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Abstract

Constraint programming is a paradigm for computing with mathematical rela-
tions named constraints. It is a declarative approach to describe many real-world
problems including scheduling, vehicles routing, biology and musical composition.
Constraint programming must be contrasted with procedural approaches that de-
scribe how a problem is solved, whereas constraint models describe what the prob-
lem is. The part of how a constraint problem is solved is left to a general constraint
solver. Unfortunately, there is no solving algorithm efficient enough to every prob-
lem, because the search strategy must often be customized per problem to attain
reasonable efficiency. This is a daunting task that requires expertise and good
understanding on the solver’s intrinsics. Moreover, higher-level constraint-based
languages provide limited support to specify search strategies.

In this dissertation, we tackle this challenge by designing a programming lan-
guage for specifying search strategies. The dissertation is constructed around two
axes: (i) a novel theory of constraint programming based on lattice theory, and
(ii) a programming language, called spacetime programming, building on lattice
theory for its data structures and on synchronous programming for its computa-
tional model.

The first part formalizes the components of inference and search in a constraint
solver. This allows us to scrutinize various constraint-based languages through
the same underlying foundations. In this respect, we give the semantics of sev-
eral paradigms including constraint logic programming and concurrent constraint
programming using lattices. The second part is dedicated to building a practi-
cal language where search strategies can be easily composed. Compositionality
consists of taking several distinct strategies and, via some operators, to compose
these in order to obtain a new strategy. Existing proposals include extensions to
logic programming, monadic constraint programming and search combinators, but
all suffer from different drawbacks as explained in the dissertation. The original
aspect of spacetime programming is to make use of a temporal dimension, offered
by the synchronous paradigm, to compose and synchronize search strategies on a
shared logical clock.

This paradigm opens the door to new and more complex search strategies in
constraint programming but also in applications requiring backtracking search.
We demonstrated its usefulness in an interactive computer-aided composition sys-
tem where we designed a search strategy to help the composer navigating in the
state space generated by a musical constraint problem. We also explored a model
checking algorithm where a model dynamically generates a constraint satisfaction
problem (CSP) representing the reachability of some states. Although these ap-
plications are experimental, they hint at the suitability of spacetime programming
in a larger context.
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Introduction

This dissertation links the paradigms of constraint programming and syn-
chronous programming. We present these two fields in turn, and then we
outline spacetime programming, the language proposed in this work for uni-
fying these two paradigms.

Constraint programming

In theoretical computer science, a function models a correspondence between the
sets of input and output states, while a relation expresses a property that must
be satisfied by the computation. Operationally, functions and relations are em-
bodied in deterministic and non-deterministic computations. From an expressive
standpoint, this distinction is artificial since any algorithm described by a non-
deterministic algorithm can be described by a deterministic equivalent one.1 So
what is the advantage of using one model of computation over the other? The
answer is that sometimes it is much easier to express what properties a solution
must satisfy than to specify how we should compute this solution. This dual view
is at the heart of the differences between imperative and declarative program-
ming paradigms, which allow us to program respectively the how and the what.
Around 1970, logic programming emerged as a paradigm conciliating these two
views, where a declarative program also has an executable semantics [Kow74]. In
this dissertation, we focus on a generalization of the logic computational model
called constraint programming.

Constraint programming is a paradigm for expressing problems in terms of
mathematical relations—called constraints—over variables (e.g. x > y). Con-
straints are an intuitive approach to naturally describe many real-world problems
which initially emerged as a subfield of artificial intelligence and operational re-
search. The flagship applications in constraint programming encompass schedul-
ing, configuration and vehicles routing problems; all of these three have a chapter
in [RvBW06]. Constraints are also applied to various other domains such as in
music [TA11, TAE17], biology [RvBW06] and model checking [CRVH08, TP17].
Besides its application in practical fields, constraint programming is also the theory
of efficient algorithms for solving constraint satisfaction problems (CSP).

1However, the complexity of these two algorithms might not be equivalent; answering this question
is the famous P ̸=NP problem.

1
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In this dissertation we are interested in how a CSP is solved. Constraint solving
usually relies on a backtracking algorithm enumerating the values of the variables
until a solution is found, i.e. all the constraints are satisfied. This algorithm gen-
erates a search tree where every branch reflects a choice made on one variable. In
case of unsatisfiability, the algorithm backtracks in the search tree to the previous
choice and try another branch. For example, consider the CSP with two variables
x and y both taking a value in the set {1, 2} (called the domain of the variable),
and the constraint x ̸= y. We first assign x to 1, and then y to 1 which result in
an unsatisfiable CSP because x ̸= y does not hold. Therefore, we backtrack in the
search tree by trying another branch which assigns y to 2. This time we obtain a
solution where x = 1 and y = 2. The algorithm exploring the search tree is called
a search strategy.

Synchronous programming

The synchronous paradigm [Hal92] proposes a notion of logical time dividing the
execution of a program into a sequence of discrete instants. The main goal of log-
ical time is to coordinate processes that are executed concurrently while avoiding
typical issues of parallelism, such as deadlock or indeterminism [Lee06]. During
one instant, processes execute a statically bounded number of actions—unbounded
loop or recursion are prohibited—and wait for each other before the next instant.

Although the programmer views a synchronous program as a set of processes
evolving more or less independently, the processes are scheduled sequentially at
runtime. In other words, every instruction of each process happens before or after
another one. An important aspect of the synchronous model is that a causality
analysis ensures programs to be deterministic (resp. reactive): at most (resp. at
least) one output is produced from one input. It implies that even if the program
can be sequentialized in different ways, it will always produce a unique result.

Concretely, we can implement a synchronous program as a coroutine: a function
that maintains its state between two calls. A call to the coroutine triggers the ex-
ecution of one instant. We must precise that the coroutine is generally called from
a host language interfacing between the user environment and the synchronous
program.

In this dissertation, we focus on the imperative synchronous language Es-
terel [Ber00b]. The input and output data of an Esterel program are boolean
variables called signals. A simple example of an Esterel program is a watch: its
state changes when the user presses buttons or when a second has elapsed. We
can imagine the buttons of the watch being boolean variables, and every process
implements the logic of one button. The causality analysis warns the programmer
about corner cases that he forgot to implement. For example, if the user presses
two buttons at the same time, and that their processes produce two output states
that are conflictual.
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Motivation

On the language side of constraint programming, pioneered by logic programming,
an influential paper of Kowalski captures the how and the what in the equation
“Algorithm = Logic + Control” [Kow79]. In the early day of logic programming, a
hope was to keep the control aspect hidden from the programmer who would only
specify the logic part of its program. Forty years have passed by but a solving
algorithm that is efficient for every problem is yet to be found. We quote Ehud
Shapiro [Sha86] who already commented on this illusory hope back in 1986:

The search for the ultimate control facility is just the search for the
“philosopher’s” stone in disguise. It is similar to the search for the gen-
eral problem-solver, or for the general efficient theorem-prover, which
simply does not exist. We have strong evidence today that many classes
of seemingly simple problems have no general efficient solution.

The logic part has been extensively studied with constraint modelling lan-
guages [Lau78, VHMPR99, NSB+07] and it is well-understood today. However,
while these languages are outstanding for the logic specification of combinatorial
problems (often NP-complete), the specification alone generally leads to poor per-
formances. This is why some limited form of controls exist in Prolog, such as
the controversial cut operator that prunes the search tree. Numerous approaches
have been designed to provide language abstractions for specifying the control part
of constraint solving [VH89, LC98, VHML05]. A fundamental question in these
approaches is the compositionality of search strategies: how can we easily com-
bine two strategies and form a third? Recently, we witness a growing number of
proposals [SSW09, STW+13, MFS15] that attempt to cope with this composition-
ality issue. This problematic is central in the design of the spacetime programming
language developed over this dissertation.

A search language is important because experience has proven that reducing
the solving time of combinatorial problems, especially in industry, must be tackled
per problem or even per problem-instance after the design and test of several solver
configurations and search strategies [SO08, TFF12]. Therefore, we need to easily
try and test the efficiency of new search strategies for a given problem. Currently,
the implementers of search strategies have to choose between limited but high-level
specification languages and full-fledged but low-level constraint libraries. The first
family encompasses constraint logic programming where control is obtained with
predetermined building blocks assembled within a search predicate. For example,
GNU-Prolog [DAC12] proposes the predicate fd_labelling/2 where the first argu-
ment is the list of variables and the second some options for selecting the variables
and values enumeration strategies. The second family concerns constraint libraries
such as Choco [PFL15] or GeCode [STL14] which are designed to be extensible and
opened to search programming while remaining very efficient. The main problem
of the library approach is that users need good understanding of the intrinsics of
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the library but only experts are knowledgeable in this domain. Of course, many
works attempt to bridge the gap between these two extreme categories, which we
will discuss in Chapter 2.

Overview

In Part I, we contribute to a theoretical framework of CSPs based on lattice theory.
Part II formalizes the syntax and semantics of spacetime programming based on
the lattice framework developed in the first part. Finally, in Part III, we develop
three applications of search strategies written in the spacetime paradigm. These
applications develop on the interactive and hierarchical aspects of spacetime pro-
gramming. We outline the content of each part in the following paragraphs.

Part I: A lattice theory of constraint programming

In Chapter 1, we formulate a lattice theory of constraint programming for finite
domains where constraint inference is based on the denotational model introduced
in [Tac09]. As far as we know, our theory is the first attempt to formalize the
structures underlying the inference and search components in a unified framework.
The main idea is to define a hierarchy of lattices where each level is built on the
powerset of the previous level. This hierarchical structure is central to constraint
programming, as the notions of domain, constraint and search tree depend on each
other. In Chapter 2, we review a large spectrum of constraint-based programming
languages. A new aspect of this study is to classify the various languages within
the hierarchy levels developed in the former chapter. To demonstrate the gener-
ality of our lattice hierarchy, we develop the lattice-based semantics of concurrent
constraint programming [Sar93] and constraint logic programming [MJMS98]. We
pinpoint several issues in modern search languages that are tackled by spacetime
programming later in our proposal.

Part II: Spacetime programming

In order to tackle the compositionality issue, our approach is to link constraint pro-
gramming and synchronous programming in a unified language, called spacetime
programming or “spacetime” for short. We briefly explain its model of computa-
tion and how its constructions are relevant to the lattice hierarchy developed in
Chapter 1.

Computational model Spacetime inherits most of the temporal statements of
Esterel, including the delay, parallel, loop, suspension and abortion statements.
We connect the search tree induced by constraint programming and the linear
time of synchronous programming with a principle summarized as follows:

A node of the search tree is explored in exactly one logical instant.
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Our key observation is that search strategies are synchronous processes exploring
a search tree at a same pace. A challenge is introduced by the notion of linear time
exploring a tree-shaped space: how does the variables evolve in time and space in
a coherent way? We propose to annotate variables with a spacetime attribute to
distinguish between variables local to one instant (single_time), variables global
to the whole computation (single_space) and backtrackable variables local to a
branch in the search tree (world_line). For example, a global variable can be
used to count the number of nodes in the search tree, and a backtrackable variable
can be the constraint problem itself.

Variables defined on lattices The second characteristic of spacetime is inherited
from concurrent constraint programming (CCP) [Sar93] where the memory is de-
fined by a global constraint store accumulating partial information. Processes can
communicate and synchronize through this store with two primitives: tell(c) for
adding a constraint c into the store and ask(c) for asking if c can be deduced from
the store. Concurrency is treated by requiring the store to grow monotonically, i.e.
removal of information is not permitted. The difference of spacetime with CCP
is that variables are all defined over lattice structures, instead of having a central
and global constraint store. The tell and ask operations in spacetime are defined
on lattices, where tell relies on the least upper bound operation and ask relies on
the order of the lattice. These lattice operations effectively relate the framework
developed in Chapter 1 and the spacetime language. Besides, we must note that
the lattice structures are programmed in the host language of spacetime. This al-
lows the user of spacetime to reuse existing constraint solvers which are abstracted
as lattice variables.

Causality analysis From a synchronous perspective, every instant of a spacetime
process is a monotonic function over its lattice variables. This property is ensured
by the causality analysis of spacetime (Section 4.5). It is an important contribution
because current synchronous languages are defined on a restricted class of lattices,
called flat lattices. We refine the behavioral semantics of Esterel [Ber02] to lattice-
based variables which imply scheduling read and write operations correctly. A
correct scheduling is crucial to preserve the deterministic and reactive properties
of a synchronous program.

Hierarchical computation The fourth concept synthesizes time hierarchy from
synchronous programming and spatial hierarchy from logic programming. Time
hierarchies were first developed in Quartz [GBS13] and ReactiveML [Pas13, MPP15]
to execute a process on a faster time scale. They propose that in one instant of
the global clock, we can execute more than one local step of a process. Spatial
hierarchies were introduced with logic programming and more particularly with
deep guards and computation spaces in the Oz programming language [Sch02]. It
executes a process locally with its own queue of nodes.
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We propose the concept of universe which encapsulates the spatial and time
dimensions of a computation. Basically a universe extends a computation space
to a clock controlling the evolution of its variables through time. In the lattice
hierarchy, a universe enables users to create an additional layer in the hierarchy.
This extension is particularly useful to write search strategies that restart the
search or explore several times a search tree. For example, by encapsulating a
process in a universe exploring a search tree, we can manipulate a collection of
search trees, where in each instant we explore a new search tree. The concept of
universe essentially implements the powerset derivation defining the levels of the
lattice hierarchy.

Part III: Applications

This last part studies three applications of spacetime programming built on search
strategies developed in the spacetime paradigm. In Chapter 6, we show how to
design a modular library of search strategies. It also illustrates that spacetime is
applicable to specialized and complex search strategies in the field of constraint
programming. Beyond constraint programming, spacetime is also suited to im-
plement interactive applications. In particular, we introduce in Chapter 7 an
interactive search strategy for a computer-aided composition system allowing the
composer to dynamically navigate in the state space generated by a musical CSP.
It attempts to put back constraints at the heart of the compositional process in-
stead of solving musical problems in a black box fashion. Finally, we expand the
scope of spacetime programming to model checking where we explore a new al-
gorithm based on a constraint store to solve parametric model checking problems
(Chapter 8).

Summary

To summarize, we introduce a programming language, called spacetime program-
ming, to control the evolution of lattice structures through a notion of logical
time. To demonstrate the capabilities of our proposal, we study CSPs as lattice
structures, which is a general framework for specifying and solving combinatorial
problems. A long-standing issue in this field, started with logic programming in the
seventies, is how to compose two existing search strategies. We demonstrate that
logical time is an excellent abstraction to program and combine search strategies
in order to solve a combinatorial problem. We extend the scope of this paradigm
by investigating an interactive computer-aided composition software and a model
checking algorithm based on constraints.
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Contributions

• A hierarchical lattice theory unifying the modelling and search compo-
nents (i.e. what and how) of constraint programming (Chapter 1).

• A survey of constraint-based programming languages that classifies
and formalizes constraint languages according to the lattice hierarchy (Chap-
ter 2). The main insight is that many constraint-based languages can be
defined over the same structure, which helps in better understanding their
differences.

• The semantics of spacetime programming provides the foundations for com-
posing search strategies which are synchronous processes over the lattice
hierarchy (Chapters 3, 4 and 5). The originality is to map logical time to the
exploration of the search tree.

• We propose a causality analysis of a spacetime program for variables
defined over lattices. It extends the causality analysis of Esterel which is
defined for boolean variables only.

• We show that modular, interactive and hierarchical search strategies
can be programmed in the spacetime language (Chapters 6, 7, and 8).

How to read this document

This dissertation is organized in 10 chapters that can be read in different ways.
We show the dependencies between the different chapters or parts in Figure 1.
For a short tour of the dissertation, we suggest to read Section 1.3 for the lattice
foundation, Chapter 3 for the overview of spacetime, and Chapter 7 for a more
in-depth example of an interactive search strategy for musical composition. The
survey in Chapter 2 can be read apart from the spacetime language.



Introduction 8

Chap. 1 Lattice for constraint solving (Section 1.3)

Chap. 2 Survey

Chap. 3 Overview of spacetime

Chap. 4,5 Semantics of spacetime

Part III Applications

Part IV Conclusion

Figure 1: Organization of the dissertation.



Part I

A Lattice Theory of Constraint
Programming



Chapter 1

Lattice Hierarchy for Constraint Solving

Over the years, numerous techniques have been devised to solve constraint
problems and to improve the efficiency of existing algorithms. They range from
low-level considerations such as memory management to higher-level techniques,
such as propagating constraint, learning new constraints, and intelligently split-
ting a state space. The current foundation of constraint programming is built
on a set theoretic definition of the constraint problem, which is explained in Sec-
tion 1.1. However, solving techniques frequently use more complex combinatorial
objects rather than the constraint problem structure alone. A prime example of
such objects is the search tree—a structure to enumerate all the solutions, which
is implicitly generated by the solving algorithm only. Since every algorithm is
different, we do not have a common ground to understand the subtle differences
among these techniques in terms of how they cooperate and integrate with each
other. Therefore, in order to understand the relations among available techniques,
we believe that a more extensive foundation of constraint programming is needed.

The purpose of this chapter is to devise a new foundation for constraint pro-
gramming, in which all the combinatorial structures are explicitly defined. To
achieve this, we rely on the theory of lattices to precisely capture the combinato-
rial objects underlying constraint solving. To make this chapter self-contained, we
introduce the basics of lattice theory in Section 1.2. Next, we organise the combi-
natorial objects of constraint programming in a hierarchy where each level relies on
the levels before it (Section 1.3). For example, relations are defined onto variables;
a search tree is a collection of partially solved constraint problems. Once this
structure defined, we present several key constraint solving techniques as mono-
tonic functions over this hierarchy. Furthermore, with an algebraic view of lattices,
we demonstrate that most algorithms are defined by a combination of three lattice
operators. This finding provides a common ground for many techniques including
constraint propagation (Section 1.4), backtracking search (Section 1.5), optimiza-
tion problems (Section 1.6) and backjumping (Section 1.7). Of course, as discussed
in Section 1.8, there are more techniques that are interesting to study through the
lattice theory. We limit the scope of this chapter to exhaustive solving algorithms

10
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over finite domains, and thus finite lattices, which is one of the most successful
settings of constraint programming.

1.1 Constraint programming

Constraint programming is a declarative paradigm for solving constraint satis-
faction problems (CSPs) [RvBW06]. The programmers only need to declare the
structure of a problem with constraints (e.g. x > y ∧ x ̸= z) and it is auto-
matically solved for them. We illustrate the modelling aspect of constraint pro-
gramming in Section 1.1.1 with a musical problem. Under the hood, constraint
solving usually relies on a backtracking algorithm enumerating the values of the
variables until we find a solution, i.e. all the constraints are satisfied. We in-
troduce a mathematical framework for solving finite CSPs in Section 1.1.2 which
is based on the dissertation of Guido Tack [Tac09]. In contrast, other heuris-
tic methods such as local search, not guaranteeing to find a solution, are left
out of scope in this dissertation. What’s more, in Section 1.1.3, we focus on a
propagation-based algorithm which is a technique used in almost every constraint
solver (e.g. [STL14, PFL15, GJM06, IBM15]). The lattice framework developed
in the rest of this chapter is built on the definitions introduced here.

1.1.1 Constraint modelling

As a first example of constraint modelling problem, we consider the all interval-
series (AIS) musical problem1, for example described in [MS74]. It constrains
the pitches of the notes as well as the intervals between two successive pitches to
be all different. Initially, the pitches are initialized in the interval domain [1..12].
The domains are pictured by the rectangles on the following score:

& 124
Throughout the solving process, the domains become smaller, and are eventually
instantiated to a note when we reach a solution. An example of such a solution is:

& 124
n# n n n# n

n
n

n#
n# n# n n

For the composer, it forms a raw material that can be transformed again using
others tools such as OpenMusic [AADR98].

The AIS problem can be specified using a constraint modelling language. We
illustrate this using MiniZinc [NSB+07] which is one of the most popular modelling
languages.

1AIS is a classic CSP occurring as the problem number 007 in the library CSPLib [GW99].
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int: n = 12;

array[1..n] of var 1..n: pitches;

array[1..n-1] of var 1..n-1: intervals;

constraint forall(i in 1..n-1)

(intervals[i] = abs(pitches[i+1] - pitches[i]));

constraint forall(i,j in 1..n where i != j)

(pitches[i] != pitches[j]);

constraint forall(i,j in 1..n-1 where i != j)

(intervals[i] != intervals[j]);

solve satisfy;

This code is purely declarative. The arrays pitches and intervals are respec-
tively storing the pitches and the differences between these pitches. The macro
forall(r)(c) generates—at compile time—a conjunction of the constraints ci for
each i in the range expression r. The first forall is used to initialize the array
intervals with the absolute difference between two pitches. Due to the relational
semantics of constraints, the equality predicate = ensures that the value of an
interval is synchronized with every pair of successive pitches. Hence, we can read
the equality in both directions: the pitches constrain the interval and the interval
also constrains the pitches. The last two forall statements generate inequality
constraints ensuring that all pitches and intervals are pairwise distinct. It remains
the statement solve satisfy which is a “solve button” for obtaining a solution
to this model from the system.

One of the principal reason behind the efficiency of a constraint solver is the
presence of global constraints. A global constraint is a n-ary relation captur-
ing a structure that abstracts a common modelling sub-problem. For example,
the global constraint alldifferent({x1, . . . , xn}) enforces that the set of vari-
ables {x1, . . . , xn} contains only different values. A catalogue of the most common
global constraints has been established [BCR11] and is updated continuously to
incorporate the newest constraints. A large body of work in the constraint pro-
gramming community is the design of efficient algorithms for existing and novel
global constraints but it is out of scope in this work. Back to the AIS example,
we observe that the last two forall generators are actually both enforcing the
alldifferent global constraints on different arrays. In MiniZinc, we can improve
the model with the alldifferent global constraints provided by the system:

(...)
constraint alldifferent(pitches);

constraint alldifferent(intervals);

solve satisfy;

Actually, we initially provided a decomposition of the alldifferent constraint into
a conjunction of more elementary constraints. It means that any solver supporting
these elementary constraints also supports this global constraint. However, in
practice, global constraints are usually mapped to more efficient but lower-level
algorithms.

We only give a shallow introduction to the art of modelling with constraints.
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The interested reader can find more information and references about constraint
modelling in [RvBW06].

1.1.2 Constraint solving

In this thesis, we will be mostly concerned with the constraint solving algorithms
behind the “solve button”. We start by giving the mathematical foundations for
constraint solving and several examples. These definitions are based on [Tac09].

Definition 1.1 (Assignment function). Given a finite set of variables X and a
finite set of values V , an assignment function a : X → V maps every variable to

a value. We note the set of all assignments Asn
def

= V X where V X is the set of all
functions from X to V .

In addition, we define a partial assignment which is an assignment such that at
least one variable is mapped to more than one value.

Given a set S, we use P(S) to denote the powerset of S.

Definition 1.2 (Constraint satisfaction problem (CSP)). A CSP is a tuple ⟨d, C⟩
where

• The domain function d : X → P(V ) maps every variable to a set of values
called the domain of the variable.

• The constraint set C is a subset of the powerset P(Asn).

An alternative but equivalent presentation of a CSP is the tuple ⟨X,D,C⟩ where
the set of variables X and of domains D are made distinct while, in our case, it
is embedded in the domain function d. In our framework, a constraint c ∈ C is
defined in extension since c is the set of all assignments satisfied by this constraint.
Thus, any assignment a ∈ c is a solution of the constraint c. For example, the
constraint x < y is induced by the set {a ∈ Asn | a(x) < a(y)}.

The domain function itself can be viewed as a constraint con(d) defined by its
set of assignments, and an assignment a ∈ Asn as a domain function:

con(d)
def

= {a ∈ Asn | ∀x ∈ X, a(x) ∈ d(x)}

dom(a)
def

= ∀x ∈ X, d(x) 7→ {a(x)}

From these definitions, we can define the set of solutions of a CSP ⟨d, C⟩ as

sol(⟨d, C⟩)
def

= {a ∈ con(d) | ∀c ∈ C, a ∈ c}

This mathematical framework leads to a “generate-and-test” backtracking al-
gorithm. It enumerates all the possible combinations of values in the variables’
domains and tests for each assignment if the constraint set is satisfied. Modern
constraint solvers offer many optimizations building on this backtracking algo-
rithm. To start with, we consider the “propagate-and-search” algorithm which
interleaves two key steps:
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Algorithm 1 Propagate-and-search solve(⟨d,C⟩)

Input: A CSP ⟨d,C⟩
Output: The set of all the solutions

1: d′ ← propagate(⟨d,C⟩)
2: if d′ = ∅ then
3: return ∅
4: else if d′ = {a} then
5: return {a}
6: else
7: ⟨d1, . . . , dn⟩ ← branch(d′)
8: return

∪n
i=0 solve(⟨di, C⟩)

9: end if

1. Propagation as an inference mechanism for removing values from the vari-
ables’ domains that do not satisfy at least one constraint.

2. Search successively enumerates the different values in the variables’ domains.
The domains are backtracked to another choice if the former did not lead to
a solution.

We define more precisely these two components and then give the full algorithm.
We see propagation abstractly as a function propagate(⟨d, C⟩) 7→ d′ mapping a

CSP ⟨d, C⟩ to a reduced domain d′ which is empty if the problem is unsatisfiable.
We spend some times explaining propagation in more depth thereafter, but we
give a first example of the propagation mechanism.

Example 1.1 (Propagation of x > y). Consider the following CSP

⟨{x 7→ {0, 1, 2}, y 7→ {0, 1, 2}}, {x > y}⟩

where x and y take values in the set {0, 1, 2} and are subject to the constraint
x > y. Without enumerating any value, we can already remove 0 from the domain
of x and 2 from the domain of y since there is no solution with such partial
assignment. Applying propagate to this problem maps to the domain function:

{x 7→ {1, 2}, y 7→ {0, 1}}

⌟

The second component, search, relies on a branching function splitting the
domain into several complementary sub-domains.

Definition 1.3 (Branching function). The function branch(d) 7→ (d1, . . . , dn)
maps a domain function d to a sequence of domain functions (d1, . . . , dn) such
that:

(i) con(d) =
∪

i∈[1..n] con(di) (complete)

(ii) ∀i ∈ [1..n], con(di) ⊂ con(d) (strictly monotonic)
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The two conditions ensure that splitting a domain must not remove some po-
tential solutions (completeness) and must strictly reduce the domain set (strict
monotonicity). This last condition is necessary to ensure the termination of the
enumeration algorithm.

{x 7→ {0, 1, 2}, y 7→ {0, 1, 2}}

{x 7→ {1, 2}, y 7→ {0, 1}}

{x 7→ {1}, y 7→ {0, 1}}

{x 7→ {1}, y 7→ {0}}

{x 7→ {2}, y 7→ {0, 1}}

{x 7→ {2}, y 7→ {0, 1}}

{x 7→ {2}, y 7→ {0}} {x 7→ {2}, y 7→ {1}}

propagate

Jx = 1K Jx = 2K

propagate propagate

Jy = 1K Jy = 2K

Figure 1.1: Search tree generated by the propagate-and-search algorithm.

Propagation and search are assembled in a backtracking algorithm presented
in Algorithm 1. Whenever we obtain an empty domain d′, we return an empty
solution’s set indicating that the input CSP has no solution. If the domain d′ is
an assignment after propagation, it ensures that it is a solution and we return
it. The successive interleaving of choices and backtracks leads to the construction
of a search tree. All in all, a search tree is obtained by recursively applying the
branching function on the CSP, and by propagating the domains in each node.

Example 1.2 (Search tree of x > y). In Figure 1.1, we unroll the propagate-
and-search algorithm on the CSP given in the Example 1.1. It alternates between
propagation and branching until we reach a leaf of the search tree which are all
solutions (highlighted in grey). In this case, the branching function is a flat enu-
meration of the values in the domains, we will see other branching strategies in
Section 1.5.3. ⌟

Constraint optimization problems

One of the most important variations of the propagate-and-search algorithm is for
solving constraint optimization problems. Instead of finding one or all solutions, we
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want to find the best solution according to an objective function. More specifically,
given an objective function f(x) where x is a variable, it tries to find a solution in
which the value of x minimizes or maximizes f(x). The usual algorithm is branch
and bound: every time we reach a solution, we constrain the CSP such that the
next solution is forced to be better (in the sense of the objective function). In
branch and bound, the objective function is implemented with a constraint that is
added globally to the CSP during the search. We delay the explanation of a more
formal definition to Section 1.6.

1.1.3 Propagation

In the former definitions, constraints are given in an extensive manner but this is
poorly suited for implementation purposes. To improve efficiency, we rely on the
notion of propagator, which is a function representing a constraint. The role of a
propagator is twofold: pruning the domain and deciding if an assignment is valid
with regard to its induced constraint.

Definition 1.4 (Propagator). Let Dom
def

= P(V )X be the set of all the possible
domain functions. Given a function p : Dom → Dom, we say that a ∈ Asn is
a solution of p if p(dom(a)) = dom(a). Then, p is a propagator if it satisfies the
following properties:

(P1) ∀d ∈ Dom, p(d) ⊆ d (contracting)
(P2) For any solution a of p and ∀d ∈ Dom, (sound)

dom(a) ⊆ d implies dom(a) ⊆ p(d)

where the inclusion between two domain functions d ⊆ d′ is defined if ∀x ∈ X, d(x) ⊆
d′(x).

The contracting property ensures that a propagator p can only reduce domains and
the soundness ensures that p cannot reject valid assignments. A constraint cp ∈ C
is induced by a propagator p ∈ Prop if cp = {a ∈ Asn | p(dom(a)) = dom(a)}, i.e.
the set of all solutions of p, where Prop is the set of all propagators. Therefore, for
a single constraint, there are several propagators that are more or less contracting
but implement the same constraint. In the following, we use the function JcK to
denote a propagator function for a constraint c, e.g. Jx > yK. We stay abstract
over the exact definition of a propagator. The fact that it induces its constraint is
generally enough.

Definition 1.5 (Propagation problem). A propagation problem ⟨d, P ⟩ where d is
the domain function and P ⊆ Prop is the set of propagators is equivalent to the
CSP:

⟨d, {cp ∈ C | p ∈ P}⟩

where C is a constraints set (Definition 1.2).
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The propagate-and-search algorithm can be directly adapted to deal with a prop-
agation problem.

Intuitively, the function propagate(⟨d, P ⟩) reduces the domain d by computing
a fixed point of p1(p2(. . . pn(d))) for every pi ∈ P . Reaching a fixed point indicates
that the propagators cannot infer additional information anymore and that we
need to branch for progressing. This fixed point computation can be adequately
formalized by viewing propagation as a transition system [Tac09].

Definition 1.6 (Transition system). A transition system is a pair ⟨S,→⟩ where
S is the set of states and → the set of transitions between these states.

Definition 1.7 (Propagation-based transition system). The transition system of
a propagation problem is a pair ⟨Dom,→⟩ where the transition →: Dom×Prop×
Dom models the application of a propagator to the domain. We require that any

transition (d, p, d′) ∈→, noted d
p
−→ d′, satisfies the following properties:

(P1) p(d) = d′ (propagating)
(P2) dom(p(d)) ⊂ dom(d) (strictly monotonic)

The transition is lifted to CSP structures ⟨d, P ⟩
p
−→ ⟨d′, P ⟩ with the additional

condition that p ∈ P . We write its transitive closure as ⟨d, P ⟩ ⇒ ⟨d′, P ⟩ where
⟨d′, P ⟩ is necessarily a fixed point of the transition system.

It forms a non-deterministic transition system: there are more than one possible
transition that can be applied on some states. Hence, there exists various algo-
rithms for deciding in which order to apply the transitions in order to reach a fixed
point faster. For example, we refer to [Tac09, PLDJ14] for more information on the
various propagation algorithms. The following abstract definition of propagation
will be sufficient in this dissertation.

Definition 1.8 (Propagation). Let ⟨d, P ⟩ be a propagation problem, the propagation
function is defined as

propagate(⟨d, P ⟩) 7→ ⟨d′, P ⟩ where ⟨d, P ⟩ ⇒ ⟨d′, P ⟩

Lastly, we give an important property of the propagation-based transition sys-
tem.

Theorem 1.1 (Confluence). The fixed point of the transition system is unique if
all the propagators are contracting, sound and monotonic (i.e. d ⊆ d′ ⇒ p(d) ⊆
p(d′)). Hence, the transition system is confluent.

The proof can be found in [Tac09].
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1.2 Lattice structure

We first recall some definitions on complete lattices and introduce some notations2.

Definition 1.9 (Orders). An ordered set is a pair ⟨P,≤⟩ where P is a set equipped
with a binary relation ≤, called the order of P , such that for all x, y, z ∈ P , ≤
satisfies the following properties:

(P1) x ≤ x (reflexivity)

(P2) x ≤ y ∧ y ≤ x =⇒ x = y (antisymmetry)

(P3) x ≤ y ∧ y ≤ z =⇒ x ≤ z (transitivity)

(P4) x ≤ y ∨ y ≤ x (linearity)

An order is partial if the relation ≤ only satisfies the properties P1-P3, that is, it
is not defined for every pair of elements. In this case, we refer to the set P as a
partially ordered set (poset). Otherwise, the order is total and the set is said to be
totally ordered.

In case of ambiguity, we refer to the ordering of the set P as ≤P and similarly
for any operation defined on P . We can classify functions with several properties
when applied to ordered sets.

Definition 1.10. Given the ordered sets P and Q, and x, y ∈ P , a function
f : P → Q is said to be order-preserving (or monotonic) if x ≤P y ⇒ f(x) ≤Q

f(y), an order-embedding if in addition the function is injective and an order-
isomorphism if the function is bijective.

We will focus on a particular class of ordered structures, namely lattices, and
we introduce several definitions beforehand.

Definition 1.11 (Upper and lower bounds). Let ⟨L,≤⟩ be an ordered set and
S ⊆ L. Then

• x ∈ L is a lower bound of S if ∀y ∈ S, x ≤ y,

• Sℓ denotes the set of all the lower bounds of S,

• x ∈ L is the greatest lower bound of S if ∀y ∈ Sℓ, x ≥ y.

The (least) upper bound and the set of all upper bounds Su are defined dually by
reversing the order (using ≥ instead of ≤ in the definitions and vice-versa).

Definition 1.12 (Lattice). An ordered set ⟨L,≤⟩ is a lattice if every pair of ele-
ments x, y ∈ L has both a least upper bound and a greatest lower bound.

2See for example [DP02] for a more in depth presentation of the order and lattice theories.
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Definition 1.13 (Complete lattice). A lattice ⟨L,≤⟩ is complete if every subset
of S ⊆ L has both a least upper bound and a greatest lower bound. A complete
lattice is always bounded: there is a supremum ⊤ ∈ L such that ∀x ∈ L, x ≤ ⊤
and an infimum ⊥ ∈ L such that ∀x ∈ L, ⊥ ≤ x.

As a matter of convenience and when no ambiguity arises, we simply write L
instead of ⟨L,≤⟩ when referring to ordered structures. An alternative presentation
is to view a lattice as an algebraic structure.

Definition 1.14 (Lattice as algebraic structure). A lattice is an algebraic structure
⟨L,⊔,⊓⟩ where the binary operation ⊔ is called the join and ⊓ the meet. The join
x ⊔ y is the least upper bound of the set {x, y} and the meet x ⊓ y is its greatest
lower bound. We use the notation

⊔

S (resp.
d
S) to compute the least upper

bound (resp. greatest lower bound) of the set S.

As shown in [DP02], the operations ⊔ and ⊓ satisfy several algebraic laws.

Theorem 1.2. Let L be a lattice and x, y, z ∈ L. Then

(L1) x ⊔ (y ⊔ z) ≡ (x ⊔ y) ⊔ z (associative law)
(L2) x ⊔ y ≡ y ⊔ x (commutative law)
(L3) x ⊔ x ≡ x (idempotent law)
(L4) x ⊔ (x ⊓ y) ≡ x (absorption law)

We obtain the dual laws by exchanging ⊔ with ⊓ and vice-versa.

The distinction between lattices and complete lattices only arises for infinite sets
since any finite lattice is complete [DP02]. The proof of this claim is given by
unfolding an expression

⊔

S as an expression ∀si ∈ S, s1⊔ . . .⊔ sn, by application
of the associativity law 1.2(L1), we obtain a unique element. In the following, we
consider lattices to be finite as it is usually the case in the field of constraint pro-
gramming. Extending the framework developed in this chapter to infinite lattices
is of great interest but is left to future works.
To complete this short introduction, we define the notion of sublattice which is a
subset of a lattice that is itself a lattice.

Definition 1.15 (Sublattice). Let ⟨L,≤⟩ be a lattice and S ⊆ L. Then S is a
sublattice of L if for each x, y ∈ S we have x ⊔L y ∈ S and x ⊓L y ∈ S.

In the following, we interpret the order of a lattice ≤ in the sense of information
systems. It views the element bottom ⊥ as being the element with the fewer
information and the element top⊤ as the element that contains all the information.
This “contains more information than” order is noted |= and named the entailment
operator. The entailment relation is often the inverse of the intuitive order of a
lattice. This has no impact on the mathematical ground since, by the duality
principle, any theorem on a (complete) lattice is also valid for its inverse order.
Note that our usage of the symbol |= is not directly relevant to logical consequence
and should be understood only as an order symbol.
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0 = ⊤

1

n

⊥

(a) Lattice LMin(N)

⊤

n

1

0 = ⊥

(b) Lattice LMax(N)

[0..2]

[0..1] [1..2]

[0..0] [1..1] [2..2]

∅

(c) Lattice I (3)

Figure 1.2: Examples of lattices’ diagrams.

Notation 1.1 (Defining new lattice). We define a new lattice as L = ⟨S, |=⟩ where
S is its set of elements and |= the order. Sometimes, the set S is already a lattice
by construction, for example the Cartesian product of two lattices is a lattice.
In this case, we omit the order which is inherited from S and we write L = S.
When necessary, because we often manipulate lattices defined over other lattices,
we disambiguate the order of a lattice with |=L where |= is the order of L.

Example 1.3 (LMin and LMax lattices). The lattices of decreasing and increas-
ing natural numbers are defined as LMin = ⟨N,≥⟩ (Figure 1.2a) and LMax =
⟨N,≤⟩ (Figure 1.2b). Algebraically, we have ⟨LMin,min,max⟩ where the mini-
mum operation between two numbers is the join and the maximum is the meet ;
this is reversed for ⟨LMax,max,min⟩. For example, these lattices are used in the
context of the BloomL language for distributed programming [CMA+12]. We use
them extensively across this dissertation. ⌟

Example 1.4 (Lattice of natural intervals). An natural interval with lower and
upper bounds l, u ∈ N is defined as [l..u]

def

= {x | l ≤ x ≤ u}. The set of natural
intervals is defined as I = {[l..u] | ∀l, u ∈ N}. The lattice of natural intervals is
⟨I , |=⟩ where |= is the set relation ⊆, the bottom element is the set N and the
top element is the empty set ∅. This is illustrated in Figure 1.2c with a sublattice
of I ranging over the numbers in 3 = {0, 1, 2}. For example, the interval [0..0]
contains more information than [0..2]. It captures the concept of a CSP’s variable:
we declare a variable with a domain between 0 and 2 because we do not know its
exact value. ⌟

Deriving new lattices

In the Example 1.3, we made the choice of defining the lattices LMin and LMax
over the set of natural numbers N but it could be equally defined for the set of
integers Z. More generally, as long as the underlying set is totally ordered, the
corresponding LMin and LMax lattices can be defined. This hints to a notion of
parametric structures where a lattice is built upon existing structures satisfying
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some conditions, e.g. that the underlying set is totally ordered. In this chapter,
we build a hierarchy of lattices and therefore it is worthwhile to introduce some
notations.

Notation 1.2 (Parametric structure). A parametric structure S relies on a se-
quence of structures (P1, . . . , Pn). We note it S(P1, . . . , Pn) and S is said to be a
constructor. The arguments of a parametric structure are sometimes left implicit
in a definition, in which case we suppose they satisfy the conditions given in the
definition of S.

Using this notation we can rework the definitions of LMin and LMax to be more
general.

Definition 1.16 (LMin and LMax lattices). Let ⟨S,≤⟩ be a total order. Then

LMin(⟨S,≤⟩) = ⟨S,≥⟩
LMax(⟨S,≤⟩) = ⟨S,≤⟩

Hence we write LMin(⟨N,≥⟩) for the decreasing lattice of natural numbers. For
clarity, we will leave the order implicit, as in LMin(N), when no ambiguity arises.

We define several other useful derivations that will be used across this dis-
sertation. A basic but convenient derivation is to create a lattice—called a flat
lattice—from any unordered set.

Definition 1.17 (Flat lattice). Any set S can be turned into a flat lattice by adding
the two elements ⊥ and ⊤ to S, and with the order ∀x ∈ S, ⊥ ≤ x ≤ ⊤.

In computer science, this is extremely useful for embedding any set of values
(described by a type) into a lattice.

Example 1.5 (Logic variable). Logic variables pertain to languages based on
logic programming. This concept dates back to the first implementation of Prolog
and, more generally, is unavoidable when using unification. Indeed, the concept of
unbound variable corresponds to a variable equals to ⊥ and a bound variable to
a variable equals to one of the values in the set S. As induced by the flat lattice’s
order, an unbound variable may become bounded at some points but this does
not happen in the other direction if the program is monotonic. Trying to assign a
new value to an already bounded variable results in the ⊤ element—equivalent to a
failure—which possibly generates the backtracking of the system. Logic variable is
one of the important concepts inherited by multi-paradigm languages supporting
logic programming such as Oz [VRBD+03]. ⌟

We can compose two lattices to obtain a new one in different ways, we introduce
the disjoint union and the linear sum operators (which are defined more generally
on ordered sets). The linear sum P ⊕Q is a more general derivation than the flat
lattice in which every element in Q becomes greater than any elements in P .
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Definition 1.18 (Linear sum). Given two disjoint posets P and Q, we define their
linear sum as:

P ⊕Q = ⟨P ∪Q, x |= y if







x, y ∈ P ∧ x |=P y
∨ x, y ∈ Q ∧ x |=Q y
∨ x ∈ P, y ∈ Q

⟩

Given a poset S, its flat lattice construction is given by the linear sum {⊤S} ⊕
S ⊕ {⊥S} where ⊥S,⊤S ̸∈ S. The disjoint union P ∪̇ Q composes the ordered
sets P and Q such that every element in the new set is still ordered as in their
original set.

Definition 1.19 (Disjoint union). Given two disjoint posets P and Q, it is defined
as follows:

P ∪̇ Q = ⟨P ∪Q, x |= y if

{

x, y ∈ P ∧ x |=P y
∨ x, y ∈ Q ∧ x |=Q y

⟩

Schematically, the diagrams of P and Q are put side by side (for the linear sum
one is put one below the other).

Cartesian product

The Cartesian product of two lattices gives a lattice with a coordinate-wise order.

Definition 1.20 (Cartesian product). Let L and K be two lattices. The Cartesian
product L×K produces the following lattice:

L×K = ⟨{(x, y) | x ∈ L, y ∈ K}, (x1, y1) |= (x2, y2) if

{

x1 |=L x2

∧ y1 |=K y2
⟩

The join and meet operations are also defined coordinate-wise.

Given the lattice L1 × L2, it is useful to define the following projection functions,
for i ∈ {1, 2}:

πi : L1 × L2 → Li defined as πi((x1, x2)) 7→ xi

An interesting property is that, given two monotone functions f : L1 → L1 and
g : L2 → L2, and an element x ∈ L1 × L2, we have

((f ◦ π1)(x), (g ◦ π2)(x)) |= x

That is, applying the functions f and g independently on each projection of x
preserves the order of the structure. The proof of this claim is directly given by
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definition of the order of the Cartesian product. For the sake of readability, we
also extend the projection over any subset S ⊆ L1 × L2 as:

π′
i : P(L1 × L2)→ P(Li) defined as π′

i(S) 7→ {πi(x) | x ∈ S}

This derivation is the basis of compound data structures in programming lan-
guages such as structures in the imperative paradigm and class attributes in the
object-oriented paradigm. In particular, the latest property allows us to prove
that a program monotone over some components of a structure is monotone over
the whole structure (which is a product of its components).

Using this derivation, we can generalize the lattice of natural intervals (Exam-
ple 1.4) to arbitrary totally ordered sets using the LMin and LMax derivations.

Definition 1.21 (Lattice of intervals). Let S be a totally ordered set. The lattice
of intervals of S is defined as:

I (S) = {⊤} ∪ {(l, u) ∈ LMax(S)× LMin(S) | l ≤S u}

The top element represent any interval where l > u.

Compared to the former definition, the usage of derivations allows for a more
general formulation. The order is directly inherited from the Cartesian product
which, in turn, uses the orders of LMin and LMax. In the context of I , we refer
to the projection functions π1 and π2 respectively as lb and ub (standing for lower
and upper bound).

Powerset-based derivations

We focus on an important family of derivations based on the powerset of a set.
This is especially important for defining the lattice framework for constraint pro-
gramming. Given any set S, we write ∅ ̸= L ⊆ P(S) a family of sets of S. If ⟨L,⊆⟩
is a lattice ordered by set inclusion it is known as the lattice of sets and we have
the join as the set union and the meet as the set intersection. In our settings, this
lattice is not so interesting because it does not rely on the order of the internal set
S but instead sees its elements as atomic.

Example 1.6. Let ⟨P(I (3)), |=⟩ be the powerset lattice of the lattice I (3) given
in Figure 1.2c and S |= Q⇐⇒ S ⊆ Q be the order. Then

{[0..0]} |= {[0..0], [1..1]}

but {[0..0]} and {[0..1]} are unordered since [0..0] /∈ {[0..1]}. ⌟

Of course, we would like to have {[0..0]} |= {[0..1]} where |= is defined inductively
using [0..0] |=I (3) [0..1]. This leads us to a preliminary attempt by defining the
order of the powerset of any lattice L as follows:
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⟨P(L), S |= Q if ∀y ∈ Q, ∃x ∈ S, x |=L y⟩

Intuitively, a set S contains more information than Q if for each element y ∈ Q,
there exists an element in S that contains more information than y. Unfortunately,
this is not an order over P(L) because the intuitive ordering |= is irreflexive in
this context. Consider the following example:

given a = {[0..1], [0..0]} and b = {[0..0]} does a
?

|= b hold?

According to the definition we have a |= b and b |= a but a ̸= b so the relation is
not reflexive and thus it is not an order. This is due to the fact that an element
in a lattice L has several equivalent representations in the powerset P(L). To see
that, consider a, b ∈ L and a ⊔ b = a ∧ a ̸= b, then we have at least {a, b} and
{a} in P(L) which contains the “same amount of information”, and thus should
be equal.

We solve this problem by considering a specific lattice of sets called the an-
tichain lattice. First, we define the notions of chain and antichain.

Definition 1.22 (Chain and antichain). Let P be a poset and S ⊆ P . Then

• S is a chain in P if S is a totally ordered set, and

• S is an antichain in P if S only contains unordered elements:

∀a, b ∈ S, a |= b⇒ a = b

Therefore, an antichain does not contain the redundant elements that bothered us
with the former order. This leads us to consider the lattice of antichains A (L) ⊆
P(L) [CL01, BV18].

Definition 1.23 (Antichain completion). Let P be a poset, the antichain comple-
tion of P is given by

A (P ) = ⟨
{S ⊆ P(P ) | S is an antichain in P},
S |= Q if ∀y ∈ Q, ∃x ∈ S, x |=P y⟩

When the base set P is a lattice, we have the following theorem.

Theorem 1.3. The antichain completion A (L) of a lattice L is a lattice.

Proof. We give a proof by contradiction. For any two antichains S,Q ∈ A (L) we
must have S ⊔Q ∈ A (L). If R = S ⊔A (L)Q is not an antichain then there are two
elements a, b ∈ R such that a |= b. Since S and Q are antichains (by definition of
A (L)), we must have a ∈ S and b ∈ Q (or reversed which is not a problem since ⊔
is commutative). Since L is a lattice, we have c = a⊔L b and c ∈ L. Thus, we can
build a set R′ = R \ {a, b} ⊔ c such that R′ |= R. Hence R is not the least upper
bound of S and Q, and it contradicts the initial hypothesis. Therefore, R is an
antichain since it cannot contain two ordered elements, and thus R ∈ A (L).
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Store derivation

The concept of store is central to computer science as we manipulate values through
variables, or at a lower-level, through memory addresses. This notion of variables—
in the sense of programming languages—allows us to have duplicate values with
different locations. This is why we give a lattice derivation to build a store from
any lattice of values. We first define the intermediate notion of indexed poset and
then define the lattice of a store.

Definition 1.24 (Indexed poset). Given an index set Loc and a poset of values
V , an indexed value—that we call a variable—is a pair (l, v) where l ∈ Loc and
v ∈ V . The indexed partially ordered set of V is defined as follows:

Indexed(Loc, V ) = ⟨Loc× V, (l, v) |= (l′, v′) if l = l′ and v |=V v′⟩

The order is identical to the one of the poset V when two values have the same
location. Given an element x ∈ Indexed(Loc, V ), we use the projection function
loc(x) and value(x) for retrieving respectively the location and the value of x. An
indexed poset is particularly useful to define the notion of collection of values,
namely a store.

Definition 1.25 (Store). Given a lattice L and an index set Loc, a store is de-
fined as the indexed powerset of L in which every element contains only distinct
locations. It is defined as follows:

Store(Loc, L) = {S ∈ A (Indexed(Loc, L)) | ∀x, y ∈ S, loc(x) = loc(y)⇒ x = y}

It inherits the order of the antichain lattice. Its bottom element ⊥ is the empty
set.

We can view an element s ∈ Store(Loc, L) as a function s : Loc′ → L mapping
a location to its value: s(l) = v iff ∃(l, v) ∈ s where Loc′ ⊆ Loc is the subset of
location in s. In the following, when omitted, we consider the index set Loc to be
equal to a finite subset of N.

Example 1.7. Given the store SI = S(I (3)) of the lattice of integer intervals
(modulo 3), the stores {(0,⊥)} and {(2, [0..1]), (3,⊥)} are elements of SI but
{(0,⊥), (1, [1..2]), (1, [0..2])} is not since there are two variables at the location 1.
Also, notice that the order of the store is not the set inclusion. Indeed, consider
s1 = {(0, [0..2])} and s2 = {(0, [1..1]), (1, [0..1])}, s2 |= s1 is not defined under the
set inclusion order, but it is intuitive that the store s2 contains more information
than s1 since we have [1..1] |= [0..2] and s1 does not contain elements that are not
in s2. The order of the store ensures that s2 |= s1 holds whenever the values in s2
are stronger than all the values in s1. ⌟

We now show that this derivation is a lattice if the base structure is a lattice.
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Lemma 1.4. If L is a lattice, then the top element ⊤ of its derivation Store(Loc, L)
is the set {(l,⊤) | l ∈ Loc}.

Theorem 1.5. Let L be a lattice. Then the store derivation Store(Loc, L) is a
lattice.

Proof. We proceed by case analysis over the least upper bound of two stores S,Q ∈
Store(Loc, L):

• If S equals ⊤, then Q ⊔ ⊤ = ⊤ by definition of a lattice, and by Lemma 1.4
⊤ ∈ Store(Loc, L).

• Similarly, if S equals ⊥, then Q ⊔ ⊥ = Q and from the hypothesis we have
Q ∈ Store(Loc, L).

• By 1.2(L2), it is similar with Q.

• For all pair of elements (l, v) ∈ S and (l′, v′) ∈ Q where l = l′, their joins,
defined as (l, v)⊔(l′, v′) = (l, v⊔Lv

′), belong to Store(Loc, L). Indeed, since S
and Q are antichains, there can only be two elements with the same location
in S ∪ Q, and since we join them, the result is unique in the new antichain.
For the others elements with unique location in S or Q, they do not overlap
in S ⊔Q and thus the result preserves the antichain property.

Hence, since every element S and Q has a least upper bound in Store, we conclude
that Store is a lattice.

Definition 1.26 (Store operations). Let Loc be a finite set of locations, L a lattice
and S = Store(Loc, L) a store. It is convenient to define several operations over a
store:

• minloc : S → LMin(Loc) and maxloc : S → LMax(Loc) respectively maps
to the minimal and maximal location of a value in a store. They are defined
as follows:

minloc(s) 7→ min(π1(s))
maxloc(s) 7→ max(π1(s))

• alloc : S × L→ S for allocating a value in a store at a fresh location and is
defined as

alloc(s, v) 7→ s′ where s′ = s ⊔ {(l, v)} such that
∀l′ ∈ Loc, l′ > maxloc(s) ∧ l ≥ l′ ⇒ l = l′

The maximal location is used to allocate a value at the next available location.

Proposition 1.6. The functions minloc, maxloc and alloc are surjective order-
preserving functions.
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1.3 Lattice hierarchy for constraint programming

In Section 1.1, we saw that domains are defined as a set of values and constraints
as a set of assignments. This hints to a hierarchical structure of the constraint
framework where one layer relies on the lower layers. We formalize this intuition by
defining these layers as lattice structures by successive powerset-based derivations.
This is captured by the following notion of lattice hierarchy.

Definition 1.27 (Lattice hierarchy). Given a set S, a lattice hierarchy of S is a
collection of lattices (L0, L1, . . . , Ln) such that:

(i) L0 is the flat lattice of S.

(ii) For every lattice Li with i > 0, we have a pair of functions (h↓i , h↑i):

h↓i : Li → Store(Li−1)
h↑i : Li−1 → Li

where h↓i is an order-preserving function and h↑i is an order-embedding func-
tion.

On the one hand, the function h↓i shows a relation between a lattice Li and the
store derivation of its lower lattice Li−1. It is not necessarily an embedding, and
thus Li might not be able to represent exactly every element in Store(Li−1).On
the other hand, h↑i represents a possible constructor from a value of Li−1 into Li.

This concept allows us to give a classification of the structures manipulated
in constraint solvers according to their levels in the hierarchy. We give a con-
straint hierarchy in Table 1.3 with several examples of constraint structures and
programming languages specialized for particular layers. The function h↑i is given
as a lattice derivation for each layer but should not be considered as definitive or
unique. Indeed, as we later see in this chapter, many optimizations in constraint
solvers are actually captured by more complex lattice derivations. However, the
interesting point is that every layer represents a common concept across constraint
solvers. Before going further and explaining every layer, it is worthwhile to give
some notations and general properties over this hierarchy.

Notation 1.3 (Hierarchy numbering). Given a lattice hierarchy H, the ith layer
is noted Li = ⟨Si, |=i⟩ where Si is the underlying set and |=i the corresponding
order. Similarly, the algebraic operations ⊔i and ⊓i are numbered as well as their
set versions

⊔i and
di. Later on, we use a range notation i-j to refer to the layers

between i and j, for example |=0−2 refers to the set of orders {|=0, |=1, |=2}.

Every lattice Li in a hierarchy has a state space decomposition isolating a
solution space Sol i, a failed space Fail i and a space Unknown i representing the set
of elements that are neither solutions nor failures.



Lattice Hierarchy for Constraint Solving 28

Level L Concept Example

0 {⊤} ⊕ S ⊕ {⊥} Value Logic variable
1 P(L0), I (L0) Domain Set of intervals, bit array, intervals
2 Store(L1) Variable store Array of variables
3 L2 × P(Prop) CSP CHR [SVWSDK10], MiniZinc [NSB+07]
4 A (L3) Search tree Prolog, Oz [Sch02]
5 Store(L4) Tree store Search combinators [STW+13]

(Restart search) Iterative deepening search [Kor85]
n Store(Ln−1) Algorithm selection EPS [PRS16], sunny-cp2 [AGM15]

Figure 1.3: Lattice hierarchy in the context of constraint programming.

Definition 1.28 (State space decomposition). The state space decomposition of
a lattice L is a tuple of non-empty distinct posets (Sol ,Fail ,Unknown) such that:

L = Fail ⊕ Sol ⊕ Unknown

and by definition of ⊕ we have ⊤L ∈ Fail and ⊥L ∈ Unknown. Given an element
a ∈ L, we write Sol(a) = {b ∈ Sol | b |= a} the solution space of a and similarly
for its failed and unknown spaces.

Intuitively, an unknown element can evolve to a solution or a failure, and a solution
can evolve to a failure, but also to an unknown element. The latter case is possible,
for example, when we add new variables into a store. For each lattice, we explicitly
give its state space decomposition by specifying the solution and fail spaces. Given
a lattice ⟨S, |=⟩, the identity

Unknown = (S \ Sol) \ Fail

is convenient to retrieve the unknown space when omitted.

1.3.1 L0: Value

The smallest lattice in this hierarchy, in the sense of set cardinality, is the domain
of discourse S0 of the language lifted up to a flat lattice. In almost all cases, the
set S0 is a finite subset of the natural numbers N, which is the one we consider in
the examples.

Definition 1.29. The state space decomposition of L0 is

(Sol = S0 \ {⊤,⊥},Fail = {⊤},Unknown = {⊥})

1.3.2 L1: Domain

The lattice derivation between L0 and L1 varies between solvers. Two mainstream
derivations are the powerset P(L0) and the interval lattice I (L0) (Definition 1.21).



Lattice Hierarchy for Constraint Solving 29

The first one is often implemented as a bit array when the domain is small to
optimize the operations over domains (bit operators) and the memory consumption
(for example, in the solver Minion [GJM06]). The second one can be advantageous
when dealing with larger domains since only the lower and upper bounds need
to be stored. A third possibility, lying in-between, is to use a set of intervals. It
is isomorphic to P(L0) while being more compact for larger or sparse domains.
For all these derivations, the function h↑1 is an order-embedding, and thus it is
enough to ensure that any solution can be represented. Actually, even the identity
function is a valid derivation, and thus L0 and L1 collapse into a single lattice—but
it is inefficient since the only possible solving algorithm would be the enumeration
of all the values.

The state space decomposition of L1 in case of finite domain is given as follows.

Definition 1.30. Given L0 a finite domain, the state space decomposition of
I (L0) (and P(L0)) is given by:

{

Sol1 = {v ∈ L1 | |v| = 1}
Fail1 = {⊤1}

The set of solutions is the set of assigned values: a domain of cardinality 1. Note
that ⊤1 has the cardinality 0.

A different state space decomposition can be defined when the domains are ranging
over real numbers. In this case, the standard technique is to decide an element to
be a solution when it is “small enough”.

1.3.3 L2: Variable store

The lattice L2 is obtained with the order-embedding Store(L1) (Definition 1.25).
It represents a set of variables mapped to a domain.

Definition 1.31. The state space decomposition of L2 is given by:
{

Sol2 = {a ∈ L2 | ∀(l, v) ∈ a, v ∈ Sol1}
Fail2 = {d ∈ L2 | ∃(l, v) ∈ d, v ∈ Fail1}

We have a solution when all the domains are assigned, and a failed store if one of
the variable’s domain is failed. Comparatively with the definitions in Section 1.1,
the lattice L2 corresponds to the set Dom and Sol2 to the set of assignments Asn.
Accordingly, we write an element a ∈ L2 when it is an assignment—supposedly in
Sol2—and d ∈ L2 otherwise.

1.3.4 L3: Constraint satisfaction problem

The lattice L3 represents the set of all CSPs. An element in L3 is defined by the
propagation problem ⟨d, P ⟩ (Section 1.1). We will loosely speak of a CSP instead
of a propagation problem.
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Definition 1.32 (CSP). Let Prop ⊂ LL2
2 be the set of all propagators (Defini-

tion 1.4). Given a variable store L2, the lattice L3 of a CSP is defined as follows:

CSP (L2) = ⟨
L2 × P(Prop),
⟨d, P ⟩ |= ⟨d′, P ′⟩ if d |=2 d

′ ∧ P ′ ⊆ P ⟩

The set is obtained by the Cartesian product of the variable store L2 and the pow-
erset of the set of propagators Prop. In the following we call a set P ⊆ Prop a
constraint store.

The order ⟨d, P ⟩ |= ⟨d′, P ′⟩ indicates that either the domain has been contracted
or that more propagators have been added into the problem. In either case, it
formalizes the intuition that ⟨d, P ⟩ contains more information than ⟨d′, P ′⟩.

Definition 1.33. The state space decomposition of L3 is given by:
{

Sol3 = {⟨d, P ⟩ ∈ L3 | ∀p ∈ P , ∀a ∈ Sol2(d), p(a) = a}
Fail3 = {⟨d, P ⟩ ∈ L3 | d ∈ Fail2 ∨ ∃p ∈ P , p(d) ∈ Fail2}

We observe a failure in L3 if the value of a variable is failed—equals to ⊤1—or if
one propagator is failed—it maps to a value in Fail2. Since the propagators in a
solution are all entailed and do not bring much information anymore, we provide a
convenient function that removes them and maps all the solutions of the problem
in L2:

Sol3to2 (⟨d, P ⟩) = {a ∈ Sol2(d
′) | ⟨d′, P ′⟩ ∈ Sol3(⟨d, P ⟩)}

Finally, the hierarchical pair of functions (h↓3 , h↑3) is defined as

h↓3 : L3 → Store(L2)
h↓3(⟨d, P ⟩) 7→ {(l, v) | l ∈ N, v ∈ Sol3to2(⟨d, P ⟩))}
h↑3 : L2 → L3

h↑3(d) 7→ ⟨d, ∅⟩

h↓3 is defined using Sol3to2 which actually corresponds to the definition in extension
of constraints that was first introduced in Section 1.1.2. In other terms, it contains
all the domains satisfied by every constraint. The upwards function h↑3 wraps any
domain d into a CSP with an empty set of propagators.

Transition system

We now relate the propagation’s transition system introduced in Section 1.1 to the
lattice L3.

Definition 1.34 (Transition system). Given a lattice L3, the transition system
generated by an element ⟨d, P ⟩ ∈ L3 is given by

TS 3(⟨d, P ⟩) = {⟨d
′, P ′⟩ | ⟨d, P ⟩ →∗ ⟨d′, P ′⟩}
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where →∗ is the propagation transition → applied an arbitrary number of times.
TS 3 inherits the order of L3. ⟨d, P ⟩ is the bottom element and ⟨d′, P ′⟩ such that
⟨d, P ⟩ ⇒ ⟨d′, P ′⟩ is the top element.

Lemma 1.7. Let ⟨d, P ⟩ be a propagation problem. Then

⟨d, P ⟩ → ⟨d′, P ′⟩ implies ⟨d′, P ′⟩ |=3 ⟨d, P ⟩

Proof. First, by definition of the transition system, we have P = P ′. Second, by
the monotonicity property 1.7(P2), the transition → only generates domains d′

such that d′ ⊂ d, and thus d′ |=2 d.

Lemma 1.8. The transition system TS 3 has a unique top element.

Proof. From the Lemma 1.7 and the confluence of the transition system, the top
element is necessarily unique.

This transition system coupled with the state space decomposition allows us
to define the notion of convexity of a CSP.

Definition 1.35 (Convexity). A CSP ⟨d, P ⟩ ∈ L3 is convex if the top element of
its transition system TS 3(⟨d, P ⟩) is an element of Sol3∪Fail3. A set of propagators
P is convex if for each d ∈ L2 the CSP ⟨d, P ⟩ is convex.

The non-convexity of a CSP formally implies that the propagation alone is not
always sufficient to obtain the solution set of a CSP. This is why we need an upper
layer L4 to the lattice hierarchy. In the context of constraint programming, the
problems are usually non-convex. We show a simple non-convex CSP below.

Example 1.8 (Non-convex CSP). Consider the following CSP:

NeqXYZ = ⟨ {x 7→ [1..1], y 7→ [1..3], z 7→ [1..3]},
{Jx ̸= yK, Jx ̸= zK, Jy ̸= zK}⟩

A relevant subset of the lattice L3 for NeqXYZ is presented in Figure 1.4. The
three grey rectangles represent the transition systems inside the main lattice; for
convenience, we annotate the relevant edges with the propagator applied to the
domain. The transition system of NeqXYZ is non-convex since its top element
is not in the solution space. We notice that two edges are not annotated by a
propagator and not part of any transition system. Since the propagators reached
a fixed point, we must increase the information into the CSP in order to reach the
solution space. These edges—which are not transitions—are formalized with the
lattice of the search tree L4. ⌟
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{x 7→ [1..1], y 7→ [1..3], z 7→ [1..3]}

{x 7→ [1..1], y 7→ [1..3], z 7→ [2..3]} {x 7→ [1..1], y 7→ [2..3], z 7→ [1..3]}

{x 7→ [1..1], y 7→ [2..3], z 7→ [2..3]}

{x 7→ [1..1], y 7→ [2..2], z 7→ [2..3]} {x 7→ [1..1], y 7→ [3..3], z 7→ [2..3]}

{x 7→ [1..1], y 7→ [2..2], z 7→ [3..3]} {x 7→ [1..1], y 7→ [3..3], z 7→ [2..2]}

Jx ̸= zK Jx ̸= yK

Jx ̸= yK Jx ̸= zK

Jy ̸= zK Jy ̸= zK

Solution space

Unknown space

Non-convex

Convex Convex

Figure 1.4: Example of a non-convex CSP: NeqXYZ .

1.3.5 L4: Search tree

Considering a non-convex problem ⟨d, P ⟩ ∈ L3, when reaching the top element of
its transition system, we must make a choice by increasing the information in this
problem, either by narrowing the variable store d or by adding a new constraint into
the set P . We referred to this pattern in Section 1.1 as the “propagate-and-search”
algorithm. In our lattice structure, the transition system is the propagation step
and the search tree is created by increasing the information of the top element of
this transition system. For example, in Figure 1.4, we see that connecting the grey
zones form a search tree.

Intuitively, we represent a search tree with a set of nodes “to be explored”—
namely the queue of nodes3—similarly to what is used in practice when exploring
a tree or a graph. Schematically, the queue of nodes represents the leaves of a
search tree.

Definition 1.36 (Queue of nodes). Given a lattice L3, the lattice of queues of
nodes L4 is given by the antichain completion of L3 written A (L3).

A queue of nodes is naturally represented as an antichain since the frontier of the
search tree should only contain unordered nodes.

Definition 1.37. The state space decomposition of the lattice L4 is given as fol-

3Despite the name, this terminology of “queue” does not imply a particular queueing strategy—i.e.
the order in which the nodes are explored.
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lows:
{

Sol4 = {Q ∈ L4 | ∃a ∈ Q, a ∈ Sol3 ∧ ∀b ∈ Q, b ̸∈ Unknown3}
Fail4 = {Q ∈ L4 | ∀a ∈ Q, a ∈ Fail3}

The solution space is the set of queues such that each queue contains at least one
solution node, and there is no node left to solve, i.e. in the unknown space. The
failed space is the set of queues such that each queue contains only failed nodes.

The hierarchical pair of functions (h↓4 , h↑4) is given by trivially ordering the
nodes for h↓4 and constructing a singleton node from L3 for h↑4 .

Example 1.9. Consider the queues depicted in Figure 1.5; we can make the
following observations:

• Q3 |= Q1 since Q3 represents a more advanced exploration than Q1 over the
same set of nodes,

• Q1 is not ordered with Q2 since the state of exploration is different, but
Q3 |= Q2 and Q3 = Q1 ⊔Q2.

• Since the second and third leftmost nodes are both in the queue, the queue
Q4 is not an antichain, and thus is not in L4. In this case, we say that Q4 is
not compact.

• The queues Q5 and Q6 exhibit a search tree explored non-exhaustively. In
Q5, if there are some solutions in the rightmost subtree, we say that Q5 is
non-exhaustive. Similarly, Q6 might be non-exhaustive to the search tree
rooted at node R but is exhaustive relatively to A.

⌟

The concept of exhaustiveness is considered in more generalities in Section 1.5.4.

1.3.6 L5: Tree store

L5 is the lattice of all the possible ways to explore multiple search trees. This
scheme occurs mainly with “restart-based search strategies” exploring a partial
search tree and restarting the search by exploring another one. An element
{(l1, q1), (l2, q2), . . . , (ln, qn)} ∈ L5 contains n search trees being explored where
every qi ∈ L4 is a queue of nodes labelled by a location li ∈ Loc.

Definition 1.38 (Tree store). Given a lattice L4, the lattice of all the possible sets
of queues is given by the store derivation

L5 = Store(L4)
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(a) Q1 (b) Q2 (c) Q3

(d) Q4 ̸∈ L4 (e) Q5

R

A

(f) Q6

Figure 1.5: Examples of queues with different properties.

Indexing the queue is necessary because some search strategies re-explore the same
search tree several times. Also, note that this lattice does not enforce sequentiality:
given a sequence (q1, q2), the search trees q1 and q2 might be explored concurrently.
This is for example required by interleaving search strategies [Mes97]. We give two
examples of restart-based search strategies illustrating a strategy over L5.

Example 1.10 (Iterative deepening depth-first search (IDS)). A very common
restart strategy is IDS [Kor85] where a search tree is first explored at depth 1,
then at depth 2, and until we explored the full search tree. This search strategy
generates a set of queues (q1, . . . , qn) that exhaustively explores a problem. Note
that the queue qi subsumes the search tree of qi−1 with an extended layer of nodes.
We say that IDS is not compact because a node (besides the root node) can be
explored in more than one queue. ⌟

Example 1.11 (Limited discrepancy search (LDS)). LDS [HG95] is designed for
problems where the strategy often goes straight to the goal. It explores a first
search tree by taking only left branches, then restarts by allowing to take one
right branch—a “wrong turn”—and so on until we explored the full search tree.
Similarly to IDS, it is an exhaustive strategy that is not compact. Improved LDS
(ILDS) [Kor96] is a variant of LDS that is exhaustive and compact. Indeed, it
explores the nodes with exactly i discrepancies at the iteration i (and not with
discrepancies ≤ i like in LDS). ⌟
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1.3.7 Ln: Algorithm selection

Intuitively, it is always possible to define a level higher in the hierarchy by exploit-
ing the store derivation. For example, a hypothetical lattice L6 is the structure
explored by several restart-based search strategies. However, since most solving
algorithms are either defined over the lattices L4 or L5, we generalize the successive
store derivation to the lattice Ln representing all the possible ways to solve a CSP.

Definition 1.39 (Lattice for algorithm selection). Given any lattice Ln−1, we can
define the lattice Ln = Store(Ln−1).

This lattice is well studied in artificial intelligence under the name of “algo-
rithm selection” [Ric76]. Informally, given a collection of algorithms, this problem
consists in selecting one algorithm that is efficient for a given problem or problem’s
instance. For example, SATzilla [XHHLB08] selects an algorithm among several
SAT solvers, and sunny-cp2 [AGM15] among several constraint solvers. The key
idea behind these algorithms is to learn from a set of problem’s instances which
algorithm is working best using machine learning methods. Another instance of
the algorithm selection is in the context of parallel search—this specific case is
called a “portfolio algorithm”. Embarrassingly parallel search (EPS) [RRM13] is
an algorithm that splits a problem into many sub-problems solvable independently
by a parallel unit. Using this method, they design a parallel strategies selection
algorithm [PRS16] testing a set of strategies on the sub-problems generated by the
EPS algorithm. According to their efficiency on their respective sub-problems, the
most efficient strategy is selected.

1.4 Inference in L3 with propagation

Constraint inference is the process of deriving new information from existing knowl-
edge without any guess. Since we do not make any guess, the inference is never
wrong and never remove potential solution from the problem. We can perform
inference at different level of the hierarchy: constraint propagation is a form of in-
ference in L3 and no-goods learning is another form of inference over L4. We focus
on the inference in L3 first and come back on the inference in L4 in Section 1.7. As
a first step, we use the algebraic view of the lattice L3 to model a constraint prob-
lem (Section 1.4.1). Following some ideas introduced by Saraswat with concurrent
constraint programming [SR89], we show that the operators ⊔0−3 and |=0−3 can
be used for programming propagators. Using this framework, we consider the two
roles of a propagator—namely deciding and propagating over L3—respectively in
the Sections 1.4.2 and 1.4.3.

1.4.1 Modelling a problem

The join operation ⊔ allows us to add information; this operator is the only one
needed to build the model of a CSP. In L2, it is used for creating new variables
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and in L3 for adding new constraints. We consider the CSP

⟨{x 7→ [0..2], y 7→ [1..2]}, {Jx < yK, Jx ̸= 0K}⟩

all along this section. The notation JcK maps the constraint c to a propagator
(see Section 1.1). An initial and empty constraint model consists of each layer of
the lattice hierarchy initialized to its bottom element. We consider the lattice of
values L0 where S0 ranges over integers and the variable store L2 to be indexed
by the set of locations Loc = {x, y}.

Example 1.12 (Creating variables). Given the empty variable store ⊥2, we add
the variables x and y into the variable store d ∈ L2 as follows:

d = ⊥2 ⊔2 {(x, {0, 1, 2})} ⊔2 {(y, {1, 2})}

⌟

This variable store enables us to build a CSP R ∈ L3 and to add the constraints
into R.

Example 1.13 (Adding constraints). Using the domain d ∈ L2 built in the pre-
vious example, we build the CSP as follows:

R = ⊥3 ⊔3 ⟨d, {Jx < yK, Jx ̸= 0K}⟩

⌟

The obtained CSP R is the model of our problem and the root node of a search
tree. Constraint-based languages usually provide statements for the join operators
⊔0−3. Such modelling languages are analysed in Section 2.3.

1.4.2 Deciding

unknown

true

false

Figure 1.6: Lattice ES of the entailment status.

Inevitably, a propagation engine needs to check if a propagator p is entailed
from the current domain d. More formally, it is described by the entailment
relation ⟨d, ∅⟩ |= ⟨d, {p}⟩. For short, we will write d |=d p where |=d is called
the domain entailment. The domain entailment is used in many backtrack-free
constraint-based languages; we review them in Section 2.4.
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Example 1.14 (Removal of entailed propagators). The domain entailment is a
well-known optimization in constraint solvers. Every propagator p ∈ P is marked
when it is entailed by the domain d so it will not be tested again. The soundness
property 1.4(L2) implies that a propagator is always either entailed or disentailed
by the domain when all the variables are assigned. Hence, whenever all the prop-
agators are annotated, it means we reached a solution. ⌟

In practice, we are interested in three complementary events revolving around
the domain entailment:

1. The propagator is entailed: d is a solution of p.

2. The propagator is disentailed: d will never be a solution of p.

3. We do not know yet.

Operationally, the entailment relation is a boolean predicate, and thus it cannot
serve as such for establishing the entailment status of a propagator. Interestingly,
this set of events forms a complete lattice that we call ES, as depicted in Figure
1.6.

Definition 1.40 (Entailment status). The entailment status is the lattice ES =
⟨{false, true, unknown}, false |= true |= unknown⟩.

This lattice can be used to characterize an element in its state space decomposition.
Let L be a lattice and (Sol, Fail, Unknown) its state space decomposition. Then
there exists a function ssd : L→ ES defined as:

ssd(a) 7→







true if a ∈ Sol

false if a ∈ Fail

unknown if a ∈ Unknown

In addition, this function is monotonic if the lattice cardinality of the lattice L2 is
stable. The property that ssd is monotonic shows that an entailed or disentailed
propagator will preserve its status for any function progressing in Unknown4.
The domain entailment problem d |=d p can be defined as ssd(⟨d, {p}⟩) = true.

The case where the domain d does not have a fixed cardinality is relevant to
systems with infinite computations, and we leave their analysis to future work.

1.4.3 Propagating

We show that we can give an intentional description of a propagator using the
entailment |= and the join operator ⊔ to infer information. First, we introduce
the notion of event e between two domains.

4Generally, we stop the computation whenever we reach an element in Sol or Fail. However, note
that an element in Sol can evolve to a failed state if further strengthened.
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Definition 1.41 (Event relation). Given a lattice L and a relation e : L× L, we
say that e is an event relation of L if:

∀x, y ∈ L, e(x, y)⇒ (x |= y ∧ x ̸= y)

x |= y ensures that the event e is monotonic over L and x ̸= y ensures that it
describes a real change. Since the relation e is irreflexive, it is not an order.

Events are central in a propagation engine for scheduling the propagators only
when it is relevant to do so, i.e. they will reduce the domain.

Example 1.15 (Event lbc). Given a lattice L1, the event lbc describes a change
on the lower bound of a domain. Let x, x′ ∈ L1, then lbc is defined as

lbc(x, x′) if lb(x′) |=LMax lb(x) ∧ x ̸= x′

Intuitively, it is read as “the lower bound of the updated domain x′ contains more
information than the one of the domain x”. ⌟

The dual event ubc is defined similarly. With these two events, we can program a
propagator for the constraint x < y.

Example 1.16 (Propagator x < y). Consider two lattices d, d′ ∈ L2 where d
is the current variable store and d′ is the former one. For convenience, we note
xlb

def

= lb(d(x)) and xub
def

= ub(d(x)).

Jx < yK 7→
{

if lbc(d′(x), d(x)) then d = d ⊔2 {(y, [(ylb ⊔LMax xlb + 1)..yub])}
if ubc(d′(y), d(y)) then d = d ⊔2 {(x, [xlb..(xub ⊔LMin yub − 1)]}

The propagator Jx < yK is contracting because every operation applied on the
lattices involved (L1, L2, LMin and LMax) is monotonic. ⌟

We can mention the indexicals language [VHSD91] which allows users to build
propagators using domains and monotonic operators. In Section 2.4.2, we give the
implementation with indexicals of the same propagator x < y. The resemblance
between the obtained program and our mathematical definition is striking.

1.5 Bridging L3 and L4 with backtracking

Backtracking is a central concept in computer science as it allows programmers
to write non-deterministic algorithms. It is necessary when an algorithm needs
to make a choice in order to progress. For example, it is necessary to solve a
non-convex CSP. In this section, we argue that backtracking can be modelled
with the meet operator ⊓ because it triggers the removal of information. More
precisely, the meet operator is used with a delta operator ∆ for computing how
much information we must retract (Section 1.5.1). This operator applied to L2 and
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L3 is useful to restore the CSP to a former state when backtracking. In L4, it is
useful to extract a node from the queue but also to prune a part of the search tree
as we see in Section 1.7. The operators ⊔ and ∆ are sufficient to create and explore
the search tree of a CSP. Such a search tree forms a “raw material” that will be
transformed and pruned according to inference and pruning strategies. We focus
in this section on the creation and exploration of this raw search tree; it involves
several sub-components that we briefly introduce with the following example.

Example 1.17 (Creating a search tree). Given the CSP R—built in the Exam-
ple 1.13—we initialise a queue of nodes to the singleton {R} ∈ L4 where R is the
root node of the search tree. The tree to be created is shown in Figure 1.7a. We
create two new nodes A = R ⊔ ⟨⊥, {Jx < 2K}⟩ and B = R ⊔ ⟨⊥, {Jx ≥ 2K}⟩.
Given the queue q, we update it with q = q ⊔ {A,B}, that is, the node R is auto-
matically absorbed by A and B and removed from the queue while A and B are
pushed onto the queue. ⌟

There are several distinct actions happening in this example and we define
them individually to obtain a framework closer to the solver’s implementation.
Specifically, this section is dedicated to the definition of an exploration strategy
that is in charge of expanding nodes in a queue. The goal is to formalize the
process behind expansion that we call an exploration strategy.

Intuitively, given a queue q ∈ L4, the process of expanding a node is usually
divided into the following actions:

1. Selecting a node a ∈ q.

2. Splitting the node a into several children nodes (a1, . . . , an).

3. Inserting the sequence (a1, . . . , an) onto the queue.

The actions (1) and (3) form a queueing strategy while (2) is called the branching
strategy.

More formally, this section is dedicated to solving a CSP by finding a fixed
point of the following exploration strategy:

push ◦ copy ◦ branch ′ ◦ propagate ′ ◦ pop

The function propagate ′ encapsulates the propagation function of a CSP (Defini-
tion 1.8) to be compatible with the codomain of pop and the domain of branch ′.
The queueing strategy is specified by the pair of functions (push, pop) and is for-
malized in Section 1.5.2. Splitting the state space is realized by the functions
branch ′ and copy which are introduced in Section 1.5.3. Thereafter, we study
several properties of the exploration strategy as a whole in Section 1.5.4.
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x < 2

x < 1 x ≥ 1

B

x ≥ 2

(a) Example of a search
tree.

{R}A∆ B∆

{A} {B}

{A,B}

(b) Deltas of {A} and {B}
with regard to {A,B}.

Figure 1.7: Backtracking in a search tree with the delta operator.

1.5.1 Delta operator

We mentioned that information can be removed using the meet operator ⊓, for
example to extract a node from a queue. Intuitively, given a queue q and a node
x ∈ q, we would like to extract x from q with q⊓ y = q \x. Two questions are how
to compute y and which one to pick if it is not unique? Substituting y with q \ x
is valid but it is not interesting from an algorithmic point of view. Therefore, we
need another operator to compute a delta between two elements.

Definition 1.42 (Delta operator). Let L be a lattice and a, b ∈ L such that a |= b.
The deltas of b with regard to a is the set

D = {d ∈ L | b ⊔ d = a}

a∆b is the smallest element in D such that

a∆b =
l

D

In the theory of lattices, ∆ is called the weak relative pseudo-complement [GPR96].
We chose the symbol ∆ because it expresses the notion of difference which is what
is important here.

Example 1.18 (Extracting a node). Continuing with the Example 1.17 with the
queue q, the search proceeds by extracting either the node A or B. In Figure 1.7b,
we show the delta elements of the nodes A and B with regard to {A,B} where

(i) A∆ = {B}∆{A,B} = ⟨⊥, {Jx < 2K}⟩
(ii) B∆ = {A}∆{A,B} = ⟨⊥, {Jx ≥ 2K}⟩

which correspond to the constraints on the relevant branches. Admitting we want
to extract A, we use the delta operator to obtain the queue {B} as follows:

{B} = q∆(q∆{A})

Applying twice ∆ on the queue enables us to recover the queue without the infor-
mation that was only contained in the node A. ⌟
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The double ∆ is only necessary if the order of the structure is defined according
to the order of its inner elements. In our case, the order of L4 depends on the one of
L3 (which is turn depends on L2 and then L1). It means that the delta element is
the smallest possible, while in practice we would like to keep the information that
overlaps with other nodes. If we do not, we would always remove at least the root
node, and thus the problem’s model, since it overlaps with every node. Therefore,
we must apply a second time the delta operator over the queue to remove just the
information that only belong to the node considered. In the following, we use a
store derivation over L4, and thus since the order of a store is designed to accept
duplicate elements, a single delta will always suffice.

1.5.2 Queueing strategy

pop

pop

explore

explore

push

push

...

...

Li−1

Li

Li+1

Store(Li−1)

Store(Li)

Figure 1.8: Abstract exploration strategy.

The exploration of a tree or a graph is implemented by mean of a data struc-
ture providing at least two operations: push and pop for respectively pushing the
successors’ nodes and extracting a node from the queue. Anticipating on what fol-
lows, the queueing strategy actually forms the basis of the exploration strategy as
depicted in Figure 1.8. It provides a framework to describe an exploration strategy
by traversing up and down the lattice hierarchy. Therefore, a queueing strategy is
always defined on two successive lattices Li and Li−1. Moreover, queueing is in-
trinsically tied to sequencing nodes in a certain order. To achieve this, we provide
a lattice derivation, based on the store derivation, indexing the element Li−1 of
the structure Li. For example, we need to index the nodes of the search tree in L4

in order to explore them with a depth-first or breadth-first search strategy.

Definition 1.43 (Queuing derivation). Let Li and Li−1 be two successive lattices
in a hierarchy and Loc be an indexed set. Then, Qi is the lattice of the indexed
elements of Li:

Qi = {S ∈ Store(Loc, Li−1) | π
′
2(S) ∈ Li}
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where π′
2 is the projection over every element in the set S that excludes the loca-

tions. The order is inherited from the Store derivation.

Importantly, the projection of an element in the lattice Qi must belong to Li.

Proposition 1.9. Li is embedded in Qi.

Proof. By definition of Qi, Li is necessarily embedded in Qi because every element
in Li has several indexed counterparts in Qi.

A queueing strategy is then defined over a lattice Qi as follows.

Definition 1.44 (Queueing strategy). Let Li−1 be a lattice and Qi the queuing
derivation of its successor. Consider the following pair of functions:

push : Qi × Store(Li−1)→ Qi

pop : Qi → Qi × Li−1

Then (pop, push) is a queueing strategy if for every S ∈ Qi and b ∈ Store(Li−1)
we have

(P1) π′
2(S) = π′

2(S
′) ⊔i {x} where (S ′, x) = pop(S)

(P2) π′
2(push(S, b)) = π′

2(S) ⊔i π
′
2(b)

An important consideration is that the properties (P1) and (P2) are over Li and
not Qi (we use the projection π′

2 to recover the element in Li). This allows the
queueing strategy to reorder the locations arbitrarily. For example, a priority
queue reorders the nodes at every insertion, and thus their locations change.

We illustrate this derivation with two of the most standard queueing strategies:
depth-first search (DFS) and breadth-first search (BFS). We consider the set of
locations Loc to be a finite subset of N ordered by ≤.

Example 1.19 (Depth-first search). Let q ∈ Qi be a queue of nodes and b ∈
Store(Li−1) the nodes to insert in the queue. Then the DFS queueing strategy is
given by

(i) pop(q) 7→ (q∆4{(maxloc(q), v)}, v) where v = q(maxloc(q))
(ii) push(q, b) 7→ q ⊔4 {(maxloc(q) +maxloc(b) + 1− l, v) | (l, v) ∈ b}

The function pop always extracts the node at the top of the stack which is the
one with the greatest location. We use the delta operator for extracting this node.
The set of nodes b to push over q represent an ordered set of children nodes. By
convention, we want the node with the lowest location in b to be popped first since
it represents the left-most node. Hence, in order be generic over any store of nodes
b, we use the expression maxloc(q) +maxloc(b) + 1− l for reversing the order of
insertion and simulating a stack exploring the children from left-to-right. ⌟



Lattice Hierarchy for Constraint Solving 43

Example 1.20 (Breadth-first search). Similarly to DFS, we can define the BFS
queueing strategy by

(i) pop(q) 7→ (q∆4{(minloc(q), v)}, v) where v = q(minloc(q))
(ii) push := pushDFS

Similarly to a FIFO queue, we push a node at the “back of the queue” and extract
a node “at the front of the queue”—the node with the smallest location. The
duality with DFS is clear in the function pop since we only exchanged maxloc with
minloc. Pushing a node is defined exactly as for DFS. ⌟

1.5.3 Branching strategy

In Section 1.1, we introduced the branching function branch : L2 → P(L2) splitting
a variable store into two or more stores. Actually, the branching function can
also map to a set of constraints instead of directly pruning the variable store—
which is what is implemented in practice. We give a definition generalizing these
possibilities.

Definition 1.45 (Branching function). A branching function is a function branch :
L3 → Store(L3) strictly monotone over Unknown3. We have, for each x ∈ L3,
branch(x) = b such that

(i) ssd(x) ̸= unknown⇒ b = ⊥Store(L3) (stop criterion)
(ii) ∀y ∈ π′

2(b), x ⊔3 y |= x ∧ x ⊔3 y ̸= x (strict monotonicity)

The first condition indicates that we only split the state space of the unknown
space. Indeed once we obtain a solution or a failed node, there is usually no reason
to further divide the state space. By mapping to an empty set, here ⊥Store(L3), no
node is added onto the queue by the function push. The second condition forces
the children nodes to contain more information than the initial node. We can refine
(ii) into two additional properties: exhaustiveness and compactness. Intuitively,
exhaustiveness ensures that all solutions are enumerated and compactness that
they are enumerated at most once.

Property 1.1 (Exhaustiveness). Let branch be a branching function and x ∈ L3,
it is exhaustive if

∀d ∈ Sol2to3(x), ∃y ∈ π′
2(branch(x)), ∃d

′ ∈ Sol2to3(y), d′ |=2 d

Every solution of x is also a solution of at least one of its child.

Property 1.2 (Compactness). Let branch be a branching function and x ∈ L3, it
is compact if

∀y, z ∈ π′
2(branch(x)), ∃d ∈ Sol2to3(y), ∃d

′ ∈ Sol2to3(z), d |=2 d
′ ⇒ y = z

In simpler terms, for any pair of children y, z of a node x, their sets of solutions
in L2 do not overlap.
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Typically, we are interested in a specific class of branching functions defined
over L2—called the domain branching functions.

Definition 1.46 (Domain branching). A domain branching function is the com-
position of three functions defined as follows:

• var_order : L2 → Loc selects a variable from the variable store.

• val_order : L2 × Loc → L0 selects a value in the domain of the variable
chosen by var_order .

• distribute : Loc×L0 → Store(L3) splits the CSP on the selected variable and
value.

Let x ∈ L3, we define the branching function as follows:

branch(x) 7→ ⊥Store(L3) if ssd(x) ̸= unknown
branch(⟨d, P ⟩) 7→ distribute(l, val_order(d, l)) where l = var_order(d)

Example 1.21 (Input-order split middle branching). A basic branching function
is to take the variable in order (according to the order on Loc) and to split on the
middle value.







input_order(d) 7→ minloc({(l, v) ∈ d | |v| > 1})
middle_value(d, l) 7→ (lb(d(l)) + ub(d(l)))/2
bisect(l,m) 7→ alloc(alloc(⊥4, ⟨⊥2, Jl < mK⟩), ⟨⊥2, Jl ≥ mK⟩)

⌟

For non-binary strategies such as plain enumeration all of the values, i.e. x =
v1 ∨ x = v2 ∨ ... ∨ x = vn for every vi in the domain of x, the function val_order
and distribute are merged.

Example 1.22 (Enumeration branching). Consider any variable ordering function
var_order , then we can define the enumeration branching strategy as follows:

enumerate : L2 × Loc→ Store(L3)
enumerate(d, l) 7→ {⟨{l 7→ v},⊥⟩ | v ∈ d(l) ∧ l = var_order(d)}

In this case, we chose to directly prune the domain of the CSP instead of adding
constraints. ⌟

In order to be composed seamlessly with the queueing strategy, we embed the
branching function with the current queue that is just forwarded from the domain
to the codomain:

branch′ : Q4 × L3 → Q4 × L3 × Store(L3)
branch′(q, x) 7→ (q, x, branch(q))
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As shown in the previous example, the branches only contain the deltas with
regard to the current node. We use a copy restoration strategy for reconstructing
the full children nodes from the deltas and the current node being expanded. We
discuss more elaborated restoration strategy of our framework in Chapter 10.

Definition 1.47 (Copying restoration strategy). For all q, B ∈ Q4 and x ∈ L3,
we have

copy : Q4 × L3 × Store(L3)→ Q4 × Store(L3)
copy(q, x, b) 7→ (q, {(l, x ⊔3 y) | (l, y) ∈ b})

To conclude this part, the branching strategy is often the main component of
a search strategy that can be customized in constraint solvers. As such, there
is a large collection of branching strategies available in constraint solvers (e.g.
GeCode [STL14] and Choco [PFL15]) as well as in modelling languages such as
MiniZinc [STF+10].

1.5.4 Exploration strategy

L3

Q4

Store(L3)

pop

copy ◦ branch′

push

propagate′

Figure 1.9: Exploration strategy.

We defined several structures isolating different aspects of a search algorithm
based on backtracking. In this section, we combine these components together and
consider some properties of the exploration strategy obtained. In Figure 1.9, we
instantiate the abstract view given in Figure 1.8 with the sub-strategies described
so far. This example of exploration strategy is given by the function explore
assembling the sub-strategies introduced along this section:

explore : Q4 → Q4

explore(q) 7→ (push ◦ copy ◦ branch ′ ◦ propagate ′ ◦ pop)(q)

We adapt the propagation function similarly to the branching strategy:

propagate′ : Q4 × L3 → Q4 × L3

propagate′(q, x) 7→ (q, propagate(x))

Interestingly, the exhaustiveness and compactness properties of the function
branch ′ can be extended without hurdles to the exploration strategy. Indeed,
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propagate′ and copy are order-preserving and do not remove any solution from the
problem. Note that even if explore is not exhaustive, we can sometimes recover
its exhaustiveness using an additional exploration layer (for example with IDS
in Example 1.10). However, we leave the treatment of such properties to future
works.

1.6 Inference in L4 with constraint optimization problem

Constraint optimization problems aims at finding the best solution according to
some criterion (Section 1.1.2). It is usually solved using the branch and bound
algorithm which is a dynamic inference strategy over the lattice L4. Compared to
the inference in L3, pruning sub-trees not leading to a solution, branch and bound
prunes sub-trees not leading to a better solution.

Definition 1.48 (Objective function). An objective function f : L3 → L3 maps
an element in Sol3 to a CSP describing a better solution.

Example 1.23 (Minimizing objective). A frequent objective function is to mini-
mize the value of a variable at location x:

minimize(⟨d, P ⟩) 7→ ⟨⊥, Jx < lb(d(x))K⟩

We create a constraint x < lb(d(x)) specifying that the value of the variable x must
be lower than its smallest current value. This constraint is created dynamically
according to the CSP ⟨d, P ⟩. ⌟

Using the objective function, we can define the branch and bound function that
will be plugged into our exploration strategy.

Definition 1.49 (Branch and bound). Let L3 and L4 be hierarchical lattices and
f : L3 → L3 an objective function. Then the branch and bound algorithm is given
by the following function:

bab : Q4 × L3 → Q4 × L3

bab(q, x) 7→

{

({(l, v ⊔3 f(x)) | (l, v) ∈ q}, x) if ssd(x) = true
(q, x) otherwise

Every time we reach a solution, we constrain all the remaining nodes in the
queue with the constraint given by the objective function. It has the effect of
forcing the remaining solutions, if any, to be better than the current one.

Proposition 1.10. The branch and bound function bab is monotonic.

Proof. By Definition 1.49, we only add information into the queue by increasing the
information in all its nodes with the join ⊔3 which is a monotonic operation.



Lattice Hierarchy for Constraint Solving 47

We can integrate this function into the basic exploration strategy as follows:

push ◦ copy ◦ branch ′ ◦ bab ◦ propagate ′ ◦ pop

bab must occur between branch ′ and propagate ′ since branch ′ removes the nodes
in the solution space and propagate ′ creates solution.

A direct implementation of this definition might be problematic when the queue
is not fully copied (for example if we use a restoration strategy) because the nodes
would not be directly accessible anymore. Instead, we can store the constraint
created by the objective function and add it into the future extracted nodes. How-
ever, we must manipulate a lattice Q4×L3 where L3 represents the objective store
which requires to adapt the sub-strategies of the exploration function. Therefore,
we tackle this variation of branch and bound with the spacetime language later in
this dissertation (Section 3.4.2).

1.7 Pruning in L4 with backjumping

Backtracking as presented in Section 1.5 is more specifically called chronological
backtracking because it always backtracks to the latest decision made on a vari-
able. However, the reason we fail in a leaf node is not always due to the latest
decision. An improvement consists in backtracking earlier in the search tree at the
decision responsible for the failure. This optimization is called backjumping. It is
an example of a pruning strategy over the lattice L4.

Example 1.24 (Backjumping in a boolean formula). Consider the Figure 1.10
describing the search tree of the following formula

(¬x1 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ x3

After instantiating x1 and x2 to true, we try to instantiate the variable x3 but none
of its values is satisfiable with the current partial assignment {x1 7→ true, x2 7→
true}. In chronological backtracking, we would backtrack to x2, assign false to
x2 and fail again on x3. Intuitively, we understand that failure in x3 is not caused
by its direct predecessor but by a decision made higher in the search tree, here the
one made on x1. ⌟

There exists several forms of backjumping [DF02] and, for demonstration pur-
poses, we focus on Gaschnig’s backjumping. An important question between back-
jumping’s variants is how they find the point in the search tree responsible for the
current failure. In Gaschnig’s backjumping, it performs the following steps:

1. For each branch b, find the smallest partial assignment {x1 7→ v1, ..., xi 7→ vi}
that is inconsistent with b. If a branch b is consistent with the current
assignment, we continue the exploration.
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x1 = true

x2 = true

x3 = true x3 = false

x2 = false

x1 = false

Figure 1.10: Backjumping from x3 to x1 with the formula (¬x1 ∨¬x3)∧ (¬x1 ∨x2)∧x3.

2. From all these partial assignments, take the largest one. It corresponds to
the highest safe point in the search tree we can backjump to.

If every branch is unsatisfiable, the backjumping point always exists and is unique.
It always exists because the branches must be unsatisfiable, at least, because of the
latest choice made, in which case we backtrack to the parent’s node. It is unique
because the current path is a chain of choices, and thus they must be a smallest
inconsistent partial assignment (since a chain is totally ordered).

Example 1.25 (Gaschnig’s backjumping). On the variable x3, we have the branches
x3 = true and x3 = false, and their respective smallest inconsistent partial as-
signments are:

• {x1 7→ true} conflicting with x3 = true due to the clause ¬x1 ∨ ¬x3 being
insatisfiable with this assignment.

• The empty partial assignment—the root problem—conflicting with x3 =
false since we have the unit literal x3 that must be set to true.

From these two partial assignments, {x1 7→ true} contains the latest decision
variable x1 and so we jump to this position. With x1 = false, a solution can be
found and a part of the search tree has not be explored thanks to backjumping. ⌟

Inference in L3 is often referred to as a look-ahead scheme since it removes values
from future instantiations. In comparison, backjumping is a look-back technique
since it computes over decisions already made. This explains why backjumping
is a pruning strategy over L4: it needs the past decisions contained in the search
tree and not only into the current problem. Besides, it does not add information
in the search tree; this distinguishes pruning strategies from inference methods.
We propose a formal explanation of Gaschnig’s backjumping using our lattice
framework.

Our search tree is only represented by the current frontier being explored.
However, backjumping requires the path of decisions from the root to the current
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failed node in order to jump back in the tree. We introduce several convenient
functions to manipulate the lattice L4 as a tree.

Definition 1.50 (Tree operations on L4). We define three operations over L4 for
retrieving the root of the search tree, the least common ancestor (LCA) of two
nodes and the set of ancestors of a node.

• The root of the search tree is the greatest lower bound of the nodes in the
queue:

root : L4 → L3

root(q) 7→
d3

x∈q x

• Given two nodes x, y ∈ L3, the greatest lower bound of x and y is also the
least common ancestor:

lca : L3 × L3 → L3

lca(x, y) 7→ x ⊓3 y

• The set of ancestors of a node x ∈ q for a queue q ∈ L4 is a chain in L3

such that it contains all the least common ancestors between x and the other
nodes in q:

ancestors : L4 × L3 → P(L3)

ancestors(q, x) 7→
⊔P(L3)

y∈q {lca(x, y)}

Given the ancestors’ set of a node, we can define Gaschnig’s backjumping as a
pruning function over Q4. We follow the informal definition given above. Firstly,
we define a function hbj computing the highest backjumping node of a branch in
the tree:

hbj : L4 × L3 × L3 → L3

hbj(q, x, b) 7→
d
{a ∈ ancestors(q, x) | ssd(a ⊔ b) = false}

Admitting we are in a node x and considering a branch b, the highest backjumping
node of x is its highest parent that is failed with b. Since the ancestors’ set forms
a chain in L3, its greatest lower bound is the minimal element of the chain and
thus the highest parent. If such an element does not exist, then hbj(q, x, b) = ⊤
since ⊤ is the identity element of ⊓.

Secondly, given a set of branches, we compute a safe backjumping node:

sbj : L4 × L3 × Store(L3)→ L3

sbj(q, x, B) 7→
⊔3{hbj(q, x, b) | b ∈ B}

For every branch, we compute its highest backjumping point. This time, we want
the lowest node in this set since we do not want to backtrack too high in the search
tree and miss a solution. Therefore, sbj maps to the least upper bound over the
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set of the highest backjumping ancestor of each branch. If a branch can actually
lead to a solution, then sbj maps to ⊤ since ⊤ is the absorbing element of ⊔.

Finally, we define Gaschnig’s backjumping by removing all the nodes in the
queue below the highest safe backjumping node.

Definition 1.51 (Gaschnig’s backjumping). We store the highest safe backjumping
node in bj. Whenever bj = ⊤, it means that we cannot backtrack yet and gaschnig
acts as the identity function. In the other case, we remove the nodes below or equal
to bj from the queue.

gaschnig : Q4 × L3 × Store(L3)→ Q4 × L3 × Store(L3)

gaschnig(q, x, B) 7→

{

(q, x, B) if bj = ⊤
({(l, v) ∈ q | bj ̸= (v ⊓ bj)}, x,⊥) otherwise

where bj = sbj(π′
2(q), x, B)

The expression bj ̸= (v ⊓ bj) filters out the children of bj in the queue.

Backjumping can be integrated into the full exploration strategy using a branch-
ing strategy enumerating one variable at each level. Finally, the exploration strat-
egy based on Gaschnig’s backjumping is assembled as follows:

push ◦ copy ◦ gaschnig ◦ enumerate ◦ propagate ′ ◦ pop

It is integrated seamlessly in the existing exploration strategy and could be com-
bined with branch and bound as well.

1.8 Conclusion and discussion

The main contribution of this chapter is to lay down a novel hierarchical frame-
work for constraint programming based on lattice theory. We show that seemingly
disparate techniques are defined over the same underlying combinatorial struc-
tures. We now discuss several opportunities fostered by this theory and give some
limitations of this framework. Firstly, this formalism encompasses most of the
components of a constraint solver. Therefore, it should be possible to use an au-
tomatic theorem prover to generate a verified constraint solver. Furthermore, a
number of properties including exhaustiveness, termination and compactness have
been very little explored here. A challenging aspect would be to automatically ver-
ify these properties on user-defined search strategies. Secondly, the propagation
needs a more in-depth treatment, following the presentation in [Tac09], especially
considering event-based programming. Thirdly, this chapter does not do justice to
many important algorithmic techniques including no-goods learning [DF02], lazy
clause generation [OSC09] and local search [VHM05].

No-goods are constraints inferred from L4 when reaching a fail state in L3.
They are useful to avoid repeatedly exploring similar subtrees that would fail for
an identical reason. It can be used in association with backjumping since this
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last actually computes a no-good when returning to a higher node. Compared
to propagation, no-goods learning can be viewed as an inference method over L4

instead of L3.
Lazy clause generation relies on the efficiency of SAT solvers for solving CSPs.

To achieve that, it generates on-the-fly SAT clauses encoding propagators as the
search progresses. The interplay between SAT solving and traditional propagation
has been shown to drastically improve the performance on many finite domains
problems.

Local search is a non-exhaustive search technique successful for finding solutions
to large problem instances for which exhaustive search—or in contrast “global
search”—would take too much time. It directly works on ground values and not
on domains, and thus L0 is equal to L1. Various algorithms exist but most are
captured by the following idea as introduced in [VHM05]. Given a state S ∈ L3,
we move to a neighbouring state such that this state is closer to a solution. Moving
from one state to the other is not necessarily a monotonic operation over L3—a
reason why local search is not exhaustive. Since the variables are ground, the
states manipulated are in Fail3 and it tries to come closer to Sol3 according to a
neighbourhood distance. For example, we move to a state such that the number
of violated constraints decreases—this is a monotonic function but we do not have
the guarantee we can reach Sol3.

To conclude this chapter, we hope that digging further into that direction
might lead to an unified theory of constraint programming. A striking example of
such unification is the delta operator ∆ that is fundamental in many techniques
including restoration strategy, backjumping but also local search when measur-
ing the impact of a move compared to another. In the next chapter, we survey
constraint-based programming languages with the lattice hierarchy developed in
this chapter.



Chapter 2

Constraint-based Programming Languages

2.1 Introduction

A constraint-based programming language is a language equipped with variables
defined at least over L0 and with relations over these variables by proposing the
operator ⊔3. Since its inception, constraint programming is actively combined with
various paradigms ranging from logic to imperative and functional programming.
The logic paradigm is one of the most successful and frequently studied combina-
tions between algorithmic and language aspects of constraint programming. How-
ever, the past two decades witnessed an increasing interest in constraint libraries
due to their better efficiency and integration into mainstream languages. These
are the main reasons why the literature on constraint programming is cleaved in
solving algorithms and language abstractions. The goal of this chapter is to sur-
vey constraint-based languages with the lattice hierarchy introduced in the first
chapter. We also draw various links between algorithmic approaches and their rel-
evant abstractions in programming languages. As we portray in Figure 2.1a, the
hierarchical dimension of our framework multiplies the possible operators inside a
language. Therefore, considering all the combinations of operators, it is natural
that a large panel of languages exists.

Nowadays, the algorithmic aspect of constraint programming is predominant
as attested by numerous solvers packaged as libraries. Many constraint prob-
lems that occur in practice are intractable—there is no existing algorithm to solve
them in polynomial time. Nevertheless, when analysing a problem, we can often
customize the constraint solver to explore the state space of the model more ef-
ficiently. For example, QuickPup [TFF12] is a search strategy tailored to solve
real-world instances of a configuration problem. In this regard, a recurring prob-
lem is the difficulty to tweak constraint libraries whereas language abstractions
can drastically simplify the tweaking process. This fact is corroborated by recent
works devoted to abstractions for specifying the search strategy in a constraint
solver [STW+13, SDTD14, MFS15].

However, designing new constraint-based languages is a daunting task, partly
due to the long history of the field which began with logic programming, and

52
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Figure 2.1: Algebraic structure of a constraint-based language.

partly because of the scarce work that studies and compares the existing languages
with constraints as a central notion1. In this respect, we find many constraint-
based programming languages that extend various paradigms and use distinct
algorithmic facets of constraint programming. Therefore, it is hard to understand
what language is suitable for one task, and how this language is relevant to solving
algorithms. Ideally, a constraint-based programming language should be based on
the efficiency of modern constraint solving, and provide useful abstractions to
customize and program these solving algorithms.

In Figure 2.1b, we relate the algebraic operators of the lattice framework and
the three main ingredients of constraint programming: model, inference and search.
A constraint-based language is usually specialized to one component although
languages attempt to merge two or the three of these components. We do not
include pruning into our classification because we do not know of any language
centered around pruning. However, we show along this survey that some languages
from all categories include pruning abstractions, for example the cut in Prolog.

Model

Modelling languages have deep roots into first-order logic—reviewed in Section 2.2.1—
since it is usually a high-level abstraction to specify logic formulas. Examples of
such modelling languages include AMPL [FGK90], OPL [VHMPR99] and MiniZ-
inc [NSB+07]. These languages provide modelling abstractions and delegate the
solving part to specialized constraint solvers. We illustrate this paradigm through
several constraint models in Section 2.3.

1Although several works exist in the more general context of multi-paradigm languages (e.g. [RH04,
Hof11, Han14]).
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Inference

Language theoretic research on constraint inference stems from the field of con-
straint and concurrent logic programming [Sha89]. Examples include concurrent
constraint programming (CCP) [SR89] and constraint rewriting systems such as
constraint handling rules (CHR) [Frü98]. This class of language is often associated
with the notion of “don’t care nondeterminism” which models nondeterminism
without backtracking. One of the common limitations of such languages is to con-
sider convex constraint systems—those that do not need a search step to be solved.
However, this restriction allows backtrack-free languages to define concurrent and
infinite computations. We give an account of theses languages in Section 2.4.

Search

For the efficiency reasons mentioned earlier, it is essential for a language to provide
support for expressing search strategies. On the one hand, a large piece of work has
been dedicated to bridging inference and search inside a unique language. This is
notably the case of constraint logic programming (CLP) and we study it in depth
in Section 2.5. On the other hand, due to some difficulties to merge L3 and L4,
various search-only languages—usually accompanying a modelling language—have
been developed. For example, a model written in MiniZinc can be conjointly used
with the MiniSearch language [RGST15]. We review languages supporting search
as well as their limitations in Section 2.6.

In sum, we provide a comprehensive survey of the main constraint-based pro-
gramming languages using the lattice framework of Chapter 1. It illustrates that
algebraic operators provide the necessary connections between the algorithmic
and language aspects of constraint programming. We demonstrate that lattices
are expressive enough to formally explain a large variety of constraint-based pro-
gramming languages. Specifically, we reinterpret the semantics of CCP and CLP
with the algebraic operators (⊔, |=,∆).

We organise this chapter by classifying languages according to their levels in the
lattice hierarchy. In order to clearly understand the survey starting in Section 2.3,
we first provide the necessary background in logic and a few historical notes in the
field of logic languages.

2.2 Background

In order to clearly understand the links between language and algorithmic ap-
proaches to constraint programming, it is useful to take a look at their evolution
chronologically. Therefore, we start with a short account of first-order logic and
the computational models that follow this mathematical theory.
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2.2.1 First-order logic

The main goal of programming languages is to formalize a set of concepts that
interact well in order to solve a substantial class of problems. Actually, Hilbert—
through the so-called Hilbert’s program—already had a similar objective albeit
more ambitious: finding a set of axioms that can formalize all the mathematics.
This problem culminated in the modern syntax of first-order logic (FOL) given by
Hilbert and Ackerman [HA28] in 1928. We give some terminologies surrounding
the syntax of FOL (based on [Seb07]) used throughout this chapter.

Definition 2.1 (Syntax of first-order logic). A first-order signature S is a tuple
(V, F, P ) where V is the set of variables, F the set of function symbols and P
the set of relation symbols—called predicates. We note x, y, . . . ∈ V the variables,
f, g, . . . ∈ F the function symbols and p, q, . . . ∈ P the predicate symbols. Each
function and predicate symbol has an arity n ≥ 0. A function symbol (resp. pred-
icate symbol) with an arity of 0 is called a constant (resp. boolean atom). A term
is either a variable or a function whose arguments are terms. An atom is a predi-
cate whose arguments are terms. A literal is either an atom a or its negation ¬a.
A formula is built by the usual existential quantifier ∃, the universal quantifier ∀
and the (non-minimal) set of boolean connectives {¬,∧,∨,−→,↔}. We say that a
formula ϕ (or term t) is closed (or ground) if there is no variable free in ϕ (or t).
A sentence is a closed formula. A theory is a set of sentences with a signature S.
A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A formula in conjunctive normal
form (CNF) is a conjunction of clauses.

We consider a model-theoretic semantics, pioneered by Tarski in 1933 [Tar33],
which is the prominent semantics adopted in the field of constraint-based lan-
guages.

Definition 2.2 (Model-theoretic semantics of first-order logic). Given a signa-
ture S = (V, F, P ), an interpretation2 I is a tuple (D,FI , PI) where (i) D is a
non-empty set of elements—called the domain of discourse, (ii) FI is a function
mapping function symbols f ∈ F with arity n to interpreted functions fI : D

n → D,
and (iii) PI is a function mapping predicate symbols p ∈ P with arity n to inter-
preted predicates pI ⊆ Dn. Given a closed formula ϕ built from S, an interpretation
I is said to be a model of ϕ if I is true in ϕ. Equivalently, we say that I satisfies
ϕ.

In addition to the syntax, Hilbert and Ackerman raised three fundamental ques-
tions:

1. “Can every valid sentence in FOL be proven to be valid within FOL?” (com-
pleteness),

2. “Does a formal system never permit to derive a sentence and its negation?”
(consistency), and

2Also called a structure in the model theory.
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3. “Is there a decision procedure proving the validity of every sentence in FOL?”
(decidability).

Soon after, Gödel proved that FOL is complete [Göd30]. However, by its first in-
completeness theorem [Göd31] of 1931, he showed that it is impossible to provide
a formal system—at least capable of encoding elementary arithmetic—that is both
complete and consistent. Hence FOL is an inconsistent formal system in which
some sentences cannot be proven true nor false. The existence of a generic decision
procedure for FOL was later rejected by the Church-Turing thesis [Chu36, Tur37].
There are two approaches in programming languages to overcome the undecidabil-
ity result of FOL: either accepting that sometimes the algorithm will not terminate
or considering a decidable fragment of FOL.

2.2.2 Semi-decidability

Accepting that an algorithm may not terminate is historically the first computa-
tional approach to tackle the undecidability of FOL. Logic programming is one of
the most striking examples of trading decidability for expressiveness3. In practice,
the burden of undecidability is delegated to the programmer who is responsible for
limiting in time the computation, and to cope with runtime errors such as stack
overflow. We first give some historical remarks about computational logic, and
then we consider logic programming.

One of the central results is Herbrand’s theorem [Her30] showing that FOL is
actually semi-decidable, that is, for any valid FOL sentence F , there is a proof
of finite length. This theorem is of paramount importance to distinguish the
foundation for constraint solving (satisfiability) and theorem proving (validity).
To understand it, we define the notions of Herbrand universe and Herbrand base
followed by an algorithm to decide the validity of a formula.

Definition 2.3 (Herbrand universe). Given a first-order signature (V, F, P ) with
F containing at least one constant symbol, its Herbrand universe Hu is the set of
all ground terms that can be built out of F .

Definition 2.4 (Herbrand base). The Herbrand base Hb is the set of all ground
formulas that can be built out of Hu.

In 1960, Davis and Putnam [DP60] introduced a decision procedure for FOL that
performed better than the contemporary approaches by avoiding their (almost)
systematic exponential blow-up. It interleaves the following two steps (the formula
is first preprocessed to be in CNF):

(i) it instantiates the variables with terms of the Herbrand universe, and

(ii) it proves (or disproves) the validity of the obtained quantifier-free formula.
3In this case, the gain in expressiveness is the Turing completeness of the language.
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Given a formula F in CNF and its Herbrand universe HF , the formula can be
instantiated into |HF | subformulas forming a new (possibly infinite) CNF formula
F1 ∧ F2 . . . ∧ Fn. This is called the grounding step because it “grounds” to values
the variables of F . If a subset of formulas F1 ∧ . . . ∧ Fi is proven unsatisfiable,
then the whole formula is unsatisfiable. Dually, if it is proven valid, we need to
continue on the extended conjunction of formulas F1 ∧ . . .∧Fi+1. The Herbrand’s
theorem tells us that if a formula is unsatisfiable, then there is a finite conjunction
of formulas that is unsatisfiable. Note that the validity is proved with the negated
formula ¬F . Indeed, if a formula is valid, its negation is unsatisfiable. Answer set
programming (ASP) is a paradigm for solving FOL formulas which is based on a
grounding step, and thus ASP has very efficient grounders [Bar03].

The second step, especially in the refined and implemented version of 1962 [DLL62],
called the DPLL algorithm from the names of its authors, is still at the heart of
modern SAT solvers. Its main inference rule is:

split
c ∨ l d ∨ ¬l r
(c ∧ r) ∨ (d ∧ r)

This rule is better understood top-down since it generates a search space: c ∧ r
assumes that l is valid, and d ∧ r that l is invalid. A contradiction is obtained
whenever this rule generates the empty clause—it is obtained only from l∧¬l which
is always false. If c∧ r is proven invalid, then we can try to prove the validity with
d∧ r. On the contrary, if c∧ r is proven valid, then the whole formula is valid. In
fact, this splitting rule is central to any solving algorithm based on backtracking.
In addition, DPLL comes with unit propagation and pure literal elimination for,
respectively, propagating clauses with only one literal (which must be true) and
removing literals that only appear positively or negatively in the formula.

Generating all the grounded formulas is not always practical and efficient.
Hence, a generalization of this rule for quantified formulas, called the resolution
principle, has been developed by Robinson in 1965 [Rob65]. It is based on earlier
work of Prawitz who rediscovered unification4 and proposed his own version of a
proof-finding algorithm [Pra60]. An elegant fact is that resolution is a complete
inference system for the first-order logic constituted of a single rule. The resolu-
tion principle is at the heart of the logic programming paradigm that we introduce
next.

2.2.3 Logic programming

Early in the seventies, researchers tried to puzzle out how to use logic in an
efficient way. At that time, the debate was between procedural (e.g. Plan-
ner [Hew69, Hew71]) and purely logical (e.g. QA3 [Gre69]) representation of
knowledge. This debate lasted until the team of Colmerauer—developing a natural

4Actually, David and Putnam proof-finding procedure as well as unification were already shown in
the thesis of Herbrand respectively under the names of Property B and Property A [Rob00].
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language question-answer system—and Kowalski noticed that a particular form of
logic formula, named Horn clauses, could be interpreted logically and procedu-
rally [Kow74]. These findings gave birth to the well-known Prolog programming
language. In the following, we consider a modern version of Prolog and we do not
review the many variants of the resolution rule in the context of Prolog. Addi-
tional references can be found in [Col93] for Prolog, [Hew09] for the procedural
vision (e.g. Planner) and [Rob00, Kow14] for a more general review of the logic
programming history. Note that combining declarative (logic) paradigms and ef-
ficient (procedural) solving algorithms is still a major challenge today, as we will
see in the forthcoming sections. We now give some terminologies relevant to Horn
clauses.

Definition 2.5 (Horn clause). Horn clauses are clauses with exactly one positive
literal. They are represented by the formula A0 ∨ ¬A1 ∨ . . . ∨ ¬An (n ≥ 0) where
Ai is an atom, and more commonly by the implicative formula A0 ← A1∧ . . .∧An.
The atom A0 is called the head and the conjunction A1∧ . . .∧An the body. In case
n = 0, then A0 ← true is called a fact and is simply noted A0. In case A0 = false,
then false← A1 ∧ . . . ∧ An is called a goal and is noted ← A1 ∧ . . . ∧ An.

Definition 2.6 (Logic program). A logic program is a set of Horn clauses.

Definition 2.7 (Normal logic program). An important extension of Horn clauses,
named the general clause, is to accept negative literal in the body. A normal logic
program is a set of general clauses.

Given a logic program P and a goal G—representing the question to ask—we can
give a logic semantics to Prolog. By negating the goal G, we obtain the formula P∧
¬G in CNF that can be sent to a theorem prover, using an algorithm such as the one
described above. If the formula is valid, then the query G is unsatisfiable, otherwise
we obtain a contradiction which is an answer to the problem. Since Prolog focusses
on Horn clauses, the resolution principle has been adapted and improved for this
particular case; the algorithm is named SLD-resolution [Kow74]. In case of normal
logic programs, a negated literal is considered false if we cannot prove it—this
principle is called the negation as failure (NAF). The most traditional semantics
for NAF is the Clark’s completion [Cla78] where a program is considered closed:
we know everything so a literal that we cannot prove is considered false. This
is a form of non-monotonic reasoning because if we add new facts afterwards,
a literal considered false might become true. Additional insights on the different
resolution rules, NAF and the relation of Prolog to logic can be found in [NM95]. A
standard book on Prolog is [SS94], and Prolog in the context of artificial intelligence
is explained in [Bra12]. We consider in more details a generalized version of the
semantics of Prolog in the context of constraint logic programming in Section 2.5.2.
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2.2.4 Decidable fragments of FOL

Restricting FOL to some decidable fragments makes it amenable to fully auto-
matic algorithms. There are a large amount of interesting fragments and various
communities propose specific approaches to solve some fragments. In the follow-
ing, we briefly introduce the main four approaches: SAT, constraint programming,
satisfiability modulo theories (SMT), and (mixed) integer programming.

The restriction of FOL to propositional logic has been explored in depth in
the SAT community [BHvMW09]. A solver SAT takes a formula in CNF such as
(a ∨ b) ∧ (¬b ∨ c) and answers with a truth model of this formula, for example
{a 7→ true, b 7→ false, c 7→ false}. The domain of discourse of a solver SAT
is the boolean set {true, false}. We can encode problems modelled with integer
values into propositional formulas—which is feasible since in computer science,
everything is encoded with bits anyway. However, encoding any problem into SAT
can results in million of clauses for a single constraint. Another problem is that we
lose the structure of the initial problem which can bring valuable information to
solve the problem faster. The following approaches use logic predicates to preserve
the overall structure of the problem.

Constraint programming mainly relies on FOL formulas without quantifiers
and over finite domains [RvBW06]. We studied this approach in Chapter 1.3.
Intuitively, this fragment of FOL is decidable since, to establish the satisfiability
of any formula, it is sufficient to enumerate all the models. In short, a constraint
solver takes a formula such as x, y, z ∈ {1, 2, 3} ∧ x + 1 < y ∧ x ̸= z and
finds a model satisfying the formula such as {x 7→ 1, y 7→ 3, z 7→ 2}. Similarly
to SAT, a constraint problem is generally NP-complete; the challenge is to find
an efficient algorithm for this generic settings—compared to SAT which has more
specialized and efficient algorithms for boolean domains. In this context, hybrid
approaches are explored by lazily generating the SAT formula and keeping the
overall structure of the problem [OSC09]. Historically, this paradigm has evolved
together with programming languages, and so is central to this survey.

Many fragments of FOL, called theories, are extensively studied in SMT solvers
(see e.g. [Seb07]). In contrast to general-purpose solving algorithms, theories help
to design efficient and specialized algorithms, and to study the properties of these
theories such as their algorithmic complexity. The complexity of a theory ranges
from polynomial (e.g. linear arithmetic over reals) to undecidable for the full FOL.
The goal is to find theories that offer an interesting trade-off between expressiveness
(the kind of problems it can model) and complexity. We define two theories that
will be relevant to the programming languages studied later. Similarly to [Seb07],
all theories contain the equality predicate = which is a reflexive, symmetric and
transitive relation, and a congruence.

Definition 2.8 (Theory of equality and uninterpreted functions). The quantifier
free theory of equality and uninterpreted functions (EUF) has any signature S =
⟨V, F, P ⟩ and does not interpret the function and predicate symbols—hence the
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terminology “uninterpreted”. More exactly, the semantics interpretation functions
are the identity functions. Therefore, the domain of discourse is the Herbrand
universe of the signature S.

The theory EUF is central to logic programming (Section 2.2.3).

Definition 2.9 (Theory of linear arithmetic). The quantifier free theory of linear
arithmetic over integers (LA(Z)) has the signature ⟨V, F = {+, ∗} ∪Z, P = {<,>
, ̸=,=,≤,≥}⟩ with atoms of the form c1 ∗ x1 + . . . + cn ∗ xn □ c0 where □ ∈ P ,
ci is an interpreted constant and xi ∈ V a variable. The semantics consist of the
domain of discourse Z and the symbols are interpreted as in standard arithmetic.
We refer to LA(Q) when the theory ranges over the rationals and LA(R) when it
ranges over the reals.

The SMT solvers work together with a SAT solver in two steps: (i) the atom
of the formula are abstracted, for example, x > y ∨ x ̸= y is turned into a∨ b, and
the latter formula is sent to a SAT solver, and (ii) the SAT solver returns a model,
and the corresponding atoms (or the negation of these atoms) are solved within
their respective solver. In case of non-satisfiability, a new SAT model is queried.
Of course, modern SMT solvers take a lazy approach in the sense that these two
steps are intertwined [Seb07]. We call this algorithm DPLL(T ) where DPLL is
the algorithm seen above to solve propositional formulas and T is a theory that is
instantiated in this framework. The formal and practical study of the combination
of two or more theories is one of the challenges in a SMT solver. More information
on the solving algorithms behind these theories as well as techniques to combine
these theories is available in e.g. [KS08, Seb07].

Finally, the approach of linear programming is dedicated to the theory of lin-
ear arithmetic. It comes in various flavours depending on the domain of discourse:
linear programming over real numbers, integers (integer linear programming), or
both (mixed integer programming). Linear programming algorithms are tailored
for constraint optimization problems which aim at finding the best solution ac-
cording to some criteria.

It is important to keep in mind that these approaches are not exclusive, and
many works attempt to combine their advantages [Hoo02, Hoo12, VH02, OSC09,
BG12]. In the following, we mainly focus on constraint programming as it shapes
most of the constraint-based programming languages.

2.3 Modelling languages: from L0 to L4 (⊔)

2.3.1 Declarative languages

The pioneering ALICE language

ALICE [Lau78], designed around 1976 by Jean-Louis Laurière, is a pioneering con-
straint modelling language. Surprisingly, the structure of an ALICE program shares
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much in common with modern modelling languages. Despite its lack of support for
abstractions, ALICE’s primitives can already express a large number of problems.
The underlying combinatorial objects are sets and functions: we model in terms of
set correspondences. For example, it supports the modelling of injective, surjective
and bijective functions between two sets—essential to model assignment problems.
To demonstrate this, we consider a scheduling problem and its ALICE model as
appearing in [Lau78]. This will serve as a starting point to explain two modern
modelling languages: AMPL [FGK90] and MiniZinc [NSB+07], respectively from
the mathematical and constraint programming communities.

Example 2.1 (Congress scheduling). The organizers of a congress have filled the
participants’ preferences in a matrix M where Mi,j = 1 if there is a congressman
who wants to attend both the sessions i and j. There are 11 sessions dispatched
in 3 rooms. The session 10 comes after the session 5, and the session 11 after the
fourth and sixth. Each session lasts for one time slot. Find a schedule such that
all the constraints are satisfied and the duration of the congress is minimized. ⌟

An ALICE model captures the problem as follows:

GIVEN CST N

SET S = INT 1 N (sessions)
H = INT 1 N (periods)

FIND FUN F ↣ S H DIS DMA

WITH MIN MAX F I (disjunction) (maximum degree)
F 5 < F 10

( F 11 > F 4 ) AND ( F 11 > F 6 )

END

The model is clearly separated into constants (N), variables (S and H), constraints
and an optimization function. The goal is to find a map F between the set of
sessions S and the set of periods H. The expression MIN MAX F I is an objective
function that minimizes the maximum element of the function F. Several simple
constraints follow, e.g. F 5 < F 10. The core of the problem resides in the
constraints DIS and DMA put on the map F. The constraint DIS ensures that two
distinct elements x, y in the domain of F map to a distinct element (F(x) ̸= F(y));
the list of such distinct elements must be given as an input. The constraint DMA

ensures that each element y in the image of F is mapped onto at most n times by
every element in the domain of F. Here, the input of DIS is the preference matrix
and the one of DMA is a vector (3, 3, . . . , 3) since only 3 rooms are available at any
time.

Algebraic modelling languages

ALICE is a language bundled with its own solver; at that time, there were not so
many different solving algorithms and generic schemes were not yet well-understood.
Besides ALICE, research in modelling languages was fostered by industrial needs to
program more easily mathematical models. These include optimization problems
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over real numbers—(non-)linear programming—and over real and integers, namely
mixed integer (non-)linear programming. In comparison, constraint programming
is more general but less efficient on solving these particular problems. Languages
targeting this class of problems are usually called algebraic modelling languages
(AML). We model the “Congress scheduling” problem using AMPL [FGK90], an
early AML language which is still maintained today.

param n;

set S ordered = 1..n;

set H ordered = 1..n;

param DMA {H} > 0;

param DIS {S, H} binary;

var F {S} >= 1 <= n integer;

var Y {S,H} binary;

minimize Duration: max {j in S} F[j];

subject to Precedence1: F[5] + 1 <= F[10];

subject to Precedence2: F[11] >= F[4] + 1;

subject to Precedence3: F[11] >= F[6] + 1;

subject to dis1{i in S, j in S: i < j and DIS[i,j]==1}:

F[i] - F[j] + 1 <= 30 * Y[i,j];

subject to dis2{i in S, j in S: i < j and DIS[i,j]==1}:

F[j] - F[i] + 1 <= 30 * Y[j,i];

subject to dis3{i in S, j in S: i < j and DIS[i,j]==1}:

Y[i,j] + Y[j,i] = 1;

subject to dma{k in H}:

numberof k in ({j in S} F[j]) <= DMA[k];

The model is divided into five parts: the user data (indicated by param), the
constants (here the sets), the variables (e.g. the function F), the objective function
(minimize Duration) and the constraints (starting with subject to). It clearly
shows the important legacy—or most probably the rediscoveries5—left behind by
ALICE. The AMPL model is almost organized identically to the ALICE model; the
only change is the nature of the DIS and DMA constraints. Most of the solvers behind
AMPL only provide the operators {≥,≤,=}, forbidding strict inequalities. This
is an example of trade-off between language expressiveness and efficiency of the
underlying solver. The preferences of the congressmen, consisting of a conjunction
of constraints F [i] ̸= F [j], must be modelled using the operators available only. For
this purpose, we use the method of the “big M”—proper to linear programming—
where each constraint ̸= is broken into three “less or equal than” constraints. The
second constraint DMA is modelled using a constraint programming extension to

5See the preface of Jacques Pitrat in [Lau96a].
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AMPL ensuring that the number of sessions per period does not exceed 3. We
do not cover the history of algebraic modelling languages here, and we refer the
reader to e.g. [KPH04].

Constraint modelling languages

Constraint programming generated many families of programming languages, start-
ing with constraint logic programming (see Section 2.5.2), and later on with con-
straint modelling languages. Due to the generality of the constraint paradigm, it
is very important to use a solving algorithm adapted to the problem (for example
a linear solver if the problem can be modelled this way). This motivated solver-
agnostic modelling languages: the model is compiled into a simpler intermediate
language that can be read by many different solvers. It becomes very straight-
forward for the user to test a model with different solver and to compare their
efficiency on a particular problem. However, creating such a standard is not easy:
it must spread among the community and multiple solvers must support it.

We consider MiniZinc [NSB+07], a standard modelling language for constraint
problems. A MiniZinc model is compiled to the intermediate language FlatZinc,
which removes some of the complexity by unrolling and flattening many expressions
which are then read by a solver. There are dozens of solvers supporting the FlatZinc
format including constraint solvers but also mixed integer programming, SAT and
SMT solvers [SFS+14]. This success is partly due to the MiniZinc competition. It
was introduced around the same time as the language for encouraging its use as a
de facto standard [SBF10]. It gives the opportunities to the developers to compare
their solvers in exchange for a small investment for supporting the FlatZinc format.

Another important key point of constraint modelling languages is to provide
abstractions and global constraints. For a last time, we consider the “Congress
scheduling” problem, but this time in MiniZinc.

int: n;

set of int: S = 1..n;

set of int: H = 1..n;

array[int] of int: DMA;

array[int,int] of int: DIS;

array[S] of var H: F;

constraint global_cardinality_low_up_closed(F, [i|i in H], [0|i in S], DMA);

constraint forall(i in S, j in S where i < j /\ DIS[i,j]=1)

(F[i] != F[j]);

constraint F[5] < F[10] /\ F[11] > F[4] /\ F[11] > F[6];

solve minimize max(F);

For explanations on the MiniZinc syntax, please refer to Section 1.1.1. We focus on
the global constraint global_cardinality_low_up_closed(F,I,L,U) which gen-
eralizes the DMA constraint of ALICE. It restricts the values in the array F to take, for
an element i, each value in I[i] between L[i] and U[i] times. Global constraints
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are a fundamental concept behind the success of constraint solvers. Indeed, they
enable modellers to capture combinatorial sub-structures of a problem in a similar
way that procedures capture sub-problems in the imperative paradigm. Global
constraints have at least three advantages:

(i) they can be re-use across models,

(ii) solvers can provide efficient propagators’ implementations, and

(iii) global constraints can be decomposed into primitive constraints, and so are
still usable with solvers not directly supporting them.

In the AMPL model, we used the global constraint numberof for modelling the
restrictions on the number of rooms. Actually, to solve this constraint, AMPL must
be used together with a constraint programming extension. An active research
field is to merge these different algorithmic approaches into a single language. In
this case, if the model is mixed with different constraint kinds, the challenge is
to make the different underlying solvers cooperate. As mentioned earlier, a sim-
ple but successful cooperation scheme is the one provided in SMT solvers where
theories communicate through equality constraints. From a language perspective,
OPL [VHMPR99] is a language specifically designed to merge mathematical pro-
gramming (e.g. mixed linear programming) and constraint solving. In particular,
they give several examples in [VH02] demonstrating how integer programming
techniques such as cuts—a central concept to reduce the search space in linear
programming—can be improved using information from global constraints.

Modelling with {⊔0,⊔1,⊔2,⊔3,⊔4}

Interestingly, one could argue that ALICE comes closer to a mathematical definition
than mainstream modelling languages. We attempt to show that this is mostly a
syntax concern. Indeed, all three models have actually similar connections to our
lattice hierarchy.

• Constants are members of the lattice L0 and integer sets are defined over
L1. The operations ⊔0 and ⊔1 are usually not language primitives as such.
However, these two operations are used when merging the model with its
data. In the AMPL model, the instruction param n can be seen as n initialized
to ⊥0: we do not yet have any information about n when looking just at the
model. When, in the data file, the instruction param n := 11; is reached, it
actually performs the operation ⊥0 ⊔0 11. If n is initialized to two different
values, then we reach ⊤0 which is normally statically forbidden. It works
similarly with the integer sets in L1. In FlatZinc, the compiled model does
not contain variables defined over L0 and L1 anymore and only makes use of
the operations ⊔2 and ⊔3.



Constraint-based Programming Languages 65

• In ALICE, the map F is defined over L2 where the domain of the function is
the location set and the image is the value set of L2. Similarly in MiniZinc,
the array array[S] of var H: F is defined over L2 where the indices S form
the location set and the cells—of type var H—constitute the value set. The
statement array[1..n] of var 1..n declares n variables which corresponds
to the element

⊔

l∈[1..n]{(l, [1..n])} in L2.

• Constraints are defined over L3. Taking MiniZinc as an example, the state-
ment constraint c corresponds to the join of the current CSP with c written
as ⟨d, P ⟩ ⊔3 ⟨d, {JcK}⟩. The n-ary conjunction forall(r)(c) generates the
CSP

⊔

i∈r⟨d, {JcK}⟩ that can be joined into the main CSP.

• The optimization function is joined in L4 during the solving time (see Sec-
tion 1.6).

2.3.2 Constraint imperative programming

It is sometimes difficult to integrate a constraint model into a larger non-declarative
program. This is especially true when the model is built dynamically at run-time
and depends on user interactions. Indeed, pure declarative languages assume that
the model is statically known. This motivated the creation of constraint imperative
programming6 languages incorporating constraints into their semantics.

Among the languages in this family, Kaleidoscope [LFBB94], designed around
1991, is one of the first full-fledged oriented-object programming languages inte-
grating constraints. Twenty years later, the ideas developed in Kaleidoscope are
re-explored with the language Babelsberg/R [FBH13] extending the programming
language Ruby and Babelsberg/JS [FMBH15] extending Javascript. Meanwhile,
the language Turtle [Gra03] has explored a simpler integration into the imperative
paradigm without support for objects. We discuss these languages from our lattice
hierarchy viewpoint.

Compatibility with the imperative paradigm

To stay compatible with the lack of domains in imperative languages, the domains
of the variables are not directly accessible in Kaleidoscope. From a modelling
perspective, the lack of the join ⊔1 is not a problem since we can always use
constraints to intentionally represent domains, e.g. ⟨d, P ⟩ ⊔3 ⟨⊥3, {Jx ≥ 2K, Jx ≤
4K}⟩ instead of d(x) ⊔1 [2..4]. However, the lack of domains implies that the user
only manipulates fully instantiated variables, and thus we cannot observe partial
information. This design is coherent with the lack of entailment operators in these
languages since it would not be possible to query these partial results anyway.

An important incompatibility with the nature of imperative languages is the
unpredictability of the execution time. Time guarantees are often difficult to

6This term was coined in the context of the language Kaleidoscope [FBB92] but the concept itself
dates back to languages integrating backtracking (Section 2.6.2).
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assess when solving a constraint problem and this can be problematic in graphical
interfaces, for example. A partial solution in Babelsberg is to build on incremental
capabilities of constraint solvers when available in order to improve the solving
time.

Dynamic construction of the model

In contrast with purely declarative approach, the constraint imperative paradigm
interleaves modelling phases where new constraints are added, and solving phases
where the variables are instantiated. The solving phase is usually transparent
to the user who cannot control its activity—a reason why we classify such lan-
guages as modelling languages. Therefore, an important question arises: when is
the solver called? The answer depends on the language. The predominant ap-
proach is to call the solver every time a new constraint is added, for example in
Babelsberg [FMBH15] and Turtle [GH04]. A lazy approach in Turtle++ [HK06]
is to trigger the solving phase only when we read a constrained variable. An ad-
vantage of the latter method is that constraints can be added in bulk—without
recalling the solver each time—while other languages need a specific statement for
this feature.

A second key design decision in constraint imperative languages is to deal with
unsatisfiability of a model. This is also to contrast with declarative languages
where satisfiability results are delegated to external languages whereas it is solved
in the same language here. The solving phase has three outcomes relevant to this
class of languages:

(i) unsatisfiable in which case an exception is thrown,

(ii) exactly one solution which is the perfect scenario, and

(iii) multiple solutions where one must be chosen.

In case of unsatisfiability, it might be difficult to recover since the constraint added
last might not be totally responsible for the unsatisfiability. This is why constraint
imperative languages support “soft constraints”, i.e. constraints that are not re-
quired to be satisfied. For example, in Turtle, they provide the annotations weak,
medium and strong to classify constraints according to their importances. As for
multiple solutions, the underlying solver tries to keep a new solution as close as
possible to the previous one computed. This can be controlled using the stay

constraints in Babelsberg. It works as follows: given a solution {x 7→ [1..1]}, it
automatically adds the soft constraint x = 1 with a low importance into the store.

A third dynamic aspect of constraint imperative languages is the ability to
retract constraints from the store. Babelsberg provides an abstraction to retract a
constraint when its declaration goes out of scope. This is realized with statements
indicating if a constraint should be persistent (always c), only enforced the first
time (once c) or active for a delimited block of code (assert c during p).
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When we exit the scope of a constraint c, the constraint problem is updated with
⟨d, P ⟩∆3(⟨d, P ⟩∆3⟨⊥2, {JcK}⟩). It can help in the case of unsatisfiability if the
exception flows outside the scope of an assert/during block.

2.4 Inference-based languages: from L0 to L3 (⊔,⊨)

We overview backtrack-free languages dedicated to programming lattices between
L0 and L3 with the join and entailment operators. The delta operator is virtu-
ally absent from these languages since there is no backtracking. However, these
languages feature another form of nondeterminism called “don’t care nondetermin-
ism” which was described by Dijkstra with its guarded command language [Dij75].
The central concept is the nondeterministic composition of conditional statements:

do c1 -> p1
[] c2 -> p2
[] c3 -> p3
od

Among all the guards ci that are entailed, one alternative pi is non-deterministically
selected and the others are discarded. Hence, once we committed to an alternative
the program never backtracks or reconsiders its choice. However, it is important to
stress that determinism of the computation is usually recovered at a higher level.
Indeed, this construction is used to program systems in which every path leads to
the same solution. It relates to the transition system lattice in L3. Given a state
several propagators can usually be applied and we must make a nondeterministic
choice in order to progress. Nevertheless, we end up in the same final state—the
top element—due to the confluence of the transition system.

2.4.1 Concurrent logic programming

Concurrent logic programming is a variant of logic programming with guards and
where goals are not necessarily executed sequentially but can be suspended and
interleaved. We can immediately define the main construct of this paradigm.

Definition 2.10 (Guarded Horn clause). A guarded horn clause is a Horn clause
of the form

H ← G1 ∧ . . . ∧Gn ∧ B1 ∧ . . . ∧ Bm (n ≥ 0,m ≥ 0)

where Gi is an atom called the guard.

The logical interpretation is the same as with Horn clauses but its operational
interpretation is different. The program is interpreted following the committed-
choice semantics rather than the usual backtracking semantics of Prolog—that
we consider in Section 2.5.2. This is why we classify this paradigm as being
useful for programming systems up to L3 in the lattice hierarchy. Note that,
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however, this classification only pertains to combinatorial problem solving, and
that concurrent logic languages might have features that languages supporting
L4 have not. Actually, in the eighties, concurrent logic programming provided a
strong proposal to declaratively programming parallel and reactive systems.

Research in this field was fostered by the Japanese Fifth Generation Com-
puter Systems (FGCS) project aiming at reworking the definition of a computer
from the hardware to the software. A major goal was to program large-scale par-
allel machines using symbolic and knowledge-based computations (in opposition
with numerical processing) [Ued17]. Therefore, the concurrent logic paradigm was
deemed appropriate and chosen to cope with the parallel nature of the hardware
in a declarative manner. At that time, most of the people in this community were
involved in the FGCS project, and thus the peak research activity of this paradigm
was from 1983 to 1992, the duration of the project. For a historical account and
personal reviews of the project we refer the reader to [FKF+93] and to [Ued17] for
a recent retrospective.

The language chosen as a basis for the FGCS was the Guarded Horn Clauses
(GHC) [Ued85] (rebranded as Kernel Language 1 (KL1) in the project). In GHC,
a guarded Horn clause is written as

H :- G1, . . ., Gn | B1, . . ., Bm

with the same meaning than in the former definition. To illustrate this paradigm,
we consider a musical example making use of the guards in GHC7.

Example 2.2. A conductor process generates a list of 1 (for play) and 0 (for
silent). The players follow this list but start with a delay. The guards ensure that
a player does not start if the delay is not exhausted or if the conductor requires a
silent note.

conductor(L, C, Max) :- C =< Max | P:=(C mod 2), L = [P|R],

C1:=C+1, conductor(R, C1, Max).

conductor(L, C, Max) :- C > Max | L = [].

player([P|R], Delay, L2) :- Delay > 0 | L2=[0|R2], D1:=Delay-1, player(R, D1, R2).

player([P|R], Delay, L2) :- P = 0 | L2=[0|R2], D1:=Delay-1, player(R, D1, R2).

player([P|R], Delay, L2) :- Delay =< 0, P = 1 | L2=[1|R2], player(R, Delay, R2).

player([], Delay, L2) :- true | L2 = [].

All the guards of a predicate are exclusive, and thus we do not have arbitrary
choices made by the execution engine; we say that the predicate is deterministic.

⌟

Importantly, the guards are decision procedures but not propagators: they
do not perform unification on their terms. For instance, the guard P = 0 in the
second predicate player does not unify P with 0; if P is not ground when tested, it

7An interpreter for GHC is still available and working today on top of SWI-Prolog, see http://www.

ueda.info.waseda.ac.jp/software.html.

http://www.ueda.info.waseda.ac.jp/software.html
http://www.ueda.info.waseda.ac.jp/software.html
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suspends its execution. This mechanism of suspension—central to concurrent logic
programming—interprets predicates as processes by interleaving their executions.
For example, we can execute the former program as follows:

?- ghc player(Ns, 1, Ns1), conductor(Ns, 1, 5), player(Ns, 3, Ns2).

Ns = [1, 0, 1, 0, 1],

Ns1 = [0, 0, 1, 0, 1],

Ns2 = [0, 0, 0, 0, 1].

where we invoke a player before the conductor. The three processes communicate
on the stream Ns where conductor is the producer and the two predicates player
are the consumers. This first player will be suspended due to Ns being unbound
and the conductor will be executed.

At first, suspension—also called co-routining—was designed in IC-Prolog in
1979 as an attempt to relax the rigid evaluation strategy of Prolog (top-to-bottom
and left-to-right evaluation of the predicates). Indeed, the former example would
block with Prolog since we cannot evaluate the predicate player before conductor.
Viewing co-routines as processes was first experimented in the Relational Lan-
guage [CG81] in 1981. Its direct successors include Concurrent Prolog [Sha83]
and PARLOG [CG83] mostly improving its synchronization mechanism, and then
GHC synthesizing the research from these two to obtain a minimal and simplest
language. Lastly, we must mention a restriction on the guards that led to “flat
variations” of these languages: the guard must be a test predicate or the unification
predicate =. This restriction prevents guards from not terminating. Henceforth,
flat versions were preferred as they were simpler to implement and since deep
guards were barely used in practice anyway. Actually, the FCGS’s language KL1
is based on flat GHC [Ued90]. More information on the languages mentioned and
examples of applications can be found in the book [Sha87] and in the reference
survey [Sha89].

The dynamic aspect of backtrack-free languages

As we will see in the next section, concurrent (constraint) logic languages are
monotonic functions over L3. An aspect central to this paradigm is to be dynamic
in the sense that the state space to explore is not fixed in advance. More precisely,
in our lattice hierarchy, it means that the variable store L2 has not a fixed cardinal-
ity during the exploration process. It is materialized in languages by constructions
creating new variables during the execution. In concurrent logic languages, it is
hidden in the bindings created when instantiating new predicates.

It explains why these languages stop at L3: the inference process might not
terminate. Hence, even if it provides support for L4, the question is when should
it stop the inference to add new nodes in L4? We consider some of the proposals
in Section 2.5. Moreover, since it possibly describes infinite computation, the
search tree might grow indefinitely and not be bounded in space. Note that this
problem of unbounded memory is usually avoided in L3 by removing the variables
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⟨Program⟩ ::= (t(x1, . . . , xn) :- p)+ (process definition)

⟨p, q, . . . ⟩ ::= p || q (parallel)
|

∑n
i∈n ask (ci) then pi (guarded sum)

| tell(c) (tell)
| ∃x.p (hiding operator)
| t(x1, . . . , xn) (call)

Figure 2.2: Syntax of CCP

that do not participate in the computation anymore—for instance using a garbage
collector8. In comparison, removing a node from L4 has a more crucial impact
since it also removes the chance to find a solution. To sum up, computations in
L4 are usually a memory and time bounded activity whereas concurrent processes
in L3 can describe infinite computation.

2.4.2 Concurrent constraint programming

The guards and committed choice in concurrent logic programs were not well
understood from a logic point of view and lacked of a well-defined semantics.
This problem was solved in [Mah87] by defining a semantics based on constraints
and using the entailment operator |= for checking the guards. An additional
insight was to consider the entailment as a synchronization operator between the
predicates. Based on these results, Saraswat and Rinard developed concurrent
constraint programming (CCP) [SR89], a constraint-based process calculus. To
quote [Ued17]: “Concurrent Constraint Programming tends to be considered as
marriage of Concurrent Logic Programming and Constraint Logic Programming,
but it emerged as the formalization of the former inspired by the latter.”

Overview and syntax

A program in CCP is a set of processes communicating through a shared global
constraint store. They interact in this store with two primitives: tell(c) for adding
a constraint c into the store and ask(c) for asking if c can be deduced from the
store. Concurrency is treated by requiring the store to grow monotonically, i.e.
removal of information is not permitted. For example, if it initially contains x > 5,
adding x > 2 will not change the store and x < 2 will fail the whole computation
due to contradictory information.

The syntax of the calculus is shown in Figure 2.2; the notation is inspired
by [BPP95] where p, q are processes, xi a variable name, c a constraint and t a

8We can see the garbage collector as a function using the meet operator over L2 removing variables
that are only referenced by entailed propagators in L3.



Constraint-based Programming Languages 71

process name. A well-formed program is a set of process definitions with distinct
names. The different operators have the following meaning:

• p || q executes the processes p and q in parallel.

•
∑n

i∈n ask(ci) then pi is the guarded committed-choice operator: one process
pi among the ones with an entailed guard ci is executed.

• ∃x.p declares a new variable x accessible from the process p only.

• tell(c) is used to add a constraint c into the global store.

• t(x1, . . . , xn) invokes the process declared with the name t.

In this concurrent framework, the predicates become processes and their or-
der has no more importance. This is why CCP adopts a syntax closer to usual
process calculi such as Hoare’s communicating sequential processes (CSP) formal-
ism [Hoa78].

An important trait of CCP is to leave abstract the concrete syntax and seman-
tics of the underlying constraint system. This strategy conveniently avoids the
operational complexity of constraint solving, it helps to stay generic and to focus
on the language design. As we will see shortly, CCP paved the way to many re-
search for instantiating this paradigm to various constraint systems [Sar93]. More
recently, constraint systems have been thoroughly studied in the context of SMT
theories (introduced in Section 2.2.4). Similarly to SMT, we formally consider a
constraint system as a first-order logic theory.

On the relation to concurrent logic programming

A first constraint system is the Herbrand constraint system, or the theory of equal-
ity and uninterpreted functions (Definition 2.8). It justifies that concurrent logic
languages can be seen as instantiated versions of CCP. For instance, using this the-
ory and two interpreted arithmetic functions, we can transform the former GHC
program into an equivalent CCP program.

Example 2.3. Consider the transformation of the first predicate conductor of
Example 2.2:

conductor(L, C, Max) :- ask(C =< Max) then ∃P,C1, R.
( tell(P=(C mod 2))

|| tell(L = [P|R])

|| tell(C1 = C+1)

|| conductor(R, C1, Max))

+

ask(C > Max) then tell(L = []).

⌟
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Using the committed-choice sum operator, we can simulate the guarded Horn
clauses of GHC. In the example, the process contains the two different variants
of the logic predicate conductor composed with the sum operator. The atoms
of the clause are composed in CCP using the parallel operator instead of the
comma operator p, q in logic programs. Finally, the implicit creation of variables in
logic programs is made explicit through the existential operator and new bindings
are added in the store with equality constraints. The unification algorithm is
the internal solving algorithm of the Herbrand constraint system. From these
observations, it appears more clearly that concurrent logic programming is CCP
instantiated to the Herbrand constraint system.

In the following, we give a novel reinterpretation of the semantics of CCP
using the lattice framework defined in Chapter 1. We consider that it is adaptable
(by specialization) to obtain the semantics of (flat) concurrent logic languages.
More information on the relation between both paradigms can be found in the
survey [dBP94].

Lattice-based semantics of CCP

We define the semantics of CCP in the settings of the lattice framework. A reduc-
tion rule has the form

D ⊢ (⟨d, P ⟩, p)→ (⟨d′, P ′⟩, p′)

where D is the set of processes’ definitions, the store ⟨d, P ⟩ is defined over the
lattice of CSPs L3 and p is the current CCP process.

The semantics rules are given in Figure 2.3. We use the process nothing as an
alias for the empty sum representing the empty process.

• The rules par-left and par-right respectively reduce the left and right process
in the parallel statement; their executions can be interleaved.

• In atomic-tell, we assign two responsibilities to tell(c): (i) joining the con-
straint c into the store, and (ii) reducing the store to the top element of its
transition system, i.e. performing the propagation on the store.

• Our treatment of the existential operator in the rule hiding is quite different
to what is usually found in the literature. Usually, it delegates the treatment
of the existential operator to the theory itself. We take a more operational
approach by considering ∃x as the creation of a new variable in L2 at a fresh
location. The function alloc (Definition 1.26) allocates the new variable at
the next available location, retrieved with maxloc. In addition, we use the
substitution operator to replace every syntactic occurrence of the variable
by its location in the store. The existential operator is central to building
dynamic state space as we discussed in the previous section.
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par-left
D ⊢ (⟨d, P ⟩, p)→ (⟨d′, P ′⟩, p′)

D ⊢ (⟨d, P ⟩, p || q)→ (⟨d′, P ′⟩, p′ || q)

par-right
D ⊢ (⟨d, P ⟩, q)→ (⟨d′, P ′⟩, q′)

D ⊢ (⟨d, P ⟩, p || q)→ (⟨d′, P ′⟩, p || q′)

atomic-tell
⟨d, P ∪ JcK⟩ ⇒ ⟨d′, P ′⟩

D ⊢ (⟨d, P ⟩, tell(c))→ (⟨d′, P ′⟩, nothing)

hiding
d′ = alloc(d) D ⊢ (⟨d′, P ⟩, p[x→ maxloc(d′)])→ (⟨d′′, P ′′⟩, p′)

D ⊢ (⟨d, P ⟩, ∃x.p)→ (⟨d′′, P ′′⟩, p′)

call
D, t(y1, . . . , yn):-p ⊢ (⟨d, P ⟩, p[y1 → x1, . . . , yn → xn])→ (⟨d′, P ′⟩, p′)

D, t(y1, . . . , yn):-p ⊢ (⟨d, P ⟩, t(x1, . . . , xn))→ (⟨d′, P ′⟩, p′)

choice
Sol3to2(⟨d, JciK⟩) |=A (Sol2) Sol3to2(⟨d, P ⟩) D ⊢ (⟨d, P ⟩, pi)→ (⟨d′, P ′⟩, p′i)

D ⊢ (⟨d, P ⟩,
∑n

i∈nask(ci) do pi)→ (⟨d′, P ′⟩, p′i)

Figure 2.3: Lattice-based semantics rules of CCP.

• Next, the rule call substitutes a process call with its definition. We retrieve
the definition from the context D and substitutes the parameters occurring
in the body by the arguments of the call.

• Finally, the rule choice formalizes the commitment to one alternative for
which the guard is entailed in the current store. Intuitively, a guard is entailed
if it does not remove solutions from the current store; in other words, if it is
a redundant constraint. Formally, it is given by the order over the antichain
lattice A (Sol2) over the solutions of L2. We explain this operator in more
depth just thereafter because it is central to understand the discrepancy
between the CCP’s theory and its usage in programming languages.

Summing up, the store is a L3 structure where tell is the join operation in L3,
ask is the entailment over A (Sol2) and the hiding operator ∃ is the join operation
in L2.
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The entailment paradox

In the committed choice rule, the entailment is represented by the expression

Sol3to2(⟨d, JciK⟩) |=A (Sol2) Sol3to2(⟨d, P ⟩)

specifying that the set of solutions in ⟨d, P ⟩ is contained in the set of solutions
given by the guard ci. It could be equivalently written

Sol3to2(⟨d, P ⟩) = Sol3to2(⟨d, P ∪ JciK⟩) (2.1)

where we ensure that the guard does not constrain the set of solutions of the initial
problem. To illustrate better this operator, we give an example.

Example 2.4 (Entailment of a guard). Consider the following CSP:

A = ⟨{x 7→ [0..2], y 7→ [0..2]}, {Jx = 0K, Jx < yK}⟩

Then we can ask: is the constraint y > 1 entailed in the store A? According
to (2.1), we must compute the sets of solutions of A and of the constraint y > 1:

Sol3to2(A) 7→ {{x 7→ 0, y 7→ 1}, {x 7→ 0, y 7→ 2}}
Sol3to2(⟨{x 7→ [0..2], y 7→ [0..2]}, {Jy > 1K}⟩) 7→
{{x 7→ 0, y 7→ 2}, {x 7→ 1, y 7→ 2}, {x 7→ 2, y 7→ 2}}

and thus we cannot yet deduce y > 1 from the current problem since the solution
set of y > 1 does not contain {x 7→ 0, y 7→ 1} which is a solution of A. However,
this constraint can be entailed later if we add information into the store that
restricts its set of solutions. ⌟

A paradox emerges as soon as we obtain a non-convex CSP (Definition 1.35)
during a computation. As we saw in Chapter 1, solving a non-convex CSP requires
a function over the lattice L4. However, CCP’s programs are functions over L3.
The paradox is that implementing the entailment turns out to be itself a constraint
problem. Moreover, due to non-convex CSPs, this constraint problem needs to be
solved in L4 or higher whereas CCP is actually designed to manipulate structures
in L3. The problem being that solving a problem in L4 is usually much more costly
than solving one in L3. Based on this paradox, we can enunciate a simple principle
when designing a language with operators mapping to the lattice hierarchy.

Principle 2.1 (Lattice hierarchy for language design). Given a language defining
operators over a lattice Li, these operators must be internally implementable by a
function over the lattices Lj with j ≤ i.

This paradox, whilst happening in the full generality of the CCP calculus, can
be avoided in two different ways when instantiating CCP to a constraint system:

(i) Using convex constraint systems.
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(ii) Relaxing the entailment rule.

Firstly, among convex constraint systems, we already mentioned Herbrand
terms that are directly useful for programming in the concurrent logic paradigm.
The Herbrand constraint system was notably extended to records in languages
merging the logic and functional paradigms. LIFE is a pioneer functional logic lan-
guage which builds on the order-sorted feature (OSF) constraint system [AKP93]
for manipulating records in logic languages. This idea was later used in Oz, a lan-
guage based on CCP, which proposed efficient constraint checking and entailment
for records structures [RMS96]. Despite their interests, functional logic languages
fall out of scope in this survey. However it is interesting to consult [AH10] for
an introduction to the field, the survey [Han07] for a more detailed presentation
and [Han14, Hof11] for functional logic languages in the larger context of multi-
paradigms languages.

Secondly, when taking the case of a non-convex constraint system, the en-
tailment check must be relaxed to a computationally cheaper operation. In the
next section we present a non-convex constraint system for finite domains named
FD [VHSD91]. When implementing CCP with this constraint system [VHSD98],
they use the domain entailment (Section 1.4.2) which checks a constraint against
the domain in L2 only (and not the full CSP in L3). The choice rule is modified
as follows:

choice-dom
d |=d JciK D ⊢ (⟨d, P ⟩, pi)→ (⟨d′, P ′⟩, p′i)

D ⊢ (⟨d, P ⟩,
∑n

i∈nask(ci) do pi)→ (⟨d′, P ′⟩, p′i)

The domain entailment can be computed using the lattice L3 only. It provides a
safe relaxation of the “full entailment”: anything entailed with the domain entail-
ment is also entailed with the full entailment. However, the converse is not true,
computations that are suspended with this entailment might be executable in the
full variant. Finally, we must mention that there exists a few solving algorithms
for the entailment in L3 [DdlBS04, DJ12]. Of course, these algorithms are defined
over the lattice L4 and the entailment request is computed while solving the CSP.

Finite domains and indexicals constraint system

One of the most influential constraint systems is the theory of finite domains FD

and indexicals as first introduced in [VHSD91]. An indexical is an unary constraint
over a variable enforcing its domain to be in a specific interval. The syntax of this
constraint system is given in Figure 2.4. It is interesting because, compared to
other theories, it makes the underlying event system of the propagation algorithm
explicit.

Example 2.5 (Indexical x < y). To illustrate this claim, consider the indexical
version of the propagation function of the constraint x < y.

Jx < yK def

= y in (Min(x) + 1)..inf
∧ x in 0..(Max(y)− 1)
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⟨t⟩ ::= X | n | t + t | t − t | t ∗ t | t mod t | t / t
| min(X) | max(X) | val(X)

⟨r⟩ ::= t1..t2 (range)
| r1 : r2 (union)
| r1 & r2 (intersection)
| −r (complementarity)
| r + t (pointwise addition)
| r mod t (pointwise modulo)
| dom(X)

⟨c⟩ ::= X in r

Figure 2.4: Syntax of the FD constraint system with indexicals.

where Min(x) and Max(x) are functions mapping to the lower and upper bounds
of the variable x with t..t′ describing an interval with bounds between t and t′.
In the implementation, the propagation engine can analyse Min and Max in the
definition of a constraint to know under what event the propagator might impact
the domains. Here, it is useful to reschedule x < y only if the lower bound of x or
the upper bound of y have changed. This is a language-version of the Example 1.16
which formalized this propagator within the lattice framework. Hence, indexicals
are operators over the lattice L2 that can be used to program propagators in L3.

⌟

We mentioned that propagators must fulfil two properties: being contracting
and sound (Definition 1.4). Indexicals can be automatically checked to fulfil these
two properties, and even more strongly, we can prove an indexical to be monotonic
or anti-monotonic [CCD94]. Monotonicity means that the interval of a variable
can only be reduced (monotone function over L2) and anti-monotonicity that it
can only increase (monotone function over L2 with its the order reversed). In the
context of CCP and more precisely the tell and ask operators, an important insight
given by the indexicals is that tell constraints must be monotonic functions and
ask constraints must be anti-monotonic functions in order to preserve the overall
monotonicity of the computation.

Example 2.6 (Indexicals in CCP). Consider a CCP process that ensures that
whenever a variable Y becomes greater or equal to X then Y becomes automati-
cally strictly greater than X.

if_geq_then_gt(X,Y) :- ask(Y in Max(X)..inf) then tell(Y in (Min(Y) + 1)..Max(Y))

The ask constraint is anti-monotonic: once Y is in the range Max(X)..inf, it
stays entailed for the rest of the computation since the range will evolve anti-
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monotonically (the range will increase), and that Y will evolve monotonically (its
range will decrease). ⌟

From this example, we notice that an indexical constraint is only defined over
L2 since it is defined with operators solely defined on L2. In particular, the events
generated by the operators Min and Max are exactly lbc and ubc defined in
Example 1.15.

Indexicals are applicable beyond the scope of CCP only and are actively used
in constraint logic programming which is treated in Section 2.5.2.

Extensions of CCP

To conclude this overview of CCP, we discuss several shortcoming and associated
extensions to the semantics of CCP.

Inconsistent store A particular case, not explicitly treated in the semantics
rules, is the unsatisfiability of the store. Indeed, the tell operator can generate
an inconsistent store, or more formally ⟨d, P ⟩ ∈ Fail3. In this case, we have
Sol3to2(⟨d, P ⟩) = {} and thus it is entailed by any element since {} is the bottom
element of the antichain lattice A . In practice, this case must be treated with
care; for example a rule handling this situation in tell can be added:

tell-fail
⟨d, P ∪ JcK⟩ ⇒ ⟨d′, P ′⟩ ssd(⟨d′, P ′⟩) = false

D ⊢ (⟨d, P ⟩, tell(c))→ (⟨d, P ⟩, fail)

where fail is a process representing a failed state. Also note that the constraint
is not added into the store.

Eventual tell A problem with the atomic tell occurs in distributed applications:
it requires to coordinate the processes to temporarily suspend their activities in
order to atomically solve the store. Since tell is a very basic and frequent operation,
this would entail the processes to synchronize all the time which is not manageable
in a distributed setting. Hence, it motivated an important variant of this rule,
called eventual tell, which delays the inference step. This rule is written as

eventual-tell
D ⊢ (⟨d, P ⟩, tell(c))→ (⟨d, P ∪ JcK⟩, nothing)

The constraint is just added into the store without being solved right away. For
example, propagation can be triggered on an entailment request or through more
evolved mechanism (see Chapter 7 in [Sar93]). However, it complexifies the case
where the store becomes inconsistent and to recover from such a situation.
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Constraint-based concurrency Since its inception, CCP has been extended with
various constructions borrowed from other paradigms and languages. It forms a
theoretical line of research closer to concurrency theory than to practical program-
ming languages. This is why some authors prefer the term “constraint-based con-
currency” instead of “concurrent constraint programming” when speaking about
CCP in this context [Ued17]. We only review one relevant extension of CCP for the
rest of this work; a survey on constraint-based concurrent languages is available
in [ORV13].

Anticipating a bit on Chapter 3, an important extension is temporal CCP (ab-
breviated as TCC) from Saraswat [SJG94, SGJ14]. It imports the notion of logical
time from synchronous languages into CCP. The motivation is to periodically for-
get about some information that are not necessary anymore to the computation.
In effect, it proposes an implicit meet operator over the constraint store which
is invoked between two time points—called instants. Moreover, by dividing the
computation into bounded instants, we can ask about negative information: is a
constraint not entailed at some point in time? This is not possible in CCP since
a constraint not entailed now might become entailed later.

2.5 Bridging L3 and L4 (⊔,⊨,∆)

In the previous section, we saw that languages for L3 are suited to program infinite
computation. Seemingly, they appear to be incompatible with the layer L4 of the
hierarchy since it often implies a certain notion of finiteness and exhaustiveness of
the state space. We review two important attempts to bridge these two layers.

On the one hand, we have languages that try to re-integrate backtracking into
the concurrent (constraint) logic paradigm; they are mostly based on the Andorra
principle explained below.

On the other hand, constraint logic programming (CLP) generalizes logic pro-
gramming by allowing users to program over L3 with any kind of constraints—and
not just the Herbrand constraint store. In comparison, CLP provides backtracking
without concurrency whereas CCP provides concurrency without backtracking.

In short, Andorra-based languages combine L4 operators with L3 languages
while CLP languages try to do the opposite (by generalizing L3).

2.5.1 Andorra-based languages

Andorra principle

When it comes to blend don’t-care and don’t-know nondeterminism into a single
logic language, virtually every proposition has its root into the Andorra princi-
ple enunciated by David Warren in 19879 and pioneered by P-Prolog [YA86].
Basically, it says that

9According to [Har90], it was during a GigaLips meeting in Stockholm in June 1987.
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(i) every goal that is determinate—only one predicate is applicable to reducing
this goal—should be selected first, and

(ii) when only nondeterminate goals remain, one is selected by creating a choice
point and is backtracked to this point in case of failure.

The first rule refers to don’t-care nondeterminism and the second to don’t-know
nondeterminism. In fact, this apparent simple principle occurs under many differ-
ent forms. One of them has already been introduced: we reach the top element of
L3 by inference until every propagator is at a fixed point (rule (i)), and then we
split the search space in L4 (rule (ii)). In this case, the notion of “determinacy”
is clear since it is precisely defined by the propagation algorithm. However, when
reducing a logic goal that has multiple predicate definitions with the same name,
we must partially evaluate the different choices in order to verify if one or several
is applicable. The question is how far should we evaluate the goal? To illustrate
different forms of determinacy, we consider the following logic program.
first([], F, N, []).

first(L, F, N, L2) :- N == F, L2 = [].

first([H|L], F, N, L2) :- N < F, N2 is N + 1, first(L, F, N2, L3), L2 = [H|L3].

From these definitions, we know that first([],0,0,L) can only be unified by the
first predicate. It is a weak form of determinacy that tries to unify the goal with
every predicate head. If only one clause is applicable, then the goal is considered
determinate and we reduce it first. Another example is first([a],1,0,L) where,
in this case, the condition N == F and N < F must be evaluated to realize that only
the third clause is applicable. This leads to a stronger form of determinacy check.
Accordingly, evaluating the different clauses more or less deeply leads to different
notions of determinacy. In practice, three early Andorra-based languages—namely
Andorra-I [CWY91], Andorra Prolog [Har90] and Pandora [Bah93]—all imple-
mented determinacy by trying to perform unification and evaluating the built-in
predicates appearing before any user-defined predicates.

The motivation behind the determinacy check was also to perform automatic
parallelization of logic programs. Indeed, an orthogonal interpretation of the An-
dorra principle is to see a logic program as an “and-or tree” where the rule (i)
generates “and-nodes” and rule (ii) generates “or-nodes”. For example, “and-
parallelism” executes in parallel determinacy checks and independent goals which
do not bind identical variables. In contrast, “or-parallelism” evaluates in parallel
nondeterminate clauses when instantiating a goal. We do not consider the various
techniques of parallel logic languages; a survey can be found in [GPA+01] and an
overview in [SC00]. Today’s constraint solvers are mostly performing or-parallelism
since it is easier to implement and offer good efficiency [Sch00].

Deep guards and encapsulation

Committed-choice deep guards coupled with determinacy checks led to an im-
portant feature called encapsulated search. Historically, it starts with Andorra
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Kernel Language (AKL)—succeeding to Andorra Prolog10—proposing a practical
language integrating deep guards, constraints and concurrency [JH91, JUIS94].
We explain how their combinations provide encapsulated search.

Deep guards were first considered in concurrent logic programming and then
discontinued in favour of flat guards, easier to implement while retaining enough
expressiveness (see Section 2.4.1). At that time, one of the challenges is to evaluate
deep guards without modifying the current binding store. Indeed, if the guard
is disentailed, the store must be left unchanged. Therefore, we ensure that the
evaluation of the guard is independent from the global store (or is quiet in the
terminology at this time). Independence is a property ensuring that no variable
external to the guard can be bound to a new value. Moreover, if the guards are
independent, they can be evaluated concurrently.

The idea of encapsulated search in AKL is to solve a CSP inside a guard.
The semantics of guards ensures that even nondeterministic computation stays
encapsulated in the guard without disrupting the whole computation. In case of
an unsatisfiable CSP, the guard is disentailed and thus the body of the clause is
not executed. In case of satisfiability, the result of the encapsulated computation
can be retrieved in a variable local to the clause. Moreover, using a primitive called
bagof/3, users can retrieved all the solutions of the CSP into a list of variables.

Logic programs within the lattice hierarchy

Anticipating a little on Section 2.5.3, where we formalize the semantics of con-
straint logic languages, it is worth understanding now the theoretical differences
between propagators and goals from the perspective of the lattice hierarchy. We
recall that a propagator is a function from L2 to L2 and a CCP process is a func-
tion from L3 to L3. Logic programs are yet another entity. On the one hand, a
logic program generates new predicates whereas a propagator does not generate
new propagators. On the other hand, whilst CCP processes also generate new
processes (by unfolding process definitions), they cannot be backtracked and thus
are not part of the data structure. In Section 2.5.3, we will formally describe the
structure of logic programs as a constraint store in L3 endowed with the predicates
to instantiate.

Consequently, the notion of deep guards finds a hierarchical explanation: it
lifts the computation one level higher in the hierarchy. Encapsulated search in a
deep guard is a function over L3 which is interpreted in a L4 environment since it
searches for the solution to a CSP—the global store being copied when entering
the guard in order to satisfy the independence condition. Therefore the program
calling this guard is defined over L5 since, intuitively, by calling several guards,
it can explore several trees. To sum up, a flat guard is a function over L2 and a
deep guard is a function over (at least) L3. Generalizing the notion of constraint

10More precisely, an intermediate formulation between Andorra Prolog and AKL, called Kernel An-
dorra Prolog [HJ90], first generalized the Andorra model to constraints and AKL is a practical instan-
tiation of this framework.



Constraint-based Programming Languages 81

entailment to logic programs, they suggested in AKL to refer about “stability” of
a guard, which means that the guard is either entailed (flat guard) or cannot be
reduced anymore (deep guard).

Moreover, the size of the hierarchy is delimited by the number of nested deep
guards generated by the program. Nested deep guards were explored in the context
of Oz [Smo94], succeeding to AKL, where an L3 structure and a set of threads (i.e.
functions computing over L3) form a computation space [Sch02]. A computation
space encapsulates the search, can be nested into another space, and provides
methods to query its stability.

2.5.2 Constraint logic programming

Constraint logic programming (CLP) generalizes logic programming to arbitrary
constraint systems in a very similar way to CCP—note that both paradigms
emerged around the same time. The road to CLP was first undertaken with Prolog
II, in the beginning of the eighties, by recognizing the unification algorithm as an
instance of constraint solving [Col85]. In this same version, they also proposed
the predicate dif/2 modelling the constraint ̸=. Additional arithmetic constraints
were added later into Prolog III [Col90]. Instead of adding constraint predicates in
an ad-hoc manner, Jaffar and Lassez formally extended the uninterpreted theory
underlying logic programming with symbols that could be interpreted over a fixed
domain [JL87]. In comparison with pure Horn clauses, the problem is captured
more clearly and constraint solving becomes orthogonal to the modelling activ-
ity. Among the early CLP languages, there are CLP(R) described in [JMSY92] for
solving constraints over real numbers, CHIP specialized in finite domains [VH89]
and CLP(BNR) combining solvers on boolean, natural and real numbers [Old93].
Modern CLP languages include solvers on several domains such as real, rational,
boolean and finite domains. To be clear, finite domains generally referred to inte-
gers domains or any domain that is isomorphic to a finite subset of Z—the boolean
domain is a specialization of finite domains. Real and rational domains are eas-
ier to integrate into Prolog since CSP generated by arithmetic constraints over
these domains are usually convex. On the other hand, arithmetic over boolean
and integer domains form non-convex problems and thus need a search step to be
solvable. This is the most challenging part since the constraint solving part and
Prolog backtracking are closely linked. This is why, a large part of the research
on CLP is actually specialized to the finite domains, and this is the main topic of
this section.

We proceed step-by-step, and almost chronologically, to the features added into
plain logic programming to obtain the CLP paradigm. In particular, a very clear
resource on this matter is the book [AW07]. After considering the search part, we
take a look on more recent developments for programming propagators efficiently
inside CLP instead of relying on external solvers. We devote the Section 2.5.3 to
the formal semantics of CLP using lattice theory.
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Constraint solving in Prolog

Constraint solving in Prolog III and CLP(R) was tackled using algorithms over
symbolic terms. There is no search step involved with the solving and, in fact,
the initial CLP theory of [JL87] requires the constraint system to be satisfaction
complete—or convex in our terminology. For non-convex system, a generate-and-
test algorithm can be implemented using the backtracking strategy of Prolog.

Example 2.7 (Decreasing sequence). A well-known global constraint is to con-
strain a sequence of variables to be decreasing, mathematically we write x1 ≥ x2 ≥
. . . ≥ xn. In Prolog, we can use arithmetic predicates to ensure this behavior on a
list:
geq(X, Y) :- X >= Y.

decreasing([]) :- true.

decreasing([Y]) :- true.

decreasing([X, Y | R]) :- geq(X, Y), decreasing([Y | R]).

However, if we try to call this predicate directly with decreasing([X,Y,Z]), we
obtain an error indicating that the variables are not sufficiently instantiated. In-
deed, when the execution engine encounters the first constraint X >= Y, X and
Y are non-instantiated, and there is no built-in mechanism for enumerating their
values. The solution is to perform the search by ourselves:
min_dom([X | D], X).

min_dom([X | D], Val) :- min_dom(D, Val).

enumerate([X | R], Dom) :- min_dom(Dom, X), enumerate(R, Dom).

enumerate([], Dom) :- true.

search(Vars) :- enumerate(Vars, [1,2,3]), decreasing(Vars).

We use the most basic branching strategy where the values of the variables are
enumerated in the order of appearance—if the list is ordered, it starts at the lowest
value in the domain of the variable. For simplicity of the presentation, we use the
same domain {1, 2, 3} for each variable. Note that it is the predicate min_dom that
introduces the choice point: either we select the head of the list or try the next
value, and that recursively until the list is empty. Importantly, decreasing is
placed after enumerate, otherwise we would again have an instantiation error. ⌟

A problem occurring in this example is the inefficiency of the constraint check-
ing. A key point being that we do not need to instantiate all the variables to notice
that the partial assignment X = 1, Y = 2 will not lead to an decreasing sequence.
This problem, arising with the classic semantics of Prolog, is one of the reasons
that led to co-routining11. The central idea of co-routining is to suspend a goal
until an event happens. In the case of Prolog II, the predicate freeze/2 suspends
a goal until a variable is instantiated. We can reformulate the predicate geq using
suspension:
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geq(X, Y) :- freeze(X, freeze(Y, X >= Y)).

The constraint X >= Y is now executed only when the variables X and Y are
ground. Furthermore, the predicate does not block the whole execution and is put
on a list aside until its watched variables—through freeze—become ground. It
means that we can reverse the predicates enumerate and decreasing in our former
example. This leads to an improved algorithm where, as soon as a constraint is
not satisfied, the system backtracks; we do not need to wait for full assignment.

Constraint solving in CLP

When developing the propagate-and-search algorithm in Section 1.1.2, we gave two
roles to propagators: deciding if the constraint is entailed and filtering unsatisfiable
values out of the domains. In the Prolog jargon, propagators fulfilling the first role
only are referred to as passive constraints and those fulfilling both roles are referred
to as active constraints. This first role is efficiently supported in logic programming
by the suspension mechanism. The second role is much more of a problem in classic
Prolog.

As highlighted in [JM94], it is possible to encode domains and a propagation
engine inside Prolog but it complexifies the program and represents a significant
work load on the programmer’s shoulders. For instance, we must encode the do-
mains as list of values using Herbrand terms. However, it is not possible to remove
the values from this list since it would be anti-monotonic according to the Her-
brand constraint system. The solution is to create a new list each time we need to
remove a value from this list. Besides being inefficient, it shows the inadequacy of
Herbrand terms to deal with finite domains. With Herbrand terms, monotonicity
is preserved by expanding terms—more and more bindings are generated—whereas
in finite domains it is preserved by narrowing domains—less and less values are
present. The solution, proposed in [HD86], was to combine terms and domains in
a same logic program. Once domains were added to Prolog, it was natural to add
propagation over these domains, and as a matter of fact, one year later was born
CHIP (Constraint Handling in Prolog) [VH89, VH91], the first CLP language to
include propagation. However, CHIP defines the propagation directly inside the
execution engine, leaving the constraint system as a “black box”. It prevents users
from programming their own propagators which can be instrumental in solving a
problem efficiently.

The solution, initially designed in the context of CCP (see Section 2.4.2), was to
use the finite domains and indexicals constraint system in the context of CLP. This
led to the development of the language CLP(FD) [DC93, CD96] which integrated
very efficiently the indexicals into the existing Prolog compilation scheme.

Example 2.8 (Decreasing with indexicals). The predicate geq of the former ex-
ample is simply modified as:

11Curiously, we pointed out in the former section that this is the exact same mechanism which is at
the premises of the concurrent logic paradigm.
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geq(X, Y) :- X #>= Y.

and decreasing is left unchanged. The constraint #>= is a short-cut for the corre-
sponding indexical, similarly defined to the one in Example 2.5. Indexicals are not
standardized and, as we will see below, implementations support them in different
ways. ⌟

As we already know, propagation alone is not sufficient for solving every prob-
lem and we must perform a search step.

Example 2.9 (Splitting on the middle value). The following code in GNU Pro-
log [DAC12] shows a branching strategy selecting variables from left to right and
splitting domains in the middle.

enumerate([X | R]) :- split_mid(X), enumerate(R).

enumerate([]) :- true.

middle(X, M) :-

fd_min(X, Min),

fd_max(X, Max),

M is (Min + Max) // 2.

split_mid(X) :- integer(X), !.

split_mid(X) :-

middle(X, M),

(

X #=< M

;

X #> M

),

split_mid(X).

Enumerating the variables of the problem is done identically to the former example.
The predicate split_mid/1 succeeds only once the variable is bound to a single
integer which is verified with integer/1. Otherwise, we create two branches by
constraining the variable to be less or equal (resp. greater) than its middle value. In
the predicate middle, the built-in fd_min/2 introspects the domain of the variable
X and bind Min to its lower bound—similarly with fd_max/2 for the upper bound.
This is next used to compute the middle value of X. ⌟

This example gives two important insights on the implementation of CLP(FD)’s
languages:

• Theoretically, fd_min(X, Min) (similarly for fd_max/2) is not a monotonic
predicate, this predicate is only satisfied when the lower bound of X is equal
to Min, which is the case only for a fraction of the execution.

• In practice, domains are usually implemented with a mechanism called at-
tributed variables [Hol92] which attaches arbitrary information to a variable.
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In the example, we rely on built-in predicates (e.g. fd_min/2) to access
attributes’ fields. The problem with attributed variables is to delegate the
semantics of unification—on these particular variables—to user-defined pred-
icates. This is a strength as it provides additional flexibility to Prolog, for
example in this case going beyond the unification of Herbrand terms. How-
ever, it seems somewhat ad-hoc to Prolog semantics and weakens the initial
theoretical proposal of CLP since the implementation does not reflect the
theory.

Beyond these two remarks, even if indexicals were perfectly integrated, there are
still limited in at least two ways:

• Despite that the propagation itself is expressed in “white-box”, the event
system is built-in inside the language and limited to a small set of events.
For example, Max(X) schedules the propagator when the upper bound of X
is changed. However, for a matter of efficiency, it is sometimes necessary to
react to more complex events.

• It does not support arrays of variables which is central to programming global
constraints.

These problems are not well-solved yet: there exists almost as many proposals
as there are CLP systems. Global constraints and reacting to events can be pro-
grammed in a low-level language like C (e.g. SICStus [CM12]), in a dedicated
language (e.g. GNU Prolog [DC01]), and with interfaces for connecting external
solvers (e.g. Eclipse [SS12]). Other systems only propose non extensible built-in
propagators (e.g. SWI-Prolog [WSTL12]). In the next section, we outline major
event systems’ extensions to CLP. Two languages, tightly relevant to CLP, that can
be used to program global constraints are action-rules extending B-Prolog [Zho06]
and constraint handling rules (CHR) [Frü98]. Actually, CHR is a research field in
its own for programming constraint systems (in L3) that gets its roots into various
paradigms including CLP. Hence, we leave the analysis of CHR in the context of
the lattice hierarchy for future works.

Programming event systems

GNU Prolog, as the successor of CLP(FD), extends indexicals with arbitrary event
conditions and an operator to retract indexicals [DAC12]. In the lattice hierarchy,
event conditions correspond to the entailment over L0 and removal of indexicals
to the delta operator over the constraint store in L3. As shown in [DAC12], the
combination of these two operators can be used to replace a set of propagators
by stronger ones when a condition becomes entailed. Hence, the meet operator is
used in a “safe way” in the sense that it does not remove solutions from the initial
CSP. However, this kind of verification is left to implementers since no automatic
checking is done.
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In Eclipse, successor of several pioneering CLP systems including CHIP, events
are managed by extending the suspension mechanism (e.g. freeze/2) [AW07,
SS12]. The built-in predicate suspend(Pred, Prio, Events) wakes up the pred-
icate Pred when one of the events in the list Events is triggered. In case several
predicates wake up on the same event, the ones with the lowest priority Prio are
first executed. The event system of Eclipse is built around a general event model
comprising three events in the totally ordered set {inst, bound, constrained}. The
two first events are proper to the Herbrand constraint system while constrained

extends the event system to arbitrary CLP domain—constrained is generated
on any domain change. We distinguish between inst for a variable bounds to a
ground value and bound for a variable bounds to any entity (value or variable).
This distinction allows predicates to wake up on aliased variables. For example,
with the constraint X ̸= Y , we wish to detect if X = Y even if none of these
variables is bound. Overall, thanks to this flexible event system and the close in-
tegration with Herbrand terms, new constraint systems can be added as libraries
into Eclipse without the need to modify the intrinsics of the system.

Among the popular CLP systems, we also find SICStus Prolog [CM12] and
SWI-Prolog [WSTL12]. Both are very complete Prolog environments. SICStus
Prolog has one of the most complete implementations of CLP’s domains among all
systems. An extensive comparison and correctness study of various modern CLP
systems is available in [Tri14].

To conclude this part, we must mention [HK12] that proposes a concise, yet
efficient, SAT and SMT solver written entirely in Prolog. In particular, they show
how to program the watched literals optimization consisting in moving propagator
triggers during the execution. It demonstrates that the suspension mechanism can
be used to program complex and dynamic event-based algorithms while retaining
good efficiency.

2.5.3 Lattice-based semantics of CLP

We investigate the semantics of CLP based on the lattice hierarchy in the same
way as for CCP. A major difference is that CLP supports both “don’t care” and
“don’t know” nondeterminism. In comparison with more traditional semantics, our
formulation has the advantage of making explicit both forms of non-determinism.
We believe it reduces a gap between language theory and implementation.

Since we have two levels of nondeterminism, there are two queueing strategies
for navigating between the three lattice layers. As a first high-level notation, we
represent the CLP semantics with a diagram in Figure 2.5. The nodes are the
lattice structures and the edges are labelled with the semantics rules and are used
to move from one lattice to another. An important additional point is that a rule
applied on a lattice Li has access to any available lattice Lj where j ≥ i. For
example, the branch and bound function (Definition 1.49) is called on every node
of the search tree but transforms the search tree as a whole, and thus it belongs to
the upper lattice layer. We present the lattice structures involved in the semantics
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of CLP, and then explain the different rules.

CLP lattice hierarchy

In contrast to CCP, the state of a program must be part of the lattice hierarchy
since, on backtrack, the set of clauses must be restored. In this respect, the
program must also be part of the lattice structure. We represent the state of a
logic program by a multiset of clauses’ heads such that the heads of disjunctive
clauses are distinguished by an integer. This is made clear in the following example.

Example 2.10 (State representation of Horn clauses). Consider the following
logic program:

length([], N) :- N is 0.

length([H|L], N) :- length(L, N1), N is N1 + 1.

The states encoding these clauses are length1 and length2 (numbered from top
to bottom). The trace of the program length([a,b], N) is:

{length2}
{length2, length2}
{length2, length2, length1}

⌟

Based on this representation, we can now define the code state of a program.

Definition 2.11 (Code state of a program). The set of all predicate symbols is
denoted by Pred. The code state of a program is composed of the set of predicates
already unfolded, denoted by T , and the set of active predicates not yet unfolded,
denoted by A. These sets are defined as:

T = Store(LCLP

2 × N)
A = Store(LCLP

2 )

where an element t ∈ T is the trace of the program and an element (p, i) ∈ t is
a predicate p with its clause number i. The active predicates in A are not yet
numbered since they have not been unfolded yet. The lattice of the code state of a
program is defined as follows:

Code = ⟨T × A, (t, a) |= (t′, a′) if t |=T t′ ∧ms(π′
1(t)) ∪ms(a)) |=ms ms(a′)⟩

where ms is a function turning a store into a multiset, and the order |=ms is the
superset inclusion relation ⊇. The order indicates that the trace of t′ must be
contained inside the one of t and that the active predicate in a′ must either be
inactive or active in (t′, a′). Furthermore, we transform the store into a multiset
since the store order of the active predicates is not relevant yet—they have not been
selected yet.
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Unfortunately, the trace of the program must also be saved in the structure. The
reason is that otherwise the lattice could not represent diverging logic programs
such as p :- p. Without the trace multiset, such programs could not be represented
by a monotonic function over LCLP

3 . Tabling extension to logic programming is a
paradigm in which redundant computations are avoided. For example, XSB is a
tabled logic programming language that also supports tabling with CLP [SW12].
However, we leave this study for future work.

pop4

pop3

tell

unfold

fail2choice

push3

push4

fail3

LCLP

2

QCLP

3

QCLP

4

Store(LCLP

2 )

Store(LCLP

3 )

Figure 2.5: CLP exploration strategy.

Back to CLP structures, the code state lattice of a program can be combined
with the lattice of CSPs L3. It forms a new hierarchy that is proper to CLP.

Definition 2.12 (CLP hierarchy). Given the lattice L3, the lattice hierarchy of
the CLP semantics is defined as follows:

LCLP

2 = {⊤} ⊕ Pred⊕ {⊥}
LCLP

3 = L3 × Code
LCLP

4 = A (LCLP

3 )

with orders inherited from the corresponding derivations.

The predicates are stored in a lattice that is paired with the CSP, it is defined
at the second level but actually, we have LCLP

2 = LCLP

1 = LCLP

0 . The two queueing
strategies are defined over LCLP

4 and the store of active predicates A in LCLP

3 . The
queueing strategy is given over A with the pair of functions (pop3, push3) and the
one over LCLP

4 with the pair of functions (pop4, push4). The first one is used to
select the next goal to instantiate while the second one is used to select the next
clause to search in case of disjunctive predicates. We write QCLP

4 for the queuing
derivation of LCLP

4 , and respectively QCLP

3 for the one of LCLP

3 .

Multi-domains

An important aspect of the lattice framework is to derive new constraint systems
by composition of existing ones. This is particularly interesting for CLP since it
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merges the domain of Herbrand terms and another one, for example the intervals
over a finite subset of N. In this case, the lattice L1 of the (constraint) lattice
hierarchy can be defined as:

L1 = {⊤} ⊕ (I (N) ∪̇ H)⊕ {⊥}

where H is the set of Herbrand terms that can be build out of a given signature.
The disjoint union ∪̇ (Definition 1.19) builds a new lattice which is the “type-
erasure” of two domains. Of course, it does not mean that constraints can be freely
defined over both domains, such a verification is left to the function JcK translating
a constraint c into a propagator.

Cooperation between multiple domains is a research field in its own respect
and it is extensively studied for combining SMT theories (see Section 2.2.4). A
research axis is the study of their compositions in the context of the lattice the-
ory. We believe it would be useful for better combining non-convex theories using
techniques from the field of constraint programming.

CLP semantics rules

fail2
{} = instantiate(⟨d, P ⟩, g(t1, . . . , tn), D)

D ⊢ (q, ⟨d, P ⟩, G, g(t1, . . . , tn))→ (q,⊤, G,⊥)

unfold
{(i, (⟨d′, P ′⟩, B))} = instantiate(⟨d, P ⟩, g(t1, . . . , tn), D)

D ⊢ (q, ⟨d, P ⟩, G, g(t1, . . . , tn))→ (q, ⟨d′, P ′⟩, G ⊔ {gi}, B)

choice

C = instantiate(⟨d, P ⟩, g(t1, . . . , tn), D) |C| > 1
C ′ = {(i, (⟨d′, P ′⟩, (π′

1(G) ∪ {gi}, π
′
2(G) ∪B))) | (i, (⟨d′, P ′⟩, B)) ∈ C}

D ⊢ (q, ⟨d, P ⟩, G, g(t1, . . . , tn))→ (q, C ′)

tell
⟨d, P ∪ {JcK}⟩ ⇒ ⟨d′, P ′⟩

D ⊢ (q, ⟨d, P ⟩, G, c)→ (q, ⟨d′, P ′⟩, G,⊥)

fail3
ssd(⟨d, P ⟩) = false

D ⊢ (q, ⟨d, P ⟩, G)→ (q,⊥)

Figure 2.6: Lattice-based semantics rules of CLP.

We detail in Figure 2.6 the semantics rules mapping a lattice to another as
shown in the former diagram. To start with, we consider the instantiation of a
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goal given by the rules unfold and choice. The choice of one rule or the other is
driven by the determinacy analysis: if the goal is determinate then we use unfold
and otherwise we use choice. Since instantiation is redundant in both rules, we
extract it in the following definition.

Definition 2.13 (Goal instantiation). Let g(t1, . . . , tn) be the goal to instantiate
where t1, . . . , tn are terms and D the predicate definitions forming the logic pro-
gram. Let a possible predicate Di ∈ D where Di has the form pi(u1, . . . , um) : −B
such that it matches the goal head pi = g and has an identical arity n = m. We
note Vi the set of free variables in Di. We define a function that instantiates a
goal to a possible predicate:

instantiate_one(⟨d, P ⟩, g(t1, . . . , tn), Di) 7→
{

{(⟨d′, P ′⟩, B′)} if ssd(⟨d′, P ′⟩) ̸= false
{} otherwise

where the instantiated predicate is computed by the following algorithm:

M = {(di, li) = alloc(di−1,⊥) | vi ∈ Vi} with d0 = d (allocate free variables)
D′

i = Di[v1 → l1, . . . , vn → ln] (substitute variables for locations)
D′

i = p′i(u
′
1, . . . , u

′
n) : −B

′

⟨
⊔

π′
1(M), P ∪ {Jt1 = u′

1K, . . . , Jtn = u′
nK}⟩ ⇒ ⟨d′, P ′⟩ (unification)

Given the sequence AP = ⟨D1, . . . , Dn⟩ ⊂ D of possible predicate definitions, we
define

instantiate(⟨d, P ⟩, g(t1, . . . , tn), D) 7→
{(i, instantiate_one(⟨d, P ⟩, g(t1, . . . , tn), Di)) | Di ∈ AP}

which maps to the (possibly empty) set of applicable predicates.

The domain and codomain of the transitions change according to the layer
of the lattice—this is why the diagram in Figure 2.5 is particularly useful. The
semantics rules, as shown in Figure 2.6, are mostly built around the instantiation
of a predicate. In particular, according to the cardinality of the set returned by
instantiate, we have three cases:

• If it is empty, then the rule fail2 is invoked and it sets the CSP to ⊤ since it is
unsatisfiable. Then, it is detected by the rule fail3 that triggers backtracking
in QCLP

4 .

• If it is a singleton, the rule unfold creates a store of new goals B that will be
pushed onto the queue of active predicate in QCLP

3 .

• In case multiple predicates are applicable, the rule choice jumps from LCLP

2

to QCLP

4 by creating a choice point for each possible alternative.
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In addition, the rule tell is an atomic tell operation: it adds a constraint and per-
forms the propagation immediately. In contrast with unfold, it does not generate
more active predicate and only impacts the running CSP. For example, this is the
strategy used in GNU Prolog. If the CSP becomes unsatisfiable, it is detected by
the rule fail3.

Discussion

In comparison with existing CLP semantics, notably the work in [MJMS98], the
hierarchical approach fully acknowledges the presence of nondeterminism in its
structures. This is in contrast with semantics specialized for left-to-right literals
selection and depth-first search, for which the queueing mechanism is left implicit
in the rules. In this respect, it is an advantage to articulate the semantics around
two abstract, but explicit, queueing strategies.

We hope that this framework can be the starting point for a more in-depth
analysis of the logic paradigm. An axis to develop in future works is the comparison
between the various determinacy analysis—the one described here being the most
basic. Furthermore, we should be able to formalize extra-logical operators within
the framework. For example, the cut operator can be specified with a semantics
rule using the delta operator ∆4. A challenge would be to keep track of the subtree
that needs to be pruned by this operator.

2.6 Search languages: L4 and above (⊔,⊨,∆)

In 1979, Kowalski writes the paper “Algorithm = Logic + Control” [Kow79] in
which he elaborates that logic specification should be kept separated from the
way it is solved. It was very influential in the development of the logic paradigm
and was largely realized by keeping the control part internal to the language’s
implementation. However, over the years, more and more combinatorial problems
have demonstrated that control was essential for efficient solving, but at the same
time, that a generic control strategy could not be efficient for every problem. From
these initial considerations, control primitives have slowly emerged, without being
fully acknowledged as a part of the specification. It led to the development of
search languages and frameworks that aim at capturing the essence of control.
Before going through the various proposals, it is a good time to step back and ask:
what is control?

As a first tentative, we can say that control is any function participating in
the decision of how the computation evolves. From the point of view of the lattice
hierarchy, a logic specification is an element U of any lattice Li. The control
specification is a function mapping this element to an element S, if any, in the
solution space of Li such that S |=i U . To do so, the control part is defined over a
lattice Lj where j ≥ i. Note that logic specification can be defined over any lattice,
and not only L3. For example, consider the statement: “find the best solution”.
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We saw in Section 1.6 that such optimization problems are defined with a function
over L4. From this example, we realize that the frontier between logic and control
is blurry since the logic specification directly impacts the control strategy.

Therefore, rather than focussing on the distinction between logic and control,
it is more appropriate to focus on why we want to keep them separated. The major
goals of separating logic and control is to be able to try and test several control
strategies on an identical logic model, and oppositely to use an identical control
strategy on several distinct models. The first is mandatory to empirically evaluate
a strategy against a model, and the second to provide strategies reusable across
different models. The challenge is to design useful languages’ operators to program
such strategies. In particular, the strategy language should be compositional:
given two strategies A and B, how can we obtain a third strategy C by composition
of the two first.

Language proposals for programming search strategies continuously appeared
for the last two decades, and there is no proposal widely accepted yet. We do not
give an exhaustive review of every search language but instead focus on five issues
in search languages and the attempts to solve them.

• First issue: Two search strategies cannot be composed.

• Second issue: Impossibility to arbitrarily prune branches.

• Third issue: Non-backtrackable variables are lacking.

• Fourth issue: Control operators are duplicated for different layers of the
hierarchy.

• Fifth issue: Two search strategies cannot freely communicate.

We organise this section such that these issues are unfolded as we survey the
different search languages. We start to survey the extensions to CLP for pro-
gramming search strategies (Section 2.6.1). It is followed by various attempts to
incorporate search capabilities into different (non-logical) paradigms such as im-
perative or functional (Section 2.6.2). Finally, we survey “pure search languages”
proposing various control operators for exploring a state space and for combining
existing strategies (Section 2.6.3).

2.6.1 Search in logic languages

Search primitives are part of most CLP systems as built-in predicates that users
can assemble in order to obtain a search strategy. The most basic built-ins are the
various labelling predicates for implementing a customized branching strategy,
available in virtually every CLP language. As a starting point to exemplify the
support of search in logic languages, we consider Eclipse which has one of the most
extensive built-in supports for search [AW07]. Eclipse is equipped with two main
search predicates: search/6 and bb_min/3 where
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split_mid_bd(X, _) :- integer(X), !.

split_mid_bd(X, 0) :-

middle(X, M), X #=< M, !,

split_mid_bd(X, 0).

split_mid_bd(X, Dis) :-

middle(X, M),

(

NDis is Dis - 1,

X #> M,

split_mid_bd(X, NDis)

;

X #=< M,

split_mid_bd(X, Dis)

).

(a) CLP

split_mid_bd(X, Dis) :-

tor_merge(bd(Dis), split_mid(X)).

split_mid(X) :- integer(X), !.

split_mid(X) :-

middle(X, M),

(

X #> M

tor

X #=< M

),

split_mid(X).

bd(Dis) :-

(

Dis > 0,

NDis is Dis - 1,

bd(NDis)

tor

bd(Dis)

).

(b) Tor

Figure 2.7: Left-branch bounded discrepancies with Prolog and Tor.

• search(Vars, Proj, VarOrder, ValOrder, Method, Options) is branch-
ing over the variables Vars with a variable and value ordering specified by
the predicates VarOrder and ValOrder. In case Vars contains terms, the
integer variable Proj indicates that the Projth sub-term is a domain vari-
able. More interestingly, Method is one of about 10 different search strategies
such as limited-discrepancy search (LDS) and pruning strategies such as dy-
namic symmetry breaking. Finally, Options is a list of options to retrieve
the number of backtracks or to bound the exploration to a limit of nodes.

• bb_min(Search, Cost, Options) executes the strategy Search with a branch
and bound (BAB) algorithm minimizing the variable Cost. Various options
can be specified such as changing the underlying BAB strategy and monitor-
ing the progress of the search.

Although Eclipse provides a large numbers of base primitives, it is hard to program
new strategies without transforming the existing framework. For example, limited-
discrepancy search (LDS) with a bounded depth cannot be generically obtained
through the existing infrastructure of search/6.

There are even more fundamental problems in Prolog that make any extension
hard to be fully satisfactory. As an example, we take an excerpt of the documen-
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tation of Eclipse12 commenting on LDS13:

The original LDS paper stated that the discrepancy to be tested first
should be at the top of the tree. Our implementation tries the first
discrepancy at the bottom of the tree. [...] This change is imposed by
the evaluation strategy [of Prolog] used and can not be easily modified.

This is because children nodes are pushed from left to right onto the queue when
evaluated in Prolog. Actually, we can solve this problem by manually reversing
the order of the branches and considering left instead of right discrepancies in the
implementation of LDS. However, this fix is not compositional: we reversed the
branches in LDS but another strategy could need them in the left to right order.

tor/2

tor/2

tor_merge/2
LCLP

2

Store(LCLP

3 )

Store(LCLP

3 )

Store(LCLP

3 )

Figure 2.8: TOR conceptual diagram.

To make our discourse more concrete and as a basis for what follows, we show
this variant of discrepancy-bounded search in Figure 2.7a with the CLP system
GNU Prolog. The predicate split_mid_bd(X, Dis) takes a variable X and ex-
plores its tree by taking at most Dis left branches. For clarity, this example
simplifies the problem by splitting on a unique variable X and by stopping after
Dis discrepancies instead of restarting with an increased bound.

First issue: Two search strategies cannot be composed

A problem with split_mid_bd is that the branching and the discrepancy-bounded
strategies are entangled. If we want to program a depth-bounded strategy with
the same branching function, we must program the composition of these two by
hand and duplicate parts of the code.

To overcome this issue of non-compositionality, Schrijvers et al. [SDTD14] de-
signed the tor predicate. In essence, it proposes to exchange the traditional dis-
junctive Prolog predicate ;/2 with a novel tor/2 predicate. This predicate serves
two purposes: to create and combine search trees. The search tree described by
two predicates can be merged with the predicate tor_merge/2 as long as they both
have a unique tor synchronization point. This is exemplified in Figure 2.7b with a
discrepancy-bounded strategy similar to the former one in CLP. The interesting as-
pect of tor/2 is that both strategies split_mid and bd are specified independently.

12
http://eclipseclp.org/doc/bips/lib/fd_search/search-6.html, accessed on 3rd February 2018.

13See Example 1.11 for an explanation of LDS.

http://eclipseclp.org/doc/bips/lib/fd_search/search-6.html
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They are next assembled using tor_merge/2 to form the full search strategy. To
its full extent, this extension allows us to have a collection of strategies that can
be assembled but also extended by users.

The traditional Prolog disjunctive predicate ;/2 pushes alternatives onto an
(implicit) queue, and thus can be seen as the join operator ⊔4. In addition, tor/2
is creating synchronization points that can be merged via tor_merge/2. Its lattice-
based semantics can be described as the join operator over Store(LCLP

3 ). To illus-
trate this, we draw a diagram in Figure 2.8 showing how two tor/2 predicates are
executed and then merged. The control flow forks when we use two predicates
tor, and then their results are joined with tor_merge before the nodes created
by tor are pushed onto the queue. Hence, the conceptual idea underlying tor is
to concurrently create two search trees, and to arbitrate their final combination
with tor_merge. In practice, only one predicate is active at any time: the first
tor executed temporarily stores its branches in a global branch store (of type
Store(LCLP

3 )). Whenever the next predicate tor is encountered, it composes its left
and right branches with the ones already present in the store.

Some of the same authors acknowledge in [SWDD14] that the tor extension
lacks a proper semantics. They argue it is hard to work out new strategies without
being accustomed to the details of the implementation. Therefore, they propose a
better semantics of tor, renamed the entwine operator, using functional monads
with techniques reminiscent of monadic constraint programming (MCP) [SSW09].
Whilst being better defined, the search strategies described are harder to read
than the tor approach, mainly due to the heavy background required in functional
language theory.

Second issue: Impossibility to arbitrarily prune branches

Looking again at the two versions of the discrepancy-bounded strategy in Fig-
ure 2.7, we realize there is a slight operational difference. The CLP version stops
taking left branches once Dis is equal to 0. In the tor version, even if we start
with a discrepancy of 0, it pushes exactly 2d nodes onto the queue for a tree of
depth d. Despite the fact we know a left node with a discrepancy of 0 is failed
before it is pushed, there is no direct way to indicate that we want to discard
it. This is because the creation of the search tree is limited to 0—if we force to
backtrack—or 2 children nodes. Actually, what is really lacking is the support for
a delta operator over Store(LCLP

3 ) in order to discard a specific node. This example
shows that, although we have control operators over L4, and more specifically over
Store(LCLP

3 ), we still lack of an abstraction to precisely manipulate the construction
of the search tree.

Third issue: Non-backtrackable variables are lacking

A more general problem with logic languages is that every variable is always back-
tracked, even when we do not want to. It is a blatant issue when programming
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var 0..4: x;

middle(X, M) :-

M = (min(X) + max(X)) div 2.

split_mid(X, XCard) :-

XCard > 0,

middle(X, M),

(

X <= M

;

X > M

),

split_mid(X, XCard - 1).

split_mid(X, 0).

:- split_mid(x, 2).

output [show(x)];

(a) Model in ClpZinc

var 0..4: x;

var 0..4: X3; var 0..1: X5; var 0..4: X4;

var 0..1: X6; var 0..4: X2; var 0..4: X1;

constraint X5 = 0 <-> x <= (X1 + X2) div 2;

constraint X6 = 0 <-> x <= (X3 + X4) div 2;

solve :: seq_search([

indexical_min(X1, x),

indexical_max(X2, x),

int_search([X5], input_order,

indomain_min, complete),

indexical_min(X3, x),

indexical_max(X4, x),

int_search([X6], input_order,

indomain_min, complete)

]) satisfy;

output [show(x)];

(b) Model unfolded in MiniZinc

Figure 2.9: Split in the middle branching strategy using ClpZinc.

search strategies. A primer example is the node-bounded search strategy which
stops after exploring a fixed number of nodes. Clearly, we do not want this variable
to be backtracked, and the only solution in existing system is to rely on mutable
and non-backtrackable variables extension of logic systems. The problem with
global variable is that it breaks the monotonicity property of a Prolog computa-
tion. Hence, it is hard to reason about and does not fit well in the semantics of
Prolog. Moreover, such extensions are not portable across different logic languages
and such variables must be managed manually by the programmer. However, we
require non-backtrackable variables at countless places in the implementation of
search strategies as shown in [SSW09, SDTD14].

We can give a solution with our hierarchical view of computation. For example,
given a node count variable defined over LMax(N), in logic language this variable
is added into L2 whereas we would need to add this variable into Q4 with a new
lattice Q′

4 = Q4 × LMax(N). This node counter must be at the same level than
the queue of nodes since it reflects a property of Q4. More generally, a solution is
to allow the user to define variable at any level of the lattice hierarchy in order to
prevent backtracking of their values.

Another approach: L4 collapsing into L3

ClpZinc is a radically different approach that uses constraints in the lattice
LCLP

3 to program a search strategy [MFS15]. To accomplish this, it relies on reified
constraints which are higher-order constraints reifying the domain entailment of a
constraint c into a boolean variable b. For example, reifying the constraint x > 2
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is done as:

b⇐⇒ x > 2 7→















b = 0⇒ x ≤ 2
b = 1⇒ x > 2
x > 2⇒ b = 1
x ≤ 2⇒ b = 0

In essence, reified constraints are a form of conditional statement: if b is set to
1 then x > 2 is enforced, and otherwise x ≤ 2 is enforced (and dually if x > 2
is entailed or disentailed first). The idea conveyed in [MFS15] is to use such
conditionals to fully describe the search tree of a CSP before it is even solved.
Basically, they associate a boolean variable b to each node of the search tree, when
it is true they activate the left branch of the node and otherwise they activate the
right branch. The constraint reified through b is the one used in branching: either
c or ¬c will label the branch.

Concretely, ClpZinc extends the modelling language MiniZinc with Horn clauses
used to describe the search tree. We consider an example in Figure 2.9 that splits
in the middle of a variable x with the domain [0..4]. In Figure 2.9a, the MiniZinc
model is accompanied by a branching predicate split_mid/2 similar to a pure CLP
predicate. This predicate is evaluated at compile-time by the ClpZinc compiler in
order to generate the static search tree with reified constraints. Therefore, we
must know the depth of the search tree before even executing it; this is the role
of XCard which is a precomputed maximum tree depth bound. In our case, since
the unique variable x takes a value in [0..4], with the splitting strategy, the tree
has a depth of 2 at maximum. Importantly, we need XCard because we are not
evaluating the constraints but just generating them, and thus we can not rely on
the failure of the constraint store to stop the branching predicate.

The generated model is shown in Figure 2.9b. The variables X5 and X6 are the
boolean variables of the two successive decisions that we must take in order to
explore the full tree. A basic search strategy will enumerate the boolean variables
to successively activate every branch of the tree. They show in [MFS15] that more
complex search strategies such as dynamic symmetry breaking can be statically
generated.

This approach is interesting because it applies propagation algorithms to the
tree exploration and further investigations could lead to novel propagation algo-
rithms or unforeseen search strategies. However, partial evaluation is a double-
edged sword because the size of the generated program depends on the number
of variables and the size of the domains. Finally, it is orthogonal to all of the
three issues mentioned above, but unfortunately it does not help to design more
compositional search strategy.

2.6.2 Search in other paradigms

Beyond search in the logic paradigm, there are a number of languages that integrate
operators for controlling and using backtracking. In particular, we review some
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proposals in the imperative and functional paradigms.

Imperative search language

ICON is an imperative language designed in 1977 particularly suited for processing
text and symbolic data [GG93, GG97]. It is one of the first imperative languages
to integrate notions of success and failure of the computation directly into its
semantics. Furthermore, it also provides automatic backtracking in case of failure
through the notion of generators. A generator is a function that generates a new
element if the former did not lead to a solution.

An interesting concept in ICON is to separate data and control backtracking.
Data backtracking restores the data to a former value while control backtracking
restores the control flow only. Usually, as in Prolog, backtracking the control flow
automatically backtracks the associated data. In ICON, some operations on data
(such as the assignment) can be persistent across backtracking. To a limited extent,
this language provides a solution to the third issue on mutable non-backtrackable
variables. Finally, note that this language is still available and maintained forty
years after its creation14.

In 1997, the Alma-0 language proposed to integrate search into Modula-2 [ABPS98]
using concepts from logic programming. It provides a choice point operator to im-
plement branching and a commit operator to implement pruning similarly to the
cut in Prolog. Moreover, in [AS99], they integrate constraints using an atomic
tell operator similar to CCP, but they do not provide support for the entailment
operation.

Overall, constraints mixed with the imperative paradigm—including modelling
languages (Section 2.3.2)—encounter a limited success. A possible explanation is
the development of constraint libraries within the same paradigms that are more
efficient.

Monadic constraint programming

Monadic constraint programming (MCP) is one of the most sophisticated li-
braries for programming search strategies [SSW09]. Although it is a library pro-
grammed in Haskell, and not a language per se, MCP is instrumental in the design
of recent search languages such as search combinators [STW+13]—described below.
It is also a strong proposal to solve the three first issues presented in Section 2.6.1.
To give a brief overview of MCP, we show two of its most important data struc-
tures in Figure 2.10. The search tree is explicitly represented with Tree solver a

where:

• solver provides an interface to interact with an underlying solver, and

• a is the type of the expected result of the computation.
14See the website https://www2.cs.arizona.edu/icon/.

https://www2.cs.arizona.edu/icon/
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data Tree solver a where

−− Operations on the constraint solver

Return a

NewVar (Term solver -> Tree solver a)

Add (Constraint solver) (Tree solver a)

−− Search support

Try (Tree solver a) (Tree solver a)

Fail

Dynamic (solver (Tree solver a))

(a) Tree monad

class Transformer t where

type EvalState t :: *

type TreeState t :: *

initT ::

t -> (EvalState t, TreeState t)

leftT, rightT ::

t -> TreeState t -> TreeState t

nextT :: SearchSig solver q t a

−− Default implementation

leftT _ = id

rightT = leftT

nextT = eval

(b) Transformer structure

Figure 2.10: Monadic constraint programming: excerpt of data structures.

The constructors of Tree denote actions that will alter the solver (L3 structure)
and the queue (L4 structure) when executed. The mapping of the variants with
lattices is as follows: NewVar corresponds to ⊔2, Add to ⊔3, Try to ⊔4 and Fail

to ∆ over Store(L3). Using the variant Dynamic, the tree can be lazily expanded
using information contextual to the current state of the solver. Finally, this tree
structure is evaluated by a function eval modifying the solver and queue structures
accordingly.

The evaluation function explores exactly the search tree induced by the tree
structure. On top of it, we can program search transformers that dynamically
build and alter the search tree during the exploration. We must implement the
Transformer t interface shown in Figure 2.10b. The central idea is to leave the
function eval triggering transformers’ hooks when we start the search (initT),
explore the left or right child (leftT and rightT) and continue the exploration
with any next node (nextT). Decisions taken inside the transformer are made
using two variables of type EvalState and TreeState, respectively for storing
information global to the search tree or local to the current path in the tree. The
functions leftT and rightT trigger modifications on the tree state whilst nextT

triggers the exploration of the remaining search tree. The latter function injects
new constraints and prunes nodes in the search tree.

Example 2.11 (Depth-bounded search transformer). To illustrate this behavior,
we consider the depth-bounded search transformer:

newtype DepthBoundedST = DBST Int

instance Transformer DepthBoundedST where

type EvalState DepthBoundedST = Bool

type TreeState DepthBoundedST = Int

initT (DBST n) = (False,n)
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leftT _ ts = ts - 1

nextT tree q t es ts

| ts == 0 = continue q t True

| otherwise = eval tree q t es ts

DepthBoundedST acts as a proxy cutting the tree beyond some predefined depth.
The evaluation state contains a boolean indicating if it already pruned the tree or
not, and the tree state contains the current depth. Each time we take a left or
right branch (note the default implementation in 2.10b), we decrease the current
depth. Once we hit a depth of 0, the function nextT is using continue to bypass
the rest of the tree evaluation by extracting a new node from the queue. Otherwise
we continue the evaluation of the current node and subtree, and the transformer
has no impact on the search. ⌟

Finally, they achieve composition by stacking up search transformers where
one has the responsibility to call the next transformer. Transformers are applied
one after another on each node of the search tree using a continuation-passing
style scheme: each transformer calls a continuation executing the transformer just
below or directly jumps to the next node (enabling pruning).

Interestingly, MCP partially solves all the first three issues presented in Sec-
tion 2.6.1. The monadic approach and search transformers enable the user to
compose search strategies (first issue) and to prune arbitrary branches (second
issue). The third issue is tackled by EvalState that provides a clean way to com-
pose variables with L4 and TreeState with L3. However, we still lack the delta
operator over L4 to program, for example, backjumping.

Beyond this short introduction, MCP is also generic with regard to the queue,
branching and restoration strategies. MCP elegantly captures and separates the
numerous concepts of constraint solving. However, understanding how these con-
cepts interact is hard, but it is a mandatory task for the users who want to pro-
gram new strategies. We believe that overcoming such limitations is the role of
programming languages, by designing high-level search operators and semantics
that cleanly express the conceptual ideas behind search strategies. We must also
credit MCP as an important resource for the design of the lattice-based framework
of the first chapter.

Search in multi-paradigm languages

Oz is a multi-paradigm language with support for constraint and search [RH04].
We already mentioned Oz in Section 2.5.1 as the successor of AKL and proposing
nested computation space. The outcome of a computation space (where nondeter-
ministic computations are encapsulated) can be manipulated as a first-class entity
whereas it is built into the semantics of Prolog. Formally, a computation space
is a function from L3 to Store(L3) where the emptiness of the resulting store is
interpreted as a failure. Complex search strategies can be programmed such as
branch and bound, but also restoration strategies such as recomputation [Sch02].
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Moreover, computation spaces have been used to program higher-order constraints
such as the negation of any constraint and reified constraints. However, there is
no specific support for the composition of the strategies which remains a low-level
task. Finally, we note that computation space has been instrumental in the design
and understanding of constraint solving libraries such as GeCode [STL14].

Computation spaces are also explored in the context of the functional logic
language Curry where they introduce the try function [HS98]. Similarly to Oz,
this function maps a CSP in L3 to a store of branches Store(L3). An original
feature of this work is to use the lazy evaluation of Curry to elegantly deal with
infinite search tree.

2.6.3 Control operators for search

Designing a language to program the search is not an easy task, especially when
taking into account compositionality issues. Research in this field has been over-
loaded with two different considerations: integrating search inside an existing
paradigm and finding the right set of search operators. Since it is very challenging
to try to solve both problems at once, approaches based on combinators emerged.
A combinator is essentially a higher-order function that combines other functions.
Based on this idea, language designers can exclusively focus on the search combi-
nators, and the possible interactions with a host language are limited to a mere
interface. Moreover, it has the advantage of simplifying the overall design and to
obtain concise and explicit search strategies.

Early constraint search languages appeared around 1998 with Localizer [MVH99],
Salsa [LC98] and OPL [VHM99]. More recent approaches include Comet [VHM05]
(successor of Localizer), search combinators [STW+13] and MiniSearch [RGST15].
The control primitives offered by these languages are substantially overlapping,
thus we limit our study to a few central proposals. In particular, languages spe-
cialized to local search such as Localizer and Comet are left out of scope.

Fourth issue: Control operators are duplicated for different layers of the
hierarchy

In Section 2.6.1, we discussed the third issue about variables global to the search
tree that should not be backtracked. The proposed solution is to explicitly situate
a variable in a layer of the hierarchy. In most search languages, they tackle this
issue either by relying on the host language for global variables such as in search
combinators [STW+13, RGST15] and Salsa [LC98] or by duplicating operations
over global and backtrackable variables such as in OPL [VHM99].

The first solution relies on the underlying solver to access statistics such as
the depth of the tree, number of right branches and nodes explored. Therefore,
beyond posting constraint in L3, the treatment of data is left to a host language.
It is strange that a search language, designed to operate over a tree, is unable to
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express simple tree’s properties. An advantage of search combinators and Salsa is
to have a limited set of combinators.

As for the second solution in OPL, they duplicate control primitives according
to the layer of definition of the variable. The assignment has two versions: <- and
:= depending on whether it is backtrackable or not. The statements while and
if work on global and grounded variables while the statements when, onValue,
onRange and onDomain are statements reacting to variables from L0 to L3. These
latest statements are reminiscent of indexicals and concurrent logic programming
where a process can suspend and wait on some conditions. They show in [VHPP00]
that <- and events conditions allow users to program dynamic branching strategy
in a scheduling problem.

One of the reason to duplicate statements is that conditions expressed in L3

can be unknown while conditions over global variables are usually equal to true or
false. However, the duplicated statements make OPL one of the heaviest languages
in terms of number of concepts and operators.

Control operators for L4 and above

OPL and Salsa provide extensive support for programming the branching strategy,
and search combinators mostly rely on the host language. In particular, many
operators are defined to program the value and variable ordering (Definition 1.46)
according to various criterion. The branching operators manipulate the store of
nodes Store(L3) before the nodes are pushed onto the queue. Accordingly, they
also propose pruning operators over this structure: Salsa’s s where f prunes the
current subtree if the function f returns true, and prune does a similar job in
search combinators. Salsa proposes a pruning operator over L4 by stopping the
search under various conditions with s until f that stops the strategy s when f
returns true. OPL furnishes a similar operator with applyLimit id s.

Interestingly, OPL is one of the only languages to allow the user to program
its own queuing strategy. Basically, the operator applyStrategy id s executes a
strategy s with the queueing strategy id which is of the form:

SearchStrategy id (args) {

evaluated to e1;
postponed when e2;

}

where e1 is a function evaluating the current node and e2 describes on what con-
dition we switch to another node. This way, best-first search can be implemented
with customized expression.

We terminate with some examples of combinators to program the search in L5

which is especially useful for restart-based search strategies. In search combinators,
restart(e, s) restarts a strategy s whenever a condition e become true. Similarly,
or and portfolio restart the search respectively until a solution is found and until
we explore the full tree. OPL provides solve(s) that performs nested search: s is
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executed with its own queue of nodes. The variants minof(e, s) and maxof(e, s)
are specialized for retrieving the best value of the alternatives in the nested search.
It is useful to implement shaving (or probing) techniques that collect information
on all children nodes before committing to a subtree. All operators are actually
creating new search trees and thus can be viewed as the join operator ⊔5.

Fifth issue: Two search strategies cannot freely communicate

A consequence of the fourth issue is the difficulty to communicate data among
search strategies. Search strategies communicate indirectly through internal and
hidden data to decide what strategy to execute next, for instance exhaustiveness
with portfolio in search combinators and failure of branching in Salsa. A similar
approach is employed in MCP by stacking up search transformers. The search
transformers are layered such that a transformer decides to execute or not its
child. The communication is unidirectional in the sense that a child cannot easily
communicate information to its parent. In Tor, different search strategies com-
municate on mutable global variables to indicate if a pruning occurred [SDTD14].
In this case, we fall back in the traditional problematic of concurrent read and
write in imperative variables. Solutions have already been explored in the context
of concurrent logic programming where predicates communicate concurrently, but
we are not aware of similar proposals for search strategies.

2.7 Conclusion and discussion

Overall, the two predominant layers tackled by language abstractions are L3 and
L4. Languages supporting only L3 usually embed the notion of infinite computa-
tion which becomes problematic when coupled to backtracking. In this respect,
the constraint logic paradigm is the most advanced proposal to merge L3 and L4

into a single language. This leads to several complications, notably composition-
ality of search strategies, and this is why a bunch of proposals are specialized for
L4 uniquely.

This chapter surveyed some of the most well-known languages in the field of
constraint-based languages. The main goal of this study is to use the lattice hi-
erarchy introduced in Chapter 1 to match the algorithmic and language aspects
of constraint programming. One crucial observation is that the three algebraic
operators (⊔,∆, |=) are at the heart of algorithms and also of languages’ abstrac-
tions. To demonstrate this point, we developed the lattice-based semantics of
CCP and CLP with these operators. We believe the semantics obtained is closer
to the algorithmic reality of constraint programming and thus closer to concrete
implementations. This also allows us to analyse paradoxes inside some theoretical
languages (such as the entailment in CCP) due to their algorithmic complexity.
We hope that it gives a common ground to constraint-based languages that seem
far away from each other, and forms a first basis to study a language unifying the



Constraint-based Programming Languages 104

capabilities of the various proposals. To conclude this chapter, we discuss three
research challenges in constraint-based programming languages.

L3 and global constraints

One of the main differences between constraint-based languages and constraints
libraries is the lack of support for global constraints in the former. The success of
constraint programming in industrial applications is partly due to the efficiency
of global constraints. However, languages generally offer limited support to pro-
gram such constraints—generally through interfaces to a lower-level language (for
example in GNU Prolog [DAC12]). A step into that direction is made with B-
Prolog in which global constraints can be programmed through its action rules
language [Zho06].

Considering that a CSP is a graph where variables are nodes and constraints
are the edges, it seems natural that graph-based languages could be suited to
program global constraints. For example, LMNtal is a graph rewriting language
building on ideas of concurrent logic programming [Ued09]. Using such declarative
languages could lead to the automatic extraction of entailment checking, constraint
reification [BCFP13] and solution density approximation [PQZ12] based on the sole
description of the global constraint propagator.

Learning the solving algorithm

The development in machine learning of the last decade virtually impacts all cor-
ners of computer science, constraint programming included. If constraint program-
ming can be thought as computing data from relations, then machine learning is a
method for computing relations from a set of data. Although this definition might
seem to oppose these two fields, they are actually complementary:

• Machine learning algorithms can find and assemble an efficient solving algo-
rithm for a specific problem.

• Constraint programming can constrain the learning process of machine learn-
ing approaches to relevant part of the state space.

SATzilla is a notable portfolio approach based on empirical model hardness, a ma-
chine learning technique to estimate the solving time of unseen instances [XHHLB08].
In this case, it is used to select the best configuration of a SAT solver in order
to solve a problem. An example of the other way around is data mining with
constraints where they use constraints to model mining problems [GDN+15].

A challenging goal is to be able to learn over the space of search strategies,
instead of using a set of existing solvers. We hope that the lattice hierarchy might
be a first step towards learning how to design a constraint solver from scratch for
a particular class of problems.
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Beyond search in constraint programming

Searching a state space is a fundamental concept in computer science that oc-
curs in many different settings. As a first example, constraint programming has
many neighbourhood fields—that we overlooked—including SAT, (mixed)-integer
programming and SMT solvers that have their own search algorithms. Also, a
constraint model can be solved with other algorithms offering different character-
istics, most notably local search that performs a non-exhaustive search—it does
not always guarantee to find an (optimal) solution but if it does, it is usually faster
than exhaustive algorithms.

Localizer, Comet and Salsa are languages supporting local search. The main
difference between this paradigm and exhaustive search is that local search always
manipulates grounded variables. Moving from one state to another is performed
by moving to a neighbourhood state in order to reduce some violation measures.
In local search, the delta operator ∆ is very important to evaluate the best move
among competing ones. In this respect, constraints—defined over ground values—
are optimized to answer efficiently delta requests; differentiable objects are such a
technique in Comet. Interestingly, the syntax of Salsa to define moves is similar
for both branching and local search. Although Comet is primarily designed for
local search, it also integrates search operators from OPL which allow users to mix
both local and global search. All in all, although local search is a technique very
different from global search, there is a substantial overlap in the combinators used
in both search.

On a larger scale, search is also fundamental in the field of software verification.
Model checking is a method to model a program and to verify if it satisfies some
properties. Of course, exploring all the possible paths of a program generates a
huge state space. Therefore, search strategies can help to increase the efficiency
in this context too. Another example is the automatic theorem prover where the
user is collaborating with a software to prove some theorems—instead of being
fully automatic as in model checking. In this case, the state space is generated
by the various ways to prove a theorem, and the user directs the search with the
notion of tactic.

Another relevant field is rewriting systems that apply some rules reducing
a term (or other entity) until some conditions are met. In the case of a non-
deterministic rewriting system—two rules can be applied at the same time—the
search strategy can be crucial to ensure the termination of the system. For exam-
ple, in ELAN, they propose a search strategy language [CB00] based on a combi-
nator approach that is very similar to the ones we overview in Section 2.6.3.

The fields of constraint programming, verification and rewriting systems are
only a few of the numerous examples where search is actively used. A key observa-
tion to establish the “perfect set of search operators” is to realize that these opera-
tors are similar across fields although the underlying state space is not. Therefore,
we believe that operators over the lattices L4 and above lay the foundations for
such a language.
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Chapter 3

Overview of Spacetime Programming

This chapter introduces the motivations, syntax and intuitive semantics behind
a new language called spacetime programming or “spacetime” for short. Spacetime
is based on synchronous programming [Hal92] and concurrent constraint program-
ming (CCP) [SR89]. We combine these two paradigms to tackle the composition-
ality issues of search strategies discussed in Section 2.6. Firstly, we rely on the
notion of logical time of the synchronous paradigm to coordinate and compose
search strategies. Secondly, we build on the CCP’s model of partial information to
define the variables of a program as lattice structures. It is instrumental to enable
search strategies to communicate during the exploration of the search tree.

We first introduce the synchronous model of computation and the language
Esterel in Section 3.1. We then merge the linear model of time of Esterel with
branching time in order to program backtracking algorithms. Blending linear and
branching time shapes the model of computation of spacetime programming (Sec-
tion 3.2). We introduce its syntax and intuitive semantics in Section 3.3. In Sec-
tion 3.4, we give two examples of search strategies in spacetime that are specialized
to the layer L4 in the lattice hierarchy. Thereafter, we extend spacetime with the
concept of hierarchical computation to program layers above L4 (Section 3.5). It
is exemplified on two search strategies in L5 in Section 3.6.

In sum, we contribute to extending the synchronous language Esterel with
lattice-based variables, branching time and hierarchical computations.

3.1 Synchronous programming

The concept of time is recognized as highly difficult to define. The Newtonian view
is the most intuitive: it defines time as a quantity that can be divided into very
small and indivisible units. According to this view, these “smallest units of time”
define a global clock where every tick makes all the atoms of the universe progress
at once. A second observation is that time is related to space by the notion of
causality. For example, a plane can only be in the sky (event B) if it has first taken
off (event A). It is assumed that whenever the existence of an event B depends on
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the one of A, then A must occur before B. A global clock is convenient to define this
“happens-before” relationship and the notion of simultaneous events: it is directly
mapped onto the order given by the global clock. Synchronous programming brings
the notion of linear time, where everything happens before or after something else,
and causality inside a programming paradigm.

3.1.1 Linear time

The synchronous paradigm [Hal92] was initially designed for modeling systems
reacting to simultaneous events of the environment—different inputs can arrive
at the same time—while avoiding typical issues of parallelism, such as deadlock
or indeterminism. A simple example is a watch: its state changes when the user
presses buttons or when it receives a signal indicating that a second has elapsed.
The main idea of this paradigm is to propose a notion of logical time dividing
the execution of a program into a sequence of discrete instants that are concep-
tually instantaneous. This assumption of instantaneous computation is called the
synchrony hypothesis.

We explain the synchronous paradigm with the language Esterel [Ber00b] be-
cause spacetime is based on its syntax and model of computation. An Esterel
program reacts to input signals and produces outputs. A signal is a variable with
a boolean type indicating if it is present or absent. We illustrate the synchronous
behavior of a program with a variant of the standard ABRO example [Ber00a].

Example 3.1 (ABO). When the signals A and B are received, the output O is
emitted. The signal O carries an integer value indicating the number of times it
has been emitted. The following program is given in Esterel V5 [Ber00a]:

module ABO:

input A, B;

output O := 0: integer;

loop

[ await A || await B ];

emit O(pre(?O) + 1);

pause;

end loop

end module

We explain the program from its innermost instructions:

• The statement await A indefinitely waits for the signal A and terminates
when A occurs.

• The parallel composition P || Q concurrently and cooperatively executes
two processes and terminates when both are terminated. In the example, it
terminates as soon as both signals A and B have occurred.

• Once terminated, the signal O is emitted and can be retrieved by the user to
activate, for example, a real world command.
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• We initialize the value of O to 0 and increment it when emitted, and then
we use pre(?O) to retrieve the value of O in the previous instant.

• The instruction loop p end loop executes indefinitely the process p. We
forbid the body of the loop to be instantaneous due to the synchrony hy-
pothesis.

• Hence, to avoid infinite loop within one instant, we must delay each iteration
to the next instant with the statement pause.

• The whole behavior is reset at each loop iteration.

⌟

Operationally, we can view a synchronous program as a coroutine: a function
that can be called multiple times and that maintains its state between calls. When
the program is called, its code is resumed from the last pause statements reached.
This temporal dimension opens the door to two different kind of memories:

• The persistent memory for the values spanning several instants, for example
the integer value carried by the signal O.

• The local memory for those only relevant to a single instant, for example the
signals A and B.

User inputs can be injected into the program in-between two resumptions of the
program. The external inputs are collected within a host language from which one
instant of the synchronous program is called.

The well-defined semantics of synchronous languages for the treatments of si-
multaneous events has a wide variety of applications encompassing interactive
mixed music [BJMP13], dynamic network protocol [MB05] and web program-
ming [BS14, ESC16], just to name a few of them.

3.1.2 Causality analysis

A programming language is a set of concepts defining how the space of a program
evolves through time under some laws. Concretely, the space is the memory stor-
age, the laws are the code of the program and time is the causal application of the
laws to the space. The space and laws components in languages are well-studied
but time is often left implicit. An explanation is that most programs are written in
a sequential fashion, and thus they are causal by default since they do not describe
simultaneous events. Therefore, time and simultaneous events are generally not
supported explicitly. The most widespread attempt to support these notions in
sequential languages is the mechanism of threads. However, it is widely acknowl-
edged that threads are difficult to program correctly and to debug [Lee06]. From
our point of view, the problem with threads is that the causality principle must
be implemented manually by the programmer, which is usually not an easy task.
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The synchrony hypothesis enables compile-time static analysis to verify the co-
operative and correct behaviour of processes. Cooperative execution means that
the processes do not compete for a resource—unlike in many multi-threaded ar-
chitectures where race conditions can occur. At this stage, it is important to
distinguish between parallel and concurrent programs. The parallel statement in
Esterel is compiled into sequential code in which the processes are statically inter-
leaved. Therefore, our model of computation is concurrent (despite the name of
the operator ||) but the execution of the program is sequential1.

We argue that time is a central notion to the concurrent execution of processes.
It is implemented in synchronous languages using a global clock for coordinating
the evolution of the processes. During an instant, every process instantaneously
makes a step forward regardless of the other processes. Therefore, we must verify
that every interleaving of two processes P and Q always leads to the exact same
output, and thus that the computation is deterministic. This is the role of the
causality analysis. However, this comes with an important cost: the causal relation
of the program during any instant must be decidable, this implies that an instant
is bounded in space and time. To illustrate causality, we consider a non-causal
Esterel program:

if S then emit R else emit S end

where if tests the presence of a signal. We read this program as: “if S is absent
emit S otherwise emit R”. The causality issue comes from the fact that if S is
absent then it is present. Of course, it is never present and absent at the same time
according to the structure of the program, but under the synchrony hypothesis it
has these two possible statuses. Therefore, the causality analysis will reject this
program.

Finally, we consider a pseudo-program where boolean signals are replaced by
variables over the lattice of increasing integer LMax.

if x ⊨ y then

y = y ⊔ (y + 1)

end

We read this program as: “if we can deduce y from x, then increase y by one”.
This simple process shows a non-causal relationship inside one instant. To show it,
we admit that x and y are both equal to 1 at the beginning of the instant. When
the condition x |= y is checked, x and y equal 1, therefore the condition is true.
However, when executing the body, we increment the value of y which makes the
condition false since 1 |̸= 2. Since we made the hypothesis that the computation
is instantaneous, this program is not causal and we must reject it.

The language of the latest example is very similar to CCP with indexicals
(Section 2.4.2). We claim that the causality analysis is a bridge between CCP and
synchronous programming. Specifically, the causality analysis of Esterel is similar

1The kind of parallelism in the synchronous paradigm is similar to and-parallelism in logic languages,
therefore it is a challenging problem to obtain true parallelism.
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to the monotonicity analysis of CCP with indexicals. Based on this observation,
we develop a causality analysis for lattices-based programs in Section 4.5.

3.2 Concepts of spacetime programming

This section is dedicated to explaining the model of computation of spacetime
programming. We discussed about the synchronous language Esterel which is con-
stituted of boolean variables2 and time progressing linearly. In spacetime, we
depart from Esterel by proposing the notion of branching time to program back-
tracking algorithms (Section 3.2.1) and lattice-based variables (Section 3.2.3). An
innovation in spacetime is to blend linear and branching time together in a single
language (Section 3.2.2).

3.2.1 Branching time

Until now, we assumed that time is totally ordered: a point in time t always
happens before or after a point in time t′. Alternatively defined, the space of
a program has a single past and a single future. We challenge this notion by
investigating time as a partial order. At a point in time t, the program has the
ability to create two distinct and unordered futures t′ and t′′ such that t < t′

and t < t′′. If the space is duplicated at some point in time, then the two new
spaces become causally independent and unordered through time. We refer to
this concept as branching time, and we call the succession of events leading to a
particular space a world line.

Branching time is pervasive in computer science with backtracking algorithms:
several choices are successively made until we find a solution. This succession of
choices is a world line. A world line is therefore the evolution of the variables
through time, and backtracking is the mechanism for moving between world lines.
We implement backtracking with a queueing strategy (Definition 1.5.2) that stores
the world lines. We conciliate the exploration of the search tree and the time
dimension with the following principle:

A node of the search tree is explored in exactly one logical instant.

Therefore, the extraction function pop of the queuing strategy is called at the
beginning of an instant and the function push is called at the end of an instant.
In this respect, a second principle is:

A search strategy is a synchronous process.

Therefore, search strategies are synchronized through time and progress at the
same rate when exploring the search tree.

2Although values can be carried by signals in Esterel, they have a limited integration into its concur-
rency model (see Section 4.6).



Overview of Spacetime Programming 112

inputs outputs

synchronous program

push 0..Npop

spacetime extension

single_time variables

single_space variables

queue of nodes

world_line variables

Figure 3.1: Spacetime extension of the synchronous model of computation.

3.2.2 Blending linear and branching time

The innovation in spacetime is to propose linear and branching time blended in the
same language. We notice that time is passing because we can observe the space
of the program changing. Instead of trying to propose abstractions to modify the
flow of time, we choose to work on the space of the program directly. Therefore,
we propose to annotate the variables with a spacetime attribute to indicate how
a variable evolves in space and time. For this purpose, a spacetime program has
three distinct memories in which the variables can be stored:

(1) Local memory (keyword single_time) for variables local to an instant and
re-allocated in each node. A single_time variable only exists in one instant.

(2) Global memory (keyword single_space) for variables evolving globally to
the search tree. A single_space variable has a unique location in memory
throughout the execution. For example, we store the number of nodes of the
search tree in a single_space variable.

(3) Backtrackable memory (keyword world_line) for variables local to a path in
the search tree.

The latter memory stores copies3 of the variables when a choice has been encoun-
tered. More precisely, the backtrackable memory is part of the queue of nodes
representing the remaining part of the search tree to explore.

3Besides copying, different variable restoration policies can be used such as trailing or recomputation.
Nevertheless, from the spacetime point of view, the restoration policy is abstracted in the implementation
of the corresponding lattice.
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We depict the model of computation of spacetime in Figure 3.1. We extend
the synchronous model of computation with a queue of nodes and an abstract
queueing strategy. We will see in Section 3.5 that we can explicitly parametrize
the computation with a user-defined queueing strategy. The queue is manipulated
with the functions pop and push. At the beginning of each instant we instantiate
the world_line variables with the values stored in the node popped from the
queue. At the end of each instant, we push an arbitrary but bounded number of
nodes onto the queue. For examples, pushing two nodes in each instant creates a
binary search tree, and pushing an empty set of nodes has the effect of pruning
the subtree of the current node.

3.2.3 Host variables as lattice structures

We propose to extend the domains of the variables in the synchronous paradigm to
lattice structures. It is inspired by concurrent constraint programming (CCP) [SR89]
(see Section 2.4.2). In CCP, the processes interact through a shared store of con-
straints with two instructions metaphorically called ask c and tell c. The in-
struction ask c succeeds if we can deduce the constraint c from the global store
(entailment operation), the instruction tell c adds the constraint c onto the global
store (join operation). In contrast, spacetime embeds this communication mech-
anism inside each variable instead of considering a global and shared constraint
store. The key idea is to suppose that every variable has a lattice structure and
implements the entailment and join operations.

However, spacetime is not a general purpose language and it relies on a host lan-
guage for the definition of the lattices. Similarly to many synchronous languages,
spacetime needs to be embedded into a host language. Firstly, it simplifies the de-
sign of the core language since many required programming concepts ranging from
arithmetic expressions to data aggregation in modules are already provided in the
host language. Secondly, it facilitates the integration of a spacetime program in
a larger project. The synchronous program can react on inputs from the environ-
ment such as graphical user interface and the network, and the user can activate
the next instant on-demand. These are important ingredients for programming
interactive systems with the spacetime paradigm.

We embed spacetime inside the object-oriented programming language Java. It
allows users to declare processes and spacetime variables in a Java class along to
Java methods and attributes. This is inspired by BloomL [CMA+12], a language for
distributed computing using lattices. Similarly to BloomL, we leave the definitions
of the lattices to the host language which must only expose monotonic functions
over these lattices. This enables us to use Java classes and libraries directly in
spacetime.

We implemented a prototype compiler of the spacetime language4 in Rust. We
compile a spacetime program to an extension of the synchronous library Sugar-

4The compiler is publicly available at https://github.com/ptal/bonsai.

https://github.com/ptal/bonsai
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Cubes [BS00] in Java. We provide a library of lattice structures such as LMax
and LMin, and the user can define its own lattice structures as long as it im-
plements the right interfaces. In particular, we encapsulate the constraint solver
Choco [PFL15] in a lattice-based variable implementing the lattice L3. This ab-
straction over Choco is only 300 lines of code which hints that it would not be
prohibitive to support other Java constraint solvers.

3.3 Syntax and intuitive semantics

We organise the statements of spacetime into fragments, each relevant to a part of
the lattice hierarchy and to the compositional semantics of search strategies. As
a reference sheet, we give the full syntax of spacetime in Figures 3.2 and 3.3, and
we explain each instruction.

3.3.1 Communication fragment

The communication fragment of spacetime allows two processes to communicate
over a shared variable. In order to keep the communications monotonic, a process
must sometimes annotate how the variable is accessed (in read, write or read-
write modes). Access modes are required when calling external functions from
the host language. It acts as the promise that the host code will manipulate the
variables following the contract. Unfortunately, the verification that the contract
is fully respected is left to the user and the host language. We define the spacetime
expressions as follows:

• bot and top respectively represent the bottom and top element of their cor-
responding lattice.

• read x, write x and readwrite x specify an access mode to the variable
x. The access mode indicates how the variable is manipulated in the host
functions. This is especially useful for the compiler to verify that a program
is causal (see Section 4.5).

• pre x gives a stream interpretation to the variable x and returns the value
of the variable at its previous instant. At the first instant of a variable x,
we have pre x = bot. The pre operator is similar to the one used in the
dataflow synchronous paradigm [BCLGH93]. However, it behaves differently
depending on the spacetime of x:

– single_time: it cannot be applied to single time variables since, con-
ceptually, these variables only exist in a single instant.

– single_space: it works similarly to dataflow language, the value of pre
x is the one of x in the previous instant.
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⟨proc⟩ ::= proc ⟨ident⟩ ⟨params⟩? = ⟨p⟩ (process declaration)

⟨p, q, . . . ⟩ ::= communication fragment (L3 and below)
| ⟨var_decl⟩ (variable declaration)
| when ⟨trilean⟩ then p else q end (ask)
| ⟨var⟩ <- ⟨hexpr⟩ (tell)
| ⟨call⟩ (function call)
| synchronous fragment
| nothing (empty process)
| pause (delay)
| par p || q end (disjunctive parallel composition)
| par p <> q end (conjunctive parallel composition)
| p ; q (sequential composition)
| loop p end (infinite loop)
| abort when ⟨trilean⟩ in p end (abortion)
| suspend when ⟨trilean⟩ in p end (suspension)
| for ( ⟨combinator⟩ ) ( ⟨range⟩ ) p end (instantaneous loop)
| search tree fragment (L4)
| space p end (branch creation)
| prune (branch pruning)
| universe fragment (L5 and above)
| universe ⟨uparams⟩ (with ⟨ident⟩)? in p end (universe creation)
| pause up (delay in the upper universe)
| stop (delay in the outermost universe)

⟨spacetime⟩ ::= single_space | world_line | single_time

⟨combinator⟩ ::= || | <> | ;

⟨var_decl⟩ ::= ⟨spacetime⟩ ⟨type⟩ ⟨ident⟩

⟨range⟩ ::= ⟨var_decl⟩ : ⟨hexpr⟩

⟨call⟩ ::= ⟨hexpr⟩ . ⟨ident⟩ ⟨args⟩ (method call)
| ⟨ident⟩ ⟨args⟩ (function call)

⟨args⟩ ::= ( ⟨hexpr⟩ % , )

⟨params⟩ ::= ( ⟨var_decl⟩ % , )

⟨uparams⟩ ::= ( (⟨spacetime⟩ ⟨ident⟩) % , )

Figure 3.2: Syntax of the spacetime language. We are using the non-standard notation
e? for optional expression and e%e′ for a possibly empty list of e separated by e′. The
rules ⟨var⟩, ⟨ident⟩ and ⟨type⟩ are host defined expressions.
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⟨hexpr⟩ ::= ⟨expr⟩
| ⟨call⟩ | ⟨host_expr⟩ (host interface)
| ⟨access⟩ ⟨var⟩ (restricted variable access)

⟨expr⟩ ::= bot | top | ⟨trilean⟩ (lattice expressions)
| pre* ⟨var⟩ (stream variable)
| ⟨access⟩ ⟨var⟩ :: ⟨var⟩ (bottom up transfer)
| ( ⟨expr⟩ )

⟨trilean⟩ ::= true | false | unknown
| ⟨expr⟩ |= ⟨expr⟩ (entailment)
| ⟨trilean⟩ and ⟨trilean⟩ (conjunction)
| ⟨trilean⟩ or ⟨trilean⟩ (disjunction)
| not ⟨trilean⟩ (negation)

⟨access⟩ ::= read | write | readwrite

Figure 3.3: Syntax of the expression of the spacetime language. We use e∗ for repeating
e zero or more times. The rule ⟨host_expr⟩ is a host defined expression.

– world_line: it returns the value of the variable x obtained in the parent
of the current node.

The expressions are used with the following statements:

• spacetime Type var declares a variable var of type Type. The attribute
spacetime situates the variables in a specific memory as explained in Sec-
tion 3.2.2. When executed, the variable is initialized to the bottom value ⊥
of its lattice Type.

• when a |= b then p else q end executes the body p whenever we can
deduce b from a in the current instant (entailment relation). The process p
is executed when the condition maps to true and otherwise q is executed. It
is possible to use any three-valued logic expression instead of a |= b (see
below for the truth table).

• x <- e augments the information in x with the expression e; it performs the
join operation x = x ⊔ e.

• o.m(a1, . . . , an) calls the host method m on the object o with the arguments
a1, . . . , an. We also support the function call syntax without a target object.
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A B not A A and B A or B

true true false true true
false true true false true
false false true false false

unknown true unknown unknown true
unknown false unknown false unknown
unknown unknown unknown unknown unknown

Table 3.1: Truth table of the Kleene three-valued logic used in spacetime.

Closed-world assumption

A problem when querying a system with a negative request is that even if a piece
of information is not yet present, it can become present in the future. A classic
workaround is the closed-world assumption: we make the assumption that, at the
time of the request, we know everything. Notably, this semantics and others have
been extensively studied in Prolog under the negation as failure principle. The
synchronous model of time provides a semantics of negative knowledge. Thanks to
the synchrony hypothesis, we know everything about an instant, and complications
to deal with negative knowledge do not arise. However, we still need to take into
account that some pieces of information are unknown during the current instant
as explained in the next section.

3.3.2 Undefinedness in three-valued logic

Spacetime is built on the Kleene three-valued logic which is similar to boolean logic
with the additional undefined value—represented by unknown in spacetime. The
truth table of the three logic operators provided in spacetime is given in Table 3.1.
A problem in languages with a three-valued logic is to deal with the unknown
value. Consider the following program:

when x |= y then P else Q end

The case where x |= y maps to unknown is often problematic: should we execute
the else-branch or nothing at all? This problem stems from the conflicting seman-
tics between expressions using a three-valued logic and the when statement defined
over a boolean logic. A solution is to promote unknown to false in the condition
of when and, in this example, to execute the process Q. We call this mapping the
closed-world assumption (CWA) as it relates to the CWA in logic programming
(see 3.3.1 above).

A second problem, highlighted in the relational semantics of constraint mod-
elling languages [FS09], occurs with nested expressions. How should the unknown
value be propagated inside an expression? We illustrate it with the following
program:
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when not (x |= y) then P else Q end

Should we activate the CWA at the level of the expression x |= y or at the level of
the condition ¬(x |= y)? Assuming that x |= y maps to unknown, it leads to two
possible semantics:

1. The CWA is activated as soon as possible in which case x |= y maps to false
and ¬false = true, thus P is executed.

2. The CWA is activated as late as possible in which case ¬(x |= y) maps to
unknown which is promoted to false, thus Q is executed.

In [FS09], these two options are respectively called the relational and Kleene se-
mantics. In the relational semantics, the logic operators are boolean since the
unknown value is always transformed at the value-level. In contrast, the Kleene
semantics makes use of the Kleene logic operators to compute the result (as in-
troduced in Table 3.1). Our solution is to use the entailment as a logic operator
to explicitly indicate when to perform CWA. Given the entailment lattice ES
(Definition 1.40), the truth table of |=ES is generated as follows:

a |=ES b 7→

{

true if a = b ∨ b = unknown
false otherwise

A key observation is that a |=ES b cannot return unknown. Therefore, the CWA
over an expression x |= y can be manually triggered using (x |= y) |=ES true—if
x |= y equals unknown, it will be promoted to false since unknown |=ES true 7→
false. The relational and Kleene semantics can be obtained with the following
programs:

when not ((x |= y) |= true) then P else Q end (Relational)

when (not (x |= y)) |= true then P else Q end (Kleene)

These two semantics are compatible in our language due to the logic interpretation
of the entailment operator. Also, this is due to the backward compatibility of
the Kleene logic operators with the boolean truth tables when we remove the
value unknown. In order to simplify the programs, the conditional statements
implement a Kleene semantics by default, and therefore the second condition can
be written more simply as not (x |= y).

3.3.3 Synchronous fragment

The temporal dimension in synchronous languages opens the door to many prim-
itives for controlling the state of a program. For example, when considering time,
the traditional conditional statement “if-then-else” has several variants including
when, abort and suspend. Spacetime is based on Esterel [Ber00a] for most of these
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statements and on Quartz [Sch09] for the conjunctive parallel <> and the instan-
taneous loop for. The statements in the synchronous fragment of spacetime are
interpreted as follows:

• nothing describes the empty process5 that does nothing and terminates in-
stantaneously.

• pause delays the execution of the process to the next instant.

• par p || q end is the parallel composition of the two statements p and
q—called processes in this context. It terminates when both p and q are
terminated.

• par p <> q end is similar to || with the difference that it terminates whenever
p or q terminates.

• p ; q is the sequential composition of the two statements p and q. It executes
p and when it terminates, it executes q.

• loop p end executes indefinitely the body p. An instant must always be
executed in bounded time, and so to prevent infinite loop within an instant,
the body p must contain a pause statement6.

• abort when trilean in p end executes p until the condition trilean is equal
to true (in the lattice ES). It can be imagined as a version of when where the
condition is rechecked in every instant but the program state of p is retained.
It does not execute its body p in the instant where trilean is equal to false.

• suspend when trilean in p end suspends the execution of p whenever the
condition trilean is mapped to true. It only suspends its execution during
the current instant and resumes p as soon as the condition trilean is not
equal to true anymore.

• for(;)(<var_decl> : r) p end generates the sequence p1 ; p2 ; . . .
; pn where n is the size of the range r. Additionally, we can generate a
conjunctive and disjunctive parallel sequence using for(||) and for(<>).
In each iteration, a value is extracted from r and stored in the variable
occurring in <var_decl>. We restrict the body p to be instantaneous, and we
leave temporal processes involving iteration to the statement loop.

3.3.4 Search tree fragment

An important contribution in spacetime is the operators for dynamically creating
and pruning a search tree. More precisely, in each instant we have a store of

5Also known as skip or ∅ in some process algebras.
6This can be statically checked with a compile-time analysis [TDS03].
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children nodes—similar to the lattice Store(L3)—which is manipulated with space

and prune. At the end of an instant, this store is pushed onto the queue, and the
children nodes will be executed in turn in the future instants. This extension to
synchronous languages is provided with the following statements:

• space p end creates a branch from the current node to a child node. The
process p is executed when the child node is instantiated in a future instant.

• prune indicates that a part of the subtree of the current node should not be
explored. This statement alone creates a pruned branch which might have
the effect to discard one or more space statements encountered in the current
instant.

The space and prune statements come with a compositional semantics regarding
the sequence and the parallel operators which is formally introduced in Section 4.2.
For now, it is sufficient to be aware that:

(i) space creates a branch and prune cancels a branch,

(ii) two branches in a sequence are concatenated,

(iii) two branches b1 and b2 created in parallel processes are merged together with
b1 || b2 and b1 <> b2, and

(iv) prune || p is equivalent to p, and prune <> p is equivalent to prune.

3.3.5 Read-write scheduling

To ensure determinism of the computation, we must read every variable when
they have been totally written unless it does not impact the monotonicity of the
program. We illustrate this with an example.

Example 3.2 (Process scheduling). We initialize two counters: x to 1 and y to 0.
Three processes are launched in parallel: P joins x with 2 or 3 if we can deduce or
not x from y, Q increases the value of y to 2, and R prints the values of x and y.

proc scheduling =

single_time LMax x = new LMax(1);

single_time LMax y = new LMax(0);

par

|| when x |= y then x <- 2 else y <- 3 end (P )
|| y <- 2 (Q)
|| System.out.println("x=" + read x + " y=" + read y) (R)
end

The program deterministically produces a unique answer which is "x=1 y=3".
Firstly, R cannot be executed until all writes into x and y have happened, so
R is executed last. Next, P might be scheduled first but it is then blocked in
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the condition because at this point we still must write into y. Therefore, the
process Q is scheduled: it joins y with 2 and terminates. Intuitively, we can
execute the entailment condition in P once we are sure that further execution of
the program will not change the entailment result in the current instant. Now,
we have 1 |= 2 7→ false, and thus we can execute the else-branch because no
more write can be triggered in x and change this result. Finally, the values can be
printed since all possible writes into x and y have been executed. ⌟

Design rational 1: Pure entailment condition

We do not permit host functions inside the entailment condition neither do
we permit write and read-write accesses. This is because the entailment can
be checked several times during one instant but a host function should only
be called once. First, it is not guaranteed that the host function is idempo-
tent (f(f(x)) = f(x)), and thus that determinism would be preserved. And
second, host functions can generate side effects and it is usually difficult to
use them if they can be called several times.

3.3.6 Derived statements

We presented the kernel of spacetime. For convenience, we extend it with other
statement that are derived from the kernel statements. We first derive several
expressions using the three-valued logic and the entailment operator:

e == e′
def

= e |= e′ and e′ |= e (equality)
e != e′

def

= not (e == e′) (disequality)
e |< e′

def

= e |= e′ and e != e′ (strict entailment)

Note that these operators are constructive: an unknown value on the left or right
of the derived and or not expression is propagated up.

We next introduce the flow statement and flow process that encapsulate loop

and pause into a single abstraction.

flow p end
def

= loop p ; pause end (flow)
flow f = p

def

= proc f = flow p end (flow process)

The pre operator can be applied to an expression which turns all the variables of
the expressions into their “pre” versions:

pre(e)
def

= e[var 7→ pre var] (pre expression)

The substitution e[var 7→ pre var] is defined inductively over the expressions.
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The conditional statement with a single branch is useful as well:

when e then p end
def

= when e then p else nothing end (unary when)

Esterel proposes a weak version of the abortion for delaying the abortion by one
instant. The statement weak abort when e in p end is similar to abort but when
e maps to true we execute the program p “one last time”. It can be derived from
abort by using pre over the condition e.

weak abort when e in p end
def

= abort when pre(e) in p end (weak abort)

Finally, in the kernel language, the variables cannot be initialized when declared.
This is partly because the initialization scheme differs depending on the spacetime
attribute.

(single_space | world_line) Type x = e
def

= (variable initialization)
(single_space | world_line) Type x; x <- e

single_time Type x = e ; p
def

= (persistent initialization)
single_time Type x;
par p <> flow x <- e end

For the single space and world line variables, the initialization is working as ex-
pected because they are not reinitialized during their lifetimes. However single
time variable are reallocated at a fresh location and reinitialized to ⊥ between
each instant. When initializing such variables to an expression, the most rational
design is to reinitialize these variables at the beginning of each instant with this
expression instead of ⊥. For this purpose, we create a flow reinitializing the vari-
able in every instant. It is composed with a conjunctive parallel: as soon as p is
terminated, the variable must exit its scope and its initialization flow terminates
accordingly.

3.4 Programming search strategies in L4

We present a first and complete spacetime program of the “propagate-and-search”
algorithm as well as the branch and bound algorithm for constraint optimization
problems.

3.4.1 A minimal constraint search algorithm

In Section 1.5.4, we saw that an exploration strategy is the composition of a in-
ference and branching strategies. We program a minimal search component of a
constraint solver that is extended all along this chapter and Chapter 6. We first
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introduce the propagate and search algorithm, and then define the branching strat-
egy. This first spacetime program implements the exploration strategy generating
the “raw search tree”. Once this search tree is defined, we can prune and modify
its exploration as shown in the next sections.

Propagate and search algorithm

Following the definition of a CSP as a couple ⟨d, P ⟩ in the lattice L3 (Section 1.3.4),
we define the class Solver with two spacetime attributes domains and constraints.
We compose the inference engine and the branching strategy with a parallel oper-
ator, and we abort the computation whenever we reach a solution.

class Solver {

world_line VStore domains;

world_line CStore constraints;

single_time ES consistent;

public Solver(VStore domains,

CStore constraints) {

this.domains = domains;

this.constraints = constraints;

}

flow propagation =

consistency <- read constraints.propagate(readwrite domains);

when unknown |< consistency then

prune;

end

proc fail_first_middle =

single_space FailFirstMiddle brancher =

new FailFirstMiddle(domains, constraints, consistent);

brancher.branch()

public proc search =

par propagation() <> fail_first_middle() end

public proc first_solution =

weak abort when consistent in

search()

end

}

The solver’s variables have a world_line spacetime because they are attached to
a path of the search tree and need to be restored upon backtracking. Also, these
two fields bridge to the lattice L3 that is implemented in the host language. Their
types, respectively VStore and CStore, are Java classes interfacing with the Choco
constraint solver [PFL15]. In addition, we use a variable consistent reflecting the
consistency of the current CSP. The class Solver exhibits four main components:
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• propagation narrows the domains in each node. Therefore, we read and
write on the domains of the variables but only read the constraint store. It
uses the propagation engine of Choco implemented in the method propagate

of the constraint store. Whenever the CSP is either failed or has a solution,
we prune the current subtree because we do not want to explore the subtree
of this CSP.

• fail_first_middle models the branching strategy (see below).

• search combines the former two: it models a strategy exploring the full
search tree.

• first_solution uses weak abort for terminating the search when the first
solution is found. It terminates the program immediately on the next instant
of a solution node.

Depending on the user needs, either the process search or first_solution can
be called on this class. We explain the fail_first_middle branching strategy in
the following section.

Branching strategy

In Section 1.5.3, we divided the branching into three functions for splitting the state
space of a constraint problem. The class FailFirstMiddle implements a branching
strategy that splits in the middle a variable x with a value v (x ≤ v ∨ x > v) such
that x is the first non-assigned variable with the smallest domain.

class FailFirstMiddle {

world_line VStore domains;

world_line CStore constraints;

public FailFirstMiddle(VStore domains,

CStore constraints, ES consistent) {

this.domains = domains;

this.constraints = constraints;

}

public flow branch =

single_time IntVar x = failFirstVar(read domains);

single_time Integer v = middleValue(x);

space constraints <- x.le(v) end;

space constraints <- x.gt(v) end

// Interface to the Choco solver.

private failFirstVar(VStore domains) { . . . }

private middleValue(IntVar domains) { . . . }

}
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Similarly to Solver, we initialize the class with the corresponding CSP. We build
the search tree using two Java function for selecting the variable and its value to
split on. The search tree is then built with two space statements where the first
describes a future where x ≤ v and the second a future where x > v. We use the
interface of the solver Choco to create these constraints.

The process branch repeatedly splits the search space in every node. As an
example of processes’ communication in one instant, we read domains after the
propagation happened. Therefore, the two processes (indirectly) communicate
over the variable domains. In general terms, we wait for all write operations to
happen on the variables—here domains and constraints—before reading into it.

3.4.2 Branch and bound

As we have seen in Section 1.6, the branch and bound algorithm constrains the
search tree (lattice L4) instead of the CSP (lattice L3). In this section, we show that
we can program this algorithm in spacetime. We propose the class MinimizeBAB

for minimizing a variable x:

class MinimizeBAB {

world_line VStore domains;

world_line CStore constraints;

single_space IntVar x;

single_space CStore obj = bot;

single_space LMax obj_ver = bot;

world_line LMax con_ver = new LMax(0);

public MinimizeBAB(VStore domains, CStore constraints, IntVar x) { . . . }

public proc search =

par

|| minimize()

|| yield_objective()

end

flow minimize =

single_time ES consistent = read constraints.consistent(read domains);

when consistent == true then

obj <- read x.lt(read x.getValue());

readwrite obj_ver.inc();

end

flow yield_objective =

when pre (con_ver |< obj_ver) then

constraints <- obj;

con_ver <- obj_ver;

end

}
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Along with the current CSP, we define the constraint store obj to store the ob-
jective constraints and the variable x that is to be optimized. The single_space

specifier indicates that the constraint store obj is global to the search tree, and
thus will not be backtracked. The class has two main processes:

(i) minimize which, in each solution node, strengthens the current objective
value with the constraint x < v where v is the current value of x, and

(ii) yield_objective that ensures the new bounds of the objective function are
taken into account in the main store constraints.

In theory, since constraints is a lattice, we have the equivalence c ⊔ d ≡
c ⊔ d ⊔ d. Hence, it would be correct to add the objective function inside
constraints in each instant. However, in practice, adding duplicate constraints
into the store consumes memory and their removal is time consuming. To avoid
this problem, we use a versioning system to add the objective in constraints only
when it is not already added. For this purpose we use two variables obj_ver and
con_ver respectively for the versions of the objective and constraints stores. We
increment the variable obj_ver each time we modify the objective store. Similarly,
the variable con_ver indicates the version of the objective store currently active
in constraints. Whenever the constraint store has a different version than the
objective store, we update it with the last objective constraint.

There is an important detail to notice: when testing the version numbers, we
use a pre expression. Interestingly, if we do not, the causality analysis will fail
since we have a cyclic dependency in the data: obj_ver depends on constraints

and vice versa. Fortunately, the causality analysis prevents us from having a bug:
adding the current objective in a solution node would make the CSP unsatisfiable.

3.5 Hierarchy in spacetime with universes

In the former sections, we demonstrated that spacetime is effective to program the
layer L4 of our lattice hierarchy. We extend the model of computation of spacetime
with universes to program layers above L4, and we show how we can share and
communicate information across layers.

Our universe extension synthesizes time hierarchy from synchronous program-
ming and spatial hierarchy from logic programming. Time hierarchies were first
developed in Quartz [GBS13] and ReactiveML [Pas13, MPP15] to execute a process
on a faster time scale. They propose that in one instant of the global clock, we can
execute more than one local step of a process. Spatial hierarchies were introduced
with logic programming and more particularly with deep guards and computation
spaces in the Oz programming language [Sch02]. It executes a process locally with
its own queue of nodes (see Section 2.5).

We propose the statement universe p end which encapsulates the spatial and
time dimensions of a computation. In the lattice hierarchy, universes enable users
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to specify strategies over the lattices L5 and above. This extension is particu-
larly useful to program search strategies that restart the search or explore several
times a search tree. We present the syntax and intuitive semantics of universes in
Section 3.5.1. We then explain how two layers in the hierarchy can communicate
through universes (Section 3.5.2).

3.5.1 Universe fragment

We introduce several statements for creating a new universe and interacting with
the outer universes:

• universe(V⃗ ) with q in p end executes the process p with a dedicated
clock and queue of nodes q until the queue is empty, the process “pauses up”,
stops or terminates. Every variable st x ∈ V⃗ , where st is the spacetime of
the variable, is transferred from the current layer to the declared universe, we
call it a top-down transfer. When the queue q is not specified, the universe
cannot manipulates world_line variables and cannot push nodes onto the
queue.

• pause up suspends the current universe and gives the control back to the
outer universe.

• stop suspends the execution of the current universe in the outermost universe—
which is the environment.

• q::x is an expression for retrieving the value of the variable x in the queue
q. We call it a bottom-up transfer because we can observe the value of a
variable as if we were in the universe of this variable. We give an example of
this expression in Section 3.6.2.

To illustrate this new statement, we consider the following example:

Example 3.3 (Single space universe). We can execute a process on a different
time scale which goes faster than the global clock. In spacetime, this faster clock
is implemented with a universe encapsulating a code executed on a new time scale.
single_space LMax x = 0;

par

|| universe(single space x) (A)

x <- 1;

pause;

x <- 2;

pause up;

x <- 3

end

|| System.out.println(read x); (B)

pause;

System.out.println(read x);

end
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There are two processes A and B increasing and reading the information in the
variable x defined over the lattice LMax. The process B witnesses the write
events x ← 1 and x ← 2 as simultaneous, and therefore prints the value 2 in
its first instant. In contrast, the process A is executed on a faster time scale and
witnesses these two events as separated. During the first instant of B, we executed
two instants in A. Thereafter, the process A is suspended in its parent clock thanks
to the statement pause up. In the second instant of B, and the third instant of A,
A writes the value 3 in x, the universe of the process A terminates and the value
3 is printed by B. ⌟

3.5.2 Communication across layers of the hierarchy

A key characteristics of universe compositionality is to share data among parallel
universes. Parallel universes communicate through variables declared in a common
upper universe. The problem is to allow a variable to traverse layers such that
every universe has a common reference to this variable. In the following, we
refer to the innermost universe as U4 in reference to the lattice L4—in the case of
spacetime, the lattice L3 is treated by external functions (such as for propagation).
In general, we call a universe with Ui where i refers to its level in the hierarchy.
Before illustrating this notion with examples, we explain our notation to represent
graphically a hierarchy of universes.

Notation 3.1 (Spacetime diagram). Spacetime diagrams such as the one shown
in Figure 3.4 must be interpreted as follows:

• A line between two dots represents a time instant where the first dot is the
beginning of the instant and the second is the end of the instant.

• A box represents a set of synchronized universes with local time steps.

• For world lines a grey dot is a node that is added onto the queue but not
instantiated yet.

• A white dot is a node that has already been instantiated in a former instant
of the parent universe.

The following example illustrates how two universes communicate.

Example 3.4 (Communication in parallel universes). We implement a process
pause_up_every that pauses in the upper universe at regular intervals. For this
purpose, we combine two universes where one counts the number of nodes and
another pauses in the parent universe every step nodes.

single_space LMax N;

single_space LMax step;

proc pause_up_every =
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par

|| universe(single_space N) in

flow write N.inc() end

end

|| universe(single_space N, single_space step) in

loop

when mod(read N, read step) == 0 then pause up

else pause end

end

end

end

The universes are executed synchronously and communicate over the variable N.
Note also that the universes are both without a queue and thus cannot contain
statements relevant to the search tree. ⌟

N
0 0 1 2 2 2 3 4 4

C
0 0 0 0 2 2 2 2 4

U4 U4

Figure 3.4: Variable transfer: single_space to single_space in single_space queue.

We show in the latest example that a variable N can traverse a layer whilst it is
viewed with the same spacetime in both universes. Consider the following process:

single_space LMax N;

single_space LMax step;

single_space LMax C;

proc observe_l5 =

N <- 0; step <- 2;

par

|| pause_up_every()

|| flow C <- N end

end

It executes the former process with the variable step sets to 2. The variables are
transferred from a single_space declaration in U5 to a single_space declaration
in U4. The result of the execution is shown in Figure 3.4. We observe that the
universe U4 executes two instants per instant of its parent’s universe.

In this example, it is intuitive that if a variable evolves monotonically in U4,
then it also evolves monotonically in U5. However, the single_space transfer
is only one possible variable transfer among 3 × 3 × 3 possibilities. Indeed, a
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variable has a spacetime in Ui and can be seen with another spacetime in Ui−1.
In addition, the transfer is operated through a universe with a queue in its own
spacetime. However, variables cannot freely modify their spacetime when travers-
ing a universe, because every transfer does not preserve the monotonicity of the
computation (see Section 5.4.2 for the valid transfers).

3.6 Programming in L5 with universes

We explain in more depth the notion of universe throughout two search strategies:
iterative deepening search and branch and bound with universes.

3.6.1 Iterative deepening search

U4 U4 U4

Figure 3.5: IDS computes over a single_time queue in every instant of the universe U5.

We consider iterative deepening search (IDS) [Kor85] which explores the search
tree at some depth and restarts the search on some depth limits (see Example 1.10).
This strategy is defined on top of a single_time queue.

class IDS {

single_time StackLR queue = new StackLR();

single_space VStore domains;

single_space CStore constraints;

single_space LMax limit = new LMax(0);

public IDS(VStore domains, CStore constraints) { . . . }

public proc search = par ids() <> solve() end

flow solve =

universe(world_line domains, world_line constraints) with queue in

single_space Solver solver = new Solver(domains, constraints);

solver.one_solution()

end

flow ids =

readwrite limit.inc();

universe(single_space limit) with queue in

world_line LMax depth = new Depth(0);

flow

readwrite depth.inc();
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when limit |< depth then prune end

end

end

}

We decompose this strategy into two main processes:

• solve is encapsulating CSP solving inside a universe. It instantiates the class
Solver that we defined in Section 3.4.1 in order to find the first solution of
a CSP.

• ids is counting the depth of the current tree, and when we reach some limit,
we prune the subtree of the current node. In every instant of the parent
universe, we increase by one the limit in order to explore a larger search tree.

We compose these two search strategies in the process search with the conjunctive
parallel operator <>. An important compositionality aspect is that the semantics
of <> is propagated inside the universes in order to compose their subtrees. Hence,
the subtree generated by solve is discarded by the statement prune in the process
ids.

IDS is illustrated on the spacetime diagram depicted in Figure 3.5. We observe
that the exploration of the search tree is totally encapsulated inside a universe.
The diagram does not represent the intermediate solving steps inside the universe
U4 but just the search tree explored during a step—this is why there is no white
dot.

To conclude this example, the process ids is defined independently to the CSP
exploration, and thus it could be re-used with another solving process. Creating a
library of reusable and compositional search strategies is discussed in Chapter 6.

3.6.2 Branch and bound revisited

U4 U4 U4

Figure 3.6: Pausing and resuming branch and bound exploration at solution nodes.

Complications arise in the semantics when considering world line variables in a
single space universe (i.e. universe that contains pause up or stop statements). To
understand the issue, consider the Figure 3.6 where the search is paused up when
we reach a solution node. A variable is seen from two different perspectives: as a
single space variable in U5 and as a world line variable in U4. These two views seem
incompatible since U5 can observe such a variable to evolve non-monotonically. For
example, if we pause up in each solution node in U4, the values observed by U5

evolve non-monotonically since two solutions are not ordered.
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An important aspect to the solution of this problem is that any world line
variable is attached to a queue of nodes.

Every world line variable has a location in the queue of the current universe.

Therefore, whenever the spacetime of a variable is transferred to world_line, any
value written inside this variable is bounded to the queue of the current universe. If
the variable is also a world_line in the upper universe, then it also has a location
inside the queue of this universe.

Writes on a world line variable are not propagated to its upper layers.

Therefore, any change on a transferred world_line variable is only observable in
the lower levels. For example, it means that if we declare our CSP model in U5

and solve it in U4, the model in U5 is left unchanged. An immediate question is
how to retrieve the changes operated on a variable in a lower universe? This is
the purpose of the bottom-up transfer q::v where we can retrieve the value of v
attached to a queue q. Moreover, writing into this variable in U5 has the effect
to write this information in the root node of the tree, and consequently in all the
nodes of the queue in U4. This transfer is useful for algorithms such as branch and
bound: adding a constraint in the U5-view of the variable updates the bound of
the entire search tree in U4. To make things more concrete, we give an example of
this behavior.

Example 3.5 (Branch and bound revisited). Consider the following branch and
bound strategy maximizing the value of a variable x.

class MaximizeBAB {

world_line VStore domains;

world_line CStore constraints;

single_space IntVar x;

single_time LMax obj;

public MaximizeBAB(VStore domains, CStore constraints,

IntVar x) { . . . }

public proc search(q) =

par

|| maximize(q)

|| yield_objective()

end

proc maximize(q) =

universe(world_line domains, world_line constraints, single_space obj) with q in

flow

single_time ES consistent = read constraints.consistent(read domains);

when consistent == true then

obj <- x.getValue();

pause up
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end

end

end

flow yield_objective = constraints <- read x.gt(read obj);

}

The universe U4 pauses up each time it reaches a solution, and it updates obj with
the current value of the objective variable. It leads to a tree exploration similar
to the one shown in Figure 3.6. The process yield_objective adds a new upper
bound to the problem through the U5 view of the variable constraints. This has
the effect to constrain the remaining nodes in U4 automatically. In practice, it is
implemented by adding these constraints to the root node of the search tree so it
stays active for the whole search. The advantage is that we do not need to manage
the version of the objective constraint as in Example 3.4.2.

We combine this branch and bound algorithm with a process that prints every
intermediate solution.

proc bab_with_print(domains, constraints, x) =

single_space StackLR q = new StackLR();

single_space MaximizeBAB bab = new MaximizeBAB(domains, constraints, x);

par

|| bab.search(q);

|| flow System.out.println("Solution: " + read q::domains) end

end

The expression q::domains allows us to access to the value of domains as ob-
servable in the universe with the queue q. In contrast, the variable domains only
contains the initial problem without the changes made in the lower layers. Besides,
we can define other universes working on the queue q. They would be synchronized
in time and space with this branch and bound strategy. ⌟

Another example where variable transfer is useful is for dynamically creating a
CSP. In the examples above, we see the universe U5 as a single space universe: it
does not generate a search tree in U5. However, it is sometimes useful to manipulate
nested combinatorial structures. This can be obtained by world_line variables
traversing world_line universe. Such a feature is useful to program a model
dynamically generating another model. Chapter 8 is dedicated to such a strategy
where a model (from model checking theory) dynamically generates a CSP.



Chapter 4

Behavioral Semantics Inside an Instant

This chapter formalizes the behavioral semantics of spacetime which extends
the synchronous paradigm to lattice-based variables. Mainstream synchronous lan-
guages such as Esterel or Lustre are restricted to variables defined over flat lattices.
Consequently, the value of a variable evolves only once during an instant—from
the bottom element of its lattice to a concrete value. In contrast, with general
lattices, a variable can evolve several times during one instant. This semantics
generalizes the concurrent model of communication between processes. We can
read and write more than one time on the same variable. To this end, we in-
troduce a suited semantics that takes into account the scheduling of successive
read and write operations within an instant. In summary, this chapter focusses
on the semantics describing the evolution of the space—the set of variables of the
program—during a single instant. We tackle the semantics of a process evolving
across instants, and its associated statements, in Chapter 5.

4.1 Behavioral semantics

The semantics of spacetime is inspired by the logical behavioral semantics of Es-
terel as defined in [BG92, Ber02]. Behavioral semantics is a “big-step” semantics
based on natural deduction. As mentioned in [Ber02], behavioral semantics is
mathematically simpler than operational semantics, and thus more adequate to
formalize properties such as reactivity and determinism. However, it is not appro-
priate for implementation purposes since this semantics does not describe how a
reaction is computed but rather what is a valid reaction. Therefore, a derivation
in the behavioral semantics is a proof that a program transition is valid.

Behavioral transition rule

The behavioral semantics consists in a set of transition rules specifying the reaction
of the program within an instant. A behavioral transition rule takes the form:

N ⊢ p
S′, B, k
−−−−→

S
p′

134
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where N is the set of names, p and p′ are processes, S is the set of input and output
variables, S ′ is the set of the output and local variables, B is the output set of
branches and k is the completion code. Intuitively, it means that the program p
reacts to the input variables in S by producing the branches B and the output
variables in S ′. The set S is a lattice called the space of the program and is
defined in Section 4.1. The set of branches B allows us to compose the search trees
generated by several processes (Section 4.2). During the reaction, the program p
is rewritten into p′ which has the completion status k (e.g. p′ is terminated or
paused). The set of names N provides fresh names when declaring variables, its
purpose is to give a unique identifier to every variable—it comes from the semantics
of ReactiveML [Man06]. It is similar to the indexed sets used in Chapter 1. We
have the disjoint union of the set of names N1 ∪̇ N2 = N such that N1 ∪N2 = N
and N1 ∩N2 = ∅.

We stress one more time the peculiarity of behavioral semantics before further
defining the semantics of spacetime. Behavioral semantics is best thought as a
formal logic system that do not compute but prove that a formula—a program’s
reaction in our case—is valid. To do so, we must have the input/output space S
before we start to derive the proof tree. In fact, this semantics is useful to prove
some properties: is there a proof of a program that does not react at all (reactivity
property)? Can a reaction provide two different output spaces such that both have
a valid proof tree (deterministic property)? Answering such questions is more
easily done in the behavioral semantics than in an operational semantics.

There is another important aspect to keep in mind with behavioral transition.
We read from S but we write in S ′. Due to the invariant S |= S ′, formalizing the
notion of instantaneous, we can only read what has been written somewhere in
the program (or from the user input). It formalizes the fact that two processes in
parallel have access to the information of one another. This is because we know
“in advance” what the other processes have written. The goal of the proof tree is
to check that processes actually wrote the information during the instant, and did
not write something else.

Completion code

At the end of an instant, a process can be either normally terminated (code 0),
paused in a universe (code 1), paused in its parent’s universe (code 2) or paused
in the outermost universe (code 3). Accordingly, we assign a completion code to
a process P as follows:

compl(P ) =















0 if P is terminated
1 if P is paused
2 if P is paused up
3 if P is stopped
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The completion code plays an important role to define the semantics rules since
they act differently according to the state of the program.

Space of the program

The variable environment of a program, called its space, stores the spacetime
attribute and the value of the variables.

Definition 4.1 (Spacetime attribute). The spacetime attributes are given by the
set spacetime = {→,⟲, ↓} where→ stands for single_space, ⟲ stands for single_-

time and ↓ stands for world_line1.

We do not consider the types of the lattices in the semantics and we delegate
typing to the host language. Moreover, the set of the types of all the variables is
known at the compilation, so we can define a type-erasure lattice using the disjoint
union lattice derivation (Definition 1.19).

Definition 4.2 (Type-erasure). Given a collection of lattices (T1, . . . , Tn), its type-
erasure is given by the lattice Type = T1 ∪̇ . . . ∪̇ Tn.

Therefore, any spacetime variable takes a value in the lattice Type. From this, we
build the space of the program using the lattice derivation Store (Definition 1.25).

Definition 4.3 (Spacetime variable). The set of spacetime variables is a lattice
given by the Cartesian composition of the set spacetime and the lattice type defined
as follows:

Var(Type) = {⊤} ⊕ (spacetime × Type)⊕ {⊥}

We need a distinct top element ⊤ for representing variables that are merged with
a different spacetime, and bottom element ⊥ for variable without spacetime. The
top element indicates that the spacetime of a variable cannot change during its
lifetime.

Definition 4.4 (Space of the program). Given the type-erasure Type of a program
and a set of locations Name, the space of the program is a lattice defined as follows:

Space(Name,Type) = Store(Name,Var(Type))

The entailment is inherited from Store. Given a space S, we define the subsets of
the single space variables with S→, the single time variables with S⟲ and the world
line variables with S↓.

The value v ∈ Type at the location x can be accessed with SV (x) if (st, v) ∈
S(x). In addition, given an element (st, v) ∈ S(x), we define the projections
Sst(x) 7→ st and SV (x) 7→ v to respectively extract the spacetime and the value of
a variable x.

1These symbols reflect how the variables evolve in the search tree. For example, ↓ depicts an evolution
from the root to a leaf of the tree along a path.
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4.2 Composition of search trees

We now give a formal definition of the composition in time and space of the search
trees generated by two processes. A process generates a search tree across the
instants and a sequence of branches within an instant. In particular, the branches
created with the statement space are composed differently depending on whether
they are composed with a parallel or sequence operator. To define the composition
of search trees, we use the following relevant subset of spacetime:

⟨p, q⟩ ::= p ; q | p || q | p <> q | space p | prune | α

where (i) p, q ∈ P with P the set of all the processes, and (ii) α is an atomic
statement which is not composed of other statements.

These statements form the relevant fragment of spacetime for composing branches.
We can extend the definitions given below to the full spacetime language without
compositional issues.

To start our compositional semantics, we first define an algebra of branch pro-
cesses with algebraic operators to compose branches.

Definition 4.5 (Branch process). The set of all branch processes is defined as
B = {space p | p ∈ P}∪{prune}. That is, a branch is either labelled by a process
p or pruned.

Definition 4.6 (Branch algebra). The branch algebra is defined over a sequence of
branches ⟨Bn, ◦,∨,∧⟩ where the operators are defined below. The empty sequence
⟨⟩ is the identity element of these three operators.

• ◦ is a noncommutative and associative concatenation operator. It describes
the search tree generated by the sequence operator p ; q.

• ∨ is a commutative and associative disjunctive operator. The element ⟨prune⟩
is a second identity element for ∨. It relates to the disjunctive parallel oper-
ator p || q.

• ∧ is a commutative and associative conjunctive operator. The element ⟨prune⟩
is an absorbing element for ∧. It describes the conjunctive parallel operator
p <> q.

Given + ∈ {◦,∨,∧}, we have the following identity laws common to all three
operators:

⟨⟩ + branches = branches
branches + ⟨⟩ = branches

Sequence composition Given bi, bj ∈ B with 1 ≤ i ≤ n and 1 ≤ j ≤ m, we
define the sequence operator ◦ that performs the concatenation of two sets of
branches as follows:

⟨b1, . . . , bn⟩ ◦ ⟨b
′
1, . . . , b

′
m⟩ = ⟨ b1, . . . , bn, b

′
1, . . . , b

′
m ⟩



Behavioral Semantics Inside an Instant 138

Parallel compositions We define an operator ∨1 and ∧1 to combine two branch
processes, and we then lift these operators to sequence of branches. Two set of
branches are combined by repeating the last element of the shortest sequence
when the sizes differ. Given p, q ∈ P and b ∈ B, we define the disjunctive parallel
operator ∨ between two branches as follows:

b ∨1 prune = b
space p ∨1 space q = space (p || q)

⟨b1, . . . , bn⟩ ∨ ⟨b
′
1, . . . , b

′
m⟩ =

{

⟨ b1 ∨
1 b′1, . . . , bn−1 ∨

1 b′m−1, bn ∨
1 b′m ⟩ if n = m

⟨ b1 ∨
1 b′1, . . . , bn−1 ∨

1 b′m, bn ∨
1 b′m ⟩ if n > m

Similarly, we define the conjunctive parallel operator ∧:

b ∧1 prune = prune

space p ∧1 space q = space (p <> q)

⟨b1, . . . , bn⟩ ∧ ⟨b
′
1, . . . , b

′
m⟩ =

{

⟨ b1 ∧
1 b′1, . . . , bn−1 ∧

1 b′m−1, bn ∧
1 b′m ⟩ if n = m

⟨ b1 ∧
1 b′1, . . . , bn−1 ∧

1 b′m, bn ∧
1 b′m ⟩ if n > m

Given a process p, we obtain its sequence of branches inductively as follows:

branches(space p) = ⟨space p⟩
branches(prune) = ⟨prune⟩
branches(α) = ⟨⟩

branches(p ; q) =

{

branches(p) ◦ branches(q) if p is instantaneous.
branches(p) if p has reached a pause statement.

branches(p || q) = branches(p) ∨ branches(q)
branches(p <> q) = branches(p) ∧ branches(q)

Although this function branch is not used in the semantics, it provides a clear
summary of how the branches are composed as shown in the following example.

Example 4.1 (Composition of branches). We illustrate this semantics with several
examples of processes along with the sequence of branches they generate. We create
a N-ary trees with the sequence operator:

branches(space p ; space q ; space r) = ⟨space p, space q, space r⟩

If we replace the sequence with the disjunctive parallel, we obtain a singleton
branch:

branches(space p || space q || space r) = ⟨space (p || q || r)⟩

We prune the whole subtree of a process p ∈ P with:

branches(p <> prune) = ⟨prune⟩
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and we prune all the branches but the left one with:

branches((space nothing) ; prune) = ⟨space nothing, prune⟩

Finally, consider the two processes:

branches((space p ; prune) <> (prune ; nothing)) = ⟨prune⟩
branches((space p ; prune) || (prune ; nothing)) = ⟨space p, prune⟩

In the first case, the sequence of branches generated by the right side is ⟨prune⟩
because nothing alone generates the neutral element ⟨⟩ which is absorbed by the
sequence operator. In the second case, we keep space p because we perform the
union of the branches. ⌟

Design rational 2: Coherence between space and time

The compositional semantics of the operators || and <> is not hazardous. It
preserves the coherency between space and time. In the time dimension, the
operator p || q terminates only once p and q have terminated while p <>

q terminates once p or q has terminated. We preserve an identical semantics
for the spatial dimension. We compose two the search trees by union with
p || q and by intersection with p <> q. This is why we propose these two
operators instead of combining every possibility and have four operators.

4.3 Expressions and interface with host

In this section, we define the behavioral semantics rules for the expression fragment
of spacetime. The expressions of spacetime are kept to a minimal set and we rely
on the host language for the arithmetic and other computation. We first explain
the expression rules for spacetime, and then we tackle the interactions with the
host language. In particular, we require the host computation to preserve the
monotonicity of the space of the program.

The main point of this section is to establish how the spacetime semantics and
the host semantics interact. It is solved by defining a dedicated host transition
rule:

e
H′

−−→
H
→ v

which reduces the expression e into the value v with the input variables in the host
environment H and produces the output environment H ′. To propose a semantics
agnostic to the host language, we rely on a host environment H and on a pair
of functions (host, space) that respectively transform the space S into the host
environment H and vice versa. We write e ↠ v when the host is not supposed to
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modify the space of the program. In addition, we annotate with eh the counterpart
of a spacetime expression e into the host language.

On the side of the spacetime expressions, we refine the behavioral transition to
eliminate branches and completion codes because expressions terminate instanta-
neously:

e
S′

−֒→
S

v

where the expression e is instantaneously reduced into the value v under the in-
put/output space S, and it produces the output space S ′. We now define the
semantics rule of the spacetime’s expressions.

The rule constant factors out all the rules for the ground expressions bot,
top, false, true, unknown as well as the host constants. The logical operators or,
and and not are defined in the host language, which is assumed to define them
according to the Kleene truth table (Figure 3.1). We also leave the computation
of the entailment on a lattice to the host language in the rule entailment. These
rules are defined as follows:

constant

ch ↠ c′

c
⊥
−֒→
S

c′

or

e1
S′

−֒→
S

v1 e2
S′′

−֒→
S

v2 v1 ∨
h v2 ↠ v′

e1 or e2
S′⊔S′′

−֒−−→
S

v′

not

e
S′

−֒→
S

v ¬hv ↠ v′

not e
S′

−֒→
S

v′

and

e1
S′

−֒→
S

v1 e2
S′′

−֒→
S

v2 v1 ∧
h v2 ↠ v′

e1 and e2
S′⊔S′′

−֒−−→
S

v′

entailment

e1
S′

−֒→
S

v1 e2
S′′

−֒→
S

v2 v1 |=
h v2 ↠ v′

e1 |= e2
S′⊔S′′

−֒−−→
S

v

The host language must provide an implementation of the constants, logical oper-
ators which are written ¬h, ∨h and ∧h, and the entailment |=h.

The next rule reads the value of a variable x into the input space S. It mate-
rializes the fact that we do not compute value, but read into the space provided
at the beginning of the derivation. The rule var is defined as:

var

x
⊥
−֒→
S

SV (x)
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We erase the access mode of a variable with the rule Access because it is only
relevant to the causality analysis tackled in Section 4.5.

access

access ∈ {read, write, readwrite} x
⊥
−֒→
S

v

access x
⊥
−֒→
S

v

The main interaction with the host language is given by the rule hcall which
proves the well-formedness of a host function call:

hcall

∀i ∈ [1..n], ei
S′

i

−֒→
S

vi if ei is not a variable’s access, otherwise ei is left unchanged

fh(v1, . . . , vn)
H′

−−−−→
host(S)
→ v space(H ′) |= S

f(e1, . . . , en)
space(H′) ⊔

⊔
i∈[1..n] S

′

i

−֒−−−−−−−−−−−−→
S

v

We evaluate every parameter of the function but the variables because the host
function reads and writes into the variables through its own host space host(S).
Moreover, in order to preserve the monotonicity of the computation, we verify
that the host language writes into the space monotonically. To this purpose, we
ensure that the space H ′ computed by the host transition evolves monotonically
with the side condition space(H ′) |= S. To be totally correct, the host language
should also verify that read-only variables passed as arguments are not written in
the host function, and that write-only variables are not read in the host function.
This is a challenging issue that is discussed more in Chapter 10 where we propose
several directions to solve this problem.

4.4 Statements rules

The statements describe the temporal evolution of the space of the program. In
the following sections, we focus on the communication, synchronous and search
tree fragments of spacetime.

4.4.1 Communication fragment

The communication fragment of spacetime materializes the ask and tell metaphor
of CCP (see Section 2.4.2). Firstly, the ask operation is implemented with the two
rules when-true and when-false which evaluate the conditional expression e
and execute one of the alternative of when:
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when-true

e
S′

−֒→
S

true N ⊢ p
S′′, B, k
−−−−→

S
p′

N ⊢ when e then p else q end
S′ ⊔S′′, B, k
−−−−−−−→

S
p′

when-false

e
S′

−֒→
S

v v = false ∨ v = unknown N ⊢ q
S′′, B, k
−−−−→

S
q′

N ⊢ when e then p else q end
S′ ⊔S′′, B, k
−−−−−−−→

S
q′

We implement CWA by evaluating unknown as false in the rule when-false.
It is valid because if e reduces to unknown, then this result is definitive in the
current instant.

Next, the rule tell evaluates e to the value v and performs the join of v and
the input value retrieved from S:

tell

e
S′

−֒→
S

v S ′′(x) = S(x) ⊔ (Sst(x), v)

N ⊢ x <- e
S′ ⊔S′′, ⟨⟩, 0
−−−−−−−→

S
nothing

We allow the user to call host functions as statements, and to discard the result,
if any. The rule call bridges between the call statement and the call expression:

call

f(e1, . . . , en)
S′

−֒→
S

v

{} ⊢ f(e1, . . . , en)
S′, ⟨⟩, 0
−−−−→

S
nothing

The last statement in the communication fragment is the declaration of a vari-
able with the rule var-decl:

var-decl

N ⊢ p[x→ n]
S′, B, k
−−−−→

S
p′ S ′′ = {(n, (st,⊥))}

N ∪̇ {n} ⊢ st Type x ; p
S′⊔S′′, B, k
−−−−−−→

S
st Type x ; p′

It extracts a fresh name n from the names’ set N and substitutes x for n in the
program p which is written p[x→ n]2. The most important aspect of this rule is

2The variable declaration must be evaluated with regards to its body, this is why the body p follows
the declaration. In order to be coherent with the syntax, we can transform any variable declaration st

Type x which is not followed by any statement to st Type x; nothing.
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to substitute syntactic variables for their locations in the space. Hence if a variable
x is allocated at the location 1 in the store, we substitute x for 1 in the program p.
The substitution function is defined inductively over the structure of the program
p. We give its two most important rules:

y[x→ n] 7→

{

n if x = y
y if x ̸= y

(st Type y ; p)[x→ n] 7→

{

st Type y ; p if x = y
st Type y ; p[x→ n] if x ̸= y

It replaces any identifier equals to x by n unless we went through a variable
declaration with the same name.

4.4.2 Synchronous fragment

In this section, we adapt the synchronous statements of Esterel to the space di-
mension of spacetime. We start with the axioms rules nothing and pause:

nothing

{} ⊢ nothing
⊥, ⟨⟩, 0
−−−→

S
nothing

pause

{} ⊢ pause
⊥, ⟨⟩, 1
−−−→

S
nothing

We set the completion code to 0 and 1 which indicate that the statements are
respectively terminated and paused. We leave the output space and the branch
set empty.

The rule loop guarantees that p is not instantaneous by forbidding the com-
pletion code k to be equal to 0:

loop

N ⊢ p
S′, B, k
−−−−→

S
p′ k ̸= 0

N ⊢ loop p end
S′, B, k
−−−−→

S
p′ ; loop p end

To simulate a loop, we extract the body p of the loop and execute it before the
loop. In a future instant, we will reach the statement loop again to execute the
next iteration.

The next three statements are central to the composition of two processes
in time and space. We compose the search trees created by distinct processes
with the rules conj-par, dis-par and seq-next. These rules are built on the
compositional semantics introduced in Section 4.2.
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dis-par

N1 ⊢ p
S′, B, k
−−−−→

S
p′ N2 ⊢ q

S′′, B′, k′

−−−−−→
S

q′

N1 ∪̇ N2 ⊢ par p || q end
S′ ⊔S′′, (B ∨ B′),max∨(k,k′)
−−−−−−−−−−−−−−−−−→

S
par p′ || q′ end

conj-par

N1 ⊢ p
S′, B, k
−−−−→

S
p′ N2 ⊢ q

S′′, B′, k′

−−−−−→
S

q′

N1 ∪̇ N2 ⊢ par p <> q end
S′ ⊔S′′, (B ∧ B′),max∧(k,k′)
−−−−−−−−−−−−−−−−−→

S
par p′ <> q′ end

The rules dis-par and conj-par terminate when respectively both and one of
their sub-processes have terminated. We compute the completion code of dis-par
and conj-par as:

max∨(k, k′) =

{

k if k ≥ k′

k′ otherwise

max∧(k, k′) =

{

0 if k = 0 ∨ k′ = 0
max∨(k, k′) otherwise

For the disjunctive parallel, we compute the greatest completion code with max∨

in any case because we need to wait the termination of both processes. In the
case of the conjunctive parallel, the function max∧ maps to the termination code
as soon as one sub-process terminates, and otherwise acts as max∨. We continue
with the two rules for the sequence operator:

seq-first

N ⊢ p
S′, B, k
−−−−→

S
p′ k ̸= 0

N ⊢ p ; q
S′, B, k
−−−−→

S
p′ ; q

seq-next

N1 ⊢ p
S′, B, 0
−−−−→

S
p′ N2 ⊢ q

S′′, B′, k′

−−−−−→
S

q′

N1 ∪̇ N2 ⊢ p ; q
S′ ⊔S′′, (B ◦ B′), k′

−−−−−−−−−−−→
S

q′

The sequence rule seq-first executes the first process only because it did not ter-
minate in the current instant. In the case of seq-next, we execute both processes
and concatenate their subtrees with the operator ◦ (Section 4.2).

The temporal dimension of a spacetime program can be controlled with the
statements abort and suspend. As for the statement when, the rules for abort and
suspend evaluate a condition which can result in true, false or unknown. When
the condition is true, abort terminates immediately without executing the process
p. In contrast, suspend pauses in the current instant by setting its completion
code to 1.
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abort-true

e
S′

−֒→
S

true

{} ⊢ abort when e in p end
S′, ⟨⟩, 0
−−−−→

S
nothing

abort-false

e
S′

−֒→
S

v v = false ∨ v = unknown N ⊢ p
S′′, B, k
−−−−→

S
p′

N ⊢ abort when e in p end
S′ ⊔S′′, B, k
−−−−−−−→

S
abort when e in p′ end

suspend-true

e
S′

−֒→
S

true

{} ⊢ suspend when e in p end
S′, ⟨⟩, 1
−−−−→

S
suspend when e in p end

suspend-false

e
S′

−֒→
S

v v = false ∨ v = unknown N ⊢ p
S′′, B, k
−−−−→

S
p′

N ⊢ suspend when e in p end
S′ ⊔S′′, B, k
−−−−−−−→

S
suspend when e in p′ end

The rule for allows programmers to compose dynamically N processes where
N is the runtime size of the range expression e. Hence, the process p is dupli-
cated N times and expanded into st Type x ; x <- v ; p to set the value of the
variable x according to the current iteration. Importantly, the process p must
be instantaneous otherwise the size of the program could grow indefinitely over
time—a property we wish to avoid in order to keep the static analysis decidable
and simple.

for

e
S′

−֒→
S

e′ N ⊢ p′
S′′, B, 0
−−−−→

S
p′′

p′ = □{(st Type x ; x <- v ; p) | v ∈h e′} □ ∈ {;, ||, <>}

N ⊢ for (□) (st Type x : e) p end
S′ ⊔S′′, B, 0
−−−−−−−→

S
p′′

We iterate over the host range with ∈h which means that the inclusion is a function
from the host language. For each value in the range we create a set of processes
P that are combined with □ P

def

= p1□ . . .□pn and □ is a combinator.

4.4.3 Search tree fragment

The search tree fragment is compact: we create or discard branches of the current
node (see Section 4.2). We create a branch of the search tree in the rule space
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by adding space p into the set of branches. The rule prune creates the sequence
⟨prune⟩ for discarding one or more branches in the current instant.

space

space p end
⊥, ⟨space p⟩, 0
−−−−−−−−→

S
nothing

prune

prune
⊥, ⟨prune⟩, 0
−−−−−−→

S
nothing

4.5 Causality analysis

A program is causal (i.e. logically correct) if it is reactive and deterministic (Sec-
tion 4.5.1). In spacetime, the causality analysis boils down to an analysis that
ensures we can sequentialize the parallel branches of a program. A spacetime pro-
gram can be sequentialized if it has an ordering of the read, readwrite and write

accesses on variables such that the space evolves monotonically. To this purpose,
we propose a constraint model of a spacetime program modelling the dependencies
between these accesses (Section 4.5.2). Therefore, the program is causal if the con-
straint model generated is satisfiable. We give a function to build this constraint
model of causality in Sections 4.5.4 and 4.5.5.

4.5.1 Logical correctness

Logical correctness is a major semantics aspect in synchronous languages [Ber02].
A spacetime program p is logically correct if it is reactive (at least one fixed point)
and deterministic (at most one fixed point) for any input space S. We illustrate
these two properties with standard examples adapted from Esterel [Ber02].

A spacetime program p is deterministic if it has at most one output space. For
example, consider the following non-deterministic program:

single_time LMax x = new LMax(0);

when x |= 1 then x <- 1 end

We can prove this program with two different input/output spaces: S1 = {(a, (⟲
, 0))} and S2 = {(a, (⟲, 1))} where a is the location of x in the space. To illus-
trate these possibilities, we give the two corresponding derivations. For clarity, we
simplified the declaration of x to x⟲ = 0.

var-decl

when-false

entailment

var
SV
1 (a) = 0

a
⊥
−֒→
S1

0 1
⊥
−֒→
S1

1 0 |=h1↠ unknown

a |= 1
⊥
−֒→
S1

unknown

{} ⊢ when a |= 1 then a <- 1 end
⊥, ⟨⟩, 0
−−−→

S1

nothing

{a} ⊢ x⟲ = 0 ; when x |= 1 then x <- 1 end
{(a,(⟲,0))}, ⟨⟩, 0
−−−−−−−−−→

S1

nothing
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The second derivation reacts in the space S2. We omit the derivation of the
constant 1 in the rule entailment for clarity purpose.

var-decl

when-true

entailment

var
SV
2 (a) = 1

a
⊥
−֒→
S2

1 1 |=h1↠ true

a |= 1
⊥
−֒→
S2

true
tell

1
⊥
−֒→
S2

1

a <- 1
{(a,(⟲,1))}, ⟨⟩, 0
−−−−−−−−−→

S2

nothing

{} ⊢ when a |= 1 then a <- 1 end
{(a,(⟲,1))}, ⟨⟩, 0
−−−−−−−−−→

S2

nothing

{a} ⊢ x⟲ = 0 ; when x |= 1 then x <- 1 end
{(a,(⟲,1))}, ⟨⟩, 0
−−−−−−−−−→

S2

nothing

For both input/output spaces S1 and S2, we obtain a valid proof tree of the
program.

Secondly, we say a spacetime program p is reactive if it has at least one output
space. The following program cannot react in any possible input/output space:

single_time LMax x = new LMax(0);

when x |= 1 then nothing else x <- 1 end

If the variable x takes the value 0, then the else-branch is executed and x must be
equal to 1 which contradicts the entailment condition.

Therefore, our behavioral semantics is incomplete. We must reject programs
that are non-deterministic and non-reactive, and we introduce the causality anal-
ysis for this purpose in the next section.

4.5.2 A constraint model of causality

We propose to model causality with a constraint model which has the advantage
of keeping the analysis separated from the semantics rules. Our proposed causality
analysis is incomplete because we do not take into account the universes; this is
left for future work.

The causal dependencies in the program are generated by interleaving read
and write operations on the space of the program. Our approach is to generate
constraints to ensure that the program is sequentially consistent and monotonic.
Sequential consistency ensures that the processes can be statically interleaved and
the program executed in a sequential fashion. Monotonicity means that every
read on a variable happens after the writes on the same variable. To verify these
two properties, we propose a model written in MiniZinc (see Section 1.1.1). We
comment every part of the model, and we start with the parameters of the model.
int: operations;

int: vars;

enum Access = { write, readwrite, read };
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Our model is parametrized by the number of operations (operations) and the
number of variables (vars) occurring in the current instant of the program. An
operation is an access to a variable such as with read x. For clarity, we represent
each access mode with an associated constant parameter.

set of int: Op = 1..operations;

set of int: Order = 1..operations;

set of int: Vars = 1..vars;

array[Op] of Vars: var_of_op;

array[Op] of Access: access_of_op;

array[Op] of bool: activated;

In addition to the number of operations and variables, we also parametrize the
model with three arrays modelling three attributes of an operation:

• var_of_op[op] = v maps an operation indexed op to the variable v involved
in the access operation. For example, if read n is the operation indexed 3,
then we have var_of_op[3] = n.

• access_of_op[op] = a maps an operation to its access mode. With read n,
we have access_of_op[3] = read where read is the constant given above.

• activated[op] = b enforces sequential constraints to be activated or not on
the operation op.

The latest array activated deserves attention. We provide every possible opera-
tion of the program to the model, but a model only analyses a single path in the
program. Therefore, if we have the process when x |= y then x <- 2 else y <-

2, only one of the processes x <- 2 and y <- 2 is activated during an execution.
These three arrays are given by the function building the causality model below.

From this model, we schedule the program by finding a total order between the
access operations, if it exists. The ordering is stored in the following array:

array[Op] of var Order: order_of_op;

Given order_of_op[op] = i, an operation op is scheduled at position i. If we
invert this array—the indices becomes elements and vice versa—then we obtain
the sequential order of the access operations.

Although the dependencies between variable accesses are generated in the next
section, we can enforce three constraints that must always be fulfilled.

constraint all_different(order_of_op);

Firstly, the scheduling position of each operation must be different. Otherwise we
could execute two operations at the same time and our execution would not be
sequential. The next constraints are defined over each pair of activated operations
on a same variable:
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constraint forall(op1 in Op, op2 in Op where op1 != op2 /\

var_of_op[op1] == var_of_op[op2] /\ activated[op1] /\ activated[op2])

% (C1)

(access_of_op[op1] > access_of_op[op2] -> order_of_op[op1] > order_of_op[op2]

% (C2)

/\ (access_of_op[op1] == readwrite /\ access_of_op[op2] == readwrite) -> false);

The first constraint (C1) enforces that every access read is done after readwrite,
and in turn that every write is realized after a readwrite. The second constraint
(C2) enforces that a variable is not accessed two times with readwrite.

To illustrate our constraint model, we give two examples of constraint model
of causality.

Example 4.2 (Model of a non-deterministic process). We first introduce a classic
non-deterministic process where reads and writes on a same variable are inverted
in two processes:

par x <- read y + 1 || y <- read x + 1 end

There are four operations with two reads and two writes, and two variables x and
y. The MiniZinc model is given as follows:

operations = 4;

vars = 2;

var_of_op = [1, 2, 2, 1];

access_of_op = [write, read, write, read];

activated = [true, true, true, true];

constraint order_of_op[1] > order_of_op[2];

constraint order_of_op[3] > order_of_op[4];

The constraints generated ensures that the write on x happens after the read of
y, and vice versa. We also activate all the operations since everything needs to be
executed. It is immediately detected unsatisfiable by the constraint solver. ⌟

Example 4.3 (Model of a causal process). The following process illustrates a when

statement with valid write after read:

when x |= y then x <- 2 else y <- 3 end

In total, we have four operations and two variables, but only three operations can
be active at any time. We gives a first model for the branch then:

operations = 4;

vars = 2;

var_of_op = [1, 2, 1, 2];

access_of_op = [read, read, write, write];

activated = [false, true, true, false];

constraint (order_of_op[2] < order_of_op[3]);
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We deactivate the write operation on y since we do not go inside the branch else.
The interesting part is that we also deactivate the sequential constraints of the
read operation on x in the entailment. If we take the branch then, even if the
variable x is written in later on, it cannot alter the result as long as y is fixed; this
is why a write operation on x is allowed. More formally, since all the variables
evolve monotonically, once y is fixed and x |= y holds, for any new write v in x,
we have x ⊔ v |= y. We apply a similar reasoning with the branch else:

activated = [true, false, false, true];

constraint (order_of_op[1] < order_of_op[4]);

In case x |= y does not hold, we deactivate y because even if we write into y it will
not change the result of the entailment.

To sum up, we obtained two constraint models, and both must be satisfiable
in order to prove the causality of the process. ⌟

The goal of the next two sections is to generate the constraint parameters and
sequential constraints of a spacetime process.

4.5.3 From the spacetime program to the causality model

We prepare a spacetime program before the causality analysis. The very first step
is to index every spacetime operation with an integer op referring to its index in the
arrays var_of_op, access_of_op and order_of_op. This can be realized statically
by traversing the syntactic structure of the program. Every access operation read

n is indexed with readop n where op is the index of this operation. Variables with
an implicit access mode, such as in n <- e, are directly indexed; for example with
nop <- e.

Once this indexing is done, we can fill the arrays var_of_op and access_of_op

with the associated value, which corresponds to information obtained syntactically.
For every operation that is not accessible in the current instant, we assign false

in the corresponding index of the array activated. Therefore, by activating or not
operations in the set activated, we can simulate that we are in a specific instant
of the program.

The causality analysis is started with the program’s operations indexed, the
constraints given in Section 4.5.2, and the variables operations, vars, var_of_op
and access_of_op fully defined. We perform the causality analysis on the program
statements with the function causal which is defined in Section 4.5.5. However,
the causal constraints are generated by the read and write on variables, which are
situated inside an expression. The function causal is relying on the function deps
for computing these dependencies, and thus we present deps first.

4.5.4 Causal dependencies

Causal dependencies of an expression are inductively computed with the function:
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deps(e,m,M3) 7→M ′
3

where e is the expression, m is a boolean indicating if the expression is in a
monotonic or anti-monotonic context, M3 is the current causal model, and M ′

3 is
the causal model updated with the dependencies introduced by e. The difference
between a monotonic and non-monotonic context is that a monotonic context
allows variables to be read now and written in later, while it is forbidden in a
non-monotonic context. A causal model is a lattice structure

M3 : L3 × P(N)× ES
(⟨d, P ⟩, Last, Inst) ∈M3

where ⟨d, P ⟩ is the causal CSP, Last is the set of the latest read-write operations
performed “just-before” the current expression or statement, and Inst indicates if
the expression or statement is instantaneous or not. We use a projection of vari-
ables, written d[O] for the array order_of_op, and d[A] for the array activated.

We apply deps inductively on the boolean expressions and the arguments of a
function call:

deps(c,m, (⟨d, P ⟩, Last, Inst)) 7→ (⟨d, P ⟩, Last, true)
deps(not e,m,M) 7→ deps(e,m,M)
deps(e1 and e2,m,M) or
deps(e1 or e2,m,M) 7→ deps(e1,m,M) ⊔ deps(e2,m,M)
deps(f(e1, . . . , en), false,M) 7→

⊔

i∈[1..n] deps(ei, false,M)

When we reach a constant c, we map to the same model with the instantaneous
boolean sets to true. We notice that we only allow host functions in a non-
monotonic context: once the arguments are passed to the function, they cannot
gain more information anymore later. We enforce this condition because host
function are only called once, and thus the read/write accesses must be ordered.

The three remaining atomic expressions are the accesses to the variables:

deps(readop x, false,M) or
deps(writeop x, false,M) or
deps(readwriteop x, false,M) 7→
(⟨d ⊔ (d[A](op) ⊔ true), P ⊔

⊔

ℓ∈LastJd[O](op) > d[O](ℓ)K⟩, {op}, true)
where M = (⟨d, P ⟩, Last, Inst)

deps(readop x, true,M) or
deps(writeop x, true,M) or
deps(readwriteop x, true,M) 7→M

We set the activation status d[A](op) of the operation op to true only when we are
in a non-monotonic context. Then, we create one sequential constraints for each



Behavioral Semantics Inside an Instant 152

last operation with
⊔

ℓ∈LastJd[O](op) > d[O](ℓ)K, and add these constraints into the
CSP. Finally, we create a new set of latest operation with {op}, so that the next
sequential operation is scheduled to happen after op. In a monotonic context, we
do not add any constraint into M because further read and write do not impact
the monotonicity of the computation.

The two last expressions are the entailment and tell operations:

deps(nop <- e, false,M) 7→ deps(writeop n, false,M) ⊔ deps(e, false,M)
deps(e1 |= e2, true,M) 7→ deps(e1, true,M) ⊔ deps(e2, false,M)
deps(e1 |= e2, false,M) 7→ deps(e1, false,M) ⊔ deps(e2, true,M)

We retrieve the dependencies of the tell operator by encapsulating the left variable
n into a write n operation. Finally, we evaluate the left and right part of the
entailment according to its context. The treatment of entailment will become
clear when evaluating the conditional statement when.

4.5.5 Causal statements

Our causality analysis is defined inductively on the structure of the program with
the following function:

causal(p,M3, C)→M4

where p is the process to analyse, M3 is the current constraint model, C is the
continuation of the model construction, and M4 is the L4 derivation of M3. The
structure M4 contains all the models that must be satisfiable. We need this struc-
ture to be at the fourth level of the lattice hierarchy because we need to collect
disjunctive models when traversing the branches of the statement when.

We start with the causality analysis of the atomic statements of spacetime:

causal(pause,M,C) or
causal(pause up,M,C) or
causal(stop,M,C) 7→ {M ⊔M3 (⊥, {}, false)}

causal(nothing,M,C) or
causal(prune,M,C) or
causal(space p end,M,C) 7→ C(M)

On the one hand, the statements introducing a delay do not call the continuation
C. They return the cumulated sequential model M with its instantaneous boolean
value set to false. On the other hand, the next three atomic statements do not
introduce any sequential dependency, and forward the creation of the model to the
continuation.

The continuation C is created by the sequence statement:
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causal(p ; q,M,C) 7→ causal(p,M, λM ′.causal(q,M ′, C))

We analyse p which is automatically followed by q when we hit the last instanta-
neous statement of p. If p contains a delay, the continuation will not be called.

The following statements describe the causality analysis of the ask and tell
operations:

causal(st Type n,M,C) 7→ C(M)

causal(nop <- e,M,C) 7→ C(deps(nop <- e, false,M))

causal(f(e1, . . . , en),M,C) 7→ C(deps(f(e1, . . . , en), false,M))

causal(when e then p else q end,M,C) 7→
causal(p, deps(e, true,M), C) ⊔4 causal(q, deps(e, false,M), C)

The three first statements generate the dependencies of their expressions, and call
the continuation with the new causal model. We analyse the statement when by
considering the entailment condition to be true in one model and false in the
other model. We call the function deps on the expression e in a monotonic context
if it is assumed to be true, and in a non-monotonic context if it is assumed to be
false. The generated models are then merged in M4 with the join operation ⊔4.
We illustrate the causality analysis of the statements already introduced with the
following example.

Example 4.4 (Sequence with possible pause). It is interesting to consider the
model generated by the following process:

when x |= y then

x <- 2

else

y <- 3;

pause

end;

x <- 3;

Of interest is the continuation λM.causal(x <- 3,M,C) created by the outermost
sequence operator. In the first branch, we execute the continuation since the
process is instantaneous. In the second branch, we hit the statement pause, and
therefore we do not call the continuation. Without the pause statement in the
branch else, we would call the continuation, and the causal model would be
unsatisfiable because we write on x after an anti-monotonic read of x. ⌟

We consider next the two statements abort and suspend which are similar to
the conditional statement:
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causal(abort when e then p end,M,C) 7→
causal(p, deps(e, false,M), C) ⊔4 C(deps(e, true,M))

causal(suspend when e then p end,M,C) 7→
causal(p, deps(e, false,M), C) ⊔4 (deps(e, true,M) ⊔M3 (⊥3, {}, false))

In case the expression e is assumed false, we evaluate the causal dependencies
generated by the process p, and collect the non-monotonic dependencies generated
by e. For the statement abort, when e is assumed true, we collect the monotonic
dependencies of e and call the continuation C since the statement is terminated.
For suspend, we also collect the monotonic dependencies of e, but we do not call
the continuation C because suspend pauses when e is true. Therefore, we update
the model with the instantaneous flag set to false.

The next statements are very close to their semantics rules. They are defined
inductively by calling the access function over their statements and expressions.
Of interest is the conjunctive parallel <> that merges the termination status with
⊔ indicating that if one of the process is terminated, the whole parallel statement
is terminated. This termination status is only used in the sequence statement p ;

q where we analyse the process q only if p can terminate.
One of the most important part of the causality analysis is to deal with the

parallel composition of two processes. We first generate the causal model of each
branch independently and then combine the generated models with the following
Cartesian product:

(⟨d, P ⟩, L, I)×+
3 (⟨d′, P ′⟩, L′, I ′) 7→ (⟨d, P ⟩ ⊔ ⟨d′, P ′⟩, L ∪ L′, I + I ′)

M4 ×
+
4 M ′

4 7→ {M3 ×
+
3 M ′

3 |M3 ∈M4 ∧M ′
3 ∈M ′

4}

The operation ×+
4 is parametrized by an operator + used to combine the instanta-

neous flag of two models. It is the only distinction between two branches combined
with <> and ||, the first one is instantaneous if one of its two branches is instanta-
neous, whereas the second is instantaneous only if both branches are. We analyse
the two parallel operators as follows:

causal(par p <> q end,M,C) or
causal(par p || q end,M,C) 7→
⊔4

M3∈M4

{

C(M3) if M3 is instantaneous
{M3} otherwise

where M4 = causal(p,M, λM ′.{M ′})×4 causal(q,M, λM ′.{M ′})
with the operator ×4 defined as ×⊓

4 for <>, and as ×⊔
4 for ||
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Once we created the Cartesian product of the models generated by both processes,
we call the continuation C only on the models that are instantaneous. We illustrate
this behavior on the following example.

Example 4.5 (Fork and possible merge). The Cartesian product of two models
might generate both instantaneous and delayed models, as shown in the following
process:

par

|| x <- 2

|| when y |= x then y <- 3; pause end

end;

x <- 3;

The second branch pauses if we can deduce x from y, and otherwise the whole
parallel statement terminates. Accordingly, the causality analysis generates two
models where one is instantaneous and the other delayed. The continuation with
the statement x <- 3 is only called with the model in which the parallel statement
terminates, and it is not called when it is delayed.

In short, the Cartesian product is necessary to combine models created by
parallel processes, because the termination of such a process depends on some
conditions. ⌟

The last two statements to analyse are the delayed loop and the instantaneous
loop. The first one is defined as:

causal(loop p end,M,C) 7→ causal(p,M,C)

It does not introduce dependency and forward the causality analysis to its body
p.

The instantaneous loop for deserves some attentions since it generates at run-
time some statements. We base our causality analysis on the following conjecture.

Conjecture 4.1 (Causality analysis of a for process). Given the statement

for(□)(st Type x : e) p end

we duplicate the body (n + 1) times where n is the number of execution paths of
the process p. Then it is causal if the process

(st Type x ; p)1 □ . . .□ (st Type x ; p)n+1

is causal.

That is, from the point of view of causality analysis, duplicating the process n+1
times is identical to duplicating the process an arbitrary number of times. We
duplicate one more time to verify that a single execution path can be executed
twice (for example to avoid readwrite two times on a same variable).



Behavioral Semantics Inside an Instant 156

Assuming this conjecture is valid, then we can analyse a process for with:

causal(for(□)(st Type x : r) p end,M,C) 7→
causal((st Type a1 ; p)1 □ . . .□ (st Type an+1 ; p)n+1,M,C)

To prove this conjecture, we must first prove the base case where the com-
position of an arbitrary number of identical execution paths is causal only if the
composition of two identical execution paths is causal. The reasoning can be ex-
tended to multiple execution paths, because there are a finite number of execution
paths, and thus a finite number of their combinations.

4.6 Conclusion and discussion

We introduced the behavioral semantics of a process inside one instant. The
main contribution of this chapter was to generalize the synchronous model of
computation to general lattice, and to formalize the causality analysis of such
processes. To this purpose, we took the approach of defining every structure
manipulated in our semantics on lattice structures. Doing so, every semantics
rule is a monotonic function over the space S, and therefore we guarantee by
construction the determinism of the computation. However, it is necessary to
provide a formal proof that every behavioral rule is indeed monotonic, and that our
causality analysis always generates unsatisfiable models for non-deterministic and
non-reactive processes. We do not provide such a treatment in this dissertation,
but we believe that it is achievable with a theorem-prover because the structures
underlying our semantics are well-defined.

To conclude this chapter, we discuss the differences between the causality anal-
ysis of Esterel and our work.

Potential analysis

The fragment of spacetime introduced in this chapter is built on Esterel. The
differences almost all boil down to using variables defined over lattices instead of
boolean values—the so-called signals in Esterel. It is useful to look at the semantic
rules for declaring and testing the presence of a signal in Esterel as defined in
Figure 4.1.

MustS and Can+
S are called the “potential functions”: they compute the set

of signals that must and can be emitted during the current instant. In the rules
sig+ and sig−, these functions are used to assign a value among {0, 1,⊥} to the
signal if it is absent, present or if it cannot be established yet. Thereafter, the
conditional rules present+ and present− are relying on the presence or absence
of a signal in the environment S.

There is a very important distinction to be made between Esterel and spacetime.
In Esterel, the data is syntactically rooted in the language, and thus deeply linked



Behavioral Semantics Inside an Instant 157

sig+

x ∈MustS(p, S ∗ x
⊥) p

S′, k
−−−→
S∗x1

p′

signal x in p end
S′\x, k
−−−−→

S
signal x in p′ end

sig-

x ̸∈ Can+
S (p, S ∗ x

⊥) p
S′, k
−−−→
S∗x0

p′

signal x in p end
S′\x, k
−−−−→

S
signal x in p′ end

present+

x1 ∈ S p
S′, k
−−−→

S
p′

present x then p else q end
S′, k
−−−→

S
p′ end

present-

x0 ∈ S q
S′, k
−−−→

S
q′

present x then p else q end
S′, k
−−−→

S
q′ end

Figure 4.1: Semantics rules involving causality analysis in Esterel [Ber02].

to the control flow. For example, the statement emit x emits the signal x, in
other word it writes true inside x. The signal environment computed by MustS
and Can+

S is a data and code control evaluation: setting a signal to true has a
direct impact on the control flow (if it appears in a presence test). In spacetime,
the values are not syntactically rooted to the code. Furthermore, the values are
not even known by the spacetime compiler since they belong to the host language.
Therefore, we perform an analysis over the control flow only and without evaluating
the value of the variables. This is implemented with the causal function that
describes the dependencies between the read and write operations in a process.
In other word, it attempts to sequentialize a spacetime process by giving a total
order between the operations.

In spacetime, each variable can be associated with a counter (w, rw, r) : LMin×
LMin × LMin indicating that w writes must be done—or invalidated—before rw
read-writes and before r reads. In Esterel, this counter becomes (w, r) : LBool ×
LMin where a write event is a boolean3 representing the emission of a signal—
emitting several times a signal has no effect. As in spacetime, any number of read
can follow. In both, if the counter w does not reach 0 (or true), then the reads
cannot occur and we have a causality problem. All in all, spacetime is generalizing
this analysis to arbitrary lattice values. However, Esterel can perform stronger

3We use the lattice LBool to define this write event: it evolves from false to true.
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causality analysis since whenever w = true it also knows that the signal has been
emitted, and thus its value.

Valued signals and data variables

In Esterel and ReactiveML, they use a signal environment that contains the set of
values emitted on a signal during an instant [Ber00a, Man06]. The values are later
aggregated using the combination function of the signal. This composition function
is similar to the join in a lattice because it must be associative and commutative.
A first minor difference in spacetime is that we aggregate the values immediately
and do not keep a set of values. The main difference, is that spacetime allows us to
reason about the values with the entailment while in other synchronous languages
the manipulation of values is more limited. For example, alternating read and
write operations on a variable is usually forbidden. Similarly, Esterel [PBEB07]
forbids to write on data variables in distinct processes.



Chapter 5

Behavioral Semantics Across Instants

This chapter formalizes the semantics of the processes progressing across time,
and the processes encapsulated in universe. A universe lifts the execution of a
program in an upper layer of the lattice hierarchy starting from L4. In essence,
a universe is composed of a queue of nodes and of a process that is executed on
a faster time scale. For example, admitting that p is a process over L4 and q a
queue of nodes, then universe with q in p end becomes a process over L5.
From the point of view of p, time is flowing faster in L4 than what another process
observes in the upper universe L5. This idea is not new: time refinement has
already been explored in synchronous languages, especially in Quartz [GBS13] and
ReactiveML [MPP15]. However, in these languages, each universe is atomically
executed, and thus parallel universes do not communicate within their local steps.
In spacetime, we execute synchronously parallel universes which can communicate.

The main goal of this chapter is to capture compositionality of universes in
semantics rules. In this respect, there are two crucial design aspects:

• Data compositionality. Parallel universes can communicate on shared
variables defined in a common upper layer. The question is under what
spacetime a universe can observe variables defined in its lower and upper
universes in order to preserve their monotonic evolutions?

• Control compositionality. The simultaneous execution of two universes
synchronized on the same time scale with a same queue of nodes.

These two aspects are introduced in the Sections 5.4 and 5.5. To formalize the
semantics, we first develop structures extending the behavioral semantics to hi-
erarchical structures (Sections 5.2 and 5.3). The semantics rules developed in
Chapter 4 are mostly left unchanged, and can be adapted to the universe exten-
sion without complications. Finally, we do not extend the causality analysis to
hierarchical structures, and leave this task to future work.

159
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5.1 Composition of parallel universes

We first introduce several design principles for combining universes which are cen-
tral to the semantics.

Principle 5.1 (Full universe synchronization). All universes executable in an in-
stant must be executed synchronously, at the same time and at the same rate.

Corrolary 5.1. Universes cannot appear in sequence during a same instant.

Principle 5.2 (Universe composition). Universes with a same queue of nodes are
synchronized in space and time which means that they form only one combined
search tree. Universes defined on distinct queues are synchronized in time only,
and thus only the completion code is merged in the parallel statements.

The branches generated by the universes do not conflict: pruning statements
are local to the queue of nodes. However, when a universe terminates its execution,
the universes defined on others queues might be forced to terminate if they are
composed with the disjunctive parallel operator <>, otherwise they continue their
executions. If one of the universe is pausing up, according to the completion code
of parallel operators, every other universe is also pausing up.

Principle 5.3 (Universes communication). Universes communicate on variables
single_space and any variable defined in a common parent universe. In addi-
tion, universes defined on the same queue can communicate through world_line

variables that are transferred in both universes.

5.2 Universe hierarchy

A challenge with universes is that more than one steps can be executed during a
single reaction. Therefore, the variable space S is not sufficient anymore since it
describes the value of the variables during a single instant only. To overcome this
limitation, we follow the technique used in the semantics of reactive domains in
ReactiveML [Pas13, MPP15]. It consists in lifting the space structure to a store
Store(Timestamp, Space) where an element (t, S) ∈ (T imestamp × Space) is a
snapshot of the space S at a unique point in time t. We name this structure
the universe hierarchy. To define it, we need intermediate structures in order to
precisely define a timestamp.

Definition 5.1 (Timed layer). A timed layer is a lattice defined by a set of active
queues, represented by their names, and an integer indexing the instant of the
layer.

TimedLayer(Name) = ⟨P(Name)× LMax,

(Q, i) |=TL (Q′, j) if







Q ⊆ Q′

∧ i |=LMax j
∧ i = j ⇒ Q = Q′

⟩
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where the order ℓ |= ℓ′ is defined if ℓ is happening at the same time or after ℓ′,
and that ℓ contains less or the same number of active queues than ℓ′. Also, if two
timed layers are defined in the same instant, they must be equal (an element in
this lattice represents only one layer, not a hierarchy of layers).

Example 5.1 (Timed layer with three universes). Consider the following space-
time program:

single_space StackLR q;

single_space StackLR r;

par

|| universe with q in pause; end (A)

|| universe with r in pause; end (B)

|| universe with r in pause; pause end (C)

|| universe pause; pause; pause end (D)

end

This program is constituted of two layers, one for the uppermost universe and
one that contains four universes named A, B, C and D. In the first instant of
the uppermost layer, we have the timed layer ({}, 0) with an empty set of queue.
The second layer evolves across four instants before all its universes terminate:
({q, r}, 0), ({q, r}, 1), ({r}, 2) and ({}, 3). We notice that the last universe D is
defined without a queue, which generates an empty set of queue in the fourth
instant. The order of a timed layer reflects this temporal evolution, for example
we have ({r}, 2) |= ({q, r}, 1). The number of active queues can only decrease over
time. ⌟

A timed layer is only useful for describing the queues in an instant of a single
layer. To obtain a precise timestamp of the whole program, we need a set of timed
layers, that we call a timestamp.

Definition 5.2 (Timestamp). A timestamp is a store of timed layers such that
the set of queues of each layer is distinct (property (P1) below). We guarantee
with (P2) that the uppermost universe has an empty set of queues. The index of
the store corresponds to the index of the layer in the hierarchy.

Timestamp(Name) = ⟨
{S ∈ Store(LMax ,TimedLayer(Name)) |

(P1) ∀i, j ∈ π′
1(S), π1(S(i)) ∩ π1(S(j)) = ∅

(P2) π1(head(S)) = {}
},
s ::−1 S |= r ::−1 R if (s |=TL r) ∧ (s = r ⇒ S |= R)

where we define the operator ::−1 as follows:

::−1 : TimedLayer × T imestamp→ Timestamp
s::−1S 7→ alloc−1(S, s)
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where alloc−1 is allocating an element at the minimal location instead of the next
maximal location. We also define the operation ::

:: : Timestamp× TimedLayer → T imestamp
S::s 7→ alloc(S, s)

The two functions ::−1 and :: are used to obtain the first and last timed layers.
We give an example to illustrate this timestamp structure.

Example 5.2 (Timestamp of nested universes). Consider the following program:

single_space StackLR q;

pause;

universe with q in

single_space StackLR r;

pause up;

universe with r in pause; end

pause;

end

We have a timestamp for each possible point in time across all the layers of this
program. We show the set of the generated timestamps ordered by the relation |=
in Timestamp:

t0 = {(0, ({}, 0))}
t1 = {(0, ({}, 1))} :: ({q}, 0)
t2 = {(0, ({}, 1))}
t3 = {(0, ({}, 2))} :: ({q}, 0) :: ({r}, 0)
t4 = {(0, ({}, 2))} :: ({q}, 0) :: ({r}, 1)
t5 = {(0, ({}, 2))} :: ({q}, 0)
t6 = {(0, ({}, 2))} :: ({q}, 1)
t7 = {(0, ({}, 2))}

Importantly, we notice that an instant in an upper layer is ordered “after” the
instants in its sub-universe. It defines that an instant only terminates once all of
its sub-instants are terminated. ⌟

Now that we can precisely situate a point in time, we describe the universe
hierarchy that maps timestamp to spaces of variables.

Definition 5.3 (Universe hierarchy). A universe hierarchy is a store of spaces
indexed by timestamps.

UHierarchy(Name,Type) =
Store(Timestamp(Name), Space(Name,Type))

where the order is inherited from Store.

In function of a particular universe hierarchy, we define two notions of “previous
timestamp” relatively to a queue and relatively to a layer.
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Definition 5.4 (Previous timestamp relative to a queue). The function preQ(U, t, q)
maps to the timestamp before t in U relatively to the queue q:

preQ : UHierarchy × Timestamp × Name → Timestamp

preQ(U, t, q) 7→
⊔

{t′ ∈ π′
1(U) | t |= t′ ∧ t ̸= t′ ∧ (t′ = t′′ :: (Q, i)) ∧ q ∈ Q}

The previous timestamp of a queue is the lowest upper bound of all the timestamp
of this queue before t.

Definition 5.5 (Previous timestamp relative to a layer). The function preL(U, t)
maps to the previous timestamp in U relatively to the last layer in t:

preL : UHierarchy × Timestamp → Timestamp

preL(U, t) 7→
⊔

{t′ ∈ π′
1(U) | t |= t′ ∧ t ̸= t′ ∧ |t| = |t′|}

The previous timestamp of a layer is the lowest upper bound of all the timestamp
of this layer before t.

Example 5.3 (Previous timestamps). Extending Example 5.2, we have the fol-
lowing time relations with preL and preQ :

preL(U, t5) = t1 preQ(U, t5, q) = t1
preL(U, t4) = t3 preQ(U, t4, q) = t1 preQ(U, t4, r) = t3
preL(U, t3) = ⊥ preQ(U, t3, q) = t1

⌟

5.3 Hierarchical behavioral semantics

We lift the definitions of branches and completion code to a store indexed by
timestamps.

Definition 5.6 (Hierarchical branches). Given the unordered set of branches Bn,
we define the lattice of hierarchical branches as follows:

HBranch(Name) = Store(Timestamp(Name), Store(Name, Bn))

where the order is inherited from Store.

The operators {◦,∧,∨} of the algebra Bn are extended to branch hierarchy: they
are used to combined the branches with a same universe.

Definition 5.7 (Hierarchical completion code). Given the completion code integer
set Compl = {0, 1, 2, 3}, its hierarchical lifting is defined as follows:

HCompl(Name) = Store(Timestamp(Name),Compl)

where the order is inherited from Store.
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We also extend the operators {∧,∨} of Compl to the completion code hierarchy.
The main goal of the completion code hierarchy is to know if one layer paused up
or stopped the program. Note that the code is not bound to a particular queue
but to a particular layer: it formalizes the idea that universes on different queues
are composed in time.

These structures enable us to define the hierarchical version of the behavioral
semantics rule as:

t, N ⊢ p
U ′,HB ,K
−−−−−→

U
p′

where the program p is rewritten into the program p′ under the timestamp t, the
set of names N and the input/output universe hierarchy U . The effects of this
reaction are given in U ′ which is the output universe hierarchy, HB is the set of
branches for each queue and K is the set of completion codes for each layer. We
have the relation U |= U ′ to model that outputs are also inputs of the program.

The rules we introduce in this chapter are heavier than the ones introduced in
Chapter 4. This is because they formalize the link between two instants, which
is not syntactically represented by spacetime processes. Therefore, to lighten the
notation, we introduce several internal statements, so the semantics is better de-
composed. We have three internal statements typeset as transfer∗, pop∗ and push∗.
All these three statements will be elaborated in the course of this chapter.

We can already define the two axioms rules pause-up and stop which respec-
tively pause in the upper and outermost universe. This is achieved by setting the
completion code to 2 and 3.

pause-up

pause up
⊥, ⟨⟩, 2
−−−→

S
nothing

stop

stop
⊥, ⟨⟩, 3
−−−→

S
nothing

In the following, we extend the rules of the behavioral semantics only when
they significantly differ from the ones defined in Chapter 4. Importantly, we do
not formalize the queueing strategy where the queue is a world_line variable, and
we leave it to future work. However, there exists very few search strategy that
need this capability, and none of our strategies in Chapter 6 needs world_line

queues.

5.4 Hierarchical variable

In Chapter 4, we have a unique space of variables in an instant, and thus a variable
only exists in one layer at a time. Extending the semantics to universes also induces
that a variable can exist in several layers of the universe hierarchy. There are two
reasons we want to define a variable in several layers:

• Communication between sub-universes through variables defined in a com-
mon upper universe.
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• Access to results obtained in a sub-universe.

However, we cannot arbitrarily transfer one variable across layers: we must ensure
that the monotonicity of the computation is preserved. The Section 5.4.2 tackles
the case where a variable is declared in a universe and transferred into one of its
sub-universes. The opposite case where we access the value of a variable of a sub-
universe is introduced in Section 5.4.3. Before these two, it is necessary to define
the read and write operations on variables defined in multiple layers of a hierarchy.

5.4.1 Read, write and allocate variables in the hierarchy

We read a variable x at a particular point in time t, and we join the values of all
the variables defined in the upper layers:

read : UHierarchy × Timestamp × Name → Type

read(U, t, x) 7→
⊔

{U(t′)V (x) | t′ ⊆ t}

We refine the rule var as follows:

var

t ⊢ x
⊥
−֒→
U

read(U, t, x)

An advantage of the universes is that we can define the operator pre x that
retrieves the value of a variable at its former instant.

preV : UHierarchy × Timestamp × Name → Type

preV (U, t, x) 7→







⊥ if preL(U, t) = ⊥
preV (U, t′, x) if (x, a) ̸∈ U(t′)V where t′ = preL(U, t)
read(U, preL(U, t), x) otherwise

The function preV maps to the value of a variable at the former instant where it
was defined. The rule is then defined as follows:

pre

U(t)st(x) =→

t ⊢ pre x
⊥
−֒→
U

preV (U, t, x)

We define the operator pre only for single_space variable, and we leave the case
of world_line for future work.
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We write into a variable only in its current defining layer, unless it is a single_-

space variable, in which case we propagate the change through the upper layers:

write : UHierarchy × Timestamp × Name × Type → UHierarchy

write(U, t, x, v) 7→














{(t, {(x, (v,→))})} ⊔ write(U, t′, x, v) where t = t′ :: ℓ, if (x, (→, v′)) ∈ U(t)
{(t, {(x, (v, st))})} if (x, (st, v′)) ∈ U(t)

∧ st ̸=→
⊥ otherwise

The write operation refines the semantics rule of the tell statement:

tell

t ⊢ e
U ′

−֒→
U

v U ′′ = write(U, t, x, v)

t, {} ⊢ x <- e
U ′ ⊔U ′′, {}, {(t,0)}
−−−−−−−−−−−→

U
nothing

It is similar to the rule tell in Chapter 4, but we rely on the function write
instead of writing directly into the space.

Taking into account the hierarchical view, we also need to redefine how a vari-
able is declared. Our approach is to declare a variable in the universe hierarchy
with the current timestamp. We initialize the variable to a different value depend-
ing on its spacetime:

• In the case of single_time variables, they have a different name in every
instant and so their values is equal to ⊥.

• The world_line variables are handled in the rule Pop where we set their
values according to the node popped from the queue.

• As for single_space variables, we retrieve their value from the latest instant.

This behavior is specified in the following function allocate:

allocate : UHierarchy × Timestamp × Spacetime × Name → UHierarchy

allocate(U, t, x, st) 7→

{

{(t, {(x, (⊥, st))})} if st ̸=→
{(t, {(x, (preV (U, t, x),→))}) if st =→

We extend the rule var-decl with this new function:

var-decl

t, N ⊢ p[x→ n]
U ′, HB , K
−−−−−−→

U
p′ U ′′ = allocate(U, t, n, st)

t, N ∪̇ {n} ⊢ st Type x ; p
U ′⊔U ′′, HB , K
−−−−−−−−→

U
st Type x ; p′
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5.4.2 Top-down spacetime transfer

A variable can be transferred from one universe Ui to a lower universe Ui−1, and
the variable can be seen with different spacetime in both universes. We define a
top-down transfer as a tuple (source, queue, target) where source is the spacetime
of the variable in Ui, queue is the spacetime of the queue of the universe being
traversed, and target is the spacetime of the variable in Ui−1. For example, we write
(↓,⟲,→) for a world_line variable in Ui traversing a universe with a single_time

queue, and being transferred as a single_space variable in Ui−1.
We have 3×3×3 possible combinations of possible top-down transfers. Due to

this relatively high number of transfers, it is worth to have a precise semantics of
data transfers between universes. The main goal of this semantics is to preserve the
monotonic evolution of the computation and variables through multiple points of
view. As shown in Chapter 4, non-monotonicity can lead to non-causal programs
that are non-reactive and generate indeterminism. Therefore, we formalize variable
transfer in order to avoid these issues.

In order to reduce the number of transfers to consider, we first study all the
combinations involving an occurrence of a single_time variable. We make two
observations:

• The target cannot be a single_time variable because such a variable only
exists in a single instant, but it would exist in several instants of the parent’s
universe.

• If the source is a single_time variable, then the queue must be declared
as single_time as well. It prevents the single_time variable inside the
sub-universe to live longer than the parent’s one.

Therefore, the only valid combinations where a single_time spacetime occurs are:

(
( ⟲

↓
→

)

,⟲,
(

↓
→

)

)

which is natural since a single_time queue indicates that the transferred vari-
ables only live for one instant, and thus cannot exceed the lifetime of the parent’s
variable. Also, we notice that a world_line variable can be a target, and thus the
question: how do we merge the variable back in the parent universe? We do not
merge it back. As shown in the former section, a world_line variable can reside
in several queues belonging to particular layers.

Without the single_time variables, we are left to 2× 2× 2 possibilities among
which 6 are valid. We first explain the 2 possibilities that are not valid:

(↓,→,
(

↓
→

)

)

A universe with a single_space queue of nodes contains statements such as pause
up which make the universe live for more than one instant in its upper universe.
A consequence is that the variable defined in Ui must live for at least as long as
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the variable defined in Ui−1. This is not the case when the source variable has a
world_line spacetime. In the case of a world_line target, the problem occurs in
the tree of the sub-universe: the variable does not evolve monotonically along a
path since we backtrack in the parent universe without backtracking in the sub-
tree. Hence, two nodes on a same path do not necessarily have the same root node,
and thus the same amount of information. In the case of a single space target, it
is supposed to be global to the queue but is backtracked nevertheless in the parent
universe. Hence, the variable does not evolve monotonically according to its single
space spacetime. We now consider the remaining 6 cases corresponding each to a
specific situation.

The two first represent a variable that evolves globally to the search trees of Ui

and Ui−1. In this case, the spacetime of the queue does not impact the meaning
of the transfer.

(→,
(

↓
→

)

,→)

The third transfer mode is a world_line variable evolving locally to a path
in the search tree of Ui−1 but globally to the search tree of Ui. It can be useful
to keep a store of global information in Ui. The monotonicity of the computation
is preserved because the local values in the variables of Ui−1 are not observed by
Ui—remember that the world_line is associated to its queue and thus copied into
Ui−1.

(→,→, ↓)

The next transfer is similar to the third with the difference that the queue is
backtracked in Ui. It is still monotonic because the value of the root node—given
by the source single space variable—evolves monotonically.

(→, ↓, ↓)

The fifth transfer captures a variable that is global to the search tree in Ui−1

while being backtracked in Ui. In other terms, the variable is backtracked whenever
the queue is backtracked but not on a backtrack in the search tree of Ui−1. It
models a property global to Ui−1 along a path of the search tree of Ui.

(↓, ↓,→)

The sixth and last transfer indicates that a variable is backtracked whenever a
backtrack occurs in Ui or Ui−1. It models a property local to a path in the search
tree of Ui−1 embedded in the one of Ui.

(↓, ↓, ↓)

Finally, we define a rule that abstracts over the valid top-down transfers:
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TopDownTransfer

(U(t)st(x), U(t)st(q), target) ∈











(
( ⟲

↓
→

)

,⟲,
(

↓
→

)

)

(
(

↓
→

)

, ↓,
(

↓
→

)

)
(→,→,

(

↓
→

)

)

U ′ = allocate(U, t, target , x)

t, {} ⊢ transfer∗(q, target , x)
U ′,{},{(t,0)}
−−−−−−−→

U
nothing

We rely on the internal statement transfer∗ to organize this verification as a se-
mantics rule.

5.4.3 Bottom-up spacetime transfer

We introduce the notion of bottom-up transfer which enables a universe to retrieve
data computed in their sub-universes. This is useful for retrieving the values of
world_line variables which are not observable in the parent universe. We can
access to the value of a world_line variable x in a lower layer defined by a queue
q with the syntax q::x. It is formalized by the following rule:

BottomUpTransfer
v = U(preQ(U, t, q))V (x)

t, {} ⊢ q::x
⊥
−֒→
U

v

where we retrieve the latest timestamp relatively to the queue q, so we have the
value of x in the latest instant of its universe.

5.5 Semantics of the rules across time

We formalize the semantics rules that make the execution of a program progresses
across instants.

5.5.1 Semantics of the queueing strategy

We bridge the space of two successive instants with the queueing strategy. It
pushes and pops nodes into and from the relevant queues. We first define the
structure of a future and then the rules to push and pop nodes from a queue. A
future encapsulates a branch process and its spaces.

Definition 5.8 (Future). A future is a tuple (S↓, S⟲, b) where S↓ is a set of
world_line variables, S⟲ is a set of single_time variables and b is a branch
process.
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We propose a semantics rule Pop to extract a future from the queue and
instantiate it. This rule is summoned inside the universe rule that we introduce
later. We tackle the first instant of a universe by checking if the queue was defined
in a previous instant (rule Pop) or not (rule PopFirst).

PopFirst

preQ(U, t, q) = ⊥ t, N ⊢ p
U ′,HB ,K
−−−−−→

U
p′

t, N ⊢ pop∗ p
U ′,HB ,K
−−−−−→

U
p′

Pop

t, N ⊢ b
U ′′,{},{(t,0)}
−−−−−−−→

U
b′ t, N ⊢ p

U ′′′,HB ,K
−−−−−−→

U
p′

(U ′(t)↓, U ′(t)⟲, b) = π2(pop(U(t′)(q))) t′ = preQ(U, t, q) t = t′′ :: ({q}, i)

t, N ⊢ pop∗ p
U ′⊔U ′′⊔U ′′′,HB ,K
−−−−−−−−−−→

U
p′

The queue q is the queue that is at the tail of the current timestamp: the one under
which the universe is currently executed. We use the function preQ to retrieve the
value of the queue q at its previous instant, and we extract a node from this queue.

An important invariant of the semantics rules is that the queues in the time-
stamp t are always singleton sets. This is because a semantics rule is always
executed under a single universe per layer. Therefore, we cannot push futures
locally onto the queue inside a universe since these futures might be composed with
futures created by neighbour universes defined on the same queue. Our solution
is to push the futures onto the queue at the root of the semantics rule, after they
have been composed. This is also the reason we need the hierarchical branches
structure, in order to aggregate all the branches created by all the universes. We
first define a function that creates a set of futures and pushes them on the relevant
queue:

future(U, t, q, B) = push(Q, {(j, (U(t)↓, U(t)⟲, b)) | (space b)j ∈ B})
where Q = π1(pop(U(preQ(U, t, q))(q))) such that t = t′ :: ({q}, i)

The link between two successive instants is done in two steps:

(i) We pop a node from the queue q at the previous timestamp, and we keep
the queue without this node—instead of retrieving the value extracted as in
Pop.

(ii) We push the created futures onto the queue retrieved at step (i).

The semantics rule Push first derives the process p, and from the hierarchical
branches created by p, we create a set of futures for each timestamp of every queue
appearing in HB .
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Push

t, N ⊢ p
U ′,HB ,K
−−−−−→

U
p′

U ′′ =
⊔

{∀(t′, bs) ∈ HB , ∀(q, B) ∈ bs, {(t′, future(U, t′, q, B))}}

t, N ⊢ push∗ p
U ′⊔U ′′,HB ,K
−−−−−−−−→

U
p′

5.5.2 Universe statement

The well-formedness of universes is checked by the rule Universe. This rule
represents a universe that is executed in the current instant of the parent universe,
we tackle the local step of a universe in another rule explained below.

Universe

t :: ({q}, 0), N ⊢ p
U ′,HB ,K
=====⇒

U
p′

∀(sti, xi) ∈ X⃗, t, {} ⊢ transfer∗(q, sti, xi)
U ′′

i ,{},{(t,0)}−−−−−−−→
U

nothing

U ′′ = U ′ ⊔
⊔

i≤|X|

U ′′
i K ′ = K ⊔ {(t, k)}

k = K(preQ(U, t, q)) if U(t)st(q) =⟲ then k = 0 must hold

t, N ⊢ universe(X⃗) with q in p end
U ′′,HB ,K′

−−−−−−→
U

universe(X⃗) with q in p′ end

This rule encapsulates the execution a process with a dedicated queue and
starts its execution from the instant 0 of the next layer of the current timestamp.
The completion code of the universe is the same as the one of the latest local step
relatively to the queue q. We verify that every universe with a single_time queue
immediately terminates. Finally, all the variable top down transfers are verified,
and the universe hierarchies generated by transfer are aggregated.

The transition⇒ is used to describe the local steps describing the execution of
a universe. To define⇒, we use the three rules GlobalStep, QueueEmpty and
EndOfInstant. The rule GlobalStep executes multiple steps of a statement
and increases its instant counter between each step.

GlobalStep

t, N ⊢ pop∗ p
U ′,HB ,K
−−−−−→

U
p′ t′ :: (Q, i+ 1), N ⊢ p′

U ′′,HB ′,K′

======⇒
U

p′′

K(t) = 1 t = t′ :: (Q, i) U(t)V (q) ̸= ⊥

t, N ⊢ p
U ′⊔U ′′,HB⊔HB ′,K⊔K′

=============⇒
U

p′′

We can only apply this rule if the current process pauses into the current instant
(k = 1), and the queue is not empty. Finally, the transition for the local step is
evaluated with a timestamp t to identify the current queue and instant.
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We detect the end of an instant in the rule EndOfInstant whenever the
completion code of a step is different from 1.

EndOfInstant

t, N ⊢ pop∗ p
U ′,HB ,K
−−−−−→

U
p′ K(t) ̸= 1

t, N ⊢ p
U ′,HB ,K
=====⇒

U
p′

Alternatively, in rule EmptyQueue, we detect the termination of the process
whenever its queue of nodes is empty. In this case, we set the completion code of
the transition to 0.

EmptyQueue

t, N ⊢ pop∗ p
U ′,HB ,K
−−−−−→

U
p′ U(t)V (q) = ⊥

t, N ⊢ p
U ′,HB ,K⊔{(t,0)}
==========⇒

U
p′

5.5.3 Reaction rule

The reaction rule executes every local step until we pause up the computation
in the top-level universe, and hand the control over to the user. The reaction
transition →֒ is the uppermost transition of the program and it is responsible for
verifying the well-formedness of the queues of every layer.

React

t, N ⊢ push∗ p
U ′,HB ,K
−−−−−→

U
p′

{(0, ({}, i+ 1))}, N ⊢ p′
U ′′,k
−֒−→

U
p′′ K(t) = 1 t = {(0, ({}, i))}

t, N ⊢ p
U ′⊔U ′′⊔U ′′′,1
−֒−−−−−−→

U
p′′

ReactEnd

t, N ⊢ push∗ p
U ′,HB ,K
−−−−−→

U
p′ k = K(t) k ̸= 1

t, N ⊢ p
U ′⊔U ′′,k
−֒−−−−→

U
p′

As mentioned before, the upper layer is the user environment, and therefore it
contains an empty set of queue since it cannot be backtracked. The rule React
automatically executes the next instant of the program p if it is paused. We
stop reacting whenever the program is paused up, stopped or terminated in the
(current) uppermost universe (rule ReactEnd). Note that the very first reaction
is initialized with the bottom timestamp, which is equal to {(0, ({}, 0))}.



Part III

Applications



Chapter 6

Modular Search Strategies

6.1 Pruning strategies

In this section, we first consider processes maintaining statistics of the search, and
then use them to prune the search tree at some points.

6.1.1 Statistics

A search language usually relies on some statistics given by the constraint solver.
We show in this section that these statistics can be programmed directly in space-
time. There are two advantages:

(i) To stay independent from the constraint solver which is used for propagation
only.

(ii) To be able to use the statistics directly as a communication channel between
two processes.

We isolate four counters in distinct classes for counting the total number of nodes,
the depth, the discrepancies and the number of backtracks. The associated coun-
ters when exploring the tree from left to right in depth-first search are depicted in
Figure 6.1.
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(d) Backtrack

Figure 6.1: The evolution of exploration statistics during a depth-first search.
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class Node {

single_space LMax value = new LMax(0);

public flow count = readwrite value.inc();

}

class Depth {

world_line LMax value = new LMax(0);

public proc count =

pause;

flow readwrite value.inc() end

}

class Discrepancy {

world_line LMax value = new LMax(0);

public flow count =

space nothing end;

space readwrite value.inc() end

}

class Backtrack {

single_space LMax value = new LMax(0);

public flow count =

space nothing end;

space readwrite value.inc() end

}

Every counter maintains a variable value of type LMax—the lattice of increasing
integers. The lattice LMax exposes a monotonic function inc(v) := v ⊔ (v + 1)
incrementing by one the current value of the counter. A first observation is that
modifying the spacetime specifier of value impacts on the statistics computed. For
example, Node uses a single_space counter that is incremented in every node,
while Depth uses a world_line counter incremented along a path and restored
upon backtracking. The only other difference is that we keep a depth of 0 during
the first instant, whereas the node’s counter is incremented. The next two counters,
computing the numbers of discrepancies and backtracks, evolve according to the
branch taken. Assuming that the tree is explored from left to right, we do not
increment the counter in the first branch, which is modelled with space nothing

end. These counters are incremented each time we take a right branch with the
difference that the discrepancies’ counter evolves along a path and the backtracks’
counter evolves along the whole search tree.

These statistics are virtually computed in every solver. They serve to stop the
search early in bounded search strategies and to obtain information about why
a search strategy is slow—for example if the number of backtracks is abnormally
high.

6.1.2 Bounded search

When exploring large search trees, it is often required to bound the search to
some limits in order to avoid waiting too long for a solution. In particular, with
optimization problems, the best solution “obtained so far” can be returned if we
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need a solution quickly instead of the best one. Therefore, we can use the statistics
to prune the search tree after reaching various limit. For example, the following
process enforces a limit on the number of nodes:

class BoundedNode {

single_space LMax limit;

single_space Node nodes = new Node();

public BoundedNode(LMax limit) { . . . }

public flow bound =

when nodes.value |= limit then

prune

end

}

We initialize the class BoundedNode with a limit and we prune the search tree
if we reach this limit. The statement prune has the effect to repeatedly discard
every node from the queue. Importantly, this strategy is kept independent from
the actual problem being solved, and thus it achieves modularity since it can be
reused with any other strategy.

Similarly, using the depth statistics and the statement prune, we can specify a
search tree pruned at a certain depth:

class BoundedDepth {

single_space LMax limit;

single_space Depth depth = new Depth();

public BoundedDepth(LMax limit) { . . . }

public flow bound =

when depth.value |= limit then

prune

end

}

A last example is to bound the search tree by its number of discrepancies:

class BoundedDiscrepancy {

single_space LMax limit;

single_space Discrepancy discrepancies = new Discrepancy();

public BoundedDiscrepancy(LMax limit) { . . . }

public flow bound =

space nothing end;

when discrepancies.value |= limit then prune end

}

This process is designed such that we only discard the right branch if taking this
branch would exceed the discrepancy’s limit. When the limit condition is not
entailed, the process returns a single branch labelled with the process nothing

that has a neutral effect. Therefore, we do not push the left branch onto the
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queue if its number of allowed discrepancies is exceeded. Pushing branches that
are immediately discarded was a problem encountered with the extension tor in
Section 2.6, and described by the second issue in the same section.

6.2 Restart-based search strategies

A restart-based search strategy is any strategy that, at some points, restarts the
search at the root node. In the lattice hierarchy, such strategies are captured in
the lattice L5. We build two restart-based search strategies that incrementally
explore the search tree, and we illustrate a strategy in L6 that combines these two
strategies.

6.2.1 L5 search strategies

Restart-based search strategies restart the whole search when reaching a limit,
and thus produce a sequence of search trees. Such strategies are defined over the
lattice L5 in the hierarchy introduced in Section 1.3.

Iterative deepening search

Iterative deepening search (IDS) [Kor85] restarts the search after reaching a depth
bound. We increase the depth on each restart to explore the tree more deeply.
We show the trees obtained after three iterations in Figure 6.2, the dashed line
are the part of the tree unexplored (and pruned at this iteration). The class IDS

implements this strategy:
class IDS {

single_space LMax limit = new LMax(0);

public proc search(q) =

loop

universe(single_space limit) with q in

single_space BoundedDepth depth = new BoundedDepth(limit);

depth.bound()

end

pause;

readwrite limit.inc();

end

}

The exploration of a search tree is encapsulated inside a universe: it executes
the depth-bounded search until the queue of this universe is empty. When the
search is over, the limit is incremented and the search restarts with this new limit.
Importantly, we do not specify when to stop the restart iterations. The strategy
is thus generic to any kind of problems—including non-CSP’s ones. In the next
section, we isolate a termination condition, based on the exhaustiveness of the
search, in a distinct process.
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(a) N=1 (b) N=2 (c) N=3

Figure 6.2: Trace of the iterations of IDS.

(a) N=0 (b) N=1 (c) N=2 (d) N=3

Figure 6.3: Trace of the iterations of LDS.

Limited discrepancy search

Limited discrepancy search (LDS) [HG95] works similarly to IDS with a discrep-
ancies bound instead of a depth bound. This strategy assumes that the left branch
is the preferred one—according to some heuristics—and it limits the number of
times the search can deviate from this preferred choice. It is illustrated in the
Figure 6.3 and given by the following spacetime program:

class LDS {

single_space LMax limit = new LMax(0);

public flow search(q) =

readwrite limit.inc();

universe(single_space limit) with q in

single_space BoundedDiscrepancy discrepancies = new BoundedDiscrepancy(limit);

discrepancies.bound()

end

}

We rely on BoundedDiscrepancy to prune the part of the search tree that exceeds
the limit of discrepancies.

6.2.2 Exhaustiveness and state space decomposition

As mentioned previously, the restart strategies IDS and LDS are defined generically
for any problem. Therefore, they do not terminate since the stop criterion is gen-
erally proper to a problem. For CSP, we introduced the state space decomposition
in the Section 1.3 which separates the search space into the unknown, failed and
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solution spaces. It gives us the ground to design a stop criterion based on exhaus-
tiveness: the search terminates whenever we entirely explored the unknown space.
First, we introduce two new statistics counters to compute the cardinality of the
state space decomposition of L4:

class SolutionNode {

public single_space LMax value = new LMax(0);

world_line VStore domains;

world_line CStore constraints;

public SolutionNode(VStore domains, CStore constraints) { . . . }

public flow count =

single_time ES consistent = read constraints.consistent(read domains);

when consistent == true then

readwrite value.inc()

end

}

The class SolutionNode reflects the number of explored nodes that belong to
the solution space. Similarly, we propose the class FailNode for computing the
cardinality of the explored failed space:

class FailNode {

public single_space LMax value = new LMax(0);

world_line VStore domains;

world_line CStore constraints;

public FailNode(VStore domains, CStore constraints) { . . . }

public flow count =

single_time ES consistent = read constraints.consistent(read domains);

when consistent == false then

readwrite value.inc()

end

}

Therefore, the total number of nodes minus the solution and fail counters gives
the cardinality of the currently explored unknown space. The problem is that the
nodes intern to the search tree will be counted in, but we are only interested by
the nodes currently inside the queue. To obtain the number of unexpanded nodes,
we first need to count the number of internal nodes. This is given by the following
class:

class InternalNode {

public single_space LMax value = new LMax(0);

public flow count =

single_space LBool branch_taken = false;

space

when branch_taken == false then
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readwrite value.inc();

branch_taken <- true;

end

end

}

The node that is instantiated in the current instant is not an internal node yet.
Hence, we increment the counter value as soon as we instantiate a child of this
node. In case the current node has several children, we increase the internal node
counter only once, and thus we use the variable branch_taken to indicate when a
children has been instantiated.

The number of unexpanded nodes is the difference between the unknown state
space and the internal nodes. These counters enable us to compute a boolean flag
indicating if the search is exhaustive or not:

class Exhaustiveness {

public single_space LBool value = false;

world_line VStore domains;

world_line CStore constraints;

single_space InternalNode int_nodes = new InternalNode();

single_space Node nodes = new Node();

single_space SolutionNode sols;

single_space FailNode fails;

public Exhaustiveness(VStore domains, CStore constraints) { . . . }

public proc detect =

par

|| int_nodes.count()

|| nodes.count()

|| sols.count()

|| fails.count()

|| exhaustive()

end

flow exhaustive =

single_time LMin unexpanded =

count_unexpanded(read nodes, read int_nodes, read sols, read fails);

when unexpanded |= 0 then

value <- true

end

LMin count_unexpanded(LMax nodes, LMax int_nodes, LMax sols, LMax fails) {

return new LMin(nodes.get() - int_nodes.get() - sols.get() - fails.get());

}

}

We rely on the Java method count_unexpanded to perform the subtraction and
returns the number of unexpanded nodes. We set the boolean exhaustive to true
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whenever this counter reaches 0. In this case, we are sure that every node has been
expanded since the frontier of the tree only contains solution and failed nodes.

6.2.3 Composing L5 search strategies

Spacetime offers a well-defined semantics for composing search strategies in L5

with high-level operators. To demonstrate this, we combine in different ways the
search strategies developed in this section. First of all, we start with a search
strategy IDS stopping when we reach the first solution or exhaustively explored
the search space:

class IDS_CSP {

single_space VStore domains;

single_space CStore constraints;

single_space LBool exhaustive = new LBool(false);

single_time StackLR queue = new StackLR();

public IDS_CSP(VStore domains, CStore constraints) { . . . }

public proc search =

weak abort when exhaustive |= true in

par

<> base_search()

<> exhaustiveness()

<> restart()

end

end

proc restart =

single_space IDS ids = new IDS();

ids.search(queue)

flow base_search =

universe(world_line domains, world_line constraints) with queue in

single_space Solver solver = new Solver(domains, constraints);

solver.first_solution();

end

flow exhaustiveness =

universe(world_line domains, world_line constraints,

single_space exhaustive) with queue in

single_space Exhaustiveness e = new Exhaustiveness(domains, constraints);

par

|| e.detect()

|| exhaustive <- e.value;

end

end

}
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There are several key points in this example:

• In the process search, we abort the computation whenever the flag exhaustive

reaches true. It is a weak abort for the same reason as in Solver.

• The processes are composed using the conjunctive parallel operator, because
whenever base_search reaches a solution, we want to stop the search. More-
over, this conjunctive composition is propagated inside the universe: we com-
pose the branches created by Solver and the pruning strategy of IDS by
intersection.

• The queue of nodes queue has the spacetime specifier single_time, and thus
it is reinitialized at each iteration of IDS.

• The computation of the base search and exhaustiveness are encapsulated
into two universes which are automatically synchronized with the one of the
strategy IDS.

• The variable domains and constraints are modified locally in the universe,
and thus the ones declared as attribute of IDS_CSP are not modified. There-
fore, each iteration starts with the initial CSP.

The strategy IDS_CSP combines trees produced by the two search strategies
Solver and IDS, and thus we combine strategies defined over L4. We extend
this search strategy by combining the two restart-based search strategies IDS and
LDS. It lifts the composition to sequences of trees, and thus we combine strategies
defined over L5. For example, in Figures 6.4 and 6.5, we compose IDS and LDS by
the intersection and union of their search trees. This is obtained by the following
spacetime program (extending IDS_CSP):

class IDS_LDS {

single_time StackLR queue = new StackLR();

// same as IDS_CSP...

// By default, we perform the intersection.

proc restart =

single_space IDS ids = new IDS();

single_space LDS lds = new LDS();

restart_intersect(ids, lds)

proc intersect(ids, lds) = par ids.search(queue) <> lds.search(queue) end

proc union(ids, lds) = par ids.search(queue) || lds.search(queue) end

}

The conjunctive and disjunctive parallel operators compute respectively the inter-
section and the union of the search trees produced by IDS and LDS.
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(a) N=1 (b) N=2 (c) N=3 (d) N=4

Figure 6.4: Intersection of IDS and LDS.

(a) N=1 (b) N=2 (c) N=3

Figure 6.5: Union of IDS and LDS.

6.2.4 L6 search strategy

We demonstrate a search strategy over the lattice L6. We launch a LDS strategy
until a restart threshold is reached, and then we continue with the IDS strategy if
LDS was not exhaustive.

class LDS_fby_IDS {

single_space VStore domains;

single_space CStore constraints;

single_space LMax restarts_limit;

single_space IDS_CSP ids_csp;

public LDS_fby_IDS(VStore domains, CStore constraints, LMax restarts_limit) { . . . }

proc search =

single_time ES continue;

universe(single_space domains, single_space constraints,

single_space restarts_limit, single_space continue) in

single_space BoundedNode restarts = new BoundedNode(restarts_limit);

single_space LDS_CSP lds_csp = new LDS_CSP(domains, constraints);

par

<> restarts.bound()

<> lds_csp.search()

end;

continue <- (read lds_csp.queue::constraints).consistent(read lds_csp.queue::domains)

and lds_csp.exhaustive.value == false;

end;

when continue then

ids_csp.search()
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end

}

We reuse the class BoundedNode to prune the search after a number of restarts. The
conjunctive parallel will terminate when we reach the restart bound. Moreover,
we use the conjunctive parallel to exit the universe if the search is exhaustive with
the LDS strategy. Once we exit the LDS search, we test that we did not reach
a solution and that the search was not exhaustive, in this case we continue with
IDS.

6.3 Guarded commands

We give an example of the Dijkstra’s guarded commands [Dij75] in spacetime and
show that we can also program “don’t-care nondeterministic” computations.

proc guarded_spaces =

when c1 then space p1 end ;

when c2 then space p2 end ;

when c3 then space p3 end

For instance, assuming the conditions c1 and c3 are true, the sequence of branches
⟨p1, p3⟩ is created. Using this basic process, we can simulate “don’t-care nondeter-
minism”. This can be achieved with a particular queueing strategy discarding all
nodes but one, or directly in the language as follows:

single_time LMax alt = new LMax(0);

proc do_not_care_nondeterminism =

par

|| guarded_spaces()

|| count_alternatives()

|| select_one()

end

proc count_alternatives =

when c1 then alt.inc() end ;

when c2 then alt.inc() end ;

when c3 then alt.inc() end

proc select_one =

single_time LMax choice = bot;

choice <- select(0, alt);

for(;)(single_time LMax current : new Range(1, alt))

when current == choice then

space nothing end

else prune end

end
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The variable alt is a counter of the entailed commands. The process count_-

alternatives, using the same conditions as in the process guarded_spaces, in-
crements the variable alt for each entailed alternative. From these alternatives,
one is selected according to a host function select in the process select_one,
and we store its index in the variable choice. Using the loop for, we provide
a “mask sequence” such that every branch is pruned but the one selected—this
is represented by the statement space nothing end. Hence, only one branch
is actually added onto the queue. For example, if c1 and c3 are entailed and c3
is chosen, the sequence given by the process guarded_spaces is ⟨p1, p3⟩ and the
one by select_one is ⟨prune, nothing⟩. The sequence obtained by the parallel
composition is ⟨p3||nothing⟩, and thus by simplification ⟨p3⟩.

In synchronous languages, “don’t-care nondeterminism” can be implemented
through oracle variables in Esterel [Tec05] and various nondeterministic statements
like choose in Quartz [Sch09]. These nondeterministic features are used to verify
the behavior of a synchronous program under a test environment.



Chapter 7

Interactive Computer-Aided Composition

Computer-aided composition systems enable composers to write programs to
generate and transform musical scores. For this purpose, the paradigm of con-
straint programming is appealing due to its declarative nature: the composer
constrains the score and relies on a constraint solver to propose solutions. How-
ever, the existing tools lack interactivity, and composers do not participate in the
selection of a particular solution. In this chapter, we propose a score editor in
which the composer can navigate in the solution space to select a solution of its
choice. We implement an interactive search strategy, in spacetime programming,
for lazily building the solution space of a problem. It demonstrates the usefulness
of the synchronous aspect of spacetime to interactively solve a constraint problem.
This chapter is an edited and extended version of the work appearing in [TAE17].

7.1 Introduction

Computer-aided composition is a routine for many composers, as attested by nu-
merous tools including OpenMusic [AADR98] and Max/MSP [PZ90]. It enables
the composer to delegate tedious computation to the machine, such as generat-
ing rhythms for non-overlapping voices of a score. The computation is usually
displayed in visual programming languages based on the functional paradigm. In
this paradigm, the data “flows” in a tree structure where nodes (named “boxes”)
encapsulate computation on data. If a functionality is missing in the available pre-
coded boxes, the composer must implement it with a “lower-level” programming
language, such as Lisp in OpenMusic. However, these programming languages are
less intuitive for composers than visual languages. This is why other paradigms,
such as constraint programming, are investigated.

Constraint programming has been applied to model multiple aspects of mu-
sic theory, such as harmony, rhythm and orchestration [TA11]. There are several
systems integrating constraint programming in computer-aided composition soft-
wares [AM11]. In particular, PWConstraint [Lau96b] is one of the first systems
that integrates constraint solving under a visual composition environment. An-
other approach is OMCloud [TC04] that is based on a non-exhaustive constraint

186
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solving technique called local search. Generally, merging the constraint and func-
tional paradigms is done by encapsulating constraint solving into a box where the
parameters are inputs to the constraint satisfaction problem (CSP) and the output
is a solution to this CSP.

Lack of interactivity

A CSP can have from zero (in case of unsatisfiability) to multiple solutions. Despite
the relational nature of constraints, the existing systems view a CSP as a function.
Therefore, the solution chosen by the solver is unpredictable and the composer does
not participate in the selection of this particular solution. Besides, this process
is not replicable: the first solution may change with the solver’s internal search
strategy, parameters or when the solver is simply updated.

On the contrary, a CSP can be over-constrained with no solution. In this case,
a common method is to use soft constraints: the system tries to satisfy as many
constraints as possible. It is similar to the problem with multiple solutions because
many “soft solutions” are possible. In summary, current approaches lack interac-
tivity between the composer and the constraint solver for selecting the solution.

Interactive score editor

To solve this problem, we suggest a score editor in which the composer can visual-
ize partially instantiated scores and steer the solving process toward a customized
solution (Section 7.2). We propose several interactive strategies for navigating in
the solution space to help the composer consciously select a solution (Section 7.3).
However, the existing abstractions inside constraint solvers are not tailored for
interactivity. This is why we are using the spacetime paradigm to facilitate inter-
actions between the composer and the solver. The synchronous part of spacetime
is the key to support interactive solving. We experiment the system with the
all-interval series problem (Section 7.2) and the diagnostic of musical rules (Sec-
tion 7.3.3). In the latter, instead of using soft constraints, we dynamically alert
the composer when we detect the violation of a rule. The result is an interactive
score editor with constraint solving as a part of the composition process.

7.2 Score editor with constraints

7.2.1 Visual constraint solving

We propose a new score editor programmed in Java. We particularly focus on the
visual and interactive aspect of constraint solving. To illustrate the system, we use
the all-interval series (AIS) musical constraint problem. It constrains the pitches
to be all different as well as the intervals between two successive pitches. This
is notably used to implement the twelve-tone technique in which every note of a
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pitch class has the same importance. This constraint comes built-in in our system
and we leave apart its exact modeling which is covered in Section 1.1.1.

Initially, when the AIS problem is set in the editor, the pitches are initialized
with domains in the interval [1..12] and are represented with rectangles:

& 124

Through the solving process, these rectangles become smaller and are displayed as
a note when instantiated. For example, the following score is partially instantiated
with four notes and the propagation reduces the domains of the rest of the score
accordingly—the rectangles became smaller:
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Experimentally, the ‘space’ key is pressed until a partial solution or a fully instan-
tiated solution satisfies the composer. An example of solution given by our system
to the all-interval series is:
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These scores are displayed in a larger visual programming environment similar
to OpenMusic. In this setting, a score is contained in a functional box which
ensures the compatibility with existing methods.

7.2.2 Spacetime for composition

The model of the problem can be monotonically updated (adding constraints)
throughout the solving process. Between instants, the composer is allowed to add
new constraints into the model. We identify two different ways to add constraints
interactively based on the spacetime specifiers:

• Persistent: The constraints are added in a store with the spacetime single_-
space, and they hold for the rest of the search. For example, a chord that
the composer particularly likes and wants to be part of the final musical
composition.

• Contextual: The constraints are added in a store with the spacetime world_-

line, and they hold only for the current subtree. For example, it can be an
interval between two notes that only makes sense in the presence of the
already instantiated notes.
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To achieve this, we need to modify the solver presented in Chapter 3. We only
highlight the changes here:

class PSolver {

world_line CStore constraints = bot;

single_space CStore cpersistent = bot;

flow merge_cstore = constraints <- cpersistent;

}

We use an additional constraint store cpersistent that can be augmented by user
constraints in between instants. In each instant, we impose these constraints in
the initial constraints store, hence they are never “forgotten”. For example, here,
the composer interactively chooses to instantiate the eighth note to G:
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n n# n# n# n

G is added in the persistent constraint store, and will remain unchanged until the
end of the search. Hence, every partial assignment or solution will contain this
note.

7.3 Interactive search strategies

Using the spacetime paradigm, we investigate several search strategies from the
most straightforward to the more complex but useful strategies.

7.3.1 Stop and resume the search

There are many ways to interact with a search tree during its traversal. Interacting
in each node is not really interesting because the search tree is usually too large
and we are not interested in every partial assignment. In most composition-aided
systems, the user interacts with the search at solution nodes and, if needed, asks
for the next solution. This behavior is programmed in spacetime with the following
code:

loop

single_time ES consistent = read constraints.consistent(read domains);

when consistent == true then

stop

else

pause

end

end

The statement stop gives the control back to the host program when we reach a
solution’s node.



Interactive Computer-Aided Composition 190

More generally, we can stop the search on any event. For example, we can be
interested by a partial assignment in which a new variable has just been instanti-
ated:

world_line LMax asn = new LMax(0);

loop

asn <- count_asn(read domains);

when pre asn |< asn then

stop

else

pause

end

end

The variable asn represents the number of variables instantiated in domains. It is
of type LMax with a world_line specifier because the number of assignments can
only increase along a path of the search tree. In each node, we update this value
by calling count_asn() on domains. We suspend the search whenever the current
number of assignments is greater than the previous one.

7.3.2 Lazy search tree

A musical CSP can have many solutions, especially in the early composition of
the musical piece because it is under-constrained. The set of solutions, proposed
by the strategies presented above, is a catalogue in which the composer picks one
solution. However, their analysis by the composer is not practical and computing
every solution can be time-consuming. We propose a search strategy interleaving
solution generation and composer interaction. The goal is to obtain a solution that
has been entirely chosen by the composer, but without exploring the full solution
space.

We call it a lazy search strategy because it explores the solutions space on-
demand. This strategy explores the score from left to right, and whenever a note
can be instantiated to several pitches, the composer chooses one. For example, the
next two scores represent a choice between ♯D and ♯G on the sixth note—framed
with a red rectangle:
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The strategy first computes a representative solution for each ♯D and ♯G. It is
mandatory if we want the composer to navigate in the solution space and not the
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full search space. To summarize, each time two or more solutions exist in a given
note’s domain, the system performs the following tasks:

(i) it pauses the search strategy,

(ii) it asks the composer for the note wanted, and

(iii) it discards all the other propositions and resumes the search.

The laziness comes from the fact that the search tree of the discarded solution will
not be explored further. We present the algorithm in Figure 7.1 and we comment
the main points of this algorithm.

Firstly, the key point of this algorithm is to rely on two queues StackLR left

and StackRL right for respectively exploring the tree from left to right and right to
left. We create one universe for each queue and solve the CSP from both directions
(process solve). Every time we reach a solution, the universe is paused up (process
pause_up_on_solution). Interestingly, thanks to the fact that we cannot observe
changes on world_line variables in lower universes, we can use the model for both
search strategies.

Secondly, the variable choice reflects the decision of the composer to explore
the left or the right part of the solution space. Its type is L<Boolean> where L<T>

is a Java class transforming any type T into a flat lattice. We ask the choice of the
composer in the process commit_composer_choice, and more precisely through a
call to the host function ask_composer. The host language can display the score on
a graphical interface because we pass the domains of both the left and right parts
in arguments. We also retrieve potential constraints from the composer that are
added persistently into the root node of the CSP. If we want to add a contextual
constraint, we can do so with a write on left::constraints for example.

Thirdly, alternating between the left to right and right to left strategies is done
in the process search. In the first instant, we need to explore both solutions, and
we rely on the process init to explore both part. Interestingly, we cannot put
these processes in parallel because they might not explore the same number of
nodes, and thus they will not be fully synchronized. Afterwards, we explore either
the left or right part of the search tree depending on the composer choice. This is
implemented with the suspend statement which activates the left search strategy
if the composer has kept the solution of the right part, and vice versa.

We detect that the full search tree has been explored when the two search
strategies find the same solution. In this case we terminate the search. The other
termination condition is when the CSP is unsatisfiable.

7.3.3 Diagnostic of musical rules

The lazy search algorithm is especially useful in case of under-constrained prob-
lems with many solutions, but it does not help if the CSP is unsatisfiable in the
first place. Current approaches [AM11] use soft constraints: a rank is given to
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each constraint and it tries to maximize the number of constraints satisfied. For
example, it can be used to define the rules of the species counterpoint. It defines
many rules for composing and some of them can be violated. However, it is not
easy to define preferences among the different rules. We take another approach
where the rules are “observer processes” detecting whenever they are unsatisfied:

class RuleDetection {

world_line VStore domains;

world_line CStore rule;

single_time ES entailed;

public RuleDetection(VStore domains, CStore rule) { . . . }

flow detect = entailed <- read rule.consistent(read domains);

}

The class RuleDetection is composed of the variable domains of the current CSP
and of the variable rule which is a constraint store containing the rule to monitor.
The process detect updates the variable entailed in each instant to reflect the
status of the current counterpoint rule relevant to the current search tree. When it
is equal to false, we know the current rule to be unsatisfiable and we can inform
the composer about it. Using the parallel operator, we can monitor the status of
any number of rules and they can be composed with any of the strategies presented
above.

7.4 Conclusion

Computer-aided composition with constraints is not often used due to the black
box search process in constraint solvers. We introduced a score editor with an
interactive search strategy allowing to navigate in the solution space. Hence, the
composer knows clearly why a solution is chosen. With the spacetime paradigm,
we are able to lazily explore the search tree, to pause and to resume the search
with additional information from the composer. In addition, at any stage of the
search, the partial solution can be visualized on the score and examples of possible
solutions are given. Lastly, we show that without solving a CSP, we can still check
if some constraints become unsatisfiable during the composition process and alert
the composer about it.

The modeling of musical constraint problems has been left apart. In the future,
we want to incorporate visual modeling capabilities in our score editor that fits the
interactivity of the search well. Last but not least, we will evaluate and experiment
this editor with professional composers.
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class LazySearch {

single_space VStore domains;

single_space CStore constraints;

single_time L<Boolean> choice = bot;

single_space StackLR left = new StackLR();

single_space StackRL right = new StackRL();

LazySearch(VStore domains, CStore constraints) { . . . }

proc solve(q) =

universe(world_line domains, world_line constraints) with q in

Solver solver = new Solver(domains, constraints);

par

|| solver.search();

|| pause_up_on_solution(solver);

end

end

proc pause_up_on_solution(solver) =

loop

when solver.consistent |= true then

pause up

else

pause

end

end

flow commit_composer_choice =

single_time CStore c =

ask_composer(read left::domains, read right::domains, write choice);

constraints <- c;

proc init = solve(right); pause; solve(left);

proc search =

init();

pause;

weak abort when left::domains == right::domains or

left::domains |= false in

par

|| suspend when choice |= true in solve(right) end

|| suspend when choice |= false in solve(left) end

|| commit_composer_choice()

end

end

}

Figure 7.1: Lazy search algorithm.



Chapter 8

Model Checking with Constraints

All along this work, we illustrated spacetime programming with search strate-
gies for solving constraint satisfaction problems. In this chapter, we broaden the
application scope of spacetime to model checking. Model checking is a verification
technique to check the satisfiability of a formula on an abstraction of a system,
called a model. Compared to constraint programming, the state space generated
by the model is non-monotonic and dynamically built during the exploration. Af-
ter formally describing model checking, we cast the definition of the model into a
lattice that can be manipulated within the spacetime paradigm. For this purpose,
we use a constraint representation of the model’s states. The search strategy, solv-
ing the CSP associated to the model, is composed with the model exploration and
is crucial to detect unreachable states. Afterwards, we show that a logic formula
can be viewed as a high-level search strategy that can itself be expressed in space-
time. All in all, we propose a spacetime program combining the model checking
search algorithm with the constraint solving procedure and the logic formula to
verify. This chapter is the current status of an on-going collaboration with Clément
Poncelet, and a first version has been published in [TP17].

8.1 Model checking

Model checking [BK08] is a verification technique which, given a model M, aims
to establish its conformance on a given formula F . For this purpose, it requires
a specification of the system to test, represented with abstract graphs, and of the
property to satisfy, usually described in a temporal logic. From these specifications,
a verification procedure is used to explore the state space induced by the model
M and to verify that the logic formula F is satisfied for each state s ∈ M. The
formula is specified with a set of atomic propositions AP , and a labelling function
L specifying the atomic propositions valid in each model state. Examples of atomic
propositions include state labels such as “the current state is equal to the label
ℓ1”, and some constraints to satisfy in a state such as x > 0 where x is a variable of
the model. Overall, the verification procedure succeeds if it can assess the model

194
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conformance to the formula, otherwise it returns a counterexample to guide the
user from an initial state ofM to an erroneous one serror violating the considered
property.

The search algorithms are central to such verification procedures and are crucial
for the efficiency of model checkers. Modern model checkers combine several search
strategies in order to reduce the complexity in time and space [CGK+13] and to
obtain better counterexamples [HF11, QW04].

Formally, a modelM is defined as a set of program graphs modelling the control
flow graph of a program and the processes synchronization. The program graphs
are defined on the same set of actions Act , statements Stmt and variables Var .
Given Cond(Var) a set of boolean conditions on Var and Eval(Var) the evaluation
function of the variables, each program graph is a tuple PGi = ⟨Loc,Effect, →֒
, Loc0, g0⟩i where:

(i) Loc is a set of locations,

(ii) Effect : Stmt × Eval(Var)→ Eval(Var) is a set of effect functions,

(iii) →֒: Loc × Cond(Var)× Act × Stmt × Loc is a set of transitions,

(iv) Loc0 ⊆ Loc is the set of initial locations, and

(v) g0 ∈ Cond(Var) is the set of initial conditions on PGi variables.

We denote the transition ⟨ℓ, g, a, α, ℓ′⟩ ∈→֒ as ℓ −−−→
g:a:α

ℓ′ where ℓ is the source
location, ℓ′ is the target location of a transition, g is its guard (the transition’s
firing condition), a is the communication action, and α is the effect.

The semantics of a set of n program graphs PG1..n is defined as a transition
system TS specifying the execution of n processes PG1∥ . . . ∥PGn in parallel. A
transition system TS is defined with ⟨S⃗,Act ,→, I⃗ ,AP , L⟩ where:

(i) S⃗ = ⟨s1, . . . , sn⟩ with si : Loci×Eval(Var) a pair of a program graph location
and its variables values.

(ii) Act =
∪

i∈[1...n] Act i ∪ τ is the union set of the program graph actions with
the τ -action abstracting the internal system transitions.

(iii) →: S⃗ × Act× S⃗ is the transition in the system as defined below.

(iv) I⃗ = ⟨I1, . . . , In⟩ is the initial states vector, that is, for each program, a pair
of initial locations and variables values satisfying its initial conditions.

(v) AP =
∪

APi is the set of atomic propositions of the problem.

(vi) L(⟨ℓ, η⟩) = {ℓ} ∪ {g ∈ Cond(Var) | η |= g} is the labelling function mapping
a state ⟨ℓ, η⟩ ∈ S⃗ to the atomic propositions satisfied by this state.
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The transition→ specifies how the global system TS progresses from a state S⃗
to another state S⃗ ′. The following semantics rules describe the internal transition
and the synchronization of two transitions on an action a ∈ Act :

internal
si = ⟨ℓi, ηi⟩ −−−→

g:τ :α

i
⟨ℓ′i, η

′
i⟩ = s′i ηi |= g η′i = Effect(α, ηi)

⟨s1, . . . , si, . . . , sn⟩ −→
τ
⟨s1, . . . , s

′
i, . . . , sn⟩

synchronization

si = ⟨ℓi, ηi⟩ −−−−−→
gi:a?:αi

i
⟨ℓ′i, η

′
i⟩ = s′i ηi |= gi η′i = Effect(α, ηi)

sj = ⟨ℓj, ηj⟩ −−−−−→
gj :a!:αj

j
⟨ℓ′j, η

′
j⟩ = s′j ηj |= gj η′j = Effect(α, ηj)

⟨s1, . . . , si, . . . , sj, . . . , sn⟩ −→
a
⟨s1, . . . , s

′
i, . . . , s

′
j, . . . , sn⟩

We define the function

post(S⃗) = {ℓ −−−→
g:a:α

ℓ′ | ⟨ℓ, η⟩ ∈ S⃗ ∧ ⟨ℓ, η, g, a, α, ℓ′, η′⟩ ∈→}

which maps the state vector S⃗ to a set of enabled program graph’s transitions.
We bring all the definitions together. Model checking consists in answering if

the logic formula Φ is valid in the transition system ts, which is written ts |= Φ.
The two foundational temporal logics are the linear temporal logic (LTL) and
the computation tree logic (CTL). A standard technique [BK08] is to transform
the negation of the logic formula into a Büchi automaton reading the words—
made of atomic propositions—accepted by the formula. Hence, if the intersection
of the transition system and the formula is empty, it means that the formula is
unsatisfiable, and thus valid in the transition system. Finally, we denote Sat the
set of states satisfying a logic formula. To sum up, a model assesses a property Φ
if ∃i ∈ I such that i |= Φ, i.e. at least one initial state of TS satisfies Φ.

init request

criticreleaseincr

end
i < N

apreq!

x++aprel!
i++

i ≥ N
unlock

lock

apreq?aprel?

Figure 8.1: Two program graphs specifying the Peterson mutual exclusion problem.

Example 8.1. As an example, we define the Peterson mutual exclusion problem
for which the model is depicted in Figure 8.1. On the left, the first program graph
models the critical access of a global variable x, and a program incrementing x until
its local variable i equals N . Its set of initial locations Loc0 is {init} (specified
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by the arrow without source node), its variables Var = {i, x} and its actions
Act = {apreq, aprel}. For clarity, we did not assign both a synchronization and an
effect on transitions, although it would be correct. In addition, τ -actions, empty
effect—denoted ϵ—and true conditions are omitted.

We can instantiate the left and right models an arbitrary number of times.
Each instantiation is a program graph executed as a process. For instance, we
can instantiate the left program graph twice, noted P1 and P2, and the right
one once, noted L. Assuming the variables initialized to 0, we have the initial
system state S⃗0 = {⟨P1.init, {0, 0}⟩, ⟨P2.init, {0, 0}⟩, ⟨L1.unlock, {0}⟩}, with {0, 0}
meaning that, for k ∈ {1, 2}, we have Eval(Pk.i) = 0 and Eval(x) = 0. From this
initial state, the only two enabled transitions are the ones targeting the request
location for each program graph P1 and P2, formally defined as:

post(S⃗0) = {P1.init −−−−−−−→
P1.i<N :τ :ϵ

P1.request, P2.init −−−−−−−→
P2.i<N :τ :ϵ

P2.request}

⌟

8.2 Model checking with constraints

In order to combine constraint solving and model checking, we use lattices as a
common ground to represent their state spaces. This combination allows us to
tackle several limits of these two paradigms by mixing their different approaches.
On the one hand, constraints are useful for pruning large subtrees by detecting
incoherences as soon as possible using propagation. However, bounded model
checking usually takes a “generate-and-test” approach enumerating the possible
values of the variables and choices of branches during a formula verification. On
the other hand, constraint programming is not suited for dynamically building a
CSP during the exploration whereas it is at the core of model checking algorithms.

To combine these two approaches, we propose to view the guards and effects in
model checking as constraints that are dynamically accumulated when exploring
the model’s state space. For this purpose, we first merge the definitions into a
lattice framework that is later used in Section 8.3 to program the search algorithm.

8.2.1 Constrained transition system

We first establish equivalences between some of the terminologies employed in both
fields. Model checking defines the set of variables Var , the evaluation function
Eval(V ar) (denoted η) and Effect for modifying the assignments of the variables.
Interestingly, a CSP is defined over ⟨d, P ⟩ ∈ L3 where the set of locations in d is
the set of variables, d is the evaluation function, and the propagators P are the
effects over the variables.

The major step in the merging of both definitions is to lift the evaluation
function Eval(V ar) to variables defined on domains rather than on single values.
Since variables are induced by constraints, the evaluation function handled into
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transitions is replaced with a CSP ⟨d, P ⟩ ∈ L3. We refine the definition of program
graph to a constrained program graph which is a tuple PGi = ⟨Loc,Effect, →֒
, Loc0, g0⟩i where:

(i) Loc is a set of locations.

(ii) Effect : Stmt × L3 → L3 is a set of effect functions adding a constraint to a
CSP.

(iii) →֒: Loc × Prop × Act × Stmt× Loc is a set of transitions.

(iv) Loc0 ⊆ Loc is the set of initial locations.

(v) g0 ∈ Prop is the set of initial conditions on PGi variables.

The guards and effects of a transition are both elements of the propagators’ set
Prop. Moreover, the constrained transition system TS is defined with ⟨S,Act ,→
, I⃗⟩ where:

(i) S = L⃗oc × L3 is the current state.

(ii) Act =
∪

i∈[1...n] Act i ∪ τ is the set of program graph actions (see Section 8.1).

(iii) →: S × Act× S are the two possible kinds of transitions.

(iv) I⃗ = ⟨I1, . . . , In⟩ is the initial states vector.

Since the whole model is defined over a constraint system, the set of atomic
propositions AP and the labelling function L are removed from the transition
system. Indeed, these items are used to check if a given location assesses an
atomic proposition and this verification is handled by our CSP during the formula
verification. Instead, an atomic proposition is an arbitrary constraint JcK ∈ Prop
and the labelling function is the entailment relation |=3.

The semantics rules of the transition→must be redefined with a CSP contained
in the state:
internal
⟨ℓi, ⟨d, P ⟩⟩ −−−→

g:τ :α

i
⟨ℓ′i, ⟨d

′, P ′⟩⟩ ⟨d′, P ′⟩ = Effect(α, ⟨d, P ∧ JgK⟩) sol(⟨d′, P ′⟩) ̸= ∅

⟨⟨ℓ1, . . . , ℓi, . . . , ℓn⟩, ⟨d, P ⟩⟩ −→
τ
⟨⟨ℓ1, . . . , ℓ

′
i, . . . , ℓn⟩, ⟨d

′, P ′⟩⟩

synchronization

⟨ℓi, ⟨d, P ⟩⟩ −−−−−→
gi:a?:αi

i
⟨ℓ′i, ⟨d

′, P ′⟩⟩ ⟨ℓj, ⟨d, P ⟩⟩ −−−−−→
gj :a!:αj

j
⟨ℓ′j, ⟨d

′, P ′⟩⟩

⟨d′, P ′⟩ = Effect(αi;αj, ⟨d, P ∧ JgiK ∧ JgjK⟩) sol(⟨d′, P ′⟩) ̸= ∅

⟨⟨ℓ1, . . . , ℓi, . . . , ℓj, . . . , ℓn⟩, ⟨d, P ⟩⟩ −→
a
⟨⟨ℓ1, . . . , ℓ

′
i, . . . , ℓ

′
j, . . . , ℓn⟩, ⟨d

′, P ′⟩⟩

The function Effect is used to obtain a new CSP after we applied the effects
and the guards of the transition. This new CSP must at least have one solution.
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In particular, if the CSP has one solution, it means that the guards are entailed
by the current CSP and that we can proceed. We see in Section 8.4.2 how we
compute this entailment relation. Last, we define the post function:

post(⟨ℓ⃗, ⟨d, P ⟩⟩) = {ℓ −−−→
g:a:α

ℓ′ | ℓ ∈ ℓ⃗ ∧ ⟨ℓ, ⟨d, P ⟩, g, a, α, ℓ′, ⟨d′, P ′⟩⟩ ∈→}

which maps the state ⟨ℓ⃗, ⟨d, P ⟩⟩ to a set of enabled program graph’s transitions.

8.2.2 Existential constraint system

The Effect function translates a statement s ∈ Stmt into a propagator p ∈ Prop
that is then added to the current CSP. However, the translation of an assignment
into a constraint is not direct and needs a special treatment. For example, the effect
statement x := x+3 is not a constraint since the assignment := is a function, not a
relation, and thus the constraint x = x+3 is unsatisfiable. In existing approaches,
this problem is solved by giving a stream interpretation to the variables [BTM11,
LLLS11, LL14]. The variables are coupled with a timestamp and form a sequence
of values (v1, v2, . . . , vn) such that vi is a variable at the time point i. In this setting,
the previous example is transformed into the constraint xt+1 = xt+3. Constraints
on streams involve non-trivial changes in the constraint solvers because: (i) streams
are infinite sequence, and thus the standard search algorithm—operating on finite
domains—needs to be adapted, and (ii) constraints must be lifted to operate on
streams instead of domains.

We observe that guards and effects in a constrained transition system always
refer to the last assigned value. Therefore, at any point in time t, the past values
at time ti, i > 0 can be hidden since new constraints will not involve them. We
endow the constraint system with an existential operator ∃ allowing to declare
fresh variables in a CSP. This operator is taken from the concurrent constraint
programming paradigm [SR89] for locally declaring new variables associated with
a constraint system.

We assume that the domain d is defined over the set of names Name. The
existential operator is implemented with a substitution operator over the CSP such
that, for a fresh variable y ∈ Name, ∃x.⟨d, P ⟩ def

= ⟨d, P ⟩[x → y]. The substitution
⟨d, P ⟩[x → y] replaces every occurrence of x in d and P by the variable named
y. For example, given an arithmetic expression expr, we transform an assignment
x := expr to a constraint ∃z.(z = expr ∧ ∃x.x = z) where z ∈ Name is fresh in
the constraint system. The variable z serves to evaluate the expression expr with
the past value of x. We hide the variable x just after and assigns z to the newly
declared x. Using the substitution operator only, we can also define the function
Effect(x := expr, ⟨d, P ⟩) as follows:

⟨d′, P ′⟩ = ⟨d, P ⟩[x→ y] (8.1)

⟨d′ ⊔2 (x, d(x)), P
′ ⊔3 Jx = expr[x→ y]K⟩ (8.2)
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First, we substitute the variable x in the current CSP with a fresh variable y
(equation 8.1), and second, we add the assignment constraint x = expr[x→ y] in
the new CSP (equation 8.2). In the previous example, the assignment x := x + 3
is transformed into x = y + 3 where y refers to x before the substitution. The
notion of stream still implicitly exists but is hidden in the constraint system and
we cannot constrain the evolution of a variable through time (such as with stream
constraints).

The existential quantifier glues CSP solving with the dynamic creation of the
model. Therefore, we can check constraint such as x = 1 in every state even if x
does not evolve monotonically (Section 8.4).

8.2.3 Lattice abstraction

Model checking as well as constraint solving are based on a backtracking algorithm
for exploring a state space. The major difference between both formalisms is
that the state space in model checking is infinite while it is finite in constraint
programming. In this section, we present a lattice abstraction of a state of the
constrained model. This abstraction is then used in Section 8.3 to develop the full
model checking algorithm.

The lattice of a constrained transition system is infinite because the existential
operator extends the set of variables when a cycle is encountered. Formally, the
state space is a set Locn × L3 where ℓ⃗ ∈ Locn is the set of locations of the n
program’s graphs, and ⟨d, P ⟩ ∈ L3 is the current constraint system. The order
of this lattice ⟨ℓ⃗′, ⟨d′, P ′⟩⟩ |= ⟨ℓ⃗, ⟨d, P ⟩⟩ is defined if ⟨d′, P ′⟩ |= ⟨d, P ⟩ ∧ ℓ⃗ →∗ ℓ⃗′. A
state s is “after” another state s′ if we can reach the location of s from s′, and if
the information presents in s′ can be deduced from s. We detect an already visited
state when we reach a state with the same location and in which we did not gain
any information.

Step A lattice’s transition is a “step” in the model checking process. Given the
function post and with m the sum of enabled transitions, every step has m possible
next transitions. Indeed when several next transitions are possible, the choice is
nondeterministic in model checking. For our CSP, a step implies:

(i) the computation of these m transitions from S⃗ (notice that it can be higher
than the number of program graphs for the first step since a PG may have
more than one initial location), and

(ii) for each transition ℓi −−−→
g:a:α

ℓ′i ∈ post(S⃗):

(a) Joining the guard g in P ,

(b) Checking with the new assignment a of xi+1, i.e if a ∈ Sol(⟨d, P ⟩), and
the storage of a in the new assignment xi+1 for each variables xi+1 in α.
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P ′ = P ∪ JgK ∪ JαK.

(iii) the computation of the next states S⃗ ′ (for each transition) with the new
lattice ⟨⟨d′, P ′⟩, ℓ⃗′⟩.

Remark: We mimic the application of a model checker step, following the
relation → defined Section 8.1. A transition application can be one τ -transition
and only one transition is taken, or a synchronization transition which implies two
transitions firing: the action emission (a!) and reception (a?). In this case, the
guard added to P is g = g1 ∧ g2 and the effects α = α1 ∧ α2. Moreover, once an
emission is received, every complementary action (a?) in a different source can be
fired non-deterministically, this should be managed in the CSP.

⊥

⊤

⟨⟨P1.i, P2.i, L1.u, ⟩(d, ∅)⟩

⟨⟨P1.rq, P2.i, L1.u⟩,
(d, {P1.i < N})⟩

⟨⟨P1.i, P2.rq, L1.u⟩,
(d, {P2.i < N})⟩

⟨⟨P1.e, P2.i, L1.u⟩,
(d, {P1.i ≥ N})⟩

⟨⟨P1.i, P2.e, L1.u⟩,
(d, {P2.i ≥ N})⟩

...
...

...
...

Figure 8.2: Lattices for TS Perterson example.

Example 8.2. We depict the lattice of the Peterson mutual exclusion problem
in Figure 8.2. For a lattice node, the first item contains the control locations of
each program graph, and we denote P.i for P.init, P.rq for P.request, P.e for
P.end and L.u for L.unlock. The second item contains the variables domains and
their constraints applied when a transition is fired. The CSP is initialized with
the initial constraints g0 and the variable’s domains (the local variable i for each
process P are denoted respectively P1.i and P2.i). In this example, we have the
variables of d be {x,P1.i,P2.i} and the constraint store is empty since we do not
have initial constraints. The first step (the result of post) generates 4 transitions,
2 for each program graph Pi, being the two branches of the if statement. The
lattice elements resulting from this step are the four possible choices, each with a
fired transition, and such that they added their constraints into the CSP. ⌟

Based on the definitions of Section 8.2 we describe dynamic creation and explo-
ration of the state space. To this aim, we use the spacetime language and a library
representing the abstract transition system TS which provides the methods:

post returning the set of the enabled transitions from the current S⃗ following →.
This library does not handle constraints management but only the synchro-
nization feature.
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apply requiring a transition and applying it onto the current state. Two behaviors
are possible:

• Nothing is returned, and the method updates the current state with the
input transition’s target.

• A set of transitions is returned. They are the enabled transition syn-
chronized with the action-transition applied in input.

8.3 Spacetime algorithm

In Section 8.2, we viewed the CSP as a lattice object that evolves when we pass
a transition. Specifically, in each state, we check the condition sol(⟨d′, P ′⟩) ̸= ∅
that ensures the reachability of the current state, i.e. the CSP ⟨d′, P ′⟩ must have
at least one solution. However, establishing the satisfiability of a CSP is costly:
it generates its own state space and can require complex algorithms to be solved
efficiently. Hence, the search algorithm of a constrained transition system induces
two layers of non-determinism: (i) at the transition level in the model, and (ii) at
the CSP level. Using the spacetime language, we provide the description of an
algorithm interleaving transition execution and constraint solving. Also, a major
optimisation consists in resuming the solver from the previous solution computed
instead of restarting everything from scratch.

Our search algorithm is implemented in two classes: StateSpace implementing
the state space of the transition system and CSP for encapsulating the constraint
solving.

class StateSpace {

world_line VStore domains;

world_line CStore constraints;

world_line TransitionSystem ts;

world_line StackLR queue;

public StateSpace(VStore domains, CStore constraints,

TransitionSystem ts, StackLR queue) { . . . }

public proc search =

par

|| next_transition();

|| prune_unreachable();

|| solve();

end

flow next_transition =

for(;)(single_time Transition t: readwrite ts.post())

space readwrite ts.apply(read t, write domains, write constraints) end

end
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flow prune_unreachable =

single_time ES consistent = read queue::constraints.consistent(read queue::domains);

when consistent == false then

prune;

end

proc solve =

universe(world_line domains, world_line constraints) with queue in

Solver solver = new Solver(domains, constraints);

par

|| solver.search();

|| pause_up_on_solution(solver);

end

end

proc pause_up_on_solution(solver) =

loop

when solver.consistent |= true then

pause up

else

pause

end

end

}

The field ts instantiates the constrained transition system TS as defined Sec-
tion 8.2.1, and holds the set of current locations ℓ⃗. These fields form the state
⟨⃗l, ⟨d, P ⟩⟩ of the transition system as defined in Section 8.2.3. We build the set of
future states to explore in next_transition. For this purpose, two methods on
TransitionSystem are provided:

(i) post returns the set of the possible next transitions given by post(⟨ℓ⃗, ⟨d, P ⟩⟩).

(ii) apply commits to a transition in the system by updating the set of locations
and applying the guards and effects to the current CSP, possibly with variable
substitutions (Section 8.2.2).

The process prune_unreachable verifies in each instant whether the CSP holds
a solution or is failed. In the latter case, it means that the search process was not
able to find a solution and that the current state is unreachable. Hence, we do
not further explore the rest of the current state space and backtrack using the
statement prune. Note that the CSP is also backtracked.

An important aspect is that the queue of nodes has the specifier world_line.
It means that whenever the transition system is backtracked, we also backtracked
the queue of nodes of our CSP. Therefore, we restore our system to the exact same
solving state as before, without recomputing a solution.
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8.4 Search strategies for verification

Models are verified with formula in some temporal logic such as linear temporal
logic (LTL) or computation tree logic (CTL). They express how the state space is
explored in an abstract way. We can view these logic formulas as pruning strategies
specifying only the part of the state space they are interested in.

In model checking, temporal logic is commonly used to express properties that
must be verified on the model (Section 8.1). Instead of relying on a specific tem-
poral logic, we directly specify our property with spacetime. Although being more
verbose than a logic formula, the advantage of spacetime is to make accessible the
concepts of state space creation, satisfiability checking of the formula and search
strategies to optimize the exploration. Another advantage is that a spacetime pro-
gram describes an executable algorithm. Nevertheless, comparing logic formulas
with the spacetime paradigm is an interesting research topic that we reserve for
future work.

In this section, we study the satisfiability checking of properties in the tran-
sition system. Firstly, we provide two examples where the properties to check
can be concisely expressed using constraints. Secondly, we describe an entailment
algorithm for computing ts |= Φ where Φ is a constraint instead of a formula.

8.4.1 Verifying constraint-based property

We show two examples where constraint programming is useful for proving struc-
tural properties. For this purpose, we use global constraints to capture the sub-
structures of a problem. There is a substantial amount of global constraints [BCR11]
covering different aspects of constraint modelling such as scheduling, packing or
sorting.

Example 8.3 (at_most). In the Example 8.1, we modelled the Peterson mutual
exclusion problem. It models processes sharing a single resource x that must be
accessed by one process at a time. This property can be captured by the at_-
most(n, array, v) counting global constraint. It enforces that at most n variables
take the value v in array. In the Peterson example, we want at most one process
in the state releasei and critici at the same time. We write this constraint as
at_most(1, ∀i ∈ N.[critici, releasei], true): at most one of the state critici and
releasei is equal to true at the same time. ⌟

Example 8.4 (distinct). The transition system in Figure 8.3 models the general
problem of assigning a unique resource—here a unique identifier (UID)—to each
process. The program graph on the left is assigning a unique value to the variable
uid. The access to this variable is secured by the program graph on the right. The
structural property to be checked is the uniqueness of the UID for the N concurrent
instances of the left program. To this end, the global constraint distinct(array)
ensures that the variables in array are all different. Therefore, the property is
expressed with the constraint distinct(∀i ∈ N.uidi). ⌟
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request critic assign release cont

apreq! x++ uid := x aprel!
unlock

lock

apreq?aprel?

Figure 8.3: A transition system modeling the assignment of a UID to each process.

8.4.2 Constraint entailment algorithm

A logic formula is viewed as a spacetime process pruning the state space or stopping
the exploration. It works by composing the process formula with the StateSpace

module.
Given a constraint c, we propose a search strategy to establish the entailment

of:
Sol3to2(⟨d

′, P ′⟩) |=A (Sol2) Sol3to2(⟨d, P ⟩)

that was discussed in Section 2.4.2 with the lattice-based semantics of CCP. This
algorithm works concurrently to the algorithm establishing the consistency of a
CSP, and thus the CSP is not solved multiple times. However, we do not pause up
the constraint search anymore when reaching the first solution, but on a criterion
depending on the formula to check. The following class Entailment mimics the
mathematical definition of the entailment and stops whenever a contradiction is
encountered (the property can be true or false):

class Entailment {

world_line VStore domains;

world_line CStore constraints;

world_line StackLR queue;

world_line L<Boolean> entailed = bot;

single_space CStore property;

public Entailment(VStore domains, CStore constraints

CStore property, StackLR queue) { . . . }

public proc verify =

universe(world_line domains, world_line constraints,

single_space property, single_space entailed) with queue in

par

|| entailment_on_solution()

|| pause_up_on_contradiction()

end

end

flow entailment_on_solution =

single_time ES consistent = read constraints.consistent(read domains);
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when consistent == true then

entailed <- read property.consistent(read domains);

end

proc pause_up_on_contradiction =

loop

when entailed == top then

pause up;

else

pause

end

end

}

The field entailed reflects the status of the variable property in the current
CSP. This variable is used to specify how the property is checked, for example
to select in which state it must apply. We check the entailment of the property
in each solution node, and we stop the algorithm whenever the property is both
entailed and disentailed (entailed equals to the top element of its lattice).

For example, the property at_most presented in the Example 8.3 must be valid
in every state of the transition system. This can be checked with the following
algorithm:

class ModelChecking {

world_line VStore domains;

world_line CStore constraints;

world_line TransitionSystem ts;

single_space CStore property;

world_line StackLR queue = new StackLR();

public ModelChecking(VStore domains, CStore constraints

TransitionSystem ts, CStore property) { . . . }

proc check =

single_space StateSpace state_space =

new StateSpace(domains, constraints, ts, queue);

single_space Entailment entailment =

new Entailment(domains, constraints, property, queue);

weak abort when entailment.entailed == false in

par

|| state_space.search()

|| entailment.verify()

end

end

}

Whenever we detect that the entailment is not consistent, we abort the com-
putation. Thanks to the semantics of spacetime, the universes of both the CSP
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solving and the property checking are combined. In addition, we use a nested
combinatorial structure where the top-level universe is nondeterministic over a set
of transitions, and where the lower universe is nondeterministic over a CSP.

The advantage of spacetime in this example is that we can easily add new
strategies without modifying the existing code.

8.5 Conclusion

In this chapter, we sketched a framework combining constraint solving and model
checking. The advantage of combining both techniques is that we do not need to
restart the model checker for every different input, but instead we rely on a CSP to
represent the domains of the input. The main purpose of this chapter was to show
that spacetime can be applied outside the sole field of constraint programming.
Moreover, it demonstrated that nested combinatorial structures can be expressed
with universes, and that the resulting program is modular. This work is only a
first step towards a usable model checker with constraints, and we need to assess
the efficiency of such a system in the future. To conclude this chapter, we discuss
about related work combining CSP and model checking.

Related work

Combining constraint solving and model checker problems is not a new concept
as attested by the numerous works in the literature. There are numerous works
on encoding model checking problems into a CSP to check safety and soundness
properties [DP01, DP99, Pod00]. In particular, [NL00] encodes the CTL semantics
using constraints clauses and an array reduction method to handle state space
explosions. However, the problem (model transitions and formula) is often encoded
in a huge constraint system, which does not merge the dynamic aspect of model
checking, and the partial information management of constraint solving. Moreover,
these works are mainly applied to specific applications, and the solution is generally
to translate a model checking problem into a CSP.

In [LLLS11], the CSP is extended on infinite variable streams using Büchi-
automata, a standard model checking technique, to solve the problem. They de-
fined a stream CSP (called St-CSP) which provides streams to store the history of
variables. The original aspect of this work is to use constraint and model checking
to generate a stream of solutions verifying some properties. Therefore, they do
not try to verify some properties on a model, but rather use these properties to
generate valid solutions. They show it can be used to program applications with
infinite behavior such as simulating juggling patterns and a musical harmonization
problem. Interestingly, they are using a dataflow synchronous language as a spec-
ification language, and in this respect it would be very interesting to investigate
the relation with spacetime.
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Chapter 9

Conclusion

The main goal of this dissertation was to unravel compositionality issues of
search strategies in combinatorial problems. We first devised a lattice theory of
constraint programming that precisely captures the complex combinatorial struc-
tures manipulated during constraint solving. It is given in a hierarchy of lattice
structures isolating various components of a constraint solver. Beyond these al-
gorithmic aspects, we also showed the lattice hierarchy was suited for classifying
constraint-based languages. Our work is definitely not exhaustive and many con-
straint algorithms and languages were left out of scope. However, we hope that
this new viewpoint reassembles the disparate pieces of constraint solving into a
single theory.

To summarize our proposal, spacetime programming is centered around the
concept of logical time as a synchronization mechanism of search strategies. Our
idea is to view search strategies as processes. Hence, we can combine strategies with
the very same operators as the ones used to combine processes. In general, a major
challenge when designing a new process calculus is to ensure that the interactions
between processes lead to a deterministic computation. In synchronous languages
such as Esterel, they provide deterministic guarantees with the limitation that
processes can only communicate through boolean variables. We generalized this
model to arbitrary lattice structures which enable processes to communicate over
structures as complex as constraints. Our causality analysis verifies that programs
are monotonic functions, and thus preserve determinism.

This first extension allowed us to define processes communicating inside one
layer of the lattice hierarchy. We further extended the language with spacetime
refinement in order to program processes operating over multiple layers of the
lattice hierarchy. It generalizes time refinement, a notion of nested time-scale
already presents in synchronous languages such as Quartz. In addition to the time
dimension, we propose a spatial dimension with an abstract queueing strategy that
links the layers of the hierarchy. Spacetime refinement opens the door to many
more search strategies such as the family of restart-based search strategies.

After formalizing the semantics of spacetime, we turned to the applications
of our language. Our musical interactive computer-aided composition software
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demonstrated that spacetime is suited to program search strategies that can be
easily stopped and resumed. One of the advantage is to interact with the graphical
user interface during search such that the user can impact the search process. We
focussed on a first proof of concept and we did not consider the ergonomic aspect
and the user experience of this software. In a second time, we applied spacetime
programming to model checkers where we merged ideas from constraint program-
ming and model checking algorithms. The departure point of this work was the
observation that parametric model checking could be solved more efficiently with
constraint solving. We wrote a search strategy that dynamically creates a CSP
as we explore the model. Although these works are both experimental, it gives
a glimpse into the applicability of spacetime programming beyond the field of
constraint programming.

The concept of logical time inside the semantics of programming languages
has been very little explored outside the field of synchronous programming. We
hope this dissertation demonstrates that time is a central device to coordinate and
compose processes. In addition to time, we organized the space as a lattice struc-
ture, and we showed that usual problems of deadlock and race conditions vanished
with compile-time analysis. Time and space are central concepts in physics but
also in all sciences and in nature, and we believe they are essential concepts in
programming languages as well.
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Future work

10.1 Towards constraint programming with lattices

Our lattice framework developed in Part I is a first attempt to characterize con-
straint programming with lattices. We believe that it can be extend to better
reflect the techniques employed in constraint solvers. First, we sketch how to use
the delta operation to program restoration strategies, which are crucial to manage
memory in constraint solvers. Secondly, we discuss the equivalence of two CSPs
which is an effective technique to simplify constraint models.

Lattice for restoration strategies

A transversal concern when backtracking is the restoration strategy used for stor-
ing nodes in a compact way; this is crucial to solve large CSP’s instances in
constraint solvers. In the lattice L4, we build a search tree by fully copying
the nodes of the search tree. However, it has the disadvantage of consuming a
lot of memory and solvers are usually based on other restoration strategies. We
can mention three main restoration strategies: copying, trailing and recomputa-
tion [Sch99, CHN01, Sch02]. One of the only competitive systems using copying
is Minion [GJM06]. It is competitive because it targets a specific class of problems
and optimizes the memory at the bit-level. Generally, constraint systems either use
trailing (e.g. Choco [PFL15] and Eclipse [SS12]) or recomputation (e.g. Oz [Sch02]
and GeCode [STL14]). Trailing is inherited from the constraint logic paradigm
(see Section 2.5.2) while recomputation is more recent but has been proven very
competitive [Sch99].

The delta operator ∆ forms the basis for integrating such restoration strategies
into our lattice framework. We provide an example supporting this claim.

Example 10.1 (Difference between two nodes). We first recall the CSP NeqXYZ
presented in Example 1.8:

NeqXYZ = ⟨ {x 7→ [1..1], y 7→ [1..3], z 7→ [1..3]},
{Jx ̸= yK, Jx ̸= zK, Jy ̸= zK}⟩
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We consider the delta between the top element of TS(NeqXYZ ) given by

T = ⟨ {x 7→ [1..1], y 7→ [2..3], z 7→ [2..3]},
{Jx ̸= yK, Jx ̸= zK, Jy ̸= zK}⟩

and the left node obtained after increasing the information in y given by

L = ⟨ {x 7→ [1..1], y 7→ [2..2], z 7→ [2..3]},
{Jx ̸= yK, Jx ̸= zK, Jy ̸= zK}⟩

The right node R is defined similarly. The delta between T and L is given by
DL = T∆L = ⟨{y 7→ [2..2])}, ∅⟩ and between T and R by DR = T∆R = ⟨{y 7→
[3..3]}, ∅⟩. The set {T,DL,DR} is more compact than the full queue of nodes
{L,R}. The key is to avoid repeating information present in different nodes.
Nevertheless, the full queue can be recovered with {T ⊔3DL, T ⊔3DR}. Therefore,
it is a lossless compression of the lattice L4. ⌟

A research direction is to investigate the various forms of trailing with the
operator ∆ applied to different layers of the hierarchy, and recomputation as a
delta over the constraint store in L3. Moreover, local search algorithms also work
with the delta operation to compute the distance between two states [VHM05].
Perhaps the delta operator can lead towards a language for expressing both local
and global search with similar language’s abstractions.

Equivalence of two CSPs

In the lattice L3, we order the propagator set P(Prop) by set inclusion. This order
seems a bit restrictive since, for example, the two sets of constraints {x > y} and
{x ̸= y, x ≥ y} are unordered. However, these two sets are equivalent since they
generate the same set of solutions. Applications of verifying the equivalence occur,
for example, in the modelling language MiniZinc where a preprocessing step is ap-
plied to the models when they are compiled to the simpler format FlatZinc [LT15].
This is useful to reduce the solving time and to keep low the number of concepts
to be implemented by the back-end solvers. At the theoretical level, such prepro-
cessing algorithms have roots into theorem provers since CSP1 ⇐⇒ CSP2 must
be a valid formula. From this perspective, constraint programming in the context
of theorem-proving has been studied in [Apt98, Apt03]. The question is how to
incorporate such equivalences in our lattice framework, and is it relevant to do so?

10.2 Extensions of spacetime

In this section, we consider three extensions of spacetime. Firstly, spacetime can be
extended to provide a better support for user-defined lattice structures. It would
allow the user to create more easily its own lattices, and enable the compiler
to perform better static analysis. Secondly, we consider higher-order processes



Future work 213

in spacetime, which improve the capability of abstracting strategies with similar
search patterns. In a third extension, we investigate a stronger causality analysis
by comparison with what is realized in Esterel.

Lattice type

The semantics of spacetime assumes that the variables and host functions are
well-defined. For example, the user must provide the implementation, in the host
language, of the entailment and join operations for each variable’s type. It can be
tricky and error-prone, especially for users not acquainted with the lattice theory.
Therefore, it is pertinent to investigate lattice types for defining lattice structures
within spacetime.

We saw in Chapter 1 that most lattices are defined by composition of existing
lattices. The idea is to provide a collection of basic lattices. From these, the user
can derive new well-formed lattices using composition operators inside spacetime
(e.g. Cartesian product, disjoint union; see Section 1.2). It is interesting to realize
that compound data (structures or objects) are analogue to Cartesian products,
and that sum types are similar to disjoint unions. Perhaps type theory can readily
formalize lattice composition.

Lattice types raise several questions that must be answered in future research.
Is it possible to provide a complete (or sufficiently interesting) set of declarative
operators for composing lattices? How to define the entailment and join operations
of the newly created lattices with spacetime operations?

Higher-order spacetime process

The search strategies IDS and LDS introduced in Chapter 6 follow a very similar
pattern: we explore a tree until a condition is met, and we restart by increasing
a bound. However, we duplicated this behavior for both strategies instead of
isolating it into a higher-order strategy. It is interesting to take an example from
the search combinators [STW+13] that is specifically designed to specify such
strategies:

id(s)
def

= ir(depth, 0,+, 1,∞, s)

ir(p, l,⊕, i, u, s)
def

= let(n, l, restart(n ≤ u,
and([assign(n, n⊕ i), limit(p ≤ n, s)])))

The combinator id is an iterative depth-first search (IDS) that restarts a strategy
s following the pattern of IDS. They encapsulate iterative restarting strategy in a
combinator ir where the strategy s is restarted until we reach a limit n ≤ u. To
summarize, n is an internal counter initialized at l, and increased by n⊕ i on each
restart.

What is important is that the search strategy is written vertically: each strategy
is encapsulated in another strategy. In spacetime, we compose search strategy
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horizontally: each strategy is executed concurrently (“next to”) another strategy.
We believe that both vertical and horizontal compositionality is required in order
to achieve high re-usability of search strategies.

However, the causality analysis requires that the full program is known at
compile-time, and thus we need to fully expand the code to perform this analysis.
Our proposal is to rely on the capabilities of the host language to obtain such
higher-order processes. In the following example, we propose a restart-based search
strategy parametrized by a bounded search process such as BoundedDepth and
BoundedDiscrepancy (see Section 6.1.2).

interface BoundedSearch {

public proc prune_on_limit(single_space LMax);

}

class RestartSearch<Queue, T extends BoundedSearch> {

single_space LMax limit = new LMax(0);

single_time Queue queue;

single_time T bound = new T();

public RestartSearch(Queue queue) { . . . }

flow search =

readwrite limit.inc();

universe(single_space limit, single_space bound) with queue in

bound.prune_on_limit(limit);

end

}

The class RestartSearch is parametrized by the type of a queue and by a bounded
search strategy. We expect this strategy to implement the interface BoundedSearch
in order to call its process prune_on_limit. We can instantiate this class with a
BoundedDepth type as follows:

single_time StackLR queue = new StackLR();

RestartSearch<StackLR, BoundedDepth> ids = new RestartSearch<>(queue);

ids.search();

However, such an extension is not straightforward to integrate with the host
language Java due to the type-erasure scheme in Java. To keep the code known at
compile-time, spacetime would need an expansion mechanism similar to the C++
templates. A possibility is to expand the code at compile-time for the analysis,
and to rely on the type-erasure scheme of Java when generating the code. Besides,
another problem occurs: we need to take care of the other forms of polymorphism.
For example, overriding is a dynamic mechanism in Java, and thus it does not mix
well with static analysis.
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Stronger causality analysis of spacetime program

To perform its causality analysis, Esterel performs a partial evaluation of the pro-
gram by considering the value of the signals. It is interesting to pursue this idea
with spacetime programs in order to accept more causal programs. However,
this can only be achieved by a deep integration into the host language since the
compiler of spacetime would need to cooperate with the host lattice structures.
Another possibility, converging with the idea of lattice modules, is to define the
lattice structures within spacetime. It would enable the compiler to reason more
precisely about these lattices.

10.3 Beyond search in constraint programming

In this section, we investigate how spacetime could be integrated with other
paradigms in order to program the layer L3 in the lattice hierarchy.

Programming L3 in spacetime

Guarded commands are a first step towards programming in spacetime the lattice
L3, or more precisely, the transition system sub-lattice TS3. One of the challenges
is to be able to customize what branch is selected next within the spacetime
language. This would allow implementers to program various propagation engines
with different selection strategies such as with the DSL presented in [PLDJ14].
Similarly to search strategies, the inference strategy can have a substantial impact
on the performances.

Another challenge is to program global constraints which are usually imple-
mented in lower-level programming languages. A research direction would be to
use a graph rewriting language, such as LMNtal [Ued09], for programming global
constraints, and to obtain a fully general language for programming the lattice L3.
It is especially important because global constraints are at the heart of constraint
programming, and entire researches are axed on specific global constraints. On the
other hand, global constraints are also central to bridging constraint programming
with other fields such as data mining [GDN+15].

To program L3 in spacetime, an idea is to generalize the fixed point semantics
of the entailment operator to arbitrary functions. For example, we could propose
an operator fixpoint fun(a, b) that would call the host function fun several
times until it reaches a fixed point and whenever a and b are modified. Such
a fixed point operator would allow the propagators to be programmed and to
interact under some events. A challenge is to extend the deterministic scheduling
of read-write accesses to deal with fixed point functions.
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