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Abstract

Cells are the basic units of living organisms that make up a tissue. Cells within the

tissue preferentially form a network or a community that works together to carry out

a specific function. Thus, the role of a tissue is affected by its cell types as well as the

architecture of cellular interactions. A fundamental research question that can be raised

is at what degree the spatial organization of these cells affects the function of the tissue.

Recent research shows that the study of cells within a tissue in three dimensional (3D)

space provides a better and more realistic way to explore the spatial organization with

regard to the physical and biochemical properties of the entire micro-environment com-

pared to other two dimensional approaches.

Confocal microscopy techniques is a standard method developed to capture the 3D fluo-

rescent image volume of the tissue. It can provide high resolution images to visualize

the structure of cells within the tissue. Nevertheless, existing analysis working on the

spatial organization of tissues are quite limited and often provide only some very basic

processing and analysis features. They also lack the capability to analyze the interaction

among cells and their organization within the tissue.

In this thesis, we first propose a set of methodologies to analyze the multi-cellular struc-

ture of tissues at both local and global scale. The goal is to analyze, formalize, and model

the spatial organization of the tissue captured by fluorescence microscopy images. At

the local scale, we investigate the spatial relationship of several structures with both

direct and indirect cellular interactions. At the global scale, we apply spatial statistic

approaches to investigate the degree of randomness of the cell distribution.

In addition, an open source toolbox is developed to support all the computations in

this thesis. Our toolbox allows researchers to perform investigations of the position of

different cells within a 3D multicellular structure. In our case, we apply the toolbox to

study of the spatial organization of the islet of Langerhans, a special kind of tissue that

plays an important role in regulating the blood glucose level. Its spatial organization has

been hypothesized to have a big impact upon the islet function. With a good segmenta-

tion accuracy, we have been able to perform our analysis of the islets of Langerhans on

several different species such as mouse and monkey. We also utilize our toolbox to ex-

plore the structural-functional mechanism of the delta cell, a specific kind of cell within

the islet whose role has not yet been determined, but could potentially influence the

islet function, in mouse and human. Our generic toolbox is implemented with unbiased

analytical capabilities in the widely used biomedical software platform ImageJ. We be-

lieve that it has the potential to help researchers explore the function of other complex

structures.

Keywords : tissue spatial organization, 3D segmentation, islet of Langerhans, cell phe-

notype detection, spatial statistic.
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Chapter 1

Résumé en Français

L’objectif

Analyse et modélisation de l’organisation spatiale des tissus en 3D

Au cours des dernières années, de nombreux travaux ont été menés pour analyser au-

tomatiquement des cellules dans des images de microscopie. Néanmoins, ces travaux se

concentrent principalement sur l’application de traitement et d’analyse d’images sur des

cellules individuelles. Il y a un manque d’un outil générique pour analyser les interac-

tions entre les cellules et leur organisation spatiale au sein de tissus biologiques.

De plus, il existe une demande pour une approche qui est plus efficace pour gérer des

images de cellules en 3D à haut débit. Cela vient du fait que l’étude des cellules dans l’es-

pace tridimensionnel (3D) donne une meilleure impression et est plus réaliste en ce qui

concerne les propriétés physiques et biochimiques du micro-environnement des cellules

par rapport à des approches bidimensionnelles.

Cyto-architecture des ı̂lots de Langerhans

L’̂ılot de Langerhans est un sujet de recherche ouvert en biologie. Il y a un intérêt

considérable à analyser la structure multicellulaire de ce type de structures à l’échelle

locale et à l’échelle globale. Cependant, il n’y a pas beaucoup de travaux sur l’analyse,

la formalisation et la modélisation de leur organisation spatiale.

Par conséquent, ma thèse se concentre sur ces objectifs. De plus, nous avons collaboré

avec les experts du domaine, Dr Rafael Arrojo E. Drigo, et Dr. Per-Olof Berggren qui

ont beaucoup d’expérience sur l’étude des ı̂lots de Langerhans.

1
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Contributions

Nous avons proposé un ensemble de méthodologies et un outil pour l’analyse de l’or-

ganisation des tissus dans des images biologiques. Cette combinaison d’outils logiciels

se propose d’algorithmes pour i) l’identification automatique de plusieurs noyaux in-

dividuels et ii) des marqueurs cytoplasmiques, iii) la prédiction de la position de la

membrane cellulaire, et enfin iv) la reconstruction du réseaux cellulaire. Nous avons ap-

pliqué notre outil pour étudier l’organisation spatiale de l’̂ılot de Langerhans en essayant

de comprendre son mécanisme interne.

Nous avons aussi appliqué notre outil pour explorer la fonction des cellules de type

delta cell dans l’̂ılot, dont le rôle n’est pas encore déterminé. Nous avons introduit une

procédure générique pour modéliser l’organisation spatiale des cellules dans un tissu, qui

peut être utilisée pour créer des modèles virtuels de tissus et créer des données à tester.

Résultats

Modèle de données expérimentales

Afin de tester la performance de notre outil, nous avons utilisé notre outil d’abord

pour analyser des images confocales en 3D des ı̂lots de Langerhans dans des coupes

histologiques complètes ou en série de pancréas de deux différentes espèces de souris et

de singe.

En plus des sections de tissus épais, nous avons analysé également l’̂ılot en entier, obtenu

à partir des tissus optiquement éclaircis de deux souris.

— C57 / souris BL6 (8 semaines d’âge, n = 6 animaux et n = 22 ı̂lots au total).

— Singe (Macaca Fascicularis, 9-12 ans, n = 6 animaux et 12 stacks).

Enfin, afin d’explorer le mécanisme des cellules delta, nous avons testé aussi notre fra-

mework sur deux espèces différentes :

— C57 / souris BL6 (8 semaines d’âge, n = 7 souris, n = 24 ı̂lots au total).

— Humains (n = 21 ı̂lots au total, n = 3 donneurs).

Ici, nous démontrons que notre algorithme de détection de noyaux a donné de bons

résultats avec plus de 98 % de précision. Notre outil peut être appliqué sur des sections

épaisses (30 micromètres) de pancréas de souris et de singe, et a également été validé

avec succès dans un pancréas entier de souris.
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En plus d’être capable de détecter et d’identifier avec succès les trois principaux types

de cellules dans les ı̂lots de souris et de singes, nous avons identifié pour la première

fois un modèle de distribution en agrégats (c’est-à-dire une organisation non aléatoire)

de cellules alpha chez la souris et chez le singe. Nos résultats favorisent l’hypothèse

que les interactions entre les cellules endocriniennes dans les ı̂lots de Langerhans ne se

produisent pas au hasard, supportant l’idée que l’organisation spatiale des cellules est

importante pour contrôler le bon fonctionnement des ı̂lots et les fonctions des ı̂lots. Il

est important de noter que toute détection et analyse dans notre outil est effectuée de

manière non biaisée et automatisée.

Par ailleurs, nous avons opté pour la mise en œuvre de nos algorithmes dans une plate-

forme logicielle largement utilisée (ImageJ). Nous pensons que notre outil a le potentiel

pour être utiliser largement pour l’étude de la cyto-architecture des ı̂lots de Langerhans

et des structures multicellulaires en général.

Conclusion

Nous avons proposé le développement d’un nouvel ensemble de méthodes pour visuali-

ser, analyser et comparer les différentes organisations de structures multicellulaires dans

les ı̂lots tissulaires de souris, de singes et d’humains. Notre outil a fourni un moyen au-

tomatique pour analyser des ı̂lots de manière non biaisée.

Les différences fondamentales entre les ı̂lots de souris et de primates supportent l’hy-

pothèse selon laquelle la physiologie et les architectures des ı̂lots de souris et de primates

sont différentes.

Cette étude met en évidence les différences entre les ı̂lots de souris et de primates. Dans

les études d’̂ılots, au lieu d’utiliser des ı̂lots de souris, il faut utiliser des ı̂lots de singes et

d’humains directement pour une compréhension plus significative de la patho-physiologie

du diabète.



Chapter 2

Introduction & Literature Review

In the field of bioimage-informatics, the study of living organism tissues is one of the

most important topic that have spawned many researches on their underlying princi-

ples, such as pathogenesis, diabetes, and cancer progression. To facilitate these study,

the development of imaging technologies has enabled researchers to capture biological

samples better with large spatial resolutions and in high dimensions.

In the literature review part of this thesis, we will first provide a basis biological knowl-

edge of tissue organization. Then, we focus on a special type of tissue, the focus of our

research, called ‘Islet of Langerhans’. This tissue contains the hormone cells and its

main function is to maintain and to regulate proper blood glucose levels. We will also

present briefly the outline of some latest works with regard to the study of tissue spa-

tial organization using both biological investigations and bio-informatics computation

techniques.

Because we utilize the imaging technologies to capture the tissue information required

for our works, we will provide a sketch of some image processing methods to extract

information from the image structure such as image enhancement, segmentation, math-

ematical morphology, cell segmentation, cell phenotype detection. Because cells in a

tissue do not work in isolation but collaborate with each other to achieve their goal,

we present several mathematical models to formalize their relations and to quantify the

information and the structure of cells within tissue.

4
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2.1 Biological Background

2.1.1 Tissue Organization

Introduction

The cell is a complex structure and the basic unit of any living organisms. A proven

fact is that cells in multicellular organisms interact and work with each other to perform

their functions [11]. The group of similar cells and their extra-cellular matrix is called a

tissue. In general, a tissue can be classified into four categories based on their functions:

epithelial tissue, connective tissue, muscle tissue, and nervous tissue [12].

In this thesis, we focus on epithelial tissues that cover body surfaces, organ systems,

as well as perform various functions for the organism such as protection, absorption,

filtration, excretion, and secretion. As such, this group of tissue plays a very important

role and has been extensively covered in numerous studies.

Epithelial tissue

Unlike other types of tissues with large amount of extracellular material, epithelial tissue

is densely packed with cells [12]. In general, there are two ways to classify epithelial,

either using the shape of the cells or using the degree of layering: simple or stratified.

Simple epithelial tissues have only a single layer of epithelial cells. They can be found

inside the body and inside the blood vessels and the heart chambers. On the other

hand, stratified epithelial tissues have several layers of cells which give additional level

of protection. Due to the complex structure of stratified epithelial, cells on different

layers can have different shapes.

Traditionally, researchers capture epithelial tissues in two dimensional (2D) instead of

3D images. It is easy to figure out that there are much less information about the tissue

in such case. It’s especially true for stratified epithelial due to its multiple layers. We

won’t be able to study its characteristics without capturing it in a 3D image. In our

work, we performed both the analysis with sections of tissue in one and multiple layers.

Glandular epithelia

One of the main function of epithelial tissue is secretion, which is done by glands con-

taining one or multiple cells. In general, we can separate glands into two categories:

endocrine and exocrine glands. Endocrine glands are ductless and their products are
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released into the bloodstream or lymph. Exocrine glands charge their products onto the

surface of the cell body or into the body cavities. In this work, we focus on the endocrine

glands and their characteristics.

Dynamic architecture of cell organization

A normal cell consists of several components: plasma membrane, nucleus, cytoplasms,

vesicles and others. Membranes are made of lipids and proteins and act as barriers for

cells and intracellular components. These barriers, separating the cell and its outside

environment, allow only special molecules such as vesicles to cross and relay messages.

Inside the cell, there is a nucleus at the centre surrounding by cytoplasm. There are

many other molecules in the cytoplasm area. To study a tissue, we need to take into

account an ensemble of cells and all their components including membranes, cytoplasm,

and the very important nucleus.

Architecture of tissue organization

A fundamental question in our work is how a group of cells works together to make the

tissue function as it supposed to. There are two major aspects [11] to look at:

1. The cell type. A cell type (or cell phenotype) is the composite of cell characteris-

tics such as its morphology, biochemical, physiological properties, and behaviours.

The cell type decides the cell function, thus, has direct influence upon the function

of the tissue.

2. The spatial organization of the cells that form the tissue. The spatial organization

of cells includes both the cell’s position, its orientation inside the tissue (mantle,

head, core of tissue) and all external signals from its neighbouring cells.

All of these aspects show that cells within the tissue form a special mechanism to carry

out their functions and our work focuses exclusively on formalizing the relationship

between cells to understand such mechanisms.

The need to study tissue organization

Due to the interactions among cells in the tissue, the study of tissue organization is the

key to understand its evolutionary mechanisms and the foundation for the comparison

between diabetic and normal tissues [13]. In addition, by studying tissues from different

species, we can also understand cross-specie architectures, both similarities and differ-

ences. In our work, we look at the structures of rodent, i.e. mouse, non human primate
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(NHP), i.e. monkey, and human (HP). Using the information about cross-specie struc-

tures, we can develop and test new therapeutic approaches. For example, in biology, we

often study the structures of rodent tissues and hypothesize that human tissues have

the same structures and behaviors. However, by proving that they are different, we can

justify the need to obtain and do experiments directly upon human sample tissues.

2.1.2 Islets of Langerhans

Introduction

In 1869, German physician Paul Langerhans detected small groups of cells - patches

of endocrine tissues in the pancreas of the rabbit. Later in 1893, Edouard Laguesse

named these groups of cells ‘Islets of Langerhans’ and showed their role in the control of

secretion and regulation of blood glucose levels. As such, the islet of Langerhans plays

an important role in the pathogenesis of diabetes.

Figure 2.1: Pancreas in situ and zoom in of one islet of Langerhans. The figure is
taken from the journal of microscopy [1].

Multi-cellular structure

The islet is a multi-cellular structure that consists of three major types of secretory

endocrine cells:
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1. The majority of cells within the islet of Langerhans are beta cells which produce

insulin, the major hormone in the regulation of carbohydrate, fat, and protein

metabolism. Beta cells make up approximately 80% of the rodent islet and 65%

of the primate islet [14].

2. The second, in term of number, is alpha cells which produce the hormone glucagon.

Alpha cells make up approximately 15% of the rodent islet and 30% of the primate

islet [14].

3. The last group is delta cells which produce the hormone somatostatin. Delta cells

make up approximately 5% of both rodent and primate islet [14].

All these three cell types cooperate with each other to perform the islet’s main function

which is essential to maintain a proper blood glucose level at all the times. They affect

the capability of each other, for example, the release of insulin from beta cells can be

triggered by glucagon or somatostatin. There are existing works in the field trying to

understand their relationships.

Cells composition and cellular interactions

There are many related works exploring the islet spatial organization to study its cells

composition and cellular interactions. Some of the most important works will be shown

in more details in Chapter 4 [6, 15–17].

By definition, the cells composition is the proportion of each cell types within a islet

while cellular interactions or cell-to-cell contact denote their relationships. A simple way

to represent such information is to show the proportion of all possible combinations,

for example Pαα, Pαβ, Pαδ, Pββ , Pβδ, and Pδδ. As such, we distinguish these cellular

interactions as homotypic interactions among cells of the same type and heterotypic

interactions among different cell types.

Different regions of the islet

Bosco et al. (2010) [6] divided each islet by different subregions including whole, mantle,

core, and vessels to quantify the cell distribution and cellular interactions.

1. Whole region: the whole islet region.

2. Mantle subregion: all cells at the rear regions or near the outside environment.
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Figure 2.2: Example of different islets: mouse islet sample(A), monkey islet sample
(B), human islet sample (C) with different regions of core region, mantle region, near
blood vessels region (see the arrows) (A-, B-, C- scale bar, 50 µm). Zoom in different
markers and cell type (scale bar, 5 µm): (D) alpha cell and glucagon cytoplasmic
marker, (E) beta cells and insulin cytoplasmic marker, (F) delta cell and somatostatin

marker.

3. Core subregion: all cells which are near to centre region of the islet.

4. Vessels: all cells which are located near to blood vessels regions.

The architecture of the islet in different species

In rodent islets, the majority of cells are beta cells which are located at the core of the

round islet. They are surrounded by a mantle of alpha and delta cells. On the other

hand, alpha and delta cells in non-human and human islets are more evenly distributed

throughout the islets region, thus, increasing their contact with beta cells. In our work,

we develop a set of methods to analyze this spatial organization and create a toolbox for

it. The toolbox is then used to investigate the spatial organization islet of Langerhans

to understand its role in diabetes. It could serve as an useful tool to help biologist test

new therapeutic approaches. We will come back with more details in the next chapter.

Diabetes and the islet of Langerhans

Related works on the islet of Langerhans have shown its direct involvement with patho-

genesis of diabetes [14]. So, a question raised is whether there are any differences in the
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spatial organization between normal and diabetic tissues.

In general, there are two types of diabetes:

1. In type 1 diabetes, there are less beta cells than as usual because the body immune

system mistakenly destroys them [18]. The function of beta cells is to produce

hormone insulin. Therefore, in this case, the pancreas produces less and less

insulin and there is not enough of it around to maintain all the normal activities.

Insulin will need to be taken from outside.

2. In type 2 diabetes - insulin-resistance, the body does not utilize insulin properly.

At the beginning, beta cells react and make more insulin to make up for it.

However, over a long period of time, the pancreas still cannot make enough

insulin to go around.

In both cases, there are changes in the proportion of each cell type [14, 16] and this

leads directly to corresponding changes in the tissue spatial organization.

2.1.3 Methods to Study the Islet of Langerhans

There has been an increasing number of studies on the islet of Langerhans covering

many different aspects such as providing a qualitative description of cells within the

islet. In this part, we present briefly some latest works in the field focusing mainly on

their biological investigations and bio-informatics computations. Their comparison is

shown in Table 2.1.

For the analysis of islets of Langerhans, works done by Cabrera et al. (2016) [16], Bosco

et al. (2010) [6], and Drigo et al. (2015) [14] provide a comprehensive survey.

On the specific topic of using computational biology approaches to study the tissue

organization, there are works done by Kilimnik et al. [19–21], Striegel et al. (2015) [22],

and Hoang et al. (2014) [8].

Confocal microscopy. There are two main imaging methods to capture the tissue: his-

tological imaging technique [17] and confocal microscopic imaging technique [6, 16, 19].

The majority of works on islets of Langerhans are based on confocal microscopy. The

confocal microscopy and fluorescent technologies also increase the ability to observe

different markers corresponding to different cell types (Section 2.2.1).
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Area of study. A popular approach in other works is to cut off the entire islet by different

sections: head, body, and tail [6, 14, 16] because it is much easier to prepare and process

the sample that way. However, its major limitation is the missing cell-to-cell contacts

between these different sections.

Cross-species study. Researches in this topic normally divide the studying species into

three main levels: rodent such as mouse, non human primate (NHP) such as monkey,

and human primate (HP) such as human. Early study normally used rodent islet to

make assumptions about the equivalent human islet functions. However, more recent

studies have shown that such assumptions are not always true. As such, there is a need

to expand the study to other species as well. As it is more difficult to extract human

samples, we could choose to study non human primates which is closer to human and

link the result to human islets (see the survey of different approaches at [14]).

Study of different cell types (alpha, beta, delta) and the blood vessel. Early works only

focused on two mains cell types (alpha, beta) and skipped the role of delta cells. This

has been changed and more recent works now show the important role of delta cells to

the islet function as well. In addition, blood vasculature has also been suggested to play

an important role in maintaining islet function.

Cell composition and cell morphological computation. Existing works show differences

of cell composition across different species such as rodent and primate [6, 14, 16, 19].

For non-human primate (monkey) and human islets, it has been more alpha and delta

contacts than in rodent [14].

Homotypic and heterotypic contacts. Rodent islets are shown to have more homo-

typic contacts whereas non human primate(NHP) and human(HP) islets have more

heterotypic contacts.

Diabetic study. There are not many works on this topic mostly due to the amount of

available data, which is difficult to extract. Some works show the differences in cell

compositions between normal and control diabetes [6].

3D study. Bosco et al. (2010) [6] reconstruct the islet in 3D using information from

serial human pancreatic sections. The islet is reported to consist of a beta-cell core

surrounding by mantles of alpha cells and vessels. The same paper also suggests that,

similar to rodents, human islet cells are purposely arranged in a complex trilaminar
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epithelial plate fold that favours heterologous contacts and paracrine signalling among

cells. Such results can only be achieved by analysing sample data in 3D.

The analysis of tissue spatial organization. The works in Table 2.1 analyze the spatial

organization of tissue using various methods but they all have certain limitations. None

of them looks at cell distribution or compare the observed patterns in different species.

In addition, they don’t have any tools that can help other researchers to perform similar

tasks.

Modeling of tissue spatial organization. There are currently very few works that touch

the topic of modeling the tissue spatial organization. Striegel et al. (2015) [22] focuses

on the modeling of beta cells in their clusters within the human islet. Hoang et al.

(2014) [8] generates a 3D spatial distribution of alpha and beta cells in mouse, pig, and

human islets. However, these models represent each cell using cell-like shapes (sphere,

ellipsoid), thus, can only compute cellular interactions using basic geometry. This leads

to an incorrect estimation of the number of cellular interactions. Therefore, there is a

need for better modeling processes that take into account actual shapes of different cell

as well as their volume and physical interactions.
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Related
work

Study
area

Study
species

Confocal,
multi
photon

Study
alpha
cell

Study
beta
cell

Study
delta
cell

Study
blood
vessel

Cell
composition

Homo-,
Hetero-
typic

Diabetic 3D
Tissue
organization
analysis

Tissue
organization
modeling

Cabrera
et al (2006)[16]

head,
neck,
body,
tail

human,
mouse,
monkey,
pig

X X X X X X X X X X X

Bosco
et al (2010)[6]

head,
body,
tail

pig,
human

X X X X X X X X X X X

Ionescu
et al (2015)[17]

head,
neck,
body,
tail

human X X X X X X X X X X X

Kilimnik et al
(2012)[19, 21, 23]

head,
body,
tail

mouse,
human

X X X X X X X X X X X

Striegel et al
(2015)[22]

head,
body,
tail

human X X X X X X X X X X X

Hoang et al
(2014)[8]

head,
body,
tail

mouse,
pig,
human

X X X X X X X X X X X

Table 2.1: Comparison of different related works on islet of Langerhans. The two first works are on the biological investigation. The four final
works are on computational biology. X: shows that the work took into account this analysis, X : it did not take into account this analysis.
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2.2 Image Analysis

2.2.1 Confocal Microscopy

Fluorescence Imaging

We begin this part by providing a quick description of the fluorescence imaging technique,

in which specimens are labelled with fluorophores. The distribution of fluorescence are

then observed under exciting illumination and captured by photosensitive detectors that

measure the intensity of the emitted light and create a digital image of the sample.

In addition, to capture the thick sample and dynamic live cell imaging, confocal flu-

orescence microscopy is the commonly used technology. Many focal planes have been

designed for labeling biological molecules. Depending on the type of the fluorescent

marker used on tissues, different biological components (proteins) are highlighted. One

of the common marker is Di Aminido Phenyl Indol (DAPI) used to visualize the DNA

and cell nuclei. Confocal fluorescence microscopy technique plays a central role in our

research and are covered in the next section.

Confocal microscopy and image acquisition

The last decade has seen a huge development in the number of different methods used

to capture 3D images as well as to process and analyze them. One of the most common

methods is confocal microscopy. It is a powerful technique that can provide high res-

olution images with depth discrimination ability. It significantly improves the ways in

which cells and tissues can be studied with two different aspects:

1. Captured images are in high resolution.

2. Captured images have a higher level of contrast because out-of-focus information

has been removed.

The output of confocal microscope consists of a stack of optical sections called z-series.

The optical sections are obtained at fixed intervals along the z-axis. Each 2D image

in the stack is called an optical slice. All slices together comprise a volume dataset.

Building up the z-series in depth allows the 3D image representation of the sample to

be reconstructed.
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To facilitate its processing, a 3D image obtained from the microscope will be represented

as a 3D array whose elements are called voxels. An image f(x, y, z) is represented as

a 3D matrix of dimensions L × M × N , where x, y, z denote column, row, and slice

coordinates respectively. Each voxel has a physical size Dx, Dy, Dz in units, commonly

measured in micrometers. In our case, the image usually has a different calibration of

voxel size between (xy) and z planes because the later dimension is much thicker.

Limitations of confocal microscopy

Although confocal microscopy technique has been widely adopted in the field, it still has

several limitations that researchers need to be aware of. Three main drawbacks are (i)

slow scanning speed, (ii) lower axial resolution along the z-axis comparing to the lateral

resolution along the x and y-axis, and (iii) the potential damage to the sample in the

long scanning process.

Imaging systems for islet of Langerhans

For studying the tissue organization in general and the islet of Langerhans in particular,

there are two common imaging techniques, histological imaging [17] and fluorescence

imaging [14, 16]. Between them, the light microscope is widely adopted in biological

applications.

In histological imaging technique, tissues are fixed, and embedded in wax, which makes

them hard but much easier to trim into sections. These sections are then stained and

examined with the light microscope. Histological stains like H&E (Haemotoxylin and

Eosin) contain the two dyes Haemotoxylin and Eosin. Haemotoxylin binds to DNA

(Heterochromatin and the nucleolus) in the nucleus, and RNA in ribosomes and stains

them purple. Eosin binds to the proteins in the cytoplasm and stains them pink.

The key differences between histological method and fluorescence method are the stain-

ing process and the thickness of sample, in which fluorescence imaging can capture a

thick tissue sample while histological technique could not. Table 2.2 shows a detail

comparison between histological and fluorescence imaging systems with criteria such as

the staining process, the reliability of color, the cutting method, the size of sample, the

laser technique used, the number of possible markers, the complexity, and the capacity

to capture 3D thick samples.
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System &
Character-
istics

stain
-ing

color cutting sample
size

laser
number
markers

complex
-ity

3D

Histological
imaging
technique

yes not stable,
different
each time

cut by
many
small
section,
damage

big,
overview

no small
num-
ber

simple no

Fluorescent
imaging
technique

yes quite
robust

thick sec-
tion, not
damage

smaller yes many
mark-
ers

difficult yes

Table 2.2: Comparison between histological and fluorescence imaging systems

In our case, cells and tissues of the islet of Langerhans are three dimensional entities

and most of their cellular activities occur in 3D space. Thus, confocal microscopy and

fluorescence imaging allow us to observe the entire tissue sample in 3D and is the most

suitable method to acquire our samples.

2.2.2 Methods for Studying Tissue Organization

Existing frameworks

In recent years, there has been an increase in the number of tools to analyze cells in tis-

sues including both commercial platforms like Imaris(Bitplane), Image-Pro(MediaCybernetics),

Amira and Metamorph (Molecular Devices), and open source equivalents such as Cell-

Profiler [24], BioImage-XD [25]. These tools focus mostly on morphological analysis of

cells in biological imaging while commercial ones also give a friendly graphical interface

that supports good visualization. However, they all have some major drawbacks where

only basic processing and analysis features are provided. Specifically, they all lack of

ability to analyze 3D structures or to model spatial tissue organization in 3D, not to

mention the high costs of purchase and the proprietary license of commercial softwares

which prevents additional features to be added by the community.

Existing approaches for analysing spatial organizations Although there are sev-

eral existing algorithms for analysing cells and nuclei in microscopic images, those that

can deal with 3D spatial organizations of tissues are limited and their measurements

are mostly done on each cell individually. In our case, analysing the tissue requires the
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Criteria/Methods CellProfiler[24] Drasdo[26] Morales[27] Andreas[28]

Confocal Microscopy X X X X
High throughput X X X X
Nuclei Segmentation X X X X

Cytoplasm/
Membrane Detection

X X X X

Cell Zone Detection
(Region Growing)

X X X X

Cell Phenotype
Detection

X X X X

Cells Morphology X X X X

Colocalization
Analysis

X X X X

Statistical Analysis X X X X
Tissue Organization X X X X
Nuclei/Cell
Classification

X X X X

Tissue Modeling,
Simulation

X X X X

Table 2.3: Comparison of different methods for analyzing spatial tissue organization

identification of different cellular components, including cells, as well as the physical

interactions among them.

Therefore, the first step towards this goal is to identify the location and identity of all

cells that make up a given tissue. Since a clear cytoplasmic or membrane labelling is

usually difficult to obtain in thick tissue samples, most studies rely on nuclear labeling

or DAPI to identify these cells. However, nuclei segmentation, especially in a large 3D

image, is not trivial and remains an active research area among bio-imaging researchers.

Furthermore, analysing the whole tissue poses an additional challenge in which cells are

normally crowded together, thus makes it more difficult to separate them. Techniques

for segmenting nuclei or cells in such cases are commonly based on the ‘region-growing

approach’ [24, 29, 30].

Once the primary segmentation step is done, the identity of the segmented cells will

need to be determined. Depending on the type of markers available, it can either be

achieved by manual annotation of images, or by setting a simple threshold for nuclear and

cytoplasmic content, or by using a more complex supervised machine learning approach.

Several existing methods are CellProfiler [24], Dirk Drasdo et al. [26], Morales et al. [27],
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Andreas et al. [28]. Table 2.3 gives an overview of these existing frameworks. However,

they all share some limitations in their abilities to observe a large population of cells or

to analyze cellular interaction and spatial organization of tissue.

Existing approaches for nuclei and cell segmentation in 3D

Approaches for analyzing the tissue organization of microscopic image can be generally

divided into two groups:

1. Segmentation and quantification:

— Nuclei segmentation.

— Cytoplasm/cell membrane segmentation or cell zone detection if there is no

membrane image.

— Cell phenotype detection if input data includes marker channels.

2. Spatial Organization Analysis:

— At local scale including cellular interaction.

— Global spatial organization.

— Spatial organization modeling and simulation.

In the next section, we will review state-of-the-art image processing methods which can

resolve these problems as well as be able to work with thick tissue samples captured by

confocal microscopy.

2.2.3 Image Enhancement

Image enhancement enhance the values of pixel in image is the first step to prepare

the input data. In the case of confocal microscopy, although it has several advantages

over other microscopic techniques (section 2.2.1), it still has some limitations when it is

used to capture three dimensional images, especially the low resolution along the z-axis.

Image enhancement can help in this case separating noise from the foreground.

Enhancement algorithms can generally be grouped into two categories: spatial domain

methods and transform domain methods. Spatial domain methods work on direct ma-

nipulation of pixels and include the set of operations processed on the whole image or

a local region such as histogram equalization, sharpening, or nonlinear filtering. On the

other hand, transform domain processing techniques process image information based
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on the Fourier transform domains of the image. We will present several methods on

both categories.

Spatial domain methods

The median filter is one of the most powerful method in this category. It scans each

voxel in the image and takes into account the neighbor voxels and replace the voxel

value by the median of its neighbours.

Median filter 3D : Define an observed voxel vcurr and a filter window of size M = X×Y ×

Z surrounding this voxel. Considering all the neighboring voxels n1, n2, n3, . . . , nm sorted

by their values n1 < n2 < n3 < . . . < nm, we have the median value nmed = n(m+1)/2 if

m is odd or nmed = (nm/2 + nm/2+1)/2 if m is even.

In practice, the window size that we often use for 3D median filter is 3 × 3 × 1 or

4× 4× 2 because the output of confocal microscopy usually has different calibrations of

voxel size between (xy) and z plane in which the z dimension can be much thicker, thus

the inversely proportional size of z comparing with x and y.

The main advantage of median filter is that an unrepresentative pixel in a neighborhood

will not affect the median value significantly, so the median filter is quite robust in

practice. This filter can also preserve the edge better than other filtering method because

it uses the values of the neighboring voxels to represent the value of the current one.

Transform domain methods

In many cases, noise can be remove more easily in the frequency domain than in the

spatial domain. In the frequency domain, low frequency part correspond to smooth area

and large structures in the image while high frequency is noise and medium frequency

parts correspond to image features. Some examples of this type of methods are Viener

Filtering, Deconvolution, low-pass filtering, high-pass filtering, and band-pass filtering.

Some of the most common transformations are Fourier transform, Gaussian transform,

and wavelet transform.

Let f(x, y, z) be the raw image and F (x, y, z) be the input image in the transform domain

(transformed image). This image is then multiplied with the filter function voxel-by-

voxel: G(x, y, z) = H(x, y, z) × F (x, y, z) (*), in which H(x, y, z) is the filter function,

and G(x, y, z) is the filtered image. In order to turn the result image back into the

spatial domain, G(x, y, z) has to re-transformed using the inverse function.
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Low-pass filter : This filter allows to remove a big part of noise in an image. The main

idea of the low-pass filter is the frequency cutoff value. Let D(x, y, z) be the distance of

the point from the origin in the transform domain (ex: in the Fourier domain).

H(x, y, z) =

{
1 if D(x, y, z) ≤ D0

0 otherwise
(2.1)

High-pass filter : This filter allow to highlight edge information and sharpen the image.

Main idea of high-pass filter is frequency cutoff D1:

H(x, y, z) =

{
1 if D(x, y, z) ≥ D1

0 otherwise
(2.2)

Band-pass filters: Band-pass filters are a combination of both low-pass and high-pass

filters. They attenuate all frequencies smaller than a frequency D0 and higher than a

frequency D1, while the frequencies between the two cut-offs remain in the output image.

We obtain the filter function of a band-pass filter by multiplying the filter functions of

a low-pass and of a high-pass in the frequency domain.

H(x, y, z) =

{
1 if D(x, y, z) > D0 & D(x, y, z) < D1

0 if D(x, y, z) < D0 ∪ D(x, y, z) > D1

(2.3)

2.2.4 Nuclei Segmentation

Thanks to confocal fluorescence microscopy techniques, especially DAPI staining, re-

searchers can capture thick tissue samples in much higher resolutions with less out-of-

focus defects. However, most of the existing methods in the field only work with 2D

images. The few methods that can handle 3D images suffer from high complexity, over-

segmentation, and the inability to work with thick samples. Therefore, there is a need

for more efficient and accurate methods for 3D tissue images. Such methods influent all

the subsequence quantification and analysis steps.

Nuclei segmentation methods

In general, nuclei segmentation methods can be put into two categories: methods using

machine learning techniques for training and methods utilizing cell shapes.
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In the first group, the expert marks the correct nuclei region in the captured image for

training. A program can then learn from this and predict the cell nuclei region in other

images [31]. However, it is notorious difficult for human to prepare the ground truth

data in 3D because the cell nuclei is elongated through many slices. Moreover, due to

the variability of the cell’s volume and its shape in high throughput images, a large

amount of training data is required to achieve good accuracy.

The methods in the second group take into account the cell’s shape and can be applied

directly to the input image without any training, for example, graph cut [32, 33], seed

detection [33, 34].

Implementation-wise, there are some existing platforms for 3D nuclei segmentation of

fluorescent microscopic images including Nuclear Segmentation of FARSIGHT toolkit

[32], Modular Interactive Nuclear Segmentation (MINS)[34], 3D Multiple Level Sets (3D

MLS) [35], 3D Iterative Thresholding [36, 37]. Table 2.4 compares these platforms in

terms of usability and performance including (i) capability to process a 3D confocal

microscopic image, (ii) implemented language, (iii) level of friendly user interface, (iiii)

OS system, (v) the difficulty of selected input parameters, (vi) performance on detection

of flexible nuclei shape.

1. FARSIGHT toolkit (Al-Kofahi et al. (2010)[32]). The automatic nuclear seg-

mentation method implemented in FARSIGHT toolkit is one of the fastest and

most efficient method for 3D nuclei segmentation. It first creates an initial bi-

narization of the image using Graph-Cuts algorithm. Seeds are then detected

on the transformed image using a multi-scales Laplacian of Gaussian LoG and

nuclei are represented by blobs. The seed here is a sub-region inside each cell

nuclei region and is used to segment the nuclei. Also, a graph-cuts approach with

alpha-expansions can be used to obtain the best contour of each nuclei region.

2. Modular Interactive Nuclear Segmentation (MINS)[34]. This is an accurate and

user-friendly nuclear segmentation framework written in Matlab. The main tech-

nique of MINS is to detect seeds using Hessian of Gaussian detectors.

3. 3D Multiple Level Sets (3D MLS)[35]. When the nuclei intensity level varies,

a single level set functions is not enough to detect nuclei, this framework uses

multiple level sets surface modeling to detect the nuclei.
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Criteria/Methods Farsight MINS 3D MLS
3D Iterative
Thresholding

Confocal
Microscopy, 3D

Yes Yes Yes Yes

Language C, C++ matlab C++ java
Friendly User
Interface

medium high high medium

OS System
linux, mac
windows

windows windows
linux, mac
windows

Parameters
Difficulty

easy easy difficult difficult

Flexible Shape
Detector

high high high high

Table 2.4: Review of 3D available nuclei segmentation methods

4. 3D Iterative Thresholding [36, 37]. This framework was first developed by Mo-

hammed et al. (2014) [36, 37] to detect nuclei in early embryos. Dr Boudier

implements it in Java under ImageJ software platform. This method tests all the

thresholds and detects objects at each threshold. The objects at different thresh-

olds are then link together. This method can handle the intensity variances but

its drawback is the amount of time required to test all the thresholds.

Evaluation of segmentation accuracy(SEG)

The accuracy of nuclei segmentation affects all the subsequent stages. Therefore, it

should be as stable, robust, and accurate as possible. In order to evaluate the accuracy

of different segmentation methods, we compare the matching of segmented region with

the actual object region [38]. Thus, the evaluation steps are:

1. Create ground truth(GT) using manual segmentations by experts in biology do-

main. Each manually segmented object in GT is called a reference object.

2. Compute the Jaccard similarity index (J) of the set of voxels of matching objects

(Equation 2.4).

3. Check the matching condition and decide whether a segmented object match a

manual segmented object. Suppose that R denotes the set of voxels belonging to

a reference object and S is the set of voxels belonging to its segmented object.

The Jaccard index measures the significant overlap of reference and segmented

objects. A segmented object and a ground truth object are considered matching
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if and only if equation 2.4 is satisfied, with λ - a predefined parameter which

denote the level of matching. Normally λ equal to 0.5 this means 50% overlap.

Jaccard− index : J(S,R) =
|R ∩ S|
|R ∪ S|

Condition : |R ∩ S| > λ.|R|
(2.4)

Ground truth for SEG measurement

We rely on domain experts to prepare the ground truth for SEG measurement. The

annotated task is to mark voxels belonging to objects accurately. The experts should

ensure that the contours of the ground truth objects are as close as possible to real visible

object contours. In three dimensional space, this task is even harder because each object

is located in several slices, which makes it difficult to mark the area and combine the

marked areas of many slices together. Certain tools have been built to facilitate this

function such as Segmentation Editor [39], a plugin under ImageJ platform. This tool

helps you annotate the ground truth objects by going through the slices and selecting

the region you want to label. It offers some useful features which can help users in their

tasks. When the difference of consecutive slices is slight, user can use the interpolation

function of the tool to segment them automatically. Moreover, 3D ROI Manager is

a useful tool to observe regions of interest, which helps to project the 3D contours of

segmented objects into the real objects [37].

Error Detection

After preparing the ground truth, in order to count the detection errors, we use mis-

detection and wrong detection as simple metric measurements to evaluate the perfor-

mance. The detection errors are classified in two groups, False Positive (FP) and False

Negative(FN). FP happens in case when a sample is negative but the algorithm declares

as a positive object. On the other hand, FN happens in case when a sample is positive

but the algorithm erroneously declares it as a negative one.

In the context of biological image segmentation, a false positive(FP) happens when noise

is wrongly detected as an object or an object is split into several ones due to the presence

of strong edges within it. On the other hand, when the intensity of an object is lower

than the predefined threshold, the program could not detect it, which causes a false

negative.



Chapter 2 Introduction & Literature Review 24

Using these concepts, precision and recall are two common metrics to estimate the

segmentation accuracy. Precision measures the fraction of objects declared positive

and the total of truth positive Precision = TP/(TP +FP ). Recall, on the other hand,

measures the fraction of objects that have been retrieved correctly over the total amount

of existing objects in the image Recall = TP/(TP+FN). Finally, we can combine them

to get the F-measure defined as Fmeasure = 2×(Precision∗Recall)/(Precision+Recall).

2.2.5 Mathematical Morphology

By its definition, mathematical morphology is a set of nonlinear filters used together to

filter binary and gray-scale images, which we then extend to apply to our 3D context.

Morphological operators consist of two basic operations ‘dilation’ and ‘erosion’. Dilation

expands the features of the shape whereas erosion suppresses them. The basic effect of

dilation on a binary image is to gradually enlarge the boundaries of regions of foreground

pixels, typically white pixels. Thus areas of foreground pixels grow in size while holes

within those regions become smaller. On the other hand, the basic effect of erosion is

to erode away the boundaries of regions of foreground pixels. Thus areas of foreground

pixels shrink in size while holes within those areas become larger.

Morphology operators are based on set theory. Assuming that a binary 3D image X

and B is its set of coordinates for the structuring elements. A structuring element, also

known as kernel, determines the effect of the operator upon the image. Several popular

structuring elements in 3D images are a 3 × 3 × 3 structure with the central pixel and

its direct 26 neighbors or a disk of a given radius.

Given BS is the symmetric of B, we have the following definition:

dilation : X ⊕BS = {x ∈ Z3 : Bx ∩X 6= 0}

erosion : X 	BS = {v ∈ Z3 : Bv ⊂ X}

closing : (X ⊕BS)	B

opening : (X 	BS)⊕B

(2.5)

Closing and opening are also two operators in the field of mathematical morphology.

They could be derived from the basic operations of erosion and dilation. Closing fills

small holes and connects objects that are close to each other. Closing is similar in some
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ways to dilation in that it tends to enlarge the boundaries of the foreground (bright)

regions in an image and shrink background color holes in such regions, but it causes less

destruction to the original boundaries.

Opening smooths the surface and its effect is somewhat like erosion in that it tends to

remove some of the foreground (bright) pixels from the edges of regions of foreground

pixels. Again, it is less destructive than erosion in general.

Figure 2.3: Different strategies to use distance map. (A) Input image consists of
two objects, (B) Euclidean distance map, measure from center of each object, (C) Nor-
malized Euclidean distance map, measure from center of each object, (D) Euclidean
distance map, measure from boundaries to the center of object. (E) Normalized Eu-
clidean distance map, measure from boundaries to center of object, (F) Euclidean

distance map, measure from boundaries of each object to the background.

Distance maps are data structures commonly used in image analysis. They provide

various types of distances, for example Euclidean distance, of background pixels to the

nearest object pixel. Distance maps can be used to describe the internal structure of

objects.

If distance metric is Euclidean, we have Euclidean distance map (EDM). If normaliza-

tion is adopted, we have normalized distance map. Although this structure has been

adapted to 3D, its computation complexity is much higher. So, Schouten et al. (2006)

[40] proposed a new adaptation of the algorithm to reduce the complexity of distance

transformation in 3D.

In Fig. 2.3, we show different strategies to use distance maps. Using the same image,

but based on different set of voxels as objects (center of objects or object boundaries),

we can obtain different results.
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1. Measure based on the center of object. The value of each voxel is the distance

from this voxel to the object center (see Fig. 2.3B). We can also normalize these

distances between 0 and 1 by dividing the value of each voxel to the maximum

distance value and obtain the normalized distance map (see Fig. 2.3C). The ad-

vantage of this approach is that it is not sensible to the precision of the segmenta-

tion method. However, its drawback is the underestimate of the center positions

and the overestimate of points closer to the periphery. Thus, the layer closed to

periphery is thicker than at the center.

2. Measure based on the distance from the boundaries to center of object. Biological

events are dynamic and certain components have tendency to move closely to the

periphery and then go out. A measure based on the distance from a voxel to its

boundaries makes biological sense and is commonly used. Fig. 2.3D shows the

Euclidean distance map and Fig. 2.3E shows the normalized Euclidean distance

map of this approach. Per observations, the layer closed to the periphery is

thinner than at the center. They indicate that this measure varies quickly at the

periphery and underestimate the number of voxels there.

The watershed transformation & its application to image segmentation

Automatic segmentation of clustered objects requires the implementation of specific

image segmentation tools. Among them, Watershed transform is a powerful region-

based segmentation approach. The idea underlying this method comes from the domain

of geography (Beucher et al. (1992)[29]).

1. Landscape with holes pierced in local minima.

2. Basins will fill up with the water starting at these local minimal.

3. Where water coming from different basis would meet, dams are built.

4. Where the water level has reached the highest peak, the process is stopped.

5. Basins separated by dams, called watershed lines or watersheds.

Watershed transform algorithm

There are many versions of watershed transform algorithm such as watershed by flooding,

by topographic distance, by the drop of water principle, or inter-pixel watershed. The

detail of different implementations is described in the work of Roerdink et al.(2000) [30].

The basic steps of watershed transform algorithm are the following:
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1. Compute g = gradient(I) or m = distance transform(I).

2. Extract local minima(g) or local maxima(m).

3. Dam is constructed to prevent the merging of regions.

4. Watershed transform algorithm like flooding algorithm is performed in each catch-

ment basin area.

5. The output of algorithm returns label image L, identify the watershed regions of

I.

Here we present three main applications of watershed algorithm in image segmentation.

Application 1: splitting of merged objects

The Watershed algorithm is based on the computation of the distance map inside the

mask of the merged object[41]. The distance map is calculated from the boundary to the

center of the mask. We then detect the seed point as the local maxima of the distance

map, the farthest point from the boundary, corresponding to the centre of the object.

Finally, we apply the watershed algorithm to obtain the region of each object.

Application 2: computing the Voronoi zones

A Voronoi region Vobj associated with the object obj of a study area is the set of points

that are closer to this object than to any other objects of the study area. The Voronoi

regions partition the study area, except for boundaries between them which are of mea-

sure 0. The Watershed algorithm is based on the computation of the distance map

outside of the object but inside the study area. We detect the seed point as the local

maxima of the distance map. Finally, we apply the Watershed algorithm to obtain the

Voronoi region of each object. This watershed algorithm draws lines between objects at

the equal distance from the boundaries of the different objects.

Application 3: spot segmentation

In this application, the Watershed algorithm can be applied even before the segmentation

process. The objective is to define the area around each seed [29]. Then the segmentation

method is applied within the region defined by the Watershed procedure. To do so,

we first compute the local maxima of each object and consider them as seeds. Next,

we compute the Voronoi zones surrounding each objects using a watershed algorithm.

The segmentation method is then applied within the Voronoi zone. Each Voronoi zone

contains one object zone and a part of background. This approach allows the partition
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of a big image into many small regions. It reduces the computational time and increases

the accuracy of segmentation by examining objects using a local threshold.

2.2.6 Cell Segmentation

Cell segmentation overview

A common approach to cell segmentation involves the following three steps:

1. Perform nuclei segmentation to identify the nuclei region.

2. Detect cell components located outside of the nuclei but inside of the cell borders.

3. Detect the cell region using the informations from these previous steps. How-

ever, depending on what kind of cell components obtained from the second step,

different algorithms are proposed, which we will describe into details.

The cytoplasm exists. The cell region is determined by the union of nuclei (Nuc) and

cytoplasm region (Cyt) (Equation 2.6).

Suppose : Structure(Nuc), Structure(Cell), Structure(Cyt)

Nuclei, Cyt are part of Cell,Nuclei disconnect Cyt

Segmentation(Nuc), Segmentation(Cyt)

=⇒ Cell region = Nuc region ∪ Cyt region

(2.6)

One of these components exist: cell cortex, tubular structures, plasma membrane (Mem).

Cell segmentation is achieved by expanding the region from the nuclei(Nuc) as the seed

to the cell surface. The growing area is limited to the cell cortex, or to the cell plasma

membrane, or to the border of neighboring cells, or to other tubular structures. An

example of cell detection using membrane image is in equation 2.7.

Keraudren et al. (2011) [42] proposed an automatic approach to cell segmentation on

epithelial cells and cells-based screens in confocal microscopy. This method estimates

the cell-to-cell contact areas and their thickness by computing an edge map on the

membrane channel and then performs adaptive watershed on the edge map to obtain

a segmentation of cell-to-cell contact. This method achieves good accuracy but only

works well in two dimensional space. Its capability to streamline in three dimensions is
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still an open question. Stegmaier et al. (2016) [43] proposed a new method to perform

this task in 3D real time. It first processes a slice based image segmentation and then

combines 2D cell segments to complete the 3D cell shapes.

Suppose : Structure(Nuc), Structure(Cell), Structure(Mem)

Nuc, Mem are part of Cell,Nuc disconnect Mem

Segmentation(Nuc), Segmentation(Mem)

=⇒ Cell region = Nuc region ∪ expand(Nuc,Mem as limit)

(2.7)

No membrane. In many cases, it is difficult to capture cell plasma membrane because of

the limited number of staining in fluorescence technique. Even when membrane channel

exist, there is no existing method that could work well in case of high noise and low

intensity of the membrane contours. In such case, a specific procedure is adopted to

estimate the cell zone. A Voronoi-based segmentation approach is proposed by Jones

et al. (2005) [44] that estimates the Voronoi regions of each nuclei as seed in their

surrounding area. This approach is part of the image platform CellProfiler [24] and is

discussed in more details by Kriete et al. (2006) [45].

In practical, there are different ways to implement a Voronoi based segmentation ap-

proach. This approach focuses on compute the Voronoi region surrounded by a given

finite set of points or seeds S1, S2, . . . , Sn. And a Voronoi region of the seed Si consists

of every point in the Euclidean space whose distance to Si is less than or equal to its

distance to any other seeds Sj , i, j ∈ {1, 2, . . . , n}. One approach is Voronoi tessellation

which uses a center of nuclei as seed and grows into its surrounding areas. It is com-

monly used to approximate the morphology of cells in epithelical tissues [46]. However,

the limit of this method is the over estimation of cell region when the cell volume is

small and the under estimation of the cell region when the cell volume is large.

Other strategy of Watershed is to use the nuclei region as seed [24]. This method can

resolve the limitation of the one above but still suffers from the over estimation of the

cell zone area.

Conclusion: Membrane segmentation is one of the most challenging segmentation tasks.

Watershed region growing is currently one of the best solution when there is a lack of

membrane images.



Chapter 2 Introduction & Literature Review 30

2.2.7 Cell Phenotype Detection

The development of automated fluorescent confocal microscopes allows researchers to

collect high throughput biological images. Moreover, it increases the possibility of high-

lighting and capturing the complex sub-cellular phenotypes using specific fluorescent

labeled proteins, a.k.a. staining. As a result, the door is now open to the identification

of the cell biological phenotypes. However, it is also a big challenge for automated image

analysis and computation.

Grys et al.(2016) [2] discuss the commonly used computer vision and machine learning

methods to identify phenotypic profiles. They come up with a general two-stage workflow

for the generation and classification of phenotypic profiles as shown in Fig. 2.4.

1. Generating phenotypic profiles. This step performs image analysis approaches

including high throughput image acquisition, segmentation, object recognition,

feature extraction, and feature selection.

2. Clustering and classifying phenotypic profiles. Depending on the characteristics

of image modalities and the research goals, different strategies can be applied

such as clustering, machine learning classifiers, and outlier detection.

The difficulty of generating phenotypic profiles

The first and foremost difficulty for cell phenotype detection is feature extraction. Cell-

Profiler platform [24] can extract hundreds to thousands of different features for each

object and use these information to generate the phenotypic profile. Some common

features are the object volume, shape, texture, and the histogram of intensity inside

segmented cells. Due to such large number of extracted features, feature selection and

dimensionality reduction are a must so that only relevant features are kept [47, 48].

In addition, the high level of noise is also a major obstacle. This is especially important

when the tissue consists of many cell phenotypes, each is highlighted by one marker. In

such case, each pixel coordinate can be a label on one image and noise on another one.

Approaches to clustering and classifying phenotypic profiles

CellProfiler (2006) [24, 47] uses classification to detect unknown or rare phenotypes.

However, it requires the preparation of training data, which is a very time consuming
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and difficult process in 3D. A recent work by Oliver et al. (2016) [49] applies deep

learning to the cell phenotype problem.

Grys et al. (2016) [2] applies unsupervised clustering and outlier analysis approaches

to cell phenotype detection. While clustering can identify common phenotypes, outlier

detection can successfully identify unknown ones. When there is no expert knowledge

about phenotypes to prepare the training data or there is a lack of cell boundary infor-

mation, they are suitable candidates to replace supervised machine learning approaches.

Figure 2.4: Workflow of cell phenotypic profiling process. Figure is taken from the
publication of Grys et al.(2016)[2]

2.3 Spatial Tissue Organization Analysis

Past researches about the extraction of features focused mostly on a set of individual

objects and did not take into account the relationship between these objects. Spatial

organization is a new approach that focuses on such relations to describe, detect, and

recognize these objects. It is particularly useful when objects are located in a complex

and dynamic biomedical environment. In addition, spatial information can be more

reliable than the characteristic of the objects themselves.

In this section, we describe some approaches to exploit the spatial organization of objects

and perform a certain level of mechanical reasoning about the image contents. We

observe the spatial organization at different scales, at local scale, between two objects,

to global scale, between each object and a set of objects or a population.
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2.3.1 Analysis at Local Scale

Analysis at local scale focuses on the relationship between two objects or between an

object and its local surrounded area. In biological application, the relationship between

two or a small number of objects can be modelled as the spatial relationship of one

component to another. For example, the spatial relationship of cell to cell, cell to

nucleus, cell to vesicle, nucleoli to nucleus, or between cells within a tissue. A spatial

relation can be classified as a metric relation, or a topological relation, or a more complex

one [50].

Metric relations consist of directional relation and distance relation. Examples of direc-

tional relations are ‘right to’, ‘left to’, ‘in front of’, ‘above’, ‘below’, ‘behind’. Examples

of distance relations are ‘close to’, ‘far from’. Metric relations are quite simple to un-

derstand but play an important role in describing the object positions. More complex

relations can base on this such as ‘between’, ‘surround’, ‘among’. Hudelot et al(2008)[50].

represented metric relations and the links between them as ontologies. This work com-

bined ontology of spatial relations with fuzzy representation of distance relations in order

to guide image interpretation and the recognition of its structures.

Topological relation is commonly used for qualitative spatial reasoning. Randell et al. [3]

implemented a set of spatial relations such as contact, overlap, and the relation of part

to whole in order to describe the topology and structural organization of biomedical

images. In this work, the authors proposed the usage of Discrete Mereotopology (DM ),

a spatial logic which combines mereology, the theory of part-hood relations, and topol-

ogy to model discrete spaces. Particularly, DM can be represented as Mathematical

Morphology operations that enables the representation of spatial models in computer

program.

These spatial relations are a set of contact and part-whole relationships in discrete 2D

space between pairs of binary regions in a single image and between regions across

different images, such as in multi-channel images. These models focus on ‘external

contact’, ‘partial overlap’, and ‘tangential’ and ‘non-tangential’ connections of pairs of

objects. The Discrete Mereotopology is a discrete variant of Region Connection Calculus

(RCC) includeing the relations which are applied to discrete embedding space. We also

include the popular sub-theory of RCC which are RCC5 and RCC8 as shown in Fig. 2.5.

The RCC5 set covers five basic relationships between pairs of regions while the RCC8 set
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gives more details which describes eight jointly exhaustive and pairwise disjoint relations

defined on pairs of regions.

— RCC5D = {DR,PO,PP, PPi,EQ}, with DR (‘is discrete from’) as the least

upper bound of disconnection and external connections, PP (‘is a proper part

of’), PPi is inverse of PP, and EQ (‘is identical with’).

— RCC8D = {DC,EC,PO,EQ, TPP,NTPP, TPPi,NTPPi}, with DC (‘is dis-

connected from’), EC (‘is externally connected with’), PO (‘partially overlaps’),

TPP (‘is a tangential proper part of’), NTPP (‘is a non-tangential proper-part

of’), EQ (‘is identical with’), TPPi is inverse of TPP, and NTPPi is inverse of

NTPP.

The model of spatial logic for DM is a promising way to extend to 3D images or even

higher dimensional 3D+t biological images. Its input consists of two binary images, X

and Y, that are the objects to be tested. The region can be every regions inside cells

and tissues. In order to achieve this, we use the Boudier’s plugin [37] which represents

Discrete Mereotopology map directly to the erosion and dilation operators of mathe-

matical morphology. This work also extends the spatial relationship computation to 3D

images.

Figure 2.5: The RCC8D relations. The eight RCC8D relations. In each case, the
relation shown is that of the square with NW–SE shading to the square with SW–NE.

shading. Figure is taken from the publication of Randell et al.(2013)[3].

2.3.2 Analysis at Global Scale

In biological environment, cells are not independent but form a tissue. Cells work

together to perform their function in regulating and translating. The structure or ar-

rangement of cells is an essential key to investigate the function of the entire tissue.
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Therefore, there is an interest in determining whether the spatial organization of cells

within tissue affects the tissue function. Our objective is to determine whether there is

a tendency of the observed spatial organization of the cell to match a specific pattern

in the study area which are not randomly distributed. The problem, then, becomes

how to find a formal analysis or a descriptor which enables us to summarize the spatial

information of the observed cells organization and figure out the specific relationships

between them. Thus, this part focuses on the methods of quantitative spatial reasoning

of cells at the global scale where the relation of an object with many objects in the study

area is observed.

The point pattern analysis (PPA) is currently the best method for this problem. This

method was developed originally at the ecology and epidemiology domain and has been

adapted to many more. The cell coordinates can have many attributes, but at the global

scale, we are only interested in their locations in the point pattern analysis. Each object

can be replaced by its center position. Weston et al. [5] analyzed the point pattern of

nuclear biology and determined its different distributions. Andrey et al. [4] also pointed

out the distribution of centromeres and chromocenter in animal and plant nuclei.

Different types of distribution

There are three general patterns [4] that are commonly used today as shown in Fig. 2.6).

Figure 2.6: Various types of spatial distribution. Positions can be independently dis-
tributed (completely random pattern), or attraction (aggregated pattern) or repulsion

(regular pattern). Figure is taken from the publication of Andrey et al.(2010) [4]

1. Completely random distribution : the position of any point is not affected by the

position of any other point.

2. Uniform distribution, regular pattern, repulsion: every point is as far from all of

its neighbors as possible.

3. Cluster distribution, attraction: many points are concentrated close together,

and large areas that contain very few points.
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Figure 2.7: Illustrating of three specific distributions such as ‘polar’, ‘center’, ‘bound-
ary’. Figure is taken from the publication of Weston et al.(2012)[5].

In the dynamic and complex biological environment, more specific distributions have

been proposed such as ‘polar’, ‘center’, ‘boundary’ [5]. These patterns describe point

pattern process that the components locate themselves near the poles, at the center, or

close to periphery of the study area respectively. Examples of these specific patterns

are that nucleoli located near the particular positions inside nucleus, vesicles are located

near the cell periphery and have tendency to reach out of cell membrane and connect to

outside environment.

Spatial distribution function

In order to analyze the spatial distribution of cells and their components, we assume

that the input image has been segmented beforehand and all regions are represented by

their centers of gravity.

Visualizing a cell spatial organization can help to detect its pattern. However, in order

to summarize the spatial information of a spatial pattern, a mathematical function is

needed. Distance functions are a simple measurements and standard tools in the sta-

tistical analysis spatial point processes. Here we refer to two main distance functions

which are commonly used. There are F−function which examines the cumulative fre-

quency distribution of the empty region and G−function which allows the measurement

of the cumulative frequency distribution of the nearest neighbor distances in the study

area (see Andrey et al. (2010) [4], Weston et al. (2012) [5]. These functions allow us

to compare an observed distribution, e.g. cells organization, with a specific distribution

simulated in the same study area.

F-function F (r) = P (R < r). F-function is the cumulative distribution function of

the distance R between a typical position within the observed space and its closest

point in the pattern. A stochastic scheme (such as Monte Carlo) was implemented

to compute the F-function. A number of evaluation points, randomly chosen points

or reference points, were generated uniformly at random within observed space. For

each evaluation point, the distance to its closest point of the pattern was determined as
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shown in Fig. 2.8. The cumulative distribution function F (r) was then estimated by the

proportion of evaluation points for which this distance is below y.

Steps to compute F-function.

1. Assume that we have n observed points (event) in the study area: (e1, e2, . . . , en).

2. Randomly select Nref reference points (rf1, rf2, . . . , rfN ) in the study area A.

3. Compute the minimum distance from reference point rfi to any observed point

ei in the point pattern: dmin(rfi, ei).

4. Calculate the number of point pairs where the distance is smaller than or equal

the distance d: F (d) = dmin(rfi,ei)<d
Nref

.

Spatial Distribution Index (SDI) : In order to determine whether the spatial distribu-

tion of objects matches any organizational rule for example randomly distributed, the

observed distributions were compared against a completely random distribution condi-

tioned on the observed numbers of objects (cells, vesicles, centromeres, chromocenters).

A Monte-Carlo approach was applied, whereby the distance functions were computed

over sets of simulated patterns. For each object such as vesicle, nucleus, telomere, chro-

mocenter, random patterns were generated with the same number of objects as detected

in the actual sample.

1. Verify the significance of any non-random pattern (either clustering or regularity)

is evaluated using the theory of simulated ‘confidence envelopes’.

2. Simulate S spatial point processes and estimate the F-, G- function for each of

these processes. Practically, we usually choose S equal 1000 or 100 processes.

3. Then rank all the simulations based on the results of distance.

4. Mark the 5th and 95th of F (r) or G(r) values (black and grey curves in Fig. 2.8).

5. Plot these as the 95% confidence intervals (between 5th and 95th values).

6. Compare the observed pattern with S reference patterns.

2.3.3 Modeling of Spatial Organization

Using 3D modeling, we can build virtual structures based on various biological hypothe-

ses, which can help biologist to visualize in 3D their hypotheses and quantitative spatial

analysis for each case. In addition, modeling is an alternative strategy in case there are
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Figure 2.8: F-function, cumulative distribution function of the empty region

limited number of the available imaging data. The reason is the high time consuming to

capture a high resolution image and some samples could take up to one to two weeks.

Moreover, due to the amount of time required to collect and prepare sample data, it

is difficult to capture the expected variation in a cell structure. In the normal case,

a biologist could only capture several instances. In such situation, modeling of spatial

organization is very useful in generating many variances of the structure. One more

advantage of the modeling approach is to be able to generate synthesis data for statistical

tests. The modeling procedure is covered in Chapter 3.

2.4 Objectives of the Thesis

Analysis and modeling of tissue spatial organization in 3D

Over the last decade, numerous works have been done to automate the analysis of

cells in microscopic images. Nevertheless, these works focus mostly on applying image

processing and analysis techniques on individual cells. There is a general lack of tool

to analyze the interactions among cells and their spatial organization. In addition,

there is a demand for more efficient approaches to handle high throughput 3D images of

cells. This comes from the fact that the study of cells in three dimensional (3D) space

provides a better and more realistic way to do researches with regard to the physical and

biochemical properties of the entire micro-environment comparing to two dimensional

approaches.
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Cyto-architecture of the islets of Langerhans

The islet of Langerhans is an open research topic in biology. There is considerable

interest in analyzing the multi-cellular structure of the islet at both local and global

scale. However, there are not many works focusing on formalizing and modeling its

spatial organization. Therefore, this is one of the main goal of this thesis. In addition,

we collaborates closely with domain experts, Dr. Rafael Arrojo E. Drigo, and Dr. Per-

Olof Berggren who have many experiences working with the islet of Langerhans.

Contributions

1. We provide a set of methodologies and a toolbox for the analysis of tissue orga-

nization. They include cell segmentation, analysis of multi-cellular interaction,

analysis of spatial organization, and modeling of spatial organization.

2. We apply our toolbox to the investigation of the spatial organization of the islet

of Langerhans trying to understand its internal mechanism.

3. We apply our toolbox to explore the function of delta cell in the islet, whose role

is yet to determine.

4. We introduce the procedure to model the cell spatial organization, which can be

used to create virtual models of tissues and sample data for testing.

Outline of the thesis

In the next chapter, we introduce the image processing methods and mathematical

models that we use to handle confocal microscopic images. After that, in chapter 4,

we present our research results comparing with other methods in 3D image processing.

That chapter is followed by a discussion about the implementation, perspectives, and

potential future works.

The documentation of our toolbox as well as all the extra results of every datasets

(mouse, monkey, human) that we used are included in the Appendices A and B.



Chapter 3

Materials and Methods

In this chapter, we describe our set of methods to analyze the tissue spatial organization.

Its objective is to propose a generic workflow to quantify, analyze, and model the entire

tissue spatial organization. Our general algorithms will be presented first, followed by

their application to the islet of Langerhans. The chapter covers:

1. Our materials and the workflow to analyze tissue spatial organization.

2. The main computational methods to perform cell segmentation (nuclei segmen-

tation, cell zone computation, 3D cell phenotype detection) and to analyze the

spatial organization (cellular interaction computation, spatial statistic analysis).

3. The application to study the role of delta cell.

4. The modeling procedure to create the virtual distribution models.

5. The implementation of our algorithm.

3.1 Materials

Reconstruction data in 3D

We provide the capturing of both sections and whole slides of the tissue in our works. In

order to prepare the serial section reconstruction, the tissue sample is separated in T µm

thick sections and placed on slides. The parameter T , the section thickness, is chosen

depending on the type of sample and the optical property of the lenses. Normally, thick

sections (T from 30 to 100 µm) reduces the number of gaps in the reconstruction. In

39
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the application of the islet of Langerhans, we choose 30 µm as the value of T and divide

each sample into 2 to 3 parts. For the capturing of the whole slides tissue, we adopt the

optical clearing technique from Ke et al. (2013) [51].

In the application of islet of Langerhans, the thickness of whole slides sample is greater

than 80 µm.

Confocal microscopy and image acquisition

There are many different image modalities for the study of tissues and they need to be

processed differently. Two common techniques are the fluorescent imaging and histo-

logical imaging (Section 2.2.1). In this thesis, we focus only on the fluorescent imaging

technique in which images are captured by confocal microscope. Specifically, for the

islet of Langerhans, we use single photon confocal microscope equipped with a white

laser and hybrid detectors. More details will be covered in Chapter 4.

The inputs we need consist of a nuclei labeling channel and several marker channels

M1,M2,M3, . . . ,Mn corresponding to different cell phenotypes. Specifically, our input

has four channels, a nuclei labeling image and three markers glucagon (produced by

alpha cells), insulin (produced by beta cells), and somatostatin (produced by delta

cells). The nuclei is stained with DAPI (4, 6-diamino-2-phenylindole) while different

marker channels are highlighted using different focal planes (staining methods).

3.2 Methodology Overview

Generic workflow for tissue spatial organization analysis

Based on our studies of other related works in Section 2.2.2, we divide our workflow into

two stages:

1. Segmentation and cell phenotype detection. This covers all our computational

methods to get the cell profile which contains all the information about the cell

including its phenotype and the coordinates of the nuclei and the cytoplasmic

regions.

2. Spatial organization analysis. This analyses cellular interactions at local scale and

spatial organization at global scale. In addition, the modeling and simulation of

the spatial organization is also done here.
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(1) The segmentation and cell phenotype detection stage includes:

1. Nuclei detection. This is the core function to detect and segment nuclei (Sec-

tion 2.2.4).

2. Cytoplasm detection. It is used when the input contains cytoplasm marker chan-

nels. A cytoplasm region is defined as the region surrounding each nucleus. This

function uses the segmented nuclei image and the cytoplasm marker as its inputs.

3. Membrane detection. It detects the cell membrane surrounding the nucleus and

the cell cytoplasm. If the input contains the cell membrane marker channel, it is

used to segment the membrane and obtain the cell boundary.

4. Cell zone determination. A cell region is determined by combining the nuclei,

cytoplasm, and the cell boundary regions. However, when there are no cytoplasm

or membrane markers, the cell region is defined as the region surrounding each

nucleus with a predefined radius d.

5. Cell phenotype detection. By examining the amount of markers at the cell region,

we can detect the phenotype of the cell (Section 2.2.7).

(2) The second stage of spatial organization analysis includes:

1. Analysis of cellular interaction. We analyze the cell-to-cell contacts among neigh-

boring cells.

2. Analysis of spatial organization. We determine the spatial distribution of objects

within tissue. It could be a random, a clustered, or a regular distribution.

3. Modeling and simulation of spatial organization. This generates a virtual model

of cells within the tissue and applies this virtual model to test new hypotheses.

Workflow for application of the islet of Langerhans

The same two-stage workflow is used to analyze the islet of Langerhans with a small

modification in the first stage because of the difficultly to produce the cytoplasm marker.

Therefore, we skip the cytoplasm detection part. The detailed workflow is presented in

Fig. 3.1 and Fig. 4.1.
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Figure 3.1: Workflow of the processing. First, nuclei is segmented and cell zone is
computed. From three markers glucagon, insulin, somatostatin as input image and
detected cell zone, cell phenotype is identified for each cell. Based on the cell profiles

from first stage, we investigate the spatial organization of islet of Langerhans.

3.3 Segmentation and Cell Phenotype Detection

In the first stage, we present a set of algorithms to perform various image analysis tasks

including those that can handle thick tissue samples. These methods all use the voxel

as the basis unit.

3.3.1 Nuclei segmentation

General introduction

Nuclei segmentation is the very first as well as the most important step in our process.

It can potentially affect the results of all the subsequent analysis. The algorithm we use

is first presented in Heck et al. (2015) [52] and has already been implemented as the

spot segmentation feature in 3D ImageJ Suite [37] plugin by Boudier’s group. We have

modified this method to make it work with thick nuclei samples.
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Seed detection

The key idea of the algorithm is to use seed detection in the segmentation. The original

nuclei image is transformed to remove noise and to capture different frequencies corre-

sponding to different features in the image. We then compute the local maximal values

from the transformed image and use these values as seeds to group neighboring voxels.

The input of 3D spot segmentation algorithm consists of the original image (nuclei

labeling image - spots) and all the seeds obtained from the above process. We propose

the use of Fourier transform as the transformation function for seed detection.

3D spot segmentation

The spot segmentation algorithm has five steps: (i) pre-processing, (ii) seed detection,

(iii) voxel clustering, (iv) segmentation, and (v) an optional semi-automatic segmenta-

tion to correct the error of the segmentation step.

Figure 3.2: Diagram of 3D spot segmentation.

i) Pre-processing. Images with nuclear labeling (DAPI) are first processed by a 3D

median filter to reduce noise and to homogenize intensities inside the nuclei. We choose

to use the median filter, a simple yet powerful filtering method on noisy confocal images.
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It is robust to noise level and can preserve the edge of the object (Section 2.2.3) while

other methods tend to extend to the background and merge different objects together.

ii) Nuclei seed detection. The filtered image is then transformed one more time by a

band pass filter with a specific size interval of [Dmin − Dmax]. It corresponds to the

range of the nuclei diameter (Section 2.2.3). Here we utilize the 3D band pass filter

implemented in the lipid droplet plugin written by Samuel Moll [53].

The resulting image is encoded in 32-bits which is then scaled down to a 16-bit image.

Our plugin 3D spot segmentation [37, 52] takes it as input to detect the nuclei seed with

a local maxima in the radius of r = 4 voxels.

Because the detected seeds can be in either the noise region or in the nuclei region, a

threshold Tseed is set to only keep the latter. Seeds whose intensity values are smaller

than this threshold are excluded. Because the filtered image is encoded in 16-bit, we

can choose the threshold Tseed of around 30000± 500.

Figure 3.3: Band pass filtering and its help to facilitate the nuclei seed detection.

iii) Voxel clustering - determine the extension of the object. After we have detected all

the seeds, one per nucleus, the next step is to properly delineate each nucleus around
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its seed. Different techniques can be applied here such as voxels clustering used by the

spot segmentation or utilizing level sets.

Voxel clustering considers the seed as the center of the nucleus and group neighboring

voxels around it. Therefore, an important question is how to estimate the extension

of the nuclei object as a terminating condition for the voxel clustering algorithm. We

decide to use a threshold in terms of the intensity value to achieve this.

The threshold can be a global or a local threshold within a specific region. However, due

to the big variance of intensity values in the nuclei image, a global constant threshold

does not work well in many case. Therefore, we stick with local thresholds defined by

the Gaussian fit method in our works. We compute the 3D radial distribution of the

mean intensity values in growing concentric layers around each seed. From this radial

distribution, we could fit a Gaussian curve and find a cut-off on it to a specific standard

deviation value (SD value). This SD value is in the range [-1, 3]. In practice, the SD

value is set at 1.17 meaning that the threshold will cut the Gaussian curve surface at

the half maximum. For example, if the SD value is set at 2 and 3, it will fill about 90%

and 99% of the surface respectively.

iv) Segmentation. The computed value of the Gaussian fitting is then used as a local

threshold for a region-growing algorithm around each seed in which all neighboring

voxels are examined. Instead of considering one voxel at a time, a block of voxels with

the intensity value greater than the local threshold is processed and added to the cluster

of voxels instead. Finally, the output nuclei regions are returned where voxels in the

same nuclei object share the same label.

iv) Watershed - region growing. As part of the segmentation process, a 3D watershed

algorithm is also performed to define the area around each seed. This is done to ensure

that the segmented nuclei object will not propagate to its neighboring nuclei.

v) Semi-automatic segmentation. As an optional step, manual editing is needed when it

deems necessary to correct the few segmentation errors. We use our 3D Manager tool

from the 3D ImageJ suite [37, 54] to assess the segmentation accuracy and to perform

the correction. Specifically, when we observe a nuclei object split into two, we can select

these two nuclei objects and apply the merge function of 3D Manager to merge them
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into one. Similarly, we can also use the split function of 3D Manager to split an object

into two when they are incorrectly merged together.

3.3.2 Cell zone computation

General introduction

After the nuclei segmentation, the next step in our workflow is to detect the cell mem-

brane. Note that there are existing methods to detect the cell cytoplasm as well but it

is difficult in practice to capture the cytoplasm labeling image. Therefore, we do not

include cytoplasm detection in our works.

In general, there are two ways to detect the cell membrane:

1. When the cell membrane labeling image is captured perfectly, we segment this

image to get the cell boundary in its closing form. We can then apply the region

growing technique around each nuclei seed and inside this boundary to obtain

the cell region.

2. When it is difficult to capture a good membrane image or there might be no

membrane image at all, we should use an ad-hoc method to estimate a cell zone.

In such cases, we use region growing technique to estimate the cell zone surround

each nuclei.

In our works, we study both approaches to understand their advantages as well as

limitations.

3.3.2.1 Cell membrane segmentation

Setup experiment

We first capture the 3D membrane labeling images of several mouse and monkey islets,

one image per islet. These membrane labeling images together with those nuclei labeling

and glucagon marker images are what we need for the experiment. Note that the number

of input images is smaller than usual because it is difficult to capture many markers at

the same time for one sample.

Membrane detection

We follow the proposed pipeline in Keraudren et al. (2011) [42] for cell segmentation
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which includes four consecutive stages: filtering, nuclei segmentation, edge-map process-

ing of the membrane, and applying an adaptive watershed using nuclei as seeds 3.3.2.1.

Specifically, we use 3D Canny Deriche method from the Edge and Symmetry filter of

Image Edge plugin [37] to capture the gradients of the membrane image. The Alpha

parameter controlling the level of smoothing in canny edge detection was set to 0.1. The

proposed workflow for membrane detection and cell segmentation is shown in Fig. 3.4.

Figure 3.4: Proposed workflow for cell segmentation which divide into nuclei seg-
mentation and membrane segmentation and combine them together. (A) Nuclei is
segmented using our spot segmentation method. (B) Raw membrane image is filtered
using 3D median filter, after that apply 3D Canny Deriche Filter and normalization to
capture the edges of membrane, and applied 3D mean filter to smooth intensity inside
the edges and then applied 3D minimum filter to reduce the size of edge. (C) The
watershed intensity driven approach is adopted using segmented nuclei as seed in the
region of filtered membrane image. We obtained the cell region result. From cell region,

we can get the contours of region as the cell wall.

Limitations

Due to the thickness of the sample, we cannot produce good membrane labeling images.

As a result, there are many gaps in the membrane. This leads to both over-estimation

and under-segmentation of the cell region. If the cell region could not be determined

correctly, this could potentially affect all subsequent computations.

3.3.2.2 Cell zone determination - Watershed separation

When there is no membrane image or its quality is not good enough, we can use a

watershed procedure to estimate the cell zone. This procedure computes the Voronoi
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region surrounding each seed nucleus on the nuclei segmented image.

Our proposed method

We define the cell zone around each nucleus using a watershed separation with a pre-

defined radius. A 3D Euclidean distance map is computed on the background of the

segmented image for all nuclei (Section 2.2.5). The output is a 3D image where the value

of each voxel represents the minimal calibrated distance to the closest nucleus boundary.

Note that our 3D distance map implementation works using calibrated unit and hence

take the anisotropy in Z into account.

The distance map image is then inverted so highest values are close to nuclei bound-

aries. After that, the watershed procedure is applied on inverted distance map image.

Basically, all pixels are put into an ordered list and processed sequentially. The first

pixel with the highest value is observed and processed. The algorithm performs a search

on the 3D neighborhood of the observed voxel to examine all voxels who are already as-

signed to a nucleus. Next, non-labelled voxels from the 3D neighborhood of the observed

voxel are added to the list based on their distance map values. When two defined zones

touch each other, the voxel at the frontier between these two zones is assigned a specific

label in order to mark the boundary of the cell zone. Finally, a mask is applied and set

to 0 for voxels whose values in the distance map image are greater than the predefined

radius.

Validation: We rely on domain experts to validate the cell zone detection result.

3.3.3 3D cell phenotype computation

In this section, we work with an algorithm to identify different cell types using the input

obtained in the previous step. Specifically, the input consists of different markers corre-

sponding to different cell phenotypes as well as the cell segmentation result. In our case,

the markers are insulin, glucagon, and somatostatin corresponding to three cell types

alpha-, beta-, and delta- respectively. The segmentation result includes information

about the nucleus and the cell zone such as voxel coordinates and voxel values.
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An overview of other approaches to identify phenotypic profiles is covered in Sec-

tion 2.2.7. In our study, we apply 3D cell phenotype computation on the islet of Langer-

hans to classify cells into 4 groups: delta (label 1), beta (label 2), alpha (label 3), and

‘unlabelled’ (label 0) cells.

Our two-stage workflow includes:

1. Generating phenotypic profiles by nuclei segmentation and cell zone computation.

2. Clustering and classifying phenotypic profiles.

There are several reasons to support the clustering approach:

1. There are only 3 cell phenotypes in our application. Our target is to detect

only alpha-, beta-, and delta- cells. Therefore, clustering is the most simple and

efficient.

2. In our experiment, we could not obtain the accurate membrane labeling image

and there is a genuine lack of cell boundary information. To make it worse, cells

of a thick tissue sample in three dimensions are elongated across many slices and

it is a challenging task to draw the cell region. As such, it is difficult to prepare

the training data and to apply supervised machine learning approaches.

3. Cell characteristics. Some common features are required in order to generate

phenotypic profiles, for example the object volume, texture, the histogram of

intensity inside segmented cells and the shape of object. However, there is no

information about the cell shape in our case. We only have information about

the content within the cell region such as the histogram of intensity of the voxel

at the cell region. So clustering is a suitable option in our application.

The difficulty of detecting the phenotype of endocrine cells

Bosco et al. (2010) [6] detects the unique association between alpha- and beta- cells in

human islet cells from at least 10 different pancreas. They detect some cell pairs which

compose of one alpha-cell surrounded by one beta-cell (beta wrapping alpha), or neutral

apposition between alpha- and beta-cells (alpha-beta), or a beta-cell wrapping an alpha-

cell (alpha wrapping beta) (Fig. 3.5). As the result, this can lead to mis-identification

of cell phenotype between alpha- and beta- cell in our application. In order to identify



Chapter 3 Materials and Methods 50

Figure 3.5: The association between alpha- and beta- cells in cultured human islet
cells, insulin (red) and glucagon (green). A cell pair composed of one alpha-cell (A)
surrounded by one beta-cell (B). Merged image is shown in (C). The cell pair shown
here is representative of cell pairs observed in different human cell preparations from
at least 10 different pancreas. Figure is taken from the work of Bosco et al. (2010) [6].

the cell phenotype, we assume that each cell has only one cell phenotype and we observe

the cytoplasmic region that is close to nuclei boundary only.

The algorithm

The algorithm to detect cell phenotype includes the following four steps:

1. Normalizing three marker images.

2. Supervoxels clustering. In order to reduce the complexity in the number of voxels

in each dataset, we cluster voxels from different images containing specific markers

into supervoxels. A supervoxels is a group of voxels which share similar intensity

values.

3. Each supervoxel is assigned a cell phenotype based on the most abundant label

with the highest average median intensity value.

4. Finally, we define a study area for each cell and identify the cell type based on

the most abundant intensity in this study area.

(1) Normalization of markers

During the preparation of samples, there are many factors that can affect the quality of

microscopic images. By consequence, each input dataset could have a different histogram

and a different noise level. Pre-processing is, therefore, very important to enhance and

normalize the intensity level. It also reduces the level of noise from the image.

In our works, information about the markers (glucagon, insulin, somatostatin) plays

a very important role in deciding the type of each cell. At the same position, if the

noise level is very high in one channel and the cell marker is lower in another, the cell

type detection algorithm could detect wrongly. Therefore, we use the median filter to
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enhance the signal of all channels and apply a small threshold to remove parts of the

noise. Finally, we normalize all channels to the range [0, 255].

(2) Supervoxels clustering

We need an efficient supervoxels clustering algorithm due to the high number of markers

in the input image. It should cluster voxels quickly and achieve a good overall accuracy.

Specifically, Simple Linear Iterative Clustering (SLIC) is the most suitable algorithm

for our problem . Besides its accuracy and high performance, SLIC can also handle 3D

supervoxels.

SLIC was first proposed by Achanta et al. (2010)[55] as a novel algorithm that could

cluster pixels in the combined five-dimensional color and image plane space. It was

shown to have greater segmentation accuracy than other state-of-the-art methods. We

adapt the SLIC method to generate supervoxels from three marker channels and their

spatial distances in three dimensional space.

SLIC algorithm

We use SLIC Supervoxel with Complex Distance Measure to segment the volume of

interest. The supervoxel of size M is the volume of the supervoxel corresponding to

voxels within the special region of tissue such as the nuclei. The SLIC algorithm is

divided into several steps as follows:

Initialization

This first step divides an image into k clusters of equal volume. We define the SLIC

spacing parameter S with S = 3
√
N/k, N is the total number of voxels in the volume.

This parameter, thus, depends on the supervoxels size.

In 3D, the study domain is a cube, not a block and the 3D confocal microscopic image

has lower axial resolution along the z-axis comparing to its lateral resolution along its

x- and y-axis. Therefore, we should take this into account by multiplying the size of the

cube with the size of the voxel.

Let x, y, z be the coordinates of voxel i. Let the vector of signal intensities at each voxel

be Ix,y,z = [Iαi, Iβi, Iδi]
T , where Iαi is the intensity value of voxel i at glucagon marker,

Iβi is the intensity value of voxel i at insulin marker, and Iδi is the intensity value of

voxel i at somatostatin marker.
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The cluster center c is

Ici = [Iαi, Iβi, Iδi, xi, yi, zi]
T

. And let dci be the distance from voxel i to c in the signals space, and dsi is the distance

from voxel i to c in the Euclidean distance space.

A variable m is introduced as the compactness level which is used to weight the ratio of

signal intensity similarity and the spatial proximity. The compactness level m decides

the compactness and shape of the supervoxels.

The formula to compute the distance dci, dsi, and the final distance D is presented in

Equation 3.1. SLIC combines the intensity distance dci and the spatial distance dsi into

the final distance D.

dci =
√

(Iα − Ici)2 + (Iβ − Ici)2 + (Iδ − Ici)2

dsi =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

D = dci +
dsi
S
×m

(3.1)

(3) Assign a voxel based on intensity similarity and spatial proximity.

Each voxel will link to its nearest cluster center c in the search region which is extend to

2S×2S×2S around the supervoxels center. Limiting the search region helps SLIC reduce

its computational time comparing with the K-means approach. Specifically, K-means

searches the entire image while SLIC only needs to handle a small region.

Updating the cluster center assignment

Updating the cluster center assignment is done repeatedly until a predefined number of

iterations Niteration is reached, this step has the goal of finding the nearest cluster center

for each voxel i.

Post processing, enforce connectivity

This step is done by re-assigning any disjoint voxels to a nearby supervoxels and making

sure that all the voxels within a supervoxel are connected.

Implementation

The algorithm 1* is implemented as a Java plugin under ImageJ platform.
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Figure 3.6: SLIC Clustering. (A-C) original data, scale bar 10µ (D) overlay, arrow:
the part containing multi markers. (E-H) Result of SLIC in 3D Viewer, E - 3D visual-
ization gray scale, F - slice at background and noise, G - slice contained 3 markers, SLIC
median value correspond to each channels. (I-K) volume test, correspond to small[50-
100], medium[100-300], big[300-500], (L) overlay of 3 channels. (M-O) compactness test,
(M) small compactness m=1000, (N) medium compactness m=5000, (0)big compact-
ness m=10000, (P) 3D view with different colors correspond to different supervoxels

regions.

(4) Applying SLIC to 3D cell phenotype detection of endocrine cells

Assigning a cell phenotype for each supervoxel

The output of SLIC algorithm is a SLIC-supervoxels image that contains many super-

voxels (Fig. 3.6E,F,J).

Let Z be a supervoxel. The median value of each channel is computed inside each zone:

1. Zα = median(Iα).

2. Zβ = median(Iβ).

3. Zδ = median(Iδ).
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Algorithm (1*) Adapted SLIC Supervoxel Segmentation with Complex Distance Mea-
sure

1: Inputs:
3 raw marker images (three channels correspond to three markers
: somatostatin, insulin, glucagon) Iα, Iβ, Iδ
compactness parameter m
number of iterations Niteration

2: Initialize:
Cluster centres Ck = [Iα, Iβ, Iδ, x, y, z]

T by sampling at the grid
intervals S

3: Set:
label l(i) = 0 for each voxel i,
distance d(i) =∞ for each voxel i

1: repeat
2: for each cluster center Ck do
3: for each voxel i in 2S × 2S × 2S in region around Ck do
4: Calculate the distance D between Ck and i
5: if D < di then
6: Set di = D
7: Set l(i) = k

8: Compute new cluster centers
9: Compute residual error

10: until Number of Iterations reached Niteration

Enforce connectivity

11: Outputs:
One image which labeled each supervoxel

Each supervoxel is labelled with a cell phenotype using the most abundant label with

the highest average median intensity value. Otherwise, if all median values inside the

zone are lower than the predefined threshold Tmed, this supervoxel Z is an unlabeled

type (label 0).

For example, if Zδ is greater than Zβ and Zα and Zδ is greater than Tmed. The supervoxel

Z is assigned with the label 1. In other words, it has delta phenotype.

A 3D-median-SLIC image is then created with voxels having the value of their corre-

sponding supervoxels type (Fig. 3.6H).

Defining a study area for each cell and identify the cell type

Next, we identify the cell phenotype using the cell segmentation result and the 3D-

median-SLIC image from the previous step. To achieve this, we need to define the study
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Nb
Itera-
tions

Compactness Min
Volume

Max
Volume

Execution
Time (s)

Test

10 10000 50 100 368 Cluster Size, Small,
19360 regions (Fig. 3.6I)

10 10000 100 300 376 Cluster Size, Medium,
5766 regions(Fig. 3.6J)

10 10000 300 500 383 Cluster Size, Big, 3380
regions (Fig. 3.6K)

10 1000 100 300 429 Small Compact-
ness, 5766 regions,
(Fig. 3.6M)

10 5000 100 300 375 Medium Compact-
ness, 5766 regions,
(Fig. 3.6N)

10 10000 100 300 383 Big Compactness, 3380
regions (Fig. 3.6O)

10 10000 100 300 383 Medium Iterations,
3380 regions

50 10000 100 300 1937 Big Iterations, 5766 re-
gions

100 10000 100 300 3830 Big Iterations, 5766 re-
gions

Table 3.1: Execution time of each experiments with small, medium, and large size of
cluster size. Testing with monkey islet sample, 203 x 203 x 40 µm, 1024 x 1024 x 40

pixels

area A inside each cell region and compute the volume of each marker inside A.

Let Vδ be the volume of voxels within the study area A whose label is 1, Vβ with the label

2, and Vδ with the label 3. As mentioned previously, if all the marker volumes inside

the study area A are lower than predefined threshold volume Tvol, the cell becomes an

unlabeled type (label 0 - ‘unlabelled’ cell).

We can also assign the phenotype of the cell as the one with the biggest volume. For

example, if Vδ is greater than Vβ and Vα and Vδ is greater than Tvol. It is a delta

cell (label 1). The same logic applies to beta cells (label 2), alpha cells (label 3), and

‘unlabelled’ (label 0).

Different strategies to determine a study area

In order to detect the cytoplasmic signal with high specificity, we need to look for markers

in the SLIC image around the nuclei boundary (Algorithm 1**). We define two kinds

of distance as follows:
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Figure 3.7: Scheme for 3D cell phenotype computation. (1)(2) Normalization of
markers and SLIC Supervoxels clustering. (3) Labeling a cell phenotype or unlabeled

for each voxel. (4) Defining a study area. (5) Detect cell type

1. The inner distance from the nucleus boundary towards the inside of the nucleus.

It detects fluorescence signal that may appear inside the segmented nucleus;

2. An outer distance from the nucleus boundary towards the outside of the nucleus

and inside of cell zone.

To determine the study area, we compute an Euclidean distance map inside each nuclei

region and another Euclidean distance map at the region outside of the nuclei in the

image space. We then select a strategy to compute the study area depending on the cell

characteristic and research problems. The impact of each strategy to the accuracy of

cell phenotype detection is discussed in Section 4.2.3.

1. Counting from the nucleus boundary towards the inside of the nucleus with the

inner distance d1. Counting from the nucleus boundary towards the outside of

the nucleus with outer distance d2. We call it study area A1.

2. Counting from the nucleus boundary towards the outside of the nucleus with the

outer distance d2, called study area A2.

3. Counting from the nucleus boundary towards the inside of the nucleus with the

inner distance d1, called study area A3.

4. Observing the entire cell zone obtained from watershed from the previous Sec-

tion 3.3.2, called study area A4.
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Algorithm (1**) Scheme for 3D cell phenotype computation.

Require: (1) Raw label images (three channels correspond to three markers): alpha,
beta, delta. (2) Nuclei Segmentation Result.(3)inner distance d1, outer distance d2.

Ensure: (1) Cell type (1-delta, 2-beta, 3-alpha) for each cell. (2) ROI and cell type
coordinates

1: function Normalization(a) . normalize different channels in the range of [0,255]
2: normalize(Iα)
3: normalize(Iβ)
4: normalize(Iδ)

1: function SLIC Clustering(a) . find clusters with criteria of intensity similarity
and spatial proximity

2: Clusters = SLICClustering(Iα, Iβ, Iδ) . return a list of supervoxels
3: SLICMedianImage = SLICMedianValue(Clusters, Iα, Iβ, Iδ) . return label 1, 2,

3 of cell phenotype or label 0 of unlabeled for each voxel

1: function Cell Type Detection(a) . Compute the strongest marker at each cell
profile and decide the cell type

2: CellZone = watershed(nucleiSeed, radiusExtend Rcell) . cell zone detection -
watershed separation

3: InnerNucleiZone = erode(nuclei, innerDistance d1)
4: OuterNucleiZone = dilate(nuclei, outerDistance d2)
5: IntersectInner = intersect(CellZone, InNucleiZone)
6: IntersectOuter = intersect(CellZone, OuterNucleiZone)
7: if method = S1 then . observe region inside and outside of nuclei
8: observedRegion = union(IntersectInner, IntersectOuter)
9: else if method = S2 then . observe only the region outside

10: observedRegion = IntersectOuter
11: else if method = S3 then . observe only the region inside
12: observedRegion = IntersectInner
13: else . method = S4, observe the entire cell region
14: observedRegion = CellZone

15: detectCellType(observedRegion, SLICMedianImage )

3.4 Analysis of Spatial Organization

After acquiring the cell profile from the previous segmentation, cell zone computation,

and cell phenotype computation steps, we apply various mathematical models to for-

malize the spatial relationship among cells and to quantify the structure of cells within

tissue. Note that each cell profile contains the cell phenotype (label 1-delta, 2-beta, 3-

alpha, 0-unlabeled), the coordinates of all voxels in the nuclei region, and the coordinates

of all voxels in the cell region.
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Figure 3.8: Different strategies to determine a study area (A1, A2, A3, A4).
(A)overlay of alpha-, beta-,delta-channel and nucleus boundary, and cell zone bound-
ary. (B) result of SLIC supervoxels, nucleus boundary, and cell zone boundary. (C)
Study area A1 (Euclidean distance inside nucleus boundary d1, Euclidean distance out-
side nucleus boundary d2), nucleus boundary, and cell zone boundary. (D)Study area
A2 (Euclidean distance outside nucleus boundary d2), nucleus boundary, and cell zone
boundary. (E) Study area A3 (Euclidean distance inside nucleus boundary d1), nucleus
boundary, and cell zone boundary. (F) Study area A4 (entire watershed area), nucleus

boundary, and cell zone boundary. Scale 2 µm.

3.4.1 Cells composition and cellular interaction

Endocrine cell composition

We compute the cell composition across all our mouse, monkey, and human islets and

compare our results with those from other related works. The cell proportion is com-

puted as follows:

1. The proportion of alpha cells in total number of islet cells: Pα = nα/(nα + nβ +

nδ)× 100.

2. The proportion of beta cells in total number of islet cells: Pβ = nβ/(nα + nβ +

nδ)× 100.

3. The proportion of delta cells in total number of islet cells: Pδ = nδ/(nα + nβ +

nδ)× 100.

4. The number of unlabelled cells is : nunlabeled = ntotalCells − nα − nβ − nδ.

Analysis of direct cell-to-cell interactions

Cellular interaction is the key to determine the function of a tissue. In our works,

‘cellular interaction’, or ‘cell-to-cell contact’, or ‘cells contact’ are used interchangeably.
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Cellular interaction is defined as the number of interactions between a cell and its neigh-

boring cells within a predefined range. For simplicity, in our implementation, two cells

interact with each other when their voxels touch each other. The detail is shown in

Figs.3.9

Figure 3.9: Cellular interaction computation with different input parameters of
NBneivox neighborhood voxels of the current voxel P (x, y, z) at the boundary. Three
options of NBneivox is 6-, 18-, 26-neighboring voxels of the current voxel P . Image
result of cell zone determination-watershed separation of a mouse islet in our datasets,
visualization in XY, YZ, XZ directions of slide 43 in total of 86 slices, each cell zone

have one specific label.

Cellular interaction computation

The result of cell zone determination-watershed separation contains images of different

cell zones. Each zone has a specific label and all voxels in the zone have the same label.

For each cell zone, we iterate over the boundary voxels and compute the labels found in

NBneivox neighboring voxels of the current voxel as shown in Fig. 3.9. If a neighboring

voxel with a different label is found, we count this as one cellular interaction between

the reference cell and the neighboring cell.

3-dimensional voxel connectivity

In three dimensional space, NBneivox is commonly defined as the group of 6, 8, or 26

neighboring voxels (Fig. 3.9).
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1. 6-connected. 6 neighboring voxels of the observed voxel P (x, y, z) that are

connected along one of the primary axes. It includes voxels with coordinates:

(x± 1, y, z), (x, y ± 1, z), (x, y, z ± 1).

2. 18-connected. 18 neighboring voxels of the observed voxel P (x, y, z) that are

connected along either one or two of the primary axes. It includes all voxels

in 6-connected and voxels with coordinates: (x ± 1, y ± 1, z), (x ± 1, y ∓ 1, z),

(x± 1, y, z ± 1), (x± 1, y, z ∓ 1), (x, y ± 1, z ± 1), (x, y ± 1, z ∓ 1).

3. 26-connected. 26 neighboring voxels of the observed voxel P (x, y, z) that are

connected along either one, two, or three of the primary axes. It includes all voxels

in 18-connected and voxels with coordinates: (x±1, y±1, z±1), (x±1, y±1, z∓1),

(x± 1, y ∓ 1, z ± 1), (x∓ 1, y ± 1, z ± 1).

We use 26-connected voxels in our works.

Cell network construction

We model the network of cellular interactions as a graph in which the center of nuclear

regions are the graph vertices. If two cells interact with each other, we create an edge

between them. The cell network provides the information about neighboring cells and

the spatial position of each cell in the network. In addition, the network also provides

an easy way to compute the number of direct and indirect interactions among cells. It

serves as the input for many graph theory algorithm in this network. For example, we

can use Dijkstra’s shortest path algorithm [56] to compute the cell distance.

Cellular interaction between different cell types

We apply the following computational procedure to compute the number of cellular

interactions between different cell types (Fig. 3.10).

1. For each cell such as an alpha cell, we have a list of its neighboring cells. We

then check the cell type of its neighbors. If the neighboring cell is a beta cell, we

increase the number of interactions between alpha and beta cell, nαβ + +.

2. Repeating the first step to all cells in the tissue.

The formulas to compute the cellular interaction between different cell types is as follows:

1. Total number of cellular interaction L = nαα + nββ + nδδ + nαβ + nαδ + nβδ
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2. The percentage of alpha- to alpha-cell interactions is Pαα = (nαα ÷ L

3. The percentage of alpha- to beta-cell interactions is Pαβ = nαβ ÷ L

4. The percentage of alpha- to delta-cell interactions is Pαδ = nαδ ÷ L

5. The percentage of beta- to beta-cell interactions is Pββ = nββ ÷ L

6. The percentage of beta- to delta-cell interactions is Pβδ = nβδ ÷ L

7. The percentage of delta- to delta-cell interactions is Pδδ = nδδ ÷ L

Using the cell composition and cellular interactions, we can provide the following infor-

mation about cell within the tissue:

1. The total number of direct interactions.

2. The maximum number of direct interactions for one cell.

3. The average and standard deviation of number of direct interactions, per cell.

4. The average and standard deviation of number of direct interactions for alpha

cells, beta cells, delta cells.

Moreover, we also have homotypic interactions among cells of the same type and het-

erotypic interactions among different cell types:

1. Homotypic probability computes cellular interactions between cells with the same

type (alpha- and alpha- cells, beta- and beta- cells, delta- and delta-cells): Phomotypic =

Pαα + Pββ + Pδδ.

2. Heterotypic probability computes cellular interactions between different cell types:

Pheterotypic = Pαβ + Pβδ + Pαδ.

Theoretical probability of a random organization

We compute the percentage of direct cellular interactions that should occur in a random

organization in a similar manner to Kilimnik et al. (2012) [8, 19]. If alpha-cells are

organized randomly, the theoretical probability of observing an interaction between two

alpha-cells is determined by PTαα = Pα.Pα = P 2
α, where (Pα) represents the probability

of a cell to be an alpha-cell and P 2
α is the probability that the first and also the second

randomly chosen cell are alpha-cells.
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Figure 3.10: The formulate of computation of cell network. Using our tools visual
display of 3D network is done within ImageJ using the ImageJ 3D viewer plugin [7].

Similar logic also applies to beta-cells or between alpha- and beta-cells. When two

random cells are chosen in the latter case, the probability that the first cell is an alpha-

cell is determined by (Pα) and the probability that the second cell is a beta-cell is given

by (Pβ).

Therefore, the theoretical probability of a random alpha- and a beta cell to interact

with each other is determined by Pα.Pβ. However, the possibility that the first cell is a

beta-cell and the second cell is an alpha-cell must be considered as well, thus, the final

equation is PTαβ = Pα.Pβ + Pβ.Pα = 2.PαPβ.

1. PTαα = Pα.Pα = P 2
α.

2. PTββ = Pβ.Pβ = P 2
β .

3. PTδδ = Pδ.Pδ = P 2
δ .

4. PTαβ = Pα.Pβ + Pβ.Pα = 2.PαPβ.

5. PTαδ = Pα.Pδ + Pδ.Pα = 2.PαPδ.

6. PTβδ = Pβ.Pδ + Pδ.Pβ = 2.PβPδ.

Comparing different models of cellular interaction

We design a randomization procedure to generate cells inside a tissue and compare

our randomised models and the theoretical model. The main goal is to test whether an
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observed model is randomly distributed by comparing the number of cellular interactions

in our observed models of mouse and monkey islets, in the simulated randomizing model,

and in the theoretical model. The comparison results will be shown in the Chapter 4.

Randomizing procedure

The randomization procedure simply shuffles the cell types and does not actually move

the cells from their geographical positions. In our case study, we select the first alpha

cell and then randomly choose another cell in the islet structure, for example another

alpha, or a beta, or a delta-cell. If the selected cell is not an alpha-cell, we swap the

two cell types. This process is repeated for all alpha-cells. Swapping the type of two

cells will automatically change the number of direct interactions of the two cell types

without affecting the number of interactions with a third cell type. These changes are

in accordance with the theoretical values for direct interactions upon a random model.

Figure 3.11: Result of cell distance computation in Mouse1-b and Monkey1 islet,
one slice is displayed, the distance is expressed as cell distance between all cells and a
reference cell (displayed in white). Reference cell has distance 0, a given islet-cell “X”
contacts directly a reference cell, “X” (dark purple cells) will be at distance equal to 1
from the reference cell. If another islet-cell “Y” contacts islet cell “X”, “Y” will then

be at a distance value of 2 from the “reference” cell, and so on. Scale bar, 50 µm.

Indirect cell-to-cell interaction computation

After analyzing the direct interaction among cells, we will continue with those indirect

cellular interactions. An indirect cell-to-cell interaction is calculated using the following

logic:

— When a given islet-cell ‘X’ contacts a predetermined ‘reference’ cell indirectly,

‘X’ will be at a distance equal to 1 from the ‘reference’ cell as shown in Fig. 3.11,
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white cells.

— If another islet-cell ‘Y’ contacts islet cell ‘X’, ‘Y’ will then be at a distance with

the value of 2 from the ‘reference’ cell as shown in Fig. 3.11, dark purple cells.

This mechanism allows the computation of the relative distance map for any cell or

group of cells within our datasets. The result of indirect cellular interactions is shown

in Chapter 4.

3.4.2 Analysis of spatial organization at global scale

Spatial statistics - Analysis at global scale

To start analyzing the cell spatial organization, we will first need to perform it at the

global scale or, in another word, at the population level. We base our methods from

the works of Andrey et al. (2010) [4, 57] and Weston et al. (2012) [5]. They have been

implemented in the 2D/3D spatial statistics ImageJ plugin. We adapt this plugin and

make a specific version dedicated for tissue analysis.

As a precondition of our method, we assume that the cell segmentation and cellular

interactions result includes two things:

1. 3D spatial coordinates of voxels at the nucleus region and the cell zone.

2. Information about cellular interactions and the cell network.

To understand the spatial organization of cells within tissue, we compute the cumulative

distribution function F-function, G-function, and Spatial Distribution Index (SDI) for

all our islets (Chapter 2).

Normally, the study area A includes all points in the entire space. However, in the

tissue application, cells have volume constraints inside the whole tissue and can only

take predefined locations. Let E = {e1, e2, . . . , en} be the list of center coordinates of

all nuclei in the tissue. We consider these to be the theoretical center of cells. So the

study area A is the list of all centers E.

Observed cells (event) in the study area. We choose alpha-cells as examples of the

observed cells in the study area AL = {al1, al2, . . . , aln}.
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Distance function. We use two kind of distance function: the standard Euclidean dis-

tance function, and cell distance function. The cell distance function is computed based

on the structure of the cell network. The distance between any two cells is the shortest

distance in the graph between two vertexes representing them.

F-function computation. The F-function is computed as follows:

1. Randomly select Nref reference points (rf1, rf2, . . . , rfN ) in the study area A.

Here we choose Nref = 1000.

2. Compute the minimum distance from reference point rfi to any observed point

ali in the point pattern: dmin(rfi, ali), ali ∈ AL.

3. Calculate the number of pairs where the distance is smaller than or equal the

distance d: F (d) =
Nbdmin(rfi,ali)<d

Nref
.

Spatial Distribution Index(SDI) of F-function

After getting the F-function, we generate S = 100 completely random organizations and

compute the cumulated distribution function (cdf) for all of them. We then rank all S

simulations based on the results of their cdf. We mark the confidence envelopes of 5th

and 95th of F (r). Finally, we plot these as the 95% confidence intervals between 5th and

95th values and compare our observed organizations with the range of the two envelopes.

Visually, if the F-function curve of the observed pattern is within the two envelopes of

random organizations, our observed alpha-cell pattern is random. Otherwise, we have

clustered pattern if the curve is below the range and regular pattern if it is above.

In terms of SDI index, we have SDI − F ∈ [0.95, 1] - cluster distribution, SDI − F ∈

[0.05, 0.95] - random pattern, and SDI − F ∈ [0, 0.05] - regular pattern.

The same process is used to compute G-cumulative distribution function, and the SDI

index of G-function. The results are shown in Chapter 4.

3.4.3 Cluster analysis

The cells network can be clustered further into a number of different groups of closely

related cells or referred to clusters. Each cluster C contains a set of cells c1, c2, . . . , cn

where each cell ci interact with at least one another cell cj (cj ∈ C) of this set. Taken
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the islet of Langerhans as an example, we have clusters of beta cells surrounding by

alpha and delta cells. Studying cell clusters helps to understand the variability of the

cell structure. Moreover, it allows the analysis of intra-cellular interactions within the

cluster and between neighboring clusters.

— The cellular interaction between clusters forms the complex paracrine islet cell

signaling network.

— The number of alpha-, beta-, delta- cell clutters differs across species.

Figure 3.12: Clusters of alpha cells in the example of mouse4 and monkey1 dataset
(Table 4.1) (each cluster is marked by a circle)

Methods to study clustered data

We apply methods from [58] in our study as follows:

1. At the cluster level, we calculate the number of individual cells in each cluster,

their spatial position and their cellular interactions.

2. At the global level, we reduce data to independent observations in a two-step

approach. The first step is to reduce multiple cells in a cluster to a single obser-

vation, which is commonly the mean of the center spatial coordinates of cells in

each cluster. The resulting data points (representative-cells) are all from differ-

ent clusters and regarded as independent cells. This data can be analyzed in the

second step using standard methods for independent observations, such as t-test,

cumulative distribution function (F-, G- functions), and SDI index. The main

advantage of this approach is to remove the correlation associated with clustered

data and does not take into account the information within the cluster. However,

the drawback is that it considers only one representative of each cluster, such as

the cluster center point, regardless of the number of cells in the cluster. Cluster

which contain more cells than others should have more informations and be given

more weight in the analysis.
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Implementation

We choose alpha cell cluster in our study because alpha cells are located in multiple

clusters and these alpha-cell clusters have direct contact with their surrounding beta

cells. Our implementation is as follows:

1. We first compute a set of several characteristic for each cluster in our mouse and

monkey datasets. The set includes the number of clusters, the average number

of cells in the cluster, and the maximum number of cells in the cluster.

2. The global context is taken into account next. With the cell network showing

the interaction between cells, we simply remove from it all cells comprising the

cluster and replace them by one single node which is the center of the cluster. We

run our spatial analysis procedure on the modified network and apply statistical

functions similar to the previous section.

3.5 Delta Cell Analysis and Modeling

3.5.1 Analysis of spatial organization of delta-cells

Inspire of its relatively minor population, delta cells play a key role in intra-islet cell

signaling and the producing of somatostatin. In mouse, monkey, and humans islets,

somatostatin inhibits alpha and beta cell activities as well as repressing glucagon and

insulin secretion [14].

Most works in this domain focus on the beta- and alpha- cells because they are the main

compositions of the islet, leaving only fews works on delta cells [8] [14]. It leaves rooms

for researchers to fill in this gap.

Methods

To better understand the function of delta cells, we investigate delta cell structures in

rodent and human islets. We use our framework to analyze the tissue organization of

delta instead of alpha cells [10].
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The quantification and analysis of delta cells

Using our framework, we can choose the type of cell we want to analyze. The pro-

cess is the same (i) segmentation and cell phenotype detection followed by (ii) spatial

organization analysis. The result will be discussed in Chapter 4.

3.5.2 Modeling and simulation of dynamic morphology of delta cell

Figure 3.13: Delta cell excess to modulate beta cell function, example of the clear
mouse4 islet. (A) somatostatin marker, (B) somatostatin with the tendency to con-
tact beta cells at the center region of tissue (C-D) and (E-F) zoom in the label of
delta cell that look like a filopodia-like structure (body and an arm) in a slide and 3D

visualization. Scale bar, 20 µm.

Observations

Observing the confocal microscopic images of rodent and human delta cells reveals that

delta cells are elongated and, in most cases, have a well-defined filopodia-like structure

as shown in Fig. 3.13C-F. We hypothesize that this filopodia-like structure enhances the

range of somatostatin action in the intra islet. So, we first look at the length of delta

cell filopodia structures in rodent and human pancreas sections. The result suggests

that delta cells can reach out and contact numerous other cells in the islet. We use our

framework [10] to identify delta cells and verify the physical advantage provided by the

filopodia in a crowded islet environment. We also develop a modeling and simulation

procedure for delta cells.

Modeling and simulation of dynamic morphology of delta cell

When a delta cell reaches out and contacts other islet cells, the extended part is called

its ‘arm’ or the delta cell ‘filopodia’ (Fig. 3.13). To study this ‘arm’, we model it using
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Figure 3.14: Delta cell and modeling of physical arm by two different methods: (1)
using an ellipse and a vector, (2) using an affected range

the information about its size, volume, and direction. In general, there are two methods

to achieve this:

Method 1: Using an ellipse and a vector

Delta- and alpha- cells have the tendency to contact with beta cells at the core of the

islet (Fig. 2.2). As a result, the arm is most likely oriented towards the core (Fig. 3.13).

In our work, we define the core as the area where cells are located inside its cluster. It is

at the center of the islet and potentially have a big number of cellular interactions. To

determine the core area, we first compute the number of cellular interactions for each

cell. We then choose the cells with a big number of cellular interactions, for example in

contact with more than 4 neighboring cells. These cells should be located in a big cluster

and we know the spatial coordinates of all the voxels there. After that, we compute the

mean of all these cell centers and use this point as the center of core area (Fig. 3.14).

We use an ellipse to model the physical arm of a delta cell. The diameter d of this ellipse

is the length of the arm (Fig. 3.14). Note that this length is counted from the cell zone

boundary of the delta cell.

The direction of the arm is a vector V from the center of the delta cell region to the

center of the core area.

Method 2: Using an affected range

In case delta cells reach out in all directions, we define the dynamic morphology of the

delta cell by an affected range with radius r. The affected range is computed by dilating
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Figure 3.15: The diagram of delta cell protrusion simulation. The output of tissue
quantification using our toolbox TITSO is used as the input for delta cell modeling and
analysis. There are three options for establish a simulation: (i) all delta cells reach out
to modulate the beta cells function at the same time, (ii) each delta cell reach out to
modulate the beta cells function (with n delta cells - program produce n simulations),

(iii) a specific delta cell reach out to modulate the beta cells function.

the delta cell zone with a predefined radius r, starting from the boundary of the delta

cell zone.

We enhance the 3D dilation function of 3D mathematical morphology from the mcib3d-

suite plugin developed by Boudier’s group. The implementation of the dilate operator

in 3D is based on the computation of Euclidean distance maps. More details are covered

in Section 2.2.5.

Calculate the number of cells in contact with delta cells

A delta cell contains the body part, the delta cell zone obtained from our framework,

and the physical arm obtained from modeling procedure. Thus, the total number of

beta cells in contact with a delta cell includes the number of neighboring beta cells and
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the number of beta cells that intersect with the delta cell arm. Again, we will come back

with the result in Chapter 4.

3.6 Modeling of Spatial Organization

As presented in Chapter 2, modeling spatial organization helps to build virtual struc-

tures, visualize biological hypotheses, and capture the variance of cell organization. In

addition, modeling processes can also generate sample data for statistic test.

Noted that here we try to generate a static model which contain a set of biological

components and follow the predefined spatial rules. We can extend this work by taking

into account the time notion and build a dynamic model. The modeling processes are

the following:

1. Construct the cell model.

2. Define the study area.

3. Distribute cells into the study area by applying a modeling procedure.

4. Apply statistic tests to prove that the generated pattern follows a certain distri-

bution.

5. Visualization and spatial analysis.

Constructing the cell model

There are three strategies to construct a virtual model of cell:

1. Use a cell-like shape to represent the cell shape in 3D such as sphere, or a more

ellipsoidal shape (Weston et al. (2012)[5]).

2. Use cell profiles obtained from segmentation as the material for simulation. In

our case, we can use the output of tissue quantification for this purpose.

3. Use training data to generate the cell shape. This strategy can generate a cell

model close to actual cells. However, preparing the training data is a very time

consuming and tedious process (Murphy et al. (2016) [59]).

In this thesis, we have been able to test the first two. The third strategy is planned for

some future works.
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Figure 3.16: Workflow of modeling of the spatial organization. (i) Construct the cell
model (ii) Define the study area (iii) Distribute cells into the study area by applying
a modeling procedure (iv) Apply statistic tests to prove that the generated pattern

follows a certain distribution (v) Visualization and spatial analysis.

Defining the study area

The study area P is the region where the biological components are distributed. For

example, the study area P of nucleolus is the entire zone inside of nucleus, the study

area P of vesicles is the zone inside of the cell zone but outside of nucleus zone.

A simple way to define a study area is to use a sphere or an ellipsoidal shape. For the

tissue application, the study area is the entire tissue area or the spatial coordinates of

cells within tissue.

Modeling methods

Our methods to model the spatial organization of biological components at local scale

and at global scale are as follows:

1. At the local scale, we base on the work of Randell et al. (2013) [3], which

proposes the use of a set of spatial relations based on discrete mereotopology. It

can describe the topology and spatial organization of many objects in the image.

In our works, we apply the RCC8 relation approach to describe the relationship

of objects (Section 2.3.1).
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2. At the global scale, we base on the work of Andrey et al. (2010) [4], and Weston

et al. (2012) [5].

3.6.1 Modeling of the spatial organization at the local scale

Our main objective is to generate a model of spatial organization that contains n biologi-

cal components S1, S2, . . . , Sn inside the study area P . Si is a non-tangential proper-part

of P - NTPP relation or Si is a tangential proper part of P - TPP relation. The relation

between Si and Sj i, j ∈ {1, 2, . . . , n} is that Si is externally connected with Sj - EC

relation, or Si is disconnected from Sj - DC relation (Section 2.3.1).

The detail relationship among objects and between objects and the study area are de-

scribed in Table 3.17.

Figure 3.17: The spatial relationship between the objects S1, S2, . . . , Sn and between
these objects with the domain research P are represented in the table of relationship.
Our goal is to generate randomly many objects in the domain research P which satisfy

the list of relationship rules.

Relation TPPi

When the generated object Si is a tangential proper part inverse of the study area P ,

Si is said to have TPPi relationship with P . We use the simple strategy of applying a

cell-like shape such as a sphere to represent a cell shape in 3D. The study area P is also

represented as a big sphere with radius R and the center coordinate CP (x, y, z) while Si

is a sphere with the predefined radius ri, the center coordinate Ci(x, y, z). To generate

the sphere Si, we need to find the possible zone to distribute the center coordinate Ci
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Figure 3.18: Computation of possible zone for the center coordinate Ci(x, y, z) of a
generated object Si in the study area P , arrow: the possible zone in one slice, and in

3D.

so that it satisfies the TPPi relationship between Si and P . Our algorithm to determine

these possible zones is as follows:

1. First, we need to compute the Euclidean distance map measured from the bound-

ary to the center of P .

2. We then compute the possible zone whose distance is greater than ri, denoted as

D1.

3. We randomly choose a voxel coordinate of Ci in the possible zone D1 and create

the sphere Si (Fig. 3.18).

4. The illustration of this procedure can be seen in the Figure 3.19.

Relation DC

When the generated object Sj is disconnected from object Si, Sj is said to have DC

relationship with Si. We again use the simple strategy of applying a cell-like shape

such as a sphere to represent a cell shape in 3D. The study area P is also represented

as a big sphere with radius R and center coordinate CP (x, y, z) while Sj is a sphere

with the predefined radius rj , the center coordinate Cj(x, y, z). To generate the sphere

Sj , we need to find the possible zone to distribute the center coordinate Cj so that it

satisfies the two relationships between Sj and Si and between Sj and P (Fig. 3.18). Our

algorithm to determine these possible zones is as follows:
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Figure 3.19: Steps to modeling of spatial organization at local scale.

1. First, we need to compute the Euclidean distance map measured from the bound-

ary to the center of P .

2. We then compute the possible zone whose distance is greater than rj , denoted as

D1.

3. Next, we compute the Euclidean distance map of the zone which is outside of the

object Si but is inside the study area P , denoted as D2.

4. We intersect D1 and D2 to get the possible zone E = D1 ∩D2.

5. Finally, we randomly choose a voxel coordinate of Cj in the possible zone E and

create the sphere Sj .

6. The demonstration of this procedure can be seen in the Fig. 3.19.
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3.6.2 Modeling of the spatial organization at global scale

Section 2.3.2 shows different types of distribution such as completely random pattern,

regular pattern, and cluster pattern. In this part, we introduce our procedure to generate

these models. The key idea is to use Euclidean distance map to quantify the distance

in the study area.

Take the regular pattern as an example, a regular pattern is a pattern where every

observed point in the study area is as far from all of its neighbors as possible. We would

like to generate a regular pattern that contains n biological components S1, S2, . . . , Sn

inside the study area P . Si is a non-tangential proper-part of P - NTPP relation or

Si is a tangential proper part of P - TPP relation. The relation between Si and Sj

i, j ∈ {1, 2, . . . , n} is that Si is externally connected with Sj - EC relation or Si is

disconnected from Sj - DC relation (Section 2.3.1). At the global scale, Si is as far from

all of its neighbors {S1, S2, . . . , Sn} as possible.

Figure 3.20: Distribution function using Euclidean distance map with input parame-
ter alpha in [0, 1]. Results shown the possible zone obtained from distribution function
with alpha = 0.9 - region is close to the existing object, and alpha = 0.2 - region is far

from the existing object.

Distribution function

The distribution function uses the distance map with a parameter of distribution α ∈

[0, 1]. Let SK = {S1, S2, . . . , Sk} be the list of existing objects, we need to find the
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possible zone to locate the position of object Si so that it satisfies the relationship at

local scale and at global scale. We compute the distribution function as follows:

1. First, we compute the Euclidean distance map measured from the boundary of

existing objects and inside of the study area of P ∩ SK.

2. We then normalize the distance map in the range of [0, 1]. The distance map

includes the distance of the region which is outside of existing objects and inside

of the study area.

3. We obtain the possible zone Dα based on the input parameter α. If α is close

to 1, the voxel in the possible zone is far from all existing neighbors SK =

{S1, S2, . . . , Sk} as possible. On the other hand, if α is close to 0, the voxels in

the possible zone is close to all existing neighbors SK = {S1, S2, . . . , Sk}.

The result of the distribution function is shown in Fig. 3.20. Finally, we combine the

Figure 3.21: Algorithm to modeling the spatial organization at global scale.

two spatial relationships at the local and global scales:

1. We determine the possible zone E from modeling procedure at local scale.

2. We determine the possible zone Dα from modeling procedure at global scale.
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3. We intersect E and Dα to get the possible zone D = E ∩Dα.

The result is shown in Fig. 3.21.

3.7 Developing Environment

The objective is to choose a framework which can provide:

1. High throughput because of 3D thick tissue samples.

2. Support biological image processing in different formats.

3. Support 3D image analysis.

4. Easy to use across different operating systems so that it can be learned by domain

experts

There are several existing platforms that we can use to develop our image analysis

framework, for example, ImageJ, OpenCV, Matlab image processing toolbox, Python

image processing toolbox. We choose ImageJ, a widely used image analysis software

platform, to develop our application. ImageJ is an open source image processing program

designed for multidimensional images. Written in Java, ImageJ is highly extensible with

thousands of plugins and macros for performing a wide variety of tasks. It also has a

strong and well-established user base. ImageJ with its focus on biomedical images has

become a common platform for various applications in biology. With all these advantages

in mind, ImageJ is the best choice for our purpose.

ImageJ has the following popular features:

1. Package 3DViewer provides a way to visualize image stacks in 3D.

2. Package bio-formats can handle many different types of images and save them all

under ‘.tiff’ format.

3. Other packages to support the analysis of 3D microscopic images, for example,

mcib3d-suite plugin [37, 54].

The mcib3d-suite plugin of Boudier’s group that we use to implement our framework

consists of:
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1. 3D Filters (mean, median, max, min, tophat, max local) and edge and symmetry

filter.

2. 3D Segmentation (iterative thresholding, spots segmentation, watershed).

3. 3D Mathematical Morphology tools (fill holes, binary closing, distance map).

4. 3D RoiManager (3D display and analysis of 3D objects).

5. 3D Analysis (geometrical measurements, mesh measurements, convex hull).

6. 3D MereoTopology (relationship between objects)

7. 3D Tools (drawing ellipsoids and lines, cropping)

8. A 2D/3D spatial statistics plugin.



Chapter 4

Results

In the first part of this chapter, we present a detailed description of the biological

datasets with various acquisition conditions which are used to test our methodologies.

Then, we introduce our developed toolbox to analyze tissue spatial organization. Next,

we describe our 3D segmentation algorithm and image processing process in details,

followed by several comparisons between our segmentation methods and other existing

frameworks for 3D cell segmentation. We then analyze and model spatial organization of

cells within tissue using the segmentation outputs from the previous step. In particular,

we choose to apply our set of methodologies on the dataset of islet of Langerhans. Finally,

we extend our toolbox to explore and analyze the structural-functional mechanism of

delta cells, one of three main cell types within the islet of Langerhans whose role is not

yet determined.

4.1 Program Description

4.1.1 Experimental datasets

Immunohistochemistry of mouse and monkey pancreatic islets of Langerhans

All animal procedures have been approved by the Institutional Animal Care and Use

Committee (IACUC, protocol number 2013/SHS/816) of the SingHealth system. Ex-

periments were carried out in accordance to experimental guidelines established by the

SingHealth Experimental Medicine Center (SEMC), which is an AAALAC accredited

80
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facility. Immunohistochemistry of mouse or monkey pancreas was performed as previ-

ously described [16]. Briefly, the pancreas from a 5-week-old wild type C57 mouse was

dissected, rinsed in phosphate buffered solution (PBS) and fixed in 4 paraformaldehyde

for 12 hours. Monkey pancreases were from animals used in other terminal studies.

Following the fixation step, the pancreas was rinsed in PBS for 5 minutes and cryo-

protected in a 30 sucrose solution for 12 hours. Next, using a razor blade, the pancreas

was trimmed to smaller pieces (approx. 2× 2mm), embedded in freezing tissue medium

FSC 22 (Leica Biosystems, Australia) and stored at -80C. Then, the pancreatic tissue

was sectioned in 30µm thick sections and placed on slides. Slides were air-dried for 1

hour on the bench top protected from light and rinsed 2x5 minutes in PBS. Next, slides

were blocked and permeabilised with a blocking solution (10 fetal bovine serum and 0.3

triton X-100 in PBS) for 1 hour. Following the blocking step, samples were incubated

overnight with the following primary antibodies: guinea pig anti-insulin (beta-cells,

1:200, Dako, California), rabbit anti-glucagon (alpha-cells, 1:200, Sigma Aldrich, USA)

and rat anti-somatostatin (delta-cells, 1:200, Millipore, USA). After incubation, slides

were rinsed 4x 10 minutes in PBS. Next, slides were incubated for 1 hour with the fol-

lowing secondary antibodies: donkey anti-guinea pig AlexaFluor 568 (1:400, Invitrogen,

USA), donkey anti-rabbit AlexaFluor 488 (1:400, Invitrogen, USA) and donkey anti-rat

AlexaFluor 647 (1:400, Invitrogen, USA). Cell Nuclei was stained with DAPI (1:400,

Invitrogen, USA). After incubation, samples were rinsed 4x 10 minutes in PBS, dried

and mounted for microscopy. Clear tissue samples were prepared according to Ke et al

[51].

Experimental datasets

In order to test the performance of our framework, we first use it to analyze 3D confocal

image stacks of islets of Langerhans in whole or serial histological pancreas sections from

two different species [10]:

— C57/BL6 mouse (8 weeks of age, n = 6 animals and 22 stacks).

— Monkey (Macaca Fascicularis, 9-12 years of age, n = 6 animals and 12 stacks).

More information about the islet used to validate our toolbox can be found in Table 4.1.

In addition, we test the adaptation of our nuclei segmentation method on several raw

nuclei samples from human datasets as shown in Fig. 4.2.1.
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Species Name Size (XYZ) Calibration
(XY-Z) in nm

Mouse

Mouse1-a* 1024 x 1024 x 36 378.4 x 800.1
Mouse1-b* 1024 x 1024 x 48 378.4 x 800.1
Mouse1-c* 1024 x 1024 x 56 378.4 x 800.1
Mouse2 1024 x 1024 x 83 179.7 x 500.2
Mouse3 1024 x 1024 x 77 250.5 x 500.2
Mouse4 528 x 391 x 104 209.2 x 839.8
Mouse5 584 x 498 x 86 345.9 x 839.8
Mouse6 468 x 443 x 136 283.9 x 839.8

Monkey

Monkey1 1024 x 1024 x 17 240.3 x 1007.0
Monkey2 1248 x 1248 x 56 177.4 x 420.2
Monkey3 1248 x 1248 x 68 177.4 x 420.2
Monkey4 1024 x 1024 x 44 180.2 x 333.3
Monkey5 1024 x 1024 x 40 198.3 x 999.9
Monkey6 1024 x 1024 x 45 236.7 x 999.9

Human

Human1 1024 x 1024 x 49 319 x 999
Human2 1024 x 1024 x 50 141 x 999.9
Human3 1024 x 1024 x 49 207 x 999.9
Human4 1024 x 1024 x 48 282 x 999.9
Human5 1024 x 1024 x 62 263 x 999.9
Human6 1024 x 1024 x 56 255 x 999.9

Table 4.1: Origin and characteristics of mouse, monkey, and human pancreas datasets
used in this study. * indicates serial histological sections.

The sample preparation and imaging protocols is shown above. Besides the thick tissue

sections, we also analyze the whole islet, obtained from optically cleared tissues using

SeeDB and imaged with 2-photon microscopy [51], from two mice, 4 and 6.

Finally, in order to explore the mechanism of delta cells [9], we also test our framework

on the two different species: Mouse (n = 24 islets total, n = 7 mice) and human islets

(n = 21 islets total, n = 3 donors).

4.1.2 Developed toolbox to investigate tissue spatial organization

In this part, we introduce the TITSO (the Toolbox to Investigate Tissue Spatial Or-

ganization) that we have been developing (Fig. 4.2). The main goal of this framework

is to analyze and model the spatial organization of cells within tissue in 3D confocal

microscopy image. It could be used both to analyze tissue organization in general and

to explore the structure and functions of the islet of Langerhans in particular. Also,

in this thesis, we use the term ‘toolbox’ and ‘framework’ interchangeably because the

former is more familiar with biologists.
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TITSO is a framework that can perform various algorithms on 3D confocal microscopy

images. It is implemented using the open source software platform ImageJ, a Java image

processing program created by National Institute of Health and is well known among

scientific community.

We applied TITSO toolbox on the captured images of the islet of Langerhans and

achieved good results with efficient execution time, thus proving that our methods are

both stable and robust. The main advantage of our toolbox is that it has the capability

to analyze tissue microscopic images in three dimensions (3D).

Figure 4.1: Workflow of the analysis. Nuclei are segmented and cell boundaries
computed from the DNA-label channel. The images corresponding to the different
labels of the different cell types are combined together in a SLIC image (see text for
details). This combined image is used to compute each cell type. From the interactions
between cells, computed using the cell boundaries information, the cells network is

built.

General workflow

The input data for TITSO consists of a 3D nuclei raw image, captured using DAPI

technology with confocal microscopy, and a multi-channel set. Each channel corresponds

to a fluorescent marker and associates with a different biological compartment. In the

application of the islet of Langerhans, the input includes a 3D nuclei image and a three-

channel set. These channels include glucagon marker - denoted alpha cells, insulin

marker denoted beta cells, and somatostatin marker - denoted delta cells. The input is
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encoded in ‘.tiff’ format. Other images types, which are compatible with Bio-formats

plugin from Linkert et al, 2010 [60], can be opened using the same plugin under ImageJ

and then saved as ‘.tiff’ images for TITSO.

Our workflow includes five main consecutive stages as shown in Fig. 4.1.

1. Nuclei are segmented and cell boundaries computed from the DNA-label channel.

2. The images corresponding to different labels of different cell types are combined

together in a SLIC image.

3. This combined SLIC image and cell morphological information obtained from the

first step are used to compute each cell type.

4. The cell network is then built from the interactions between cells, computed

using the cell boundaries information. Using the cell morphological information

and this cells network, we analyze the tissue spatial organization.

5. Finally, we model and simulate a spatial organization model.

Figure 4.2: TITSO (Toolbox to Investigate Tissue Spatial Organization) - Plugin
developed under ImageJ-image analysis platform for biomedical image. Figure show
the graphical interface of TITSO under ImageJ (left side) and the dependancy libraries

that TITSO used.

Availability

We implement our framework in Java as a plugin of ImageJ. The plugin has open source

license and has been tested on Linux, Microsoft Windows, and MacOS X. The sys-

tem specification: Intel Core i7-4800MQ, 3.07GHz, 64-bit with 8GB RAM. The source

code is available on github at https://github.com/nhuhoa/tissue_organization. In

addition, a wiki page with instructions on how to use the toolbox together with a

https://github.com/nhuhoa/tissue_organization
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sample dataset is at http://imagejdocu.tudor.lu/doku.php?id=plugin:3d:tissue_

organization_toolbox:start. The same documentation is attached at the Appendix A

of this thesis.
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4.2 Tissue Quantification and Analysis

The steps to investigate tissue spatial organization involve several complex image pro-

cessing tasks as shown in Fig. 3.1. Due to their complexity, selected methods should be

robust and have good accuracy. In our work, we have conducted a detailed study of all

existing methods in the field and keep those that are most suitable for our work. So, we

briefly describe how we have utilized these methods to study the spatial organization of

tissue including how parameters are selected and results are achieved. This is followed

by a thorough comparison of our methods with other related works in the same domain.

4.2.1 Nuclei Segmentation Result

We have modified spot segmentation method to make it work with our dataset by choos-

ing a set of parameters that could well capture the volumetric of nuclei. After experi-

menting and evaluating big datasets of mouse, monkey, and human, we show that spot

segmentation algorithm is the most appropriate existing method for our confocal mi-

croscopy 3D input images, both in terms of accuracy and speed when comparing with

other existing methods.

http://imagejdocu.tudor.lu/doku.php?id=plugin:3d:tissue_organization_toolbox:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:3d:tissue_organization_toolbox:start
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4.2.1.1 Parameters selection

The Spot Segmentation algorithm performs segmentation of spots in 3D. The input

image consists of original nuclei labelled as spots (using DAPI staining to label the cell

nucleus) and an image of the seed (seeds). The local maxima of the filtered image,

a Fourier domain image in our case, is used as seed for the local segmentation. This

process takes into account all voxels surrounded each seed and clusters these neighboring

voxels into objects (Section 3.3.1).

Pre-processing

We use a 3D median filter from ImageJ core package [61] with a radius of 4 × 4 × 2

in X × Y × Z for all datasets to reduce noise and homogenize intensities inside the

nuclei. The z value is larger due to the fact that z-dimension is much thinner as shown

in Table. 4.1.

Nuclei seed detection and comparisons

In our work, seeds are computed using the Fourier domain image instead of using the

original one - grayscale image. This preprocessed nuclei image is then filtered by a 3D

band pass filter [53] with a specific size interval. The performance of seed detection

algorithm depends on whether the band pass filter can capture the characteristic of the

image, in which frequencies between the two cut-offs remain in the output image while

others are attenuated. The two cut-offs should correspond to the approximate diameter

of nuclei in the image. Due to this reason, choosing the correct values is very important.

In our mice dataset, we use the range [Dmin −Dmax] with the low value Dmin of 20± 3

pixels and the high value Dmax of 28± 2 pixels, which is approximately 6− 7µm. These

equivalent values but with a higher degree of variance in the monkey dataset are Dmin

of 17 ± 3 pixels and Dmax of 28 ± 2 pixels or 6 − 8µm. Both the monkey and human

datasets share similar values. The 3D Spot Segmentation plugin [37, 52] uses a local

maxima in a radius of 4 voxels extracted from the band pass filtered image. A threshold

is set to only detect local maxima corresponding to nuclei regions, which is 30,000 for

both mouse and monkey datasets.

Comparison with different strategies of seed detection

There are existing methods which use local peaks of intensity to detect seed, however,

such strategies could not work well in our case due to the high level of noise in the nuclei
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image which leads to false positives. In addition, each nuclei could contain several local

peaks or no peak at all.

Another strategy to the problem of seed detection is to use multi scales blob detectors

based on Laplacian of Gaussian (LoG) [32] or Hessian of Gaussian [34] detectors.

In a related work, Danvek et al. (2009) [33] find peaks as seeds in the resulting image

using a morphological extended maxima transformation. They also compute the seed

on the transform image.

The advantage of our method is that the seed detection is computed on the transformed

image instead of the original one. The transform domain is more effective than its spatial

domain because it is easier to separate noise from the object in the transform domain as

shown in our case. However, seed detection on transform domain still suffers from over

segmentation because it is sensitive to cell texture and the occurrences of small shapes.

In our work, we decide to use the band pass filter to obtain the transform image because

this filter could remove both low frequencies corresponding to small objects and high

frequencies corresponding to fusion of objects. Moreover, the local maxima in a radius

of 4 voxels extracted from the band pass filtered image can limit the number of detected

seeds. Thus, a threshold could be set to only detect the local maxima corresponding to

nuclei regions, which is set to 30.000 in 16-bits local maxima image for both the mouse

and monkey datasets.

In summary, the band pass filter allows us to discard any eventual intensity variations

between nuclei and within the nuclei. This contributes to a higher detection efficiency

observed in our dataset.

Impact of nuclei diameter to segmentation result

Our nuclei segmentation method uses several parameters across all our datasets. Among

these parameters, there are only two dynamical ones which are the low and high values

of nuclei diameter which should be set according to the input image. Specifically, the

band pass filter mentioned in the previous section could remove all objects below the

predefined low value or higher than the predefined high value of the nuclei diameter.

In order to understand better the impact of nuclei diameter upon the segmentation

result, we conducted some experiment on all our datasets as shown in Table 4.2. In

these experiments, we fixed all others parameters and varied only the range of nuclei
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Sample Acquisition(pixel)[Dmin-Dmax] Nb detected
objects

Remark

Mouse3 1024 × 1024 ×
77

[14-20] 1277 Detect objects
+ splitted ob-
jects + noise

Mouse3 1024 × 1024 ×
77

[16-20] 1080 Detect objects

Mouse3 1024 × 1024 ×
77

[16-23] 1000 Detect objects
+ merged ob-
jects

Monkey6 1024 × 1024 ×
45

[20-31] 560 Detect objects
+ merged ob-
jects

Monkey6 1024 × 1024 ×
45

[20-28] 578 Detect objects

Monkey6 1024 × 1024 ×
45

[16-28] 613 Detect objects
+ splitted ob-
jects + noise

Table 4.2: Impact of nuclei diameter [Dmin −Dmax] to segmentation result. Testing
dataset of mouse3 and monkey6 islet (Table 4.1.

diameter [Dmin−Dmax] before executing the Spot Segmentation algorithm. The results

show that using smaller values of Dmin we detect more objects. However, these objects

contained both nuclei objects and noise (false positives). In many cases, the filter also

captured the variance within nuclei and split one nuclei into two. On the other hand,

when we use a higher value for Dmax, there is a possibility that two or more objects

could be fused into one, thus leading to a smaller number of detected objects.

4.2.1.2 Nuclei segmentation result

The Spot Segmentation algorithm allowed us to identify and segment correctly more

than 97% of the total number of nuclei in all the datasets as shown in Fig. 4.8A-C

and Table 4.3). We also observed a low false-positive rate of 106 objects out of 8837

nuclei and a low false negative rate of 257 objects (Table 4.3) in our validated dataset

(Table 4.3). The final F-measure is approximately 97.7%, which is comparable and even

better than other state-of-the-art algorithms (Table 4.3, 4.5, Fig. 4.3). Most of the false-

positive detections are due to the occasional observations of nuclei which are split into

two different objects.
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Dataset True
Posi-
tive

False
Posi-
tive

False
Nega-
tive

Recall Precision F-
measure

Mouse1-a* 459 2 17 96.429 99.566 97.972
Mouse1-b* 847 1 16 98.146 99.882 99.006
Mouse1-c* 915 2 29 96.928 99.782 98.334
Mouse2 568 5 20 96.599 99.127 97.847
Mouse3 993 2 19 98.123 99.799 98.954
Mouse4 194 3 20 90.654 98.477 94.404
Mouse5 568 5 22 96.271 98.594 97.594
Mouse6 494 5 19 96.296 98.997 97.268
Total Mouse 5038 25 162 96.180 99.322 97.726
Monkey1 695 12 9 98.722 98.303 98.512
Monkey2 754 16 21 97.29 97.922 97.605
Monkey3 605 27 21 96.645 95.728 96.184
Monkey4 561 5 18 96.891 99.117 97.991
Monkey5 580 15 9 98.47 97.479 97.971
Monkey6 604 6 17 97.262 99.016 98.131
Total Monkey 3799 81 95 97.546 97.927 97.732

Table 4.3: Nuclei segmentation results for the observed mouse and monkey datasets.
∗ indicates serial histological sections.

We also encountered a low false negative detection rate for nuclei corresponding to

nuclei that were located in a cluster or below the resolution potential of the confocal

microscope in the X-Y and Z-axis (Table 4.1). Finally, there was one dataset of mouse

labelled ‘Mouse4’ whose accuracy was lower than others (90.6% Recall, 94.4% accuracy).

The direct causes are the very high resolution of these images and the big cluster of cells

as shown in Table 4.3 and Fig. 4.1).

In-depth analysis of mis-detected cases

With the accuracy of our approach in mind, it’s worthwhile to take a closer look into

all mis-detected cases to understand their natures so that we could improve the process

in the future. A typical case of error is where there is a lack of strong edges between

nuclei, thus, the filter only detects one big object. Similarly, two or more nuclei in

close proximity could have shared a homogeneous level of intensity. The segmentation

algorithm could either detect only one seed corresponding to a big object or, in some

cases, two seeds with one big and one very small object. The latter happens because

of the criteria in which all neighbors whose values are greater than the local threshold

are examined. In contrast, when there are strong edges within nuclei, the algorithm can

detect several seeds per nuclei and consequently split one nuclei into multiple objects.

Finally, there is a limitation in the method in which it can only capture nuclei within the
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predefined range of diameter [Dmin−Dmax]. In other words, all nuclei whose diameters

are smaller or bigger than this range are excluded.

Complexity

During our work, we did all the computation on a computer Intel Core i7-4800MQ,

3.07GHz, 64-bit with 8GB memory. On average, the pre-processing step took about

30 seconds while the seed detection procedure took from 1 to 2 minutes. After that,

computing all thresholds took another 30 seconds to 1 minutes. Finally, the segmentation

took from 1 to 2 minutes. In total, the program took approximately 3 to 6 minutes to

segment one nuclei image. After getting the segmented image, we could apply a semi-

automated segmentation procedure by observing the result in 3D Manager plugin [37]

to correct possible errors by splitting or merging mis-detected objects. Such procedure

took an addition of 1 to 5 minutes.

4.2.1.3 Comparison of nuclei segmentation methods

In this part, we introduce several available softwares for 3D nuclei segmentation and fol-

lowed by a comparison of the results of spot segmentation methods with these softwares.

Testing dataset

Our testing dataset consists of one mouse and one monkey samples as shown in Table 4.4.

Both contain nucleus labeled with confocal microscopy as mentioned in Section 4.1.1.

These sample images have a medium level of crowded cell density and rounded cell

shapes so we consider them to be at the medium difficulty level for 3D segmentation

task. Using the testing dataset, we conducted two groups of experiment, one to test the

performance of segmentation methods and the other to check their accuracy. The former

uses the input images as a whole while the latter uses only selected tissue areas cropped

from the original images. The main reason for such setting is that some methods we

want to compare against could not handle our original high resolution images.

Choosing segmentation methods

Existing 3D segmentation methods include 3D Iterative Thresholding [36, 37], Farsight

toolkit ([32]), MINS (Modular Interactive Nuclear Segmentation) [34], 3D MLS (3D

Multiple Level Sets) [35]. These methods are described in Section 2.2.4. Due to the
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Testing Sample Nb
slices

Size Resolution Test Type

Original-mouse7 59 1248× 1248 0.27× 0.27× 0.50 Complexity
Crop-mouse7 59 686× 956 0.27× 0.27× 0.50 Complexity,

Accuracy
Original-
monkey7

45 1024× 1024 0.23× 0.23× 0.99 Complexity

Crop-monkey7 45 703× 668 0.23× 0.23× 0.99 Complexity,
Accuracy

Table 4.4: Origin and characteristics of mouse7 and monkey7 nuclei labeling image
using as testing data for the comparison of different nuclei segmentation methods.

amount of time required to validate the huge number of nuclei in each segmentation

output, here we provide only observations and discussions about each method. MINS is

written using Matlab while Farsight and 3D MLS in C++. On the other hand, our spot

segmentation and 3D Iterative Thresholding are both in Java, under ImageJ platform.

Figure 4.3: Comparison of 3D Nuclei Segmentation Methods. 1st column: Raw data
showed one slice, 2nd: Results of 3D Iterative Thresholding method, 3rd: Segmented
results of Farsight toolkit, 4th: Results of MINS platform, 5th: Results of our Spot
Segmentation method. 1st row: Segmentation nuclei result of mouse sample, visualize
in 3D using 3D Viewer plugin, under ImageJ platform. 2nd row: Segmentation nuclei
result in monkey sample, visualize segmented contours of object using 3D ROI plugin

under ImageJ platform.

With the development of new technologies, we could capture thick tissue samples in

three dimensions, which, in turn, requires better and more efficient segmentation meth-

ods to analyze them. Therefore, the execution time could be considered one of the

most important criteria with regard to the performance of a segmentation method. We

compare the running time of our spot segmentation method with other methods on our

tested server Intel Core i7-4800MQ with 8GB RAM.
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The first experiment was performed on original samples of ‘mouse7’ and ‘monkey7’ islets

as shown in Table 4.4. These samples contain the tissue region as well as the outside

environment. MINS took 22 and 17 minutes to segment mouse and monkey nuclei

images respectively. Farsight was much faster spending 4 and 3 minutes while our spot

segmentation took slighly longer at 5 and 4 minutes each. 3D MLS crashed and could

not perform the segmentation using our original data. Finally, 3D Iterative Thresholding

took less than 3 minutes for both datasets. However, the running time of this method

depends heavily on the range of image values and the number of iterations. It took order

of magnitude longer at around 2 hours if there were many iterations and input images

encoded in 16-bit. Therefore, this method only works with 8-bit testing samples.

In the second experiment using the selected islet areas cropped from the original images,

we provided the quantitative results of 3D nuclei segmentation as shown in Table 4.5.

The result sorted by the execution time is 3D Iterative Thresholding, Farsight, our spot

segmentation, 3D MLS, and MINS. Because the performance of 3D Iterative depends

heavily on its input parameters as mentioned above, Farsight could be considered the

most stable implementation-wise with an average of 3 minutes per input. MINS took

about 11 minutes for mouse image. 3D MLS required manually step-by-step optimiza-

tion.

In both tests, our spot segmentation method took an acceptable amount of time to finish

when comparing with others. In addition, its execution time ranged from 3 to 7 minutes

per input across all our datasets with a total of 24 mouse islets, 11 monkey islets, and

21 human islets. These results prove that our spot segmentation method is stable and

fast in most cases.

Although slightly slower than Farsight, the spot segmentation approach shines in term

of accuracy. Both Farsight and MINS suffers from over-segmented when the intensity

inside a nucleus is not homogeneous and there is less difference between the object

and its background or when there are more than one local maxima inside the nucleus.

Farsight and MINS also incorrectly divided a nucleus with long extensions along z-axis

into several objects. In fact, MINS has the highest number of over-segmentation among

all methods. Specifically, Farsight and MINS detected 705 and 847 objects in the mouse

sample, much more than the more accurate number of 606 objects detected by our spot
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Method Nb detected
nuclei

Mouse7 3D Iterative Thresholding 756
Mouse7 Farsight 705
Mouse7 MINS 847
Mouse7 Spot Seg 606

Monkey7 3D Iterative Thresholding 959
Monkey7 Farsight 800
Monkey7 MINS 781
Monkey7 Spot Seg 702

Table 4.5: The output of different methods(3D Iterative Thresholding, Farsight,
MINS, our Spot Segmentation) for 3D nuclei segmentation of a nuclei labeling im-
age of a crop-mouse7, and a nuclei labeling image of crop-monkey7 (Table 4.4). The
actual number of nuclei with strong intensity level in mouse nuclei labeling image is

approximately 600± 20 nuclei, and 700± 20 nuclei.

segmentation. To make things worse, the output of Farsight can be under-segmented

when nuclei are located in a cluster.

In term of contour, MINS detected the position of nuclei correctly despite the fact that it

only produced the compact segmentation and under-estimated the correct contours of the

nuclei as shown in Fig. 4.3. In contrast, both Farsight and our spot segmentation slightly

over-estimated the nuclei’s contours and connected some closed ones together. Finally,

because the staining inside each nuclei is not homogeneous, 3D Iterative Thresholding

could only detect the strong intensity regions within each nucleus as shown in Fig. 4.3.

Conclusion

Among several existing segmentation methods, the spot segmentation algorithm [36, 37]

from Boudier’s group is chosen to segment the islet of Langerhans in our work because it

is relatively fast, stable, especially, proven to have equal or better accuracy than others.

4.2.2 Cell Zone Computation Results

4.2.2.1 Cell segmentation using plasma membrane labeling

In order to validate our cell zone computation method, we first tried to obtain islet cells

whose plasma membranes have been labeled with F-actin. The membrane detection

procedure is described in section 3.3.2.1
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Fig. 4.4 shows a very poor result with many noises inside the cell area and mis-detection

of the cell contours because of the low intensity at the membrane area. Such poor result

inevitably leads to incorrect computation of cell boundaries and affects the performance

of all consecutive stages.

The main difficulty lies in the labeling process, which introduced many gaps in the

membrane staining. In addition, we could not stain the plasma membrane effectively

in our study because of the limited number of possible markers that could be used in a

single immuno-fluorescence experiment. We will need a different approach to solve the

problem instead of relying on the difficult plasma membrane labeling process.

Figure 4.4: Results of membrane processing, slide 19 of 53 slices, using Image Edge
plugin, under ImageJ platform. Red arrow: blood vessel area, blue arrow: cell contours
area. (A) original membrane labeling, (B) result of membrane contours, (C) result
of normalized membrane contours , (D) result of membrane filter using normalized
contours + mean filter radius 2-2-1 + 3D minimum filter, (E) result of membrane
segmentation with a low threshold, (F) result of membrane segmentation with a high

threshold.

4.2.2.2 Cell zone computation using watershed separation

Cell zone computation

Since we could not rely on membrane labeling for cell boundary computation, we tried

to determine the area of the cell surrounding the nucleus, the cell zone, by applying

the 3D watershed separation algorithm. Specifically, we considered the nucleus as the
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theoretical core of the cell and predicted the maximum likelihood of the cell zone by

extending the nucleus’ boundaries according to the average cell size Rcell.

In 3D watershed separation algorithm, if two nuclei are closer than two times Rcell,

the region will be split midway between these two cell zones as shown in Figs. 4.5C,

Figs. 4.6C, and Fig. 4.7. As such, an obvious question is how to set the value of Rcell.

Estimate the average cell size Rcell

There are several ways to estimate the cell size Rcell defined as the distance from nucleus’

boundaries to the cell zone contours. The first ways to do that is to use the plasma

membrane and nuclei labeling obtained from the previous experiment to measure the

distance between the nucleus and its cell boundaries then use this distance as the average

cell size Rcell. The second way is to use three different markers for three cell types in

order to measure the distance between the nucleus and its surrounding marker areas.

This distance can then be used to estimate the average cell size Rcell. In our work, Rcell

has the value of 4µm corresponding to approximately 10 pixels in mouse dataset and

11 to 12 pixels in monkey and human datasets. The cell shapes and volumes obtained

from this estimation are close to the shapes of real cells.

Comparison with membrane segmentation. Several tests were conducted to prove

the improvement of 3D watershed approach over membrane labeling segmentation as

shown in Fig. 4.5. The first test used only nuclei as seeds and predicted the cell zone by

extending the nuclei boundaries according to average cell size Rcell of 4µm as described

in Section 4.2.2.2. The second one used intensity driven watershed with segmented nuclei

as seeds on the area of labeled membrane as described in Section 4.2.2.1 and Fig. 4.4D.

The output in Fig. 4.5C proved that our cell zone determination is closer to the real cell

morphology. In contrast, the output of intensity driven watershed as shown in Fig. 4.5F

showed poor results in which the cell area over-extended to include the surrounding

environment, not to mention existing gaps in the membrane staining.

Comparison of different watershed algorithms

1. Voronoi tessellation method ([46]) as shown in Fig. 4.6A. It uses segmented nuclei

images to compute the centers of nuclei as the cell cores. After this, it applies the

region growing technique in Kaliman (2016) [46] to define the cell zone area. This

method works fine even in the case where cells are located in close proximity and
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Figure 4.5: Comparison of cell zone obtained from membrane detection + segmented
nuclei and our segmented nuclei + 3D watershed separation. Nuclei DAPI original
image (A), nuclei segmentation result (B), our computation of cell zones based on
watershed and maximal radius of average cell size (here 11 pixels, 4.16 microns (C)).
Membrane original image(D), merge processed membrane (see Section 4.2.2.1) + nuclei
segmentation result (E). Intensity driven watershed - region growing using segmented

nuclei as seed based on processed membrane labeling (F).

their volumetric are similar. The main drawback of this method happens when

there is a big difference in the volumetric, for example, a big cell is located in

close proximity to a smaller one. In such case, the algorithm only takes into

account two centers of these nuclei, thus, incorrectly separates the area into two

equivalent regions. In other words, one cell zone is under-estimated while the

other is over-estimated as shown in the top right corner of Fig. 4.6A. The cell

zone is over-estimated along the z-axis, thus, increases the number of contacts

for each cell and leads to an over-estimation of number of cell-to-cell contacts as

well.

2. Utilize the cell nuclei regions as seeds then extend to the entire space as shown

in Fig. 4.6B. The drawback of this method is that it could not determine the

exact cell zone and covers the entire space instead. Again, this leads to the

over-estimation of the number of cell-to-cell contacts.

With the drawbacks of these two approaches in mind, we decide to use a constant speed

of average cell size Rcell to enhance them as shown in Fig. 4.6C. Our approach can detect

the cell zone better in terms of shape, size, and volumetric with limited errors. As a

result, we can find a closer estimation of the number of cell-to-cell contacts.
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In order to compare our method with the other two, we conducted an experiment in

which we used mcib3d-suite plugin [37] under ImageJ platform to process the big mouse7

dataset as shown in Table 4.4. The plugin provided watershed output images in which

each region had one label corresponding to a cell zone. We then used ‘3D ROI’ from

mcib3d-suite plugin [37] to extract the contour of each determined cell zone for compar-

ison.

Figure 4.6: Result of the Voronoi with three different methods :(A) Method 1, region
growing determined by centers of cell nuclei as seed, (B) Method 2, region growing
determined by cell nuclei regions as seeds, (C) region growing determined by cell nuclei
regions as seed, with constant speed - radius Rcell from boundaries of nuclei, slice 23

of 45, mouse islet sample.

Impact of cell zone radius Rcell to cellular interaction

The previous experiment has proved that our watershed approach can detect the cell

zone better than other existing methods. However, we still need to investigate the effect

that the average cell size Rcell has upon the cellular interaction computation. To achieve

this, another experiment was done in which we applied the same watershed process on

the segmented nuclei image but varied the value of the average cell size Rcell from 3 to 30

pixels. The obtained results is shown in Fig. 4.7. It shows that the number of contacts

increases quickly when Rcell is in the range from 3 to 10 pixels and the rate of increase

slows down when Rcell becomes larger from 11 to 30 pixels. In our use case of islet of

Langerhans, the cell radius is around 4µm, or 10 to 15 pixels. Therefore, we believe it’s

safe to use such value cause it could not impact the analysis of cell-to-cell contacts in a

major way.
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Figure 4.7: Result of the computation of the cell zones around each nuclei with
two different values of fixed maxima radius Rcell around each nuclei, 3.78 microns (A,
B) and 7.56 microns (C, D). Result of computation of the average number of cellular
interaction based on maxima radius (radius from 3 to 30 pixels). The number of cell to
cell contacts average is quite stable in the interval [10, 15] pixels corresponding to the

average radius of nucleus size.

4.2.3 3D Cell Phenotype Computation

In this section, we go through some selected input parameters using for 3D cell phenotype

computation. Followed by a small discussion about impact of choosing a study area to

cell phenotype computation. Then, we provide the results of cell type identification

applying on the validated mouse and monkey islets.

4.2.3.1 Parameter selection

For the first step, we use 3D SLIC super-voxels clustering algorithm on three markers,

glucagon, insulin, and somatostatin. In short, the input image is divided into square

zones of similar size R, where R can be somewhere between 100 to 300 pixels according

to the size of the nuclei or cells. The threshold of 0.1 is set to define the cell type. If the

number of voxels corresponding to a marker at the study area is greater than 10% of

the volume of observed cell area, we assign the cell type to the most abundant intensity

inside this study area. Otherwise, the cell is marked as ‘unlabelled’.

The study area is computed using S1 strategy from Section 3.3.3 in which Euclidean

distance maps from nuclei boundaries to the areas inside and outside are calculated.

After that, we observe the zone inside nuclei with radius d1 = 2 and the zone outside

radius with radius d2 = 3. If d1 is larger, the study area will cover all nuclei zones
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Figure 4.8: Results of nuclei segmentation and cell type computation for the mon-
key1 dataset. (A) Merged image of raw data, only one slice is displayed (red=insulin,
green=glucagon, blue=somatostatin, cyan=DAPI). (B) DAPI channel with overlaid
contours of detected nuclei. (C) 3D visualization of segmented nuclei. (D) Merged raw
image with overlaid contours of computed cell boundaries. (E) 3D SLIC supervoxels
clustering result (red=insulin, green=glucagon, blue=somatostatin) (F) 3D visualiza-
tion of computed cell types (red=beta-cells, green=alpha-cells, blue=delta-cells). Scale

bar, 50µm.

including noises at the center part of the nuclei and it affects the identification of cell

type.

Performance-wise, cell phenotype computation usually takes about 2 to 3 minutes for

SLIC clustering and another minute for the computation.

Impact of choosing a study area to cell phenotype computation

As described in Section 3.3.3, there are four different strategies S1, S2, S3, S4 to

determine a study area based on nucleus zone and cell zone for detecting the cell type.

— Strategy S1: Counting from the nucleus boundary towards the inside of the

nucleus with the inner distance d1. Counting from the nucleus boundary towards

the outside of the nucleus with outer distance d2. We call it study area A1.

— Strategy S2: Counting from the nucleus boundary towards the outside of the

nucleus with the outer distance d2, called study area A2.
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Average cell size(pixels) 4 5 6 7 8 9 10

Nb of α cells 42 42 44 41 44 43 46
Nb of β cells 204 218 232 243 244 251 257
Nb of δ cells 28 35 37 42 45 48 48
Nb of unlabelled cells 305 284 266 253 246 237 228

Table 4.6: Effect of average cell size (for cell zone computation) to cell phenotype
computation. When increasing the radius of cell size Rcell, and use obtained cell zone
as study area (strategy S4), number of cell phenotype is increased (’unlabeled’ cell
detected as a cell phenotype alpha, beta, delta) and also there are a shift of cell type

between alpha-, beta-, and delta-cells (wrong identification of cell type).

— Strategy S3: Counting from the nucleus boundary towards the inside of the

nucleus with the inner distance d1, called study area A3.

— Strategy S4: Observing the entire cell zone obtained from watershed from the

section of cell zone detection, called study area A4.

In our endocrine cell application, we chose the first strategy S1 to compute our study

area because of its stability and well-defined cytoplasmic area.

To back our decision to use S1, we did an experiment to compare it with S4, which

used the cell zone determined by watershed algorithm as the study area. Under S4, the

study area included all voxels in the cell zone as shown in Fig. 3.8F. The cell zone was

computed using cell zone determination process with an average cell size Rcell as the

input parameter. We used different values for Rcell and obtained different cell zones or,

in this case, study areas respectively.

Fig. 4.9 shows the impact of Rcell upon cell phenotype computation. The rows are α,

β, and δ cells respectively. The first column is the overlay of the three markers (insulin,

glucagon, somatostatin) and the nucleus contour from the segmentation process. The

following columns are the result of SLIC-median labeling with different Rcell 4, 6, 8, 10

pixels respectively. We observe that for α and δ cells, the volume of the study area has

a big effect on the output of cell phenotype computation.

Table 4.6 shows the results of cell composition for different study areas corresponding

to different cell zone volumetric with the average size from 4 to 10 pixels using the

‘monkey5’ dataset. It’s clear that there is a big variance in cell composition.

The evidences, therefore, support the conclusion that strategy S4 is not suitable for our

application because of its large variance. In our application S1 is a better choice because

this method is more robust.
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Figure 4.9: Result of the computation of the cell zones around each nuclei with 4
different values of fixed maximal radius around each nuclei (r = 4, 6, 8, 10 pixels).
A-, F-, K- overlay of 4 channels (glucagon-green, insulin-red, somatostatin-blue, and
dapi-white) and nuclei ROI result. First row show experiment for α cell, second row
show experiment for β cell, third row show experiment for δ cell which consist of overlay

image, watershed ROI with radius 4, 6, 8, 10 pixels.

4.2.3.2 Results of cell type identification

To check the validity of our cell type identification method, we selected 6 mouses and 6

monkeys as the validated datasets to be check by our biologist, Dr Drigo, with the help

of the 3D Manager plugin. The result was then combined into a confusion matrix as

shown in Table 4.7.

Each column of the matrix represents the instance in a predicted class while each row

represents the instance in an actual class. Cells are classified as alpha, beta, delta, or

‘unlabelled’ cells. We achieve an accuracy of more than 97% with the mouse and monkey

datasets.

Errors and mis-identifications

Although we had normalized each marker into the 8-bit range from 0 to 255 during

the pre-processing stage, we still observed a large variance in the intensity of the three

markers. In particular, insulin markers indicating beta cells had a very high level of

noise in both mouse and monkey datasets. This is the direct cause that led to the wrong
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Mouse Prediction

Alpha Beta Delta Unlabeled Total

Actual

Alpha 490 3 4 2 499
Beta 0 2146 5 16 2167
Delta 9 3 135 2 149
Unlabeled 20 44 11 2021 2096

Total 519 2196 155 2041 97.57%

Monkey Prediction

Alpha Beta Delta Unlabeled Total

Actual

Alpha 332 5 2 5 344
Beta 9 1119 4 19 1151
Delta 2 5 190 3 200
Unlabeled 24 27 8 2123 2182

Total 367 1156 204 2150 97.08%

Table 4.7: Actual and predicted classifications result and overall accuracy (number
in bold) of cell type computation for mouse and monkey datasets.

identification of the cell type. Our method wrongly detected 44 unlabelled cells in the

mouse datasets and 27 unlabelled cells in the monkey datasets as beta cells. There were

also several alpha and delta cells misidentified as beta due to the high amount of insulin

used in comparison with glucagon, indicating alpha cells, and somatostatin, indicating

delta cells. In some rare cases, some cell area contained both glucagon and somatostatin

and mis-identified these two (alpha detected as delta and vice versa).

Endocrine cell composition

Using the results of cell type identification, we observe that the mean percentages of

alpha cells (Pα) are 18.2% in mouse and 21.2% in monkey islets. While the same

numbers for beta cells (Pβ) are 76.4% and 66.9% respectively. Finally, the remaining

delta-cells (Pδ) stay at 5.4% and 11.9% as shown in Table 4.8. These numbers are

consistent with those described in other works in the field [14, 16].

4.2.4 Analysis of Cellular Interaction

Analysis of direct cell-to-cell interactions

Once all islet-cells had been properly segmented and identified, we computed the number

of neighbors for each cell to build a network of interacting cells. This network is a graph

whose vertexes are the cell centers and edges are links between two neighboring cells.

We use this network to compute the spatial distance function.
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Dataset Total
nuclei

Nb of
unla-
belled
cells

Total
alpha
cells

Total
beta
cells

Total
delta
cells

Total
alpha
+ beta
+ delta

Pα(%) Pβ(%) Pδ(%)

Mouse1-a 480 278 15 165 22 202 7.4 81.7 10.9
Mouse1-b 772 343 124 261 44 429 28.9 60.8 10.3
Mouse1-c 950 621 19 269 41 329 5.8 81.8 12.5
Mouse2 584 59 118 398 9 525 22.5 75.8 1.7
Mouse3 1012 462 146 384 20 550 26.5 69.8 3.6
Mouse4 198 21 32 138 7 177 18.1 78.0 4.0
Mouse5 425 39 23 358 5 386 6.0 92.7 1.3
Mouse6 493 218 46 222 7 275 16.7 80.7 2.5
Total
Mouse

4914 2041 523 2195 155 2873 18.2 76.4 5.4

Monkey1 700 317 55 309 19 383 14.4 80.7 5.0
Monkey2 770 374 136 170 90 396 34.3 42.9 22.7
Monkey3 630 411 57 126 36 219 26.0 57.5 16.4
Monkey4 587 398 46 128 15 189 24.3 67.7 7.9
Monkey5 579 341 33 172 33 238 13.9 72.3 13.9
Monkey6 610 308 40 251 11 302 13.2 83.1 3.6
Total
Monkey

3876 2149 367 1156 204 1727 21.2 66.9 11.9

Table 4.8: Cell composition of observed mouse and monkey islets.

Parameters Selection

There are two important parameters that affect the cellular interaction:

1. The number of neighboring voxels NBneivox = 26 surrounding the observed voxel

P (x, y, x) at the cell boundary. This parameter is covered in Section 3.4.1).

2. The average cell size Rcell, which is currently set at 4µm. It is used to determine

the cell zone for each cell. The impact of Rcell upon the cellular interaction can

be found in Section 4.2.2.2.

Cellular interaction of section and whole islet

Using the number of neighboring cells, we can compute the average and standard de-

viation (SD) of the number contacts per cell. When analyzing intact mouse islets, for

example ‘mouse4’, ‘mouse5’, and ‘mouse6’ in Table 4.1, Table 4.8, Table 4.9, and Ta-

ble 4.10, we observed a higher number of direct interactions per islet-cell. Specifically,

the average and SD of the number of contacts per cell were 7.48, 8.98, 9.94 for ‘mouse4’,

‘mouse5’, and ‘mouse6’ respectively comparing with the same values of of 3.66, 5.62,

4.54 for the three sections of ‘mouse1’ as shown in Table 4.10. These results suggest
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that analyzing thin and individual histological sections may lead to an under-estimation

of the number of connections in a tissue dataset.

Figure 4.10: Cell-cell contact probabilities. Top: an example of result of cell pheno-
type computation (colored nuclei area, green - alpha cell, red - beta cel, blue - delta
cell) and cell network (green alpha-alpha,red beta-beta, blue delta - delta, black - het-
erotypic interaction between alpha, beta and delta) at mouse 4 and monkey 1 dataset.
Bottom: results of frequency of interaction between cells (6 mice, n=22 datasets; 6
monkeys, n=12 datasets) done on observed islet dataset, using random procedure or

theoretical model presented in Hoang et al.(2014)[8].

Homotypic and heterotypic contacts

After computing the relative proportions of different cell types in the tissue, we define
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homotypic interactions as those between similar cells (alpha-alpha, beta-beta and delta-

delta) and heterotypic interactions as those between two different ones (alpha-beta,

alpha-delta, beta-delta) as shown in Table 4.10. In this, we found more homotypic beta-

beta interactions in the mouse than in monkey datasets and approximately the same

amount of alpha-alpha interactions between them.

Results of the analysis a larger number of datasets

In order to continue the investigation of the different organizations of the islet of Langer-

hans tissues in mice and monkeys, we focused our analysis on the two major cell types,

alpha and beta, as shown in Fig. 4.11. Due to the heterogeneous structure of the pri-

mate islets with a lower percentage of beta cells, we observed a significantly lower Pββ

of only 49.4% (p < 0.05 vs mouse, Fig. 4.11A). On the other hand, there was not much

difference in (Pαα), which was at 8.6% for the mouse database as shown in Fig. 4.11A.

For heterotypic connections between alpha and beta cells Pαβ, we observed that monkey

islets had a significantly higher percentage of Pαβ (17.1%) than mouse islets (10.8%)

(Fig. 4.11B, p < 0.05).

Compare the observed structures with a random organization. If cells within

tissue are clustered, we should observe a higher number of homotypic and a lower num-

ber of heterotypic interactions than a randomly generated structure. Therefore, we

designed a randomization process to generate cells inside a tissue and compared the

cell interactions in our randomized models with the theoretical proportion presented in

Section 3.4.1. We did not observe any significant differences between those randomized

models and the theoretical one. So, we concluded that our randomized models could

effectively capture the organization of the tissue and could be used in our work.

When using the random model as baseline, our results showed that mouse islets had

significantly higher homotypic contact frequencies as shown in Fig. 4.11B, Fig. 4.11D,

and Fig. 4.10. Something similar occurred with the monkey islets but did not prove to

be statistically significant (Fig. 4.11C, Fig. 4.11E, Fig. 4.10). In both islets, the observed

number of heterotypic contacts between alpha and beta cells was significantly lower than

the values obtained in a simulated random distribution (Fig. 4.11F-G).

With these results, we can conclude that alpha and beta cells in mouse and monkey

islets are not randomly distributed.
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Dataset Total
num-
ber of
direct
interac-
tions

Maximum
number
of direct
interac-
tions for
one cell

Avg, sd of
number of
direct inter-
actions, per
cell

Avg, sd
of number
of direct
interactions
for alpha
cells

Avg, sd
of number
of direct
interactions
for beta
cells

Avg, sd
of number
of direct
interactions
for delta
cells

Mouse1-a 370 7 3.66 ± 1.44 3.13 ± 1.09 3.76 ± 1.40 3.32 ± 1.74
Mouse1-
b

1206 11 5.622 ± 1.8 4.79 ± 2.0 5.96 ± 1.5 5.98 ± 1.8

Mouse1-c 747 9 4.54 ± 1.4 3.79 ± 1.6 4.59 ± 1.3 4.56 ± 1.9
Mouse2 2064 15 7.86 ± 2.3 7.63 ± 2.5 7.9 ± 2.3 7.78 ± 2.0
Mouse3 1856 16 6.75 ± 2.3 7.19 ± 3.0 6.4 ± 1.8 9.75 ± 3.0
Mouse4 662 15 7.48 ± 3.0 6.63 ± 2.7 7.70 ± 3.0 7.00 ± 2.6
Mouse5 1734 20 8.98 ± 3.0 6.69 ± 2.8 9.13 ± 2.9 8.60 ± 1.7
Mouse6 1368 18 9.94 ± 3.2 7.43 ± 2.5 10.45 ± 3.1 10.28 ± 3.2

Monkey1 850 9 4.44 ± 1.6 3.78 ± 1.6 4.63 ± 1.5 3.32 ± 1.3
Monkey2 804 11 4.06 ± 1.7 4.06 ± 1.6 3.81 ± 1.5 4.53 ± 2.2
Monkey3 412 11 3.76 ± 2.1 4.35 ± 2.2 3.39 ± 1.9 4.11 ± 1.9
Monkey4 417 9 4.41 ± 1.6 4.19 ± 1.7 4.39 ± 1.6 5.2 ± 1.8
Monkey5 430 8 3.61 ± 1.4 3.51 ± 1.6 3.47 ± 1.4 4.45 ± 1.2
Monkey6 677 9 4.48 ± 1.6 4.57 ± 1.4 4.43 ± 1.6 5.27 ± 1.0

Table 4.9: Number of direct interactions, per cell, for all datasets.

Type interaction alpha-
alpha

beta-
beta

delta-
delta

alpha-
beta

alpha-
delta

beta-
delta

Total

Mouse1-a 7 282 16 24 9 32 370
Mouse1-b 142 623 50 228 82 81 1206
Mouse1-c 7 566 45 32 26 71 747
Mouse2 228 1354 2 414 30 36 2064
Mouse3 332 1070 17 276 110 51 1856
Mouse4 53 468 6 98 8 29 662
Mouse5 19 1558 2 116 0 39 1734
Mouse6 61 1037 2 200 20 48 1368
Total mouse 849 6958 140 1388 285 387 10007
Average (%) 8.48 69.53 1.4 13.87 2.85 3.87 100
Monkey1 37 631 6 125 9 42 850
Monkey2 162 218 143 159 69 53 804
Monkey3 55 152 29 86 52 38 412
Monkey4 45 227 9 76 27 33 417
Monkey5 13 235 36 71 19 56 430
Monkey6 24 476 2 121 14 40 677
Total monkey 336 1939 225 638 190 262 3590
Average (%) 9.35 54.01 6.27 17.77 5.29 7.31 100

Table 4.10: Number of direct interactions between different islet-cell types in observed
mouse and monkey islets.
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Figure 4.11: Relative proportions of direct cellular interactions between the two main
cellular types alpha- and beta-cells for the extended datasets (6 mice, n=22 datasets;
6 monkeys, n=12 datasets). (A) Homotypic contacts in mouse and monkeys datasets
(*) denotes significant difference. (B-G) comparison of cellular interactions between
extended mouse and monkey datasets and random models (*) denotes significant dif-
ference. All statistics were done using ANOVA method with the Graphpad Prism V6.0

software.

Analysis of indirect cell-to-cell interactions

The computation of indirect cell to cell interaction is described in section 3.4.1 and

shown in Fig. 3.11. This logic allows the computation of relative distance maps for

any cell or group of cells within our datasets. Here we compare the indirect cell-to-cell

interactions in two models: observed model (raw data) and simulated random model

using a randomization procedure as described in the Material and Methods section.
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We first calculated the average distance between beta-cells and their closest alpha ones

as shown in Table 4.11. In this table, there was a higher number of beta-cells ,whose

distances to their closest alpha ones were larger than or equal to 2, in the observed model

than in the randomized one. It supports the hypothesis that alpha-cells are organized

in a cluster-like pattern. This hypothesis is also backed up by the well-known mantle

organization of alpha cells in mouse islets [14, 15]. Nevertheless, the difference between

observed and randomized modules is less striking in monkey. This suggests that alpha-

cells are more evenly distributed throughout the islet, thus explains the higher frequency

of alpha-beta contacts as shown in Fig. 4.11 and Table 4.11.

4.2.5 Analysis of Spatial Organization

After checking the direct and indirect cellular interactions, we will apply spatial point

pattern analysis approach, in which we compare our observed models of cells with com-

pletely random patterns, to determine whether there is a special distribution of cells

within the tissue. Specifically, we first calculate the cumulative distribution function of

the distance F−function, G−function. Then, we apply the Spatial Distribution Index

(SDI) to determine whether the spatial distribution matches any organizational rules

[4].

Set up the experiment

1. The study area. The experiment is performed inside the islet space where all the

cells are identified based on previous segmentation and computation steps.

2. Events in the study area. Our tissue contains three different cell types alpha, beta,

and delta in which one can be chosen as the observed points - events. Numerous

previous works have shown that beta cells are always located in several big clusters

at the shell-core, thus are not the topic of interest in this experiment. Also the

number of delta cells is quite small, ranging from 5 to 44 per sample in the mouse

datasets, and 11 to 90 per sample in the monkey datasets as shown inTable 4.8,

so it is difficult to apply a statistical test with this type. Therefore, we end up

with the alpha cell whose number is large enough for our study, from 15 to 146

in the mouse datasets, and 33 to 136 in the monkey datasets.

3. Datasets. We use the mouse and monkey islet datasets.
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Cell
Distance

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d>=9

Observed Mouse1-a 20 28 29 31 13 13 11 11 9
Simulated Mouse1-
a

40.52 42.15 32.79 20.93 11.67 6.79 4.18 2.7 3.27

Observed Mouse1-b 139 91 30 1 0 0 0 0 0
Simulated Mouse1-
b

214.93 41.54 3.82 0.52 0.15 0.04 0 0 0

Observed Mouse1-c 25 32 42 43 31 36 31 16 13
Simulated Mouse1-
c

60.91 72.62 60.31 39.03 20.32 8.89 3.97 1.76 1.19

Observed Mouse2 169 120 81 28 0 0 0 0 0
Simulated Mouse2 336.81 60.26 0.93 0 0 0 0 0 0

Observed Mouse3 125 86 61 43 32 21 12 4 0
Simulated Mouse3 325.57 55.83 2.5 0.1 0 0 0 0 0

Observed mouse4 50 58 20 2 0 0 0 0 0
Simulated mouse4 101.11 26.88 1.86 0.15 0 0 0 0 0

Observed Mouse5 74 85 77 69 46 5 1 0 0
Simulated Mouse5 149.56 147.25 47.99 10.36 1.64 0.2 0 0 0

Observed Mouse6 93 94 34 1 0 0 0 0 0
Simulated Mouse6 181.43 39.5 1.06 0.01 0 0 0 0 0

Observed monkey1 94 94 63 39 16 1 0 0 0
Simulated monkey1 148.23 100.48 40.21 12.43 3.69 1.07 0.49 0.23 0.17

Observed Monkey2 85 38 19 10 6 4 1 0 0
Simulated monkey2 128.6 28.82 4.62 0.81 0.12 0.02 0.01 0 0

Observed Monkey3 25 15 10 4 1 0 0 0 0
Simulated monkey3 37.93 13.73 2.62 0.57 0.13 0.02 0 0 0

Observed Monkey4 48 32 24 17 6 1 0 0 0
Simulated monkey4 87.42 33.19 6.53 0.79 0.05 0.02 0 0 0

Observed Monkey5 52 40 27 21 16 5 3 2 3
Simulated Monkey5 68.39 51.49 27.24 12.39 5.4 2.04 0.96 0.55 0.77

Observed Monkey6 89 74 45 20 13 6 1 0 0
Simulated Monkey6 114.19 81.53 35 11.94 3.56 1.1 0.38 0.16 0.1

Table 4.11: Histogram of cell distances between alpha and beta cells in observed and
simulated random organization - the average value of 100 simulated random organiza-

tion for mouse and monkey islets, d : distance unit.
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Using the profile of the alpha cell (nuclei voxel coordinates and cell zone voxels co-

ordinates), we extract the center of gravity, which is the average of all nuclei voxels

coordinates, and use this as the input of our statistical test. While this approach ig-

nores the impact of cell shape variability, it is very easy to perform.

To construct the random organization for comparison, we avoid generating new cell

shapes but simply shuffles the cell types without actually moving them from their geo-

graphical positions. Specifically, we selected the first alpha cell and then randomly chose

another cell in the islet structure, for example another alpha or beta cell. If the selected

one was not an alpha-cell we swapped the two cell types. The process was then repeated

for all alpha-cells to get the simulated random organization.

First experiment: using Euclidean distance function

In this experiment, we performed all the tests using Euclidean distance as the distance

function. We did the analysis on all the datasets and chose 6 mouse and 6 monkey

datasets for validation.

We noted that the results of F-function (violet color) for our observed ‘mouse4’ as shown

in Fig. 4.12A and ‘monkey1’ islets as shown in Fig. 4.12E were below the envelopes. This

result demonstrated that our observed data are clustered.

The results of G-function (violet color) for our observed ‘mouse4’ as shown in Fig. 4.12B)

and ‘monkey1’ islets as shown in Fig. 4.12F were above the envelopes. This confirmed

the cluster pattern of alpha cells based on F-function test.

The SDI values of F- and G-function in mouse and monkey islets are outside the [0.05-

0.95] interval (Table 4.12), thus rejects the null hypothesis of a completely random

organization of all alpha-cells. This supports our previous hypothesis in Table 4.11 that

alpha-cells are organized in clusters in both mouse and monkey islets.

Second experiment: using cell distance as the distance function

Given the cellular architecture of the islet and the importance of paracrine signaling

factors secreted by alpha cells [14], we hypothesize that the interaction between neigh-

boring cells plays a more important role than the shortest Euclidean distance between

two cells. Hence, we implement a modified version of F- and G- functions which utilize

cell distance instead of Euclidean distance. Cell distance is defined in Section 3.4.1.
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Dataset SDI-F
Euclidean
Distance

SDI-G
Euclidean
Distance

SDI-F
Cell
Dis-
tance

SDI-G
Cell
Dis-
tance

SDI-F
Cluster

SDI-G
Cluster

Mouse1-a 0.99 0 0.99 0 0.31 1
Mouse1-b 1 0 1 0.805 0.08 1
Mouse1-c 0.99 0.63 1 0.02 0.97 0.98
Mouse2 1 0 1 0 0.72 0.96
Mouse3 1 0 1 0 0.97 0.82
Mouse4 1 0 1 0 1 0
Mouse5 1 0 1 0 0.96 0.81
Mouse6 1 0 1 0.01 0.62 0.98
Mouse4
randomized

0.91 0.62 0.83 0.38

Monkey1 1 0 1 0 0.85 0.8
Monkey2 1 0 1 0 0.02 0.96
Monkey3 1 0 1 0 0.84 1
Monkey4 0.99 0.01 1 0.01 0.22 0.705
Monkey5 0.96 0.01 0.98 0.005 0.74 0.96
Monkey6 1 0.01 1 0 0.19 0.96
Monkey1
randomized

0.1 0.64 0.44 0.72

Table 4.12: Spatial descriptor index (SDI) for F-function and G-function, calculated
using Euclidean distance and cell distance.

Dataset Number of
clusters

Average
number
of cells in
cluster

Maximum
number
of cells in
cluster

Mouse1-a 8 1.88 3
Mouse1-b 39 3.18 27
Mouse1-c 13 1.46 3
Mouse2 16 7.38 34
Mouse3 20 7.3 93
Mouse4 7 4.57 10
Mouse5 7 3.3 10
Mouse6 6 7.67 36
Total Mouse 116 5.43
Monkey1 25 2.2 16
Monkey2 34 4 33
Monkey3 15 3.8 22
Monkey4 13 3.53 27
Monkey5 20 1.65 4
Monkey6 21 1.9 8
Total Mon-
key

128 2.85

Table 4.13: Cluster analysis for all datasets, with number of clusters in each dataset,
average number of cells in clusters and maximum number of cells in a cluster.
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Figure 4.12: The corresponding F-function, G-function cumulative distribution func-
tions of the observed data and simulated random organization for alpha-cells within
mouse4 and monkey1 islets, using Euclidean distance. F-function (A) and G-function
(B) of observed mouse4 islet, F-function (C) and G-function (D) of simulated random
organization of mouse4 islet. F-function (E) and G-function (F) of observed monkey1
islet, F-function (G) and G-function (H) of simulated random organization of monkey1
islet. In black (low) low envelope of 5% confidence interval, in black (high) high en-
velope of 95% confidence interval, in orange (theory) average value of 100 simulated
random organization, in violet (observed), our observed data. Note that for observed

data the curve is outside interval delimited by the 5%-95% confidence interval.

Using the cell distance, we observed similar results where most SDI values were outside

of the 95% range, thus rejected the null hypothesis of completely random organization

(Table 4.12). Such result indicates again a non-random organization of alpha-cells in

both mouse and monkey islets.
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Validate the performance of statistical functions with R-statistic

In our work, we extended the statistic plugin of Phillipe Andrey [4] with additional

functions to work with tissue applications. These statistical functions are complex so

we want to test their stability and robustness. As R-statistic is a well known tool in

the field with numerous existing statistic functions, we choose it as the baseline for

our implementation. Specifically, we implemented a function to compute the SDI value

using R-script. In this function, we mainly used the Empirical Cumulative Distribution

Function (ecdf) provided in R-core library to compute the SDI values with the result of

F-function as the input data in Excel format.

The results of these implementations are similar with the error of less than 0.05. The

small different is due to the fact that when the observed values are the same, R-function

takes into account all the similar values. So, in terms of accuracy, they are equivalent.

However, our Java implementation performs better in terms of speed in which it takes

from 1 to 3 minutes to complete versus 10 minutes to 1 hours in the case of R-statistic.

Cluster analysis result

The results of spatial statistic point pattern have proved that alpha cells are clustered

within the islet area. Nevertheless, we do not know the degree of their cluster, a com-

pletely cluster or a partial cluster distribution. In addition, we also want to understand

the variability of the structure as well as the intra cellular interactions inside an alpha

cluster and those between an alpha cluster and beta or delta cells.

We first characterize the composition of alpha-cell clusters. In mouse islets, alpha-cell

clusters vary in size from 1 to 93 cells with a mean of 5.43 cells per cluster as shown in

Table 4.13. Monkey islets have smaller alpha-cell clusters, 1 to 27 cells with a mean of

2.85 alpha-cells per cluster. Such results are compatible with other works in the field

in which beta cells of rodent islets are located in the core of islets and surrounded by

a mantle of alpha and delta cells and alpha cells are located in several clusters at the

mantle. Whereas, in non human primate (monkey datasets), existing observations show

that alpha cells have more heterogeneous interactions with beta and delta cells.
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Figure 4.13: Cyto-architecture of delta cells in rodents and human islets. Delta cells
send out cellular processes to increase their intra-islet reach. (A) and (B), maximum
projection images of representative mouse (A) and a human islet (B) glucagon, insulin
and somatostatin. Cell nuclei are shown in light blue. (C) Cellular composition of mouse
(n=24 islets total, n=7 mice) and human islets (n=21 islets total, n=3 donors). (D)
Maximum projection of a mouse islet and (E) a human islet stained with somatostatin
labeling. The yellow arrowheads indicate cellular extensions from islet delta cells. (F)
human delta cell image with somatostatin labeling). Yellow arrowheads indicate the
delta cell extensions. (G) Scanning electron microscopy of a human islet. Somatostatin
- delta cell is highlighted by a purple shade. (H) Physical length of the delta cell
extension in its longest axis in vivo in mouse islets (green circles, n=47 cells) and in
mice (black circles, n=31) and humans (purple squares, n=57) samples. (I) Relative
gain in delta cell contact with islet beta cells and (J) alpha cells in mouse (pink line)
and human islets (black lines). In (A) and (B), scale bar 50µm. In (D), scale bar 25
µm. In (E) and (F), scale bar 10 µm. (Figure is taken from Fig. 1 of our revision

publication [9])

.

4.3 Delta Cell Analysis and Modeling

In the Section 4.2, we have presented our results in tissue quantification and analysis

using alpha cells. So, we now switch our focus into the third major cell type in the

endocrine pancreas, the islets of Langerhans - delta cell. In other works, it has been

hypothesized that delta cells have a dynamic morphology that could reach out and

contact with a large number of beta cells within the islet structure. Such hypothesis
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Figure 4.14: Mapping delta cell contacts in mouse and human islets. (A) Overlay
of insulin, glucagon and somatostatin marker in a human islet. (B) 3D mapping of
beta, alpha and delta cells using the algorithm described in our plugin[10]. (C) cell
distance map of beta cells from the nearest delta cell (purple). (D-I) result image
showing the result of simulation of increasing lengths of delta cell arms and its influence
on the relative beta cell (D-F) or alpha cell (G-I) contacts in human islets. White
arrows indicate cells that are not contacted directly by a target delta cell but become
within reach by increasing arm length of 15 and 27 µm. (Figure is take from from

Supplementary Fig. 3 of our revision publication [9])

suggests the important role of delta cells as regulators of beta and alpha cells [14]. To

achieve this goal, we use our TITSO toolbox to study the function, dynamic morphology,

as well as the spatial organization of delta cells in our rodent (mouse, N=24 islets total,

n=7 mice) and human islets (human, N=21 islets total, n = 3 donors).

4.3.1 Quantification and analysis of delta cells

We first use the TITSO toolbox to repeat the same process that we have done with

alpha cells to delta cells in the mouse and human datasets. The results show that, in
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both species, the percentage of delta cells is between 1% to 5% of the total number of

cells within each islet (Fig. 4.13), which is smaller than beta or alpha cells. This is one

of the main difficulties in working with them.

Fig. 4.13 also shows two entire islets in mouse and human. In the first dataset, delta

cells are located in the mantle area having contact with alpha cells (Fig. 4.13A). In the

second one, delta cells connect more to beta cells and blood vessels.

4.3.2 Results of modeling and simulation of dynamic morphology of

delta cell

We apply a model and simulated procedure to examine the physical advantages of dy-

namic morphology of delta cells to cellular interactions. The observations of delta cells

over time reveal that they are elongated. In many cases, the morphology of delta cells

changes and extends into some directions like an arm structure as shown in Fig. 4.13

D,E,F. In vivo, the length of the delta cell arms vary between 1 to 27 µm and between 1

to 18 µm in fixed section (Fig. 4.13F and H). Therefore, we choose the arm length from

1 to 27 as input parameters of our model.

In order to model the arm of delta cell, we used the 3D dilation operation (Section 2.2.5)

to perform the extension of each delta cells within the radius from 1 to 27 µm. For each

input radius, we obtained a dilated region of the cell. Then we examined the number

of affected beta- and alpha- cells by checking the intersection of these cells zones and

the dilated region of the delta cell. The results shown that the extending of the delta

cell arm length significantly increased the number of cellular interactions of delta-beta

and delta-alpha contacts. Although this trend occurred in a limited way in mouse (1 to

1.8-fold of direct delta-beta, delta-alpha contacts), it has a huge impact in human islets

(1 to more than 4-fold of direct delta-beta, delta-alpha contacts) as shown in Fig. 4.13

I,J). These results also confirmed the delta cells structure in mouse and human islet as

presented above and demonstrate that the human islet organization is more advanced

than in rodent islet.

We also examined the results of direct interactions between delta cells and the other two

types. Fig. 4.14C shown the distance map of beta cells from the nearest delta cells, in

which the distance from a beta to the nearest delta cell varied from 2 to 7 cell distance.
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The second column showed the direct interactions of delta cells to the neighbors beta cells

with different arm lengths: raw data, 15 µm simulated arm length, and 27µm simulated

arm length. The white arrow showed the change in the distance and demonstrated the

physical advantage of having a longer arm. The longer the arm, the more number of

direct interactions with beta cells there is. We observed similar results between delta

and alpha cells with raw data, 15, and 27 µm simulated arm length.

To summarize, these results give the precise quantification of delta function and suggest

that delta cells morphology are dynamic. Delta cells enhance the range of somatostatin

action in intra islet and have a big impact on regulating the function of beta and alpha

cells.

4.4 Modeling Spatial Organization

In order to demonstrate the advantage of the modeling task, we present here two user

cases that describe how it is used to generate a virtual model of biological components.

The first use case uses a cell-like shape such as a sphere to model a biological compo-

nent and generates a virtual model. The second one uses cell profiles obtained from

segmentation as the materials for simulation. We simulate different scenarios of spatial

organization such as random organization, cluster distribution, regular organization (re-

pulsion, uniform) following by statistic tests to prove the correctness of our simulated

models.

Use case 1. Intra-structure of vesicles within the cell area

Vesicle is a small biological component but plays an important role in cell function.

When vesicles move closely to periphery of the cell membrane, they have a tendency to

break out of the periphery and connect to the outside components.

To study the vesicles spatial organization, we generate n vesicles of S1, S2, . . . , Sn where

each vesicle Si is represented by a sphere with the center coordinates Ci(x, y, z) and the

radius of ri. We then select a big sphere P with the center coordinate CP (x, y, z) and

the radius of R as the study area. In this case, the study area is the cell area as shown

in Fig. 4.15. We use Euclidean distance function to compute all the distances between

different vesicles and cell area. The model is generated using the method described in

Section 3.6.
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Figure 4.15: Results of modeling & simulation of spatial organization of vesicles
within cell area, visualize in 3D (Use case 1). Each column represent one type of
distribution, followed by result of F-function (blue curve: our observed model, green
curves: envelopes of 5% and 95% of 100 random models, red curve: average of 100 ran-
dom models). (A)random distribution SDI = 0.65, (B) cluster distribution (attraction)

SDI=0.02, (C) uniform distribution (repulsion) SDI=1.0.

An example of the generated distributions is shown in Fig. 3.6 which contains a random

pattern (A), a cluster pattern (B), and an uniform pattern (C). For each distribution,

the result of F-function is shown at the bottom of each column.

Column A shows the result of a randomly generated pattern with 10 vesicles in the intra

cell area. The F-curve of the observed pattern (green line) is within the envelopes of 5%

and 95% of a completely random pattern, and SDI = 0.65 is also in the same range.

Column B shows the result of a cluster pattern with two clusters. Each cluster contains

a vesicle which plays the role of a centroid to attract other vesicles in its surrounding

area. The F-curve of the observed pattern (green line) is below the envelopes and SDI

has the value of 0.02. They show that our generated procedure works correctly.

Column C shows the result of a regular pattern with 20 vesicles in the cell area. As

expected, the result of F-function is above the envelopes and SDI index is 1.0. With

this, we have successfully generated three different types of distribution.
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Figure 4.16: Results of modeling & simulation of spatial organization of vesicles
within cell area at multi-scales (Use case 2). (A) visualization of generated pattern in

3D, followed by result of F-function, SDI=0.01 (B), and G-function, SDI=0.73 (C).

Use case 2. Modeling spatial organization at multi-scales

Modeling a spatial organization at multi-scales were first introduced in Weston et al.

2012 [5]. The paper included many scenarios such as polar, center, or boundary distri-

bution where biological components are located in different areas. In our case, we built

the model at multi-scales using vesicles as materials and the cell area as the study area.

Clusters of vesicles sometimes move in close proximity to the cell periphery and have the

tendency to break out of the membrane and connect to the outside environment, which

corresponds to the spatial organization model at multi scales. At the local scale, many

vesicles are located in close proximity and form clusters. At the global scales, vesicles

tend to move to the periphery area.

An example of the multi-scale pattern is shown in Fig. 4.16 where there are 5 clusters.

Each cluster consists of 6 vesicles in a predefined range and they all locate in close prox-

imity to the periphery area. The result of F-function (blue line) is below the envelopes

with SDI = 0.01 showing that our generated pattern is clustered. However, the results

of G-function (blue line) is within the envelopes with SDI index = 0.73. It means that

our pattern is only partially clustered. The visualized 3D model also reaches the same

conclusion that the generated multi-scales model is not completely clustered.
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Figure 4.17: Results of modelling & simulation of spatial organization of cells within monkey islet (Use case 3). (A)raw data, (B) random pattern,
(C) clustered pattern(attraction), (D)regular pattern (repulsion).
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Use case 3. Distributions of alpha cells within islet of Langerhans

In the islet of Langerhans, alpha cells interact and affect the function of local beta cells.

So, there is a considerable interest in understanding the impact of spatial organization

of alpha cells to the function of beta cells and of islet when alpha cells are located at

different positions within the islet study area. An example using the observed model

and three generated ones in ‘monkey1’ tissue dataset is shown in Fig. 4.17.

The first column shows the 3D visualization of the observed pattern (cell type + nuclei

zone) and its cell network. There are 48 alpha in the total of 349 cells in the sample islet.

The result is below but very close to the low envelope of 5% with SDI of F-function at

1.0 and SDI of G-function at 0.0. Thus, it rejects the null hypothesis of a completely

random pattern.

The second column shows the result of the random pattern of alpha cells. The observed

curve (blue line) is close to the envelope of 95% with SDI of F-function at 0.99 and SDI

of G-function at 0.03. The SDI values show that our generated random model is not

completely random because the distance function could not capture the variability of

positions well and the cells in the study area are quite dense.

The third column shows the result of the cluster pattern of alpha cells. It is clear that

there is a big cluster of alpha cells at the right side of the islet area. The observed curve

(blue line) is far below the envelopes of 5% with SDI of F-function at 1.0 and SDI of

G-function at 0.0.

The fourth column shows the result of a regular pattern of alpha cells. The observed

curve (blue line) is above the envelopes of 95% with SDI of F-function at 0.0 and SDI of

G-function at 1.0. Observing this pattern, we notice that there is no direct interactions

between alpha cells and they are as far from their neighbors as possible.

To summarize, our modeling procedure can generate different types of distributions.

However, it becomes more difficult to generate a completely random distribution when

the cells is getting denser.

Randomizing data for a statistic test

In all the previous use cases, we need to apply a statistical test to check whether the

observed pattern follows the reference one. To do so, we generate a large number N, for

example N = 1000, of reference patterns and compute their distance functions. Finally,
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we compare the output of the observed distance function with those N to identify the

similarity between them.

For example, in order too compare the observed model with completely random patterns,

we generated N = 100 random ones and measured the distance between their reference

points and the events in the study area. The output of SDI index showed the rank of

the observed model compared with N. The same idea can also be applied to a cluster or

a regular pattern.



Chapter 5

Conclusion & Discussion

5.1 Discussion

In this part, we discuss more about the performance and the limitations of our toolbox.

This will be followed by suggestions and ideas for future work.

Nuclei segmentation

One of the advantages of our algorithm is its ability to segment nuclei in 3D images

captured by confocal microscopy better than other methods as shown in Section 4.2.1.

Our algorithm uses a two-stage approach for segmentation in which the first stage is

to detect regions with maximal intensity locally within each nuclei (the seed). The

second stage then uses the seed to initialize a region growing process to achieve nucleus

segmentation. However, the key point that makes our algorithm different from other

segmentation methods is the seed detection stage in which we transformed the nuclei

labeling input image into a Fourier domain image and then applied the band pass filter.

This filter allows us to discard any eventual intensity variation in the nuclei, thus,

improves the accuracy of the segmentation process. Our method is especially useful

when the input data suffers from a high variance of intensity level.

Nevertheless, the disadvantage of the band pass filter is that it cuts off parts of regions

with lower or higher frequency than the predefined threshold. In other words, all objects

whose diameters are smaller than the minimum value Dmin or larger than the maximum

value Dmax will not be taken into account. We only tune these values so that the number

123
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of affected objects is small enough to be irrelevant. Such approach works in our case

because the majority of cells in a tissue has similar volumes.

In terms of shape detection, our method achieves good performance in capturing convex

and rounded nuclei. However, when the nuclei shape become flexible, the nuclei shape

obtained by our method is slightly bigger and rounder than real boundary. In addition,

when the cell is elongated through a big number of slices, our method could over-estimate

and add more slices into the first and last parts of the cell in the z-axis.

We have tested our method on different cross-species datasets of mouse, monkey, and

human. Although these datasets have different characteristics, we have obtained good

accuracy overall. With such result, our method has proven to be useful for domain

experts in their works.

One more thing that we should note is the cell division. In our work, we did not take

into account mitosis cases, because these cases are very rare in mature tissue.

Computation of cell zones

The computation of marked cell zones is an essential part in the analysis of the spatial

organization of any given tissue. In our dataset, membranes of the islet cell are unlabeled

and we have chosen the watershed approach to separate the nuclei and to predict the

cell zone around each nucleus (Section 4.2.2).

As our first attempt, we used the classical watershed separation approach to compute

a Voronoi diagram around the segmented nucleus without any predefined speed. How-

ever, this strategy over-estimated significantly the number of cell-to-cell contacts (Sec-

tion 4.2.2). In order to bypass this limitation, we have modified the original watershed

algorithm to constrain the Voronoi zone so that it does not extend further than a prede-

fined radius from the nuclei boundaries. After applying this, the result of our cell zone

determination becomes much closer to the actual cell zone.

The analysis of cellular interactions in Table 4.10 has confirmed previous results in

describing cellular interactions in mouse and monkey islets. Moreover, the analysis

of the whole islet made by tissue clearing has shown the largest number of cellular

interactions (‘mouse4’ and ‘mouse 6’ in Table 4.9 and Table 4.10) when comparing

to datasets with only single or serial sections. This result suggests that the analysis

of thin tissue sections is insufficient because it underestimates the number of cellular
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interactions. Consequently, to achieve a real picture of the tissue spatial organization,

it is necessary to study the whole tissue image in three dimensions. Our results for

cell composition and cell-to-cell interaction are also verified by other works [16], thus it

validates our computational approach.

Cell identity computation

In order to identify the cell phenotype and cellular interactions, we first capture the

cytoplasmic marker corresponding to each cell type. In our case, since we were inves-

tigating three different cell types in addition to the nuclear stain (i.e. DAPI), it was

a challenge to add another dye to stain the cellular membrane. Therefore, we bypass

this limitation by assuming that the nucleus zone is the theoretical core of cell and the

cytoplasmic volume expands only locally around the nucleus. We can then use the theo-

retically determined cell zone as the input for our cell phenotype identification. Finally,

to process the three different markers (glucagon, insulin, somatostatin) altogether, the

supervoxels clustering approach (SLIC - [55]) has proven to be the most robust and

accurate clustering method for all these three channels. The proportion of each cell type

is consistent with other works in this domain [6, 8, 16].

However, due to the thickness of the tissue and the variability of the staining method

itself, there is a large variance of intensity between cytoplasmic markers and it affects

the accuracy of our algorithm. For example, in our islet application, the insulin marker,

denoting the beta cell, has a very strong level of intensity while somatostatin marker,

denoting the delta cell, has a much lower level of intensity. Although we have normalized

the intensity of all markers in the range of [0, 255], the noise of insulin marker is higher

than the intensity of somatostatin marker in certain regions. It leads to the wrong

detection of cell phenotype (actual delta cell but detected as beta cells) as shown in

Table 4.7. Our islet application also examines only three main cell types alpha-, beta-,

delta-cells.

In addition, our work only looks at the region with a predefined radius surrounding

each nucleus and does not take into account the special case in which the nucleus is

surrounded by an external region of glucagon marker and encircled by one more region

of insulin marker (beta cell wrapping alpha cell [6]). So, in order to investigate these

complex cell phenotypes (containing common cell phenotypes and rare cell phenotypes),
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we need a combination of different methods, for example clustering, outlier detection,

and classification.

Analysis of spatial organization

In order to investigate the tissue spatial organization, we need a set of robust descriptors.

Classical descriptors such as SDI for F- and G- function (Table 4.12 and Fig. 4.12) are

very suitable for spatial point pattern analysis. However, there are difficulties in adapting

them to whole tissue analysis where the object location is quite constrained and where

structural voids, for example blood vessels, may exist inside the structure. Therefore,

we choose the same approach but constrain the object position to only the cell location

instead of the entire study area as usual.

We also use cell distance instead of Euclidean distance (Fig. 3.11 and Supplementary

Table 4.11, 4.12) and observe similar results using either of them. However, in other

applications with a complex cell networks and a non-convex topology, cell distance anal-

ysis may prove to be more effective in correctly assessing the organization of cells than

Euclidean distance.

In chapter 4, we have demonstrated the useful of spatial functions F-, G-function and

spatial descriptor SDI to detect the spatial distribution of cells within tissue. However,

when the cell density is either very low or very high, for example ‘monkey1’, these

statistical functions could not capture correctly the type of spatial distribution as shown

in Table 4.12. They fail to distinguish a random distribution and a partial cluster

distribution.

The cyto-architecture of Islets of Langerhans of mice and monkeys

The result of our method confirms the observation of underlying differences in the cyto-

architecture of mouse and monkey islets [14, 16]. While mouse islets are rich in homo-

typic contacts, monkey islets display a more heterogeneous islet-cell distribution that

results in more heterotypic contacts between different cell types (Fig. 4.11 and Ta-

ble 4.10). This result confirms that we should not use mouse as the testing material

to make assumptions about monkey and human islet and we need to do the analysis

directly on monkey and human samples.

Interestingly, alpha-cells in all these species tend to be organized into a non-random

cluster organization which leads to a non-random pattern of contacts between alpha-
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and beta cells as shown in Fig. 4.11. This suggests that alpha-cells are in specific areas

within the islet, which might be set during the developmental period [62] and highlight

the potential paracrine role that alpha-cells have in islet physiology and diabetes [63–

67]. Furthermore, we notice a subtle trend suggesting that alpha-cell clusters are not

randomly distributed in all datasets. Alpha cells cluster more at the mantle region in

mouse islets while they are near the blood vessel in monkey islets.

Limitation: small number of datasets for testing

Although confocal microscopy helps capturing high throughput 3D images, it is more

difficult to capture multiple tissues in one image than the low resolution 2D techniques

[19]. Because of this limit, our toolbox could process only one tissue per image in the

islet application. Although we have been able to extend our works with more testing

datasets and achieved some results on monkey as shown in Fig. 4.11, there is still only

a limited number of samples when comparing with other works in the field ([19, 22]).

Nevertheless, the main objectives of our works are to propose a set of new methodologies

and to provide them in an efficient framework. We do not really focus on describing

a novel biological investigation. Therefore, a small number of datasets is somewhat

acceptable in our case.

Delta cell analysis and modeling

Our attempts to model and to simulate the dynamic morphology of delta cells have been

able to achieve good results. However, the process is still in its early phase and remains

open for future development.

The potential of our framework

There are several points to prove the generic and useful nature of our TITSO framework:

1. We originally develop our framework to use alpha cells as the references for the

analysing of mouse and monkey datasets [10]. Since then, the framework has

been extended to process delta cells in the human dataset as well.

2. We also apply our TITSO toolbox to analyze the tissue spatial organization and

plan to use it to investigate the spatial organization of other biological components

such as vesicles within a cell.

3. Our toolbox can analyze different types of fluorescent microscopy images.

4. Our toolbox is developed on Java as a plugin of the popular ImageJ platform.
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5. The recent development of 3D bio-printed artificial pancreas in 2017 at https://

diabetes.co.uk/news/2017/apr/3d-bioprinted-artificial-pancreas-for-type-1-diabetes-on-the-horizon-96776467.

html, opens new potential use cases for our toolbox.

However, there are still some drawbacks worth mentioning here: The user interface is

not intuitive for new users. They need to have an understanding of the entire work flow

before being able to use it correctly. In the future, we plan to improve it further and to

add more examples in its documentation.

Future works

Our current model defines the interaction between two cells as direct physical contacts

and does not consider the presence of important extracellular matrix proteins or blood

vessels. Both of which are important factors for the islet-cell function. As such, potential

future extensions of our works are to include the identification of blood vessels and to

analyse the spatial relationship between islet-cell and the vasculature [68, 69]. This is

further highlighted by recent studies indicating key anatomical and functional differences

between mouse and human islets and their microvasculature [70, 71].

The study of different diabetic types is an active domain so domain experts could utilize

our framework to explore special patterns of diabetic tissues and compare them with

normal ones. Such comparison could shed light upon the underlying reason of diabetes.

5.2 Conclusion

1. We have demonstrated the development of a new set of methods to visualize,

analyze, and compare the different organizations of multicellular structures in

mouse, monkey, and human islets.

2. Our framework provides an easy-to-use way to automate and standardize the

data collection on islet morphology.

3. The fundamental differences between rodent and primate islets support the hy-

pothesis that the physiology and paracrine signaling architectures of rodent and

primate islets are different. In addition, alpha-cells are not randomly allocated

within the islet ultra-structure.

https://diabetes.co.uk/news/2017/apr/3d-bioprinted-artificial-pancreas-for-type-1-diabetes-on-the-horizon-96776467.html
https://diabetes.co.uk/news/2017/apr/3d-bioprinted-artificial-pancreas-for-type-1-diabetes-on-the-horizon-96776467.html
https://diabetes.co.uk/news/2017/apr/3d-bioprinted-artificial-pancreas-for-type-1-diabetes-on-the-horizon-96776467.html
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4. This study highlights the differences between rodent and non primate islets and

supports a shift towards islet studies using monkey and human islets directly for

a more meaningful understanding of diabetes patho-physiology.



Appendix A

Toolbox to Investigate Tissue

Spatial Organization (TITSO)

Welcome to TITSO (the Toolbox to Investigate Tissue Spatial Organization) that we

have developed for microscopy image processing of tissue samples. This tutorial will

present all the necessary stages to use TITSO for the study of spatial organization of

tissues.

A.1 Documentation

A.1.1 Introduction

TITSO is a toolbox for segmenting and analyzing cells and nuclei in 3D tissues and

their spatial structure. It is originally developed by Boudier’s group. The goal is to

suggest a workflow in order to choose a set of optimal methodologies for quantification

and modeling of tissue organization based on 3D microscopy images.

This ImageJ plugin provides easy access to biologists and has been used to analyze

endocrine cells in:

— ‘A novel toolbox to investigate tissue spatial organization applied to the study of

the islets of Langerhans’. . TRAN THI NHU Hoa, ARROJO E DRIGO Rafael,

BERGGREN Per-Olof, and BOUDIER Thomas. Scientific Report, 7, 2017.
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— Pancreatic islet delta cells reach out to modulate beta cell function. Arrojo e

Drigo Rafael, Jacob Stefan, Zheng Xiaofeng, Garcia-Prieto Concha F., Fukuda

Masahiro, Tran Thi Nhu Hoa, Stelmashenko Olga, Martins P. F. Leticia, Rodriguez-

Diaz Rayner, Bushong Eric, Deerinck Thomas, Phan Sebastian, Ali Yusuf, Leibiger

Ingo, Boudier Thomas, Augustine George, Ellisman Mark H., and Berggren Per-

Olof. Nature (Revision), 2017.

For more information, please send email to: hoa.tran_thi_nhu@etu.upmc.fr or thomas.

boudier@upmc.fr.

A.1.2 Data requirements

Tissue Analysis Toolbox requires 3D microscopy images as its input data:

— 3D Nuclei DAPI staining. Nuclear labelling DAPI which capture nucleus in 3D.

— Markerset. A markerset represents a set of fluorescence markers or imaging chan-

nels used in an experiment. More than one markerset may be associated with a

single tissue. This allows users to perform analysis with different combinations

of the available markers. In our paper, we applied our toolbox with endocrine

cells which composed of three channels (three markers) named insulin staining,

glucagon staining, and somatostatin staining.

— Image file format. Only 8-bit or 16-bit TIFF format file of 3D are currently

supported. All images in one dataset should have the same size.

— Input. A composite image composed of all different channels and one nuclei

marker image.

— We also provide an example of input images extracted from islet of Langerhans

(more detail see reference paper). DAPI stainning nuclei image named as C4-

dapi.tif, three channels correspond to cytoplasmic (label or marker) and efficient

to determine cell types: somatostatin: C1-delta.tif, insulin: C2-beta.tif, glucagon:

C3-alpha.tif. In order to open these images example: launch ImageJ, open zip

file and obtain the tiff format of these images.

A.1.3 Installation

To install toolbox, we need to include these library package:

hoa.tran_thi_nhu@etu.upmc.fr
thomas.boudier@upmc.fr
thomas.boudier@upmc.fr
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— Install ImageJ environment, see intruction in ImageJ web page. ImageJ version

should be equal or higher than 1.50a and Java 1.7 or later is required JDK.

— Download the Tissue Analysis plugin in this link: tissueanalysis.jar.

— To work with 3D TIFF image, some libraries are required also: imagescience.jar,

imageware.jar.

— The ConvexHull3D plugin is required only for measurements: quickhull3d.jar.

Java3D is required, download our 3D Viewer version 3D Viewer plugin (version

4 or later) or go to the main website:3D Viewer.

— Mcib3d core and plugin, version 3.8 or latter: mcib3d-core-3.83.jar, mcib3d-

plugins-3.83.jar included many functions for 3D image processing.

— Package Lipid Droplet Counter which contains 3D band pass filter, included in

3D Nuclei Segmentation of tissue organization plugin.

— Put the jar file into the plugin folder of ImageJ and refresh menu.

— More details about the required plugin you can find at mcib3d-suite plugin [37].

Starting TITSO:

— Launch ImageJ program.

— From ImageJ go to Plugin then go to 3D Tissue Spatial Analysis plugin.

You can find the source code of this framework at our github repository: https://

github.com/nhuhoa/tissue_organization

A.1.4 Features

The TITSO framework offers the following features:

— Filtering.

— Nuclei segmentation.

— SLIC clustering.

— Watershed segmentation.

— Compute cell zone.

— Compute cell type.

— Analyze cellular interaction.

— Spatial statistic.

— Clusters analysis.

https://github.com/nhuhoa/tissue_organization
https://github.com/nhuhoa/tissue_organization
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— Visualization of graph.

Figure A.1: Workflow of the TITSO (the Toolbox to Investigate Tissue Spatial Or-
ganization).

A.1.5 Pre-filtering and normalize labelling image

Before processing the marker - labelling image, we need to filter and normalize the

intensity of the input image.

— From ImageJ go to Plugin then go to 3D Tissue Spatial Analysis, sub menu

Pre-filtering Input: a composite image which contains different channels and also

DAPI nuclei image.

— Input parameters. Choose the label correspond to each image. It can be M1, M2,

M3 (markers, cytoplasmic to determine cell type) or DAPI (nuclei), or *NONE*

if number of channels is smaller number of options provided

— Output. Filtered images of different channels and save it into folder. The output

images will be save into a folder named ‘filtered’ with the rename of images are

C1.tif, C2.tif, C3.tif, C4-dapi.tif.
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— During the normalization phase, select image and its input threshold value. The

framework will remove all voxels whose intensity values are below this threshold

and normalize the input image within the range [0, 255]. This step removes noise

in 3D microscopy image.

Figure A.2: Pre-filtering and normalize labelling image sub menu.

A.1.6 Nuclei segmentation

The next step is to detect nuclei in the image by applying the appropriate segmentation

algorithm. Images corresponding to nuclear labeling (DAPI) will first be processed by

3D median filter to reduce noise and homogenized intensities inside nuclei. After that,

these images will be filtered by a 3D band pass filter which uses the approximated

diameter of the nuclei region. The output are 32-bit images, which we then scale down

to 16-bit. Our 3D Spot Segmentation plugin is used to segment the nuclei, where local

maxima from the band pass filtering is used as seed.

A set of default parameters for segmentation is supplied but quality of nuclei image,

volume of nucleus vary depending on different species and different tissue. Therefore,

the toolbox allows you to adjust these input parameters and observe changes in the

output.
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From ImageJ go to Plugin and then to 3D Tissue Spatial Analysis, choose sub menu

NUCLEI SEGMENTATION to adjust segmentation parameters.

— Input images. A DAPI nuclei image.

— Pre-processing. Choose pre-filtering (3D Median 4-4-2) if the image has not yet

been filtered.

— Maximal nucleus size, Minimal nucleus size. You need to provide the range [min-

size, max-size] of nucleus radius size in the image.

— Seed threshold. Threshold used to detect seed in the Band Pass Filtered Image.

Normally, we use the threshold of 30000 to extract the brightest voxel correspond

to seed in the 16-bit image. If image is at a lower intensity, we can reduce this

parameter accordingly.

— Output. The output is a 16-bit image of nuclei segmentation which contains

different regions. Each region is indexed by one value of intensity and has a

different color by applying LUT 3-3-2 RGB.

To observe the segmentation result:

— Open segmented image in 3D Manager and 3D Viewer.

— A window of 3D Manager will appear and show the list of objects, 3D Viewer

show the visualization of objects in 3D.

— From 3D Manager, you can check the 3D nucleus object profile and have man-

ual validation: detect merge objects and split them. See more of 3D Man-

ager at the following link:http://imagejdocu.tudor.lu/doku.php?id=plugin:

stacks:3d_roi_manager:start.

A.1.7 Cell zone detection

The normal way to detect a cell is by using segmented nuclei as seeds inside the mem-

brane region. However, for 3D microscopy image, 3D membrane label is generally un-

available. In our work, we apply Watershed - region growing technique to obtain the

cell zone.

From ImageJ menu go to Plugin then go to 3D Tissue Spatial Analysis plugin and sub

menu CELL ZONE.

— Input. A nuclei segmented image.

http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_roi_manager:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_roi_manager:start
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Figure A.3: Nuclei segmentation sub menu.

— Distance. The count from border of segmented nucleus to outside. User can

define this parameter based on observed cells. If cells are close, the boundary is

counted haft way from maximum distance between the border of two cells.

— Output. A Watershed image which defines cell zone around each nucleus as seed.

Figure A.4: Cell zone detection sub menu.
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A.1.8 3D SLIC clustering

In order to combine information of different markers, we use the 3D Multi-Voxels Simple

Linear Iterative Clustering (SLIC) algorithm. This algorithm performs an unsupervised

learning of different channels. From ImageJ menu go to Plugin then go to 3D Tissue

Spatial Analysis plugin and sub menu SLIC 3D CLUSTERING.

— Input. Different channels - markerset. Choose a number of input images.

— Min size, Max sizes. Use [min size, max size] to provide the range, which is the

possible volume of each clustering region. The default volume is [100, 300] which

corresponds to the max size and min size of nucleus in dataset.

— Nb iterations. The number of iterations that the framework will take to per-

form clustering and refine the result of clustering. The default value is 10. The

complexity of SLIC algorithm depends on the size XYZ of 3D image.

— Output. An image which contains many regions, each region corresponds to one

cluster of voxels, named label.tiff.

Figure A.5: 3D SLIC Clustering sub menu.
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A.1.9 3D SLIC 3 channels

We finally assign each zone to the channel having the highest median value inside the

zone. If all the median values inside the zone are lower than predefined thresholds, the

zone is assigned to the unlabelled type. An image is then created with the voxels having

the value of their corresponding zone. From ImageJ menu go to Plugin then go to 3D

Tissue Spatial Analysis plugin and sub menu SLIC 3D 3 CHANNELS.

— Input. Choose image correspond to different labels and SLIC label as the result

of SLIC 3D CLUSTERING.

— Threshold. Input threshold value. If the median value of a SLIC region is below

this value, this region won’t be taken into account.

— Output. SLIC with intensity value of region correspond to only one channel (one

label) in the list of existing label (M1=1, M2=2, M3=3).

Figure A.6: 3D SLIC 3 Channels sub menu.

A.1.10 Cell type detection

Take into account different regions and use intensity value of three channels and cell

profile that we obtain from the previous step, we compute the cell type of each cell by

quantifying the marker inside each cell zone. From ImageJ menu go to Plugin then go

to 3D Tissue Spatial Analysis plugin and sub menu CELL TYPE DETECTION.
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— Inputs. A watershed - cell zone image, segmented nuclei image, and SLIC labelF

image.

— Region observed: INSIDE OUTSIDE NUCLEUS, OUTSIDE NUCLEUS, IN-

SIDE NUCLEUS, WATERSHED REGION.

— Ratio of histogram of label.

— Min distance.

— Maximum distance inside of nuclei region take into account.

— Maximum distance outside of nuclei region take into account.

— Output. Cell type image.

— Cell profile. Nuclei.zip and Region.zip.

Figure A.7: Cell Type Detection sub menu.

A.1.11 Cellular interaction computation

We define cell-cell contact based on nucleus zone as follows: Two cells are neighbor if

their nucleus zones are touching, which means that they have the voxel contact. Users
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can handle the number of voxels contact as input parameter in the next version.

— Input. A watershed image, 3D ROI file Nuclei.zip, Regions.zip. At the current

version our plugin will read 2 files: Nuclei.zip and Regions.zip are located in the

same folder with watershed image.

— Choose options. Provide different options for computation: cell to cell contact,

layer contact, histogram contact between beta cells and alpha cells, cells network

visualization.

— Output. Excel files: AllContact.csv, LayerContact.csv, histogram beta alpha.csv,

Image of cells network visualization.

Figure A.8: Cellular interaction computation sub menu.

A.1.12 Random organization

The program will compare the cellular interaction between the observed raw data and

the average of 100 simulated random organization models. From ImageJ menu go to

Plugin then go to 3D Tissue Spatial Analysis plugin and sub menu RANDOM ORGA-

NIZATION.
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Input:

— Input. A watershed image.

— Choose one of cell type observed: TYPE1, TYPE2, TYPE3.

— Choose source cell type observed: TYPE1, TYPE2, TYPE3.

— Number of random organization. By default it is 100 times simulated random

organization.

Output:

— The number of interactions of observed raw data.

— The number of interactions of 100 simulated models and average.

Figure A.9: Random Organization sub menu.

A.1.13 Cluster analysis

From ImageJ menu go to Plugin then go to 3D Tissue Spatial Analysis plugin and sub

menu CLUSTER ANALYSIS.

Input:

— Input. A watershed image.

— Choose the type cell observed: TYPE1, TYPE2, TYPE3.

— Choose whether to compute Clusters Spatial Statistic.
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The output is an Excel file Cluster.csv which includes the following computation results:

The index cluster, the number of observed cells in each clusters, the number of clusters,

the average cells in total clusters, the max number of cells in the biggest cluster, the

graphs of spatial statistic F-function and G-function of clusters and SDI values.

Figure A.10: Random Organization sub menu.

A.1.14 Spatial statistic analysis

In order to compute the spatial statistic of organization model, from ImageJ menu

go to Plugin then go to 3D Tissue Spatial Analysis plugin and sub menu SPATIAL

STATISTIC.

Input:

— Input. A watershed image.

— Cell Profiles: Nuclei.zip, Region.zip.

— Choose cell type observed: TYPE1, TYPE2, TYPE3.

— Choose cell type source: TYPE1, TYPE2, TYPE3.

— Choose type distance: Euclidean Distance, Cell Distance.

— Choose model for compute spatial statistic: Raw Data, Random Organization,

Clusters.
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— Choose spatial statistic function to compute: F-function, G-function.

Figure A.11: Spatial Statistic Analysis sub menu.

A.1.15 Modeling and simulation of dynamic morphology of a cell

Observing the confocal microscopic images of cells within tissue reveals that there are

some specific cells which are elongated and, in most cases, have a well-defined filopodia-

like. Because of the elongated shape, these specific cells can reach out and contact

numerous other cells in the tissue. We use our framework [10] to identify these observed

cells and verify the physical advantage provided by the filopodia in a crowded islet en-

vironment.

In case the observed cell reach out in all directions, we define the dynamic morphology

of the observed cell by an affected range with radius r - simulated physical length of

filopodia area. The affected range is computed by dilating the observed cell zone with a

predefined radius r, starting from the boundary of delta cell zone.

In order to model and simulate a dynamic morphology of a cell, from ImageJ menu go

to Plugin then go to 3D Tissue Spatial Analysis plugin and sub menu CELL PROTRU-

SION.

Input:

— Input. A watershed image, original nuclei labeling image.

— Cell Profiles: Nuclei.zip, Region.zip.
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— Choose cell type as target: TYPE1, TYPE2, TYPE3.

— Choose cell type as source: TYPE1, TYPE2, TYPE3. Source cell (or protrusion

cell) is the cell have dynamic morphology.

— Min distance: minimum length of filopodia.

— Max distance: maximum length of filopodia.

— Choose observed cells, the cells have dynamic morphology : ALL CELL PRO-

TRUSION, EACH CELL PROTRUSION, SPECIFIC CELL PROTRUSION.

— Choose the observed region: CELL REGION, NUCLEUS REGION. The length

of extension (filopodia) is counted from cell boundary or nuclei boundary.

Figure A.12: Modeling and simulation of dynamic morphology of a cell sub menu.
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Series
na nb nd nabd pa pb pd aa bb dd ab ad bd

all-
contacts

paa pbb pdd pab pad pbd
P-homo
typic

P-hetero
typic

delta-
hetero
typic

Mouse1-A 15 165 22 202 0.074 0.817 0.109 7 282 16 24 9 32 370 0.019 0.762 0.043 0.065 0.024 0.086 0.824 0.175 0.11
Mouse1-B 124 261 44 429 0.289 0.608 0.103 142 623 50 228 82 81 1206 0.118 0.517 0.041 0.189 0.068 0.067 0.676 0.324 0.135
Mouse1-C 19 269 41 329 0.058 0.818 0.125 7 566 45 32 26 71 747 0.009 0.758 0.06 0.043 0.035 0.095 0.827 0.173 0.13

201564-
Mouse2-S6

118 398 9 525 0.225 0.758 0.017 228 1354 2 414 30 36 2064 0.11 0.656 9.690E-4 0.201 0.015 0.017 0.766 0.233 0.032

201564-
Mouse3-S8

146 384 20 550 0.265 0.698 0.036 332 1070 17 276 110 51 1856 0.179 0.577 0.009 0.149 0.059 0.027 0.765 0.235 0.086

201430120-
SeeDB-Mouse4

32 138 7 177 0.181 0.78 0.04 53 468 6 98 8 29 662 0.08 0.707 0.009 0.148 0.012 0.044 0.796 0.204 0.056

2015225-SeeDB
-Mouse5-S1

23 358 5 386 0.06 0.927 0.013 19 1558 2 116 0 39 1734 0.011 0.899 0.001 0.067 0 0.022 0.911 0.089 0.022

2015225-SeeDB
-Mouse6-S2

46 222 7 275 0.167 0.807 0.025 61 1037 2 200 20 48 1368 0.045 0.758 0.001 0.146 0.015 0.035 0.804 0.196 0.05

2014-B6-5-S25 41 248 13 302 0.136 0.821 0.043 33 482 6 53 6 24 604 0.055 0.798 0.01 0.088 0.01 0.04 0.863 0.137 0.05

2014-B6-4-S8 34 85 14 133 0.256 0.639 0.105 32 141 9 27 14 18 241 0.133 0.585 0.037 0.112 0.058 0.075 0.755 0.245 0.133
2014-B6-4-S11 16 137 5 158 0.101 0.867 0.032 6 231 1 27 5 10 280 0.021 0.825 0.004 0.096 0.018 0.036 0.85 0.15 0.054
2014-B6-4-S14 12 73 10 95 0.126 0.768 0.105 6 89 5 11 6 22 139 0.043 0.64 0.036 0.079 0.043 0.158 0.719 0.281 0.201

Mouse-19-S11 35 174 24 233 0.15 0.747 0.103 30 317 21 30 30 48 476 0.063 0.666 0.044 0.063 0.063 0.101 0.773 0.227 0.164
Mouse-19-S19 10 46 10 66 0.152 0.697 0.152 3 49 4 10 7 12 85 0.035 0.576 0.047 0.118 0.082 0.141 0.659 0.341 0.223

Mouse-8-S25 13 91 2 106 0.123 0.858 0.019 6 185 0 14 1 5 211 0.028 0.877 0 0.066 0.005 0.024 0.905 0.095 0.029
Mouse-8-S28 13 77 2 92 0.141 0.837 0.022 8 149 0 22 2 1 182 0.044 0.819 0 0.121 0.011 0.005 0.863 0.137 0.016

Table B.1: Results of cell composition, cellular interaction, homotypic, and heterotypic contact on C57/BL6 mouse islets (8 weeks of age, n = 6
animals and 8 stacks)
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S38 2016617
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.041 0.593 0.023 0.177 0.023 0.142 0.029 0.527 0.011 0.245 0.035 0.152 0.029 0.524 0.009 0.244 0.037 0.157

S45 2016617
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.088 0.545 0.015 0.278 0.031 0.044 0.041 0.558 0.002 0.304 0.02 0.074 0.04 0.56 0.003 0.306 0.02 0.072

S49 2016617
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.072 0.269 0.215 0.105 0.13 0.21 0.033 0.212 0.129 0.167 0.13 0.33 0.032 0.21 0.127 0.169 0.13 0.332

S63 2016617
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.015 0.677 0.054 0.111 0.016 0.127 0.006 0.654 0.013 0.125 0.018 0.185 0.006 0.658 0.017 0.125 0.018 0.177

S22 2014101
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.198 0.264 0.095 0.18 0.133 0.13 0.135 0.179 0.044 0.311 0.154 0.177 0.138 0.17 0.046 0.31 0.16 0.176

S37 2014101
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.054 0.577 0.088 0.131 0.035 0.115 0.021 0.508 0.021 0.205 0.041 0.205 0.019 0.518 0.025 0.196 0.041 0.202

S40 2014101
Observed Theoretical Random
paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd paa pbb pdd pab pad pbd
0.136 0.266 0.158 0.146 0.092 0.203 0.081 0.202 0.071 0.255 0.151 0.239 0.082 0.187 0.074 0.252 0.166 0.239

Table B.2: Result of cellular interaction of observed models, theoretical models and simulated random models on 7 monkey islets.
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Series
na nb nd nabd pa pb pd aa bb dd ab ad bd

all-
contacts

paa pbb pdd pab pad pbd
P-homo
typic

P-hetero
typic

HP1-18 85 52 3 140 0.607 0.371 0.021 162 90 2 88 11 0 353 0.459 0.255 0.006 0.249 0.031 0 0.72 0.28
HP1-28 73 77 56 206 0.354 0.374 0.272 112 155 90 106 113 85 661 0.169 0.234 0.136 0.16 0.171 0.129 0.539 0.46
HP1-30 19 88 17 124 0.153 0.71 0.137 10 151 17 40 3 25 246 0.041 0.614 0.069 0.163 0.012 0.102 0.724 0.277
HP1-38 24 77 7 108 0.222 0.713 0.065 29 159 5 45 3 15 256 0.113 0.621 0.02 0.176 0.012 0.059 0.754 0.247
HP1-44 85 72 37 194 0.438 0.371 0.191 109 118 50 181 74 66 598 0.182 0.197 0.084 0.303 0.124 0.11 0.463 0.537

HP2-5 278 256 34 568 0.489 0.451 0.06 456 426 18 536 85 67 1588 0.287 0.268 0.011 0.338 0.054 0.042 0.566 0.434
HP2-9 99 63 16 178 0.556 0.354 0.09 205 113 14 165 71 30 598 0.343 0.189 0.023 0.276 0.119 0.05 0.555 0.445
HP2-13 164 258 17 439 0.374 0.588 0.039 210 404 7 253 32 46 952 0.221 0.424 0.007 0.266 0.034 0.048 0.652 0.348
HP2-18 70 279 20 369 0.19 0.756 0.054 59 649 8 241 16 65 1038 0.057 0.625 0.008 0.232 0.015 0.063 0.69 0.31
HP2-22 32 52 8 92 0.348 0.565 0.087 18 61 2 23 5 19 128 0.141 0.477 0.016 0.18 0.039 0.148 0.634 0.367
HP2-25 24 118 2 144 0.167 0.819 0.014 11 181 0 51 1 6 250 0.044 0.724 0 0.204 0.004 0.024 0.768 0.232
HP2-28 100 142 16 258 0.388 0.55 0.062 80 229 16 140 10 36 511 0.157 0.448 0.031 0.274 0.02 0.07 0.636 0.364

HP3-16 81 298 11 390 0.208 0.764 0.028 68 445 8 228 11 28 788 0.086 0.565 0.01 0.289 0.014 0.036 0.661 0.339
HP3-22 27 211 7 245 0.11 0.861 0.029 15 456 5 78 7 15 576 0.026 0.792 0.009 0.135 0.012 0.026 0.827 0.173
HP3-29 124 199 14 337 0.368 0.591 0.042 157 453 13 290 12 23 948 0.166 0.478 0.014 0.306 0.013 0.024 0.658 0.343
HP3-35 182 124 7 313 0.581 0.396 0.022 298 222 2 264 19 11 816 0.365 0.272 0.002 0.324 0.023 0.013 0.639 0.36
HP3-40 39 81 2 122 0.32 0.664 0.016 24 96 0 68 2 5 195 0.123 0.492 0 0.349 0.01 0.026 0.615 0.385
HP3-45 184 190 43 417 0.441 0.456 0.103 288 363 40 372 78 107 1248 0.231 0.291 0.032 0.298 0.062 0.086 0.554 0.446
HP3-49 170 162 86 418 0.407 0.388 0.206 242 293 134 331 184 164 1348 0.18 0.217 0.099 0.246 0.136 0.122 0.496 0.504
HP3-53 28 126 33 187 0.15 0.674 0.176 19 204 46 71 21 69 430 0.044 0.474 0.107 0.165 0.049 0.16 0.625 0.374
HP3-57 24 99 10 133 0.18 0.744 0.075 11 133 7 33 9 7 200 0.055 0.665 0.035 0.165 0.045 0.035 0.755 0.245

Table B.3: Results of cell composition, cellular interaction, homotypic, and heterotypic contact on human islets (n = 21 islets total, n = 3 donors)
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[50] Céline Hudelot, Jamal Atif, and Isabelle Bloch. Fuzzy spatial relation ontology for image interpre-

tation. Fuzzy Sets and Systems, 159(15):1929–1951, 2008.

[51] Meng-Tsen Ke, Satoshi Fujimoto, and Takeshi Imai. Seedb: a simple and morphology-preserving

optical clearing agent for neuronal circuit reconstruction. Nature neuroscience, 16(8):1154–1161,

2013.

[52] Nicolas Heck, Marc Dos Santos, Brahim Amairi, Marine Salery, Antoine Besnard, Etienne Herzog,

Thomas Boudier, Peter Vanhoutte, and Jocelyne Caboche. A new automated 3d detection of

synaptic contacts reveals the formation of cortico-striatal synapses upon cocaine treatment in vivo.

Brain Structure and Function, 220(5):2953–2966, 2015.

[53] Moll Samuel. Lipid droplet counter. ImageJ Documentation Wiki, 2015. URL http://imagejdocu.

tudor.lu/doku.php?id=plugin:analysis:droplet_counter:start.

[54] Jean Ollion, Julien Cochennec, Francois Loll, Christophe Escude, and Thomas Boudier. Tango: a

generic tool for high-throughput 3d image analysis for studying nuclear organization. Bioinformat-

ics, page btt276, 2013.

[55] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
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