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Résumé

Les expériences de physique des hautes énergies (HEP) impliquent des appareils de détec-
tion volumineux et complexes, qui doivent fonctionner avec une haute disponibilité pour
profiter au mieux du temps de faisceau coûteux fourni par les accélérateurs de particules
modernes. Pour traquer des phénomènes statistiquement rares, l’analyse des données de
la physique des hautes énergies repose ultimement sur la connaissance approfondie de
l’équipement expérimental. Cette méthode exige une surveillance constante et fiable pour
détecter d’éventuels dysfonctionnements. Pour cette raison, toutes les collaborations HEP
construisent des infrastructures et des procédures complexes de surveillance de la qualité
des données, visant à identifier rapidement les anomalies résultant de problèmes matériels
ou de traitement de données. L’expérience CMS au Large Hadron Collider (LHC) du CERN
fonde ses procédures d’évaluation de la qualité sur la surveillance continue effectuée par
des experts des détecteurs, qui comparent un grand nombre de tests statistiques avec ceux
dérivés de références de bonne qualité. Cette méthode s’est avérée efficace pour identifier
les problèmes et les anomalies pendant plus d’une décennie, mais elle atteint rapidement ses
limites. La procédure repose sur la disponibilité d’un grand nombre de spécialistes de ter-
rain hautement qualifiés. L’effort pour anticiper tous les types de pannes possibles avec des
systèmes de règles basés sur des experts et un profilage statistique à l’aide d’histogrammes
pose des problèmes de passage à l’échelle et plus généralement d’adaptabilité.

Cette thèse propose une approche possible de l’automatisation de la détection d’anomalies
dans les expériences de physique des hautes énergies, en tenant compte des exigences et
des contraintes spécifiques au domaine. Les problèmes de surveillance de la physique des
hautes énergies sont généralement difficiles pour les méthodes statistiques conventionnelles
en raison de leur nature intrinsèquement multidimensionnelle. L’apprentissage automa-
tique et le sous-champ de détection des anomalies doivent être utilisés pour automatiser le
processus de décision.

étant donné que le nombre de quantités surveillées et les modes de défaillance correspon-
dants sont vastes et qu’aucune solution générale n’est possible, le présent travail se concen-
tre sur certains des modèles de surveillance les plus fréquents dans l’expérience CMS Data
Quality Monitoring.

Les réseaux de neurones convolutionnels sont utilisés pour analyser les images. Pour la
surveillance en ligne des composants du sous-détecteur, nécessaire pour identifier les com-
posants problématiques du détecteur avec une faible latence, un classifieur capable de dé-
tecter les comportements anormaux connus est proposé, ainsi que des méthodes pour éten-
dre la couverture de surveillance actuelle en détectant de nouveaux modes de défaillance.
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Les résultats montrent une efficacité sans précédent sur les modes de défaillance actuelle-
ment suivis. Les travaux ont couvert des aspects liés aux stratégies de mise à jour des mod-
èles et à l’interprétation des résultats, qui sont d’une importance capitale dans un système
qui devra être exploité pendant des années par des experts de terrain disposant d’une ex-
pertise limitée en apprentissage automatique.

Les autoencodeurs sont utilisés pour le contrôle de la qualité des données de collision du
LHC représentées sous forme de distributions multidimensionnelles. Leur applicabilité a été
démontrée la surveillance hors ligne pour l’identification de comportements problématiques
nouveaux et émergents sur un grand nombre d’observables avec une granularité temporelle
fine et des statistiques potentiellement faibles.

Des autoencodeurs variationnels conditionnels sont proposés pour la détection d’anomalies
sur des données structurées hiérarchiquement. L’étude propose une nouvelle méthode AD-
CVAE. Elle aborde un problème encore largement ouvert en apprentissage automatique:
l’application des progrès rapides de la recherche sur les autoencodeurs variationnels à la
détection d’anomalie, dans les contextes où la question de représentation orthogonalisée
(disentangling) est essentielle.

Les performances sont démontrées d’une part sur des benchmarks standard en apprentis-
sage et d’autre part sur des ensembles de données physiques confirmant la pertinence et
la polyvalence de la solution proposée. Contrairement aux travaux précédents, nous mon-
trons que, lorsque la détection est le but, il n’est pas nécessaire d’ajouter une configuration
adversariale. Nous montrons aussi qu’une architecture conditionnelle et des métriques per-
sonnalisées sont indispensables.

Bien que les études de cas et les ensembles de données présentés dans cette thèse soient de
caractéristiques de la physique, les résultats sont applicables à d’autres domaines, comme
la surveillance des unités industrielles traditionnelles, car les méthodes génériques dévelop-
pées minimisent l’influence des spécificités de l’application.

Les résultats expérimentaux ont été très bien accueillis par les experts du domaine. Certains
des modèles proposés ont déjà été intégrés et déployés dans l’infrastructure CMS de produc-
tion. Une généralisation des stratégies proposées tout au long de cette thèse ouvre la voie à
une automatisation complète de l’évaluation de la qualité des expériences de physique des
hautes énergies.
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CHAPTER 1

Introduction

High Energy Physics (HEP) experiments involve large and complex detection apparatuses,
which need to be operated with high availability to profit at best of the expensive beam-
time provided by modern particle accelerators. Moreover, HEP data analysis relies on well
understood experimental equipment to chase statistically rare phenomena. These require-
ments call for constant and reliable monitoring to spot potential malfunctioning. For this
reason, all the HEP collaborations build complex Data Quality Monitoring (DQM) infras-
tructures and procedures, targeting prompt identification of anomalies arising from either
hardware problems or data processing. The Compact Muon Solenoid (CMS) experiment at
the Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN)
bases its quality assessment procedures on the scrutiny of a large number of statistical tests
by detector experts comparing data distributions with the ones derived from good-quality
references.

This method has proven to be effective in pinpointing problems and anomalies for over a
decade, but it is swiftly reaching its limits. The procedure relies on the availability of a large
number of highly-trained field specialists. Improved operation efficiency, together with a
reduction in person-power costs, call for automation of the procedure. Moreover, the LHC
experiments are being upgraded to cope with even larger data volumes and to use more
complex hardware components. The effort to anticipate all possible types of failures with
expert-based rule systems and statistical profiling using histograms, along with the increase
of workforce needed for daily monitoring shifts, poses scalability concerns.

This thesis proposes a possible approach to the automation of Anomaly Detection (AD) in
HEP, taking into account the domain-specific requirements and constraints. The HEP mon-
itoring problems are usually challenging for conventional statistical-based methods due to
their inherently multidimensional nature. Machine Learning (ML), and in particular, the
sub-field of AD, must be summoned to automate the decision process. Besides, the HEP
community expresses increasing interest in ML methods because of their applicability be-
yond quality control. Successful integration of ML within the DQM framework can serve as
a showcase for application to other aspects of the HEP field with more stringent integration
criteria, e.g. event selection processes.
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Since the number of monitored quantities and corresponding failure modes is vast and no
general solution is possible, the present work concentrates on addressing some of the most
frequent monitoring patterns in the CMS DQM.

• Deep Neural Networks (DNNs) are used to analyze images representing geographi-
cally organized and high dimensional data. The study serves as an initial benchmark
for comparing the Deep Learning (DL) based AD with the classical one and examining
relevant aspects of ML, i.e. active learning and result verification. The experiments
confirm the applicability of supervised DL in cases of a limited number of labelled
samples as unprecedented detection efficiency is obtained. Additionally, leveraging
both labelled and unlabelled data allows for training more sophisticated models for
the detection of unforeseen failure modes.

• Deep autoencoders are used for quality control of the LHC collision data represented
as multidimensional distributions. Semi-supervised and supervised approaches are
examined, demonstrating the potential of the semi-supervised models in highlight-
ing emerging anomalies. The experiments confirm the power of autoencoders in the
context of novelty detection and explore their usage to ease the interpretability of the
results, pinpointing the problematic features.

• Conditional Variational Autoencoders (CVAEs) are proposed for AD on hierarchically
structured data. The study proposes a method addressing the still open ML problem
of utilizing the rapid advancements in Variational Autoencoder (VAE) research for AD
purposes in the realm of disentanglement techniques. The performance is demon-
strated on standard ML benchmarks and physics data sets confirming the appropri-
ateness and versatility of the proposed solution. In contrast with previous works done
on CVAEs, it is found out that, when AD is the goal, an adversarial setup is not neces-
sary. However, the original conditional architecture and tailored metrics are required.

While the case studies and data sets presented in this thesis are HEP specific, the findings in
terms of AD models are applicable to other realms, like monitoring of traditional industrial
units, as the core methods try to minimize the influence of domain-specific nuances.

This thesis is structured as follows. Chapter 2 reviews the CMS experiment design in the con-
text of HEP science with a focus on the technical aspects relevant to the following chapters.
Chapter 3 provides background material for ML AD focusing on the difference between clas-
sical approaches and the new, DL-based ones with an emphasis on the Variational Inference
(VI). Chapter 4 considers the problem of detecting anomalies based on occupancy plots, an
image-like representation of detector data often encountered in quasi-real-time DQM. Chap-
ter 5 extends the methods proposed in Chapter 4 to applications in post-mortem DQM in
the context of novelty detection on numerical data. Chapter 6 provides background and
experimental results for a novel AD method proposed in the context of the monitoring hier-
archically structured data sets. Chapter 7 delivers concluding remarks and future directions.
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CHAPTER 2

Data Quality Monitoring

at Compact Muon Solenoid Experiment

This chapter introduces the basic concepts and the framework necessary to make the fol-
lowing case studies understandable to readers with no HEP background. Even though the
methods proposed in this work are designed to be domain-independent, the case studies
have auxiliary domain-specific challenges that are formulated here, for completeness and
clarity. This chapter also covers the motivations and goals of particle physics and HEP ex-
periments, the technical design of the detectors, details, and reasons for robust DQM and
the future challenges of the monitoring paradigm.

2.1 The Particle Physics Landscape

Particle physics research examines the nature of the fundamental constituents of matter and
their interactions. The Standard Model (SM) of particle physics embodies the current under-
standing of physics, described for instance by Ho-Kim and Pham (2013). Figure 2.1 summa-
rizes the known fundamental particles and their main properties.

According to the SM, fermions are the building blocks of matter. Arranged in three families,
they interact through forces, mediated through carrier particles (bosons). Fermions are clas-
sified into leptons (electrons, muons, and taus and chain neutrinos that include νe, νµ and ντ)
and quarks (up, down, charm, strange, top, bottom). These particles have associated antipar-
ticles of the same mass but opposite quantum numbers (e.g. the electric charge). The SM
unifies three fundamental interactions: the strong (mediated by gluons), the weak (mediated
by Z and W bosons) and the electromagnetic (mediated by photons) force. Quarks interact
via all three forces, leptons are not sensitive to the strong force, and neutrinos are subject
only to the weak force. The SM does not account for gravitational force, whose effects are in
any case negligible at the energy scale typically considered in HEP experiments.

Physics experiments are the way to validate the models and the theories describing our
current understanding of the universe. Many, including Craig (2013), regard the SM as a
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FIGURE 2.1: The SM of elementary particles: the 12 fundamental fermions
and five bosons. From MissMJ (2006).

complete theory both from an experimental and theoretical point of view. Numerous at-
tempts found no inconsistencies between the theory and the experiments within their level
of precision and accuracy.

The SM was proven particularly successful in anticipating the existence of previously undis-
covered particles. For instance, in 1964 Robert Brout, Francois Englert and Peter Higgs pub-
lished a theory that explained the origin of mass through the so-called Brout-Englert-Higgs
mechanism, described in Englert and Brout (1964) and Higgs (1964). It predicted a new
carrier particle responsible for giving mass to the otherwise massless particles of the SM, a
fundamental step to conciliate the SM with long-standing experimental findings (e.g. the
mass of the electron). The particle, called the Higgs boson, was finally observed in 2012 at
the CERN LHC, after decades of searches at other particle colliders.

Discovering Chatrchyan et al. (2012), and characterizing, Khachatryan et al. (2015), the Higgs
boson was not the ultimate challenge particle physics is facing. The HEP field will continue
to build complex experiments to examine more unsolved phenomena of the observed uni-
verse. A few examples of current research are listed below.

• In the early universe, the amount of matter and antimatter should have had been equal.
However, matter constitutes almost the entire observable universe now. The observed
differences in the amount of matter and antimatter are yet unexplained, see Bern-
reuther (2002).

• Based on the astronomical observations, galaxies are rotating with speed so high that
the gravity generated by the observable matter could not hold them together, essen-
tially tearing them apart. The unobservable part, referred to as dark matter, see Bertone
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et al. (2004) for a general survey, which gives these galaxies extra mass and generates
the extra gravity for them to stay intact is yet to be discovered.

• Neutrinos exhibit the properties of a particle as well as a wave. Each neutrino travels
through space as a wave that has a different frequency. The flavour of a neutrino is
determined as a superposition of the mass eigenstates. The type of flavour oscillates
(see Gonzalez-Garcia et al. (2016)) because of the changing phase of the wave. The un-
solved problems that remain are those of the Charge Conjugation Parity (CP) violation
parameter, the neutrino mass hierarchy and the mass value of each neutrino.

• Gravity is described based on Albert Einstein’s general theory of relativity, formulated
within the framework of classical physics. However, the other types of fundamental
forces are described within the framework of quantum mechanics and quantum field
theory. Quantum gravity, see Rovelli (2011), is a theory that attempts to explain grav-
itational physics in terms of quantum mechanics. However, it still has to be examined
experimentally.

Although not all particle physics experiments operate at a high energy scale, the questions
listed above, among many others, remain open and are currently the main research focus in
HEP. Since the 1950s, particle colliders represent the primary tool for this field of research.
These machines are used to speed up and increase the energy of a beam of particles by
generating electric fields that accelerate the particles and magnetic fields that steer and focus
them. The accelerated particles are then made collide, and dedicated detectors are used to
record the outcome of these collisions. As illustrated by Einstein’s famous equation, E =

mc2, the kinetic energy of the colliding beams can be used to produce particles that are more
massive than the accelerated ones. Following this principle, the history of HEP has been
characterized by a continuous strive to accelerate particles to higher and higher energy, thus
having access to more massive particles as a result of the collisions. The last step in this long-
lasting journey towards the so-called high-energy frontier is the LHC, which started operating
at CERN in 2008 and which gives access to higher energy levels than ever before, in the hope
of unveiling not yet observed phenomena. Besides the push for higher energy, accelerator
scientists are also pushing forward the limit of the intensity of the accelerated beams packing
more and more particles in each collision. The higher the number of particles that physicists
can squeeze into a beam, the more chances they have to catch a glimpse of rare processes to
happen.

The intensity of the collisions comes with the drawback of requiring more and more precise
detectors. In particular, the growing intensity also increases the probability of less interesting
phenomena to happen, and the experiments need to efficiently discriminate the processes
which could unveil new physics from those that are now considered well understood.

To achieve that the experiments require the most sophisticated solutions built by humankind
and scientific coordination on an unprecedented scale. This complexity imposes stringent re-
quirements on the data acquisition chain, which has to cope with an enormous quantity of
data. Thus the HEP field calls for novel solutions to be explored and incorporated, includ-
ing a more robust and automated monitoring scheme using the latest advances in Artificial
Intelligence (AI).
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FIGURE 2.2: A view on CERN’s accelerator complex. From CERN (2016).

2.2 The CERN Large Hadron Collider

As presented in the previous section, the HEP science needs a powerful accelerator and a
high rate of collisions to produce sufficiently many rare events to be able to observe them.
This section describes how the CERN LHC achieves these two goals, together with the trade-
offs incurred by reaching unprecedented energy and collision rates. It briefly sketches what
the LHC experiments are and how they integrate with the LHC infrastructure. Most of
the technical details given here are relevant to the next chapters. The others must still be
explained, to give a realistic picture of how complex the LHC operations are. Generally, the
monitoring of the quality of the observational apparatus response to the collisions needs to
be aware of these complexities.

The accelerator complex at CERN is shown in Figure 2.2. It consists of the LHC and a set of
smaller accelerators, used for accelerating protons to higher energies. Each machine injects
the particle beam into the next one, taking over the acceleration. The CERN LHC described
in The LHC Study Group (1995) is the last element of this chain and hosted inside a tunnel
that is approximately 26.7 km long. Protons in the LHC move at 0.999999991 times the speed
of light at top energy, providing total collision energy of 13 TeV, making it the most powerful
particle accelerator in the world. The construction of the LHC took ten years and happened
between 1998 and 2008.

The beam injection starts with the hydrogen atoms which are taken from a bottle containing
hydrogen gas and stripped from electrons to get protons. The protons are then injected into
the PS Booster (PSB) at the energy of 50 MeV from Linac2 linear accelerator. The PSB accel-
erates the beam to 1.4 GeV, the Proton Synchrotron (PS) to 25 GeV and the Supper Proton
Synchrotron (SPS) to 450 GeV. Protons are finally transferred to the LHC in both directions
where they are accelerated to 6.5 TeV. The circular colliders offer higher collision energy as
opposed to fixed-target energy experiments and a thus higher probability of generating rare
decays.
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FIGURE 2.3: The spacing of 78 (PU= 78) collisions (yellow dots) at the CMS
detector along the z-axis. The green lines represent tracks of the resulting

particles. Credit: Andre Holzner.

The protons of the LHC circulate the ring in distinct groups (bunches). Under nominal oper-
ating conditions, each beam has 2808 bunches with each bunch containing about 1.15 · 1011

protons. The bunch size is not constant around the ring as it gets squeezed (focused) as much
as possible around the interaction points to increase the probability of collision. The bunch
spacing is 25 ns or 7 m, yielding collisions at the remarkable rate of 40 MHz. The energy
density and temperature produced in the LHC collisions are similar to those that existed a
few moments after the Big Bang. In this way, physicists hope to understand better how the
universe evolved.

Each injection of protons into LHC is referred to as a fill. The duration of one fill is not fixed
under normal operating conditions and can vary between a few hours and a day. The instan-
taneous luminosity is a measure for the intensity of the collisions being proportional to the
potential yield of a given physics process in every bunch crossing. It depends on the num-
ber of protons per bunch, the number of circulating bunches, the revolving frequency and
the Gaussian transverse beam profiles in the horizontal and vertical directions. Measuring
this quantity is critical for the operation of the LHC and its experiments.

Physicists refer to each bunch crossing as an event. The complexity of an event (i.e. number
of particles produced) depends on beam intensity (also referred to as luminosity). The lumi-
nosity varies during each fill, resulting in a varying number of proton-proton interactions in
the same event, referred to as pile-up (PU). High luminosity is desirable from the scientific
point of view since it increases the probability of rare processes to be produced. However,
high PU causes technological challenges (as explained in Sections 2.3.2 and 2.3.3) related to
the tighter spacing of the collisions (see Figure 2.3).

The luminosity, and as a consequence the PU, decreases during the fill as protons get con-
sumed by the collisions. However, adjustments of the LHC beam-optics can result in discrete
discontinuities and sudden increases of luminosity. Figure 2.4 shows the evolution of a typ-
ical LHC fill. In other words, the LHC conditions are not stationary in time. This variability
poses an additional challenge for any ML-based solution for monitoring detector or physics
quantities.
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FIGURE 2.4: Evolution of the fill 6346 of LHC Run 2 at the CMS interaction
point. The LHC makes adjustments during each fill. As a result, the instan-
taneous luminosity (left) and average PU (right) can increase by small steps.
In this example, the downward fluctuations around 14:00 and 4:00 are due to
routine operations on the beams. Smaller fluctuations and steps every 1-2 h
are due to the optimization of the beam parameters. The jagged beginning
is the so-called lumi-levelling, where the machine adjusts its configuration ev-
ery few minutes to keep a stable PU. The spike at the beginning is before

obtaining stable beams. A similar pattern applies to all the LHC fills.

Colliding the beams in the LHC is the responsibility of CERN. Exploiting these collisions is
the responsibility of immense international scientific collaborations, the experiments in HEP
jargon. Each experiment is associated with a detector which is a sizeable experimental ap-
paratus that records and filters the byproducts of collisions and saves it in numerical form.
The experiments are in charge of first designing and building their detector, then operating
and monitoring it. Typically, the timescale of the experiments spans decades. For instance,
in the case of the CMS experiment, the Letter of Intent was completed on the 1st of October
1992, the construction began in 1998 and completed in 20041. Only in 2009 CMS registered
first collisions. The experiment will continue to operate for the next 20 years.

The detectors are located in underground caverns, in four points where the two LHC beams
intersect. These main LHC experiments are A Toroidal LHC ApparatuS (ATLAS), A Large
Ion Collider Experiment (ALICE), CMS and Large Hadron Collider beauty (LHCb). Besides
protons, the LHC can also accelerate Lead ions. ALICE, described in Aamodt et al. (2008),
is a detector specialized in analyzing those types of collisions. The experiment studies the
properties of quark-gluon plasma, a state of matter where quarks and gluons under con-
ditions of very high temperatures and densities are no longer confined inside hadrons that
provide a window onto the state of matter that existed in the early universe. The LHCb,
described in LHCb Collaboration (2008), studies the properties of antimatter, specializing
in the study of the slight asymmetry between matter and antimatter present in interactions
of B-particles (containing b-quarks). While those two experiments study specific aspects of
the LHC physics program, ATLAS, described in ATLAS Collaboration (2008), and CMS are
general-purpose detectors, which are built using different technical solutions and design.
They both cover the broadest possible range of physics at the LHC from precision measure-
ments of the Higgs boson to searches for new physics beyond the SM. The CMS detector,
shown in Figure 2.5, is located at Point 5 of the LHC, near Cessy, France.

1The Electromagnetic Calorimeter (ECAL) endcap was installed and calibrated just before the first LHC beams.
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FIGURE 2.5: A cutaway diagram of the CMS detector with elementary infor-
mation about different sub-detectors. From Marcastel (2013).

2.3 The Compact Muon Solenoid Experiment

This section introduces the main aspects of the CMS experiment, which are relevant to the
case studies presented in this dissertation. Following the general introduction to the ex-
periment, the section sketches the architecture of the detector and the specific role of its
components. Finally, it explains how the enormous volume of data produced by collisions is
handled with particular emphasis to the data-reduction and selection performed online by
the so-called trigger system.

2.3.1 The HEP Experimental Data Pipeline

The CMS experiment can be used to illustrate the paradigm of HEP experiments. It is de-
signed to cover a broad range of processes within the LHC physics program. Despite the
theoretical differences between experiments, aspects of physics are probed similarly.

The essential steps for analyzing the data collected from all the detectors are similar. The first
step characterizes all the different particles that were produced in each collision to recon-
struct the process in full. This step is an arduous task for two reasons. Firstly, as explained
before (Section 2.1), most of the resulting particles are unstable and decay quickly into a cas-
cade of lighter particles. The particles of interest are observed only indirectly, by the final
decays products. Secondly, these products are observed only through their interactions with
the detector and subject to measurement uncertainty. Overall, the role of the CMS detec-
tor is to collect raw data about the interaction of these so-called secondary particles with the
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sensitive layers in order to reconstruct their momentum and energy. The properties of the de-
cayed parent particle are inferred from these quantities, and the inference chain is continued
until reaching the most massive primary particles. At an intermediate step, a trigger system
discards the vast majority of bunch collisions, which contain uninteresting events (see Sec-
tion 2.3.3). Each retained event contains only a few particles of interest, reconstructed from
hundreds of low-level signals. Each event is characterized by many measurements, along
with many additional, high-level features that have been engineered by physicists. The final
analysis interprets vast collections of such events, see Khachatryan et al. (2015) or Adam-
Bourdarios et al. (2014).

2.3.2 The Detector

This section specifies the CMS components directly related to the monitoring application
subject of this dissertation: the muon Drift Tube (DT) detector and the trigger system. The
rest of the technical details are here for completeness.

The CMS acronym was not chosen by coincidence. The detector is Compact, weighing more
than all other LHC experiments while occupying less volume than the other multi-purpose
detector at the LHC: the ATLAS detector. The Muon word is a reference to its robust and pre-
cise muon spectrometer. Solenoid refers to the configuration of the magnetic field produced
by a large and powerful superconducting magnet. A detailed description of the detector is
in Chatrchyan et al. (2008), together with a definition of the used coordinate system and the
relevant kinematic variables.

The CMS detector has a cylindrical structure. The apparatus is 28.7 m long, 15 m in diameter
and weighs 1.4 · 104 t, i.e. twice the weight of the Eiffel Tower, see Hanser (2006). Monitoring
the proper functioning of the system is possible only because of the essential repetitiveness
of its structure. The detectors have many layers (or sub-detectors) that serve a particular role
in the reconstruction of collisions and employ specific technologies as sketched in Figure 2.6.
As mentioned before, when crossing the detector, a particle produces only two kinds of raw
data: a tracking hit and an energy deposit. Physicists’ goal is to track and characterize all
the different particles that were produced in each collision. Recorded trajectory and energy
allows for measurement of particle positions in space, their charge, mass, and momentum.

Tracking is the act of measuring the trajectory of charged particles. Modern tracking de-
vices reveal the nodes of charged particles through electrical signals. Particles that carry an
electromagnetic charge and traversing a thin layer of material release an electronic signal
by ionizing the gas in the detector (a hit). The electrons produced by the detector material
ionization are collected by the readout electronics in a region close to the track trajectory. If
the material is segmented in small active regions (pixels and strips), the crossing point can
be measured with high precision. Due to the presence of a magnetic field, charged particle
trajectories are bent along a helix. Based on the result of software tracking algorithms con-
necting the points the particle has traversed, a circle of a radius R in the transverse plane is
measured. The radius R and the momentum are proportional (R ∼ p

m ) and thus both could
be determined. Higher momentum produces straight lines, while low creates tight spirals.

Two specialized types of tracking devices are the inner tracker (vertex and strip detectors)
and muon chambers. Vertex detectors are located in the innermost part of the detector, close



11

FIGURE 2.6: A sketch of the particle interactions in a transverse slice of the
CMS detector, from the collision point to the muon detectors. From Davis

(2016).

to the interaction point. Muon chambers are located at the outer layers of a detector assembly
as muons are the only charged particles able to travel through the meters of dense material.
In CMS, the silicon tracking devices (described in Karimäki et al. (1997); CMS Collaboration
(2000a)), the Pixel (seen in Figure 2.7) and the Strip detectors, are located in the proximity of
the interaction point. The Pixel at r < 15 cm with sensors containing a vast number of pads
has a total of 76 million readout channels. The Strip detector located at r > 0.2 m completes
the design. In CMS, muons are measured with detection planes instrumented with four
detector technologies: DT, cathode strip chambers, resistive plate chambers, and gas electron
multipliers. A detailed description of all the CMS muon detectors can be found in Sirunyan
et al. (2018). Finally, the 3.8 T solenoidal magnetic field at CMS, critical for measuring the
trajectories, is produced by NbTi superconducting magnet CMS Collaboration (1997c).

Calorimeters are devices that measure the energy of the incoming particles. Neutral particles
such as photons and neutrinos are not visible in tracking devices, but the energy they de-
posit in the calorimeters reveals them. The CMS detector includes two types of calorimeters,
described in CMS Collaboration (1997a) and CMS Collaboration (1997b): ECAL and Hadron
Calorimeter (HCAL). They are made of different materials and use different measuring tech-
nologies. ECAL is made of 76000 scintillating PbWO4 crystals, HCAL is made of brass and
plastic scintillators. The ECAL absorbs electrons and photons. Strongly interacting particles
(hadrons) begin to lose energy in the ECAL but are only stopped in the HCAL.

The Drift Tube Muon Detector

An illustration of the internal structure of a DT chamber is shown in Figure 2.8. Each cham-
ber, on average 2× 2.5 m in size, consists of 12 layers of DTs. Layers are arranged in three
groups of four. Each layer contains a variable number of tubes depending on the position in
the detector, up to 96. The middle group measures the coordinate along the direction paral-
lel to the beam and the two outer groups measure the perpendicular coordinate. Each tube
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FIGURE 2.7: A barrel pixel detector halves, assembled at Paul Scherrer In-
stitute, with modules made by several European consortia. The photograph
shows very lightweight mechanical support, CO2 cooling tubes and an im-
pressive amount of cabling in a tight volume. From Paul Scherrer Institute

(2017); Gill and EP-CMX (2017).

FIGURE 2.8: Schematic view of the one DT chamber showing the position
and orientation of the tubes. From CMS Collaboration (2010).

corresponds to one readout channel (briefly referred to as a channel). By combining the in-
formation provided by the channels, one can determine the trajectory of the particle crossing
the chamber. The iron return yoke captures the flux lines of the solenoid magnetic field.

The chamber numbering schema follows that of the iron of the yoke, consisting of five
wheels (see Figure 2.9) along the z-axis, each one divided into 12 azimuthal sectors (see
Figure 2.10). The wheels are numbered from -2 to +2, sorted according to global CMS z-axis,
with wheel 0 situated in the central region around the proton-proton collision point. The
sector numbering is assigned in an anti-clockwise sense when looking at the detector from
the positive z-axis, starting from the vertically-oriented sector on the positive-x side in the
CMS coordinate system (sector 1). Chambers are arranged in four stations at different radii,
named MB1, MB2, MB3, and MB4. The first and the fourth stations are mounted on the in-
ner and outer face of the yoke respectively; the remaining two are located in slots within the
iron. Each station consists of 12 chambers (one per sector) except for MB4 (which contains
14 chambers). The total number of chambers is then 5× (3× 12 + 14) = 250.

2.3.3 The Trigger System

Much less exposed than the detector, the trigger system is nonetheless an equally essential
part of the CMS acquisition process. Due to the intrinsic statistical nature of the particle
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FIGURE 2.9: Magnified view of the CMS detector showing the wheel struc-
ture. The white volumes represent the muon chambers while the red volumes

represent the iron return yoke.

FIGURE 2.10: Numbering schema of the sector and stations of DT chambers
in one wheel. From CMS Collaboration (2010).

physics phenomena, the HEP experiment needs to collect a large amount of data with rare
events. The LHC operates at a remarkable rate of 40 million events per second. Each CMS
event corresponds to around 1 MB of data in unprocessed form. Thus the volume of the
data produced in collisions results in hundreds of Exabytes (EBs) of data per year, making
the LHC one of the largest sources of data in the world today. For instance, considering the
eight months of the data-taking period in a solar year and a duty cycle of 60%, the LHC
delivers more than 400 EBs. Ideally, physicists would like to keep all these raw data. How-
ever, it would often be useless and above all, technologically impossible. Useless, as most
of the events can be discarded upfront as they follow a known process for the current state
of physics. Impossible, as at present day it is not possible to even transfer most of the data
from the detectors to the offline data facilities due to network constraints, much less to per-
manently store it for future processing. Due to these understandable storage constraints
and other technological limitations (e.g. fast enough readout electronics), the experiment
is required to reduce the number of recorded data from 40 million to 1000 events per sec-
ond. To this purpose, a hierarchical set of algorithms collectively referred to as the trigger
system, is used to process and filter the incoming data stream. Trigger algorithms, described
in Khachatryan et al. (2017), which are the start of the physics event selection process, are
designed to reduce the event rate while preserving the physics reach of the experiment. The
CMS trigger system is structured in two stages of selection using increasingly complex in-
formation and more refined algorithms.
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FIGURE 2.11: Simplified, schematic graph inspired by the trigger system con-
figuration. Blue nodes represent HLT nodes, while yellow L1 Trigger nodes.
Each link is unidirectional starting from yellow nodes. For every fill, the
graph has a few hundred nodes spread approximately equally between HLT
and L1 Trigger nodes. The connection between L1 Trigger and HLT nodes
can be seen as a hierarchical directional graph from the L1 Trigger to the HLT

system.

• Level 1 Trigger (L1 Trigger), see CMS Collaboration (2000b), implemented on custom-
designed electronics, reduces the 40 MHz input to a 100 kHz rate. L1 Trigger algo-
rithms are implemented on Field Programmable Gate Arrays (FPGAs) and Applica-
tion Specific Integrated Circuits (ASICs) and have 3.2 µs to decide whether to pass an
event to the next step. The algorithms are based on local information from sub-detector
components.

• High Level Trigger (HLT), see CMS Collaboration (2002), is a collision reconstruction
software running on a computer farm of about 32 thousand commercial processors. It
scales the 100 kHz stream from the L1 Trigger rate down to 1 kHz. The HLT system
runs a faster and coarser version of the reconstruction software used for offline recon-
struction and analysis. It uses global detector information, takes advantage of regions
of interest to speed up the reconstruction and rejects events as early as possible. The
HLT decision has to happen in 100 ms on average.

To better illustrate the challenge, at the luminosity at which the LHC currently operates, out
of the 40 MHz of collisions, the rate of production of Higgs bosons is about 0.4 Hz. The
trigger system needs to be able to identify the events efficiently in the limited time available.

Both L1 Trigger and HLT systems implement a set of rules to perform the selection (called
trigger nodes or paths). A trigger node corresponds to an algorithm that probes a specific
pattern (signature) in the event or looks for specific physics objects. There are nodes dedi-
cated to the primary particles, e.g. electrons, muons, or hadronic energy in the calorimeters.
In general, physics analyses looking for sophisticated and rare signatures can design their
selection to enrich the data of rare events. At present, the HLT runs about 600 of these in-
dependent selection algorithms. In the spirit of refining the selection in consecutive steps,
each HLT node is seeded in input by the events selected by a configurable set of L1 Trigger
nodes, see Figure 2.11.

2.3.4 Data Organization

The CMS data are organized in acquisition runs (or just runs in CMS jargon), not to be con-
fused with LHC Runs which are years long. They correspond to a given setup both of the
CMS detector and the LHC accelerator. Their duration is varying from as little as a few min-
utes to as much as ∼ 20 hours. Each run is divided into Lumisections (LSs), a time interval
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corresponding to a fixed number of proton-beam orbits (218) in the LHC. It amounts to ap-
proximately 23.31 s, time large enough to measure the average instantaneous luminosity (see
Section 2.2), monitor the status of the sub-detectors (see Section 2.4) and small enough to be
used as the atomic of the data for physics analysis. Typically the analysis is not performed
on a single event but on a collection of them grouped by given times when the detector re-
sponse was accurate. Each event can be identified uniquely by specifying the event number,
the LS number, and the run number.

2.4 The CMS Data Quality Monitoring Infrastructure

Failures in a large and complex apparatus like the CMS experiment are unavoidable. The
certification of the CMS data as usable for physics analysis is a crucial task to ensure the
quality of all physics results published by the CMS Collaboration. For this reason, the collab-
oration set up an integrated monitoring system, including processes, methods, and software
infrastructure, referred to as the DQM. The stringent quality criteria ensure that physics anal-
ysis is performed on good-quality data only. The failures are quite frequent: overall, 7%2. of
the detector components manifest problems, while 2% of the acquired data is discarded.

Moreover, this relatively high figure is mostly not due to significant, easily detectable, mal-
functions of the detector as a whole, but to localized problems. In most cases, entirely rel-
evant physics analysis can still be achieved on the data taken by the not-faulty parts of the
detector. Thus, an equally critical goal of the monitoring system is to be as precise as possible
in spotting the defects, not reporting only an overall status.

This section deliberately uses a very operational point of view to describe the DQM to high-
light the potential benefits and the challenges of introducing some level of automatic deci-
sion making. Details on the methods and quality indicators currently in use are given in the
next chapters.

2.4.1 Overview

Within the CMS collaboration, physics analyses are performed only on good-quality data that
require prompt and accurate identification and flagging of the problematic data. Imposing
quality criteria is performed by the two main domains of the monitoring chain.

• Online monitoring provides live feedback on the quality of the data while they are being
acquired, allowing the operator crew to react to unforeseen issues identified by the
monitoring application, further described in Section 2.4.2.

• Offline monitoring was designed to certify the quality of the data collected and stored on
disk using centralized processing (referred to as the event reconstruction, that converts
detector hits into a list of detected particles, each associated with energy and direction),
further described in Section 2.4.3.

These two validation steps differ in three main aspects.

2Calculations are based on the DT sub-detector data.
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• First, there is a difference in latency of the evaluation process. Online monitoring is
required to identify anomalies in quasi-real-time to allow the operators to intervene
promptly while the offline procedure has a typical timescale of several days.

• Second, the fraction of the data which they have access to varies. Online processing
runs at a rate of 100 Hz, corresponding to approximately 10% of the data written to
disk for analysis (in order not to flood the monitoring system). The offline processing
takes as input the full set of events accepted by the trigger system (∼ 1 kHz of data).

• The third is the granularity of the monitored detector components. While offline mon-
itoring requires identifying the only overall status of the sub-detectors, online should
determine faulty sub-detector elements.

Despite their specific characteristics, these two steps rely on the same AD strategy: the
scrutiny of a long list of predefined statistical tests, selected to detect a set of known and
possible failure modes. These statistical tests are presented as a set of multidimensional
plots (histograms in HEP jargon) for experts’ convenience. These histograms are monitored
by detector experts, who compare each distribution to a corresponding reference, derived
from good-quality data in line with predetermined validation guidelines. The experts look
for unexpected effects that could affect analysis level quantities, e.g. noise spikes, dead areas
of detector problematic calibrations.

A separate category of online monitoring is the Trigger Rate Monitoring (TRM), further de-
scribed in Section 2.4.4.

Further details on the infrastructure used for CMS DQM are given in Schneider (2018). The
central component of the DQM system of CMS is a web-based service for browsing data
quality histograms, called DQM GUI, described in Tuura et al. (2010). Currently, the system
has more than 50 TBs of monitoring data.

2.4.2 Online Data Monitoring

Online DQM samples events that are selected during the HLT processing and focuses on
monitoring the status of the various sub-detector components and the LHC beam conditions
in quasi-real-time. The histograms are generated with very low latency live monitoring of
detector performance during data taking. The live display is updated every LS. Statistical
tests are performed to compare these histograms to a set of predefined references, repre-
senting the typical detector response during normal operating conditions. That allows for
efficient detector operation by giving feedback on its status to the experts and the operators
handling the data-taking. Expert shifters acknowledge the alarms and may decide to inter-
vene (up to stopping the data taking), using the histogram comparison and evaluating of the
problem severity. The primary role of a shifter is monitoring the plots constantly and con-
tacting the right sub-system expert when the problem occurs. The knowledge of the LHC
running conditions and the history of possible issues identified in the past are vital ingredi-
ents in this decision process. At the end of each run, the shifter is asked to fill in a quality
flag for each sub-detector. Sub-systems with apparent problems should be marked as bad
unless the shift leader or the sub-system expert says otherwise.

This thesis explores ML applications to the online DQM procedure in Chapter 4.
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2.4.3 Offline Data Certification

The data acquired by the experiment are scrutinized by a procedure called Data Certification
(DC), which ensures they are usable for all physics analysis. This procedure is the last step
of the DQM apparatus of the experiment and utilizing all the reconstructed events. The DC
process ensures sufficient accuracy and clarity to maintain an excellent detector and operat-
ing efficiency. Experts are trained to discover problems and pinpoint errors in the detector
hardware or reconstruction software based on the assessment of hundreds of histograms
filled with specific critical quantities. Additional log messages (aggregated in Rapsevicius
et al. (2011)) allow for fine-grained analysis of the acquired monitoring data. The final certi-
fication flag is attributed, again, by comparing results to a predefined reference, representing
the typical detector response during normal operating conditions. Certification shifters eval-
uate problems using their knowledge of the history of possible issues identified in the past.

The monitoring data comes from different CMS sub-detectors, and the global quality of data
depends on the combinatorial performance of each of them. Typically, experts are trained to
assess specific sub-detector behaviour. That results in having up to seventy people involved
in the process. Furthermore, the time constraints (data has to be certified as quickly as pos-
sible) and complexity of the decision implicates the human-driven process to be prone to
mistakes and introducing some level of quality label contamination.

This thesis explores ML applications to the DC procedure in Chapter 5.

2.4.4 Trigger Rate Monitoring

As discussed in Section 2.3.3, the trigger system is implemented as a broad set of nodes,
each selecting a particular physics signature. The amount of data accepted by the trigger
system, the trigger rate, is briefly referred to as the rate in CMS jargon. This yield of each of
the nodes is a critical quantity that needs to be continuously monitored. A rate lower than
expected might hint a loss in efficiency of the particular selection. On the other hand, high
rates might create problems for the data acquisition chain and very often are the symptom
of detector instabilities. Thus, they often provide early hints of failures. As the LHC pushes
to higher collision luminosity, CMS has to be ready to promptly respond to emergencies
when the rates fail to stay in the expected range. The trigger operation group has developed
a set of software tools and protocols to thoroughly monitor, describe and identify problems
based on reported rates. The next paragraphs detail the pipeline of TRM software, described
in Wightman et al. (2018).

The rate of the physics processes determining the trigger rate decreases with the luminos-
ity and, as a consequence, with PU. Consequently, the recorded collision rates decrease as
well as they primarily depend on the luminosity of the beams. In practice, TRM predicts
an average rate per bunch-crossing as a function of an average measurement of the PU for
each LS. These predictions are then compared to the recorded rates as data are being col-
lected, spotting small and unexpected deviations. In Figure 2.12, the red lines correspond to
those predictions, while the blue dots are the actual values readout by the monitoring. The
model describing the expectation is derived from a best-fit approximation (i.e. fitting the
rate values as a function of average PU) limited to linear, quadratic or exponential regres-
sion. These prediction models are generated ahead of time using past data, selected from
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FIGURE 2.12: Observed rates as a function of average PU (blue dots), com-
pared to the predicted dependence (red line) and its uncertainty (in the or-
ange band) generated using TRM software. The plots above show an exam-

ple of a well (left) and poorly (right) predicting model.

a list of known good-quality fills. Before fitting, raw rates are corrected for deadtime, ran-
dom sampling suppression factors (prescales) that might have been applied and the number
of colliding bunches in the LHC. Such preprocessing facilitates comparisons and extrapola-
tions between different fills with different conditions. The final regression model is selected
based on least-squares minimization, with a bias towards more straightforward (i.e. linear)
fits and each trigger node is fitted independently from others. The models are updated peri-
odically (approximately every other month) to account for changes, e.g. in the sub-detectors,
trigger algorithms or calibration updates.

TRM software provides a list of 20 trigger nodes for real-time monitoring as a console-based
application. The list is selected to cover CMS sub-detectors and physics objects (e.g. muons,
photons, and so forth) and is monitored by the on-site shifter 24/7. The application is up-
dated every 60 s, averaging readouts from the last three recorded LSs. The currently imple-
mented strategy highlights trigger nodes when a deviation from the expected value is more
than 5σ and alarms the monitoring crew. The script automatically sends an e-mail to trigger
experts with information about these alarms and add an audio alarm that is raised if specific
rates go above maximum acceptable thresholds, e.g. a total L1 Trigger Trigger rate above
100 kHz. If alarms persist over a long period, they are further evaluated. The shifter task is
to determine if the genuine trigger system malfunction drives the alarm.

TRM also provides tools used for offline DC as trigger rate plots make it trivial to spot fills
where a particular sub-detector was having problems. Rate versus PU plots (see examples
in Figure 2.12) for all L1 Triggers and HLTs are integrated into the central CMS Web-Based
Monitoring service, described in Soha (2011).

This thesis explores ML applications to the TRM procedure in Chapter 6.

2.5 Challenges and Long Term Plans

In 2013 the CERN Council adopted the new European strategy for Particle Physics, as sum-
marized in Council (2013), setting priorities to exploit the full potential of the LHC, including
high luminosity upgrade of the accelerator complex and the detectors. The upgrade aims at
collecting ten times more data than in the initial design by around 2030, pushing instan-
taneous luminosity of the LHC to record high. As a result, the expected PU will reach 90
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collisions per bunch crossing. The upgrade also includes replacing some of the detectors,
e.g., the upgrade of the tacker detectors Tricomi (2014) or the calorimeter Magnan (2017). In
particular, the trigger system will have to cope with higher rates, and the monitoring needs
will become even more stringent.

The CMS Collaboration adopted the three-layer expert based monitoring protocol for LHC
Run I (2010-2012) and in Run II (2015-2018). However, the ever-increasing detector com-
plexity (especially in the context of high luminosity upgrade), monitoring data volumes and
the necessity to cope with different LHC running scenarios call for an increasing level of
automation of the process in the future. Already, the amount of histograms to monitor is
challenging for a single shifter, while the number of histograms to monitor increases every
time a new failure mode is identified and consequently added to the list of known poten-
tial problems. Furthermore, human intervention and currently implemented tests require
collecting a substantial amount of data, implying a detection delay. Last but not least, the
cost in terms of human resources is substantial, i.e. the 24/7 DQM shifter and the expert
personnel responsible for updating the good data references and related instructions.

The only practical way to prepare this future challenge is to start developing and adopting
automated AD in the current LHC Run. This early adoption will allow growing the expertise
within the collaboration around the development and operation of various ML models and
tools.

In this context, the work presented in this thesis represents the crucial step in a complete
change of paradigm for the CMS DQM. The first structured effort is presented here to in-
troduce advanced ML models for AD in the sophisticated monitoring infrastructure of the
experiment.

2.6 CMS DQM and Machine Learning

ML methods open up the possibility of providing additional quality indicators in the current
CMS DQM procedure as the decision function can be learned directly from the extensive
archives of the past monitoring data and corresponding labels provided by detector experts.
In the future, the monitoring system should take the burden of routine expert checks pre-
filtering the data and requiring expert judgment only in cases where the algorithmic decision
is not clear. The load on the humans will substantially reduce (as discussed in Borisyak et al.
(2017) in the context of the CMS DC).

It is possible to generalize and group the monitored quantities according to typical patterns.
At the detector level, experts typically look at hit or occupancy maps, presenting relevant
quantities in a geographical/topological fashion. These are further described in Sections 4.1
and 4.1.1. The purpose of such monitoring is to identify problematic regions in the detec-
tor. If such regions appear during the detector operation, the collaboration needs to know
precisely when the problem appeared and how to intervene. Detecting anomalies on those
maps is an image classification task: supervised for known problems and semi-supervised
for unrecognized ones (Chapter 4). The DC step performs routine physics level checks on
physics objects, i.e. hadrons, leptons, photons, and so forth when experts look for anomalies
in the statistical distributions of fundamental physics quantities. While Chapter 4 experi-
ments with novelty detection as a supplementary extension, Chapter 5 works exclusively on
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this problem with higher-dimensional data. Finally, the correct interpretation of the mon-
itoring data often requires prior knowledge of the configuration and causality relations of
different detector components. Representation learning techniques open the way to the ini-
tial automation of this practice. Chapter 6 covers an application of this kind in the realm of
the TRM.

The task of transitioning to ML-based monitoring is non-trivial. The high data dimension-
ality precludes simple parametric density estimation of the normal behaviour. Labelled
instances are often not available for online monitoring, while offline monitoring the label
contamination is difficult to estimate. Thus, even supervised techniques pose an implemen-
tation challenge. As the failure scenarios expand in quantity, and the conditions evolve with
time, the solutions for model retraining must be implemented as well.
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CHAPTER 3

Machine Learning Anomaly Detection

Chapter 2 presented a complicated task for experts to perform manually, especially in light
of the long term plans of the HEP community. Instead of relying on expert knowledge,
the protocol could be augmented with the help of recent progress in ML techniques. In
this chapter, ML AD solutions are discussed in light of both the operational feasibility of
monitoring practices and the a priori knowledge of the data.

As stated by Samuel (1967), ML is the field of AI and computer science that gives computers the
ability to learn without being explicitly programmed. The majority of practical ML uses supervised
learning. In such setup, given a data set space of observations X with input variables x and
a label space Y with output variables y, the computer model (further briefly referred to as
model) learns a function h : X → Y so that h(x) predicts the output y. The target quantity
y can be discrete or continuous, defining classification and regression tasks. In the absence
of y, full or partial, the learning process is called unsupervised or semi-supervised respectively.
Constructing good models from data sets boils down to selecting the hypothesis h ∈ H
that minimizes (or maximizes) a particular objective. Historically H is called a hypothesis
space. It is important to note that ML goes beyond simple function fitting as many auxiliary
techniques are also included in this field, e.g. active learning, see Section 4.2.4.

A standard definition of an anomaly (or an outlier) is that it is an observation that appears to
be inconsistent with the remainder of the data set, Grubbs (1969); Barnett and Lewis (1978).
Anomalies can be caused by experimental or measurement errors but sometimes are indica-
tive of a new, previously unknown, underlying process. In fact, Hawkins (1980) defines an
outlier as an observation that deviates so much from the other observations as to arouse suspicions
that a different mechanism generated it.

A common need when analyzing real-world data sets is determining which instances stand
out as being dissimilar to all others, which is the goal of AD. Many applications require
being able to decide whether a new observation belongs to the same distribution as existing
observations (set of inliers) or should be considered as different (outliers). Often, this ability
is used just to clean the data sets. Having identified the samples that contain errors, the
next step is to fix the inconsistencies somehow or minimize their impact in the final model.
In this context AD is just a preprocessing step. However, AD could be a stand-alone task.
Detecting and analyzing anomalies reveals useful information about the characteristics of
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the data generation process. Perturbations of healthy behaviour may indicate a presence of
faults in the system, which makes AD particularly useful for monitoring tasks. Firstly, the
ML AD can build the required detection model automatically based on some given training
data. Secondly, it has the advantage of detecting previously unknown failures. That brings
us to an important distinction.

• In the novelty detection context, the training data is not polluted by outliers, and the
estimators detect previously unobserved patterns in new observations.

• In the outlier detection context, the training data is contaminated with outliers, and the
estimators fit the regions where the training data is concentrated, ignoring the anoma-
lous observations.

There are countless applications of AD such as credit card data fraud or identity theft de-
tection, network traffic intrusion detection, medical imaging tumour detection, or HEP ex-
periment sensors readings analysis (to determine fault in a component of the experiment) to
name a few.

This chapter describes the different types of approaches to AD in Section 3.1, analysis algo-
rithm performance evaluation in Section 3.2, overviews classical and popular techniques for
AD in Section 3.3 addressing their limitations. Finally, it explores the new approaches based
on DL architectures in Section 3.4 and in particular the VAE in Section 3.5.

3.1 Types of Anomaly Detection

Typically a detection model defines a region representing normal behaviour to declare any-
thing outside that region as an anomaly. The amount of labelled data at hand plays a pivotal
role in choosing the methodology of defining such regions. Based on the availability of the
labels, indicating whether the sample is an inlier or an outlier, AD techniques operate in one
of the following three approaches: supervised, semi-supervised and unsupervised (as illustrated
in Figure 3.1).

The AD techniques usually assume rarity of abnormal events (considered as outliers con-
cerning the normal generating process) and lack of a complete set of typical examples of
all possible behaviours. Nonetheless, if the representative examples are available, the AD
reduces to a case of binary classification (supervised learning), with possibly the help of
various re-sampling methods, see Aggarwal (2014), or reformulation of the objective func-
tion for dealing with class imbalance, see Cowan et al. (2011). The class weight correction is
critical as most of the classification techniques assume an approximately equal distribution
of data classes and underperform when a class is severely under-sampled or utterly absent
from the training set. A particular case of supervised AD is a Positive-Unlabelled Classifica-
tion when a limited number of instances of the positive class are available with the unknown
proportion of outliers in the negative set. Supervised AD constructs a predictive model for
all classes (multiple in case of multiple anomaly types). Unseen data instance is compared
against the model to determine the class it belongs to. In many application-specific scenar-
ios, the supervised methods provide better detection rates than other approaches since they
have access to more information. However, the primary technical issue, which makes super-
vised methods not suitable in many areas, is the shortage of available anomalous instances.
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FIGURE 3.1: Differences between supervised, semi-supervised and unsuper-
vised AD approaches. From: Goldstein and Uchida (2016)

The model accuracy depends on the labelled training data, which in practice will not cover
all possible types of anomalies. Besides, labelling is often an expensive, burdensome and
time-consuming task (if not impossible at all) as experienced human annotators do it. If
labelling is possible, accurate labels are usually not guaranteed and mislabelling may re-
sult in worse detection rates. A simple remedy may be an artificially generated example
set, Theiler and Cai (2003); Abe et al. (2006). However, in most practical, real-life settings,
the anomaly generating mechanism is non-existent, or the simulation assumptions may turn
out to be too simple. The bottom line, a supervised AD may always serve as the first step
of the AD pipeline as the examples of the previous anomalies can be used to focus further
search process towards unknown or more subtle anomalies. Such a strategy is adopted in
Chapter 4.

In cases when the scarcity and diversity of anomalies prevent obtaining a representative
labelled data set, an alternative approach is a semi-supervised AD, also referred to as a par-
ticular case of One-Class Classification (OCC), Khan and Madden (2014). OCC algorithms
aim to build models when copious examples of nominal behaviour or unlabelled data are
relatively easy to collect while the anomalous class is either absent, poorly sampled or statis-
tically not well defined. This unique situation constrains the learning objective to building
the decision boundary around negative class such that it accepts as many objects as possible
from this class while minimizing the chance of including any outliers. The model classifies
data as either belonging inside the negative class decision boundary (inlier) or not (outlier).
An advantage of the semi-supervised approach is that when once trained, it is not sensitive
to the frequency of anomalies.

As observed by Tax (2001), the problems encountered in the conventional classification, such
as the estimation of the classification error measuring the complexity of a solution, the curse
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of dimensionality or the generalization of the classification method also appear in OCC and
sometimes become even more prominent. The problem of learning is much harder than
in binary classification because only one side of the boundary can be determined. As a
consequence, it is difficult to decide how tight that boundary should fit the training data in
each dimension. Furthermore, defining the negative region is difficult because some of the
features may be irrelevant for discrimination, normal behaviour may not be static, or because
the training data contains anomalies that are incorrectly modelled as normal behaviour. In
fields where normal behaviour is continuously evolving (such as in monitoring), the model
should be frequently modified. Finally, the training set must cover a broad spectrum of
normal behaviour, which is often not a case either. Inappropriate training sets would always
produce misleading results. In the context of monitoring the normal operation behaviour
of the machine is easily obtainable. While most possible types of faults would not have
occurred yet and waiting until such faults occur may involve high cost or risk to operation
crew, the semi-supervised approach is a desirable extension of the supervised AD. Such
strategies are explored in Chapter 4 and Chapter 5.

The unsupervised scenario uncovers anomalies in unlabelled test data. Unsupervised meth-
ods are based on two underlying implicit assumptions. Firstly the presumption that the neg-
ative instances are far more common than the positive ones. Secondly, the anticipation that
there is a robust statistical variability between outliers and inliers. A typical unsupervised
AD method is clustering, described in Section 3.3. An unsupervised approach reduces to
finding sparse regions in large multidimensional data sets. In practice, the instances without
an assigned cluster, or belonging to a small cluster, are declared as anomalies. However, it is
difficult to determine the threshold between nominal data and the outliers. Frequently the
performance suffers from high false alarm due to the abolishing of the underlying assump-
tions. As the noise represents the semantic boundary between normal data and anomalies,
it is often modelled as a weak form of outliers. That does not always meet the strict criteria
necessary for a data point to be considered anomalous enough. Besides, the inference time is
sub-optimal on high dimensional data sets due to the computational complexity of cluster-
ing methods. Nevertheless, even though the unsupervised AD might not be the most robust
technique, on some occasions is the only applicable one due to the lack of labels.

In the case of the CMS experiment, ML needs to cover known scenarios and extrapolate to
new unseen problems. The supervised AD is a valid option, as the detector experts exten-
sively studied specific anomalous scenarios. The CMS DQM framework keeps extensive
archives of sub-detector specific quality-related quantities, e.g. the DT occupancy plots dis-
cussed in Chapter 4. Moreover, the imbalance between good and bad data may not be ex-
treme, e.g. reaching 10% of anomalies for the DT system. These anomalies are then frequent
enough for a sizable set of them to be used for supervised training. However, this setup has
to be applied with caution.

The anomalous scenarios tend to be extremely disparate (property inherited from experi-
ment complexity) and are rapidly evolving through time with new, unanticipated problems
emerging regularly, as explained in Chapter 5. Also, the configuration of the LHC or the
CMS experiment changes frequently implying a particular detector reaction. Consequently,
different good behaviour is expected. Finally, some types of malfunctions occur rarely. All
of the above suggests that the fully automated DQM is only promised by a smart mix of
semi-supervised and supervised AD.
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3.2 Performance Evaluation

Frequently the choice of the best model is a domain-specific task. In practice, this requires a
good understanding of the data itself and types of deviations relevant to a target application.
It is a subjective and heuristic process based on one’s insight into the field. Assumptions are
often imperfect, and the chosen pool of algorithms may model the underlying processes in a
limited way. On the contrary, designing models with a priori knowledge is natural. Different
algorithms may thus work better in some contexts than others. The stage of selecting the
data model to be deployed in production is perhaps the most crucial one. Thankfully the
ML field developed techniques to address the issue of choosing an optimal algorithm.

Whether a particular model is suitable depends on meeting the production requirements.
Those usually include performance. The fundamental goal of learning is a generalization,
i.e. being capable of inferring the knowledge learned from training data to unseen instances.
A highly general model with many parameters will most likely overfit the data, as it will
find a way to fit the outliers. A simpler model, constructed with an excellent intuitive un-
derstanding of the data, will lead to much better results. However, an underparameterized
model, which fits the data poorly will declare standard patterns as anomalous. A typical
empirical process is to evaluate the predictor on the test data (which was excluded from the
training data set) of which the ground truth labels are known. The test error is a proxy of
the generalization error. Crucially the test data should not overlap with the training data;
otherwise, the estimated performance can be misleading.

That leads to another challenge. Establishing the generalization error of an AD algorithm
is a difficult task, because outliers, by definition, are rare. Moreover, the boundary between
normal and anomalous behaviour may be imprecise. The ground truth about outlying data
points is often unavailable or obscure, which is especially true for unsupervised algorithms
where the labels are not provided. It is often the case that no practical quantitative methods
can be used to judge the effectiveness of the algorithms rigorously. Therefore, an intuitive
and qualitative evaluation is the only possibility. An example of such an assessment is pro-
vided in Section 4.4. For supervised algorithms, the ground truth is available. Part of those
labels can be used to perform the training, and the remaining can be used for evaluation.
Even in unsupervised scenarios, the ground truth often becomes available after some time,
some small fraction of example scenarios do exist or could be simulated (as in Chapter 6).
Those rare labels may be used as surrogates for the ground truth anomalies. Subsequently,
the natural question arises as to what is the correct protocol to evaluate the effectiveness of
the algorithms.

The output of an AD algorithm can be one of two types: scores or labels. Scoring provides
a continuous output, assigning a degree of outlierness to each sample. Thus the data set can
be sorted and ranked according to the anomaly tendency. Scoring retains all the information
provided by an algorithm but does not provide a concise summary of the samples which
should be considered anomalous. After choosing an appropriate threshold value based on
score distribution, the scores can be converted to binary labels. The labels indicate whether
samples are normal (negative class) or anomalous (positive class). Binary labelling contains
less information than a scoring mechanism, but it is the final result which is often needed in
practical applications. Their outlier score and a varying anomaly threshold can be utilized to
compare the performance of different algorithms. If this threshold is picked too restrictively
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to minimize the number of declared outliers, then the algorithm will miss real outliers, False
Negatives (FN), called type 2 errors. On the contrary, threshold highlighting most outlying
points will likely lead to too many points declared as anomalous, False Positive (FP), also
called type 1 error.

Typically, the performance comparison between different detection techniques is made using
the Receiver Operating Characteristic (ROC) curve and its Area Under the Curve (AUC). The
ROC curve is a graphical representation of the True Positive Rate (TPR), and False Positive
Rate (FPR) values trade-off, by merely plotting the TPR as a function of the FPR. The TPR
(also referred to as sensitivity, recall or hit rate) is the ratio between the number of items that
are correctly assigned to the positive class, True Positive (TP), and the total number of items
in the positive class:

TPR =
TP
P

. (3.1)

The FPR (also referred to as fall-out) is the ratio between the number of items that are falsely
assigned to the positive class, FP, and the total number of ground truth negative items. In
the following chapters, the True Negative Rate (TNR) is used (also referred to as specificity)
which measures the ratio of True Negative (TN) samples that are correctly identified as such:

FPR =
FP
N

=
FP

FP + TN
= 1− TNR . (3.2)

The ROC curve clarifies the expense of having a higher number of correctly classified sam-
ples in the context of having more falsely predicted ones. After the anomaly score sorts the
data points, the boundary between the classes is determined by a varying discrimination
factor to calculate the corresponding rates and to produce the curve. The ideal algorithm
would produce a line passing through the perfect classification point, which distinctly sepa-
rates the positive from the negative class. In this context, the algorithm would produce a line
such as one shown in Figure 3.2. An algorithm yielding random scores would produce the
random guessing (the diagonal) line. If the target algorithm curve lies below that random
guessing line, it performs oppositely to what it is expected. The lift obtained above the diag-
onal line provides a proxy of the accuracy of the approach. However, this lift depends on the
complexity of the task. Hence, the algorithm should be compared to a set of baselines. The
ROC AUC approximates the probability that an anomalous point would have a higher out-
lier score than an inlier. AUC is simply calculated as integral over the ROC line. The higher
the AUC, the better the performance of the algorithm in general. However, in the context
of stringent acceptance criterion, e.g. a maximum number of false alarms, the AUC may be
misleading as the ROC curves may cross-over, i.e. the algorithms perform differently under
different acceptance rules. For determining the optimal working point of the algorithm, one
has to refer to cost-sensitive analysis, see Elkan (2001).

Alternatively, the efficiency of the algorithms can be measured in terms of precision, or Pos-
itive Predictive Value (PPV), and recall, and the Precision-Recall (PR) curve. With precision
calculated as

PPV =
TP

TP + FP
. (3.3)

The PR curve is simply a different way to characterize the trade-offs than the ROC curve,
though the two can be derived from one another. The ROC curve has the advantage of being
monotonic and more easily interpretable.
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FIGURE 3.2: Examples of ROC curves with Sensitivity as a function of Fall-
out. The two lines correspond to a perfect and a random prediction.

The interpretability of a detection model is extremely important in the context of AD. The
fundamental goal of AD is to provide knowledge about alternative data generation pro-
cesses to determine why a particular data point was highlighted as an outlier. That could
provide further information for diagnosis and how to improve the overall production sys-
tem. Different AD algorithms provide different levels of interpretability. Typically, models
that work with the original attributes, and use fewer transforms on the data are better in
this regard. While data transformations can sometimes enhance the discriminate power of
detection algorithms, they often come at the expense of interpretability.

In the context of the CMS DQM, high performance is critical. It should be evaluated in terms
of ROC AUC as the TP or FP requirements remain unspecified. Inference time is usually not
an issue as in most cases. The alarm can be raised within the LS period (see Section 2.3).
Finally, since this work revolves around monitoring, the interpretability of the algorithms
should be considered.

3.3 Classical Anomaly Detection

In broad terms, each AD technique solves a specific formulation of the problem that accounts
for different conditions. Those could include, e.g. nature of anomalies or outlier contamina-
tion in the training data set. Because of these constraints, the AD is usually not trivial, and
many methods were proposed to target different scenarios, e.g. with specific latency con-
straints or availability of labels. The target application domain frequently determines these
factors.

This section reviews the classical and well-established methods in the community: statistical,
density, clustering, isolation and vector-based. It briefly overviews just the most popular
algorithms from each category and identifies generic advantages and disadvantages of the
methods. For a general survey, see Aggarwal (2016).

3.3.1 Statistical Methods

The early work on AD was done by the statisticians. In probabilistic and statistical models,
the data are modelled in the form of a closed-form probability distribution. After Anscombe
(1960), an anomaly is an observation that is suspected of being partially or wholly irrelevant because
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it is not generated by the stochastic model assumed. The underlying principle of all statistical
methods is that the inliers occur in high probability and anomalies in the low probability
regions of a stochastic model. After fitting a model to the training data, the inference test
determines if an unseen instance belongs to the distribution or not. Data points that re-
port the low probability of being generated from the given model are declared as anomalies.
This category divides methods into parametric and non-parametric techniques. Paramet-
ric techniques assume that the negative observations x are generated by a process that is
modelled as a parametric distribution with parameters φ and the anomaly score of a test
observation is the inverse of the Probability Density Function (PDF) f (x, φ). These methods
make strong assumptions about the choice of the data distribution with which the mod-
elling is performed, see Eskin (2000). The non-parametric statistical models work without
the model’s structure defined a prioiri. The distributions are instead determined from the
training data. Such techniques typically make fewer assumptions, when compared to para-
metric techniques.

Frequently, the parametric techniques estimate the parameters of the model using Maxi-
mum Likelihood Estimation (MLE). Under the assumption that a Gaussian distribution ad-
equately describes the data generation process, the typically used anomaly score is the dis-
tance from data point x to the estimated mean µ reported as a number of standard deviations
σ. Since the µ± 3σ region covers approximately 99.7% of the normal distribution, the obser-
vations reporting distance bigger than 3σ are often regarded as anomalies. Alternatively, for
univariate data sets, the Grubb’s Outlier Test can be used. The anomaly score z (z-score), is
computed as

z =
|x− µ|

σ
, (3.4)

and then tested according to t-distribution table reference. With data set size N and thresh-
old t, each sample x for which

z >
N − 1√

N

√
t2

N − 2 + t2 , (3.5)

is declared as anomalous. The threshold t is chosen from the t-distribution table, given the
confidence level. When some prior knowledge about outliers is available, the Dixon (Q)
Outlier Test can be used instead. The score q in the sorted data set of size m is computed as

q =
xn − xn−1

xm − x1
, (3.6)

where xn is the previously marked outlier, and xn−1 is the next candidate. Given m, a confi-
dence level, and q-table reference, one can conclude if an observation is an outlier. In general
Grubb’s Test picks up extreme values earlier than the Dixon Test. For multivariate models, a
commonly used metric is the Mahalanobis distance, see Laurikkala et al. (2000). The Maha-
lanobis distance d of an observation x and PDF P with sample covariance matrix S is defined
as

d(x, P) = (x− µ)TS−1(x− µ) . (3.7)

The distance grows as x moves away from the µ along each principal component axis. If
axes are rescaled to unit variance, the Mahalanobis distance is equal to a Euclidean distance.
Unfortunately, with increasing dimensionality of data, the Mahalanobis distance clusters
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around a single value and the notion of outliers may become obscure.

The data can be modelled as a mixture of parametric statistical distributions as well, typi-
cally by the Gaussian Mixture Model (GMM) which characterizes the data as a generative
process containing a mixture of M independent Gaussian clusters. Assuming that N(µ, σN)

is the distribution of normal data and A(µA, σA)is the distribution of the anomalies, the
distribution of the entire data set is

D = λA + (1− λ)N , (3.8)

where λ is the prior probability of the data point to be anomalous. The parameters of
these distributions are learned with the Expectation Maximisation (EM) algorithm, Dellaert
(2002). The membership probability to each of the clusters determines the anomaly score.
EM algorithm alternates between performing expectation step by computing an estimation
of likelihood using current model parameters and a maximization step by computing the
maximum probability estimates of model parameters.

Generally, the non-parametric techniques do not assume the underlying distributions. A
histogram-based technique is the most straightforward non-parametric statistical technique
that uses histograms to maintain a profile of the normal data. Such techniques are also re-
ferred to as frequency-based. A basic histogram-based AD technique for univariate data
consists of two steps. The first step involves building a histogram based on the different val-
ues taken by that feature in the training data. In the second step, the test instance is checked
if it falls in any bin of the histogram. A variant of the basic histogram-based technique is
assigning an anomaly score to each test instance based on the height (frequency) of the bin
in which it falls. Thus, the size of the bin used when building the histogram is a critical
setting. If the bins are small, many inliers will fall in empty or rare bins, resulting in a high
false alarm rate. If the bins are large, many anomalous test instances will fall in regular bins,
resulting in a high False Negative Rate (FNR).

Statistical methods are mathematically precise, well established and provide justifiable solu-
tions, but they have their weaknesses. Simple assumptions about underlying data distribu-
tions are a massive advantage if they hold. However, in many real-world scenarios choosing
the best statistic is often not a straightforward task even when the statistical assumptions
are rational. In particular, constructing a hypothesis test for complex, high dimensional data
sets is a challenge. Even more, when a model has to capture the interactions between differ-
ent features. Anomaly score of statistical methods is associated with a confidence interval,
which provides useful information. They can also be used in an unsupervised mode, avoid-
ing the need for labels. Finally, regrettably, they offer poor algorithmic scalability, although
the computational complexity depends on the chosen statistical model. In rare cases, when
the model fits single parametric distribution from the exponential family, e.g. Gaussian or
Poisson, it is linear in data size as well as a number of features. Complex distributions using
EM, also have typically linear complexity, though they might be slow in converging depend-
ing on the criterion.
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FIGURE 3.3: Two-dimensional data set with two different density clusters C1
and C2 and two outliers p1 and p2. From Chandola et al. (2009).

3.3.2 Density-Based Methods

The idea of a neighbourhood analysis is used in several AD techniques. The fundamental
assumption here is that the outliers occur in sparse neighbourhoods and that they are distant
from their closest neighbours while normal data instances appear in dense neighbourhoods.
The neighbourhood is defined as the set of points lying near the object of interest. The tech-
niques in this category require a distance or a similarity measure defined between two data
instances. This distance (or similarity) can be computed in different ways. For continuous
attributes, Euclidean distance is a popular choice, while the matching coefficient can be used
for categorical attributes. Density-based AD techniques focuse on either using the distance
of a data instance to its k-th nearest neighbor or computing a relative density of each data
instance to compute its anomaly score.

K Nearest Neighbors (k-NN) is a global distance-based algorithm. k-NN is one of the mod-
est and conventional non-parametric techniques for classifying samples. The anomaly score
in the k-NN algorithm is equal to a distance to its k-th nearest neighbor, or the average dis-
tance to all of the nearest k neighbours, where k is a positive integer. For a given x, the
distance to its k-th nearest neighbor is equivalent to the radius of a hyper-sphere, centred at
x, and containing k other data points. This radius can be interpreted as an estimation of the
inverse of the density of x in a global context. In the process of training k-NN classifiers, k
is a critical parameter and varying this value can cause performance perturbation. The com-
plexity of the unmodified method is O(N2), where N is the data set size. Thus variants of the
technique were developed to improve efficiency, e.g. adding pruning Bay and Schwabacher
(2003), partitioning Ramaswamy et al. (2000) or sampling Wu and Jermaine (2006) of the
search space. As well illustrated in Chandola et al. (2009), k-NN performs poorly, in varying
density clusters. In the two-dimensional data space in Figure 3.3, the instance p2 is more
likely to be assigned an inlier label than any point in the sparse cluster C1.

A set of methods was proposed to overcome the problem described above. Most notably, the
Local Outlier Factor (LOF) algorithm, proposed in Breunig et al. (2000). LOF is a density-
based method that relies on the local nearest neighbours search. The general assumption
for density-based methods is slightly modified here. Namely, the outliers are assumed to
have a substantially lower density than their local neighbours. The anomaly score is equal
to the ratio of average local density and the local density of the data instance itself. For
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the radius of the smallest hyper-sphere centred at x, that contains k neighbours, the local
density is calculated by dividing k by the volume of this defined hyper-sphere. Anomalies
have lower local density than normal instances. Local density-based methods can detect
outliers that were unseen by global methods, like k-NN. In the example from Figure 3.3,
the algorithm will flag both p1 and p2 as anomalies. In need of additional interpretability,
several extensions of LOF were developed. For instance, Local Correlation Integral (LOCI),
which finds anomalous micro-clusters as well.

The essential advantage of the density-based methods is their unsupervised, data-driven
approach and lack of assumptions about the generative distribution, or the statistical distri-
bution of the data. These methods can explore outliers in their original spaces and demon-
strated to work well on linearly separable distributions. When the anomalous regions are
presented based on the original attributes, these techniques provide a high level of inter-
pretability. Furthermore adapting them to a specific domain requires only redefining an
appropriate distance measure. However, they tend to underperform with nonlinear struc-
tures, and the performance relies significantly on the distance measure chosen. Even if the
Euclidean distance performs well, it is expensive to compute, especially in high dimensions
with O(N2) computational complexity. Mitigating this issue via sampling or pruning can
result in incorrect anomaly scores if the sample size is too small. In data sets with high
noise to signal ratio, irrelevant attributes may mask the information contained in the rele-
vant attributes. Besides, the latent correlation between the attributes results in an intrinsic
dimensionality increase. Another weakness is the sensitivity of selecting the right value of k
and the influence of duplicates on the performance. Finally, lazy learning (no explicit training
process) may result in a high inference interval.

3.3.3 Clustering Based Methods

Clustering, see Jain and Dubes (1988), based methods bundle the data points into groups, ac-
cording to a given similarity or distance measure (for a detailed presentation, see Goldstein
and Uchida (2016)). The underlying assumption for performing AD with the techniques in
this category is that similar data points tend to belong to similar clusters. As a consequence,
the groups with normal instances are separable from anomalous instances. The AD is in-
voked only after establishing local centroids by an algorithm of choice. The anomaly score
is determined by the distance from the tested data point and the closest centroid. Meth-
ods from this category, similarly to density-based methods, require distance computation
between a pair of instances, and thus this choice is critical to method’s performance. Thus
the discussion from the previous section holds also here. The main difference between clus-
tering and density-based methods is that the clustering methods segment the data points,
whereas the density-based methods segment the space. Based on the choice of the cluster-
ing algorithm, the AD pipeline may differ.

In some cases outliers will not be assigned to any group; in other, they will be assigned to
either a sparse or a small cluster. Assuming that the anomalies are uncommon, their clusters
should be removed. The AD with clustering-based methods can be approached by training
the model using unlabelled data (both inliers and outliers), or by using only normal data in
a semi-supervised method.
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FIGURE 3.4: Two-dimensional, normally distributed data set with 135 points.
An inlier xi requires twelve random partitions to be isolated (a), while outlier
xo only four (b). Anomalies are more susceptible to isolation and hence are

isolated faster. From Liu et al. (2012).

There is a long list of possible clustering methods among which the most conventional and
straightforward is the k-means algorithm. It divides the data into k clusters based on a
distance metric, typically Euclidean distance. After random initialization of k centroids, the
data points are assigned to one of the clusters based on the distance to each centroid. Those
centroids are then recalculated based on group membership. After several iterations, this
process converges with a stable number of clusters and positions of the centroids. Again,
the choice of the value of k is critical for the final performance. An example of using k-means
for AD is given in Li (2010).

A key advantage of clustering-based techniques is their ability to operate in an unsuper-
vised mode. Furthermore, clustering can be adapted to any complex data type. The very
fast inference, which involves only computing distance to centroids, is a useful attribute in
a production system. However, the computational complexity of these techniques is highly
dependent on the effectiveness of the clustering algorithm and usually not small. The algo-
rithms typically have quadratic complexity if the computation of pairwise distances for all
data points is required, or linear with heuristic-based methods (such as k-means). Detecting
anomalies as a byproduct of clustering is a disadvantage of itself as such algorithms are not
optimized to do so. Unfortunately, the technique may be sensitive to outliers. Some meth-
ods will only be effective when the anomalies do not form clusters by themselves, especially
when every instance is forced to be assigned to a cluster. As a result, a group of anoma-
lies may be merged into a large cluster. If so, this will constitute a low TPR. This process is
referred to as masking.

3.3.4 Isolation Forest

The assumption behind isolation based methods is that the anomalous instances are rare
and very different from the remaining data points. Unlike the density and clustering-based
categories, isolation does not rely on any distance or density measures. Instead, the methods
fragment the data space to identify instances laying far from other data points. As illustrated
in Figure 3.4, two instances, xo and xi require a different number of random partitioning
iterations.
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The Isolation Forest (IF) Liu et al. (2008, 2012), builds an ensemble of trees for a given data
set. The anomaly score is represented as an average path from the root node to the termi-
nating node on those trees. If the underlying assumptions hold, the outliers will have sub-
stantially shorter paths. Two parameters can be tuned to speed up the training procedure,
i.e. the number of trees to build and subsampling size. The required evaluation parameter
is the tree height limit. IF isolates a sample by randomly selecting a feature and randomly
selecting a split value.

The IF offers linear computational complexity and a lack of assumptions about data distri-
bution. Thus it scales up to handle considerable data size and high-dimensional problems.
The method is unsupervised, brutally simple and since it is based on tree models offers high
interpretability. However, the method measures the susceptibility of each data point to be
isolated, and it will not work in some cases, i.e. conditional anomalies. The method is nor-
malization sensitive and may underperform when not all the features contribute equally to
anomaly scores. Finally, IF was designed to handle continuous-valued data only.

3.3.5 Support Vector Machine Based Methods

Support Vector Machine (SVM) was initially proposed by Vapnik (1995). SVMs first maps
the input vector into a higher-dimensional feature space and then obtains the optimal sepa-
rating hyper-plane in the high dimensional feature space. A decision boundary, i.e. the sepa-
rating hyper-plane, is determined by support vectors rather than the whole training data set
and thus is exceptionally robust to outliers. Originally an SVM classifier was designed for
binary classification tasks, which makes it suitable for AD. The SVM also provides a user-
specified parameter called a penalty factor, which allows users to make a trade-off between
the number of misclassified samples and the width of a decision boundary. Kernels, such as
Radial Basis Function (RBF), can be used to learn complex regions.

SVMs have been adopted to AD as OCC, i.e. learning a region that contains the training
data instances and its boundaries. The basic technique determines if the test instance falls
within the learned region. Tax and Duin (1999a,b) solve the OCC problem by constructing
a hyper-sphere around the negative class data that contains almost all the data points with
the minimum radius, known as Support Vector Data Description (SVDD). During inference,
the model determines which side of that hyper-sphere a test instance lies and marks it as
anomalous when it is outside the radius, as shown in Figure 3.5. An alternative approach,
One-Class Support Vector Machine (µ-SVM), was suggested by Schölkopf et al. (2001). The
method constructs a hyper-plane instead of a hyper-sphere that separates the training data
from the origin. Unlike SVDD, µ-SVM separates the regions that contain no data. Generally,
SVMs may be sensitive to outliers and noise in training data sets. Strictly speaking, the
µ-SVM is not an outlier detection, but a novelty detection method. The training instances
are considered only negatively label and not contaminated by outliers. However, µ-SVM
introduces a method to control the effect of outliers on the training procedure. ν ∈ (0, 1) is
a parameter that controls a trade-off between maximizing the distance of the hyper-plane
from the origin and the number of data points that are allowed to cross the hyper-plane (the
FP). Finally, the µ-SVM has the valuable property of being a novelty detection algorithm:
once trained, it is not sensitive to the frequency of anomalies.
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FIGURE 3.5: Illustration of SVDD on two-dimensional data set. The hyper-
sphere contains the target data and is described by the centre a and radius R.
One data point, an outlier xi is outside the sphere and has ξi > 0, where ξ
is a slack variable to account for errors. From Tax (2001); Khan and Madden

(2014).

The hyper-sphere SVDD or hyper-plane µ-SVM estimate the support of the data distribu-
tion by a non-linear (kernel) transform of the data space. For instance, Tax (2001) considers
Gaussian kernels working better than Polynomial ones, resulting in tighter descriptions, but
requiring more data to support more flexible boundaries. Schölkopf et al. (2001) suggest the
use of different kernels, corresponding to a variety of non-linear estimators. In this manner,
the models can be made more flexible, depending on the nature of the input data.

3.4 New Approaches for Anomaly Detection

The critical challenge to overcome for HEP experiment monitoring AD is the vast volume
of data. The proposed AD techniques need to be computationally efficient to handle these
large-sized inputs. Indeed, excellent detection performance is necessary as well. However,
the presence of noise in the data collected from the sensor makes AD more challenging.
Finally, the simplicity of proposed solutions for implementation and debugging purposes
and interpretability is required. The classical AD techniques discussed in Section 3.3 have a
unique set of strengths and weaknesses. Unfortunately, they always miss at least one of the
listed requirements. In most cases, it is the issue of high dimensionality.

The curse of dimensionality is often used as a vague indication that the high dimensional data
cause problems in some situations. The term was first used by Bellman (1961) for the com-
binatorial estimation of multivariate functions. However, it is often used as a catch-all for
multiple problems. Zimek et al. (2012) identified a number of them, which are summarized
below.

• The concentration of scores and distances as derived values such as distances become nu-
merically similar with low variance as the number of dimensions increase.

• A significant number of attributes may be irrelevant for the final sample classification
and can mask relevant attributes (noise attributes).
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• Exponential search space as the number of possible sub-spaces grows exponentially with
the number of dimensions, and the search space can often be no longer be systemati-
cally scanned.

• For local methods, sub-spaces are based on neighbourhood-based methods (definition
of reference sets).

• Particular objects occur more frequently in neighbor lists than others (hubness).

• Given the ample search space, for every desired outlier, a relevant hypothesis can be
found (data snooping bias).

• It may be impossible to find a threshold between inliers and outliers due to low con-
trast (thresholding).

• The interpretability of scores is getting lost as the scores do not convey semantic mean-
ing.

The unsupervised approaches based on neighbourhood, topological density estimation or
clustering are not relevant for the problems at hand. These algorithms have quadratic com-
plexity and poorly perform in high dimensions because of data sparsity. In high dimen-
sions, all pairs of points become almost equidistant, see Aggarwal et al. (2001); Hinneburg
et al. (2000). Moreover, a simple geometric distance in the feature space does not define a
useful similarity metric. Furthermore, again because of data sparsity, even the definition of
data locality may be ill-defined. Statistical techniques are valid only when the assumptions
on the data hold. Unfortunately establishing those rules in the given context abolishes the
simplicity principle. In situations when identifying a distance measure is computationally
expensive, classification-based techniques may be a better choice. The computational com-
plexity of classification-based techniques depends on the classification algorithm being used
(for an overview see Kearns (1990)). While classification-based techniques have long train-
ing times, testing is usually fast. In such a case, the models can be trained offline, and testing
in real-time is not an issue. In contrast, applying lazy-learning techniques, that do not have
a training phase, becomes infeasible.

3.4.1 Deep Learning Anomaly Detection

AD is an especially non-trivial task in the presence of non-linear relationships in data. In the
CMS DQM, the algorithms should remain sensitive to the local geometric relationship in the
data related to the underlying apparatus. The algorithms must know how to obtain useful
data representations from high dimensional input space. This representation learning view
points this research towards DL framework, see Bengio et al. (2013). DL allows learning
hierarchical discriminative features from data. That eliminates the need for manual feature
engineering and allows them to learn from raw input data. DNN based AD offers state-
of-the-art remedies to problems listed in the previous subsection. Neural networks, in the
presence of enough training data, can cope with high data dimentionality. Besides, they
offer simplicity and robustness of implementation and fast inference time. As shown in the
experiments in subsequent Chapters (see 4.2.3 and 5.2.4) their peculiarities can be exploited,
and a level of interpretability may be guaranteed. Finally, DL techniques can handle different
types of data, e.g. images or numerical data, which is particularly important in the context of
CMS DQM. For instance, the performance of the classical AD methods is sub-optimal when
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FIGURE 3.6: An illustration of the multi-layer feed-forward ANN from Sun
(2019). Neurons are linked by weighted connections to form a network. In
this example, there are no in- or cross-layer connections. An input layer re-
ceives input feature vector x, with each neuron corresponding to one feature.
An output layer size corresponds to given ground truth y size. The layers
between the input and output layers are called hidden layers. A non-linear
transformation follows each output of a neuron in hidden, and output layers

called an activation function, e.g. a sigmoid function.

the input is an image. DL can be particularly useful in cases when the boundary between
nominal and anomalous behaviour is not precisely defined, and data is continually evolving
(see Chapter 5). Finally, DNNs offer ways to cope with modelling complex apparatus, as
discussed in Chapter 6. At this point, the relation of each approach to AD will be considered
only from a general point of view. Chapters 4, 5 and 6 will match these general descriptions
with the problem at hand in each case.

Neural networks also called Artificial Neural Networks (ANN), originated from simulating
biological neural networks. The neural network function is determined by the model of a
neuron, the network structure, and the learning algorithm. The neuron is also called a unit,
which is the fundamental computational component in neural networks. Among the first
attempts at designing a model with neuron-like structure, there is work of McCulloch and
Pitts (1943). However, their model did not learn. Instead, neurons had a binary state (they
fire or not) depending on the state of neighbouring neurons. Rosenblatt (1958) worked on
a perceptron model, organizing neurons in two layers. Other notable works include Widrow
and Hoff (1962), where a learning algorithm could tune weights. However, Minsky (1967)
proved that simple perceptrons could not address the non-linearly separable problems. Only
decades later, Rumelhart et al. (1988) developed a backpropagation algorithm which allowed
multi-layer perceptrons to learn and so the non-linear separability curse was finally broken.
Cybenko (1989) proved that multi-layer perceptrons with one hidden unit could be regarded
as universal approximators of continuous functions. The term DL in the context of ANN was
first introduced by Aizenberg et al. (2000), referring to architectures having multiple hidden
layers (see Figure 3.6). This millennium brought big successes of DL, including great results
on the ImageNet classification benchmark Krizhevsky et al. (2012) or mastering game of Go,
Borowiec (2016). All of the above shows that the concept of DNN is well established in the
ML community for decades. For a detailed historical survey, see Schmidhuber (2015).

The successes of DL are due in part of the simplicity of the backpropagation algorithm,
which allows training neural networks efficiently. The goal of the neural network training
procedure is to determine the values of the connection weights w and the biases b of the
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neurons. The backpropagation computes the gradient of any loss function defined as a com-
position of differentiable functions. At first, the inputs are feed-forwarded from the input to
the output layer, at which the error E is calculated by comparing the network output with
the given ground-truth. Then, the error is backpropagated to the hidden layer and the input
layer through Stochastic Gradient Descent (SGD), during which the connection weights w
and biases b are adjusted to reduce the error on each layer `. The process is accomplished by
moving towards the direction with the gradient. The updating rule is specified as

w(`)(e + 1) = w(`)(e)− α
∂E

∂w(`)(e)

b(`)(e + 1) = b(`)(e)− α
∂E

∂b(`)(e)
,

(3.9)

where α(> 0) is the learning rate of the algorithm. Such a process will be repeated in many
rounds e (epochs) until the training process is terminated.

The choice of a DNN architecture primarily depends on the nature of input data and the
application type, e.g. Recurrent Neural Networks (RNNs) for sequential or Convolutional
Neural Networks (CNNs) for image data. For a general overview, see van Veen and Leijnen
(2019).

CNNs are extending neural networks with convolutional and pooling layers. CNNs inte-
grate the basic knowledge of merely the topological structure of the input dimensions and
learn the optimal filters that minimize the objective error. They are thus very suitable for AD
with images as inputs Kwon et al. (2018). Their ability to extract abstract hidden features
from high dimensional input space enabled its use as feature extractors in AD context. Such
an approach is shown in Section 4.4.

Deep architectures have become an increasingly popular method for AD tasks as they cope
with the issues of classical methods. Generally, the DL based AD can be grouped into su-
pervised, semi-supervised, hybrid, unsupervised and OCC categories, for a general sur-
vey see Chalapathy and Chawla (2019). Supervised AD involves training a neural network
with a softmax activation function and binary (nominal and anomalous) or multi-class output
layer. This approach is explored in Section 4.2. Semi-supervised, hybrid and unsupervised
DL AD typically utilize properties of deep autoencoders. As the autoencoders are in particu-
lar interest of this thesis, they are carefully reviewed in Section 3.4.2. The hybrid methods use
autoencoders as feature extractors. Those features are then attached as input to classical AD
algorithms such as µ-SVM as demonstrated in, e.g. Andrews et al. (2016); Wu et al. (2015).
In this context, the deep autoencoders have to ensure that the extracted representations are
separable.

Furthermore, the computational complexity of a hybrid model includes the complexity of
both the autoencoders as well as traditional algorithms used within. For this reason, those
methods are not considered in this thesis. OCC based on neural networks, trains a DNN
while optimizing a data-enclosing hyper-sphere Ruff et al. (2018) or hyper-plane Chalapathy
et al. (2018) in the output space. The disadvantages of each of the group are inherited from
general strategies, discussed in Section 3.1. Additionally, these approaches inherent a list of
issues related to DL methods. That includes a non-trivial choice of architecture and hyper-
parameters. Finally, while neural networks inference is very fast, they are characterized by
long training times.
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DL AD was reported particularly useful in the industrial context, e.g. Ramotsoela et al.
(2018); Atha and Jahanshahi (2018).

3.4.2 Autoencoders and Anomaly Detection

Spectral AD aims to find the lower dimensional embedding of observable data x that sepa-
rates anomalies from inliers. An example of such method is Principal Components Analysis
(PCA), Pearson (1901). A reconstruction process brings the data from those embeddings back
to the original shape of x. The output of the reconstruction is expected to be filtered, without
noise. Reconstruction error, a distance between the original x and reconstructed data x̂ is of-
ten used as an anomaly score to detect outliers. However, it uses only linear transformations
which are often not sufficient. The alternative is the trade-off between interpretability and
simplicity by learning an encoding using an autoencoder.

Autoencoders, Hinton (1990), are parametric maps from inputs to their representations, in
the form of an ANN. Autoencoders are trained to perform an approximate identity map-
ping between their input and output layers. A deep autoencoder is composed of two neural
networks: an encoder E that takes an input and maps it to a usually low-dimensional repre-
sentation and a decoderD that tries to reconstruct the original input from the representation
vector:

x̂ = D(E(x)) where x̂ ∼ x . (3.10)

The model should prioritize which aspects of the input should be distilled to learn useful
properties of the data, obtaining more abstract features in higher hidden layers leading to a
better reconstruction of the data. A simple autoencoder with just a linear activation function
in hidden units will mirror the behaviour of the PCA algorithm. While PCA is restricted to a
linear dimensionality reduction, autoencoders enable both linear or non-linear transforma-
tions. However, it is often challenging to learn commonalities within data in a complex and
high dimensional space and choosing network hyper-parameters for optimal results, such
as the right degree of compression, is not trivial.

The reconstruction criterion is in itself not sufficient for learning useful representation, Ben-
gio et al. (2013). To go beyond simple dimensionality reduction with undercomplete autoen-
coder while preventing over-fitting, various flavours of regularization are proposed (the lit-
erature being considerable, list contains most popular techniques), e.g. sparse Ranzato et al.
(2006), denoising Vincent et al. (2010) or contractive autoencoders Rifai et al. (2011). Sparse au-
toencoders penalize the output of the hidden unit activations or the bias. Denoising autoen-
coders robustify the mapping by requiring it to be insensitive to small random perturbations.
Contractive autoencoders pursue the same goal, by penalizing the sensitivity of learned fea-
tures in a data-driven interpretation of the Tangent Propagation algorithm, Simard et al.
(1998). Denoising and contractive autoencoders learn density models implicitly, through
the estimation of statistics or a generative procedure, Alain and Bengio (2014). In practice
the regularization changes the geometry of the loss gradient and allows the autoencoders to
optimize their weights in different global minimum.

Although it has been argued that, even for pure neural networks, most of the training is
devoted to learning a compressed representation, Tishby and Zaslavsky (2015); Shwartz-Ziv
and Tishby (2017), autoencoders are particularly suitable for AD, Japkowicz et al. (1995);
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Hawkins et al. (2002). When trained on the inliers, testing on unseen anomalous samples
tends to yield sub-optimal representations and decoder outputs, that a different process
likely generates a sample. Furthermore, the encoded representation space may distinguish
the anomalous regions allowing for using hybrid methods. Although the autoencoders are
an unsupervised method (or self-supervised), they are used in a semi-supervised AD strat-
egy. In general, the underlying assumption is a high prevalence of normal instances over
abnormal data in the training set. Not holding to this requirement would result in high
FPR. Even a small number of anomalies contaminating the training data set can result in
autoencoder learning to reconstruct anomalous observations accurately.

Autoencoders were reported useful in many AD problems, see Chalapathy and Chawla
(2019). However, a more ambitious goal is to extract an explanatory representation of the
anomalies with latent variables, in a probabilistic framework, i.e. VAEs where the learned
representation is the posterior distribution of the latent variables given an observed input.

3.5 Variational Inference

VAEs allow for designing complex generative models and scaling them to large data sets.
They allow for generating realistically looking synthetic images Gregor et al. (2015), fictional
celebrity faces Hou et al. (2017) or music Roberts et al. (2017). This section presents the VAEs
in detail as they are the main interest of Chapter 6. In most papers, the VAE is presented in
isolation, but architecture is not a stand-alone discovery. The most natural presentation is
followed here. VAEs are related to VI, although other presentations would be possible, e.g.
in relation with autoencoders, Independent Component Analysis (ICA), or with an informa-
tion theory vision. The goal is to isolate what is specific to the VAE, i.e. amortized inference,
from the methods and techniques that have been developed for making VI first possible,
then scalable. Thus, the first part of this section will describe VI in some details. The second
part will survey the VAE, its extensions and the relation with the autoencoders. Finally, the
VAE is discussed in the context of AD.

3.5.1 Approximate Variational Inference

Probabilistic graphical models express assumptions about the observed data and their hid-
den structure, in the form of a model. The corresponding posterior inference aims at in-
ferring the hidden structure that best explains the observations. However, this posterior is
generally not tractable and must be approximated. The two most prominent strategies in
statistics and ML are Markov Chain Monte Carlo (MCMC) sampling and VI. MCMC is gen-
erally recognized as ill-suited to analyzing large data sets or complex models. Hence this
section will focus on VI.

VI implements the general strategy of variational approaches, which is to recast the problem
at hand into an optimization problem. For inference, the method needs to define a flexible
family of distributions over the hidden variables, indexed by free parameters, Jordan et al.
(1999); Wainwright et al. (2008). The problem boils down to finding the setting of the pa-
rameters (the member of the family) that is closest to the posterior, which is an optimization
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FIGURE 3.7: Graphical model for the Bayesian GMM. The distribution of each
observation xi depends on its corresponding local variable ci and the global

variables µ.

problem. It turns out that this optimization requires a preliminary approximation, on the
optimization objective.

Bayesian Inference

The general scenario of Bayesian inference is as follows: observations (x1, . . . xn) that are
i.i.d. samples of a random variable x. The data are generated by a random process involving
an unobserved multidimensional random variable z, which is called the latent variable. The
overall probabilistic model is defined by

p(x, z) = p(x|z)p(z) , (3.11)

where the likelihood p(x|z) and the prior p(z) are well-defined, i.e. parametric distributions.
The inference problem is to compute the conditional density of the latent variables given the
observed one, that is the posterior p(z|x). Direct use of the Bayes rule

p(z|x) = p(x, z)
p(x)

(3.12)

is intractable because it requires the evidence p(x). The intractability appears when the
evidence is computed by marginalizing out the latent variables from the joint density

p(x) =
∫

p(x, z)dz . (3.13)

This evidence integral is generally unavailable in closed form or requires exponential time
to compute.

An illustrative example of such is the Bayesian GMM, for unit-variance univariate Gaus-
sian distributions. There are K mixture components; each parameterized by µk. The mean
parameters are drawn independently from a standard Gaussian centred prior, with σ as an
hyper-parameter. The generative process is as follows: to generate an observation xi, first
draw a cluster assignment ci (here encoded as an indicator K-vector, all zeros except for a
one in the position corresponding the cluster to which xi belongs; then draw xi from the
corresponding Gaussian. Overall, the latent factors z are {µ, c}, and the model is

µk ∼ N (0, σ2)

ci ∼ Categorical(1/K, . . . , 1/K)

xi|ci, µ ∼ N (cT
i µ, 1)
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This example illustrates that the latent factors can be either global or point-wise: µ is shared
by all the data points in the same cluster, while ci is a point-wise parameter describing to
which cluster the observation xi belongs. The example illustrates the intractability, as well.
The time complexity of numerically evaluating the K-dimensional integral is exponential,
hence intractable. Figure 3.7 shows a graphical model of this setting.

Approximate Variational Inference: the ELBO

The inference problem is turned into an optimization problem by choosing a family Q of
densities over the latent variables. A distribution q in Q is generally noted as q(z|x) to
highlight the fact that some or all the latent factors depend on the observations, even if no
joint distribution is postulated. Free variational parameters parameterize these densities. The
goal of optimization is to find the density q∗, that is, a set of variational parameters, that
is closest to true posterior p(z|x). The most widely used measure of the discrepancy is the
Kullback-Leibler (KL) divergence, so that:

q∗ = argminq∈QDKL(q(z|x)||p(z|x)). (3.14)

The optimization complexity depends on the richness of the family.

However, the optimization problem is structurally intractable: the complete computation of
the KL divergence is as intractable as the evidence. From the definition

DKL(q(z|x)||p(z|x)) = Eq[log q(z|x)]−Eq[log p(z|x)] , (3.15)

and expanding p(z|x) as p(x,z)
p(x) ,

DKL(q(z|x)||p(z|x)) = Eq[log q(z|x)]−Eq[log p(z, x)] + log p(x) , (3.16)

where the evidence appears, it turns out that minimizing the KL divergence over Q does
not require computing the evidence p(x), as it is constant for q. Hence it is equivalent to
maximizing the first part of the divergence:

L(q) = Eq[log p(x, z)−Eq[log q(z|x)] . (3.17)

Intuitively, the first term rewards variational distributions that place high mass on config-
urations of the latent variables that also explain the observation. The second term rewards
variational distributions that are entropic, i.e., that maximize uncertainty by spreading their
mass on many configurations.

L is called the Evidence Lower Bound (ELBO). Equation 3.16 can be rewritten as

log p(x) = DKL(q(z|x)||p(z|x)) + L . (3.18)

As the KL divergence is always positive, the ELBO is a lower bound of the evidence.
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Maximizing ELBO objective provides some intuitive interpretation as a classical tradeoff
between likelihood and prior.

L(q) = Eq[log p(z)] + Eq[log p(x|z)]−Eq[log q(z|x)]

= Eq[log p(x|z)]−DKL(q(z|x)||p(z)) . (3.19)

The first term is an expected likelihood. As such, it favors densities on the latent variables
that explain the observed data. The second term is the divergence between the variational
density and the prior; as DKL is always positive, that is it brings q closer to the prior. The
ELBO is a non-convex objective function and optimizing converges to a local optimum.

The Mean-field Approximation

To completely specify the ELBO as an optimization problem, the variational family (Q) fam-
ily must be specified. A key idea behind variational inference is to choose the family flexible
enough to capture a density close to the posterior, but simple enough for efficient optimiza-
tion. Most work considers the mean-field approximation, where the latent variables are mu-
tually independent, and its own set of parameters defines the distribution of each of them;
generically, if z is m-dimensional, i.e. z = (z(1), . . . z(m)),

q(z) =
m

∏
l=1

q(z(l)) . (3.20)

For instance, for the mixture of Gaussians Blei et al. (2017) proposes the following family:

q(µ, c) =
K

∏
k=1

ak(µk)
n

∏
i=1

bi(ci) , (3.21)

where akis a normal distribution N (mk, σk) over the k-th cluster mean µk and bi(ci) is a
distribution over the cluster assignment of the i-th observation defined by a K vector of as-
signment probabilities ψi. The variational parameters are composed of the set of {mk, σk, ψi}.

In the simple optimization approach, the problem is wholly specified: maximize the ELBO
for the parameter of the a and b distribution. Before sketching the corresponding algorithms,
a natural question is: what are the properties that can be reasonably expected for its results?
Besides empirical results, Wang and Blei (2019) (dubbed Variational Bernstein–Von Mises the-
orem) provide some theoretical foundation to this claim. The setting is frequentist, in the
sense that the generating process has a true, fixed, and unknown value of the global pa-
rameters. Then, the variational posterior converges in total variation distance to the KL
minimum of a normal distribution centred at the truth, and the estimator of the global pa-
rameters are consistent and asymptotically normal. For instance, for a full rank Gaussian
variational family and a factorizable Gaussian variational family, then the Variational Bayes
(VB) posterior for the factorizable family recovers the true mean and the marginal variance,
but not the off-diagonal terms.
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Optimizing the ELBO

Thanks to the mean-field hypothesis, a coordinate ascent algorithm can be used for this
optimization. That is the strategy of the Coordinate Ascent Variation Inference (CAVI), dis-
cussed in Bishop (2006), which iteratively optimizes each factor of the variational density
while keeping the others fixed, without any gradient computation. For instance, with the
specific variational family of equation 3.21, the coordinate updates and the ELBO for given
values of the parameters have closed forms. That is much more general than for this specific
distribution and is valid for a large class of models and variational families (conditionally
conjugate exponential), the coordinate updates and the ELBO for given values of the pa-
rameters have closed forms, Ghahramani and Beal (2001). The complete derivations and the
CAVI algorithms are described in Blei et al. (2017).

The CAVI algorithm suffers from two limitations. First, it is not generic, requiring a complete
specification of the model and variational family, restricted to the class mentioned above and
to compute the corresponding closed forms analytically. Second, it is not scalable as each
coordinate step iterates through the entire data set.

The alternative is a gradient-based optimization, which can scale with SGD. SGD maximizes
a function using noisy estimates of its gradient, Robbins and Monro (1951) and is primary
basic tool for scaling to large data sets, Bottou and LeCun (2003). In principle, to exploit SGD
for optimizing ELBO with stochastic optimization, all that is needed is an unbiased estima-
tor of its gradient w.r.t the variational parameters. Stochastic optimization of the ELBO has
been initiated by the Stochastic Variational Inference (SVI) algorithm, Hoffman et al. (2013).
For models with global and local parameters, SVI repeatedly subsamples the data to form
noisy estimates of the natural gradient of the ELBO. The general flow of the algorithm is to
get a (noisy) estimate of the ELBO by sampling a minibatch and optimize the associated lo-
cal variational parameters, then compute the coordinate update for re-estimating the global
variational parameters (see Figure 3.8).

A substantial body of research has been devoted to making VI more scalable and applicable
to non-conjugate exponential family models. Recent developments target a more accurate
VI, by relaxing the mean-field hypothesis, in particular with structured inference, and the
use of other divergence metrics. An extensive review is available in Zhang et al. (2017). The
discussion of structured inference is in Section 3.5.2 (in the restricted context of VAE). For a
goal in this section, which is putting the VAE in the general context of VI, the most relevant
work is related to making the VI more generic.

Toward Generic VI

Two approaches are presented, towards generic inference algorithm for which only the vari-
ational distribution has to be specified in closed form: Black Box Variational Inference (BBVI)
and the reparameterization trick. The main idea is to represent the gradient as an expectation
to estimate it with Monte Carlo (MC) techniques.

BBVI, Ranganath et al. (2014), proposes a method to obtain an estimator of the gradient-
based on the score function estimator (also known as the REINFORCE or likelihood-ratio esti-
mator), Fu (2006). It uses the identity∇λFλ(.) = Fλ(.)∇λ log Fλ(.), valid when F is a function
differentiable in a parameter λ. The gradient of the ELBO from equation 3.17 can then be
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written as an expectation:

∇λL(q) = Eqλ
[∇λ log qλ(z)(log p(x, z)− log qλ(z))] . (3.22)

The expectation can be then estimated by, e.g. naive MC (an M-sample average of the varia-
tional distribution): with zi ∼ qλ(z):

∇λL(q) ≈
1
M

M

∑
i=1
∇λ log qλ(zi)(log p(x, zi)− log qλ(zi)) . (3.23)

It is resulting in an estimator that is applicable whenever log qλ(x) is differentiable w.r.t λ.

Unlike CAVI or SVI, the analytical computations do not depend on the model, but only on
the variational distribution. This basic version of the estimator suffers from high variance.
Numerous various variance reduction techniques can be used to make the estimator more ef-
fective (see Maddison et al. (2017) for an extensive bibliography about the score function and
dedicated variance reduction techniques). However, they have been largely superseded by
the reparameterization trick, introduced in the context of variational inference independently
by Kingma and Welling (2013); Rezende (2014); Titsias and Lázaro-Gredilla (2014).

The reparameterization trick allows to estimate the gradient of the ELBO also by MC sam-
ples but in a very different way. The trick states that in many cases a random variable z
with distribution qλ(z) can be expressed as a deterministic function, parametrized by λ, of a
random variable ε that comes from a noise distribution, i.e. z = gλ(ε). Noise means that the
distribution r of ε does not depend on any parameter. The condition is that the following
identity holds:

Eqλ
[F(z)] = Er[F(gφ(ε)] for any function F . (3.24)

For example, if z ∼ N (µ, σ2), then z = µ+ σε, with ε ∼ N (0, 1). Kingma and Welling (2013)
provide a complete discussion of the variational families for which such a transformation
exists.

The essential advantage is that the distribution of z does not depend on the variational pa-
rameter anymore, making it possible to reduce the problem of estimating the gradient of
an expectation for the parameter of the distribution to the more straightforward problem
of estimating the gradient for the parameter of a deterministic function. Applying identity
from 3.24 to the ELBO expression from equation 3.17 results in

∇φL = Er[∇φ(log p(x, gφ(ε)− log qφgφ(ε))] , (3.25)

which allows MC estimate, e.g. by averaging over samples of ε.

3.5.2 The Variational Autoencoder

The Variational Autoencoder (VAE) Kingma and Welling (2013); Rezende (2014) is an origi-
nal construction that integrates the reparameterization trick, and amortized inference.
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FIGURE 3.8: Graphical model for the classical VI setting (left) and the VAE
(right). Each observation xi depends on its latent variable zi. Solid lines de-
note the generative model, parameterized by φ while dashed ones the varia-

tional approximations. From Zhang et al. (2017).

Amortized Inference

This approach is associated with a change in the generative model to an implicit point of
view. Instead of looking at the evidence, primarily as the marginal of a closed-form distri-
bution (equation 3.13), the data distribution is defined implicitly by

p(x) = pθ(x) =
∫

pθ(x|z)p(z)dz . (3.26)

This kind of parameter dependence in the factorization is sometimes termed nonlinear factor
analysis, Gibson (1960); Krishnan et al. (2018). With this approach, the focus is on the expres-
siveness of the marginal pθ(x). A neural network typically defines the likelihood pθ(x|z),
called the generative network (and the decoder network in the VAE context), which take the la-
tent variables as an input and transform them in a non-linear way. In this setting, θ is the
parameters of this network. With this model, the ELBO is

L(x, θ, λ) = E[log pθ(x|z)]−DKL(qλ(z|x)||p(z)) , (3.27)

where λ is the parameter of the distribution of the latent variables.

In classical VI, λ depend on the data points, as shown in Figure 3.8 (this dependency was
exemplified in the expression of the posterior density 3.21 for the mixture of Gaussians case).
As a consequence, the optimal parameter value λ∗ is the result of direct pointwise optimiza-
tion:

λ∗ = argmaxL(x, θ, λ) . (3.28)

One could formally write λ∗ as a function of x (as λ∗(x)), but this would not have any
operational sense, as its computation requires running the optimization algorithm for each
data point x, which can be costly.

The amortized inference is, in some sense, a most radical approach. It switches from the
transductive approach of VI, Gammerman et al. (1998), to an inductive one: it assumes that
the latent variables can be approximately expressed (or say predicted) by a parameterized
function of the data, that is making λ(x) an actual function of x. The function is defined
by a neural network, the recognition or encoder or inference network. In turn, this network is
defined by its parameters φ. qλ(z|x), which should be noted as qλφ(x)(z|x), will be further
shortened as qφ(z|x).
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Algorithm 1 Minibatch version of training the VAE. From Kingma and Welling (2013).

θ, φ← Initialize parameters
repeat

XM ← Random minibatch of M data points (drawn from full data set)
ε← Random samples from noise distribution p(ε)
g← ∇θ,φLM(θ, φ, XM, ε) (Gradients of minibatch estimator)
θ, φ← Update parameters using gradients g

until convergence of parameters (θ, φ)
return θ, φ

Such a system is trainable. Once the λφ function is optimized, the latent variables can be
predicted by passing new data points through the function, as shown in 3.8 right. An illus-
trative example is the so-called Deep Latent Gaussian Model (DGM), Rezende (2014). The
generative model is defined for each data point x:

where pθ(x|z) ∼ N (µ(z), σ2(z)I) (3.29)

and p(z) ∼ N (0, I) . (3.30)

Despite its simplicity, the DGM model is very expressive, as an infinite mixture controlled
by z.

Equation 3.29 shows that the likelihood depends on z through two functions µ(.) and σ(.),
which are the generative/decoder network. The data are then drawn from a normal distri-
bution defined by the transformed latent variables µ(z) and σ(z).

To approximate the posterior p(z|x), the original VAE employs an amortized mean-field
variational distribution:

qφ(z|x) =
N

∏
i=1

qφ(zi|xi) . (3.31)

The variational distribution is typically chosen as

qφ(zi|xi) ∼ N (µ′(xi), σ′2(xi)I). (3.32)

Similar to the generative model, the variational distribution employs non-linear mappings
µ′(xi) and σ′(xi) that are realized with the recognition network. The parameter φ summa-
rizes the corresponding network parameters.

Training the VAE

During optimization, both the recognition network and the generative network are trained
jointly to optimize the ELBO, principally by using the reparameterization trick, as sketched
in Algorithm 1.

This basic algorithm applies SGD to an estimator of the ELBO obtained by applying the
reparameterization trick. For instance, highlighting the dependence of the distributions on
θ and φ, equation 3.19 can be rewritten as

L(θ, φ) = E[log pθ(x|z)]−DKL(qφ((z|x)||p(z)) . (3.33)
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For each data point x, the ELBO can be estimated thanks to the reparameterization trick and
MC estimation as

L̃(θ, φ) = −DKL(qφ(z|x)||p(z))+
1
L

K

∑
k=1

log pθ(x|zk)] (3.34)

where z = gφ(εk, x) (3.35)

and εk ∼ r(ε) (3.36)

In this last expression, it is assumed that the KL divergence can be computed analytically,
thus is not part of the MC estimation. Then, classical minibatch gradient descent can be
used, with the overall approximator of the ELBO over a full data set X = (x1, . . . xN) being

L̃M(θ, φ, X) =
N
M

M

∑
i=1
L̃M(θ, φ, xi) , (3.37)

M running as the size of the minibatch.

Getting an analytical expression of the KL divergence requires a further assumption, for in-
stance, that qφ(z|x) is gaussian too. qφ(z|x) ∼ N (µ, σ2) yields with standard computations:

−DKL(qφ(z|x)||p(z)) =
1
2

I

∑
i=1

1 + ln σ2
i − µ2

i − σ2
i . (3.38)

Autoencoders and VAEs

The overall architecture and the joint training of the generative and recognition network
are very similar to the autoencoders. Unregularized autoencoders minimize only the recon-
struction cost. That results in different training points being encoded into non-overlapping
zones chaotically scattered all across the latent space with holes in between where the de-
coder mapping has never been trained. The various regularizations target this issue to force
the networks to learn a useful and compact representation of the data. VAE are probabilis-
tic models that learn a representation of the distributions involved in the implicit model of
equation 3.26. VAEs include the idea of noisy autoencoders Vincent et al. (2010), by injecting
noise into this intermediate layer, which has a regularizing effect. However, the probabilis-
tic orientation is due to the inclusion of the KL divergence term between the prior and the
approximate posterior, which forces a homogeneous distribution in latent space that gener-
alizes better to unseen data. In the direct context of the autoencoders, the KL divergence acts
as a regularizer, while the second term in equation 3.17 is an expected negative reconstruc-
tion error.

Beyond the Vanilla VAE

As described in Cremer et al. (2018); Krishnan et al. (2018), the VAE has two source of er-
rors: the approximation gap, which comes from the inability of the approximate distribu-
tion family to exactly match the true posterior, and the amortization gap, which refers to the
difference caused by not optimizing for each data point independently, and consequently
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not finding the optimal member of this family. Despite some theoretical results, Cherief-
Abdellatif (2019), showing that the ELBO maximization strategy is robust to model misspec-
ification, both sources of errors have been addressed through more expressive variational
distributions, more expressive models, or extended optimization algorithms.

VAEs are limited by strong factorization. It cannot capture dependencies between latent
variables. In general, using more flexible variational distributions reduces not only the ap-
proximation error but also the amortization error. More specifically, a well-known issue is
the frequently observed problem of under-estimation of the variance of the posterior distri-
bution, Turner and Sahani (2011)

In the strict VI framework, there have been attempts to fit more expressive approximat-
ing distributions which capture correlations such as matrix-variate Gaussian distributions,
Louizos and Welling (2016). Fitting those models can be expensive without further approxi-
mations. Zhang et al. (2018) propose a method based on natural gradient and the Kronecker-
factored approximation to the Fisher matrix (to perform efficient approximate natural gradi-
ent updates). Implicit distributions can be used in VI since a closed-form density function is
not a strict requirement for the inference model; all that is needed is to be able to sample from
it and to compute the gradients. However, because the divergence becomes intractable, this
results in a different training procedure. For instance, Adversarial Variational Bayes (AVB),
Mescheder et al. (2017), introduces an auxiliary discriminative network that rephrases the
maximum-likelihood-problem as a discriminator T in the spirit of Generative Adversarial
Networks (GAN), Goodfellow et al. (2014), to discriminate the prior from the variational
distribution.

Normalizing flow from Rezende and Mohamed (2015); Kingma et al. (2016) presents another
way to utilize flexible variational distributions. A normalizing flow transforms a probability
density through a sequence of invertible mappings. There exist transformation function f
such that the generated function is a multimodal distribution of arbitrary complexity, but
that the Jacobian involved in the change of variable remains easily computable. Moreover,
the variational density can be estimated due to an invertible transformation function, and
expectations can be computed efficiently.

Importance Weighted Variational Autoencoder (IWAE) was initially proposed to tighten the
variational bound Burda et al. (2016). IWAE has the same architecture as the VAE, but with a
strictly tighter log-likelihood lower bound. The recognition network uses multiple samples
to approximate the posterior. Specifically, IWAEs require L samples from the approximate
posterior, which are weighted by the ratio

r̂l =
wl

∑L
l=1 wl

where wl =
pθ(x, zl)

qφ(zl |x)
. (3.39)

With this reweighting, the log-likelihood is approached in the infinite limit on L. Cremer
et al. (2017) shows that IWAE can be reinterpreted to sample from a more flexible distribution
which converges pointwise to the true posterior.

On the other hand, it has been argued that factorization is a desirable property, as it favors
disentangling: a representation that is adequate to latent factors that are assumed to be in-
dependent. A considerable literature has been devoted to this goal. Disentangling 3.5.2 and
the alternative CVAE is discussed in Section 6.2.
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A more profound problem is the model choices, which include the prior p(z) and the con-
ditional likelihood p(x|z). In both cases, the goal is to devise general techniques that allow
integrating some knowledge about the structure of the distributions that can be expected
from a specific application. For instance, Johnson et al. (2016) consider video and speech.
In both cases, there is a natural hierarchy of information: in video, the complementary
tasks are learning the image manifold (low level) and a structured dynamics model (high
level), In speech, the high-dimensional data lie near a low-dimensional manifold, but the
discrete latent dynamical structure (phonemes, words, and grammar) should also be con-
sidered. Technically, Johnson et al. (2016) utilize a structured prior for VAEs, combining the
advantages of traditional graphical models and inference networks. These hybrid models
overcome the intractability of non-conjugate priors and likelihoods by learning variational
parameters of conjugate distributions with a recognition model. An analogous approach is
sketched in Butepage et al. (2018).

Other approaches question the assumption that the conditional likelihood factorizes over
dimensions. Intuitively, this is a drawback when a structured output model is closer to
the data, e.g. for images, where there are dependencies between neighboring pixels, or
for language modelling. The general strategy is to couple advances in deep architectures,
such as autoregressive networks Gregor et al. (2014) and predominately recurrent networks
when the application is amenable to sequence modelling, e.g. for speech and writing Bow-
man et al. (2016); Chung et al. (2015); Fabius et al. (2015); Gregor et al. (2015); Xu and Tan
(2019), but also for images with the PixelVAE Gulrajani et al. (2017). In practice, this means
that the decoding distribution is an RNN with autoregressive dependency, i.e. p(x|z) =

∏k pθ(xk|x<k), where k runs over the dimensions of observation x.

The expressiveness of the model can have unintended consequences by weakening the bal-
ance between the inference and recognition network. In summary, if the decoder is powerful,
as exemplified just before, the inference network can fail to learn an informative posterior
qφ(z|x) and simply fall back to the prior p(z). The problem has bee detailed early Bow-
man et al. (2016), and noticed in many other cases, e.g. Gulrajani et al. (2017): in most cases
when an RNN autoregressive decoding distribution is used, the latent code z is completely
ignored, and the model regresses to be a standard unconditional RNN. In Bowman et al.
(2016), this has been attributed to optimization issues (the dying unit problem, see below).
More recent work Chen et al. (2017) gives an information-oriented interpretation showing
that the problem is more fundamental: the latent code should still be ignored at optimum
for most practical instances of VAE that have intractable true posterior distributions and suf-
ficiently robust decoders. Techniques to cope with this issue will be discussed in Section 6.2.

A separate issue is the dying units problem, which is related to the practical limits of the
optimization process. Even if the decoder is not robust, in the early stages of the optimiza-
tion where the approximate posterior does not yet carry relevant information about the data,
units are regularized towards the prior. They might not be reactivated in the later stages of
the optimization, as no gradient signal passes between the decoder and the encoder. The
overall system is trapped in a local and inadequate minimum. Bowman et al. (2016) apply
a classical annealing scheme to escape the minimum, by solely weighting the KL term and
increasing the weight at a constant rate (a hyper-parameter). Thus, in the beginning, the
model behaves as a simple autoencoder; increasing the weight forcing the model to smooth
out its encodings towards the prior. Although ad-hoc, this method has the advantage to
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mostly follow the VAE architecture, instead of proposals for alternative architectures such
as Sønderby et al. (2016); Krishnan et al. (2018); Mansbridge et al. (2019). In particular, Krish-
nan et al. (2018) propose a warm-start of the generative network optimization: at each step
of the joint optimization, the generative network is initialized by the output of an SVI run
on the considered instance.

Disentanglement Objective

From a representation learning point of view, Bengio et al. (2013), the VAEs should produce
a representation that is both disentangled and interpretable. The representation should contain
all the information present in data x in a compact and interpretable structure while being in-
dependent of the task for which the representation is ultimately used. Such a representation
would be useful for a variety of downstream tasks, such as transfer and few-shot learning or
dealing with nuisance parameters. Bengio et al. (2013) and Locatello et al. (2019) present an
extensive bibliography concerning these motivations in the general context of representation
learning.

A large body of research has been devoted to disentanglement and interpretability. Recently,
theoretical arguments and empirical evidence presented by Locatello et al. (2019) indicate
that a fully general disentangling method is virtually inaccessible. However, in principle, it
is possible to eliminate the obstacle using a priori knowledge and partial supervision that
can be embodied in structured models, which are represented in the given context by the
CVAE, described in Sohn et al. (2015). A recent result in the context of ICA suggests that the
approach has theoretical foundations, see Khemakhem et al. (2019).

Given the observable data are generated from independent factors of variation, a disentan-
gled representation should promote to separate these distinct factors in different indepen-
dent variables in the representation. A change in a single underlying, unobservable, factor
of variation should lead to a change in a single variable in the learned representation. For
example, a model trained on character images might learn independent latent units sensitive
to separate data generative factors, such as character label, width and angle. A disentangled
representation is therefore necessarily factorized, and hopefully interpretable as indepen-
dent ground truth generative factors.

VAE disentanglement has been addressed in numerous recent contributions, see Tschannen
et al. (2018); Locatello et al. (2019). The various motivations lead in all methods to regularize
the approximate or aggregate posterior distribution in the VAE objective function. The reg-
ularization addresses the KL divergence term as the components of the ELBO may become
unbalanced, and the KL term tends to vanish (see Section 3.5.2).

The β-VAE proposed by Higgins et al. (2017) weights the KL divergence with a constant
hyper-parameter β > 1 to put pressure on the posterior by enforcing the closeness with the
factorized Gaussian prior p(z):

Lβ-VAE(x, θ, φ) = Eqφ(z|x)[− log pθ(x|z)] + βDKL(qφ(z|x)||p(z)) , (3.40)

In Burgess et al. (2018), it has been extended with progressive extension of the encoding
capacity so that the encoder can focus on learning one factor of variation at the time.
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However, as described in Kim and Mnih (2018), penalizing the KL term can have counter-
productive consequence. The expectation of the KL term can be broken down as derived
by Hoffman and Johnson (2016):

Ep(x)[DKL(qφ(z|x)||p(z))] = Iqφ(x; z) + DKL(qφ(z)||p(z)) , (3.41)

where p(x) is the empirical probability and Iqφ(x; z) is the mutual information under the
joint distribution p(x)q(z|x). Penalizing the second term is desirable, as it pushes q towards
the factorial prior, but penalizing Iqφ(x; z) is harmful, as it reduces the coding effectiveness
of z. A common theme behind approaches addressing this effect is to enforce a factorized
aggregated posterior q(z) = Ex[q(z|x)], at the cost of supplementary intractability and accord-
ingly approximations. The FactorVAE, described in Kim and Mnih (2018), adds an extra
penalization of the Total Correlation (TC) Watanabe (1960) of the latent variables (zk), that
is DKL(q(z)||q̄(z)), where q̄(z) = ∏k q(zk)). As the objective is intractable, Kim and Mnih
(2018) approximate the density ratio that arises in the KL term with adversarial training.
The discriminator is trained to classify between samples from q(z) and q̄(z), thus learning
to approximate the density ratio needed for estimating TC. A similar analysis of Chen et al.
(2018) proposes just a different approximation technique. The DIP-VAE Kumar et al. (2018)
directly penalizes the mismatch between the aggregated posterior and the factorized prior,
at the cost of two additional hyper-parameters. Finally, the InfoVAE Zhao et al. (2017) and
the Wasserstein autoencoder Rubenstein et al. (2018), although with very different initial
motivations, simply drop the mutual information term in the VAE objective.

There is no formal definition of a performance metric, and different approaches were pro-
posed to measure disentanglement. As observed by Locatello et al. (2019), they appear to be
correlated, but the level of correlation changes between different data sets. For instance the
β-VAE measures disentanglement as the accuracy of a linear classifier that predicts the index
of a fixed factor of variation. Kim and Mnih (2018) use a majority vote classifier on a differ-
ent feature vector. Chen et al. (2018) measures the normalized gap in mutual information
between the highest and second-highest coordinate in r(x) for each factor of variation.

The recent results of Locatello et al. (2019) show that disentanglement learning is both funda-
mentally impossible for arbitrary generative models and not achieved in practice. From the
fundamental point of view, the main result (Theorem 1 in Locatello et al. (2019)) essentially
states that, for any fully disentangled model, there is an equivalent generative model with
the latent variable ẑ = f (z) where ẑ is completely entangled to z: a change in a single dimen-
sion of z implies that all dimensions of ẑ change. That is reminiscent of the non-identifiability
in non-linear ICA Hyvärinen and Pajunen (1999).

From the practical side, Locatello et al. (2019) conducted an extensive experiment on the
various disentangling-oriented algorithms based on regularization. As described in the ex-
ample of Section 3.5.2, the actual representation used for downstream tasks, and the coupled
training of the encoder and decoder networks, is the mean vector of the Gaussian encoder.
The question is thus if this mean representation is decorrelated. Locatello et al. (2019) show
that the total correlation of the mean representation generally increases with the regular-
ization strength, and is higher than the one of the vanilla VAE. The only exception being
the DIP-VAE, which directly enforces disentanglement. That is also true if the total corre-
lation is replaced by the average mutual information between different dimensions of the
representation.
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3.5.3 Variational Autoencoders and Anomaly Detection

The dissemination of the generative models, and specifically the VAE, offer a more broad and
principled avenue to autoencoding-based AD. A straightforward approach for VAE based
AD is described in An and Cho (2015). It considers a simple VAE, and the MC estimate of the
expected reconstruction error (termed reconstruction probability). Experiments on MNIST
and KDD demonstrate a majority of the superior performance of VAEs over autoencoders
and spectral methods.

However, Wang et al. (2019) argue that the probabilistic generative approach of VAE could
suffer from intrinsic limitations when the goal is AD, with two arguments. Firstly, because
the model is trained only on inliers, the representation will not be discriminative, and will es-
sentially overfit the normal distribution. Secondly, the representation might even be useless,
falling back to the prior; technically because the generator is too powerful, the regularization
by the DKL vanishes Zhao et al. (2017).

Kawachi et al. (2018) address this issue with specific hypotheses on the distributions of in-
liers and anomalies. A more general approach Hendrycks et al. (2018); Wang et al. (2019)
are to learn a more conservative representation by exposing the model to out-of-distribution
(abnormal) examples, still without knowledge of the actual anomaly distribution, with ad-
versarial architectures and specific regularizations. While Hendrycks et al. (2018) simply
define an ad-hoc regularization and hyperparameter optimization, Wang et al. (2019) pro-
pose an adversarial architecture for generating the anomalies and exploiting them to create
a less overfitted representation. Neither of these approaches would meet the robustness and
simplicity specifications of the motivating application.

A body of work, e.g. Nalisnick et al. (2019); Snoek et al. (2019), discusses the general abil-
ity of the deep generative model to select Out of Distribution (OOD) data using the model
likelihood. In Nalisnick et al. (2018); Choi et al. (2018); Shafaei et al. (2018), the authors
showed that the generative models are not able to give useful estimates of the predictive
uncertainty. Their tests showed that state-of-the-art models trained on one data set assign
higher likelihood to samples from different data sets. For instance, a model trained on a data
set containing images of objects and animals assigns a higher likelihood for images contain-
ing house numbers coming from a different data set.As a consequence the VAEs ability to
perform safe AD is an open research question.
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CHAPTER 4

Detector Components Anomaly Detection

with Convolutional Neural Networks

Most of CMS DQM failure detection algorithms focus on the interpretation of detector data
organized in the form of multidimensional histograms. The DQM visualization tool, de-
scribed in De Guio (2014), displays those histograms organizing them in views dedicated to
various aspects of the detector. Very often, the data are structured to provide the experts with
an overview of the overall detector allowing to monitor its performance in different regions.
For example, histograms can display two-dimensional maps with information about the
performance of read-out channels depending on their geographical position. These kinds of
histograms, displaying data as a function of the detector topology, can be regarded as images
and the AD performed by the expert is very often related to identifying and discriminating
healthy patterns from problematic ones. Detector experts input their knowledge of the de-
tector into binary classification algorithms targeting common and foreseen failure scenarios.

This chapter will focus on applying image like detection techniques on geographically or-
ganized histograms filled with real collision data. The DL techniques are used for super-
vised and semi-supervised identification of problems in online detector monitoring (see
Section 2.4.2). The attention settles around current advances in image classification (for a
general survey see LeCun et al. (2015)) and the technical knowledge about the geographical
organization of the detector.

A class of these problems is based on counting the number of electronic hits per read-out
channel. This problem is common to all sub-detector technology and is referred to as oc-
cupancy monitoring in CMS jargon. Data recorded by the CMS DT chambers of the muon
spectrometer during the data taking campaign of the LHC Run II are used as a case study.
Although the experimental demonstration of the results presented in this chapter is tied to
the peculiarities of the DT sub-detector (see Section 2.3.2), the procedure that is discussed
here has a broader application scope. That is because the typical issues encountered in oc-
cupancy monitoring are analogous. This assumption was successfully tested for other sub-
detector of the CMS experiment.
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The goal is to improve detection specificity and sensitivity and propose an algorithm inde-
pendent from a stringent assumption on the nature of the anomalies. In summary, the main
aspects of this work are:

• exploiting the geographical information of the detector assessing the (mis) behaviour
with high-granularity and then combining the results to probe different detector com-
ponents;

• detecting various types of anomalies, affecting the detector at different scales (ranging
from a few read-out channels to collective behaviours of a significant portion of the
system) by combining different algorithms;

• justifying that image-like processing achieves considerably better performance com-
pared to the current threshold-based statistical test (later called the legacy strategy) and
allows to tune the working point in terms of specificity (depending on the deployment
strategy); and

• introducing a novel, modular algorithm to the CMS DQM toolbox.

To this purpose, three complementary approaches are considered.

• The local approach considers the AD problem at the highest reasonable granularity.
The input dimension (i.e. the number of features) is low, allowing for comparison
between various algorithms, including the ones sensitive to the number of features. A
well-known list of problems is targeted using data labelled by detector experts. This
approach is explored in Section 4.2.

• The regional approach extends the local approach to account for problems seen when a
broader view of the sub-detector is available. Simultaneously the labelling problem is
overcome using semi-supervised AD. The approach is described in Section 4.3.

• Finally, the global approach further explores methods used for the regional approach
and simultaneously use all the information coming from all the read-out channels in
the sub-detector. Visual identification is used for emerging and novel problems along
with the knowledge about the organization of the CMS detector. This approach is
outlined in Section 4.4.

4.1 Data Set and Preprocessing

The DT system is an example of compound hardware that challenges scientists with the ar-
duous work of establishing monitoring rules. For each chamber k in a given run the current
DQM infrastructure Rovere (2015) records an occupancy matrix Ck, which contains the total
number of particle hits at each channel for a given LS (arbitrary duration of time, see Sec-
tion 2.4) or set of consecutive LSs. The occupancy matrix can be viewed as a varying size
two-dimensional array organized with a layer (row) and channel (column) indices:

Ck = {xk
i,j; 1 ≤ i ≤ l, 0 ≤ j < ni} , (4.1)

where l = 12 is the number of layers and ni is the number of channels in layer i. In general,
chambers and their components are labelled as Ck and xk

i,j. For simplicity, the k index is omit-
ted when discussing problems related to individual chambers. Figure 4.1 shows examples



55

A

0 10 20 30 40 50
Channel

1

5

9
La

ye
r

co
un

ts

CMS

0

104
Run: 272011, W: 1.0, St: 1.0, Sec: 6.0

B

0 10 20 30 40 50 60
Channel

1
5
9

La
ye

r

co
un

ts

CMS

0

120
Run: 275310, W: 1.0, St: 2.0, Sec: 7.0

C

0 10 20 30 40 50 60
Channel

1
5
9

La
ye

r

co
un

ts

CMS

0

28
Run: 273158, W: 0.0, St: 2.0, Sec: 12.0

FIGURE 4.1: Example of visualization of input data for three DT chambers.
The data in (A) manifest the expected behaviour despite having a dead chan-
nel in layer 1. The chamber in the plot in (B) instead shows regions of low
occupancy across the 12 layers and should be classified as faulty. According
to the run log, this effect was induced by a transient problem with the de-
tector electronics. (C) suffers from a region in layer 1 with lower efficiency,

which should be identified as anomalous.

of occupancy matrices, represented as two-dimensional occupancy plots. The utilized data
set consists of 21000 occupancy matrices for the 250 chambers across 84 runs.

Histogram-based representation of detector data belonging to different subcomponents is
often not wholly homogeneous in size (e.g. different DT chambers can have a different
number of cells per layer) and can display data integrated over varying periods.

Preprocessing of data sets is a common requirement for ML algorithms, and in this case the
preprocessing will have to deal with these irregularities in the feature space and additionally,
depending on the algorithms, apply denoising, e.g. forests based algorithms benefit from it.
Furthermore, some algorithms require features to be on a similar scale (e.g. SVM or neural
networks) if they exploit distances or similarities between data samples. DT data set is no
different. For this propose, a preprocessing procedure is used for the three approaches (for
visual interpretation, see Figure 4.2).

• Standardization of the chamber data: the number of channels x in a layer varies not only
layer-by-layer within the chamber but also depends on the chamber position in the
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detector. This quantity falls between 47 and 96. Fixed-input dimensionality is enforced
by applying a layer-by-layer one-dimensional linear interpolation to match the size ns

of the shortest layer in the data set. The smallest layer is chosen to simplify the models
later in this study. After starting from the recorded matrix x, a standardized matrix x̃
is defined as

x̃i,l = (α− bαc)(xi,bαc − xi,dαe) + xi,bαc , (4.2)

where α is an interpolation point, defined by α = a ni
ns

. It was verified that this method
does not compromise sensitivity to tiny problematic regions despite a small reduction
in the amplitude of the anomalies.

• Smoothing: according to CMS DT experts, misbehaving channels are problematic only
when a spatially contiguous cluster of them is observed. Instead, isolated misbehaving
channels are not considered a problem. The reason being that due to the high num-
ber of measurements, only large areas of non-working channels may affect the pattern
recognition and the muon trajectory reconstruction. The data set contains samples,
where some isolated channels report extreme values. Hence, the one-dimensional me-
dian filter is applied:

x̂i,j = med(xi,j, xi,j+1, xi,j+2) . (4.3)

• Normalization: the absolute occupancy value of the chambers in the input data set de-
pends on the integration time and the LHC beam configuration, and intensity, i.e. on
the number of LSs spanned when creating the image and corresponding luminosity.
The normalization strategy depends on the need for comparing data across chambers
or runs: the precise procedure used in the two approaches is described in Sections 4.2
and 4.3, respectively.

4.1.1 Legacy Monitoring Strategy for DT Occupancy

Current monitoring strategy for DT occupancy plots is an excellent illustration of an ap-
proach widely used by CMS sub-detector communities.

The AD method used in the online monitoring production system targets a specific failure
scenario: a region of cells not providing any electronic signal, large enough to affect the track
reconstruction in the chamber. That is by far the most frequent issue, usually related to tem-
porary problems in the readout electronics. Examples of this kind of failures are shown in
Figure 4.1 B and C. These kinds of occupancy plots are created accumulating data in time.
Once in a while, the plot filling process is reset, to increase sensitivity to problems occur-
ring during the run. The layer expected behaviour is to report occupancy of hits with the
small variance between adjacent channels. The legacy strategy evaluates samples per cham-
ber and assembles them in so-called summary plots. In this manner, the human shifter has
a broad overview of the sub-detector status in one plot instead of manually browsing over
250 histograms. Although the algorithm quantifies the fault severity based on the fraction
of affected channels, it does not identify specific faulty layers or channels. The legacy strat-
egy regards Figure 4.1 instance A as non-problematic, correctly classifies the chamber in
Figure 4.1 B as anomalous, but it is not sensitive enough to flag the chamber in Figure 4.1 C.
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FIGURE 4.2: Example of two kinds of input sample preprocessing. (A) ac-
quired (raw) values, (B) standardizing each layer directly from raw values
using linear interpolation. (C) smoothing the raw values data with median
filter (D) standardizing each layer from smoothed data. In (C), the isolated
low-occupancy spot in layer 1, corresponding to a dead channel, is discarded.
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Tests in other sub-detectors are approached analogously. The current level of automatization
extends to the infrastructure that creates the plots and, the superposition to the existing
reference. In several cases, some statistical test (e.g. Kolmogorov-Smirnov, χ2) is performed,
and the outcome is displayed. However, the interpretation and ultimate decision are taken
by human shifter.

4.2 Identifying Known Failure Modes in Supervised Setup

for the Local Approach

The first experiment concentrates on training a classifier to identify problems local to the
DT layer: for this purpose data collected in each layer are treated independently from the
others. This approach enforces the expert knowledge of what is currently considered correct
or anomalous and probes the detector with higher granularity than the legacy strategy, i.e.
per-layer instead of per chamber score. The goal is to identify regions of channels not regis-
tering any hits (called dead channels in detector jargon), or having lower detection efficiency
(hence lower hit counts compared to the neighbouring ones in the same layer) or having an
anomalously high hit count dominated by electronic noise (called noisy channels). These are,
by far the most common failure modes.

The local approach can be considered as an initial benchmark comparing fully supervised,
semi-supervised and unsupervised methods, and specific algorithms in each category, be-
fore embarking in full-fledged AD. Moreover, if successful, it can be further exploited as a
preprocessing step for filtering these trivial faults before attempting to detect more elusive
and novel ones.

Given the locality restriction of this approach, contextual information is not accessible. As a
consequence, a model based on this strategy will not be able to spot, for example, a faulty
layer in which occupancy is decreased uniformly compared to neighbouring layers in the
same chamber. This limitation is addressed in Section 4.3.

4.2.1 Methods and Experimental Setup

After having applied the standardization procedure (see Section 4.1), a layer is represented
as a single row of an occupancy matrix:

Xi = (x̃i,1, x̃i,2, . . . , x̃i,47) . (4.4)

The available data set consists of 21000 chambers corresponding to 228480 individual layers.

Hit counts in a layer are normalized to a [0, 1] range, dividing them by the maximum of the
occupancy value in the layer:

ẋi,l =
x̃i,l

max(Xi)
. (4.5)
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The need for normalization comes from the intrinsic variation of the occupancy, which de-
pends on the spatial position of the chamber (as described in more detail in Section 4.4) and
on the integration time of the analyzed image.

The ground truth is established by field experts on a random subset of the data set, by visu-
ally inspecting the input sample before any preprocessing: 5668 layers were labelled as good
and 612 as bad. The 9.75% fault rate is a faithful representation of the real problem at hand.
With this ratio, both anomaly and outlier detection approach can be considered. Out of this
set 1134 good and 123 bad examples are reserved for composing the test set corresponding
to 20% of the labelled layers. The remaining examples are used for training and validation
for the semi-supervised and supervised methods.

Classical fully unsupervised approaches based on the neighbourhood (e.g. k-NN), topo-
logical density estimation (LOF and its variants) or clustering are not relevant here. These
algorithms perform poorly in high dimensions, especially that a simple geometric (e.g. Eu-
clidean) distance in the feature space does not define a similarity metric Zimek et al. (2012).
For instance, the distance between examples A and B in Figure 4.1 is dominated by the con-
tribution of well-behaving channels. The similarity function, or equivalently the adequate
representation, must be learned from the data.

This representation learning view Bengio et al. (2013) points towards DL, as it should remain
sensitive to the local geometric relationship in the data related to the underlying apparatus.
CNN (see LeCun et al. (1995); Krizhevsky et al. (2012)) integrates the basic knowledge of
merely the topological structure of the input dimensions and learn the optimal filters that
minimize the objective error.

In this experiment, the performances of the following are compared:

• unsupervised learning with (a) a simple statistical indicator, the variance within the
layer, and (b) an image processing technique, namely the maximum value of the vector
obtained by applying a variant of an edge detection Sobel filter, see Sobel (1990):

Si = max(
[
−1 0 1

]
∗ Xi) ; (4.6)

• semi-supervised learning, with (c) IF, and (d) µ-SVM; and

• supervised learning, with (e) a fully connected Shallow Neural Network (SNN), and
(f) a CNN.

The IF and µ-SVM models are cross-validated using five stratified data set folds to search
for their corresponding optimal hyper-parameters. Subsequently, the IF is retrained using
those hyper-parameters (100 base estimators in the ensemble) on the full unlabelled data set,
while µ-SVM (RBF kernel, ν of 0.4, γ of 0.1) is retrained using only negative class examples.

The architecture of the CNN model with one-dimensional convolution layers used for this
problem is shown in Figure 4.3. Rectified linear units, see Nair and Hinton (2010), are cho-
sen as activation functions for inner-layer nodes, while the softmax function is used for the
output nodes. The model is trained using the Adam optimizer, see Kingma and Ba (2014),
and early stopping mechanism that monitors the validation set (set to 20% of the data set)
with patience set to 32 epochs. The model is implemented in Keras, see Chollet et al. (2015),
using TensorFlow, see Abadi et al. (2016), as a backend.
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FIGURE 4.3: Architecture of the CNN model used to target the local strategy.

CNN was chosen because the problem at hand is naturally linked to image processing.
CNNs can be interpreted as an automatic feature extractors from the image. In contrast
to other traditional algorithms that may overlook spatial information between pixels, CNNs
effectively use adjacent pixel information to extract relevant variability in data using self-
thought filters and use a classification layer at the end.

The SNN model consists of one hidden fully-connected layer with 16 units (chosen to ap-
proximately match number of parameters in the CNN). As for CNN, it uses rectified linear
unit as activation function of the hidden nodes and the softmax function is used for the
output nodes. This model is primarily introduced to obtain a term of comparison for the
CNN.

Unlike what was done for the other models, the smoothing preprocessing step described in
Section 4.1 is not applied for CNN nor SNN models, in order to allow the networks to learn
their filters. Additionally, the negative S0 and positive S1 samples are weighted to account
for class imbalance. The weight λψ for a sample in class ψ ∈ {0, 1} is defined by

λψ =
|S|

2 · |Sψ|
, (4.7)

where S = S0 ∪ S1.

4.2.2 Experimental Results and Discussion

The performance of the various models on a held-out test data set can be seen in Figure 4.4,
which shows the different ROC curves. Compared to statistical, image processing or other
ML-based solutions supervised DL outperforms the other models. Thanks to the limited
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FIGURE 4.5: The distribution of scores (left), and the loss function as a func-
tion of the number of training epochs (right) for the CNN model used in the

local approach.

number of parameters of the model, the training converges to a satisfactory result (Fig-
ure 4.5), even though the number of training samples was small.

Although the AUC of the fully-connected SNN is comparable to the one of CNN, the latter
is a better solution when requiring maximum specificity (TNR, aims at avoiding FPs) and
sensitivity (TPR, aims at avoiding FN).

The relatively good performance of the unsupervised variance method, compared to the
poor results of the filter, and the near-optimal performance of the SNN, show that the filters
to learn are not simple contrasts. However, the superior performance of CNN demonstrates
that the initial edge detection layer is useful. Unfortunately, the filter visualization, see Fig-
ure 4.6 does not provide vital information for the human experts as the nature of the input
data is much different than in the real-world data sets.

The limited performance of IF is likely to come from the violation of its fundamental as-
sumption. The faults are not rare (remember that the fault rate is in the order of 10%) and

FIGURE 4.6: Visualization of the learned filters of the CNN model used in the
local approach.
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homogeneous. The inferior performance of the typical semi-supervised method (µ-SVM)
illustrates the well-known smoothness versus locality argument for DL, see Bengio and Le-
Cun (2007); Bengio et al. (2013): the difficulty in modelling the highly varying decision sur-
faces produced by complex dependencies involving many factors.

As shown in the score distribution of Figure 4.5, the proposed architecture of the CNN model
separates anomalous layers significantly. That allows for excellent flexibility in choosing the
working point for deployment in production in the CMS DQM. Depending on the cost of
type 1 and type 2 errors for the detector operators, the threshold can be set anywhere in
[0.1, 0.9] score range. When using the CNN for the selection of suitable samples for training
the regional algorithms, the working point is chosen not to favour specificity nor sensitivity,
i.e. the FPR and TPR have the same associated cost, with a threshold equal to score 0.5. For
more information about cost matrix properties, see Elkan (2001).

The legacy strategy targets a specific failure scenario of dead regions without considering
spatial proximity information. The algorithm produces a chamber-wise goodness assess-
ment without being capable of identifying a specific problematic layer in the chamber. For
this reason, a direct comparison with the CNN model is impossible. Instead, per-layer
ground truth is used to label as bad any chamber with at least one problematic layer. The
legacy algorithm is asked to indicate there is at least one faulty layer in a chamber. With this
per chamber label, the specificity of the legacy strategy is estimated to 91%, with a sensitivity
of only 26%.

Aside from higher sensitivity and specificity, CNNs offer an improvement in promptness of
flagging emerging malfunctions. The performance with low statistics, i.e. at the beginning
of a run, is a crucial area of improvement as all monitoring algorithms are built under the
assumption of availability of high statistics. Thus, the early results at each run give high
uncertainty and are ambiguous for the DQM shifter (in the context of the time). As seen in
Figure 4.7, the CNN model gradually adds alarms until reaching stability (with most of the
alarms being generated in the early stage of the run). The legacy strategy has the opposite
behaviour, generating a substantial fraction of false alarms in the early stages of the run,
gradually removing them. As a consequence, it has been reported that less experienced
DQM shifters have incorrectly interpreted those results as a significant failure in the detector.
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4.2.3 Interpretation of Classification Results

Along with public discord on the interpretability of neural networks, especially CNNs, com-
prehensive research has already been done to understand network predictions and classifi-
cations, see Montavon et al. (2018) for an overview.

As discussed in length in Simonyan et al. (2013), getting insights into the DL decision-
making process could be done by either investigating class model visualization or class
saliency in an image. Both of them require computing the gradient of the output for the
input image. The first method generates an image that best represents a given category
(class). The latter finds the pixels of an image which contribute most towards a particular
decision. It is calculated by taking the derivative of the class score for the input image space
is taken and evaluated for a given image. Given an image I0 a class score Sc(I) is approxi-
mated with a linear function in the neighbourhood of I0 by computing the first-order Taylor
expansion:

Sc(I) ≈ wT I + b , (4.8)

where w is the derivative of Sc for the image I at the point I0:

w =
∂Sc

∂I

∣∣∣∣
I0

. (4.9)

That results in a scalar quantity for each pixel in the image.

Example of saliency maps visualization generated for DT occupancy matrices is shown in
Figure 4.8. The channels with high values match the regions of low occupancy. These plots
were proven fundamental to point the detector experts to the root of the CNN decision
allowing them to carry on further investigations on the detector aspects. Also, in case of
incorrect classification, the saliency maps could be used to understand the decision of the
algorithms in detail and take corrective measurements.

Saliency map can also be used for isolating objects of interest. More recent work on object
detection may be more suitable for this task, e.g. Redmon et al. (2016). Alternatively, instead
of using back-propagation of the output class score for the input Zhou et al. (2016) proposes
to modify the network architecture so that the forward propagation can perform both the
classification and localization. In the future, the experiment experts may find localization
tasks necessary for further automatization of CMS DQM. In such a case, one can consider the
state of the art techniques and, e.g. Selvaraju et al. (2016); Bojarski et al. (2016); Sundararajan
et al. (2017). At this stage, proposed saliency maps are a perfect balance between simplicity
of implementation and interpretability of classification results.

4.2.4 Model Improvement with Active Learning

Annotating hundreds (for simpler models) or thousands of histograms for ML-based CMS
DQM can be tedious or even redundant exercise.

Active learning (also known as query learning or optimal experimental design) is an area of
research particularly suitable in cases when the data collection is a cheap process while the
data labelling is not (e.g. time-consuming). It follows a simple yet powerful idea of querying
an oracle (i.e. human expert) for a label for most informative samples. There are several
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to the channel influence over classifier decision to flag problems.



65

0.00 0.05 0.10 0.15 0.20
Fallout 1TNR)

0.6

0.7

0.8

0.9

1.0

S
en

si
ti(

ity
 

T
P

R
)

CNN(2AL,AUC:0.99
CNN(2RAND,AUC:0.922
CNN(1,AUC:0.963
Ne)CNN)orkingpoint

FIGURE 4.9: ROC curves for different versions of CNN. CNN-v1 is the model
trained on the initially labelled data set. Its AUC drops compared to Fig-
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trained on a set ∼ 20% bigger than the original one with additional labels
coming from different sources. CNN-v2-RAND uses labels coming from a
random selection of chambers while CNN-v2-AL uses uncertainty sampling.
The experiment shows that the incorrect choice of samples to label can lead

to a drop in model performance.

scenarios in which active learners may pose queries and several query strategies that have
been used to decide which instances are most informative. For a general survey, see Settles
(2009). Despite the consensus on active learning and its widespread use, the literature is
reporting both positive Tomanek and Olsson (2009) and negative Schein and Ungar (2007)
results.

The most frequently seen scenario of active learning is a pool-based setting. The queries
are selectively drawn from the pool of full data set based on the knowledge of its contents.
Alternatively, in a selective sampling setting, see Atlas et al. (1990), the algorithm decides on
the informativeness of each sample independently, on a one-by-one basis given a criterion
known upfront. That method is also referred to as stream-based sampling. Lastly, in another
setting, the model can be trained with generated, informative samples, known as query
synthesis.

The most commonly used query strategy is uncertainty sampling. In this framework, an
algorithm queries an oracle for the label for the instances about which is least sure. For
example, when using a probabilistic model for binary classification, uncertainty sampling
simply queries the instance whose posterior probability of being positive or negative is clos-
est to 0.5, see Lewis and Gale (1994); Lewis and Catlett (1994). For binary classification,
other margin-based and entropy-based selections are again equivalent to querying the in-
stance with a class posterior closest to 0.5. The alternatives such as Query-By-Committee
discussed in Seung et al. (1992), Expected Model Change, see Settles et al. (2008), Expected
Error Reduction, see Roy and McCallum (2001), require a more complicated setup.

For online DQM, a simple pool-based setting is a correct choice as the data set is available
upfront, and there is no need nor feasibility for labelling instances on-the-fly. Synthesized
samples may look confusing to the oracle: a lack of physics-based rules during synthesis will
produce unanticipated, unrealistic histograms. The experiment using uncertainty sampling
for the AD for DTs local approach was undertaken. The results are shown in Figure 4.9 and
suggest the implementation of a pool-based uncertainty sampling active learning for the
local approach as it improves classification results.
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Above all, some aspects have to be addressed, which for now are inconclusive. First and
foremost is the question of batch size before retraining (amount of new labels to generate
in each cycle). The detector experts are advised to vary the amount of labelling to leverage
between the cost of the process and the observed model inaccuracy reduction. Finally, the
stopping criterion needs to be defined by the sub-detector communities.

4.3 Relative Comparison of Detector Components for the Re-

gional Approach

In normal conditions, healthy chambers show similar occupancy levels in adjacent layers
with the four inner layers having a different behaviour due to their different orientation
(see Section 2.3.2). The regional approach described in this section exploits the pattern of
relative occupancy of the layers within a chamber. In essence, this approach extends and
complements the local one, allowing to identify less frequent intra-chamber problems which
require the comparison of the information about all layers within one chamber in order to
be spotted. For example, it aims at detecting failure modes where the occupancy of hits
decreases uniformly in a specific layer or set of layers.

Typical examples of these kinds of failures are problems related to the high-voltage bias of
the drift cells. The voltage distribution system is organized by layers and a lower value w.r.t
to the nominal operation point would result in lower detector efficiency and, as a conse-
quence, lower absolute occupancy in the affected region. Figure 4.10 shows an example of
such an occurrence, where layer 9 is misbehaving. The legacy strategy and the local models
of Section 4.2 are not conceived to detect this type of anomalies. All layers in a chamber
are considered simultaneously to solve this challenge; each chamber is considered indepen-
dently from the others.

4.3.1 Methods and Experimental Setup

In the early stages of this work, it was observed that a model capable of detecting regional
anomalies could not be successfully trained if the local faults are not filtered beforehand. For
this purpose, the circa 500 labelled images available for this study does not provide a suffi-
ciently large training set. Thus a much larger data set is used (all the unlabelled samples).
The pre-filtering problem is solved using the score of the convolutional model presented in
Section 4.2 as an approximation of the ground truth. For this, a working point with 96%
TPR is picked, corresponding to a 1% FPR (to guarantee an extensive data set size and low
level of contamination). The amount of problematic chambers is reduced to a tolerable level,
comparable to a human expert.

All chambers with any layer identified as faulty are discarded. Chambers located in MB4 are
discarded as well, because of the lack of a middle group of four layers, see Section 4.1. The
above changes effectively narrowed the training data set to 8441 matrices. The smoothing
and standardization procedures are applied to all the layers C̃k within each chamber obtain-
ing matrices of shape 12× 46. The occupancy of hits within one chamber are normalized
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FIGURE 4.10: Example of the impact on hit counting of different voltages
applied to layer 9. (A) shows the occupancy map when operating the layer at
3200 V and (B) shows the effect of operating at 3450 V. Both examples should
be regarded as anomalies. Since the values in both cases are not equal to zero,

the legacy strategy considers those cases as non-problematic.

using a min-max scaler:

Ċ =
C̃k −min(C̃k)

max(C̃k)−min(C̃k)
. (4.10)

This normalized values to the [0, 1] range while retaining the information about the relative
occupancy between the layers.

In order to evaluate the model, the only labelled set for the class of anomalies to tackle:
a subset of the data during which layer 9 of some chambers were operating at a voltage
lower than the nominal one (see Figure 4.10). In particular, the voltage was set to 3450 V1

and 3200 V2 while the standard operation point is 3550 or 3600 V depending on the chamber.
These settings result in an absolute difference in hit counting, more pronounced for the lower
voltage settings because of the physics of gas ionization by radiation. The chambers where
all layers operate at nominal conditions are considered as good in the test.

In this experiment, the following unsupervised methods for semi-supervised AD are con-
sidered:

• simple undercomplete autoencoder with the 20 unit representation layer;

• convolutional autoencoder;

• denoising autoencoder where with additional noise in training samples; and

• autoencoder with kernel L1 (10−5) sparsity regularization in the hidden layers.

Similarly to the local approach, the autoencoders are trained using Adam optimizer. Early
stopping mechanism with the patience set to 32 epochs is adopted to monitor validation

1for CMS members: runs 304737-304740
2for CMS members: run 302634
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FIGURE 4.11: Convolutional (A) and simple, denoising, sparse (B) autoen-
coder models architecture used to target regional strategy.

set (20% of the total data set). All models are implemented using the Keras library with
TensorFlow as a backend. The architecture of the model is shown in Figure 4.11. A and B
for, respectively, the convolutional autoencoder and the other three models (for which a base
architecture is adopted). The bottleneck architecture is kept for both denoising and sparse
autoencoders to limit the number of training parameters. The parametric rectified linear
unit is used as the activation function on the hidden layers, while the output layer uses the
sigmoid function. All models are instructed to minimize the Mean Squared Error (MSE) ε

between original, ẋ, and reconstructed, ẍ, samples:

εk =
1
ij ∑

i,j
(ẋk

i,j − ẍk
i,j)

2 . (4.11)

4.3.2 Experimental Results and Discussion

The following quantity as anomaly indicator is taken:

εk
i =

1
j ∑

j
(ẋk

i,j − ẍk
i,j)

2 (4.12)

to assess the performance of a given ensemble of channels, i.e. the MSE between the original
sample given as input to the encoder (ẋk

i,j) and the output of the decoder (ẍk
i,j). The granu-

larity of the autoencoder information is exploited to identify the problematic region of the
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FIGURE 4.12: MSE between reconstructed and input samples for layer 3 (left)
and layer 9 (right) for three categories of data for convolutional autoencoder.
Despite a problem in layer 9, all ε for layer 3 are comparable for all chambers.
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FIGURE 4.13: ROC and AUC of the different autoencoder models used in the
regional approach. The anomaly score for the test set is the MSE in layer 9.

See Figure 4.12 for comparison of anomaly scores.

chamber by computing the MSE values for a different set of channels. For example, one can
compute the MSE for all the channels corresponding to a given read-out electronic board
or computed per layer when tackling potential failures of the voltage distribution system.
On the one hand, this allows experts to feed their technical knowledge into the evaluation
process but also suppress FP as most of the distance between autoencoder input and output
come from well-behaving channels.

This figure of merit is used for the sample with different voltage settings. Figure 4.13 shows
the excellent performance of all models, especially convolutional autoencoder. The distribu-
tions of the MSE for a well-behaving and a problematic layer are shown in Figure 4.12. The
MSE distribution for layer 9 shows clear separation for chambers operated at nominal and
lower voltages. For each εi value, a quantitative assessment of the severity of a potential
anomaly can be derived quoting the corresponding p-value of the excellent example distri-
bution. The separation is not evident for the working point at 3450 V, which is closer to the
standard setup, reflected in the AUC values reported in Figure 4.13.

The legacy strategy is not sensitive to the type of faults described in this section since the
hits in layer 9 are non-zero values. For deployment in the DQM infrastructure of the CMS
experiment, the local and regional models can be applied in a pipeline to cover all different
kind of anomalous behaviours.
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4.4 Identification of Emerging or Novel Problems

for the Global Approach

The global approach aims at detecting anomalies looking at the global ensemble of muon
chambers, exploiting the dependency of the occupancy of each of them on their position in
the detector.The chambers are categorized according to their position in the spectrometer
and the occupancy pattern, exploiting the field knowledge to predetermine the chambers
classes. The model is fed with the occupancy data of all chambers for a given run and pro-
vide a tool to visually investigate for a novel or emerging problems through dimensionality
reduction.

The position of the chamber in the CMS detector (uniquely determined by the wheel, sta-
tion, and sector numbers) impacts expected occupancy distribution of the channel hits. The
expected occupancy pattern is mainly driven by the proximity to the beam-collision point, at
the centre of the detector. As a consequence, chambers in different stations (see Section 2.3.2)
will manifest a different behaviour. The rotational symmetry of the detector geometry and
the collision events around the beam axis is taken into account grouping chambers within the
same station, independently on the sector they belong to (see Section 2.3.2). Similarly cham-
bers belonging to the same station but in opposite wheels are considered alike. Additionally,
the behaviour of the chambers is expected to be the same across different runs (modulo the
decrease of occupancy due to the decrease of beam intensity across the fill). That leaves us
with a categorization based on the chamber numbering schema, where the station number
and the absolute value of the wheel number are the only relevant parameters.

The problem is contextual, in the sense that critical explanatory attributes are not part of the
underlying data features. Conditional AD, see Song et al. (2007), has been proposed to deal
with such a situation when the relevance of external attributes is unknown. For instance, if
a set of environmental or technical attributes are monitored, that can impact the behaviour
of the detector components. The spatial positions of the chambers are the only external
attribute, and the common understanding of the underlying physics processes assures their
impact. Thus, the problem is back to a point anomaly problem.

4.4.1 Methods and Experimental Setup

In this approach, undercomplete autoencoder is used, similar to that introduced in Sec-
tion 4.3 (see Figure 4.11), except that the size of the representation layer is reduced to three
units for visualization purposes. The same preprocessing, training and validation procedure
is followed.

The goal is to exploit the categorization of the chambers based on their geographical location
to interpret the compressed representations.

At the moment of writing this work, global faults are not systematically labelled by the DT
detector experts. In the absence of a global label, only an unsupervised method and visual
interpretation are considered for this experiment.
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FIGURE 4.14: Compressed representations of chamber level data for all
chambers (left) and limited to only one chamber across different runs on a
scale of the number of anomalous layers (right). The samples cluster accord-
ing to their positions in the detector, i.e. station number (left), or according to

similar behaviour (right).

4.4.2 Experimental Results and Discussion

Figure 4.14 shows an example of a low-dimensionality representation of the chamber data
clustering depending on the chamber position in the detector. The global approach is then
capable of spotting an unusual behaviour of DT chambers, taking into account the geograph-
ical constraints. Ultimately, this could pave the way to more flexible assessment by scoring
per detector region.

When investigating the representations for a specific chamber across different runs (see Fig-
ure 4.14), the representations tend to cluster depending on the number of problematic layers.
Thanks to this fact, the cumulative distribution of the compressed representation could be
used to highlight the occurrence of new anomalies or to associate an anomalous behaviour
to an already known problem. This application could assist experts in diagnosing transient
and reoccurring issues.

4.5 Conclusions and Practical Considerations

This chapter describes how detector components malfunctions can be identified with high
accuracy by a set of automatic procedures, based on ML AD. The specific case of the DT
muon chambers of the CMS experiment was considered. A CNN-based classifier is proposed
to spot local misbehaviours of the kind currently targeted by the existing CMS monitoring
tools. The classifier is capable of detecting the known anomalous behaviours with unprece-
dented efficiency. It is possible to extract more information from the map of electronic hits
than what is achieved by the legacy strategy. In particular, a strategy to spot regional prob-
lems across layers in a detector chamber is proposed, or globally, i.e. across chambers in the
full muon detector using convolutional autoencoders.

The algorithm for the detection of anomalies within the layer (local approach) has been in-
tegrated into the CMS online DQM infrastructure at the beginning of the 2018 LHC Run
and kept running in parallel with the legacy strategy. That allowed to commission it using
the newly acquired collision data. After initial tuning of the working points to meet the re-
quirements of the DT detector experts, the algorithm has been performing reliably, and it is
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considered for deployment in the next LHC Run (2021). The deployment and commission-
ing of the regional and global approaches are also foreseen in the future.

A generalization of these strategies paves the way to the full automation of the data quality
assessment process for present and future HEP experiments. Since CNN is the primary
ingredient in this study, and since many monitored quantities in typical HEP experiments
are based on 2D maps (e.g., detector occupancy, detector synchronization), the approach
proposed in this paper could be extended beyond the presented use case. A study set for
Gas Electron Multiplier (GEM) detectors, see Kang and Lee (2018), confirmed this claim.

A web-based framework for data labelling and algorithm re-training was developed to fa-
cilitate the process of adopting a similar strategy for different sub-detectors. This web-based
solution serves as a feedback to expert field knowledge in the automated test suite. It allows
for automated acquiring and labelling of a large amount of data. It assists experts in debug-
ging networks decisions by visualizing saliency maps using gradient backpropagation and
facilitates continuous improvement of the models by implementing pool-based uncertainty
sampling for active labelling.

Based on the results presented in this chapter, the novel approaches provide better and more
scalable solutions when compared to the classical approaches. As the neural networks are
universal approximates, they deal with nuances and non-linearity of the input space effi-
ciently. Classical AD usually deals with smaller input dimensionality. For data sets with
high dimensions, DL comes as an easily trained alternative. The standard caveat of the
necessity of obtaining a large amount of training data for supervised approaches could be
overcome with the low number of training parameters of the model. Finally, apart from
CNNs ability to classify real-world images correctly, they can deal with images composed
by the monitoring infrastructure (local approach).

The autoencoders can be used for semi-supervised AD tasks. Algorithms based on autoen-
coders, offer a more robust AD strategy, not being defined as supervised classifiers of specific
failure modes. This approach allows localizing the origin of a given anomaly, exploiting
the granularity offered by the use of MSE of the decoded image as a quantification of the
anomaly.
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CHAPTER 5

Data Certification Novelty Detection

with Deep Autoencoders

The data acquired by the CMS experiment are scrutinized by a certification procedure, which
ensures they are usable for all physics analysis, see Schneider (2018). This procedure is
the last step of the complex DQM apparatus of the experiment, described in Section 2.4.
The current procedure is conducted by experts of the various sub-detectors and is based on
monitoring some fundamental physics quantities computed at various stages of the data-
processing chain (see Section 2.4.3).

An efficient ML algorithm requires reuse of the current knowledge about the world to take
on a new, possibly anomalous observation. To this purpose, the algorithm needs to under-
stand the similarities between old and new samples. Human experts make decisions on the
data quality based on statistical distributions displayed in the form of histograms produced
by the DQM infrastructure. These distributions are used in two ways. On one side, the field
experts apply their prior knowledge of the physics processes and the detector functioning to
judge what is expected and what is not. On the other side, they compare consecutive chunks
of data looking for striking and unexpected changes. This chapter tackles these two aspects
by exploring the use of autoencoders to target novelty detection. The main challenge is to
train a model that learns the features of a specific data set and discovers anomalies in the
data. To ensure adequate coverage of all possible physics signatures of interest to the physi-
cists, the model has to probe a large number of features. At the same time, the procedure
needs to ensure that variations in the quality of the data are identified with the best possible
time granularity: this requires being able to probe data corresponding to a short period of
acquisition and hence with limited statistics.

The CMS data, as well as the DQM task, are organized in acquisition runs corresponding to
several hours of data taking (see Section 2.3.4). In case an anomaly is detected by the cer-
tification procedure, the corresponding data need to be discarded. The exact time intervals
affected by the anomalous behaviour need to be correctly identified to minimize the data
loss. That requires the certification procedure to be sensitive to transient effects. When the
affected interval of the acquisition run is short, the statistics available in the DQM histograms
are often too shallow for human assessment.
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As a consequence, transient problems are challenging to identify and very often, a conser-
vative approach has to be adopted discarding more data than actually necessary. In these
cases, pinpointing the exact time interval affected by anomalous behaviour can require fur-
ther investigation and the use of non-event data. A certification protocol based on a shorter
interval, using luminosity sections (LSs, see Section 2.3.4), is more desirable. LS-based qual-
ity labels are already in place and are usually set using log messages and monitors related
to the detector slow control more than on the data themselves, see Rapsevicius et al. (2011).
The ever increasing physics data volume, as well as detector complexity, calls for ways to
further automate this monitoring step. The CMS Collaboration is looking into new algo-
rithms allowing it to assess the quality of the physics objects in the reconstructed data with
high accuracy and low time granularity.

The data acquired by the experiment are subdivided into several data sets depending on
their physics content. Each data set undergoes a reconstruction procedure yielding several
different collections of physics objects. The certification procedure needs to assess the perfor-
mance of all of them: this high data dimensionality naturally points toward the exploration
of DL algorithms. The anomalies can be caused by detector malfunctions or sub-optimal
software reconstruction and, by nature, are rare and not known a priori. Consequently, the
use of supervised AD methods, such as binary classification neural networks, is problematic
as a positive (anomalous) class may be misrepresented in the training set. Furthermore, the
characteristics of good data are evolving with the LHC or CMS configuration.

A vital requirement of this approach is that the reason for flagging a sample is easily ex-
plainable, which can be further used to ascribe the origin of the problems in the data to a
specific sub-detector or physics objects. This critical aspect would allow the collaboration
for not only certifying the data but further improve the infrastructure.

This chapter introduces new tools for targeting the automation challenges illustrated above.
This tool is based on a semi-supervised approach which uses deep autoencoders, see Good-
fellow et al. (2016), trained on the data acquired during the 2016 LHC campaign. In sum-
mary, the main aspects of this work are:

• detecting different types of anomalies affecting the CMS detector with high sensitivity
and specificity using in training only the knowledge about the good-quality data and
no assumption on the type of anomaly;

• exploiting the statistical behaviour of 1-dimensional distributions of a large number of
physics quantities;

• assessing the (mis) behaviour based on a shorter interval than what is realistically fea-
sible with current protocol;

• exploiting semi-supervised models to achieve stable performance over time despite
the natural evolution of the underlying physics quantities due to the LHC and CMS
data-taking evolution;

• allowing for fine-grained interpretation of the classification results, which can be fur-
ther used to ascribe the origin of the problems; and

• providing an additional tool in CMS DQM toolbox that minimizes the risk of human
mistakes and speeds up the certification procedure.
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5.1 Data Set and Preprocessing

After the data are recorded, a complicated data processing step (called physics reconstruc-
tion) transforms the output of electronic read-out signals into human-interpretable variables
ascribed to the physics objects (e.g. photons, muons, jets, tracks). These data are persisted
in the so-called Analysis Object Data (AOD), providing the physicists with a compact repre-
sentation of the physical processes in a convenient format for the analysis processing. The
present study is based on this AOD data format, considered as the best trade-off between the
accuracy of the description and compactness and volume of the data. Other options would
be to include more low-level quantities related to the detector performance and read-out
granularity (e.g. as the ones used in Chapter 4 for the DT detector monitoring) or to further
reduce the data volume going to more streamlined representation of the physics process as
done in previous research work from Borisyak et al. (2017).

The data set used in the current work consists of all 163684 LSs data recorded from June to
October 2016. Several types of reconstructed particle objects are included to maximize the
coverage of the algorithms for different physics objects and possible anomalies. In total, 401
physics variables are used (e.g. transverse momentum, energy, multiplicity, direction for the
different physics objects). Whenever the ground truth is needed, the quality labels (good or
bad), determined by the manual certification procedure performed by the detector experts
can be used.

Naturally, given the heterogeneity of the monitored quantities, the features follow different
distributions spanning very different ranges. The data are preprocessed to speed up the
training of the model: each feature is standardized by subtracting the mean and scaling it to
unit variance.

As explained earlier, human experts make decisions regarding the data quality based on the
shape of the statistical distributions of key quantities represented in the form of histograms.
In case of an anomaly, the corresponding histograms should show a considerable deviation
from the nominal shape. To mimic this logic, the distribution Di = {x0, . . . , xk} of each one
of the 401 monitored variables is represented by its summary statistics using five quantiles,
mean and standard deviation (for visual interpretation see Figure 5.1). The final vector has
2807 features. Each data-point represents the data acquired during one LS to aim for high
time granularity of the classification results.

5.1.1 Different Event Topologies

As mentioned before, the physics data is stored in different Primary Datasets (PDs). PDs are
subsets of the event stream acquired by the CMS experiment grouped according to the pres-
ence of different types of particle candidates. The current DC process uses a subset of the PDs
chosen to guarantee coverage of all the main physics objects, i.e. SingleMuon PD for muons
or EGamma PD for electrons. Initial study uses a data set defined by the presence of hadronic
showers, called jets in reconstructed collision products; the signature of jets involves all of
the CMS sub-detectors, enabling this research to cover as many aspects of the detector as
possible. However, the proposed strategy is generic enough to be extended to different PDs
in the future, to guarantee complete coverage of the physics signatures. Ultimately, one
could use 21 independently trained classifiers, each specializing in the classification of each



76

FIGURE 5.1: Two examples of histograms related to the Pixel detector (see
Section 2.3.2) status for a normal (left) and anomalous (right) LSs. The refer-
ence shape is the Landau distribution. The bad LS manifests anomaly in low
charge, which is caused by the Pixel detector not being properly synchro-
nized with the bunch crossing. Such distributions, obtained for each LS, are
preprocessed into a summary statistics vector of seven variables: five quan-

tiles, mean and standard deviation.

PD, similarly to the architecture proposed in Azzolini et al. (2018). The global status of the
detector could then be derived as a logical AND of the intermediate results coming from each
of the models. While these aspects are crucial for the deployment aspects of the proposed
method, the current work focuses on prototyping the strategy.

5.2 Semi-Supervised Novelty Detection with Deep Autoen-

coders

A critical requirement for a well-performing supervised algorithm is its ability to gener-
alize to unseen observations. Such methods rely on big sample size during training and
are vulnerable to incomplete or inadequate representations of data points in each class. In
the continually changing environment, the implementation of these algorithms is thus more
challenging as the incoming samples may considerably differ from the training data. As a
consequence, in case of such novel data points, the algorithm is likely to classify them as one
of the classes, perhaps good, while the expected output should be other, or novel class.

Novelty detection is the task of highlighting data that differs substantially from the past.
The problem could be approached as an OCC task, as summarized in Chapter 3.1. In such
a case, the algorithm is expected to define a boundary around the negative class p(X) < α,
and declare all test points outside the threshold α as novel ones. Classical OCC methods,
such as µ-SVM do not scale well to large high-dimensional data sets.

An alternative and practical strategy could be to generate synthetic novel samples, and the
problem will be then reduced to a fully supervised one. However, such a solution requires
accurate forecasting of potential failure modes.

Anomalies are rare in the CMS data: they account for roughly 2% of the data set, which is
a small set of examples of failures. Moreover, emerging, unprecedented failures are difficult
to anticipate. Thus supervised methods may be deficient in the DC case. An alternative is
a Semi-Supervised Novelty Detection (SSND) approach that models only negative (good)



77

class distribution, as a form of OCC. During data taking, the model aims at identifying un-
observed patterns in newly recorded data. In this manner, the full potential to catch all the
future and unseen detector failure modes is retained.

5.2.1 Methods and Experimental Design

The work in Blanchard et al. (2010) discussed SSND and proved that the presence of a mix of
labelled negative and unlebelled samples, it is possible to obtain an optimal novelty detector.
However, classical OCC usually deals with smaller input dimensionality. For data sets with
high dimensions, DL comes as an easily trained alternative. The autoencoders are exploited
for SSND to the purpose of the application at hand, under the assumption that, when trained
on a negative class, they yield sub-optimal representations for novel samples even in the
presence of label contamination. Similarly to intuition in Chapter 4, the discrepancy between
input and the output of the neural network should indicate that a sample is likely generated
by a different (novel) process.

The autoencoder architecture shown in Figure 5.2 is used with different regularization tech-
niques. These includes:

• undercomplete autoencoder;

• contractive autoencoder, see Rifai et al. (2011);

• sparse autoencoder, see Ranzato et al. (2006); and

• variational autoencoder, see Rezende (2014).

Although the ML Community has proposed a variety of different regularization techniques,
the above are the most basic and well-established techniques, as discussed in Bengio et al.
(2013). The undercomplete autoencoder, which uses the only restriction in a bottleneck,
serves as a baseline for other methods. In order to go beyond simple dimensionality reduc-
tion while preventing over-fitting the contractive, see Rifai et al. (2011), and sparse, see Ran-
zato et al. (2006), autoencoders are tested. A more ambitious goal is to extract an explanatory
representation of the novelties with latent variables, in a probabilistic framework: the varia-
tional autoencoder, see Rezende (2014); Kingma and Welling (2013). For a general overview
of these methods, see Chapter 3.4. This comparison will allow for assessing the hypothesis
that autoencoders are indeed suitable for novelty detection and the standard regularization
techniques are sufficient for helping with detection performance.

The sparse autoencoder has additional L1 kernel regularization (10−5) on all of the hidden
nodes. This constraint penalizes the output of the hidden unit kernels and forces them to be
close to zero. The exact penalty term was established using a random search. For contrac-
tive autoencoder, additional regularization should improve model robustness against small
variations in the training examples. Lastly, a VAE was tested (see Section 3.5). Because in-
put values are not scaled to the predefined range, a parametric rectified linear unit He et al.
(2015) is used as an activation function in the output layer. This way, the network learns
the correct coefficient of leakage for a non-zero gradient when the unit is not active. Hidden
units are also using this type of activation. The network is trained with Keras, see Chol-
let et al. (2015), and TensorFlow, see Abadi et al. (2016), using the Adam optimizer (with a
learning rate of 0.0001, β1 = 0.7, β2 = 0.9), see Kingma and Ba (2014), and early stopping
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FIGURE 5.2: Proposed base autoencoder architecture for DC novelty detec-
tion. The hyper-parameters were chosen using a grid search.

mechanism monitoring validation data set with patience set to 32 epochs. The network is
instructed to minimize MSE between input X and the output X̂ vector:

ε =
1
n

n

∑
i=0

(xi − x̂i)
2 . (5.1)

The DC is performed on the newly acquired data while the data taking is ongoing: the
detector experts do not have the complete data set at hand but only the portion acquired
up to that point. The algorithm evaluates the LSs in the same order the apparatus have
originally recorded them to mimic this modus operandi. The data set is split into training
(60%), validation (20%) and testing (20%) sets after sorting all samples chronologically to
simulate this production scenario. Since both the LHC and the response of the CMS sub-
detectors evolve gently with time, random splitting could lead to unintended data snooping,
see White (2000), where the model is tested on LSs nearly identical to ones in the training
sets. It was noticed that the anomaly contamination in the training set harms the perfor-
mance of the algorithm. Thus all the bad samples are removed from training and validation
sets. The test set is extended by those anomalous samples previously removed. Includ-
ing more positive examples in the test is a better approach, as the original set has a limited
amount of them. This approach helps qualify the performance of various methods given
that bad LSs should always be qualified as anomalous.

The difference between reference and recorded distributions is dominated by noise. Experts
pay attention only to significant deviations. The final decision function must mirror this
behaviour, and it is computed using MSE of only the worst 100 autoencoder reconstructed
features (TOP100):

TOP100 =
1

100

100

∑
i=1

sorted(xi − x̂i)
2 . (5.2)
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FIGURE 5.3: ROC and AUC of the autoencoder models using different reg-
ularization techniques. The bands correspond to variance computed after

running the experiment five times using random weight initialization.
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FIGURE 5.4: Anomaly score w.r.t. instantaneous luminosity (left) of sparse
autoencoder and the average feature spread in different instantaneous lumi-

nosity regions (right).

5.2.2 Experimental Results and Discussion

The final ROC curves for models and their corresponding AUC are reported in Figure 5.3.
All models show excellent performance, especially the sparse autoencoder. The two tech-
niques of improving the results were investigated: sample weights and systematic feature
selection. However, the overall performance gained from implementing any regularization
is minimal, which calls for investigating more complex designs with the possible use of syn-
thetic novelties as proposed in Kliger and Fleishman (2018).

Figure 5.4 shows the TOP100 error yield for each sample in the test set as a function of LHC
instantaneous luminosity. The instantaneous luminosity is proportional to the number of
collisions developing in each bunch crossing multiplied by the number of bunch crossings
per second (see Section 2.2). The error is visibly higher in low and high luminosity regions.
Hence the model is unable to capture full data variability. This dependence could also be
caused by a smaller amount of samples coming from those regions. Sample weights were
used in order to weight the error yield in those regions more, but no performance improve-
ment was noticed. Adding additional autoencoder input carrying values of instantaneous
luminosity has also been shown not to improve the performance.

Systematic feature selection was investigated to improve the classification results. Same
features may harm the overall performance as they are close to being constant-valued and
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FIGURE 5.5: ROC curves for models using different input feature set. Feature
selection does not improve overall ROC AUC but changes the shape of the
curve. The bands correspond to variance computed after running the experi-

ment five times using random weight initialization.

thus useless, or when it is impossible to reconstruct them accurately. Features with mini-
mal (ε = 10−8) variability were removed. Subsequently, the Pearson Correlation Coefficient
(PCC) ρ between training and reconstructed training data was calculated for each feature.
Features below a specific threshold were removed from the data set, and the model was
retrained. The table below summarizes the number of features corresponding to each con-
dition:

Condition Number of training features

- 2807
σ > ε 2461

σ > ε AND ρ > 0.2 1518
σ > ε AND ρ > 0.4 1142
σ > ε AND ρ > 0.6 827
σ > ε AND ρ > 0.8 521

Figure 5.5 shows the performance of the sparse autoencoder trained with different pre-
selections of the features. While the pruning seems to affect the AUC negatively, it shows
minimal beneficial effects in maximizing the TPR under low FPR constraints.

5.2.3 Comparison with Supervised Anomaly Detection

As discussed before, the data of the CMS experiment undergo a slow but continuous evo-
lution due to changing settings in the accelerator and detector operating conditions. In an
evolving conditions context, the CMS Collaboration is looking for tools guaranteeing stable
performance over time, even at the cost of slightly lower performance. The discrimination
power of supervised ML algorithms is expected to evolve throughout the data acquisition
campaign: the performance depends on the availability of data evaluated and lebelled by
the experts, and thus available for training. Moreover, supervised methods are expected o
have some intrinsic limit in detecting novel failure modes.

To test this hypothesis, the performance of XGBoost proposed in Chen and Guestrin (2016) (a
supervised method previously suggested in Stankevicius et al. (2018) in the context of CMS
DC), IF and the semi-supervised reference model, the sparse autoencoder are compared. The
goal of the exercise is to compare the performance of the three methods emulating a realistic
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FIGURE 5.6: Performance of different strategies as a function of time. Com-
pared are supervised AD XGBoost, semi-supervised AD sparse autoencoder
and unsupervised IF. After every 0.2 fractions of the data set, each method is
retrained on all of available past data points using ground truth labels. AUC

is reported since last retraining.

deployment model. On this purpose, the algorithms are retrained on past data in chunks
corresponding to about one month of data taking time (corresponding to about 20% of the
data set).

Figure 5.6 shows the performance evolution for each model calculated since last retraining
time. The visible performance drops, around 0.3, 0.4 and 0.65, are caused by the appearance
of novel problems. The autoencoder performance is less affected by those events than the
performance of XGBoost. Results show that the semi-supervised approach guarantees a
more stable performance than supervised ones. Nevertheless, a fully supervised approach
may still be a powerful addition to the proposed protocol, as its performance is frequently
superior.

5.2.4 Interpretability of the Classification Results

Beyond high specificity and low FPR, a valuable model for the DC task needs to provide
easily interpretable results allowing the certification experts to pinpoint the reason why a
specific LS is lebelled as anomalous. In this respect, the autoencoder approach provides a
clear advantage allowing to evaluate the contribution to the MSE of each input variable. Mis-
behaving variables can be easily singled out based on their high contribution to the overall
error. Figure 5.7 illustrates one example of how this can be exploited on the CMS data. The
features are grouped according to their sensitivity to a particular physics property. The plot
of the absolute error allows the expert to identify the problematic area at a glance judging
on the absolute size of the error for the variable or group of variables.

5.3 Conclusions and Practical Considerations

This work explored the usage of autoencoders for a semi-supervised novelty detection ap-
plied to the CMS physics data DC. The results presented in Section 5.2.2 proved that the
autoencoders are robust to rare and newly emerging problems and may be successfully em-
ployed to tackle the novelty detection problem. However, unlike in Section 4.3, the different
regularization techniques provide a minor increase in detection performance, suggesting
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FIGURE 5.7: Reconstruction error of each feature for two samples. Different
colours represent features linked to different physics objects. For a negative
sample (left) similar autoencoder reconstruction errors are expected across
all objects with small absolute scale. Anomalous samples (right) have visible

peaks for problematic features (muons).

more complex solutions would be necessary in order to achieve better results. The results
from Section 5.2.3 show superior performance of autoencoders on novelty detection tasks.

The proposed method monitors the distribution of several hundred physics quantities with
very low time-granularity, allowing to identify emerging novelties promptly and to iden-
tify which ones among the input variables show an anomalous behaviour. This aspect of
the interpretability of the results is a crucial feature for the physicists operating the tool.
DC experts are validating the approach on more recently collected data from 2018 LHC run
and coming from different PDs. Efforts to integrate the tool in the existing protocol as as-
sistance for human experts were undertaken. Further studies are ongoing to consolidate a
training and deployment strategy allowing the model to describe the evolving nature of the
experiment data accurately. It is not necessary to classify all the data without any human
intervention. Instead, the system can call for verification of questionable cases still limiting
required human labour.
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CHAPTER 6

Trigger Rate Anomaly Detection

with Conditional Variational Autoencoders

The use case considered for this chapter is the monitoring of the CMS trigger system, which,
as illustrated in Section 2.3, is the online data selection stage of all experiments at the LHC.
The crucial role of the trigger system imposes stringent constraints on any AD methodology
to be considered for production deployment: this includes the detection performance but
also simplicity and robustness, for long-term maintainability.

Exploiting the rapid advancements in probabilistic inference, in particular, VAEs, for AD
tasks remains an open research question in ML community. Relatively few works have been
devoted to exploiting AD in modelling complex structured representations that effectively
perform probabilistic inference (see Section 3.5.3). In most of them, the VAE architectures
are specifically changed for specific sub-cases of AD with complex extensions. As discussed
in Section 3.5, these contributions, e.g. Hendrycks et al. (2018); Wang et al. (2019), argue
that training models only with inliers is insufficient and the VAE framework should be sig-
nificantly modified to discriminate the anomalous instances. In this chapter, this idea is
yet again challenged. The deep conditional generative architecture - CVAE - is exploited,
together with a loss function and metric that targets hierarchically structured data AD. Hi-
erarchical representation learning is a big challenge of DL, often obtained as a byproduct of
data compression, as described in Bengio et al. (2013).

The focus of this chapter is on a semi-supervised AD, where the training set is generally
free from outliers, and the examples of anomalous instances are not available. Moreover,
the monitored system is a complex apparatus where only some of the parameters driving
its behaviour are known a priori and measured. The observable x can be represented as a
function of k (known) and u (unknown) vectors: x = f (k, u). For a collection of samples,
x = [x1, x2, ..., xn], some of the k parameters influence certain observable features, later called
a configuration group. Features influenced by distinct k parameters are referred to as uncorre-
lated features. For visual interpretation, see synthetic data set description in Section 6.4. The
monitoring algorithm needs to highlight instances where:

• a significant change on a single feature is observed, later call type A anomaly, and
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• small but systematic changes on a group of features in the same configuration group
(generated using the same k parameters) is observed, called type B anomaly.

On the contrary, samples with small statistical fluctuations on a group of uncorrelated fea-
tures should not be considered problematic, as these are expected.

In summary, an algorithm needs to exploit known causal relations in data to spot both types
of problems listed above. The algorithm needs to generalize to unseen cases and use data
instead of relying on feature engineering. The algorithm has to be able to successfully dis-
entangle k from u as underlying factors of variation of x to achieve the above-stated goals.

The structural modifications of the VAE architecture are introduced to cope with the require-
ments specified above. The resulting AD-CVAE model and corresponding loss function are
described in Section 6.3. As the name suggests, the AD-CVAE specifically targets AD, as
instead of a purely generative model. As such, it introduces conditioning through limited
modifications to the vanilla VAE architecture, which is consistent with the simplicity goals.

The versatility and effectiveness of the method are initially demonstrated on data sets com-
monly used for benchmarking ML applications. A synthetic data set is then used to demon-
strate the applicability to the CMS TRM use case. These data sets are described in Section 6.4.
The experimental results, presented in Section 6.5, show that the AD-CVAE provides excel-
lent performance for the two types of anomalies described above.

Overall, the main contributions of this work are as follows:

• an anomaly metric associated with CVAE architecture is used, providing superior per-
formance on both types of target anomalies and both classical ML and physics specific
data sets (Section 6.3.3);

• a loss function that allows the model to learn the optimal reconstruction resolution is
used (Section 6.3.1); and

• alternative experimental setup for AD on the Modified National Institute of Standards
and Technology (MNIST) data set is proposed (Section 6.4.2).

6.1 Motivation: Monitoring of the CMS Trigger Rate

This section describes hierarchical nature of the CMS trigger system, which is essential to
understand before building robust monitoring strategy. The overview of the CMS TRM
application is available in Section 2.4.4.

The trigger system regulates the massive data deluge coming from the observed collisions:
its role is critical since any problem could result in a severe data loss. For this reason, besides
the sub-detectors providing input to the trigger system, also the output rates need contin-
uous monitoring. The event acceptance rate can be affected by several issues, e.g. detector
malfunctions or network and software problems. Depending on the origin of the problem,
the rate of a specific trigger node could change to unacceptable levels (critical cases include
dropping to zero or increasing to extreme values). The goal of the TRM is to alert the shift
crew in case suspicious rates are measured, calling for problem diagnosis and intervention.
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FIGURE 6.1: Correlations between 458 HLT rates of LHC fill 6291 of Run 2.
The calculation is performed after correction for down-trend of all trigger

rates using first differences.

As explained in Section 2.4.4, the current production TRM system is based on the compari-
son between the observed per-node rate and its reference value for the measured PU value.
These references are derived from fitting previously collected data with analytical models.

While the current implementation is quite effective in spotting erratic changes for a single
node, it is less sensitive to collective changes on several nodes that could equally affect the
overall acceptance rate. In particular, about 600 nodes of the HLT can be grouped in sev-
eral configuration groups, showing strong correlations in their acceptance rate variations, as
shown in Figure 6.1. The underlying process of the different configuration groups can be of
different origin. It can be driven by the physics processes when different nodes select the
same physics objects with different requirements, e.g. different requests on its energy. Alter-
natively, it can be related to the utilization of the same sub-detector component or software
component across different nodes. The most critical and easily measurable origin of these
correlations is, however, related to the fact that different HLT nodes can be fed by the same
selection of L1 Trigger nodes. Each HLT node has a direct, pre-configured link to a set of
L1 Trigger nodes through a specific configuration. The connection between L1 Trigger and
HLT nodes can be seen as a hierarchical directed graph connecting L1 Trigger to HLT nodes,
as schematically shown in Figure 6.2. The configuration changes infrequently, i.e. nodes are
added, disabled, or corrected.

As a result, when building an extended TRM application, the performance of the HLT system
can be modelled as a function of the L1 Trigger input rates. While these rates are measured
and available, all the other potential sources of correlation are not easily estimated and deter-
minable a priori due to the complexity of the system. For this reason, some unknown factors
must be introduced that are left as additional degrees of freedom of the model. Extended
TRM needs to be aware of the existence of configurations groups based on these two classes
of inputs. The extension needs to:
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FIGURE 6.2: Simplified, schematic graph inspired by the trigger system con-
figuration. Blue nodes represent HLT while yellow L1 Trigger. Each link is
unidirectional starting from yellow nodes. For each LHC fill the graph has
a few hundred nodes spread approximately equally between HLT and L1
Trigger. The connection between L1 Trigger and HLT nodes can be seen as a

hierarchical directed graph from the L1 Trigger to the HLT system.

• single out isolated problems on individual HLT nodes (to reproduce the functionality
of the current TRM); and

• highlight problems present across similar HLT nodes (novel strategy).

At the same time, the new algorithm needs to be resilient against statistical fluctuations in
the rate of a single HLT node, thus limiting the number of FPs.

The anomaly ground truth is unavailable, and a supervised AD strategy is not applicable
under given settings. The available quality flags do not necessarily correspond to failures in
the trigger system. For instance, a flag marking a failure in the muon system does not imply
a noticeable drop in all muon related trigger nodes as the failure may be related in only one
out of four (see Section 2.3.2) muon subsystems. Besides, a failure derived from monitoring
the detector components such as the occupancy plots (see Chapter 4) may not be evident
from the trigger rate data.

The inference has to be run on all trigger nodes every LS, a time interval of about 23 s, which
does not impose any challenging constraint in terms of timing.

6.2 Conditioning on Observed Factors of Variation

As pointed out in the previous section, the HLT rate depends on a set of known and un-
known factors. Because of the nature of the target application, the algorithm has to be con-
ditional to correctly model the system. In layman terms, the structure of the data is partially
known, as the HLT rates are associated with available L1 Trigger rates.

This raises the general question of disentanglement (see Section 3.5.2). To correctly model
the trigger system, the algorithm has to successfully disentangle the HLT rate dependence
on L1 Trigger rate and all other unknown processes. In light of the results of Locatello et al.
(2019), and in particular Theorem 1, the disentanglement objective in generative models,
cannot be met by the fully unsupervised VAE architectures. An alternative is to leverage
the disentanglement through the known information using structured architectures based
on the CVAE.

In broad terms, the CVAE is a conditional directed graphical model where input observa-
tions modulate the prior on latent variables that generate the outputs. Figure 6.3 shows an
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FIGURE 6.3: An example of CVAE as a directed graph. Solid lines denote the
generative model pθ(x|u, k)pθ(u). Dashed lines denote variational approxi-
mation qφ(u|x, k). Both variational parameters θ and generative parameters

φ are learned jointly.

FIGURE 6.4: Architecture of CVAE based on Mathieu et al. (2016) proposal.
The inputs x1 and x′1 are two different samples with the same label, whereas

x2 can have any label.

example of CVAE. CVAE models the distribution of high-dimensional output space as a gen-
erative model conditioned on the input observation. In the target use case, x corresponds to
the HLT rates that are conditioned on k, which is a vector of L1 Trigger rates and additional,
unknown phenomena u. The use of the underlying VAE framework guarantees that the
method generalizes well to unseen observations. In recent years several CVAE architectures
have been proposed. The literature usually approaches the CVAE with a semi-supervised
loss as the model has to leverage a mix of labelled and unlabeled data as it has been pre-
viously done by, e.g. Kingma et al. (2014); Siddharth et al. (2017). Below, an overview of
notable works is presented, while the relation to the proposed AD-CVAE model is given in
Section 6.3.4.

Kingma et al. (2014) proposed a new architecture based on VAE framework, named M1+M2.
The underlying representation is divided into z and y part where y corresponds to label
information for a subset of observed data x. The training is done in two concurrent parts
called the M1 and M2. For annotated samples, the inference model is conditioned on y,
qφ(z|y, x) (M1). For unlabelled observations, the inference is denoted as qφ(z, y|x) (M2). The
architecture targets classification as well as generation. It is trained in a semi-supervised
approach using both labelled and unlabelled data, which contributions are weighted in the
loss function.

Mathieu et al. (2016) defined a conditional model focused on generative usage. It presents
a thorough discussion of the challenges facing the enforcement of disentangled representa-
tion in the conditional VAE approach. Their probabilistic model is p(x|z, s), where variables
s and z denote the specified s and unspecified (analogous to known and unknown) factors of
variation respectively. Specifically, in the paper, s is a continuous version of a class label to
enhance the generative capabilities of the model. Both s and z are assumed to be marginally
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independent to promote disentanglement at a semantic level. As usual, the likelihood func-
tion pθ(x|z, s) is a decoder network. The approximate posterior is modelled using an inde-
pendent Gaussian distribution, qφ(z|x, s) = N (µ, σI), whose parameters are specified via an
encoder network, and a deterministic function ŝ = f (x), which together form the encoder.
Figure 6.4 presents this setup.

The critical observation made by Mathieu et al. (2016), is that the model cannot be trained
by minimizing the log-likelihood alone. Nothing prevents all of the information about the
observation to be captured by the z component. The decoder could learn to ignore ŝ, while
the approximate posterior could map data generated from the same class to different regions
in the z space. The architecture has to be augmented with adversarial training that swap
observations within a class and the loss function must include the discriminator loss.

CVAE from Sohn et al. (2015) builds upon the VAE framework for structured output predic-
tion. The model does not have to leverage unlabeled data. As such the training is performed
in a supervised manner (as the corresponding labels are always available) which explic-
itly disentangle factors k and u. Similarly to Mathieu et al. (2016), the probabilistic model
pθ(y|z, x) is trained jointly with the encoding model qφ(z|x, y).

CVAE are also related to the ICA model proposed in Hyvärinen et al. (2019). In order to
cope with the identifiability result of Hyvärinen and Pajunen (1999), the model assumes
that each component si is statistically dependent on some fully-observed multidimensional
random variable u, but conditionally independent of the other components:

p(s|u) = ∏ q(si, u) . (6.1)

For this setting, effective identifiability results are derived from a method very close to the
one of Sohn et al. (2015): a deep conditional generative model for structured output predic-
tion, trained with full supervision.

6.3 Training CVAEs for AD

To target the problem presented in Section 6.1, an architecture, later called AD-CVAE, is pro-
posed together with the corresponding loss function for optimizing the model parameters
and anomaly detection metrics.

6.3.1 The Optimal Reconstruction Resolution

The original works on VAEs by Rezende (2014); Kingma and Welling (2013) proposed a full
(diagonal) Gaussian observation model, that is

Pθ(x|z) = N (µ, σI) . (6.2)

In this model, both the multidimensional mean vector and the multidimensional variance
vector are to be learnt. For reasons that are discussed in Section 6.5, this comprehensive
approach has often been much restricted. In practical applications the VAEs evaluate the
reconstruction loss as an MSE between the data x and the output of the decoder. Such an
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approach suffers from a very serious issue. It is equivalent to setting the observation model
pθ(x|z) as a normal distribution of fixed variance σ = 1. Indeed, the log-likelihood of a
normal distribution with a fixed variance of 1 is given as

− logN (x; µ, 1) = ‖x− µ‖2 + log(
√

2π) . (6.3)

Fixing the variance this way can be detrimental to learning as it puts a limit on the accessi-
ble resolution for the decoder. The generative model has a fixed noise variance on its out-
put, making it impossible for it to accurately model patterns with a characteristic amplitude
smaller than that. However, unless a priori knowledge suggests it, there is no guarantee that
all patterns of interest would have such a sizable characteristic amplitude. The model can
learn the variance of the output of the decoder feature-wise (i running as the dimensionality
of the data vectors x):

− log pθ(x|z) = ∑
i

(xi − µi)
2

2σ2
i

+ log
(√

2πσi

)
. (6.4)

Learning the reconstruction variance allows the model to find the optimal reconstruction
resolution for each feature of the data, separating the intrinsic noise from the actual data
structure. However, as discussed in Lucas et al. (2019); Zhao et al. (2017) this approach
poses additional challenges on the optimization process, which are going to be discussed in
Section 6.5.

6.3.2 The Structure and the Loss Function

In the proposed setup, there are three types of variables, see Figure 6.3: for random observ-
able variables x, u and k are marginally independent variables. If one assumes the conditional
dependence between u and k, then u = f (k) + ε, where ε represents noise independent from
k. The likelihood function pθ(x|u, k) is then equivalent to

pθ(x| f (k), k, ε) = pθ(x|k, ε) . (6.5)

There is no predefined semantics on latent variable u as a generative model is not the interest
per se. Instead, u should carry minimum information necessary to generate x. In the above
case, ε carries such information, and we are back to marginal independence.

The variable u allows for modelling multiple modes in the conditional distribution p(x|k)
making the model sufficient for modelling one-to-many mapping. The conditional likeli-
hood function pθ(x|u, k) is formed by a non-linear transformation, with parameters θ.

φ is another non-linear function that approximates inference posterior qφ(u|k, x) = N(µ, σI).
The φ and θ are implemented as DNNs with non-linear activation functions. The schema of
the network architecture, corresponding to a graph from Figure 6.3 is shown in Figure 6.5.
This setup allows for fast detection using stochastic feed-forward inference.

The architecture from Figure 6.5 is trained efficiently in the framework of stochastic gradient
variational Bayes. Recall the VAE training objective from equation 3.33. In CVAE case, to
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approximate φ and θ, the following ELBO is optimized:

log pθ(x) ≥ Eqφ(z|k,x)[log pθ(x|z)pθ(x|k)]−DKL(qφ(z|x, k)||p(z)) , (6.6)

where z (Gaussian latent variable) intends to capture non-observable factors of variation u.

After inserting equation 6.4 as the reconstruction objective to the loss based on the ELBO
term from equation 6.6, the final loss of AD-CVAE is

LAD-CVAE(x, k, θ, φ) = ∑
i

(xi − µi)
2

2σ2
i

+ log
(√

2πσi

)
+ DKL(qφ(z|x, k)||p(z)) . (6.7)

6.3.3 The Metric

The final and essential question is how to use the trained AD-CVAE model in order to ad-
dress the target problem: build a robust AD mechanism. As explained in Section 6.1, there
are two failure scenarios: type A for significant errors on isolated features and type B for
shallow but correlated ones. Conveniently, the loss function from equation 6.7 can be bro-
ken up into two components to target these two separate scenarios. A final binary label
is needed and easily derived from these metrics. Moreover, the separability of the metrics
provides additional information, that allows for differentiating between the failure modes.
Here, the two metrics are first defined, and the discussion and motivation follow.

Once the model parameters are learned, one can detect anomalies:

• of type A with average infinity norm of the reconstruction loss mA = || 1σ (x − x̂)2||∞,
where x̂ is the reconstructed mean and σ is the reconstructed variance of decoder out-
put; and

• of type B with KL divergence mB = DKL(qφ(z|x, k)||p(z)), see equation 3.38, known
as information gain.

In the first case, an anomaly is identified on a single feature. For a given data point (x, k),
the evaluation of the loss of the VAE at this data point L(x, k) is an upper-bound approxi-
mation of − log pθ(x|k), measuring how unlikely the observation x is to the model given k.
AD-CVAE thus provides here a model that naturally estimates how anomalous x is given
k, rather than how anomalous the couple (x, k) is. That means that a rare value of k associ-
ated with a proper value for x should be treated as non-anomalous, which is the goal. The
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binary indicator is obtained by thresholding the value, a typical strategy for the AD. With
thresholding, the choice of the infinity norm of the reconstruction error instead of the mean
is required. A mean of the reconstruction error would be uninformative when most of the
features do not manifest abnormalities and, as a consequence, lower overall anomaly score.

As argued in Gemici et al. (2017), the DKL measures the amount of additional information
needed to represent the posterior distribution given the prior over the latent variable being
explored to explain the current observation. The lower the absolute value of DKL, the more
predictable state is observed. The DKL was then used as a surprise quantifier, e.g. in Gemici
et al. (2017); Eslami et al. (2018) when model was exposed to held-out images. Nalisnick
et al. (2019); Snoek et al. (2019) explored DKL as an indicator of OOD samples.

For the type B outliers, the expected anomaly reinforces patterns in data in a systematic way.
It is then expected that not calibrated model allocates such information using the the latent
bits, allowing for a successful reconstruction. On the other hand, changes on uncorrelated
features will be removed in the encoding process, resulting in low reconstruction likelihood.
Hence anomalous input yields higher values of mB and likelihood at the same time. Thus,
mB must be detached from the reconstruction part of the loss function as combining metrics
is detrimental to the detection results.

Because of two separate failure scenarios, the metrics are not combined in one overall score
but rather use logical OR to determine anomalous instances.

6.3.4 Discussion and Related Work

The CVAEs were successfully used for AD in the multivariate time series data Suh et al.
(2016), intrusion detection tasks Lopez-Martin et al. (2017), and robot time series data Sölch
et al. (2016). However, the past contributions tackled very different AD problems to the one
discussed in this chapter and used much different structural approach. The authors of Suh
et al. (2016) approach did not use DKL as the metric for the anomaly score. Instead, just
the negative log-likelihood of the corresponding ELBO objective was chosen. Lopez-Martin
et al. (2017) neither uses DKL for anomaly score. Instead, a forward pass with changing
deterministic input to the decoder is used to generate predictions. Sölch et al. (2016) based
their architecture on the RNN and among several anomaly scores, they based the results on
the full lower bound, while DKL was not analysed in isolation.

The AD-CVAE model is inspired by the contributions listed in Section 6.2, but it focuses
specifically on AD tasks, as the generation of realistic images nor leveraging unlabelled in-
stances during training is not the focus. The setup is insufficient for generative purposes. As
shown in Mathieu et al. (2016), a supplementary adversarial system is needed for such an
objective. However, the AD task is more straightforward as it is not necessary to generate re-
alistic (however they still should be accurate) outputs of the generator. Opposite to Mathieu
et al. (2016), in the context of this work, the adversarial system was not necessary to prevent
the network from ignoring k. Besides, this kind of proposed regularization will not help with
a training set that is contaminated with outliers (which may be the case, e.g. Section 6.4.2).
Using complex setup can give the encoder possibility to store too much information about
the anomalies in z and harm both types of detection metrics. The AD-CVAE is similar to M2
model from Kingma et al. (2014) but is simplified for the targeted AD needs.



92

Strictly speaking, the approach should not be called a semi-supervised one, as it does not
refer to training CVAE with unlabelled data as in the cases described in Section 6.2. A more
proper name is instead a partially supervised AD strategy: using primarily inliers (as in
class-modelling or OCC) for training and making use of the observable k.

Finally, balancing the ELBO with the β parameter (see Section 3.5.2) became a de facto stan-
dard procedure when training the VAE, even when disentanglement is not directly an ob-
jective of a given study. Despite providing good empirical results, such protocol creates a
need for fine-tuning yet another additional hyper-parameter. In the experiments it is found
that the optimal reconstruction resolution empirically gives similar results to associating a
fine-tuned β, while removing the need to tune said hyper-parameter.

6.4 Experimental Setup

This section will first provide an overview of the experimental approach. Then, it will
present in detail the benchmarks used for the experiments. The benchmarks are specially
built with the target data and detection objectives in mind. All the experimental results are
in Section 6.5.

6.4.1 Overview

Relevant benchmarks had to be defined for the approach. From a methodological point
of view, it is necessary to experiment on more than the trigger behaviour. Although these
are the real-world data, they do not introduce specificities of other applications, e.g. AD
on images. A more comprehensive range of use cases is needed. Firstly in order to check
the effectiveness of the AD-CVAE on out-of-scope applications. Secondly, to have access
to a parametrizable fault behaviour, in order to explore in detail the performance of the
strategy. Two very different types of data are used to achieve these goals. For the first goal,
the MNIST and its variants are used. For the second goal, a Synthetic Trigger (STRI) is
defined, a simplified and modular model of the real data, as a GMM. As the experiments in
the next section will show, it turns out that STRI is a credible proxy for the trigger data. Of
course, these experiments are followed by the experiments on the target data.

The associated preprocessing is described in this section. As such, the data sets do not suffice
to make a benchmark. They must be enriched: for instance, MNIST does not offer a clear-
cut notion of anomaly. On the other hand, training and evaluation demand it. Concerning
training, as AD-CVAE is partially supervised (as defined in Section 6.3.4), uncontaminated
train sets are required. Therefore, we have to define the normalcy concept; as self-definition
always runs the risk of experimental bias, we took special care of creating a parameterized
truth (a completer). In this sense, this section proposes two new AD benchmarks, one based
on MNIST and the other on GMM as a case for structured data. Because most procedures are
specific of the benchmarks, the rest of the section is organized along with their descriptions.



93

6.4.2 MNIST and Fashion-MNIST Benchmark

Data Set

The performance of the proposed method will be assessed using the MNIST, and the more
recent and more challenging Fashion-MNIST data sets, introduced in LeCun et al. (1998)
and Xiao et al. (2017) respectively. The data sets contain grey-level images of handwritten
digits or pieces of clothing. Although the target application deals with numerical data, not
images, this preliminary experiment serves as an example of possible out-of-scope, real-
world applications.

Structure

Handwritten digits in MNIST data set belong to a manifold of dimension much smaller than
the dimension of x (28x28 pixels) because the majority of random arrangements of pixel
intensities do not look like handwritten digits. Intuitively, this dimension should be at least
the size of 10 as the number of classes suggests. Nevertheless, larger latent space needs to
be accommodated as each digit can be written in a different style. Similar intuition applies
to Fashion-MNIST as this data set also has ten target classes of clothing types, but there is
variability inside a class, e.g. a type of shoe.

The class and style distinction has been abundantly exploited in the disentangling con-
text Mathieu et al. (2016); Kingma et al. (2014). Importantly, a human observer could regard
digits as anomalous because of the latent features capturing handwriting styles (irrespective
and not captured by the class label), when they describe original, unconventional handwrit-
ing styles. For instance digit 4 with style resembling digit 9, or extremely rotated digit could
be considered as anomalous.

In the experimental setup, a class label is assigned to vector k while u should accommodate
information about other latent features of x including style. The x are the input pixel values.
Throughout the experiments, the original train-test splits are used with 10000 test samples.

Tagging Anomaly

Past works on AD with MNIST data set arbitrarily assigned one of the classes as anomalous.
For instance, digit 0 was considered abnormal, while other digits were considered as inliers.
Although this approach is straightforward, its methodological quality is challenged here.

In the following, a simple alternative method for evaluating AD in the MNIST context is
defined based on two ideas. Firstly, the class is irrelevant, and the character style is the key;
secondly, as entirely objective tagging of those kinds of anomalies is impossible, and a fully
configurable tagging oracle is needed. The two are linked by the fact that the configuration
parameter will capture the capacity to accept more or less bizarre writing style.

The overall evaluation procedure is described in algorithm 2. The oracle is obtained by a tra-
ditional multiclass classifierM. M is trained in Oracle procedure in a supervised manner
on a fixed training set. On the test set, the classification score s, equivalent to classification
error 1− p(k|x), is used to tag each sample, as an outlier or inlier. Intuitively, the higher the
s, the more anomalous the data point. s is continues and in (0, 1) range.
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The purpose of the Detection procedure is to provide performance indicators that do not
depend on any specific and subjective choice of anomalies. As this is not possible with a
single figure, the output of the Detection procedure is a discretized version of a function.

Given an AD algorithm A trained on the fixed training set, and a test set, the Detection

first computes the anomaly scores. In the second step, a set of true labels is selected based
on the previously obtained classification score s and a chosen strictness τ. For a given τ,
different truth labels are chosen for the test data. Then the Detection returns an AUC as a
function of varying strictness τ. For instance, the number of anomalous samples reported
for s > τ, τ = 0.99 is much smaller than the ones reported for τ = 0.01. Naturally, the
second set of anomalies will contain all the instances from the first. With decreasing τ, more
test samples will flip to anomalous. The strictness τ is a proxy of how strict the oracle is in
its decision. By reporting only the results for an arbitrary value of τ, one may miss regions
where a given algorithm performs worse than the baseline. Instead, plotting ROC AUC for
multiple τ values, τ ∈ (0, 1) with small increments of 0.01 gives an objective assessment of
the algorithm’s performance. The same procedure is applied for Fashion-MNIST data set.

In this experiment, the oracle is based on the LeNet-5 classifier proposed in LeCun et al.
(1998) and minimizing the cross-entropy loss.

Algorithm 2 Proposed AD Evaluation Strategy on MNIST and Fashion-MNIST data sets

1: procedure ORACLE(ModelM, Data Xtrain, Data Xtest)
2: M← Xtrain . Training classifier with −∑i ki log(M(xi)) loss
3: s =M(Xtest) . Evaluate log loss
4: return s
5: procedure DETECTION(Algo A, Data Xtest, Outlierness s)
6: scores = A(Xtest) . Get anomaly score
7: t = 0.01, p = []
8: while t < 1 do
9: truth = s > t . Get binary labels

10: p.insert(AUC(truth, scores)) . Get ROC AUC for τ
11: t = t + 0.01
12: return p

Alternatively, the performance of AD algorithms can be subjectively assessed using test data
by directly reporting instances regarded as most anomalous.

6.4.3 The COIL-100 Benchmark

Data set

The Columbia Object Image Library (COIL)-100 data set, described in Nene et al. (1996),
contains 7200 images of 100 different classes of objects. Each class contains 72 pictures taken
at pose intervals of 5◦. The original images are downsized to a size of 32× 32 pixels.

Structure

Similarly to MNIST and Fashion-MNIST experiments, for the COIL-100 experiments, the k
is assigned a class label. In this experiment, the cases of mislabelling are targeted, i.e. asso-
ciating incorrect values of x to k. The proposed CVAE-based architecture is evaluated on a
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test composed of samples drawn from c ∈ [10, 15, 20, 25, 30, 40] random classes and extended
with 20% of outliers. Those anomalous test samples, drawn from randomly selected non-
training classes, are assigned a random training class label. In other words, the experiment
is merely an example of mislabelling detection. The model is trained and validated on 80%
and tested on 20% of selected training classes.

6.4.4 STRI Benchmark

Data set

The STRI data set uses normally distributed (µ = 0, σ = 1), continuous and independent
latent variables u and k. Observable x is a product of u, k and additional noise ε with given
configuration constraints

xj = f j(~u) ·
m

∑
i=0

Sjiki + ε , (6.8)

where j is a feature index for~x in Rn. A binary matrix S describes which k is used to compute
feature j:

S =

k0 k1 · · · km


x0 1 0 · · · 0
x1 1 0 · · · 0
...

...
...

. . .
...

xn 0 0 · · · 1

. (6.9)

Finally, the function f (~u) describes which u enters the product that defines each feature j:

f j(~u) = ∏
o

uo . (6.10)

S and f (~u) stay unchanged across each sample in the data set, but the values of k and u do
change. For simplicity, each feature j depends only on one k and the dependence is equally
distributed. For instance, the first column x0 can use k0, u1 and u4: x0 = k0u1u4, x99 may be
generated using k4 and u0. Finally, the values of o and m can be changed, effectively resizing
k and u.

Structure

The synthetic data set is a version of GMM that could be solved using the EM algorithm
as described in Section 3.3. However, it is just implemented as an initial benchmark that
proxies the trigger data set.

For majority of tests, the samples are generated with x being 100-dimensional (n = 100)
and m = o = 5. However, further experiments evaluate how changing values of m and o
affect the final results. An example of a correlation matrix between features in such data set
can be seen in Figure 6.6, which is a proxy of correlations between trigger nodes, as seen in
Figure 6.1.
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FIGURE 6.6: Correlations between features in the synthetic data set for m =
o = 5 and n = 100. The data set was prepared as a proxy of the trigger system

behaviour, seen in Figure 6.1.

Test set Description
Type A Inlier Generated in the same process as training data
Type A Anomaly sσ change on ε for a random feature
Type B Inlier sσ change on ε for a random set of n

m features
Type B Anomaly sσ change on ε for a random configuration group

TABLE 6.1: Types of test data for the synthetic and trigger rates data set

Test samples are generated according to Table 6.1. The lower the value of s the more difficult
an anomaly is to detect. In Gaussian distributions samples laying at 1σ are not considered
as outliers. However, the proposed artificial change disturbs the natural relations between
features. Hence, those changes should still be highlighted as anomalous as they do not
follow the defined generative process.

The synthetic data set has 10000 training samples, and 4000 test samples (1000 inliers and
1000 outliers for each problem) are generated.

6.4.5 Trigger Rates Benchmark

Data set

The prototype implementation uses four L1 Trigger nodes that seed six distinct HLT nodes
each (6× 4 = 24 in total). The rates from LHC Run 2 are extracted only from samples where
all chosen nodes are present in the configuration. Each sample corresponds to one LS. In
total, there are 102895 samples at hand, which are then split into training, validation, and
test sets. The test set contains 2800 samples, which corresponds to one, last available LHC
fill.

In the early phases of this study, it was noticed that the currently used analytic models (see
details in Section 2.4.4) are fitting the HLT rate dependence on PU accurately, unless obvious
modelling mistakes are made, see Figure 2.12. The fits generated by the TRM software thus
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can be used as a preprocessing step in order to normalize the data and solve the problem at
hand independently from PU variability. The recorded rate R is corrected by the predicted
rate R̂ to remove the general downtrend of recorded rates and their higher dependence on
average PU. Obtained values are divided by TRM generated sigma, σR−R̂, reported for each
node individually. The final data point is obtained as

x =
R− R̂
σR−R̂

. (6.11)

In this setup, the data across different PU ranges and different nodes are normalized. Final
distributions have fixed variance σ = 1 and are centred with a mean close to µ = 0.

For the experiment targeting the specific case of CMS TRM, x is assigned the HLT rate and k
the L1 Trigger rate values.

Anomaly Tagging

As pointed out in Section 6.1, operators set quality labels for each CMS sub-detector and
each LS. A contribution from all subsystems composes the global quality flag, and LS could
be regarded as bad due to under-performance of a detector component not related to the set
of trigger nodes chosen or not related to the problem to solve. Hence those labels cannot be
used in the test set. Instead, hypothetical situations are considered. They are likely to happen
in the production environment, similar to those used for the synthetic data set. Two groups
of test data sets are generated by manipulating the test samples, similarly to the synthetic
data set (see Table 6.1). Isolated problems on one of the HLT nodes (type A), and problems
present across HLT nodes seeding the same L1 Trigger node (type B) need to be detected.

6.5 Experimental Results

The models are trained using Keras Chollet et al. (2015) with TensorFlow Abadi et al. (2016)
as a backend using Adam Kingma and Ba (2014) optimizer and with early stopping Vin-
cent et al. (2010) criterion. µ-SVM and IF serve as baselines for the first two experiments.
Each model uses a concatenated class label to the input vector for a fair comparison. For the
MNIST, Fashion-MNIST and COIL-100 experiment, the negative log-likelihood from equa-
tion 6.6 is estimated by cross-entropy error. After showing the effectiveness of the proposed
algorithm in comparison to the vanilla VAE on standard ML data sets, the optimal recon-
struction resolution proposal is examined on synthetic and physics data.

MNIST and Fashion-MNIST Benchmarks The most anomalous samples in the MNIST
and Fashion-MNIST test set for each AD method are shown in Figure 6.7. Author’s subjec-
tive eye regards the samples yield by β-CVAE as the oddest. The µ-SVM selects only one
class as anomalous, while IF yields bold samples as problematic.

Figure 6.8 shows a more objective assessment. For changing values of classification error
strictness τ, the ROC AUC is reported for the baseline AD algorithms and a vanilla VAE.
It is noticeable that for vanilla VAE the DKL is not a useful anomaly indicator at all, as
the information in the latent layer is expected to be entangled and mostly dominated by
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FIGURE 6.7: Most anomalous samples in the test set for MNIST (A) and
Fashion-MNIST (B) data sets for each AD method. The samples reported

for LeNet-5 classifier are the ones having the biggest classification error.

the class-label value. Changing architecture to β-CVAE (β = 0.1) turns DKL to a powerful
anomaly indicator, which outperforms other baseline techniques. Both IF and VAE oscillate
around 0.5 ROC AUC.

The Fashion-MNIST data set was designed to be a more challenging replacement for MNIST.
The drop in ROC AUC is observed as the data set has more ambiguity between classes. One
can notice the most significant performance drop for µ-SVM. While it is performing much
better than the other methods for MNIST data set, it is visibly worse for Fashion-MNIST.
β-CVAE (β = 0.1) yields the best detection results independent from chosen τ, compared to
all baseline methods.

COIL-100 Benchmark Similarly to the previous experiment, the COIL-100 experiments
used DKL as an anomaly score. The results, reported in Table 6.2, show that β-CVAE (β = 7)
turns the DKL into a powerful anomaly indicator not only for cases of original style, as
shown in the previous experiment, but also when samples are mislabelled. With an increas-
ing number of base classes c, the problem becomes more challenging, but the ROC AUC for
β-CVAE stays high. However, VAE is unable to indicate mislabelled samples regardless of
the value of c. A simple label concatenation to the input vector will hardly influence the
yield of DKL in vanilla VAE, suggesting that architectural changes are indeed necessary for
successfully meeting the detection objective.
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FIGURE 6.8: Reported ROC AUC for MNIST (left) Fashion-MNIST (right)
data sets and different AD algorithms as a function of varying anomaly strict-
ness τ based on LeNet-5 model classification log loss s. Overall classifier
accuracy is 98.95% and 89.62% for MNIST and Fashion-MNIST respectively.
The curves stay relatively flat due to the high performance of the classifier:
most of the test samples have log loss smaller than 0.01. As a consequence,

the test sets have low variability when values of τ change.

c = 10 c = 15 c = 20 c = 25 c = 30 c = 40
β-CVAE 0.980 0.982 0.954 0.902 0.884 0.898
β-VAE 0.607 0.637 0.589 0.472 0.529 0.512

TABLE 6.2: ROC AUC for the COIL-100 data set based on the type B metric.

STRI and Trigger Rate Benchmarks The preliminary experiment examined sufficiency of
the optimal reconstruction resolution from Section 6.3.1. The test was done using the syn-
thetic data set. Because type A problems are generally easy to spot, as listed later in this
section, the significance of β parameter is highlighted using type B detection only. Figure 6.9
shows the model’s loss reported at the end of the training phase. With higher values of β,
the DKL term is penalized more in the final reported loss. It also showes that the simplest
introduction of the varying β parameter into equation 6.6 (β-CVAE), which weighs the im-
portance of DKL term, yields unsurprisingly, varying type B detection results. Consequently,
β is an important hyper-parameter that needs to be tuned.

Instead of using fix variance output the model should be allowed to learn it as it is beneficial
for the target application. The trigger data is characterized by substantial noise, different
for each trigger node. However the fix variance approach is tested for different values of
β ∈ [0.2, 8] with increments equal to 0.2, the results show that the AD-CVAE generally out-
performs the β-CVAE. It appears that in our case, the need for tuning yet another hyper-
parameter becomes obsolete with introduction of σ learning. For the values close to β = 1.5,
the performance of β-CVAE marginally outperforms the ones of AD-CVAE.

Figure 6.10 shows the behaviour of the loss yield throughout the training. The curves for
β-CVAE become flat after just a few epochs of training and have a steady decrease until final
termination. On the contrary, AD-CVAE has visual steps at epochs 20 and 40 when model
adjusts the trade-offs between ELBO components.

As discussed in Zhao et al. (2017) learning independent σ can unfortunately lead to inaccu-
rate amortized inference distributions as the ELBO objective tends to sacrifice correct infer-
ence to overfit the training data, resulting in σ = 0+. In such case the ELBO objective can be
maximized even with a very inaccurate variational posterior qφ(z|x). We suspect that in our
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FIGURE 6.9: The final loss function values for a β-CVAE (left) and results
of the type B detection problem for the synthetic data set as a function of
varying β (right). The experiment was run five times for each of the chosen β
values. The orange bands correspond to the standard deviation of the results.
The dots correspond to the mean and the solid line to a polynomial fit of the
means. The AD-CVAE ROC AUC stays constant as the training procedure

does not depend on β hyper-parameter (see the loss in equation 6.4).
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FIGURE 6.10: Loss yield as a function of the number of epochs in the training
of the AD-CVAE model (left) and β-CVAE (right) used for the anomalous
trigger rate detection. The two curves illustrate the behaviour of the training

and validation data sets.

case this phenomena is not happening as the target application data is sufficiently noisy, pre-
venting this unhealthy optimization. In order to prevent such undesirable behavior Lucas
et al. (2019) suggested using β annealing Bowman et al. (2016), which helps to balance the
objective and prevent σ = 0+. An alternative is balancing the reconstruction and compres-
sion as proposed in Rezende and Viola (2018), through introduction of Lagrange multipliers
which are optimized following a moving average of the constraint vector.

The full results for synthetic and trigger rates data sets are listed in Tables 6.3 and 6.4 for
type A and type B problems, respectively. AD-CVAE is compared with β-CVAE (using fixed
output variance σ = 1) with two proposed values of β and the vanilla VAE. β = 1.5 was
suggested by the test results seen in Figure 6.9; β = 4 was suggested by Higgins et al.
(2017). The different levels of s test different severity of problems. For visual comparison
and chosen values of s, the ROC curves corresponding to both the synthetic and trigger rate
AD problems are shown in Figures 6.11 and 6.12. Legacy requirements of the monitoring
software motivate the values of s.

Given the high order of the deviation on type A anomalies, both the CVAE and VAE eas-
ily spot those types of problems. In the context of the hierarchical structures and the target
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Synthetic
AD-CVAE β-CVAE (β = 1.5) β-CVAE (β = 4) VAE

s = 1σ 0.903± 0.010 0.792± 0.001 0.790± 0.002 0.823± 0.006
s = 2σ 0.959± 0.006 0.965± 0.000 0.962± 0.001 0.985± 0.004
s = 3σ 0.983± 0.004 0.996± 0.000 0.996± 0.000 0.998± 0.001
s = 4σ 0.992± 0.002 0.999± 0.000 0.999± 0.000 0.999± 0.000
s = 5σ 0.996± 0.002 0.999± 0.000 0.999± 0.000 0.999± 0.000

Trigger rates
AD-CVAE β-CVAE (β = 1.5) β-CVAE (β = 4) VAE

s = 1σ 0.592± 0.017 0.564± 0.002 0.543± 0.001 0.541± 0.002
s = 2σ 0.798± 0.018 0.778± 0.002 0.765± 0.002 0.758± 0.001
s = 3σ 0.915± 0.016 0.918± 0.002 0.915± 0.001 0.910± 0.001
s = 4σ 0.965± 0.011 0.971± 0.001 0.973± 0.000 0.971± 0.000
s = 5σ 0.984± 0.009 0.991± 0.001 0.992± 0.001 0.992± 0.000

TABLE 6.3: ROC AUC for the type A detection for different severity of the
problem (the higher the s, the higher severity), see table 6.1. The metric used

is the average infinity norm of the reconstruction loss || 1σ (x− x̂)2||∞.

Synthetic
AD-CVAE β-CVAE (β = 1.5) β-CVAE (β = 4) VAE

s = 1σ 0.614± 0.005 0.614± 0.005 0.604± 0.024 0.553± 0.011
s = 2σ 0.743± 0.005 0.746± 0.014 0.731± 0.049 0.631± 0.024
s = 3σ 0.827± 0.011 0.823± 0.022 0.809± 0.059 0.683± 0.027
s = 4σ 0.871± 0.021 0.872± 0.027 0.859± 0.057 0.723± 0.022
s = 5σ 0.893± 0.027 0.902± 0.030 0.887± 0.056 0.743± 0.022

Trigger rates
AD-CVAE β-CVAE (β = 1.5) β-CVAE (β = 4) VAE

s = 1σ 0.661± 0.002 0.700± 0.003 0.623± 0.003 0.626± 0.002
s = 2σ 0.816± 0.007 0.820± 0.005 0.673± 0.002 0.665± 0.007
s = 3σ 0.888± 0.009 0.901± 0.005 0.687± 0.006 0.675± 0.008
s = 4σ 0.918± 0.012 0.930± 0.007 0.683± 0.013 0.670± 0.011
s = 5σ 0.929± 0.014 0.937± 0.008 0.686± 0.018 0.659± 0.018

TABLE 6.4: ROC AUC for the type B detection for different severity of the
problem (the higher the s, the higher severity), see table 6.1. The metric used

is the mean µ of KL divergence DKL.

application, an algorithm needs to model mapping from a single input to multiple possi-
ble outputs. In this context, as argued in Sohn et al. (2015) model needs to make different
predictions. However, a generalization beyond nominal behaviour (generalizing to rare or
anomalous samples) may yield high FN rate as CVAE may learn to reconstruct anomalous
samples accurately. The results show that this over-generalization is prevented.

The type B detection provides good results outperforming vanilla VAE baseline and confirm-
ing that CVAEs are suitable for distinguishing between anomalous and noisy behaviour. As
argued before, the marginally superior results of β-CVAE (β = 1.5) over AD-CVAE are likely
the result of the complexity of the learning gradient. However, those marginal gains come
at the expense of much longer training times that need to account in the non-trivial hyper-
parameter scan. For instance, it can be noticed that for β = 4, the results for synthetic data
set are competitive, while for the trigger rate data set, the performance drops significantly.

The performance of the algorithm on CMS data set is matching the performance reported
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β-CVAE (β=1.5), AUC = 0.822 ± 0.023
β-CVAE (β=4), AUC = 0.808 ± 0.058
VAE, AUC = 0.686 ± 0.026

FIGURE 6.11: The ROC curves for two AD problems using synthetic test data
set for type A (left) and type B detection (right). The bands correspond to
variance computed after running the experiment five times using random
weight initialization. Anomaly score for type B is computed for s = 3σ using
mean DKL of z. Anomaly score for type A problem is computed for s = 5σ

using decoder outputs: µ and σ of each feature.
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β-CVAE (β=4), AUC = 0.993 ± 0.001
VAE, AUC = 0.992 ± 0.000

0.0 0.2 0.4 0.6 0.8 1.0
Fall-out (1-TNR)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns
iti
vi
ty
 (T

PR
)
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β-CVAE (β=1.5), AUC = 0.905 ± 0.005
β-CVAE (β=4), AUC = 0.685 ± 0.005
VAE, AUC = 0.672 ± 0.009

FIGURE 6.12: The ROC curves for two AD problems using trigger rate data
set for type A (left) and type B detection (right). The bands correspond to
variance computed after running the experiment five times using random
weight initialization. Anomaly score for type B is computed for s = 3σ using
mean DKL of z. Anomaly score for type A problem is computed for s = 5σ

using decoder outputs: µ and σ of each feature.
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for the synthetic one. Hence, the AD-CVAE can learn representations from input data in
a non-linear way. As described at the beginning of this chapter, the CMS experiment does
not provide any tools to track problems falling into type B category at this time. Thus it
is not possible to compare the obtained results to a production baseline. Inference time is
negligible in the context of the target application. The upper limit of ∼ 23 s is easily met by
the algorithm even on the commercial CPU with prediction time in order of milliseconds.

Figure 6.13 shows how changing the size of vectors k and u influences both types of detec-
tion. For type A, all models, regardless of values of m (size of vector k) and o (size of vector
u) report comparable results. Instead, the sensitivity for type B drops both for increasing
values of m and m

o ratio. That suggests two critical implementation assumptions. First, the
o should approximately equal to m. Second, the size of the configuration group, relative to
sample size ( n

m ) should be kept high.

6.6 Conclusions and Practical Considerations

This chapter showed how anomalous samples could be identified using CVAE-based ar-
chitecture. The specific case of CMS TRM has been considered to extend current monitoring
functionality. As suggested in the chapter’s introduction, an algorithm was expected to have
excellent detection performance, be robust and have a straightforward implementation. AD-
CVAE does qualify for the final solution as it provides superior detection performance. It is
based on the variational framework, which generalizes well beyond training samples. Fi-
nally, the promise of the use of only one algorithm across the full configuration guarantees
maintenance, deployment and inference simplicity. Subsequent studies foresee using a full
configuration of the CMS trigger system.

The method was demonstrated not to be bound to CMS experiment specifics and has the
potential to work across different domains. Furthermore, a hyper-parameter scan was only
performed using random search for all of the experiments. Thus the results are expected to
get better if further optimized. An appealing extension of the method would be to take dis-
entanglement a step further and learn the correct encoding of unknown factors of variations
in the latent space.
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AD-CVAE: Type A, m=5, o=5, AUC = 0.996 ± 0.002
AD-CVAE: Type A, m=5, o=3, AUC = 0.983 ± 0.003

0.0 0.2 0.4 0.6 0.8 1.0
Fall-out (1-TNR)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns
iti
vi
ty
 (T

PR
)

AD-CVAE: Type B, m=5, o=10, AUC = 0.790 ± 0.007
AD-CVAE: Type B, m=5, o=5, AUC = 0.822 ± 0.011
AD-CVAE: Type B, m=5, o=3, AUC = 0.669 ± 0.012

0.0 0.2 0.4 0.6 0.8 1.0
Fall-out (1-TNR)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns
iti
vi
ty
 (T

PR
)

AD-CVAE: Type A, m=10, o=20, AUC = 0.999 ± 0.000
AD-CVAE: Type A, m=10, o=10, AUC = 0.999 ± 0.000
AD-CVAE: Type A, m=10, o=5, AUC = 0.993 ± 0.003

0.0 0.2 0.4 0.6 0.8 1.0
Fall-out (1-TNR)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 (T

PR
)

AD-CVAE: Type B, m= 10, o= 20, AUC = 0.748 ± 0.004
AD-CVAE: Type B, m= 10, o= 10, AUC = 0.742 ± 0.018
AD-CVAE: Type B, m= 10, o= 5, AUC = 0.632 ± 0.017
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AD-CVAE: Type B, m= 20, o= 40, AUC = 0.625 ± 0.011
AD-CVAE: Type B, m= 20, o= 20, AUC = 0.636 ± 0.010
AD-CVAE: Type B, m= 20, o= 10, AUC = 0.628 ± 0.017

FIGURE 6.13: The ROC curves for two AD problems using synthetic test data
set for type A (left) and type B detection (right) run for different size of k
and u vectors. The bands correspond to variance computed after running the
experiment five times using random weight initialization. Anomaly score for
type B is computed for s = 3σ using mean DKL of z. Anomaly score for type
A problem is computed for s = 5σ using decoder outputs: µ and σ of each

feature.
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CHAPTER 7

Conclusions

The present dissertation discusses the application of novel techniques for the automation of
AD procedures in HEP experiments. The CMS DQM use case is illustrated as a paradigm
of monitoring infrastructure in HEP collaborations, challenging its established protocols for
quality control via the application of DNNs.

This work proposes novel approaches to the different DQM application realms, taking into
account the corresponding constraints and requirements: online monitoring, offline certi-
fication of the data as usable for physics analysis, and, finally, the live monitoring of data
acquisition rates.

For the online monitoring of the sub-detector components, required to pinpoint problematic
detector components with low latency, a classifier capable of detecting the known anomalous
behaviours is proposed, together with methods for expanding current monitoring coverage
detecting novel failure modes. The results show unprecedented efficiency of CNNs on cur-
rently tracked failure modes. The work covered aspects related to model retraining strategies
and interpretation of the results, which are of paramount importance in a system which will
need to be operated for years by field experts with limited ML expertise. The applicabil-
ity of autoencoders was demonstrated covering the offline monitoring for identification of
novel and emerging problems behaviours on a large number of observables with fine time
granularity and potentially low statistics. Finally, in the application of AD on hierarchically
structured data for the monitoring of acquisition rates a new method was introduced, AD-
CVAE, which was shown to be a suitable solution for detecting anomalies affecting features
in the same configuration groups.

The methods proposed here are general enough to be applicable beyond the physics domain.
The results demonstrate once more that the DNN AD provides a breakthrough for complex
and high dimensional problems in infrastructure monitoring.

The experimental results have been very well received by the domain experts. Some of the
proposed models have already been integrated and deployed in the production CMS on-
line DQM infrastructure. A generalization of the strategies proposed throughout this thesis
paves the way to full automation of the quality assessment for HEP experiments. The rele-
vance of this seminal work is confirmed by the fact that the CMS collaboration has indeed
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instantiated a structured effort to continue exploiting DL methods in DQM context: a group
of researchers (including the author) is actively pursuing this task.

Finally, this exploratory work and its success story have contributed in promoting ML AD in
the highly sceptical HEP community for application beyond the DQM itself: the successes in
quality control sparkled interest in the application of similar techniques to other challenges,
e.g. searches of physics beyond the SM with ML AD.
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Acronyms

µ-SVM One-Class Support Vector Machine.

k-NN K Nearest Neighbors.

AD Anomaly Detection.

AI Artificial Intelligence.

ALICE A Large Ion Collider Experiment.

ANN Artificial Neural Networks.

AOD Analysis Object Data.

ASIC Application Specific Integrated Circuit.

ATLAS A Toroidal LHC ApparatuS.

AUC Area Under the Curve.

AVB Adversarial Variational Bayes.

BBVI Black Box Variational Inference.

CAVI Coordinate Ascent Variation Inference.

CERN European Organization for Nuclear Research.

CMS Compact Muon Solenoid.

CNN Convolutional Neural Network.

COIL Columbia Object Image Library.

CP Charge Conjugation Parity.

CVAE Conditional Variational Autoencoder.

DC Data Certification.

DGM Deep Latent Gaussian Model.

DL Deep Learning.

DNN Deep Neural Network.

DQM Data Quality Monitoring.

DT Drift Tube.
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EB Exabyte.

ECAL Electromagnetic Calorimeter.

ELBO Evidence Lower Bound.

EM Expectation Maximisation.

FN False Negatives.

FNR False Negative Rate.

FP False Positive.

FPGA Field Programmable Gate Array.

FPR False Positive Rate.

GAN Generative Adversarial Networks.

GEM Gas Electron Multiplier.

GMM Gaussian Mixture Model.

HCAL Hadron Calorimeter.

HEP High Energy Physics.

HLT High Level Trigger.

ICA Independent Component Analysis.

IF Isolation Forest.

IWAE Importance Weighted Variational Autoencoder.

KL Kullback-Leibler.

L1 Trigger Level 1 Trigger.

LHC Large Hadron Collider.

LHCb Large Hadron Collider beauty.

LOCI Local Correlation Integral.

LOF Local Outlier Factor.

LS Lumisection.

MC Monte Carlo.

MCMC Markov Chain Monte Carlo.

ML Machine Learning.

MLE Maximum Likelihood Estimation.

MNIST Modified National Institute of Standards and Technology.



109

MSE Mean Squared Error.

OCC One-Class Classification.

OOD Out of Distribution.

PCA Principal Components Analysis.

PCC Pearson Correlation Coefficient.

PD Primary Dataset.

PDF Probability Density Function.

PPV Positive Predictive Value.

PR Precision-Recall.

PS Proton Synchrotron.

PSB PS Booster.

PU pile-up.

RBF Radial Basis Function.

RNN Recurrent Neural Network.

ROC Receiver Operating Characteristic.

SGD Stochastic Gradient Descent.

SM Standard Model.

SNN Shallow Neural Network.

SPS Supper Proton Synchrotron.

SSND Semi-Supervised Novelty Detection.

STRI Synthetic Trigger.

SVDD Support Vector Data Description.

SVI Stochastic Variational Inference.

SVM Support Vector Machine.

TC Total Correlation.

TN True Negative.

TNR True Negative Rate.

TP True Positive.

TPR True Positive Rate.

TRM Trigger Rate Monitoring.

VAE Variational Autoencoder.
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VB Variational Bayes.

VI Variational Inference.
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