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Chapter I

General introduction

In a manuscript for ‘Habilitation à Diriger des Recherches’ (HDR) there is traditionally some
less-scientific part to describe the person’s career. This is the purpose of this first chapter.
For a busy reader who only wants to know me, this is the most (or only) interesting chapter.
For the reader who wants to learn some physics, on the contrary, it can be skipped.

I thus give here only a brief overview of my research activities without giving any details
on the science, especially for the parts that are presented in the five following chapters. I
however explain the context of the different topics on which I worked, and that is a good
opportunity to acknowledge the contributions of my co-workers. Then I introduce the content
of the rest of the manuscript.

I.1. Overview of my research activities
In this section I summarize the different research projects that occupied me since the beginning
of my career, with also some introduction on how all that happened. I’ve included a few
illustrative pictures, without any caption, on the results that won’t be described in the
following of the manuscript.

I.1.1. PhD thesis at Institut d’Optique (2003 – 2007)
Bose-Einstein condensation and atom lasers

I did my PhD thesis under the supervision of Alain Aspect and Philippe Bouyer in the
‘Optique Atomique’ group of Institut d’Optique (in Orsay at that time, now in Palaiseau). I
worked on a Bose-Einstein condensation experiment (using rubidium 87) devoted to the use
of the condensate (BEC) as a coherent source for atom optics [Guerin 2007].

Indeed, Bose-Einstein condensation is the atomic analog of the laser effect: below some
threshold temperature, atoms accumulate in the ground state of the trap in which they are
confined, thus building a reservoir of coherent matter wave. By extracting an atomic beam
from such a condensate, one obtains an ‘atom laser’ . To do so, we used a radiofrequency
(RF) field inducing a transition between two Zeeman states: the initial state of the BEC,
|F = 1,mF = −1〉, and a state almost insensitive to the magnetic trapping, |F = 1,mF = 0〉.
Spin-flipped atoms can then escape the trap and fall down under gravity, forming a directed
and continuous coherent atomic beam (until depletion of the BEC) [Bloch 1999].

In view of future applications of this coherent atom source, for instance to atom interferometry,
it is necessary to achieve a good control over the beam properties. In particular, two effects
induce striking differences between photonic lasers and atom lasers and may be strong
limitations for the latter. The first is that atoms interact very easily with each other via
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12 Chap I - General introduction

collisions. The second is their sensitivity to gravity, which induces a strong downward
acceleration of the beam. This prevents controlling the propagation direction of the atom
laser as well as its de Broglie wavelength (which decreases rapidly as the beam propagates).
For metrological applications it would also limit the interrogation time. I addressed these
two problems during my PhD work.

Effect of interactions: degradation of the transverse mode

The method of RF outcoupling allows one to choose the height of the extraction of the atom
laser inside the BEC, and thus the thickness that the atom laser beam must cross before
reaching free space. This is perfectly adapted to study the intaction between the beam and
the source condensate, which is very dense (interactions between atoms within the beam
are much weaker and are neglected). These interactions can be modelled by a mean-field
potential proportional to the BEC density: Vint = gcoll|ΨBEC|2. The BEC density is given by
the shape of the trapping potential, which gives in our case a potential Vint with an inverted
parabola shape.

2

6
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(b) (c)

at/µm2

BEC

20
0 
µm

 

We have experimentally evidenced the harmful consequences
of those strong interactions on the spatial quality of the
atomic beam. We observed not only a strong divergence
of the beam, consistent with previous observations [Le
Coq 2001], but also an accumulation of atomic rays (like
caustics) on the edges of the beam. This observation was
possible thanks to the very strong confinement of our origi-
nal, partly ferromagnetic, trap [Fauquembergue 2005], which
induces a larger atomic density.

Following those observations, we addressed the question of
a quantitative characterization of this effect. In order to
model the propagation of an atom laser in the case of a non-Gaussian transverse profile,
we have extended the tools developed for optics to matter waves, in particular the ABCD
matrices for multimode laser beams. Following the analogy with laser optics, we have also
defined and measured the quality factor M2 of the atomic beam. These results have been
published in ref. [Riou 2006] and the detailed description of the theoretical tools needed
for modeling the propagation of distorted atom-laser beams have been given in a follow-up
paper [Riou 2008]. Since then, other teams have characterized their atom laser with the M2

quality factor [Jeppesen 2008,Kleine Büning 2010].

Overcoming gravity: the guided atom laser

Optical waveguide
Magnetic trap

gRF

Condensate

(a)

(b)
z

y

x

In order to overcome gravity, the solution that we
have chosen consists in horizontally guiding the
atomic beam. To do so we have used an optical
guide made from a very anisotropic dipole trap
(or ‘optical tweezers’). In order to efficiently inject
the atomic beam into the guide, the source BEC is
created in the hybrid trap obtained at the crossing of
the optical guide and the magnetic trap. Atoms are
still outcoupled via RF-induced spin flips. Since the
optical guiding potential is spin-insensitive, atoms
are directly coupled to the waveguide. They then propagate following an initial repulsion
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due to the interaction with the condensate. This ‘pigtailed’ configuration insures an optimal
coupling efficiency [Guerin 2006].

Once in the guide, atoms are transversally confined and, for the propagation direction,
subjected to a weak linear potential whose slope is tunable by the combined effect of the
residual curvature of the dipole trap and of the second-order Zeeman effect. By canceling this
slope one can get a beam that is not accelerated. We have obtained a de Broglie wavelength
of 0.5 µm, constant over the propagation [Guerin 2006]. Further improvements allowed the
team to reach higher values of the wavelength, until several microns [Billy 2007]. A detailed
analysis of the coupling flux and limits has also been performed [Bernard 2011].

Since then, other teams have produced and studied guided atom lasers, in particular the
group of David Guéry-Odelin in Toulouse [Couvert 2008,Gattobigio 2009,Gattobigio 2011],
but not only [Dall 2010].

I.1.2. Post-doc at INLN (2007 – 2009)
I joined the team of Robin Kaiser at Institut Non Linéaire de Nice (INLN) in June 2007 with
a post-doc funding from the ANR1 project CAROL, meaning ‘Cold Atom RandOm Laser’
(2006 – 2010).

Two PhD students were working on the experiment when I arrived, with somewhat different
PhD projects. Giovanni Luca Gattobigio had almost finished and he showed me all the
tricks of the experimental setup during the first weeks before starting to write up his
thesis [Gattobigio 2008]. Frank Michaud was at the end of his second year and they
had started to work on gain mechanisms in cold atoms, in particular four-wave mixing
(FWM) [Gattobigio 2006,Michaud 2007].

I can put here a little anecdote. Actually, during the first three weeks of my post-doc, a
visitor was there in the lab, Gabriel Hétet, who was at that time a PhD student in Canberra2.
He had brought low-noise balanced detectors from his quantum-optics lab and the goal was to
detect relative intensity squeezing in the FWM signals. This didn’t work, obviously because
his stay was too short, but also because we detected a large supplementary noise in the light
transmitted through the atomic cloud, which was the simplest configuration we could think
of before going to FWM experiments. We had a lot of fun together in the lab trying to figure
out where this noise came from. After some tests we quickly suspected that it was frequency
noise of the laser converted to intensity noise by the atomic resonant transmission. The funny
part of the story is that, for reasons that I’ll explain later, we did the same experiment again,
in a much cleaner and more systematic way, with a thorough analysis and modeling, many
years later [Vartabi Kashanian 2016b].

Then, in September 2007, I really started to work on the main topic of my post-doc project.

Towards a random laser with cold atoms

Until spring 2008, with Frank Michaud we performed an experiment on lasing with cold
atoms. The goal was to study different gain mechanisms and test if they could sustain a
working laser, with a standard laser cavity. This was, we thought, an interesting preliminary
step towards making a random laser made of cold atoms [Michaud 2008]. I discuss the
different gain mechanisms that we studied and this lasing experiment in Chapter II.

1 This was at the very beginning of the ANR (Agence National pour la Recherche), when the success rate
was not as ridiculously low as now.

2 He’s now Assistant Professor in Paris.
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This laser experiment, beside being successful [Guerin 2008], has been very important for us,
and in particular for me, because at this occasion I discovered ‘Mollow gain’ [Mollow 1972].
The nice thing with Mollow gain is that there is a simple analytical expression for the atomic
polarizability. Then I started to think that it should be possible to predict the feasibility of a
random laser based on Mollow gain in cold atoms.

Briefly, a random laser is a laser in which the optical feedback is not provided by an optical
cavity (with well-defined modes, etc.) but by multiple scattering in the gain medium itself.
Considering the diffusion equation with a supplementary gain term, Vladilen Letokhov showed
in 1968 that there is a threshold on the system size above which some runaway amplification
occurs [Letokhov 1968], until gain saturation, like in a standard laser.

So, if the atomic response is analytically known, one can compute the scattering, the gain,
and Letokhov’s threshold. I did this, and with the help of Rémi Carminati (partner of the
ANR project), who taught me the difference between the attenuation length and the mean
free path in a non-passive medium, and with his former post-doc Luis Froufe-Pérez, who
did some supplementary simulations, we published the first theoretical predictions on the
possibility of random lasing in cold atoms [Froufe-Pérez 2009]. This is described in Section
IV.2.1.

Mollow gain is however not necessarily the best gain mechanism, and even has some serious
drawbacks that made the predictions of [Froufe-Pérez 2009] not particularly realistic. The
difficulty is to combine at the same time (i.e., at the same optical frequency) enough gain and
scattering. We thus started a quest for the best gain mechanism, i.e. the one with the lowest
threshold for random lasing with realistic parameters. This lead us, in particular, to make
an experimental characterization of the atomic response with Raman gain between Zeeman
sublevels, and to extrapolate the corresponding random-laser threshold [Guerin 2009]. I did
this experiment with the help of Davide Brivio during his Master thesis [Brivio 2008] and then
Nicolas Mercadier at the beginning of his PhD thesis. I also proposed a new configuration
of non-degenerate four-wave mixing that seemed smart to us for realizing a random laser,
but, after experimental and numerical investigations, it turned out to be the worst! Those
results have been partly included in a review article for a special issue [Guerin 2010] and are
discussed in Section IV.2.3 of the present manuscript. More details can be found in Nicolas
Mercadier’s thesis [Mercadier 2011].

At this point (September 2009) my post-doc in Nice ended and I started a second post-doc
at Tübingen University (Germany).

Lévy flights of light in hot vapors

However, before leaving the (first) Nice period, I also want to mention briefly in this chapter
another experiment that is not described later in this manuscript. I must say that my
personal input has been quite modest: essentially, I gave technical advice at the beginning,
I participated to meeting discussing the results, and I (significantly) helped write the
papers [Mercadier 2009,Mercadier 2013]. Otherwise, all the real work, from the experiment to
the modeling, has been done by Nicolas Mercadier during his Master thesis and the beginning
of his PhD thesis [Mercadier 2011]. Our collaborator Martine Chevrollier also provided
numerical simulations [Chevrollier 2010].

This experiment was on the observation of Lévy flights of light in a hot vapor cell (see
[Chevrollier 2012] for a review paper). In the context of multiple scattering of light, or
actually any kind of Brownian motion, the diffusion coefficient D is defined by the second
moment of the step-length distribution P (`) (the mean free path is the first moment, i.e. the
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average step length). But it can happen that the second moment is undefined (or infinite)
because the integral that computes the second moment doesn’t converge (it can also happen
with the first moment). Macroscopically, this leads to a ‘superdiffusive’ behavior, and the
microscopic ingredients, which are the very long steps, are called ‘Lévy flights’. This happens
when the distribution P (`) has a ‘heavy’ tail, which means that the long steps are not rare
enough to be neglected, and actually dominate the large-scale properties of the transport.
Mathematically, if the distribution is asymptotically a power law P (`) ∼ `−α, then Lévy
flights occur for α < 3.

In hot vapors, Lévy flights are produced by Doppler broadening. Sometimes, a photon
is scattered by an atom with a very large velocity, inducing a large Doppler shift. The
photon makes thus a very long step before being rescattered. A precise computation of
the step-length probability distribution gives P (`) ∼ 1/[`2 ln(`)], which is indeed heavy-
tailed [Holstein 1947,Pereira 2004]. The goal of the experiment was to measure this probability
distribution.

This has been done by direct imaging of the fluores-
cence profile in the cell in different configurations.
In particular, in order to investigate the multiple-
scattering regime, we have used a three-cell config-
uration, which was extremely demanding in term
of signal-to-noise ratio. The main results have been
published in Nature Physics [Mercadier 2009] and
the details of the experiment and modeling have been described in a follow-up paper [Mer-
cadier 2013]. Of course all the details are also in Nicolas Mercadier’s thesis [Mercadier 2011].

Later the team performed another experiment investigating the macroscopic consequences
of those Lévy flights, i.e. the superdiffusive transport [Baudouin 2014b], and much later an
experiment with another broadening mechanism, collision with a buffer gas, has also shown
superdiffusion with a diverging mean free path (article in preparation).

I.1.3. Post-doc in Tübingen (2010 – 2012)
Although I was happy in Nice, and there was still a lot to do to achieve a random laser, and
some money had been saved on the ANR project, I had personal reasons to go to Tübingen,
which had a little to do with strategic optimization of my career path in order to get a
position one day, and a lot to do with consolidating a new French-German couple. There was
no open position there and so I had somehow to establish myself.

Since I had a good spy in the place, I knew that Philippe Courteille (who is now Professor in
São Carlos, Brazil, but was then in Tübingen) had done in the past some experiments on
Bragg scattering off atomic lattices [Slama 2005b,Slama 2005a,Slama 2006] without being
able to reach the photonic band gap regime [Deutsch 1995] and that he would have interest
in trying again. In January 2009 I gave a seminar in Tübingen and I discussed with him and
Claus Zimmermann, the head of the group, about the limitation of the previous experiments,
which apparently was mainly the presence in the setup of a cavity around the atoms, which
prevented from probing the system at the most appropriate angle. So I proposed to write
a project with the building of a new, but simple, experiment (a simple magneto-optical
trap and a 1D lattice), aiming at demonstrating a photonic band gap in cold atoms. I also
added some personal touch from my previous experience: What happens if we add gain? Or
something like electromagnetically-induced transparency (EIT)?
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The project was submitted to the Humboldt Foundation and was accepted3. To complement
my own manpower, Claus Zimmermann kindly gave me a PhD student, Alexander Schilke,
who started building the experiment a few months before my arrival in January 2010. The
funding lasted two years, but Claus could also complement it until August 2012, so my total
stay in Tübingen lasted slightly more than 2.5 years. Since Philippe Courteille left for Brazil
after two months, I was fully in charge of this project. This has been an important experience,
the success of which probably contributed significantly to my getting a CNRS position in
2012.

In term of topics, it was also a good complementary experience: after studying light in
disordered atoms in Nice, I was studying light in ordered atoms in Germany. Well, there is
something of a cliché here...

Photonic band gaps and distributed feedback lasing with cold atoms

Predictions of photonic band gaps in cold atomic lattices date from 1995 for the 1D case
[Deutsch 1995] and were more recent for the 3D case [Antezza 2009,Yu 2011]. The goal of
our experiment was to address the 1D case as a preliminary step before the more interesting
3D case. We trapped the atoms in a conservative lattice made by a tunable laser detuned
from ∼ 1nm from the transition and loaded from a magneto-optical trap (MOT). In this
system the periodic modulation of the refractive index is due to the periodic modulation
of the atomic density due to the trapping potential. By a careful tuning of the lattice
wavelength, which has to be precisely adapted to the angle and detuning of the probe laser,
we could observe a Bragg reflection of ∼ 80%, much more than all previous Bragg scattering
experiments so far. With the help of some theoretical modeling, in particular to compute the
local density of states, this could be interpreted as the occurrence of a photonic band gap.
We also discussed the intrinsic limitations of this kind of system [Schilke 2011], in particular
due to the imaginary part of the atomic polarizability, which acts as losses.

Another idea was to use EIT and see if it can overcome this limitation. After working
out the theory I found that this idea had already been proposed before [Petrosyan 2007].
Anyway, it does not allow overcoming this limitation, but it still is interesting, because it
creates a secondary band gap, which is narrower and controllable by an external laser. We
have performed this experiment and demonstrated the use of this secondary band gap as an
all-optical switch [Schilke 2012b].

These results are presented in Section III.1.

Cold-atom-based mirrorless lasing
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february 2012  vol 6  no 2
www.nature.com/naturephotonics

Then my other original idea was to add gain, for instance Raman
gain, which I was familiar with, and see what happens. My idea was
that the combination of multiple Bragg reflection and gain might
create a huge transmission and reflection. It actually did. The nice
unexpected effect appeared when we induced four-wave mixing:
then a huge signal came out of the atomic lattice, even without any
probe beam. This was the first mirrorless laser (or, more precisely,
an optical parametric oscillator), and the feedback mechanisms was
the ‘distributed feedback’ due to the 1D periodic density modulation,
like in commercial DFB laser diodes [Schilke 2012a]. The reason
why it worked with FWM and not with Raman gain is quite subtle
and is explained in Section III.2.

3 They have a very decent acceptance rate.
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I.1.4. Back at INLN/INPHYNI (since Oct. 2012)
I got a CNRS researcher position in 2012 and I arrived back at INLN in October that year.
The lab changed its name to Institut de Physique de Nice (INPHYNI4) in January 2017.

My project was to take in charge the ‘Rb2’ experiment, which had been set up in 2008 and on
which some ‘cooperative scattering’ experiments had been performed [Bienaimé 2010,Bux 2010,
Bienaimé 2011a], as well as a compression experiment in a rotating dipole trap, for producing
dense atomic clouds in view of reaching Anderson localization of light [Bienaimé 2012].
Julien Chabé (post-doc, 2010 – 2012) had just left and there was one PhD student, Louis
Bellando, doing partly experiments and partly theory, who was starting his third (and last)
year [Bellando 2013]. On the same topic of cooperative scattering, there was also one PhD
student doing a joint PhD, Mohamed-Taha Rouabah, who was starting his second half of his
thesis in our group, doing theory [Rouabah 2015].

On ‘Rb1’, the random laser experiment, there was one PhD student, Quentin Baudouin, who
was also starting his third and last year.

So the manpower situation was critical, because I only had a few months overlap with the
two finishing PhD students before they start writing up their thesis, and then I would be
alone in the lab with two cold-atom experiments! Moreover, there were some papers to be
written [Mercadier 2013,Baudouin 2013b,Baudouin 2014a,Gerasimov 2014], which is always
good but takes time. As a consequence, during the first year or so, I was mainly busy writing
them and maintaining alive the two experiments.

On Rb1 I got some help from Djeylan Aktas, doing his Master thesis in spring 2013 under
the supervision of Quentin at the beginning and myself at the end [Aktas 2013]. Then in
fall 2013 a new PhD student started on Rb1, Samir Vartabi Kashanian, whom I trained
on the experiment during the first two months [Vartabi Kashanian 2016a]. However, since
I also had in charge the other experiment, I haven’t had the time to work closely with
him. Combined with the absence of overlap with the previous student, with some important
technical problems on the experiment (vacuum...), and his lack of previous experimental
experience, Samir hasn’t had the best circumstances and the random laser experiment was
delayed a lot. The situation really improved only in 2015 when first, Aurélien Éloy joined
as a Master and then a PhD student, and second, Mathilde Hugbart (Fouché) joined as a
permanent staff. She fully took in charge the experiment.

On Rb2, Michelle Araújo started her PhD thesis in fall 2014. When she arrived the experiment
was running, taking systematic data, which is not a nice time to learn the experiment, so she
spent the first months doing simulations. I was thus basically alone on the experiment until
spring 2015.

A random laser with cold atoms

During my time in Germany, my followers on the random laser experiment (Nicolas Mercadier,
PhD student 2008 – 2011, Vera Guarrera, post-doc 2009 – 2010, Quentin Baudouin, PhD
student 2010 – 2013) had managed to devise a smart gain mechanism based on Raman gain
between hyperfine levels, to observe a signature of a random-laser effect, and to develop some
modeling (see Sections IV.3). Luckily for me they haven’t been fast enough to publish their
results, and I arrived at a time still full of discussions about the possible interpretations of
the data. I thus contributed to the final stage of those discussions and to the writing of the
paper [Baudouin 2013b].

4 pronounced in French like ‘∞’.
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Then I extended to the 2D case a computation that Letokhov did in 3D about the threshold
of a random laser using the radiative transfer equation [Lavrinovich 1975] (Quentin had
deciphered this computation in his PhD thesis [Baudouin 2013a]). In collaboration with
Chong Yidong (Singapore) and Stefan Rotter (Vienna), this allowed us to make a systematic
comparison with a much more complete model [Guerin 2016b]. This is presented in Section
IV.2.2.

Due to the bad circumstances described above, this is all we did on the random laser. There
has been some study of Raman gain done by Aurélien Éloy during his thesis [Éloy 2018a].
The idea was to be able to control the amount of gain and measure independently the gain
and the scattering, which would have given the possibility of doing the first direct comparison
between Letokhov’s threshold predictions and experimental data. However problems with
spurious magnetic fields prevented us to obtain enough gain to reach the random laser regime.
Then the experiment took some other directions.

Cooperative scattering in cold atoms

Since 2013 my main research topic is the cooperative scattering of light by cold atoms in the
linear-optics regime, and this is experimentally investigated on the MOT setup Rb2. The
previous performed experiments, in Nice [Bux 2010,Bienaimé 2010] and in collaboration
with the Tübingen group [Bender 2010], dealt with a reduction of the radiation-pressure
force, interpreted as a consequence of the superradiant forward scattering predicted by Scully
and coworkers [Scully 2006]: if light is more emitted in the forward direction, the net force
is reduced. A lot had been done and understood on this topic of cooperative scattering
during Tom Bienaimé’s thesis [Bienaimé 2011a], with in particular a very fruitful network
of collaborators: Philippe Courteille and Romain Bachelard at São Carlos (Brazil), Nicolas
Piovella at Milan (see for instance the review [Bienaimé 2013]). However when I arrived the
situation was a bit confused because recent data taken on the experiment also showed the
reduction of the force in a regime where it was not expected, namely near resonance, when
multiple scattering takes place. It was finally found out that this reduction could also have a
more trivial explanation [Chabé 2014]. Later, I contributed to a more systematic study of
the different effects that can lead to a collective reduction of the radiation-pressure force and
we showed that all the experiments published so far could also be explained without invoking
cooperative scattering [Bachelard 2016], except, perhaps, the results of [Bux 2010], which
are still not well understood. Similarly, I contributed to the interpretation of data taken
by the group of Mark Havey (Old Dominion University), showing that their steady-state
light-scattering measurements could be understood without cooperativity [Kemp 2020]. Those
results are presented in Chapter V.

But what is cooperative scattering anyway? This is a hard question, which I tried to partially
answer in a discussion article in 2017 [Guerin 2017c], in an attempt to remove some of the
confusion in the field. Basically, here, it will be synonymous for super- and subradiance, and
so far, to my opinion, the only unambiguous experimental signatures of those effects are in
the temporal dynamics, namely the accelerated or slowed decay of light after excitation of
the sample.

This is what I extensively studied in all those years and that is the subject of the most
important chapter of this manuscript, Chapter VI, which contains a number of results.

The first and probably the most important result has been the first direct observation of
subradiant decay [Guerin 2016a], which was the main goal I had at the beginning, since the
team had just published the corresponding theoretical prediction [Bienaimé 2012]. The success
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of this experiment opened up many perspectives and the need for several complementary
studies.

First, with Michelle Araújo [Araújo 2018a], we performed an experiment dedicated to the fast
dynamics at the beginning of the decay, which exhibits a superradiant behavior [Araújo 2016].
This was not obvious because the recent literature on single-photon superradiance was only
speaking about the forward superradiant lobe, and we looked at off-axis scattering. Then
I performed a theoretical study on the population of the collective modes of the coupled-
dipole model in order to understand some puzzling observations, for instance the fact that
subradiance is enhanced near resonance while superradiance is suppressed [Guerin 2017b].
We also published some details on the simulation procedure with the coupled-dipole equations
[Araújo 2018b].

At the end of 2016 we were joined by Patrizia Weiss as a post-doc (whom I knew from
Tübingen), and she really took in charge the experiment and did most of the experimental
work during the following three years, including significant upgrading of the experimental
setup, as well as some numerical simulations. We performed a detailed study of the interplay
between subradiance and multiple scattering [Weiss 2018] and a systematic study of the effect
of thermal motion on subradiance [Weiss 2019].

With Ana Cipris, who started her PhD in October 2017, we also started an experiment on
subradiance beyond the linear-optics regime, by increasing the intensity of the probe beam.
This was motivated by some predictions made by the team of Romain Bachelard (São Carlos,
Brazil). The motivation for increasing the saturation parameter is to go toward quantum
effects. At the time of writing, data has been taken and we are at the stage of trying to
understand them.

Furthermore, we studied the switch-on dynamics, in the linear-optics regime (by re-analyzing
the superradiance data) and beyond linear optics. Here also the initial idea was that the
Rabi oscillations visible at the switch-on are good candidates to detect quantum collective
effects. We finally split this study into two papers, one focussed on the collective frequency
shift of the Rabi oscillation [Guerin 2019] and containing linear-optics data only, and one
focussed on the collective damping rate of those oscillations, including beyond linear-optics
data [do Espirito Santo 2020]. This has been done in collaboration with Romain Bachelard’s
team and with Johannes Schachenmayer (Strasbourg).

Last but not least, I have recently enjoyed a fruitful collaboration with Igor Sokolov (Saint
Petersburg) [Sokolov 2019], which allowed me to discover a new (at least for me) interpretation
of superradiance [Kuraptsev 2017], which also provides a very computing-efficient modeling.

Revival of intensity interferometry

In the last years, I have also worked on another research topic, which has nothing to do with
cold atoms. Since this topic is not developed further in the rest of the manuscript, I briefly
summarize it here.

Everything started with bibliography about the random laser. We discovered that it was
speculated, particularly by Johansson and Letokhov, that natural random lasers could
occur in space [Johansson 2007]. How to detect them? Quantum-optics people know that
to distinguish a laser from classical radiation, one must measure the intensity correlation
function. Even if this hypothesis is very speculative (a brief summary of the current knowledge
is given at the end of Part I), this triggered some discussions with Farrokh Vakili, who at
that time was the director of the Nice Observatory (Observatoire de la Côte d’Azur, OCA).
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It just so happens that Farrokh Vakili is a specialist of stellar interferometry, and among
this community, he is among the people who are thinking of reviving the technique of
Hanbury Brown and Twiss (‘intensity interferometry’), based on the measurement of intensity
correlations [Hanbury Brown 1956,Hanbury Brown 1974]. The idea has been in the air since
the mid-2000s, mainly motivated by the use of the future Cherenkov Telescope Array (CTA)
as a huge multi-baseline, high-resolution intensity interferometer [LeBohec 2006,Dravins 2008].
Anyway, this created a common interest and Robin and Farrokh managed to obtain from the
local entities a funding for a post-doc5.

Antoine Dussaux arrived in January 2015 and the real work started. He learnt how to
measure subnanosecond intensity correlations and found the best technique to do it (with
some help of the quantum-information team of INPHYNI), he performed a test experiment
using light scattered by a hot vapor [Dussaux 2016], he made a feasibility study to implement
this technique at the telescopes of Calern (a site of OCA), he convinced people at Calern to
embark in this effort, in particular Jean-Pierre Rivet, and with his help he finally designed
and tested the instrument to be used in the telescope. During all this time I got slightly
involved, essentially because Antoine shared my office and thus I naturally discussed with
him and in particular I helped him a little on the hot-vapor experiment, since he had no
experience in atomic physics.

Unfortunately Antoine Dussaux left the lab (and the academic world) in fall 2016, just at
the most exciting time, when everything was almost ready to perform the first ‘on-sky’ tests.
As a consequence, we all (i.e., Mathilde Hugbart, Guillaume Labeyrie and myself) jumped on
this opportunity to have a little fun spending a few nights at the observatory. This was not
the only motivation: we also thought that learning the technique of intensity correlations
could also be useful for cold-atom experiments, which proved right later [Éloy 2018b].

By coincidence Antoine left exactly when Patrizia Weiss arrived on the Rb2 experiment, and
as written above she has been very efficient in taking in charge the experiment, which gave
me the possibility to really spend time on this astronomy project, more than my colleagues.
As a consequence, since the end of 2016 approximately, I estimate that I’ve spent about
half of my time on this topic, being de facto the main driving force on the INPHYNI side
(although I insist that my colleagues did contribute, especially Mathilde).
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1.0025Together we first observed photonic bunching with starlight
by measuring the temporal intensity correlation function
using a single telescope [Guerin 2017a]. This has been the
first successful intensity correlation experiment with stars
(other than the sun) since the Narrabry observatory in the
1970s [Hanbury Brown 1974] and the first ever in the photon-
counting regime. Then we duplicated the instrument and
performed a real spatial intensity interferometry experiment
using the two telescopes of the C2PU facility at Calern6,
separated by 15m [Guerin 2018]. Those results have been remarked in the community, as
shown by an invited paper in a special issue [Rivet 2018], an invitation to the SPIE conference
on telescopes [Lai 2018], and the adhesion of OCA to the CTA consortium via its working
group on intensity interferometry.

We have then been joined by Antonin Siciak, who started his PhD thesis in February 2018 on
5 The multi-inter-trans-disciplinary nature of the project (quantum optics and astronomy) helped.
6 Centre Pédagogique Planète et Univers, described at https://www.oca.eu/fr/c2pu-accueil?

sommaire.

https://www.oca.eu/fr/c2pu-accueil?sommaire
https://www.oca.eu/fr/c2pu-accueil?sommaire
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this project, and we have performed and/or are planning to perform a number of experiments
on: intensity interferometry on a strong emission line [Rivet 2020]; polarization-resolved
intensity interferometry; long-baseline interferometry with a nontrivial synchronization
procedure (in collaboration with the MéO team at Calern); etc. I’ve also had the chance to
go to Chile, with Jean-Pierre Rivet, for one observing night on the 4m SOAR telescope7 in
April 2019, which demonstrated the portability and reliability of our instrument. Promising
discussions are underway to go back to Chile, this time on the Very Large Telescope site!

I.2. Content of this manuscript
As usual for an HDR, this manuscript describes in the following a large part of what I did after
my PhD thesis, but not everything, because that would have been too much. Especially, the
Lévy flight experiment and the intensity interferometry project, which I briefly summarized
in this chapter, are not presented in more detail.

I organized the rest in two main parts. The first one is on ‘Mirrorless lasing with cold atoms’,
which gathers the random laser project as well as what I did in Tübingen, the photonic band
gap experiments being presented as a way to provide feedback for the distributed feedback
laser. The different results are not presented in chronological order but instead in some
more logical order (hopefully) allowing me to merge the two experiments in a consistent
way. The second part will be on cooperative scattering and, to be more precise, it is entitled
‘Cooperative scattering in dilute cold-atom clouds in the linear-optics regime’, which describes
more precisely what we have investigated.

Since describing about a dozen years of research would produce a huge manuscript and
would have taken me an unreasonable amount of time, I (reluctantly) had to use the usual
time-saving solution: including papers. All of my papers or not included, not even all
those fitting the two selected topics, but most of them. Most sections are made of a short
introduction before including one paper describing the main results, eventually followed
by a short discussion. My text thus serves as links between the different papers in order
to understand the evolution and consistency of the research. A few sections are only text,
and for some of those I recycled some existing text coming from not-included papers. In
particular, the review [Baudouin 2014a] has been very useful for the first part.

Finally I put in two appendices a detailed curriculum vitae and a complete list of publications
and communications.

7 SOuthern Astrophysical Research telescope, described at http://www.ctio.noao.edu/soar/.

http://www.ctio.noao.edu/soar/
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Mirrorless lasing with cold atoms
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Brief introduction on the topic of
mirrorless lasing

A standard laser is made of two ingredients: a gain medium, which provides amplification of
light by some kind of stimulated emission; and an optical cavity, which provides feedback.
The feedback has several roles. Very often, it substantially acts on the coherence properties
of the laser, by introducing a mode selection. But its primary role is to re-inject light in the
gain medium, such that light can be amplified many times before escaping. This creates the
well-known threshold effect: when the round-trip gain is higher than the losses, a runaway
amplification takes place, until gain saturation.

In the years 2000s a very strong interest started in mirrorless lasing systems [Wiersma 2010],
in which the electromagnetic feedback is provided by other ingredients than a cavity. Conse-
quently, the coherence and mode properties are also different, and that is what is interesting.
The feedback can be provided either by disorder, i.e., multiple scattering in the gain medium,
or by order, i.e., multiple Bragg reflections. This corresponds, respectively, to ‘random
lasers’ [Wiersma 2008] and ‘photonic-crystal lasers’ or ‘nanolasers’ [Noda 2010]. The crossover
regime, between order and disorder, or correlated disorder, started also to be fruitfully
investigated [Conti 2008,Mahler 2010,Noh 2011].

Distributed feedback lasers
The 1D version of photonic-crystal lasers is actually a very old topic, and has become a
well-known, commercially-available device, namely distributed-feedback (DFB) lasers. The
principle of DFB lasers has been proposed by Kogelnik and Shank in the early 1970s [Kogel-
nik 1971,Kogelnik 1972] and is described in classical textbooks [Yariv 1988].

Figure 1: Illustration of the working principles of a DFB laser. Image taken from [Seufert 2008].
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The basic idea of a DFB laser is to add a small modulation of the refractive index (or of the
gain coefficient) along the amplification region, which is usually elongated with a transverse
confinement (it is thus a waveguide, see Fig. 1). The waves propagating along the guide in
the two counter-propagating directions are then coupled through Bragg reflection, which acts
as a kind of optical cavity trapping the light inside the structure.

Random lasers
As early as 1968, Letokhov investigated what happens when amplification of light, or gain,
is present in a multiple scattering medium [Letokhov 1968]. In such a situation, multiple
scattering increases the length of the path of light propagating in the gain medium and thus
enhances its amplification. This obvious effect can lead to a much less trivial phenomenon,
which is that there is a threshold on the system size above which amplification in the medium
overcomes leakage at the surface, leading to an exponential increase of the light intensity
trapped in the medium (and the subsequent emitted light) [Letokhov 1968, Cao 2003].
This is very similar to the principle of a laser, which starts when gain produced by the
amplifying medium overcomes the cavity losses. Here, the cavity is replaced by radiation
trapping [Zemansky 1927,Holstein 1947,Molisch 1998], which provides an ‘incoherent’ feedback.
Since there is no cavity axis to impose a propagation direction, the emission diagram is more
or less random (like a speckle pattern), hence the name random laser. Like in a standard
laser, the exponential increase of the light intensity is limited by gain saturation to a value
for which gain exactly compensates losses.

After some preliminary evidence of scattering-enhanced emission of light in some gain
media [Markushev 1986,Gouedard 1993, Lawandy 1994], great efforts have been made to
experimentally demonstrate and study random lasing in different kinds of physical systems
[Cao 1998,Cao 1999,Wiersma 2001,Strangi 2006,Gottardo 2008,Turitsyn 2010] and even in
biological tissues [Polson 2004]. It has immediately appeared that Letokhov’s initial theory,
which is based on the diffusion equation and thus neglects any interference effect, was not
sufficient to describe random lasers, which exhibit subtle mode and coherence properties. The
understanding of these properties is a theoretical challenge, as it is related to fundamental
questions on the nature and properties of electromagnetic modes in open, nonlinear, disordered
systems [Fallert 2009, Andreasen 2011,Wiersma 2013]. Different theoretical approaches
have been developed [Wiersma 1996, Burin 2001,Vanneste 2007, Türeci 2008, Conti 2008,
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Figure 2: Illustration of the working principles of a standard laser (a) and a random laser (b).
Image taken from [Wiersma 2000].
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Frank 2009,Goetschy 2011]. The connection to the fascinating subject of Anderson localization
[Anderson 1958,Lagendijk 2009] also attracted of lot of attention (see, e.g., [Conti 2008]).
The broad interest of random lasing was also driven by potential applications [Wiersma 2008].
For instance, the use of a random laser as a light source for speckle-free laser imaging was
demonstrated [Redding 2012].

Motivations for addressing these subjects with cold atoms
Among the possible systems to produce and study mirrorless lasers, cold atoms are interesting
because of their specific properties in comparison with standard photonic materials. First,
they are resonant point-like scatterers, which leads to extremely narrow spectral features
(gain curves, scattering cross-section), which can provide flexibility [Gottardo 2008] or give
new effects. Second, their temperature is low enough to make Doppler broadening negligible
in most situations but large enough to make them move substantially at the millisecond
timescale, which makes disorder-configuration averaging, or dynamic evolution from order to
disorder, very easy. Third, cold atoms are well isolated from the environment, which makes
them good candidates to search for quantum effects.

A cloud of cold atoms constitutes a new medium to study random lasing, allowing a detailed
microscopic understanding of gain and scattering. Multiple scattering of light in cold atoms
had been extensively studied in the past [Labeyrie 2003,Labeyrie 2004]. Also, quasi-continuous
lasing with cold atoms as gain medium, placed inside optical cavities, had already been
demonstrated [Hilico 1992,McKeever 2003], illustrating the potential for a variety of gain
mechanisms in a regime where optical coherence is limited by purely radiative decay channels.
This is significantly different with respect to most random-lasing devices, based on pulsed
excitation of condensed-matter systems, where the relaxation rates of the optical coherence are
several orders of magnitude faster than the decay of the excited state population. Finally, the
unique possibility to both control the experimental parameters and to model the microscopic
response of our system provides an ideal test bench for better understanding random lasers.





Chapter II

Gain and lasing with cold atoms

Contrary to most gain media, cold atoms do not present non-radiative, fast-decaying transi-
tions, preventing a standard 4-level scheme to produce a population inversion. Nevertheless
there are many different mechanisms that allow an inversion between two different atomic
states. These can either be different states of external degrees of freedom (momentum or
vibrational levels in an external potential) or internal degrees of freedom (dressed states [Cohen-
Tannoudji 1992] or different ground states). The atomic nonlinearity can also be used to
obtain parametric gain. Finally, other, more complicated schemes using quantum interferences
can provide gain without inversion [Scully 1994,Zibrov 1995,Mompart 2000].

II.1. Different gain mechanisms

The text of this section has been slightly adapted from [Baudouin 2014a].

II.1.1. Mollow gain
A very simple gain mechanism in atomic vapors was described by Mollow [Mollow 1972]
and observed soon afterwards [Wu 1977] with atomic beams. It involves a two-level atom
driven by one strong pumping field. The driving field induces a population inversion in
the dressed-state basis [Cohen-Tannoudji 1992] and therefore a weak probe beam can be
amplified. The whole process can also be described in the bare-state basis by a three-photon
transition from the ground state to the excited state via two absorptions of pump photons,
as sketched in Fig. II.1(a).

The main amplification feature appears for a pump-probe detuning of δ = sign(∆)
√

∆2 + Ω2,
where ∆ = ωP − ωat is the pump detuning from the atomic transition, δ = ωS − ωP, Ω
is the Rabi frequency of the pump-atom coupling, related to the pump intensity I by
Ω2 = Γ2I/(2Isat) (Isat is the saturation intensity), and has a typical width on the order
of the transition linewidth Γ. Note that another, dispersion-like feature appears around
δ = 0, which is associated with two-photon spontaneous emission processes [Grynberg 1993].
This contribution also induces gain with a much smaller amplitude, and can generate lasing
without population inversion [Zakrzewski 1992,Mompart 2000].

In our experiment with cold 85Rb atoms, we have measured single-pass gain as high as 50 %,
which is more than enough to induce lasing, even with a low-finesse cavity. The gain is
optimum when the probe and the pump polarization are parallel, as the driven atomic dipole
is then parallel to the probe field.
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Figure II.1: (a) Principle of the Mollow gain depicted as a three-photon transition from the ground
state to the excited state, with two absorptions from the pump at ωP and one stimulated emission
in the signal wave at ωS. It can also be viewed as a population inversion in the dressed-state
basis. (b) Transmission spectrum, computed for typical experimental parameters b0 = 10, Ω = 2Γ
and ∆ = Γ, with b0 the resonant optical depth (the other parameters are defined in the text).
From [Guerin 2010].

II.1.2. Raman gain using the Zeeman structure
Another gain mechanism in atomic vapors is Raman gain. Raman transitions refer in general
to two-photon transitions between two non-degenerate ground states, the intermediate energy
level being in the vicinity of an atomic excited states. To obtain gain, a pumping field can
induce the first upward transition and a probe beam can then be amplified at the frequency
of the downward transition.

A first possibility is to use the pump-induced population inversion among the different
light-shifted Zeeman sublevels mF of a given hyperfine level F , as depicted in Fig. II.2(a)
[Tabosa 1991,Grison 1991]. For example, optical pumping near a closed F = 1 → F ′ = 2
transition induced by a π-polarized laser leads to a symmetric distribution of population with
respect to themF = 0 sublevel of the ground state, with this sublevel being the most populated
and also the most shifted, due to a larger Clebsch-Gordan coefficient [Brzozowski 2005]. To
record a transmission spectrum, atoms are probed with a linearly polarized probe beam with
the polarization axis orthogonal to the pump polarization, thus inducing ∆mF = ±1 Raman
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Figure II.2: (a) Principle of the Raman mechanism, depicted here for a F = 1→ F ′ = 2 transition.
(b) Experimental transmission spectra recorded with cold 85Rb near the F = 3→ F ′ = 4 transition,
plotted as a function of the pump-probe detuning δ. Without pumping, spectrum (1) shows
only the atomic absorption. A pump beam of detuning ∆ = −3.8 Γ and intensity 13 mW/cm2,
corresponding to a Rabi frequency Ω = 2.5 Γ, is added to obtain spectrum (2), which then exhibits
a Raman resonance in the vicinity of δ = 0. Moreover, the atomic absorption is shifted due to the
pump-induced light shift and the absorption is reduced due to saturation. From [Guerin 2010].
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transitions. Depending on the sign of the pump-probe detuning δ, the population imbalance
induces gain or absorption. With a larger F , each pair of neighboring sublevels contributes
with a relative weight depending on the population inversion. In practice however, the
contributions of different pairs are often not resolved and only two structures (with opposite
signs) are visible, one corresponding to amplification for δ = −δR and one to absorption for
δ = δR. Note that this situation corresponds to a red detuning for the pump (∆ < 0) and that
the signs are inverted for blue-detuning (∆ > 0). As δR comes from a differential light-shift
(because of different Clebsch-Gordan coefficients), it is usually small, on the order of Γ/10,
whereas ∆ is a few Γ. The width γ of the resonances is related to the elastic scattering rate,
also much smaller than Γ [Grison 1991]. Far from the main atomic absorption resonance, the
Raman resonance is thus a narrow spectral feature, as shown in Fig. II.2(b).

This mechanism had previously been used to generate lasing with a MOT inside an optical
cavity [Hilico 1992].

II.1.3. Raman gain using the hyperfine structure
The two hyperfine ground states of rubidium atoms can also be used to produce Raman
gain. One advantage is that the gain and the pump frequencies are separated by several
gigahertz. A drawback is that the pump laser has to be tuned close to an open transition,
so that optical pumping quickly destroys any population inversion. A second laser is thus
necessary to recycle the atoms (Fig. II.3), which somewhat complicates the setup.

This gain mechanism had been used in an experiment on lasing with a single atom [McK-
eever 2003] and our experiment on random lasing also uses this gain (Chapter IV).

Raman

laser

Optical

pumping

e1

e2

g1

g2

∆

Gain

Figure II.3: Raman gain using hyperfine levels. Gain is produced by stimulated emission induced
by the Raman laser (two-photon transition). The population inversion between the ground states
|g1〉 and |g2〉 is sustained by the optical pumping laser. Adapted from [Baudouin 2014a].

II.1.4. Degenerate four-wave mixing (FWM)
By using two phase-locked pump beams, we can induce four wave mixing (FWM): the two
pumps of frequencies ωP1 and ωP2 and one probe – or an initial fluctuation – of frequency ωS
generate a fourth field at frequency ωC, called the conjugate field [Yariv 1977,Abrams 1978,
Boyd 1981]. The frequencies and wave-vectors of all the fields are related by energy and
momentum conservation (phase-matching condition). If we want to obtain gain for the
probe, we have to choose a configuration where the conjugate frequency equals the probe:
ωC = ωS. Then, the pump frequencies have to fulfill the condition ωP1 + ωP2 = 2ωS. From
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Figure II.4: (a) Principle of four-wave mixing. There are two counterpropagating pump fields P1
and P2, one probe beam (‘signal’ S) and one conjugated C field. (b) Typical experimental reflection
spectrum. δ is the probe-pump detuning. From [Guerin 2010].

an experimental point of view, the most simple configuration is when all frequencies are
the same (‘degenerate FWM’). This is the experimental situation with which standard
lasing can be obtained. Note that this mechanism was observed a long time ago with hot
atoms [Kleinmann 1985,Pinard 1986,Leite 1986].

Due to the phase-matching condition, gain is not in the forward transmission of the probe
beam, but in backward reflection, provided that the two pumps are counterpropagating
(Fig. II.4). The conjugate beam is actually the phase-conjugate of the probe beam. This
property has a number of consequences for the cavity-laser (Section II.2) and the DFB laser
(Section III.2).

II.1.5. Other gain mechanisms
The above list of the possible gain mechanisms that can be used in cold atoms is not
exhaustive.

Other, more complicated, schemes involve quantum interferences to induce gain without
population inversion (in any basis) [Scully 1994,Mompart 2000]. This can be realized with a
Λ scheme [Padmabandu 1996] or a V scheme [Zibrov 1995,Kitching 1999].

Another possibility is to use the atomic external degrees of freedom, i.e., their kinetic
energy. Transitions between different velocity classes produce recoil-induced resonances
[Courtois 1994], and high gain can be achieved [Vengalattore 2005]. These resonances can
ultimately lead to a ‘Collective atomic recoil laser’ [Bonifacio 1994,Berman 1999], which has
been demonstrated with cold and ultra-cold atoms [Kruse 2003,Slama 2007].

Finally, one could also consider higher-order photonic processes, such as two-photon dressed-
state lasers [Gauthier 1992].

II.2. Standard lasing
We have tested three of these gain mechanisms, namely Mollow gain, Raman gain between
Zeeman states, and degenerate FWM, in a standard lasing configuration, by building around
the MOT a low-finesse cavity.

With Mollow gain, the output intensity reaches 35 µW at most, achieved for |∆| ∼ 2Γ. Its
threshold in pump intensity is in agreement with the corresponding measured single-pass
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gain and the losses of the cavity. The polarization of the emitted laser is linear, parallel to
the pump polarization, because gain is maximum in that configuration.

On the contrary, with Raman gain, the output polarization is orthogonal to the pump one,
and this gain produces a laser with less power (2 µW). Moreover, the sharpness of the gain
curve makes the Raman gain very sensitive to any Doppler shift. Thus, the radiation pressure
from the pump beam makes the laser emission stop after only ∼ 20 µs. On the other hand,
the narrow spectrum of the laser can be easily characterized by a beat-note experiment.

The properties of the FWM laser (or, better say, optical parametric oscillator) are quite
different. First, the phase-conjugation property leads to a different threshold condition
[Pinard 1986]: a reflectivity of only 1 % is enough to generate lasing, despite the much
larger losses of the cavity (in our experiment, 32 % for a round trip). This is due to
constructive interferences between transmitted and reflected waves, as observed in double-
pass experiments [Michaud 2007]. Second, it leads to more complex transverse modes, because
the phase conjugation mechanism allows any transverse pattern to be stable through the
resonator [Lind 1981]. Finally, these properties lead to a much larger power than with Mollow
and Raman gain, and up to 300 µW have been obtained. The phase-conjugation property is
also important for the DFB laser of Tübingen, since it participates in the feedback to make
it stable (section III.2).

These results have been published in the article [Guerin 2008] reproduced below.
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Since Letokhov’s seminal paper [1], random lasers have
received increasing interest. Random lasing occurs when
the optical feedback due to multiple scattering in the gain
medium itself is sufficiently strong to reach the lasing
threshold. In the past decade, it has been observed in a
variety of systems (see [2] for a review), but many open
questions remain to be investigated, for which better char-
acterized samples would be highly valuable. A cloud of
cold atoms could provide a promising alternative medium
to study random lasing, allowing for a detailed understand-
ing of the microscopic phenomena and a precise control of
essential parameters such as particle density and scattering
cross section. These properties have been exploited to
study coherent backscattering of light [3] and radiation
trapping [4] in large clouds of cold atoms. As many differ-
ent gain mechanisms have been observed with cold atoms,
combining multiple scattering and gain in cold atomic
clouds seems a promising path towards the realization of
a new random laser. Besides the realization of a random
laser, cold atoms might allow one to study additional
features, such as the transition from superfluorescence [5]
to amplified spontaneous emission [6] in a multiple scat-
tering regime. One preliminary step along this research line
is to use a standard cavity to trigger laser oscillation with
cold atoms as gain medium. Such a laser may also be an
interesting tool for quantum optics, as one can take advan-
tage of the nonlinear response of the atoms to explore
nonclassical correlations or obtain squeezing [7].

In this Letter, we present the realization of a cold-atom
laser, that can rely on three different gain mechanisms,
depending on the pumping scheme. By pumping near
resonance, Mollow gain [8,9] is the dominant process
and gives rise to a laser oscillation, whose spectrum is
large (of the order of the atomic natural linewidth),
whereas by pumping further from resonance, Raman gain
between Zeeman sublevels [10] gives rise to a weaker,
spectrally sharper laser [11]. At last, by using two counter-
propagating pump beams, degenerate four-wave mixing
(FWM) [12,13] produces a laser with a power up to
300 �W. By adjusting the atom-laser detuning or the
pump geometry, we can continuously tune the laser from
one regime to another.

Our experiment uses a cloud of cold 85Rb atoms con-
fined in a vapor-loaded magneto-optical trap (MOT)
produced by six large independent trapping beams, allow-
ing the trapping of up to 1010 atoms at a density of
1010 atoms=cm3, corresponding to an on-resonance optical
thickness of about 10. A linear cavity, formed by two
mirrors (a coupling mirror with curvature RC1 ¼ 1 m,
reflection coefficient R1 ¼ 0:95, and plane end mirror
with reflection coefficient R2 � 0:995) separated by a
distance L ¼ 0:8 m is placed outside the vacuum chamber,
yielding a large round trip loss L ¼ 32% with a corre-
spondingly low finesse F ¼ 16. The waist of the funda-
mental mode of the cavity at the MOT location is
wcav � 500 �m. To add gain to our system, we use either
one or two counterpropagating pump beams, denoted F
(forward) and B (backward), produced from the same laser
with a waist wpump ¼ 2:6 mm, with linear parallel polar-

izations and a total available power of P ¼ 80 mW, corre-
sponding to a maximum pump intensity of I ¼
2P=ð�w2

pumpÞ � 750 mW=cm2. The pump is tuned near

the F ¼ 3 ! F0 ¼ 4 cycling transition of the D2 line of
85Rb (frequency !A, wavelength � ¼ 780 nm, natural
linewidth �=2� ¼ 5:9 MHz), with an adjustable detuning
� ¼ !F;B �!A and has an incident angle of �20� with

the cavity axis. An additional beam P is used as a local
oscillator to monitor the spectrum of the laser or as a weak
probe to measure single-pass gain (insets of Figs. 2–4) with
a propagation axis making an angle with the cavity axis
smaller than 10�. Its frequency!P can be swept around the
pump frequency with a detuning � ¼ !P �!F;B. Both

lasers, pump and probe, are obtained by injection-locking
of a common master laser, which allows one to resolve
narrow spectral features. In our experiments, we load a
MOT for 29 ms, and then switch off the trapping beams and
magnetic field gradient during 1 ms, when lasing or pump-
probe spectroscopy are performed. In order to avoid optical
pumping into the dark hyperfine F ¼ 2 ground state, a
repumping laser is kept on all the time. Data acquisitions
are the result of an average of typically 1000 cycles.
As in a conventional laser, lasing occurs if gain exceeds

losses in the cavity, which can be observed as strong
directional light emission from the cavity. As we will
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discuss in detail below, we are able to produce lasing with
cold atoms as gain medium using three different gain
mechanisms: Mollow gain, Raman gain, and four-wave
mixing. We can control the different mechanisms by the
pump geometry and the pump detuning � (see Table I).
Mollow and Raman gain mechanisms only require a single
pump beam (F), whereas FWM only occurs when both
pump beams F and B are present and carefully aligned.
With a single pump beam, we find Mollow gain to be
dominating close to the atomic resonance, whereas
Raman gain is more important for detunings larger than
j�j � 4�. Furthermore, the different gain mechanisms
lead to distinct polarizations. Mollow gain generates a
lasing mode with a polarization parallel to the pump po-
larization because the Mollow amplification is maximum
for a field aligned with the driven atomic dipole [8]. On the
contrary, different polarizations between the pumping and
the amplified waves are necessary to induce a Raman
transition between two Zeeman substates: the polarization
of the Raman laser is thus orthogonal to the pump polar-
ization. Lastly, the FWM laser has a more complex polar-
ization behavior, as it is orthogonal for red-detuned and
parallel for blue-detuned pumps. We have checked that for
any pump detuning or probe power, the weak-probe FWM
reflectivity is stronger for orthogonal probe polarization, as
expected from previous experiments and models [14]. We
speculate that pump-induced mechanical effects [15] or
more complex collective coupling between the atoms and
the cavity [16] might be the origin of this polarization
behavior.

In Fig. 1 we show spatial (transverse) patterns of these
lasers, observed by imaging the beam onto a CCD camera.
Without any spatial filtering in the cavity, the different
lasers (Mollow, Raman, and FWM) yield distinct trans-
verse patterns. In Fig. 1(b) [Fig. 1(c)] we show the trans-
verse pattern obtained with a Mollow (Raman) laser. We
note that the Mollow laser typically produces transverse

patterns with radial symmetries well described by
Laguerre-Gauss modes, whereas the modes of the Raman
laser are rather Hermite-Gauss modes. The origin of such
radial or Cartesian symmetry may arise from the different
polarization of those two lasers: the radial symmetry is
preserved for the Mollow laser polarization and is broken
for the Raman laser one, probably due to slightly different
losses in the cavity. Figure 1(d) shows the transverse
pattern of the FWM laser. As phase conjugation mecha-
nisms are at work in such a laser, any transverse mode can
easily cross the lasing threshold and complex lasing pat-
terns are produced [17].
We now turn to a more detailed description of the gain

mechanisms of the different lasers. The quantitative under-
standing of their behavior needs to take into account effects
such as pump geometry and parameters (intensity, detun-
ing), gain spectra, gain saturation, and mechanical effects
induced by the pump beam(s).
Let us first discuss the Mollow laser. Amplification of a

weak probe beam can happen when a two-level atom is
excited by one strong pump beam [8,9]. The corresponding
single-pass gain is gM ¼ exp½�b0fMð�;�; �Þ�, where b0
is the on-resonance optical thickness (without pump) of the
cold-atom cloud. The expression of fMð�;�; �Þ can be
obtained from optical Bloch equations [8]:

fMð�;�; �Þ ¼ �

2

jzj2
jzj2 þ�2=2

Re

� ð�þ i�Þðzþ i�Þ � i�2�=ð2zÞ
ð�þ i�Þðzþ i�Þðz� þ i�Þ þ�2ð�=2þ i�Þ

�
; (1)

where z ¼ �=2� i� and � is the Rabi frequency of the
atom-pump coupling, related to the pump intensity I by
�2 ¼ C2�2I=ð2IsatÞ (Isat ¼ 1:6 mW=cm2 is the saturation
intensity and C is the averaged Clebsch-Gordan coefficient
of the F ¼ 3 ! F0 ¼ 4 transition for a linear polarization).

In our setup we observe single-pass gain higher than 50%,
with a large gain curve (width >�). The shape of the
transmission spectrum (inset of Fig. 2) is consistent with
Eq. (1). From Eq. (1) we can also predict the maximum
gain in respect to the pump parameters �;�. We observe

TABLE I. Different regimes of cold-atom laser versus pump
detuning. The polarization of the lasers are either parallel (k) or
orthogonal (?) to the polarization of the pump beams.

Pump beam(s) �<�4� �4�<�<þ4� �>þ4�

F Raman (?) Mollow (k) Raman (?)

Fþ B FWM (?) Mollow (k) FWM (k)

FIG. 1. Transverse modes of cold-atom lasers. (a) Gaussian
TEM00 mode, obtained by inserting a small diaphragm in the
cavity. Typical modes of (b) the Mollow laser, (c) the Raman
laser, and (d) the four-wave mixing laser.
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good agreement between the behavior of the laser power
and the function fM when varying �: the maximum gain
and laser power are achieved for j�j � 2� (the exact value
depends on �) and � ¼ 0 is a local minimum. However,
we measured a lower maximum gain than predicted by
Eq. (1). This is due to gain-saturation induced by rescatter-
ing of spontaneous emission inside the atomic cloud [18].

As shown in Fig. 2 (squares), we observe a Mollow laser
emission with an output intensity reaching 35 �W. Taking
into account the round trip lossesL, the condition for laser
oscillation is g2Mð1�LÞ> 1. This corresponds to a gain at
threshold of gM ¼ 1:21 (horizontal line in Fig. 2), in good
agreement with the observation.

When the pump frequency is detuned farther away from
the atomic resonance, Raman gain becomes dominant.
Raman gain relies on the pump-induced population inver-
sion among the different light-shifted mF Zeeman suble-
vels of the F ¼ 3 hyperfine level [10,19]. Single-pass

Raman gain of a weak probe can be written gR ¼
e�b0fRð�;�;�Þ. For j�j � �, fRð�;�; �Þ is given by

fR ¼ ��2

�2

�
A1

ð�þ �RÞ2 þ �2=4
� A2

ð�� �RÞ2 þ �2=4

�
;

(2)

where A1;2 are the respective weights of the amplification

and absorption, �R is the frequency difference between the
Zeeman sublevels, and � is the width of the Raman reso-
nance [19]. We have observed the laser spectrum with a
beat-note experiment, and we have checked that its fre-
quency corresponds to the maximum gain and is related to
the differential pump-induced light shift �R of the different
Zeeman sublevels. The width of the Raman resonance � is
related to the elastic scattering rate of the pump photons
and is much lower than �, due to the strong detuning �.
The result is thus a much narrower gain spectrum than in
the previous case (inset of Fig. 3). This leads to an im-

portant practical limitation of the single-pumped Raman
laser: atoms are pushed by the pump beam, acquiring a
velocity v, and the subsequent Doppler shift becomes
quickly larger than the width of the gain spectrum. As a
consequence, the gain in the cold-atom cloud is no longer
the same for a wave copropagating with the pump beam
(F) and the wave running in the counterpropagating direc-
tion. For the copropagating direction, the relative Doppler
shift is negligible, whereas for the counterpropagating
wave, a Doppler shift of �2!Av=c, larger than the width
of the gain spectrum, leads to a suppression of the corre-
sponding gain. As a consequence, emission of our Raman
laser stops after � 20 �s [20].
In Fig. 3 we plot the output power of the Raman laser as

a function of pump power. A comparison with the single-
pass gain gR is again in good agreement for the threshold
condition g2Rð1�LÞ> 1: for Raman gain above 21% laser
emission occurs. As shown in Fig. 3 (squares), the output
power of the Raman laser emission (�2 �W) is much
lower than the Mollow laser one. This lower output power
might arise from a lower saturation intensity for Raman
gain [21]. Nevertheless, with a weak signal, the Raman
gain can be as high as gR ¼ 2 [21].
We have observed another lasing mechanism when a

balanced pumping scheme using two counterpropagating
pump beams F and B is used. In this configuration FWM
appears [12,13]. The creation of photons in a reflected
wave, resulting from a phase conjugation process, can
also be considered as a gain mechanism. This is reminis-
cent of optical parametric oscillation where signal and idler
photons are created under a phase matching condition. In
the inset of Fig. 4 we show the FWM signal Rc (expressed
as the reflection normalized to the incident probe power)
illustrating the narrow spectrum of this phase conjugation
signal. As expected, the maximum gain corresponds to the
degenerate case � ¼ 0 [14]. Thanks to constructive inter-
ference between transmitted and reflected waves, this
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mechanism produces huge double-pass gain with cold
atoms [21] and it is thus an efficient mechanism to trigger
laser oscillations [22]. Because of these interference ef-
fects, the threshold for laser oscillation is very different
from the previous cases [21,22], and is given by

Rc > ½ð1�
ffiffiffiffi
~R

p
Þ=ð1þ

ffiffiffiffi
~R

p
Þ�2 ¼ 0:9%; (3)

where ~R ¼ 1�L. This criterion (horizontal line in
Fig. 4) is well respected for the threshold of our laser.
The output power of this laser is quite strong (300 �W),
with an energy conversion efficiency of 0.75% in this case.
As two pump beams are used in this situation, the me-
chanical effects based on radiation pressure will be negli-
gible and lasing can be sustained for a long time. However,
dipole forces can induce atomic bunching and change the
effective pump intensity interacting with the atoms [15].

In conclusion, we presented in this Letter three types of
laser using a sample of cold atoms as gain medium. Three
different gain mechanisms were demonstrated as being
efficient enough to allow lasing, even with a low-finesse
cavity. Comparison between Mollow and Raman laser
shows that the latter has a significantly lower power,
although their gain are of the same order of magnitude.
These two mechanisms can produce high gain at frequen-
cies slightly detuned from the pump, allowing one to
distinguish between stimulated photons from the laser
mode and scattered photons from the pump beam. Thus,
they seem to be good candidates for the search of random
lasing in cold atoms, and the combination of these gains
with multiple scattering will be the subject of further
investigations. In addition, the ability to continuously
tune from a Mollow to a Raman laser (by changing the
pump detuning) may allow one to study the transformation
of transverse patterns from Laguerre-Gauss to Hermite-

Gauss modes [23]. The FWM laser is the most efficient in
terms of power, and it should be possible to study its noise
spectrum down to the shot noise level. This laser has many
analogies to an optical parametric oscillator and seems to
be a good candidate to explore nonclassical features of
light, such as the production of twin beams [24,25]. Lastly,
the coupling between the cavity mode and the atomic
internal and external degrees of freedom may also reveal
interesting dynamics, especially if a high-finesse cavity is
used [16,26,27].
The authors thank G.-L. Gattobigio for his help at the
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FIG. 4 (color online). Laser power (squares) and phase-
conjugate reflectivity due to four-wave mixing (open circles)
versus pump power, with b0 ¼ 10 and � ¼ �8�. Lasing thresh-
old (vertical dashed line) is expected for a reflectivity around 1%
(horizontal dashed line), in good agreement with the experimen-
tal data. Inset: Example of a weak-probe reflectivity spectrum.
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38 Chap II - Gain and lasing with cold atoms

Concluding remarks
The fact that the combination of gain and a cavity leads to lasing is of course not a surprise1.
The interesting point of this experiment is that several gain mechanisms are possible and
that the system chooses itself which one works, depending on the parameters. For instance,
we didn’t expect Mollow gain, and it appeared by itself in some range of parameters.

It was actually a very exciting experiment, as we detected light emitted from the cavity in real
time (no need for long integration time), measured its spectrum via a beat note, also almost
in real time, and tried to understand what happened as we varied the parameters. Some
features observed in the spectra and some polarization properties have never been understood.
Some properties of the dynamics of these lasers have been reported in [Guerin 2010], along
with a modeling of the Mollow laser performed by the team of Sergey Skipetrov.

Since then, several groups have produced and studied lasers using cold atoms as the gain
medium [Vrijsen 2011,Bohnet 2012,Norcia 2016,Sawant 2017,Megyeri 2018,Gothe 2019].

1 We are grateful to the referees. As an anecdote, this paper produced the most discordant reviews that
I’ve ever seen. Referee A nicely wrote “It is a fascinating study”, “very well written”, “results in a small
masterpiece of text”, “here lies the beauty of fundamental research”..., whereas Referee B meanly wrote
“not well documented”, “filled with rather cursory descriptions and general ideas”, “needs to be more clearly
written”, “numerous speculative statements without solid justification”, “the experiments seem unfinished”...
Both of them were exaggerating a lot! Fortunately, the third consulted referee agreed with Referee A. Since
then, the paper has been correctly cited, and thus probably deserved its publication in a good journal.



Chapter III

Distributed feedback laser with cold
atoms

This chapter deals with the experiments performed in Tübingen, which led to mirrorless
optical parametric oscillation based on distributed feedback. The first section is thus on the
distributed feedback aspect, based on a 1D elongated Bragg grating, and the second section
on what happens when we add gain.

III.1. Photonic band gaps in 1D lattices
Optical lattices based on far-detuned dipole traps are nowadays standard tools in cold-atom
labs. In the early days of optical lattices, people also used dissipative lattices with near-
resonant lasers [Grynberg 2001] (they are still used for laser cooling of course). As early as
1995, a very interesting paper noticed that the atoms trapped in the lattice, with a periodicity
of λ/2, should create a Bragg mirror that opposes to the propagation of the lattice beams
themselves. To solve this apparent paradox one needs to carefully take into account the
refractive index of the atoms and the precise detuning of the lattice. This led to the first
prediction of photonic band gaps in cold atoms [Deutsch 1995].

These band gaps have never been observed. Indeed, with near-resonance lattice beams, many
side effects may prevent such an observation. First, the dissipative nature of the lattice
induces heating or cooling of the sample. Second, adding a third weak beam to probe the
band gap would inevitably create four-wave mixing with the creation of a phase-conjugated
beam, which would be hard to distinguish from the reflection due to the band gap. And
third, the probe beam would need to be collinear with the lattice beam, and at the same
wavelength, which would make its detection problematic.

Instead, it is much easier to detune the dipole beams (wavelength λdip > λat) and work in a
conservative lattice. The periodicity of the lattice is then λdip/2, while the refractive index of
the atomic sample is not negligible only close to λat. The Bragg condition can be recovered
by using a small angle θ between the probe beam and the lattice axis, with

cos θ = λat

λdip
. (III.1)

Actually, the precise Bragg condition is a bit more complicated, as one needs to take into
account the atomic refractive index, which depends on the detuning of the probe beam, as
detailed in the following paper.

In principle, the lattice wavelength can be largely detuned, but then the Bragg angle increases.
The sample, which is very elongated since it is trapped in a 1D lattice, is then probed with
an incidence that decreases the effective optical thickness of the medium. This is detrimental
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40 Chap III - Distributed feedback laser with cold atoms

because we deal with a dilute sample: the refractive index contrast is very low (on the
order of 10−3), which has to be compensated by a very large number of atomic layers. This
problem of probing angle was the main identified limitation of the previous attempts of the
Tübingen group [Slama 2006], which we overcame by building a dedicated experiment with
the appropriate optical access (see [Schilke 2013] for details of the experimental setup).

We performed two experiments about these photonic band gaps. The first one only uses
the atoms as two-level systems, while the second one uses electromagnetically-induced
transparency (EIT). They are described in the two subsections below with the reproduction
of the corresponding articles. The second paper also includes more details on the experiments
and on the simulation procedure based on transfer matrices.

III.1.1. Photonic band gaps with two-level atoms
In this first experiment we achieved a Bragg reflection of about 80% and provided a detailed
analysis of the reflection spectrum, whose qualitative feature can be well understood by the
detailed Bragg condition and the necessary trade-off between the refractive index and the
scattering losses. We also related the reflection coefficient to the local density of states inside
the medium. The article [Schilke 2011] is reproduced below.
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We experimentally investigate the Bragg reflection of light at one-dimensionally ordered atomic

structures by using cold atoms trapped in a laser standing wave. By a fine-tuning of the periodicity, we

reach the regime of multiple reflection due to the refractive index contrast between layers, yielding an

unprecedented high reflectance efficiency of 80%. This result is explained by the occurrence of a photonic

band gap in such systems, in accordance with previous predictions.
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Cold atomic vapors can be used as suitable optical media
for a number of applications or fundamental studies, in
particular, in the fields of nonlinear and quantum optics,
but also as complex optical media to study exotic wave
transport phenomena, for instance coherent multiple scat-
tering [1], weak localization [2] or random lasing [3].
In these examples, an essential property is the disorder
inherent to atomic vapors that are simply confined in a
magneto-optical trap (MOT).

On the contrary, ordered clouds of cold atoms should
exhibit different light-transport properties. The appear-
ance of photonic band gaps (PBGs) has indeed been
predicted in one-dimensional lattices [4,5] and recently
in three-dimensional, diamond (non-Bravais) lattices [6].
The realization of PBGs in cold-atom samples would
open the way to study new regimes of light transport in
atomic vapors, where correlations and long-range order
play a dominant role. The crossover regime, between
order and disorder, or correlated disorder, is also a rich
subject (see, e.g., [7]), in particular, in relation to
Anderson localization [8].

However, creating efficient photonic structures is hard
with cold atoms because these dilute systems have a low
refractive index [Fig. 1(a)] and a limited length. So far,
efficient Bragg reflection of light has only been obtained
with hot vapors, using an electromagnetically induced
grating [9]. Previous investigations with cold atoms
trapped in optical lattices have reported Bragg scattering
with low efficiency. A first series of experiments used
three-dimensional quasiresonant lattices [10–12], with a
lattice geometry that does not create PBGs [6]. Efficiencies
below 1% were reported. A second series of experiments
investigated the 1D case [13–15], where a band gap is
expected, but the maximum reflectance was only 5% in
total power (30% corrected from the partial overlap be-
tween the probe beam and the atomic sample) [15]. The
limitations came mainly from the probing angle, which
limited the interaction length with the lattice, and losses,
i.e., out-of-axis scattering, due to the imaginary part of the
atomic polarizability near resonance.

In this Letter, we report the observation of an efficient
Bragg reflection at a one-dimensional lattice, reaching the
regime of multiple reflections due to the refractive index
contrast between layers and an 80% efficiency in total
power. This high efficiency is obtained by (1) using a
small-diameter probe beam and a small probing angle to
optimize the overlap with the atomic grating, and (2)
adjusting the periodicity of the lattice so that the Bragg
condition is fulfilled off the atomic resonance, thus
strongly reducing the losses. Our experimental observa-
tions are explained by the appearance of a PBG, which we
show to be robust against the system imperfections (finite
length, varying density).
The experiment starts with a vapor-loaded MOTof 87Rb

containing about 6� 108 atoms. A dipole trap is generated
by a homemade titanium-sapphire laser, whose available
power is 1.3 W and whose wavelength �dip is tunable. The

beam is focussed on a waist (1=e2 radius) wdip ¼ 220 �m

at the MOT position (Rayleigh length zR ’ 0:2 m). A 1D
optical lattice is made by retroreflecting the beam, thus
generating a structure whose periodicity is �dip=2.

After stages of compression and molasses, the MOT is
switched off and a waiting time of a few ms allows the
untrapped atoms to fall down. Then, we can characterize
the trapped sample with absorption imaging or acquire
transmission and reflection spectra. Typical numbers for
the trapped atoms are N ¼ 5� 107 atoms distributed over
a length L� 3 mm (� 7700 layers). The temperature,
T � 100 �K, is related to the potential depth U0 by a
constant factor � ¼ U0=kBT � 3:5. The transverse exten-
sion of the cloud is then �? ¼ wdip=ð2 ffiffiffiffi

�
p Þ ’ 60 �m and

the thickness of each layer along the lattice axis z is
�z ¼ �dip=ð2�

ffiffiffiffiffiffi
2�

p Þ ’ 47 nm (rms radii in the harmonic

approximation).
To acquire spectra, we shine a weak and small (waist

w0 ¼ 35 �m), linearly polarized probe beam onto the
lattice under an angle of incidence � ’ 2�. The angle is
small enough so that the probe interacts with the lattice
over its entire length and that the reflection is specular [14].
The transmitted and reflected beams are then recorded with

PRL 106, 223903 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JUNE 2011

0031-9007=11=106(22)=223903(4) 223903-1 � 2011 American Physical Society



avalanche photodiodes. The probe frequency ! is swept in
the vicinity of the atomic resonance !0 (F ¼ 2 ! F0 ¼ 3
closed transition of the D2 line, �0 ¼ 780:24 nm, line-
width �=2� ¼ 6:1 MHz) by using an acousto-optical
modulator in double-pass configuration. The other hyper-
fine levels are far enough to be negligible. The presented
data are the result of an average of typically 100 cycles (the
duration of each cycle is �1 s).

Reflection occurs in the vicinity of a Bragg condition:
the difference between the incident probe wave vector
and the reflected wave vector must equal the lattice vector,
i.e. 2nð�Þk0 cos� ¼ Klat, where k0 ¼ 2�=�0 is the probe
wave vector in vacuum, n is the real part of the average
refractive index of the medium, � ¼ !�!0 is the probe
detuning from the atomic resonance, andKlat ¼ 4�=�dip is

the lattice vector [16].
Experimentally, we keep the angle constant and adjust

the Bragg condition by tuning the wavelength of the lattice
beam. It is thus meaningful to rewrite the Bragg condition
in the following form,

nð�Þ � 1 ¼ ���dip

�dip

; (1)

where ��dip ¼ �dip � �dip0 is the shift from the ‘‘geomet-

ric’’ (with n ¼ 1) Bragg condition �dip0 ¼ �0= cos�. With

� ¼ 2�, �dip0 ’ 780:7 nm. Then, for a given lattice wave-

length, the Bragg condition is fulfilled for probe detunings
� given by Eq. (1), see Fig. 1(a). There are in general two
such frequencies, but one is almost on resonance, where
losses prevent any efficient reflection. The other Bragg
frequency [�B in Fig. 1(a)] may be farther from resonance
and can be tuned in order to search for an optimum.

Such an experiment is reported in Fig. 1(b), which shows
a set of spectra for different ��dip. As expected from

Eq. (1), the spectra display a strong asymmetry, which
evolves as the lattice wavelength is changed, the maximal
efficiency going from one side of the resonance to the other
side while ��dip changes its sign. One can also clearly

observe an optimum value of ��dip for reaching high

efficiencies, namely Rmax ’ 80% for ��dip ’ 0:24 nm

with our best atom number [Fig. 1(c)]. Note that for each
��dip, we adjust the power accordingly to keep constant

the potential depth and subsequently the atom number and
temperature.
The existence of an optimum can easily be understood

by considering the limiting cases. When ��dip is very

small, the Bragg condition is fulfilled where the refractive
index is almost one, in virtue of Eq. (1), very far from
resonance, leading to a very small index contrast in the
periodic structure and thus to an inefficient reflection. In
the opposite limit, when��dip is large, the Bragg condition

is fulfilled near � ¼ ��=2, where losses, due to the imagi-
nary part of the atomic polarizability, are large and play a
detrimental role. Ultimately, if ��dip is too large for the

given averaged atomic density �, the Bragg condition
cannot be fulfilled at all. The optimum ��dip depends on

the average density �: a larger density allows us to increase
��dip, and thus the index contrast, without shifting the

Bragg frequency towards resonance, i.e., without increas-
ing losses. This is illustrated in Fig. 1(c), which shows that
the optimum ��dip is larger with more atoms.

We have also studied the reflection spectrum as a func-
tion of the atom number for a given ��dip. In order to vary

the atom number while keeping the lattice length constant,
we have changed the waiting time in the lattice, before the
spectra acquisition, from 5 ms to 400 ms, thus varying
atom losses. The result is reported in Fig. 2. As expected

FIG. 1 (color online). (a) Refractive index n as a function of the normalized detuning �=� for an averaged density � ¼
7� 1011 cm�3. The dashed lines represent the Bragg condition Eq. (1) with ��dip ¼ 0:24 nm. (b) Experimental reflection spectra

for different ��dip. (c) Measured maximal reflectance as a function of ��dip for two different atom numbers, N ¼ 2� 107

(squares) and N ¼ 6� 107 (dots). The spectra of (b) are taken from the latter. (d) Simulated reflection spectra.
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from Eq. (1), we observe a shift farther from resonance
together with a broadening for increasing densities. The
evolution of the maximum reflectance as a function of the
atom number (inset of Fig. 2) reveals that we almost reach
saturation.

With such a high efficiency, it is natural to ask whether a
photonic band gap occurs in our system and is responsible
for the high reflectance. It is well-known that periodic 1D
systems give rise to PBGs for any nonzero index modula-
tion [17], so that no distinction is usually made between a
1D PBG and a Bragg reflector. However this is true only for
infinite, lossless, and perfectly periodic media. As already
noted, the atomic polarizability is complex so that our
system has losses, and it is of course finite. Moreover,
the lattice is not perfectly homogeneous but has a smooth
density variation, so that the periodicity is not perfect. The
situation is thus more intricate and deserves a careful
analysis.

We can get a first insight with orders-of-magnitude
estimations. A Bragg reflector made of repeated pairs of
dielectric layers gives rise, in the stop band, to an
evanescent wave whose penetration length (or Bragg
length) is given by Lew ¼ �0=ð4�nÞ, where �n is the
refractive index difference between the two materials
[18]. By approximating the Gaussian atomic distribution
in each well by a single layer of constant density with
the same rms width and using Eq. (1), the index contrast

is �n ¼ �
ffiffiffiffiffiffiffiffiffi
�=6

p ���dip=�dip. In our experiment, the

maximum reflection is obtained for ��dip � 0:24 nm

and we have �� 3:5, which gives a penetration length
Lew � 0:26 mm, sensibly smaller than our optical lattice
(L� 3 mm), so that we are indeed in the multiple-
reflection regime. The effect of losses can also be eval-
uated by comparing the corresponding attenuation length
Lloss to Lew. Given our estimated averaged density
�� 7� 1011 cm�3 and the detuning �B determined by
the Bragg condition (1), we estimate Lloss ¼ 1=��scð�BÞ,

where �scð�BÞ is the scattering cross section, which
gives Lloss � 3:8 mm, also much larger than Lew. Thus,
this simple calculation confirms that our system fulfills
the conditions Lew � L, Lloss, which are necessary for
the appearance of a band gap. A number of effects are
however not taken into account, in particular the actual
density distribution along the lattice, so that a more
precise modeling is still valuable.
We use the transfer matrix formalism to simulate the

wave propagation in our system, and we refer to
[4,5,15] for detailed descriptions in similar contexts.
From the transfer matrix of one single period, which
takes into account the Gaussian atomic distribution in
each well [15], we draw the dispersion relations of the
medium (effective wave vector keff vs !), valid in the
limit of an infinitely long lattice (Bloch theorem). These
are shown in Figs. 3(a) and 3(b), for the typical pa-
rameters of the experiment � ¼ 7� 1011 cm�3, � ¼ 3:5
and ��dip ¼ 0:24 nm. The imaginary part of keff is

composed of one Lorentzian of width � centered on reso-
nance, which corresponds to losses, and a supplementary
part, leading to an evanescent wave, corresponding to a
band gap [Fig. 3(b)]. In the same frequency range, the real
part of keff has a reduced variation with ! [Fig. 3(a)],
corresponding to a reduced density of states (DOS)
D ¼ dðReðkeffÞÞ=d!. This last formula is however not
always valid, especially in anomalous dispersive media,
and we use the method of [19] to compute the normalized
local DOS in the middle of the lattice. By using the com-
plex reflection coefficients r1, r2 of the two surrounding,
finite or infinite [4] semilattices, we obtain

FIG. 2 (color online). Spectra for different atom numbers N
in the lattice (constant length, varying density) with ��dip ¼
0:15 nm. Inset: Maximum reflectance as a function of N. FIG. 3 (color online). Modeling of our system. (a),(b) Real (a)

and imaginary (b) parts of the effective wave vector keff in the
medium as a function of the probe detuning �. The axes are
reversed so that the graphs look like standard dispersion relations
!ðkÞ. (c) Normalized local density of states. (d) Reflection
spectrum. In all plots, the light gray line corresponds to a
homogeneous, nonperiodic medium of the same average density,
the dashed line to an infinite lattice and the solid red (medium
gray) line simulates the actual density distribution of our system.
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D ¼ Re

�
2þ r1 þ r2
1� r1r2

� 1

�
: (2)

The result, shown in Fig. 3(c), exhibits clearly the band
gap, with a strong reduction of the normalized local DOS,
which reaches at minimum 6% for an infinite lattice. The
corresponding reflection spectrum reaches 85% [Fig. 3(d)].
In both cases, the limitation (for achieving high reflectance
or low DOS) is the remaining losses.

To take into account the limited length of the sample and
its actual, smooth density distribution along the lattice axis,
that we characterized by absorption imaging, we compute
the reflection spectra through the whole structure by multi-
plying elementary transfer matrices computed with the
corresponding local density. The local DOS then exhibits
a smaller reduction, reaching at minimum 23%, but the
maximum reflectance is almost as high as in the infinite
limit, reaching 82% [Fig. 3(c) and 3(d)].

Finally, to simulate our experimental spectra precisely,
we must also take into account the trapping-induced in-
homogeneous light shift and the finite transverse size.
Indeed, we only considered so far infinitely extended
layers, which is a crude approximation, the atom cloud
having an rms width of 60 �m. The probe beam, having
also a finite size, probes a distribution of local density,
which induces an inhomogeneous broadening of the spec-
tra. There is in fact a tradeoff for the probe beam size: a
small beam allows us to probe a well-defined and maxi-
mum density, but since the reflection is very sensitive to the
angle of incidence, the probe divergence induces also an
inhomogeneous broadening. Experimentally, we have tried
several probe sizes and obtained the maximum reflectance
with w0 ¼ 35 �m. To simulate these effects we averaged
many spectra over Gaussian distributions of incident an-
gles and densities corresponding, respectively, to the probe
divergence and atomic density distribution along the trans-
verse directions. We obtain the spectra of Fig. 1(d), in good
agreement with the experiment [20].

To summarize, we have studied experimentally the
Bragg reflection of light at a one-dimensional atomic qua-
siperiodic structure in the regime of multiple reflection,
demonstrating a high efficiency, thanks to a fine-tuning of
the lattice periodicity. Then, motivated by the modeling of
our system, we have investigated the effects of the finite
length and of the smooth density variation along the lattice
on the appearance of a band gap and its quality. These
imperfections, inherent to cold-atom systems, do not de-
stroy the band gap which, even if the DOS reduction is not
dramatic, still substantially modifies the transport proper-
ties of light, as demonstrated by the observed high
reflectance.

Improving further the quality of the PBG requires re-
ducing the losses by creating the band gap farther from
resonance, which could be done by increasing the density
or the lattice length, for example, with a larger initial MOT.
Another fascinating possibility is to tailor the atomic polar-
izability to remove its absorptive part, while enhancing the

refractive index, following the ideas of [21,22]. Finally, the
extension to more evolved lattice geometries, for example,
with bichromatic lattices [23] and to three dimensions [6],
has been proposed recently. This last case is of course the
most appealing since a 3D band gap would profoundly
modify the atom-light interaction [24,25].
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The fact that a periodic index modulation in 1D gives rise to a photonic band gap is almost
a mathematical theorem, so this is absolutely not surprising. What is often forgotten is that
this well-known result is only true for an infinite, lossless, perfectly periodic medium.

In my opinion what is interesting in this work is to discuss and quantify the intrinsic
limitations. The main limitations of using cold atoms for 1D photonic band gaps are the
low density, which induces a low refractive index contrast between layers and the need for
a large number of layers, and the scattering losses near resonance. Note although that
scattering is loss only because we deal with 1D propagation: light is not absorbed, it is
scattered off axis. The situation would be different for a 3D arrangement. Nevertheless,
well understanding the 1D case is useful before turning to the 3D case, which is far less
obvious, because omnidirectional photonic band gaps only occur for very specific geometries
and parameters [Antezza 2009,Yu 2011,Antezza 2013].

III.1.2. Photonic band gaps with EIT
In order to try to overcome some of the above-mentioned limitations, in particular the
scattering losses, it is natural to think about playing around with the atomic polarizability.
One simple idea is to use EIT. It is quite easy to adapt the numerical model to add EIT as
one just needs to change the atomic polarizability (which is still linear with respect to the
probe field) in the transfer-matrix model. The results of such a study, which had already been
performed by [Petrosyan 2007], show that the EIT response makes a second band gap appear
near resonance. However, this band gap is not of better quality than the two-level-atom band
gap, i.e. the scattering losses are the same. Indeed, EIT can make the imaginary part of the
polarizability completely vanish in principle at a given frequency, but at that same frequency
the real part also vanishes. Slightly detuned from this point one recovers some refractive
index but also some scattering losses, and the ratio between the two is actually the same as
for the two-level atom polarizability.

However, this new band gap is still interesting because it can be tuned by the coupling field.
In the following article [Schilke 2012b] we compute and discuss this new band gap using the
transfer-matrix model, then we implement EIT and experimentally demonstrate this new
band gap, and we finally use it for making a two-port all-optical switch.
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We experimentally study the photonic properties of a cold-atom sample trapped in a one-dimensional optical
lattice under the conditions of electromagnetically induced transparency. We show that such a medium has two
photonic band gaps. One of them is in the transparency window and gives rise to a Bragg mirror, which is
spectrally very narrow and dynamically tunable. We discuss the advantages and the limitations of this system.
As an illustration of a possible application we demonstrate a two-port all-optical switch.
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I. INTRODUCTION

Atomic vapors can be used for studying many original
or useful optical phenomena. Based on the atomic nonlin-
earity, one can produce and study bistability [1], squeezing
[2], various nonlinear magneto-optical effects [3], all-optical
switching [4], gain and lasing [5], and four-wave mixing [6],
which allows the production of twin beams [7,8] and optical
parametric oscillation [9]. Another useful property is the
atomic coherence, that can be used to produce electromag-
netically induced transparency (EIT) [10,11], slow or fast
light [12,13], and quantum memories [14]. Finally, the large
atomic scattering cross section allows studying effects related
to multiple scattering of light in disordered media, for example
Lévy flights in hot vapors [15], radiation trapping [16,17], and
coherent backscattering in cold atoms [18,19]. In the opposite
regime, cold atoms can be trapped in an ordered fashion,
which gives rise to Bragg scattering [20–22] and photonic
band gaps (PBGs), which have been recently observed in
the one-dimensional (1D) case [23] and predicted in three
dimensions [24,25].

Combining a control over the atomic spatial arrangement
(external degrees of freedom) and the atom polarizability
(internal degrees of freedom) allows a complex engineering
of the propagation properties of light. In this spirit, radiation
trapping under condition of EIT has been studied in [26,27],
the combination of multiple scattering and gain gives rise to
random lasing [28], and it was recently demonstrated that the
combination of a 1D PBG with four-wave mixing leads to
distributed feedback optical parametric oscillation [29].

In this paper, we experimentally investigate the combina-
tion of EIT and a 1D PBG formed by cold atoms trapped in a
1D lattice, like in [23]. As already shown in a theoretical paper
by Petrosyan [30], such a system creates a new band gap, in
the transparency window, which is spectrally very narrow and
which is dynamically tunable. We report measurements of the
transmission and reflection spectra and their dependence with
experimental parameters, and we discuss the limitations of
such a system. We finally demonstrate a two-port all-optical
switch as a possible application.

It should be noted that various configurations of electro-
magnetically induced gratings have already been discussed in

*william.guerin@pit.uni-tuebingen.de

the literature with hot or cold atoms (see [31] for theoretical
proposals and [32] for experiments). In all these cases,
however, the grating is due to the spatial modulation of the
control field. On the contrary, in our experiment, the Bragg
mirror relies on the periodic spatial modulation of the atomic
density. The controls over the internal and external degrees of
freedom are thus decoupled.

The paper is organized as follows. The next section is
devoted to the theoretical description of our system. The
dispersion relations and expected reflection and transmission
spectra are computed for ideal parameters. In the following
part, we present our experimental setup. Then, in Sec. IV, we
present our measurements. Finally, in Sec. V, we demonstrate
the use of our system as an all-optical switch.

II. THEORETICAL DESCRIPTION

We consider three-level atoms, as shown in Fig. 1(a), with
two low-energy levels, which we call the ground state |g〉
and the metastable state |m〉, and one excited state |e〉. The
atoms are initially in the ground state, and we are interested
in the photonic response of the sample at optical frequencies
in the vicinity of the transition |g〉↔|e〉(wavelength λ0), when
the states |m〉, |e〉 are coupled by an external field. We thus
consider a probe beam with a detuning δ = ω − ωge from
the atomic transition and a coupling beam with a detuning
� = ωC − ωme. The probe beam has a very low intensity and
we consider only the atom’s linear response, described by the
atomic polarizability [Fig. 1(b)]

α = 2|dge|2
ε0h̄�

−�

2δ + i� − 	2/[2(δ − � + iγ )]
, (1)

where � is the spontaneous emission rate of the excited state,
γ the dephasing rate between the two ground states (we
suppose γ << �), 	 = |dme|2E/h̄ is the Rabi frequency of
the coupling field of amplitude E, and dij is the dipole moment
of the transition |i〉 ↔ |j 〉 [30]. In this equation, EIT is induced
by the last term of the denominator [33].

The atoms are trapped in a one-dimensional optical lat-
tice formed by a red-detuned retroreflected laser beam of
wavelength λlat, thus forming an atomic density grating of
periodicity λlat/2 [Fig. 1(c)]. The modulation contrast depends
on the temperature T of the atomic sample, which is usually
related to the trapping depth U0 of the optical potential by a

023809-11050-2947/2012/86(2)/023809(9) ©2012 American Physical Society



SCHILKE, ZIMMERMANN, AND GUERIN PHYSICAL REVIEW A 86, 023809 (2012)

(c)

(a)

λlat/2

Ω

Δδ |e >

|g >
|m>

-4 -2 0 2 4
-0.5

0

0.5

1(b)

δ/Γ

α∼

FIG. 1. (Color online) (a) Atomic levels and laser configuration.
(b) Real part (blue, bottom curve) and imaginary part (red) of the
dimensionless atomic polarizability α̃ = α × ε0h̄�/2|dge|2 for a two-
level atom (dotted lines) and with EIT (solid lines), with � = 0 and
	 = � [Eq. (1)]. (c) Scheme of the system under consideration: the
atoms are trapped in a 1D optical lattice of periodicity λlat/2.

constant factor η = U0/kBT . We will take η = 3.5, the value
observed in our experiment [23]. The density distribution of
each period is then a Gaussian of rms width along the lattice
axis z σz = λlat/(2π

√
2η).

Since the laser forming the lattice must have a wavelength
λlat > λ0 to create a dipole trap, the Bragg condition can
only be fulfilled with a nonzero propagation angle θ between
the probe and the lattice beams, such that cos θ ∼ λ0/λlat.
In practice, it is easier in experiments to tune the lattice
wavelength to adjust the Bragg condition. We can thus define
�λlat = λlat − λlat0 as the shift from the “geometric” Bragg
condition λlat0 = λ0/ cos θ . The complete Bragg condition
must take into account the fact that the probe wavelength in the
medium is λ = λ0/n, where n is the average refractive index,
which strongly depends on the probe detuning δ. The Bragg
condition can then be rewritten in the simple following form:

n(δ) − 1 = −�λlat

λlat
, (2)

where the right-hand side of the equation depends only on the
lattice wavelength and the left-hand side depends on the real
part of the atomic polarizability and on the average atomic
density ρ, with n − 1 = ρ/2 × Re(α) for a dilute vapor. The
imaginary part of the atomic polarizability plays also an
important role since it is responsible for scattering losses [23].

Considering these losses together with Eq. (2) is sufficient
to qualitatively explain the photonic properties of the system
(see [23] for the simple case of two-level atoms): a band
gap will appear when Eq. (2) is fulfilled at a detuning δ

where the imaginary part of the atomic polarizability is small
enough. With the EIT polarizability [Eq. (1) and Fig. 1(b)],
one can easily see that the Bragg condition (2) can be
fulfilled at four different detuning δ [crossing points between
Re(α) and a straight horizontal line given by −�λlat/λlat].
However, for two of these frequencies, the imaginary part
of the polarizability is near its maximum, indicating a large

amount of losses and preventing any efficient Bragg reflection.
Therefore, we expect two band gaps, one for a large detuning,
which also appears with two-level atoms [23], and another one,
narrower, in the transparency window, which is due to EIT.

A more precise description of the photonic properties of
such a periodic atomic structure can efficiently be obtained
by simulating light propagation in the medium with the
transfer matrix method [34–36]. It is a one-dimensional model,
whose use is justified when the transverse extension of the
atomic layers is large compared to the probe beam size and
when the incident angle is small, which is the case in our
experiment (see [37] for an extended discussion on this issue).
The nonzero propagation angle can be taken into account by
changing the probe wave vector from k0 = 2π/λ0 to k0 cos θ .
A detailed description of this method in the context of ordered
atomic samples has been given in previous papers [38–40].
In brief, the first step is to construct the transfer matrix
M of one single period. To do so, one has to decompose
the atomic layer in several sublayers of thickness δz. The
transfer matrix of each sublayer is the product of a propagation
matrix with a discontinuity matrix whose coefficients are given
by the Fresnel coefficients, see [36]. Besides the density
distribution, the only ingredient entering the model is the
atomic polarizability. Therefore, extending the results obtained
with two-level atoms [23] to driven atom under EIT conditions
is simply made by replacing the atomic polarizability. Once
the matrix M is obtained, we can use it to derive analytical
formula that allow us to compute the dispersion relations and
the reflection and transmission coefficients through N layers
(see, e.g. [35,36,38]). The matrix M is related to the elementary
reflection r and transmission t coefficients of one single
period by

M = 1

t

[
t2 − r2 r

−r 1

]
. (3)

Then, using the property det(M) = 1, the eigenvalues of M

are e±i� with

cos(�) = cos

(
keff

λlat

2

)
= Tr(M)

2
. (4)

This relation gives the effective wave vector (or Bloch wave
vector) keff in the medium, i.e., the dispersion relation, which
describes the photonic properties of the medium in the limit
where it is infinite.

To compute the transmission and reflection coefficients
through N periods, we first introduce the matrix A such that

M = ei�A = cos(�)I + i sin(�)A, (5)

where I is the 2 × 2 identity matrix. Then, the transfer matrix
of N periods writes

MN = eiN�A = cos(N�)I + i sin(N�)A. (6)

To get the transmission coefficient T = |tN |2 and reflection
coefficient R = |rN |2 from MN , we just need to know
the coefficients of A, which are obtained by Eq. (5) and
identification with Eq. (3). After some algebra, we get

rN = r

1 − t[cos(�) − sin(�) cot(N�)]
, (7)

tN = t sin(�)/ sin(N�)

1 − t[cos(�) − sin(�) cot(N�)]
. (8)
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FIG. 2. (Color online) Photonic properties of the medium, valid
for an infinitely long lattice. (a) Dispersion relation: the frequency
(detuning δ) is plotted as a function of the effective wave vector in the
medium Re(keff ). Only the edge of the first Brillouin zone keffλlat/2 =
π is shown. A first band gap (BG) is visible. Right panel: zoom in the
transparency window, where a second BG appears. (b) Same as (a)
with the imaginary part of keff . (c) Density of states (DOS) normalized
to the one in a bulk medium of the same susceptibility [Eq. (10)]. In
all plots, the gray solid lines correspond to a homogeneous atomic
medium of the same average density ρ = 7 × 1011 cm−3 and the
dashed blue lines correspond to atoms trapped in a lattice with η =
3.5, �λlat = 0.25 nm, and coupling-field parameters 	 = 2� and
� = 0.

For an infinite medium, and with Im(�) > 0, we obtain

r∞ = r

1 − t ei�
. (9)

We applied these results with the F = 1 → F ′ = 2 tran-
sition of the D2 line of rubidium 87 and with the optimum
parameters of [23] (ρ = 7 × 1011 cm−3, η = 3.5 [41], and
�λlat = 0.25 nm) and with the coupling-beam parameters
� = 0, 	 = 2�. We introduce a dephasing rate γ = 0.008�,
similar to the one of the experiment [12]. We obtain the
dispersion relation [ω vs Re(keff)] shown in Fig. 2(a). As
expected from the previous qualitative discussion, it exhibits
two band gaps (BGs), which appear at the edge of the first
Brillouin zone keffλlat/2 = π , i.e., where the Bragg condition
(2) is fulfilled. It is characterized by a reduced variation of
Re(keff) with ω, corresponding to a reduced density of states.
One of the band gap, which we label “BG 1” in Fig. 2(a), is
not influenced by EIT and is the same as the one studied in our

previous experiment [23]. The second one (“BG 2”) appears on
the contrary in the electromagnetically induced transparency
window. It is very much narrower and its width increases with
the coupling-beam intensity.

The band gaps manifest themselves also in the imaginary
part of keff . In a lossless medium, keff acquires an imaginary
part only in band gaps. In our system, since the atomic
polarizability is complex, the wave vector has always an
imaginary part leading to the wave attenuation when it
propagates in the medium. This attenuation is due to scattering
losses. In this case, we see in Fig. 2(b) that the BGs add
an extra component of Im(keff), which is responsible for the
formation of an evanescent wave that leads to the reflection of
the incoming light.

Finally, PBGs appear also as a reduction of the density
of states (DOS), which can be computed, following [42] and
considering a position in the middle of the structure, from the
reflection coefficients of the two surrounding semilattices of
reflection coefficients r1 and r2, via

D = Re

[
2 + r1 + r2

1 − r1r2
− 1

]
. (10)

This can be applied for a finite length lattice in order to compute
the local DOS [23] or with an infinite lattice using Eq. (9). The
result in that case is shown in Fig. 2(c) and demonstrates a
strong DOS reduction in the two BGs. It should be noted
that, despite the assumption of an infinite medium, the DOS
does not completely vanish because of the scattering losses. It
reaches a minimum value of 0.12 (normalized to the DOS in
the bulk medium of the same susceptibility).

For a finite-size medium, the most relevant quantities are the
transmission and reflection spectra, obtained from Eqs. (7) and
(8). They are shown in Fig. 3, where the two band gaps appear
as two reflection bands. With the above-mentioned parameters
and a lattice length L = 3 mm, corresponding to N ∼ 7700
periods if λlat ∼ 781 nm, the reflection coefficient reaches R ∼
0.73. Note that this is slightly lower than what is reported
in [23], because the considered transition strength is weaker
than the closed transition used in [23], which we cannot use
for EIT.

To summarize, the use of EIT makes a new PBG appear in
the transparency window, in addition to the one that already
appears with two-level atoms. This result was already reported
in [30]. However, there is an important and natural question
that has not been explicitly answered in [30] (even if the result
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FIG. 3. (Color online) (a) Computed transmission T (dashed blue
line) and reflection R (red solid line) spectra with a lattice composed
of N ∼ 7700 periods. All other parameters are the same as for Fig. 2.
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is visible in Fig. 4 of that paper): is the electromagnetically
induced band gap (BG 2) of better quality than the other one
(BG 1)? It was shown in [23] that scattering losses were the
main limitation for achieving low DOS or high reflectivity, and
one could thus hope that EIT improves the band gap quality.
As it can be seen in Fig. 2(c), where the DOS does not reach a
lower value in the BG 2 than in the BG 1, and in Fig. 3, where
the reflection coefficient is not higher in the BG 2 than in the
BG 1, the answer to this question is that the EIT band gap is
not of better quality. The explanation for this behavior is that
even with a perfect EIT (γ = 0), where complete transparency
is reached [Im(α) = 0], it is reached precisely at a detuning
δ where the real part of the atomic polarizability is also
zero, thus suppressing any refractive-index grating. To build
a PBG, one needs a nonzero refractive index, and the Bragg
condition (2) can only be fulfilled slightly off the condition of
perfect transparency. Moreover, the subsequent losses, given
by Im(α), are exactly the same for both PBG. Taking into
account an unperfect EIT (γ > 0) leads even to slightly more
losses.

Nevertheless, the EIT band gap has other advantages.
The most important is that it is tunable, and dynamically
controllable via the coupling-beam parameters. Moreover, it
is very narrow and has a very sharp transition with a good
transmission band [Fig. 3(b)]. These are interesting properties
for practical applications, which motivate our experimental
study, described in the following.

III. EXPERIMENTAL SETUP

In this section, we present briefly our experimental appara-
tus, which has already been described in [23].

We trap and cool 87Rb in a magneto-optical trap (MOT)
loaded from a background vapor. The optical lattice is
generated by a homemade titanium-sapphire laser [43] of
maximum power ∼ 1.3 W with a tunable wavelength λlat.
The beam is focused on a waist (1/e2 radius) wlat = 220 μm
at the MOT position (Rayleigh length zR 	 0.2 m) and then
retroreflected [Fig. 4(a)]. After stages of compression and
molasses, the MOT is switched off and a waiting time of
a few ms allows the untrapped atoms to fall down. The
sample can then be characterized by absorption imaging or
used for measuring transmission and reflection spectra. In this
series of experiment, the typical atom number in the lattice is
N ∼ (1–2) × 107 [44].

To acquire spectra, we shine a weak (P ∼ 3 nW) and small
(waist w0 = 35 μm) probe beam onto the lattice under an
angle of incidence θ 	 1.5◦, which is small enough to allow
the beam to interact with the lattice over its entire length.
The transmitted and reflected beams are then recorded with
avalanche photodiodes (APDs). The probe detuning δ is swept
in the vicinity of the atomic resonance by using an acousto-
optical modulator in double-pass configuration. We use the
F = 1 → F ′ = 2 transition of the D2 line (λ0 = 780.24 nm,
linewidth �/2π = 6.1 MHz). The other hyperfine levels are
far enough to be negligible. The presented data are the result of
an average of typically 250 cycles (the duration of each cycle
is ∼ 1 s).

EIT is induced by a coupling beam tuned in the vicinity
of the F = 2 → F ′ = 2 transition [Fig. 4(b)]. The beam has a
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FIG. 4. (Color online) (a) Scheme of the experimental setup.
(b) Atomic levels and laser configuration. The probe (orange) and
coupling field (blue) drive the transition F = 1 → F ′ = 2 and
F = 2 → F ′ = 2, respectively. (c) Transmission spectrum showing
EIT with a disordered sample. The dashed black line is a fit to the
data [Eqs. (1) and (11)], yielding the parameters γ = 7 × 10−3�,
	 = 0.8� and optical thickness b0 = 21. The slight asymmetry is
due to the cloud expansion during the sweep and is taken into account
in the fit.

diameter of about 5 mm and makes an angle with the lattice axis
of about 8◦, small enough to ensure a homogeneous coupling
strength over the whole lattice. The probe and coupling beams
have both the same circular polarization, which yields to
complete EIT, since all Zeeman substates of the excited states
are coupled to the metastable state [45,46]. In addition, both
lasers are phase-locked together via standard phase-locking
techniques [47] in order to fully exploit the coherence of
the EIT process. To characterize the quality of the achieved
EIT, we acquire a transmission spectrum with a disordered
atomic sample by suddenly switching off the optical lattice and
letting the atoms expand a few microseconds before sweeping
the probe frequency in 200 μs. The ordered pattern has then
disappeared and the transmission is given by

T = exp [−b0Im(α̃)] , (11)

where b0 is the on-resonance optical thickness (b0 =
σ0

∫
ρ(z)dz for a medium of density ρ and with an on-

resonance scattering cross section σ0) and α̃ is the dimension-
less atomic polarizability, whose value is one at resonance (see
its definition in the caption of Fig. 1). Fitting a transmission
spectrum by Eqs. (11) with the polarizability (1) allows us
to measure the on-resonance optical thickness, the effective
dephasing rate γ and to calibrate the Rabi frequency 	. With
the recorded spectrum of Fig. 4(c), we obtain γ ∼ 7 × 10−3�,
giving for example a transmission of 81% with an optical
thickness b0 = 21 and with only 	 = 0.8� [Fig. 4(c)]. The
effective decoherence rate γ mainly comes from the residual
phase noise between the probe laser and the coupling lasers.
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Note also that the transparency increases with the coupling
strength 	.

IV. MEASUREMENTS

We now turn to our experimental characterization of
the photonic properties of the cold-atom sample trapped in
the lattice under EIT conditions. From now on, all spectra
are taken with the lattice beam on. To begin with, let us
examine an example of transmission and reflection spectra,
shown in Fig. 5(a), recorded with �λlat = 0.13 nm and with
the coupling-beam parameters 	 = 1.3�, � = 2.5�. The
coupling field is in fact almost resonant with the atomic
transition, because the lattice trapping induces a light shift.
This shift is slightly inhomogeneous because of the finite
extension of the atomic cloud in each well, but at the potential
minimum, where most atoms are, the light-shifted atomic
resonance is at δ ∼ 2.5�. This effect is taken into account
in our simulations. Note that the light shift is the same for both
transitions so that the two-photon resonance condition leading
to EIT is not affected.

We clearly observe two reflection bands, as expected,
corresponding to the two band gaps described in Sec. II. The
wide one is the band gap already studied in [23], while the
narrow one, never observed before, appears in the transparency
window and is due to EIT. We observe also that the reflection
of the EIT band gap is lower than the reflection of the two-
level-atom band gap. This is due to the finite dephasing rate γ ,
which explains also why the transparency is not complete in
the transmission spectrum. However, taking into account this
parameter in the simulation still leads to an overestimation
of the reflection coefficient [48]. Apart from this discrepancy,
whose origin remains unclear, the simulated spectra are in
good agreement with the experimental ones [Fig. 5(b)].

The simulations shown here and in the following are more
complicated than what has been described in Sec. II because
they take into account a number of experimental effects.
Besides the above-mentioned light shift, the most important
effect is the longitudinal atomic density distribution along
the lattice, which is roughly Gaussian and can be precisely
characterized by absorption imaging. This inhomogeneous
distribution prevents the use of Eqs. (7) and (8). Instead,
we have to compute a different elementary matrix for each
position, following the measured atomic density distribution,
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FIG. 5. (Color online) Experimental (a) and simulated (b) trans-
mission [blue (dark grey)] and reflection [red (light grey)] spectra,
with �λlat = 0.13 nm, N = 1.5 × 107 atoms, η = 3.5, and EIT
parameters 	 = 1.3�, � = 2.5�, and γ = 0.015�.

and multiply them. Note that having a sample without sharp
boundaries makes the usual dips and bumps at the band edges
[Fig. 3(a)] disappear, inducing a kind of smoothing of the
band edge. Another experimental effect that is included in
the simulations is the inhomogeneous broadening due to the
finite transverse sizes of the atomic sample and of the probe
beam. The transfer-matrix formalism is a 1D model, but an
approximate method to account for the transverse-size effects
is to consider a distribution of probed densities corresponding
to the overlap of the probe beam with the atomic lattice, and to
average the subsequent spectra with the appropriate weighting.
Since a finite probe size induces also some divergence and
that the spectra are very sensitive to the incident angle, we
average also over the corresponding angle distribution [49].
This procedure leads to a good agreement with the experiment
(Fig. 5).

In the following, we will focus on the properties of the EIT
reflection band and for clarity we will only show spectra in the
corresponding, narrower spectral range. We will investigate
the tunability of this reflection band, i.e., how it evolves with
the coupling-beam parameters, and its dependence with the
lattice wavelength via the Bragg condition (2). Both aspects
are related because the Bragg condition involves the atom
polarizability, which is modified by the EIT parameters.
However, for simplicity, we separately present these two
dependencies.

A. Dependency on the EIT parameters

To illustrate the tunability of the reflection and transmission
bands, we show in Fig. 6(a) a series of spectra for different
coupling-field detuning � with fixed intensity (	 = 1.8�)
and lattice wavelength (�λlat = 0.11 nm). As expected, the
frequency giving the maximum transmission follows the two-
photon resonance δ 	 �, while the reflection band is slightly
shifted on the δ < � side. The corresponding simulations are
in fair agreement with the experimental data, apart from the
overestimated reflection in the EIT band gap [Fig. 6(b)].

The coupling field amplitude, parametrized by its Rabi
frequency 	, is also an important parameter since the trans-
parency increases with 	, as shown in Fig. 6(c). This increase
is independent of the chosen detuning �. The maximum
reflection coefficient increases also with 	 but this time with
a strong dependency on the detuning �, as shown in Fig. 6(d).
The interpretation for this behavior is the following. With a
lattice wavelength such that �λlat > 0, the Bragg condition
makes the two-level-atom band gap appear on the blue-detuned
size of the atomic resonance, i.e., for δ � 2 (we recall that the
atomic resonance is at δ ∼ 2 because of the lattice-induced
light shift). As a consequence, with a large �, like the data
with � = 3, the main effect of EIT is to create a dip in
the reflection band, inducing a narrow separation between
the two-level-atom band gap and the EIT band gap. Then,
a small 	 makes the dip smaller but does not reduce much the
reflection of the EIT band gap, and that is why the maximum
reflection is almost independent of 	. On the contrary, with
a red-detuned coupling field (for example with � = 0), the
EIT band gap is farther from the other one, and has a much
lower reflectance. By looking precisely at the corresponding
atomic polarizability, one can see that this is due to a higher
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FIG. 6. (Color online) Dependency on the EIT parameters, with a fixed lattice wavelength �λlat = 0.11 nm. (a) Experimental transmission
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(c) Maximum transmission in the transparency window as a function of the coupling-field Rabi frequency 	, for different detunings �.
(d) Same as (c) with the maximum reflection in the EIT reflection band.

value of Im(α) at the frequency where the Bragg condition
(2) is fulfilled, inducing more losses. However, increasing 	

reduces these losses.
Therefore, this is a strong limitation for practical use of the

band gap tunability: changing the coupling-beam parameters
changes the atomic polarizability, which leads to more or less
favorable parameters via the Bragg condition.

B. Dependency on the lattice wavelength

To study the influence of the Bragg condition, we vary the
lattice wavelength [50] and record transmission and reflection
spectra, for different detunings �. First, a series of spectra
obtained with the same EIT parameters is shown in Fig. 7(a)
with the corresponding simulations in Fig. 7(b). The first
notable feature is the qualitative behavior of the spectra, with
the reflection band going from one side of the transmission
band to the other side when the parameter �λlat changes its
sign. This can be easily understood by looking at the graphical
representation of the Bragg condition in Fig. 7(d): one can see
that the frequency where the Bragg condition is fulfilled goes
from one side of the maximum transparency from the other
side when �λlat changes its sign. Another observation is that
there is a clear optimum �λlat for maximizing the reflection
coefficient; see the complete curves in Fig. 7(c). To understand
this behavior, let us first take the case with the coupling beam
at resonance with the atomic transition [Figs. 7(a) and 7(b)
and � = 2� in Figs. 7(c) and 7(d)] and examine the limiting
cases. When �λlat ∼ 0, the Bragg condition is fulfilled where
the refractive index contrast is almost zero [Eq. (2)], which
leads obviously to an inefficient reflection. In the opposite
limit, when �λlat is large, the Bragg condition is fulfilled

where Re(α) is large, but Im(α) is also large, inducing too
much scattering loss. There is thus an optimum in between,
for both signs of �λlat. With a nonresonant coupling field, like
� = 4� or � = 0 in Figs. 7(c) and 7(d), there is only one
optimum lattice wavelength, for �λlat > 0 (�λlat < 0) with
blue-detuned (red-detuned) coupling beam. This is related to
the observations made in the previous paragraph: for a given
�λlat, there is an optimum �, and, conversely, for each given
� there is a different optimum �λlat. Looking very closely
to a graphical representation of the Bragg condition, such as
in Fig. 7(d), one can always check that the difference comes
from the value of Im(α), giving the amount of scattering losses,
where the Bragg condition is fulfilled.

V. ALL-OPTICAL SWITCHING

Finally, to illustrate a possible application of such an
atom-made tunable Bragg mirror, we demonstrate its use as
an all-optical switch. This is a topic of currently high interest
for the processing of optical information. Standard EIT with
a disordered atomic sample can also act as an all-optical
switch, since the coupling beam allows switching between
transmission and absorption of the probe beam. In our case,
using a periodically ordered sample allows switching between
transmission and reflection, i.e., between two output ports.
Moreover, a small change in the coupling-field frequency is
enough to induce switching so that full intensity modulation
is not needed. In this case, the probe beam must have a fixed
detuning and switching is obtained by changing the detuning
� of the control beam, which induces a shift of the reflection
band, so that for one value of � the probe frequency lies in the
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FIG. 7. (Color online) Dependency on the lattice wavelength, with a fixed coupling-beam Rabi frequency 	 = 1.3�. (a) Experimental
transmission [blue (dark grey)] and reflection [red (light grey)] spectra for several �λlat and with a coupling-beam detuning � = 2�.
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horizontal dashed black line representing −�λlat/λlat [Eq. (2)]. The red line is the imaginary part of the atomic polarizability, proportional to
scattering losses.

reflection band and for the other value it lies in the transmission
band.

We report in Fig. 8 the result of such an experiment, with
a probe beam detuning δ = 3�. We switch periodically the
control-beam detuning between � = 3� and � = 3.2� (top
panel of Fig. 8). Following the control beam, the resulting
transmission and reflection are modulated with a very good
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FIG. 8. (Color online) Demonstration of a two-port all-optical
switch. The detuning � of the coupling field serves as the control
parameter (top panel). The bottom panel shows the transmission [blue
(dark grey)] and reflection [red (light grey)] coefficients as a function
of time. The control-field Rabi frequency is 	 = 1.5�, the probe
detuning is δ = 3�, and the lattice wavelength is such that �λlat =
0.15 nm.

contrast, that we define by

CT = TH − TL

TH + TL
, CR = RH − RL

RH + RL
, (12)

where the subscripts H, L stand for the high and low levels. This
leads, with the presented data, to CT = 0.76 and CR = 0.88.

Further studies are needed to better characterize the switch,
in particular to determine the maximum switching rate and
the minimum necessary power for the control beam. A way
to achieve better performances is probably to use the four-
level EIT scheme of [51], which is known to produce giant
nonlinearity, with a few photons, or ultimately a single one,
being enough to make the transparency appear or disappear
[52]. This is required to enter the quantum regime, i.e., to make
a quantum all-optical transistor, a key ingredient for quantum
networks [53]. Several technologies are currently investigated
for realizing quantum transistors, such as plasmonic nanostruc-
tures [54], single dye molecules embedded in crystalline ma-
trices [55], ultrahigh quality factor whispering-gallery-mode
microresonators [56], atoms or ions ensembles in hollow-core
fibers [57] or in high-finesse cavities [58,59]. Since our system
does not need any high-quality or microstructured mechanical
elements, it might be simpler to implement.

VI. CONCLUSION

We have presented in this paper a study of the pho-
tonic properties of a sample of cold atom trapped in a
one-dimensional lattice under EIT conditions. In such a
system, as already predicted by Petrosyan [30], EIT creates
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a supplementary band gap, in the transparency window, in
addition to the one already present with two-level atoms
[23]. We have experimentally observed the Bragg reflection
induced by this band gap and characterized its dependency
with the main experimental parameters. It allowed us to
put in evidence and discuss several limitations. First, the
� scheme necessary for EIT prevents the use of a closed
transition, with an optimum transition strength, which reduces
the Bragg reflection efficiency in comparison with what could
be obtained with the same atomic sample by using a closed
transition. In addition, the amount of scattering losses, which
limit the quality of the band gaps, is at best exactly the same
for the EIT band gap as for the two-level-atom band gap, and in
practice slightly larger, so that the EIT band gap is of slightly
lower quality. Finally, the tunability of the EIT band gap is
limited by a complicated interplay between the coupling-beam
parameters and the Bragg condition.

Nevertheless, it is still an interesting system, with also some
advantages, like the dynamic tunability and the sharp transition
between the reflection band and the transmission band. We
have discussed a two-port all-optical switch as a possible
application based on these properties, and we have performed
a first proof-of-principle experiment. This is a promising idea
that deserves further studies.

Another topic of interest is the wave propagation dynamics
in this system. We have only addressed in this paper the
stationary photonic properties, but it would be interesting
to study pulse propagation. Both EIT and photonic band
edges are known to induce slow light [12,60,61] and our
system combines both ingredients. Since a short pulse is
necessarily spectrally large and that, on the contrary, our
system has transmission and reflection bands which are very
narrow, it should induce a very large pulse distortion. This
is surely not appropriate if one wants to slow down pulses
without distortion, but on the contrary, a fine tuning of
the parameters might allow complex and interesting pulse
reshaping functions. Some proposals have recently appeared
in this spirit [62–64].

Finally, the nonlinear regime, which can be investigated by
using a probe beam with a larger intensity, might also reveal
interesting phenomena.
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III.2. Distributed feedback laser
The 1D photonic band gaps studied in the previous sections can serve as distributed feedback.
The next ingredient to make a DFB laser is to add gain. We can use the gain mechanisms
studied in the previous chapter.

III.2.1. Bragg reflection with standard gain
The easiest gain to implement is Raman gain between Zeeman sublevels, as it only necessitates
one pump beam, which doesn’t have to be very powerful. It is also quite efficient if the laser
is phase-locked with the probe beam, which is straightforward to achieve by taking the two
beams from the same laser and separating the frequencies with acousto-optical modulators.

The results of this experiment is summarized in Fig. III.1. One observes quite a large gain,
leading to reflection and transmission coefficients above unity. One notices, however, that
when the reflection is higher, the transmission is smaller.
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Figure III.1: (a) Experimental transmission and Bragg reflection spectra with Raman gain, which
is responsible for the narrow spectral features. Here δ is the detuning between the probe beam and
the atomic transition. Each panel corresponds to a different lattice detuning from the geometric
Bragg condition [Eq. (III.1)] (see [Schilke 2011]). (b) The maximum transmission and reflection
coefficients are reported as a function of the lattice detuning. The detuning of the Raman laser is
∆ = −5Γ and the resonant optical depth of the sample is b0 ∼ 30.

By fitting a transmission curve taken without any Bragg reflection (far from
the Bragg condition) one can deduce the atomic polarizability including
the Raman resonance [Guerin 2009] and inject it into a 1D coupled-wave
model. The corresponding (unpublished) simulations show that, with
our experimental parameters, we don’t have enough gain for reaching the
DFB lasing threshold, but we should have seen a positive feedback effect,
i.e. having the gain in transmission and in reflection simultaneously increasing at the Bragg
condition. This is not the case in the experiment and we attribute this discrepancy to an
effect which does not exist in the 1D model, namely the transverse walk-off of the wave inside
the medium during the multiple Bragg reflection process, because of the non-zero Bragg
angle (see illustration). This prevents the buildup of a positive feedback loop.
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III.2.2. DFB parametric oscillation
This problem of unstable feedback has been solved by using four-wave mixing (FWM) as
the gain mechanism. To do so experimentally, we only need to carefully retroreflect the
pump beam. Then we observed a huge signal appearing on the transmission and reflection
detectors. We could then easily checked that this signal appears above a certain threshold
in pump intensity and is present without any incident probe beam. We also checked that,
below threshold, we indeed observe a phase-conjugated beam, i.e., a reflected beam in the
backward direction (on top of the Bragg-reflected beam visible in the specular direction).

Without any incident probe beam, the system has a cylindrical symmetry. Since the feedback
is efficient only for a given angle (the Bragg condition), the light is emitted in a cone.

The question of the feedback and its stability is particularly interesting in this system. Let
us consider a plane containing the symmetry axis and the four waves having an angle with
the lattice axis given by the Bragg condition. Such a plane is represented in Fig. III.2, with
waves labeled as E1, E2, E3, E4. The waves E1 and E3 are coupled by Bragg reflection, E2
and E4 are also coupled by Bragg reflection, while E1 and E4 are counterpropagating and
are thus coupled by FWM, like E2 and E3. The electromagnetic feedback (one wave coupled
with itself) is thus obtained by combining two Bragg reflections and two phase-conjugations.
The two walk-offs associated to the two Bragg reflections can then compensate each other,
which produces a stable feedback loop. Note however that this description is only empirical,
I have not been able to find a simple way to include the walk-off effect in a coupled-wave
theory in order to prove that this interpretation is correct.

E1
Pump

Bragg

FWM

Bragg

E3

E4E2

E3

E4E2

E1

(a) (b)

Figure III.2: Figure adapted from the News and View article [Rakher 2012] written about our
paper [Schilke 2012a]. (a) Geometry of the experiment. The lattice axis is horizontal (beams not
represented). In each vertical layer the atoms are not ordered, contrary to what is suggested. (b)
The different waves and their coupling mechanisms (FWM or Bragg reflection) are represented.

The article [Schilke 2012a] on the mirrorless optical parametric oscillations with distributed
feedback in cold atoms is reproduced below.



Optical parametric oscillation with distributed
feedback in cold atoms
Alexander Schilke1, Claus Zimmermann1, Philippe W. Courteille2 and William Guerin1*

There is currently a strong interest in mirrorless lasing
systems1, in which the electromagnetic feedback is provided
either by disorder (multiple scattering in the gain medium)
or by order (multiple Bragg reflection). These mechanisms cor-
respond, respectively, to random lasers2 and photonic crystal
lasers3. The crossover regime between order and disorder, or
correlated disorder, has also been investigated with some
success4–6. Here, we report one-dimensional photonic-crystal
lasing (that is, distributed feedback lasing7,8) with a cold
atom cloud that simultaneously provides both gain and feed-
back. The atoms are trapped in a one-dimensional lattice, pro-
ducing a density modulation that creates a strong Bragg
reflection with a small angle of incidence. Pumping the atoms
with auxiliary beams induces four-wave mixing, which provides
parametric gain. The combination of both ingredients gener-
ates a mirrorless parametric oscillation with a conical output
emission, the apex angle of which is tunable with the
lattice periodicity.

Among the possible systems that can be used to produce and
study mirrorless lasers, cold atoms are interesting because of some
specific properties that differ from those of standard photonic
materials. First, they are resonant point-like scatterers, producing
extremely narrow spectral features (gain curves, scattering cross-
section), which can provide flexibility9 or give new effects. Second,
their temperature is low enough to make Doppler broadening
negligible in most situations, but large enough to make them
move substantially on a millisecond timescale, which makes
disorder-configuration averaging or dynamic evolution from order
to disorder very easy. Third, cold atoms are well isolated from the
environment, which makes them good candidates in the search
for quantum effects.

Conventional lasing has already been demonstrated when cold
atoms are used as the gain medium10,11, as has radiation trapping
due to multiple scattering12, and efforts are under way to combine
both factors to obtain random lasing13,14. In the opposite regime,
a one-dimensional photonic bandgap (PBG), yielding efficient
Bragg reflection of light, has recently been demonstrated in a cold,
ordered atomic vapour15. In this Letter, we demonstrate optical
parametric oscillation (OPO) with distributed feedback (DFB) in
cold atoms trapped in a one-dimensional optical lattice, by combin-
ing the PBG with four-wave mixing (FWM), which provides the
gain mechanism10,16–18.

We trapped cold 87Rb atoms in a one-dimensional lattice of
tunable wavelength ldip. The trapping beam was retroreflected to
generate a potential of periodicity ldip/2 (Fig. 1 and Methods).
Typically, N¼ 5 × 107 trapped atoms were distributed over a
length L ≈ 3 mm (�7,700 atomic layers) at a temperature T ≈
100 mK, leading to a root-mean-square (r.m.s.) transverse radius of
the cloud s⊥≈ 60 mm. Such an atomic pattern gives rise to a periodic
modulation of the refractive index n and we have shown recently15 that

the very small modulation amplitude Dn ≈ 1 × 1023 inherent to
dilute vapours (density r≈ 1 × 1012 cm23) could be balanced by
the large number of layers, provided that the Bragg condition is ful-
filled for a small angle of incidence and for a frequency slightly off
the atomic resonance to avoid too much scattering losses. A Bragg
reflection as efficient as 80% can be obtained.

In the present experiment, we investigated the situation when
gain was added to the system. Cold atoms can amplify light when
pumped by auxiliary near-resonant beams, and several gain mech-
anisms have already been demonstrated (see ref. 10 and references
therein). The combination of enough gain and multiple Bragg
reflection should lead to DFB lasing.

However, in this system, the stability of the feedback mechanism
is a critical issue. We trap the atoms using a lattice beam that is far
red-detuned from the atomic transition (D2 line of 87Rb, wavelength
l0¼ 780.24 nm in vacuum, linewidth G/2p¼ 6.07 MHz), so that
the Bragg condition can only be fulfilled for a non-zero propagation
angle u, relatively to the lattice axis, given by

ldip cos u = l0/�n (1)
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Figure 1 | Schematics of the set-up. Cold atoms are trapped in the lattice

formed by a retroreflected dipole trap. The pump beam is also retroreflected

and has an incident angle of �88. Above threshold, the system emits light

with an angle u around the lattice: in any given plane including the lattice,

four waves are coupled. E1 and E4 as well as E2 and E3 are coupled by the

phase-conjugation process; E1 and E3 as well as E2 and E4 are coupled by the

Bragg reflection. The emitted light is detected by avalanche photodiodes

(APDs) and the beam cross-section is observed by a charge-coupled device

(CCD) camera. Additionally, a probe beam (incident power P0) can be used

to measure the phase-conjugate reflectivity Rpc¼ Ppc/P0, where Ppc is the

reflected power. Inset: scheme of the four-photon transition corresponding

to FWM. Upward (downward) arrows represent pump (probe and

conjugate) photons. MOT, magneto-optical trap.
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where �n is the averaged refractive index of the atomic medium.
Because of this angle, typically u≈ 28 for ldip¼ 780.6 nm, the
light beam is not perfectly reflected onto itself such that it trans-
versely walks off and leaves the interaction volume after a certain
number of Bragg reflections.

Because this walk-off effect plays an important role, we must
consider, for each plane containing the lattice, four different
waves having a propagation angle u relatively to the lattice axis
(Fig. 1). In this case, a ‘standard’ gain amplifies one wave (E4 in
Fig. 1) while the Bragg reflection couples it to another one (E2)
with a walk-off. This problem can be overcome by producing gain
with a phase-conjugation mechanism such as degenerate or nearly
degenerate FWM10,16–18. Then, each wave generates a backward
phase-conjugated wave. Combined with the Bragg reflection, this
leads to a global, walk-off free coupling between all four waves
(Fig. 1), which favours an oscillatory behaviour.

Experimentally, inducing FWM in a phase-conjugation
configuration is done by simply retroreflecting a near-resonant,
linearly polarized pump beam (Fig. 1). Its typical detuning from
the F¼ 2 � F′ ¼ 3 closed transition is D¼25G, it makes an inci-
dent angle with the lattice of �88, and it is collimated with a
waist w ≈ 2.4 mm, thus ensuring a nearly homogeneous pumping
of the whole lattice. To avoid optical pumping into the dark hyper-
fine F¼ 1 ground state, a repumping laser is kept on all the time. In
addition, a weak probe beam, phase-locked with the pump, can be
used for pump–probe experiments or as a local oscillator.

When the pump power P overcomes a certain threshold, namely
Pth ≈ 1 mW for D¼25G (Fig. 3), we observe a strong, directional
light emission that can be recorded either with avalanche photo-
diodes (APDs) or with a charge-coupled device (CCD) camera
(Fig. 1). This radiation is due to OPO with DFB in the cold atom
sample, with FWM as the gain mechanism. This interpretation is
supported by many observations, as discussed in the following.

First, this radiation is obtained only with a retroreflected pump
beam, the alignment of which is critical, which is a strong indication
that FWM is at work (with only one pump beam, we observe a

strong Raman gain10 in pump–probe experiments but no laser).
Second, the polarization of the emitted radiation is linear and
orthogonal to that of the pump beam. This is also consistent with
the properties of FWM, which is much more efficient for orthogonal
pump and probe polarizations19. Third, we measured the frequency
of the emitted light with a beat note experiment (see Supplementary
Information). The emitted light is just a few kilohertz detuned from
the pump frequency, which is consistent with nearly degenerate
FWM20 and inconsistent with Raman gain, for which the amplifica-
tion line was detuned by �200 kHz with similar parameters.

The role of Bragg reflection as the feedback mechanism is
demonstrated by the beam shape. Emission occurs with angle u
from the lattice axis and, because of axial symmetry, forms two
cone-shaped beams on each side of the lattice. From images of
the beam cross-section (Fig. 2a), we extract the emission angle u
as a function of ldip. A fit with �n as a free parameter is fully con-
sistent with the Bragg condition (equation 1) and gives
�n − 1 = (2.2 + 0.5) × 10−4 (Fig. 2b), which is the expected order
of magnitude given the atomic density (the refractive index
depends also on the pump power).

The intensity profile I(w), where w is the in-plane angle, exhibits
strong shot-to-shot fluctuations. However, there is always a sym-
metry, that is, I(w) ≈ I(wþp). This can be more precisely quanti-
fied by computing from the images the angular correlation
function C(Dw) = kI(w)I(w+ Dw)l/kI(w)2l, which shows indeed a
very strong correlation C(p) ≈ 0.96 (Fig. 2c). This correlation
comes from the couplings, namely the Bragg reflection and the
phase conjugation, that exist in any given plane between the four
directions of emission (Fig. 1). In contrast, the shot-to-shot fluctu-
ations can be understood by the random direction of the initial
spontaneous emission event that triggers the laser oscillation and
by the absence of coupling between waves in different planes. In
addition, we note that even after averaging, the intensity is not uni-
formly distributed along the ring (Fig. 2a), indicating that some
effects break the axial symmetry (the incident angle of the pump
beam and possibly some residual astigmatism in the lattice beam).
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Finally, we measured the emitted intensity as a function of the
pump parameters. We observed that the OPO is not very sensitive
to the precise value of the pump detuning D, provided it is negative
(red-detuned) and not too close to resonance: we did not observe
any significant change between D¼24G and D¼210G. Closer
to resonance or with a positive detuning, the pump-induced
heating destroys the lattice, and the laser emission is inhibited or
much weaker. The dependence on pump power is much more
important. Above the threshold, the emitted power increases with
pump power up to an optimum at P ≈ 5 mW, above which a
decrease is observed (Fig. 3). We estimate the maximum emitted
power to be �3 mW on each side. The decrease of the reflectivity
past an optimum pump intensity is a known behaviour of
FWM16. In our case, we also suspect a detrimental mechanical
effect (heating or residual radiation pressure), which destroys the
lattice. We indeed observed, in the temporal behaviour of the
emitted light, that radiation is sustained for a longer time for
lower pump intensities, the longest duration being �0.5 ms.

In summary, it is interesting to note that the threshold condition
requires �50% phase-conjugate reflectivity measured with a disor-
dered sample (Fig. 3) and �80% Bragg reflectivity measured with
a passive sample15, but when both ingredients are combined, these
quantities are modified and we can no longer determine the
amounts of feedback and gain, in contrast to standard lasers, in
which the gain medium and cavity can be characterized indepen-
dently of one another. This is also what makes our system original
and interesting.

To conclude, let us discuss the possible applications of this DFB
OPO. First, we stress that the idea of combining FWM with a red-
detuned DFB grating to generate conical beams (and possibly
Bessel beams23) might also be applied in other systems, such as
semiconductors21,22. In contrast, on-axis feedback could be obtained
by using higher-order Bragg reflection, for example, with
ldip = 2l0/�n. Combining this idea with frequency up conversion
schemes24–27, one might be able to produce mirrorless oscillation

at l0 with pumps at longer wavelengths. In principle, l0 can be
any atomic transition, possibly in the ultraviolet range. Another
possible application is the generation of ‘twin beams’, that is, pairs
of beams with a relative intensity noise below the standard
quantum limit. It is indeed well known that FWM induces
quantum correlations and it has been shown that FWM oscillators
above threshold could create twin beams20. We have already demon-
strated strong angular classical correlations, and more work is
needed to investigate, theoretically and experimentally, the question
of possible quantum correlations in such systems. Here, the corre-
lations should concern the four directions of emission in each
plane. Finally, extension to a three-dimensional geometry, using
the bandgap predicted in ref. 28, is an exciting open question.

Methods
Atomic sample preparation and experimental cycle. The atoms were trapped and
cooled in a magneto-optical trap (MOT) loaded from a background vapour in 1 s.
Stages of compression and molasses were used to increase the density and decrease
the temperature, before loading the atoms in the dipole trap, which was generated by
a home-made continuous-wave Ti:sapphire laser, following the design of ref. 29. The
maximum available power was 1.3 W and its wavelength ldip was tunable in the
range 770–820 nm. The beam was focused with a waist (1/e2 radius) wdip¼ 220 mm
at the MOT position (Rayleigh length zR ≈ 20 cm). The lattice was then formed by
retroreflecting the beam. After loading the optical lattice, the molasses beams were
switched off and a waiting time of 20 ms allowed the untrapped atoms to escape.
Then, we could either characterize the trapped sample by absorption imaging,
perform pump–probe spectroscopy to measure transmission, Bragg reflection and
phase-conjugate reflection spectra, or shine only the pump beams to observe the
emitted light. When the phase-conjugate reflectivity was measured without lattice
(Fig. 3), the lattice was switched off with a mechanical shutter in 130 ms and the
atoms freely expanded for 1 ms before measurements. This time of flight was large
enough to completely smooth out the ordered structure and small enough to keep
the optical thickness constant. All the stages following the initial MOT loading lasted
only a few milliseconds, so the total cycle duration was not much longer than 1 s.
The repetition rate was thus �1 Hz, which allowed quick averaging over
many realizations.

Detection tools. To measure the phase-conjugate reflectivity, we used APDs and
obtained spectra by sweeping the probe frequency with an acousto-optic modulator
in double-pass configuration. Because the probe power fluctuated during the sweep,
the recorded reflected intensity was divided by a reference intensity recorded
simultaneously with another APD illuminated by part of the probe beam.
The relative sensitivity of both APDs was calibrated with a 10% uncertainty due
to thermal drifts.

To observe the transverse mode of the OPO (cross-section images shown in
Fig. 2), we used a CCD camera. The beam was first reflected off a mirror, which was
pierced to allow the lattice beam to go through (Fig. 1), and then collimated and
refocused 50 cm later on the camera. This allowed us to image the whole beam, and
also to use several small black masks mounted on thin glass plates to get rid of stray
reflections of the lattice beam on the vacuum chamber windows, which focused at
intermediate distances. The angle calibration used the probe beam, which could also
be imaged on the camera, as a reference. The incident angle of the probe beam was
precisely determined using a series of Bragg reflection spectra off the passive lattice.
When the spectra were symmetric, the probe angle fulfilled cos u¼ l0/ldip (ref. 15).
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Beat note experiment

To determine the frequency of the emitted radiation, respectively to the pump frequency, we use our probe beam
as a local oscillator and perform a beat note experiment.
Both beams are phase-locked together through an injection locking, which allows the resolution of very narrow
spectral features. However, both beams pass through different double-pass acousto-optic modulators (AOMs) to
allow us to sweep their frequencies. Standard AOM drivers suffer from thermal drifts and thus do not provide a
kHz precision. As a consequence, for this beat-note experiment, we use two signal generators (Rohde & Schwarz
SMR20) to drive the AOMs with a well-defined frequency difference of 푓0/2 = 150 kHz (because of the double-pass
configuration, the frequency difference between both laser is 푓0 = 300 kHz).
We overlap the probe beam on one of our detection photodiodes and record the temporal trace of the emitted
radiation beating with the probe. We generate the Fourier transform of this signal with a digital oscilloscope and we
average this power spectrum 푆(푓) over many realizations. We observe a peak around 푓0 (inset of Fig. S1), whose
precise position gives the relative frequency shift 훿푓 between the pump beam and the emitted radiation. The precision
of the measurement is limited by the duration of the OPO.
Even though the most efficient configuration for four-wave mixing is when all waves are degenerate, we observe a
non-zero frequency difference. This can be explained by the role of the refractive index, which provides the feedback,
and whose value is not necessarily maximum at the pump frequency. The resulting working frequency of the OPO
comes thus from a trade-off between the gain efficiency and the feedback efficiency.
We measured the frequency difference 훿푓 for different pump powers and observe a linear drift (Fig. S1), which is
consistent with a broadening of pump-induced spectral structures.
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62 Chap III - Distributed feedback laser with cold atoms

III.2.3. Mode structure: numerical investigations
In this section I include some unpublished calculations on the mode structure of our DFB
OPO1. DFB lasers with standard gain can be modeled by coupled-wave equations [Ko-
gelnik 1971, Kogelnik 1972, Yariv 1988]. FWM is also usually modeled by coupled-wave
equations [Abrams 1978, Nilsen 1979, Yariv 1977, Yariv 1988]. It is thus quite simple to
combine the two within the same formalism. To the best of my knowledge2, the combination
of DFB and degenerate FWM has not been previously studied in the literature. The closest
system that has been studied is a DFB OPO based on a largely-nondegenerate backward
parametric gain [Huang 2005]. In this situation, the signal and idler waves have different
wavelengths and only one of them is close to the Bragg condition and undergoes DFB. On
the contrary, in the system considered here, both waves are Bragg-reflected by the DFB
structure. Moreover, the phase-matching condition for FWM is always fulfilled. This has
dramatic consequences on the mode structure, which becomes continuous.

III.2.3.1. Principle

The different waves to consider are sketched in Fig. III.3. The incident probe wave is A1, the
Bragg reflected wave is A2, the phase-conjugated reflected wave, generated by FWM, is A3,
and a fourth wave A4 is created by the combination of FWM and Bragg reflection (we have
indeed observed it when the probe had the good frequency and angle). In a pump-probe
experiment, the measurable signals are

T =
∣∣∣∣∣A1(L)
A1(0)

∣∣∣∣∣
2

, RBragg =
∣∣∣∣∣A2(0)
A1(0)

∣∣∣∣∣
2

, RFWM =
∣∣∣∣∣A3(0)
A1(0)

∣∣∣∣∣
2

, S =
∣∣∣∣∣A4(L)
A1(0)

∣∣∣∣∣
2

. (III.2)

A1

A3

A2

A4

z0 L

Figure III.3: Waves to consider for a theoretical modeling.

In a theoretical modeling, each wave fulfills a propagation equation with some coupling terms:
A1 and A2 are coupled via Bragg reflection, A3 and A4 too, A1 and A3 are coupled via FWM,
A2 and A4 too. Moreover, we have the following boundary conditions: A1(0) = 1, A2(L) = 0,
A3(L) = 0, A4(0) = 0. These conditions are appropriate for a pump-probe experiment.
Reaching a laser threshold means that the output signals are nonzero even with A1(0) = 0.
Numerically, we need a nonzero incoming wave and see a divergence of the other signals.

In the following I first investigate the situation without FWM, with only standard gain. I
should recover the same results as in standard DFB lasers [Kogelnik 1971,Kogelnik 1972,
Yariv 1988]. In that case, the only coupling term comes from Bragg reflection, and the

1 I did this study in 2012 during my last months in Tübingen. I initially had the ambition of publishing it
somehow, but I never took the time... I’m thus happy to put it here.

2 The literature on DFB lasers is huge, with a a lot of technical papers, so I cannot guarantee that I didn’t
miss anything.
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four-wave system can be decomposed into two independent, uncoupled two-wave systems: A1
and A2 on one side, and A3 and A4 on the other side. Thus, I consider only A1 and A2. Then
I treat FWM only. Here also, the system simplifies to two independent two-wave systems,
and I only consider A1 and A3. Finally, I consider both effects together with the complete
four-wave system.

III.2.3.2. Coupled-wave model of DFB

The coupled-wave theory has been first developed and used for DFB lasers by Kogelnik
[Kogelnik 1972,Kogelnik 1971]. The coupled equations read:

dA1

dz
= −(β − iδ)A1 + iκA2 , (III.3)

dA2

dz
= (β − iδ)A2 − iκA1 . (III.4)

In these equations, A1 and A2 are the forward and backward propagating components of
the total fields, defined with the Bragg wavevector, which means that if the actual incident
wavevector do not fulfill exactly the Bragg condition, the A1 and A2 components undergo
an additional phase-shift. This is the role of the δ parameter, which quantifies the shift
from the Bragg condition. The parameter β is the gain/loss coefficients3 (negative in case
of gain), and κ is the coupling constant, proportional to the index modulation amplitude.
These parameters are related to the experimental ones by:

δ = Re(n̄) k0 − klat , (III.5)
β = Im(n̄) k0 , (III.6)
κ = ∆n k0/2 , (III.7)

where n̄ and ∆n are respectively the average and amplitude modulation of the complex
refractive index n(z) = n̄ + ∆n cos(2klatz), k0 = 2π/λ0, klat = 2π/λlat and λ0, λlat are the
wavelengths of the atomic transition and the lattice, respectively. In Eqs. (III.3-III.4), the
term (β − iδ) could be replaced directly by −i(n̄k0 − klat). Taking into account a nonzero
incident angle θ is done by replacing k0 by k0 cos θ.

It should be noted that in this model, I have to suppose that the density pattern is sinusoidal,
while the experimental distribution is Gaussian. I have checked that using a sinusoidal density
with the largest possible contrast, i.e. ∆n = n̄− 1, still slightly underestimates the Bragg
reflection.

We can also rewrite the parameters with the number of layers N , the atomic polarizability
α, the average density ρ and the shift from the geometric Bragg condition ∆λlat = λlat −
λ0/ cos(θ):

δL = πN [ρRe(α)/2 + ∆λlat/λlat] , (III.8)
βL = πNρIm(α)/2 , (III.9)
κL = πNρα/4 , (III.10)

where all coefficients are now dimensionless (i.e. normalized by the lattice length L).

These equations can be numerically solved quite efficiently (using some linear algebra,
especially to take into account the boundary conditions, which are not simple initial-value
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Figure III.4: Modes of a DFB laser with κL = 2 (refractive index contrast). The parameters βL
and δL quantify the gain and the Bragg condition governing the emission wavelength (in standard
DFB lasers) or the emission angle (in our case).

conditions) and the results for the reflection and transmission coefficients as a function of the
parameters βL and δL are shown in Fig. III.4.

One recovers the classical result for a simple DFB structure (a similar figure can be found
in [Yariv 1988]). The degeneracy between the two lowest-threshold modes can be lifted by
adding a π/2 phase shift in the middle of the structure or some partial reflection on the
facets or by using a modulated gain instead of a modulated refractive index.

III.2.3.3. Coupled-wave model of FWM

Many papers [Abrams 1978,Nilsen 1979,Yariv 1977,Boyd 1981] and textbooks (e.g. [Yariv 1988])
treat the FWM problem. The standard approach is to start from the Helmholtz equation
with the nonlinear polarization as a source term, neglect the depletion of the pump fields,
then replace the electric fields Ei = Aie

i(ωit−ki·ri) by their complex amplitudes Ai, use the
slowly-varying-envelope approximation and at the end, we obtain two coupled equations for
the probe and conjugated waves (here, waves A1 and A3, and the same for A2 and A4, see
Fig. III.3):

dA∗1
dz

= −β′∗A∗1 + iγA3e
i∆kz , (III.11)

dA3

dz
= β′A3 + iγ∗A∗1e

−i∆kz . (III.12)

Here, β′ = −ink0 with n the complex refractive index, i.e. it plays the role of (β − iδ)
previously, but there is no lattice any more. Note also that if we are only interested in
the intensities (and not the phases), the results are independent of the real part of the
refractive index, only the imaginary part (linear gain/absorption coefficients, like the previous
β) plays a role. The γ is the coupling term due to FWM. The terms with ∆k provide the
phase-matching condition, and I will forget it in the following (∆k = 0), since I suppose that

3 α is used in [Kogelnik 1971] but I want to keep it for the atomic polarizability.
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there is no angle between the conjugated waves (A1 and A3 perfectly collinear). I suppose
also that the two waves are degenerate. If it were not the case, I should use different β′ and
γ for each wave, since these coefficients depend on the frequency.

The expression of the FWM coupling terms are [Boyd 1981]:

iγ∗i = −k0

2 ραNL(ωi)AP1AP2 , (III.13)

where αNL is the nonlinear part of the atomic polarizability and AP1, AP1 are the amplitude
of the two pump fields. I am not aware of any analytical expression for this nonlinear
polarizability, which includes the effect of the polarization and Zeeman degeneracy. These
effects cannot be neglected, because considering only a two-level atom would simulate the
situation of parallel pump and probe polarizations. On the contrary, we use orthogonal
polarizations, which leads to much more efficient FWM [Lezama 2000]. Thus, in practice, γ
can be empirically determined from the FWM efficiency observed in the experiment, this is
not a known ab initio parameter.

Here again there are simple analytical formulas for the results [Abrams 1978]. A remarkable
result is that as soon as we’re interested only in intensities (and not on phases), the results
depend only on |γ|2. It shows also, for example, that with β′ = 0 (no gain nor losses from the
linear part of the polarizability), we have T = R + 1, so that there is a net energy gain from
FWM (and for each pump photon going in A1, there is another one going in A3). Also, a very
important result is that there is a self-oscillation threshold that is reached for |γ|L = π/2
with β′ = 0. This self-oscillation, sometime called MOPO (mirrorless parameteric oscilator)
has been studied a long time ago with hot vapors [Grynberg 1988a,Grynberg 1988b] and
recently with cold atoms [Mei 2017, Lopez 2019]. In our case, we expect to find that the
addition of DFB significantly lowers the threshold condition.

III.2.3.4. Coupled-wave model of DFB and FWM together

We now combine DFB and FWM together, with the four considered waves [Fig. III.3]:

dA1

dz
= −(β − iδ)A1 + iκA2 − iγ∗A∗3 , (III.14)

dA2

dz
= (β − iδ)A2 − iκA1 + iγ∗A∗4 , (III.15)

dA3

dz
= (β − iδ)A3 − iκA4 + iγ∗A∗1 , (III.16)

dA4

dz
= −(β − iδ)A4 + iκA3 − iγ∗A∗2 . (III.17)

To solve this system, one actually has to consider a system of 8 equations for the 4 fields and
their conjugate. The measurable quantities are those defined in Eq. (III.2) with the boundary
conditions given below Eq. (III.2).

Results in the case β = 0, i.e. lossless and gain-less, are shown in Fig. III.5. The x-
axis is δ, i.e. the detuning from the geometric Bragg condition (which gives usually the
frequency of the lasing mode, for us the angle), and the y-axis is now the FWM coupling
coefficient γ. Each row is for a different value of κ, the Bragg coupling coefficient. The first
row (κ = 0) thus corresponds to FWM without DFB: it show the expected self-OPO at
γL = π/2± π [Abrams 1978]. Then the figure shows what happens when one progressively
increases the DFB modulation κ.
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Figure III.5: Results of the system of 4 coupled-equations for β = 0 (lossless and gain-less). We
scan the (δ, γ) space, for 5 different values of the Bragg coupling coefficient κ (upper row: κ = 0,
no Bragg reflection). δ parameterizes the Bragg condition and γ the strength of FWM. Note the
logarithmic color scale.

We observe that DFB induces a progressive deformation of the self-OPO mode, giving rise to
a continuous ‘mode curve’, instead of another, disconnected supplementary discrete mode,
like for a standard DFB laser.

Let us now add gain (β < 0) and see how one goes from a DFB OPO to a DFB laser with
standard gain. Since all results are symmetric with respect to δ, I only show the δ > 0 part.
Also, since all measurable quantities (T , S, RBragg, RFWM) give qualitatively similar results,
I only show one of them (T ).

First I show in Fig. III.6 the mode structure for a given value of the Bragg coupling coefficient
κL = 2 and for increasing gain (the first panel with β = 0 is the same as the [4th row, 1st

column] panel of Fig. III.5). With gain, the ‘mode curves’ get lower, which means that the
necessary threshold for the FWM coefficient is lower, and it can even reach zero, when the
mode curves touch the x-axis. This happens at discrete values of δ: we recover the standard
DFB laser modes.

One can also look the other way around, i.e. start from the DFB laser modes and see what
happens when we progressively add FWM. This is what I show in Fig. III.7, in which the first
panel, without FWM (γ = 0), is identical to the standard DFB laser modes of Fig. III.4. Then,
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Figure III.6: Mode structure for a fixed Bragg coupling coefficient κL = 2 and an increasing linear
gain β (< 0 for gain). As in the previous figure we scan the (δ, γ) space.

the discrete modes [points in the (δ, β) space], become continuous (circles), and ultimately
reach the β = 0 axis (no gain), corresponding to the DFB-OPO without linear gain.
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Figure III.7: Mode structure for a fixed Bragg coupling coefficient κL = 2 and an increasing FWM
coefficient γ. Unlike in the two previous figures, here we scan the (δ, β) space, like in Fig. III.4.

III.2.3.5. Discussion

The remarkable result is that the DFB OPO appears progressively as a deformation of the
self-OPO and not as a disconnected supplementary mode. It doesn’t give a discrete mode,
but a continuous ‘mode curve’. This is not obvious because the threshold condition is, like for
normal DFB lasers, a complex equation (the determinant of the matrix describing the set of
linear differential equations should be zero), so that we need a priori two variables to fulfill it.
Here, once three parameters are fixed (for instance δ, κ, β), the threshold equation is fulfilled
for a whole continuous range of the fourth parameter (here γ). Note that this is already the



68 Chap III - Distributed feedback laser with cold atoms

case for the OPO self-oscillation, even with losses [Abrams 1978]. Somehow, it is the power
and magic of FWM, which provides parametric gain and simultaneously an automatically
resonant feedback. Similarly, it is well known that inserting a phase-conjugation mirror in an
optical cavity makes it stable [Lind 1981].

In the experiment, we didn’t observe the self-OPO, which means that we always had γL < π/2.
Actually, one can evaluate the parameter γL from the phase-conjugate reflectivity measured
without the lattice, and one can evaluate κL from the Bragg reflectivity without FWM.
Unfortunately, we don’t have those measurements in the precise exact conditions of the
DFB-OPO data, but one can still, from our experimental parameters and calibrations, give
rough evaluations. We obtain that the lasing threshold is around γL ' 0.6 with κL ' 1.4.
The experimental threshold is actually lower than predicted by the model with β = 0. This
means that, either the Raman gain helps a little, or we underestimate the Bragg coupling
because of the Gaussian atomic density distribution in the wells (instead of a sinusoidal
modulation in the model).

Also, in the experiment, we measured the lasing frequency with a beat-note and observed that
it was slightly detuned, by only a few kHz, from the pump frequency. It means that we should
not consider perfectly degenerate FWM. Then, if the laser frequency is ω1 and the pump
frequency is ωP , the conjugated wave, created by FWM, is at the frequency ω2 = 2ωP − ω1!
As a consequence, we should in fact consider 8 waves, with a wave at ω1 and a wave at ω2
for each emission direction. But then, should not the laser be multimode? In the beat-note
experiment, we observed only one frequency. It means that the threshold of both waves are
different, which could be due to the very steep dispersion of the Raman gain structure. In
the temporal trace, we sometimes observed oscillations, but it was not well repeatable. It
might depend on the precise value of the parameters. However, I find highly non-intuitive
that it can be only single-mode since the two modes are strongly coupled by FWM, and the
complete ‘feedback loop’ of one mode passes through the other mode. It seems however that
this situation was already observed in FWM experiment with hot vapors [Vallet 1990].

Finally, it would be very interesting to quantize this coupled-wave model, similarly to what
has been done for other MOPO systems [Gatti 2017]. This would allow us to compute if
quantum correlations are expected between the different emission directions. We already
have detected strong classical correlations and it is well known that FWM can be used to
produce ‘twin beams’ (with hot [Vallet 1990] or cold [Du 2007] atoms), so the question of
quantum correlations in our system is totally open.

Concluding remarks
This mirrorless DFB parametric oscillator may have a limited practical interest, nevertheless
I like this experiment very much. First it was a nice surprise that it worked so well. I had
anticipated the problem of the Bragg angle making the feedback unstable, but I hadn’t
anticipated that FWM would solve the problem so easily. Moreover, the properties of this
DFB laser is definitely different from those of standard DFB lasers, and this is due to the
peculiarities of cold atoms as mentioned in the introduction of Part One.

Indeed in a standard DFB laser, tuning the periodicity allows tuning the wavelength, because
the gain curve is very broad. Here the gain curve is extremely narrow and determines the
emission frequency, and tuning the periodicity such that the Bragg condition can only be
fulfilled with an angle creates a cone-shaped emission. This works only because of the very
large nonlinearity and the versatility of cold atoms: by just adding a counterpropagating
beam one completely changes the atomic response, making FWM appear, which makes the



III.2. Distributed feedback laser 69

feedback stable. So, this experiment is a very nice illustration that applying well-known
concepts (DFB lasers) to new systems (cold atoms) allows discoveries.





Chapter IV

Random laser with cold atoms

For random lasing the idea is to combine gain and multiple scattering, which provides the
necessary feedback. I’m using the opportunity of this chapter to add a first section giving
some introduction about multiple scattering and light transport in disordered atomic vapors,
as it is useful for understanding the rest of the manuscript. It includes the brief description
of some experiments in which I was not involved [Labeyrie 2003,Labeyrie 2004]. The text is
taken from [Baudouin 2014a] with little adaptation.

Then in section IV.2 I discuss our work on the threshold condition for random lasing and
the subsequent quantitative comparisons to determine the best gain mechanism. Finally I
present our observation of a signature of random lasing in our system (section IV.3).

IV.1. Light transport in disordered atomic vapors

A diffusion equation for the propagation of light has been used as early as 1922 by Compton
to describe the transport of light in an atomic vapor [Compton 1922,Compton 1923]. Soon
afterwards, however, pioneering experiments by Zemansky on the decay of the fluorescence
emitted by an initially excited mercury vapor have shown a deviation from the prediction of
such a diffusion model [Zemansky 1927]. It was then realized by Kenty that the frequency shift
induced by scattering in a Doppler-broadened medium leads to lower excitation probabilities
for photons with frequencies far from the center of the atomic resonance [Kenty 1932]. Indeed
photons far from the atomic resonance can propagate over larger distances and the escape
from a finite-size system cannot be described with a diffusion equation. Later, Holstein
proposed an integro-differential equation to describe the transport of light taking into account
the step-length distribution of the photons [Holstein 1947]. For photons at fixed frequency,
this step-length distribution is an exponentially decreasing function, with well-defined mean
free path and higher moments. For the diffusion model to fail, a divergence of the second
moment of the step-length distribution is required. Kenty and Holstein showed that if the
frequency of the photons inside the atomic vapor follows a Gaussian distribution (motivated
by the Gaussian velocity distribution of the atoms) the step-length distribution of the photons
has a divergent second moment, consistent with the observations of Zemansky.

In cold atoms, frequency redistribution can be neglected in most situations and light transport
can be described by a diffusion equation. On the contrary, in room-temperature (‘hot’) vapors,
frequency redistribution changes drastically the transport properties. This is what gives rise
to Lévy flights and superdiffusive transport [Pereira 2004,Mercadier 2009,Baudouin 2014b].

71
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IV.1.1. Resonant scattering in cold atoms
Some basics of multiple scattering in cold atoms can be found in [Kaiser 2000] and some
more evolved theoretical concepts in [Lagendijk 1996, de Vries 1998]. For this section, we
only need to consider the atoms as point-like dipoles. Then, for a two-level atom probed by
a weak, monochromatic laser, the elastic scattering cross-section is given by

σsc(δ) = σ0

1 + 4δ2/Γ2 , (IV.1)

where δ is the detuning between the incident light and the atomic transition, Γ is the linewidth
of the transition, and σ0 = 6π/k2

0 = 3λ2/2π is the on-resonance scattering cross-section, with
λ = 2π/k0 the wavelength of the transition1. All experiments discussed in this manuscript
have been performed with rubidium, with λ = 780 nm (D2 line) and Γ/2π = 6.1 MHz.
Another important quantity is the mean-free-path `sc between two scattering events, given by

`sc = 1
ρσsc

, (IV.2)

where ρ is the atomic density. Still considering only a weak probe beam and no external pump
laser, there is no inelastic scattering nor absorption or amplification. The attenuation of the
beam propagating in the medium is thus only due to elastic scattering, and the transmission
T in a homogeneous sample of length L is given by

T = e−ρσscL = e−L/`sc . (IV.3)

The quantity b = ρσscL = L/`sc is called the optical thickness (or depth) and quantifies how
much the medium is opaque, or diffusive. Typically, when b � 1, i.e. L � `sc, light is in
the multiple-scattering regime. Obviously, a similar relation as Eq. (IV.1) holds also for
the optical thickness, and we often use the on-resonance optical thickness b0 = ρσ0L of the
atomic cloud to characterize the diffusive power or the ‘size’ of our sample. Equation (IV.1)
shows immediately an important advantage of working with cold atoms, namely the ability to
change the scattering cross-section by simply detuning the probe laser from a few megahertz.
In particular, it allows us to measure the on-resonance optical thickness from a transmission
spectrum even if the optical thickness is very high [Labeyrie 2004].

IV.1.2. Light diffusion in cold atoms
Random walk of particles in a disordered medium is often well described by a diffusion
equation, characterized by a linear increase in time of the mean square displacement of the
particles: 〈r2〉 = Dt, with D the diffusion coefficient. One assumption for the diffusion
equation to hold is that the size ` of each step of the random walk follows a probability
distribution P (`) with a finite second moment 〈`2〉, allowing the application of the central
limit theorem.

Considering photons undergoing only elastic scattering off atoms at rest, the distribution of
the step length between two scattering events is exponential, i.e.,

P (`) = 1
`sc
e−`/`sc , (IV.4)

where `sc is the mean free path, as defined above. The condition to apply the central limit
theorem is fulfilled and, after a large number of steps, the light-intensity (or energy density)

1 Note that for a scalar model of light, the scattering cross section is given by σ0 = λ2/π.
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distribution in the medium converges towards a Gaussian distribution, whose width increases
linearly with the square root of time. This process is described by the diffusion equation
(without source nor absorption/amplification in the medium)

∂W (r, t)
∂t

= D∇2W (r, t), (IV.5)

where W is the energy density, v is the transport velocity inside the medium, and D is the
diffusion coefficient given by

D = `2
t

3τ = v `t

3 , (IV.6)

with τ the transport time, `t the transport length and v = `t/τ the energy transport velocity.
The transport length is related to the mean free path by

`t = `sc

1− 〈cos θ〉 , (IV.7)

where 〈cos θ〉 is the average cosine of the scattering angle. With atoms and in the absence
of longitudinal polarization or magnetic field, there is in average as much scattering in the
forward direction as in the backward direction, so 〈cos θ〉 = 0 and `t = `sc.

IV.1.2.1. Diffuse transmission and reflection

A first characterization of light diffusion in cold atoms can be obtained in a static experiment,
by measuring the diffuse transmission and reflection [Labeyrie 2004], see Fig. IV.1. It shows
in particular that the diffuse transmission decreases much more slowly than the exponential
attenuation of the ballistic (or coherent) beam, as expected from the diffusion equation [van
Rossum 1999]. This can have practical consequences when one needs to evaluate the light
reaching the edges of the cloud. The dominant contribution can be the diffuse transmission,
which thus should not be neglected. This experiment also illustrates that the amount of
scattered light is not simply proportional to the atom number (except at very low b): it
generally depends on b and on the detection angle. Here, the optical thickness is changed by
detuning the probe laser, illustrating the advantage of having a narrow resonance.
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Figure IV.1: (a) Experimental scheme for measuring diffuse transmission and reflection. A small
collimated laser beam is sent onto a cold-atom cloud. Three detectors measure the ballistic intensity,
the diffuse reflection and the diffuse transmission. (b) The ballistic transmission (black circles)
follows a Beer-Lambert law (exponential decrease). The diffused reflection (black stars) increases
with the optical thickness. The diffused transmission (white circles) is not monotonic with the
optical thickness. For large optical thickness b it evolves as 1/b. Adapted from [Labeyrie 2004].
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IV.1.2.2. Radiation trapping

Another experimental situation probing multiple scattering of light consists in the time-
dependent detection of the scattered light (see Fig. IV.2) [Holstein 1947,Molisch 1998]. Such
radiation trapping in cold atoms has been first demonstrated in [Fioretti 1998], where decay
times of atomic fluorescence beyond the lifetime of the excited state for single atom scattering
has been observed with increasing optical thickness.

In Ref. [Labeyrie 2003] it was shown that the transport time τ , which is the sum of the scat-
tering time at each atom and propagation time between two scattering events, is independent
of the laser detuning, as previously predicted [Lagendijk 1996] for scattering using narrow
resonances (See also the Appendix of [Weiss 2018] in Section VI.5.1). Note that this result is
in contrast to the result of non resonant scattering, where the energy velocity of the light
is constant. For cold atoms, the time between two successive scattering events is constant,
independently of the atomic density and thus of the average distance between scattering
events. The transport time is equal to the lifetime of the excited states τat = Γ−1.
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Figure IV.2: (a) Experimental scheme for observing radiation trapping. A small collimated laser
beam is sent onto a cold-atom cloud. A photomultiplier (PM) records the fluorescence signal.
At time t = 0, the laser is switched off. (b) Temporal trace of the decreasing fluorescence. (c)
Corresponding time constants as a function of the optical thickness. Adapted from [Labeyrie 2003].

This result can be used to obtain scaling laws for radiation trapping in cold atomic vapors. As
|kv| � Γ, one typically neglects frequency redistribution during multiple scattering and one
can thus assume a random walk of photons before radiation escapes the atomic sample. For a
Gaussian random walk in 3D, we have 〈r2〉 = 6Dt. The average number of scattering events
for escaping photons is the ratio between the time spent in the system and the scattering
time:

〈Nsc〉 = t

τ
= 〈r

2〉
6Dτ , (IV.8)

with D = `2
sc/(3τ). When

√
〈r2〉 ∼ R = b`sc/2, the radiation can escape the system, leading

to 〈Nsc〉 ∼ b2/8. Radiation trapping times are thus expected to scale as b2. However, as
shown in [Labeyrie 2005], the finite, non zero, temperature of laser-cooled atoms leads to
a reduction of the trapping time, an indication that the Doppler effect is not completely
negligible [Labeyrie 2005,Pierrat 2009].
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IV.2. The quest for the best gain mechanism
Now that radiation trapping is well established in cold atoms [Labeyrie 2003] and gain/lasing
has been demonstrated [Guerin 2008], one only has to combine the two to get a random laser.
There is, however, a strong difficulty: the two ingredients have to be combined at the same
time, i.e. for the same photons, i.e. at the same wavelength. Let us have a look again at, for
instance, Fig. II.2 illustrating Raman gain between Zeeman sublevels. Clearly, the gain is
present around the pump-probe two-photon resonance while scattering is present around the
atomic resonance, so not at the same optical frequency.

It seems thus quite hard, a priori, to combine gain and scattering at the same time. Moreover
it is not obvious to evaluate the amount of scattering in an active system. Indeed, in a
transmission experiment, Beer-Lambert law gives access to the extinction (or attenuation)
length, which is equal to the mean-free path only in a passive system, otherwise it is the sum
of the contributions of scattering and gain.

Finally, one needs a criterion to decide which gain mechanism is better, for instance, between
one with little gain and a lot of scattering, and another one with little scattering and a lot
of gain. One relevant criterion is to minimize the random lasing threshold. We thus need a
quantitative evaluation of this threshold.

IV.2.1. Threshold of a random laser with cold atoms
The first, and most simple model of random lasing has been introduced by Letokhov
[Letokhov 1968] and consists in a diffusion equation with a gain term:

∂W (r, t)
∂t

= D∇2W (r, t) + v

`g
W (r, t) , (IV.9)

where `g is the characteristical gain length. The procedure to solve this equation is explained
in early reviews on random lasing [Cao 2003,Cao 2005] and is also in the paper [Guerin 2016b]
reproduced in section IV.2.2. The result is that the threshold is given by a critical size for
the medium,

Lcr ∼
√
`sc`g , (IV.10)

with a numerical prefactor that depends on the geometry.

In the following article [Froufe-Pérez 2009], we derive ‘Letokhov’s threshold’ in the case of
cold atoms by writing the characteristical lengths as a function of the atomic polarizability.
The critical quantity turns out to be the resonant optical depth b0. Then we use Mollow gain,
for which the polarizability is known analytically [Mollow 1972], to evaluate the threshold
quantitatively.

With this gain, the minimum threshold is obtained in a situation of high gain and very low
scattering, which is not compatible with the use of the diffusion equation. Following the work
of [Pierrat 2007], we compute the threshold condition from the radiative transfer equation
for a slab geometry. We conclude from this study that the threshold optical thickness is of
the order of 250 – 300, which is within reach of current cold-atom experiments. This is the
first paper that discusses and establishes the possibility of random lasing in cold atoms.
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We address the problem of achieving an optical random laser with a cloud of cold atoms, in which gain

and scattering are provided by the same atoms. The lasing threshold can be defined using the on-resonance

optical thickness b0 as a single critical parameter. We predict the threshold quantitatively, as well as power

and frequency of the emitted light, using two different light transport models and the atomic polarizability

of a strongly pumped two-level atom. We find a critical b0 on the order of 300, which is within reach of

state-of-the-art cold-atom experiments. Interestingly, we find that random lasing can already occur in a

regime of relatively low scattering.
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Random lasing occurs when the optical feedback due to
multiple scattering in a gain medium is strong enough so
that gain in the sample volume overcomes losses through
the surface. Since its theoretical prediction by Letokhov
[1], great efforts have been made to experimentally dem-
onstrate this effect in different kinds of systems [2–6], as
well as to understand the fundamentals of random lasing
[7,8]. The broad interest of this topic is driven by potential
applications (see [9] and references therein) and by its
connections to the subject of Anderson localization [10].
State-of-the-art random lasers [9] are usually based on
condensed matter systems, and feedback is provided by a
disordered scattering medium, while gain is provided by an
active material lying in the host medium or inside the
scatterers. In general, scattering and gain are related to
different physical entities.

Another system that can be considered for achieving
random lasing is a cold atomic vapor, using magneto-
optical traps, where radiation trapping [11] as well as
lasing [12,13] have been demonstrated. One advantage is
the ability to easily model the microscopic response of the
system components, which can be extremely valuable to
fully understand the physics of random lasers. However, in
such a system, the ability to combine gain and multiple
scattering at the same time is not obvious, as both should be
provided by the same atoms. The purpose of this Letter is
to address this issue quantitatively. Note that even though
new interesting features appear when coherent feedback is
involved [14], we will consider only incoherent (intensity)
feedback.

Following Letokhov’s theory, we consider a homoge-
nous, disordered and active medium of size L. The random
lasing threshold is governed by two characteristic lengths:
the elastic scattering mean free path ‘sc [15,16] and the
linear gain length ‘g (‘g < 0 in the cases of absorption or

inelastic scattering). In the diffusive regime, defined as
L � ‘sc, the lasing threshold is reached when the unfolded
path length, L2=‘sc, becomes larger than the gain length.

More precisely, the threshold is given by [1,17] Leff >

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘sc‘g=3
q

, where � is a numerical factor that depends

on the geometry of the sample (� ¼ 1 for a slab, � ¼ 2 for
a sphere), and Leff ¼ �L is the effective length of the
sample, taking into account the extrapolation length [15].
Another important length scale is the extinction length, as
measured by the forward transmission of a beam through

the sample, T ¼ e�L=‘ex . The extinction length is given by
‘�1
ex ¼ ‘�1

sc � ‘�1
g .

Let us consider now a homogeneous atomic vapor, con-
stituted by atoms of polarizability �ð!Þ at density �,
submitted to a homogeneous pump field. The extinction
length and the scattering mean free path are related to their
corresponding cross section � by ‘�1

ex;sc ¼ ��ex;sc, with

�exð!Þ¼k0Im½�ð!Þ� and �scð!Þ¼ ðk40=6�Þj�ð!Þj2 [18].

As we consider only quasiresonant light, we use only the
wave vector k0 ¼ !0=c with !0 the atomic frequency. We
also define a dimensionless atomic polarizability ~� such
that � ¼ ð6�=k30Þ~� (we omit the dependence on ! in the

following). As it is an intrinsic parameter of the cloud, it is
convenient to use the on-resonance optical thickness b0 ¼
��0L, where �0 ¼ 6�=k20 is the resonant scattering cross

section (without pump laser). Using these quantities, the
threshold condition writes

�b0 >
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3j~�j2½j~�j2 � Imð~�Þ�p
: (1)

Moreover, we have L=‘sc¼b0j~�j2 and �¼1þ2�=
½L=‘scþ2ð��1Þ�� with � ’ 0:71 for L> ‘sc [19,20].
Note that deeply in the diffusive regime (L � ‘sc), �� 1.
Equation (1) is the first result of this Letter. It shows, in

the diffusive regime, the existence of a threshold of random
lasing as soon as the medium exhibits gain, i.e., j~�j2 �
Imð~�Þ> 0. This threshold is given by a critical on-
resonance optical thickness, expressed as a function of
the atomic polarizability only. Interestingly, the condition
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Imð~�Þ< 0, corresponding to single-pass amplification
(T > 1), is not a necessary condition.

The previous result is general and does not depend on a
particular pumping mechanism or atomic model. Let us
now specify a gain model that will allow numerical evalu-

ations of the lasing threshold and of the features of the
emitted light. We shall use the simplest case of strongly
pumped two-level atoms, for which the normalized atomic
polarizability at frequency ! can be written analytically
(assuming a weak ‘‘probe’’ intensity) [21],

~�ð�;�;�Þ ¼ � 1

2

1þ 4�2

1þ 4�2 þ 2�2

ð�þ iÞð���þ i=2Þ ��2�=ð2�� iÞ
ð�þ iÞð�� �þ i=2Þð�þ�þ i=2Þ ��2ð�þ i=2Þ : (2)

In this expression, � ¼ ð!p �!0Þ=� is the normalized
detuning between the pump frequency !p and the atomic
transition !0 of linewidth �, � ¼ ð!�!pÞ=� is the nor-
malized detuning between the considered probe frequency
and the pump, and� is the Rabi frequency, normalized by
�, associated with the pump-atom interaction. For a strong
enough pumping power, this atomic polarizability allows
for single-pass gain, when Imð~�Þ< 0. This gain mecha-
nism is referred as ‘‘Mollow gain’’ [13,21] and corresponds
to a three-photon transition (population inversion in the
dressed-state basis).

For each couple of pumping parameters f�;�g, the use
of the polarizability (2) into the threshold condition (1)
allows the calculation of the critical on-resonance optical
thickness b0 as a function of �. Then, the minimum of b0
and the corresponding � determine the optical thickness
b0cr that the cloud must overcome to allow lasing, and the
frequency �RL of the random laser at threshold. The result
is presented in Fig. 1 for a spherical geometry (� ¼ 2). The
result for b0cr is independent of the sign of � and we only
show the region �> 0. The minimum optical thickness
that allows lasing is found to be b0cr � 200 and is obtained
for a large range of parameters, approximately along the
line � � 3�. The optimum laser-pump detuning is near

the gain line of the transmission spectrum, i.e., �RL �
sgnð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ�2
p

(a small shift compared to the maximum
gain condition is due to the additional constraint of com-
bined gain and scattering).

The obtained critical optical thickness is achievable with
current technology [22], showing that random lasing is
possible in a system of cold atoms with Mollow gain. As
this result has been obtained using the diffusion approxi-
mation, the condition L=‘sc ¼ b0j~�j2 � 1 must be satis-
fied. This is not the case in the full range of random lasing
parameters that we have found. For example, with � � 1
and ��3, the critical optical thickness is almost mini-
mum, b0cr¼213, but L=‘sc � 0:44. In this case, the thresh-
old defined by Eq. (1) is at best unjustified, at worst wrong.
In order to identify in Fig. 1 the region in which the ap-
proach should be valid, we have hatched the area corre-
sponding to L=‘sc < 3. Note that random lasing is still
expected in this region, but for a larger on-resonance
optical thickness, that would allow fulfillment of the dif-
fusive equation. The minimum optical thickness in the
region of parameters compatible a prioriwith the diffusion

approximation is 347, and is located in the vicinity of
f�¼1;�¼1:2g.
This first evaluation demonstrates the need for a more

refined transport model. In the following, we use the
approach introduced in Ref. [23], that is based on the
radiative transfer equation (RTE). The RTE is a
Boltzmann-type transport equation [24], that has a larger
range of validity with respect to the ratio L=‘sc than the
diffusion equation [25].
Letokhov’s diffusive theory [1,17] and the RTE-based

theory [23] of random lasing both rely on a modal expan-
sion of the solution of the transport equation. In order to
compare the predictions of both models, we focus on the
slab geometry (� ¼ 1) since the modal expansion of the

FIG. 1 (color). Threshold of random lasing based on Mollow
gain [21], calculated for each pair of pumping parameters �
(detuning) and � (Rabi frequency) with Eqs. (1) and (2). Only
the�> 0 part is represented. (a) Critical optical thickness b0cr to
allow lasing. (b) Detuning �RL of the random laser from the
pump frequency. The black area corresponds to a forbidden
region (no gain). The hatched part corresponds to parameters
for which the diffusion approximation is a priori not reliable.
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RTE is well known in this case [19] (to our knowledge, no
simple expansion is available for a sphere in the RTE
approach). The modal approach consists in looking for
solutions of the form �sðz;u; tÞ ¼ 	
;sðuÞ expði
zÞ�
expðstÞ, where �ðz;u; tÞ is the specific intensity (z is the
distance from the slab surface and u denotes a propagation
direction). For a given real 
, sð
Þ and 	
;s form a set of

eigenvalues and eigenfunctions of the RTE. If one denotes
by s0ð
Þ the eigenvalue corresponding to the mode with the
longest lifetime in the passive system, a laser instability
appears when s0ð
Þ> 0 in the presence of gain. The lasing
threshold is defined by the condition s0ð
Þ ¼ 0. For iso-
tropic scattering, this eigenvalue has an analytical expres-
sion valid for 
‘sc <�=2 [19,23]:

s0ð
Þ=c ¼ ‘�1
g � ½‘�1

sc � 
2= tanð
‘scÞ�; (3)

where c is the energy velocity. For a slab of width L, the
dominant mode corresponds to 
 ¼ �=Leff ¼ �=ðLþ
2�‘scÞ. In practice, this determination of 
 is meaningful
as long as � ¼ 0:71 can be taken as a constant (indepen-
dent on L), which is the case for L > ‘sc. This condition
sets the limit of accuracy of the modal RTE approach.

The diffusive result is recovered from the RTE ap-
proach in the limit 
‘sc � 1 [25]. A first order expansion

of Eq. (3) yields sðDAÞ0 ð
Þ=c ¼ ‘�1
g � 
2‘sc=3, where the

superscript (DA) stands for diffusion approximation. The

condition sðDAÞ0 ð
 ¼ �=LeffÞ ¼ 0 leads to Letokhov’s

threshold, with � ¼ 1.
The comparison between the RTE and diffusive ap-

proaches deserves two comments. First, the gain contribu-
tion to s0ð
Þ [first term in Eq. (3)] is the same in both
models. Second, the scattering contribution [second term
in Eq. (3)] is larger in the RTE model by a factor of at most
1.13 (when L� ‘sc). Thus, the correction introduced by
the RTE model, compared to the diffusion approximation
is relatively small, as it corresponds to an increase of �b0cr
of at most a few percents. This means that the diffusive
model gives accurate results down to L� ‘sc, and that in
cold-atom systems, random lasing can occur even in a
regime of low scattering.

In Fig. 2, we compare the minimum optical thickness
obtained with both models for the slab geometry and with
the diffusive model for the sphere geometry. To put for-
ward the domain of validity in each case, we plot the results
as a function of L=‘sc. As expected, in the range L > ‘sc
the threshold predicted by the RTE for the slab geometry is
only slightly larger than the one given by the diffusion
approximation, so that the two curves can hardly be dis-
tinguished. For the sphere geometry, we dashed the part
corresponding to the domain where the diffusive model is
a priori not reliable, i.e., L=‘sc < 3. Nevertheless, by gen-
eralizing the conclusion obtained with the slab geometry,
we reasonably expect the threshold to be located between
250 and 300.

Let us now turn to a first characterization of such a
random laser. An important quantity to be investigated is

the emitted power as a function of the pumping power. In
the stationary regime (continuous pumping) we numeri-
cally solve the optical Bloch equations for a strongly
pumped two-level atom [without using the weak probe
approximation that leads to Eq. (2)] to obtain the polar-
izability at the lasing frequency, including the gain satu-
ration induced by the random laser intensity. Above thresh-

old, the laser intensity in the medium IðinÞRL / j�RLj2 is
determined by the condition s0ð
; j�RLj2Þ ¼ 0 (s0 would
be positive without gain saturation). The obtained intensity
is analogous to the intracavity intensity of a standard laser,

and thus does not correspond to the emitted power PðoutÞ
RL .

At equilibrium, gain compensates losses, and PðoutÞ
RL is equal

to the generated power, related to the gain cross section�g,

i.e. PðoutÞ
RL / �gj�RLj2 with �g ¼ �0½j~�j2 � Imð~�Þ�.

In order to know if the laser signal can be extracted from
the background fluorescence, it is particularly relevant to
compare the emitted laser power with the pump-induced
fluorescence PFluo / �0j�j2=ð1þ 4�2 þ 2j�j2Þ. From
this, we compute the ratio

PðoutÞ
RL

PFluo

¼ j�RLj2
j�j2 ½j~�j2 � Imð~�Þ�ð1þ 4�2 þ 2j�j2Þ: (4)

We plot the result in Fig. 3 as a function of j�j2, for a pump
detuning � ¼ 1. To obtain Eq. (4), we assume that both
pump and laser intensities are homogeneously distributed
across the whole system. We also consider only the opti-
mum random laser frequency, thus neglecting the spectral
width of the random laser or any interaction between
different random laser frequencies. Hence we neglect sev-
eral effects as mode competition [26] and inelastic scatter-
ing of the laser light. Nevertheless we think that the order
or magnitude of the ratio laser-to-fluorescence powers can
be realistic for actual experiments, at least as long as only
one mode of the laser is active [26]. For the chosen set of
parameters, this ratio is more than 5% and hence laser

L

b

FIG. 2 (color online). Critical optical thickness for different
geometries and transport models. The lower, red curve corre-
sponds to the slab geometry (width L), with RTE model (con-
tinuous line) and diffusive model (open circle). The upper, blue
curve corresponds to the sphere geometry (diameter L), with the
diffusive model. The part with L=‘sc < 3 is dashed, as the model
may not be reliable.
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emission should be measurable. Its distinction from the
pump-induced fluorescence can be made by looking at the
spectrum of the emitted light. Another interesting predic-
tion of this model is that the laser emission frequency shifts
as the pump intensity is increased [Fig. 3]. This corre-
sponds to the shift of the maximum gain of the Mollow
polarizability.

In summary, we have established the possibility of
achieving random lasing with cold atoms. The random
laser threshold is described by a single critical parameter,
the on-resonance optical thickness b0. In the particular case
of a gain mechanism based on a strongly pumped two-level
atom (Mollow gain), our model predicts a critical b0 �
300. Such an optical thickness is achievable in current
cold-atoms experiments, e.g., by using crossed dipole traps
[22]. We have also determined the basic features of the
emitted light above threshold, showing that the random
laser emission should be measurable.

Another interesting result is that, due to the large gain,
lasing can be obtained with a low feedback (low amount of
scattering, i.e., L� ‘sc). This regime is similar to that
encountered in certain semiconductor lasers with a very
poor cavity, and is different from the working regime of
random lasers realized to date. This new regime could be
numerically investigated by RTE-based simulations [25].

Finally, let us stress that the model developed here has
several limitations, so that the numbers should be consid-
ered as first-order estimates. First, we have considered
monochromatic pumping, thus neglecting inelastic scatter-
ing from the pump. The inelastically-scattered photons
may have a non-negligible influence on the atomic re-
sponse, as shown in [27]. Second, the RTE model needs
to be extended to a sphere geometry, and to a medium with
inhomogeneous density and/or pumping. This would re-
quire a full numerical solution of coupled RTEs for the
pump and probe beams [23]. We also outline that the case
of the Mollow gain was chosen for the sake of simplicity,
whereas other gain mechanisms might be more adapted for
the search of random lasing, such as Raman gain or para-
metric gain [13]. Each gain mechanism has its advantages

and drawbacks, but the degrees of freedom they offer,
together with the first estimates presented here, make us
confident that the experimental realization of a cold-atom
random laser is possible with current technology.
The authors thank S. Skipetrov, J. J. Sáenz, R. Pierrat,

and F. Michaud for useful discussions. L. S. F. acknowl-
edges the financial support of the Spanish Ministry of
Science and Innovation through its Juan de la Cierva pro-
gram. This work is supported by ANR-06-BLAN-0096.

*Robin.Kaiser@inln.cnrs.fr
[1] V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).
[2] V.M. Markushev, V. F. Zolin, and Ch.M. Briskina, Sov. J.

Quantum Electron. 16, 281 (1986); C. Gouedard et al.,

J. Opt. Soc. Am. B 10, 2358 (1993).
[3] N.M. Lawandy et al., Nature (London) 368, 436 (1994);

D. S. Wiersma et al., Nature (London) 373, 203 (1995).
[4] H. Cao et al., Phys. Rev. Lett. 82, 2278 (1999).
[5] D. S. Wiersma and S. Cavalieri, Nature (London) 414, 708

(2001).
[6] S. Gottardo et al., Nat. Photon. 2, 429 (2008).
[7] D. S. Wiersma and A. Lagendijk, Phys. Rev. E 54, 4256

(1996).
[8] A. L. Burin et al., Phys. Rev. Lett. 87, 215503 (2001).
[9] D. S. Wiersma, Nature Phys. 4, 359 (2008).
[10] C. Conti and A. Fratalocchi, Nature Phys. 4, 794 (2008).
[11] A. Fioretti et al., Opt. Commun. 149, 415 (1998); G.

Labeyrie et al., Phys. Rev. Lett. 91, 223904 (2003).
[12] L. Hilico, C. Fabre, and E. Giacobino, Europhys. Lett. 18,

685 (1992).
[13] W. Guerin, F. Michaud, and R. Kaiser, Phys. Rev. Lett.

101, 093002 (2008).
[14] H. Cao, J. Phys. A 38, 10 497 (2005).
[15] M. C.W. van Rossum and Th.M. Nieuwenhuizen, Rev.

Mod. Phys. 71, 313 (1999).
[16] We consider only isotropic scattering so that the transport

length equals the scattering mean free path [15].
[17] H. Cao, Waves Random Media 13, R1 (2003).
[18] A. Lagendijk and B.A. van Tiggelen, Phys. Rep. 270, 143

(1996), section 3.2.2 ‘‘Points scatterers’’ (pp. 164–166).
[19] K.M. Case and P. F. Zweifel, Linear transport theory

(Addison-Wesley, Reading, MA, 1967).
[20] K. Drozdowicz, E. Krynicka, and J. Da̧browska, Appl.

Radiat. Isot. 58, 727 (2003).
[21] B. R. Mollow, Phys. Rev. A 5, 2217 (1972); F. Y. Wu et al.,

Phys. Rev. Lett. 38, 1077 (1977).
[22] M.D. Barrett, J. A. Sauer, and M. S. Chapman, Phys. Rev.

Lett. 87, 010404 (2001).
[23] R. Pierrat and R. Carminati, Phys. Rev. A 76, 023821

(2007).
[24] S. Chandrasekhar, Radiative Transfer (Dover, New York,

1960).
[25] R. Elaloufi, R. Carminati, and J.-J. Greffet, J. Opt. Soc.

Am. A 21, 1430 (2004).
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FIG. 3 (color online). Continuous line: Emitted random laser
power normalized to the pump fluorescence power, as a function
of the pump intensity. Dashed line: Normalized laser detuning
�RL. The random medium is a spherical cloud of two-level atoms
with an on-resonance optical thickness b0 ¼ 650.
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IV.2.2. Comparison between incoherent and coherent models
Letokhov’s threshold is based on the diffusive description of light transport. The diffusion
approximation is an ‘incoherent model’ in the sense that it neglects interference effects. It is
usually justified to describe quantities which are averaged over the disorder configurations.
However, lasing is a highly nonlinear effect, so that this kind of approximation is not justified
a priori. In a more complete, coherent model, one should consider a speckle pattern for the
light emitted outside the medium or a complicated (disordered) electromagnetic mode inside
the medium. Each particular realization of the disorder gives a different set of modes and for
each configuration lasing may start on the most favorable mode. One can intuitively expect
that the average over the most favorable modes is better than the incoherent diffusive mode.

In the following paper [Guerin 2016b] we make a quantitative comparison between Letokhov’s
threshold and the model of random laser developed in the team of Douglas Stone (Yale
University) [Türeci 2008,Ge 2010,Cerjan 2015]. We also generalize Letokhov’s threshold
with the radiative transfer equation (RTE), as in the previous paper, but going beyond the
slab geometry (sphere). The results are as expected, i.e. the RTE is more accurate than
the diffusive model, and the incoherent models overestimate the lasing threshold, compared
to the coherent model. Nevertheless, this study also shows that the incoherent models are
able to give the correct orders of magnitudes over a wide range of parameters with simple
analytical expressions, and are thus extremely useful.
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1. INTRODUCTION

Random lasers are probably among the most exotic sources of
coherent light studied so far [1–5]. As their name already sug-
gests, random lasers get their optical feedback not by external
mirrors or through a resonator but rather by the random scat-
tering of light in a disordered medium. Even though this opera-
tional principle makes a deliberate tuning or selection of desired
laser modes and output frequencies technically rather involved
[6–10], the first promising applications of random lasers are
recently emerging for which these cost-efficient devices are
ideally suited [11,12]. From the fundamental point of view,
random lasers offer an exciting research area at the interface
between mesoscopic physics, non-Hermitian optics, and laser
physics [2,3,13]. Particularly exciting in this context is the hy-
pothesis, first put forward by Lethokov [14], that random lasers
also may actually be occurring on a natural basis in stellar gases
because multiple scattering and amplification are present in
such media [15–17]. Such hitherto unobserved “astrophysical
random lasers” would have a spatial extension many orders of
magnitudes larger than the micrometer-sized random lasers that
are meanwhile routinely fabricated in the laboratory [18].

The vastly different length scales on which random lasing
may occur, and the many different physical systems in which
they have been realized, have triggered the development of dif-
ferent theoretical approaches to describe this phenomenon
[19–26]. Whereas it might appear reasonable that a radiative
transfer approach, which does not incorporate interference

effects, may be appropriate for astronomical length scales with
long amplifying paths and few scattering events, and a diffusive
model may be suitable to describe strongly scattering media in
the diffusive limit [27], it has so far remained unexplored how
to describe the crossover between such different regimes. An
important aspect that is also missing in the literature is a global
perspective on random lasing in which all the possible random
lasing regimes are charted and properly identified.

The aim of this paper will be to take such a bird’s-eye per-
spective on random lasing and to connect different approaches
with each other. In particular, we will focus on the general ques-
tion of which size a medium with a certain amount of gain and
disorder needs to have such that it reaches the random lasing
threshold. To address this problem, we employ approximative
tools such as the radiative transfer equation (RTE) (for the low-
scattering, or quasi-ballistic, limit) as well as a diffusive model
(for the strongly scattering limit) and compare them with a full
solution of the scalar wave equation that encompasses both of
these limits just as well as the crossover region in between.
While the latter model includes diffraction and interference
effects and relies on heavy numerical simulations, the diffusive
and radiative transfer models are “incoherent” in the sense that
they neglect all wave effects. Their advantage is to provide
simple analytical results.

Our paper is organized as follows. In Section 2 we first
briefly recall Letokhov’s seminal results on the threshold of ran-
dom lasers based on the diffusion equation [19]. In Section 3
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we present a theory of the random laser threshold based on the
RTE. In Section 4 we introduce the employed coherent wave
model. Finally, in Section 5 we compare the results from these
different models and discuss the conclusions that can be drawn
from them. A short summary is presented in Section 6.

2. RANDOM LASER THRESHOLD FROM THE
DIFFUSION EQUATION

We summarize here the well-known results of Letokhov on the
random laser threshold [19]. The presentation is inspired by
the one given in the review [1]. We start from the diffusion
equation for light with a gain term,

∂W �r; t�
∂t

� D∇2W �r; t� � vE
lg

; (1)

whereW is the energy density, vE is the energy transport veloc-
ity inside the medium, lg is the gain length, and D is the
diffusion coefficient. At 2D or 3D, it reads,

D2D � vElsc

2
; D3D � vElsc

3
; (2)

where lsc is the mean free path. For simplicity, we consider
only isotropic scatterers such that the mean free path is equal
to the transport length [1]. To map our results also to the case
of finite-size scatterers, which scatter anisotropically, the scat-
tering mean free path lsc needs to be rescaled to the transport
length ltr � lsc∕�1 − cos ϕ�, where ϕ is the scattering angle.
The scatterers need to stay below the wavelength, though, as
shape-specific resonances would otherwise destroy the univer-
sality of our analysis [28].

Using the modal decomposition

W �r; t� �
X
n

anΨn�r�e�DB2
n−vE∕lg�t ; (3)

with appropriate boundary conditions, one can show that the
threshold of a random laser is reached when

DB2
1 −

vE
lg

� 0; (4)

where B1 is the smallest eigenvalue, corresponding with the
longest-lived mode. For a 3D sphere of radius R, B1 � π∕R
and for a 2D disk of radius R, B1 � j0;0∕R, where j0;0 ≃ 2.40
is the first root of the Bessel function J0.

Finally, it leads to the following critical radius:

R3D
cr � π

ffiffiffiffiffiffiffiffiffiffi
lsclg

3

r
; R2D

cr � 2.40

ffiffiffiffiffiffiffiffiffiffi
lsclg

2

r
: (5)

Note that the numerical factors in front of �lsclg�1∕2 differ
from each other by only a few percents. Note also that we have
neglected here the “extrapolation length” [29–31], which is a
small correction in the diffusive limit that we consider in this
section. The diffusive, or multiple-scattering regime, is reached
when R ≫ lsc, which corresponds to the validity range of this
threshold condition.

3. RANDOM LASER THRESHOLD FROM THE
RADIATIVE TRANSFER EQUATION

In a regime of low scattering, transport of light is no longer
governed by a diffusive equation but is well described by

the radiative transfer equation (RTE). The RTE is used in many
different fields dealing with transport in complex media, such
as astrophysics [32–34], neutron physics [35], or biological im-
aging [36]. The diffusion equation can be derived from the
RTE with supplementary approximations (see, e.g., [30,36]).
The RTE is thus more general and has been shown to be valid
from the ballistic regime to the diffusive one [37]. It neglects,
however, all wave effects such as interference and diffraction.

The basic quantity of the RTE is the “radiance” or “specific
intensity” L�r; u; t�, which describes the photon density at
point r, propagating along direction u at time t . In a system
exhibiting absorption and scattering, the RTE reads,

1

c
∂L
∂t

�r; u; t� � u · ∇L�r; u; t�

� −�α� χ�L�r; u; t� � χ

4π

Z
4π

0

p�u; v�L�r; v; t�dΩ; (6)

where α is the linear absorption coefficient, χ � l−1
sc and

p�u; v� describes the scattering angular diagram. For a medium
with gain, α < 0, and we can also use the linear gain coefficient
g � −α � l−1

g > 0. The RTE can be derived from Maxwell
equations [38] but also can be found by simple energy conser-
vation arguments because it is a Boltzmann-type equation.

From the specific intensity, one can define two other useful
quantities: the radiative flux q�r; t�, which is identical to the
Poynting vector, and the energy density W �r; t�, which is
the quantity entering into the diffusion equation:

q�r; t� �
Z
4π
L�r; v; t�udΩ; (7)

W �r; t� �
Z
4π

L�r; v; t�
c

dΩ: (8)

A. Random Laser Threshold

For a slab geometry, the random laser threshold was found from
the RTE using a modal decomposition [22] and applied to the
case of a random laser based on cold atoms [39,40]. For a
sphere geometry, Letokhov and co-workers also have derived
the random laser threshold from the RTE [14,41,42]. The de-
tailed derivation can be found in [43]; we only recapitulate the
result here. Moreover, for a better comparison with the data
obtained from the coherent wave model (Section 4), we have
extended these results to the case of a 2D disk. We also give
only the result in this section; a detailed derivation is provided
in Appendix A.

For a 3D sphere, one obtains a critical radius for the random
laser threshold Rcr given by [14,41–43]

tan�qRcr� �
2gqRcr

2g − q2Rcr

; (9)

with

q2 � 3g�χ − g� � 3

lg

�
1

lsc

−
1

lg

�
: (10)

For a 2D disk, the threshold condition is

J0�βRcr�
J1�βRcr�

� π

2

g
β
; (11)
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where J0, J1 are Bessel functions of the first kind, and with

β2 � 2g�χ − g� � 2

lg

�
1

lsc

−
1

lg

�
: (12)

These threshold equations can easily be solved numerically
and give results that are very close to each other. We show in
Fig. 1 the result for the 3D case. It shows a smooth transition
from the diffusive regime (upper-left part) to the quasi-ballistic
regime (lower-right part).

B. Limiting Cases

1. Diffusive Limit

For the 3D case, one can recover the diffusive threshold given
by Eq. (5) from Eqs. (9) and (10) by supposing that there is
much more scattering than gain, χ ≫ g , so that q2 ≃ 3gχ, and
also that χRcr ≫ 1 (diffusive regime). One can then easily show
that the r.h.s. of Eq. (9) is very small. Then Eq. (9) simplifies to
qRcr ∼ π, which gives Rcr ∼ π∕q ∼ π�lglsc∕3�1∕2 as expected.

For the 2D case, supposing also that χ ≫ g , then β2 ≃ 2gχ,
and the threshold equation reduces to

J0�βRcr�
J1�βRcr�

� πg
2β

≃
π

2

ffiffiffiffiffi
g
2χ

r
≪ 1: (13)

We can thus take the zero of the function J0�z�∕J1�z�,
which is the zero of J0�z�, i.e., j0;0 ≃ 2.40. Thus βRcr ∼ 2.40,
and we recover Rcr ∼ 2.40�lglsc∕2�1∕2.

2. Ballistic Limit

Interestingly, one also can simplify the threshold equations in
the opposite limit of very low scattering and high gain.

For the 3D case, if χ ≪ g, we have the simplification q ≃
�ig

ffiffiffi
3

p
and tan�qRcr� ≃ tan��i

ffiffiffi
3

p
gRcr�. For gRcr > 1, it

gives tan�qRcr� ≃�i. Then Eq. (9) is easily solved to [44]

Rcr ∼
1� ffiffiffi

3
p

− 3∕2
�
g
≈ 4.31lg: (14)

At 2D, if χ ≪ g, β2 ≃ −2g2, β ≃�i
ffiffiffi
2

p
g , and the threshold

equation reduces to

�i
ffiffiffi
2

p
J0
�
�i

ffiffiffi
2

p
gRcr

�

J1
�
�i

ffiffiffi
2

p
gRcr

� � π

2
: (15)

The solution is

Rcr ≈ 3.76lg : (16)

In both cases, we obtain a finite critical radius that does not
depend on the scattering χ, corresponding to the vertical
asymptotes in Fig. 1. Surprisingly, this result suggests that a
threshold exists even without scattering, a conclusion that
seems clearly unphysical, suggesting that some of the approx-
imations made to derive the RTE threshold (see Appendix A)
break down in the ballistic limit. We discuss in more detail the
nature of the employed approximations in Appendix B.

C. Shape of the Energy Density at Threshold

The shape of the intensity distribution at threshold can be
obtained by solving Eq. (A15) (or its 3D equivalent).

In 3D one finds [43]

W 0�r� ∝
sin�qr�

r
; (17)

while in 2D we obtain

W 0�r� ∝ J0�βr�: (18)

In both cases, if there is more scattering than gain, χ > g , β
and q are real and W 0�r� is bell-shaped with its maximum at
r � 0. On the contrary, if χ < g, β and q are purely imaginary
andW 0�r� increases from the center (Fig. 3). This is consistent
with what could be expected in a quasi-ballistic regime, where
photons farther from the center have been in averaged more
amplified.

4. RANDOM LASER THRESHOLD FROM
COHERENT WAVE CALCULATIONS

In order to compare the predictions of the RTE with a more
complete model, we use coherent wave calculations of the las-
ing threshold, which account for the effects of finite wave-
lengths and wave interference. Due to the computational
difficulty of performing such calculations on disordered media,
we restrict the comparison study to 2D, using the scalar wave
equation �

∇2 � ε�r;ω�
�
ω

c

�
2
�
ψ�r� � 0: (19)

This describes a 2D electromagnetic mode in the transverse
magnetic (TM) polarization, where ψ�r� is the complex scalar
wavefunction corresponding to the out-of-plane component of
the electric field, ω is the mode frequency, ∇2 is the 2D
Laplacian, and ε�r;ω� is the dielectric function.

Wave equation (19) introduces an extra length scale, the
wavelength λ ∼ 2πc∕ω. For comparison with the RTE, we shall
be interested in the regime where the wavelength is shorter than
the other length scales, i.e., c∕ω ≪ fR;lsc;lgg.

We model the random laser by uniformly distributing N
delta-function scatterers at positions fr1;…; rN g, within a cir-
cular region of radius R. This region also contains a uniform
background of gain material, with susceptibility χg ∈ C. Thus,
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Fig. 1. Critical radius for the random laser threshold as a function
of the gain coefficient g � l−1

g and the scattering coefficient χ � l−1
sc ,

as given by the numerical solution of Eq. (9). Note the log scales. The
dotted lines are iso-Rcr contours.
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ε�r;ω� �
	
1� χg � a

PN
j�1 δ

2�r − rj�; r ≤ R
1; r > R:

(20)

The parameter a, which has units of area, determines the
strength of each scatterer. The use of independent delta-
function scatterers allows us to relate the model parameters to
the mean free path. The density of scatterers is ρ � N∕πR2,
and the 2D scattering cross section of an individual scatterer in
the first Born approximation is σ � a2�ω∕c�3∕4. Thus,

lsc �
1

ρσ
� 4πR2

Na2�ω∕c�3 : (21)

From this setup, the lasing threshold calculation proceeds as
follows: for a fixed lasing frequency, scatterer distribution, and
scatterer strength, we find a complex value of χg that satisfies
Eq. (19) with purely outgoing boundary conditions. The de-
tailed procedure is described in Appendix C. Essentially, we
perform a partial-wave expansion on ψ�r�, which reduces
Eq. (19) to a non-Hermitian eigenproblem whose eigenvalues
are the values of χg for which the solution is purely outgoing in
the external region r > R. Out of these possible values of χg , we
choose one with sufficiently small Re�χg � (i.e., negligible index
shift), and the smallest value of −Im�χg � (i.e., least gain needed
to reach threshold). This mode’s refractive index is

ng ≈ 1� i
2
�Im�χg ��: (22)

By repeating this procedure for many realizations of the scat-
terer distribution, we compute

g � l−1
g ≡ h−2 Im�ng �ω∕ci �

ω

c
h−Im�χg �i: (23)

As in the RTE, lg represents the average path length trav-
eled by a photon before an amplification event. By changing
the individual scatterer strength a and using Eq. (21), we
can find the dependence of lg on lsc and compare the result
to the predictions of the RTE.

We perform two sets of calculations, for ω � 30c∕R and
ω � 60c∕R; as we shall see, these two frequencies give
qualitatively similar results. For each case, we take N � 250
scatterers and tune a so that the mean free path varies over
10−1R ≲ lsc ≲ 102R, ranging from the diffusive to the quasi-
ballistic regime.

5. COMPARISON

In this section, we compare the results of the different models
for the threshold and for the intensity distribution at threshold.

A. Threshold

We use the different models to plot gR at threshold as a func-
tion of χR � R∕lsc or 1∕�χR�. We show in Fig. 2 the com-
parison between the data of the coherent wave model (previous
section) and the analytical results of the diffusion (Section 2)
and RTE thresholds (Section 3).

Overall, looking at Fig. 2(a), we can observe that the wave
model and the RTE thresholds are quite close to each other.
Moreover, the wave-model threshold becomes close to the dif-
fusive ones for large optical thickness χR. The fact that fully
incoherent models provide here very good estimates was not
obvious from the outset because the incoherent models are only

expected to describe transport properties averaged over the
disorder configurations. On the contrary, the coherent model
selects the “best”mode at each realization (see Fig. 4). This also
explains why the incoherent models predict larger gain thresh-
olds and are thus “pessimistic.” The discrepancy between the
different models increases as the optical thickness (∝χR)
decreases [see Fig. 2(b)].

Another important observation is that the RTE threshold is
significantly more accurate (closer to the wave model) than the
threshold from the diffusion equation. For example, in the in-
termediate regime R ≈ lsc, the wave model predicts a gain
threshold gR ≈ 1.1, while the RTE threshold is gR ≈ 1.5 and
the diffusive one is gR ≈ 2.9. Thus, as soon as the random laser
is not deeply in the diffusive regime, the RTE theory provides a
significant improvement.

However, in the limit of low scattering (ballistic or empty
disk), the RTE model predicts a scattering-independent finite
threshold. As already mentioned, this indicates a breakdown of
the approximations used to derive the threshold in the RTE
model. On the contrary, the scattering-independent threshold
of the coherent model can have a clear physical interpretation:
the disk boundary creates an index mismatch with the sur-
rounding vacuum due to the gain coefficient and thus reflects
some light, which induces some coherent feedback. In this re-
gime, the laser is not “random” and is based on whispering
gallery modes. The corresponding gain threshold depends on
the wavelength because the index mismatch depends on the
wavelength for a fixed gain coefficient. The coherent model is
thus able to describe the transition from a diffusive random
laser to a “ballistic,” cavity-based one. The partial reflection due
to the index mismatch is not included in the incoherent models.

B. Intensity Distribution

We also can compare the averaged intensity distribution of the
lasing mode at threshold obtained from the wave model and the
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Fig. 2. (a) Comparison of the thresholds computed from the differ-
ent models. Points are numerical solutions of the wave model for two
different frequencies. The dashed blue line is the diffusive threshold
computed from Eq. (5). The red solid line is the RTE threshold com-
puted from Eq. (11). Its asymptotic behavior in the ballistic regime
[Eq. (16)] is indicated by the green dotted line. Note the logarithmic
scales. (b) Zoom into the diffusive and intermediate regimes (linear
scales and inverted x axis).
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analytical profile predicted by the RTE model [see Eq. (18)].
We show in Fig. 3 the intensity profile computed in the wave
model at threshold for ω � 60c∕R, averaged over 100 disorder
configurations and over the radial angle, for two different scat-
terers strengths (solid lines). For highly scattering samples
(lsc � 0.2R), we observe that the energy is confined near
the center, as it could be expected in the diffusive regime. On
the contrary, for weakly disordered samples (lsc � 20R), the
averaged intensity increases from the center (this also can be
seen in Fig. 4 of [25]). These qualitatively different behaviors
are well captured by the RTE prediction (dash–dotted lines).
The agreement is even quite good in the diffusive regime.
Differences are more important in the quasi-ballistic regime.
First, the gain at threshold is higher in the RTE model [Fig. 2];
thus the intensity increases faster than in the wave model.
Second, oscillations appear in the coherent model, which are
a signature of interference effects due to the partial reflection
at the boundary, creating an oscillatory pattern in the lasing
mode. This partial reflection also contributes to increasing the
intensity at the center, reducing the difference between the
center and the edge.

6. CONCLUSION

In this paper, we have studied the threshold of random lasing in
a 2D disk in the crossover from the diffusive to the quasi-bal-
listic regimes, and we compared different models to describe
this transition. The more accurate, coherent model is able to
describe this system in all regimes, at the cost of computational
complexity, which, in particular, limits the size and dimension-
ality of the system under study. In the diffusive limit, the dif-
fusion equation, which provides a fully incoherent description,
predicts the threshold quite accurately, although interference
and wave effects are neglected. Moreover, an incoherent model
is also available beyond the diffusive regime. This model, based

on the radiative transfer equation, also provides analytical re-
sults, which agree with the full coherent model on a qualitative
level and even show quantitative agreement in the crossover
regime on a level superior to the diffusive model. The radiative
transfer equation also correctly predicts the global shape of the
averaged intensity distribution at threshold.

Surprisingly, even though the incoherent model is expected
to break down deep in the ballistic limit because the boundary
conditions cannot be treated rigorously, it predicts a random
laser threshold as well as a modal intensity distribution in quali-
tative agreement with the coherent model. At the other ex-
treme, the diffusion model also should break down when
the mean-free path becomes comparable with the wavelength.
Despite these limitations, the incoherent models are efficient in
predicting the good order of magnitude for the random laser
threshold in a large range of parameters.

The comparison with experimental data also would be in-
teresting. In most experimentally accessible systems, however,
the polydispersity of the samples and the complicated geometry
due to the scattering of the pump [45] makes a quantitative
comparison quite difficult. These problems are reduced with
cold atoms, and the observed threshold reported in [46] was
not far from Letokhov’s diffusive threshold, showing that such
simplified models can be useful guides to experimentalists.

APPENDIX A: DERIVATION OF THE RTE
THRESHOLD AT 2D

We present here a detailed derivation of the random laser
threshold [Eq. (11)] as well as the shape of the intensity dis-
tribution at threshold [Eq. (18)], from the radiative transfer
equation for a 2D disk.

A. Threshold Condition from the RTE

We start from the RTE written at 2D:

1

c
∂L
∂t

�r; u; t� � u · ∇L�r; u; t�

� −�α� χ�L�r; u; t� � χ

2π

Z
2π

0

p�u; v�L�r; v; t�dθ 0; (A1)

where θ 0 � �r; v� is the plane angle between r and v. In the
following, we suppose isotropic scattering: p�u; v� � 1. Then
the last integral reads

R
L�r; θ; t�dθ, where θ is in the following

the angle between r and u. In the cylindrical coordinate, the
gradient is

∇L � ∂L
∂r

er �
1

r
∂L
∂θ

eθ; (A2)

and we have u · er � cos θ and u · eθ � − sin θ. We thus
obtain

1

c
∂L
∂t

� cos θ
∂L
∂r

−
sin θ

r
∂L
∂θ

� −�α� χ�L� χ

2π

Z
2π

0

Ldθ:

(A3)

We now look for a separable solution in the form

L�r; θ; t� � Lt�t� × Lsp�r; θ�; (A4)

where “sp” means “space.” Injecting Eq. (A4) into Eq. (A3) we
obtain

Fig. 3. Intensity distribution at threshold averaged over the disorder
and over the radial angle. The solid lines are computed with the co-
herent wave model and the dash–dotted lines with the analytical re-
sults of the RTE model [Eq. (18)]. The vertical scale has been chosen
such that hIi ∼ 1 at the center. In the diffusive regime (lsc � 0.2R),
the energy is confined near the center, while in the quasi-ballistic
regime (lsc � 20R) it increases from the center toward the edge.
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1

c
∂Lt
∂t

� Lt
Lsp

×
�
− cos θ

∂Lsp
∂r

� sin θ

r
∂Lsp
∂θ

− �α� χ�Lsp

� χ

2π

Z
2π

0

Lspdθ
�
: (A5)

This is an equation in the form ∂Lt∕∂t � cSLt , which in-
duces an exponential increase when S > 0. The threshold
condition is thus S � 0, i.e.,

cos θ
∂Lsp
∂r

−
sin θ

r
∂Lsp
∂θ

� −�α� χ�Lsp �
χ

2π

Z
2π

0

Lspdθ:

(A6)

B. Eddington Approximation

Unfortunately this equation is still difficult to solve, and we
need an approximation. Following Letokhov and co-workers
[14,41,42], we use the derivation of Sobolev [33] based on
the so-called Eddington approximation [47,48]. It consists
in supposing that the second moment of the luminance Lsp
respective to the cosine of the propagation angle is proportional
to the zeroth one. It is equivalent to writing

Lsp�r; θ� � a�r� � b�r� cos�θ�: (A7)

We can then derive several useful relations:

L0�r� �
1

2π

Z
2π

0

Lsp�r; θ�dθ � a�r�; (A8)

L1�r� �
1

2π

Z
2π

0

Lsp�r; θ� cos θdθ � b�r�
2

; (A9)

L2�r� �
1

2π

Z
2π

0

Lsp�r; θ�cos2 θdθ � a�r�
2

� L0�r�
2

; (A10)

∂Lsp
∂θ

� − sin�θ�b�r�: (A11)

We can use these relations to simplify the θ dependency in
the threshold equation (A6). For this, we first integrate
Eq. (A6) over θ and, using Eqs. (A9) and (A11), we obtain

dL1
dr

� L1
r
� −αL0: (A12)

Then we integrate again Eq. (A6) over θ after multiplication
by cos�θ� and we obtain

dL2
dr

� −�α� χ�L1: (A13)

Next we multiply Eq. (A12) by −�α� χ� and use Eq. (A13)
to obtain

d2L2
dr

� 1

r
dL2
dr

� α�α� χ�L0: (A14)

Finally, because L2 � L0∕2 [Eq. (A10)],

d2L0
dr

� 1

r
dL0
dr

� 2α�α� χ�L0: (A15)

At this stage, we get a single differential equation on the
quantity L0�r�, which is the intensity distribution, with only
one variable. Note that in the derivation at 3D, small
differences appear because we integrate each time over the full

solid angle, which makes a supplementary sin�θ� appear in the
integrals. We obtain at the end a very similar equation, with the
factor 1∕r replaced by 2∕r and the 2 in the r.h.s. replaced by 3.

Another expression that will be useful in the following is
obtained by combining Eqs. (A8), (A10), and (A13) into
Eq. (A7):

Lsp�r; θ� � L0�r� −
1

α� χ

dL0
dr

cos�θ�: (A16)

C. Shape of the Mode

If we solve Eq. (A15), we get the shape of the intensity distri-
bution L0�r� at threshold. The solution of Eq. (A15) that has
no divergence at r � 0 is

L0�r� � CJ0�βr�; (A17)

with β2 � −2α�α� χ� � 2g�χ − g�, where g � −α is the gain
coefficient, and J0 is the Bessel function of the first kind of
order 0.

D. Boundary Conditions

Because the random laser threshold obviously depends on the
size of the medium, it comes from the boundary condition that
should be applied to Eq. (A15).

The medium has a finite radius R. The physical boundary
condition should be that there is no ingoing intensity, i.e.,
Lsp�R; θ� � 0 for all θ such that cos θ < 0. However, it is
not possible to fulfill this condition consistently with the
Eddington approximation in Eq. (A7) (except for the trivial
case of Lsp � 0 everywhere). We thus have to use an approxi-
mate boundary condition, which is that the total ingoing flux
is zero: Z

cos θ<0

Lsp�R; θ� cos�θ�dθ � 0: (A18)

Note that the same problem appears with the use of the dif-
fusion equation and the same approximate condition is used,
leading to the extrapolation length (see, e.g., [30], p. 179).

We thus apply Eq. (A18) to Eq. (A16) to obtain
−2L0�R� � πL1�R� � 0. Using Eqs. (A10) and (A13),

L1�R� � −
1

α� χ

dL2
dr






R
� −

1

α� χ

1

2

dL0
dr






R
; (A19)

and we obtain the approximate boundary condition

L0�R� � −
π

4

1

α� χ

dL0
dr






R
: (A20)

Note that the boundary condition for the 3D case is similar,
the factor π∕4 being replaced by 2/3 (and is the same as in the
diffusion approximation).

Using the intensity profile in Eq. (A17), we finally get a
threshold condition:

J0�βR� �
π

4

β

α� χ
J1�βR�: (A21)

We can simplify β∕�χ − g� � 2g∕β and, because we use
quantities that are normalized to the medium size, it is better
to write the threshold condition in the following way:
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βRJ0�βR�
J1�βR�

� π

2
gR with β2 � 2g�χ − g�: (A22)

APPENDIX B: DISCUSSION ON THE
APPROXIMATIONS USED IN THE INCOHERENT
MODELS

From the initial RTE, there are several ways of finding a ran-
dom laser threshold.

The first one is to first derive the diffusion equation and
then investigate the random laser problem. This approach gives
the well-known results of Section 2. The derivation of the dif-
fusion equation from the RTE needs two approximations (see,
e.g., [36] for a complete derivation, and [49] for a discussion on
various possible approximations). The first one is called the P1

approximation; it consists in decomposing the specific intensity
on the basis of Legendre polynomials of cos θ and keeping only
the first order. At 3D, using the definitions of the radiative
energy density and flux [Eqs. (7), (8)], it reads,

L�r; u; t� � c
4π

W �r; t� � 3

4π
q�r; t� · u: (B1)

This approximation is good if the radiation is “nearly”
isotropic. For this, photons need enough scattering events to
randomize their directions, i.e., one needs R ≫ lsc and, in case
of absorption, la ≫ lsc. The second approximation consists in
neglecting the time derivative of the flux compared with the
time scale associated with transport. This condition is usually
said to be fulfilled if la ≫ lsc, where only absorption is con-
sidered. However, in case of gain, it adds the condition
lg ≫ lsc, which may be a limitation for the random laser prob-
lem, because it excludes the regime of parameters where there is
more gain than scattering. Finally, to determine the random
laser threshold from the diffusion equation, the boundary con-
ditions due to the finite size of the medium are treated with
an approximation that makes the extrapolation length appear
[29–31]. Because of these approximate boundary conditions,
the diffusion equation is known to be bad near the borders
of the medium (meaning at a few lsc).

In the approach presented in Section 3, we first find a
complicated threshold equation directly from the RTE, and
then, on this threshold equation, we make approximations.
The Eddington approximation [Eq. (A7)] is exactly the same
as the P1 approximation [note the similarity between Eqs. (B1)
and (A16)], and the approximated boundary conditions
[Eq. (A18)] are also exactly the same as those used with the
diffusion equation [29,30]. The only condition that is relaxed
is the one about the derivative of the flux. It relaxes the condition
lg ≫ lsc, which increases the validity range of the threshold
condition to the case where the gain is similar or larger than
the scattering. It is thus a significant improvement over the
traditional Letokhov’s threshold. However, the condition
R ≫ lsc, necessary for the isotropization of the flux, and for
the approximate boundary conditions, is a priori not relaxed,
although the RTE in itself is also valid in the ballistic regime.

However, we find in the astrophysics literature (radiative
transfer in stellar or planetary atmospheres) that the Eddington
approximation is good for isotropic scattering and extends to
the optically thin regime [47,48]. Nevertheless, the boundary

conditions are not discussed, and, to our knowledge, there
is no other method to treat the boundary conditions within
the Eddington approximation. Following Letokhov and co-
workers [14,41,42], we have used the method usually applied
with the diffusion equation. It is known that these approximate
boundary conditions lead to an extrapolation length propor-
tional to the scattering mean-free path [29–31]. In the limit
of vanishing scattering, this extrapolation length goes to infinity
and so does the effective size of the medium. This may explain
the appearance of a finite random laser threshold in the ballistic
limit of the RTE [Eqs. (14) and (16)].

Finding a better way to treat the boundary conditions, and
even including the partial reflection due to the index mismatch,
as can be done with the diffusion equation [29,30,36,50–52],
would certainly improve the validity range and the precision of
the RTE threshold.

APPENDIX C: PARTIAL-WAVE CALCULATION OF
LASING THRESHOLDS

This appendix describes the numerical method used to calcu-
late the laser threshold of a 2D disordered system in Section 4.
It relies on basis functions that are purely outgoing at infinity,
called “constant flux” (CF) states [53]. CF states were originally
introduced in the context of steady-state ab initio laser theory
(SALT) [25,53–56], a method for accurately calculating above-
threshold lasing solutions. In this work, however, we will not
draw upon the full machinery of SALT because our interest lies
in threshold statistics. The CF states we shall use are solutions
to the wave equation (19), assuming (i) there are no scatterers,
and (ii) the solutions are purely outgoing in the external region
r > R. These wavefunctions have the form

ump�r;ϕ� �
	
AmpJm�qmpr�Θm�ϕ�; r ≤ R
BmpH�

m �ωr∕c�Θm�ϕ�; r ≥ R; (C1)

where �r;ϕ� are polar coordinates, �m; p� are azimuthal and
radial quantum numbers, H�

m denotes Hankel functions of
the first kind, and Θm�ϕ� are azimuthal basis functions
defined by

Θm�ϕ� �
1

2π

8<
:

ffiffiffi
2

p
sin ϕ; m > 0

1; m � 0ffiffiffi
2

p
cos ϕ; m < 0;

(C2)

which satisfy
R
2π
0 dϕΘm�ϕ�Θm 0 �ϕ� � δmm 0. Matching the

wavefunction and its first radial derivative at r � R gives

qmpJm 0 �qmpR�
Jm�qmpR�

� �ω∕c�H�0
m �ωR∕c�

H�
m �ωR∕c�

; (C3)

which can be solved numerically to find a discrete set of qmp
values, corresponding to the different CF states. With appro-
priate normalization (choice of Amp ), the CF states come to
satisfy a self-orthogonality condition:Z

r<R
d2rumpum 0p 0 � δpp

0

mm 0 : (C4)

Note that the CF basis depends implicitly on the frequency
ω, which appears in Eqs. (C1) and (C3).

We now consider the disordered system with ε�r� given by
Eq. (20). Its modes can be expanded using the CF basis states:
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ψ�r� �
X
mp

cmpump�r�: (C5)

Such a superposition automatically satisfies outgoing boun-
dary conditions (with frequency ω), as required of lasing
modes. Plugging this into Eqs. (19) and (20), and using
Eq. (C5), gives
X
m 0p 0

	��qmp
ω∕c

�
2

− 1

�
δpp

0

mm 0 − a
X
j

ump�rj�um 0p 0 �rj�
�
cm 0p 0

� χg cmp: (C6)

This is a non-Hermitian eigenproblem, whose eigenvalues
are the complex susceptibilities χg that would allow the disor-
dered structure to lase at frequency ω. Note that the delta-
function scatterers enter in the second term in the matrix; their
delta-function nature is handled “exactly” in the sense that we
need not approximate them through spatial discretization.

In order to solve the eigenproblem numerically, we truncate
to a finite CF basis set. For ω � 60c∕R (see Section 4), we take
m ≤ 75 and Re�qmp� ≤ 180∕R. Essentially, these truncations
limit the resolution of the wavefunction in the azimuthal
and radial directions, respectively. There are 6098 CF states
in the remaining basis set. The matrix in Eq. (C6) is non-
sparse, so the solution time increases with the basis size, M ,
as O�M 3�.

Figure 4 shows the computed values of χg for a typical dis-
order realization. The eigenvalues with very large Re�χg � are not
the lasing modes we are interested in; those are modes confined
because of a large real uniform background susceptibility χg,
rather than random scattering. We filter out these solutions
by truncating the eigenvalues to those with sufficiently small
real parts (specifically, jRe�1∕χg �j < 3jIm�1∕χg �j). These re-
maining eigenvalues form a random distribution in Im�χg �,
i.e., the amplification provided by the gain medium. Their
residual small but nonzero Re�χg � correspond to the index shifts
necessary to make each mode lase at frequency ω. Varying ω
moves these eigenvalues mostly sideways in the complex plane,
without much change in Im�χg �. As described in Section 4, we

then pick the smallest eigenvalue with the smallest value of
jIm�χg �j, which determines the gain length lg . Shifts in the real
part of χg due to the gain may be relevant for the study of
individual laser thresholds but are neglected here, as they do
not influence the overall statistics of the laser threshold we
are interested in.
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IV.2.3. Comparison between different gain mechanisms

Using Letokhov’s threshold derived in [Froufe-Pérez 2009], we can compare the different
gain mechanisms [Guerin 2010,Mercadier 2011]. The atomic polarizability (or equivalently
the cross sections) can be computed, sometimes analytically (for Mollow gain), more often
numerically by solving the optical Bloch equations (OBEs) [Mercadier 2011], or they can be
determined experimentally from transmission spectra [Guerin 2009].

Mollow gain

As previously explained, for Mollow gain, we can use an analytical expression of the polariz-
ability [Mollow 1972], which depends on two pumping parameters, the atom-pump detuning
∆ and the pump intensity parameterized by the Rabi frequency Ω. For each couple of pump
parameters, one can search for the frequency of the emitted light leading to the lowest critical
b0, since the random laser will start lasing at the optimum frequency. This procedure allows
us to determine the threshold for this gain and we obtain b0cr ∼ 300 [Froufe-Pérez 2009].

Although this is within reach of experiments, there are some problems. First, as briefly
discussed in the paper, the applicability of the model to the regime of very low scattering
is questionable. Second, for the optimum parameters, the pump frequency is at a lower
detuning than the random laser frequency, which means that the actual optical thickness
for the pump beam is large. This is in contradiction with the assumption of a homogeneous
pumping, which is used for the computation, because the pump beam will be attenuated
inside the sample. As a consequence we don’t think that Mollow gain is appropriate for
making a random laser.

Non-degenerate FWM

We have also investigated an original configuration of parametric gain, namely non-degenerate
FWM, for which two different frequencies ωF and ωB are used for the two pump fields,
and amplification occurs at frequency ω = (ωF + ωB) /2. This configuration seems a priori
promising for random lasing, since it allows one to adjust the gain frequency close to the atomic
frequency ω0 to enhance scattering, while keeping the pumps far from resonance. We have
experimentally characterized this parametric gain and obtained that, although a conjugated
field can indeed be produced near the atomic resonance, it cannot overcome the losses due to
inelastic scattering, which means that the total net gain is negative [Mercadier 2011]. This
configuration is thus not appropriate for random lasing.

Raman gain between Zeeman levels

For Raman gain between Zeeman sublevels, we have used measurements of transmission spec-
tra to evaluate the atomic polarizability entering into the threshold condition [Guerin 2009].
The transmission spectrum gives directly access to the imaginary part of the polarizability via
Beer-Lambert law. In order to determine the real part we can use Kramers-Kronig relations,
which are still valid for active media. By fitting the imaginary part of the polarizability by
Lorentzian functions, which turns out to be a very good approximation, the real part can be
determined in a straightforward way [Fig. IV.3].

Using this procedure we can evaluate Letokhov’s threshold for any couple of pumping
parameter. The best critical optical thickness that we obtain is b0cr ∼ 200 [Fig. IV.4]. Note
that this is also reached in a regime of high gain and low scattering.
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resonance. (b) Gain and scattering cross sections, computed from the parameters of the Raman
resonance deduced from the fit. (c) Corresponding critical optical thickness. The minimum is
b0 ' 220. This set of data corresponds to the pump parameters ∆ = −3.4Γ and Ω = 3.4Γ. Figure
taken from [Guerin 2009].
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Raman gain between hyperfine levels

Raman gain between hyperfine ground states is more complicated to study, as it involves
more pumping parameters. Indeed, to sustain a continuous gain, a Raman laser is needed to
induce the Raman two-photon transition and an optical-pumping laser is needed to maintain
the population inversion (see Fig. II.3). There are thus two laser detunings and two laser
intensities. Intuitively, one can expect that having more optimization parameters is favorable
and should lead to a lower threshold. This is indeed what we obtain by numerically solving
the OBEs and searching for the optimum parameters [Mercadier 2011]. Fig. IV.5(a) shows
the critical optical thickness as a function of the detuning and intensity of the Raman laser
for optical pumping parameters that have been chosen to give the lowest minimum critical
optical thickness, which is b0cr ∼ 100. This is a substantial improvement in comparison with
Mollow gain and Raman gain using Zeeman sublevels. However, the gain frequency is again
detuned by several atomic linewidths Γ from the atomic transition that provides scattering,
such that the optimum parameters correspond to a regime of low scattering compensated by
a high gain.
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Raman gain between hyperfine level with a fifth resonant level

Fortunately, the rich atomic structure of the D2 line of rubidium atoms (and other alkali
metals) allows us to combine Raman gain between hyperfine levels with supplementary
scattering provided by a supplementary closed transition. The scheme, represented in
Fig. IV.6, involves five levels. As previously, two ground states (|F = 2〉 and |F = 3〉 in 85Rb,
noted |2〉 and |3〉) and one excited states are necessary to build Raman gain in a Λ scheme (we
use |F ′ = 2〉 ≡ |2′〉), and one another excited level is used for optical pumping (|F ′ = 3〉 ≡ |3′〉)
to sustain the population inversion. In addition, another level (|F ′ = 1〉 ≡ |1′〉) can provide
scattering on the gain transition if the detuning ∆ of the Raman laser from the excited |2′〉
level is chosen to be equal to the frequency separation between the |1′〉 and |2′〉 levels. This
supplementary level has several important features. Firstly, it is not coupled to the ground
state |3〉 by any dipole-allowed transition, so that it does not interact with the Raman laser,
which insures homogeneous gain. Secondly, the transition |2〉 → |1′〉 is closed so that it is
efficient for scattering and does not change the equilibrium populations in the ground states.
Finally, the separation between the |1′〉 and |2′〉 levels is only 29 MHz, which is 4.8Γ. The
necessary detuning ∆ is thus small enough to insure that Raman gain is efficient. Note that
a similar five-level scheme is possible by using the |F ′ = 4〉 level for supplementary scattering
but its separation from the nearest level is 20Γ and Raman gain would be much less efficient
(similarly, 85Rb is more favorable than 87Rb because hyperfine splittings are smaller).

The relative intensity between the two external lasers allows us to adjust the relative
populations, and thus to tune continuously from a sample with large gain and no scattering
(with all atoms in the |3〉 state) to a situation without gain and with large scattering on
the |2〉 → |1′〉 line (with all atoms in the |2〉 state). We can therefore search for the best
trade-off between gain and scattering. With the optimum parameters, we find a critical optical
thickness of b0cr ∼ 20 (Fig. IV.5(b)) with L/`sc ∼ 6 at the threshold2, so that the diffusion
approximation is justified. The model is based on the OBEs with a supplementary incoherent
scattering term due to the |2〉 → |1′〉 transition [Mercadier 2011,Baudouin 2013b]. Note that
our model neglects the Zeeman degeneracy and thus cannot use the correct relative weight of

2 Here b0 is defined as the resonant optical thickness on the |3〉 → |4′〉, so b0 = 20 gives only L/`sc ∼ 6 on
the |2〉 → |1′〉 due to a lower strength of the transition and to the partial population in |2〉.
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the different lines. It is thus not precise enough for quantitative predictions. Nevertheless,
this gain mechanism seems by far the most appropriate to look for experimental signatures
of random lasing.

IV.3. Experimental signature of random lasing and modeling
We have implemented the five-level Raman gain scheme described above. Remains the
question of detecting the random laser. This is also a challenge, since the emission is not
directional and is mixed with light scattered on all other lines. The different lines are also
very hard to spectrally separate, even if some attempts have been done [Mercadier 2011].
Fortunately, we could find an indirect signature of the random laser threshold and emission
in the total fluorescence.

The experimental procedure is described in the following paper [Baudouin 2013b] and is
summarized as follows. We prepare a sample of cold atoms of 85Rb with a MOT. A controlled
compression period provides a variable optical thickness b0 with a constant number of trapped
atoms. We then switch off all lasers and magnetic field gradients during 1 ms before applying
strong counterpropagating Raman beams. The optical-pumping laser is tuned slightly below
the |2〉 → |3′〉 transition. Note that with the chosen detunings, the external lasers operate in
the single scattering regime. The Raman laser detuning is swept slowly around δ = 0, where
Raman gain is on resonance with the |2〉 → |1′〉 transition. We measure the total emitted
fluorescence, which we collect with a solid angle of ∼ 10−2 sr, and we average the detected
signal over ∼ 4000 cycles. We repeat the measurement for different optical thicknesses while
keeping the atom number constant. Variations in the fluorescence can thus only be related
to collective effects. Our observations are reported in Fig. IV.7.

Before commenting on the observations, it is important to precisely understand what we look
at and why. We measure the total emitted light by the atomic cloud when the two external
lasers are applied. This signal contains the random-laser light, but also light which is scattered
from the two external lasers (and might be subsequently amplified for Raman-scattered light
from the Raman laser). Moreover, in random lasers, there is not any privileged emission
direction that allows one to spatially separate the random-laser light. In usual random lasers,
the separation is done either spectrally or temporally (using very short pump pulses), which
is very important because the light scattered from the pump is much more intense than the
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Figure IV.7: (a) Measurement of the total fluorescence emitted by the cloud as a function of the
Raman laser detuning for different on-resonance optical thickness b0. (b) Supplementary fluorescence
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in panel (a) but the wings have been subtracted and the signal has been smoothed. (c) From a
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curves shown in (b) as a function of the optical thickness b0. The vertical error bars are the statistical
uncertainties of the fit (not visible for the amplitude) and the horizontal error bars correspond to
the fluctuations of b0 on 5 shots. Adapted from [Baudouin 2014a].

random laser itself. In our system, however, the |2〉 → |1′〉 transition does not scatter light
from the two external lasers. The random-laser line has thus a strength comparable to the
one of the other involved transitions and that is why it is possible to detect the random laser
signal in the total fluorescence. It should also be stressed that in a standard laser, the beam
is well separated from the fluorescence of the gain medium, thanks to the cavity. This is not
the case in our system, where both are measured together. Finally, it may be useful to have
in mind that looking at the total emitted light is equivalent, due to energy conservation, to
looking at the pump depletion (here the two external lasers).

A first signature of a collective behavior can be seen in a regime of negligible scattering, far
from the |2〉 → |1′〉 transition [regions 1 in Fig. IV.7(a)]: amplified spontaneous emission
(ASE) induces an overall increase of the fluorescence as a function of b0. Photons from
the Raman beam can indeed undergo a spontaneous Raman transition. The corresponding
scattered light is then amplified by Raman gain produced by the surrounding atoms while
leaving the sample with a ballistic path. The efficiency of this process is directly related
to the optical thickness. The ASE signal decreases as the Raman laser is detuned further
away from the |3〉 → |2′〉 transition (located at δ = +4.8Γ) since both the spontaneous
(source contribution) and stimulated (gain contribution) Raman scattering rates decrease for
larger detuning. Note that when tuning the Raman laser very close to the |3〉 → |2′〉 line,
Rayleigh scattering dominates. Population redistribution is then responsible for the increase
of fluorescence [Baudouin 2013c]. This effect is negligible for the detunings considered here,
and only gain can explain the observed features.

When the Raman laser is tuned close to δ = 0, the combination of gain and scattering gives
rise to an enhanced fluorescence bump that emerges as the optical thickness b0 is increased
[region 2 in Fig. IV.7(a)]. This feature is due to the combined effect of gain and scattering:
multiple scattering increases the path length of the photons that are amplified by Raman
gain. This is exactly the mechanism at the heart of random lasing. The only remaining
question to be answered before concluding that we observe random lasing is to know if the
system is above the threshold or not.

To answer this question, we plot the supplementary fluorescence as a function of the on-
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resonance optical thickness b0. To better extract this signal, we fit the wings of the curve
(regions 1) by adjustable slope and curvature and remove this background. The remaining
signal is a bell-shaped curve, well-centered at δ = 0 [Fig. IV.7(b)]. Surprisingly, it is very well
fitted by a Gaussian. We can thus use a Gaussian fit to extract its amplitude and width, as
reported in Fig. IV.7(c). Although the signal consists of different emission lines, a threshold
of the peak amplitude is clearly visible, with a change of slope at b0 = 6±1. We interpret this
threshold as the signature of the occurrence of random lasing in our sample when the Raman
beams are tuned around δ ∼ 0 and when b0 > 6. We stress that varying the optical thickness
acts simultaneously on the amount of gain and feedback provided by the medium. This is
unusual in laser physics, where the threshold is most-commonly defined as a critical pump
power. In our case, increasing the optical-pumping intensity increases indeed the population
inversion that provides gain, but simultaneously decreases the feedback, so that random
lasing needs a fine tuning of the laser parameters. This extra random-laser bump was indeed
seen only in a narrow range of parameters.
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A cold-atom random laser
Q. Baudouin, N. Mercadier†, V. Guarrera†, W. Guerin and R. Kaiser*
In conventional lasers optical cavities are used to provide
feedback to gain media. Mirrorless lasers can be built by using
disordered structures to induce multiple scattering, which in-
creases the path length in the medium, providing the necessary
feedback1. Interestingly, light or microwave amplification by
stimulated emission also occurs naturally in stellar gases2–4

and planetary atmospheres5,6. The possibility of additional
scattering-induced feedback4,7—random lasing8–14—could ex-
plain the unusual properties of some space masers15. Here,
we report experimental evidence of random lasing in a con-
trolled, cold atomic vapour, taking advantage of Raman gain.
By tuning the gain frequency in the vicinity of a scattering
resonance, we observe an enhancement of the light emission
due to random lasing. The unique possibility to both control
the experimental parameters and to model the microscopic
response of our system provides an ideal test bench for better
understanding natural lasing sources, in particular the role of
resonant scattering feedback in astrophysical lasers.

A cloud of cold atoms constitutes a new medium to study
random lasing8–14, allowing a detailed microscopic understanding
of gain and scattering. Multiple scattering of light in cold atoms
has been extensively studied in the past16,17. Furthermore, quasi-
continuous lasing with cold atoms as a gain medium, either placed
inside optical cavities18–21 or based on distributed feedback22, has
recently been demonstrated, illustrating the potential for a variety of
gain mechanisms in a regime where optical coherence is limited by
purely radiative decay channels. This is significantly different with
respect tomost random lasing devices, based on pulsed excitation of
condensed-matter systems, where the relaxation rates of the optical
coherence are several orders of magnitude faster than the decay of
the excited state population. Long phase coherence times however
allow for efficient feedback by resonant scattering, as expected in
astrophysical lasers4.

To combine sufficient gain and scattering while using only one
atomic species, we take advantage of the multilevel structure of
rubidium atoms, shown in Fig. 1a (D2 line of 85Rb, wavelength
λ= 780 nm). Two-photon Raman gain is obtained by a population
inversion between the two hyperfine ground states |2〉 and |3〉
sustained by optical pumping. A Raman laser drives the |3〉→ |2′〉
transition with a large detuning∆, so that atoms can be transferred
into the |2〉 state by stimulated emission. Scattering required for
random lasing is provided by the |2〉 → |1′〉 line, which is a
closed transition efficient for multiple scattering. Both Raman gain
and scattering can occur at the same frequency (that is, for the
same photons) by an appropriate choice of the Raman detuning
∆=−4.8Γ , determined by the hyperfine splitting between the |1′〉
and |2′〉 states (Γ/2π=6MHz is the linewidth of the transition).We
thus tune the Raman laser to the vicinity of this condition and define
the detuning δ=∆+4.8Γ as the relevant parameter (Fig. 1a). This
scheme takes advantage of the selection rules, which forbid electric
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dipole transitions between the states |3〉 and |1′〉, so that the |1′〉 level
does not affect the Raman gain.

For a given amount of gain and scattering, the threshold of
random lasing is determined by a critical minimum size of the
sample1. In our case, gain and scattering are provided by the same
atoms and depend on the atomic density n. We have shown23–25 that
the critical parameter defining the random-laser threshold is the on-
resonance optical thickness b0, defined for a homogeneous cloud of
radius R as b0=2nσ34′R, with σ34′ being the on-resonance scattering
cross-section for the |3〉 → |4′〉 transition (used to measure b0;
see Methods and Supplementary Fig. S1). Moreover, its critical
value can be computed from the atomic polarizability alone (see
Supplementary Information).

Our sample consists of a cloud of cold 85Rb atoms collected in
a magneto-optical trap. A controlled compression period provides
a variable optical thickness b0 with a constant number of trapped
atoms (see Methods). We then switch off all lasers and magnetic
field gradients 1ms before applying strong counterpropagating
Raman beams (intensity IRa=4.25mWcm−2 per beamwith crossed
linear polarizations) tuned around δ ∼ 0. In addition, we use an
optical-pumping laser tuned slightly below the |2〉→|3′〉 transition
to sustain a steady-state population inversion between the two hy-
perfine levels involved in our scheme. The relative intensity between
the two external lasers allows us to adjust the relative populations,
and thus to tune continuously from a sample with large gain and no
scattering (with all atoms in the |3〉 state) to a situation without gain
and with large scattering on the |2〉→|1′〉 line (with all atoms in the
|2〉 state). Note that with the chosen detunings, these lasers operate
in the single scattering regime. The data presented here have been
obtained with an optical-pumping intensity IOP = 2.9mWcm−2,
ensuring a small population inversion.

In random lasers, there is not any privileged emission direction
that allows one to spatially separate the random-laser light from
amplified spontaneous emission and scattering from the pump
beam, which is usually much stronger than the random-laser
emission itself. In our system, however, the |2〉 → |1′〉 transition
does not scatter light from the two external lasers. The random-laser
line thus has a strength comparable to the one of the other involved
transition and the signature of random lasing can be obtained by
the detection of the total emitted light from the sample, which
we collect with a solid angle of 10−2 sr at an angle of 40◦ with
respect to the Raman beam axes (Fig. 1b). Figure 2 shows the
measured fluorescence as the Raman laser frequency is swept
through the region of interest, for different values of the optical
thickness b0 of the atomic cloud (see Methods). We stress that for
these measurements we vary b0 while keeping the atom number
constant. Variations in the fluorescence can thus only be related
to collective features.

The first signature of such a collective behaviour can be seen
in a regime of negligible scattering, far from the |2〉 → |1′〉
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Figure 1 | Working principle of the random laser. a, Atomic transitions of
the D2 line of 85Rb (at λ= 780.24 nm) used to create random lasing in cold
atoms. The two hyperfine ground states are |2〉= |F= 2〉 and |3′〉= |F′= 3〉,
separated by 3 GHz. Similarly, the involved hyperfine excited states are the
states |F′= 1,2,3〉 denoted |1′〉, |2′〉 and |3′〉 with splittings of a few tens of
megahertz. Optical pumping creates a population inversion between |2〉
and |3〉. This allows us to create Raman gain by applying a laser with a
detuning ∆ from the |3〉→ |2′〉 transition. The gain frequency has a
detuning δ from the closed |2〉→ |1′〉 transition. Around δ∼0, this
transition provides efficient scattering. Random lasing can thus occur
around this frequency. b, Schematic of the experiment. The cold-atom
cloud (yellow sphere) is exposed to two Raman-laser beams (green) and
six optical-pumping beams (red). Its fluorescence is collected by a lens and
detected by a photodiode. Zoom-in: light (in blue) is scattered by atoms in
the |2〉 state (black) and amplified by atoms in the |3〉 state (yellow
background).

transition (regions 1 of Fig. 2): amplified spontaneous emission
(ASE) induces an overall increase of the fluorescence as a function
of b0. Photons from the Raman beam can indeed undergo a
spontaneous Raman transition. The subsequent scattered light
is then amplified by Raman gain produced by the surrounding
atoms while leaving the sample with a ballistic path. The efficiency
of this process is directly related to the optical thickness (see
Supplementary Information). The ASE signal decreases as the
Raman laser is detuned further away from the |3〉→ |2′〉 transition
(located at δ = +4.8Γ ) because both the spontaneous (source
contribution) and stimulated (gain contribution) Raman scattering
rates decrease for larger detuning.Note thatwhen tuning theRaman
laser very close to the |3〉 → |2′〉 line, single-photon scattering
dominates. As detailed in ref. 26, population redistribution is then
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Figure 2 | Fluorescence measurement. Total fluorescence PF as a function
of the Raman laser detuning δ (in units of the linewidth Γ of the optical
transition) recorded for optical thickness varying from b0= 1.9 to b0= 26.
The number of atoms is kept constant at N= 7× 108

± 12%. Two collective
features are visible. In the wings (regions 1), the overall increase of the
fluorescence with b0 is due to amplified stimulated emission. Around δ∼0
(region 2), an extra peak appears for large optical thickness. This enhanced
light emission is due to the combination of Raman gain and multiple
scattering provided by the |2〉→ |1′〉 transition and is thus a signature of
random lasing.

responsible for the increase of fluorescence. This effect is negligible
for the detunings considered here, and only gain can explain
the observed features.

When the Raman laser is tuned close to δ = 0 (region 2
of Fig. 2), the combination of gain and scattering gives rise to
a random laser. It appears as an enhanced fluorescence bump
that emerges as the optical thickness b0 is increased. To better
extract this signal, we fit the wings of the curves (regions 1) by
adjustable slope and curvature and remove this ASE background.
The remaining random-laser signal is a Gaussian peak, well centred
at δ = 0 (Fig. 3a), which thus comes from the scattering due to
the |2〉 → |1′〉 transition. Therefore, the observed peak is due to
the combination of gain and scattering. Moreover, although the
signal consists of different emission lines, a threshold of the peak
amplitude is clearly visible, with a change of slope at b0 = 6± 1
(Fig. 3b). This threshold is the signature of the occurrence of
random lasing in our sample when the Raman beams are tuned
around δ ∼ 0 and when b0 > 6. We stress that varying the optical
thickness acts simultaneously on the amount of gain and feedback
provided by the medium. This is unusual in laser physics, where the
threshold is most commonly defined as a critical pump power. In
our case, increasing the optical-pumping intensity indeed increases
the population inversion that provides gain, but simultaneously
decreases the feedback, so that random lasing needs a fine tuning
of the laser parameters.

Finally, we have exploited the possibility to perform ab initio
theory by developing two simple models, one for ASE and the
other for random lasing. Both are detailed in the Supplementary
Information. Here, we describe briefly the random-lasing model. It
consists of self-consistently coupling the atomic response, based on
optical Bloch equations with additional scattering on the |2〉→ |1′〉
line, to a diffusion equation for the light scattered on the |2〉→ |1′〉
resonance. The optical Bloch equations allow us to compute the
atomic polarizability and, including the additional scattering on
the |2〉→ |1′〉 line, the mean-free path `sc and the gain length `g,
including saturation effects due to the random laser intensity IRL
inside the sample. As in conventional laser theory, we look for a
steady-state solution where gain exactly compensates losses. In the
diffusive regime and taking into account only the diffuse mode with

358 NATURE PHYSICS | VOL 9 | JUNE 2013 | www.nature.com/naturephysics

© 2013 Macmillan Publishers Limited. All rights reserved



NATURE PHYSICS DOI: 10.1038/NPHYS2614 LETTERS

¬2 ¬1 0 1 2
4.5

5.5

6.5

Letokhov
criterion

Atomic
response

Random laser
intensity

Populations and
cross-sections

0 10 20 30
0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4
PF

a b

c d

200 40 60

3

0

1

2
¬1 0 1

25

30

35
PF

P F
 (

a.
u.

)

P F
 (

a.
u.

)
P F

 (
a.

u.
) P F

 (
a.

u.
)

80

4

b0

b0

0 1 2¬1¬2

0 1 2¬1¬2
0.0

1.0

0.5

/Γδ

/Γδ

/Γδ

δ

/Γδ

δ

δ P F
 (

a.
u.

)
δ

δ

P F
 (

a.
u.

)
δ

Figure 3 | Random laser emission around δ = 0. a, Measured supplementary fluorescence δPF due to random lasing as a function of the Raman laser
detuning δ, measured for optical thickness varying from b0= 1.9 to b0= 26. The source data and the colour scale are the same as in Fig. 2, but the wings
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optical thicknesses, b0= 26 (blue), b0= 30 (green), b0= 34 (orange) and b0= 38 (red). d, Maximum supplementary fluorescence δPF computed from the
self-consistent model for random lasing. Inset: principle of the model. The atomic response allows the computation of the threshold optical thickness
following Letokhov’s criterion1,23. Owing to saturation effects, this threshold depends on the random-laser intensity. Therefore, for each b0, we find the
random-laser intensity such that the computed threshold equals b0, corresponding to a steady state (see Supplementary Information).

the longest lifetime, this condition is equivalent to Letokhov’s result
on the random-lasing threshold1,23,

Rcr=π

√
`sc`g

3
(1)

where Rcr is the critical sample size. As a consequence, for a given
b0, we find the value of IRL such that equation (1) is fulfilled.
Considering the absence of any free fitting parameter and the
simplicity of our model, which neglects for instance the contri-
bution of ASE, the experimental data and the computed values
for the supplementary fluorescence show satisfactory qualitative
agreement (Fig. 3). The quantitative discrepancies suggest the need
for more involved models. Many ingredients could play a role in
our experiment and have been neglected in our models, such as the
inelastic spectrum of the emitted light, interference effects on light
transport, light polarization, the Zeeman degeneracy of the involved
atomic levels, the finite temperature, the inhomogeneous atomic
density distribution, and cooperative effects21,27. The comparison
between the experiment and new models including some of these
effects will allow one to identify the most relevant ones and thus to
better understand random-laser physics.

We have presented experimental evidence of combined gain
and scattering of light in a cloud of cold atoms, demonstrating
random lasing in a dilute vapour. This type of experiment, based
on well-controlled atomic systems, with the possibility of ab initio
calculations, will allow studying the role of interferences and
cooperativity in random lasing27–29. The combined theoretical and
experimental approach described in this work can also be applied
to realistic atomic structures encountered in astrophysical systems

and to test new detection schemes, based for instance on high-order
photon correlations30.

Methods
Sample preparation. In our experiment 6 counter-propagating trapping beams
with a waist of 3.4 cm (1/e2 radius of the intensity distribution) are used to load
85Rb atoms from a background atomic vapour into a magneto-optical trap (MOT).
The trapping beams are detuned by −3Γ from the |3〉→ |4′〉 hyperfine transition.
To maintain the atomic populations in |3〉, we add 6 repumper beams tuned
slightly below the |2〉→ |3′〉 transition. We can load between 108 and 1011 atoms
by changing the background vapour pressure and the duration of the trap loading
(from 10 to 500ms). Once the atoms are trapped in the MOT, we perform a
temporal dark-MOT stage by increasing the detuning of the trapping beams to
−6Γ and by reducing the intensity of the repumper beams to a few per cent of
their initial value. This leads to an increase of the spatial density and thus of the
optical thickness b0 of the cloud, without loss of atoms. By changing the duration of
this compression stage, we are able to tune b0 from 1.9 to 27, while keeping almost
constant the total number of atoms, which, for the measurements presented here,
is set to 7×108±12%. The temperature is T ∼ 50 µK. The optical thickness b0 is
measured by a transmission spectrum with a small and weak probe beam on the
|3〉→ |4′〉 transition24. The shot-to-shot fluctuations of b0 (horizontal error bars in
Fig. 3b) are evaluated by repeating themeasurement five times.

Data acquisition. After the sample preparation, we switch off magnetic field
gradients and trapping lasers and we expose the sample to two counterpropagating
Raman beams with waists of 2.4 cm, intensities of 4.25mWcm−2 each and linear
orthogonal polarizations, and 3 pairs of counterpropagating optical pumping
beams with waists of 3.4 cm, intensities of 0.48mWcm−2 and σ+/σ− polarizations,
each at a detuning of −3Γ from the |2〉→ |3′〉 transition. Note that the diameters
of these lasers are large enough to ensure that their effective intensities on the
atom cloud are independent from the chosen optical thickness. The Raman laser
is obtained from a distributed-Bragg-reflector laser diode and is frequency-tuned
by a double-pass acousto-optic modulator before it is amplified by two stages of
saturated slave lasers. This system allows us to scan the frequency in a range up to
16Γ with intensity variations of only 0.1%.
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The measuring procedure consists of scanning in 2ms the Raman beam
detuning δ from −3,2Γ to 4,8Γ while a high-gain photodiode gathers the
fluorescent emission of the cloud in a solid angle of∼10−2 sr. The detected power is
of the order of 0.4 nW. We checked that the direction of the sweep does not change
the detected fluorescence, and that the duration of the sweep is short enough to
avoid significant variations of b0 during the measurements (<5%) and long enough
to probe a quasi-steady state (the sweep rate is 4Γ ms−1). We averaged over 4,000
subsequent measurements to increase the signal-to-noise ratio, thus performing
also an averaging over the disorder configurations.
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In this supplementary online material, we describe the models used in this study.

I. ATOMIC MODEL

We describe the atom-light interaction by a semi-classical model based on the optical Bloch equations (OBEs).
We have to consider five atomic levels: the two ground states |F = 2, 3〉 (denoted hereafter |2〉 and |3〉) and the
three excited states |F ′ = 1, 2, 3〉 (denoted |1′〉, |2′〉 and |3′〉). They are coupled to each other by three optical fields:
the external Raman laser (subscript Ra in the following), the external optical pumping (OP) and the self-generated
“random-laser” (RL) around the Raman gain frequency, see Fig. S1. The Raman laser is detuned by ∆Ra from the
|3〉 → |2′〉 transition, the random laser has a detuning ∆RL from the |2〉 → |2′〉 transition, and the optical pumping
has a detuning ∆OP from the |2〉 → |3′〉 transition. The linewidth Γ of all optical transitions is Γ/2π = 6.07 MHz.

In first approximation, the detunings ∆Ra and ∆RL are equals (and noted ∆ and δ for simplicity in Fig. S1 and the
main paper). However, the frequency for which the random laser starts is not exactly given by the bare-atom two-
photon resonance condition. One reason for this are the various light-shifts of the atomic levels coupled to different
lasers. As a consequence, it is necessary to let ∆Ra and ∆RL be independent parameters in the evaluation of the
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Fig. S 1: Considered atomic levels and optical fields. The level |4′〉 = |F ′ = 4〉 is only used in the laser-cooling process
and is thus not included in our model. The five other levels are taken into account as well as the three optical fields: the Raman
laser, the optical pumping and the “random-laser” line, where Raman gain and scattering are combined.
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atomic response. Finally, we define also these detunings relatively to the |1′〉 state and note δRa,RL = ∆Ra,RL + 4.8Γ,
where 4.8Γ is the hyperfine splitting between the |1′〉 and |2′〉 states.

A. Reduction from five to four levels

Including the |1′〉 in a fully coherent model leads to the appearance of coherence effects when we compute the
scattering cross-section around the random-laser frequency: the contribution of the |2〉 → |2′〉 and |2〉 → |1′〉 transitions
interfere, yielding sharp variations with the frequency [1]. We neglect these effects as we assume them to be irrelevant
in the experiment because the coherence between the |1′〉 and |2′〉 states is expected to be destroyed by the multiple
scattering undergone by the random-laser light.

We thus choose to describe by OBEs the coupling between the 4 levels |F = 2〉, |F = 3〉, |F = 2′〉, |F = 3′〉 and
include the contribution of the |1′〉 state only as a supplementary scattering term, which adds incoherently to the
off-resonant scattering provided by the |2′〉 state. We thus write for the total scattering cross-section,

σsc,tot(δRL) = σsc(δRL) + C〈ρ̃22〉
σ0

1 + 4δ2
RL/Γ2

, (1)

where σsc and ρ̃22 are, respectively, the scattering cross-section and the population of the |2〉 state, derived from a
four-level model (without the |1′〉 level) as detailed below. The resonant scattering cross-section is σ0 = 3λ2/2π with

λ = 780.2 nm the wavelength of the D2 line and C = 1
3

2F ′+1
2F+1 = 1

5 corresponds to the average coupling of the |2〉 → |1′〉
transition assuming a statistical mixture of the Zeeman sublevels [2]. For δRL ∼ 0 and the parameters used in the
experiment, the second term of Eq. (1) is the dominant contribution.

B. Optical Bloch equations for the four-level system

We derive the OBEs from the time dependent Schrödinger equation ih̄dρ
dt = [H, ρ], where ρ is the density matrix

and H = Hat + Hint the total Hamiltonian, sum of an atomic part and of an interaction part, which reads Hint =
h̄

∑
i,j

Ωij(|i〉〈j| + |j〉〈i|), where Ωij is the Rabi frequency of the optical field that couples the levels i and j. We choose

all Ωij as real numbers and note ΩRa = Ω32′ , ΩRL = Ω22′ , and ΩOP = Ω23′ .
We add optical relaxations, use the rotating wave approximation and after making the following substitutions,

ρ̃ii = ρii for i = {2, 3, 2′, 3′} ,

ρ̃23′ = ρ23′e−i∆OPt ,

ρ̃22′ = ρ22′e−i∆RLt ,

ρ̃23 = ρ23e
−i(∆RL−∆Ra)t ,

ρ̃3′2′ = ρ3′2′e−i(∆RL−∆OP)t ,

ρ̃3′3 = ρ3′3e
−i(∆RL−∆Ra−∆OP)t ,

ρ̃2′3 = ρ2′3e
i∆Rat ,

we obtain the following equations for the populations,

dρ̃22

dt
= Γt2′2ρ̃2′2′ + Γt3′2ρ̃3′3′ + i

ΩOP

2
(ρ̃23′ − ρ̃3′2) + i

ΩRL

2
(ρ̃22′ − ρ̃2′2) , (2)

dρ̃2′2′

dt
= −Γρ̃2′2′ − i

ΩRa

2
(ρ̃32′ − ρ̃2′3) − i

ΩRL

2
(ρ̃22′ − ρ̃2′2) , (3)

dρ̃3′3′

dt
= −Γρ̃3′3′ − i

ΩOP

2
(ρ̃23′ − ρ̃3′2) , (4)

1 = ρ̃22 + ρ̃2′2′ + ρ̃3′3′ + ρ̃33 , (5)
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3

where tij is the probability that an atom in state i decays into state j [2, 4]. The coherence terms are given by

dρ̃23′

dt
= i

ΩOP

2
(ρ̃22 − ρ̃3′3′) − i

ΩRL

2
ρ̃2′3′ − ρ̃23′(Γ/2 + iδOP) , (6)

dρ̃22′

dt
= i

ΩRL

2
(ρ̃22 − ρ̃2′2′) + i

ΩRa

2
ρ̃23 − i

ΩOP

2
ρ̃3′2′ − ρ̃22′(Γ/2 + i∆RL) , (7)

dρ̃23

dt
= −i

ΩOP

2
ρ̃3′3 + i

ΩRa

2
ρ̃22′ − i

ΩRL

2
ρ̃2′3 − iρ̃23(∆RL − ∆Ra) , (8)

dρ̃3′2′

dt
= i

ΩRa

2
ρ̃3′3 − i

ΩOP

2
ρ̃22′ + i

ΩRL

2
ρ̃3′2 − ρ̃3′2′ [Γ + i(∆RL − ∆OP)] , (9)

dρ̃3′3

dt
= −i

ΩOP

2
ρ̃23 + i

ΩRa

2
ρ̃3′2′ − ρ̃3′3[Γ/2 + i(∆RL − ∆Ra − ∆OP)] , (10)

dρ̃2′3

dt
= i

ΩRa

2
(ρ̃2′2′ − ρ̃33) − i

ΩRL

2
ρ̃23 − ρ̃2′3(Γ/2 − i∆Ra) , (11)

with ρ̃ji = ρ̃∗
ij .

We find the steady-state solution of the OBEs by numerically solving the corresponding linear system. It allows us
to compute all the relevant atomic quantities, in particular the atomic polarizability at the random-laser frequency,

α =
6π

k3
0

ρ22′

ΩRL/Γ
=

6π

k3
0

α̃, (12)

where k0 = 2π/λ and α̃ is dimensionless. The elastic scattering cross-section is then given by

σsc =
k4
0

6π
|α|2 = σ0|α̃|2 , (13)

the extinction cross-section by σext = k0Im(α) = σ0Im(α̃) and the gain cross-section by σg = σsc − σext [3]. The
cross-sections that are relevant for the other fields are computed in the same way.

Finally, due to energy conservation, the total fluorescence emitted by the cloud is equal to the extinction of the two
external beams,

PF =

∫
n(�r)d�r (σext,RaIRa + σext,OPIOP) , (14)

where I denotes the respective incoming intensities.
Note that the OBEs allows us to compute the elements of the density matrix when all the detunings and Rabi

frequencies, and in particular ΩRL, are specified. To compute ΩRL, we need to introduce self-consistent models that
couple the EBOs with the light transport in the sample.

II. SELF-CONSISTENT MODEL WITH AMPLIFIED SPONTANEOUS EMISSION

We first consider a situation where light transport is ballistic, that is, neglecting random walk by scattering. This
is relevant for the regions 1 of Fig. 2. For simplicity, we consider a spherical atomic cloud of homogeneous density n
(the two external lasers have also homogeneous intensities).

Starting with ΩRL = 0 in the EBOs, we compute a source term corresponding to spontaneous Raman scattering,
given by P0 = Γt2′2ρ̃3′3′ [second term of the right-hand-side of Eq. (2)], taken at the detuning ∆RL of maximum
gain. We then consider an atom at the center of the cloud (radius R) and compute the intensity at the RL frequency
emitted by the other atoms. Taking into account the extinction along the ballistic path of the light, we integrate the
source term P0 described above,

IRL =

∫
nP0

4πr2
exp (−nσextr) r2 sin(θ)drdθdφ =

P0

−σext
[exp(−nσextR) − 1] . (15)

Note that 2nσextR = b0Im(α̃) so that the dependence on the optical thickness b0 is explicit. Note also that, in the
absence of scattering, −σext = σg. One can see that IRL increases with b0 only if σext < 0, i.e., in presence of gain.
This increase is smooth with b0, without any visible threshold [Fig. S2].

From this result we can inject ΩRL = Γ
√

IRL/(2Isat) in the EBOs, with Isat = 6.4 mW/cm2. Since the value of
ΩRL changes the atomic response (due to saturation and optical pumping), the source term and the gain cross-section
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Fig. S 2: Amplified stimulated emission (ASE) due to Raman gain. a, Fluorescence power at δ = −2Γ as a function
of the optical thickness. The data are those of Fig. 2. At this detuning, scattering due to the |1′〉 excited state is small and
Raman gain explains the increase of the total fluorescence as b0 increases with a constant number of atoms. Vertical error bars
correspond to the noise on the data and horizontal error bars to shot-to-shot fluctuations of b0. b, Solution of the ASE model,
without any adjustable parameter.

depend on ΩRL. We thus iterate this procedure until ΩRL converges to a stable value corresponding to the steady-
state. The total fluorescence, reported in Fig. S2b, can then be computed from Eq. (14). As mentioned above,
the frequency of maximum gain is not exactly matching the two-photon resonance condition of the bare atom. We
therefore scan the frequency ∆RL and retain for each value of ΩRL the frequency providing maximal emission.

Given the simple considered geometry, we expect this model to provide only qualitative results. Nevertheless, it
has the advantage of including Raman gain and the saturation effect due to the emitted and amplified light.

Note that another effect can explain an increase of the total fluorescence with the optical thickness b0, when
the Raman-scattered photons from the pump laser are in the regime of multiple scattering on the open |2〉 → |2′〉
transition. Those photons contribute to optical pumping and can increase the population of the |F = 3〉 state leading
to enhanced emission in some cases. This effect has been studied in detail in [4] and is the dominating effect when
the Raman laser is tuned very close to resonance (∆Ra ∼ 0, that is, δRa ∼ 4.8Γ). We checked that at the detunings
and intensities considered in Figs. 2 and S2, this contribution is negligible. At the largest optical thicknesses that
we used, a similar effect might come from inelastically scattered light [5] and slightly contribute to a change in the
populations.

III. SELF-CONSISTENT MODEL WITH LETOKHOV’S CRITERION FOR THE RANDOM LASER
THRESHOLD

When the Raman laser is tuned close to δRa ∼ 0 (region 2 in Fig. 2), the Raman-scattered light is not in the ballistic
regime but undergoes multiple scattering due to the |2〉 → |1′〉 transition. To describe such multiple scattering, we
couple the OBEs to a diffusion equation.

We can then build on Letokhov’s results on the diffusion equation with gain: above a critical size for the medium,
random lasing starts [6]. With a spherical geometry, the critical radius is given by

Rcr = π

√
�sc�g

3
, (16)

where the mean-free-path is given by �−1
sc = nσsc,tot (Eq. 1) and the gain length by �−1

g = nσg. Here we still suppose
a homogeneous density n and we suppose also that the scattering is isotropic so that the transport length equals the
scattering mean-free-path. As shown in [7], Letokhov’s criterion can be rewritten as a critical optical thickness,

b0cr =
2πσ0√

3σsc,totσg

, (17)

where the cross-sections are obtained from the EBOs of the 4-level model and additional scattering at the |2〉 → |1′〉
line as given by Eq. (1).

Based on this threshold criterion, we can compute the emitted light on the random laser line for a given b0 via the
implicit equation b0cr(ΩRL) = b0, analogous to the condition that gain must exactly compensate losses at the steady
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state, as in standard lasers. In practice, we start from ΩRL = 0, compute b0cr from the EBOs and Eqs. (1,17), and
we increase ΩRL while b0cr < b0. At each step we choose the random-laser detuning ∆RL that induces the lowest
threshold, since the laser should start with this frequency.

Then, we can use Eq. (14) to compute the total fluorescence, corresponding to the experimental signal, from which
we subtract the fluorescence computed with ΩRL = 0 in order to compare with the measured increase of fluorescence
δPF [Fig. 3].

This qualitative model only allows for the computation of the random laser intensity above threshold and does note
describe the emitted power below the laser threshold, for which we can use the ASE model described in the previous
section. We note that this model also takes into account all saturation effects. In this system, the emitted intensity
does not only change the gain, but also the scattering-induced feedback, since it changes the atomic populations.
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Concluding remarks
Our observations are in qualitative agreement with an ab initio model based on Letokhov’s
threshold, which is described in detail in the paper’s Appendix. I also have adapted the
same self-consistent model using the threshold computed from the RTE, with no significant
difference.

There are, however, quantitative discrepancies. In particular, the measured threshold is lower
than the predicted one. This might be due to interference effects, which are neglected in the
diffusion model, as explained in Section IV.2.2.

Several other ingredients are neglected and might also play a role, like the polarization of
light, the Zeeman degeneracy of the involved atomic levels, the finite temperature of the
cloud, and the inhomogeneous density distribution. This demonstrates the need for a more
evolved modeling.

Several theoretical approaches to random lasing have been developed over the years, see for
instance Refs. [Wiersma 1996,Burin 2001,Vanneste 2007,Türeci 2008,Conti 2008,Frank 2009,
Goetschy 2011]. To my opinion, the main interest of our experiment is to provide disorder-
averaged data in a rather clean system (homogeneous pumping, monodisperse scatterers,
known density profile) with perfectly known microscopic ingredients (rubidium atoms driven
by two lasers with known frequencies and intensities), without any free parameters. This has
triggered first collaborations with some theoreticians [Gerasimov 2014,Guerin 2016b] and we
hope that more will come in the future, although unfortunately, the topic of random lasers
has become a bit old-fashioned in the recent years.
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It is interesting to note that although the different gain mechanisms had been known for a long
time, the topic of gain and lasing using cold atoms was dormant for many years with very few
experiments [Hilico 1992,McKeever 2003], while there have been much more experiments in the
recent years [Vrijsen 2011,Bohnet 2012,Norcia 2016,Sawant 2017,Megyeri 2018,Gothe 2019].

As far as mirrorless lasing is concerned, our two experiments [Schilke 2012b,Baudouin 2013b]
are the first ones (see also the related experiment [Greenberg 2012]). Since then several
MOPOs using only FWM have been demonstrated in cold atoms [Mei 2017,Lopez 2019].
None of these other experiments really use the spatial arrangement of the atoms to provide
the feedback mechanism.

Although it requires some more preparation of the sample, since it has to be ordered, the
DFB OPO experiment was much easier. Fundamentally, it is because the system is 1D. As a
consequence, the emission is directive, which leads to very clear signatures. It is also easier
to get a large optical thickness along only one direction.

For the random laser experiment, the observed signature is less striking. As already explained,
what we observe is equivalent to looking at the pump depletion, which is somewhat indirect.
This led us, in the following years, to work on the development of experimental methods that
could provide some more direct signatures.

One effect we thought of is an increase of fluctuations at the transition. As a first preliminary
experiment to learn how to deal with fluctuations and sort out technical noise from interesting
fluctuations, we studied the fluctuations of quasi-resonant light transmitted through the
cold-atom cloud. We indeed observed a very large extra noise introduced by the atoms and
a careful analysis showed that this noise was due to the frequency noise of the probe laser
converted to intensity noise by the atomic resonance [Vartabi Kashanian 2016b].

Ultimately, we would like to get a signature of random lasing on the spectral or coherence
properties. One prominent signature of lasing would be a change of the intensity correlation
function g(2)(τ) from bunched to flat. This has been shown on a random laser too [Cao 2001].
We thus started a new research program on intensity correlations, with the idea of starting
by a simple experiment and increasing the complexity step by step. The simple experiment is
the measurement of intensity correlations of light scattered by cold atoms in the linear-optics
regime, without any gain, in the single-scattering regime and then in the multiple-scattering
regime [Éloy 2018b]. I participated to that experiment in particular by performing random-
walk simulations to help interpret the data.

The next step along this program would be to add gain and see how the intensity correlation
function is modified with and without multiple scattering, and then below and above the
random lasing threshold. However many other interesting things can be done with such a
setup, which are the subject of the current experiments performed under the leadership of
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Mathilde Hugbart. In particular, before having gain, one has first inelastic scattering: a precise
measurement of the Mollow triplet [Mollow 1969] has been obtained [Ortiz-Gutiérrez 2019].
How is this well-known Mollow triplet modified by collective effects? If the driving laser is out
of resonance, an imbalance between the sidebands is predicted [Ott 2013,Pucci 2017], which
may be interpreted by the effect of Mollow gain [Mollow 1972] that amplifies one sideband.
And if the driving laser is near resonance, at large optical thickness and large saturation
parameter, second-order sidebands should appear [Pucci 2017]. Those sidebands are created
by two-body quantum correlations and can also be interpreted as the inelastic scattering
due to atoms strongly driven by the first-order sidebands. This line of research goes towards
cooperative or collective scattering effects beyond the linear-optics regime.

Finally, another experiment along this line has been performed very recently (2019) and
is still at the analysis stage. It deals with a fibered random laser3 provided by the group
of Anderson Gomes (Recife, Brazil). We measured the intensity correlation function below
and above threshold. While we obtain bunching below threshold, we don’t obtain a flat
g(2)(τ) function above threshold, but instead a complicated oscillatory behavior. Our current
interpretation is that the random laser is coherent but multimode.

Some speculative ideas for the future

Random lasing in hot vapors?

Raman gain between hyperfine levels also works with hot vapors [Kumar 1985], so one can
wonder if random lasing would be possible in hot vapors. Since the gain frequency is shifted
from the pumping frequency by the hyperfine splitting, one can arrange, in a cell containing
different isotopes, that the pump beam is at a frequency that is unscattered (homogeneous
pumping) but not too far away from the line of one isotope (to get efficient gain), and that
the gain frequency is resonant with the other isotope, to provide scattering.

With rubidium, with these qualitative criteria in mind, the most appropriate configuration
would be to use the 85Rb atoms for gain with a pumping detuned from ∼ 500MHz to the
red of the F = 2→ F ′ Doppler line. Then the gain would be resonant with the F = 1→ F ′

Doppler line of the 87Rb atoms.

Of course there are many open questions, which I didn’t have the time to seriously investigate.
For instance, how to sustain the gain (do we need an extra optical pumping to create and
sustain a population inversion)? Even more importantly, the main problem in working with
hot vapors is the Doppler broadening. First this will reduce a lot the gain efficiency. Also,
scattering is inelastic and can put the photons out of the gain resonance, which would be like
a kind of loss. Nevertheless, in the multiple scattering regime, the photons can come back in
the right frequency range after a few scattering events. Finally, we know from our experiments
on Lévy flights that light transport would be superdiffusive [Mercadier 2009,Baudouin 2014b],
so we cannot use Letokhov’s threshold. We can still use the RTE though, as long as the
mean-free path can be defined, which is the case with Doppler broadening.

In brief, we don’t know yet if that can work in reasonable conditions, but that’s not a priori
impossible. That would be a new system to study random lasing.

3 It is, actually, a random distributed feedback fiber laser [Turitsyn 2014], which provides a nice unification
of the different chapters presented in Part One!



Conclusion on Part One 109

Random lasing in space?

The subject of random lasers based on atomic and molecular gases has been introduced, by
Letokhov himself, in the context of astrophysical lasers. Indeed, astronomical observations
in the microwave domain have led to the discovery of anomalously bright emission lines
from molecules in stellar atmospheres [Weaver 1965]. It was soon understood that the
only possible explanation was an amplification of the corresponding wave due to stimulated
emission [Litvak 1966]. The study of these astrophysical masers, which turned out to be very
common, has been an important research subject in the 1970s [Reid 1981,Elitzur 1982].

Emission lines with anomalous intensities were also known in the optical domain [Thack-
erey 1935,Merrill 1956] without any convincing explanation. Letokhov suggested that they
could also be explained by stimulated emission, and that scattering-induced feedback could
enhanced the amplification, even reaching the oscillatory regime [Letokhov 1972, Lavri-
novich 1975], a phenomenon that would be called a random laser today.

Amplification by stimulated emission was indeed observed in the planetary atmospheres of
Mars and Venus in the infrared (IR) domain (λ ∼ 10µm) [Johnson 1976,Mumma 1981]
and much later in stellar atmospheres in the far IR [Strelnitski 1996]. More recently,
astrophysical lasers in the near IR was discovered by Johansson and Letokhov, based on
Fe ii [Johansson 2004] and O i [Johansson 2005]. In the optical domain, population inversion
is much harder to obtain than in the microwave domain, and astrophysical lasers are very
rare, contrary to masers [Messenger 2010].

It should be noted here that astrophysicists often call ‘lasers’ what a laser physicist would
describe as amplification, or Amplified Spontaneous Emission (ASE) [Letokhov 2009]. The
existence of additional feedback due to multiple scattering seems to be very speculative. In
the microwave domain, there are ununderstood bursts of radiation from the water vapor
maser in the Orion KL Nebula [Shimoikura 2005], and scattering-induced feedback in the
oscillatory regime (i.e., random lasing above threshold) has been proposed as a possible
explanation [Truitt 2000]. The latest observations, however, do not seem to confirm this
idea [Hirota 2011].

Nevertheless, it seems that the ingredients necessary for a random laser, that is, multiple
scattering and stimulated emission, are both present in stellar gases [Johansson 2007].
Moreover, even without feedback, ASE in a long enough medium (distances are huge in
astrophysics!) might lead to saturation of the gain medium and to coherent emission. This
coherence property could be detected in the intensity correlation function g(2)(τ) [Chung 1980].
The most promising emission line seems to be the Fe ii line at 1.68µm, which should be
present in the circumstellar envelope of some spectral types of stars [Messenger 2010].

This speculative idea led us to first discussions with astrophysicists about the possibility of
performing intensity-correlation measurements, which triggered a fruitful collaboration on the
revival of the technique of intensity interferometry [Dussaux 2016,Guerin 2017a,Guerin 2018,
Lai 2018,Rivet 2018,Rivet 2020], a project in which I have been strongly involved, as briefly
mentioned in Chapter I.





Part Two

Cooperative scattering in dilute
cold-atom clouds in the linear-optics

regime
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Introduction on super- and subradiance

“Superradiant gain is the process in which waves are amplified via their interaction with a
rotating body, examples including the evaporation of a spinning black hole and electromagnetic
emission from a rotating metal sphere.” This citation taken from a recent Physical Review
Letters [Faccio 2019] shows how broad the topic of superradiance can be. Another indicator
could have been the number of citations of Dicke’s seminal paper [Dicke 1954], which is about
4800 at the time of writing and is still increasing at an impressive rate.

As a consequence I will not try to do an exhaustive review, because such an attempt would
fail, and I prefer to admit that I have a very limited knowledge or understanding of many
experimental and theoretical works related to super- and subradiance. I will thus give a brief
and very incomplete overview of the past work on the subject and a little bit more details on
the more recent, so-called ‘single-photon superradiance’.

Dicke’s superradiance
In 1954 R.H.Dicke published an article entitled “Coherence in spontaneous radiation pro-
cesses” [Dicke 1954], which introduced the concept of superradiance. It considers an ensemble
of N motionless, identical, two-level atoms located in a region of space much smaller than
the transition wavelength λ and addresses the question of the collective eigenmodes of the
system and their radiation rates. In particular, Dicke showed that if all atoms are initially in
their excited state, the deexcitation of the ensemble would follow the cascade of all symmetric
states, with an acceleration of the emission rate and a coherent emission. All other, nonsym-
metric states would never be populated, because they are decoupled from the ladder of the
symmetric states. Among these nonsymmetric states, some have an emission rate smaller
than the one of a single atom (it can even vanish) and are thus called ‘subradiant’ [Freed-
hoff 1967]. Note that the symmetry argument relies on hypotheses that were later revealed
to be unjustified [Friedberg 1972,Gross 1982].

A hand-waving argument to describe superradiance could be the following: since all excited
atoms are very close to each other, the first, spontaneously emitted photon is immediately
‘felt’ by the other atoms and triggers their stimulated emission, hence a global, collective
coherent emission. What is computed in Dicke’s paper, among other things, is the dynamics
of this emission, with in particular the emission rate at each level of the superradiant cascade.
It should be noted that the coherence of the excitation is generated spontaneously, by the
first spontaneous emission, which justifies the name of ‘quantum superradiance’ by some
authors, e.g. [Berman 2010], while others have proposed ‘superfluorescence’ [Bonifacio 1975,
Gibbs 1977].

The assumption of a very small size (compared to λ) may be relevant to microwave
spectroscopy, but not so much in the optical domain. To go beyond this ‘Dicke limit’
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one has to take into account the distance-dependent dipole-dipole interaction between
atoms [Stephen 1964], as well as propagation effects. With two atoms the whole problem
can be solved analytically [Lehmberg 1970b, Stroud 1972, Milonni 1974] but with many
atoms in a large sample the situation is much more intricate and was addressed by many
theoretical studies in the 1960s-1970s (see, e.g., [Freedhoff 1967,Ernst 1968,Ernst 1969,Lehm-
berg 1970a,Arecchi 1970,Friedberg 1971,Rehler 1971,Saunders 1973a,Saunders 1973b,Boni-
facio 1975,Ressayre 1976,Ressayre 1977] to name a few) but experiments were not performed
until the 1970s.

Experiments in the 1970s-1980s
Several groups observed and studied superradiance/superfluorescence using atomic vapors
or beams, approximately between the mid-1970s and the mid-1980s. References to some of
the first observations are [Skribanowitz 1973,Gross 1976,Gibbs 1977] and very interesting
reviews are [Feld 1980], and, mainly for the theoretical aspects, [Gross 1982].

In almost all the works done in that period, the ideal situation of the Dicke limit is not
reached: the samples are large, with often a large aspect ratio (‘pencil-shaped’), and propa-
gation/geometric effects are important (see, e.g., [MacGillivray 1976], but it is one among
many theoretical and experimental studies on those aspects). In that case, the parameter of
the sample which governs the superradiant decay rate is related to the optical thickness (see,
e.g., [Friedberg 1976]): it is the density of excited atoms times the size along the considered
propagation direction.

With this propagation picture in mind it is natural to make a link between superfluorescence
and the amplified spontaneous emission (ASE) well known in laser physics [Schuurmans 1979].
In the review [Feld 1980] it is stated that “superradiant emission and stimulated emission in
a high gain medium are the transient and steady-state forms of phase-coherent amplification,
respectively”, although one should distinguish the limit of a negligible dephasing rate between
the dipoles (superfluorescence, with the buildup of a large macroscopic coherent dipole) from
the opposite limit of a high dephasing rate, in which ASE and coherent emission can still
take place [Schuurmans 1979,Malcuit 1987].

Finally, the group of Pierre Pillet investigated the possibility of observing subradiance by
using a clever choice of three-level atoms [Crubellier 1980] and they succeeded in obtaining
some indirect signatures of subradiant states [Pavolini 1985]. This was, to our knowledge,
the only observation of subradiance in a many-atom experiment.4

Matter wave superradiance
A first revival of the subject took place at the beginning of the ultracold-atom era, with very
nice experiments in Ketterle’s group using Rayleigh scattering [Inouye 1999,Schneble 2003]
and Raman scattering [Inouye 2000,Schneble 2004]. Because of the subrecoil temperature and
of the coherence of the atomic sample in these experiments, there is an intricate relationship
between the dynamics of the optical field and of the matter wave. In these experiments the
atoms are driven by a far detuned field such that there is almost no excited atoms. The

4 The two-atom case has been studied experimentally with two ions, demonstrating superradiant and
subradiant decay rates [DeVoe 1996]. However the change compared to the natural decay rate was only on
the order of 1% because of the relatively large distance between the ions. Other signatures of subradiance in
two-particle system have been reported in [Hettich 2002,Filipp 2011,McGuyer 2015].
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similarity with Dicke’s superradiance comes from the momentum states of the atoms. The
atoms in the BEC, which are initially all in the same momentum state, act like a fully
inverted systems, and the superradiant dynamics takes place for the transitions between the
momentum states driven by the recoil induced by light scattering. From the point of view of
the light dynamics, the atomic sample acts as an amplifying media, the gain being provided
by recoil-induced resonances (see Sec. II.1.5).

Several groups performed experiments in this spirit [Yoshikawa 2004,Bar-Gill 2007,Hilliard 2008],
sometimes in combination with a high-finesse optical cavity enhancing the coupling between
light and atoms [Slama 2007,Bux 2011,Keßler 2014]. Very recently, a form of matterwave
subradiance has been observed in the Tübingen group [Wolf 2018].

Single-photon superradiance
A second revival of the topic was initiated by Marlan Scully and collaborators in 2006 with a
paper that addresses what happens when one prepares an ensemble of two-level atoms by
absorbing one photon of wave vector k0 without any induced optical coherence: there is one
excited atom but we don’t know which one. In a quantum framework, which is necessary
because a single photon has been sent, the atomic sample can be described by the collective
entangled state

|Ψ〉 = 1√
N

∑
j

eik0·rj |g1, g2, ..., ej, ..., gN〉 . (1)

The rj are the atoms’ random positions and |gj〉, |ej〉 are the ground and excited states
respectively. The phase factor can be interpreted as due to the different possible arrival
times of the photon on the atoms, hence the title of the article: “Directed Spontaneous
Emission from an Extended Ensemble of N Atoms: Timing is Everything” [Scully 2006].
Then one can compute how this collective state decays by spontaneous emission, and one
finds that the photon is emitted in the k0 direction, which might seem counterintuitive
for spontaneous emission. Note that there is no condition on the atomic density, the
distance between atoms doesn’t have to be small. However, the state (1) assumes that
the absorption probability was the same for all atoms, which is true only when the optical
thickness of the medium is very low (no attenuation of the excitation beam during the
crossing of the cloud, and no phase shift either). This paper immediately triggered a lot
of discussions [Eberly 2006,Mazets 2007, Scully 2007]. The collective state (1) has been
called the Timed-Dicke (TD) state and the whole subject ‘single-photon superradiance’
[Scully 2009a,Scully 2009b].

The forward emission is however not really surprising, as it is obviously due to the phase-
matching condition imposed by the phase factor, which is very similar to the ‘spin wave’
picture commonly used with two-photon Raman transitions in the context of quantum
memories [Hammerer 2010,Sangouard 2011]. One can also see it like an N -slit interference
effect, where the atoms plays the role of the slits, like in [Grangier 1985]. These analogies are
mentioned in [Scully 2006].

Since it is just, after all, an interference effect, it is the same with a continuous driving by a
coherent field [Courteille 2010]. Indeed, we know that the outcome of a double-slit experiment
is the same with many single photons sent one by one and with a classical field. Although it is
less known, it was, actually, already mentioned in the original Dicke paper that the radiation
by a coherently-illuminated large sample was in the forward direction (section “Radiation
from a gas of large extent” in [Dicke 1954]). Of course, with a continuous illumination, the
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entanglement aspect of the TD state is not relevant any more as it comes from an artificial
truncation of the Hilbert space [Eberly 2006,Bienaimé 2011b]. To my knowledge, only one
experiment was realized with a true single-photon source [Fröwis 2017], with the emphasis
on the entanglement aspect. For all other experiments, ‘superradiance in the linear-optics
regime’ is a better term than ‘single-photon superradiance’.

A less trivial aspect was predicted slightly later, it is the lifetime (or the rate of collective
spontaneous emission ΓN) of the TD state, which increases with the number of atoms
according to (for N large)

ΓN ' C
N

(kR)2 Γ0 , (2)

where R is the sample size, Γ0 is the spontaneous emission rate for a single atom and
C is a numerical factor depending on the geometry. It is therefore indeed a temporal
superradiance effect, and not only a directional effect, with an amplification factor which
is neither simply the number of atoms (as in the Dicke limit of a small sample), nor the
density. In fact, for a spherical sample, N/(kR)2 is proportional to the optical thickness
on resonance b0. This calculation was carried out by several authors following the paper
[Scully 2006] (see references [Mazets 2007,Svidzinsky 2008,Svidzinsky 2010,Courteille 2010,
Friedberg 2010,Prasad 2010]), but we can also find this result in old papers [Arecchi 1970,
Rehler 1971]. Note that the calculation involves taking into account the dipole-dipole
interaction between the atoms. It has also been shown that the atoms could be treated as
classical dipoles [Svidzinsky 2010], such that actually the whole problem is purely classical
(see also [Ruostekoski 1997,Javanainen 1999]).

So, at this point, it appears that the relevant parameter for single-photon superradiance is
the on-resonance optical thickness, actually like for superfluorescence experiments and also
matterwave superradiance, so it is not very clear where the novelty is. However, it should be
noted that it is much less intuitive, because the picture of a spontaneously emitted photon
being amplified by other excited atoms as it propagates through the sample does not work
any more. Actually the very existence of cooperative scattering in this regime of linear optics
and dilute sample is not intuitive at all. I have noticed, in the last years, that most people
in the cold-atom or quantum-optics community, at least those not very familiar with the
topic, are convinced that superradiance needs high density/small distances between atoms,
because what is known by everyone is Dicke’s paper and the two-atom case, for which it is
true. Since matterwave superradiance experiments have also been realized in dense samples
they sustain the confusion (although it is very explicitly written in the first of Ketterle’s
papers that the relevant parameter is the optical thickness [Inouye 1999]). The confusion is
also sustained by the existence of other ‘cooperative effects’ related to the density, such as all
the collective shifts of the atomic resonance [Friedberg 1973]. It is the merit of [Scully 2006]
to have brought this subject up to date, now that large samples of cold atoms, and even
single-photon sources, are available experimentally.

Clearly, the lack of experiments on superradiance in this regime of linear-optics and large
dilute samples, is, to my opinion, the reason why it is not well known. As for subradiance,
predicted in this regime by our team just before my arrival [Bienaimé 2012], it had also not
been seen in this regime, and even, in general, since Dicke’s paper, only one experiment had
studied subradiance in the regime of a large number of excited atoms [Pavolini 1985], without
however being able to directly observe the slow decay of the excitation. It is therefore with
this objective that I took in charge the experiment in 2013.



Chapter V

Steady-state signatures of cooperativity?

Before turning to the subradiance experiment, in this chapter I will discuss some other
experiments performed on steady-state observables, like the amount of scattered light or the
momentum transfer to the atoms (i.E. the radiation-pressure force). Are there signatures of
cooperative scattering in those experiments?

V.1. Discussion on collective and cooperative effects
The question of which kind of experimental signature can be attributed to cooperative effects
is a difficult one, because it supposes first to have a clear idea of what cooperative scattering
is!

At the 46th Winter Colloquium on the Physics of Quantum Electronics (PQE Conference,
Snowbird, USA) in January 2016, I have assisted to a very stimulating talk by Juha Javanainen,
who insisted on the fact that cooperative scattering was only high-density effects, while we
were pretending the opposite. I immediately had the idea to write a ‘discussion’ paper in
order to modestly try to clarify all this and to publish it in the PQE special issue of Journal
of Modern Optics [Guerin 2017c]. To my surprise, I received several spontaneous laudatory
comments about it and it has been cited quite a lot (for this journal), mainly as a kind of
review article on cooperative effects, which it does not pretend to be.

I thus reproduce it here, as it is a nice introduction to the topic, or more precisely to my
point of view on it.
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ABSTRACT
Cooperative scattering has been the subject of intense research in the last years. In this article,
we discuss the concept of cooperative scattering from a broad perspective. We briefly review the
various collective effects that occur when light interacts with an ensemble of atoms. We show that
some effects that have been recently discussed in the context of ‘single-photon superradiance’, or
cooperative scattering in the linear-optics regime, can also be explained by ‘standard optics’, i.e.
using macroscopic quantities such as the susceptibility or the diffusion coefficient. We explain why
some collective effects depend on the atomic density, and others on the optical depth. In particular,
we show that, for a large and dilute atomic sample driven by a far-detuned laser, the decay of
the fluorescence, which exhibits superradiant and subradiant dynamics, depends only on the on-
resonance optical depth. We also discuss the link between concepts that are independently studied
in the quantum-optics community and in the mesoscopic-physics community. We show that the
coupled-dipole model predicts a departure from Ohm’s law for the diffuse light, that incoherent
multiple scattering can induce a saturation of fluorescence and we also show the similarity between
the weak-localization correction to the diffusion coefficient and the inaccuracy of Lorentz local field
correction to the susceptibility.
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1. Introduction

‘Cooperative scattering’ of light by a collection of two-
level atoms has become a hot topic in the recent years,
with a lot of experimental results on superradiance (1–4),
subradiance (5) and ‘cooperative’ shifts (4, 6–10) in the
‘single-photon superradiance’ regime (11–13), or equiv-
alently in the linear-optics regime. By contrast, the exper-
iments performed in the 1970–1980s were performed in
a regime where a large number of atoms are excited (14,
15). Related experiments with multi-level atoms (16) or
artificial atoms (17) illustrate that the phenomena stud-
ied in two-level systems can find their application in
other fields of research. Despite this recent interest, it
seems that a common agreement on what should be
called cooperativity is still lacking. It has recently been
suggested that ‘cooperativity’ should be reserved to effects
that could not be explained by ‘the mean-field approach
of traditional optics’ (18), and that such effects would
appear for dense atomic samples only (19). Here, ‘dense’
means that the atomic density ρ should not be very small
compared to k3, where λ = 2π/k is the wavelength of
the atomic transition. However, our recent results on
sub- and superradiance (20) show that these effects are

CONTACT W. Guerin william.guerin@inln.cnrs.fr

controlled by the resonant optical depth of the sample
and not by its density (3, 5). If one agrees that Dicke sub-
and superradiance in extended samples (21, 22) deserve
being called ‘cooperative’ effects, the restriction to high
spatial densities should clearly be dropped.

Although everyone certainly agrees on the physics, ter-
minology confusion does not help in understanding this
topic. It can also be a real barrier when trying to commu-
nicate with experts from other, neighboring, fields. With
this problematic in mind, in this article, we would like,
first, to discuss the concept of ‘cooperative scattering’,
and, second, to point out the possible link between the
so-called ‘mean-field approach of standard optics’ used
in (18) and what is called the ‘independent scattering’
approximation in mesoscopy (23–25).

Unfortunately, terminology confusion has always
been present in this field. For instance, Bonifacio and
Lugiato proposed the term ‘superfluorescence’ instead
of superradiance when there is no initial macroscopic
dipole in the atomic system but only uncorrelated excited
atoms (26). As soon as propagation effects are involved,
superfluorescence can also be seen as the transient regime
of ‘amplified spontaneous emission’ (14), a well-known,
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and somewhat trivial phenomenon in laser physics,
although a difference does exist and has been studied in
Ref. (27). Dicke himself spoke of a mirrorless ‘coherence
brightened laser’ (28). Another example is the analogy
or confusion between subradiance (5, 29) and ‘radiation
trapping’ (30–32). The difference and early confusion
between the two phenomena was pointed out by Cum-
mings (33).

Although we do not pretend to be able to solve all
controversies, we feel that it may be instructive to tackle
these questions from a broader perspective, which could
be, in general, the study of all collective effects in light-
atom interactions, or the transition from microscopic
properties of light scattering by atoms to macroscopic,
optical and transport properties of extended and/or dense
atomic vapors. This subject is even older than Dicke’s
paper, as it was investigated by Rayleigh, Lorentz, Lorenz,
Ewald, Oseen, and many others (34).

We will focus on experiments in which near-resonant
light from a laser is exciting a sample of N two-level
atoms at rest. The experimental observables that can be
measured include extensive quantities that increase with
the atom number, such as the total amount of scattered
light, or some intensive quantity that could a priori be
independent of the atomnumber. If an extensive quantity
is not simply given by the atom number times the same
quantity for a single-atom, or if an intensive quantity
does depend on the atom number, nontrivial collective
effects probably are at work. A first example of an ext-
ensive quantity is the total amount of scattered light,
which, in some limit, is proportional to the atom number.
Another example of an extensive quantity is the dephas-
ing accumulated by the wave crossing the sample, which
is also increasing with the atom number, and the notion
of refractive index, which is a macroscopic (collective)
quantity provides an efficient description. Collective eff-
ects thus take place in most situations, with some effects
depending on the atomic density ρ, and others on the size
L of the medium, as detailed in the following. Note that
as soon as propagation effects or quantities associated
to transient phenomena become relevant, the size of the
sample will play an important role, and the important
parameter turns out to be the optical depth. On the other
side, for quantities that can be defined in steady state for
a bulk medium, the density is the relevant parameter.

2. Collective effects that depend on the density

Obviously, all effects or quantities that can be defined
for an infinite medium depend on the atomic density ρ,
which is the only parameter characterizing the medium.

2.1. At low atomic density

Themost simple example is the medium susceptibility χ .
At low density, it is related to the atomic polarizability
α by χ = ρα. For simple two-level atoms and in the
linear-optics regime (low intensity), the polarizability is

α = 6π
k3

× −1
2�/� + i

= 6π
k3

× −2�/� + i
1 + 4�2/�2 . (1)

The complex refractive index n is defined from the sus-
ceptibility by n2 = 1 + χ . At low density, χ � 1 and
n � 1 + χ/2. Inside the medium, the wavevector is
changed from k to nk. The real part of the refractive
index is thus responsible for the dispersive properties of
the material and its imaginary part for the attenuation of
the wave. One can thus define a characteristic extinction
length (or linear extinction coefficient) for the intensity
of the light propagating in the incident optical mode,

	−1
ex = ρkIm(α) = ρσ0

1 + 4�2/�2 , (2)

where σ0 = 6π/k2 = 3λ2/(2π) is the resonant scattering
cross-section.

The susceptibility is not sufficient to describe the
behavior of the light inside the medium. In particular,
it does not make a difference if the attenuation is due
to absorption, when the electromagnetic energy is trans-
ferred to themedium, or to scattering, when the energy is
just removed from the incident electromagnetic mode to
feed other spatial modes. Scattering is often seen as being
due to impurity, or granularity of matter, and as such, it
is neglected in the susceptibility, which corresponds to
a continuous-medium approximation. It is often stated,
in particular in the recent literature about cooperative
scattering (see, e.g. Refs. (35–37)), that the continuous-
medium approximation is only valid when the density
is high, ρk−3 � 1. However, the continuous-medium
approximation does actually neglect the scattered light
and treats it as if it were absorbed. This can indeed be
a very good approximation when one is interested in
the coherent transmission and not in the scattered light.
It is important to note that this approximation is not
restricted to high spatial densities (as in condensed mat-
ter or very high density vapors) but also holds in the
dilute limit where the interatomic distances are larger
than the optical wavelength. The refractive index is thus
very useful for describing light propagation in dilute
atomic clouds. It has been successfully used to describe
subtle experiments involving nonlinear effects (38) or
photonic band gaps (39, 40).
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As discussed below, it turns out that the continuous-
medium approximation for atomic vapors is in fact more
accurate for dilute than for dense vapors (18, 41).

In order to describe the scattered light, another
approach is necessary, in which one basic quantity is
the mean-free path 	sc = 1/(ρσsc). If we only consider
elastic scattering, which is valid if the incoming light has a
weak intensity (42), the (elastic) scattering cross-section
is related to the polarizability by (23)

σsc = k4

6π
|α|2. (3)

In a largemedium of sizemuch larger than themean-free
path, light will be scattered many times before escaping.
In this case, many observables can be very well described
by a diffusion equation for the electromagnetic energy
density, at the condition to perform an average over
the disorder configurations. This fact is often surprising
for quantum opticians, who expect that light scattered
off a disordered medium produces a speckle pattern.
However, it is well known to people from mesoscopic
physics that after averaging over the disorder, the remain-
ing intensity distribution, or its temporal dynamics in a
pulsed experiment, fits perfectly well the prediction of the
diffusion equation, although this approach neglects all in-
terference effects1 (44). At low density, there is one well-
known exception, which corresponds to an enhanced
backscattering (45–47). The diffusion coefficient is thus
another, important macroscopic quantity, which is gov-
erned by the atomic density, and which allows describing
the diffuse light. In three-dimensional space it reads2

D0 = vE	sc
3

= 	2sc
3τtr

, (4)

where vE = 	sc/τtr is the energy transport velocity inside
the medium and τtr the transport time (23, 24). Here, we
considered only isotropic scattering such that the trans-
port length equals the mean-free path. For near-resonant
light, a remarkable property of cold atomic vapor is that
τtr = τat, the lifetime of the excited state, independently
of the detuning (23, 32).

In a nonabsorbing passive medium like an atomic
vapor probed by a weak intensity laser, the attenuation
of the coherent propagating wave is only due to elastic
scattering. The mean-free path and the extinction length
are thus equal, which leads to the relation

k3

6π
|α|2 = Im(α), (5)

closely related to the so-called optical theorem (23, 51).
There is thus a close link between the diffusion

coefficient, or the mean-free path, governing the trans-
port of the diffuse light, and the susceptibility, governing
the transmission of the coherent light.

2.2. At high atomic density

When the typical distance between atoms becomes on the
order of the wavelength, i.e. at large density ρk−3 � 1,
several nontrivial effects must be taken into account to
describe the coherent propagation and the transport of
the diffuse light.

First, the relation between the susceptibility and the
polarizability has to be modified to include the Lorentz
local field (34),

χ(ω) = ρα(ω)

1 − ρα(ω)/3
. (6)

This leads to the famous Lorentz-Lorenz shift (52),

�LL = −πρk−3�, (7)

which depends on the density. Here � = τ−1
at is the

linewidth of the transition. Although the derivation of
Equation (6) is based on mean-field arguments and
uncontrolled approximations, it yields correct results in
many situations (53). With hot atomic vapors, a density-
dependant shift of the resonance line has indeed been
observed (7 , 54). With cold atoms, however, recent
results suggest that correlations between scatterers at high
density are not negligible and the mean-field approxima-
tion breaks down (18, 41). The difference with the hot
vapor case is probably due to the absence of inhomoge-
neous broadening, which may suppress the correlations
for hot atoms (10, 55). This argument is also consistent
with the recent experiment reported in Ref. (2).

Closely related to the Lorentz-Lorenz shift is the
‘cooperative’ Lamb shift (4, 6, 7 , 9, 10, 13, 52, 55). It
is also a density effect but it is influenced by the finite size
and the geometry of the medium. We will discuss this
effect in more detail in Section 5.

On themesoscopic side, thediffusion coefficient should
also be corrected at highdensity, this is the so-called ‘weak
localization’ (WL) correction (25),

D ∼ D0

(
1 − 1

(k	sc)2

)
. (8)

Note that short-path diagrams not captured by the dif-
fusion approximation are expected to yield supplemen-
tary 1/k	sc corrections to the transport (56, 57). Weak
localization corresponds to a slowing down of diffusion
due to the constructive interference between reversed-
paths of closed loops, which increases the probability of
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returning to the original point. The parameter 1/(k	sc)
quantifies the amount of ‘disorder’. On resonance, since
σsc = σ0 = 6π/k2, 1/(k	sc) ∼ 6πρk−3.

Weak localization is thought to be a precursor of An-
derson (or strong) localization (58, 59), in particular in
the self-consistent theory of localization (60). Anderson
localization is expected when k	sc ∼ 1 (Ioffe-Regel cri-
terion (61)) and corresponds to the complete absence of
diffusion. Although weak localization has been observed
for light in different systems, including cold atoms using
the coherent back-scattering effect (62–65), Anderson
localization of light in 3D has still not been observed
in any experiment (66, 67), and cold atoms may provide
a route towards this goal (68).

Beyond transport properties, other subtle effects
appear in the correlations and fluctuations of scattered
light, such as universal conductance fluctuations (24, 25).
These correlations come from common scatterers
involved in different paths. If the so-called C1 correlation
is short-range and corresponds to the standard speckle
grain of traditional statistical optics (69), the long-range
C2 andC3 correlations are highly nontrivial effects, which
become nonnegligible when the Thouless conductance g
is small, i.e. near the strong localization regime. These
effects have not been studied yet usingmultiple scattering
of light in cold atoms.

3. Collective effects that depend on the optical
depth

As soon as propagation effects are important, the
macroscopic local quantities (susceptibility, diffusion
coefficient) are not sufficient to describe experimental
observables, but should be combined with the size of the
medium. The relevant quantity then turns out to be the
optical depth.

3.1. Coherent and diffuse transmission

The complex susceptibility of an atomic medium is mea-
sured by the attenuation or the dephasing of a probewave
crossing the sample. It is then obvious that the finite size
L of the medium enters the problem. The phase shift
induced by the sample will be

ϕ = [Re(n) − 1]kL = Re(χ)kL/2, (9)

and the transmitted intensitywill beT = exp[−Im(χ)kL].
The above relation is called the Beer’s or Beer-Lambert
law. The argument of the exponential is called the optical
depth (or thickness) b, i.e.

b = − ln (T) = Im(χ)kL = ρσscL = L/	sc. (10)

Although this seems completely trivial, it is interesting to
note that a consequence of this exponential attenuation
is the nonlinear evolution of the total fluorescence (or
‘off-axis scattering’) with the atom number. The total
fluorescence F corresponds indeed to what is not trans-
mitted in the incident mode. We thus get F ∝ 1 −
e−b, which is linear only for low b and saturates for
high b. This saturation can be intuitively understood
as a ‘shadow effect’: atoms at the back of the sample
do not radiate because they are not illuminated by the
incoming laser. For the same reason, if we sweep the
detuning of the probe beamandmeasure the fluorescence
spectrum, it will be a Lorentzian of width� at low optical
thickness only, and deviate from a Lorentzian line shape
at larger optical thickness, even though the scattering
cross-section for single-atoms σsc = σ0/(1 + 4�2/�2)

is still Lorentzian. More precisely, it induces an effective
broadening and a strong directional dependence of the
fluorescence, as shown experimentally in (70). As a con-
sequence, such behaviors are not unique to cooperative
effects, even if they are also consistent with a full coupled-
dipolemodel including those effects (71, 72). The shadow
effect can also explain the reduction of the radiation
pressure force reported in (73, 74), first interpreted as
a signature of cooperativity (73). The different collective
effects contributing to a modification of the radiation
pressure force will be discussed in detail in a forthcoming
publication (75).

To illustrate the broadening and saturation effects in-
duced by Beer’s law, we show in Figure 1(a) the behavior
of the fluorescence of an atomic cloud as a function of the
detuning and the optical depth. Considering a Gaussian
atomic density distribution profile, the total scattering
cross-section of the cloud according toBeer-Lambert law,
reads (74, 75)

�sc = Nσsc × Ein(b)
b

, (11)

where Ein is the integer function (76)

Ein(b) =
∫ b

0

1 − e−x

x
dx

= b

[
1 +

∞∑
n=1

( − b)n

(n + 1)(n + 1)!

]
. (12)

Here, b = √
2πρ0σscRz is the optical depth that would be

measured using a small beam crossing the cloud through
its center, ρ0 is the peak density and Rz the rms radius
along the propagation axis. Although Beer’s law neglects
diffraction and refraction effects inside the sample, which
are a priori not negligible at high b and small nonzero
detuning or for very small sample, it appears that such a
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(a) (b)

Figure 1. Collective effects in the fluorescence, which can be explained by Beer-Lambert law or by multiple scattering. (a) Total
fluorescence as a function of the detuning for different atom numbers (N = 1, 5, 20, 50, 500, 325, 450 from the bottom to the top) and
a Gaussian cloud of rms transverse size R = 0.6λ (71). Broadening and saturation effects are well visible. (b) Emission diagram of a
spherical Gaussian cloud illuminated by a plane wave, computed from random walk simulations, for several optical depths from 0.5 to
100. The emission diagram becomes more backward directed as the optical depth increases.

(a) (b)

Figure 2. Diffuse transmission Tdiff as a function of the optical depth b, compared to the asymptotic behavior predicted by the diffusion
equation (Ohm’s law, solid line) (Equation (13)). (a) Dots are computed by a random walk simulation. (b) Dots are computed from the
coupled-dipole equations in the scalar approximation. Each curve is computed with a given slab depth kLz and the optical thickness is
increased by changing the atom number and thus the density. The driving field is on resonance. At high density, a clear departure from
Ohm’s law is observed.

simplified model is sufficient to qualitatively explain the
results of (71).

The angular dependence is, however, not possible to
compute analytically, and numerical simulations based
on a random walk process can be used. For an isotropic
cloud illuminated by a plane wave, the anisotropy of the
emission diagram results from the multiple scattering
of light before escaping the sample (75). We illustrate
this anisotropy in Figure 1(b). It should be noted that
it can lead to nonintuitive behaviors. For instance, if
light is detected near the forward direction, themeasured
fluorescence can decrease as the atom number increases
or as the detuning is reduced (‘self-absorption’) (70).
Although a simple random walk model completely ne-
glects all wave or coherence effects, it has been shown
in Ref. (74) that, for a large and dilute cloud of two-
level systems, the corresponding emissiondiagramagrees

very well with the emission diagram computed from a
full coupled-dipole model after averaging over the dis-
order configurations, except in narrow angular ranges
around the forward and backward directions. The for-
ward lobe (2, 11, 20, 22), absent in an incoherent random
walk model, can be explained by diffraction/refraction
of light by a continuous index distribution (77). Around
backward direction, a narrow cone is visible, which can
be explained neither by a random walk model nor by
a homogeneous index of refraction. This is a signature
of interference in a disordered systems, robust against
configuration average and well studied in mesoscopic
physics (coherent backscattering) (45–47 , 62–65). For a
Gaussian cloud geometry, analytical expressions for the
lobe and cone shapes have been obtained in the double
scattering limit (78).
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Multiple scattering obviously depends on the optical
thickness. Although the diffusion coefficient depends on
the density, light should first escape the sample before
being detected. In steady state, the main consequence
of multiple scattering is the complex emission diagram
discussed above. Note that for a slab geometry (homo-
geneous medium of infinite transverse size and finite
width L), space can be divided into two parts and we
can speak of diffuse transmission and diffuse reflection.
A well-known result is the asymptotic decrease of the
diffuse transmission scaling as 1/L, which corresponds
to Ohm’s law for photons (Figure 2),

Tdiff = 1 + ξ

b + 2ξ
, (13)

where ξ � 0.7104 (24, 79). This result can be obtained
from the diffusion equation or random walk simula-
tions (Figure 2(a)), i.e. a model of light propagation that
ignores coherence and interference effects. We have also
performed numerical simulations of the diffuse transmis-
sion through a slab of atoms, using the coupled-dipole
model, in the scalar approximation, where only the far-
field term (∝ 1/r) of the dipole-dipole interaction is
present. We clearly observe a departure from Ohm’s law
at large density (Figure 2(b)). The precise origin of the
deviation is still under investigation and might be due
to cooperativity. Note that the observed deviation corre-
sponds to a relative increase compared to Ohm’s law for
photons and is thus not consistent with a decrease of the
diffusion coefficient due to weak localization. However,
it resembles recent observations made with classical scat-
terers (80), in which the increased transport is attributed
to near-field scattering, where evanescent waves open
new channels of transmission. In our model though, the
near-field terms are neglected, and the physical origin
of the increased transmission remains to be explained.
Recent numerical studies on the distribution of excitation
inside atomic samples of different geometries (72) may
also be related to our observation.

The temporal dynamics of the diffuse light is also
governed by the optical thickness. After some time of
illumination, a sudden switch-off of the exciting laser
leads to a slow decrease of the fluorescence due to mul-
tiple scattering. This ‘imprisonment of radiation’ (30),
or ‘radiation trapping’ (31), has been studied in cold
atoms (32, 81), taking also into account subtle effects
like the frequency redistribution induced by the Doppler
shift (82, 83) or the multilevel structure (84). Neglect-
ing those effects, one can easily find the scaling of the
radiation trapping time with the optical depth. For a
Gaussian random walk in 3D, we have

〈
r2

〉 = 6Dt. The
average number of scattering events for escaping photons

is the ratio between the time spent in the system and the
scattering time τat,

〈Nsc〉 = t
τat

∼
〈
r2

〉
6Dτat

, (14)

with D = 	2sc/(3τat). When
√〈r2〉 ∼ R = b	sc/2, the

radiation can escape the system, leading to 〈Nsc〉 ∼ b2/8.
Radiation trapping times are thus expected to scale as b2,
with a precise numerical prefactor that depends on the
geometry (32).

3.2. Superradiance and subradiance in extended
and dilute samples

The previous effects all depend on the detuning-
dependent optical depth,

b(�) = b0
1 + 4�2/�2 , (15)

where b0 is the on-resonance optical depth. For a cloud
of size R, and using σ0 ∼ 1/k2, we have b0 ∼ N/(kR)2,
with a numerical prefactor that depends on the geometry.

We now discuss why the super- and subradiant decay
rates, measured at large detuning such that attenuation
or incoherent multiple scattering are negligible, depend
on b0, independently of the detuning, in the case of an
extended R 
 λ and dilute (ρk−3 � 1) sample.

The physical argument to understand why the coop-
erativity parameter for super and subradiant decay is
b0, is the following. Consider a sample of finite size ∼R
radiating in free space. Although the number of modes in
free space is infinite, the boundary condition due to the
sample surface (∝ R2) sets limitations on the modes that
are efficiently coupled to the sample. In particular, the
diffraction limit ensures that no mode with a divergence
smaller than θ ∼ 1/(kR) can be emitted from the sample
and, in 3D, the total number of modes M efficiently
coupled to the sample is related to the sample surface,
M ∼ (kR)2. It means that if we choose an arbitrary,
infinite basis to express themodes in free space, a number
M of those modes are enough to describe the radiation
pattern of the sample. Then, if the number N of atoms
in the sample is larger than the numberM of modes, the
emission will be cooperative because, in average, N/M
atoms emit in the same modes: they are thus coupled
to each other via their common coupling to the elec-
tromagnetic mode (Fano coupling). We conclude that
the ‘cooperativity parameter’ in this problem is the ratio
N/M, which turns out to be the on-resonance optical
depth b0, up to a numerical prefactor. This argument
is consistent with the Dicke limit R � λ, for which
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(a) (b)

(d)(c)

Figure 3. Decay of the total scattered power after the switch-off of the driving laser at t = 0 computed from the coupled-dipole model
in the scalar approximation, as in (5), averaged over only two configurations. The time axis is normalized to the lifetime of the excited
state τat and the vertical axis to the steady-state scattered power. The driving laser has a large detuning,� = 50�, and has been applied
for a duration of 30τat so that the system reaches its steady state. In panel (a), the atom number N = 4000 is kept constant and the size
is varied, b0 = 3N/(kR)2 is varied from 30 to 2.3. In panel (b), both N and R are varied such that N/kR is kept constant, b0 is varied from
15 to 3.75. In panel (c), N and R are varied such that b0 = 15, and in panel (d) N and R are varied such that the density is kept constant,
n0k−3 = 0.01, and b0 is varied from 11 to 17.5.

the only possible outgoing mode is a spherical wave, i.e.
M = 1, and the superradiant enhancement factor is N .
This reasoning was given in brief in (5, 85, 86) and is
consistent with the classification of superradiance given
in (87).

Let us note that super- and subradiance for N =
2 has a marked difference with the case of N 
 2.
First, in order to obtain large dipole-dipole coupling of
two atoms in free space, these atoms need to be at a
distance comparable to the optical wavelength. When
an atomic pair is separated by many wavelengths, in-
terferences between light emitted by these atoms can
still occur (88). However a modification of the atomic
lifetime requires the interatomic distance to be smaller
than or comparable to the wavelength (89, 90). For small
atomic distances, near-field dipole-dipole coupling, scal-
ing as 1/r3, becomes dominant, while super- and sub-
radiance obtained for many atoms in the dilute limit is
relying on the far-field dipole coupling, scaling as 1/r.
This long-range behaviour of the far-field dipole-dipole
coupling is essential for the collective scaling of the Dicke
subradiance observed in (5). Let us also note that the

competition between the near and far-field dipole-dipole
coupling has been discussed in (91, 92) and has been
called ‘van der Waals dephasing’ in (15). It is interesting
to note that while for N = 2, the eigenstates of the near-
field part of the interaction Hamiltonian HNF are also
eigenstates of the far-field interaction HFF (both being
proportional to the same σ1 Pauli matrix), forN > 2,HNF
andHFF are not proportional if the distances between all
atoms are not equivalent (which can be obtained in the
particular case of 3 atoms equally spaced on a ring or
four atoms equally spaced on a sphere). In this case HNF
andHFF do not commute and have different eigenvectors
(see Section 4 of (15)). This particular situation does
not prevent the total Hamiltonian to have eigenvalues
corresponding to long-lived (subradiant) and short-lived
(superradiant) modes. However the symmetries of the
eigenstates (and potentially their sensitivity to perturba-
tions) will differ from those of HFF.

As explained from the beginning, it is not surprising
that the size of the sample is an important parameter to
take into account, since the superradiant and subradiant
decays are transient phenomena, which means that light
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must escape the sample. However, from a mathemati-
cal point of view, when looking at the coupled-dipole
model (93–97), it is not obvious which combination of
the parameters yields to correct scaling laws for the differ-
ent features that can be observed. In this model, once the
geometry of the cloud is fixed (and spherical), there are
three independent parameters: the atom number N , the
sizeR and the detuning of the driving laser. In the limit of
a very large detuning, after a long enough illumination,
the system reaches a steady state given by the ‘timed-
Dicke state’ (11, 95, 97). Once the laser is switched off,
the decay of this state could be governed by any com-
bination of N and R. In particular, it might be consid-
ered more intuitive that the density ρ ∼ N/R3 is the
important parameter, in particular because the dipole-
dipole coupling terms, which decay as 1/(kr) with the
interparticle distance r, become very small as the density
decreases. But even if the coupling terms are small, each
atom is coupled toN−1 other atoms, andN can be huge,
which, somehow, balances the low density and makes
b0 ∼ N/(kR)2 to be the scaling parameter. Note that
the 1/r term in the dipole-dipole interaction bears all the
relevant ingredient for ‘long-range’ interaction, which, as
in gravitational or Coulomb interactions, yields to well-
known size-dependent effects (98). This parameter also
appears in the statistical properties of the eigenvalues of
non-Hermitian Euclidean random matrices such as the
one involved in the couple-dipolemodel (99, 100) and the
early (superradiant) decay of the timed-Dicke state (11),
or ‘phased state’, has been computed analytically bymany
authors, �sup ∝ b0 (21, 22, 35–37 , 95, 101, 102). Numer-
ical and experimental evidence have been given in (5, 86)
that the long time decay is also governed by b0, �sub ∝
1/b0. Here, we show in Figure 3 that not only the short
and long time limits are both depending on b0, but the full
decay curve is in fact only dependent on b0. An analytical
function for describing this decay curve remains to be
found. We have checked that this is neither a power law,
nor a stretched exponential.

4. Themean-field approach of traditional optics
and the independent scattering approximation
of mesoscopy

It was pointed out in recent theoretical (18) and exper-
imental studies (41) that Equation (6), which includes
Lorentz local field correction, is inaccurate for cold atoms
at high density. Indeed, another term, usually not consid-
ered, has the same order of magnitude. Following (41),
the more precise expression is given by

χ(ω) = ρα(ω)

1 − ρα(ω)(1/3 + β(ω))
, (16)

whereβ(ω) ∼ α(ω)k3 and specifically depends on the ge-
ometry. This term is neglected in the mean-field
approach leading to Equation (6) even though on res-
onance, α(ω) ∼ k−3, and thus β(ω) has the same order
of magnitude than the 1/3 corresponding to the density-
dependent Lorentz local-field correction. To our knowl-
edge, this result has been first obtained by Saunders and
Bullough (103, 104) (see Equation (22) of (104)) and
has been later rediscovered several times (93, 105). One
hypothesis for the success of Equation (6) could be that
the mean-field result is recovered if some mechanism
breaks the correlation between scatterers, as it could be
the case, e.g. for hot vapors with the Doppler broaden-
ing (10, 55).

At this point, it is interesting to point out the close
link between Equation (16) and the weak localization
correction of the diffusion coefficient (Equation 8). First,
we note that Equation (16) can be rewritten

χ(ω) = ρα(ω)

1 − ρα(ω)/3 − ρα(ω)β(ω)
, (17)

which isolates a correcting factor ρα(ω)β(ω) in the usual
Lorentz–Lorenz formula (6). Then, if β(ω) ∼ α(ω)k3,
this correcting factor is∼ρk3α(ω)2,which is almost iden-
tical to

1
k	sc

= ρσsc

k
= ρk3|α(ω)|2

6π
, (18)

the disorder parameter used in mesoscopic optics. Given
the close link between the diffusion coefficient and the
susceptibility, there is a strong similitude between the
correction of Equation (16) and the weak localization
correction to the diffusion coefficient Equation (8).

This similitude is not surprising. The mean field
approach of traditional optics neglects correlation
between scatterers. When they exist, these correlations
are due to the nonnegligible probability that a photon
goes back to a previous scatterer, a process sometimes
called recurrent scattering. In the mesoscopy commu-
nity, neglecting this recurrent scattering and the subse-
quent correlations is called the ‘independent scattering
approximation’ (ISA) (23–25). Weak localization effects
are typical signatures of ‘dependent scattering’. The link
between the ISAand the Lorentz-Lorenz local field theory
has been already briefly discussed in Ref. (53) but is often
not discussed in more recent works.

5. What should be called cooperative?

Based on the previous discussion, we consider that the
term ‘cooperative scattering’ shouldnot be kept for effects
related to recurrent scattering only, because it is already
called ‘dependent scattering’ in the mesoscopy commu-
nity, and several such effects havewell-establishednames,
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like weak or strong localization. Moreover, effects related
to Dicke superradiance and subradiance can appear at
low density, as shown in Figure 3 and in (3–5), without
recurrent scattering, and have been called ‘cooperative’
for a very long time (see, e.g. Refs. (21, 22, 26, 91, 92,
104, 106, 107)). Changing the semantics without a clear
distinction of previously studied effects in different com-
munities is therefore probably not recommendable.

However, we agree that it is questionable to call col-
lective effects ‘cooperative’ if these effects can also be
explained by conceptuallymore simplemodels, like wave
propagation in a medium characterized by its suscepti-
bility or standard multiple scattering.

In addition to the examples already mentioned (71,
73), the coherent forward emission (2, 11, 20, 22) is
certainly such an effect. Even if using a single-photon
Gedankenexperiment requires a quantum formalism to
properly demonstrate that the absorbed photon will be
preferentially emitted in the forward direction (11),
this effect is a simple consequence of an N-wave in-
terference, like in a multiple slit experiment, and it is
well-known that slit experiments produce interference
patterns evenwith single particles (108). The interference
pattern from two atoms radiating a single photon has also
been observed in (88, 109). The analogy between N-slit
interference and the directionality character of superradi-
ance has been further developed, including higher-order
correlations, in Ref. (110). In theCWregime, considering
the phase-matching in the forward direction is also a way
to understand the index of refraction of a polarizable
medium. Thus, the resulting forward lobe is actually the
diffraction/refraction pattern of the sample, like a Mie
scatterer (77).

The ‘cooperative’ Lamb shift is another questionable
example. In the case of macroscopic samples, for which a
susceptibility canbedefined, Javanainen andRuostekoski
have shown (18), at least for the slab geometry that
applies to the experiment of Ref. (7), that the ‘cooper-
ative’ Lamb shift was the result of ‘standard optics’, i.e.
wave propagation in a dielectric medium following the
Helmholtz equation. It would be interesting to know,
using wave propagation simulations, if this also holds
for the cigar-shaped sample used in Ref. (4) or any other
geometry (111). For example, one of the geometries stud-
ied by Manassah (111) consists of a density-modulated
slab of atoms and a ‘giant cooperative Lamb shift’ was
predicted when the density is modulated at the Bragg
condition (112). Such an experiment has already been
performed (39), and very asymmetric and shifted Bragg-
reflection spectra have been indeed reported (see, e.g.
Figure 2 of (39)). These feature can be explained by the
coupled-dipole model (113), but they can also be very
well described by a standard-optics wave-propagation

equation based on a periodic susceptibility (in that case
using transfer-matrices to exploit the periodicity). Thus,
it seems that in many (or most?) situations, the ‘cooper-
ative Lamb shift’ is in fact a collective shift related to the
shape and finite size of the medium, inducing refraction,
reflection, lensing andwaveguide effects (114), etc. which
can be simulated by wave-propagation simulations.

The problem is that such wave-propagation simula-
tions are not simple to perform. In the recent years,
the coupled-dipole model has been widely used (3, 5,
9, 36, 71, 72, 93, 95–97 , 115–117). It is computationally
limited to a few thousand atoms, but it is otherwise very
simple to use. Another strength is its completeness: it
includes all collective effects we have discussed so far.
But this is also a drawback: it is sometimes hard to give
simple interpretation of the numerical results and, when
comparing to experimental results, a good agreement
does not help identifying the relevant physical ingredi-
ents of the experiment. As a consequence, it would be
wise, although tedious, to systematically compare the
results with simulations based on a standard-optics cal-
culation (wave propagation in a dielectric) or with a stan-
dard multiple-scattering computation (random walk), to
check if theobservationsdonothave simple explanations.
This methodology has been used in (5, 41).

It seems to us that less ambiguous signatures of co-
operativity can be found in the transient response of the
system, as initially envisioned by Dicke for the superra-
diant emission of a fully inverted system (14, 15, 20) and
its subradiant counterpart (29). In the single-photon or
linear-optics regime, superradiant decay rates have been
observed recently in the forward direction (4) and also
off-axis (3).

In the forward-direction case, the measured light is
the diffracted/refracted light by the cloud. Its dynamics is
thus related to the dynamics of the refractive
index. The imaginary part of the refractive index is also
what governs the transmission, and its dynamics at the
switch-on or -off of the incident laser is what gives rise to
optical precursors (118, 119) or ‘flashs’ (120–122). It has
been shown experimentally and theoretically, using only
Beer-Lambert law including the dephasing, that dynam-
ics faster than � can appear at large on-resonance optical
thickness (122). This is somehow the counterpart of the
spectral broadening induced by Beer’s law at high b0.

Since this broadening is also present for the light scat-
tered off-axis (see Figure 1(a)), one can wonder if similar
arguments also explains off-axis superradiance. Off axis,
though, the field arriving on the detector emitted by dif-
ferent atoms have random phases (no phase-matching).
There is thus no straightforward calculation similar to the
one of (122), at least to our knowledge, that could relate
the spectral broadening of the system response to the
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temporal dynamics observed on the fluorescence. This
is, we think, the nontrivial feature of cooperativity and
superradiance in the linear regime that this accelerated
decay is still preserved despite the absence of any obvious
phase-matching condition. Thus, the most efficient way
to understand this result is to invoke the collective (coop-
erative)modes of the atomic excitation in the cloud, some
of them decaying fast (superradiant modes), and some
decaying slowly (subradiant modes). In other words, we
trace over the photon degrees of freedom and look at
the collective (cooperative) atomic behavior. The reverse
approach, looking at the light, scattered by all atoms and
interfering, is certainly possible and might provide an
alternative view on the light-matter interaction for many
atoms and at low intensities.

Subradiant decay, as the counterpart of superradiance,
is also a good signature of cooperativity. However, a
particular care is necessary to distinguish between dif-
ferent effects that could lead to a slow decay of the scat-
tered light. In a dense sample with sharp boundaries,
for example, long-lived cavity-likemodes (or ‘polaritonic
modes’ (123)) may exist, andmay also give rise to high-Q
Mie-like resonances (77). If the optical thickness b(�) is
large (near resonance), multiple scattering may trap the
light in the sample for a long time (radiation trapping,
see Section 3.1 and Ref. (32)), and even strong localiza-
tion might need to be considered (124). In that case, the
qualitative difference between those various effects can
be seen in their different scalings with the experimental
parameters. The radiation trapping time scales as b(�)2

whereas the subradiant time scales as b0 (5), indepen-
dently of the detuning. Here again, Mie resonances or
radiation trapping are well understood by looking at the
light, whereas subradiance is well understood by looking
at the collective modes of the atomic excitation. If we
want to explain subradiance with a physical picture using
light, we can say that coherence and interference effect
modifies multiple scattering such that some ‘lucky pho-
tons’ are trapped in the sample, even at large detuning. If
we neglect coherence and interference effects (diffusion
or random walk model), we find, on the contrary, that
multiple scattering vanishes far from resonance. The in-
terplay between this incoherent radiation trapping and
subradiance for intermediate detuning, and the way to
distinguish between them, is the subject of our current
investigation.

6. Conclusion

In this article, we have tried to discuss the meaning of
‘cooperative scattering’ fromabroadperspective, by study-
ing various collective effects in atom-light interaction.We
conclude that what should be called cooperative is often

mainly a question of perspective. When we describe col-
lective effects by looking at the atoms, with amicroscopic
modeling (based on Dicke states, coupled dipoles, etc.),
most features appear to be of cooperative nature. Never-
theless, one can also understand many of these effects
using the point of view of light, undergoing multiple
scattering or propagating through amacroscopic sample,
without using the concept of cooperativity at all.

The temporal decay of the light emitted off-axis seems
to be the best example so far of a situation where a
cooperative-scattering approach is the most efficient,
numerically as well as conceptually, to describe the
physics. We have shown that, at large detuning, the full
decay curve only depends on the on-resonance optical
thickness of the sample (and of its precise shape), but an
analytical description of this result is still missing.

Finally, we emphasize thatmost, if not all, of the effects
that we discussed in this article, are already known, but
not always in the same fields. Superradiance and subra-
diance are hardly known in the mesoscopy community,
and the same can be said for effects related to multiple
scattering with the quantum-optics community. Estab-
lishing a bridge between those communities and their
concepts seems very important to us. In particular, we
have pointed out the similarity between the recurrent-
scattering corrections to the susceptibility recently dis-
cussed in the quantum-optics community (18, 41) and
the weak-localization corrections, which are well-known
in the mesoscopy community. We have also presented
new results on the deviation from Ohm’s law predicted
by the coupled-dipole model. The physical origin of this
deviation remains to be understood, but this is an attempt
to relate cooperativity to transport properties (125). This
connection may be fruitful for the question of Ander-
son localization of light in 3D (68, 124) or in relation
with other topics, like superconductivity (126) or light-
harvesting systems (127 , 128).

Notes

1. If the medium size is not much larger than the mean
free path, the radiative transfer equation should be used
instead of the diffusion equation (24, 43).

2. A more general expression is D0 = 〈z2〉/(2dτ), where
d is the number of dimensions and 〈z2〉 is the second
moment of the step-length distribution P(z). For a ran-
dom walk with constant step 	, 〈z2〉 = 	2, but for the
exponential distribution due to Beer’s law (Section 3.1),
P(z) = exp ( − z/	)/	 and 〈z2〉 = 2	2, which gives
Equation (4). In some special cases, like in hot vapors,
the second moment can be infinite, leading to Lévy
flights and superdiffusive transport (48–50).
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I must say, however, that since the writing of this article four years ago, my understanding
has evolved and I would probably not write all the same now. In particular, the discussion at
the end on the impossibility to apply a flash-type calculation [Chalony 2011,Kwong 2014,
Kwong 2015] to describe off-axis superradiance has been proven wrong by the article [Kurapt-
sev 2017]. I will discuss this model in Section VI.4. Concerning subradiance, the question of
having a ‘photon picture’ is still an open problem (see Section VI.5.3).

For completeness, even if I’m not involved, I should also mention that the understanding of
the ‘cooperative’ Lamb shift problem [Scully 2010] also evolved significantly in the recent
years, in particular thanks to the work done by the Palaiseau group in collaboration with the
Durham group [Peyrot 2018].

V.2. Radiation pressure force?
After years of experiments on multiple scattering of light [Labeyrie 2008], the first experiment
on ‘cooperative’ scattering in Nice was performed in 2008 by Simone Bux (visiting PhD
student from the Tübingen group) and Eleonora Lucioni (Master student from Milan) in the
context of a collaboration with Philippe Courteille and Nicola Piovella1. By chance, as it was
not the initial goal of the experiment, they observed an atom-number-dependent reduction of
the residual radiation-pressure force on atoms trapped in a not-very-far-detuned dipole trap
(Figs. 3-5 of [Bux 2010]). This was a new and unexpected collective effect. After some time
it was suspected that it could be due to the new ‘single-photon superradiance’ proposed by
Scully [Scully 2006]: if spontaneous emission is more directed in the forward direction, the
net momentum transferred to the atoms is reduced.

Scully’s theory was then generalized to the case of driven atoms and the corresponding
collective force was computed using the Timed-Dicke (TD) ansatz [Courteille 2010]. Then
some cleaner and more systematic data was taken, with a plane wave for the driving beam, and
a smaller detuning to have a stronger force. The data was consistent with the coupled-dipole
(CD) model and was thus interpreted as due to the forward emission of the superradiant TD
state [Bienaimé 2010]. Another experiment was performed in Tübingen on a much colder
and smaller cloud: in that case there is a strong influence of diffraction and Mie scattering
such that the collective radiation force can be larger than the single-atom one [Bender 2010].

Some time later, in 2011 or 2012, new data was taken closer to resonance, in a regime of large
optical thickness. The opposite was expected, i.e. an increase of the collective force. Indeed,
as shown in [Labeyrie 2004] and in Fig. IV.1(b), in the multiple scattering regime, light is more
emitted in the backward direction (this is also shown in Fig. 1(b) of [Guerin 2017c] above).
However, a collective reduction of the force was also observed, which was very puzzling.

Finally it was understood that another effect had been overlooked so far (although mentioned
in Tom Bienaimé’s thesis [Bienaimé 2011a], p. 80), which is the ‘shadow effect’: the exponential
attenuation of the driving field in the medium makes that, in average, atoms interact less
with the field. Then a precise comparison between the emission diagrams computed with
the CD model and an incoherent random walk (RW) model [Fig. V.1] showed that the only
differences were a very narrow forward scattering cone, which does not contribute to the force,
and the coherent backscattering cone, which has a negligible effect on the force [Chabé 2014].

1 After Philippe Courteille moved to Brazil, the Nice-Milan-Tübingen-São Carlos groups formed the
COSCALI (COllective SCAttering of LIght) network, an International Research Staff Exchange Scheme
funded by the EU, which initiated the series of COSCALI workshops.
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the coupled-dipole (CD) model and the random
walk (RW) model, with a Gaussian cloud (rms size
σ = 20/k0) of resonant optical thickness b0 = 8
illuminated by a resonant plane wave. Taken from
[Chabé 2014].

This doesn’t mean, of course, that the previous interpretation based on the TD state was
wrong, it only means that there is another possible interpretation, which does not need the
concept of cooperativity or superradiance, and might thus be considered simpler. Let us
however insist on the fact that the agreement between the shadow effect and the TD ansatz
is surprising, because the TD states is based on the fact that all dipoles have the same
amplitudes, so it is, in principle, a good hypothesis only when the detuning is large enough
such that the attenuation and the dephasing of the driving field inside the cloud is negligible.
Although it was not the case of the data of [Bienaimé 2010], it still gave correct results.

I was not involved in all these studies. However I contributed to a final article on this subject,
in which we study in detail the different effects contributing to the collective radiation-
pressure force (shadow effect, diffraction, coherent backscattering) and discuss which effects
are included in the different possible models (CD, RW, TD ansatz) [Bachelard 2016]. We show
in particular that the TD ansatz, as a mean-field solution of the full CD problem, captures
the first-order correction in b, the actual optical thickness, corresponding to the shadow effect
for small b. The general conclusion of that paper, which I don’t include here, is that the
radiation-pressure force is not a good observable to put in evidence cooperative scattering
effects because in all regimes of parameters, one can use other, simpler interpretations. Note,
nevertheless, that the very first data taken with the dipole trap [Bux 2010] has not been yet
fully explained...

V.3. Off-axis scattering?
Also at the PQE 2016 conference, Mark Havey presented a systematic experimental study of
light scattering by an elongated and less dilute cloud of cold rubidium atoms. I suggested
that I could provide RW simulations of the experiment in order to help interpret the results.
I thus did it but I also found out that, by a proper normalization of the data, the shadow
effect (i.e. Beer-Lambert law) could explain the experiment pretty well and RW simulations
are actually not even needed. The resulting paper [Kemp 2020], which was published only
recently, is reproduced below.
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I. INTRODUCTION

Study of light interacting with cold and ultracold atomic
gases is an active area of experimental and theoretical re-
search [1,2]. The subject appears to be deceptively simple,
corresponding in many cases to a single weak probe beam
scattering from a small cloud of cold atoms. However, under
most realistic situations, the atoms in such a sample interact
not only with the incident radiation field, but also with the
light scattered by all the other atoms in the sample. The en-
sembles may then be viewed as many-body physical systems,
and can display emergent complexity. The optical response
reveals a collective optical response that differs significantly
from that of a dilute, optically thin atomic ensemble.

Over the past few years, there have been a large num-
ber of reports on collective or cooperative effects in light
scattering by atoms. For instance, steady-state experiments
have revealed collective effects, such as lensing [3], light
diffusion [4,5], changes in the radiation pressure force [6–8],
etc. Because of potentially important consequences for clock
technology [9], the question of collective shifts of the reso-
nance line, in particular, raised a lot of discussions [10–15]
and experiments [16–23]. Even without any shift, changes
in the line shape, collective broadening, and saturation of
the amount of scattered light have been observed in several
experiments with different parameters and geometries, and
interpreted somewhat differently [4,21–26].

In many of these studies, collective changes in the atomic
response are measured and displayed as a function of the

atomic density. The results are then attributed to dipole-dipole
interactions and presented in the context of the coupled dipole
model. This approach basically includes all the essential
physics (attenuation, diffraction, refraction, multiple scatter-
ing, collective frequency shifts, etc.). In a typical cold-atom
experiment, however, the atomic density cannot be readily
changed independent of other parameters such as the sample
size or the atom number. Then it may be difficult to find if the
measured collective effect really depends on the density, on
the optical thickness, the number of atoms, or on something
else altogether. Then, even though excellent results are often
obtained from the coupled-dipole model, other approaches
such as the Beer-Lambert law or random walk simulations
are valuable and can allow identification of which physical
ingredients are really necessary to explain the data.

In this paper, we report measurements of the scattered light
intensity from a cloud of cold 87Rb atoms. By changing the
number of atoms and the size of the sample, we have varied
the optical depth through the center of the trap by about a
factor of 103. This range is large enough to encompass an
optically thin sample on one hand, and emergence of the so-
called shadow effect on the other. All measurements are found
to be in good agreement with microscopic and fully quantum
calculations of the light scattering processes. We find also that
over the full and wide range of optical depths the experimental
data are well described by a random walk simulation of light
transport in the atomic medium; in this model the optical
depth serves as an effective single scaling parameter which
quantitatively agrees with all the data. A Beer-Lambert’s law

2469-9926/2020/101(3)/033832(9) 033832-1 ©2020 American Physical Society
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argument similarly shows a single parameter scaling with the
optical depth.

In the following sections we first describe the experimen-
tal arrangement and measurement scheme. This is followed
by presentation of the experimental results and comparison
with quantum microscopic calculations. We follow this by a
description of our random walk simulations, Beer-Lambert
law scaling, and comparison of the simulations with the peak
optical depth dependence of the experimental data.

II. EXPERIMENTAL ARRANGEMENT

The basic experimental scheme has been described in
detail elsewhere [27]; here we provide only an outline of
details necessary to understand the experimental approach
and results. In the basic approach, we follow a multistep
process to produce cold atom samples confined by a far
off resonance trap (FORT). Initially, 87Rb atoms are loaded
into a three-dimensional magneto-optical trap (MOT), with
a density distribution that can be approximated as Gaussian.
The MOT is characterized using methods similar to those
in [27]. The physical size and temperature of the MOT are
found by directly measuring the radius of a fluorescence
image projected onto a CCD camera (pixel resolution of
24 μm × 24 μm). The number of atoms trapped in the MOT
is measured through traditional absorption imaging. The num-
ber is independently measured by using an optical pumping
approach, as described in [28]. We find that normally we have
about 450 million atoms contained in the MOT. At this stage
of sample preparation, the distribution of atoms among the
F = 2 Zeeman states is not known. Most groups assume,
however, that the atoms plausibly have the atoms equally
distributed among the Zeeman states; we assume that here.
This hypothesis leads to an effective light scattering cross
section of 7/15(3λ2/2π ).

A small fraction of the MOT atoms is then loaded into a far-
off-resonance trap (FORT). This trap consists of a single laser
beam (λ = 1064 nm) focused to a beam waist ω∗ of about
20 μm. This quantity was measured in an auxiliary experi-
ment using a scanning knife edge to determine the beam shape
and size around the focus. The longitudinal scale is given by
the Rayleigh range, defined as zr = πω2

∗/λ, which is about
900 μm in our case. The intensity gradient of the focused
light, along with being far detuned from resonance, creates
a potential well in the ground state in which the atoms can be
trapped. During the loading process, the MOT trapping laser
is detuned ∼10γ below resonance and the repumping laser is
attenuated by ∼99%. This reduces the radiation pressure and
creates a compressed MOT, which has a better spatial overlap
with the FORT laser beam. Atoms excited with the MOT
trapping laser tuned near the F = 2 → F ′ = 2 transition un-
dergo inelastic Raman transitions, resulting in loading into the
lower F = 1 ground level. After a loading time of 70 ms, the
trapping and repumping lasers are fully extinguished, along
with the external magnetic field. Starting with an initial load of
1.3(2) × 106 atoms, the FORT laser is kept on for a minimum
of 200 ms, until the sample is approximately thermalized
with 7.8(1) × 105 atoms at a temperature on the order of
100(5) μK. The FORT atomic density distribution ρ

is approximated by a Gaussian distribution as ρ =

ρ0exp(− r2

2r2
0

− y2

2y2
0
) with a radial size r0, longitudinal radius y0,

and peak density ρ0. This frequently made estimate is based
on the observation that the atom distribution is dominantly
located spatially at small y, such that y is smaller than the
Rayleigh length for the trap.

The peak density is determined from the definition ρ0 =
N/(2π )3/2r2

0y0 and measurements of N , r0, and y0 and the
temperature T . We described in an earlier paragraph mea-
surement of N by two methods. The longitudinal size y0 =
259 μm is sufficiently large to be measured directly by fluo-
rescence imaging using the CCD, which has a pixel resolution
of 24 μm × 24 μm. The transverse size of r0 = 3.0 μm
is too small to be directly measured that way. Instead, we
make measurements of the highest transverse parametric res-
onance frequency (as driven by weak amplitude modulation
of the trap depth), which appears at twice the harmonic-
oscillator frequency ω. Measurement of the FORT temper-
ature and the transverse confinement allow determination of
r2

0 = kBT/mω2.
Once the atomic sample is thermalized, the FORT trapping

laser is turned off. Initially the atoms are repumped into the
F = 2 ground state to prepare for probing on the F = 2 →
F ′ = 3 transition. After an optical pumping phase of about
8 μs, nearly all of the atoms are transferred to the F = 2 level.
After another 2 μs, a near-resonance low intensity (0.1 Isat )
probe laser is flashed for 1 μs. As shown in Fig. 1(b) the
probe beam is linearly polarized, creating by optical excitation
an axially symmetric atomic polarization (alignment) in the
excited F = 3 level with reference to the probe electric-field
symmetry axis. This in turn modifies the emission diagram,
generating an anisotropic diagram of spatial fluorescence.
This is a rather small effect, even for an optically thin atomic
sample, and results in an intensity difference of 12%, relative
to the isotropic case, on the equatorial plane, and 24% at the
poles. For the fluorescence geometry of our experiment, this is
a 7.9% effect for single scattering from the atomic cloud. For
the case of multiple scattering, these are even smaller effects
at least for 85Rb, as reported earlier [29]. These two effects
are steady state and are hidden in the global rescaling of the
data. We thus ignore these small effects in further discussion
of the data.

The probe is offset from resonance by a detuning � =
f − f0, where f0 is the bare atomic resonance frequency. As
shown schematically in Fig. 1, the probe beam is spatially
much larger than the atomic sample, with a e−2 radius of
4.5 mm, and as shown in Fig. 1(b) is incident upon the sample
at an oblique angle. Fluorescence detection of the fluorescence
is also made at an oblique angle (viewing down the x axis).
Following an initial measurement, the sample is allowed to
continue to expand and is probed again 40 μs after the initial
flash. This process continues for a total of 10 probe pulses up
to a total expansion time of 370 μs. The sample expands from
an initial volume with radii r0 = 3.0 μm and y0 = 259 μm
to final radii of r0 = 33.4 μm and y0 = 261 μm. The fluo-
rescence from the sample is collected without regard to light
polarization for all 10 pulses and focused into a multimode
fiber connected to an infrared sensitive photomultiplier tube
(PMT). The output of the PMT is directed without preampli-
fication to a multichannel scaler having 40 ns time resolution.
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FIG. 1. Basic experimental scheme. (a) Relevant 87Rb energy levels. (b) Geometry of probe optical excitation and fluorescence collection.
The angles θ = 23◦ and φ = 30◦. (c) Fluorescence detection arm, viewing down the x axis. Light is detected in the far field through a window
(w) and focused into a 600 μm diameter multimode optical fiber Fmm with a pair of lenses L1 and L2 as shown.

For the results presented in this paper, this time signal was
integrated over the duration of each individual pulse to show
the total amount of fluorescence for each sample size, all while
maintaining the same number of atoms.

In order to sample a broader range of atomic sizes and
densities, the number of atoms can also be changed. The
peak density of the sample depends on the holding time of
the FORT; background gas collisions decrease the number of
atoms within the sample. At the longest hold time used for
these measurements (2.5 s), the number of atoms is reduced
to 1.8(7) × 105. In Fig. 2, the peak density for each sample
holding time as a function of expansion time is shown. Finally,
we also studied the dependence of the scattered light intensity
on probe detuning at the highest possible density for our ther-
malized sample. Using an acousto-optical modulator (AOM)
in a double-pass setup, the frequency of the probe laser was
tuned over a range of nearly 60 MHz while maintaining a
constant probe optical power.

III. RESULTS AND DISCUSSION

In this section we present our experimental results and
make side by side comparison of the measurements and
fully quantum calculations of the measured quantities. These
results and comparisons are followed by two subsections in
which the data is globally analyzed and discussed in terms of
attenuation of the propagating light beam and a random walk
for the diffusing light.

The details of the microscopic calculational techniques are
described in detail in several earlier papers [2,30,31] on the
general subject of light scattering in a cold and dense gas. For

completeness, we include here a brief overview of this model.
Our approach is one of the versions of the method known in
the literature as the coupled dipoles (CD) model. This model
has been heavily used in the context of cooperative scattering
(see references in the Introduction and see also [32–36]). In
our variant of the CD approach we solve the nonstationary
Schrödinger equation for the wave function ψ of the joint
system consisting of N motionless two-level atoms (ground
state with the total angular momentum Jg = 0, and degenerate

FIG. 2. Reduction of the number of atoms within the FORT over
time due to ballistic expansion, thermalization, and background gas
collisions. After various hold times T , there are N atoms in the
trap (see legend). After the FORT trapping laser is extinguished, the
sample expands, reducing the peak atomic density as shown.
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excited state Je = 1 with m = Jz = 1, 0,−1) and a weak
electromagnetic field. A vacuum reservoir is also included in
our considerations. We search for the wave function ψ as an
expansion in a set of eigenfunctions of the Hamiltonian of
the noninteracting atoms and field. For the considered case
of weak excitation (linear optics regime), we account only
for states with no more than one photon in the field. Tracing
over the photon degrees of freedom we obtain a finite set of
equations for the Fourier component of amplitudes of states
with one excited atom, which are the basic equations of the
CD model. This set of equations is solved numerically.

The resulting solution gives us the opportunity to find all
the other amplitudes of the states taken in our consideration
and consequently the approximate wave function of the stud-
ied joint physical system. Knowledge of the wave function
allows us to describe the properties of the atomic ensemble as
well as the properties of the secondary radiation. Particularly,
we can calculate the intensity of the different polarization
components of the light scattered in an arbitrary direction as a
corresponding quantum-mechanical average (for more detail,
see [31]. Possible atomic displacement caused by residual
atomic motion is taken into account in our approach by
averaging of calculated quantities over this random spatial
distribution of the atoms. Theoretical results obtained in the
framework of this procedure are scaled [37] to account for
the fact that the measurements and theoretical calculations are
made at very different numbers of atoms.

These results and comparisons are followed by two sub-
sections in which the data is globally analyzed and discussed
in terms of attenuation of the propagating light beam and a
random walk for the diffusing light.

A. Experimental results and comparison with theory

We first point out that, in all cases, fluorescence measure-
ments are made after the atoms in the FORT have essentially
thermalized and the FORT has been turned off, so that the
atoms are mainly in free space. There are two primary over-
lapping experimental protocols. In one, once the FORT has
been extinguished, the expanding atomic sample is exposed
to a series of ten 1 μs probe pulses temporally spaced to map
out a factor of several hundred in peak atomic density. As the
probe spatial profile is much larger than the atomic sample,
the number of atoms probed remains essentially constant. In
a second protocol, the atom sample is held in the trap for
increasingly longer periods of time; background gas collisions
reduce the number of atoms in the ensemble, while the sample
size, as measured by the sample Gaussian radii, remains the
same. Then the FORT is extinguished and a sequence of
probe pulses is used to probe the sample. This dual approach
allows mapping out of both the atomic sample size and atomic
density dependence of the fluorescence signals.

As an initial result, we present in Fig. 3 the measured
fluorescence signals from a 10 μs probe pulse and their
dependence on the peak atomic density. We see in the figure
that the signals increase with decreasing atomic density. The
origin of this somewhat counterintuitive effect arises from
the fact that, for the highest densities, and consequently the
greatest optical depth, the probe beam is attenuated during
its traversal through the sample. The scattering signals then
should originate mainly from light scattered from the illumi-

FIG. 3. On resonance variation of the scattered light signals with
peak atomic density. Note the strong increase of the signal size with
decreasing atomic density, for a fixed number of atoms in the sample.

nated outer regions of the sample surface, and the relatively
fewer atoms compared to the sample as a whole. We will study
in more detail this “shadow effect” in the next subsection.
As the density is decreased, on the other hand, the sample
becomes more optically thin; the sample ultimately scatters
light as a collection of individual atoms. Comparison of
the experimental results with calculations shows very good
agreement. Note that the vertical (signal) scale is adjusted to
match the experimental and theoretical responses.

We elaborated on this general effect by measuring the
dependence of the scattering signals on atomic density and
on detuning from atomic resonance. The overall experimental
results for all positive blue detunings and densities are shown
in Fig. 4(a). One striking feature of these results is that, for
larger detunings, the sensitivity of the signals to decreases
in the density is significantly reduced, and for the largest
detunings from resonance, there is, within the experimental
uncertainty, no variation of the signal intensity with peak
atomic density. This effect is due to the decreasing optical
depth of the atomic sample with increasing detuning; for the
smallest optical depth, all the atoms experience essentially
the same probe intensity, and thus contribute to the scatter-
ing signals. The corresponding theoretical results are shown
Fig. 4(b). These results are in very good qualitative agreement
with the experimental ones. Red detuned measurements (not
shown) are also in very good agreement with the simulations.
The data are also quite symmetric about zero detuning; this
is seen in the characteristic spectral response for two different
densities, as shown in Fig. 5. There the solid lines represent
Lorentzian spectral profiles; this line shape is a very good
empirical fit to the measured profile.

Implicit in Figs. 3 and 4 is a dependence on the spectral
width (viz. Fig. 5) and the ensemble response to changes in
atomic density. This dependence is shown in Fig. 6, where
we see a nonlinear increase of the spectral width with in-
creasing density and an approach at low density to around
9 MHz, evidently larger than the 6.1 MHz expected for
single scattering. This behavior should be compared to that
reported by Pellegrino et al. [26] in a recent paper. In our
case, the lower density limit is partly due to the technical
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FIG. 4. Detuning and density dependence of the measured scat-
tered light intensity. (a) Experimental results for positive (blue) de-
tunings. (b) Theoretical results. The vertical scale has been adjusted
to match the experimental data.

combination of the laser linewidth and the Doppler width of
the transition. Further, this dependence is qualitatively due
to the fact that major contributions to the signal arise from
atoms near the outer regions of the atomic sample, the deeper
atoms contributing less due to the shadow effect. For a large
optical depth and a uniform density, this implies a roughly√

b scaling of the width; here b is the peak optical depth
through the center of the sample [37]. A fit to the data in
Fig. 6 leads to a low density intercept of around 7(1) MHz, in
reasonable agreement with expectations. We should point out
that, realistically, our samples are strongly inhomogeneous,
and there are contributions to the signals from a range of
atomic densities. Such scaling should then be considered as
only a qualitative feature of the measured spectral widths.

Finally, we have examined the dependence of the mea-
sured scattered light intensity with variations in the effective
volume of the sample. We use as a measure of the sample
volume the product of the atom sample Gaussian radii, viz.
(2π )3/2yor2

o . In these measurements, this product is held fixed
as the number of atoms in the sample is varied. Results are
shown in Fig. 7. We see in Fig. 7 that, for each sample size

FIG. 5. Representative line shapes for the dependence of the
measured signals on detuning from atomic resonance.

and within the experimental uncertainty, the signal increases
monotonically with increasing number of atoms (or atomic
density). However, the rate of increase is significantly differ-
ent, depending on the sample size, and is strongly suppressed
for the smallest sample sizes.

B. Rescaling according to the Beer-Lambert law

The good agreement between the data and the full micro-
scopic theory is in itself satisfactory but it does not allow
identifying the relevant physical ingredients at the origin of
the specific behavior of the scattered light as a function of the
different control parameters. This is because the microscopic
theory naturally contains many effects: attenuation of the
probe light, diffraction and refraction, multiple scattering,
super and subradiance, collective shifts, etc. It is thus useful

FIG. 6. Dependence of the full width at half maximum of the
atomic resonance response as a function of atomic density. These
measurements correspond to varying the density by changing the
sample size while holding the number of atoms fixed.
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×

FIG. 7. Representative atom number dependence of the scatter-
ing signals as a function of the cold atom sample size. The data is
labeled according to the volume of the sample, as described in the
text.

to compare the data with a much simplified theory, including
only some of these effects.

An effective approximation could be based on the ladder-
type expansion of the light correlation function, which leads
to a Bethe-Salpeter type equation. This can be numerically
solved via a sequence of iterative steps (multiple scattering
events); see [2]. Such an approach evidently ignores any cross
interference in the process of multiple scattering, which seems
a rather realistic assumption for a dilute and disordered atomic
gas. The applicability of the Bethe-Salpeter approach has been
successfully demonstrated for the theory of random lasing;
see [38,39].

In this section, we show that taking into account only
attenuation of the probe beam in the atomic sample, following
the Beer-Lamabert law, is enough to explain the data with
rather good agreement. This shows that the main physical
ingredient of the experiment is the so-called “shadow effect”:
atoms at the back of the sample are less illuminated by the
incident laser, which induces an effective reduction of the
total scattering cross section compared to a collection of
independent atoms illuminated by the same laser intensity. As
explained in detail in [40], this effect also explains previous
observations of a collective reduction of the radiation pressure
force [6,8]. It could also explain the results of [26], although
the very small sample sizes and high densities used in that
work might induce some other effects.

From the Beer-Lambert law, one can easily show (see the
Appendix A or Ref. [8]) that the total scattering cross section
of a Gaussian cloud (containing N atoms and illuminated by a
plane wave) is

�sc = Nσsc × Ein(b)

b
, (1)

where Ein is the integer function [41]

Ein(b) =
∫ b

0

1 − e−x

x
dx = b

[
1 +

∞∑
n=1

(−b)n

(n + 1)(n + 1)!

]

(2)

and σsc is the single-atom scattering cross section. Here b
is the optical depth along the line of sight and the factor
Ein(b)/b in Eq. (1) corresponds to the deviation from single-
atom physics induced by the shadow effect. In the limit of
vanishing optical depth b, the value expected from single atom
physics is recovered, �sc = Nσsc. For high optical depth, the
cross section increases only logarithmically, which appears as
a collective saturation of the scattered light.

Let us now use this result to rescale the experimental
data. The measured scattered light is proportional to �sc. For
data taken with a fixed atom number and varying detuning
(“protocol 1”), such as the data reported in Fig. 4(a) and
Fig. 5, one should divide the signal by σsc ∝ 1/(1 + 4�2/2)
and compare the results to Ein(b)/b. For data acquired at a
fixed detuning and varying atom number (“protocol 2”), such
as the data reported in Fig. 7, one should divide the signal
by N and also compare to Ein(b)/b. In both cases one has
to allow a global multiplicative factor to fit the data to the
theoretical curve, since the signal is not calibrated in abso-
lute value. In other words, the detection efficiency, which is
the number of detected photons vs the number emitted in the
detector direction, is not precisely known. The not-very-well-
known factors include the detector solid angle, the absolute
probe intensity, and the probe overlap with the sample spatial
location, the transmission of the various optical elements in
the detector arm of the apparatus, and the efficiency of the
light detector to incoming photons. The relevant optical depth
b is the one along the line of sight of the laser, given by

b =
√

2πρ0σscr0√
cos2 θ + sin2 θ sin2 φ + η2 sin2 θ cos2 φ

, (3)

where η = r0/y0, r0, y0, ρ0 vary during the expansion and the
angles θ, φ are given by the geometry of the experiment as
shown in Fig. 1 (θ = 23◦ and φ = 30◦).

We show the rescaled data in Fig. 8. The two panels
correspond to the two different experimental protocols. The
striking result is that, despite the different protocols and dif-
ferent orders of magnitude (almost three orders of magnitude
in density and in optical depth), all data points collapse quite
close to the curve Ein(b)/b describing the shadow effect,
demonstrating that it is indeed the main physical ingredient
of the collective behavior of the scattered light intensity.

C. Impact of multiple scattering

The previous scaling based on the total scattering cross
section supposes that the light is emitted isotropically from
the atomic sample. This is not the case when the optical depth
is large, as already studied in [4], although the anisotropy is
much less pronounced when the cloud is illuminated by a wide
beam (plane wave), as is the case here, compared to the case
when a large cloud is illuminated by a narrow beam, as in [4].

To describe this effect one needs to take into account
multiple scattering of light inside the sample. This is naturally
included in the microscopic model, but it is also possible to
use stochastic simulations based on a random walk algorithm
for light. In such a model, cooperative and coherent effects
such as super and subradiance, interference, and diffraction
are neglected, but one can well describe diffuse light scatter-
ing with the true parameters of the experiments (also including
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FIG. 8. Rescaled experimental data: the light scattering signal is
plotted as a function of the detuning-dependent optical depth b(�)
and the color code indicates the peak density ρ0 in cm−3 (log scale).
The solid line is the function Ein(b)/b, which describes the shadow
effect from the Beer-Lambert law. The two panels correspond to the
two different experimental protocols, the first one with a varying
detuning and a constant atom number and the second one with the
laser on resonance and a varying atom number. In both cases the
sizes of the cloud also vary, and thus the volume and density. A global
vertical scaling factor for each data set is the only free parameter.

subtle effects like the frequency redistribution due to Doppler
broadening), if needed; see, e.g., Refs. [42–44].

We have performed such random walk simulations for
varying optical depths. The simulations include the actual
geometry of the laser beam (size and direction) and of the de-
tection (direction), the anisotropy of the scattering diagram for
the first scattering event, and the Gaussian density distribution
of the cloud. We use the size y0 of the cloud, which is almost
constant for all data points, and the two extreme transverse
sizes, corresponding to the shortest and longest time of flight.
We do not take into account the Doppler-induced frequency
redistribution during multiple scattering as it should be a
tiny effect with the moderate temperature and optical depths
explored here. The results are shown in Fig. 9.

The comparison between the random walk simulations and
the simple Beer-Lambert prediction shows a small difference:
the scattered light signal is always slightly larger in the
random walk simulations. Several contributions explain
this difference. First, the Gaussian beam profile has a
stronger intensity at the center, where it interacts with the
cloud, compared with a plane-wave illumination. Second,
the small anisotropy of the scattering diagram of Rb (we
suppose an equally populated mixture of Zeeman states)
slightly favors the direction of detection. And third, at large
optical depths, multiple scattering takes place and light
has a higher probability to escape along the backward and
transverse directions, which also favors the detection direction
compared to an isotropic emission. Finally, at the precision
of the numerical simulation, we do not see any significant
difference between the two extreme aspect ratios of the cloud,
showing that this parameter does not affect the results. In
Fig. 9, the vertical scaling factor of each data set has been
chosen to match the simulation results. With this as the only
free parameter the simulations and the experimental points
are in very good agreement.

FIG. 9. Comparison between the experimental data and the ran-
dom walk simulation. The data are rescaled like in Fig. 8, dots
corresponds to the protocol 1, and squares to the protocol 2. The color
code indicates the peak density ρ0 in cm−3 (log scale). The solid lines
are the results of the random walk simulations for the two extreme
aspect ratios of the cloud, η = r0/y0 
 0.13 (blue) and η 
 0.013
(red). The dashed line is the function Ein(b)/b which describes the
shadow effect from the Beer-Lambert law. The global vertical scaling
factor for each data set has been adapted to match the random walk
results.

IV. CONCLUSIONS

Using two different experimental protocols, we have made
measurements of diffusive light scattering from a cold thermal
gas of 87Rb. Due to variations in the number of atoms in the
sample, or the size of the sample at fixed number of atoms, the
experiments extended over almost three orders of magnitude
in density and in optical depth. The measured diffusive light
spectra were found to be in very good agreement with fully
quantum based calculations. A second and simpler analysis
approach used stochastic simulations based on a random walk
algorithm for the multiply scattered light. The simulations
revealed that the optical depth of the atomic sample can serve
as an effective single scaling parameter which describes very
well all the experimental data. A final but important overall
point, as mentioned earlier in the paper, is that a substantial
portion of the scattered light undergoes multiple scattering.
However, the multiple scattering only contributes a little to
the emission diagram. With this, and the global scale factor
needed to compare the data and Beer-Lambert law scaling,
we can emphasize that the Beer-Lambert law works in spite
of multiple scattering. This concluding point demonstrates the
effectiveness of this rescaling.
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APPENDIX: PROOF OF EQ. (1)
FOR THE SHADOW EFFECT

For simplicity, let us take an isotropic Gaussian cloud
with density distribution ρ = ρ0e−r2/(2R2 ) and consider a plane
wave (intensity I0) propagating along z. The transmitted inten-
sity has a transverse distribution

IT (r⊥) = I0 exp

(
−ρ0σsc

∫
e−r2/(2R2 )dz

)

= I0 exp
(−b e−r2

⊥/(2R2 )), (A1)

with b = √
2πρ0σscR and r⊥ = (x, y).

Moreover, what is scattered is what is not transmitted, so
we have

�sc = Psc

I0
=

∫ [
1 − exp

(−b e−r2
⊥/(2R2 ))]d2r⊥. (A2)

Using d2r⊥ = 2πr⊥dr⊥ and the change of variable u =
b e−r2

⊥/(2R2 ) one obtains

�sc = 2πR2
∫ b

0

1 − e−u

u
du = 2πR2Ein(b). (A3)

For single atom physics, the total cross section would
be Nσsc. Using b = σsc/(2π ) × N/R2, it is thus physically
meaningful to write

�sc = Nσsc × Ein(b)

b
, (A4)

which is Eq. (1).
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142 Chap V - Steady-state signatures of cooperativity?

Following this paper, a more systematic comparison between the complete CD model and
the two levels of approximation that are the RW model and the shadow effect, has then been
published by Igor Sokolov and myself [Sokolov 2019]. The message is that for moderate optical
thickness (at least up to b ∼ 15), i.e. even in the multiple scattering regime, although the
shadow effect does not allow computing the proper emission diagram and thus the absolute
quantity of scattered light in a given direction, the dependence with b still follows relatively
well the scaling predicted by the shadow effect. It is thus a good starting hypothesis in a
fairly large range of parameters in order to interpret light-scattering data.

Conclusion
We have seen that there are many different collective modifications of steady-state light
scattering by cold and dilute ensembles of atoms: change of the emission diagram, of the
scattering rate, of the spectrum, with different ways to probe them2. They all can be
described by the coupled-dipole model and thus attributed to collective modes induced by
the dipole-dipole interaction. However, it is also possible to explain them by using simple
‘photon’/optical pictures, like attenuation, diffraction, or multiple scattering.

In the next chapter I will address collective effects that appear in the temporal dynamics at
the switch-off (and at the switch-on) of the driving field.

2 A recent paper reports a collective decrease of the hyperfine pumping, attributed to density-dependent
dipole-dipole interaction [Machluf 2019], although the simulations show that it does not only depend on the
density but also on the volume (Fig. 4b), concluding that the optical thickness also has an effect. It would
be interesting to test if the shadow effect can explain these observations.



Chapter VI

Super- and subradiance in the
linear-optics regime

Last but not least, this chapter is probably the most important one of this manuscript.
It deals with our studies on the temporal dynamics of the scattered light, mainly at the
switch-off of the driving field, but also at the switch-on (section VI.6). It contains the main
results of Part Two and includes six articles, five of them with experimental results. The
highlight is the first one, on the direct observation of subradiant decay [Guerin 2016a], which
was a milestone for our team. This observation triggered several complementary studies,
which are presented in the following of the chapter.

VI.1. Observation of subradiance
Just prior to my come-back in Nice, the team had published a proposal for the observation
of subradiance in a dilute cold-atom cloud [Bienaimé 2012]. This was thus my first objective
when I took in charge the experiment.

VI.1.1. Experimental requirements
The principle of the experiment is quite simple: we drive the atomic sample with a probe
beam of detuning ∆ for a few microseconds (enough to reach the steady state), switch it off
abruptly, and monitor the decay of the scattered light. We use a beam much wider than
the cloud such that it can be approximated by a plane wave. Moreover we want to use a
large detuning to avoid radiation trapping [Labeyrie 2003] such that a slow decay can be
unambiguously attributed to subradiance (I come back to this question in section VI.5).

There are, however, two technical difficulties to do so, a small one and a more challenging
one.

The small technical difficulty is to get a fast extinction with a very good extinction ratio
for the probe beam. How fast should it be? The timescale of the problem is given by the
lifetime of the excited level τat = Γ−1

0 ' 26 ns, so the switch-off duration should be very short
compared to that if one wants to reach the limit of an infinitely fast switch-off. However it
is not known how important this criterium is, and for subradiance we are interested in the
slow decay visible at late time, so it should not be too critical. For simplicity we only used
acousto-optical modulators (AOMs). After a very careful optimization I managed to get a
switch-off duration of ∼ 15 ns (defined as the fall time between the 90% and the 10% levels).
To tell the truth, the ‘careful optimization’ is actually the empirical trying of many different
optical combinations for focussing the beam in the AOM until one works well enough. Since
the switch-off duration in AOMs is given by the sound velocity and the size of the beam,
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Figure VI.1: Test of several detectors: one photomultiplier (PM) working in the continuous regime
(CW), one commercial avalanche photodiode (APD) with a bandwidth of 10 MHz, one home-made
photodiode (PD) with a bandwidth of 10 MHz, and one commercial PD with a bandwidth of 200
MHz. Below ∼ 1% of the steady-state voltage U0 at the switch off, all detectors have a slow spurious
response. Here there is no atom involved.

at first sight, one just has to focus stronger to switch off faster. However at some point
the Rayleigh length becomes smaller than the crystal length and the size of the beam on
the edges of the crystal matters. Moreover it becomes harder and harder to separate the
diffraction orders because of the beam divergence, and we want to avoid any spurious light.
A strong focussing also spoils the diffraction efficiency because of the associated angular
distribution. As a consequence there is a delicate trade-off between the diffraction efficiency,
the extinction ratio and the extinction duration. For the extinction ratio, there is always a
bit of scattered light on the crystal surface that can enter the following optical path, even
through a single-mode fiber, so we used a second AOM in series (actually set before the
optimized AOM). The details of the whole setup are given in [Araújo 2018a]. The extinction
ratio is better than 104.

The challenging difficulty is to be able to measure a fast and good extinction. At first sight,
one could think that any fast detector could do the job. Alas, this is not so simple. Even
with a high-bandwidth, low-noise detector, the measured switch-off is fast until it reaches
the level of typically ∼ 1− 2% of the initial stead-state level, and then there are some slow
relaxation and/or spurious oscillations, which can last for a very long time1 (see Fig. VI.1).

I initially thought that a solution to this problem would be to work in the photocounting
regime because such slow electronic response would not exist. First, this is more demanding
to work in the photocounting regime, because the detectors saturate at a much lower light
level, and we have to attenuate the signal by a neutral density filter, which is a pity. The
corresponding loss has to be compensated by a longer integration time. Moreover, to
reconstruct the temporal trace one needs an extra device to detect the single-photon pulses
and make a histogram of the arrival times. For that we use a ‘Multichannel scaler’ from
the company FASTComTech. Furthermore, and more importantly, this doesn’t even solve
the problem of the slow spurious response, because of a phenomena called ‘afterpulsing’:

1 In this chapter most temporal data are shown as a function of the normalized time t/τat and it may be
useful to bear in mind that 40τat ≈ 1µs.
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Figure VI.2: Picture and scheme of the hybrid photomultiplier. From Hamamatsu.

a detected photon has a small probability, on the order on 1%, to create a second, fake
detection some time later. Although the physical mechanism is different for photomultipliers
(PMs) and for avalanche photodiodes (APDs), it exists in both. Then the photons detected
just before the switch-off create a fake response after the switch off, at the percent level and
for as long as a few microseconds with the PM I tested.

The solution to this problem was the finding of a new detector, from the company Hamamatsu.
Their so-called ‘hybrid photomultiplier’ (HPM) uses a hybrid technology with a first stage
made of a photocathode and a high-voltage electron acceleration, like in a PM, and a second
stage made of a semiconductor in which an avalanche process takes place, like in an APD
(Fig. VI.2). Somehow, this detector doesn’t have any measurable afterpulsing, and is the only
one with this remarkable property, to my knowledge, along with superconducting nanowire
single-photon detectors, which are in a completely different category in term of price, size and
complexity. Compared to APDs, it also has the advantage of having a large sensitive area,
which is useful for collecting light from a MOT. Thanks to this detector we can measure a
clean extinction down to at least 10−5, the measurement being limited by the patience of the
experimentalist...

Once those technical problems were solved, the observation of subradiance was ‘easy’, it just
requires some patience because the necessary integration is quite long, on the order of 500 000
experimental cycles, corresponding to one full night of integration. So, acquiring a complete
set of reliable data taken in the same conditions requires several weeks.

VI.1.2. First observation of subradiance
Although the prediction of subradiance in the dilute regime, based on the coupled-dipole
(CD) model, was already made [Bienaimé 2012], there were still some unknowns. For
instance, what about the temperature? Naively one could expect that the atomic motion,
not negligible at the scale of the presumably long subradiant lifetime, could be detrimental,
or at least should limit the measurable lifetime. Another open question was the role of
the atomic Zeeman structure, which is known to be a source of decoherence for coherent
backscattering [Labeyrie 1999, Jonckheere 2000,Bidel 2002]. No prediction was available
for subradiance. Finally, the simulations done with the CD model can’t simulate the true
parameters of the experiment (especially the atom number) and thus some scaling and
extrapolation have to be made, the limit of which are not under control.

It was thus a good surprise that none of these effects were a problem. The paper [Guerin 2016a]
was submitted in summer 2015 and is reproduced below.
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Since Dicke’s seminal paper on coherence in spontaneous radiation by atomic ensembles, superradiance
has been extensively studied. Subradiance, on the contrary, has remained elusive, mainly because
subradiant states are weakly coupled to the environment and are very sensitive to nonradiative decoherence
processes. Here, we report the experimental observation of subradiance in an extended and dilute cold-atom
sample containing a large number of particles. We use a far detuned laser to avoid multiple scattering and
observe the temporal decay after a sudden switch-off of the laser beam. After the fast decay of most of the
fluorescence, we detect a very slow decay, with time constants as long as 100 times the natural lifetime of
the excited state of individual atoms. This subradiant time constant scales linearly with the cooperativity
parameter, corresponding to the on-resonance optical depth of the sample, and is independent of the laser
detuning, as expected from a coupled-dipole model.
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Despite its many applications, ranging from astrophysics
[1] to mesoscopic physics [2,3] and quantum information
technology [4], light interacting with a large ensemble of N
scatterers still bears many surprising features and is at the
focus of intense research. For N ¼ 2 atoms placed close
together, the in-phase oscillation of the induced dipoles
produces a large, superradiant dipole, whereas the out-of-
phase oscillation corresponds to a subradiant quadrupole.
Generalizing for N ≫ 2, Dicke has shown that, for samples
of a small size compared to the wavelength of the atomic
transition, the symmetric superposition of atomic states
induces superradiant emission, scaling with the number of
particles N, whereas the antisymmetric superpositions are
decoupled from the environment, with vanishing emission
rates, which corresponds to subradiance [5].
Dicke superradiance has been extensively studied in the

1970s [6–8] but the observation of its counterpart, sub-
radiance, has been restricted to indirect evidence ofmodified
decay rates in one particular direction [9] or in systems of
two particles at very short distance [10–12]. One challenge
for the observation of subradiance by a large number of
particles is the fragile nature of these states, which require
protection from any local nonradiative decay mechanism
[13]. Furthermore, contrary to the two-atom case, for which
the distance between atoms has to be small compared to the
wavelength, for N ≫ 2, the retarded, long-range resonant
dipole-dipole interaction [14] gives rise to super- and
subradiant effects (“cooperative scattering”) also in dilute
samples, with interatomic distances much larger than the
wavelength, and corresponding large system sizes. Since,
for N > 2, the Hamiltonians for short and long-range
interactions do not commute, the collective eigenstates
due to the long-range interactions are suppressed by
short-range interactions [8]. These short-range or near-field
effects (or “van der Waals dephasing”) thus need to be

avoided in this case. As a consequence—and maybe
counterintuitively—a large and dilute sample of interacting
dipoles is the most appropriate system for the observation
of N-body subradiance.
In this regime, and in the weak excitation limit

(“single-photon superradiance”) [15–17], it has been
shown that the superradiant enhancement of the emission
rate scales as the cooperativity parameter N=M, where M
is the number of available modes for the electromagnetic
radiation [18–21]. For a spherical sample of radius R,
M ∼ ðk0RÞ2, where k0 ¼ 2π=λ, this cooperativity param-
eter is proportional to the peak on-resonant optical depth
of the atomic cloud, given by b0 ¼ 3N=ðk0RÞ2 for a cold-
atom cloud with a Gaussian density distribution of rms
radius R. This number can be large even at low density.
In a recent work [22], we used a coupled-dipole model
to generalize this result to subradiance (see also the
Supplemental Material [23]). In this Letter, we report the
experimental observation of subradiance in this weak-
excitation, dilute- and extended-sample limit.
In our experiment, we load N ≈ 109 87Rb atoms from a

background vapor into a magneto-optical trap (MOT) for
50 ms. A compressed MOT (30 ms) period allows for
an increased and smooth spatial density with a Gaussian
distribution of rms size R ≈ 1 mm (typical density
ρ ≈ 1011 cm−3) and a reduced temperature T ≈ 50 μK.
We then switch off the MOT trapping beams and magnetic
field gradient and allow for 3 ms of free expansion, used to
optically pump all atoms into the upper hyperfine ground
state F ¼ 2. Next, we apply a series of 12 pulses of a weak
probe beam (waist w ¼ 5.7 mm), linearly polarized and
detuned by δ ¼ ðω − ω0Þ=Γ from the closed atomic tran-
sition F ¼ 2 → F0 ¼ 3. Here, ω is the frequency of the
laser, ω0 the frequency of the atomic transition (of wave-
length λ ¼ 2πc=ω0 ¼ 780.24 nm), and Γ=2π ¼ 6.07 MHz
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its linewidth. Note that when we varied the detuning, we
also varied the laser intensity accordingly in order to keep
the saturation parameter constant at s≃ 4.5 × 10−2. The
pulses of duration 30 μs and separated by 1 ms are obtained
by using two acousto-optical modulators in series to reach
an extinction ratio better than 10−4. The 90%–10% fall time
at the switch-off is ∼15 ns, limiting the possibility of
studying superradiance, but convenient for detecting sub-
radiance. Between subsequent pulses of each series, the
size of the cloud increases because of thermal expansion,
and the atom number decreases due to off-resonant optical
pumping into the F ¼ 1 hyperfine state during each pulse.
The corresponding change of the on-resonant optical depth
b0 allows us to conveniently measure the decay of the
fluorescence as a function of b0 and investigate whether b0
is the relevant scaling parameter [23]. After this stage of

expansion and measurement, the MOT is switched on again
and most of the atoms are recaptured. The complete cycle
is thus short enough to allow the signal integration over
a large number of cycles, typically ∼500 000 (complete
acquisition time ∼14 h per run). The scattering of the
probe beam is collected by a lens with a solid angle of
∼5 × 10−2 sr at θ ≈ 35° from the incident direction of the
laser beam (see Fig. 1). We use a hybrid photomultiplier
(Hamamatsu HPM R10467U-50) in the photon-counting
regime, without any measurable amount of afterpulsing,
which would considerably mask signatures of subradiance.
The signal is then recorded on a multichannel scaler
(MCS6A by FAST ComTec) with a time bin of 1.6 ns,
averaging over the cycles. The cooperativity parameter b0
corresponding to each pulse is calibrated by an independent
measurement of the atom number, cloud size, and temper-
ature using absorption imaging [23].
Typical data are shown in Fig. 2. The signal is normalized

to the steady-state fluorescence level and we focus on
the switch-off period to highlight the slow fluorescence
decay. In Fig. 2(a), the detuning δ of the probe beam is
kept constant and the different decay curves correspond
to different values of b0, obtained in a single run. On the
contrary, Fig. 2(b) shows data taken with different detunings
but for the same b0. In both cases, most of the fluorescence
decays fast (note the logarithmic scale of the vertical axis),
but a slow decay is clearly seen well above the noise floor
(slightly below 10−4). We stress that fluorescence can
be detected at very large delays, as can be seen from the
time axis, in units of τat ¼ Γ−1 ¼ 26 ns. We attribute this
slow decay to subradiance in the single-photon (or weak
excitation) regime, as predicted in Ref. [22].
A qualitative analysis of the two figures clearly

shows different behaviors. As b0 is varied, the slow
decay rate changes, whereas its relative amplitude stays
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FIG. 1. Principle of the experiment. A large probe laser
illuminates the atomic sample for 30 μs and is switched off
rapidly. The fluorescence at ∼35° is collected by a hybrid
photomultiplier (HPM) and recorded on a multichannel scaler
(MCS). The experiment is repeated 500 000 times. At each cycle,
12 pulses are recorded during the free expansion of the cloud,
allowing the on-resonance optical depth to vary.
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FIG. 2. Slow decay of the fluorescence after switching off the probe laser. The vertical scale is normalized by the steady-state detected
power Pð0Þ, and the time scale is normalized by the atomic lifetime of the excited state τat. Without any collective effect (single-atom
physics), the decay would be given by PðtÞ ¼ Pð0Þ expð−t=τatÞ (the black dotted line). (a) Several data are shown for different on-
resonance optical depths b0 and the same detuning δ ¼ −6 (in units of Γ). The time constant increases with b0. (b) Several data are
shown for different detunings and the same b0 ¼ 108� 5. The time constant remains unchanged, but the relative amplitude of the
subradiant decay decreases as the detuning increases.
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approximately the same. The exact opposite happens
when we change the detuning, keeping b0 fixed. For a
quantitative analysis, we fit the slow tail at long delays by
an exponential decay with two free parameters: the time
constant τsub and its relative amplitude Asub [23]. We
systematically studied how these parameters depend on b0
and δ. The result of this analysis is presented in Fig. 3. In
Fig. 3(a) we plot the subradiant time constant as a function
of b0 for different detunings. The collapse of all points on
the same curve clearly indicates that the slow decay rate
does not depend on the detuning [see also Fig. 3(b)]. This
demonstrates that this slow decay is not a multiple-
scattering effect, such as previously observed radiation
trapping [36], which depends on the optical depth at the
laser frequency bðδÞ ∝ b0=ð1þ 4δ2Þ, with a strong
dependance with δ. The second feature in Fig. 3(a) is
the linear increase of τsub with b0, up to time constants as
long as τsub ∼ 100τat. This is perfectly consistent with the
predictions of the coupled-dipole model for subradiance
[23]. We note that for large negative detunings, one has to
take into account the variation of b0 during the pulse series
induced by the cloud expansion together with a significant
contribution of atom losses by off-resonant hyperfine
pumping. This allowed us to test different combinations
of N and R as scaling parameters (see Fig. 2 of the
Supplemental Material [23]). The comparison showed that
the best collapse has been obtained with N=R2 ∝ b0 as the
scaling parameter, which demonstrates that b0 is indeed
the relevant cooperativity parameter in the regime of a

dilute and extended sample, as expected from the ratio of
the number of atoms to the number of available electro-
magnetic modes radiating from the sample. Finally, we
show in Fig. 3(c) the relative amplitude Asub of the slow
decay. As was already seen in Fig. 2(b), this amplitude
is much larger near resonance, and it seems to reach a
plateau for large detunings. We have checked that sub-
radiant decay is still visible at a larger detuning, up to
δ ¼ −11 [23]. This is in line with the coupled-dipole
model, in which the weight of the long-lived modes are
enhanced near resonance and the weight of all of the
collective modes becomes independent of the detuning at
large detuning.
As a long lifetime can also occur due to multiple

scattering, when the optical depth bðδÞ ≫ 1 [36], we
investigated the decay time close to the atomic resonance
to study how subradiance compares with radiation trapping.
In the range of the accessible experimental values
[Fig. 3(b)], no marked difference of the decay times around
resonance is visible, even though a small difference was
predicted in Ref. [22]. The interplay of radiation trapping
and subradiance near resonance is still an open question
and will be the subject of our further experiments.
We have also studied the effect of the probe intensity and

checked that, at low saturation parameter, the observed
subradiance is independent of the intensity (see Fig. 3 of
the Supplemental Material [23]), which validates the use
of the coupled-dipole model in the weak-excitation
limit. We finally also excluded the possibility that residual
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FIG. 3. Dependence of the subradiance time with the on-resonance optical depth b0 and the laser detuning δ. (a) Subradiant time
constant τsub (in units of τat) as a function of b0 ¼ 3N=ðk0RÞ2 for different detunings of the probe laser. Almost all of the points collapse
on a single curve, showing the linear scaling with b0. The dashed line is a linear fit τsub=τat ¼ 1þ αb0, with the slope α as a free
parameter. Excluding the data with b0 > 120, we obtain α ¼ 0.8. (b) From the same data, τsub is plotted as a function of the detuning for
three different values of b0, illustrating that τsub is independent of the detuning. (c) Similarly, the subradiant relative amplitude Asub is
plotted as a function of the detuning for the same three different values of b0. Subradiance is more important near resonance and
decreases towards a plateau at large detuning.
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near-resonant light might always be present and induce
a slow decay due to radiation trapping, thus mimicking
off-resonant subradiance [23].
To summarize, we have presented the first direct sig-

natures of subradiance in a large system of resonant
scatterers. We have shown that in the regime of dilute
and extended samples, the subradiant decay rate is governed
by a cooperativity parameter defined as the ratio of the
number of scatterers and the sample size squared, which
conveniently corresponds to the on-resonance optical depth.
This observation of subradiance opens interesting ques-
tions, including the robustness of subradiance against
decoherence mechanisms or the possibility of controlling
the population of the subradiant modes by an appropriate
temporal or spatial shaping of the driving laser or of the
atomic levels. If the subradiant states can be manipulated
with sufficient control [37], their isolation from the envi-
ronment might be exploited as a resource for quantum
information or quantum metrology [38]. As subradiance
goes hand in hand with superradiance, simultaneous record-
ing of fast and slow decays would be a beautiful illustration
of the cooperative scattering envisioned by Dicke. By using
a stronger laser drive, it would also be possible to access a
larger subspace of the full Hilbert space, addressing the
possibility of a photon-blockade effect [39].
In addition to quantum optics, our observation is also

relevant to mesoscopic physics [40,41], a community less
familiar with Dicke physics. One major challenge in this
field is the observation of strong localization of light, the
analogy for classical waves of Anderson localization of
electrons [42]. Previous experimental observations of a
decay of scattered light slower than predicted by the
diffusion equation have been used as a signature of
Anderson localization in dielectrics [43,44]. Our results
show that it cannot always be the case with cold atoms.
Similarly, recent numerical simulations considering point-
dipole resonant scatterers study the collective modes of the
effective Hamiltonian of the system and, in particular, their
lifetimes [45–49]. Our work shows that Dicke subradiance
can also be at the origin of very long lifetimes and that a
careful analysis is required to distinguish subradiant from
localized modes [49]. Finally, the combination of subra-
diance with disorder acting on the atomic transitions might
provide an alternative route to strong localization of light,
as was recently suggested [50].
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I. EXPERIMENTAL DETAILS

A. Calibration of b0.

As we cannot measure b0 simultaneously to the data
acquisition, the calibration is done in a separate time se-
quence, using absorption imaging, requiring a longer cy-
cle without recapture of the atoms. We therefore increase
the loading time of the MOT such that the fluorescence of
the probe beam measured at large detuning is the same
as in the measurement cycle, all other parameters be-
ing unchanged. The absorption images then provide the
transverse profile of the probe transmission T , which is
related to the optical depth by T (x, y) = exp[−b′(x, y)],
where

b′(δ) = C b0
1 + 4δ2

, (1)

with δ the probe detuning and C = 7/15 is the average
Clebsch-Gordan coefficient of the transition for a statisti-
cal mixture of the Zeeman substates. We use a Gaussian
fit for b′(x, y) and extract the r.m.s. size R directly from
the fit, as well as b0 from the amplitude of the Gaussian
fit and the atom number N from its integral. This is
done for different values for the time of flight of ballis-
tic expansion, from which we extract the temperature,
allowing us to know the size of the atomic cloud for the
different pulses as well as the initial atom number.

During the pulse series, we need to take into account
possible optical pumping by the probe beam into the
other hyperfine ground state F = 1. This effect is al-
most negligible near resonance but becomes significant
for the largest negative detunings used in this work. We
therefore have precisely measured the pumping rate, from
the fluorescence decay, at very large negative detuning
(δ = −9), and used this rate to calibrate the probe in-
tensity, which is measured simultaneously to the data on
a separate photodetector. Then we use this intensity to
compute the atom losses induced by optical pumping and
correct the atom number for each pulse.

Note that the uncertainty on the precise value C cor-
responding to the experimental conditions introduces a
systematic uncertainty on N and b0, which is thus also
affecting the precise value of the slope extracted from

∗ william.guerin@inln.cnrs.fr

the data of Fig. 3. Statistical uncertainties, estimated by
the shot-to-shot fluctuations of b0, are of the order of 8%
(standard deviation).

B. Analysis of the fluorescence decay.

The raw data are histograms of number of photons de-
tected with a time bin of 1.6 ns. Our detection in the
photon counting regime yields about 107 counts per sec-
ond (cps) during the pulses, while between pulses, after
the end of the subradiant decay, the ‘dark’ level is about
4000 cps, mainly due to stray light. For each pulse we
subtract this dark level and normalize the signal to the
steady state amplitude. Then we further bin the data to
improve the signal to noise ratio. We use a variable bin-
ning, i.e., a larger bin size for later time, when the signal
varies slowly, than for short times. We also implemented
a systematic procedure to choose the range of data to be
fitted by selecting data one decade above the noise floor.
This allows us to fit the last measurable time constant.
We found this procedure to give the most reliable and rel-
evant fit. Finally, we compute the statistical coefficient
of determination of the fit, which quantifies its relevance,
and we keep only the points for which this coefficient is
above 0.97 in Fig. 3 of the main paper.

The data gathered in this figure have been taken in ex-
actly the same conditions (initial atom number, temper-
ature, saturation parameter, experimental cycle), where
the only changing parameters are the probe detuning and
its intensity to keep the saturation parameter constant.
We have also been able to observe subradiant decay for
larger detunings, up to δ = −11, but we have not in-
cluded these data because we had to adapt other param-
eters. Indeed, because of the limited available power for
the probe beam, the saturation parameter and the subse-
quent amount of fluorescence were lower, which we par-
tially compensated by increasing the atom number via
the loading time, which changed also the temperature
and the cycle duration.

II. PREDICTIONS OF THE COUPLED-DIPOLE
MODEL

We recall here the main ingredients of the coupled-
dipole model, which has been widely used in the last
years in the context of single-photon superradiance [1–
10]. We consider N two-level atoms (positions ri, tran-



2

sition wavelength λ = 2π/k0, excited state lifetime Γ−1)
driven by an incident laser (Rabi frequency Ω, detuning
∆, plane wave of wavevector k0). Restricting the Hilbert
space to the subspace spanned by the ground state of
the atoms |G⟩ = |g · · · g⟩ and the singly-excited states
|i⟩ = |g · · · ei · · · g⟩ and tracing over the photon degrees
of freedom, one obtains an effective Hamiltonian describ-
ing the time evolution of the atomic wave function |ψ(t)⟩,

|ψ(t)⟩ = α(t)|G⟩ +

N∑

i=1

βi(t)|i⟩ . (2)

Using standard approximations, the effective Hamilto-
nian can be written as

Heff =
h̄Ω

2

∑

i

[
ei∆t−ik0·riSi

− + e−i∆t+ik0·riSi
+

]

− ih̄Γ
2

∑

i

Si
+S

i
− − h̄Γ

2

∑

i

∑

j ̸=i

VijS
i
+S

j
− ,

(3)

where Si
± and Si

z are the usual pseudospin operators for
the kets gi and ei, respectively. The first term of Heff

describes the coupling to the laser field, the second ac-
counts for the finite lifetime of the excited states and the
third one describes the dipole-dipole interactions, with

Vij =
eikrij

krij
, rij = |ri − rj | . (4)

Here, we have considered a scalar model for light, which
neglects polarization effects and near-field terms in the
dipole-dipole interaction. It is known to be a good ap-
proximation for dilute clouds [11, 12], i.e., when the typi-
cal distance between atoms is much larger than the wave-
length, which is the case in the experiment.

Considering the low intensity limit, when atoms are
mainly in their ground states, i.e., α ≃ 1, the problem
amounts to determine the amplitudes βi, which are then
given by the linear system of coupled equations

β̇i =

(
i∆ − Γ

2

)
βi − iΩ

2
eik0·ri +

iΓ

2

∑

i ̸=j

Vijβj . (5)

These equations are the same as those describing N clas-
sical dipoles driven by an oscillating electric field [5], jus-
tifying the term “coupled-dipole model”. The first term
corresponds to the natural evolution of the dipoles (os-
cillation and damping), the second one to the driving
by the external laser, the last term corresponds to the
dipole-dipole interaction and is responsible for all collec-
tive effects, including dephasing and attenuation of the
driving laser beam, as well as more subtle multiple scat-
tering and cooperative effects (super- and sub-radiance).
Note that even if the detuning does not appear explicitly
in the dipole-dipole interaction term, it still strongly in-
fluences the collective behaviour of the system through
the population of the eigenmodes that contribute to the
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FIG. 1. Scaling of the the subradiant decay time constant as
a function of b0 in the coupled dipole model. We used dif-
ferent densities ρ0λ

3 = {0.5, 1, 3, 5, 7, 9}. The time constant
is extracted from the exponential fit of the end of the decay
of the total emitted power computed from Eqs. (5-6). The
fit window is chosen for P (normalized to 1 at t = 0) to be
between 10−4 and 10−6.

system response to the driving field. At large detuning
for instance, multiple scattering vanishes.

From the computed values of βi, we can derive the
intensity of the light radiated by the cloud as a function
of time and of the angle [6]. The time dependence of
the total radiated power P after switching off the laser is
proportional to the derivative of the total excited state
population,

P ∝ − d

dt

N∑

j=1

|βi(t)|2 . (6)

We have used this model to study superradiance and
subradiance decay in more detail than in the previous
work [7]. The complete study will be published else-
where [13]. Here, we only show the most important
result for the subradiance experiment, which is the lin-
ear scaling of the decay time with the parameter b0 =
3N/(k0R)2, which also corresponds to the on-resonance
optical depth through the center of the cloud. Here N is
the atom number and R the r.m.s. radius of the atomic
Gaussian density distribution, which are the two param-
eters of the simulation. However, in order to determine
if b0 is the scaling parameters, and not, e.g., the atomic
density, we need to change b0 while keeping the density
ρ ∝ N/R3 constant, by changing simultaneously N and
R. Since the atom number N is limited to a few thou-
sands in our numerical simulations, quite large densities
are required to reach large b0. It is then important to use
an exclusion volume when drawing the random positions
of the atoms in order to exclude close pairs of atoms [12].
We set our exclusion volume as k0rij > 3.
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FIG. 2. Test of different scaling parameters. The subradiant decay time constant is plotted as a function of different combina-
tions of N and R. The collapsing of all points on a single curve is best with b0 as the scaling parameter.

In Fig. 1 we show the result of such simulations, for
which we varied b0 at constant density, for different val-
ues of ρ0λ

3 = (2π)3/2N/(k0R)3, where ρ0 is the peak
density (at the center of the Gaussian cloud). We clearly
see that the different curves collapse on the same line,
showing that the on-resonance optical depth is indeed
the parameter that controls the subradiant decay. The
slope of the line is 0.36. Note that we do not a priori
expect this number to be in quantitative agreement with
the experimental results, as polarization effects and the
complex Zeeman structure of the rubidium atoms used
in our experiment are neglected in the model.

III. TEST OF DIFFERENT SCALING
PARAMETERS

During the series of pulses, two effects contribute to
a change of b0. The most important one is the expan-
sion of the cloud due to its thermal velocity distribu-
tion. Its r.m.s. size typically varies from 0.5 to 1.2 mm
between the first and the last pulse. This variation is
independent of the probe laser detuning. Another con-
tribution to the change of b0 between subsequent pulses is
the loss of atoms due to optical pumping into the F = 1
ground state. Since we kept the same saturation param-
eter for all detuning, the number of scattered photons is
always the same, about 25 per atom and per pulse. How-
ever, the probability that a scattering event transfers the

atom to the F = 1 state depends strongly on the detun-
ing from the F = 2 → F ′ = 2 transition, and thus it
is much larger for large red detuning δ (defined from the
F = 2 → F ′ = 3 transition). For example, at δ = −6, the
number of atoms in the F = 2 ground state has decreased
by 70% between the first and the last pulse, whereas on
resonance it is almost constant for all pulses. Thus, for
the different detunings the relative contributions of the
variation of N and R are different.

We have exploited this fact to test which combination
of N and R allows the different curves acquired with dif-
ferent detunings to collapse on a single curve. This is
shown in Fig. 2, where it clearly appears that the com-
bination N/(k0R)2 provides the best scaling parameter.
This experimentally confirms that b0 is indeed the param-
eter governing subradiance in dilute and extended sam-
ples, as predicted by the coupled-dipole model (Fig. 1).

IV. SUBRADIANCE AS A FUNCTION OF THE
PROBE INTENSITY

In order to validate the weak excitation assumption,
we have also studied the subradiance decay as a function
of the probe intensity. In the linear optics regime, the
probe intensity should not impact on the measured de-
cay rates or normalized amplitudes. We have thus fixed
the detuning δ and the optical depth and varied the in-
tensity I. On Fig. 3 we plot the results for the subradiant
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parameter. The data have been taken with b0 = 110 ± 8% and δ = −5.

time constant and relative amplitude as a function of the
saturation parameter

s(δ) =
I/Isat
1 + 4δ2

, (7)

where Isat is the saturation intensity of the transition.

No significant dependence on the saturation parameter
in the explored range (10−2 < s(δ) < 10−1) is observed,
confirming that the other experimental data, for which
s(δ) ≃ 0.05, have been taken in the linear regime.

V. POSSIBLE ROLE OF RADIATION
TRAPPING OF NEAR-RESONANT LIGHT

The very slow decays observed at large detuning can-
not be simply interpreted as radiation trapping, as in
the experiments by Labeyrie et al. [14, 15], since ra-
diation trapping does not depend on b0 only but de-
pends on the optical depth ‘seen’ by the laser beam, i.e.,
b′(δ) ∝ b0/(1+4δ2), which is very small at large detuning.

However, since the amplitude of the subradiance de-
cay is very small, we have to insure that it cannot be ex-
plained by radiation trapping of a small amount of light
that would always be on resonance.

We have investigated two possible nonnegligible
sources of near-resonant light: inelastic scattering due
to the atomic saturation and the wings of the laser spec-
trum.

A. Inelastic scattering

The scattering rate Γsc of an atom driven by a laser is
the sum of two contributions, elastic and inelastic scat-

tering, given by [16]

Γsc = Γel +Γinel =
Γ

2

(
s

(1 + s)2
+

s2

(1 + s)2

)
=

Γ

2

s

1 + s
,

(8)
where s is the saturation parameter defined above
[Eq. (7)]. Usually, inelastic scattering is neglected when
s ≪ 1, which is the case in our experiment. However
since subradiance is a small signal, special care is re-
quired. For s ≪ 1, the relative weight of inelastic scat-
tering compared to the total scattering is equal to s. The
spectrum of this inelastic scattering is the well-known
Mollow triplet [17], which is, in fact, a triplet only at
large s. At large detuning and moderate intensity, it is
a doublet constituted of two lines of equal weights, one
of which is precisely on the atomic resonance [18]. Thus,
we expect that after the first scattering event, a propor-
tion s/2 of the light is shifted near resonance. Multiple
scattering could then trap this light in the sample.

To estimate the weight of this inelastic component in
the slow decay, we multiply this s/2 fraction by the rel-
ative amplitude of the slow decay for resonant photon,
which is what we extract from our experiment when the
laser is tuned to resonance (Asub ≃ 2×10−2 for b0 = 110,
see Fig. 3c of the main paper). In this scenario, we would
thus expect Asub ≃ s × 10−2 ≪ 10−2. On the contrary,
we see on Fig. 3 (also with b0 = 110) that Asub is signifi-
cantly larger and in any case not proportional to s. These
data allow us to conclude that spurious resonant radia-
tion trapping of one Mollow sideband is much smaller
than the subradiance we observe.

Note that in this experiment, a laser beam larger than
the atomic cloud has been used, leading to a significant
proportion of single and low-order scattering events on
the edges of the cloud, even on resonance, contrary to
the previous experiments on radiation trapping [14, 15],
where a small beam at the center of the atomic cloud
was used. That is why the relative amplitude of the slow
decay is low even on resonance.
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B. Spectrum of the probe laser

In our experiment, we used a distributed-feedback
(DFB) laser diode as probe. This laser is expected to
have a spectral linewidth on the order of ∼ 3 MHz [19]
corresponding to 0.5Γ, which should not have any influ-
ence at large detuning. However, if the spectrum has
slow-decaying wings (e.g., Lorentzian), the amount of
light a few Γ’s from the central frequency might be not
negligible in the experiment.

To characterize the spectrum of our probe laser, we
performed a beat-note experiment with a commercial
extended-cavity laser diode (Toptica DL pro), with a
much narrower spectral width. It is thus a good
(but slightly conservative) approximation to consider the
power spectrum density of the beat-note signal, recorded
with an electronic spectrum analyzer, as the optical spec-
trum of our probe laser. Such a measurement is shown
in Fig. 4. The spectrum is composed of a central part,
which can be well fitted by a Gaussian, superimposed on
a small component with large wings, which is well fitted
by a Lorentzian. The r.m.s. width of the Gaussian is
2.6 MHz (corresponding to a full width at half maximum
of 1Γ, larger than expected) and the Lorentzian wings
have a relative amplitude of 5.8 × 10−3 and a full width
at half maximum γ ≈ 13.2 MHz corresponding to 2.2Γ.

From the measured spectrum, we can numerically com-
pute the amount of light near resonance (in a width Γ)
given the detuning of the central frequency. For exam-
ple, for δ = −6Γ, corresponding to the largest detun-
ing used in the measurements, this relative amount is
≈ 1.5 × 10−4. We recall that even when the laser is set

-150 -100 -50 0 50 100 150
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10-1

100

f (MHz)

P
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D

FIG. 4. Spectrum of the probe laser. The power spectrum
density (PSD) of a beat-note signal with a reference laser has
been averaged 100 times (scanning time ∼ 1 s) and the central
frequency (∼ 1 GHz) has been shifted to zero (black dots).
The result can be fitted by a Gaussian in the central part
(red) and by a Lorentzian in the wings (blue).

on resonance, the relative amplitude of the slow decay is
only Asub ≃ 2 × 10−2 so that the two numbers should be
multiplied to predict the relative amplitude of the slow
decay induced by the small part of resonant light. This
is thus much too small to be visible in the experiment.

C. Random walk model with frequency
redistribution

One further spurious effect is frequency redistribution
induced by the Doppler effect during the multiple scatter-
ing process, which is known to play an important role in
radiation trapping experiments in cold atoms [14, 15, 20].
First, for light initially on-resonance, the light spectrum
gets broader during the multiple scattering and the ef-
fective optical thickness decreases, breaking the τ ∝ b2

scaling for high enough temperature. Second, light ini-
tially slightly detuned has a tendency to drift towards
resonance (in addition to the broadening). It means that
the previous evaluation considering a window of width Γ
to define the resonant light may be not appropriate be-
cause frequency redistribution induces a broader ‘capture
range’ of frequency.

To evaluate these effects, we performed numerical sim-
ulations considering the random walk of photons in a ho-
mogeneous spherical cloud of atoms, taking into account
the Doppler effect and its associated frequency redistri-
bution. We send photons one by one, we randomly draw
their initial transverse positions and detuning taking into
account the spatial shape and measured frequency spec-
trum of the probe laser, and we compute how many scat-
tering events the photons undergo before escaping, which
is converted to a time, using the fact that each scattering
event takes in average τat [14]. We obtain thus a distri-
bution of escape time, which is then convoluted by the
duration of the pulse in order to simulate the fluorescence
decay at the switch-off.

In Fig. 5(a), we show the fluorescence decay for a laser
detuning centered at δ = −6, a cloud with a temperature
T = 50 µK and an optical thickness b′(0) = 53, corre-
sponding to b0 ≃ 110 [Eq. (1)], for comparison with the
data of Figs. 2-3 of the main paper. We see indeed that
the small amount of light that is on resonance induces a
slow decay, whose relative amplitude is ∼ 10−4. As an-
ticipated, this is larger than expected from the previous
simple evaluation, but it is still more than one order of
magnitude smaller than the subradiance decay observed
in the experiment. Moreover, the use of a homogeneous
sphere instead of a Gaussian density distribution overes-
timates substantially this amplitude because for a given
peak-optical thickness (as measured by the transmission
of a small beam at the center of the cloud), the average
optical thickness ‘seen’ by a large beam is larger with
a homogeneous sphere than with a Gaussian cloud. We
have also checked that if we consider an incident short
pulse of duration similar to the switch-off of the probe
beam, and its associated spectral broadening, the result-
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FIG. 5. Main results of a random walk model. (a) Temporal decay computed with b′(0) = 53 and δ = −6. The relative
amplitude of the slow part is 10−4. (b) Fitted time constant of the slow tail as a function of the on-resonance optical thickness.
The increase is clearly faster than linear.

ing slow decay also has a relative amplitude below 10−4.
Finally, we show in Fig. 5(b) how the time constant

associated with this small, slow decay, which can be fit-
ted by a decaying exponential, evolves with the optical
depth of the cloud. We can see that the increase with the

optical depth is much faster than linear in this regime of
low temperature [20]. This provides another, qualitative
difference between our subradiance data and what could
be expected from spurious radiation trapping of near-
resonant light.
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VI.1. Observation of subradiance 157

As evidenced by the lengthy discussion in the Supplemental Material (section V), we took
great care of excluding an alternative explanation based on incoherent radiation trapping as
studied in [Labeyrie 2003] (see also section IV.1.2.2). In particular I developed random-walk
(RW) simulations in order to study some spurious effects like the wings of the laser spectrum2.
Still, the fact that we didn’t see any signature of radiation trapping near resonance was
puzzling, which motivated the study of section VI.5.1.

VI.1.3. Influence of the temperature
Another puzzling observation was that, apparently and luckily, the temperature was not a
problem. During the data acquisition of the first paper I had taken one data set at a higher
temperature (≈ 200µK) without any significant change. This motivated a more systematic
study, published recently and reproduced below [Weiss 2019], on the influence of thermal
motion on subradiance. As anticipated it shows a nonintuitive robustness, confirmed by CD
simulations. The numerics even allow exploring much higher temperature and suggest that
subradiance might be visible even at room temperature.

2 I thank Guillaume Labeyrie and Dominique Delande, whose skepticism encouraged me to develop those
simulations, which I used on several occasions later.
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Robustness of Dicke subradiance against thermal decoherence
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Subradiance is the cooperative inhibition of the radiation by several emitters coupled to the same electro-
magnetic modes. It was predicted by Dicke in 1954 and only recently observed in cold atomic vapors. Here
we address the question to what extent this cooperative effect survives outside the limit of frozen two-level
systems by studying the subradiant decay in an ensemble of cold atoms as a function of the temperature.
Experimentally, we observe only a slight decrease of the subradiant decay time when increasing the temperature
up to several millikelvins, and in particular we measure subradiant decay rates that are much smaller than the
Doppler broadening. This demonstrates that subradiance is surprisingly robust against thermal decoherence. The
numerical simulations are in good agreement and allow us to extrapolate the behavior of subradiance at higher
temperatures.

DOI: 10.1103/PhysRevA.100.033833

I. INTRODUCTION

Understanding the influence of decoherence or dephasing
processes in cooperative effects such as super- and subradi-
ance [1–7] is not only interesting from a fundamental point of
view, but it is also important for the possible developments
of photonic device exploiting cooperativity in the classical
or quantum regime [8–13]. This is especially true if one
wants to use solid-state devices [14,15], which are subject to
phonon-induced decoherence. Previous theoretical studies of
various toy models in the framework of open quantum systems
have predicted some robustness of superradiance to noise and
dephasing [16–19].

In this article, we report an experimental study of thermal
decoherence of subradiant Dicke states in a large ensemble
of cold atoms [4]. Indeed, even if laser-cooled atoms are not
coupled to phonons, they are not completely frozen. Atomic
motion has been shown to be a source of decoherence for
coherent backscattering [20] and to suppress the effect of
recurrent scattering on the refractive index of dense atomic
media [21,22]. Since subradiance is an interference effect
involving very long time scales, it is expected to be particu-
larly fragile. The lifetime of subradiant states τsub can exceed
several hundred times the single atom lifetime τat. An intuitive
guess how residual atomic motion due to finite temperature
should limit this lifetime is given by the restriction that the
atoms should not move during this lifetime farther than the
wavelength λ/2π to not change the interference condition.
Taking the rms velocity of a Maxwell-Boltzmann distribution
σv , subradiance would require �D � �sub, where �D = kσv is
the Doppler width.

*patrizia.weiss@inphyni.cnrs.fr
†Present address: Departamento de Física, Universidade Federal de

Pernambuco, 50670-901, Recife–PE, Brazil.

Contrary to that, and quite surprisingly, we show here
that subradiance in the linear-optics regime is robust against
thermal motion. We observe only a slight decrease of the
subradiant decay time when increasing the temperature up to
several millikelvins, and in particular we measure subradiant
decay rates �sub that are much smaller than the Doppler broad-
ening �D. We also perform numerical simulations showing
that the breakdown of subradiance only occurs when the
Doppler broadening is on the same order of magnitude as
the natural lifetime of the atomic transition �0. In practice,
this means that subradiance can be observed and used at any
“cold-atom” temperature and even beyond.

II. EXPERIMENTAL SETUP

The experimental setup is based on a cloud of cold 87Rb
atoms prepared in a magneto-optical trap (MOT). After 60 ms
of loading from the background vapor and a stage of com-
pressed MOT (30 ms) we obtain a sample of N ≈ 3 × 109

atoms at a temperature T ≈ 100 μK with a Gaussian density
distribution (peak densities ρ0 ∼ 1011 cm−3 and rms size
R ≈ 1 mm). A more detailed description of the setup as well
as the procedure to observe and analyze subradiance can be
found in [4,23]. For this new series of experiments we now
add an optical molasses in order to vary the temperature in
a controlled manner. To do so, we varied the detuning of
the cooling laser in a range between −10�0 to the atomic
resonance. We also use the molasses duration (1 ms to 10 ms)
as a parameter to tune the final temperature, which is between
50 μK and 11 mK, corresponding to �D/�0 between 0.01 and
0.2.

After this preparation the cloud expands ballistically. Dur-
ing the expansion the atoms are first optically pumped to the
hyperfine ground state F = 2 and then excited by a series of
12 weak laser pulses with a duration of 10 μs (Fig. 1). The
pulses are separated by either 1 ms or 0.5 ms depending on
the temperature. The time shaping of the pulses is done with

2469-9926/2019/100(3)/033833(6) 033833-1 ©2019 American Physical Society
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FIG. 1. Sketch of our setup based on an ensemble of atoms in
a MOT. The cloud is excited with a time sequence of probe laser
pulses. The switch-off dynamics of the scattered light is detected
under an angle 35◦ to the probe beam axis with a hybrid photon
multiplier (HPM) and averaged with a multichannel scaler (MCS).

two acousto-optical modulators, achieving a faster switch-
off (tswitch ≈ 15 ns) than the natural lifetime τat = �−1

0 =
26.24 ns, and at the same time providing an extinction ratio
better than 10−5. The probe beam is large compared to the
cloud size (1/e2 radius 5.3 mm) to ensure a homogeneous
driving and is linearly polarized. In previous experiments
it has been shown that subradiance is independent of the
detuning as long as multiple scattering is negligible [4,23]. As
a consequence we have chosen here to work with a constant
detuning δ = (ω − ω0) = −4�0, with ω the laser frequency,
ω0 the frequency of the atomic transition F = 2 → F ′ = 3,
and �0/2π = 6.07 MHz the natural linewidth. The intensity
of the probe is chosen such that the saturation parameter is

s(δ) = g
I/Isat

1 + 4δ2/�2
0

≈ 0.02, (1)

well in the linear-optics regime, with g = 7/15 the degeneracy
factor of the transition for equally populated Zeeman states
and Isat = 1.6 mW/cm2 the saturation intensity. The scattered
light is collected by a two-inch lens and detected with a hybrid
photon multiplier under an angle of 35◦ to the probe beam
(see Fig. 1). The signal is then sent to a multichannel scaler
for averaging over typically more than 400 000 cycles with a
time resolution of 1.6 ns.

Because of the ballistic expansion during the pulse se-
ries the cloud size increases and the cooperativity parame-
ter that controls super- and subradiance effects [4,24], b0 =
3N/(kR)2, decreases (here k = 2π/λ and λ = 780 nm is the
wavelength of the transition). For simplicity, we call this
parameter the on-resonance optical depth, although the actual
optical depth is

b(δ) = g
b0

1 + 4δ2/�2
0

, (2)

which can be measured by absorption imaging. This measure-
ment is interlaced with the data acquisition by changing one
out of 750 cycles. For those special cycles, the measurement
sequence with the pulse series is replaced by an absorption
imaging procedure. The time of flight before imaging is varied
over the data acquisition such that the temperature and the
optical depth for each pulse are measured several times dur-
ing an acquisition run. This improved calibration procedure
gives us access to any drift that might occur during the data
acquisition.

III. SUBRADIANT DECAY FOR DIFFERENT
ENSEMBLE TEMPERATURES

We report in Fig. 2 the results of our systematic exper-
imental study of the subradiant decay as a function of the
temperature of the sample. In panel (a) we show the decay
curves of the scattered light. The intensity is normalized to

FIG. 2. (a) Experimental decay curves for several temperatures, all normalized to the pulse level at the switch-off time t = 0, with a
resonant optical depth b0 = 150 ± 8. The temperature is encoded in the color scale. A smooth reduction of the subradiant decay with increasing
temperature is well visible. (b) Subradiant decay times as a function of b0 for different temperatures (same color code). For clarity only the last
data set is shown with error bars. The horizontal blue dashed line shows the time scales �−1

D corresponding to the Doppler width for the lowest
temperature, 50 μK (�−1

D = 68.6τat), and the highest one, 11.2 mK (�−1
D = 4.58τat), red dotted line.
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its steady-state value just before the switch-off at t = 0. All
curves are recorded for an on-resonant optical depth b0 =
150 ± 8 and the temperature is encoded in the color scale,
from 50 μK (dark blue) to 11.2 mK (dark red). The first
observation is that subradiance is clearly visible in all curves,
even in the mK range, which demonstrates its robustness
against thermal motion. The second is that we do observe a
reduction of the subradiant decay time when the temperature
increases.

To study this effect more precisely we fit all decay curves
by an exponential decay at late time (the fitting range is taken
as one decade above the noise floor, to cover the longest-lived
visible mode). The obtained subradiant time τsub is reported
in Fig. 2(b) as a function of the on-resonance optical depth
b0 for each temperature (same color code). Note that the
number of data points is reduced for the highest temperatures
because of the fast ballistic expansion of the cloud. The
linear scaling of τsub with b0, as previously reported [4,23],
is observed at all temperatures; however, the slope is reduced
when the temperature increases.

For each temperature T we fit this linear trend as τsub/τat =
1 + αsub · b0 to obtain the slope of the subradiant enhance-
ment. In the inset of Fig. 4 we plot the slope αsub as a
function of the ratio between the Doppler broadening �D =
kσv , with σv = (kBT/mRb)1/2 the rms width of the atomic
velocity distribution (kB is the Boltzmann constant and mRb

the atomic mass), and the natural decay rate �0. Although the
temperature is varied by more than two orders of magnitude,
the slope only changes by a factor ∼3. Within this limited
range the decrease fits best with a logarithmic function of
�D/�0.

For almost all our data we have �sub < �D < �0. The
characteristic time corresponding to the Doppler width, �−1

D ,
is shown in dashed lines in Fig. 2(b) for the lowest and
highest temperatures. Since �sub < �D it is not surprising that
thermal motion affects subradiance, which is built up by the
interference of light scattered by many atoms. However, it is
a nonintuitive result that subradiant modes with lifetimes long
compared to the typical atomic motion survive. A possible
explanation for this apparent robustness is the large number
of subradiant modes. As the atoms move and the eigenmodes
of the system are modified, the excitation contained in a sub-
radiant mode has a larger probability to stay in the subradiant
manifold because, at large b0, there are much more subradiant
modes than superradiant ones [25]. In the extreme case of the
Dicke limit (R � λ), there is only one superradiant mode in
the low excitation limit, while N − 1 subradiant modes are
present.

IV. TEMPERATURE EFFECTS IN THE
COUPLED-DIPOLE MODEL

To provide a comparable numerical study of the decay
dynamics of the interacting atomic ensemble, as well as
to explore the regimes of parameters that we cannot reach
experimentally, i.e., �sub > �D and �D > �0, we now turn to
numerical simulations of an adapted version of the coupled-
dipole (CD) model, which includes atomic motion [26,27].

The CD model provides a well-suited description in the
context of cooperative effects, especially for super- and

subradiance in the linear optics regime [4–6,26,28–32]. The
model consists of N two-level atoms randomly distributed in
space at position ri. The atoms are driven with an incident
laser field with a Rabi frequency �(ri ) and a detuning δ. For
the low excitation limit, which is considered here, the only
relevant states are the ground state |G〉 = |g · · · g〉 and the
single-excited states |i〉 = |g · · · ei · · · g〉. One can then obtain
an effective Hamiltonian for the time evolution of the atomic
wave function

|ψ (t )〉 = α(t )|G〉 +
N∑

i=1

βi(t )|i〉. (3)

Since we are in the low excitation limit (α � 1) the time
evolution of the system is described by the time evolution of
the excitation probabilities

β̇i =
(

iδ − �

2

)
βi − i�i

2
+ i�

2

∑
i 	= j

Vi jβ j . (4)

The first term represents the single-atom decay dynamics, the
second term the driving field for the excitation, and the last
term the dipole-dipole interaction containing the cooperative
effects. We use a scalar model to describe the dipole-dipole
interaction, neglecting any polarization effect as well as near-
field terms, which is a good approximation for a very dilute
gas, as used in our experiment. In this case the dipole-dipole
interaction term is

Vi j = eikri j

kri j
, with ri j = |ri − r j |, (5)

with ri j the relative distances between the atoms. Since the
βi(t ) provide the time evolution of the excitation probability
one can then calculate the emitted light intensity as a func-
tion of time. A more detailed description can be found in
Refs. [31,32].

In order to include the effect of temperature, we include
atomic motion by assigning to each atom a velocity vi fol-
lowing a normal distribution of rms width σv = (kBT/mRb)1/2

in each direction of space and let the space vector ri(t ) be
time dependent. At low temperature we use a ballistic motion
for each atom, as in the experiment. However, this turned
out to be problematic with increasing temperatures, since
it comes along with a non-negligible increase of size (and
correspondingly a drop of the optical depth) of the sample
during the subradiant decay time [33]. This effect is negligible
in the experiment, where the spatial width of the distribu-
tion σx 
 kσvτsub, but can become important in simulations,
where one needs to use smaller values of σx to simulate large
values of b0, as the number of atoms in the simulations is
limited to a few 1000. To avoid this and keep a well-defined
optical depth during the simulation, for temperatures larger
than 500 μK, we simulate the atomic motion with a harmonic
trapping. By choosing the oscillation frequency ωH as the ratio
between the rms widths of the velocity and space distributions,
ωH = σv/σx, the sample keeps its Gaussian density distribu-
tion with a constant size. The initial position and velocity of
each atom are drawn independently in their respective normal
distributions. We have checked that the two ways of including
atomic motion (ballistic or harmonic) give the same results
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FIG. 3. (a) Numerical results of the decay curves for Nat = 1500
atoms. Subradiance starts to be significantly reduced in the mK
range, but still shows decay time much longer than the single atom
decay time τat . Only when reaching room temperature does the
decay curve follow the one of the single-atom case (dashed black
line). The dashed lines are obtained with a ballistic motion of the
atoms, while the solid lines are with the harmonic oscillator model.
For 10 μK and 500 μK both models are displayed but are hardly
distinguishable. (b) Numerical results for the fitted subradiant decay
times for different resonant optical depths b0. The temperatures are
the same as in (a). For temperatures below 2 mK the decay times are
almost the same, while increasing the temperature further leads to a
smooth decrease of the decay times. The dashed lines are linear fits,
whose slopes αsub are reported in Fig. 4.

around 500 μK, the temperature beyond which we use the
harmonic motion.

V. SCALING LAW OF THE TEMPERATURE DEPENDENCE

Solving Eqs. (4) for different temperatures ranging from
1 nK to 273 K with an atom number N = 1500 and com-
puting the total scattered intensity, we obtain the decay
curves shown in Fig. 3(a). The long-lived subradiant states
decay faster when the temperature increases; however, it
reaches the single-atom decay only close to room temperature
(�D/�0 ≈ 100). As in the experiment, we extract the subradi-
ant decay time τsub by an exponential fit of the slow decay at
late time and low level (we choose the fitting range between
10−6 and 5 × 10−5 for the relative intensity). The results
are reported in Fig. 3(b) as a function of the on-resonance
optical depth b0. The linear trend of τsub as a function of b0

is well visible at all temperatures, which is consistent with the
experimental observations.

Note that, at large temperature, the Doppler broadening
becomes comparable to, or larger than, the detuning (we used
δ = −4� in all simulations), such that the driving laser is

D/ 0

su
b 1
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0.4

0.6
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FIG. 4. Numerical results for the subradiant decay time slopes
αsub as a function of the Doppler width �D in units of �0. After a
plateau the decay time is reduced smoothly with increasing temper-
atures. When �D/�0 > 1, the decay is a power law (note the log-log
scales). The fit (red solid line) gives an exponent compatible with −1.
Inset: direct comparison between the experimental (filled rectangles)
and numerical (open circles) results for αsub. The behaviors with the
temperature are the same, which demonstrates the validity of our
modeling of the atomic motion.

de facto on resonance, which may introduce radiation trapping
[34]. However, as studied in detail in Ref. [23], radiation trap-
ping dominates the slow decay only when the actual optical
depth b(δ) is larger than ∼10 at zero temperature, and is even
less visible with Doppler-induced frequency redistribution. In
our simulations, the Doppler-broadened optical depth is at
most ∼0.5, such that the observed slow decays in Fig. 3 can
be safely attributed to subradiance.

To provide a more quantitative study on the impact of
temperature on the subradiant decay times, we show in Fig. 4
the slopes αsub extracted from the linear fit of the data of
Fig. 3(b), as a function of the Doppler width in units of the
natural linewidth. For the lowest temperatures a plateau is
visible, i.e., αsub becomes independent of T for low enough
temperature, the atoms are quasistatic. When the Doppler
broadening becomes nonnegligible, αsub starts to slowly de-
crease. This is the range we experimentally explore, as seen
in the insets of Figs. 2(b) and 4. When the Doppler broad-
ening reaches the single atom decay rate, �D/�0 > 1, the
decrease of subradiance follows a power law. A power-law
fit αsub = β(�D/�0)m gives β � 0.16 and m = −1.12 ± 0.14,
compatible with m = −1. This exponent can be interpreted as
follows. In the regime when �D/�0 > 1, the convolution of
the scattering cross section with the Doppler broadening leads
to a reduced center of line scattering cross-section scaling
as (�D/�0)−1 and, for a given atomic density and sample
size, the optical depth is also proportional to (�D/�0)−1. The
observed scaling of the subradiant decay rates as shown in
Fig. 4 is thus primarily consistent with a Doppler-broadened
resonant optical depth in the limit of �D 
 �0. Note that a
simple selection of slow atoms up to a certain cutoff velocity
inside the Maxwell-Boltzmann distribution would lead to a
different scaling, with a more drastic decrease as (�D/�0)−3.

We finally show in the inset of Fig. 4 the direct comparison
(without any free parameter) of the measured and computed
slopes αsub as a function of the temperature. Although we do
not expect any quantitative agreement on the precise values
of αsub, even at zero temperature, because of the complex
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level structure of rubidium that is not taken into account in
the model, the behaviors of αsub with T are in remarkable
agreement. This validates a posteriori our way of introducing
the atomic motion in the coupled-dipole model.

VI. CONCLUSION AND OUTLOOK

In summary, we have demonstrated that for a large tem-
perature range of the atomic cloud the subradiant decay is
robust against thermal decoherence. In particular, the time
scale corresponding to the Doppler broadening, �−1

D , does
not directly introduce a limit for the subradiant lifetime, but
merely provides a rescaling of the subradiant enhancement
factor (αsubb0) in the high temperature regime. This rescaling
can be interpreted as a modification of the resonant optical
depth, which is reduced by the Doppler broadening but re-
mains the cooperativity parameter controlling subradiance.

These results open up the prospect of observing and using
subradiance at room temperature or with hot atomic vapors.
Indeed, an extrapolation of the scaling laws discovered in

this work predicts subradiance with τsub/τat ∼ 40 with a
5-cm Rb cell at 100 ◦C (with these parameters, b0 ∼ 104

and �D/�0 ∼ 40 [35]). Similar to room-temperature atomic
quantum memories, which have already reached excellent
performances [36,37], subradiance could be more broadly
used for quantum-optics or quantum-metrology applications
[8–13] at room temperature. This robustness may also be
applied to other interference effects in light scattering, such
as coherent backscattering [38].
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164 Chap VI - Super- and subradiance in the linear-optics regime

Note that another, complementary work has been performed by Kuraptsev & Sokolov on the
effect of atomic motion on the long-lived state in the dense regime and probed near resonance.
In that case, corresponding to radiation trapping and Anderson-localized modes, they find
that atomic motion can be detrimental [Kuraptsev 2020].

VI.2. Observation of superradiance off axis
In the subradiance data we also looked at the decay at early time, just after the switch-off,
and observed that the initial decay rate could be faster that Γ0. This was a bit surprising
because in the recent literature about single-photon superradiance, the superradiant decay
was always associated to the timed-Dicke (TD) state, whose emission diagram is mainly a
forward lobe. Indeed, the decay rate of the TD state for a Gaussian cloud is [Courteille 2010]

ΓTD =
(

1 + b0

8

)
Γ0 , (VI.1)

where b0 =
√

2πσ0ρ0R is the resonant optical thickness at the center of the cloud (σ0 is the
resonant scattering cross-section3, ρ0 is the peak density at the center and R is the rms width)
and some authors attributed the b0 enhancement term to the forward lobe and the 1 to the
incoherent scattering off axis, which is never completely suppressed because of the finite size
of the scattering medium.4

As shown numerically and experimentally in the following paper [Araújo 2016], this vision
is not correct. On the contrary, when the driving field is detuned enough to fulfill the TD
approximation, the decay rate off axis is even more superradiant than the one in the forward
lobe.

In the subradiance data the superradiant decay was hardly visible because the switch-off was
not fast enough. To acquire a new series of data devoted to superradiance, we changed our
switch-off setup and replaced the ‘fast AOM’ by an electro-optical modulator (EOM) driven
by a pulse generator. The setup is detailed in Michelle Araújo’s PhD thesis [Araújo 2018a].
We could reach a falltime of about 3 ns, and observed superradiant decay rates up to ∼ 6Γ0.

The paper [Araújo 2016] was published simultaneously to a complementary one by the group
of Mark Havey, where they report the study of the superradiant decay rate in the forward
lobe [Roof 2016]. These are, to my knowledge, the first experiments on superradiance in the
linear-optics regime.

3 For a closed transition, σ0 = 3λ2/(2π), which is the commonly-used value. However, in the scalar
CD model, the scattering cross section is actually λ2/π, which led to some confusion in the first papers
of the group, in which the optical thickness was erroneously defined as 3N/(kR)2 instead of 2N/(kR)2

(correspondingly, the enhancement factor was given as b0/12 instead of b0/8) [Courteille 2010,Bienaimé 2010,
Bienaimé 2011b,Bienaimé 2012,Bienaimé 2013]. This has been corrected in [Bienaimé 2014]. Moreover, in
the experiment, we don’t have a closed transition because of the Zeeman degeneracy. The usual method is to
suppose that all Zeeman states are equipopulated, which gives, in the case of the |2〉 → |3′〉 transition of
87Rb, an extra factor C = 7/15. Since the influence of the Zeeman degeneracy on super- and subradiance is
not really known, by convention and for consistency with previous papers, we defined b0 = 3N/(kR)2 as the
‘cooperativity parameter’, noting that the true optical thickness was C × b0 in the experiment and 2b0/3 in
the CD simulations [Guerin 2016a,Araújo 2016,Weiss 2018,Weiss 2019].

4 I can’t find the reference any more but I’m pretty sure I’ve read that somewhere.
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Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence,
where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or
“single-photon superradiance,” has been investigated much more recently, and superradiant decay has also
been predicted, even for a spherical sample of large extent and low density, where the distance between
atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly
measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms
after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large
detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the
superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-
scattering effects.

DOI: 10.1103/PhysRevLett.117.073002

In his classic paper on coherence in spontaneous
radiation by atomic samples [1], Dicke showed that a
collection of identical excited atoms could synchronize to
emit light coherently. In the case initially envisioned by
Dicke, an atomic sample of size small compared to the
wavelength of the transition, superradiance can be inter-
preted as the spontaneous synchronization of the radiation
by all atoms and can be understood by the buildup of a
giant dipole corresponding to the symmetric superposition
of atomic states. Since it is difficult to prepare such dense
and small samples, and since near-field dipole-dipole
interaction may in fact prevent superradiance at high
density [2], experimental studies of superradiance in the
1970s and 1980s were realized with large-size samples
(mainly pencil shaped) of low density [3,4]. In this regime,
superradiance, more precisely called superfluorescence
[5,6], is intrinsically a nonlinear optical process.
More recently, it has been pointed out that a single

photon, first absorbed by one atom among N others in a
sample of large size and low density, would be sponta-
neously emitted in the direction of the initial photon wave
vector [7], in contrast with the simple picture of isotropic
spontaneous emission. This coherent forward scattering,
which has been observed very recently [8], can be
explained by a phase-matching condition, and thus does
not rely on dipole-dipole interactions. This extended-
volume regime was already mentioned by Dicke [1] and
was further developed by others [9,10].
A less obvious result, which does rely on the long-range,

light-induced dipole-dipole interactions between atoms, is
the decay rate ΓN of the corresponding collective excited
state, which has been computed by many authors [9–17],

ΓN ¼ C
N

ðkRÞ2 Γ; ð1Þ

where Γ−1 is the lifetime of the excited state of a single-
atom in vacuum, N is the number of atoms, k ¼ 2π=λ is
the wave vector associated with the optical transition, R is
the radius of the sample, and C is a numerical factor on the
order of unity, which depends on the precise geometry of
the sample. If the number of atoms is sufficiently large, one
can have ΓN ≫ Γ, corresponding to a superradiant decay,
even at low spatial density, where the separation between
atoms is much larger than the wavelength. This is in
contrast with the case of two particles [18–20], for which
the single-atom decay rate is recovered for an atomic
separation larger than λ. This “single-photon superra-
diance” has attracted a lot of attention in the last years
[21–23], but direct experimental evidence has been limited
to special geometries involving cavities or waveguides
[24,25] or to multilevel schemes [26,27]. Related phenom-
ena are optical precursors [28,29] or “flash” [30–32], which
can also have a temporal dynamic faster than Γ. Since these
effects come from the interference between the scattered
field and the driving field, they are only visible in the
forward direction and can be explained by the transient
response of the complex refractive index of the gas.
On the contrary, light emission at different angles

(“off-axis scattering” or “fluorescence”) cannot be
explained by a phase-matching condition imposed by the
initial laser field or a continuous-medium description [33].
Recently, we have used off-axis scattering to observe
subradiance [34,35]. In this Letter, we present the direct
observation of the superradiant decay of the fluorescence
emitted in free space by a large spherical sample of cold
atoms, which is continuously driven by a low-intensity
laser that is abruptly switched off.
A true single-photon source is indeed not necessary to

observe single-photon superradiance. As stressed by Prasad
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and Glauber [16], it is the spatially extended initial
coherence, not entanglement per se, that is fundamentally
responsible for cooperative radiation processes such as
superradiance and subradiance (see also Refs. [36–38]), so
that continuous driving by a low-intensity laser (compared
to the saturation intensity of the atomic transition) can also
be used to study these effects [14,15]. Similarly, it has been
shown that the full quantum problem is equivalent, in the
linear-optics regime, to classical coupled dipoles [39,40].
Before turning to the experimental results, we use the

coupled-dipole model to illustrate the qualitative differences
between forward and off-axis scattering. We consider a
sample of N motionless two-level atoms distributed over a
3D Gaussian atomic density distribution of rms radius R,
illuminated along the z axis by a plane wave (wave vector
k0 ¼ kẑ) with detuning Δ ¼ ω − ω0 and Rabi frequency
Ω ≪ Γ. In the low-intensity limit, using the Markov
approximation, the linear response of this many-body system
can be simulated by N coupled-dipole equations [14,38]

_βi ¼
�
iΔ −

Γ
2

�
βi −

iΩ
2
eik0·ri þ iΓ

2

X
i≠j

Vijβj; ð2Þ

where βi is the amplitude of the single-excited-atom state
jii ¼ jg � � � ei � � � gi and

Vij ¼
eikrij

krij
; rij ¼ jri − rjj; ð3Þ

describes the light-induced dipole-dipole interaction in
the scalar approximation, neglecting near-field terms and

polarization effects, which is a good approximation for our
dilute samples [41,42]. The first term of the rhs of Eq. (2)
corresponds to the natural evolution of the dipoles (oscil-
lation and damping), the second one corresponds to the
driving by the external laser, and the last one, the dipole-
dipole interaction term, is responsible for cooperative effects.
Numerically solving these equations allows us to com-

pute the emission diagram [38] as well as the temporal
decay after switching off the driving term [34,35]. By
fitting the initial decay just after the switch off, we can
study how the collective decay rate ΓN depends on the
emission direction, on the resonant optical depth b0 ¼
3N=ðkRÞ2 [43], and on the detuning Δ. Note that the atom
number is limited to a few thousands in the simulations
and that the complex Zeeman structure of rubidium atoms
is not taken into account, so that a quantitative agreement
with the experiment is not expected.
The main results of the numerical study are reported

in Fig. 1. At large detuning, the steady state reached
before switch off tends to the “driven timed-Dicke state”
[7,14,23], in which all atoms have the same excitation
probability. As for a collection of independent atoms, the
emission diagram is mainly forward directed for large b0
[inset of Fig. 1(a)], but it also contains a non-negligible
quasi-isotropic background, which is neglected in the
continuous-medium approach used in Refs. [11–16]. It
has also been shown in Ref. [38] that this collective state
decays with an initial rate

ΓN ¼
�
1þ b0

12

�
Γ ð4Þ

(a) (b) (c)

FIG. 1. Numerical study of the initial collective decay rate ΓN . (a) Temporal evolution of the fluorescence after the switch off of the
driving laser at t ¼ 0, with b0 ¼ 11.3, ρ0λ3 ¼ 4.6, Δ ¼ 10Γ, averaged over 50 configurations, for two different angles, in the forward
direction θ ¼ 0° and at 90° (θ ¼ π=2). The amplitude is normalized to the steady-state amplitude, which is much larger for θ ¼ 0° as
shown in the emission diagram (inset, in log scale). The time axis is normalized to the lifetime of the excited state τat ¼ Γ−1 ≈ 26 ns. An
exponential fit in the range 0 < t=τat ≤ 0.2 allows us to extract the initial decay rate ΓN . At late time, the decay becomes subradiant
[34,35]. The dashed line shows the decay expected for a single atom (rate Γ). (b) Decay rate as a function of the resonant optical
thickness b0 ¼ 3N=ðkRÞ2 for different densities (ρ0 is the density at the center of the cloud). Filled symbols are for θ ¼ 0° and open
symbols for θ ¼ π=2. The increase is mainly linear in b0. The slope of the linear increase slightly depends on the angle. The dotted line
shows the expectation for the decay of the timed-Dicke state [Eq. (4)]. (c) Decay rate as a function of the detuning, for b0 ¼ 17,
ρ0λ

3 ¼ 4.6, and detection angles θ ¼ 0, π=2. Off-axis superradiance is suppressed near resonance. The error bars shown in panel (c) and
omitted in panel (b) for clarity correspond to the 95% confidence interval for the exponential fit of the decay rate.
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for a Gaussian atomic distribution, which is consistent with
the scaling of Eq. (1) for very large b0 and with the single-
atom limit for small b0. We observe this scaling in Fig. 1(b).
The slope for the forward scattered light (θ ¼ 0) is very
close to the one predicted by Eq. (4) because forward
scattering is the most important contribution. Moreover,
maybe surprisingly, the light scattered off axis exhibits
superradiant decay as well [44], with a similar linear
scaling with b0, the slope being slightly modified by the
angle difference [Figs. 1(a) and 1(b)]. Superradiance is thus
also visible, and even with a faster decay rate, in the off-axis
scattering.
In an experiment, it is hard to use a very large detuning

because it obviously decreases the amount of fluorescence.
In practice, using a moderate detuning contributes to
populate other states than the timed-Dicke state [23],
essentially because of the exponential attenuation of the
driving field inside the cloud. This contributes to populate
longer-lived states, which can be interpreted as subradiant
states at large or moderate detuning [35] or simply as
radiation trapping due to multiple scattering near resonance
[45]. We thus expect that the superradiant decay is sup-
pressed near resonance. This is what we observe in the
numerical results of Fig. 1(c) for off-axis scattering. The
behavior of forward scattering is different because it is
related to the transient response of the refractive index.
As shown in Ref. [32], it is slightly faster on resonance.
These qualitatively different behaviors of forward and off-
axis scattering emphasize that the two are different physical
mechanisms. Although this is almost never stated clearly,
the forward lobe seen in Fig. 1(a) and discussed in many
papers (see, e.g., Refs. [8,12,14,46]) should indeed be seen
as diffracted and refracted light more than scattered light.
Let us now turn to our experimental observation of

superradiance. In our experiment, we load N ≈ 109 87Rb
atoms from a background vapor into a magneto-optical trap
(MOT) for 50 ms. A compressed MOT (30 ms) period
allows for an increased and smooth spatial density with a
Gaussian distribution of rms radius R ≈ 1 mm (typical
density ρ ≈ 1011 cm−3) and a reduced temperature
T ≈ 50 μK. We then switch off the MOT trapping beams
and magnetic field gradient and allow for 3 ms of free
expansion, used to optically pump all atoms into the upper
hyperfine ground state F ¼ 2. Next, we apply a series of
12 pulses of a weak probe beam (waist w ¼ 5.7 mm),
linearly polarized and detuned by Δ from the closed
atomic transition F ¼ 2 → F0 ¼ 3 (λ ¼ 780.24 nm and
Γ=2π ¼ 6.07 MHz). When we varied the detuning, we
also varied the laser intensity accordingly in order to
keep the saturation parameter approximately constant at
s≃ ð2.2� 0.6Þ × 10−2. The pulses of duration 30 μs and
separated by 1 ms are obtained by an electro-optical
modulator (EOM, fibered Mach-Zehnder intensity modu-
lator by EOspace, Ref. AZ-0K5-10-PFU-SFU-780) with a
90%-10% falltime of about 3 ns (Fig. 2). It is driven by a

pulse generator (DG535 by SRS) and actively locked to
avoid any drift of the working point. In order to improve the
extinction ratio, we also use an acousto-optical modulator
(AOM) in series with the EOM. Between subsequent pulses
of each series, the size of the cloud increases because of
thermal expansion, and the atom number decreases due to
off resonant optical pumping into the F ¼ 1 hyperfine state
during each pulse, which allows us to realize different
optical depths within one series of pulses. After this stage
of expansion and measurement, the MOT is switched on
again and most of the atoms are recaptured. The complete
cycle is thus short enough to allow the signal integration
over a large number of cycles, typically ∼500 000. The
fluorescence is collected by a lens with a solid angle of
∼5 × 10−2 sr at θ ≈ 35° from the incident direction of the
laser beam and detected by a photomultiplier (Hamamatsu
HPM R10467U-50). The signal is then recorded on a
multichannel scaler (MCS6A by FAST ComTec) with a
time bin of 0.4 ns, averaging over the cycles. The
cooperativity parameter b0 corresponding to each pulse
is calibrated by an independent measurement of the atom
number, cloud size, and temperature using absorption
imaging (see the Supplemental Material of Ref. [35]).
We show in Fig. 2 examples of the measured fluores-

cence decay for different values of b0 and a fixed detuning
Δ ¼ −6Γ. We clearly see that the decay is much faster
than the single-atom decay, in contrast to the behavior of
collective incoherent scattering effects such as radiation
trapping [45]. This fast decay rate increases with b0, in line
with the expected superradiant behavior. From these data
we can fit the initial decay by an exponential and extract the
collective decay rate. The fitting procedure has been chosen
as follows. The range of the fit starts at t=τat ¼ 0.1, when
the probe laser intensity has decayed to 10% of its initial
value. It ends when the measured signal arrives at 20% of

(a) (b)

FIG. 2. (a) Decay of the measured fluorescence power P after
switching off the probe laser for two different b0 (red and blue
solid lines) at a given detuning Δ ¼ −6Γ. The vertical axis is
normalized to the steady-state fluorescence level. The dashed line
shows the expected decay for a single atom, e−t=τat , and the black
solid line is the switch off of the laser (the fast part with a poor
extinction ratio is due to the EOM and the slower part is due to the
AOM). (b) Same data at shorter time scales, with the exponential
fit of the initial decay that allows us to measure ΓN .
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its initial value or when the background light scattered from
the hot Rb vapor in the vacuum chamber is at this level.
This background light decays like e−t=τat [well visible in
Fig. 2 for P=Pð0Þ < 10−1] and has a relative weight that
depends on the atom number and the detuning (it is
negligible on resonance with the cold atoms and becomes
important far from resonance) and which is independently
calibrated for each measurement. Finally, when the number
of points in the fitting range is less than 15, or when the
statistical coefficient of determination of the fit R2 is less
than 0.85, the data are discarded.
The systematic study of the collective decay rate ΓN as a

function of the resonant optical thickness b0 and the
detuning Δ is presented in Fig. 3(a). The increase with
b0 is well visible, especially at large detuning, up to a
maximum value Γmax ∼ 5Γ–6Γ, well above the decay rate
of independent atoms. We note that the curves acquired for
different detunings do not collapse on a single curve,
contrary to what has been observed for subradiance [35],
showing the sensitivity of superradiance to the proximity
of the resonance. Indeed, the decay rates measured for
small detunings do not exhibit superradiance, and even at
moderate detuning, the decay rate starts to decrease at high
b0, when the actual optical thickness

bðΔÞ ¼ g
b0

1þ 4Δ2=Γ2
ð5Þ

is on the order of 1 or higher (here g ¼ 7=15 is the relative
strength of the transition for a statistical mixture of
Zeeman states). We show indeed in Fig. 3(b) that bðΔÞ
becomes the relevant parameter in this regime. These
observations are perfectly consistent with the expectation
of the coupled-dipole model [Fig. 1(c)] and with the
intuition that collective superradiant states are less popu-
lated if the driving field is attenuated inside the sample [23].
Finally, we checked that the results are independent of

the intensity (or the saturation parameter) to confirm that

the experiments have been done in the linear-optics regime.
For this we varied the intensity I of the probe beam at fixed
detuning and b0, and we report in Fig. 3(c) the decay rate as
a function of the saturation parameter

sðΔÞ ¼ g
I=Isat

1þ 4Δ2=Γ2
ð6Þ

with Isat ¼ 1.6 mW=cm2 the saturation intensity. We
observe no significant variation of ΓN with the saturation
parameter in the explored range s < 0.04.
In summary, we have reported the first observation of

superradiant decay in free space (without a cavity) in the
low-intensity regime, using the fluorescence (off-axis
scattering) of a cold-atom cloud. We have shown that at
large detuning, the decay rate increases with the resonant
optical depth, but it is suppressed near resonance. These
observations are consistent with numerical solutions of
coupled-dipole equations in the dilute limit. The shortening
of the radiative lifetime due to cooperativity is potentially
important to a number of areas, such as the diagnostics of
ultracold gases [47,48], quantum memories [27,49], optical
clocks [8,50,51], ultranarrow lasers [52], photon-pair
sources [26], and light-harvesting systems [53,54].
To conclude, let us notice that in Dicke superfluores-

cence [3], in optical precursors (or flash) [32], as well as in
the experiment reported here dealing with low-saturation
fluorescence, the time scales associated with the transient
regimes are always governed by the same cooperativity
parameter, the resonant optical depth. These three phenom-
ena can be related to stimulated emission, the refractive
index, and spontaneous emission, respectively, and are thus
different facets of light-atom interaction. It is interesting,
and also beautiful, to see that they exhibit cooperativity in a
similar way. On the other hand, other collective properties,
such as the cw susceptibility (including the refractive index,
the linear attenuation coefficient or gain coefficient for

(a) (b) (c)

FIG. 3. Experimental study of the initial collective decay rate ΓN . (a) Systematic analysis of ΓN as a function of the resonance optical
thickness b0 and the detuningΔ. (b) Same data shown as a function of bðΔÞ. When bðΔÞ≳ 1, it becomes the scaling parameter. (c) ΓN as
a function of the saturation parameter sðΔÞ, for b0 ¼ 21� 1 and Δ ¼ −4Γ. In all panels, the error bars represent the 95% confidence
interval of the fit.
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inverted systems, the Lorentz-Lorenz shift [55], and
beyond mean-field corrections [56,57]) and weak-locali-
zation corrections to diffusive transport [58], are governed
by the atomic density. The fundamental difference is that
the latter are properties of the bulk material, which can be
defined for an infinite medium. Transient phenomena, on
the contrary, involve light escaping from the sample, in
which case the finite size of the medium and the finite
number of atoms are necessarily key parameters [59].
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Note added.—Recently, we have learned of a complemen-
tary experiment on superradiance in the forward direction;
see Ref. [60].
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VI.3. Population of the collective modes
At this point some observations can seem puzzling. In [Guerin 2016a] we observed that
subradiance is enhanced near resonance (the lifetime is the same but the relative amplitude
of long-lived modes is higher), while on the contrary, in [Araújo 2016] we observed that
superradiance off axis is suppressed. How to understand that?

More generally, how can we understand the role of the detuning? Actually, even before those
observations, since I started to think about these subjects, I was puzzled by the ‘problem’ of
the detuning, which is the following: in the CD equations (see one of the previous papers),
the detuning is present in the driving term but not in the dipole-dipole interaction term,
although this term is responsible for all collective effects, the trivial ones (attenuation and
refractive index) and the nontrivial ones like multiple scattering and super/subradiance. Most
of these effects obviously depend on the detuning. Even, the very existence of cooperative
effects like super/subradiance at very large detuning is not intuitive. Moreover, many
numerical studies of collective effects in light-atom interaction are based on the analysis of
the eigenvalues and eigenvectors of an effective Hamiltonian (in particular for the problem of
Anderson localization [Rusek 1996,Rusek 2000,Pinheiro 2004,Skipetrov 2014,Bellando 2014,
Skipetrov 2015,Máximo 2015, Skipetrov 2016]), and the detuning does not appear in this
approach (the effective Hamiltonian is our dipole-dipole interaction matrix). At the same
time, collective modes, for instance long-lived ones, may be given different interpretations
depending on the detuning used to drive the system: radiation trapping near resonance or
subradiance far from resonance.

Clearly there is something missing. The missing ingredient is the population of the different
collective modes, which depends on how the system is driven, in particular on the detuning.
One can even find a simple analytical expression for this dependence and understand many
things by examining the consequences of this relation [Guerin 2017b].

Maybe these results are obvious, but when I obtained them it was enlightening for me!
Note that I actually did that in December 2014, such that I predicted that subradiance
would be higher and superradiance suppressed near resonance. It was very satisfying when
the experiment confirmed. I wrote the paper later. The paper [Guerin 2017b], reproduced
below, also addresses the spatial properties of the collective modes and suggests a difference
between the collective modes responsible for radiation trapping and the ones responsible for
subradiance, the latter being more extended.
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The interaction of light with an atomic sample containing a large number of particles gives rise to many
collective (or cooperative) effects, such as multiple scattering, superradiance, and subradiance, even if the atomic
density is low and the incident optical intensity weak (linear optics regime). Tracing over the degrees of freedom
of the light field, the system can be well described by an effective atomic Hamiltonian, which contains the
light-mediated dipole-dipole interaction between atoms. This long-range interaction is at the origin of the various
collective effects, or of collective excitation modes of the system. Even though an analysis of the eigenvalues and
eigenfunctions of these collective modes does allow distinguishing superradiant modes, for instance, from other
collective modes, this is not sufficient to understand the dynamics of a driven system, as not all collective modes
are significantly populated. Here, we study how the excitation parameters, i.e., the driving field, determines the
population of the collective modes. We investigate in particular the role of the laser detuning from the atomic
transition, and demonstrate a simple relation between the detuning and the steady-state population of the modes.
This relation allows understanding several properties of cooperative scattering, such as why superradiance
and subradiance become independent of the detuning at large enough detuning without vanishing, and why
superradiance, but not subradiance, is suppressed near resonance. We also show that the spatial properties of the
collective modes allow distinguishing diffusive modes, responsible for radiation trapping, from subradiant modes.

DOI: 10.1103/PhysRevA.95.053865

I. INTRODUCTION

Collective effects in light scattering by atomic ensembles
are at the focus of intense research, both theoretically and
experimentally [1]. Recently, the question of light localization
in atomic media has been the subject of several studies based
on an effective Hamiltonian approach [2–9]. From a total
Hamiltonian describing a system of N atoms with at most one
quantum of excitation (one photon), the degrees of freedom of
the light field are traced over to get an effective non-Hermitian
atomic Hamiltonian Heff . In this approach, the eigenmodes
and eigenvalues of Heff are computed and analyzed. However,
these quantities are not direct experimental observables, which
makes the interpretation more difficult, in particular because
the way the initial excitation entered the system is not specified.
In a real experiment, the system is driven or excited by some
external field and the outcome of the experiment depends on
the parameters of this field.

Another, complementary approach has been used re-
cently in the context of single-photon superradiance [10–13]:
coupled-dipole equations (CDEs) [14,15]. This approach is
based on the same effective Hamiltonian, but adding an ex-
ternal driving field is straightforward [16–18]. This describes
the dynamics of the system in the low-intensity regime of
excitation (linear optics) and allows computing experimental
observables, such as the emission diagram [16,17], collective
line shape and width [19–25], or the temporal dynamics of the
scattered light [12,13,26–28].

The coupled-dipole equations including the external drive
read

β̇i =
(

i� − �0

2

)
βi − i�(r)

2
+ i�0

2

∑
i �=j

Vij (rij )βj , (1)

*william.guerin@inphyni.cnrs.fr

where βi is the amplitude of the single-excited-atom state |i〉 =
|g · · · ei · · · g〉 with |g〉 (|e〉) denoting the ground (excited)
state, � is the detuning of the driving field from the two-level
atomic dipolar transition, �(r) = −dE(r)/h̄ its complex Rabi
frequency with E(r) the driving electric field, �0 the natural
decay rate for a single excited atoms, and Vij (rij ) is the
dipole-dipole interaction (DDI) between atoms i and j , which
depends on their separation rij . For simplicity we will consider
only the scalar model of the DDI, which is relevant at low
density. We will also set �0 = 1 and drop it in the following.
The first term of Eq. (1) corresponds to the natural evolution
of the dipoles (oscillation and damping), the second one to the
driving by the external laser, and the last term corresponds to
the DDI interaction.

In the CDEs, the detuning � of the driving field is taken
into account, but all collective effects [1]—the trivial ones
like the refractive index and the beam attenuation, as well
as the nontrivial ones like multiple scattering and super-
and subradiance—come from the DDI term, in which the
detuning does not directly enter. Since many collective effects
obviously depend on the detuning, this can seem puzzling.
Moreover, the long-lived modes discussed in the effective
Hamiltonian approach [5–8] may be given different interpre-
tations depending on the detuning (e.g., radiation trapping
near resonance [29], or subradiance far from resonance [27]),
although the eigenmodes themselves do not depend on the
detuning. Understanding the influence of the detuning is thus
crucial to making the link between the CDE and the effective
Hamiltonian approach.

In this paper, we study the influence of the detuning on
the populations of the collective modes, a quantity that has
been overlooked so far, except in very few works [30,31]. In
Sec. II we derive a simple and intuitive analytical expression
relating the steady-state mode populations and the detuning.
Although the result [Eq. (9)] is well known, we show in Sec.
III that it has interesting and nonobvious consequences. In

2469-9926/2017/95(5)/053865(9) 053865-1 ©2017 American Physical Society
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particular, it allows us to understand why cooperative effects
such as super- and subradiance become independent of the
detuning at large detuning and why superradiance vanishes
near resonance but not subradiance. Those behaviors are not
intuitive and have already been observed experimentally and
numerically [12,26,27]. We also show that subradiance and
radiation trapping [29] can be attributed to collective modes
with different eigenvalues, an interpretation supported by
an analysis of the spatial properties of the corresponding
eigenmodes. Finally, in Sec. IV, we present a numerical
analysis of the weighted average of the eigenvalues, which
puts in evidence empirical scaling laws.

II. ANALYTICAL RESULT

Let us first write the CDEs [Eq. (1)] in a matrix form,

Ḃ = M × B + � , (2)

with B = [β1, . . . ,βi, . . . ,βN ]ᵀ,� = −i/2 × [�(r1), . . . ,
�(ri ), . . . ,�(rN )]ᵀ, and

M =

⎡
⎢⎢⎢⎣

−1/2 + i� . . . V1,N

V2,1 . . . V2,N

...
. . .

...
VN,1 . . . −1/2 + i�

⎤
⎥⎥⎥⎦ . (3)

We note that the detuning � appears as a constant shift of the
imaginary part of the diagonal elements of the coupling matrix
M. As a consequence, it corresponds to a constant shift of all
eigenfrequencies and does not change the eigenvectors. That
is the reason why its influence is not discussed in the effective
Hamiltonian approach [2–9], in which Heff = ih̄M(� = 0) is
used, although the correct definition of Heff should in principle
include the detuning [32].

By definition, the eigenvalues λk and eigenvectors Vk

are such that M = VDV−1 and D = V−1MV, where D =
diag(λ1, . . . ,λk, . . . ,λN ) and V = [V1, . . . ,Vk, . . . ,VN ].

Many experiments [12,27,29] consist of studying the
dynamics of the system when it relaxes from the steady state to
the ground state after the switch-off of the driving laser. This
dynamics is then given by the natural evolution of each mode,

B(t) =
∑

k

αkVke
λkt , (4)

where the αk are the complex coefficients of each mode, as
given by the initial condition. In the case we consider here,
the initial condition corresponds to the steady state reached
when the driving laser is on. Let us call this steady state B0.
Obviously,

B0 = −M−1� = −(VDV−1)−1� = −VD−1V−1� . (5)

Let us also project the steady state B0 on the eigenmodes of
the system, we have

B0 =
∑

k

αkVk , (6)

where the coefficients of the decomposition are

α = [α1, . . . ,αk, . . . ,αN ]ᵀ = V−1B0 . (7)

Using the expression (5) above for B0, α = −D−1V−1�, and
we obtain, using the fact that D is diagonal,

αk = − (V−1�)k
λk

= −Pk(�)

λk

, (8)

where we note Pk(�) the kth coefficient of the decomposition
of � onto the basis made of all Vk .

This relation is interesting because the weight of each
eigenmode in the steady state appears as the product of
two factors, one purely “geometrical,” V−1�, which is the
projection of the driving field on the eigenmodes, independent
of the detuning, and one purely “spectral,” the inverse of the
corresponding eigenvalue, which does depend on the detuning.
Defining the “population” pk = |αk|2 of the modes, and noting
λk = −�k/2 + iEk , we have

pk = |Pk(�)|2
�2

k/4 + (
E0

k + �
)2 , (9)

where E0
k is the eigenfrequency for � = 0 as in the Heff

approach. We recover an intuitive result, which describes a
Lorentzian coupling efficiency to each mode. This Lorentzian
depends on the width of the modes �k and is shifted by the
detuning �.

Note that this derivation and the result of Eqs. (8) and
(9) is a simple example of the more general relations that
exist between the effective Hamiltonian, its related scattering
matrix, and decay rates, which are well known in the context
of open quantum systems [see the reviews [32–35] and,
for instance, Eq. (44) of [32]]. The similarities between
cooperative scattering and the physics of open quantum
systems has started to be discussed only recently [36,37]. Here,
we just aim at discussing the consequences of this result on the
decay of the steady state after the driving laser is switched off,
and in particular the role of the initial detuning of the laser.

III. QUALITATIVE ANALYSIS

To fully understand the consequences of this result, let
us turn to some graphical representations, where we plot
the eigenvalue distribution of the coupling matrix in the
complex plane. The main consequence of Eq. (9) is that the
spectral factor 1/|λk|2 favors the modes located near the origin
Ek = �k = 0.

In the following, for simplicity, we will focus on the dilute
limit, we thus do not discuss the localization problem [2–9],
and we discard the near-field terms of the DDI, which are
negligible in this limit. Our investigation is thus relevant, for
example, to discuss the difference between subradiance [27]
and radiation trapping [29], or the suppression of superradi-
ance near resonance, as observed in a recent experiment [12].
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In this dilute limit the DDI term is

Vij (rij ) = eikrij

krij

, rij = |r i − rj | , (10)

where k = 2π/λ is the wave vector of the associated atomic
transition.

Still for simplicity, we will also take the electric field E(r)
as a plane wave such that

� = − i�

2
[eikz1 , . . . ,eikzi , . . . ,eikzN ]ᵀ. (11)

We draw N random positions for the atoms in a spherical
Gaussian distribution (rms width R) such that the density
varies smoothly, thus avoiding sharp edges responsible for
internal reflection of light [38,39]. We also apply an exclusion
volume krij > 3 to avoid pairs of very close atoms responsible
for subradiant and superradiant branches in the complex
plane [3,6,40,41]. These two phenomena are interesting in
themselves but complicate the interpretation, because they
can produce long-lived modes that are related to neither the
collective N -body subradiance nor the diffusion of light. Then
we diagonalize the coupling matrix M and compute the weight
of the different modes using Eq. (9).

A. Influence of detuning

We show in Figs. 1 and 2 the outcome of such a
computation, in which each panel shows the eigenvalue
distribution in the complex plane for a single realization of
the positions. Similar distributions have been studied before
[2–9,40]. It is known that the eigenvalue distribution spreads
from the single-atom limit {Ek = �,�k = 1} as the on-
resonance optical thickness b0 = 2N/(k0R)2 increases, first
forming a disk of radius ∝√

b0 for b0 � 1, and then deforms
at high b0 with an accumulation of eigenvalues at small �k � 1
and a corresponding spreading at high �k > 1 [40]. This
departure from single-atom physics exists at low density and is
responsible for many collective effects in light scattering [1].
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FIG. 1. Distribution of the eigenvalues λk = −�k/2 + iEk in the
complex plane (for � = 0) with the geometrical factor |Pk(�)|2
represented in the color scale. The parameters of the atomic sample
are N = 3000 and kR � 26.3, yielding b0 � 8.7 and ρ0k

−3 � 10−2.
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FIG. 2. Same as in Fig. 1 but the color scale now shows the
spectral factor 1/|λk|2 (left column) and the populations pk (right
column). The different rows are for different detunings, from top to
bottom � = 0,1,10. Note the different color scale for each panel,
showing that at large detuning, the spectral factor is almost uniform.

Here, we also show the geometrical factor |Pk(�)|2 (Fig. 1),
the spectral factor 1/|λk|2 (Fig. 2, left column), and the
population of the modes pk (Fig. 2, right column) encoded
in the color scale. The different rows of Fig. 2 are for different
detunings, on resonance � = 0 (first row), slightly detuned
� = 1 (second row), and far detuned � = 10 (third row). The
geometrical factor (Fig. 1) does not depend on the detuning.
Here we have chosen a moderately large on-resonance optical
thickness b0 � 9 and a low density ρ0k

−3 � 10−2 (ρ0 is the
peak atomic density). Since the problem is linear, the value of
� can be chosen at will and we have taken � = 2/

√
N such

that � is normalized to unity.
From these figures, several relevant observations can

be made: (1) Only a few modes, mainly selected by the
geometrical factor, have a non-negligible population and thus
contribute to the dynamics of the system. Studying the whole
eigenvalue distribution is thus not directly relevant to the
experiment. In particular, the extreme modes, for example,
the most superradiant ones, whose eigenvalues lie on the
border of the distribution, are not significantly populated.
(2) The geometrical factor favors the short-lived modes, i.e.,
the superradiant modes (�k > 1). This was expected from
the idea that superradiant modes are more coupled to the
environment than subradiant modes. (3) Far from resonance,
the spectral factor only induces an overall decrease of the
populations and has a negligible effect on the mode selection.
(4) It is very hard, if not impossible, to select any specific
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FIG. 3. Close-up of the populations of the long-lived modes, at
resonance (a) and far from resonance (b). Same parameters as in
Fig. 1.

mode by tuning the driving field frequency. For the � = 1
case, for example, one might expect to selectively populate
modes on the left border of the distribution, but that is
actually not the case. The geometrical factor dominates over
the spectral factor. Other strategies, based for instance on the
spatial shaping of the driving field, are needed to selectively
populate targeted modes [42]. (5) The spectral factor has an
important effect only near resonance. It strongly favors the
long-lived modes and thus decreases considerably the relative
population of the superradiant modes. This demonstrates
that superradiance disappears near resonance, as observed in
previous experiments and numerical simulations [12,43].

A closer look on the populations of the long-lived modes
is shown in Fig. 3(a) for the resonant case and in Fig. 3(b)
for the far-detuned case. Even on resonance, only a few
modes are strongly populated, showing that the geometrical
factor still plays an important role. At large detuning, the
long-lived modes that are populated are responsible for
subradiance. These modes are still populated (and even
more) near resonance, showing that the relative weight of
subradiance increases near resonance, as seen experimentally
[27]. Moreover, in addition to the modes strongly populated
at large detuning, additional eigenmodes acquire noticeable
population near resonance, with even longer lifetimes. These
modes are responsible for radiation trapping due to multiple
scattering [29]. This interpretation is validated by an analysis
of the spatial properties of the modes, summarized in Fig. 4
and detailed in the next section.

At large detuning, the effect of the spectral factor on
the relative population of the eigenmodes is negligible and
completely vanishes for � → ∞, such that the relative
populations are only given by the geometrical factor |Pk(�)|2,
which actually means that the steady state B0 is proportional to
�. This is precisely the timed-Dicke (TD) state approximation,
introduced for single-photon excitation by Scully et al. [10]
and further developed for continuous driving in Refs. [16–18].
Although this state is mainly superradiant, even though not
the largest �k of the distribution, it also contains subradiant
components [Fig. 3(b)], as recently observed experimentally
[27]. In other words, using a large detuning causes the driving
field to couple weakly, but equally, to all modes having a good
geometrical overlap with the driving field, and it thus reveals a
part of the underlying mode structure, which is independent of
the detuning. The consequence is that the collective dynamics

after switching off the driving field is still cooperative at very
large detuning, with superradiant and subradiant decay rates
becoming asymptotically independent of the detuning.

B. Spatial properties of the modes

It is also interesting to study the spatial properties of the
collective modes in order to identify their physical meaning.
Two quantities are useful to characterize the mode spatial
properties: the rms size of the modes σk and the participation
ratio (PR), defined as

RP
k =

∑
i |Vki |2∑
i |Vki |4 , (12)

which indicates the number of atoms participating significantly
to the mode [5,44]. We represent in Figs. 4(a) and 4(b)
these two quantities in the color scale of the eigenvalue
distribution. We observe three distinctive areas: (i) Near the
single-atom-physics case {Ek = 0,�k = 1}, the modes have a
larger rms size than the Gaussian atomic sample, σk > R, and
a local minimum of the PR. This denotes modes delocalized
at the boundary of the sample. Physically, this situation
corresponds to single scattering (or low-order scattering) on
the edges of the sample, as confirmed by the profile shown
in Fig. 4(c). (ii) For the longest-lived modes (�k � 1, at
the border of the distribution), the size and the PR are both
small, which means that the modes are not very extended.
As seen in Fig. 4(d), they are located at the center of the
sample. We attribute this behavior to diffusive modes due to
multiple scattering. (iii) In the rest of the complex plane (most
modes), the modes have approximately the same size as the
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FIG. 4. Spatial properties of the collective modes. Same param-
eters are in Fig. 1, but the color scale now shows (a) the rms size
σk of the modes (normalized by the sample size R), and (b) the
participation ratio RP

k (normalized by the atom number N ). We show
in panels (c)–(e) the average over 120 realizations of the excitation
probability (mode intensity divided by atomic density) for atoms
located in a slice |z| < R/5, for each kind of mode, selected by the
following conditions: (c) 0.9 < �k < 1.1 and −0.1 < Ek < 0.1; (d)
�k < 0.2; (e) PRk > 0.45.
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sample (σk ∼ R) and a maximum PR (around N/2). They
correspond to collective and extended modes, with almost
uniform excitation probability across the sample Fig. 4(e).
These modes can exhibit superradiant (�k > 1) or subradiant
(�k < 1 or �k � 1) behavior.

This analysis validates the interpretation given above on the
different nature of the long-lived modes that are populated near
resonance (diffusive modes responsible for radiation trapping
[29]) compared to those excited far from resonance (subradiant
modes).

IV. NUMERICAL STUDY

Many statistical quantities can in principle be computed and
studied from the eigenvalue distribution [2–9,40]. Here we will
focus on quantities that use the information contained in the
populations pk . These quantities, not studied before, are thus
not only related to the properties of the effective Hamiltonian,
but also to the way the system is excited. In particular, they
will depend on the detuning �. They are thus less universal,
but they are more related to experimental observables. One can
thus expect to recover qualitative behaviors similar to what has
been observed in experiments or in numerical simulations of
the CDEs.

A. Behavior of the weighted averages

Let us now turn to a systematic analysis of the weighted
averages of the eigenfrequencies (or eigenenergies) and decay
rates (or linewidth), defined as

〈E〉 =
∑

k pkEk∑
k pk

and 〈�〉 =
∑

k pk�k∑
k pk

. (13)

We show in Fig. 5 a systematic study of these quantities as
a function of the on-resonance optical thickness b0 and on
the detuning �. For each b0, 120 realizations of the disorder
configuration have been used.

We observe that the average eigenenergy is slightly shifted
from � and the shift 〈E〉 − � displays a dispersion-like
behavior, which becomes higher and broader as the optical
thickness increases. On the contrary, the average decay rate
〈�〉 exhibits a negative resonance-like structure, which is also
more important at larger b0. These behaviors are due to the
spectral factor and can be qualitatively understood as follows.

First, on resonance (� = 0), positive and negative values
of Ek compensate so that 〈E〉 = 0 after averaging over the
disorder configurations (we remain here in the dilute limit such
that the cooperative Lamb shift is negligible [20–24,45–51]).
The same applies at very large detuning, for which the spectral
factor plays a negligible role on the relative populations. At
intermediate detuning, the spectral factor favors one side of the
eigenvalue distribution, such that 〈E〉 departs from � to get
slightly closer to zero [Fig. 2]. The difference 〈E〉 − � has thus
an opposite sign from �, which produces a dispersion behavior
for the frequency shift, similar to an effective refractive index.
This effect is more important as the eigenvalue distribution
spreads for increasing b0.

Similarly for 〈�〉, at large detuning, the geometrical factor
dominates and we have seen previously that it favors the
superradiant modes, such that 〈�〉 > 1, and superradiance
is stronger as b0 increases. We can actually compute 〈�〉
in the � → ∞ limit (TD approximation) by replacing the
populations by the geometrical factor in the averaging Eq. (13).
We clearly observe in Fig. 5(c) a linear scaling with b0:

〈�〉�→∞ = 1 + b0

24
. (14)

We note that a similar linear scaling is expected for the
superradiant decay rate of the TD state [12,13,16,52–56].

On resonance, however, the spectral factor favors the long-
lived modes [Fig. 2] and thus 〈�〉 drops to values smaller than
unity. Interestingly, we have found [Fig. 5(c)] that the data
follow very closely the empirical relationship

〈�〉�=0 = 1 − 1
4 (1 − e−b0/8), (15)
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FIG. 5. Study of the weighted averages 〈E〉 and 〈�〉 [Eq. (13)] as a function of the detuning � and the on-resonance optical thickness b0.
(a) The frequency shift 〈E〉 − � is plotted as a function of � for different b0. (b) 〈�〉 is plotted as a function of � for different b0. (c) 〈�〉 is
plotted as a function of b0 for the two extreme cases, � → ∞ (red circles) and � = 0 (blue diamonds). The dashed lines correspond to the
empirical relations given in Eqs. (14) and (15).
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FIG. 6. Same numerical data as in Figs. 5(a) and 5(b) but
〈�〉 − (1 + b0/4) is plotted as a function of b(〈E〉) = b0/(1 + 4〈E〉2)
(log scale). All points collapse on a single curve (dashed line), well
described by Eq. (17) .

which denotes an exponential decrease of 〈�〉 with the optical
thickness, with a saturation effect. This is consistent with
the idea that attenuation and multiple scattering suppress
superradiance, as observed in Ref. [12] and in Fig. 2, but the
plane-wave illumination ensures that there is always a large
proportion of single scattering at the borders of the atomic
cloud, and thus a large fraction of modes with �k ∼ 1, such
that 〈�〉�=0 does not decrease to zero as b0 increases.

Given the relatively simple behaviors of 〈�〉 and 〈E〉, one
can wonder whether a more general relationship between
〈�〉, 〈E〉, and b0 can be found. The limit cases [Eqs. (14)
and (15)] suggest a route to a more refined scaling law.
Plotting 〈�〉 − (1 + b0/24) as a function of the detuning �

exhibits a Lorentzian absorption profile whose depth and width
depends on b0. It is thus natural to plot it as a function of
b(�) = b0/(1 + 4�2). The points then tend to collapse on
a single curve, but with significant deviations. In fact, b(�)
would be the actual optical thickness at the laser detuning
without cooperativity. To take into account the spreading of
the eigenvalue distribution, it makes sense to replace b(�) by

b(〈E〉) = b0

1 + 4〈E〉2
. (16)

In that case, all data points collapse almost perfectly on a single
curve (Fig. 6). This curve is well described by

〈�〉 −
(

1 + b0

24

)
� −b(〈E〉)

24
− 1

4
(1 − e−b(〈E〉)/8), (17)

or, in a more compact form, defining b ≡ b(〈E〉),

〈�〉 � 1 + 1

4

[
b0 − b

6
− (1 − e−b/8)

]
, (18)

which contains the previous limiting cases. The quality of
the collapse on such a universal curve as seen in Fig. 6 and
expressed by Eq. (18) suggests that it should be possible to
obtain analytical results describing the observed behaviors.

Γk
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100

 

 

P(Γk)
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Δ → ∞
Δ = 0

FIG. 7. Linewidth distribution P (�k) without weighting (dashed
black line) and with weighting corresponding to the populations pk

computed far from resonance (� → ∞, solid red line) or at resonance
(� = 0, dotted blue line). The parameters of the atomic sample
are N = 5000, kR � 27.3 yielding b0 � 13.4, ρ0k

−3 � 1.55 × 10−2,
and we used 120 realizations.

B. Linewidth distribution

Another interesting quantity is the distribution of the
linewidths, P (�k). This distribution has been studied in several
papers [4,6,57,58], but here we include pk as a weighting factor
of the �k in the distribution P (�k), still computed over 120
realizations of the positions.

We show in Fig. 7 the comparison of the distribution P (�k)
without weighting (and thus independent of �), with the
ones computed with weighting corresponding to � → ∞ and
� = 0 (and excitation by a plane wave, as previously). As
expected from the previous discussions, taking into account the
weighting due to the population pk increases the probability
density of the short-lived (superradiant) modes far from
resonance and of the long-lived modes near resonance. We
note that this distribution P (�k) has a strong dependance on the
detuning. This suggests that a characterization of the transport
properties of light through resonant two-level systems needs to
go beyond a mere eigenvalues analysis [4], since the transport
properties obviously depend on the detuning. In general, the
distribution P (�k) depends on the way the system is coupled
to the environment [33,58].

We also note that the linewidth distribution does not allow
us to extract any specific value for the long-lived modes
effectively populated by an external drive, even when taking
into account the weighting function of Eq. (9). Therefore,
we cannot recover the scaling laws that can be observed in
experiments on subradiance [27] or radiation trapping [29],
indicating that the approach presented in this paper is not
sufficient to recover experimentally observed scaling laws.

C. Discussion

We attribute this limitation to the fact that the quantities
studied in this paper (such as the �k) are not direct experimental
observables. Indeed, when measuring the light escaping from
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the atomic sample, for example, the total scattered power [41]

P ∝ − d

dt

N∑
i=1

|βi(t)|2 = − d

dt
‖B(t)‖

= − d

dt

∥∥∥∥∥
∑

k

αkVke
λkt

∥∥∥∥∥, (19)

the nonorthogonality of the eigenmodes Vk (due to the non-
Hermiticity of the effective Hamiltonian) are at the origin of
oscillating terms [34], which may change the dynamics of
the decay, even after configuration averaging. It is thus not
surprising to find a quantitative difference in the decay rates.
For example, the linear scaling of 〈�〉 with b0 obtained at Eq.
(14) does not have the same slope as what has been found by
studying the decay of the scattered light in the coupled-dipole
model [12,41]. Obtaining analytical results on experimental
observables remains thus an open problem.

In the framework of the effective Hamiltonian approach,
one can also study the spectrum of the Hermitian operator
Im(Heff) [59]. In that case, the eigenvalues are directly related
to the probability of returning in the ground state, and thus
correspond to the light escape rates from the sample [60,61].
However, this is only valid when the initial state contains one
excitation but no coherence, and thus does not apply to driven
systems.

V. CONCLUSION

Several properties of cooperative scattering, such as the
enhancement of subradiance and suppression of superradiance

near resonance [12,27], and the very existence of cooperative
decay at very large detuning, are highly nonintuitive. We have
shown in this paper that they are consequences of the simple
analytical relationship that exists between the population of
the collective modes of the effective Hamiltonian and the
detuning of the driving field [Eq. (9)]. We have also put in
evidence an empirical scaling law on the weighted averages of
the eigenvalues of the effective Hamiltonian, which suggests
the possibility of further analytical results.

In general, statistical properties of the eigenvalues of
the effective Hamiltonian can be efficiently studied using
random matrix theory [40], whereas very few analytical
results have been obtained from the coupled-dipole equation
model [15,54]. The populations of the collective modes and
their dependence on the parameters of the driving field is
an important ingredient bridging the gap between the two
approaches.

We also discussed the spatial properties of the modes and
showed that we can distinguish two kinds of long-lived modes
that can be associated with radiation trapping and subradiance.
Extending this analysis to the high-density case could be useful
to better understand the transition to Anderson localization
[5,6].

ACKNOWLEDGMENTS

We thank Johannes Schachenmayer for careful reading of
the manuscript. We acknowledge financial support from the
ANR (Agence National pour la Recherche, project LOVE,
No. ANR-14-CE26-0032).

[1] W. Guerin, M. T. Rouabah, and R. Kaiser, Light interacting
with atomic ensembles: Collective, cooperative and mesoscopic
effects, J. Mod. Opt. 64, 895 (2017).

[2] M. Rusek, A. Orłowski, and J. Mostowski, Localization of light
in three-dimensional random dielectric media, Phys. Rev. E 53,
4122 (1996).

[3] M. Rusek, J. Mostowski, and A. Orłowski, Random green
matrices: From proximity resonances to Anderson localization,
Phys. Rev. A 61, 022704 (2000).

[4] F. A. Pinheiro, M. Rusek, A. Orlowski, and B. A. van Tiggelen,
Probing Anderson localization of light via decay rate statistics,
Phys. Rev. E 69, 026605 (2004).

[5] S. E. Skipetrov and I. M. Sokolov, Absence of Anderson
Localization of Light in a Random Ensemble of Point Scatterers,
Phys. Rev. Lett. 112, 023905 (2014).

[6] L. Bellando, A. Gero, E. Akkermans, and R. Kaiser, Cooperative
effects and disorder: A scaling analysis of the spectrum of
the effective atomic Hamiltonian, Phys. Rev. A 90, 063822
(2014).

[7] S. E. Skipetrov and I. M. Sokolov, Magnetic-Field-Driven
Localization of Light in a Cold-Atom Gas, Phys. Rev. Lett.
114, 053902 (2015).

[8] C. E. Máximo, N. Piovella, P. W. Courteille, R. Kaiser, and
R. Bachelard, Spatial and temporal localization of light in two
dimensions, Phys. Rev. A 92, 062702 (2015).

[9] S. E. Skipetrov, Finite-size scaling analysis of localization
transition for scalar waves in a three-dimensional ensemble of
resonant point scatterers, Phys. Rev. B 94, 064202 (2016).

[10] M. O. Scully, E. S. Fry, C. H. R. Ooi, and K. Wódkiewicz,
Directed Spontaneous Emission from an Extended Ensemble of
N Atoms: Timing is Everything, Phys. Rev. Lett. 96, 010501
(2006).

[11] M. O. Scully and A. A. Svidzinsky, The super of superradiance,
Science 325, 1510 (2009).
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VI.4. Superradiance as single scattering embedded in an ef-
fective medium
So far, our modeling and interpretation of super- and subradiance are based on the coupled-
dipole model and the associated collective modes. In this picture the light provides an effective
interaction between atoms, and we only consider the dynamics of the atoms, supposed to
be classical dipoles. Alternatively, it should be possible to understand what happens by
considering the light propagating and being scattered inside the disordered atomic medium.
The complementarity and equivalence between the two approaches are discussed, for instance,
in [Lax 1951,Lagendijk 1996], although some phenomena may be easier to describe in one
framework. It is, for example, easier and more efficient to describe incoherent multiple
scattering (radiation trapping) by a radiative transfer approach, such as random walk
simulations. On the contrary, super- and subradiance are well described by the CD model,
and also easy to understand: coupled oscillators build collective modes...

In this section, I present a ‘photonic’ model of superradiance, which I didn’t find myself: it is
used in [Kuraptsev 2017]. However, it may be not well known and I would like to promote it.
Moreover it is also efficient for modeling what happens at the switch-on, which we studied
recently (section VI.6). We called this model ‘linear-dispersion theory’.

Let us start from the result and explain its meaning. The intensity Iu(t) detected in the
direction u as a function of time is given by Eq. (3.4) of [Kuraptsev 2017], which I rewrite
below, in the scalar approximation for simplicity, and with slightly simplified notations:

Iu(t) ∝
∫
d3rρ(r)

∣∣∣∣∣
∫ ∞
−∞

dωE0(ω)e−iωt × exp
[
i
b0(r,u)

2 α̃(ω)
]
α̃(ω) exp

[
i
b0(r,k)

2 α̃(ω)
]∣∣∣∣∣

2

.

(VI.2)
In this equation, ρ(r) is the density distribution, E0(ω) is the Fourier transform of the
incident field,

α̃(ω) = −1
i+ 2(ω − ωat)/Γ

= i− 2(ω − ωat)
1 + 4(ω − ωat)2/Γ2 (VI.3)

is the dimensionless atomic polarizability (already defined in [Froufe-Pérez 2009]), and the b0
terms denote the resonant optical thickness through a part of the cloud, from the position
r into the direction u and from the incident direction k to the position r. In the case of
a Gaussian cloud of rms size R, and taking the incident wavevector along the z axis and
putting the center of coordinates at the center of the cloud, one can find:

b0(r,k) = b0

2 exp
[
−x

2 + y2

2R2

] [
1 + erf

(
z√
2R

)]
, (VI.4)

b0(r,u) = b0

2 exp
[
−r2 + (r · u)2

2R2

] [
1− erf

(
r · u√

2R

)]
. (VI.5)

The meaning of Eq. (VI.2) is clear: each Fourier component of the initial field (not monochro-
matic because of the switch-off) propagates through the cloud until the scattering position r,
propagation during which it undergoes attenuation and dephasing. Then it is scattered at
position r with some probability and associated dephasing given by the atomic polarizability,
and finally it propagates until it escapes the sample. The whole process acts as a linear
transfer function. The temporal dependence is recovered by a Fourier transform and the
intensity is computed by taking the squared modulus. Then all possible scattering positions
are averaged.
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This equation is valid for single-scattering only, since there is only one scattering term. Note
also that the average over the scattering positions is done after the squared modulus, i.e.
on the intensity: the random phase associated to incoherent scattering and the associated
speckle pattern are averaged out. Indeed, what is computed is formally a quantum-mechanical
average5, i.e. an average over the disorder configurations. Still, it means that superradiance
is not related to the interference between light scattered by different atoms, which was
not obvious to me. It is actually related to the interference between the different Fourier
components of the incident field scattered by the atoms and attenuated/dephased by the
surrounding effective medium. It is thus mainly a dispersion effect. Of course, the complex
refractive index of the effective medium can still be understood as an interference between
light coherently scattered by all atoms...

This calculation is very similar to what is done to explain the transient effects observed in the
coherently transmitted beam, the so-called optical precursors and flash effects [Jeong 2006,
Chen 2010,Chalony 2011,Kwong 2014,Kwong 2015], except for the extra scattering term. In
this case, though, this approach is more natural/intuitive because there is no random phase
associated to any scattering.

In this approach, one can understand the occurrence of a superradiant decay rate by the
spectral broadening of the transfer function induced by the larger value of b0: if the transfer
function gets broader in Fourier space, the temporal response gets faster. This is the intuitive
picture given for the flash, which can also have a decay rate faster than Γ0 [Kwong 2015].

In Fig.VI.3 we compare the results of the decay rate fitted at very early time on temporal
traces computed from the CD model and the linear-dispersion (LD) model (Eq.VI.2), at
large detuning (∆ = −10Γ). The agreement is excellent. Also shown is the analytical result
in the |∆| → ∞ limit, obtained from Eq. (VI.2) [Kuraptsev 2017],

Γsup =
(

1 + b0

4

)
Γ0 . (VI.6)

Note that this does not depend on the observing direction, and that the model only contains
superradiance off axis, i.e. with a true scattering event, it does not include the forward lobe
of the TD state. As a consequence the decay rate is different, even in the forward direction,
than Eq. (VI.1) for the TD state. The extra α̃(ω) term (scattering) is responsible for a factor
2 in the superradiant enhancement factor. It emphasizes the different nature of the forward
lobe, which is, in a photon picture, diffracted/refracted light by the effective medium without
any true scattering.

A deviation from the analytical result can be seen for the largest b0’s. This is the first sign of
the suppression of superradiance as soon as b(∆) is not negligible, as observed in [Araújo 2016].
Actually, while doing this comparison, we observed that the good agreement between the two
models, as well as the deviation from Eq. (VI.6), was quite sensitive to the fitting range used
for determining the decay rate. The reduction of the superradiant decay rate near resonance
is less visible if the decay rate is measured closer to the switch-off time t = 0. It seems that
there is, in fact, always a little bit of superradiance at t = 0+, with an unchanged rate, but it
is more and more limited in time as the detuning goes closer to resonance, and thus harder
to see. This is consistent with a decrease of the superradiant population as discussed in the
previous section [Guerin 2017b].

Of course, this approach is extremely efficient from a computing point of view. Moreover it
is not limited in term of atom number or b0, and we can also include the Zeeman structure.

5 I thank Igor Sokolov for providing me the detailed derivation.
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Figure VI.3: Comparison between the coupled-dipole (CD) model and the linear-dispersion (LD)
theory for the superradiant decay rate Γsup. Also shown is the analytical results for the large
detuning limit. The detuning is ∆ = −10Γ0, the observation direction is θ = 45◦. The fitting range
is 0 < t/τat < 0.02. Note that several densities are used in the CD simulations, from ρ0λ

3 = 1.5 to
25 (with an exclusion volume k0rij > 0.5), while the density is not a parameter in the LD model.

It should thus be possible to make a direct comparison with experimental data without any
free parameters. Another possible extension is to include the effect of atomic motion, which
can be done by a simple Doppler broadening of the atomic polarizability. While the CD
simulations with moving atoms are extremely time-demanding [Weiss 2019], the LD theory
allows very fast computing. At the time of writing we have already advanced on those two
applications and we are preparing an article in collaboration with Igor Sokolov.

VI.5. Subradiance and multiple scattering
Let’s go back to subradiance. In this section I want to address the problem of the difference
(or not) between subradiance and multiple scattering.

VI.5.1. Interplay of subradiance and radiation trapping
As briefly mentioned after the paper [Guerin 2016a], the fact that we don’t observe any
difference for the subradiant time constant near resonance was puzzling. We expected an
increase, as predicted in [Bienaimé 2012], due to the occurrence of an even slower decay due
to radiation trapping. Indeed, radiation trapping times scale as b(∆)2 (see section IV.1.2.2),
while subradiance times scale as b0. So, even with an unfavorable prefactor, near resonance,
for high enough b0, radiation trapping should give the slowest decay and thus dominate at
late time.

However, this is only true at zero temperature. With moving atoms, the frequency redistri-
bution due to the Doppler effect breaks the b(∆)2 scaling, which actually becomes almost
linear at large temperature [Pierrat 2009]. Moreover, another important parameter is the
relative amplitude of the slow decay that we are able to observe. If subradiance starts at a
relative level of 10−2 and radiation trapping at 10−4, then even if radiation trapping is slower
and ultimately dominates at very late time, it will be hard to see experimentally.

Obviously, driving the system with a plane wave does not favor the observation of multiple
scattering, because a large part of the light only interacts with the edges of the sample. That’s
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why, in the radiation trapping experiment of [Labeyrie 2003], a probe beam smaller than the
cloud and a detection near the forward direction was used in order to select multiply-scattered
light.

We have thus repeated this experiment but, now, with a measurement dynamics over four
decades. We can thus observe simultaneously subradiance and radiation trapping, as shown
in the following paper [Weiss 2018]. Because of the finite temperature, subradiance always
dominates at late time, i.e. we don’t reach the regime where radiation trapping is slower
than subradiance.
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Abstract
Weexperimentally and numerically study the temporal dynamics of light scattered by large clouds of
cold atoms after the exciting laser is switched off, in the low intensity (linear-optics) regime. Radiation
trapping due tomultiple scattering aswell as subradiance lead to decaymuch slower than the single
atomfluorescence decay. These two effects have already been observed separately, but the interplay
between them remained to be understood.Here, we show thatwithwell chosen parameters of the
drivingfield, the two effects can occur at the same time, but follow different scaling behaviors. The
subradiant decay is observed at late time and its rate is independent of the detuning, while the radiation
trapping decay is observed at intermediate time and depends on the detuning through the optical
depth of the sample. Numerical simulations based on randomwalk process and coupled-dipole
equations support our interpretations. Our study clarifies the different interpretations and physical
mechanisms at the origin of slow temporal dynamics of light in cold atoms.

1. Introduction

Collective effects in light scattering by atomic ensembles have recently been the subject of intense research, both
theoretically and experimentally [1, 2]. Even in themost simple situation, when the atomic system is driven by a
low intensity laser (single-photon or linear-optics regime) andwhen the atomic cloud has a low density, various
phenomena can occur [3–6]. For example, steady-state experiments about light diffusion [7, 8], coherent
backscattering [9, 10] and the resonance line shape and shift [11–18]have been performed. Several recent
experiments also studied the temporal dynamics of the light scattered by cold atoms at the switch-off of the
driving field. A decay faster than the natural decay rateΓ has been observed at short time, a signature of
superradiance [17, 19]. A decay ratemuch slower thanΓ has also been detected at later time, a direct observation
of subradiance [20]. It has been shown experimentally that the subradiant decay rate depends on the resonant
optical depth b0, independently of the detuningΔ=ω−ω0 from the atomic resonanceω0, which has been
confirmed by numerical simulations [20–22].

Interestingly, a slow decay can also be interpreted completely differently. Indeed, near resonance, when the
actual optical depth b b 1 40

2 2D µ + D G( ) ( ) is large, light undergoesmultiple scattering. This leads to a
slowed transport velocity inside the diffusivemedium [23] and ultimately to a slow decaywhen the incident light
is switched off. This effect, called radiation trapping [24–26], has also been studied in cold atoms [27–32]. In
particular, it has been shown that, at low enough temperature, the dynamics depends on the detuning only
through the optical depth b(Δ), because this parameter controls the distribution of the number of scattering
events that light undergoes before escaping, the average time between scattering events being remarkably
independent of the detuning [28].

Radiation suppression can be obtained by different physicalmechanisms, as already pointed out by
Cummings [33]whonoted that interference-based radiation suppression is ‘muchmore exotic and unexpected
than the ordinary radiation trapping’, which can be explained by photon rescattering. As the different scalings
[b0versusb

2(Δ)] show, these two effects are not two different interpretations of the same phenomena, but are
really due to two different physicalmechanisms. This difference does not appear when one studies the
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eigenvalues of the effectiveHamiltonian describing the atoms interacting through the shared excitation [34–38],
all long-lived collective atomicmodes being often called ‘subradiant’, although differences in the shape of the
eigenmodes have been discussed as a possible way to distinguish betweenmodes associated to subradiance and
to radiation trapping [39].

In this article, we experimentally study these two effects, showing in particular that, withwell chosen
parameters, both occur simultaneously.We find thatwhen the atomic sample is driven by a planewave, as in
[20], subradiance is observed and radiation trapping is not clearly visible, even on resonance,mainly because the
signal is dominated by single scattering occurring on the edges of the sample. The situation is different with an
exciting beammuch smaller than the cloud, as in [28], because single scattering is strongly reduced if light is
detected near the forward direction. In this paper we show thatwith reduced single scattering near resonance, a
slow decay due to radiation trapping is visible at intermediate time and, at later time, an even slower decay
appears due to subradiance. Although at zero temperature and for large enough optical depth, radiation
trapping could be slower than subradiance and dominate even at late time, the frequency redistribution due to
Doppler broadening strongly reduces the number of scattering events that light can undergo before escaping,
andwefind that, atT∼100 μK, subradiant decay always dominates at late time.

The paper is organized as follows. In the next sectionwe present the experimental setup and in the following
the observation of subradiance for an excitationwith a planewave. In section 4we present the data acquiredwith
a narrowdriving beam, showing the simultaneous observation of subradiance and radiation trapping.We study
in detail how the corresponding decay times scalewith the parameters. In section 5we present numerical
simulationswhich support our interpretations. In particular, the comparison between the simulations based
on the coupled-dipole (CD) equations and on a randomwalk (RW)model performed atT=0 allows us to
discuss the physics in an ideal case.Moreover, the simulations based on theRWmodel including the effect of the
temperature, laser spectrum and beam size are in fair agreementwith our experimental data on radiation
trapping.Wefinally conclude in section 6.

2. Experimental setup

In the experiment, we prepare a cloud of cold rubidium-87 atoms in amagneto-optical trap (MOT), which is
loaded during 60 ms from the background vapor in the glass chamber. For further increase of the optical depth a
compressedMOT stage follows for 30 ms, which additionally leads to a cleaner shape of the cloud (close to a
Gaussian density distribution) and a reduced temperature.We obtain an ensemble ofN≈2.5×109 atoms at a
temperatureT≈100 μK.After switching off allMOTbeams as well as themagnetic fields, the cloud is allowed
to expand ballistically for a duration of 3 ms, duringwhich the atoms are optically pumped to the upper
hyperfine ground state F=2. After this preparation stage the typical peak density is 100

11r ~ cm−3 and the
rms size isR≈1 mm. Toweakly excite the cloud a series of 12 pulses are applied, each of themwith a duration
of 10 μs and a separation of 1 ms. The probe beam is generated by a commercial external-cavity diode laser with
a linewidth of FWHM=500 kHz3. The probe laser has a linear polarization and a normalized detuning to the
atomic resonance of 0d w w= - G( ) , whereω is the laser frequency,ω0 the atomic transition frequency of the
F F2 3=  ¢ = transition andΓ/2π=6.07 MHz is the natural linewidth.We ensure that we stay in theweak
excitation limit by adapting the probe intensity to the detuning δ, such that the saturation parameter

s g
I I

1 4
, 1sat

2
d

d
=

+
( ) ( )

remains small with Isat=1.6 mW cm−2 and g=7/15 the degeneracy factor of the transition for equipopulated
Zeeman states. The dynamic range for the light detection ismainly determined by the extinction ratio of the
probe, which is achieved to a level of 10−4 by using two acousto-opticalmodulators in series and being
satisfactory faster (tswitch≈15 ns) than the natural lifetime of the excited state, at

1t = G- =26 ns. Due to the
free expansion of the cloud during the pulse series, the optical depth changes for every pulse. After the pulse
series theMOT is turned on again andmost of the atoms are recaptured. This leads to a total cycle duration
below 150 ms and allows averaging over a large number of cycles (∼500 000) for eachmeasurement. As sketched
infigure 1 the scattered light is collected via a two-inch lens under an angle of 35° and collected by a hybrid photo

3
Compared to our previous study of subradiance [20], we have changed the probe laser (TopticaDLpro) to have amuch narrower spectrum.

In order to validate the subradiance interpretation of the slowdecays at large detuning, it is indeed very important to insure that no resonant
photon could create unwanted radiation trapping. As detailed in the supplementalmaterial of [20], themain source of spurious resonant
photonswas thewings of the laser spectrum.Moreover, a broad spectrum for the probe beamalso affects radiation trapping experiments, as
studied in detail in [29].Wehave fully characterized the spectrumof our new laser andwe have checked by RWsimulations that thewings of
the spectrum are negligible for all experiments presented here.

2
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multiplier (HPM, ref. R10467U-50 fromHamamatsu). The signal is recorded via amultichannel scaler (MCS)
with a time resolution of 1.6 nswhile averaging over the cycles.

The optical depth during the pulse series is calibrated afterwards via absorption imaging4. In the following
wewill note b0 the optical depth of the cloud on resonance assuming theClebsch–Gordan coefficient of the
transition is unity, which corresponds for aGaussian cloud to b N kR30

2= ( ) withN the atomnumber andR
the rms radius. The actual detuning-dependent optical depth is then given by

b g
b

1 4
, 20

2
d

d
=

+
( ) ( )

including the degeneracy factor g=7/15 of the probed transition.

3.Observation of subradiance

The direct observation of subradiance for a large number of atomsNwas accomplished in [20].We present here
similarmeasurements to confirm the results with the upgraded set-up (see footnote 3), as well as to serve as a
reference for the followingmeasurements.

In this section, we use a driving beamwhich ismuch larger in diameter than the atomic cloud, with awaist
(1/e2 radius)w=5.7 mm, creating a homogenous excitation of the cloud. The saturation parameter is set to
s(δ)≈0.02. Infigure 2(a) an example of a data set acquiredwith a detuning of δ=−3.15 is shown. Four decay
curves are plotted, corresponding to different pulses and thus to different values for b0. After an initial fast decay
down to an amplitude of∼10−2 relative to the steady-state level (before switch-off), a very slow decay is well
visible, with a time constant that clearly changes with b0. To characterize this time constant, we choose tofit the
experimental decay curve by a single decaying exponential in a range defined as one decade above the noisefloor.
This procedure thus corresponds to the longest visible decay time.

We performed a series ofmeasurements for different detunings δ. Themeasured time constants τsub, in unit
of the single atomdecay time τat, are shown infigure 2(b) as a function of the on-resonant optical depth b0 for the
different detunings. All points collapse on a single curve, wellfitted by a single linewith τsub/τat≈1+0.65 b0.
This demonstrates that this longest decay time is independent of the detuning and scales linearly with b0, in
perfect agreement with the expectations for subradiance [1, 20–22].

4. Simultaneous observation of radiation trapping and subradiance

As the data offigure 2(b) show, the decay rate at long time is independent of the detuning, even close to
resonance. This factmight come surprising, since close to resonance, the actual optical depth b(δ) is large, which
induces attenuation of the driving beam inside the sample andmultiple scattering. It has been shown in previous
studies that this indeed leads to a suppression of some cooperative effects close to resonance, i.e. the fast decaying
modes of superradiance [19, 39]. Nevertheless, the slow-decayingmodes remain visible and are even enhanced

Figure 1.The experimental setup consists of a cold cloud of 87Rb atoms, prepared in aMOT. This cloud is excitedwith a probe beam
of variable size. After a fast switch-off the scattered light is collected under an angle of 35°with a hybrid photomultiplier (HPM). The
signal is recordedwith amultichannel scaler (MCS). During the free expansion of the cloud a series of 12 pulses is applied, during
which the optical depth evolves.

4
See the supplementalmaterial of [20] for the detailed calibration procedure.
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on resonance [20, 39]. This raises the question of the interpretation of these slow-decayingmodes near
resonance: subradiance or radiation trapping due tomultiple scattering?

4.1. Classical description of radiation trapping
Todescribemultiple scattering of light, the basic quantity is themean-free pathℓsc=1/(ρσsc), where ρ is the
density of scatterers andσsc their scattering cross section.We suppose here that the scattering diagram is
isotropic, which is a good approximation formulti-level Rb atoms, where all Zeeman-sublevels of the F=2
ground state are equally populated [40].

In a scatteringmediumof sizemuch larger than themean-free path (large optical depth), light is scattered
many times before escaping (figure 3). In this case,many observables can be verywell described by a diffusion
equation for the electromagnetic energy density, at the condition to perform an average over the disorder
configurations [41]. In three dimensions the spatial diffusion coefficient reads

D
v

3 3
, 3E sc sc

2

trt
= =

ℓ ℓ ( )

where vE=ℓsc/τtr is the energy transport velocity inside themedium and τtr the transport time [42]. The
transport time is the sumof the group delay between two scattering events and the delay associatedwith the
elastic scattering process, calledWigner’s delay time τW [23, 28]:

v
, 4tr W

sc

g

t t= +
ℓ ( )

where vg is the group velocity. For near-resonant light, a remarkable property of cold atomic vapor is that
τtr=τat, the lifetime of the excited state, independently of the detuning [23, 28] (see appendix A for discussion
and full derivation of this property).

Figure 3.Classical picture of radiation trapping. A narrowprobe beamnear resonance is sent onto the atomic sample, considered as
an ensemble of point-like scatterers. Light undergoesmultiple scattering events inside the vapor before escaping.

Figure 2. (a)Experimental decay curves for different b0,measuredwith a normalized detuning of δ=−3.15. All curves are
normalized to the level right at the switch-off of the probe beam. For comparison, the theoretical single atomdecay τat is also shown
(dashed–dotted line). The slowest decay time τsub is determined by an exponential fit (dashed lines) at late time. (b)Measured
subradiance decay times τsub/τat as a function of the on resonance optical depth b0. Allmeasured points collapse on a single line,
independent of the detuning. The linear scaling of τsub with b0 is stressed by the linear fit (solid line).
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As a consequence, the temporal dynamics of the diffuse light ismainly governed by the number of scattering
events Nscá ñ that light undergoes before escaping the atomic cloud. This number can be evaluated fromhand-
waving arguments based on a diffusion process. In 3D, the energy density spreads as r Dt62á ñ = . Then the
average number of scattering events for escaping photons is the ratio between the time spent in the system and
the scattering time τat,

N
t r

D6
. 5sc

at

2

att t
á ñ = =

á ñ ( )

The radiation can escape the systemwhen r R b 22
scá ñ ~ = ℓ . Using D 3sc

2
att= ℓ ( ) leads to N b 8sc

2á ñ ~ .
In the diffusive regime (large b), radiation trapping times are thus expected to scale as b2, with a precise numerical
prefactor that depends on the geometry of themedium [28, 43].

Since radiation trapping scales as b2 and subradiance as b0, one can expect that for large enough b, radiation
trapping leads to a slower decay than subradiance and dominates the long time dynamics. Aswewill see in
section 5.2, this is indeedwhat numerical simulations performed at zero temperature show.

However, frequency redistribution due toDoppler broadening breaks the b2 scaling. Indeed, at each
scattering event, light is Doppler shifted by only a small amount, but at large optical thickness the number of
scattering events becomes large and a part of the light eventually gets out of resonance. Thismechanism thus
limits the number of scattering events, and consequently the characteristic time of radiation trapping [28, 29],
which scales almost linearly with b [31]. There is however, to our knowledge, no analytical description of
radiation trapping in this regime and one has to use numerical simulations including the frequency
redistribution to describe the decay dynamics. Such simulationswill be discussed in section 5.3.

4.2. Impact of the probe beam size
Beside the time scale of radiation trapping, the relative amplitude of the slow-decaying part of the signal is of
paramount importance to be able to observe radiation trapping. This is largely related to the relative proportion
ofmultiply scattered light in the detected signal, which is itself related to the geometry of the experiment,
especially the size of the exciting beam, the cloud shape and detection direction.

We illustrate this by showing infigure 4 theproportionof photons havingundergoneonly one scattering event
before escaping the sample in thedetection direction, for excitationwith a planewave andwith a beamsufficiently
smaller than the cloud. It shows that for large optical depth, single scattering is suppressedwith a very narrow
beam, as is intuitively expected, and so thedetected signal is almost exclusively due tomultiply scattered light. This
is very different for an illuminating beam larger than the cloud, like a planewave, because a non-negligible
proportion of the incoming lightwill probe the edges of the atomic cloud,where theoptical depth ismuch lower,
and slowly tends to zerowith aGaussian cloud. Therefore there is always a large proportion of single and low-order
scattering, even for very large optical depth b (defined for light crossing the cloud along its center).

For the subradiancemeasurement presented in [20] and in section 2, the probe beam ismuch larger than the
atomic cloud, which leads to a dominant contribution of single and low-order scattering, even on resonance.
The slow decay that could be due to radiation trapping has thus a reduced relative amplitude, and subradiance
dominates.

In order to study radiation trapping, it is thus necessary to use a driving beam significantly smaller than the
size of the atomic sample, as in [28].Wewill use in the following a beamwith awaistw=200 μm,well below the
radius of the atomic cloud.

Figure 4.Numerical simulations for the proportion of photons having undergone only one scattering event before escaping in the
detection direction, at θ=35°±10° from the incident direction, as a function of the optical depth b, obtained from randomwalk
simulations. Blue circles are for an illuminationwith a planewave and red diamonds for an infinitely narrow beam centered on the
Gaussian cloud. For large b single scattering is suppressedwith a very narrow beambut remains quite highwith a planewave.
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The strong reductionof the beamsize comes alongwith several experimental difficulties. First, the intensity has to
remain lowenough inorder to keep the saturationparameter still small,which for anarrowbeamsize corresponds to
very lowpower, and thus a reduceddetected signal. Second, becauseofmultiple scattering, the amountof scattered
light near the forwarddirectiondecreaseswhen theoptical depth increases [8],muchmore strongly thanwith aplane
wavewhere light is transmittednear the edges.As a consequencewewerenot able to acquire datawith a sufficient
dynamics for detunings very close to resonance, and thedynamics of the recordeddecay curveswith anarrowbeam is
not as good as those recordedwith aplanewave (more than4decades infigure 2).Nevertheless,wewere able to
obtain clear signatures of radiation trapping and subradiance, as detailed in the following.

4.3.Measurements anddata analysis
The experimental setup and procedure is the same as described in section 2, except the size of the probe beam,
which nowhas awaist ofw=200 μm.Measurements with this narrow beam are shown infigure 5. The decay
curves are averaged over 600 000 cycles and the different values for the optical depth are again due to the free
expansion of the cloud during the pulse series. The curves are recorded for a detuning of δ=−0.9, which is
close enough to resonance to be in themultiple scattering regime (b(δ)?1). At long time, we clearly observe a
very slow decay similar to the subradiant decay observedwith a planewave (figure 2). However, the decay at
short and intermediate time is nowmuch slower than in the planewave case. The two parts of the decay curves
evolve bothwith the optical depth.

In order to interpret these curves and identify the physicalmechanisms at the origin of the two slow decays,
we have performed systematicmeasurements for several b0 and δ.We have kept the saturation parameter lower
than 0.4 for all data and the lowest count rate in steady-state was 6×105 counts per seconds.

In order to characterize those decays by simple numbers, we have used the following procedure. For the late
time decaywe use a single exponential fit andwe keep the samefitting range as for the previousmeasurements
with a planewave, i.e. one decade above the noisefloor. The characterization of the intermediate decay is less
straightforward since it is clearly not a single exponential decay.We have chosen tomeasure the time at which
the normalized intensity reaches e−1=36.8% as an effective decay time. This level seemed a good trade-off
betweenwaiting long enough such that the fastestmodes have decayed and not too long not to enter the late time
decay. A reliable determination of this time has to take into account the non-negligible amount of detected light
which does not come from the cold atoms but from the scattering off the glass windows and the background hot
vapor, such that the 36.8% level is always defined respective to the steady-state level of the light scattered by the
cold atoms. The corresponding level is shown infigure 5 as a dashed horizontal line.

The results of themeasured decay times for several b0 and δ are shown infigure 6. In the first row (panels (a)
and (b)), we plot the effective decay time characterizing the intermediate decay, noted τRT, and in the second row
(panels (c) and (d))we plot the slowest decay time, noted τsub.Moreover, in order to identify the relevant scaling
parameter for each decay time,weplot themas a function ofb0 (left panels (a) and (c)) and b(δ) (right panels (b) and
(d)). One can see that b0 is not the right parameter governing the intermediate decay (figure 6(a)) and b(δ) is not the
right parameter governing the long time decay (figure 6(d)). The relevant scaling are those offigure 6(b), (c),
highlighted by thickmirrored axes.

Themeasured values τRT for the intermediate decay plotted as a function of b(δ) all collapse quite well on a
single curve, showing that the optical thickness governs this decay.We therefore associate this to radiation

Figure 5.Experimental decay curves for different values of b0 at afixed detuning δ=−0.9 and a narrowprobe beam. Additionally to a
very slow decay at late time, similar to the one observedwith a planewave (figure 2), another slowdecay appears at intermediate time.
This intermediate decay is also slower than the natural decay time τat (dashed–dotted line). The fit result obtained by a single
exponential for the slowest decay is shownwith the dashed lines, and the level used to characterize the intermediate decay time is
shown as a horizontalmagenta dashed line.
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trapping. Note that τRT does not scale as b
2, which is partly due to theDoppler-induced frequency

redistribution, as already explained, and also partly due to our empirical definition of τRT, which does not
correspond to the lifetime of the longest-lived diffusivemode. The data is in fair agreementwith theRW
simulations shown in section 5.3, which demonstrates that classicalmultiple scattering is a sufficient ingredient
to explain this part of the decay curve. Howeverwe note that the scalingwith b(δ) has been obtained using an
empirical frequency shift of−0.15Γ≈0.9 MHz for the probe detuning, whichmight be due to calibration
errors or spuriousmagnetic fields. All data are presentedwith this shifted detuning.

Themeasured values τsub for the slowest decay time plotted as a function of b0 are scattered around the trend
of the subradiance decaymeasuredwith the planewave (figure 2), shown by the dashed line.We do not observe
any significant systematic effect with the detuning. The higher level of the noisefloor compared to the plane
wave data, due to the reduced probe power, explains the spreading of the data, but the trend shows
unambiguously that this decay is similar to the one observedwith the planewave, and can thus be attributed to
subradiance. As a consequence, we can conclude thatwith these parameters, in particular the temperature
T≈100 μK, the late time decay is dominated by subradiance, evenwith a narrow exciting beam, at least up to
b∼35, which is themaximumwe have been able to study in our experiment.

5.Numerical simulations

In order to provide further evidence of our interpretation to distinguish radiation trapping from subradiance,
we now turn to numerical simulations. Numerical simulations allowus to discuss the physics of subradiance and
radiation trapping in an idealized scenario, for example at zero temperature. It also allows comparing the data to
amodel including a number of experimental imperfections.

5.1.Description of themodels
Weuse twoverydifferentmodels in the following: coupleddipole (CD) equations andrandomwalk (RW) simulations.

TheCDmodel has beenwidely used in the last years in the context of single-photon superradiance and
subradiance [4, 17, 19–21, 44–48]. It considersN two-level atoms at randompositions ri driven by an incident
laser (Rabi frequency rW( ), detuningΔ). Restricting theHilbert space to the subspace spanned by the ground
state of the atoms G g gñ = ñ∣ ∣ and the singly excited states i g e giñ = ñ ∣ ∣ and tracing over the photon

Figure 6. Systematic experimental study of the decay of the scattered light when the atomic sample is illuminated by a narrow beam.
(a) and (b) Intermediate decay time τRT plotted as a function of b0 and b(δ). (c) and (d) Late time decay τsub as a function of b0 and b(δ).
The relevant scalings appear in panels (b) and (c). In the latter the subradiance trendmeasuredwith a planewave (figure 2) is shown as
a dashed line.
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degrees of freedom, one obtains an effectiveHamiltonian describing the time evolution of the atomicwave
function ty ñ∣ ( ) ,

t t G t i . 6
i

N

i
1

åy a bñ = ñ + ñ
=

∣ ( ) ( )∣ ( )∣ ( )

Considering the low intensity limit, when atoms aremainly in their ground states, i.e.α;1, the problem
amounts to determine the amplitudesβi, which are then given by the linear systemof coupled equations
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These equations are the same as those describingN classical dipoles driven by an oscillating electric field [46].
Thefirst termon the left-hand side corresponds to the natural evolution of independent dipoles, the second one
to the driving by the external laser, the last term corresponds to the dipole–dipole interaction and is responsible
for all collective effects. In the scalarmodel for light, which neglects polarization effects and near-field terms in
the dipole–dipole interaction, it reads

r rV
k r

r
e

, with , 8ij

k r

ij
ij i j

i

0

ij0

= = -∣ ∣ ( )

where k0=ω0/c is thewavevector associated to the transition.Neglecting the near-field terms of the dipole–
dipole interaction is a good approximation for dilute clouds, i.e. when the typical distance between atoms is
much larger than thewavelength, which is the case in the experiment. The impact of the polarization of light on
subradiance, as well as the Zeeman structure of the atoms, is still an open question and has been the subject of
several recent theoretical works [49–51]. From the computed values ofβi, we can derive the intensity of the light
radiated by the cloud as a function of time and of the angle [47]. Technical details on the simulations can be
found in [22].

The secondmodel is a RWmodel, where the atoms are treated as classical scatterers and photons as particles,
neglectingwave aspects. Photons are sent one by one by randomly drawing their initial transverse position
according to the exciting laser profile and their initial detuning according to the laser spectrum. The number of
scattering events until the photon escapes themedium, aswell as its escape direction, is computed from a
stochastic algorithmbased on themean-free path [26]. By repeating this withmany photons, we can build the
distribution of the number of scattering events per photon for a given detection direction. By converting the
number of scattering to a time using the transport time τat (see appendix A) and convoluting by the pulse
duration, we obtain a decay curve for the scattered light at the switch-off.

The advantage of theCDmodel is that it includes interference and cooperative effects. One can also include
temperature effects by using time dependent positions of the atoms [21, 52]. However, computing capabilities
limit its use to a few thousand atoms and it is thus hard to explore large optical depthswithout introducing
spurious high-density effects. The RWmodel does not suffer from this limitation and can be appliedwith the
parameters of our experiment. It can also easily account for some experimental imperfections, like the finite
linewidth of the laser spectrum.Doppler broadening can also be included ‘by hand’ by a probabilistic frequency
shift at each scattering [52], also accounting for subtle effects like the correlation between the frequency shift and
the initial detuning and the scattering angle (see, e.g., [53]). However, all coherent and interference effects are
neglected. Therefore, comparing the results given by the twomodels helps identify the relevant physics.

5.2. Comparison between theCDand theRWmodels in the ideal case
In this sectionwe considermotionless atoms (T=0). In theCD equations, the driving beamprofile rW( ) is a
truncated planewave of radiusR/2, whereR is the rms radius of the atomic cloud. In the RWsimulations, the
excitation beam is infinitely narrow and centered on the cloud. In the twomodels the driving field is perfectly
monochromatic.

Examples of decay curves for different optical depths b are shown infigure 7. Solid lines are computed from
theCDequations and the dashed lines fromRWsimulations. Here, the resonant optical depth isfixed, b0=17,
and the optical depth is changed by varying the detuning. The data for the highest b corresponds to δ=0. The
main observation is that the twomodels are in good agreement for the highest optical depth, showing that in this
case, radiation trapping completely dominates the decay dynamics, and subradiance is not or hardly visible. As
the detuning increases and the optical depth decreases accordingly, while b0 remains large, radiation trapping
becomes less and less important. It still dominates the early decay (superradiance is not visible above b∼1 [19])
but subradiance dominates afterwards.

A systematic comparison between the twomodels is performed infigure 8, inwhichwe plot the late decay
time determined by an exponential fit in the amplitude range 10 103 4- -[ – ].We also show the prediction of a
diffusionmodel formultiple scattering,
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withα≈5.35 for aGaussian density distribution [28].
Figure 8 shows that the decay computed by theRWsimulation tends toward the asymptotic behavior

described by the diffusion equation, which is a good approximation for optical depth larger than b∼20.More
interestingly, the CDmodel also starts to reach this asymptotic behavior and gives results very close to the RW
model above b∼10.On the contrary, at low b (large δ), the CDmodel levels to a constant value for the decay
time, which corresponds to subradiance, not included in theRWmodel.

Similar comparisons (not shown here) for resonant excitation and different b0 show the same behavior: the
twomodels are in agreement above b∼10while for smaller b subradiance is visible in theCDmodel.

To conclude, in this idealized scenario (narrow exciting beam,T=0), subradiance dominates the slow
switch-off dynamics for small b and radiation trapping dominates for large b, as expected from the scaling
behaviors, respectively linear in b0 and quadratic in b.Moreover, although the deepmultiple scattering regime is
hard to explore, these results confirm that radiation trapping is well included in theCDmodel.

5.3. Comparison between experimental data andRWsimulations
The situation is not so simple in the experiment because of a number of effects. As already discussed in [28, 29],
the twomost important effects are the temperature and the spectrumof the incident laser. First, frequency
redistribution duringmultiple scattering due toDoppler broadening breaks the b2 scaling law, and can even
make it close to a linear scaling [31]. Second, the finite spectrumof the incident laser, with possibly broadwings,
can be a source of resonant photonswhen amoderate detuning is chosen. By combining the two effects,
spurious resonant photons couldmimic subradiance. Fortunately, these two effects can be included in RW

Figure 7.Numerical simulations of the decay for a fixed b0=17 and different detunings δ={0, 0.6, 2.9} in order to vary the optical
depth (legend). The solid lines represent the calculations for the coupled-dipolemodel, the dashed lines show the result for the
randomwalkmodel. The twomodels are in agreement at high b. For large b0 andmoderate b (slightly detuned excitation), radiation
trapping dominates the decay at the beginning and subradiance dominates at the end. For very large detuning and very low b,
superradiance at early times would be visible in theCDmodel [19].

Figure 8.Comparison of the late decay time in differentmodels. The optical depth b(δ) is changed by varying the detuning and
keeping the on-resonant optical depth constant, b 170 = . Red circles correspond to randomwalk simulations, blue diamonds to the
coupled-dipolemodel and the dashed–dotted line to the diffusionmodel (9).
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simulations, which allows us to check that the slow decay due to this spurious radiation trapping is well below
themeasured slow decay that we attribute to subradiance.We have also checked that a number of other
imperfections, such as a slight anisotropy of the cloud or a smallmisalignment of the beam from the cloud
center, are indeed negligible with our parameters (see appendix B).

Figure 9 shows the direct comparisonbetweennormalized experimental data andRWsimulations performed
with the experimental parameters, for the sameb(δ)≈14 but different b0 and δ. Since the optical depths are the
same, in the ideal case the twoRWsimulationswould give the same results. Their small difference is due to the
temperature (T=100 μK) and laser spectrum (FWHM=500 kHz), which havedifferent effects depending onb0
and δ. The experimental data, however, have amuch larger difference. They are very close to the simulations at
early time,which confirms that themeasured intermediate decay iswell explained by radiation trapping.On the
contrary, at long time, the experimental data are significantly above the simulations, a differencewhich increases
with b0. This iswell consistentwith subradiance, absent in theRWmodel,whichdominates at long time.

Moreover, theRWsimulations allow thedirect comparisonwith themeasured intermediate decay time reported
infigure 6(b).Using the samedefinition for extractingτRT fromthe simulateddecay,we report infigure 10 the results
of systematic simulations for differentb0 and δ, plotted as a functionof b(δ). As previously, the simulations are
performedwith theparameters of the experiment including the effects of the temperature and laser spectrum.
Therefore thedecay timesdonot follow thequadratic behavior expected for the ideal case of zero temperature.With
these effects the decay time increases almost linearlywith theoptical thickness and saturates for large optical thickness.
It shows a fair agreementwith the experimental data offigure 6(b), without any free parameter, althoughweobserve a
discrepancy for the largest optical thickness. Indeed aboveb≈25 the timeτRT saturates faster in the experimental
data than in the simulations.This couldbedue to a loss process for the light duringmultiple scattering, for instance
inelastic scattering (Raman scattering, light-induced collisions, scatteringby thehot vapor background, etc).

Figure 9.Direct comparison between experimental decay and simulated decay with a randomwalkmodel. The parameters of the
simulation are the experimental ones. The optical depth is the same in the two panels, b≈14. (a) b0=78, δ=−0.65. (b) b0=182,
δ=−1.15. The beginning of the decay is in good agreement with the RW simulation; the slower experimental decay at late time is due
to subradiance.

Figure 10.Numerical decay times τRT as a function of the optical depth b(δ) for different detunings and b0. These results have to be
comparedwith the experimental data reported infigure 6(b), which shows a fair agreement between radiation trappingmeasurements
and our randomwalkmodel.
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It is interesting to note that despite several experiments on radiation trapping in cold atoms, it is still
challenging to observe a clear quadratic dependence of the radiation trapping timewith the optical thickness.
Indeed one needs at the same time a large cloud (such that the exciting beam can reasonably be smaller), a large
optical thickness to be deep in the diffusive regime, and a very cold sample such that frequency redistribution is
negligible.More precisely, one needs bk0v=Γ, where v is the rmswidth of the velocity distribution [28, 29, 31].
This condition comes from theDoppler shift at each scattering event, which induces a RWof the light frequency
of step kv, thus producing a broadening given by k0v times the square root of the number of scattering events, i.e.
b. Taking b=50 and bk0v=0.1Γ gives a temperatureT≈1 μK.

6. Summary

In summary, we have demonstrated that with a large cold atomic cloud of 87Rb driven by aweak laser near
resonance, we can observe two different types of slow decay of the scattered light when the laser is switched off.
Moreover, with appropriate parameters, the two slow decays appear simultaneously. At early and intermediate
time, the decay ismainly due to radiation trapping, i.e. classicalmultiple scattering. It is well explained by a RW
description. At late time, subradiance creates an even slower decay.Wefind that, at large enough optical depth
and at zero temperature, radiation trapping could dominate thewhole decay dynamics.However, temperature-
induced frequency redistribution limits radiation trapping and in our experiment, subradiance always
dominates at late time.

Following previous independent observations of radiation trapping [28, 29] and subradiance [20] aswell as a
theoretical analysis of the nature of collective long-livedmodes of the effective atomicHamiltonian [39], thesenew
results significantly contribute to clarify the interplay between radiation trapping and subradiance, their
dependencewith experimental parameters, andmore generally thephysical interpretation of the slowdecay at the
switch-off. This is crucial for further use of this kind of experiments for probingmore subtle phenomena, as it has
beenproposed, for instance, for the experimental observationofAnderson localization of light in cold atoms [54].
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AppendixA. Transport time of light in cold atoms

The transport time is the sumof the group delay between two scattering events and the delay corresponding to
the elastic scattering process, calledWigner’s delay time τW [23, 28]:

v
, A.1tr W
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g

t t= +
ℓ ( )

whereℓsc is themean-free path and vg the group velocity.
The fundamental ingredient to compute the different terms is the atomic polarizability,
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where k0=ω0/c is thewavevector associated to the transition.Note that the prefactor 6π/k0
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Lorentzian function

1

1 4
. A.3

0
2 2

 w
w w

=
+ - G

( )
( )

( )

TheWigner delay time is given by the energy derivative of the dephasing acquired at the scattering [55, 56],
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which gives
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Themean-free path is related to the scattering cross section, proportional to the imaginary part of the
polarizability,
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Finally, the group velocity is defined by
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with k=n k0 and n the refractive index. It follows
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At this stage we consider that thefirst term is negligible, which is true for sample of reasonable size because
R=c/Γ.We thus obtain
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Finally, combining equations (A.6) and (A.15) in equation (A.1) leads to
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Although this result is well known, writing down its derivation allows one to notice that near resonance, the
Wigner time is actually larger than the natural lifetime of the excited state, and this is compensated by a negative
group velocity. This shows that the simple physical picture of photons bouncing between atomswith awell
ordered sequence of events, with some duration for the scattering process and some duration for the
propagation between atoms, is clearly a bad picture. Yet, it works surprisingly well in a great number of
circumstances.

Another remark is that RW simulations are considered to neglect coherent andwave effects, which is true for
diffraction, interference or cooperativity. But, as far as the temporal dynamics is concerned, a bit of wave physics
enters with the use of equation (A.18), since it relies onwave quantities like the group velocity or the dephasing at
the scattering process.Moreover it also relies on the refractive index, which is a coherent and collective quantity.
In this respect, the RWmodel corresponds to a hybrid approach.
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Appendix B. Influence of imperfections

To evaluatewhich experimental imperfections influence the radiation trapping decaywe performed a systematic
study by adding one effect after the other in the RWsimulations.We alsowant to check that none of these
imperfections is strong enough to create spurious photons on resonance, whichwouldmimic subradiance.We
thus used the parameters of the data taken off resonance, at δ=−1.15.

The curves are shown infigureB1, starting from the ideal case of zero temperature, an infinitely narrowbeam
crossing the sample at its center, a sphericalGaussian atomicdistribution andaperfectlymonochromatic light. First,
thefinite temperature is added,which changes the slopeof the late decay.Afterward thefinite beamsize is added,
whichdoesnot affect the decaymuch since the beam is stillmuch smaller than the cloud.Next thefinitewidthof the
probe spectrum (FWHM=500 kHz), including itsmeasuredLorentzianwings, is added,which leads to a significant
change in thedecay time aswell as in the relative level of the slowdecay. This is due to the resonantphotons contained
in thebroadLorentzianwings of the laser spectrum. Finally the slight anisotropy in the cloud shape is added,which
only leads to aminor change.Wealsodisplay the corresponding experimental data,which shows that the slowdecay
at late time, attributed to subradiance, is indeedwell above the simulated radiation trappingdecay.
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VI.5.2. Update with recent results
In the previous paper, and also in the Supplemental material of [Guerin 2016a], we made a
dedicated effort to make sure that the quantity of spurious light near resonance was always
small enough to be unable to explain the data with a random walk model. Although I still
think that a random walk model is not able to explain the data, as discussed later in this
section, recent findings now show that resonant light plays an important role on the observed
long-lived modes.

First, we have recently performed a theoretical and experimental study of subradiance beyond
the linear-optics regime, by using a higher saturation parameter s for the probe beam [article
in preparation]. Of course we have to check that we recover the previous results in the
limit of low saturation. In the linear-optics limit we expect the results to be independent
of the saturation parameter. As shown in Fig.VI.4 representing the relative amplitude of
subradiance as a function of the saturation parameter, even going down to s ∼ 3 × 10−3

is not enough to reach a plateau. This seems to be in contradiction with Fig. 3(b) of the
Supplemental Material of [Guerin 2016a], but the range of explored value of s was more
limited, and we might have by chance only explored to top of the curve, where it is locally
flat. As explained there, at large detuning and low intensity, the inelastic spectrum looks like
a doublet, one being on resonance. The relative proportion of light scattered on resonance is
thus s/2. The increase of the subradiant amplitude with s seems to show that the slow decay
is due to resonant light.

10-3 10-2 10-1 100

10-3

10-2

Asub

s

Figure VI.4: Experimental measurement of the relative subradiant amplitude as a function of the
saturation parameter of the probe beam. We do not observe any plateau at low s, which means
that the linear-optics limit is not reached. The parameters are b0 = 54 and ∆ = −4Γ.

There is another effect that we overlooked so far, and we became aware of its importance
during our work on the linear-dispersion theory: it is the broadening induced by the fast
switch-off. This effect is not a spurious one but is fundamental and intrinsically related to the
fact that we study the temporal dynamics: there is no such thing as a monochromatic field if
the problem is not stationary. In particular, in the CD model at zero temperature, this is the
only effect that can ‘generate’ light on resonance. To test its influence, one can compare the
relative amplitude of the slow decay for different switch-off durations and switch-off profiles.
This is done in Fig.VI.5. Here also, the result is unambiguous: the relative amplitude of
subradiance seems related to the amount of resonant light. Indeed, at large detuning, an
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Figure VI.5: Influence of the switch-off profile and duration of the driving field on the relative
amplitude of subradiance. (a) Comparison between an exponential and a Gaussian switch-off. The
latter case induces less spectral broadening. The switch-off duration tfall is defined as the 90%− 10%
fall time. The parameters are b0 = 10 and ∆ = −10Γ0. (b) The switch-off duration (this time
defined as the rms width of a Gaussian profile) is varied for two different detunings (same b0).

exponential switch-off (inducing a heavy-tailed spectrum) leads to much more subradiance
than a Gaussian switch-off (inducing a more compact spectrum), as can be seen in panel (a).
In panel (b) we compare the effect of the switch-off duration for two different large detunings
with a Gaussian switch-off: the decrease of the subradiant amplitude for slower switch-off is
more pronounced at larger detuning, showing the role of the overlap of the incident spectrum
with the atomic resonance. In all cases the time constant is not affected, only the relative
amplitude is changed.

Note that the fact that the long-lives modes are enhanced by near resonant light doesn’t tell
us if they should be interpreted as radiation trapping or subradiance, since we have seen
that both are favored near resonance [Guerin 2017b]. Moreover, let’s remark that in the
experiment, the switch-off is smooth and with a not-so-small fall time, so we don’t expect
the broadening effect to be significant.

Nevertheless it seems highly necessary to perform again a comparison between the CD and
RW models, this time with the broadening effect included, to make sure that the slow decay
observed in the CD model cannot be attributed to spurious radiation trapping. However
including the switch-off-induced broadening in the RW simulations is not an easy task
because we deal with a nonstationary situation: a simple Fourier transform is not enough (the
spectrum during the long pulse is monochromatic and it is broadened only at the switch-off).
Methods to tackle this kind of problems are presented in [Bozhokin 2018]. A simpler way
is to consider a pulsed excitation, with a pulse duration much shorter than τat. Then the
spectrum is well defined and can easily be taken into account in the RW model. Note that
this is a worst-case scenario, with a very broad spectrum and thus a significant proportion of
resonant light. We have performed this comparison in Fig. VI.6(a), where we show the decay
curves computed using the two models. There is a slow decay in both but we do observe a
significant difference. The slow decay of the RW model corresponds to the radiation trapping
induced by near-resonant light, which is a significant contribution of the slow decay of the CD
model. But in the latter, the late decay is even slower, showing that there is something more:
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Figure VI.6: (a) Temporal traces of the slow decays following a pulsed excitation computed with
the CD and the RW models. The parameters are b0 = 8 and ∆ = 10 (central detuning). The pulse
is a Gaussian of rms width 0.1τat, inducing a Gaussian spectral broadening of rms width ∼ 7Γ. (b)
Late time constant as a function of b0 computed in the RW model (radiation trapping). The dashed
line shows the analytical prediction in the diffusive regime.

subradiance. In panel (b) we show the scaling of the radiation trapping decay, which still
scales quadratically with b0, demonstrating that, even with a broad spectrum illumination,
spurious radiation trapping at zero temperature never gives linear scaling with b0, as observed
for subradiance.

Finally, another proof that there is some coherence effects in the subradiance (and thus
that it is different from radiation trapping) can be obtained from the CD model only and is
already discussed in [Araújo 2018b] (not reproduced here): the phase profile of the driving
field changes the relative amplitude of subradiance. For instance, applying a dephasing of
π on half of the beam produces an increase by a factor ∼ 2, as shown on Fig.VI.7. The
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Figure VI.7: Influence of the phase profile of the driving field on the relative amplitude of subradiance.
(a) Scheme of the experiment. Taken from [Araújo 2018b]. (b) Computed decay with and without
the π dephasing. The parameters are b0 = 10, ρ0λ

5 = 5, ∆ = −10Γ0 and the observation direction
is θ = π/4 (averaged of φ and over 30 realizations).
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influence of the phase profile of the beam is an unambiguous signature of a phase-coherent
effect. At the time of writing this experiment is being done in the lab.6

VI.5.3. Towards a ‘photonic’ picture of subradiance?
In this last subsection on subradiance I’d like to share some thoughts, which are not completely
mature, and may thus change in the future!

As already mentioned there should be some equivalence between an atomic description and a
light description of collective effects in light-matter interaction [Lax 1951,Lagendijk 1996], and
we did find an optical description of superradiance (section VI.4). The case of long-lived states
is however more complicated. In the framework of the atomic description (the CD model), it
is straightforward to call all short-lived state (Γ > Γ0) superradiant and all long-lived state
(Γ < Γ0) subradiant, and that’s what many authors do. Nevertheless, for people familiar with
the field of multiple scattering, it is not very satisfactory, since we know that slow decays (i.e.
long-lived states) can also be due to incoherent multiple scattering, which we call radiation
trapping. As discussed in the previous section, we claim that subradiance is something else.
Then what is it? What are those photons doing during all this time?

Note that many papers deal with super- and subradiant collective modes in mesoscopic
ensembles of a small number of atoms, sometimes in 1D or 2D, often ordered. In these cases,
of course, the atomic picture is much more adapted and an optical picture is probably not
possible, or at least not relevant. I am concerned here with macroscopic disordered ensembles
of atoms.

Since superradiance can be explained by a linear-dispersion theory, it is natural to wonder
if it can also explain subradiance, like a kind of slow-light effect. A numerical study of
Eq. (VI.2) shows that it is not the case: after the superradiant decay, the temporal trace
quickly becomes a single exponential of decay rate Γ0. Subradiance can thus not be explained
by a single scattering event embedded in a dispersive effective medium.7

Another, strong argument showing that subradiance and superradiance are due to different
optical mechanisms can be found in the polarization. Using the vectorial version of the
CD equations, based on a J = 0→ J = 1 transition, one can compute the polarization of
scattered light as a function of time. Fig. VI.8 shows the result of such a computation, with a
circularly-polarized driving field and light detection at 90◦: single scattering should produce
a linear polarization. The result is unambiguous: at late time light is depolarized.

Note that in most of our computations (including the one of Fig.VI.8) we use an exclusion
volume to avoid pairs or clusters of very close atoms, which might create strong super- and
subradiant modes, because we think that such effects don’t occur in the experiment due to
the low density and atomic motion. I am concerned here with dilute samples.

Let us then examine two different hypotheses for photonic/optical pictures of subradiance.

The case of coherent multiple scattering

The fact that resonant light plays an important role, as well as the depolarization effect,
naturally hint towards a multiple scattering picture. Moreover the fact that the RW model
doesn’t predict the same slow decay as the CD model (even with the broadening included) and

6 It has been actually interrupted by the Covid-19 crisis and will resume as soon as possible.
7 I have also tested to change the equation in order to average the field and then compute the intensity.

Even without any mathematical justification, it is numerically easy to do. There is still no subradiance.
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Figure VI.8: Results of CD simulations using the vectorial model. The probe beam has a circular
polarization and we compute the light scattered at 90◦, in two orthogonal linear polarization channels:
orthogonal (perp) and parallel (par) to the scattering plane. One can see that the superradiant part
of the decay is polarized whereas the subradiant part is depolarized. The parameters are b0 = 16,
ρ0λ

3 = 5, ∆ = −10Γ0. Computations done by Ana Cipris.

the phased-excitation enhancement show that incoherent multiple scattering is not enough
and that some phase-coherent or interference effects are involved. Subradiance would thus be
due to coherent multiple scattering. In other words, it would be a phase-coherent correction
to the dynamical properties of multiple scattering, or, one may also say, it would be radiation
trapping beyond the independent scattering approximation.

One flaw of this hypothesis is that it is absolutely not obvious, at least to me, within the
multiple-scattering picture, to physically understand the observed robustness with the atomic
motion [Weiss 2019] (subradiance seems less sensitive than radiation trapping) and how the
phased excitation can favor the longest multiple-scattering paths.

Another flaw is that in the mesoscopy community, it is widely accepted that effects beyond
the independent scattering approximation appear at high density only, more precisely when
the parameter 1/k0`, where ` is the mean free path, is not completely negligible compared to
one [Lagendijk 1996,van Rossum 1999]. On the contrary we have shown that subradiance
exists in the low-density regime.

As a consequence, we may have some confidence in this interpretation of subradiance only
when the nature of the phase-coherent correction, and its modeling within a multiple-scattering
approach, will be available.

The case of refractive long-lived modes

In a recent paper [Cottier 2018], my colleagues suggested that subradiance is present in a
‘mean-field model’ in which the atomic distribution is continuous: mathematically, all sums are
replaced by integrals. This approach has been used by several authors [Prasad 2010,Svidzin-
sky 2010,Bachelard 2012,Schilder 2016], but mainly to discuss superradiance. Physically it
means that disorder is absent, and there is no ‘scattering’ by the atoms, only by the whole
cloud itself, which is represented by an effective dielectric medium. The long-lived modes can
then appear due to boundary effects (Fabry-Perot modes or whispering-gallery modes) if the
refractive index is high enough [Schilder 2016]. In [Cottier 2018] it is shown that short- and
long-lived modes are also present with a smooth Gaussian density distribution, which is not
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obvious. A physical picture is that the refractive-index profile of the medium somehow traps
the light, similarly to the guiding of graded-index multimode fibers. One can also imagine
that this trapped light is depolarized, like in fibers.

However, the refractive index is given by the density and, although some quantities may
be given by b0 (e.g. the dephasing accumulated along a trajectory), intuitively, I expect
the density and the size to play an important role in this process via the refractive index
gradient. Indeed, all numerical calculations presented in [Cottier 2018] have been done with
rather high-density and/or small-size samples. For technical reasons no quantitative study
of the subradiant modes could be performed, so we don’t know if they depend on b0, on
the density or on something else. As a consequence, more work is needed to know if those
refractive long-lived modes survive in the low-density, large-sample case and if they can still
be populated in a nonnegligible way.

Moreover, it is intuitively clear that in the light detected off axis, the relative proportion
of diffracted/refracted light (which is what the mean-field model computes) compared to
the scattered light strongly depends on the density/size of the medium. In that scenario,
the relative weight of the long-lived modes should thus decrease a lot at low density, and in
particular should be negligible in the experiment. This is not what we observed, even in the
CD model: for instance, the Fig. 3(c) of [Guerin 2017c] shows that the whole decay curve,
and therefore the relative amplitude of subradiance, is independent of the density.

One hypothesis to reconcile the refractive scenario with this observation is to add a single
scattering event in the picture: this scattering event redirects light off axis and may even
increase the coupling to the long-lived modes, in comparison with what would happen with
an incoming plane wave. Indeed the long-lived modes are those with the less homogeneous
phase/intensity profiles [Cottier 2018]. Therefore this scenario would be an extension of
the superradiance one: single-scattering embedded in an effective dispersive graded-index
medium.

It might be easier, in this scenario, to understand the robustness with the temperature
(it only induces a broadening of the optical response, and no frequency drift of the light,
since there is no scattering) and the phased-excitation enhancement (better coupling to
inhomogeneous-phased modes). However it is not clear why resonant light would be good:
near resonance there are more losses (in this picture the imaginary part of the refractive
index is absorption).

Conclusion

Clearly, none of these two scenarios are convincing so far, and the question of a photonic
picture of subradiance is still wide open.

Maybe it is a useless question and we should just be happy with the atomic picture of
collective modes of coupled dipoles! I personally think it is important in order to get some
realistic idea about what subradiance might be useful for.

VI.6. Excitation dynamics: collective Rabi oscillations
In this last section I now turn to a detailed study of the excitation dynamics. Indeed, in the
superradiance data of [Araújo 2016], we also observed oscillations at the switch-on. After
some analysis, initially motivated by discussions with Johannes Schachenmayer (Strasbourg),
we found out that those oscillations clearly depend on the resonant optical thickness b0 and
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Figure VI.9: (a) Sketch of the experiment: a probe beam (plane wave) at a detuning ∆ is suddenly
switched on to illuminates a Gaussian cloud of cold atoms with resonant optical thickness b0.
(b-d) Collective Rabi oscillations observed at the switch-on for different detunings. Blue dots are
experimental data and the solid line is a simulation of the CD equations, without any free parameter.
Near resonance the frequency is smaller and the oscillations becomes overdamped. Taken from [do
Espirito Santo 2020].

the detuning ∆. Interestingly, the linear-dispersion (LD) theory presented and validated
for superradiance (sectionVI.4), with the same Eq. (VI.2), can also be used to model this
excitation dynamics. Using this LD approach allowed us to put in evidence an interesting
analogy with the phenomenon of collective vacuum Rabi splitting, well known in the context
of cavity quantum electrodynamics [Miller 2005].

For a single atom, the switch-on dynamics exhibits oscillations with a frequency given by the
generalized Rabi frequency

√
Ω2

0 + ∆2 and a damping rate Γ0. At low saturation parameter,
which is the case we consider here, Ω0 � ∆ and the generalized Rabi frequency is dominated
by the detuning ∆.

In the data, we observe for the collective oscillation frequency ΩN a shift from ∆, and a
collective damping rate ΓN different from Γ0, both effects depending on b0 and ∆. In Fig. VI.9
I show a few examples of temporal traces, along with coupled-dipole simulations, which agree
very well.

In order to experimentally determine those parameters, an empirical fit with the function

I(t) = I0

∣∣∣1− e(iΩN−ΓN/2)t
∣∣∣2 , (VI.7)

describing a single macroscopic damped oscillator, works remarkably well for most data, as
shown in [do Espirito Santo 2020]. We will discuss in the following the behavior of ΓN first,
and then ΩN .

VI.6.1. Superradiant damping
The damping rate ΓN , determined by the empirical fit (VI.7), is reported in Fig.VI.10, for
numerical simulations based on the CD (panel a) and for experimental data (panel b), plotted
as a function of the optical thickness b(∆).

The first observation is that the damping rate can be significantly larger than Γ0, i.e. it
is superradiant. At large detuning ΓN increases with the optical thickness and at lower
detuning it decreases. Actually the behavior is completely similar to the superradiant decay
rate measured at the switch-off, see Fig. 3(b) of [Araújo 2016] (section VI.2).

The measurements are in good qualitative agreement with CD simulations, although there
is a small systematic quantitative discrepancy: the damping rate is slightly larger in the
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Figure VI.10: Damping rate of the col-
lective Rabi oscillations observed at the
switch-on, in the CD simulations (a) and
in the experiment (b). The qualitative
agreement is very good. The solid lines
in panel (a) are the large detuning limit.
Taken from [do Espirito Santo 2020].

experiment than in the simulations, which might be due to the finite rise time of the probe
beam.

These results have been published in [do Espirito Santo 2020], which I don’t include here.
The paper also contains recent data taken at higher saturation parameter, i.e. going beyond
the linear-optics regime. It is shown that a mean-field model, based on a product-state ansatz,
describes the experiment well.

VI.6.2. Shift and splitting
For the collective oscillation frequency ΩN extracted from the fit by Eq. (VI.7), we observed
a shift from the single-atom frequency ∆, with what seemed to be a square-root behavior
with b0,

|ΩN | ∼ |∆| −
√
b0

2 , (VI.8)

i.e. the oscillations get slower.

Following the analogy with a driven damped harmonic oscillator, the slowing down of the
oscillations might be attributed to the effect of the damping: when the damping ratio
increases, the oscillations cannot follow the driving frequency. However this analogy does not
explain the

√
b0 behavior.

The linear-dispersion theory provides a way to understand what happens. Let’s look again
at Eq. (VI.2) and consider what happens in frequency space. The input field E0(ω) has
a monochromatic component at ωL, with ∆ = ωL − ωat, and broad slow-decaying wings



VI.6. Excitation dynamics: collective Rabi oscillations 207

(∝ 1/|ω−ωL|) due to the instantaneous switch-on. This broad spectrum undergoes a response
function that is the product of three terms, describing the propagation and the scattering.
There is a competition between the propagation terms and the scattering term. Indeed the
scattering term is a positive Lorentzian, with slow-decaying wings, while the propagation
terms induce an attenuation, with an exponential of Lorentzian, which reads exp[−b(∆)]
in squared modulus for a scattering position at the center of the cloud. The width of this
attenuation term is proportional to

√
b0. As a consequence only the frequency components

on the wings of the attenuation spectrum are ‘transmitted’, which results in a double peak.
One of this peak is much more pronounced because the system is driven on one side, given
by ∆, and not by a white spectrum. Therefore, the most visible frequency component has a
shift evolving like

√
b0, and there is actually another frequency component, on the other side,

corresponding to faster oscillations: this is not only a shift but a splitting.

By a deeper analysis of the experimental data we could indeed observe the predicted second
frequency component, see Fig. 3a of the following article [Guerin 2019].

In this paper, an analogy is made with the vacuum Rabi splitting. The vacuum Rabi splitting
corresponds to the shifting of the degeneracy when an atom is coupled to an optical cavity
with the same resonance frequency (atom and cavity). It is an emblematic effect of cavity
electrodynamics (see, e.g., [Miller 2005]), especially when it deals with a single atom. However,
first observations of this effect were done with atomic ensembles, and it was found out later
that a classical linear-dispersion theory could perfectly explain the observations [Zhu 1990].
In that case what happens is the following: the refractive index of the atomic cloud changes
the resonance condition of the cavity and make two new resonances appear. The initial
resonance, which coincides with the atomic resonance, is still there (since the refractive index
is zero on resonance) but killed by the scattering/attenuation due to the atoms. Looking
at the modes of the cavity selects, among all the possible eigenmodes of the atoms-cavity
system, those with less scattering. In our case, looking at very short time after the switch-on
also selects the modes with less scattering, because multiple scattering gives rise to slower
time constants.
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We report the experimental observation of collective multimode vacuum Rabi splitting in free space. In
contrast to optical cavities, the atoms couple to a continuum of modes, and the optical thickness of the cloud
provides a measure of this coupling. The splitting, also referred as normal mode splitting, is monitored
through the Rabi oscillations in the scattered intensity, and the results are fully explained by a linear-
dispersion theory.
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Light scattering encompasses a broad range of pheno-
mena, and its elementary brick can be found in the
interaction of a vacuum mode with a single atom. From
a fundamental point of view, the vacuum mode and the
atom are two oscillators, whose coupling leads to hybrid
modes with specific energies. In case the two oscillators
possess the same natural frequency, the interaction lifts the
degeneracy, and the new eigenenergies split by an amount
proportional to the coupling. In the context of optical
cavities, where the single mode hypothesis is best achieved,
the phenomenon has been coined vacuum Rabi splitting
[1,2]. The effect has been successfully observed and
utilized in a wide range of fields from cavity quantum
electrodynamics in atomic physics [3,4] to solid-state
systems and chemistry [5–15].
Interestingly, before the strong coupling regime could be

achieved experimentally with single atoms, the splitting
was noted to be accessible experimentally in larger-volume
cavities: If an ensemble of N atoms are coupled to the
cavity, the coupling strength to the vacuum mode is
enhanced by a factor

ffiffiffiffi
N

p
. This allowed for early obser-

vations in optical cavities [16–18], and it was later under-
stood that a linear-dispersion theory could describe the
phenomenon [19,20]. The fundamental difference between
the single- and the many-atom case is that in the former
case, the quantization of the electromagnetic mode
becomes relevant [21] (see left part of Fig. 1).
In contrast with high-finesse optical cavities, our three-

dimensional world presents a continuum of vacuum modes,
both in space and in frequency. Nevertheless, this multi-
mode characteristics does not prevent the building up of
collective modes. The first brick of collective scattering
was laid down by Dicke, when he showed that a collection
of atoms, either in the small or the large volume limit,
emit light at a “superradiant” rate [22]. At first discussed in

the quantum context of fully inverted atoms, superradiant
decay was later predicted in the limit of a single excitation
[23,24], as confirmed by linear-optics measurements
[25,26]. In the field of cooperative scattering, subradiance
[27], superflash [28] and collective frequency shifts
[26,29–33] contribute to the rich variety of observed
phenomena.
The continuum of vacuum modes calls for a different

modeling of the light-atom interaction in free space: An
interpretation in terms of dipole-dipole interactions,
obtained by tracing over the light degrees of freedom, is
in general favored, as it allows addressing only the atomic
degrees of freedom [34]. Such a coupled-dipole approach
was largely used to describe the cooperative phenomena
described above. In particular, differently from optical

FIG. 1. Eigenenergies of an atomic cloud coupled to vacuum
mode(s). Left: N atoms coupled to a resonant single mode cavity;
the mode splitting scales as

ffiffiffiffi
N

p
g0, with g0 the single-atom

coupling to the mode. Right: A cloud with resonant optical
thickness b0, coupled to the continuum of vacuum modes of free
space; the mode splitting scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 − 1

p
Γ, with Γ the single-

atom decay rate in free space (see text for details).
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cavities where the cooperativity parameter is N, the
resonant optical thickness of the cloud was identified to
play this role in free space for dilute clouds with a spatial
extend larger than the optical wavelength [35].
In this Letter, we report on the experimental signatures of

collective multimode vacuum Rabi oscillations in free
space, where the optical thickness acts as a measure of
the coupling between the atomic cloud and the light modes
(see right part of Fig. 1). The splitting is monitored through
the linear-optics Rabi oscillations of the cloud after an
abrupt switch-on of the pump laser. Our measurements,
realized over a set of driving frequencies and optical
thicknesses, are in very good agreement with linear-
dispersion theories for three-dimensional clouds.
Our experimental setup, which has been detailed in

Ref. [25], is sketched in Fig. 2(a): A three-dimensional
Gaussian cloud (rmswidthR ≈ 1 mm) ofN ≈ 109 randomly
distributed 87Rb atoms is produced in a magneto-optical trap
at a temperature T ≈ 100 μK. After switching off the trap,
the atoms are optically pumped to the F ¼ 2 state, and
driven on the F ¼ 2 → F ¼ 3 transition (with wavelength
λ ¼ 780.24 nm and linewidth Γ=2π ¼ 6.07 MHz). The
cloud is homogeneously illuminated by a linearly polarized
laser beam (waistw ≈ 5.7 mm, detuningΔ ¼ ωL − ωa from
the atomic transition) propagating along the z axis. A series
of pulses of duration 30 μswith 10%–90% rise time of about
6 ns, short compared to the lifetime of the excited state
τat ¼ Γ−1 ¼ 26.2 ns, are produced by acousto- and electro-
optical modulators. During the series of pulses, the
atomic cloud expands ballistically, which allows us to
probe different on-resonance optical depths, defined as
b0 ¼ σRb0

R
ρð0; 0; zÞdz, with σRb0 the resonant Rubidium

atomic cross section. The light intensity is adjusted to
keep a constant saturation parameter s ¼ 2Ω2

0=ðΓ2 þ 4Δ2Þ≃
ð2.2� 0.6Þ × 10−2, withΩ0 the Rabi frequency of the laser.
The time-dependent scattered light intensity is recorded by a

photon detector in the far field at an angle of θ ≈ 35° from the
laser axis. The finite rise time of the laser field, as well as
small spurious overshoots, are accounted for by first divid-
ing the recorded signal by the switch-on temporal profile of
the laser alone (recorded with the same cycle and same
detector with light scattered on white paper), in order to
focus on the atomic dynamics.
Typical examples of intensity signal from the experiment

are presented in Figs. 2(b) and 2(c). The radiation emitted
by the cloud of cold atoms exhibits Rabi oscillations,
whose frequency is smaller than the single-atom one: For a
single atom, one indeed expects an oscillation of the excited

state population with the generalized Rabi frequency ΩR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Ω2

0

p
≈ jΔj in the linear-optics regime considered

here. As we shall now show, the deviation from this single-
atom oscillation frequency finds its origin in the large
resonant optical thickness of the cloud, which considerably
enhances its dispersive features, and provides a direct
measurement of the coupling strength between the cloud
and the vacuum modes.
Differently from optical cavities, in free space the three-

dimensional continuum of vacuum modes forces us to
adopt a space-dependent theory in order to investigate the
dispersion properties of the cloud. In our setup, let us first
consider the propagation of a wave scattered off an atom at
position r. The wave of frequency ω moves from an initial
position ri ¼ r − wẑ (w → ∞) to the atom at r where it is
scattered, and then to the detector positioned at
rf ¼ rþ wθ̂, where ẑ and θ̂ denote the unit vectors of
the z axis and the detector direction with respect to the
atom, respectively. In the dilute regime with atoms being
distributed in the cloud by a density distribution function
ρðrÞ and being uniformly illuminated by the laser, this
process can be described by the following transfer function
for an atom in r [36]:
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FIG. 2. (a) Sketch of the experiment: A monochromatic plane-wave laser suddenly illuminates a Gaussian cloud of two-level atoms,
while the dynamics of the scattered intensity is measured at an angle of θ ≈ 35° from the axis of the incident beam by a hybrid photon
detector (HPM). (b),(c) Experimentally recorded intensity (dots) after the laser switch-on, normalized to 1 in the long-time limit, for
different values of the optical thickness of the cloud and laser detunings [(b) b0 ≈ 8.1 and Δ ¼ −7Γ; (c) b0 ≈ 20.3 and Δ ¼ −4Γ]. The
plain lines are obtained by a numerical simulation of the linear-dispersion theory (see text), the dashed lines denote the single-atom
response (not normalized, for visibility purposes).
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tr;θðωÞ ¼
exp ð− 1

2

brr−wẑþbrþwθ̂
r

1−2iðω−ωaÞ=ΓÞ
1 − 2iðω − ωaÞ=Γ

: ð1Þ

Here, br
0
r ¼ σsc

R
r0
r drρðrÞ denotes the optical thickness for

a light ray propagating from r to r0. The expression assumes
w ≫ R, which corresponds to a detector in the far-field.
Although it neglects disorder in single experimental real-
izations, this approach captures well collective phenomena
such as superradiance [36]. In Fig. 2(b), one can observe
that it captures very well the damped oscillations (note the
longer duration between the second and the third maxima)
of the radiated intensity. More precisely, the radiated
intensity presents irregular oscillations that result from
the beating between the two split frequencies. Naturally
absent from the single-atom response, this beating is well
captured by the linear-dispersion approach.
In the simplified case of an infinite slab illuminated by a

plane wave, the forward-scattering response (θ ¼ 0) is
obtained by integrating the local response over the cloud,
t0ðωÞ ¼

R
drρðrÞtr;θðωÞ, which leads to

t0ðωÞ ∼
exp ½− b0

2
ð1 − 2iðω−ωaÞ

Γ Þ−1�
1 − 2iðω − ωaÞ=Γ

; ð2Þ

where b0 is the resonant optical thickness of the slab.
The square modulus of the response function t0ðωÞ
thus reads jt0j2 ¼ expð−b0=ð1þ 4δ2ÞÞ=ð1þ 4δ2Þ, with
δ ¼ ðω − ωaÞ=Γ, and it transforms from a single-peak
Lorentzian in the single-atom limit (b0 → 0) to a dou-
ble-peaked function for larger b0, whose peaks are found at

ω� ¼ ωa �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 − 1

p
2

Γ: ð3Þ

This behavior is illustrated in Fig. 3(c) (dash-dotted lines),
and in the right part of Fig. 1: The role of the coupling
strength between the cloud and the vacuum modes,
quantified by the resonance splitting, is thus here assumed
by the resonant optical thickness.
For our spherical Gaussian cloud, we call the observation

angle θ̂ and normalize the distances as r → r=R:

brr−wẑ ¼
b0
2
e−f½r2−ðr·ẑÞ2�=2g

�
1þ Erf

�
r · ẑffiffiffi
2

p
��

;

brþwθ̂
r ¼ b0

2
e−f½r2−ðr·θ̂Þ2�=2g

�
1 − Erf

�
r · θ̂ffiffiffi
2

p
��

; ð4Þ

where the limit w → ∞ is used. The cloud response for the
Gaussian sphere is then computed numerically using
Eq. (1), which in turn allows us to obtain the intensity
dynamics in the temporal domain: After multiplying it by
the Fourier transform of the pump beam temporal profile (a
Heaviside function), the local frequency response of the

atoms is converted into a temporal response by computing
its inverse Fourier transform; the obtained intensity is then
integrated over all the cloud [36,37]. The temporal curves
presented in Fig. 2 were obtained this way. We have also
checked that the microscopic coupled-dipole model dis-
cussed in the introduction [34,38] provides temporal
signals in excellent agreement with the linear-dispersion
approach (1) [39]. An important difference, though, is that
these microscopic simulations are limited to thousands of
particles, so they address much smaller systems.
The measurement of the splitting requires the oscillations

to be faster than the decay rate [40]. Close to resonance,
we observe that the oscillations vanish, see Fig. 2(c),
which we attribute to occurrence of multiple scattering
[bðΔÞ ¼ b0=ð1þ 4Δ2=Γ2Þ > 1] [25]. Out of resonance
[such that bðΔÞ < 1], the detuning is chosen such that
the single-atom generalized Rabi frequency ΩR ≈ jΔj be
larger than the superradiant decay rate [25], which
allows us to monitor the deviation from the single-atom

FIG. 3. Frequency response of the cloud to the switch-on of the
laser, at an angle θ ¼ 35°. jtθðωÞj2 is computed from the Fourier
transform of the intensity (a) from the experiment and (b) from
the linear-dispersion theory. The black lines denote, in both
figures, the maxima derived from the linear-dispersion approach.
ω̄ ¼ ωL − ωopt, i.e., it corresponds to the difference between the
laser frequency (here detuned by Δ ¼ −12Γ) and the optical
frequency. (c) Frequency response of the cloud for increasing
optical thicknesses, for a slab and in the forward direction (dash-
dotted curves), and for a spherical cloud with a Gaussian density
and for light at an angle θ ¼ 35° (plain lines).
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oscillations, see Fig. 2(b). Note that while the experimental
curves are obtained from averaging the signal over thou-
sands of runs (typically ∼105, see Ref. [39] for details on
fluctuations), the linear-dispersion effective-medium
approach provides a signal that is naturally fluctuation free.
Let us now discuss in more detail the splitting in

frequency space: In Figs. 3(a) and 3(b), the Fourier trans-
form of the intensity signal is presented, for the exper-
imental data and the linear-dispersion simulations. We first
note that while the splitting is present, the lower branch ω−
is much more visible, especially at high b0. This is due to
the fact that the system is probed with a negative detuning
(Δ ¼ −12Γ in this case), so the laser couples more strongly
to this branch. The increasing optical thickness makes
this lower branch even closer to the laser frequency, and
the upper branch ωþ even farther, which results in an
increasing imbalance between the branches. A pumping at
Δ ≫ ω� would allow us to populate almost equally the two
branches, yet at the price of a weaker radiated intensity.
Finally, we have checked that the linear-dispersion theory
predicts no change when changing the sign of the detuning
(not shown here).
As discussed above [see Eq. (3)], the one-dimensional

geometry of the slab provides a simple scaling Δω ∼ffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 − 1

p
for the splitting, see Eq. (3) and Fig. 1. The

three-dimensional Gaussian cloud used in our experiment,
with an observation angle at θ ¼ 35° and a beam larger than
the cloud, leads to the coupling of the atoms to a larger
family of vacuum modes. This is illustrated in Fig. 3(c),
where the difference of the splitting process for the slab and
the Gaussian sphere is presented. The slab is characterized
by a strong gap between the two resonances, whereas the
Gaussian sphere presents a rather shallow dip, with even
the emergence of secondary resonances at higher b0.
Furthermore, the decay of the tails of the frequency
response are much slower for the Gaussian sphere. One
explanation for these differences is that in an ideal (i.e.,
infinite) slab, all incoming rays see the same optical
thickness. Differently, in a Gaussian sphere rays outside
the z axis go through the medium with a different optical
thickness; the presence of this variety of optical thicknesses
for a three-dimensional cloud (an effect reinforced by the
observation angle θ > 0) leads to a broadening of the cloud
dispersive response. More generally, in a single-mode
cavity, the system possesses only two modes (plus N − 1
degenerate dark states), and the large N limit makes the
quantization of the photons irrelevant; but in free space, a
single atom couples to a continuum of light modes, already
leading to a broad response.
The shift of the dominant branch is then systematically

deduced from the experimental data by fitting it to a single-
dipole function IθðtÞ ¼ j1 − exp½ðiðΔþ ω− − ΓSR=2Þt�j2,
with ω− and ΓSR as fitting parameters. This procedure
yields fewer fluctuations than the Fourier transform. The
results are presented in Fig. 4, for a set of detunings and

resonant optical thicknesses. They are compared to the
linear-dispersion theory results and to the coupled-dipole
model using the same procedure. All three approaches
present results in very good agreement. The different values
of detuning used, as well as the different system sizes
simulated (in particular for the coupled-dipole approach)
highlight the role of the resonant optical thickness b0 as a
measure of the collective coupling of the atomic cloud to
the vacuum modes in free space. We note that for larger
values of b0, an increasing detuning jΔj is necessary to
obtain a splitting that does not depend on the detuning, an
effect which we attribute to multiple scattering.
We stress that the collective splitting discussed here is

fundamentally different from the “collective Lamb shift”
(CLS) reported in atomic systems [26,29–33]. In the larger
sample limit (R ≫ λ), the CLS scales with the atomic
density [41–43], whereas the present experiment was
realized using dilute clouds (ρ=k3 ∼ 0.01). In particular,
we point out that the splitting for the slab [see Eq. (3)]
depends only on b0, and does not present any explicit
dependence on the atomic density, which clearly differ-
entiates it from the CLS.We note that the oscillations which
emerge from the light-atom coupling, sometimes called
“ringing,” has stimulated several experimental and theo-
retical works [40,44,45]. Here, within the context of free
space linear optics, we propose a unified picture of the
macroscopic coupling between an atomic cloud and vac-
uum modes.
As a final remark, it is interesting to note the connection

between steady-state frequency-resolved spectroscopy and
time-dependent spectroscopy. In cavity spectroscopy, a
well-known technique called ring-down spectroscopy
[46] has been developed, where a photon bullet picture,
which neglects interference effects, can describe the
observed phenomena, whereas cavity transmission experi-
ments involve interference effects between multiple reflec-
tions inside the cavity. For our mirrorless configuration,

FIG. 4. Splitting amplitude extracted from the experiment (full
symbols), from the coupled-dipole simulations (empty symbols)
and from the linear-dispersion theory (lines), for different
detunings and optical thicknesses.
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steady-state experiments sensitive to the frequency-depen-
dent scattered intensity TðωÞ ¼ jtðωÞj2 have been pre-
sented in Ref. [47]. In contrast, the data presented in
this work have been obtained in time-dependent experi-
ments and depend on the Fourier transform of tðωÞ. Similar
to the situation of cavity spectroscopy, we expect the
sensitivity to intensity and phase fluctuations to scale
differently using these different protocols, a feature which
might be exploited when considering fluctuations or
dephasing mechanisms.
In conclusion, we have reported on the experimental

observation of the collective multimode vacuum Rabi
splitting in free space, by monitoring the linear-optics
Rabi oscillations of the scattered intensity after an abrupt
switch-on of the pump laser. The scaling of the splitting
with the resonant optical thickness shows that the latter is
a measure of the coupling between the atomic clouds and
the three-dimensional continuum of vacuum modes in
free space.
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Conclusion on Part Two

The interaction of light with an atomic sample is at the heart of so many applications, from
clocks to sensors, from quantum-information protocols to new types of photonic materials, that
it has been studied of lot over decades, with several revivals triggered by new experimental
possibilities or emerging concepts. This situation creates a very rich field, but it also creates
the risk of reinventing the wheel, even more so when the problem can be tackled from different
perspectives and by different communities. This sometimes gave me the feeling that the field
was quite confused [Guerin 2017c].

Our group, like many others, might have added to the confusion sometimes. My own
understanding evolved over the years and, for instance, I’m not convinced any more than
we should distinguish ‘cooperative’ and ‘collective’ effects, as I claimed in [Guerin 2017c]. I
now like very much the very simple definition given in a recent paper by Ketterle’s group:
“Collective scattering occurs when it is impossible to determine which particle scattered a
photon.” [Dimitrova 2017].

Nevertheless, when the few remaining open questions are answered, hopefully soon, I will
probably be able to pretend that I significantly contributed to the understanding of cooperative
scattering in dilute and large samples, and in particular to the properties of the temporal
dynamics. I hope it will be considered a nice achievement!

Complementary studies to be done

At short term, if the phased-excitation enhancement of subradiant states is successful with
a simple π phase shift on half of the driving beam, the natural following is to increase the
complexity of the phase profile: how much can we increase the subradiant population? At
less short term, we can investigate dynamical protocols, such as in [He 2020], in order to
selectively populate subradiant states.

Another question is in the continuity of our study about the influence of thermal motion
and is about the influence of other kinds of decoherence mechanisms. Experimentally, we
could try to break subradiance by adding, for instance, a noisy laser coupling the upper
level to another excited state. This might emulate some kind of phonon dephasing. Another
interesting possibility is to test if we can observe super and subradiance in room-temperature
vapors, as we suggest in [Weiss 2019].

Finally, another open question is the influence of the Zeeman degeneracy on subradiance.
Several theoretical works have investigated this problem within some approximations or toy
models [Lee 2016,Hebenstreit 2017,Sutherland 2017,Munro 2018]. It would be interesting to
confront those theories to the experiment. Our group is building an experiment with ytterbium
atoms, which will soon give us the possible to explore subradiance in a J = 0 → J = 1
transition.
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Long-term outlook

My future research will probably lie at the intersection of the different topics I explored so
far and exposed in the two Parts of this document.

One first possible direction is cooperative scattering beyond the linear-optics regime. If
atoms get significantly excited, their response become inelastic, and also some gain feature
may appear, which makes an obvious link with my former work on gain and lasing. As also
mentioned in the introduction of Part Two, there is a continuum between Dicke superradiance
or superfluorescence (with many excited atoms) and amplified spontaneous emission.

The interest in going beyond the linear-optics regime is to explore quantum effects, which
might be created by the correlations due to inelastic scattering or by the nonlinear atomic
response. In both cases one should explore different signatures than the simple decay
dynamics, for instance the light statistics. For that we will make use of the technique for
measuring intensity correlations, developed in the context of our astronomical projects and
already successfully applied to atomic physics experiments with hot vapors [Dussaux 2016]
and cold atoms [Éloy 2018b,Ortiz-Gutiérrez 2019].

Another possible and different direction is cooperative scattering with ordered or partially
ordered samples, which makes a link with my work on photonic band gaps (Section III.1).
Many proposals have been made in this spirit in the last years: light transport in 1D
chain [Chui 2015,Bettles 2016a,Needham 2019], atomic mirror from a 2D lattice [Bettles 2016b,
Shahmoon 2017,Rui 2020], quantum memory with exponentially suppressed errors [Asenjo-
Garcia 2017], lasing of subradiant modes [Holzinger 2020], etc. All this generally goes
towards quantum metamaterials [Chang 2018], which is a very promising topic. Most of these
proposals, however, are based on mesoscopic samples with a small number of atoms.

One original line of research would be to investigate the situation of large samples of ordered
atoms. The order would only be very partial because, with 3D lattices for instance, the
filling factor would be small. Therefore this would correspond to a situation of a disordered
sample with strong long-range correlations. Back in the 1990s Bragg scattering experiments
were performed on such samples [Birkl 1995,Weidemüller 1995]. One could now investigate
the dynamical properties (super- and subradiance) in those samples, for instance. Is light
emission superradiant in the Bragg directions and subradiant elsewhere? The emission from
atoms in a 1D lattice has been recently discussed in terms of superradiant states [Chen 2018].
Another promising idea would be to engineer other kinds of correlation between the atomic
positions. One could for example exploit the light-induced repulsive interaction between
atoms in a MOT, which creates a kind of natural exclusion volume, analogous to the Debye
length in nonneutral plasmas [Dubin 1999,Barré 2019]. More speculatively, could we somehow
create hyperuniform densities [Torquato 2018] ?
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• 2003: Engineering degree, Institut d’Optique Graduate School (Palaiseau)

• 1998: Baccalauréat scientifique (High School degree, Science major)

Employment
• Since Oct. 2012: CNRS associate researcher at Institut de Physique de Nice (formerly

Institut Non Linéaire de Nice, INLN), in the ‘Cold Atoms’ team supervised by Robin
Kaiser

• Jan. 2010 – Aug. 2012: Post-doc researcher at Tübingen University (Germany) in the group
of Claus Zimmerman; project leader, fellow of the Alexander von Humboldt Foundation

• June 2007 – Sept. 2009: Post-doc researcher at INLN in the team of Robin Kaiser

• Oct. 2003 – May 2007: Graduate student at Institut d’Optique in the team of Alain Aspect
and Philippe Bouyer.
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Grants
Personal or as PI

• 2018: Research grant from the Doeblin Federation: 4.5 ke

• 2017: Research grant from Université Côte d’Azur (Idex): 28 ke

• 2014: Research grant from Université Nice sophia-Antipolis (CSI): 5 ke

• 2012: Post-doc grant (declined) from the Carl Zeiss Foundation: 160 ke

• 2009: Post-doc grant from the Alexander von Humbold Foundation: 2 years (2010–2011)

• 2003: PhD grant from the Délégation Générale à l’Armement (DGA): 3 years (2003 – 2006)

As everyone sadly knows, the success rate at the French national research funding agency
(ANR) is incredibly low, which means that it involves a lot of luck. I’d like to mention
here that I’ve got two projects that almost made it (they reached the waiting list): in 2012
(program ‘retour post-doc’) and in 2018 (collaborative project ‘Intensity Interferometry at
Calern’). This didn’t bring me anything.

Other main funded projects in which I was/am/will be strongly involved

• 2020: Research grant from the QuantERA program: ∼ 300 ke for our team (PI: Robin
Kaiser)

• 2019: Research grant from ANR: ∼ 280 ke for our team (PI: Mathilde Fouché)

• 2019: Research grant from ERC: ∼ 2.4Me (PI: Robin Kaiser)

• 2019: Research grant from Région PACA: 80 ke (PI: Robin Kaiser)

• 2018: Research grant from the FIRST-TF Labex network: 28.8 ke (PI: Julien Chabé)

• 2016: European Training Network ColOpt: ∼ 500 ke for our team (Coordinator: Thorsten
Ackemann; local PI: Robin Kaiser)

• 2014: Research grant from ANR: ∼ 375 ke for our team (PI: Sergey Skipetrov)

I also largely wrote the projects for Michelle Araújo’s PhD grant (2014, CAPES, Brazil) and
Patrizia Weiss’s post-doc grant (2017, DFB, Germany).

Organization of workshops
• 2019: “Atoms and Photons Nice 2019”, Nice, 6–8 November (50 participants)

• 2016: “Strongly disordered optical systems: from the white paint to cold atoms”, Cargèse,
26–30 September (65 participants, but most of the work was done by Sergey Skipetrov)

• 2014: Annual meeting of the COSCALI network, Porquerolles, 7–11 September (25
participants)

Supervision activities
I am officially co-supervisor of Ana Cipris’s PhD thesis.
My other supervisees are listed in the following table:
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Level Name Period Publications Share (with ...)
Post-doc Patrizia Weiss 2016 – 2019 ≥ 4 80% (RK)
Post-doc Antoine Dussaux 2015 – 2016 2 20% (RK)
PhD Antonin Siciak 2018 – now ≥ 2 25% (RK, JPR, MH)
PhD Ana Cipris 2017 – now ≥ 4 80% (RK)
PhD Michelle Araújo 2014 – 2018 5 80% (RK)
PhD Aurélien Eloy 2015 – 2018 3 20% (MH, RK)
PhD Samir Vartabi Kashanian 2013 – 2016 1 20% (RK, MH)
PhD Alexander Schilke 2010 – 2012 3 80% (CZ)
PhD Nicolas Mercadier 2008 – 2009 8 50% (RK)
M2 Adam Bellity 2019 100%
M2 Habibul Hasan 2016 80% (AD)
M2 Aurélien Eloy 2015 see above 30% (RK)
M2 T. Siva Pradyumna 2014 100%
M2 Djeylan Aktas 2013 30% (QB, RK)
M2 Davide Brivio 2008 2 80% (RK)
M2 Nicolas Mercadier 2008 see above 20% (RK)
M1 Pierre Menuge 2015 50% (AD)
L3 Louis Garbe 2014 100%
L3 Loïc Lavenu 2014 100%
L3 Wissam Fakhardji 2013 50%

The ‘Share’ column indicates what I subjectively evaluate as my participation to the supervision,
which was often shared with other people: RK = Robin Kaiser, MH = Mathilde Hugbart, JPR =
Jean-Pierre Rivet, CZ = Claus Zimmermann, AD = Antoine Dussaux, QB = Quentin Baudouin.

Teaching activities
In all contracts/status I had, I never had any teaching duty. All my teaching activities have
thus been done on a voluntarily basis.

• 2017 & 2018: Exercises on ‘Cold Atoms’, M2 (9th semester), Nice University (10 h/yr)

• 2017: Tutorial lecture on ‘Light scattering by atoms’ for the Graduate students of the ITN
ColOpt (2 h)

• 2016 & 2017: Lab courses on ‘Atoms and photons’, L3 (5th semester), Nice University
(40 h/yr)

• 2013 & 2016: Tutored projects, L3 (6th semester), Nice University (15 d/yr)

• 2008: Exercises in Optics, L1 (1st semester), École Polytechnique Universitaire de Nice
(12 h)

• 2003 – 2006: Lab courses in Optics, 1st year/L3 (5th semester), Institut d’Optique (50 h/yr)

Outreach activities
I haven’t done a lot of outreach activities but what I did with some success is to write press
releases and/or short broad-audience summaries of my important results in order to attract
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the attention of the specialized press, or even, sometimes, of the local general press:

• On the revival of intensity interferometry [Guerin 2017a,Guerin 2018,Rivet 2018]:
– “La microscopie spatiale est née”, S. Brunier, Sciences & Vie no 129, April 2019

• On the observation of subradiance [Guerin 2016a]:
– “Observation de la sous-radiance de Dicke dans un nuage d’atomes froids”, INP CNRS,

March 2016
– “Inibindo emissão espontânea de fótons em nuvem de átomos”, SFB (Brazilian physical

Society), 25 Feb. 2016
– “Storing Light in the Dark”, A. Carmele, Physics 9, 20 (2016)

• On the random laser with cold atoms [Baudouin 2013b]:
– “D’un laser sans miroirs à certaines sources stellaires de lumière”, Science blog of ONISEP,

Feb. 2014
– “Lasers: Amplified by randomness”, V. Vuletic, Nature Physics 9, 325 (2013)
– “Nice: les physiciens de l’Institut Non Linéaire créent un nouveau laser”, Web Time Medias,

21 May 2013
– “Cold-atom random laser simulates stellar clouds”, Physics World, 9 May 2013
– “Physicists generate lasers inspired by space clouds”, Wired UK, 8 Jan. 2013
– “Researchers Create The First Earth-Based Laser Built From A Cloud Of Gas”, Popular

Science, 7 Jan. 2013
– “Physicists Demonstrate First Laser Made From a Cloud of Gas”, MIT Technology Review, 7

Jan. 2013

• On the DFB laser with cold atoms [Schilke 2012a]:
– “Light from the cold”, Laser Community 2012:1, 9 (2012)
– “Überraschung: Neuer Laser aus kaltem Gas”, Euro Laser, March 2012
– “All-atom parametric oscillator”, M. T. Rakher and K. Srinivasan, Nature Photonics 6, 73 (2012)
– “Tübinger entwickeln neuen Laser aus kaltem Gas”, Reutlinger General-Anzeiger, 20 Dec. 2011
– “Da waren Lichtblitze”, Schwäbisches Tagblatt, 20 Dec. 2011

• On the Lévy flights of light [Mercadier 2009,Chevrollier 2010]:
– “Anomalous photon diffusion in atomic vapor”, Europhysics News 41(4), 10 & EPJD Highlights,

March 2010
– “Des photons attrapés au vol”, Le journal du CNRS 242, 12 (March 2010)

• On the the feasibility of a random laser with cold atoms [Froufe-Pérez 2009]:
– “Scientists are creating an unusual type of laser from a strange material”, Photonics Spectra,

Aug. 2009
– “Is random lasing possible with a cold atom cloud?”, PhysOrg.com, 18 May 2009
– “The Laser Glow of an Atom Cloud”, Physical Review Focus 23, 14 (May 2009)

• On the guided atom laser [Guerin 2006]:
– “Guided atom laser”, Physics Today 60(2), 22 (Feb. 2007) & AIP Physics News Update 16, 806

(Dec. 2006)
– “Horizontal lasing matters”, Nature Physics 12, 798 (Dec. 2006)
– “Guiding an atom laser”, PhysOrg.com, 24 Nov. 2006
– “New atom laser could improve navigation system”, NewScientist.com, 16 Nov. 2006

I have also written an article on my PhD thesis [Guerin 2007] for the review of the Institut
d’Optique Alumni Association:
“Le laser à atomes, source cohérente pour l’optique atomique”, Opto 158, 20 (2008).
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Other activities
• Member of the INPHYNI advisory board (since 2017)

• Responsible of the INPHYNI weekly seminars (with Claire Michel, since 2017)

• Reviewer for several journals (Phys. Rev. Lett, Phys. Rev. A, Phys. Rev. X, New.
J. Phys., Opt. Express, J. Opt., ...) and national competitive calls for funding (ANR,
SIRTEQ, Labex, ...)

• In charge of the Team web page

https://inphyni.cnrs.fr/sites/teams/cold-atoms/
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List of publications and communications

B.1. Publications

Articles in peer-reviewed journals
Articles are in inverse chronological order. My name is underlined and the papers that are
reproduced in this document have their numbers highlighted in bold with a link within the
manuscript.

[39] Connecting field and intensity correlations: the Siegert relation and how to
test it
D. Ferreira, R. Bachelard, W. Guerin, R. Kaiser, and M. Fouché
American Journal of Physics, in press; preprint arXiv:2002.05425

[38] Intensity interferometry of P Cygni in the Hα emission line: towards dis-
tance calibration of LBV supergiant stars
J.-P. Rivet, A. Siciak, E. S. G. de Almeida, F. Vakili, A. Domiciano de Souza, M. Fouché,
O. Lai, D. Vernet, R. Kaiser, and W. Guerin
Monthly Notices of the Royal Astronomical Society 494, 218 (2020); preprint arXiv:1910.08366

[37] Optical-depth scaling of light scattering from a dense and cold atomic 87Rb
gas
K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, and W. Guerin
Physical Review A 101, 033832 (2020); preprint arXiv:1807.10939

[36] Collective excitation dynamics of a cold-atom cloud
T. S. do Espirito Santo, P. Weiss, A. Cipris, R. Kaiser, W. Guerin, R. Bachelard, and
J. Schachenmayer
Physical Review A 101, 013617 (2020); preprint arXiv:1910.06679

[35] Collective multimode vacuum Rabi splitting
W. Guerin, T. S. do Espirito Santo, P. Weiss, A. Cipris, J. Schachenmayer, R. Kaiser,
and R. Bachelard
Physical Review Letters 123, 243401 (2019); preprint arXiv:1909.06454

[34] Robustness of Dicke subradiance against thermal decoherence
P. Weiss, A. Cipris, M. O. Araújo, R. Kaiser and W. Guerin
Physical Review A 100, 033833 (2019); preprint arXiv:1906.02918

[33] Dressed dense atomic gases
I. Lesanovsky, B. Olmos, W. Guerin, and R. Kaiser
Physical Review A 100, 021401(R) (2019); preprint arXiv:1902.02989
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[32] Comparison of three approaches to light scattering by dilute cold atomic
ensembles
I. M. Sokolov and W. Guerin
Journal of the Optical Society of America B 36, 2030 (2019); preprint arXiv:1902.04289

[31] Optical long baseline intensity interferometry: prospects for stellar physics
J.-P. Rivet, F. Vakili, O. Lai, D. Vernet, M. Fouché, W. Guerin, G. Labeyrie, and
R. Kaiser
Experimental Astronomy 46, 531 (2018); preprint arXiv:1805.06078

[30] Spatial intensity interferometry on three bright stars
W. Guerin, J.-P. Rivet, M. Fouché, G. Labeyrie, D. Vernet, F. Vakili and R. Kaiser
Monthly Notices of the Royal Astronomical Society 480, 245 (2018); preprint arXiv:1805.06653

[29] Subradiance and radiation trapping in cold atoms
P. Weiss, M. O. Araújo, R. Kaiser, and W. Guerin
New Journal of Physics 20, 063024 (2018); preprint arXiv:1803.01646

[28] Decay dynamics in the coupled-dipole model
M. O. Araújo, W. Guerin, and R. Kaiser
Journal of Modern Optics 65, 1345 (2018); preprint arXiv:1705.02190

[27] Diffusing-wave spectroscopy of cold atoms in ballistic motion
A. Eloy, Z. Yao, R. Bachelard, W. Guerin, M. Fouché, and R. Kaiser
Physical Review A 97, 013810 (2018); preprint arXiv:1710.03974

[26] Temporal intensity interferometry: photon bunching in three bright stars
W. Guerin, A. Dussaux, M. Fouché, G. Labeyrie, J.-P. Rivet, D. Vernet, F. Vakili, and
R. Kaiser
Monthly Notices of the Royal Astronomical Society 472, 4126 (2017); preprint arXiv:1708.06119

[25] Population of collective modes in light scattering by many atoms
W. Guerin and R. Kaiser
Physical Review A 5, 053865 (2017); preprint arXiv:1702.01053

[24] Light interacting with atomic ensembles: collective, cooperative and meso-
scopic effects
W. Guerin, M. T. Rouabah, and R. Kaiser
Journal of Modern Optics 64, 895-907 (2017); preprint arXiv:1605.02439

[23] Noise spectroscopy with large clouds of cold atoms
S. Vartabi Kashanian, A. Eloy, W. Guerin, M. Lintz, M. Fouché, and R. Kaiser
Physical Review A 94, 043622 (2016); preprint arXiv:1606.07658

[22] Collective effects in the radiation pressure force
R. Bachelard, N. Piovella, W. Guerin, and R. Kaiser
Physical Review A 94, 033838 (2016); preprint arXiv:1607.01157

[21] Diffusive to quasi-ballistic random laser: incoherent and coherent models
W. Guerin, Y. D. Chong, Q. Baudouin, M. Liertzer, S. Rotter, and R. Kaiser
Journal of the Optical Society of America B 33, 1888 (2016); preprint arXiv:1606.03679

[20] Superradiance in a large and dilute cloud of cold atoms in the linear-optics
regime
M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin
Physical Review Letters 117, 073002 (2016); preprint arXiv:1603.07204
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[19] Temporal intensity correlation of light scattered by a hot atomic vapor
A. Dussaux, T. Passerat de Silans, W. Guerin, O. Alibart, S. Tanzilli, F. Vakili, R. Kaiser
Physical Review A 93, 043826 (2016); preprint arXiv:1601.00853

[18] Subradiance in a large cloud of cold atoms
W. Guerin, M. O. Araújo, and R. Kaiser
Physical Review Letters 116, 083601 (2016); preprint arXiv:1509.00227

[17] Raman process under condition of radiation trapping in a disordered atomic
medium
L. V. Gerasimov, V. M. Ezhova, D. V. Kupriyanov, Q. Baudouin, W. Guerin, and
R. Kaiser
Physical Review A 90, 013814 (2014); preprint arXiv:1401.6641

[16] Microscopic characterization of Lévy flights of light in atomic vapors
N. Mercadier, M. Chevrollier, W. Guerin, and R. Kaiser
Physical Review A 87, 063837 (2013); preprint arXiv:1305.1714

[15] A cold-atom random laser
Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser
Nature Physics 9, 357 (2013); preprint arXiv:1301.0522

[14] Photonic properties of one-dimensionally-ordered cold atomic vapors under
conditions of electromagnetically induced transparency
A. Schilke, C. Zimmermann, and W. Guerin
Physical Review A 86, 023809 (2012); preprint arXiv:1206.2622

[13] Optical parametric oscillation with distributed feedback in cold atoms
A. Schilke, C. Zimmermann, Ph. W. Courteille, and W. Guerin
Nature Photonics 6, 101 (2012); preprint arXiv:1109.6114

[12] Quasicontinuous horizontally guided atom laser: coupling spectrum and flux
limits
A. Bernard, W. Guerin, J. Billy, F. Jendrzejewski, P. Cheinet, A. Aspect, V. Josse, and
P. Bouyer
New Journal of Physics 13, 065015 (2011); preprint arXiv:1012.2971

[11] Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors
A. Schilke, C. Zimmermann, Ph. W. Courteille, and W. Guerin
Physical Review Letters 106, 223903 (2011); preprint arXiv:1101.3469

[10] Anomalous photon diffusion in atomic vapors
M. Chevrollier, N. Mercadier, W. Guerin, and R. Kaiser
European Physical Journal D 58, 161 (2010); preprint arXiv:1001.0320

[9] Towards a random laser with cold atoms
W. Guerin, N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Pérez, R. Carminati,
V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser
Journal of Optics 12, 024002 (2010); preprint arXiv:0906.0714

[8] Lévy flights of photons in hot atomic vapours
N. Mercadier, W. Guerin, M. Chevrollier, and R. Kaiser
Nature Physics 5, 602 (2009); preprint arXiv:0904.2454

[7] Threshold of a random laser based on Raman gain in cold atoms
W. Guerin, N. Mercadier, D. Brivio, and R. Kaiser
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Optics Express 17, 11236 (2009); preprint arXiv:0903.5190

[6] Threshold of a Random Laser with Cold Atoms
L. S. Froufe-Pérez, W. Guerin, R. Carminati, and R. Kaiser
Physical Review Letters 102, 173903 (2009); preprint arXiv:0812.0266

[5] Mechanisms for Lasing with Cold Atoms as the Gain Medium
W. Guerin, F. Michaud, and R. Kaiser
Physical Review Letters 101, 093002 (2008); preprint arXiv:0804.0109

[4] Theoretical tools for atom-laser-beam propagation
J.-F. Riou, Y. Le Coq, F. Impens, W. Guerin, C. J. Bordé, A. Aspect, and P. Bouyer
Physical Review A 77, 033630 (2008); preprint arXiv:0802.4039

[3] Guided Quasicontinuous Atom Laser
W. Guerin, J.-F. Riou, J. P. Gaebler, V. Josse, P. Bouyer, and A. Aspect
Physical Review Letters 97, 200402 (2006); preprint arXiv:cond-mat/0607438

[2] Beam Quality of a Nonideal Atom Laser
J.-F. Riou, W. Guerin, Y. Le Coq, M. Fauquembergue, V. Josse, P. Bouyer, and
A. Aspect
Physical Review Letters 96, 070404 (2006); preprint arXiv:cond-mat/0509281

[1] Partially ferromagnetic electromagnet for trapping and cooling neutral atoms
to quantum degeneracy
M. Fauquembergue, J.-F. Riou, W. Guerin, S. Rangwala, F. Moron, A. Villing, Y. Le Coq,
P. Bouyer, A. Aspect, and M. Lécrivain
Review of Scientific Instruments 76, 103104 (2005); preprint arXiv:cond-mat/0507129

Proceedings
I have some documents that officially are proceedings but actually are only abstracts of
conferences, I don’t include them. The proceedings below really contain original material
(data or ideas or discussions unpublished otherwise).

• Intensity Interferometry revival on the Côte d’Azur
O. Lai, W. Guerin, F. Vakili, R. Kaiser, J.-P. Rivet, M. Fouché, G. Labeyrie, J. Chabé,
C. Courde, E. Samain, D. Vernet
Proceedings SPIE 10701, Optical and Infrared Interferometry and Imaging VI, 1070121
(2018); preprint arXiv:1810.08023

• Guided atom laser : a new tool for guided atom optics
J. Billy, V. Josse, Z. Zuo, W. Guerin, A. Aspect and P. Bouyer
Annales de Physique (France) 32, 17 (2007); preprint arXiv:0712.1482

Book chapter
• Cold and hot atomic vapors: a testbed for astrophysics?

Q. Baudouin, W. Guerin, and R. Kaiser
in Annual Review of Cold Atoms and Molecules, vol. 2, edited by K. Madison, K. Bongs,
L. D. Carr, A. M. Rey, and H. Zhai, World Scientific (Singapore, 2014); preprint HAL-
00968233
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Patent
• Guided coherent atom source and atomic interferometer

P. Bouyer, V. Josse, W. Guerin J. Billy and A. Landragin
EP2104406B1 – US8288712B2 (2009)

Thesis
• Source atomique cohérente dans des pièges optique et magnétique: réalisation

d’un laser à atomes guidé
W. Guerin (Supervisor: A. Aspect)
PhD thesis of Université Paris Sud 11 (2007)
Reprint: TEL-00146375

B.2. Communications
Of course I only list communications that I personally delivered.
In summary: 37 talks and 14 posters.

Invited talks at conferences
• Direct observation of subradiance in cold atoms

Winter Colloquium on the Physics of Quantum Electronics (PQE), Snowbird (Utah, USA),
Jan. 2016

• Optical Parametric Oscillation with Distributed Feedback in Cold Atoms
International Quantum Electronics Conference (IQEC), Munich (Germany), May 2013

• Towards a Random Laser with Cold Atoms
Colloque sur les Lasers et l’Optique Quantique (COLOQ), Nice, Sept. 2009

Invited talks at workshops or symposia
• Super- and sub-radiance in dilute atomic ensembles

Annual Workshop of the ‘GDR Complexe’, Paris (France), April 2019
• Super- and sub-radiance in optically dense atomic systems

Mini-workshop on Multiple Scattering and Localization of Light, Grenoble, Nov. 2018
• Intensity Correlations from Atoms to Stars

Journées du Programme structurant UCAJEDI ‘Matière, Lumière, Interactions’, Fréjus, Oct.
2018

• Subradiance and superradiance in a dilute cloud of cold atoms
Workshop on Collective Scattering of Light, Fernando de Noronha (Brazil), Aug. 2018

• I2C: Intensity Interferometry at Calern
Meeting of the CTA Intensity Interferometry Science Working Group, Barcelona (Spain),
April 2018

• Superradiance and subradiance in a large and dilute cold-atom sample
Workshop on Strongly disordered optical systems: from the white paint to cold atoms,
Cargèse, Sept. 2016

https://patents.google.com/patent/EP2104406B1/en
https://patents.google.com/patent/US8288712B2/en
http://tel.archives-ouvertes.fr/tel-00146375/
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• The laser which came from the cold
Journée de la physique niçoise, Nice, Jan. 2015

• Cooperative scattering of light in cold atoms
Workshop on Long Range Interactions in Quantum Systems, Palaiseau, Sept. 2014

• A random laser with cold atoms
Workshop on Hanbury-Brown and Twiss Interferometry: Prospects for astrophysics and
quantum optics, Nice, May 2014

• A random laser with cold atoms
Indo-French Physics Conference on Optics, Nano Sciences, Cold Atoms and Synchrotron
facilities, Bangalore (India), March 2014

• Photonic properties of one-dimensionally ordered cold atomic vapors
Meeting of the COSCALI (COllective SCAttering of LIght) international network, Tübingen
(Germany), July 2012

• Towards a Random Laser with Cold Atoms
Illuminyating Atoms and Molecules Symposium, Marseilles, Oct. 2008

Invited seminars
• Intensity Interferometry for the 21st Century

– Electronic Department, Politecnico di Milano, Milan (Italy), July 2018

• Subradiance and superradiance in a dilute cloud of cold atoms
– Instituto de Ciencias Fotónicas (ICFO), on-line seminar, May 2020
– Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Strasbourg, April 2017
– Laboratoire de Physique des Lasers (LPL), Villetaneuse, Oct. 2016
– Laboratoire de Physique de la Matière Condensée (LPMC), Nice, Nov. 2015

• A random laser with cold atoms
– Physikalisches Institut, Universität Tübingen (Germany), Feb. 2013

• Photonic Properties of 1D Ordered Cold Atomic Vapors
– Institut Non Linéaire de Nice (INLN), Sophia-Antipolis, Nov. 2011
– Laboratoire Ondes et Matière d’Aquitaine (LOMA), Bordeaux, Nov. 2011
– Laboratoire Charles Coulomb (L2C), Montpellier, October 2011

• Towards a Random Laser with Cold Atoms
– Laboratoire Collisions Agrégats Réactivité (LCAR), Toulouse, Nov. 2009
– Physikalisches Institut, Universität Tübingen (Germany), Jan. 2009
– Laboratoire des Collisions Atomiques et Moléculaires (LCAM), Orsay, Dec. 2008

• Le laser à atomes, source cohérente pour l’optique atomique
– Laboratoire de Physique des Lasers (LPL), Villetaneuse, March 2008
– Centre de Physique Moléculaire, Optique et Hertzienne (CPMOH), Bordeaux, Dec. 2007
– Laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM), Marseilles, Nov. 2007
– Institut Non Linéaire de Nice (INLN), Sophia-Antipolis, March 2007

Contributions to conferences
• Photonic bunching with starlight (poster)

International Conference on Laser Spectroscopy (ICOLS), Arcachon, July 2017
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• Subradiance and superradiance in a dilute cloud of cold atoms (poster)
International Conference on Laser Spectroscopy (ICOLS), Arcachon, July 2017

• Direct observation of subradiance in cold atoms (talk)
Congrès général de la Société Française de Physique, Strasbourg, Aug. 2015

• A random laser with cold atoms (talk)
International Quantum Electronics Conference (IQEC), Munich (Germany), May 2013

• Photonic Band Gaps and Distributed Feedback Lasing in Cold Atoms (poster)
International Conference on Atomic Physics (ICAP), Palaiseau, July 2012

• Photonic Band Gaps and Distributed Feedback Lasing with Cold Atoms (poster)
International Conference on Laser Spectroscopy (ICOLS), Hameln (Germany), May 2011

• Towards a Random Laser with Cold Atoms (poster)
International Conference on Atomic Physics (ICAP), Storrs (Connecticut, USA), July 2008

• A Guided Atom Laser (talk)
European Optical Society Annual Meeting, Paris, Oct. 2006

• A Guided Atom Laser (poster)
International Conference on Atomic Physics (ICAP), Innsbruck (Austria), July 2006

• Profil transverse d’un laser à atomes (poster)
Colloque sur les Lasers et l’Optique Quantique (COLOQ), Dijon, Sept. 2005

• Observation of the transverse mode of an atom laser (talk)
Young Atom Opticians Conference (YAO), Hannover (Germany), Feb. 2005

Contributions to workshops or symposia
• Intensity correlations with starlight (poster)

WE Heraeus Seminar on Physics and Applications of Superconducting Nanowire Single
Photon Detectors, Bad Honnef (Germany), Nov. 2018

• Observation of subradiance in cold atoms (poster)
Atomes froids: concepts fondamentaux et applications, Meeting of the ‘GDR Atomes
Froids’, Paris, Nov. 2015

• Subradiance in a dilute and extended atomic sample? (talk)
Meeting of the COSCALI (COllective SCAttering of LIght) international network, Por-
querolles, Sept. 2014

• A cold-atom random laser (poster)
Third Bonn Humboldt Award Winners’ Forum ‘Frontiers in Quantum Optics: Taming the
World of Atoms and Photons - 100 Years after Niels Bohr’, Bonn (Germany), Oct. 2013

• A cold-atom random laser (poster)
Atomes froids et ingénierie quantique, Meeting of the ‘GDR Atomes Froids’, Paris, May
2013

• Photonic Band Gaps in Cold Atoms (poster)
Network Meeting of the Alexander von Humboldt Foundation, Ulm (Germany), Oct. 2010

• A Guided Atom Laser (poster)
Atelier de l’Institut Francilien de Recherche sur les Atomes Froids (IFRAF), Paris, May
2006
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• Coherent atom optics: transverse mode of an atom laser and optical manipu-
lation (poster)
European Graduate College Workshop, Gif-sur-Yvette, June 2005

• Manipulation of Bose-Einstein condensates with optical tweezers (talk)
Russian-French Laser Physics Workshop for Young Scientists, Saint-Petersburg (Russia),
July 2004
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Mirrorless lasing and cooperative scattering with cold atoms
Abstract:

This manuscript reports several studies on collective effects in light-atom interactions, divided
into two topics.

The first one is mirrorless lasing with cold atoms. A traditional laser is made of an amplifying
material and an optical cavity, whose primary role is to induce feedback, i.e., a kind of
trapping effect for the light. In a mirrorless laser the trapping effect can be provided by
multiple scattering in the gain medium (random laser) or by the periodicity of the medium
(photonic-crystal laser or distributed-feedback laser in 1D). We have produced and studied
such mirrorless lasers using cold atoms as the gain medium and for providing the feedback.
More precisely, we have realized a random laser and a distributed-feedback optical parametric
oscillator.

The second topic is about cooperative scattering or, more precisely, about superradiance
and subradiance in dilute atomic samples in the linear-optics regime. After discussing the
interpretation of some experiments realized on steady-state light scattering, we present our
results on the temporal dynamics of the light scattered by cold atoms when the driving laser
is switched off or on. We report the first direct observation of subradiance (slowed-down
decay) and of superradiance (accelerated decay) in the linear-optics regime and we study
their properties, in particular the dependence on the detuning of the driving field and on the
temperature of the sample. We also study the collective Rabi oscillations at the switch-on.

Laser sans miroir et diffusion coopérative avec des atomes froids
Résumé:

Ce manuscrit décrit plusieurs études sur des effets collectifs dans l’interaction lumière-atomes,
réparties en deux thèmes.

Le premier concerne les lasers sans miroirs. Un laser traditionnel est constitué d’un milieu à
gain et d’une cavité optique, dont le rôle premier est d’induire une rétroaction, c’est-à-dire un
effet de piégeage de la lumière. Dans un laser sans miroir l’effet de piégeage est produit soit
par de la diffusion multiple dans le milieu à gain (laser aléatoire), soit par la périodicité du
milieu (laser à cristal photonique ou laser à rétroaction distribuée pour le cas 1D). Nous avons
réalisé de tels lasers en utilisant des atomes froids comme milieu à gain et pour produire
la rétroaction. Plus précisément, nous avons réalisé un laser aléatoire et un oscillateur
paramétrique optique à rétroaction distribuée.

Le deuxième thème porte sur la diffusion coopérative ou, plus précisément, sur la super-
radiance et la sous-radiance dans des échantillons atomiques dilués dans le régime de l’optique
linéaire. Après avoir discuté l’interprétation de certaines expériences sur la diffusion de la
lumière à l’état stationnaire, nous présentons nos résultats sur la dynamique temporelle de
la lumière diffusée par des atomes froids lors de l’extinction ou de l’allumage du faisceau
excitateur. Nous décrivons la première observation directe de la sous-radiance (décroissance
ralentie) et de la super-radiance (décroissance accélérée) en régime de l’optique linéaire et nous
étudions leurs propriétés, en particulier leur dépendance au désaccord du faisceau excitateur
et à la température de l’échantillon. Nous avons également étudié les oscillations de Rabi
collectives à l’allumage.
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