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Abstract

STATISTICAL GRAPH MODELS OF TEMPORAL BRAIN NETWORKS
by Catalina OBANDO

The emerging area of complex networks has led to a paradigm shift in
neuroscience. Connectomes estimated from neuroimaging techniques such
as electroencephalography (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance imaging (fMRI) results in an abstract representa-
tion of the brain as a graph, which has allowed a major breakthrough in the
understanding of topological and physiological properties of healthy brains
in a compact and objective way.

However, state of the art approaches often ignore the uncertainty and
temporal nature of functional connectivity data. Most of the available meth-
ods in the literature have been developed to characterize functional brain
networks as static graphs composed of nodes (brain regions) and links (FC
intensity) by network metrics. As a consequence, complex networks theory
has been mainly applied to cross-sectional studies referring to a single point
in time and the resulting characterization ultimately represents an average
across spatiotemporal neural phenomena.

Here, we implemented statistical methods to model and simulate tem-
poral brain networks. We used graph models that allow to simultaneously
study how different network properties influence the emergent topology ob-
served in functional connectivity brain networks. We successfully identified
fundamental local connectivity mechanisms that govern properties of brain
networks. We proposed a temporal adaptation of such fundamental con-
nectivity mechanisms to model and simulate physiological brain network
dynamic changes. Specifically, we exploited the temporal metrics to build
informative temporal models of recovery of patients after stroke.
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Introduction

The emerging area of complex networks has led to a paradigm shift in neu-
roscience. Connectomes estimated from neuroimaging techniques such as
electroencephalography (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance imaging (fMRI) results in an abstract representa-
tion of the brain as a graph, which has allowed a major breakthrough in the
understanding of topological and physiological properties of healthy brains
in a compact and objective way (Bullmore and Sporns, 2009).

The nodes of these estimated connectomes, or brain networks, are estab-
lished accordingly to the neuroimaging technique used to record brain con-
nectivity data, and the links are defined by a functional connectivity (FC)
measure of the temporal dependence between nodes. For example, when
using an EEG, which is a sensor-base modality, to record electrical brain ac-
tivity, then the brain nodes are commonly defined as the electrodes. If instead
a voxel-base modality is used, such as fMRI, then the most common way to
define brain nodes is to use a fixed anatomical atlas.

Brain networks, tend to exhibit similar organizational properties includ-
ing small-worldness, cost-efficiency, modularity and node centrality (Bull-
more and Sporns, 2009), as well as characteristic dependence from the anatom-
ical backbone connectivity (Honey et al., 2009; Deco et al., 2013; Park and
Friston, 2013) and genetic factors (Fornito et al., 2011). Furthermore, they
show potentially clinical relevance as demonstrated by the recent develop-
ment of network-based diagnostics of consciousness (Achard et al., 2012;
Chennu et al., 2014), Alzheimer’s disease (Tijms et al., 2013), stroke recov-
ery (Grefkes and Fink, 2011), and schizophrenia (Lynall et al., 2010). In this
sense, quantifying topological properties of intrinsic functional connectomes
by means of graph theory has enriched our understanding of the structure of
functional brain connectivity maps (Stam, 2004; Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010; Stam and Straaten, 2012).

The use of graph analysis in clinical neuroscience has also become es-
sential to quantify brain dysfunctions in terms of the aberrant configuration

of functional brain networks. Recent evidence from cross-sectional studies
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(Grefkes and Fink, 2011) highlights that cerebrovascular damages to local ar-
eas of the brain (i.e. stroke) generally induce i) critical deviation from optimal
(i.e. small-world) network topologies supporting both segregated and inte-
grated information processing, ii) altered interhemispheric connectivity and
modularity, iii) and abnormal region centrality in the ipsilesional hemisphere
as well as in the contralesional hemisphere.

Nevertheless, these results refer to a descriptive analysis of the observed
brain network, which is only one instance of several alternatives with simi-
lar structural features. This is especially true for functional networks inferred
from empirically obtained data, where the edges (or links) are noisy estimates
of the true connectivity and thresholding is often adopted to filter the rele-
vant interactions between the system units (Tumminello et al., 2005; Vidal,
Cusick, and Barabasi, 2011; De Vico Fallani et al., 2014). Statistical models
are therefore needed to reflect the uncertainty associated with a given ob-
servation, to permit inference about the relative occurrence of specific local
structures, and to relate local-level processes to global-level properties (Gold-
enberg et al., 2009).

Furthermore, despite its evident impact, graph analysis of functional brain
networks is not a simple toolbox that can be blindly applied to brain sig-
nals and many issues remain unaddressed (Bullmore and Sporns, 2009). Per-
haps the most critical limitation is assuming that the way different brain re-
gions are functionally connected is implicitly constant (stationarity hypothe-
sis). Most of the available methods in the literature have been developed to
characterize functional brain networks as static graphs composed of nodes
(brain regions) and links (FC intensity), which do not change in time (De Vico
Fallani et al., 2014). As a consequence, complex networks theory has been
mainly applied to cross-sectional studies referring to a single point in time
and the resulting characterization ultimately represented an average across
spatiotemporal neural phenomena (Rubinov and Sporns, 2010).

However, recent evidence suggests that brain functional connectivity is
highly variable across multiple time scales and that this non-stationary in-
fluences the emergence of global network properties and complex brain be-
havior (Hutchison et al., 2013). These aspects dramatically limit our ability
to fully understand the brain organizational mechanisms after lesions and to
probe the predictive power of possible network-based neuromarkers of re-
covery. The ability of the human brain to adapt to damages, for instance, to
functionally reorganize after cerebrovascular “attacks” or stroke, and to re-

store lost functions is probably the most fascinating, yet unknown, process
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characterized by a temporally dynamic reorganization (Grefkes and Fink,
2011). This dynamic skill, which is known in neuroscience as brain plasticity,
is not only interesting from a network science perspective, but it also plays
a crucial role in determining the motor/cognitive recovery of patients who

survive a stroke.

The purpose of this Ph.D. thesis is to go beyond the descriptive analysis
of brain networks to develop models that are capable to infer brain networks
and that are a tool to understand brain network formation. Specifically, the

objectives are:

e Develop statistical methods to model and simulate temporal brain net-
works

¢ Quantify network variability and isolate persistent network properties
in the normal brain

e Model spatiotemporal network changes underlying plasticity after brain

lesions.

The document is divided as follows, first chapter presents the state of the
art of brain networks and graph theory tools relevant to its analysis; chap-
ter two presents the general mathematical framework that we used to model
brain networks; in chapter three we present the implantation and results of
such models to statistical model resting state brain networks; in chapter four
we apply the methodological framework to time-varying brain networks,
specifically we look at stroke patients. Finally, in chapter five we conclude
and discuss future directions.
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Chapter 1

Graph analysis of functional brain

networks

The representation of a system composed of agents and interactions among
them with a complex network is an effective way to extract information on
the nature and topology of such interactions. It allows us to abstract complex
emergence behavior into a mathematical object that we can study with a set
of tools coming from different disciplines such as statistical physics, dynam-
ical systems, numerical simulations, graph theory among others.

In particular, the brain can be abstracted into a complex network. This
idea has been supported since the nineteenth century by anatomical stud-
ies that mapped the brain’s cytoarchitecture, cellular circuits and long-range
tiber systems (Cajal, 1995; Sporns, 2013b). More recently, by high-quality
neural data that allows studying the structure and function of the brain with
more sophisticated methods.

Due to technological advancements we now have access to large and de-
tail brain data. This constituted a paradigm shift in neuroscience as it al-
lowed to study the brain in a more comprehensive and noninvasive manner.
These data represent in general networks comprising the relations or inter-
connections that link the many elements of large-scale neurobiological sys-
tems (Bassett and Sporns, 2017), therefore the natural relation with complex
networks.

Brain networks represent neurological systems and its interactions at dif-
ferent spatiotemporal levels. At the microscopic scale neurons and synaptic
connections are taken as nodes and links. The C. elegans entire neurolog-
ical system has been successfully mapped in this way (Li et al., 2004). At
higher levels, units take different forms, e.g. cytoarchitectonically or func-
tionally distinct volumes at the macroscale, or more arbitrary delineations,

such as voxels (Bassett, Zurn, and Gold, 2018). Links can represent physical
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or functional connections. These specifications depend on the neuroimag-
ing technique employed to record data. In this work, we focus especially on
functional brain networks, even though we will review some of the defini-
tions and concepts of structural brain networks.

As with other complex networks, one is interested in studying the intrin-
sic dynamics and mechanisms that cause emergent behaviors and topologies.
For example, in a social network, one could be interested in understanding
how new friendships are formed and a plausible hypothesis could be that
friendships among people who have a friend in common are more likely to
happen. In a functional connectivity network, one is interested in study the
statistical dependencies among remote neurophysiological events, how they
occur and what can this tell us about specific brain states and/or popula-
tions. However, formulating a plausible hypothesis about brain connectivity
mechanisms can be somewhat more complicated.

Network science is a discipline that offers tools to analyze the brain as a
complex system of interactions. Briefly, a typical brain network study can
be summarized by a pipeline starting with data acquisition, following by
data processing, network construction and specifications, and finishing by
analyzing the resulting brain network with quantitative techniques. Special
care has to be taken in each of the steps aforementioned, each on its own are
current subjects of active research and are discussed more in depth below.
The work of this thesis focuses especially on the last step of analyzing brain
networks.

The classic approach to analyze brain networks has been mainly a de-
scriptive one. Essentially, brain networks are put under a graph metrics’
lens to characterize many topological properties. These methods have had
a prominent role in characterizing normal brain organization as well as alter-
ations due to various brain disorders (Fox and Greicius, 2010).

In this chapter we present the general pipeline to build brain networks
from neuroimaging data, then we discuss groundbreaking results on the field
in the framework of graph theory, and we close examining the extension of
these concepts into temporal brain networks.
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1.1 From time series to networks

1.1.1 Neuroimaging data

Like any other real complex network, brain networks are built from real
data, specifically from neuroimages. Neuroimages are noninvasive tech-
niques that aim to capture the anatomical or functional structure of the brain
by measuring proxies of brain activity in the nervous system. They have
been used extensively in studies that have helped further our understanding
of physical and cognitive properties of the brain (Aine, 1994; Casey et al.,
2005). Here we focus on function of the brain, and we briefly discuss two
categories of neuroimages techniques: magnetic resonance imaging (MRI)
and electro/magneto-encephalogram (EEG/MEG) (see Rogers et al., 2007;
Sakkalis, 2011 for reviews).

MRI and fMRI

MRI is a non-invasive medical imaging technique that generates detailed,
cross-sectional images of organs and tissues. An MRI scanner uses a strong
magnetic field to align the magnetic nucleus of hydrogen atoms, radio waves
are applied at different timing and pulses to break this alignment, the nuclei
then realign emitting a radio signal which is captured by the scanner and
encodes information about the position and type of tissues in the body. MRI
is used to reconstructed 3D shapes of the anatomical structure.

Functional magnetic resonance imaging (fMRI) uses the same technique
but is design to capture brain activity by means of the BOLD (blood oxygen
level-dependent) signal. The principle behind it is that as neuronal activity
increases there is an increased demand for oxygen that causes a local increase
of blood flow to the active regions. The BOLD contrast is measured in fMRI
as an indirect measure of neural activity. One of the most exploited fMRI
feature is its high spatial resolution to the level of millimeters (Heuvel et al.,
2008; Salvador et al., 2005; Heuvel and Hulshoff Pol, 2010).

Another sophisticated use of magnetic resonance is diffusion-weighted
imaging (DWI) which maps diffusion the diffusion of water molecules within
the brain (Huisman, 2010).

EEG/MEG

Electroencephalogram or magnetoencephalography uses sensors attached to

the scalp to measure electrical/magnetic neural activity. Electrical activity
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of active neurons produces currents that spread in the head reaching the
scalp. EEG records voltages difference on the brain electrical fields while
MEG records brain magnetic field produced by those currents. EEG and
MEG present a high temporal resolution and relatively poor spatial resolu-
tion as only a few hundred sensors are used. There are source reconstruction
methods that try to project back the signal recorded in the scalp to the brain
to increase spatial resolution, this is an active field of research (EEG Nunez
and Srinivasan, 2006; Bonmassar et al., 2001; Casdagli et al., 1997; MEG Chen,
2001; Maldjian, Davenport, and Whitlow, 2014)

1.1.2 Nodes and Links

Nodes are defined according to the modality of data acquisition: voxel-based,
e.g. fMRI; or sensor-based, e.g. EEG. We will see that in certain cases such
definition are somewhat straightforward while in other cases uses other mod-
els to approximate a fair unite of analysis.

In voxel-based modality, the nodes can be defined directly as the voxels
or as aggregates of voxels. The former was the first technique used, and we
have seen a proliferation of the latter one (Stanley et al., 2013). The most
common way to aggregate voxels is by using anatomical parcellations of the
brain (Reus and Heuvel, 2013; Pereira et al., 2013). Parcellations of the brain
divide its spatial domain into homogeneous parts in terms of cytoarchitec-
ture, anatomical connectivity, functional connectivity or task-related activa-
tion. Such parcellation can be used in both structural and functional brain
networks.

Figure ?? shows an example of a cortical surface parcellation of the brain.
The parcellation is composed of 324 regions of interest (ROIs) each exhibiting
homogeneous resting-state functional connectivity signal. In a higher level,
we see the different ROIs group together to form subnetworks that activate

in different motor and cognition tasks.
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FIGURE 1.1: Cortical surface parcellation generated by Gordon
& Laumann and collegues Gordon et al., 2014

In sensor-based modalities, the nodes can be directly assigned to the elec-
trodes. However, the signal captured by each sensor of both EEG and MEG
are a mixture of the signal emanating from the cortical surface. This effect can
be either ignored, then special attention has to be taken in the interpretation
of results, or addressed by techniques such as source reconstruction, where
nodes are projected back onto the cortex, spatial filters or choosing specific

functional connectivity measures (see section ??).

FIGURE 1.2: Illustration of an EEG cap comprising 74 elec-
trodes.

After defining nodes the next natural step is to define links, or edges,
among those nodes. Links can represent functional or anatomical connec-

tions. They are weighted, at least in a first instance, and can be directed or
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undirected.

Functional links are in general defined as the statistical dependency of
signals between each pair of nodes, which is measure through functional
connectivity (FC) measures (Friston, 2011). FC measures range from sim-
ple correlations to more sophisticated methods that infer relations with in-
formational meaning and can produce links that are directed, i.e. captures
information propagation, or undirected, i.e. encodes information symmetry
(Fingelkurts, Fingelkurts, and Kdhkonen, 2005; Quiroga et al., 2002; David,
Cosmelli, and Friston, 2004; Ansari-Asl et al., 2006). FC measures include
synchronization, phase locking, coherence, and correlations. We give explicit
formulas of the last two as those are used later in our work. Let X and Y be
two signals coming from different nodes

Pearson correlation

0x0y
Where cov is the covariance, ¢ is the standar deviation of X/Y.
Spectral coherence

C syn P
oo (f) = g RSV

Where Sxy is the cross-spectrum between X and Y and Sxx and Syy are

the autospectra of X and Y, respectively. The imaginary coherence is given
by the imaginary part of the coherence and is one of the FC measures that
takes into account volume conduction effects.

One can also define structural links, which reflect anatomical connections
and are typically based on synapses, white matter tracks or structural covari-
ance. Diffusion tensor imaging (DTI), a special kind of DWI, maps tracks of
water diffusion over the brain which are taken as anatomical connections.

1.1.3 Thresholding

Brain networks constructed via FC measures result in fully connected weighted
networks. Many studies take these networks as the object of study, but it
has been argued that very weak connections might be the results of noise in
the acquisition step and thus they shouldn’t be taken into account in further
analysis. Filtering then is used to retain the strongest and therefore more
significant functional links.

One common filtering or thresholding technique consists of keeping only
the links whose FC measure is higher than a threshold value. The choice of
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the threshold can follow different heuristics, e.g. that the resulting network is
connected, or one can consider a range of threshold values and reproduce the
analysis over each resulting network. Other methods have been proposed in
the literature (Ginestet et al., 2011; Rubinov and Sporns, 2011; Achard et al.,
2008; De Vico Fallani, Latora, and Chavez, 2016).

5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55

FIGURE 1.3: Brain connectivity network constructed from EEG
data before and after thresholding
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1.2 Analyzing Brain Networks

After constructing a brain network, one can use tools coming from graph
theory to study how cognitive and behavior functionalities are supported
by the synchronization patterns captured as a network. Here we give ba-
sic notions of graph theory, some important graph metrics widely used in
the field of network neuroscience and finally specific properties that have
been found consistently despite different network construction methodolo-

gies and in some cases across species.

1.2.1 Basic graph notions

Let V = (vy,vy,...,,0N) be a set of N vertices or nodes and a set of edges or
links E = {(i,j)/i,j € V}, a graph defined as an ordered pair G = (V,E) .
A directed network is a network in which each edge has a direction, pointing
from one vertex to another. By notation, the edge (i, j) points from vertex v;
to vertex v; and is represented graphically by an arrow with this direction (
V;—>0; ).

Vertices can also be joined by more than one edge, we refer to those edges
as a multi-edge, the number of edges that joins a pair of vertices is called the
multiplicity of the multi-edge. Edges can also join a single vertex, these edges
are called self-edges. Weights w;; € R can be associated to links (i,]) € E,
which can represent some length, capacity or dependency on single links,
and we say that a graph is unweighted if there are no multi-edges and w;; =
1,V(i,j) € E.

An undirected network without multi-edges or self-edges is called a sim-
ple network. From now on, we will consider simple undirected graphs unless
stated otherwise. Most of the following notions and definitions have natural
extensions to directed or weighted graphs.

A path between nodes i and j is an alternating sequence of nodes and
edges that begins with i and ends in j. A shortest path or geodesic between
two nodes i, j is a path of minimal length between nodes i and j. The distance
d;j between two nodes i and j is the length of the shortest path between them.
If there exists no path connecting both nodes then d;; = oo. We say that
a graph is connected if there exists a finite positive length path connecting

each pair of nodes.

'We will denote a vertex by v; or simply by the index, i.e. V = (1,2,...n).
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A graph G can be represented by an adjacency matrix A € RN x RN with

entries

A — 1 if there is an edge from j to i;
g 0 otherwise.

Note that A is symmetric for undirected networks and that the number of
links is given by I = }; icy Ajj. The number of links in a graph might be the
first natural quantity to measure, however many other graph metrics have
been proposed over the year responding to theoretical interests and prompt

by its application to real-world complex networks.

1.2.2 Graph metrics

Different graph statistics can be computed from the adjacency matrix. An-
other simple measure is the degree k; = ) jcy A;; of a node. From it, one
can build a distribution of degrees of the whole network. The cumulative
distribution of the network is given by

=), pk)

K >k

where p(k') is the probability of a node having degree k' (Barabasi and
Albert, 1999).

These measures give information on the connectivity profile of individ-
ual nodes and can characterize classes of networks. For instance, most real
networks exhibit degrees distributions that follow a power law.

We can also measure the density of a graph, which tell us the fraction of

2x1
nx(n—1)"

Characteristic path length L and global efficiency Eq are metrics that aim

edges present in a graph with respect to a fully connected one as p =

to measure how fast information in the network can travel across any arbi-
trarily chosen nodes (Watts and Strogatz, 1998; Latora and Marchiori, 2001).

2 L= — 2 ZJGV];Az dz]

16V 16V

-1
ZzeV];Az
N—1

ZE— )3

1€V zeV
For example, in a connected random graph, where two nodes are con-
nected with uniform probability p, L tends to be low and E¢ high.
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Clustering coefficient C, measures how well the set of near neighbors of
a node is connected in proportion to the set being fully connected. Local
efficiency E; measures in average how the information travels locally (Watts
and Strogatz, 1998; Latora and Marchiori, 2001).

1 1 Ljhev AijAnAjpy
C‘NZC’ - NZ ki(ki—1)

eV i€v

1
E =— Z Eq(Gi)
NieV 1

where G; is the subgraph formed by nodes connected to i.

Given a partition in modules {m;} of a graph, modularity Q measures to
what extent those modules are more highly connected among them than to
other modules. Over the year many different algorithms to detect modules or
communities have been proposed and is currently an active topic of research.
One simple and broadly used method is modularity maximization, i.e. the

modules are taken as those that maximize Q (Newman, 2006)
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where m; is the module containing node 7, and 5mi,m]- = 1lifm; = mj and 0

otherwise.

Closeness centrality measures the average distance of a node i to all other

nodes in a graph (Freeman, 1978).
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Betweenness centrality measures how many shortest paths between all
pair of nodes in a network passes though a node i (Freeman, 1978). Is one
of the measures that attempts to quantify the importance of a node in the
overall connectivity of the network. Nodes with high centrality are usually

called hubs. _
1 onj (i)

PSSO -2

hjev Phj
WAt



1.2. Analyzing Brain Networks 25

where py; is the number of shortest paths between / and j, and p;(i) is the
number of shortest paths between 1 and j that pass through i.

Low
clustering

High
clustering

Shortest path
Degree

FIGURE 1.4: Illustration of graph metrics
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1.2.3 (Universal)Properties of Brain Networks

Over the years graph metrics have been used to characterize brain networks
of normal humans and other species, and to discriminate different popula-
tion (e.g. healthy from diseased), or brain states (e.g. resting-state to ac-
tivation tasks). Many of these properties are shared among other networks
observed in nature and in this sense are regarded as universal, others are spe-
cific to network neuroscience and together have further our understanding
of healthy and disease brain.

Here we summarize some of the main universal properties that have been
found to be true across different neuroimaging modalities and even across
species, and some important case studies that show the relevance of using

graph tools in understanding normal and diseased brain states.

e Small-world

The small-world property was first observed by Watts and Strogatz in
its seminal paper Watts and Strogatz, 1998. They studied the topolog-
ical properties of a lattice, (a network where each node is connected
to its k nearest neighbors) and the resulted networks that occur from
rewiring with increasing probability p > 0 its edges. When p = 1
networks are random. They observed that the values of clustering co-
efficient and characteristic path length are high and low, respectively,
for a lattice and conversely for a random network. More interestingly,
they noticed that at relatively low probability values (around p = 0.01)
the resulting networks of rewiring the link of a lattice with such prob-
abilities, exhibit both high clustering coefficient and characteristic path
length, i.e. they displayed small-world property.

They also showed in the same paper that several real-world networks
have this property, including the neural network of the worm C. ele-
gans. This property has been found across different species (e.g. cat
and macaque Hilgetag and Kaiser, 2004; Sporns and Zwi, 2004) and
both anatomical and functional brain networks (see for a review and
further perspective on this topic Bassett and Bullmore, 2017). Although
this model provoked a proliferation in the field of network science one
critic that quickly came to light was that it didn’t produce degree dis-

tributions that were realistic, i.e. found in nature.

e Scale-free
Some studies have shown that brain networks exhibit exponential or
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exponentially truncated power-law degree distributions, i.e few nodes
exhibit a high degree (Sporns, 2013b; Achard et al., 2006). This is a prop-
erty that has been observed in many other biological systems, however,
is somewhat controversial in network neuroscience because of the brain

networks’ small size (Bassett and Bullmore, 2017).

o Communities
Despite the heterogeneity on methods and data, numerous studies have
shown that both structural and functional brain networks are orga-
nized in modules or communities that can be associated to cognitive
functions by supporting the integration of information (Crossley et al.,
2013).

They have been also been identified as responsible for evolution (dif-
ferentiation with other species), conservation of wiring cost and facili-
tating information and complex dynamics, see Sporns and Betzel, 2016
for a review. Furthermore, such modules exhibit a hierarchical organi-
zation, which means there are sub-modules within modules (Meunier,
Lambiotte, and Bullmore, 2010; Bassett et al., 2008).

e Hubs/rich club
Numerous studies have shown the existence of hubs in brain networks,
these are nodes that are highly connected and play an important role in
the integration of the information (Sporns, Honey, and Kétter, 2007).
Moreover, is has been shown that hubs are organized in a "rich-club"
architecture, i.e. hubs are densely connected among themselves than
nodes with lower degree (Heuvel and Sporns, 2011).

e Integration and Segregation
A widely accepted hypothesis is that brain networks, like many other
spatially embedded complex networks, have evolved to optimize a bal-
ance between integration and segregation of information to support
cognition and behavior (Bullmore and Sporns, 2009). Multiple strate-
gies have been suggested to explain the actual mechanisms that the

brain prioritizes to achieve this optimal balance.
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One is related to the small-world property, as networks exhibiting this
property balance global and local efficiency (Tononi, Sporns, and Edel-
man, 1994). It has also been suggested that integration and segregation
are supported by communities and hubs respectively (Sporns, 2013a;
Deco et al., 2015). Note that these structures do not necessarily appear
in "simple" small-world networks, e.g. the ones observed in the Watts-

Strogatz model.

Cost efficient

It has been shown that the brain aims at minimizing its wiring cost in-
volved in both connecting neurons anatomically and functional connec-
tions (Achard and Bullmore, 2007; Bullmore and Sporns, 2012). How-
ever, it has been argued that the brain is not simply minimizing wiring
cost but is balancing this against segregation and integration., i.e. there
is a trade-off between high efficiency of information transfer and low-

cost connections.

Distortions in clinical populations

These (universal) properties characterize the organization of normal
structural and functional brain networks, and neurological disorders
have been identified as deviations from "normal" properties. All of the
properties listed above are broadly present in normal whole-brain net-
works characterizing its structural and functional organization. Devia-
tions from these properties have been used to characterize neurological
and psychiatric disorders (Stam and Reijneveld, 2007; Stam, 2014). Ex-
ample of such studies are: schizophrenia (Liu et al., 2008; Wang et al.,
2010b); autism (Barttfeld et al., 2011); stroke (Wang et al., 2010a); spinal
cord injure (De Vico Fallani et al., 2007); Alzheimer’s disease (Supekar
et al., 2008).

The identification and understanding of the aforementioned properties

have expanded our understanding of brain organization and the promise

of further advancements is still latent. Nevertheless, these results refer to

a descriptive analysis of brain networks. Essentially, it describes by means of

graph metrics an observed topology but it does not explain the underlying

network mechanisms that are into play in the emergence of the observed

complexity.
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For example, different studies of Alzheimer’s disease (AD) patients have
reported contrary results when looking at the change in path length over
disease progression. In general, such results can be sensitive to the brain
network construction methodology, e.g. the type of neuroimage or FC mea-
sure used, but even in somewhat homogeneous fMRI studies, both increased
and decreased average path length has been observed (Stam, 2014). One of
the challenges then is to find consistent features or biomarkers to identify
network changes due to certain disease and to ultimately improve early di-
agnosis and guide treatment.

Another important point illustrated in the former example is the tempo-
rality of brain networks. Brains are intrinsically dynamic yet a large bulk
of literature in network neuroscience looks at static brain networks. Looked
with a historical perspective it could be argued that this responds to the nat-
ural steps a new field undertakes. Indeed, we have seen a growing interest
and necessity to pursue studies that take into account the dynamic nature of
the brain.
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1.3 Temporal brain networks

The brain is a dynamic system that is in constant activity, even at rest, it
changes across time on both long-time (Wang et al., 2010a) and short-time
scales (Bassett et al., 2011), therefore is undeniable not only the interest but
the need to study it as such. However, as Holme and Saramdiki, 2012 puts
it “the literature on static graphs is many times larger than that on tempo-
ral graphs, for a natural reason: it is usually much easier to analyze static
graphs, especially analytically", which is an idea also applicable to the liter-
ature on brain networks. It is also true that in a new field, such as network
neuroscience, there should be a natural evolution of studying "simple" static
brain networks to dynamic ones. This idea is also embodied in this thesis by
following a bottom up approach.

Interesting questions are, but not limited to: how does brain network
topology changes over time in normal or injured brains? What are the con-
nectivity mechanisms that supports dynamically behavioral or cognitive pro-
cess?

There are different temporal scales one might consider to study as they
encode diverse neurological processes. At small or rapid scales, one can be
interested in studying flows of neural activity that occur at the level of mil-
liseconds. Then at the level of seconds, one could observe motor task brain
mechanisms or schizophrenia episodes, at scales of days or months processes
such as learning or plasticity can be tracked, and at the level of years or
decades, normal aging or progression or neurodegenerative diseases such
as Alzheimer’s disease becomes visible.

Such type of dynamics can be capture into temporal or time-varying net-
works. There exist different kinds of possible mathematical representations:
aggregating over time periods(Holme, 2003; Rosvall and Bergstrom, 2010),
reachability graphs (Moody, 2002), line graphs (Liljeros, Edling, and Ama-
ral, 2003), transmission graphs (Riolo, Koopman, and Chick, 2001), stream
graphs (Latapy, Viard, and Magnien, 2017), multi-layer networks (Kivela et
al., 2014; Muldoon and Bassett, 2016). Many of the graph metrics describe in
Section 1.2.2 can be extended to temporal networks and we refer to Holme
and Saramaiki, 2012 for details.

Here we focus on aggregate over time period temporal brain networks,
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that is a sequence of time-order networks each of which is the accumula-
tion or average of connections for a specific interval of time. For low tempo-
ral scales the aggregation can be done with a sliding window and for larger

scales, the aggregation is done per unit of time.

FIGURE 1.5: lllustration of time varying brain network

A similar descriptive approach to that of static brain networks can be per-
formed by investigating the evolution of graph metrics computed time-wise
(see for example De Vico Fallani et al., 2007; Valencia et al., 2008).

However, as neuroimaging recordings suffer from noise it is necessary to
go beyond descriptive and characterization analysis to models that accounts
for the statistical importance of connectivity mechanisms in healthy and dis-
eased brain. We want to model and simulate the emergent behavior that
neurological system exhibit in order to better understand the organizational

mechanisms of the brain.
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Chapter 2

Statistical graph models of brain

networks

Complex networks are data representations of systems and therefore a par-
ticular instance or observation of such systems. Statistical inference of rela-
tional data is then a crucial tool to understand, control and ultimately predict
the behavior of many real complex systems.

In particular, in the field of network neuroscience, the term network model
can bring some confusion as they can be regarded as biological or animal
models. Consider the three dimensions of models types proposed by Bassett,
Zurn, and Gold, 2018: "The first dimension is a continuum that extends from
data representation to pure (or “first- principles’) theory. The second dimen-
sion is a continuum that extends from biophysical realism to phenomeno-
logical estimates of functional capacity (‘functional phenomenology’). The
third dimension is a continuum that extends from elementary descriptions
to coarse-grained approximations".

Here we are interested in first-principle theory informed by functional
phenomenology data of coarse-grained approximations. In other words, sta-
tistical models over brain networks constructed from functional connectivity
data.

A flexible yet powerful family of models is the exponential-family of ran-
dom graphs which models the probability of edge existence in a graph G
by fitting the probability mass function of G as a function of a r—vector of
network statistics.

This chapter presents the general theory of exponential random graph
models, its properties, computational implementation, and general model
formulation. In the second part, the extension to temporal exponential ran-
dom graphs is presented.
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2.1 Exponential Random Graph Models (ERGM)

One of the first models for networks is the so-called Bernoulli model first
proposed by Gilbert, 1959. This model assumed that the probability of an
edge existing between two nodes was equal to some value 7 € [0,1], i.e.
edges were assumed to be independent. Exponential random graph models
(ERGMs) are an extension of Markov random graphs models proposed by
Holland and Leinhardt, 1981 and (Frank and Strauss, 1986) which first pro-
posed a family of distributions for undirected and directed graphs where the
probability of the existence of edges had non-trivial dependence assumptions
but considered conditional independence properties.

This work was extended by Frank, 1991 and Wasserman and Pattison,
1996 to include more arbitrary independence conditions focusing on directed
graphs, which led to a family of probability functions called the p* model.
Further developments were made by Pattison and Wasserman, 1999 and
Robins, Pattison, and Wasserman, 1999 regarding valued and multivariate

relations.

2.1.1 Mathematical formulation

Let G be a set of possible network realizations with # nodes, an exponential
random graph model assumes that the probability of observing a particular
network ¢ € G is a function sufficient statistics vector x = {x1, xp, ..., X, } such

that he probability distribution P(G) over G is given by

PG = g) = exp{éeixxg) - 2(6)) 1)

where 6 € R” denotes the statistical parameter governing the probabilistic
formation of the network and Z(6) is a normalizing constant

The aim is to choose a probability distribution Py over G such that condi-
tions 2.2 and 2.3 are satisfied.

Y P(G)=1 (2.2)
Geg

(x;) = Y x(G)P(G) = x] (2.3)
Geg

where (x;) is the expected values of the i—th graph metric over G € G
and xi|G:g = x7,Vi.
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This problem can be translated into a maximization problem where the
best choice of probability distribution Py is the one that maximizes the Shan-
non/Gibbs entropy (equation 2.4) subject to the constraints 2.2, 2.3, where
the best choice refers to the one that makes the minimum assumptions about
the distribution (Newman, 2010)

S=—-)_ P(G)nP(G) (2.4)
Geg

Using the method of Lagrange multipliers, the maximization problem of

equation 2.4 subject to the constraints 2.2 and 2.3 takes the form

d ! . ' _

35(C) [s - (1 - G;g P(G)) — gei (xi G;g xl(G)P(G)) 0
= —In(P(G)) —1+a+ ié)ixi(G) =0

i=1
= P(G) = exp [zx -1+ i@ixi(G)

i=1

H(G)
= P(G) = = (2.5)

where & and {6;} are lagrange multipliers, H(G) = i 0;x;(G) is the
graph Hamiltonian, 6; is the ith model parameter to be estli;rllated and Z =
ng ef(G) is the so called partition function.

S

The model parameters vector 8 = [01, 0, ..., 0,] quantifies the relative sig-
nificance of the network graph metrics to explain the topology of the network
while taking into account the contribution of all the other graph metrics in
the model. More specifically, the estimated value of a parameter 6; indicates
the change in the (log-odds) likelihood of an edge for a unit change in graph
metric x;. If the estimated value of 6; is large and positive, the associated
graph metric x; plays an important role in explaining the topology of G more
than would be expected by chance. Note that here chance corresponds to ran-
domly choosing a network from the space G. If instead the estimated value
of 0; is negative and large, then x; still plays an important role in explaining
the topology of G but it is less prevalent than expected by chance (Robins
et al., 2007).
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The constant Z ensures that the function P is indeed a probability func-
tion, i.e. that condition 2.3 is satisfied. In general, the fact that the space G can
be very large even for relatively small 7, as well as the inclusion of graph met-
rics that are not simple linear combinations of G;j, in practice make it impossi-
ble to derive analytically the model parameters vector 6 (Frank and Strauss,
1986; Hunter and Handcock, 2006). Numerical methods, such as Markov
chain Monte Carlo (MCMC) approximations of the maximumd-likelihood es-
timators (MLEs) of the model parameters vector 0, are typically adopted to
circumvent this issue (Snijders TAB, 2006).

This model formulation is a very flexible one, allowing many kinds of
graph metrics, which in turn induces different dependency assumptions.
Graph statistics are in general functions of G, i.e. structural terms measuring
from local to global properties, nevertheless it is also possible to incorporate
covariates and node-level effects into the model. See Morris, Handcock, and
Hunter, 2008 for a non-exhaustive list of possible terms that can be included
in an ERGM.

The dependency assumptions among dyads will be given by the type
of graph metrics included. It can be assumed that edges are independent,
or that disjoint edges are independent conditional on the rest of the graph
(Markovian dependence), or less restrictive assumptions proposed by Patti-
son and Robins, 2002 and that we discuss in section 3.1.

Alternative formulation

Alternatively, equation 2.1 can be formulated in terms of what has been called
the change statistic by exploiting the dichotomous nature of the random vari-
able G;;.

We consider the conditional probability that a link between i and j is

present condition on the complement Gj; of G;;, that is the rest of the net-

ijs
work G except Gj;.

First, note that

Po(G = g) = XS} (G = g)wexplox(e))  @6)

then
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Pr(G = g;;)
Pr(G = gi‘;) +Pr(G=g;)
B exp{6x(g})}
- exp{0x(g;)} +exp{0'x(g;;)}

PT(Gi]‘ =1 | GIC]) =

(2.7)

where the g;;, g;j are networks such that

ot = 1 forentry (i,]); g = 0 forentry (i,j);
g Gy forentries (k1) # (i,7) g Gy for entries (k,1) # (i,7)

Note that the expression does not depend on the normalization constant
Z. By considering the odds ratio of the presence of a link between i and j in
expression 2.7 we have

Pr(Gij=1[Gj) exp{0'x(g;})}
Pr(Gij =0[Gj)  exp{0'x(g;)}

= exp{0' |x(gi)) — x(g;) |} (2.8)

Finally, the log odds ration takes the following form

o PT’(Gi]‘ =1 Gf]) _ 4 [x( ) x( 7)} (2.9)
§ PI’(Gi]' =0 | GZC]) gl] gl] .

The change statistic d, of graph metric x is define as 6,(G) = x(g;]f) —
x( & ), i.e. the change in graph metric x when toggling dyad (i, j) from 0 to 1.

This formulation eased the computation implementation of estimation
methods as is pointed out in section 2.1.3.

This formulation represents a great improvement in the speed of the com-
putational implementation of estimation methods but it also shed light on
some issues of degeneracy for certain classes of models. We will discuss this

in more depth below but first, we give some example of classical ERGMs.

2.1.2 Classic examples

The exponential-family of random graphs generalizes well-known networks

models, such as the Erdos-Renyi (Erd6s and Rényi, 1960). Below we present
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other spacial cases of classical network models.

e Triad Model (Frank and Strauss, 1986)
H(G) = 6,E(G) + 6,V(G) + 65T(G)

Where E measures the number of edges, V the number of two stars
and T the number of triangles. This model reduces to the Bernoulli if
0, = 63 = 0, to the two-stars model is 85 = 0 and to the Strauss’s Model
if 6, = 0.

/
\

FIGURE 2.1: Sufficient statistic of the triad model: triangles and
two paths

e Generalized Random Graphs (Newman, Strogatz, and Watts, 2001)

where {k;} = {ki,kp,....kn} is the node degree sequence. Assuming
a sparse network and using the handshaking lemma, the connection
probability can be written as
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FIGURE 2.2: Sufficient statistic of the generalized random
model: degree distribution

The latter example can be solved analytically. We refer to Fronczak, 2012
for the exact calculations. However, when other metrics that are not simple
linear combinations of G;j are included, such as triangles and two stars, the
model has no closed form solution. This together with the fact that the space
G can be very large even for relatively small 7, in practice makes it impossible
to derive analytically the model parameters vector 8 = [01,6,, ..., 6,] (Frank
and Strauss, 1986, Hunter and Handcock, 2006). Numerical methods, such
as Markov chain Monte Carlo (MCMC) approximations of the maximum-
likelihood estimators (MLEs) of the model parameters vector 6, are typically
adopted to circumvent this issue (see Section 2.1.3).

Properties

The probability distribution P(G) can be used to calculate estimates of other
quantities of interest y over the space G

= Y y(G)P( Z y(G (2.10)

Geg Geg
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In particular

GEeG Z 99;
107 oF
=230 = 30 (2.11)

where F = [n(Z) is called the free energy.
Similarly as in equation 2.11 one can show that the second derivative of the
free energy with respect to 0; gives the mean square fluctuation of x;, known
as the fluctuation-response relation (Fronczak, 2012)

a(x j> 9°F

2 N2 _ TN Y
(x7) = (x)° = % o (2.12)

2.1.3 Estimation techniques

Parameter estimation has been an active topic of research since the early pro-
posals of simple ERGMs. As pointed out before, models become quickly too
complicated to solve analytically. Techniques first started to exploit maxi-
mum likelihood maximization methods but later with new computational
power, the preferred methods became computational driven. Below general
review of the principal ideas of such methods, for interested readers we refer
to Snijders, 2002 and Robins et al., 2003.

Pseudo-likelihood estimation

Is the first and most simplest method used to estimate the parameters in an
ERGM (Strauss and Ikeda, 1990 ). It consists in approximating the likelihood
by the so-called pseudolikelihood

1(0) = Zl”(l’e {Gij =i | G = gme Y(1,k) # (i,))})
ij

Then one can maximize the pseudolikelihood, using logistic regression
methods, to obtain an estimator (MPLE). Despite the practicality of its im-
plementation, the MPLE'’s statistical properties are not well understood for

ERGMs, which has been reported extensively in the literature.
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Markov chain Monte Carlo Maximum Likelihood Estimation (MCMC-MLE)

Driven by difficulty of evaluating Z, stochastic methods to approximate the
maximum-likelihood where developed from the early nineties (Geyer and
Thompson, 1992; Dahmstrum and Dahmstrum, 1993; Corander, Dahmstrom,
and Dahmstréom, 1998).

The general idea of this method is to use Markov chain Monte Carlo al-
gorithms, whose stationary distribution is given by equation 2.1 with a par-
ticular parameter value, to draw a sample of graphs which are in turn used
to update the value of parameters. Hence, there are two recursive steps, the
simulation, and the estimation algorithms, that iterates in a loop until the pa-

rameter value satisfies some criteria of convergence.

For a fixed value of parameters, simulation algorithms such as Gibbs sam-
pler and Metropolis-Hasting algorithm are used to simulate random draws
of the stationary distribution Py. Loosely, it consists on visiting each dyad
(i,j) and setting the value of G; ; to one or zero with some probability 7 that
will in general depend on the change statistic (see section 2.1.1). For exam-
ple, the Gibbs Sampler method samples the value of G;; from the following
conditional probability.

P(Gij = 1] Gj; = gj))

P(Gij =0 Gj; = gj))

= exp{06x(G)}

These algorithms produce a Markov chain whose distribution is ensured
to converge to the exponential random graph distribution by detailed bal-
ance. There are many mixing techniques, for instance, dyad can be visit se-
quentially or at random, or by more sophisticated schemes that have been
proposed, see some examples in Snijders, 2002.

Now, to estimate the parameters, repeatedly MCMC simulations are used
to update its value. Again, many different methods have been proposed over
the years mostly driven by the type of ERGM parameterization. In general,
such algorithms set the initial values of the model parameters o) by means
of a maximum pseudo-likelihood estimation (MPLE) and update 6, to 6, 1)
by using approximations of moments of the distribution computed from the
MCMC simulations. Examples of such algorithms adaptations are Robbins-
Monro or Newton-Raphson or Geyer-Thompson. This process is repeated

iterative until the parameter values stabilizes or condition 2.3 is satisfied.

Here we outline a pseudocode for this methodology in general.



42

let m be MCMC sample size
initialize 6°
for i = 1 up until convergence do
sample Gy, Gy, ..., Gy ~ P(G, 0l71)
clo) = in (£, exp [(0— 6~ 1])x(@])D
6l = argmax, [Zt L 0x(G!) — C(0) ]
end for

2.1.4 Model construction and considerations

Here we summarize the general framework of model formulation and esti-
mation when applying it to real data, as in the case of brain networks.

For a particular complex network G, each network link is regarded as a
random variable and the aim is to define a probability distribution P on the
edge existence. An ERGM assumes that P is completely determined by a set
of sufficient statistics which in turn impose a specific dependency assump-
tion on the links of G.

Such metrics have to be chosen by the researcher based on priors that mo-
tivate scientific hypothesis on the network edge formation process and that
can be tested in an ERGM. The model can be further specified by imposing
parameters homogeneity or other constraints, for example fixing the density
of the network.

The model is then estimated with MCMC computational methods. After
checking for possible degeneracy issues and refining the model formulation
to one with good convergence properties, one can asses the goodness of fit of
the model by comparing topological properties of synthetic networks simu-
lated from the model to the observed network.

Finally, parameter interpretation can give insight in the direction and
magnitude of different network metrics affecting edge formation for a partic-
ular system. Parameters can also be used to discriminate different networks

populations.

Degeneracy

The use of stochastic simulations to estimate the parameters revealed that for
certain specifications the models displayed ill distributions in the sense that
they sample graphs that were topological far from real observed networks.
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For instance, the model including two stars and triangles would sample ei-
ther empty or full graphs, which are both very unlike to observe in nature or
man-made systems.

This triggered research on the properties of parameter spaces of ERGMs
tinding that, depending on the form of the model and algorithm used, MCMC
for the probability distribution Py converges to degenerate graphs (Robins et
al., 2003). There is two main type of degeneracy: near degeneracy property
and bimodal. The former refers to models formulation that implies that only
a few simulated graphs had other than very low probability, and the latter
refers to models that have a probability distribution with a binomial shape.

Degeneracy has been consistently reported when triangles and two paths
are included as sufficient statistics in an ERGM, nevertheless, these two met-
rics are intuitively important building blocks of many real complex networks.
In particular, in the field of social networks, that has driven many of the re-
cent ERGMs developments, these metrics are regarded as omnipresent. To
overcome degeneracy issue new specifications of triangles and two paths
have been defined. See section 3.1 and Hunter, 2007 for more details.
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2.2 Temporal extension TERGM

To go beyond modeling one instance of a dynamic complex system we want
to develop a coherent framework to properly characterize dynamic brain net-
works. We use Temporal exponential random graph models (TERGM) which
is a natural extension of ERGM to model time-varying networks first pro-
posed by Hanneke, Fu, and Xing, 2010 following ideas in Robins and Patti-
son, 2001. A TERGM defines the probability of a network at time step t as a
function of graph metrics and the observed graph up to time step t — K and
which has an ERGM form

2.2.1 Mathematical formulation

Let G' = {G!,..., G} be a time-varying network where each graph G' lays
in a set G of possible network realizations with a fix number of nodes N
and edges might change from one time point to another representing the
evolution of some underlying process. Then the conditional probability of
observing the time series of networks is given by

exp(0 x(G,GHL, ., GHKY)
7(6,G+K, .., G 1)

P(GHGK, ., G e) = (2.13)
In a second step, one computes the product over all time periods in order
to determine the probability of the time series of networks.

T
P(GK, .., GT|GY, ..., GX,8) = T] P(G'G'K, ..,G""19) (2.14)
t=K+1

In other words, the probability of observing a graph G’ given the previous
times t — 1,t — 2,...t — K is model by an ERGM which allows statistics that
depend both in time t and in the past.

2.2.2 Temporal dependencies

This model allows two levels of temporal dependencies: one is given by the
joint probability distribution which gives us a set of parameters for a time-
order graph sequence, and the other is given by the metrics x that can be on

their own temporal.
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The time lag K is the interval of dependency between graphs in the time-
varying network, i.e. network G for I < t — K are independent of G'. It
is important to define it accordingly to the time dependencies of the under-
lying time evolving process. This process is governed by one single vector
parameter 0 that weight the relative importance of each graph metric x; in
explaining the observed topology and its evolution over time.

In a TERGM the sufficient statistics x can be temporal, in the sense that
are graph metrics that depend both in time t and in the past t — K steps. This
is an important future as it allows to study temporal or dynamic connectiv-
ity mechanisms and goes beyond looking at the evolution of graph metrics
applied time-wise.

Below we list some example of possible networks that can be considered
as sufficient statistics, both static and temporal:

Exogenous covariates

e With no temporal dependencies: hx(G', X') = ¥;1; G} X};

Endogenous dependencies:
With no temporal dependencies the metrics take the form as in an ERGM.
With temporal dependencies the general formis #(G!, G! 1, ..., GI=X) = i hi]-(Gt, GH1, .., GHK

Stability:

hs(Gij, Gii ) D) ZGZGZ (-G - ij_l)

Auto-regression:

ha(Gjy, G ™) Zcf]c;f] !

Loss:

h (Gf]/ Gt 1) Z(l - Glt])GZt]_l
1

Innovation:

hi(Gij, G ™) ZGf]Gf] !

2.2.3 Computational implementation

As the core of a TERGM is still an ERGM many of the challenges prevail.
Notably, the fact that it is not possible to derive analytically the model’s pa-
rameters vector except for very small networks or simple graph metrics x.
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Therefore computational methods are used to estimate the model parameter
vector 6

However, in terms of computational methods, some advantages have
been exploited by the fact of having more networks as input. In an ERGM the
input network is regarded as a single multivariate observation, in a TERGM
the input network is a time-varying network, essentially a time-order se-
quence of networks.

Here we consider two existing computational methods: MCMCM-MLE
(see 2.1.3 and bootstrap methods with estimation via maximum pseudolike-
lihood (BMPLE). The BMPLE takes advantage of the practical MPLE imple-
mentation and it ensures a consistent estimator 6 (Leifeld, Cranmer, and Des-
marais, 2015). It also decreases the occurrence of degeneracy in the models.

The choice between one method or another will depend in general on
the number of time points and size of the time-varying network. Bootstrap
MPLE does not require simulation which represents a substantial advantage
over MCMC-MLE that is more computationally demanding but can be more
robust when few time points are provided.
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Chapter 3

A statistical model for brain
networks inferred from large-scale

electrophysiological signals

As presented in chapter 1 the study of the brain as a static network provides
an insightful characterization of brain connectivity patterns. By using graph
theory tools we can measure different topological signatures which encodes
biological principles. To disentangle those principles we propose to use a
graph model to test which of topological signatures are essential in the un-
derlying network formation process.

First, we will identify candidates of topological signatures by looking at
the existent literature of brain networks and more in general complex net-
works. Then, we use ERG models to test which of those signatures are sta-
tistically sufficient to generate observed network topologies. We consider
synthetic generated networks to study the capabilities and behavior of the
model under known network generation processes and then we apply such
model to brain networks of normal subjects in resting-state.

Resting-state provides a setting to study the spontaneous activity of the
brain. Even though there is evidence that suggests that those signals ex-
hibit fluctuations and nonstationary (Betzel et al., 2012), collapsing the time
recordings to an average network is reasonable when one wants to study

prevailing topological properties.

3.1 Synthetic networks

Consider a space of topology network types bounded by three different types:
lattice, random and scale-free. In one extreme of this triangle lays a lattice

which exhibits high clustering and local rewiring cost, in the other, random
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topologies are characterized by high global integration and scale-free net-
works are distinguished by power-law degree distributions. Normal brain
network’s topology share combine attributes in the space formed by these
extremes (Bullmore and Sporns, 2012; Stam, 2014). Some of the more inter-
esting and consistently reported are related to lattice and random, i.e. the
trad-off between segregation and integration balance and low wiring cost
(see section 1.2.3).

The Watts-Strogatz model provides a process to generate networks with
changing topology from regular to random. This simple yet powerful model
was first presented in the seminal paper Watts and Strogatz, 1998, and to
a large extent gave rise to modern network science. The paper sought to
explain how synchronization was accomplished among cricket chirps. The
model and its applications put in evidence the importance of the small-world
property. It not only explained how information can be efficiently transmit-
ted both locally and globally but it is one that is found in real complex net-
works across all sort of disciplines from ecology, epidemiology to transporta-
tion or social science.

Here, we use this model to generate synthetic network data. We start
with N nodes each connected to its k neighbors and let p be the probability
of rewiring a randomly chosen link with initial value p = 0. The network
generative process consists in taking each time a lattice and rewire its links
with probability p. When p = 1 the resulting network is random.

This network topology transition is characterized by local E; and global
E, efficiency. Lattice networks have a high local efficiency and low global
efficiency. Information traveling between two nodes that are physically far
away must travel an average of 5 (4 + 1) steps, however, locally all neigh-
bors are connected. Random networks, on the other hand, have low local ef-
ficiency but high global efficiency. As links are rewired, they serve to bridge
non-neighboring nodes.

These two apparently opposed properties are supported by triangles and
the tendency of short paths and are balanced for small probabilities p > 0.
Accordingly, we use these two metrics to model the networks in an ERGM.
As shown in section 2.1.2, the Erdos Renyi is a special case of an ERGM where
the Hamiltonian is given by H(G) = 6, E(G) where E is the number of edges
in the network and therefore such model will generate networks as the ones
obtained by rewiring links with p = 1. If we then take the model defined
by the Hamiltonian H(G) = 6;D(G), where D(G) = Gy, Gy, ... is the degree
distribution of a network-Dj, is equal to the number of nodes with degree
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k—we can simulate lattice-like networks.

Figure 3.1 shows the goodness of fit of such models fitted over a random
and a lattice network respectively. The goodness of fit measures how well the
model can reproduce networks with similar topological properties to the ob-
served ones. We see that the degree, edge-wise shared pattern and geodesic
distance for each model (box-plots) fit very well the observed distributions
(solid line).

Goodness-of-fit diagnostics
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FIGURE 3.1: a) Two input network with random and lattice

topology, b) Two simulated networks from ERGMs with hamil-

tonians H(G) = 61E(G) (top) and H(G) = 6;D(G) (bot-

tom), c) goodness of fit in terms of models over 100 simulated
networks.

Real life complex networks are rarely, if not never, regular or random.
Therefore we would like to define one single simple model that can at the
same time model lattice and random topologies and in between small-world
topologies. A flexible model that can capture different topologies in this
space.

We notice that triangles and two paths are two metrics that are signa-
tures of such topology changes. However, it has been shown extensively,
especially in computational social science, that those metrics incur in serious
degeneracy issues (see section 2.1.4). The triangles metrics is especially prob-
lematic as it leads to degenerate mass probability functions which generates
either complete or empty networks. To overcome this issues curved expo-

nential family models are somewhat preferred, these are model that include
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parameterized graph metrics and that mitigates degeneracy by giving less
weight to high order structures.
Therefore we consider the ERGM with Hamiltonian

H(G) = 6,GW(G) + 6,GWE(G) (3.1)

where GWk is the geometrically weighted degree distribution and GWg
is the geometrically weighted edgewise shared partner distribution, both
curved metrics first proposed by Hunter, 2007. The metrics sought to cap-
ture clustering effect, such as triangles, and integration, such a tendency to
form two paths without suffering from degeneracy issues. By weighting high
order structures with decaying parameter T the two extreme states of com-
plete and empty graphs are avoided with a high probability, and the resulted
titted ERGMs can model non-trivial network topologies.

Sensitive analysis of metrics GWg, GWE and its associated decay param-
eters T on the values of global and local efficiency reveals that high values
of global and local efficiency can be achieved for a large part of the param-
eter space (Fig3.2). Curved metrics GWg, GWE are not exactly measuring
local or global efficiency yet promote small-world topology, this supports
the idea that efficiency in a network is not necessarily a result of high local
and global efficiency but there might be other mechanisms such as hubs and
communities which promotes the balance of integration and segregation of
information.

Local Efficiency Global Efficiency
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FIGURE 3.2: Sensitivity analysis of GWx and GWE and decay
parameters T in global and local efficiency values



3.1. Synthetic networks 51

3.1.1 Validation

Consider three networks from the Watts-Strogatz model: lattice (p = 0),
small-world (p = 0.1) and random (p = 1) and fit ERGM 3.1.

One of the first things to check is if condition 2.3 is satisfied by network
simulated form the model. Failing to do so would indicate either that the
model is not well defined, i.e. the graph metrics specifying the model are
not sufficient statistics for the probability distribution, or the model exhibits
degeneracy. In either case, no relevant conclusions could be drawn from such
a model as the assumptions are not satisfied.

Then one can cross-validate the fit, this is to check if simulated networks
from the model have the same topology as the observed one. There is not
an unequivocal way of doing this, as there is no one single metric that can
define the entire topology of a network. One could look at, among others,
the distance of simulated to the graph or a profile of different metrics. Thus
this rest at the discretion of the researcher and is strongly dependent on the
type of system under study.

Here we decide to look at Eg, E; as these are truly characteristic of the
Watts-Strogatz model. We compare the value of local and global efficiency
of network generated by the Watts-Strogatz model to networks simulated by
model 3.1.

Figure 3.3 shows both the values of sufficient statistics GWx, GWg and
graph metrics Ej, E;. One can see that the model recovers strikingly well
those graph metrics, suggesting good convergence properties and no-degeneration.
It shows as well that we can recover network with varying topologies rang-

ing from lattice to random.
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FIGURE 3.3: The observed values of each input Watts-Strogatz

network is shown in a solid point, and the boxplot shows the

distribution of metrics GWk, GWE ,E;, E; over simulated net-
works from model 3.1

We can also look at link prediction capacity by computing the receiver
operating characteristic (ROC) and the precision-recall (PR) curves of the out-
of-sample prediction of network links. The area under the curves quantifies
the how well edges are predicted with respect to input networks.

Notably, if we were to try to fit a model, call it TP, with triangles and
two paths as metrics, the convergence of the model would be hindered by
the input network. Consider a longer sequence from Watts-Strogatz model,
i.e take a longer probability vector p. If we look at the area under the ROC
and PR curves of model 3.1 we see that the values start high (> 0.8) and then
stabilize around 0.5 3.4.

On the other hand, model TP almost never converges for low probabili-
ties p (evidenced by the lack of triangles in Figure 3.1). For higher probabili-

ties, the two models behave similar, as expected.
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two paths as metrics-blakc triangles). This plot has linear in-

crement, to get more small-world and hopefully more smooth
reduction.

3.2 Resting state conditions

To study functional brain connectivity networks we propose to implement
ERGMs that allow us to statistically test which connectivity mechanisms sup-
port the emergence of such synchronization patterns. We use EEG resting
state data because it provides a non-invasive setting to study spontaneous
brain activity at rest.

With these models, we expect to be able to simulate networks that are
topologically very close to observed brain networks and retrieve key discrim-
inating principles. For example, we know that in resting state EEG signals the
« frequency band is discriminant of eyes open and eyes closed resting state

conditions.

Model implementation

We take model 3.1 as a reference one, hypothesizing that the curved met-
rics will promote balance in integration and segregation, however since the
intrinsic connectivity mechanisms are unknown we fit the data to other mod-
els, using also curved terms metrics that have been successfully used in the

social science community.
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Validation

We found that indeed ERGM 3.1 ranks very well across different measures.
We proceed to further validate the model by looking at its goodness of fit
and to cross-validate with other graph metrics that were not included either
in the model nor in the ranking score.

We conclude that the model reproduces the most important topological
properties of observed resting state brain networks. Furthermore, it captures
important group differences that have been reported in the literature. Taken
together, these findings support the current view of the functional segrega-
tion and integration of the brain in terms of modules and hubs and provide
a statistical approach to extract new information on the (re)organizational
mechanisms in healthy and diseased brains.

Below we present the complete version of the published article that presents
our findings Obando and De Vico Fallani, 2017.
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Network science has been extensively developed to characterize the struc-
tural properties of complex systems, including brain networks inferred
from neuroimaging data. As a result of the inference process, networks esti-
mated from experimentally obtained biological data represent one instance
of a larger number of realizations with similar intrinsic topology. A model-
ling approach is therefore needed to support statistical inference on the
bottom-up local connectivity mechanisms influencing the formation of the
estimated brain networks. Here, we adopted a statistical model based on
exponential random graph models (ERGMs) to reproduce brain networks,
or connectomes, estimated by spectral coherence between high-density
electroencephalographic (EEG) signals. ERGMs are made up by different
local graph metrics, whereas the parameters weight the respective contri-
bution in explaining the observed network. We validated this approach in
a dataset of N =108 healthy subjects during eyes-open (EO) and eyes-
closed (EC) resting-state conditions. Results showed that the tendency to
form triangles and stars, reflecting clustering and node centrality, better
explained the global properties of the EEG connectomes than other combi-
nations of graph metrics. In particular, the synthetic networks generated
by this model configuration replicated the characteristic differences found
in real brain networks, with EO eliciting significantly higher segregation
in the alpha frequency band (8-13 Hz) than EC. Furthermore, the fitted
ERGM parameter values provided complementary information showing
that clustering connections are significantly more represented from EC to
EO in the alpha range, but also in the beta band (14-29 Hz), which is
known to play a crucial role in cortical processing of visual input and
externally oriented attention. Taken together, these findings support the
current view of the functional segregation and integration of the brain in
terms of modules and hubs, and provide a statistical approach to extract
new information on the (re)organizational mechanisms in healthy and
diseased brains.

1. Introduction

The study of the human brain at rest provides precious information that is
predictive of intrinsic functioning, cognition, as well as pathology [1]. In the
last decade, graph theoretic approaches have described the topological structure
of resting-state connectomes derived from different neuroimaging techniques,
such as functional magnetic resonance imaging (fMRI) or magneto- (MEG)
and electroencephalography (EEG).

These estimated connectomes, or brain networks, tend to exhibit similar
organizational properties, including small-worldness, cost-efficiency, modular-
ity and node centrality [2], as well as characteristic dependence from the
anatomical backbone connectivity [3-5] and genetic factors [6]. Furthermore,
they potentially show clinical relevance, as demonstrated by the recent

© 2017 The Author(s) Published by the Royal Society. Al rights reserved.
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development of network-based diagnostics of consciousness
[7,8], Alzheimer’s disease [9], stroke recovery [10] and
schizophrenia [11]. In this sense, quantifying the topological
properties of intrinsic functional connectomes by means
of graph theory has enriched our understanding of the
structure of functional brain connectivity maps [2,12-14].
Nevertheless, these results refer to a descriptive analysis of
the observed brain network, which is only one instance of
several alternatives with similar structural features. This is
especially true for functional networks inferred from empiri-
cally obtained data, where the edges (or links) are noisy
estimates of the true connectivity and thresholding is often
adopted to filter the relevant interactions between the
system units [15-17].

Statistical models are, therefore, needed to reflect the
uncertainty associated with a given observation, to permit
inference about the relative occurrence of specific local struc-
tures and to relate local-level processes to global-level
properties [18]. A first approach consists in generating syn-
thetic random networks that preserve some observed
properties, such as the degree distribution or the random
walk distribution, and then contrasting the values of the
graph indices obtained in these synthetic networks with
those extracted from the estimated connectomes [13]. While
these methods often provide appropriate null models, and
can improve the identification of relevant network properties
[19-21], they do not inform on the organizational mechan-
isms modelling the whole network formation [22,23].
approaches probabilistic  growth
models such as those based on spatial distances between

Alternative consider
nodes [24]. Interesting results have been achieved in identify-
ing some basic connectivity rules reproducing both structural
and functional brain networks [25,26]. However, these
methods suffer from the rough approximation (e.g. Eucli-
dean) of the actual spatial distance between nodes, and,
moreover, they do not indicate whether the identified local
mechanisms are either necessary or sufficient as descriptors
of the global network structure.

To support inference on the processes influencing the for-
mation of network structure, statistical models have been
conceived to consider the set of all possible alternative net-
works weighted on their similarity to the observed one
[18]. Among others, exponential random graph models
(ERGMs) represent a flexible category that allows the simul-
taneous assessment of the role of specific graph features in
the formation of the entire network. These models were
first proposed as an extension of the triad model defined in
[27] to characterize Markov graphs [28,29] and have been
widely developed to understand how simple interaction
rules, such as transitivity, could give rise to the complex
network of social contacts [30-38].

Recently, the use of ERGMs has been proved to success-
fully model imaging connectomes derived respectively from
spontaneous fMRI activity [39] and diffusion tensor imaging
(DTT) [40]. Despite its potential, the use of ERGMs in network
neuroscience is still in its infancy and more evidence is
needed to better elucidate its applicability to connectomes
inferred from other types of neuroimaging data and across
different experimental conditions. In addition, many
methodological issues remain unanswered, such as the
relationships between the graph metrics included in the
ERGM and the graph indices used to describe the topology
of the observed connectomes.

To address the above issues, we proposed and evaluated [ 2 |

several ERGM configurations based on the combination of
different local connectivity structures (i.e. graph metrics).
Specifically, we modelled brain networks estimated from
high-density EEG signals in a group of healthy individuals
during eyes-open (EO) and eyes-closed (EC) resting states.
Our goal was to identify the best ERGM configuration repro-
ducing EEG-derived connectomes in terms of functional
integration and segregation, and to evaluate the ability of the
estimated ERGM parameters in providing new information
discriminating between EO and EC conditions.

2. Material and methods

2.1. Electroencephalographic data and brain network

construction

We wused high-density EEG signals freely available from
the online PhysioNet BCI database [41,42]. EEG data consisted
of 1min resting state with EO and 1min resting state with EC
recorded from 56 electrodes in 108 healthy subjects. EEG signals
were recorded with an original sampling rate of 160 Hz. All the
EEG signals were referenced to the mean signal gathered from
electrodes on the ear lobes. We subsequently downsampled the
EEG signals to 100 Hz after applying a proper anti-aliasing
low-pass filter. The electrode positions on the scalp followed
the standard 10—10 montage.

We used the spectral coherence [43] to measure functional
connectivity (FC) between EEG signals of sensors i and j at a
specific frequency band f as follows:

1Si(f)I

u]l](f) Sn(f)s]](f)/ (21)
where Sj; is the cross-spectrum between i and j, and S;; and Sj; are
the autospectra of i and j, respectively. Specifically, we computed
cross- and auto-spectra by means of Welch’s averaged modified
periodogram with a sliding Hanning window of 1 s and 0.5 s of
overlap. The number of fast Fourier transform points was set to
100 for a frequency resolution of 1 Hz. As a result, we obtained
for each subject a connectivity matrix W(f) of size 56 x 56
where the entry w;;(f ) contains the value of the spectral coherence
between the EEG signals of sensors i and j at the frequency f.

We then averaged the connectivity matrices within the
characteristic frequency bands theta (4-7 Hz), alpha (8-13 Hz),
beta (14-29 Hz) and gamma (30—-40 Hz). These matrices consti-
tuted our raw brain networks whose nodes corresponded to
the EEG sensors (1 =56) and links corresponded to the wj
values. Finally, we thresholded the values in the connectivity
matrices to retain the strongest links in each brain network.
Specifically, we adopted an objective criterion, i.e. the efficiency
cost optimization (ECO), to filter and binarize a number of links
such that the final average node degree k = 3 [44]. We also con-
sidered k=1, 2, 4, 5 to evaluate the main brain network
properties around the representative threshold k = 3. The result-
ing sparse brain networks, or graphs, were represented by
adjacency matrices A, where each entry indicates the presence
a;=1 or the absence a;; = 0 of a link between nodes i and j.

2.2. Graph indices

We evaluated the global structure of brain networks by measur-
ing graph indices at large-scale topological scales. We focused on
well-known properties of brain networks such as optimal
balance between integration and segregation of information
[2,45,46]. Integration is the tendency of the network to favour
distributed connectivity among remote brain areas; conversely,
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segregation is the tendency of the network to maintain connec-
tivity within specialized groups of brain areas [47].

In graph theory, integration has been typically quantified by
the global-efficiency E, and by the characteristic path length L,

1 =~ 1
Ee = n(n—1) Z dij
ij=1i#j 1 22)
l n :
and L= n(T_l) Z dij/

i j=1,i#]

where d;; is the distance, or the length of the shortest path,
between nodes i and j [48,49].

Segregation is typically measured by means of the local-
efficiency E; and by the clustering coefficient C:

1 n
Bi="> E(G)
=1 (2.3)
2

1 n
and C= E;F(ki 1y

1
where G; is the subgraph formed by the nodes connected to i; t; is
the number of triangles around node i; and k; is the degree of
node i [48,49].

In addition, we evaluated the strength of division of a net-
work into modules by measuring the modularity Q:

1 kik;
Q= 7 Z (Al] - T]) Sm,.m,/ (24)
ij=1

where [ = Z;szl Ajj is the number of edges, m; is the module con-
taining node 7 and §,,,,m; = 1 if m; = m; and 0 otherwise. We used
the Walktrap algorithm to generate a sequence of community par-
titions [50] and we selected the one that maximized Q according to
the standard algorithm proposed in [51]. Modularity can be seen as
acompact measure of the integration and segregation of a network,
as it measures the propensity to form dense connections between
nodes within modules (i.e. segregation) but sparse connections
between nodes in different modules (i.e. inverse of integration).

2.3. Exponential random graph model

Let Gbe a graph in a set G of possible network realizations, § = [g1,

92, - .-, 8s beavector of graph statistics, or metrics, and g* = [g%, ¢3,
.., &7 be the values of these metrics measured over G. Then, we

can statistically model G by defining a probability distribution

P(G) over G such that the following conditions are satisfied:

> PG =1 (2.5)

GEg

and

@ = > &iG)P(G) =g,

i={1,2,...,r},
GEg { ) (2:6)

where (g;) is the expected value of the ith graph metric over G.
By maximizing the Gibbs entropy of P(G) constrained to the
above conditions, the probability distribution reads as:

H(G)

(G) = 7
where H(G) = Y_'_; 6,¢i(G) is the graph Hamiltonian, 6; is the ith
model parameter to be estimated and Z = Y€ is the so-
called partition function [52]. The estimated value of a parameter
6; indicates the change in the (log-odds) likelihood of an edge for
a unit change in graph metric g;. If the estimated value of 6; is
large and positive, the associated graph metric g; plays an impor-
tant role in explaining the topology of G more than would be
expected by chance. Note that here chance corresponds to ran-
domly choosing a network from the space G. If instead the
estimated value of 6; is negative and large, then g; still plays

(2.7)
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Figure 1. Graphical representation of k-stars and k-triangles.

an important role in explaining the topology of G but it is less
prevalent than expected by chance [53].

In general, the fact that the space G can be very large even
for relatively small 7, as well as the inclusion of graph metrics
that are not simple linear combinations of Gj;, in practice make
it impossible to derive analytically the model parameters
vector 0 =16y, 6,,..., 6,] [27,31].

Numerical methods, such as Markov chain Monte Carlo
(MCMC) approximations of the maximume-likelihood estimators
(MLEs) of the model parameters vector 6, are typically adopted
to circumvent this issue [54].

2.3.1. Model construction and implementation

We considered graph metrics reflecting the basic properties of com-
plex systems such as hub propensity and transitivity in the network
[46,55,56]. Specifically, we focused on k-stars to model highly con-
nected nodes (hubs) and k-triangles to model transitivity, where k
refers to the order of the structures as illustrated in figure 1.

In general, this leads to a large number of model parameters
to be estimated, i.e. n — 1 for k-stars and n — 2 for k-triangles. To
avoid consequent degeneracy issues in the ERGM estimation, we
adopted a compact specification for these metrics that combines
them in an alternating geometric sequence [31,57].

Because k-stars are related to the node degree distribution D
[33], we used the geometrically weighted degree distribution GWy as
a graph metric to characterize hub propensity:

n—1
GWx =) (1—e) —1+ie "D, (2.8)
i=1
where 7> 0 is a ratio parameter to penalize nodes with extremely
high node degrees.

Similarly, because k-triangles are related to the shared pattern
distribution S, we used the geometrically weighted edgewise shared
partner distribution to characterize transitivity:

n-2

GWp=eY (1-(1-e))S;, 29)

i=1

where the element S; is the number of dyads that are directly
connected and that have exactly i neighbours in common.

In addition, complementary metrics have been defined based
on the shared partner distribution:

GWn: geometrically weighted non-edgewise shared partner distri-
bution given by equation (2.9), with S; considering
exclusively dyads that are not connected.

GWn: geometrically weighted dyadwise shared partner distribution
given by equation (2.9), with S; considering any dyad,
connected or not.
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Table 1. Set of model configurations. Models M;—M,y include at most
two of the four considered graph metrics, i.e. GWy, GWg, GWy, GW,. The
metric ‘edges’ is fixed and equal to the actual number of edges in the
observed brain networks in all the configurations but M;; model. *Metrics
that are fixed. v"Metrics that are variable.

models edges GWy GW¢ GWy GW,
M, * v v - —
M * — — v v
MS' . B / . = B
M7 . v/ v B / o
Mg' : v/ v B B B
Mm o B B ,
==

The above specifications yield particular ERGMs that belong
to the so-called curved exponential family [33] and that have
been extensively used in social science [32,58,59].

We constructed different ERGM configurations by including
these graph metrics as illustrated in table 1. For the sake of sim-
plicity, we only considered combinations of two graph metrics at
most, except in one case where we also included the number of
edges as a further metric [39,40].

We tested the different configurations by fitting the ERGM to
brain networks in each single subject (N =108), frequency
band (theta, alpha, beta, gamma) and condition (EO, EC). To fit
ERGMs, we used an MCMC algorithm (Gibbs sampler) that
samples networks from an exponential graph distribution.
Specifically, we set the initial values of the model parameters
6° by means of a maximum pseudo-likelihood estimation
(MPLE) [54,60]. Then, we adopted Fisher’s scoring method to
update the model parameters 6 until they converged to
the approximated MLEs 6 [31]. As we used curved ERGMs,
the ratio parameters T were not fixed but were estimated.

Eventually, for each fitted ERGM configuration we generated
100 synthetic networks in order to obtain appropriate confidence
intervals.

2.3.2. Goodness of fit

First, we used the Akaike information criterion (AIC) to evaluate
the relative quality of the ERGMs’ fit by taking into account the
maximum value of the likelihood function and the number of
model parameters [61].

We also adopted a different approach to assess the absolute
quality of the fit by comparing the synthetic networks generated
by the estimated ERGMs and the observed brain networks.
Specifically, we defined the following score based on the inte-
gration and segregation properties of networks:

O(Eg, E1) = max(|mg, |, [7g,[), (2.10)

where 7 ,mg, are the relative errors between the mean values of
the global/local efficiency of the simulated networks and the
value of the observed brain network. By selecting the maximum
absolute error, we were considering the worst case, similar to
what was proposed in [26]. Based on the above criteria, we
selected the best model, which minimizes the AIC and & mean
values. To validate the model adequacy (equation (2.6)), we

computed the Z-scores between the graph metrics’ values of
brain networks and synthetic networks.

Furthermore, we cross-validated the best model configuration
by evaluating the synthetic networks’ fit to graph indices that were
explicitly not included in either the ERGM or the model selection
criteria. We computed Pearson’s correlation coefficient between
the values of the characteristic path length (L), clustering coeffi-
cient (C) and modularity (Q) extracted from the observed brain
networks and the mean values obtained from the corresponding
simulated networks. In addition, we used the Mirkin index (MI)
[62] to evaluate the similarity between the community partitions
of the observed networks and the consensus partitions of the
corresponding synthetic networks.

2.4, Statistical group analysis

We assessed the statistical differences between the values of the
graph indices extracted from the brain networks in the EO and
EC resting-state conditions. We also computed between-con-
dition differences using the synthetic networks fitted by the
best ERGM. In this case, we considered the mean values of the
graph indices in order to have one value corresponding to one
brain network. Eventually, we computed the statistical differ-
ences between the values of the best ERGM parameters in the
EO and EC conditions in order to assess their potential to pro-
vide complementary information to that provided by standard
graph analysis. For each comparison, we used a non-parametric
permutation t-test and we fixed a statistical threshold of a=
0.001 and 100 000 permutations.

3. Results

3.1. Characteristic functional segregation of
electroencephalographic resting-state networks

The group analysis revealed a significant increase in the
local-efficiency in EO, compared with that in EC, for the
alpha band (T = 3.529, p = 0.0007, figure 2). We also reported
a significant increment (T = 3.557, p = 0.0007) for the modu-
larity in the alpha band, while no other statistically significant
differences were observed in the other frequency bands,
graph indices or metrics (electronic supplementary material,
table S3).

These differences were obtained for brain networks
thresholded with an average node degree k=3 according
to the ECO criterion [44]. We reported a similar increase in
functional segregation (local-efficiency) in the alpha band for
k=5 (electronic supplementary material, figure S1). More
details on the analysis for k = 5 can be found in the electronic
supplementary material (Supp_text.pdf).

In terms of existing relationships between graph indices
and ERGM metrics, we could not establish univocal asso-
ciations between E; and E; values and the metrics’ values
used in the ERGMs (electronic supplementary material,
table S1). This was especially true for the global-efficiency,
which exhibited significantly high correlations with all the
other graph metrics (Spearman’s |R| > 0.43, p < 10~ %).

3.2. Triangles and stars as fundamental constituents

of functional brain networks
All the proposed ERGM configurations exhibited a relatively
good fitting in terms of AIC, except for M;; (electronic sup-
plementary material, figure S2). Notably, the latter was the
only configuration where the number of edges was considered
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Figure 2. Median values and standard errors of global- and local-efficiency measured from EEG brain networks across 108 subjects in eyes-open (EO) and eyes-

closed (EC) resting states. *p-value << 0.001.
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Figure 3. Absolute quality of the fit of ERGMs. Coloured bars show the group-averaged cumulative errors 6(E,, £) in terms of the relative of global- and
local-efficiency across frequency bands. Model configurations are listed on the x-axis. (a) Values for the eyes-open resting state (EQ); (b) the error values for

the eyes-closed resting state (EC). (Online version in colour.)

as a model parameter and not as a constraint. M; gave the
lowest &(E,, Ey) scores compared with the other configurations
in both the EO and EC conditions (figure 3). Notably, the
configurations giving lower &(Eg, E;) scores included, directly
or indirectly, the metric GWE, with the exception of M;;.

We selected M; as a potentially good candidate to
model EEG-derived brain networks. According to this
model configuration the mass probability density reads
P(G) = Zlexp{1GWg + -GWx}. The group-median
values of the estimated parameters (6; and 6,) were all
positive and larger than 1 in each band and condition
(table 2). This means that the likelihood of an edge exist-
ing in a simulated network is larger if that edge is part
of a triangle (GWg) or of a star (GWg), and that these
connectivity structures are statistically relevant for the brain
network formation.

Overall, the GWg and GWg values of the synthetic
networks generated by M; were not significantly different
from those of the observed brain networks (figure 4). This
was true in every subject for GWg (Z <2.58, p>0.01)
and in at least 94% of the subjects for GWg (Z <2.58, p >
0.01). Furthermore, the values of the characteristic path
length (L), clustering coefficient (C) and modularity (Q)
extracted from synthetic networks were significantly corre-
lated (Pearson’s R > 0.44, p < 10~°) with those of the brain
networks in each frequency band (figure 5; electronic
supplementary material, table S2). In addition, synthetic net-
works exhibited a similar community partition to individual

brain networks, as revealed by the low MI values (MI < 0.21)
(electronic supplementary material, figure S3). These results
confirmed that M; adequately models the obtained EEG
brain networks.

3.3. Simulating network differences between absence
and presence of visual input

Figure 6 illustrates the brain networks for a representative
subject in the alpha band along with the corresponding syn-
thetic networks generated by M;. In both the EO and EC
conditions, simulated networks and brain networks share
similar topological structures characterized by diffused regu-
larity and more concentrated connectivity in parietal and
occipital regions.

The group analysis over the synthetic networks revealed
the ability of M; to capture not only the individual properties
of brain networks but also the main observed difference
between the EC and EO resting states, reflecting, respectively,
the absence and presence of visual input. Similarly to observed
brain networks, we obtained, for simulated networks, a mar-
ginally significant increase in the local-efficiency from EC to
EO, in the alpha band (T = 3.168, p = 0.002). No other signifi-
cant differences were reported in any other band or graph
index/metric (electronic supplementary material, table S3).

Finally, by looking at the values of the estimated par-
ameters, we observed that 6; values were significantly
larger in EO than in EC for both the alpha (T = 3.746, p =
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Table 2. Statistics for the estimated parameters of the model configuration M. Median values and standard errors (within parentheses) are reported for the
two resting-state conditions EO and EC. t-values and p-values (within parentheses) from non-parametric permutation-based t-tests between EO and EC are
shown in the third column of each subsection marked with the heading EO — EC.

theta 1.528 (0.045) 1.531 (0.039) —0.281 (0.7804)
. 'a/pha R .v,1449 (0041),.,. ..H1297 (0039).,. (
e 1w (0457).... e o 046)” R o

gamma 1,552 (0.046) 1.509 (8.266) 2 (0.6

0.0002) and beta (Z=1.514, p=0.0009) frequency bands,
while no significant differences were found for 6, values
(table 2).

4. Discussion

In recent years, the use of statistical methods to infer the
structure of complex systems has gained increasing interest
[39,64-66]. Beyond the descriptive characterization of net-
works, statistical network models aim to statistically assess
the local connectivity processes involved in the global struc-
ture formation [18]. This is a crucial advance with respect
to standard descriptive approaches because imaging connec-
tomes, as with other biological networks, is often inferred
from experimentally obtained data and therefore the esti-
mated edges can suffer
uncertainty [67].

In our study, we used ERGMs to identify the local
connectivity structures that statistically form the intrinsic syn-

from statistical noise and

chronization of large-scale electrophysiological activities. This
model formulation has the advantage of statistically inferring
the probability of edge formation accounting for highly
dependent configurations, such as transitivity structures,
something that is lacking in, for example, the Bernoulli
model. Furthermore, it is possible to include, in theory,
graph metrics measuring global and local properties and dis-
criminating node and edges attributes, such as homophily
effects. In addition, it generalizes well-known network
models such as the stochastic block model, where a block
structure is imposed by including the count of edges between
groups of nodes as a model metric [68].

Here, the results showed that the tendency to form tri-
angles (GWg) and stars (GWx) was sufficient to statistically
reproduce the main properties of the EEG brain networks,
such as functional integration and segregation, measured
by means of global-efficiency E; and local-efficiency E; (elec-
table S3). Our findings
partially deviate from previous studies, which have used
ERGMs to model fMRI and DTI brain networks, where
GWg and the geometrically weighted non-edgewise shared

tronic supplementary material,

partner GWy were selected under the assumption that
these could be related, respectively, to local- and global-
efficiency [39,40]. However, here we showed that a univocal
relationship between the ERGM graph indices and the
metrics used to describe the EEG connectomes could not be
statistically established (electronic supplementary material,
table S1). While the propensity to form triangles (GWg) can

3746 (0000)

1,502 (0.169) 1443 (0.159) —0.406 (0.690)
137 (013)  1317(053)  —1.084 (0347)
R P
0878 (0.125) 1,140 (3.002) —1.064 (0.135)

lead to cohesive clustering in the network (E;), the propensity
to form redundant paths of length 2 (i.e. GWY) is not clearly
related to the formation of short paths between nodes (Eg)
[57]. Thus, while in general a good fit can be achieved by
including GWy in the ERGM, the subsequent interpretation
in terms of brain functional integration appears less straight-
forward. Here, we showed that GWg together with the
tendency to form stars (GWx) gave the best fit in terms of
local- and global efficiency. Triangles and stars, giving rise
to clustering and hubs, are fundamental building blocks of
complex systems reflecting important mechanisms such as
transitivity [48] and preferential attachment [69]. Notably,
the existence of highly connected nodes is compatible with
the presence of short paths (e.g. in a star graph the character-
istic path length L = 2). This supports the recent view of brain
functional integration where segregated modules exchange
information through central hubs and not necessarily
through the shortest paths [70,71].

In the cross-validation phase, the selected model configur-
ation captured other important brain network properties as
measured by the clustering coefficient C, the characteristic
path length L and the modularity Q (figure 5). In terms of
the differences between conditions, the simulated networks
gave a marginally significant increase (p = 0.002) in E, in the
alpha band during EO as compared with EC, while, differently
from observed brain networks, no significant differences were
reported for the modularity Q (electronic supplementary
material, table S3). The latter could be, in part, ascribed to
the absence of specific metrics in the ERGM accounting for
modularity. In this respect, stochastic block models, which
explicitly force modular structures, could represent an interest-
ing alternative to explore in the future [72,73]. Here, the
increased alpha local-efficiency suggests a modulation of aug-
mented specialized information processing, from EC to EO,
that is consistent with typical global power reduction and
increased regional activity [74]. Possible neural mechanisms
explaining this effect have been associated with the automatic
gathering of non-specific information resulting from more
interactions within the visual system [75] and with shifts
from interoceptive towards exteroceptive states [76—78].

As a crucial result, we provided complementary infor-
mation by inspecting the fitted ERGM parameters. The
positive 6; >1 and 6, > 1 values indicated that both GWg
and GWg are fundamental connectivity features that
emerge in brain networks more than expected by chance
(table 2). However, only 6; values showed a significant differ-
ence (EO > EC) in the alpha band, as well as in the beta band
(table 2), suggesting that the tendency to form triangles,
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Figure 4. Adequacy of the model configuration M. Green and red dots represent, respectively, the values of the geometrically weighted edgewise shared pattern
distribution (GWg) and the geometrically weighted degree distribution (GWy) measured in simulated networks. Black dot lines indicate the values measured in the
observed brain networks.
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Figure 5. Cross-validation for the model configuration M;. Scatter plots show the values of the graph indices measured in the observed brain networks (x-axis)
against the mean values obtained from synthetic networks (y-axis). Three graph indices were considered: characteristic path length (L), clustering coefficient (C) and
modularity (Q). Grey dots correspond to eyes-open resting states (EO); black dots correspond to eyes-closed resting states (EC).
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Figure 6. Brain networks and synthetic networks for a representative subject. (a) Brain network in the alpha band for the eyes-open (E0) and eyes-closed (EC)
resting state. (b) One instance of the corresponding synthetic networks generated by the model configuration M;. (c) Because node labels are not preserved in the
simulated networks, we re-assigned them virtually by using the Frank—Wolfe algorithm [63], which optimizes the graph matching with the observed brain network.
In the upper part of the figure, nodes correspond to EEG electrodes, whose position follows a standard 10— 10 montage. In the bottom part, the nodes are arranged

into a circle. (Online version in colour.)

rather than the tendency to form stars, is a discriminating fea-
ture of EO and EC modes. More concentrated EEG activity
among parieto-occipital areas has been largely documented
in the alpha and also in the beta bands, the latter reflecting
either cortical processing of visual input or externally
oriented attention [74,79]. Notably, the role of the beta band
could not be found when analysing either brain networks
or synthetic networks (figure 2; electronic supplementary
material, table S3) and we speculate that this result specifi-
cally stems from the inherent ability of ERGMs to account
for potential interaction between different graph metrics [57].

4.1. Methodological considerations
We estimated EEG connectomes by means of spectral coher-
ence. While this measure is known to suffer from possible
volume conduction effects [80], it has also been demonstrated
that, probably due to this effect, it has the advantage of
generating connectivity matrices that are highly consistent
within and between subjects [81]. In addition, spectral coher-
ence is still one of the most used measures to infer FC in the
electrophysiological literature on resting states because of its
simplicity and relatively intuitive interpretation. Thus, con-
structing EEG connectomes by means of spectral coherence
allowed us to better contextualize the results obtained
with ERGM from a neurophysiological perspective. Future
studies will have to assess if and how different connectivity
estimators affect the choice of the model parameters.

We used a density-based thresholding procedure to filter
information in the EEG raw networks by retaining and
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Chapter 4

Temporal models of dynamic brain
networks predict recovery after
stroke

Brain networks are constructed from temporal recordings that encode dy-
namic neural activity which is captured at different scales. Regardless of the
scale, we can always observe changes in the brain that withholds precious
information in its normal functioning and pathologies.

In this chapter, we embark in modeling time-varying brain networks.
Brian dynamics are abstracted into a time-order sequence of networks and
we sought to model connectivity changes over time. To do so we imple-
ment temporal exponential random graph models with temporal metrics.
We study the capabilities of temporal metrics over synthetic temporal data
and then we study brain plasticity over a population of stroke patients using
TERGMs to statistically test which connectivity mechanisms support a good

recovery of lost brain functions.

4.1 Temporal synthetic data

Most real complex systems are dynamic by nature and exhibit some degree
of dependency over time. Here we propose a simple extension of the Watts-
Strogatz model to generate time-dependent networks. The resulting time-
varying network can be regarded as a correlated Watts-Strogatz temporal
network.

Take the first network G! to be a lattice with N nodes and mean degree
k, then we rewire each link with some small probability p and take the re-

sulting network as G2, next we increase p and take the resulting network
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as the following graph in the time-varying network. We repeat this proce-
dure sequentially until we reach p = 1. Note that in this model each net-
work G' (for t > 2) is constructed from the previous network G!~1 and not
from a lattice as is the case in the classical Watts-Strogatz model. Therefore
this model results in a time-varying network which exhibits time dependen-
cies rather than an independent sequence of networks given by the classi-
cal Watts-Strogatz. This property is desirable as most real time-varying net-

works will exhibit time dependencies.

FIGURE 4.1: Time varying network generated from correlated
Watts Strogatz

4.1.1 Temporal metrics

Over the years one common method to study temporal brain networks is
looking at the progression of different graph metrics over time, i.e. to com-
pute at each time point a vector of certain network metrics and report its
evolution. However, this approach disregards temporal information such as
connectivity that occur over time and not necessarily at a specific time point.

Moreover, the connectivity of a node does influence the connectivity of
the nodes to which it is connected, and in general the overall network struc-
ture. This evidence naturally introduces dependence between graph indexes
at different topological scales. To tackle this we propose to incorporate the

following temporal metrics
Temporal triangles T}

TG, G =Y GGl ' G (4.1)
ijk

Temporal two-path Py
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P(G!, G ”chf H1- G GLy(1 - G) (4.2)

Note that both metrics count the persistence and formation of triangles

and two paths respectively. Persistence refers to triangles or two paths that

exist in both times t — 1 and t and the formation to triangles or two paths

that do not exist at any specific time but over time steps. Figure 4.2 show the

count of temporal metrics over a time-varying network generated with the
correlated Watts-Strogatz model.

Temporal Triangles
Temporal Two paths ==

4000 1

3000 1
c
«
(0]
€ 2000

1000 1

5 10 15
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FIGURE 4.2: Count of temporal metrics of time varying net-
work generated from correlated Watts Strogatz model

4.1.2 Model selection

We fit a TERGM with temporal metrics T}, P; over a correlated Watts Strogatz
sequence. The corresponding Hamiltonian is given by

H(G'"™,G") =0 Ti(G",G") +6,(G" 1, G) (4.3)

The probability of observing the entire series of networks was controlled
by two parameters - thetar and thetap - which weighted the relative contri-
bution of T; and P;

From the fitted probability mass function we can generate synthetic time-
varying networks and compared them to the correlated Watts-Strogatz se-
quence. By looking at the area under the ROC and PR curve we confirmed
good convergence and goodness-of-fit (Fig. 4.3). The model is capable of
reproducing correlated Watts Strogatz sequences.
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FIGURE 4.3: Goodness of fit of the model in terms of the area
under the curve

Furthermore, we showed that the networks sampled with the fitted TERGM
also recovered integration and segregation properties - here quantified by
global- and local-efficiency respectively - that were not directly included in
the model but that were intrinsically representative of the temporal Watts-
Strogatz sequence. Notably, this cross-validation completely failed when we
substituted the temporal graph metrics in the TERGM with static graph met-
rics which simply account for the presence of triangles and short paths in
each time stamp (Fig. 4.4) .
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FIGURE 4.4: Comparing different TERGM with temporal and
static metrics

An interesting point is to compare model 4.3 to other TERGMSs with static
metrics (Fig. 4.4) and to ERGM fitted at each time point. Figure 4.5 shows
the are under the ROC and PR curve for models: model 4.5 (M1); model
with static triangle and two-path counts (M2), and ERGM fitted at each time
stamp with static triangle and two paths counts (M3).

Notable neither recovers the topological changes as the first model, show-
ing that both levels of temporalities are important when modeling time-varying

networks, i.e. the temporal model but as well temporal metrics.
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FIGURE 4.5: Comparing different (T)ERGM with temporal and
static metrics in terms of AUC
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4.2 Application to Stroke recovery

The brain is a networked system whose parts dynamically interact over mul-
tiple temporal and spatial scales. Such network properties are at the basis
of neuroplasticity allowing for the acquisition of new skills (e.g., learning) as
well as for the functional recovery after brain injuries (e.g., stroke). When
locally damaged, the brain tends to spontaneously adapt by recruiting new
resources through the network to compensate for the loss of the neuronal
tissue and recover the associated motor or cognitive functions. At small
spatial scales, dendritic remodeling, axonal sprouting, and synapse forma-
tion have been best demonstrated in the peri-lesional tissue of animal mod-
els during the first weeks after stroke (Mostany and Portera-Cailliau, 2011;
Brown, Wong, and Murphy, 2008; Carmichael et al., 2001). At larger scales,
it is well known that post-stroke plasticity also involves regions outside the
peri-infarct cortex - including the contralesional hemisphere - and that the
associated brain activity and connectivity changes can last several months in
an effort to return to a normal condition (Carrera and Tononi, 2014; Siegel
et al., 2016; Weiller et al., 1992; Dancause et al., 2005, Van Meer et al., 2010;
He et al., 2007).

Recovery after stroke is a temporally dynamic network phenomenon, but
only recent longitudinal studies have allowed to demonstrate a direct asso-
ciation between changes in time-varying brain networks and spontaneous
recovery in humans (Ramsey et al., 2016). Both increased interhemispheric
homotopic integration and intrahemispheric segregation appear to be funda-
mental principles for recovery of associative/higher cognitive functions (e.g.
attention, memory), as quantified by the return to a normal modular organi-
zation (Siegel et al., 2018). Indeed, the role of time in complex networks has
been recently revised as a fundamental variable to model and analyze real-
world connection phenomena (Li et al., 2017; Holme and Saramaéki, 2012).
By introducing time, new higher-order properties emerge that cannot be cap-
tured by a static network, or graph, approaches and that are related to purely
temporal concepts such as formation and persistence of specific connectivity
patterns. Interestingly, the inherent ability of temporal connection mecha-
nisms to characterize dynamic brain networks, as well as to predict future
behavior, have been increasingly demonstrated in the context of human neu-
roscience (Bassett et al., 2011; Tang et al., 2009; Thompson, Brantefors, and
Fransson, 2017; Braun et al., 2016; Cole et al., 2013; Ekman et al., 2012).

To date, however, the existence of dynamic brain network signatures in



4.2. Application to Stroke recovery 71

stroke and their ability to predict functional recovery in individual patients
has not been proved directly. Based on these theoretical and empirical grounds,
we hypothesized that temporal connection mechanisms are fundamental prin-
ciples of recovery after stroke. More specifically, based on the current ev-
idence relating changes in functional integration and segregation after the
injury, we expected that the formation of interhemispheric short connections
and intrahemispheric clustering connections would characterize the suba-
cute phases of recovery. Furthermore, we hypothesized that these temporal
properties would allow to predict their functional outcome in the subsequent
chronic phase.

To test these hypotheses, we considered longitudinal brain networks de-
rived from resting-state fMRI BOLD activity recorded in a group of patients
at 2 weeks, 3 months and 1 year after their first-ever unilateral stroke. Neu-
rological impairments were described using multidomain behavioral mea-
surements at each time point. We evaluated the significance of the hypoth-
esized temporal connection mechanisms through a rigorous statistical net-
work modeling approach and we tested their relationship with the functional

recovery of single patients.

4.21 Time-varying brain network construction

High-resolution functional MRI data from 51 first time human stroke pa-
tients with clinical evidence of motor, language, attention, visual, or mem-
ory deficits based on neurological examination were used to map functional
brain networks at several time points (2 weeks, 3 months and 1 year after
stroke onset). Data were collected at the Washington University School of
Medicine (WUSM). Resting-state functional scans were acquired with gradi-
ent echo EPI sequence (TR = 200 msec, TE = 2 msec, 32 contiguous 4 mm
slices,4 x 4 mm in-plane resolution). The acquisitions were six to eight rest-
ing state fMRI runs, each including 128 volumes (30 min total). For more
information in the full MRI protocol and fMRI preprocessing and processing
see Siegel et al., 2016.

For each patient, lesions were manually segmented using structural MRI
images (T1-weighted MP-RAGE, T2-weighted spin echo images, and FLAIR
images obtained 1-3 weeks post-stroke) using the Analyze biomedical imag-
ing software system (Robb and Hanson, 1991). The cortical surface was par-
cellated by Gordon & Laumann atlas (Gordon et al., 2014) which includes
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324 regions of interest (ROI). Functional connectivity (FC) was computed be-
tween each parcel time series using Fisher z-transformed Pearson correlation
(include equation?). As a result, we obtained for each patient a weighted
connectivity matrix W(t) of size 324 x 324 where the entry w;;(t) contains
the value of FC between signals in parcel i and j and time ¢.

All vertices that fell within the lesion were masked out, and parcels with
greater than 50% lesion overlap were excluded from the analysis. We also ex-
cluded nodes that felt in an unassigned brain system. This produced connec-
tivity matrices of different sizes (mean=275.6, sd= 6.8). Finally, we thresh-
olded the values in the connectivity matrices to retain the strongest links in
each brain network. Specifically, we considered edge densities ranging from
5% to 20% as Siegel et al., 2018 and here we show results for networks with
density 10%.

The resulting sparse time-varying brain networks were represented by
adjacency matrices G', where each entry indicated the presence ij = 1or
the absence ij = 0 of a link between nodes i and j and time t and where the
number of nodes N can vary across patients.

Damaged areas involved both subcortical and cortical ROIs, with uni-
lateral cortical lesions mainly covering cingulo-opercular, auditory, ventral-
attention, and default mode network systems. We differentiate patients into
two groups those with cortical lesions, i.e the lesion affected directly one
of the brain systems and, those with no cortical lesions, i.e the lesion is ei-
ther in the brainstem, the cerebellar, only in the white matter or subcorti-
cal. For the cortical lesioned patients we take the subnetwork consisting of
only the brain systems that were affected by the lesion (mean network size
= 81.13, sd = 47.78) to capture more accurately the biological hypothesis.

Static descriptive approaches demonstrated a progressive restoration of
modularity in the large-scale functional brain network that was associated
with the recovery of multidomain functions (Siegel et al., 2018). These changes

were more evident in the sub-acute phases (2 weeks and 3 months).
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4.2.2 Dynamic network mechanisms after stroke

It has been theoretically hypothesized and recently empirically observed that
functional recovery after stroke is supported by the emergence and consol-
idation of intra-hemispheric segregation and inter-hemispheric integration.
To quantify the formation of interhemispheric short connections and intra-
hemispheric clustering connections we introduce two temporal metrics tem-
poral triangles T; and temporal interhemispheric connection Ih; that take into
account the spatial nature of brain networks and the specificity of the recov-

ery process

T(G', G =) Gy 'G Gl - Ly (4.4)
ijk

Where L;; = 1if i and j belongs to the same ipsi-lesional module.

Ihy(GH G = 2(1 — ij—l)ij - Hj (4.5)

ij
Where H;; = 1ifiand jbelongs to the same module in different hemispheres.
Temporal triangles quantify the temporal formation of cluster connec-

tions whereas temporal interhemispheric connections quantify the temporal
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formation of long-range connections. Note that T, Ih; are counting temporal
formation, i.e. configurations that might not be present in either ¢t — 1 and ¢
but that are observed over time. Further, the count of T}, Ih; between t — 1
and t are not equivalent to the count of static triangles and connections in
the collapsed network (G~ + G') /2, as the latter would also count trian-
gles that are observed only at one time point and the former only counts the

persistence of connections.

We adopted a TERGM modeling approach to identify the temporal mech-
anisms underlying such recovery and the extent to which they could predict
future recovery in each patient. To evaluate the evolution of connectivity

after stroke, we implemented a temporal exponential random graph model

EXP(GTTt(Gt, Gt_l) + thlht(Gt/ Gt_l))
Z(6,GF )

To assess how well our models fit the empirical data, we followed a gen-

P(G'|G' 1, 0) = (4.6)

erative model evaluation framework (Betzel et al., 2016). We generated syn-
thetic data using the inferred edge-existence parameters of the TERG model.
To asses the adequacy of the model we look at the area under the receiver op-
erating characteristic (ROC) curve and the precision-recall (PR) curve of the
out-of-sample prediction of network ties. We found a general high goodness-
of-fit in terms of link prediction capacity regardless of the observation period
(i.e. 3 months or 1 year) and location of the lesion (i.e. subcortical/cortical).

AUC Patients Controls

mean sd mean sd
ROC 080 0.05 0.83 0.02
PRC 0.53 0.12 0.67 0.05

TABLE 4.1: Link prediction capacity of model 4.6

To test if our hypothesized network mechanisms are indeed representa-
tive of stroke recovery and not only of normal evolution of the brain over
time, we fit the same model to a group of controls with matched character-
istics. To make a fair comparison we only look at no cortical subjects versus

controls, as these subjects have the same network sizes and in this way, we
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avoid a size/variability effect. We look at parameters 0r, 6, for no-cortical
lesion patient model and controls model.

At a global scale, the values of the fitted TERGM parameters were signifi-
cantly larger from those obtained in a group of age-matched healthy controls.
This indicated that the formation of triangles and interhemispheric connec-

tions are peculiar mechanisms of brain network reconfiguration after stroke.
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FIGURE 4.7: Statistical comparison of stroke connectivity mech-
anisms to controls

By analyzing the brain networks of patients affected by cortical lesions,
we also found that these dynamic features were more or less prevalent de-
pending on which system is damaged. Larger values of thetar and thetay,
were observed when the stroke lesion implicated ROIs in the visual and sen-
sorimotor systems, and to a minor extent in the cingulo-opercular system
(Fig 4.8).
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FIGURE 4.8: Weight parameters mapped in the cortex

Prediction of future outcome

Given the dynamic nature of brain connectivity after stroke, we finally asked
whether such temporal network properties could be predictive of the future
outcome of patients. To do so, we correlated the values of the TERGM pa-
rameters fitted over the dynamic brain networks in the subacute phase (i.e.
2 weeks and 3 months) with the multi-domain behavioral scores gathered in
the chronic phase (i.e. 1 year).

We found that intrahemispheric temporal triangles and interhemispheric
connections significantly predicted language for the patients with subcortical
lesion (p < 0.01).

For patients with cortical lesions with found a significant correlation with
visual levels. However, we didn’t find many counts of temporal triangles for
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subjects with small size networks therefore the parameter T; was not mean-
ingful.

No other significant correlations were found with the other behavioral
scores. Notably, we found no significant correlations with static network
properties such as modularity, or when we considered static connectivity
metrics within the TERGM.

We finally showed that simply measuring the values of temporal graph
metrics outside the TERGM did not lead to significant correlation with the
behavior suggesting that the model parameters thetar and thetay,, which
evaluate statistically the relevance of T; and Ih;, are indeed carrying more
robust information for the prediction of stroke recovery.

Our results indicate that the use of purely temporal connection mech-
anisms, such as the formation and persistence of triangles and long-range
connections - here reflecting within-hemisphere segregation and interhemi-
spheric homotopic integration - hold a predictive power that cannot be achieved
by simply looking at static network properties over time.

guage

Language
Lan

1 2 1.2 1.5 1.8 2.1

eTem poralTriangles elnterH

FIGURE 4.9: Formation of interhemispheric short connections
and intrahemispheric clustering connections predict language

4.2.3 Discussion
Modeling dynamic networks

Most natural and social interconnected systems are characterized by time-
varying interactions so that the network’s structure changes over time. Such
temporality has been shown to affect many dynamical processes on the net-

work such as slowing down synchronization and diffusion of information,
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impeding exploration and accessibility, as well as favoring system control (Li
etal., 2017).

More pertinent to this paper, recent evidence suggests that brain func-
tional connectivity is inherently dynamic exhibiting relatively fast fluctua-
tions that support normal cognitive abilities - such as learning - as well as
slower changes associated to neurodegenerative diseases or recovery after
brain injuries (Vergara et al., 2018; Cérdova-Palomera et al., 2017).

Despite the ubiquity of temporality, brain connectivity networks have
been mostly studied with cross-sectional experiments and static graph ap-
proaches. Furthermore, the statistical relevance of the extracted network
properties remain largely unknown and group-level analysis are typically
used to determine the confidence intervals, thus leading to a critical loss of
individual specificity (De Vico Fallani et al., 2014).

To address these limitations we adopted a model-based statistical frame-
work to test the significance of specific local connection rules to generate an
observed time series of temporal networks. We showed that the temporal
formation of clustering connections and short-range connections - i.e. basic
components of global segregation and integration - are sufficient to capture
and statistically reproduce dynamic brain networks in single stroke patients.

Brain plasticity and stroke

Although stroke represents a focal damage, it is well known that consequences
involve areas that are also outside the peri-lesional tissue Siegel et al., 2018;
Li et al.,, 2014. Efforts to characterize brain network reorganization after
stroke has focused almost exclusively on the static representation of under-
lying connectivity patterns (Siegel et al., 2018). However, both scientific in-
tuition and recent evidence suggest that temporal network properties might
also contain important information about the mechanisms of brain plasticity.

Our exploration of temporal network properties provides new insights
into the brain organizational principles after stroke. We found that the forma-
tion of triangles within the perilesional area, as well as of long-range connec-
tions with the homotopic region in the contralesional hemisphere, constitute
fundamental building blocks of cortical plasticity after stroke.

Biologically, these temporal connection processes quantify respectively
dynamic within hemisphere segregation and between hemisphere integra-
tion, which have been hypothesized to underlie the subacute phase of stroke
recovery and are in line with recent evidence showing a progressive return

to a normal modular organization (Siegel et al., 2018).
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Such reorganizational mechanisms were particularly evident in the visual
and motor systems. Vulnerability and modeling analyses indicated that at-
tacking such systems will have relatively little effect in terms of widespread
connectivity disruption as compared, for example, to midline and fronto-
temporal cortices (Alstott et al., 2009). Thus, even when damaged, the visual
and motor system would exhibit a high neural plasticity potential and our
results indicate that dynamic network reorganization after stroke is indeed

taking place in these cortical systems.

Forecasting behavior and recovery

Forecasting behavior is one of the main challenges in many real-life situa-
tions from econometry to epidemiology. In clinical neuroscience, a correct
prognosis will have a concrete impact on the life of people allowing to iden-
tify the appropriate therapeutic or strategy to slow down the progression of
disease or promote effective recovery.

Our results show that the intrinsic temporal brain network signatures in
the subacute phase after a stroke (between 2 weeks and 3 months) can pre-
dict the future clinical outcome of patients in the chronic phase (1-year post-
stroke), whereas static network approaches failed to do so. In particular, tem-
poral triangles could predict visual levels while short paths predicted the
recovery of language. We found no correlations with more specific related
scores, such as motor or visual behavior.

It has been shown that lesions of specific brain regions are often associ-
ated with specific cognitive and behavioral disturbances, and lesions of some
areas tend to have more severe effects than others Damasio, 1989; Mesulam,
2000; Caplan and Van Gijn, 2012. Because of the heterogeneity of the studied
population, we could not assess if it is the case. By looking at the correlation

plot we could not observe a clear pattern.

Limitations/perspectives

The studied dynamic brain networks consisted of three-time points - two
for the subacute phase and one for the chronic phase -allowing to have a
partial understanding of the reorganizational mechanisms taking place after
stroke. While from a methodological perspective TERGMs are relatively ro-
bust with respect to the length of the network time series, a higher frequency
sampling would have provided more detailed dynamics. However, due to
the difficulty of recruiting stroke patients over long periods the large parts
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of the studies are cross-sectional or only consider two-time points. Although
the dataset used here is one of the most complete currently available, more
longitudinal studies will be important to assess dynamic neural mechanisms
after a stroke at a finer temporal resolution.

Temporal triangles were not found to be significantly present for some
cortical lesion patients with small network size and this presents a problem
in the model fit. However, this could be addressed by considering parcella-
tions with higher resolutions or other functional connectivity networks with
higher spatial resolution.

The temporal graph metrics implemented in our TERGMs were designed
to capture monotonic network changes over time, such as the formation of
specific connectivity motifs. This means that in general, these models cannot
capture inverse trends - e.g. pattern dissolution - or more complex dynamics.
While this is not a major issue in the case of neural recovery and neurodegen-
eration, the study of functional brain networks at shorter time scales might
need more sophisticated approaches that also model connectivity fluctua-
tions. More research is needed in this direction and possible solutions may
arrive from the development of network models with time-varying parame-
ters (Lee, Li, and Wilson, 2017).

The cohort of stroke patients was heterogeneous in terms of stroke le-
sion type and location (Siegel et al., 2018). Because patients suffered from
unilateral lesions - except for brainstem damages - we only considered the
corresponding cortical hemisphere as the affected one. However, unilateral
lesions of subcortical structures - including white matter and cerebellum -
could result in a more complex pattern which partly involving both corti-
cal hemispheres. In a separate analysis, we showed that consideringboth the
hemispheres as affected decrease the relevance of TERGM parameters as well
as their predictive ability, suggesting that there were not major reorganiza-
tional processes taking place in the unaffected hemisphere.

Conclusion

Consistent with our hypothesis, we have identified two significant temporal
network mechanisms that characterize dynamic brain networks after stroke.
Formation of clustering connections within the perilesional tissue and of
short pathways between the perilesional area and the homotopic regions in

the contralesional hemisphere are significantly abundant in stroke patients
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as compared to healthy controls. These temporal signatures, which are re-
spectively related to intrahemispheric segregation and interhemispheric in-
tegration, varied over individuals during the acute phases after stroke and
were significant predictors of attention and memory deficit in the subsequent
chronic phase. Furthermore, we reported a general framework for the statis-
tical validation of temporal network metrics in arbitrary interconnected sys-
tems. Taken together, our results offer new insights into the crucial role of
temporal connection mechanisms in the prediction of the dynamic system

performance.
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Chapter 5
Discussion & Future Directions

Network neuroscience has proven to be a leading field in advancing our un-
derstanding of the brain. As many relatively new fields, it is normal to see
plenty reviews presenting current challenges and possible solutions to redi-
rect the focus and efforts of the field in an effective way. There are two aspects
that almost always pop and those are: the need for more theory-based mod-
els and, the interest in the temporal nature of brain networks, both of which
are the focus of this thesis.

We looked at fundamental properties consistently found in brain net-
works studies and used the modelization framework of exponential random
graph family to statistically test to what extent different connectivity mecha-
nisms impact the emergent topology of functional patterns in the brain. The
main objective was to account for statistical and temporal properties of func-
tional connectivity mechanisms in the study of brain networks. To achieve
this aim, we carefully built (T)ERG models to model and simulate temporal
brain networks.

ERGMs have been extensively used in the field of social networks with
great proliferation and although this is not the first application to network
neuroscience, it is somewhat unusual. One of our contributions has been
to carefully translate this framework into models with biological meaning
and do extensive validation from synthetic data to static and temporal brain
networks.

By following a bottom-up approach, we first studied and validated ERGMs
in normal brain. By identifying persistent network properties, we were able
to successfully define a model which reproduced brain connectivity networks
at rest and that accounted for the uncertainty associated to each observation.
The model not only recovered key topological properties but it was also ca-
pable of discriminating between eyes open and eyes closed resting state con-
ditions.
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From this study, by thoroughly testing which connectivity mechanisms
were important we identified the tendency to form triangles and two paths as
key ones, as expected. Then later, we adapted these two connectivity mech-
anisms into temporal attributes to study changes in the brain, in particularly
plasticity.

We constructed TERGMs informed by biological hypothesis to study global
network changes occurring during stroke recovery. We validated the tempo-
ral metrics and model over synthetic data. We successfully applied the model
over real data showing the crucial role of temporal connection mechanisms
in the prediction of the dynamic system performance.

Special care was taken in the goodness of fit aspect of the models. It is
a very fundamental scientific question in that it tests its validity. There are
many sensitive steps that will impact this, from the construction of brain net-
works to the model definition. Brain networks were constructed following
state of the art methods that were taken into account also when interpreting
the results. The bottom-up approach that we follow allowed us to construct
models with a clear interpretation.

Although we reproduced with high accuracy resting state brain networks
we did not exploit the natural spatial embedding of the brain. We used graph
matching algorithms to evidence the similarity between observed and simu-
lated networks. We explored the inclusion of metrics encoding spatial infor-
mation such as distance matrices of nodes without success. The inclusion of
spatial information is potentially crucial into modeling brain networks and
more research should be done in the future.

Another common limitation is the amount of available data. It would
be interesting to reproduced this study over other data sets. From data sets
with more patients to other kind of neurodegenerative disease. The parame-
ters of the model could be used into feeding machine learning algorithms to
improve classification of diagnosis or as biomarkers.

This thesis served a proof of concept to show how to model temporal
brain network accounting for the uncertainty associated with the data. We
sought to use simple statistical models to explain as much as the complex-
ity observed in temporal brain networks. However, (T)ERGMs are flexible
enough to allow the inclusion of different statistics, therefore the design of
graph metrics, informed by biological hypothesis and spatiotemporal infor-
mation, could be crucial to test specific connectivity mechanisms across dif-
ferent brain states and conditions and with a meaningful interpretation and

applicability.
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