focal length to be in focus.

We test our method by searching the optimal focus when observing
blood capillaries inside the mouth. We use the event-based sensor to
perform auto-focus with the methodology previously described and
verify the improvement by using a conventional frame-based camera
(IDS sensor). Results are shown on Figure.50.

Figure 50: Results of the auto-focus algorithm. The top pictures are taken
before tuning of the liquid-lens and the bottom pictures show the
same region of interest after auto-focus.

SUMMARY

Apart from defocus, which is compensated for with the liquid lens,
the aberrations in our system are the following: spherical, coma and
field curvature. The spherical aberration is minimal and will not af-
fect our recordings. Both coma and field curvature will result in a
degradation of the signal the further away we are from the optical
axis. In order to continue reducing the aberrations, it would be neces-
sary to replace a lens with a strong radius of curvature (for instance
the front lens) with two lenses. However, this will make the system
more complex and more expensive.

We also presented in this section a method to perform auto-focus
with an event-based camera and a liquid lens. The aim is to mini-
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mize the defocus optical aberration in the micro-circulation device
we designed. It is difficult to assess the performances of such an algo-
rithm, and we encountered difficulties in reaching what we think is
the "best" focus with this technique. However, this method is fast and
computationally inexpensive. It can easily be adapted on embedded
electronics such as a FPGA or even directly on chip (see "A Spiking
Neural Network Model of Depth from Defocus for Event-based Neuromor-
phic Vision" for more details).

We have been focused on hardware development in this chapter
with both a work on a low light event-based camera and the de-
sign of a portable micro-circulation device. From our initial proof
of concept with the event-based/FFOCT association, we are moving
one step closer towards studying red blood cells in-vivo. In the last
chapter of this thesis, we will focus on the type of data we can ex-
tract from micro hemodynamics with an event based sensor. More
precisely we will determine the following dynamic morphological
parameters: micro-circulatory blood flow velocity and blood cell con-
centration. This work was done in parallel to the hardware devel-
opment we presented here. Therefore the results in the next section
have been obtained with a full-size microscope version of our system.



Part III
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T O WA R D S I N - V I V O R E D B L O O D C E L L I M A G I N G
W I T H A N E V E N T- B A S E D S E N S O R

We stated previously that the Helmtest camera presented in chapter
4 is limited by its pixel size. In parallel to its development, Prophesee
has been working on a new version of the ATIS camera, shown on
Figure.51, with a VGA sensor. It benefits from a smaller pixel pitch,
11× 11µm, an increased fill factor of 60%, an array of 640 × 480 pixels.
We will use this camera for the remaining of this thesis.

Figure 51: Sisley VGA asynchronous sensor developed by Prophesee.

In a first instance, we will study the micro-circulation on a mouse’s
cremaster muscle (thin layer of striated muscle surrounding the testis)
using a microscope. Our aim is to estimate microhemodynamic pa-
rameters with the event-based sensor.

5.1 surgical procedure

The experiments of this chapter were performed at the Laboratoire
d’étude de la microcirculation (Microcirculation, Biogénergétique, In-
flammation et insuffisance circulatoire aiguë, U942, Université Paris
Diderot, 10 avenue de Verdun, Paris, France). We used male mice
weighing approximately 20g. The animals were fed standard mouse
diet and had free access to water. The observation of venules was con-
ducted on a microscope (Leitz, Germany) with a saline immersion
objective (×25, Leitz, Germany). Experiments were recorded with
HCImage software (Hamamatsu Photonics, Japan) connected to a dig-
ital camera Hamamatsu (C11440) together with the Sisley sensor. The
Hamamatsu camera will serve as ground-truth in our experiments.
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Induction of anesthesia was performed similarly to the technique
described in [45], with isoflurane (1.5–2%) followed by an intraperi-
toneal injection of ketamine (150mg/kg), xylazine hydrochloride (5mg/kg)
and atropine (1mg/kg). Anesthesia was maintained throughout the
experiment with additional injections of the same drug preparation
(a quarter of the initial dose).

The pedal withdrawal reflex was tested every ten minutes by pinch-
ing the foot pad. If the animal withdrew his leg in response to the foot
pad stimulation, then a dose was administered. Animals were lying
on a heating blanket (temperature 38◦C) in supine position.

A tracheotomy was performed, and a cannula was inserted into the
trachea to facilitate spontaneous breathing. The right carotid artery
was catheterized with a PE-10 polyethylene cannula. This catheter
was filled with 0.9% saline and connected to a pressure transducer
(MP30, BIOPAC systems) for continuous recording of systemic arte-
rial blood pressure (MAP).

The left cremaster muscle was prepared according to the technique
described in [3, 4]. Briefly, the muscle was detached from the scro-
tum. A transverse buttonhole slit about 5 mm long was made in
the proximal part of the cremaster pouch. The testicle, epididymis,
and the cremaster itself were then drawn out through the buttonhole.
This procedure led to the invagination of the cremaster, which ac-
quired a finger shape, with the cremaster pouch now turned inside
out. The small pedicle that attaches the cremaster to the testicle was
tied up with two stitches and cut between them, to separate the cre-
master completely from the testicle. A flexible extensible ovoid ring
was made with metal wire (diameter, 0.1 mm) and expanded gen-
tly, spreading out the cremaster that acquired a racket shape. The
ring was positioned so that the main cremaster artery was in the cen-
ter of the racket’s upper surface. Throughout these procedures, the
muscle was continuously bathed with saline solution. This procedure
involves minimal incision of the cremaster and so reduces consid-
erably the risk of hemorrhage and lesions of both the muscle and its
micro-circulation. Because the size of the ring is adapted to the dimen-
sions of the cremaster, the extension of the muscle is sufficient to al-
low good optical resolution, but does not affect the micro-circulation.
The muscle preparation was covered with transparent film and con-
tinuously superfused (2mL/min) with Krebs solution (in mmol.L−1,
NaCl 118, KCl 5.9, MgSO4 0.5, NaH2CO3 28, CaCl2 1.25, glucose
10) warmed at 34.5◦C and bubbled with gas mixture (O2 0%/CO2

5%/N2 95%) throughout the experiment.



5.2 activity of blood vessels 69

5.2 activity of blood vessels

The first parameters we evaluate are the absolute and relative perfu-
sions of blood vessels. We define the activity Arbc of a capillary as
its number of erythrocytes per 100µm2 each ms. We assume that in-
dividual red blood cells can be associated with a mean number of
events Nrbc that depends on the magnification of the microscope ob-
jective and the imaging modality (fluorescence imaging, transmission
or reflection microscopy, etc.). Let Ncap be the total number of events
per 100µm2 each ms within a capillary. The activity is computed as
follow:

Arbc =
Ncap

Nrbc
(28)

From the estimation of this activity we produce two types of out-
puts that will be further detailed in the next two sections:

• An absolute activity map.

• A relative activity map.

In a first instance we will focus on the absolute perfusion map
which corresponds to the local activity of capillaries within the field
of view, i.e. the number of red blood cells that flow in the network
of vessels. This output gives an estimate of how well capillaries are
perfused and the red blood cell distribution.

We first create a binary mask that corresponds to the shape of the
vessels network. This mask is computed using the sum of the incom-
ing events generated by the camera during a short period of time. The
zones with the most events correspond to the areas with the most sig-
nificant contrast variations and therefore to the location of the vessels.
An adaptive threshold is used to generate the binary mask depend-
ing on the maximum activity recorded during this time window. The
binary mask is then divided into smaller regions as seen on Fig.52

thanks to a series of morphological operations.

Figure 52: Computations steps from left to right: Event reconstruction on a
time window of 100ms, Binary mask corresponding to the capil-
laries’ network and corresponding segmentation.

For each incoming event, the activity of the associated region is up-
dated. The segmentation step allows a global averaging on a greater
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set of events within a capillary branch and therefore a more accurate
estimation of the activity. The absolute perfusion map provides the
activity of a vessel in RBC per 100µm2. We compared our results to
a baseline recording from a Hamamatsu camera ORCA Flash 4.0 as
seen on Figure.53. This camera has a 2048×2048 pixel resolution and
provides 30 frames/s at full resolution and up to 25 000 frames/s
with the lowest resolution.

Figure 53: ORCA Flash 4.0 Hamamatsu camera.

On Figure.54 is shown both the baseline from the Hamamatsu cam-
era on the left and the absolute perfusion map computed from the
event-based data on the right. Results are displayed in number of red
blood cells per 100µm2. In order to compare our estimations with a
frame-based acquisition value, we counted manually on the output
videos from the Hamamatsu, the number of red blood cells within
three different regions 1, 2 and 3. The recording lasted 1mn each and
cell were counted in the selected regions every 50 frames (120 frames
in total) and averaged. Results are shown on Table.3.

square event-based frame-based

zone 1 2.0 2.2

zone 2 2.4 2.8

zone 3 3.6 4.0

Table 3: Erythrocytes density estimation: number of RBC for 100µm2.

In small capillaries such as regions 1 and 2, individual red blood
cells are lined up in a single file and touch one another. The diameter
of a cell in approximately 7µm which corresponds roughly to a sur-
face area of 50µm2. We expect the density of erythrocyte to be around
2 cells per 100µm2. Both results from the frame-based baseline and
the event-based computation are close to this value. In a larger cap-
illary such as region 3, estimating the number of red blood cells is
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Figure 54: Right: Gray level image from a Hamamatsu recording at 100

frames per second. Left: Absolute perfusion estimation using the
event-based data.The three white squares correspond to the re-
gions where the red blood cells were manually counted to com-
pare the estimation with a baseline value.

harder to do as they can overlap with one another. The frame-based
acquisition does not allow a single cell identification, and it is im-
possible to count them manually. The event-based estimation, on the
other hand, manages to estimate a mean red blood cell number from
the event number.

We notice that our event-based computation is slightly under es-
timated compared to the frame-based value. Our estimate of Nrbc,
the mean number of event per RBC, is in real life not strictly iden-
tical over time especially in the smallest capillaries where cells are
compressed and modify their shape. Fewer events are generated for
one cell, and this value should decrease accordingly. In practice, the
results showed a greater error when trying to adapt Nrbc according
to the size of the capillary. Therefore, we chose to keep a fixed value
despite the small under estimation.

Figure.55 shows the absolute perfusion maps for a set of vessel net-
works. The color corresponds again to the number of red blood cells
per 100µm2. Large capillaries have, as one could expect, a higher den-
sity of red blood cells above 3 per 100µm2. Medium capillaries have
a density slightly below 2rbc per 100µm2. Finally, the smallest ones
have a density close to one RBC per 100µm2.
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Figure 55: Screenshots of absolute perfusion maps of a mouse’s cremaster in
transmission microscopy using a x25 water immersion objective.

We will now focus on the relative activity map that shows the
changes of activity within capillaries by comparing their current ac-
tivity to a reference value (initial activity map for instance). This out-
put provides an estimate of blood flow deregulation or degradation
over time. It can serve as an indicator of hypo-perfusion or hyper-
perfusion state. This type of map is particularly useful during con-
tinuous monitoring of the blood flow and to study the evolution of
blood flow deregulation during a hemorrhagic shock or a vessel oc-
clusion.

Fig.56 shows an estimation of the relative perfusion of a blood ves-
sel with a modification of the flow. The color corresponds to a modifi-
cation of the density of RBC within the vessels: if it is light green the
density is constant, if it turns blue the number of RBC per 100µm2

is reduced and if it becomes red the density of erythrocytes rises. On
this experiment, the right side becomes hypo-perfused while the left
side is hyper-perfused locally.
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Figure 56: Relative perfusion maps of a mouse’s cremaster muscle in trans-
mission microscopy using a x25 water immersion objective. The
top pictures correspond to the reference of "normal perfusion"
and the bottom pictures to deregulation in blood flow.

We’ll now have a look at the aftermaths following the formation
of a clot. We monitor the alteration of the blood flow in a capillary
network over time. Each time we display in the left column the raw
event output for a time window of 100ms, in the middle the absolute
density map in RBC/100µm2 and in the right column the relative den-
sity map in RBC/100µm2. Our reference value for the relative density
map is the initial perfusion state, before the formation of the clot.



74 towards in-vivo red blood cell imaging with an event-based sensor

The different stages of this experiment presented on Figure.57 are
the following:

• a) Initial state with normal perfusion of the whole network of
capillaries. The absolute activity map shows a greater density
at the base of the branch of vessels. The relative activity map is
uniformly well vascular.

• b) The clot is forming outside the field of view right at the
base of the main branch. The density of RBC immediately drops
down to 1RBC/100µm2 (dark blue color on the absolute activity
map). On the relative activity map, we observe a hypo-perfusion
(light blue).

• c) The clot now completely obstructs the vessel network which
is thus hypo-perfused. On the bottom right-hand corner, we see
a vessel that has not been affected by the clot and remains well
perfused (light green). On the left side, a small capillary is tem-
porarily hyper-perfused (yellow color) as it tries to compensate
for the lack of blood supply in the rest of the network.

• d) The clot moved upwards within the field of view and stopped
at the first intersection. The circulation is back to normal on the
left part of the branch.

• e) Again the clot moves upward, and a greater part of the net-
work receives blood supply again. On the relative activity map,
we clearly see that in the middle a capillary remains none vas-
cular.

• f) The entire vessel network is normally perfused again, in a
similar fashion to the initial state prior to the formation of the
clot.
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Figure 57: a) to f) Evolution of the formation and disappearance of a clot in
a network of capillaries. The left column corresponds to the raw
event display, the middle column displays the absolute activity
map, i.e. the number of RBC/100µm2 each second. The right col-
umn shows the evolution of the relative perfusion map with in
green the initial state, in blue the hypo-perfusion and in yellow
the hyper-perfusion.
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5.3 red blood cell velocity

The second parameter evaluated is the velocity of red blood cells.
Due to the light absorbance of erythrocytes as they cross the field of
view, each cell generates a unique front of OFF events followed by a
corresponding front of ON event as shown on the left on Fig.58.

Figure 58: Left: Principle of the event-based velocity estimation for a single
RBC which generates successively OFF events followed by ON
events. Right: Velocity maps in capillaries arterioles and venules
in mm/s.

We determine the time delay ∆t between an inversion of polarity
which corresponds to the time a single cell passes across a pixel. As-
suming the size of a red blood cell is s = 7µm when en-face in a
capillary, we determine the velocity using:

v =
s

∆t
(29)

We mentioned previously that over time, RBC can change shape
and therefore the mean size of 7µm can change. Yet this mean value
gives the best estimates (the closest to the ground truth) when com-
puting cell velocity. Again the error in the computation may come
from this estimation of the cell size, but no adaptation of the cell size
has proven robust and efficient yet.
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Fig.58 shows six maps of blood vessel networks with laminar flows
inside small capillaries ( b, e, and f) and more turbulent flows inside
bigger vessels (a, c, and d).

We compared our results with a frame-based flow computed using
the Lucas Kanade optical flow on 100 frames/s recording from the
Hamamatsu camera. Results are shown on Fig.59.

Figure 59: Velocity maps for the Hamamatsu frame-based recording (left)
and our event-based algorithm (right). The absolute difference
between the frame-based baseline and our estimate is below 10%.

When looking at both maps, we observe similar cell velocities in the
same capillaries. Since only one camera at a time can record the blood
flow, it would not be thorough to compare both maps directly. Yet we
can estimate the order of magnitude for both velocities and notice
an accurate correspondence between the two methods. The primary
interest of these maps is to monitor the evolution of RBC speed over
time to detect abnormalities if the flow increases or decreases.

We have seen how to estimate red blood cell density within capil-
laries by computing two types of maps: an absolute perfusion map
that gives an idea of how well a network of capillaries is perfused
and a relative perfusion map that highlights changes in the perfusion
over time. In a second time, we have dwelt of a method to estimate
red blood cell velocity within capillaries. Compared to a conventional
frame based acquisition method both algorithms perform with higher
accuracy as they benefit from an increased temporal resolution.

In the next section, we will focus on a practical application of micro-
circulation monitoring with a simulation of a hemorrhagic shock in a
mouse model.
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S T U D Y O F A H E M O R R H A G I C S H O C K I N A M O U S E
M O D E L

Early this year, in January 2018, The New England Journal Of Medicine
published a review article on the hemorrhagic shock which under-
lines that "hemorrhage represents a substantial global problem [...] with an
estimated 1.9 million deaths per year worldwide" [8]. The hemorrhagic
shock results 80% of the time from physical trauma and is, for in-
stance, the leading cause of maternal death in the developing world[40].
Despite modern technologies, it is often lately detected and remains
a substantial health issue.

A better understanding of the pathophysiology of the hemorrhagic
shock has been possible thanks to animals models. There are three
main categories of induced hemorrhagic shock:

• Uncontrolled shock: This model mimics a real physical trauma
with spontaneous bleeding without any target volume to ex-
tract or mean arterial pressure to reach. The main drawbacks of
this model are its poor replicability as well as the difficulty to
resuscitate the animal afterwards.

• Volume controlled shock: This time, a fixed volume of blood is
extracted depending on the animal weigh. The main drawback
of this model is its inter-subject variability.

• Pressure-controlled shock: A fixed mean arterial pressure value
is reached via the extraction of a volume of blood. Once this
value is attained, animals are maintained at this level before
being resuscitated.

In this chapter, we induce a pressure controlled hemorrhagic shock
in a mouse with initial exsanguination and continuous monitoring of
the Mean Arterial Pressure (MAP). This model of a controlled hem-
orrhagic shock has initially been developed by Wiggers on dogs [71,
72]. Once the desired MAP is reached, the animals are maintained in
this state for a fixed duration before being transfused back with the
blood volume that was removed. The aim is to observe the degrada-
tion of the micro-circulation and estimate the correlation between the
state of the animal and the hemodynamics of the micro-circulation.
In order to do so, we measure the activity of blood vessels and the
RBC velocity over time.
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6.1 surgical procedure

We induce a hemorrhagic shock in a mouse by reducing its global
blood volume thanks to a syringe filled with saline and connected
to an artery. Throughout the experiment, we measure the systemic
arterial blood pressure (MAP) of the animal. Initially, its value is
52mmHg, and the blood flow is homogeneous. Our field of view is
locked on a network of capillaries, and we will monitor both the evo-
lution of the density and speed of RBC during the shock and after
resuscitation. At t = 0mn, we lower the MAP progressively to 32 by
removing blood with the syringe. Every 5mn we measure the density
and speed of the erythrocytes. After 30mn, we re-inject fluids into
the mouse through the catheter until the MAP stabilizes around its
original value. A schematic of the setup is shown on Figure.60

Figure 60: Schematics of the setup used to observe capillaries on the external
layer of the cremaster muscle. The mouse is in supine position.

6.2 results

On Table.4 is shown the evolution of the MAP during the experiment.

time (mn) 0 5 10 15 20 25 30 35 40

map 52 42 32 32 33 33 34 41 51

Table 4: Evolution of the systemic arterial blood pressure through a hemor-
rhagic shock. At t = 0mn, the mouse’s blood volume is reduced
and its MAP drops. At t = 30mn, the mouse is re-injected with
fluids.

We follow the same methodology as previously described in sec-
tion 5.2. Every five minute, we compute the mean number of RBC
per 100µm2 per ms during a one-minute recording. The result are
displayed on Figure.61. The red bars at the bottom correspond to the
mean number of RBC per 100µm2 each ms and the black line on top
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to the evolution of the MAP over time. When the MAP drops after
0mn, the density of RBC decreases from 2.5 to 1.5 after 5mn and sta-
bilizes around 0.5 after 10mn. Between 20 − 25mn we see that the
MAP starts to increase while the density of erythrocytes briefly rises
to 1 before plummeting again. We believe that the MAP increase is
due to a compensation phenomenon from the mouse. This will be
further detailed in the discussion. After 30mn, we initiate the resus-
citation of the mouse. We observe that the MAP increases back to its
original value and the density of RBC rises again slightly above 2RBC
per 100µm2 each ms.

Figure 61: Evolution of the density of RBC per 100µm2 per ms within capil-
laries during a hemorrhagic shock. At t = 0mn the internal blood
volume is reduced and the density drops. At t = 30mn the mouse
is resuscitated.

On Figure.62 are shown the variations of the RBC density during a
one-minute recording at 0mn, 10mn, 20mn, 30mn and 40mn. We see
that when the MAP is at a normal value, the fluctuations are regular
with a small disparity (initially σ0mn = 0.048 and after the resusci-
tation σ40mn = 0.057). This characterizes a homogeneous blood flow.
When the micro-circulation degrades, the density of RBC drops and
the variations come close to zero (no blood flow) with random het-
erogeneous fluctuations (circled in yellow) with greater disparities
(σ10mn = 0.074 at the start of the hemorrhage, σ20mn = 0.061 during
the compensation stage and σ30mn = 0.099 when the density of ery-
throcytes is the lowest).
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Figure 62: Normalized variations of the density of RBC per100µm2 during
a one minute recording. The σ values represent the heterogene-
ity of the fluctuations. The smaller σ is, the more homogeneous
are the variations. The yellow circles highlight the heterogeneous
fluctuations during the hemorrhage.

Let us now have a look at the speed of RBC within capillaries dur-
ing the hemorrhagic shock. We expect the variations of the speed to
change according to the density of RBC.

On Figure.63 are shown five snapshots of the speed map in our re-
gion of interest. The colormap corresponds to the speed of red blood
cells in mm/s. At 0mn the network is well perfused and the flow
is homogeneous within capillaries. 15mn after the beginning of the
hemorrhage, the MAP is 30mmHg and we see that small vessels turn
blue which means that the RBC’s velocity decreases. We notice how-
ever that large vessels remain well perfused. After 30mn, most RBC
are at a standstill (dark blue capillaries): the blood flow has stopped
in most regions. We resuscitate the mouse after 30mn of hemorrhage
and 15mn later the RBC have similar speed to the original state.
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Figure 63: Evolution of the RBC’s speed over time during a hemorrhagic
shock. At 0mn the network is well perfused. 15mn after the be-
ginning of the hemorrhage, the RBC’s velocity decreases in all
the capillaries. After 30mn, most RBC are at a standstill (dark
blue capillaries). 15mn after the reperfusion of the mouse, the
RBC have similar speed to their original state. The color bar cor-
responds to the speed of RBC in mm/s.
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6.3 discussion

Regarding the activity of capillaries, we clearly see with this exper-
iment that the micro-circulation degrades rapidly during a hemor-
rhagic shock. The density of RBC inside capillaries drops within min-
utes and presents heterogeneous variations as opposed to the small
disparities when the blood flow is homogeneous. We notice a cor-
relation between the MAP and the activity of capillaries within the
first 20mn, after which the MAP rises despite the fact that the micro-
circulation remains altered. This phenomenon known as compensa-
tion was described by Wiggers et al. who identified three outcomes
after a quick hemorrhage:

• First outcome: after a loss of 30− 40% of their blood volume, the
animals were able to spontaneously recover thanks to compen-
sation mechanisms (without any transfusion or resuscitation).

• Second outcome: after a loss of more than 40% of their blood
volume and if no cardiac arrest has occurred, anoxia with irre-
versible cellular damages develops. Survival is possible with a
suited resuscitation. This state is called "imminent shock".

• Third outcome: the MAP keeps dropping, and the only solution
is a re-transfusion of the animals which is often very effective
on the short term. Indeed, the health improvement is only tem-
porary, and the state of the animals deteriorate in a second time.
This state is the "irreversible shock".

When there is a correlation between the micro-circulation and the
MAP we can still expect the first outcome. If the macro-circulation
improves (i.e. the MAP rises), whether the animal is compensating
or it is transitioning to the state of imminent shock. The study of the
micro-circulation is here of the utmost importance as it may enable
the distinction between these two outcomes [33]. Here we see the
MAP rising while the activity of capillaries remains below normal.
The correlation is lost, and the animal is in a state of imminent shock
and must be immediately resuscitated to avoid irreversible damages.

The velocity information is in line with the density of RBC and can
serve as a second clue to determine a state of imminent shock. Ad-
ditionally, we notice that some capillaries initially well perfused are
no longer supplied with blood after resuscitation. On the opposite, a
few small vessels that were not perfused are now vascular after resus-
citation. A possible explanation is that during the hemorrhage, the
organism of the mouse has re-organized its blood supply with the re-
gions that remained the most vascular and kept this re-rooting after
resuscitation. This is however a hypothesis, and an extensive work
studying this particular phenomenon should be carried out.
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A N O U N C E O F P R E V E N T I O N I S W O RT H A P O U N D
O F C U R E

We have demonstrated how neuromorphic sensors can give new in-
sights into medical imaging in particular in the study of hemodynam-
ics. The FFOCT technique is the best candidate to study in depth, in
a non-invasive way, the dynamics of RBC. The coupling of an event-
based sensor with a FFOCT microscope has allowed the estimation
of optical flows for single particles up to 6ml/h at the cellular level.
We have also demonstrated the capabilities of our setup to determine
concentrations up to 30 000 particles/ml, going beyond the current
limitations of frame-based acquisition systems in real time. However,
cameras still need improvement in order to take the full advantage of
the technique: smaller pixels in order to observe biological structures
at the cellular scale with a larger field of view and a cooling system
to reduce thermal noise to its minimum.

The cooled biomimetic sensor presented in the second chapter of
this thesis showed improvements compared to the Atis camera when
dealing with low contrast variations and low levels of light. The in-
crease in SNR enabled a finer tuning of the event-based algorithms. In
turn, we were able to push further the limitations previously encoun-
tered when estimating velocities and densities. The micro-circulation
device presented in chapter 5 is a promising tool to have a rapid
glimpse of the dynamic morphological parameters of erythrocytes.
This prototype however still requires a few improvements regarding
its bulky size. Indeed, the light sources, as well as electronics, used
take too much space today for a portable device.

Finally, we have shown how both the activity map and the velocity
map of capillaries provide, during a hemorrhagic shock, relevant in-
formation and can serve as early clues to detect a deterioration of the
micro-circulation. Within minutes, a degradation is noticeable, and
we observe both a reduction of the density of RBC inside capillaries
as well as a decrease of the flow. There is, at this point, a direct cor-
relation between the micro-circulation hemodynamics and the mean
arterial pressure (MAP) of the animal. Later on, the MAP rises while
we notice no improvement of the micro-circulation. This decorrelation
may indicate a change of state, and more precisely, we hypothesize
that the information from the micro-circulation coupled with macro-
data can determine the moment of an imminent shock.
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The potential of this technique is not limited to hemorrhage detec-
tion only. Indeed the "state of shock" in general, defined as an insuf-
ficient blood circulation leading to tissues hypoxia, alters the micro-
circulation in many ways. From a physio-pathological point of view,
this defect in tissue perfusion can have the following causes:

• An absolute hypovolemia due to a hemorrhagic shock as we
have studied in this work.

• A relative hypovolemia characterized by a vasoplegia as in an
anaphylactic shock.

• A failure of the cardiac pump which leads to a reduction of the
cardiac output as in a cardiogenic shock.

• Cardiac irregularities which lead to heterogeneous blood flow
as in a septic shock.

No matter the origin, the state of shock represents a life-threatening
emergency which requires a fast diagnosis to provide immediate care.
The use of neuromorphic cameras coupled with the proper imaging
device offers the possibility to process the information from hemody-
namics instantly. Extensive work on the different types of shock is an
appealing idea in order to determine if, similarly to the hemorrhagic
shock, they can be predicted.

The primary perspective for the future is to further develop the
micro-circulation device and make it commercially available. Many
steps will be required as this is still an experimental prototype. First,
we need to focus our attention on fully calibrating and validating the
results provided by the device. Part of this work needs to include a
complete study of the different types of shock and their consequences
on the micro-circulation. A user-friendly software needs to be created
as well in order to have easy access to the data. Then clinical trials
will be necessary before thinking about a commercial version of the
device. Finally, a miniaturization step may be required in order to
make a pocket-size setup that is easy to handle.

In this thesis, we have focused on micro-circulation monitoring re-
lated to the state of shock. There are numerous other applications
which could benefit from accurate monitoring of the micro-circulation.
For instance, right after a transplant, there are currently no technique
to estimate how well the new organ is perfused. Clinicians wait for
the kidney to turn pink which indicates that the blood flow is estab-
lished before closing the patient. After that a careful monitoring of
the patient’s vitals over an extended period of time is necessary in
order to determine if the transplant was successful. If not, the patient
needs to be re-opened and the organ replaced. Our device could pro-
vide information more explicitly with real live feedback on the micro
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hemodynamics right after the transplant. We believe this could re-
duce the number of failed transplant if clinicians could directly see,
before closing the patient, that the micro-circulation is not established.
Another example is with diabetic patients: with a dual wavelength il-
lumination on the capillaries, it would be possible to estimate the
level of oxygen and sugar contained in their blood, and easily adapt
treatments accordingly.

More generally speaking, I believe that asynchronous sensors and
event-based computation have a key role to play in medical imaging.
Frame-based devices are improving daily, with an increased temporal
resolution which means more frames and an increased spatial reso-
lution with smaller pixels. As a result, the amount of data recorded,
stored and processed is getting more and more substantial. This has a
cost. It is both more energy intensive and expensive to deal with this
information. Now more than ever we need to think about reducing ex-
penses as well as our carbon emissions. Neuromorphic vision sensors
are low power, and as they record the information asynchronously
based on the light changes in the scene, the amount of information
stored is reduced without losing signal. They are today the most en-
ergy efficient device to record information with a high temporal pre-
cision. It is essential that they take a more significant part in medical
imaging in order to become widely used and be part of tomorrow’s
new generation of scanners.





B I B L I O G R A P H Y

[1] In: (). url: https://www.nlm.nih.gov/exhibition/historicalanatomies/
bougle_home.html.

[2] C. Apelian, F. Harms, O. Thouvenin, and C. Boccara. “Dynamic
full field optical coherence tomography: subcellular metabolic
contrast revealed in tissues by interferometric signals temporal
analysis.” In: Biomedical Optics Express 7 (2016), pp. 1511–1524.

[3] N. Baudry, E. Laemmel, and E. Vicaut. “In Vivo Reactive Oxy-
gen Species Production Induced By Ischemia In Muscle Arteri-
oles Of Mice: Involvement Of Xanthine Oxidase And Mitochon-
dria.” In: American Journal of Physiology, Heart and Circulatory
Physiology 294 (2008), pp. 821–828.

[4] N. Baudry, G. Danialou, J. Boczkowski, and E. Vicaut. “In Vivo
Study Of The Effect Of Systemic Hypoxia On Leukocyte-Endothelium
Interactions.” In: American Journal of Respiratory and critical care
Medicine 158 (1998), pp. 477–483.

[5] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srini-
vasan. “Asynchronous Frameless Event-Based Optical Flow.”
In: Neural Networks 27 (2012), pp. 32–37.

[6] R. Benosman, C. Clercq, X. Lagorce, S. H. Ieng, and C. Bar-
tolozzi. “Event-Based Visual Flow.” In: IEEE Transactions on Neu-
ral Networks 25 (2014), pp. 407–417.

[7] X. Berthelon, G. Chenegros, N. Libert, J.A. Sahel, Grieve K., and
R. Benosman. “Full-field OCT Technique For High Speed Event-
based Optical Flow And Particle Tracking.” In: Optics Express 25

(2017), pp. 12611–12621.

[8] J.W. Cannon. “Hemorrhagic Shock.” In: The New England Jour-
nal of Medicine 378 (2018), pp. 370–379.

[9] E. Chaigneau, M. Oheim, E. Audinat, and S. Charpak. “TwoP-
photon Imaging Of Capillary Blood Flow In OlfactoryProceed-
ings of the National Academy of Sciences.” In: 100 (2003), pp. 13081–
13086.

[10] S.-L. Chen, Z. Xie, P. L. Carson, X. Wang, and L. J. Guo. “In
Vivo Flow Speed Measurement Of Capillaries By Photoacoustic
Correlation Spectroscopy.” In: Optics Letter 36 (2011), pp. 4017–
4019.

[11] “Clinical Review: Clinical Imaging Of The Sublingual Microcir-
culation In The Critically Ill - WhereDo We Stand?” In: Critical
Care 16 (2012), pp. 224–233.

91

https://www.nlm.nih.gov/exhibition/historicalanatomies/bougle_home.html
https://www.nlm.nih.gov/exhibition/historicalanatomies/bougle_home.html


92 Bibliography

[12] E. Culurciello, R. Etienne-Cummings, and K.A. Boahen. “A biomor-
phic digital image sensor.” In: IEEE Journal of Solide-State Cir-
cuits 38 (2003), pp. 281–294.

[13] D. De Backer, J. Creteur, J.C. Preiser, M.J. Dubois, and J.L. Vin-
cent. “Microvascular Blood Flow Is Altered In Patients With
Sepsis.” In: American Journal of Respiratory and Critical Care Medecine
166 (2002), pp. 100–104.

[14] A. Dubois, L. Vabre, C. Boccara, and E. Beaurepaire. “High-
Resolution Full-Field Optical Coherence Tomography With A
Linnik Microscope.” In: Applied Optics 41 (2002), pp. 805–812.

[15] A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and
C. Boccara. “Ultrahigh-Resolution Full-Field Optical Coherence
Tomography.” In: Applied Optics 43 (2004), pp. 2874–2883.

[16] T. Durduran, G. Yu, M.G. Burnett, J.A. Detre, J.H. Greenberg, J.
Wang, C. Zhou, and A.G. Yodh. “Diffuse Optical Measurement
Of Blood Flow, Blood Oxygenation, And Metabolism In A Hu-
man Brain During Sensori Motor Cortex Activation.” In: Optics
Letter 29 (2004), pp. 1766–1768.

[17] S. Eriksson, J. Nilsson, and C. Stureson. “Non-Invasive Imaging
Of Microcirculation: A Technology Review.” In: Medical Devices:
Evidence and Research 7 (2014), pp. 445–452.

[18] P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince.
“Sidestream Dark Field (SDF) Imaging: A Novel Stroboscopic
LED Ring-based Imaging Modality For Clinical Assessment Of
The Microcirculation.” In: Optics Express 15 (2007), pp. 101–114.

[19] W. Groner, J.W. Winkelman, A.G. Harris, C. Ince, G.J. Bouma, K.
Messmer, and R.G. Nadeau. “Orthogonal Polarization Spectral
Imaging: A New Method For Study Of The Microcirculation.”
In: Nature Medicine 5 (1999), pp. 1209–1212.

[20] G. Gutierrez, H.D. Reines, and M.E. Wulf-Gutierrez. “Clinical
Review: Hemorrhagic Shock.” In: Critical Care 8 (2004), pp. 373–
381.

[21] R. Haindl, A. Wartak, W. Trasischker, S. Holzer, B. Baumann, M.
Pircher, C. Vass, and C. K. Hitzenberger. “Total Retinal Blood
Flow In Healthy And Glaucomatous Human Eyes Measured
With Three Beam Doppler Optical Coherence Tomography.”
In: Biomedical Optics Express TTh1B.2 (2016).

[22] R. He-Sheng. “Construction of a Generalized Psychrometric Chart
for Different Pressures.” In: International Journal of Mechanical
Engineering Education 32 (2004), pp. 212–222.

[23] D. Huang et al. “Optical Coherence Tomography.” In: Science
22 (1991), pp. 1178–1181.



Bibliography 93

[24] C. Ince. “The Microcirculation Is The Motor Of Sepsis.” In: Crit-
ical Care 9 (2005), pp. 13–19.

[25] J.A. Izatt, S. Boppart, B. Bouma, J. de Boer, W. Drexler, X. LI,
and Y. Yasuno. “Introduction To The Feature Issue On The
25 Year Anniversary Of Optical Coherence Tomography.” In:
Biomedical Optics Express 8 (2017), p. 3289.

[26] Y. Jia, J. C. Morrison, J. Tokayer, O. Tan, L. Lombardi, B. Bau-
mann, C. D. Lu, W. Choi, J. G. Fujimoto, and D. Huang. “Quan-
titative Oct Angiography Of Optic Nerve Head BloodFflow.” In:
Biomedical Optics Express 3 (2012), pp. 3127–3137.

[27] X. Lagorce, C. Meyer, S. H. Ieng, D. Filliat, and R. Benosman.
“Asynchronous Event-Based Multikernel Algorithm For High-
Speed Visual Features Tracking.” In: IEEE Transactions on Neural
Networks 26 (2015), pp. 1710–1720.

[28] J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas. “Dynamic
Light Scattering Optical Coherence Tomography.” In: Optics Ex-
press 20 (2012), pp. 22262–22277.

[29] J. Lee, W. Wu, F. Lesage, and D. A. Boas. “Multiple Capillary
Measurement Of Rbc Speed, Flux, And Density With Optical
Coherence Tomography.” In: Journal of Cerebral Blood Flow Mate-
bolism 33 (2013), pp. 1707–1710.

[30] R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Za-
wadzki, and T. Bajraszewski. “Real-Time Assessment Of Reti-
nal Blood Flow With Ultrafast Acquisition By Color Doppler
Fourier Domain Optical Coherence Tomography.” In: Optics Ex-
press 11 (2003), pp. 3116–3121.

[31] C.E. Leroux, F. Bertillot, O. Thouvenin, and C. Boccara. “Intra-
cellular dynamics measurements with full field optical coher-
ence tomography suggest hindering effect of actomyosin con-
tractility on organelle transport.” In: Biomedical Optics Express 7

(2016), pp. 4501–4513.

[32] P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo. “Imaging Cerebral
Blood Flow Through The Intact Rat Skull With Temporal Laser
Speckle Imaging.” In: Optics Letter 31 (2006), pp. 1824–1826.

[33] N. Libert, A. Harrois, and J. Duranteau. “Haemodynamic co-
herence in haemorrhagic shock.” In: Best Practice and Research
Clinical Anaesthesiology 30 (2016), pp. 429–435.

[34] N. Libert, A. Harrois, N. Baudry, E. Vicaut, and J. Duranteau.
“Intestinal Microcirculation And Mucosal Oxygenation During
Hemorrhagic Shock And Ressucitation At Different Inspired
Oxygen Concentration.” In: Journal of Trauma and Acute Care
Surgery 83 (2017), pp. 476–484.



94 Bibliography

[35] P. Lichtsteiner and T. Delbruck. “A 64X64 AER Logarithmic
Temporal Derivative Silicon Retina.” In: Research in Microelec-
tronics and Electronics 2 (2005), pp. 202–205.

[36] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128X128 dB 15Mi-
crosecond Latency Asynchronous Temporal Contrast Vision Sen-
sor.” In: IEEE journal of Solid-State Circuits 43 (2008), pp. 566–
576.

[37] Huei-Yung Lin and Chia-Hong Chang. “Depth recovery from
motion and defocus blur.” In: Image Analysis and Recognition
(2006), pp. 122–133.

[38] M. Mahowald. “VLSI analogs of neuronal visual processing: a
synthesis of form and function.” In: PhD Thesis, California Insti-
tute of Technology (1991).

[39] M. Mahowald and R. Douglas. “A Silicon Neuron.” In: Nature
354 (1991), p. 515.

[40] Marie-Jocelyne Martel, Katherine Jane MacKinnon, Marc-Yvon
Arsenault, Elias Bartellas, Michael C Klein, Carolyn A Lane,
Ann E Sprague, and Ann Kathleen Wilson. “Hemorrhagic Shock.”
In: Journal of obstetrics and gynaecology Canada 24 (2002), pp. 504–
521.

[41] V. Mazlin, P. Xiao, J. Scholler, K. Grieve, K. Irsch, J.A. Sahel,
M. Fink, and C. Boccara. “Ultra-high Resolution Full-field OCT
(FFOCT) For Cornea And Retina.” In: Imaging and Applied optics
(2018).

[42] D. E. McMillan. “Deterioration Of The Microcirculation In Dia-
betes.” In: Diabetes 24.10 (1975), pp. 944–957.

[43] E. Meijering, O. Dzyubachyk, and I. Smal. “Methods For Cell
And Particle Tracking.” In: Methods in Enzymology 504 (2012),
pp. 183–200.

[44] Z. NI, C. Pacoret, R. Benosman, S. Ieng, and S. Regnier. “Asyn-
chronous Event-Based High Speed Vision For Microparticle Track-
ing.” In: Journal of Microscopy 245 (2012), pp. 236–244.

[45] Y. Nakajima, N. Baudry, J. Duranteau, and E. Vicaut. “Micro-
circulation In Intestinal Villi.” In: American Journal of Respiratory
and Critical care Medicine 164 (2001), pp. 1526–1530.

[46] A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi. “Measure-
ment Of Red Cell Velocity In Microvessels Using Particle Image
Velocimerty (PIV).” In: Clinical hemorheology and microcirculation
29 (2003), pp. 445–455.

[47] Z. Ni, S.H. Ieng, C. Posch, S. Regnier, and R. Benosman. “Vi-
sual tracking using neuromorphic asynchronous event-based
cameras.” In: Neural Computation 27 (2015), pp. 925–953.



Bibliography 95

[48] A.P. Pentland, S. Scherock, T. Darrel, and B. Girod. “Simple
Range Cameras Based On Focal Error.” In: Optical Society of
America 11 (1994), pp. 2925–2934.

[49] C. Posch and D. Matolin. “Sensitivity And Uniformty Of A
0.18Micrometer CMOS Temporal Contrast Pixel Array.” In: Cir-
cuits and Systems (ISCAS), 2011 IEEE International Symposium on
(2011), pp. 1572–1575.

[50] C. Posch, D. Matolin, and R. Wohlgenannt. “High-dr Frame-
Free Pwm Imaging With Asynchronous Aer Intensity Encod-
ing And Focal Plane Temporal Redundancy Suppression.” In:
Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (2010), pp. 2430–2433.

[51] C. Posch, D. Matolin, and R. Wohlgenannt. “A QVGA 143 dB
Dynamic Range Frame-Free PWM Image Sensor With Lossless
Pixel-Level Video Compression And Time-Domain CDS.” In:
IEEE Journal of solid-state circuits 46 (2011), pp. 259–275.

[52] C. Posch, D. Matolin, R. Wohlgenannt, M. Hofstatter, P. Schon,
M. Litzenberger, D. Bauer, and H. Garn. “Biomimetic Frame-
free HDR Camera With Event-driven PWM Image Video Sen-
sor And Full-custom Address-event Processor.” In: 2010 IEEE
Biomedical Circuits and Systems Conference (2010), pp. 254–257.

[53] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T.
Delbruck. “Retinomorphic event-based vision sensors: bioinspired
cameras with spiking output.” In: Proceedings of the IEEE 102

(2014), pp. 1470–1484.

[54] D. Reverter Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.H.
Ieng, and R. Benosman. “An asynchronous neuromorphic event-
driven visual part-based shape trakcing.” In: IEEE transaction on
neural netwroks and learning systems 26 (2015), pp. 3045–3059.

[55] Y. Sakr, M.J. Dubois, D.l De Backer, J. Creteur, and J.L. Vincent.
“Persistent Microcirculatory Alterations Are Associated With
Organ Failure And Death In Patients With Septic Shock.” In:
Critical Care Medicine 32 (2004), pp. 1825–1831.

[56] J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, and J.S. Duker. “Op-
tical Coherence Tomography Of Ocular Dsiaeases 3rd Edition.”
In: Optical coherence of Ocular diseases (2004).

[57] N. Segal et al. “Improving Microcirculation With Therapeutic
Intrathoracic Pressure Regulation In A Porcine Model Of Hem-
orrhage.” In: Resuscitation 82 (2011), pp. 16–22.

[58] V.J. Srinivasan, H. Radhakrishnan, E.H. Lo, E.T. Mandeville, J.Y.
Jiang, S. Barry, and A. E. Cable. “OCT Methods For Capillary
Velocimetry.” In: Biomedical Optics Express 3 (2012), pp. 612–629.



96 Bibliography

[59] W. D. Strain and P. M. Paldanius. “Diabetes, Cardiovascular
Disease And The Microcirculation.” In: Cardiovascular Diabetol-
ogy 17 (2018), p. 57.

[60] P. Swain and D. Cheskis. “Back-Illuminated Image Sensors Come
To The Forefront-Novel Materials And Fabrication Methods In-
crease Quality And Lower Cost Of Sensors For Machine Vision
And Industrial Imaging.” In: Photonics Spectra 42 (2008), p. 46.

[61] J. Szopinski, K. Kusza, and M. Semionow. “Microcirculatory
Responses To Hypovolemic Shock.” In: Journal of Trauma and
Acute Care Surgery 71 (2011), pp. 1779–1788.

[62] G. Tachon, A. Harrois, S. Tanaka, H. Kato, O. Huet, J. Pottecher,
E. Vicaut, and J. Duranteau. “Microcirculatory Alterations in
Traumatic Hemorrhagic Shock.” In: Critical Care Medicine 42

(2014), pp. 1433–1441.

[63] S. Tanaka, A. Harrois, C. Nicolai, M. Flores, S. Hamada, E. Vi-
caut, and J. Duranteau. “Qualitative real-time analysis by nurses
of sublingual microcirculation in intensive care unit: the MI-
CRONURSE study.” In: Critical care 19 (2015).

[64] O. Thouvenin, M. Fink, and C. Boccara. “Dynamic multimodal
full-field optical coherence tomography and fluorescence struc-
tured illumination microscopy.” In: Journal of Biomdeical Optics
22 (2017).

[65] S. Trzeciak, R.P. Dellinger, J.E. Parrillo, M. Guglielmi, J. Bajaj,
N.L. Abate, R.C. Arnold, S. Colilla, S. Zanotti, and S.M. Hollen-
berg. “Early Microcirculatory Perfusion Derangements In Pa-
tients With Severe Sepsis And Septic Shock: Relationship To
Hemodynamics, Oxygen Transport, And Survival.” In: Annals
of Emergency Medicine 49 (2007), pp. 88–98.

[66] L.G. Ungerleider and J.V. Haxby. “What And Where In The Hu-
man Brain.” In: Current Opinion in Neurobiology 4 (1994), pp. 157–
165.

[67] Z. Uz, C. Ince, P. Guerci, Y. Ince, R.P. Araujo, B. Ergin, M.P.
Hilty, T.M. van Gulik, and B.A. de Mol. “Recruitment Of Sub-
lingual Microcirculation Using Handheld Incident Dark Field
Imaging As A Routine Measurement Tool During The Postop-
erative De-escalation Phase - A Pilot Study In Post ICU Cardiac
Surgery Patients.” In: Perioperative Medicine 7 (2018).

[68] L. Vabre, A. Dubois, and C. Boccara. “Thermal-light Full-Field
Optical Coherence Tomography.” In: Optics Letters 27 (2002),
pp. 530–532.

[69] Z. Wan, S. Sun, G. Ristagno, M.H. Weil, and W. Tang. “The Cer-
bral Microcirculation Is Protected During Experimental Hemor-
rhagic Shock.” In: Critical care Medecine 38 (2010), pp. 928–932.



Bibliography 97

[70] M. Watanabe and S.K. Nayar. “Rational Filters For Passive Depth
From Defocus.” In: Int J Comput Vis. 27 (1997), pp. 203–225.

[71] C.J. Wiggers. “The Present Status Of The Shock Problem.” In:
Physiological Reviews 22 (1942), pp. 74–123.

[72] H.C. Wiggers and R.C. Ingraham. “Hemorrhagic Shock: Defini-
tion And Criteria For Its Diagnosis.” In: The journal of clinical
investigation 25 (1946), pp. 30–36.

[73] P. Xiao, M. Fink, and C. Boccara. “Combining FF-OCT With SD-
OCT For Retinal Imaging.” In: Proceedings of SPIE-OSA 10416

(2017).

[74] C. Zhou, S. Lin, and S. Nayar. “Coded Aperture Pairs For Depth
From Defocus And Defocus Blurring.” In: Int J Comput Vis. 93

(2011), pp. 53–69.


	Dedication
	Abstract
	Publications
	Conferences
	Acknowledgements
	Contents
	Acronyms
	Introduction
	Full-field OCT with an event based camera
	1 Physical principle of FFOCT
	1.1 Interferometry and OCT
	1.2 Full-field Optical Coherence Tomography
	1.3 Coupling of the ATIS with the FFOCT microscope

	2 Micro-circulation model
	2.1 Experimental setup
	2.2 Measure of the optical flow
	2.3 Density of particles
	2.4 Influence of depth and computational cost


	Hardware development towards micro-circulation imaging
	3 Development of a cooled event-based sensor
	3.1 Low light Helmtest camera
	3.2 Description of the cooling system
	3.3 Experimental results
	3.4 Discussion and further improvements

	4 Prototype for micro-circulation imaging
	4.1 Sidestream Dark Field microscopy
	4.2 Optical setup
	4.3 Autofocus with the liquid lens


	In-vivo analysis of hemodynamics
	5 Towards in-vivo red blood cell imaging with an event-based sensor
	5.1 Surgical procedure
	5.2 Activity of blood vessels
	5.3 Red blood cell velocity

	6 Study of a hemorrhagic shock in a mouse model
	6.1 Surgical procedure
	6.2 Results
	6.3 Discussion
	Conclusion
	Conclusion
	Bibliography





