Gamma-ray bursts (GRBs) are brief bursts of high-energy electromagnetic radiation originating from space, formed in an ultra-relativistic jet produced in the aftermath of a newly born stellar mass black hole. A subclass of so-called long-duration GRBs (LGRBs, lasting typically a few tens of seconds) have been shown to be associated with the core-collapse of massive stars. Due to the short-lived nature of massive stars, LGRBs have been suggested as promising tracers of star formation up to the earliest epochs of the Universe. However, not all massive star core-collapses give rise to LGRBs as these are rare events, requiring particular conditions to form. In this thesis, we investigate a crucial ingredient for using LGRBs as tracers of star formation: the LGRB efficiency, defined as the fraction of core-collapses that form an LGRB. In the first part of the thesis, we present a statistical population model developed to reproduce three carefully selected observational constraints. This model allows us to constrain the intrinsic LGRB population and quantify the LGRB efficiency, showing that it increases with redshift. The second part of the thesis is devoted to identifying the factors affecting the LGRB efficiency by studying a complete, unbiased sample of LGRBs at 1 < z < 2. We study the environments in which

LGRBs form by studying the properties of their host galaxies and comparing them with typical star-forming galaxies. We show that, as expected from theoretical considerations, metallicity is a key driving factor behind the LGRB efficiency. These results combined bring us one step closer to understanding the progenitors of LGRBs.

xi

Résumé

Les sursauts gamma (GRB) sont de brèves bouffées de rayonnement électromagnétique à haute énergie provenant de l'espace, formés dans un jet ultra-relativiste à l'issue de la naissance d'un trou noir stellaire. Une sous-classe de GRB dite longs (LGRB) s'est avérée associée à l'effondrement de coeur d'étoiles massives, ainsi les LGRB ont été suggérés comme des traceurs prometteurs de la formation stellaire jusqu'aux premiers ages de l'Univers. Cependant, les coeurs stellaires ne donnent pas tous lieu à des LGRB, car ces derniers sont des événements rares nécessitant des conditions particulières pour être formés. Dans cette thèse, nous étudions un ingrédient essentiel pour utiliser les LGRB en tant que traceurs de formation stellaire: l'efficacité des LGRB, définie comme la fraction des effondrements de coeur qui forme un LGRB. Dans la première partie de la thèse, nous présentons un modèle statistique de population développé pour reproduire trois contraintes observationnelles soigneusement sélectionnées. Ce modèle nous permet de contraindre la population intrinsèque de LGRB et de montrer que l'efficacité des LGRB augmente avec le redshift. La deuxième partie de la thèse est consacrée à l'identification de facteurs affectant l'efficacité des LGRB par l'étude d'un échantillon complet et sans biais de LGRB à 1 < z < 2. Nous étudions les environnements dans lesquels se forment les LGRB en étudiant les propriétés de leurs galaxies hôtes et en les comparant aux galaxies à formation d'étoiles. Nous montrons que la métallicité est un facteur déterminant régissant l'efficacité des LGRB. Ces résultats combinés offrent un pas de plus vers la compréhension des astres parents des LGRB.
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Part I

General introduction

3 Chapter 1 * These galaxies' stellar mass is computed only from the NIR Spitzer/IRAC1 magnitudes or limits (Perley et al. 2016d; see Sect. 8.3.2).

† This galaxy is blended with another source in the IRAC1 observations and partially in the Ks band, therefore we conservatively report is stellar mass as an upper limit.

Introduction

Main observational facts

Discovery

Gamma-ray bursts (GRBs) are brief flashes of γ-ray light originating from space. They were first discovered during the Cold War in the late 1960s by the Vela1 satellites launched by the US Air Force and the Los Alamos National Laboratory. These Vela satellites were a part of an effort to ensure that the Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water (also referred to as the Partial Test Ban Treaty) was being respected. They were composed of 12 different satellites assigned to particularly high geocentric orbits of ∼ 118 000 km, almost one third of the distance to the Moon. Despite the first event recorded dating back to July 2 nd 1967, the discovery was only announced in 1973 by Ray Klebesadel (Klebesadel et al., 1973) once a man-made nature was confidently ruled out. The light curve of the first GRB detected is shown in Fig. 1.1; this first event already reveals sub-second temporal structure, with two main pulses over a duration of less than 10 seconds.

Distance scale

The fundamental question during the 1970s up to the 1990s was that of the distance scale of GRBs. Two views on the question emerged, one claimed that GRBs were of galactic or circum-galactic origin (i.e. distances smaller than 50 kpc) while the other argued that they were of cosmological nature (i.e. distances of the order or greater than 1 Gpc). These two opposing paradigms ultimately culminated in the grand debate of 1994, sometimes called the Paczynski-Lamb debate after the two progatonists for each side. While the early evidence for an isotropic distribution of GRBs in the sky from the Burst And Transient Source Experiment (BATSE) leaned in favor of a cosmological origin, the debate was settled with the first optical afterglow spectrum of GRB 970805, revealing absorption lines at z = 0.835 (Metzger et al., 1997).

The localization of the first optical afterglows was possible thanks to the X-ray instrument on board BeppoSAX which provided a much smaller error box in which to search. The reader is referred to Vedrenne & Atteia (2009) for a detailed historical review of GRB science.

Observed properties

GRBs are composed of two main radiative phases. The first phase is called the prompt emission, which is typically observed in soft γ-rays (10 keV to 10 MeV), and generally lasts between ∼ 100 ms and ∼ 1000 s, although there is a wide variety of different temporal behaviors observed, from single pulses to complexe temporal evolution. The spectrum of this prompt emission is non-thermal, often described by a Band function with a typical peak around ∼ 200 keV (Band et al. 1993, see Sect. 2.2.3). The second radiative phase is called the afterglow. This emission is most often detected from X-rays to radio waves and fades with time. In the optical, the temporal fading goes typically as t -1 , however the slope of this fading depends on the wavelength and on the burst. This means an afterglow observed in the optical will frequently fade beyond the reach of most ground-based telescopes within a week. In the radio however, there is evidence of emission from the afterglow up to a few months or even years after the burst (Perley et al., 2016a) For a review on the observational properties of GRBs, the reader is referred to Gehrels et al. (2009).

Two classes of GRBs

Once the distance scale was known, the energetics implied from the measured fluxes were immense (∼ 10 51 erg). The standard model states that GRBs are created within an ultra-relativistic jet which is born in the aftermath of a cataclysmic event such as the formation of a stellar-mass black hole (BH). Looking at the duration and spectral hardness of GRBs (see Fig 1 .2), two distinct classes were postulated (Mazets et al., 1981;Kouveliotou et al., 1993). These are known as short GRBs (SGRBs), with a typical observed duration of a few ∼ 100 ms and long GRBs (LGRBs) with a typical observed duration of a few ∼ 10 s.

Observations of host of

LGRBs provided evidence for an association with massive stars (see Sect. 1.2), but the detection of supernova features in the spectra of their afterglow (e.g. Hjorth et al., 2003) is what decisively cemented this hypothesis. On the other hand, SGRB hosts show The duration parameter used is T90, which is the time over which a burst emits from 5% to 95% of its total measured counts. Credit: https://gammaray.nsstc.nasa.gov/batse/grb/duration/ no correlation with star-formation and favor progenitors such as a compact object merger e.g. neutron star (NS) -neutron star or NS-BH (see the review of Berger 2014). Most recently, the joint detection of gravitational waves, an optical transient and an SGRB from the same source provided the conclusive evidence that (at least some) SGRBs are produced after the merging of two compact objects [START_REF] Abbott | [END_REF].

Theoretical framework

There is now a well accepted standard scenario for GRBs (for a detailed discussion see e.g. the review from Piran 2005) which is summarized in Fig. 1.3. In the first stage, a compact source (a black hole or a highly magnetized neutron star, known as a magnetar) deposits2 energy into material surrounding it, creating an ultra-relativistic jet. This jet, initially opaque, becomes transparent as it reaches large distances from the source (∼ 10 11-12 cm, defining the photosphere represented in green in Fig. 1.3).

The second stage involves some kind of internal dissipation mechanism within the jet which produces the radiation called the prompt emission; this step is represented in purple in Fig. 1.3. The exact process responsible for the internal dissipation is still debated; the main competing scenarios are internal shocks between layers of the ejecta with different Lorentz factors (Rees & Meszaros, 1994), magnetic field line reconnexion (e.g. Spruit et al., 2001) and photospheric emission (Rees & Meszaros, 2005). In the first two scenarios, a fraction of the resulting dissipated energy is imparted to relativistic electrons who then re-emit it as synchrotron radiation and inverse Compton scattering, producing the bursts of γ-rays we observe on Earth. In the photospheric case, the γ-rays observed are emitted at the photosphere and the absence of an observed thermal blackbody spectrum is explained by sub-photospheric dissipation mechanisms.

In the final stage, shown in orange in Fig. 1.3, the propagation of the ejecta through the external medium creates a shock wave, called the external shock (Meszaros & Rees, 1993). Once the ejecta has swept up enough matter from the external medium, it starts to decelerate, turning a fraction of its energy into the amplification of magnetic fields and the acceleration of electrons.

The progenitors of long GRBs

These electrons then re-emit part of this energy also through synchrotron radiation, creating the longer-lived afterglow emission observed from X-rays to radio waves (Sari et al., 1998). This deceleration by the external medium also has the potential to generate a reverse shock, shown in blue, which could explain optical flashes like the one observed in GRB 990123 (Sari & Piran, 1999). In this scenario, the emission mechanism is the same for SGRBs and LGRBs. Their difference is their progenitors (massive stars for LGRBs, compact object mergers for SGRBs) and the environment in which the jet propagates.

While these scenarios can explain the basic properties observed in GRBs, there is a suprising diversity of features, whether for the prompt emission (e.g. GeV emission, complex or very simple temporal profiles) or the afterglow emission (e.g. flares), which are difficult to account for. This highlights the fact that there is still much to understand regarding the GRB phenomenon itself, for an extended discussion of the main open issues see e.g. the reviews of Granot et al. (2015); Dai et al. (2017).

The progenitors of long GRBs

The detection of optical afterglows from GRBs (van Paradijs et al., 1997) opened the window for precise localization and allowed astrophysicists to start studying the environment in which GRBs take place. This led to a number of important clues pointing to massive stars as the most probable progenitors for long-duration GRBs, as already suggested theoretically in the 1990s (Woosley, 1993;Paczynski, 1998). The first evidence came from the characterization of LGRB hosts, which proved to be generally faint, blue, actively star-forming galaxies (e.g. Le Floc'h et al., 2003;Savaglio et al., 2009). The second clue came from the study of the localization of LGRBs within their hosts: they occur at low galactocentric offset, in the (UV-)bright regions of their hosts (e.g. Fruchter et al., 2006;Svensson et al., 2010;Lyman et al., 2017), i.e. in the regions associated with star-formation and massive stars, illustrated in Fig. 1.4. Finally, the "smoking gun" was the spatial and temporal coincidence of the supernova SN 1998bw with the low-luminosity GRB 980425, followed by several other associations, including the appearance of core-collapse supernova (CCSNe) features at late times in the optical spectra of their afterglows. The example of GRB 030329 is shown in Fig. 1.5 (e.g. Hjorth et al., 2003). The reader is referred to Cano et al. (2017a) for a review on the GRB-SN connection.

The association of

LGRBs with massive stars is firm, however the exact nature of the massive stars in question is still unknown. Only a small fraction of core-collapses gives rise to LGRBs, suggesting they require specific conditions to occur. Even if the details remain to be elucidated, theoretical considerations have identified two important conditions that must be met by the progenitor. First, rapid rotation of the core prior to collapse is required in order to create a centrifugally supported accretion disc from which the GRB jet can be launched. Second, observations of supernovae associated with LGRBs indicate they are type Ic-BL supernovae,

The progenitors of long GRBs

Figure 1.5: Afterglow spectrum of GRB030329 taken at various times. On April 10.04 (12 days after the prompt detection), the features of broad-line core-collapse SNe start to appear. Note the power-law behavior of the spectrum at early times, typical of GRB afterglows.

meaning with the absence of hydrogen and very broad lines in their spectra. This requires the removal of the hydrogen envelope, often explained by winds or binary interactions which are accompanied by significant loss of angular momentum. The mass loss from these winds scales as Z ∼0.8 (Vink et al., 2001), which is one of the reasons why metallicity is expected to play a role on the production of LGRBs. If the angular momentum of the core is coupled to that of the envelope (Spruit, 2002), this means the core is braked by radiatively driven mass loss (Langer, 1998), putting these two conditions somewhat in contradiction.

Single star scenarios can accomodate both requirements in the case of chemically homogeneous mixing (Yoon & Langer, 2005;Langer & Norman, 2006). This scenario can arise for rapidly rotating massive stars in which the mixing timescale is shorter than the nuclear timescale, essentially disseminating the products of nuclear fusion throughout the star. This causes all the hydrogen of the star to be consumed, effectively eliminating the formation of a hydrogen envelope, removing the need for winds. However this scenario is only possible for massive stars at very low metallicity (< 0.2 Z ).

Binary stars are another option to fulfill both requirements, as they offer a path to replenish the angular momentum reservoir of the LGRB progenitor through tidal interactions or accretion of material with high specific angular momentum. Due to the higher number of free parameters in the case of binary systems, the diversity of scenarios is much larger and these channels are often invoked to create rare stellar transients. One popular scenario involves mass transfer between the two stars during a late stage of core helium burning (so-called Case C mass transfer), and enables the formation of a rapidly rotating massive stellar core even at relatively high metallicities (Brown & Lee, 2004).

In reality, it is possible that both single star and binary stars (and the associated diversity of cases) can give rise to LGRBs. In both scenarios, metallicity is a key ingredient as it strongly impacts mass-loss from stellar winds. For more discussion on GRB progenitors in general, the reader is referred to Levan et al. (2016).

Use of GRBs in cosmology

Due to their transient nature and their immense instantaneous power, GRBs provide a unique opportunity to probe the Universe, even up to very high redshift3 . Detecting the prompt emission of GRBs is only a question of instrument sensitivity since this type of radiation is largely unaffected by dust or other types of absorption. For GRB afterglows, it is possible to observe them at high redshift because, while they are affected by cosmological dimming, they are brighter at earlier times; observing them on Earth 1 day after the prompt emission corresponds to a duration in the source frame of 6 hours at z = 3 and 2 hours at z = 10, essentially catching the afterglow earlier and thus brighter. The competition between cosmological dimming and catching the afterglow earlier when it is brighter results in GRB afterglows being detected with similar magnitudes from z = 3 to z = 10 as illustrated in Fig. 1.6.

Figure 1.6: Spectra of the afterglow of GRB970228 observed one day after the burst, transformed to various redshifts. In the K band, the variations betwen z = 3 and z = 10 are ∼ 0.5 dex. Borrowed from Lamb & Reichart (2000).

These afterglows can be used as backlights illuminating the Universe between the GRB and Earth. At z 6, line-of-sight spectroscopy from GRB afterglows -similar to quasars -can be used to try and measure the amount of neutral hydrogen in the intergalactic medium (IGM) along the line-of-sight, which can provide constraints on reionization. This type of analysis using GRBs benefits from the fact that there is no large scale proximity effect, as opposed to quasars

Use of GRBs in cosmology

that ionize the IGM up to distances of several Mpc (Guimarães et al., 2007). On the other hand the neutral gas from the GRB host galaxy also often produces a damping wing which is hard to disentangle from the one created by the IGM.

Long-duration GRBs can also provide a method for pinpointing distant, faint star-forming galaxies which are difficult to find by other means, but that form the bulk of the high redshift galaxy population. This offers insight into a population of star-forming galaxies complementary to galaxies surveys (e.g. Oesch et al., 2014;Bouwens et al., 2015).

The transient nature of GRBs and their afterglows allows for a unique investigation of these galaxies. Their afterglow spectroscopy provides a view of the cold or neutral gas in the galaxy (e.g. Prochaska et al., 2009), and once it has faded, spectroscopy of the host can provide information about nebular emission.

The association of LGRBs with massive stars can be used to try to estimate the cosmic star-formation density, in particular at high redshift (e.g. Robertson & Ellis, 2012;Kistler et al., 2013); an example of this is shown in Fig. 1.7. However, it is important to understand the precise link between star-formation and LGRBs. Indeed not all massive stars give rise to LGRBs and the conditions necessary for the progenitor star to produce an LGRB can affect the link between star-formation and LGRB. Let us define η, the LGRB production efficiency from stars, as the fraction of core-collapses that give rise to an LGRB. If η is constant with redshift then we expect LGRBs to be direct tracers of star-formation. On the other hand, if the efficiency evolves with redshift, it becomes necessary to understand it carefully to be able to apply the necessary corrections to deduce the SFR from the LGRB rate In this context, the goal of my PhD is to set some constraints on the LGRB production efficiency from stars in order to assess the use of LGRBs as tracers of star-formation.

Structure of the manuscript

The work of my PhD revolves around the question of the LGRB production efficiency from stars. I attempt to tackle this question through a modelling and an observational approach. In the first part of the manuscript, I present my work on a population model for the intrinsic LGRB population in an attempt to derive its redshift distribution. The comparison of the redshift distribution of this intrinsic LGRB population to the cosmic star-formation rate density can yield information on the LGRB production efficiency from stars. In the second part of the manuscript, I present the study of a complete unbiased sample of LGRB host galaxies and its comparison to typical star-forming galaxies in order to identify the driving factors behind this LGRB production efficiency from stars. Finally, the results from both approaches are discussed together in the last part of the manuscript. 

Scientific motivation

Due to their association with massive stars (see Sect. 1.2 and 7.1) Long Gamma-Ray Bursts (LGRBs) have been thought of as promising tracers of star formation, up to very high redshift (z ∼ 9). However the precise link between the star formation rate (SFR) and the LGRB rate depends on many factors, most often poorly constrained and which may evolve with redshift: the stellar Initial Mass Function (IMF), the mass range, metallicity, and distribution of initial rotation of the progenitor stars that will yield a core-collapse, the fraction of binary progenitors, the LGRB jet opening angle... It is therefore of interest to try and constrain the LGRB efficiency, loosely defined as the efficiency with which core-collapses form LGRBs (a more rigorous definition is given in Sect. 3.2.4). In this part of the manuscript, I present the work I undertook to constrain the LGRB efficiency using a statistical approach based on a population model. The premise of this work is to make use of the wealth of observations that have been carried out over the past 25 years by various space missions presented below to constrain a model of their intrinsic population. After reviewing the scientific landscape of population models for GRBs at the end of this chapter, our own methodology is explained in Chapter 3 and the observational constraints used are presented in Chapter 4. Finally, some technical details about the statistical tools used are described in Chapter 5 and our results in conclusion are summarized in Chapter 6. Since GRBs have been observed for over 50 years principally in the γ domain, the following section is devoted to reviewing observations of GRBs in the γ domain, and the main quantities that are used throughout the rest of this manuscript.

GRBs in the γ domain

The first GRBs were discovered in the γ domain (0.2-1.5 MeV, Klebesadel et al. 1973), as short bursts of high energy radiation, earning them their name. Until recently, the only means of 2.2. GRBs in the γ domain detection were with γ-sensitive satellites. However the exceptional case1 of the merger associated with the short GRB170817A which was detected by gravitational waves 1.7 sec before the γ-rays reached earth shows that the birth of multi-messenger astronomy will provide other means of detecting the physical phenomenon associated with GRBs, sometimes even without the γ emission (e.g. orphan afterglows, Ghirlanda et al. 2014Ghirlanda et al. , 2015)). Observations of GRBs in the γ-domain have certain advantages over other types of detections, along with a few drawbacks:

-They are extremely bright in this part of the electromagnetic spectrum, with isotropicequivalent luminosities in the 20 keV-10 MeV range reaching up to a few 10 54 erg s -1 (Frederiks et al., 2013), making them detectable at z 1.

-Their soft γ-ray light (1 keV-1 GeV) is largely unaffected by any dust that could be along the line of sight throughout the Universe.

γ detectors often have a range spanning at least an order of magnitude in energy 2 , meaning they can observe similar sources from z ∼ 1 to z ∼ 8.

-It is necessary to go above earth's atmosphere to observe the soft γ range where GRBs are detected.

-The spatial resolution of γ detectors is poor despite very wide fields of view, rendering GRBs hard to localize by γ-rays alone.

In the following subsections, the main observables that γ-ray astronomers use with are described, along with a few notable γ-ray observatories.

Past, current (and future) missions

The Vela spacecrafts were the first to detect a GRB on July 2, 1967 3 . Later in the 90s, onboard CGRO was the Burst And Transient Source Experiment (BATSE), which observed over 3000 bursts over the course of its 9.1 year lifetime (Stern et al., 2001). However, without any X-ray instrument onboard, the uncertainty on the position of GRBs was of the order of a few degrees, making ground-based follow-up a daunting endeavor. The presence of an X-ray instrument is what made the first discovery of a GRB afterglow possible in 1997 by Beppo/SAX (van Paradijs et al., 1997). There are currently two major GRB space missions in operation: Swift which is the main source of accurately localized GRBs thanks to its XRT instrument, and Fermi which provides a large number of bursts with a good spectral coverage thanks to the wide field of view of its GBM instrument. A brief, non-exhaustive list of notable space missions along with their energy ranges and launch dates is compiled in Table 2.1.

Distance

To this day, it is not possible to get the redshift of a source from the γ emission alone. There have been some attemps to derive "pseudo-redshifts" from prompt parameters. These methods are based on observed correlations between redshift-corrected quantities (e.g. E iso -E p , Amati et al. 2002, see below for a definition) and assuming these correlations are valid for bursts without redshift; the "pseudo-redshift" of these bursts is the value for which their redshift-correct E p and E iso would lie on these correlations. However the robustness of these methods has been put into question (Butler et al., 2007;Heussaff et al., 2013). The most robust method is to use NUV to NIR spectroscopy and determine the redshift from emission or absorption lines. Once a redshift has been measured, it is possible to estimate the luminosity distance D L assuming a given cosmology with the following (Hogg, 1999):

D L = (1 + z) c H 0 z 0 dz E(z ) (2.1)
where

E(z) ≡ Ω m (1 + z) 3 + Ω Λ .
For this part of the manuscript, the following parameters are assumed: Ω m = 0.29, Ω Λ = 0.71, H 0 = 70 km s -1 Mpc -1 , to allow for comparison with older studies.

GRB γ spectrum

The main and most common component of GRB spectra is non-thermal and peaks in the sub-MeV domain, although some GRBs exhibit blackbody features or others emission in the GeV domain (e.g. Ackermann et al., 2013). Without going into an exhaustive list, the most common models used for spectral fitting, and their parameters, are presented in the following paragraphs, largely inspired from Goldstein et al. 2013, Section 4.

Band function

A very common functional form used for GRB spectra is the so-called Band function (Band et al., 1993). It is defined as:

f BAN D (E) = A        E 100 keV α exp -(α + 2) E E p E ≤ α-β α+2 E p , E 100 keV β α-β α+2 E p 100 keV exp(β -α) E > α-β α+2 E p , (2.2)
where α is the low energy slope, β the high energy slope, E p the peak of the ν F ν spectrum.

Comptonized model

Another commonly used form is the Comptonized model (COMP), which is essentially a Band function with β → ∞, defined as:

f COM P (E) = A E 100 keV α exp -(α + 2) E E p (2.3)

GRBs in the γ domain

Power law

In cases where the high energy slope is hard to constrain (because E p is outside the detector range for example), GRBs are usually fit with a power law (PLAW), defined as:

f P LAW (E) = A E 100 keV α (2.4) This is equivalent to a COMP model with E p → ∞.
Throughout the rest of this manuscript, the default spectral parameters will refer to the Band model unless explicitly stated otherwise. This relies on the assumption that GRBs γ spectra are well represented by a Band function, which is justified for instance by the distribution of reduced χ 2 from the GBM spectral catalog Bhat et al. (2016) shown in Fig. 2.1 (let us recall that GBM is the instrument with the best spectral coverage), see also the discussion in Sect. 3.2.3. Reduced χ 2 distribution for Band models from the GBM spectral catalog (Bhat et al., 2016).

Fluxes in the γ domain

The term flux has different meanings depending on the literature or the field, which can lead to some confusion, here I present some definitions used throughout this manuscript with the aim of lifting any ambiguity.

Energy flux density

This is the observed amount of energy per unit time per unit area per unit energy:

F E (E obs , t obs ) [erg s -1 cm -2 keV -1 ] (2.5)
where E obs and t obs are the observed energy and time. This quantity will be noted as F E throughout the manuscript, by analogy with F ν , the energy flux density used in the optical in units of [erg s -1 cm -2 Hz -1 ]4 or [Jy] 5 .

Photon flux density

Given the high energy and the small number of photons in γ-ray astronomy it is useful to work directly with photons instead of energies, for example using the photon flux density. This is the observed number of photons per unit time per unit area per unit energy. This quantity will be noted as N E throughout the manuscript and is given by:

N E (E obs , t obs ) = F E (E obs , t obs ) E obs [ph s -1 cm -2 keV -1 ] (2.6)

Energy and photon flux

The energy (resp. photon) flux is the observed amount of energy (resp. number of photons) per unit time per unit area in a given energy band. This quantity will be noted as F (N ) throughout the manuscript and is given by the integral over the energy of the energy (resp. photon) flux density as such: This integration can be performed over the entire electromagnetic spectrum which yields the bolometric energy (resp. photon) flux:

F (t obs ) = E max,obs
F bol (t obs ) = +∞ -∞ F E (E obs , t obs ) dE obs [erg s -1 cm -2 ]
(2.9)

N bol (t obs ) = +∞ -∞ N E (E obs , t obs ) dE obs [ph s -1 cm -2 ] (2.10)
In most cases, this energy band will be 50-300 keV for historical reasons (owing to CGRO/BATSE), and if no specific mention is made, this is what is assumed in this manuscript. For other cases (Swift/BAT for example, for which this energy band is 15-150 keV), the energy band will be explicitly mentioned.

Count rate

In practice, due to the nature of γ-ray detectors, light curves are reported as a count rate, noted C(t obs ), in units of [cts s -1 ]. This can be converted to a photon flux using a conversion matrix which relates how many counts a single photon of a given energy, arriving at a given position and angle on the detector will create and dividing by the effective area of the detector. The count rate is thus given by:

C(t obs ) = E max,obs E min,obs dE obs ∞ 0 dE true obs N E (E true obs , t obs ) A(E true obs ) R(E true obs , E obs ) [cts s -1 ] (2.11)
where N E (E true obs , t obs ) is the photon flux density in [ph s -1 cm -2 keV -1 ], A(E true obs ) is the effective area of the detector in [cm 2 ], E obs is the measured photon energy, E true obs is the true photon energy 

Scientific landscape for GRB population models

Peak fluxes for GRBs

Using the previous definitions, we can define the peak energy (resp. photon) flux as the flux measured when the GRB is brightest (at the peak of its lightcurve). It is worth mentioning that peak fluxes are measured for a given timescale δt obs , often imposed by the time-resolution of the instrument measuring them. For the rest of the manuscript, this timescale is assumed to be 1.024 seconds, which can be achieved by all instruments and allows for a homogeneous comparison between samples; in any case the peak flux of GRBs does not depend strongly on the time scale (P ∝ δt -0.1 obs Heussaff 2015). However, for other types of studies, it can be very interesting to have a high time-resolution 7 (instruments such as Konus-WIND can reach 2 ms time-resolution) since the timescale of variability observed in GRB lightcurves is related to the physics at play in the central engine (for instance using the compacity argument to measure the Lorentz factor of GRBs e.g. Hascoët et al. 2013).

Fluence

The energy (resp. photon) fluence, is a quantity that is inherently linked to transient phenomena. It is defined as the amount of energy (resp. number of photons) per unit area collected over the duration of the transient event, given by:

F = t obs F (t obs ) dt obs
[erg cm -2 between E min,obs and E max,obs ] (2.12)

N = t obs N (t obs ) dt obs [ph cm -2 between E min,obs and E max,obs ] (2.13)
Fluences are also defined for a given energy band, by default assumed to 50-300 keV in this manuscript unless explicitly stated otherwise. For the case of GRBs, T90 -defined as the duration over which 90% of the background-subtracted counts are observed, is used as the duration of the event.

All the quantities presented above are given in the observer frame; it is possible to tie them to the intrinsic properties of the source. This derivation is presented in Sect. 3.3.1. The next section is devoted to an overview of the major GRB population models in the last 20 years.

Scientific landscape for GRB population models

Population models have become a popular approach to study GRBs due to the increasing sample size and the affordable computing power, here I review a few notable models which influenced the development of our project. It should be noted that the publication date of these different works spans 17 years, during which GRB samples have improved in size and accuracy alongside our knowledge of the star-formation rate and more generally our understanding of the Universe. 8 The basic idea behind a population model is to simulate an intrinsic population of GRBs from certain distributions (luminosity, redshift, spectrum...) and then apply some detection criteria to create an observed sample; this falls in the category of a forward folding approach because one starts by simulating the data to then reproduce the observations. In some instances (e.g. Salvaterra et al., 2012;Pescalli et al., 2016), a different approach is used where the starting point of the analysis is the observed data itself and then some statistical methods are used to recover the intrinsic population from the observed one. In both approaches however, the results are expected to be the same. The main results regarding the luminosity function and redshift distributions are compiled in Fig. 2.2 and 2.3. 7 However this time-resolution comes at a price as the noise scales as δt -1 2 obs . 8 A good example of the evolution of our understanding of the Universe is illustrated in the work by Porciani & Madau (2001) where they discuss the predictions of their model in an Einstein-de Sitter Universe which has essentially been ruled out today.

Porciani & Madau (2001), (P01)

This is one of the most notable early works on the redshift distribution of GRBs. They used a power law-like, non-evolving luminosity function with a cut-off at low luminosities and due to the association of LGRBs with massive stars, they used a propotionality between the LGRB rate and the Cosmic Star Formation Rate Density (CSFRD). They used a standard Band function (see Sect. 2.2.3) with fixed parameters α = -1, β = -2.25 and E p = 511 keV (in the source frame) for the GRB spectrum. The main constraint they used is the logN-logP diagram (see Sect. 4.1.1) from BATSE/CGRO, corrected for efficiency by Kommers et al. (2000). At the time of the study the number of GRBs with redshift was very small, so they used the association of LGRBs with massive stars to predict rates. It should also be noted that the CSFRD at high redshift was very uncertain in 2001, so the authors used three different scenarios, an increasing, constant and decreasing CSFRD beyond z ∼ 2.

Daigne, Rossi & Mochkovitch (2006), (D06)

This is the earlier version of our own population model. The authors used a power law, nonevolving luminosity function, with three different scenarios for the redshift distribution with different behaviors at high redshift largely inspired from P01: increasing, constant and decreasing above z ∼ 2. Since the CSFRD was more precisely determined than in P01 by 2006, this translates to different scenarios for the LGRB efficiency, i.e. an strongly increasing, mildy increasing or constant LGRB efficiency for each respective scenario. They assume a Band function for the GRB spectra with a Log-Normal scenario and an "Amati-like" scenario (see Sect. 3.2.2) for the E p distribution and empirically-based distributions for α and β. Despite not having a full-fledged redshift constraint, they use the pioneering work of Jakobsson et al. (2006) based on the early data from Swift as a cross-check for the redshift distribution of their model and conclude that the data favors a model with a strongly increasing LGRB efficiency with high redshift using constraints from CGRO and HETE2. In other words, these results favored the hypothesis that

LGRBs do not trace star-formation. However, it should be noted that they do not consider the possibility of a redshift evolution of the luminosity function.

Wanderman & Piran (2010), (WP10)

This is a study based on a sample of Swift LGRBs from which the luminosity function and the redshift distribution are estimated using a method ressembling the C -method (Lynden-Bell, 1971). The authors invert the observed redshift-luminosity distribution assuming a Band GRB spectrum with α = -1, β = -2.25 and E p = 511 keV. They use a broken power law, non-evolving luminosity function and redshift distribution and conclude that there may be hints that the LGRB rate does not follow the CSFRD but the results are inconclusive. It is worth noting that they used all Swift bursts with a redshift but in order to avoid biases they derive a redshift measurement probability as a function of the peak photon flux whose robustness remains to be proven.

Salvaterra et al. (2012), (S12)

This study focused on the complete BAT6 sample defined in Sect. 4.3.2. They perform an analysis of the luminosity function and redshift distribution using a sample of 58 bright LGRBs from Swift with a selection on the peak photon flux of N > 2.6 ph s -1 cm -2 and use a statistical method to recover the intrinsic population distributions from the observed ones. They use two different function forms for the luminosity function: a power law with a cut-off at low luminosity (the same as P01) and a broken power law (same as WP10). In both cases they explore the possibiliy of a redshift evolution of the luminosity function, parametrized as (1 + z) k evol . For the redshift distribution they assume the LGRB rate follows the CSFRD but also allow for 2.3. Scientific landscape for GRB population models some evolution parametrized as (1 + z) n evol . They assume a Band GRB spectrum with α = -1, β = -2.25 and E p drawn from the "Amati-like" scenario, assuming fixed values for the correlation. They conclude that an evolution of the luminosity function is degenerate with an evolution of the redshift distribution (i.e. an LGRB rate not following the CSFRD), but one or the other is required to reproduce their observed sample. It should be noted however that this work is based on fairly bright LGRBs, which is only the tip of the iceberg of the logN-logP diagram (see Sect. 4.1.1) This work is not presented in Tab. 2.2 in favor of P16 since the latter is an updated version.

Yu et al. (2015), (Yu15)

This study uses a sample of 127 bursts from Swift with spectral coverage of Konus-WIND and Fermi/GBM. They fit the bursts spectra with a Band function and use the fit parameters for their analysis. They use the same non-parametric C -method and fit the resulting luminosity function with a broken power law. They find a strong evolution of the luminosity function, and suprisingly an excess of LGRBs at low redshift which would imply an increase in the LGRB production efficiency from stars at z < 1. Their redshift distribution is presented in Fig. 2.3, and is in conflict with most of the other population models and the results of studies from host galaxies which indicate that at z < 1, only a small fraction of the star formation produces LGRB. Petrosian et al. (2015) performed a very similar study with similar results. None of these two studies provide explanations for the strong discrepancy between their results and all the other studies; one can suppose it has to do with the sample selection as one of the only selection criteria is simply having a redshift, which can be strongly biasing for GRBs (see Sect. 4.3).

Pescalli et al. (2016), (P16)

This study is an extension of the original BAT6 sample of Salvaterra et al. (2012), where they increase the sample size from 58 to 99 bursts and perform a similar analysis. They derive the LGRB rate as a step function, without a parametric form, shown in Fig. 2.3, and a broken power-law luminosity function with evolution. One improvement over Salvaterra et al. (2012) is that the authors use the real measured spectrum of each individual burst. They find that the LGRB rate from their sample is consistent with the CSFRD if they apply a strong evolution to the luminosity function (k evol = 2.5). This implies LGRBs brighter by a factor of 100 at z = 5.5 with respect to z = 0 which poses the question of the plausibility of such a scenario. However, they mention that the evolution of the luminosity function is degenerate with the evolution of the redshift distribution (i.e. an LGRB rate not following the CSFRD), and they suggest that in reality there is probably a bit of both.

Table 2.2: Compilation of various luminosity function for

LGRBs from the literature. If there is some evolution with redshift, the parameter values are given at z = 0.

Author Sample size Luminosity Function Parameters 

α L β L L break k evol P01 1 ∼2000 Power Law-like 2.5 ± 0.2 3.2 +1.0 -0.7

Summary

In general, most population models agree on the shape of the luminosity function at high luminosities (see Tab. 2.2 and Fig. 2.2). The low luminosity part is more debated since it is more difficult to constrain (see Sect. 4.1.1 and 6.2). Regarding the redshift distribution, most studies converge on a rising slope at low redshift, peaking between 1 < z < 3, and then a decreasing or flat slope (see Fig. 2.3). This shape is similar to the one of the CSFRD, but the high redshift slope is sometimes different, albeit with uncertainties. In the rest of this part, we aim to derive new values for the luminosity function and redshift distribution of the intrinsic population LGRBs by using a forward folding approach inspired by the work of D06. We used a more realistic Schechter luminosity function and allowed for the possibility of an evolution with redshift as (1 + z) k evol (see Sect. 3.2.1). We explored two different scenarios for the E p distribution: (i) a LogNormal E p distribution, with no intrinsic spectrum-luminosity correlation, (ii) an "Amati-like" scenario where E p and L are correlated, however we let the slope, scatter and normalization of this correlation free to vary. We drew the spectral slopes α and β from their observed distributions (see Sect. 3.2.3). We parametrized the LGRB redshift distribution and 2.3. Scientific landscape for GRB population models left it free to vary, lifting the requirement that the LGRB rate must follow the CSFRD. Finally, we used two additional cross-checks to distinguish cases where the models fit equally well the data. The details of each distribution are described in the next chapter. 

Chapter 3

Constructing an LGRB population

Forward modeling approach

In the continuation of Daigne et al. (2006), we created a model for the intrinsic LGRB population with the aim of reproducing the constraints provided by the carefully selected samples described in Chapter 4. Our approach differs to other previous works (see Sect. 2.3) in that our constraints do not come from a single instrument/mission. This means we are assuming the LGRBs detected by Swift/BAT, CGRO/BATSE and Fermi/GBM all come from the same underlying population, and for the sake of homogeneity in our observational constraints we perform specific cuts on the various samples which insures a controlled selection process. The basic scheme, illustrated in Fig. 3.1, relies on a Monte Carlo approach in which we generate LGRBs from the intrinsic population. For each LGRB, we draw a luminosity L, a redshift z, a peak energy E p , and two spectral slopes: α and β, from various distributions. This chapter presents the parametrization of these distributions and the associated assumptions. In the following, unless stated otherwise, all the quantities are taken at the 1.024 s peak flux of the LGRB lightcurve. 

Parametrization of the intrinsic long GRB population

In this section, I present the functional forms used to describe the various distributions of our population model. Most often these were taken as simple as possible, when no compelling physical argument could be made in favor of a specific model.

Peak Luminosity Function

One of the most well-studied distribution is the Luminosity Function (LF) of LGRBs. Stricly speaking, it is the distribution of isotropic-equivalent luminosities L iso , which is defined as the luminosity the source would have if it emitted in 4π of the sky. Of course to measure this quantity one needs to know the distance to the GRB, making the number of bursts with a measure L iso a small fraction of the total number of bursts ever detected. An important point to keep mind is that the rates are always given for GRB pointing towards us; to get the entire rate of GRBs one needs to multiply the observed rate by 4 π Ω , where Ω is the average opening angle. The real L distribution depends on the distribution of opening angles for the GRB jet. In the rest of the manuscript, the subscript iso will be omitted for ease of reading.

Power Law

In the first version of our model we used on of the simplest distribution: a power law, with 3 parameters: L min , L max , and a slope, defined as

φ(L) = AL -p L min < L < L max 0 otherwise (3.1)
where A is a normalization given by A -1 = ∞ 0 φ(L) dL.

Schechter Function

We also chose to explore a slightly more realistic model with an exponential cut-off at high luminosities, based on a functional form ubiquitous in astronomy, the Schechter function (Schechter, 1976):

φ(L) =    A L L break -p × exp -L L break L > L min 0 L ≤ L min (3.2)
This form has the same number of free parameters (3) as the power law function, but has a more natural break at high luminosities.

However, both the power law and the Schechter function require a low luminosity limit L min . In practice, this minimum luminosity is unconstrainable from current observations since it requires seeing the turnover at low peak fluxes in the logN-logP diagram, which is to date unobserved (see Sect. 4.1.1). We therefore fix L min =10 49.7 erg s -1 for our model, which corresponds to the lowest luminosity burst in the eBAT6 sample (see Sect. 4.3.2); our value of L min is similar to other studies (usually taken between 10 48 and 10 50 erg s -1 ). The reasons behind this choice are explained in more detail in Sect. 6.2. We note that this parameter severely affects the normalization of our model and in particular the total number of LGRBs which should be kept in mind when discussing the results (however it does not affect the number of LGRBs in the BATSE, GBM or Swift samples as the majority of their bursts have luminosities larger than L min ).

Since other works used a Broken Power-Law functional form for the luminosity function we also tried it, however there were some strong degeneracies between the parameters whose exploration had trouble converging. Given the quality of the fit provided by the other functional forms, we chose to drop this one as it has one more free parameter.

Redshift evolution of the luminosity function

Finally, we also allowed the luminosity function to vary with redshift. The evolution with redshift was parametrized as (1 + z) k evol , a very common form in GRB population models (e.g. Salvaterra et al., 2012;Petrosian et al., 2015;Pescalli et al., 2016). The evolving luminosity function is thus given by:

φ(L, z) = 1 (1 + z) k evol φ(L/(1 + z) k evol ) (3.3)
In this case, the values of the parameters quoted are always given for z = 0, i.e. the de-evolved luminosity function.

Peak Energy distribution

A GRB prompt spectrum is characterized in large part by its peak energy E p . E p is the peak of the E2 N E spectrum and represents the photon energy at which the bulk of the energy is concentrated. In the past, various authors have found relations between the peak energy E p and the isotropic-equivalent energy 2 E iso (e.g. Amati et al., 2002;Amati, 2006;Lu et al., 2012) or L iso (e.g. Yonetoku et al., 2004;Yonetoku et al., 2010;Frontera et al., 2012). Some authors have suggested that these correlations are caused by strong selection effects (e.g. Nakar & Piran, 2005;[START_REF] Band | [END_REF]Butler et al., 2007;Shahmoradi & Nemiroff, 2011;Heussaff et al., 2013), while others have showed that selection effects do not suffice to explain the observed correlation (e.g. Ghirlanda et al., 2008;Nava et al., 2008;Ghirlanda et al., 2012).

For our models we tested two different scenarios regarding the E p distribution of LGRBs: a scenario with an intrinsic correlation between E p and L iso , referred to as the "Amati-like" scenario, and a scenario where the E p distribution is described by a Log-Normal distribution, independant of L iso . The hope was to see if one scenario was preferred by the data or if both gave equally good fits.

Parametrization of the intrinsic long GRB population

"Amati-like" relations

In these scenarios, the E p distribution is parametrized by 3 free parameters: E p0 , σ Ep , and α A , given by:

E p = E p0 L L 0 α A × 10 √ 1+α A 2 t (3.4)
where t is drawn from a Gaussian distribution of mean 0 and of scale parameter σ Ep , and L 0 is a constant fixed at 1.6 × 10 52 erg s -1 . This form ensures that the scatter caused by σ Ep is perpendicular to the slope α A of the relation. In the rest of the manuscript these models are often referred to as A-E p models (for "Amati-like").

Log-Normal

The second scenario we tested in a Log-Normal distribution with 2 free parameters: E p0 and σ Ep . These parameters are named the same as in the "Amati-like" scenario because they become equal if α A =0. Here, E p is drawn from a Log-Normal distribution with a location parameter E p0 and a scale parameter σ Ep . This scenario is referred to as LN-E p in the rest of the manuscript.

Spectral slopes distribution

An improvement over past population models is that we used a realistic distribution for the spectral parameters of the low-(α) and high-(β) energy spectral slopes (see Sect. 2.2.3). Due to the smaller energy range of Swift/BAT and CGRO/BATSE, we used the α and β distributions from the Fermi/GBM spectral catalog (Bhat et al., 2016) which has the best combination of spectral coverage and number of bursts. We chose the GRBs for which the Band model fit the "good" criteria as defined in Bhat et al. (2016), which essentially requires that the errors on α and β be relatively small (i.e. α and β are well-defined). Additionally, we use the best fit since this is the main spectral model we used, which results in a sample of 153 LGRBs who's spectral slope distributions are shown in Fig. 3.2. (Bhat et al., 2016) used in our population model.

We mainly used the Band spectral model despite the fact that it is not the best fitting model for most GRBs (Goldstein et al., 2013;Bhat et al., 2016) because of its widespread use in the past, and because at high peak fluxes, the Band spectral model is most often the best model, as illustrated in Fig. 3.3. That being said, other forms have similar shapes, which minimizes the impact on the actual values of peak flux computed by our method (see Sect. 3.3.1) (Bhat et al., 2016). The entire catalog is in black, the bursts complying with the "good" criteria (i.e. small errors on the parameters) are shown in green, the bursts for which Band is the best-fit spectral model are shown in fuschia. The vertical red line indicates the additional peak flux cut for our α and β samples (see Sect. 4.2). Notice that Band is often the best-fitting model for the high-peak fluxes (i.e. where the signal to noise is good).

Redshift distribution and LGRB efficiency

As mentioned in Sect. 4.3, despite being a crucial property, the majority of LGRBs do not have a measured redshift. Therefore their intrinsic redshift distribution is uncertain, with different parametric forms and statistical methods used (e.g. Daigne et al., 2006;Wanderman & Piran, 2010;Yu et al., 2015;Petrosian et al., 2015;Pescalli et al., 2016;Amaral-Rogers et al., 2016), leading to conflicting results. The question of the redshift distribution of LGRBs is of vital importance for understanding the LGRB efficiency so we tried various parametric forms in our population model, described below after a formal definition of the LGRB efficiency.

LGRB efficiency

Let us define the rate of core-collapses per comoving volume ṅcoll and the rate of LGRBs per comoving volume ṅGRB in units of [yr -1 Mpc -3 ]. The fraction of core-collapses that form an LGRB is given by: ṅGRB = η(z) ṅcoll (3.5)

Parametrization of the intrinsic long GRB population

where η(z) is the LGRB efficiency that can vary with redshift. This can be linked to the global

LGRB and core-collapse rate by integrating over the volume of the Universe3 :

R GRB = zmax 0 η(z) ṅcoll (z) dV dz 1 1 + z dz [yr -1 ] (3.6) R coll = zmax 0 ṅcoll (z) dV dz 1 1 + z dz [yr -1 ] (3.7)
Note that R GRB /R coll = η only if η does not depend on z. This is the scenario called "constant LGRB efficiency" in the rest of the manuscript.

Cosmic Star Formation Rate

We assume the comoving rate density of core-collapses ṅcoll is linked to the Cosmic Star Formation Rate Density (CSFRD) through:

ṅcoll (z) = p cc (z) m(z) ρ * (z) [yr -1 Mpc -3 ] (3.8)
where ρ * (z) is the CSFRD (see Eq. 3.10) in [M yr -1 Mpc -3 ] and m is the mean mass deduced from the stellar IMF:

m = msup m inf m I(m, z) dm [M ]
p cc (z) is the probability of forming a core-collapse 4 given by:

p cc (z) = msup mcc I(m, z) dm (3.9)
In our case we used a Salpeter (Salpeter, 1955) stellar IMF with a slope of 1.35 for I(m, z) (in units of [M -1 ]), m cc = 8 M , m inf = 0.1 M , and m sup = 100 M , all of which are constant.

The CSFRD is measured in various ways, but at redshift above 6 often from the rest-frame UV luminosity function5 (e.g. Bouwens et al., 2016), which relies on assumptions for the dust correction which is poorly constrained; this means there is some uncertainty to the CSFRD at z > 6. At low redshift however, results converge (see e.g. Madau & Dickinson 2014) on the CSFRD. We used the functional form defined by Springel & Hernquist (2003) 

as ρ * (z) = ν a exp(b(z -z m )) a -b + b exp(a(z -z m )) [M yr -1 Mpc -3 ] (3.10)
where the values for ν = 0.178, a = 2.37, b = 1.80 and z m = 2.00 are given by Vangioni et al. (2015) by fitting data from Behroozi et al. (2013), including data points at high redshift from Bouwens et al. (2015); Oesch et al. (2014), shown in Fig. 3.4. This CSFRD is also built from a Salpeter IMF with a slope of 1.35 and a mass range of 0.1 to 100 M and is compatible with the chemical enrichment history of the Universe and the constraint on reionization from the CMB data.

Parametrization of the LGRB comoving rate

We explored two different parametrizations of the LGRB comoving rate described below. 

Varying the LGRB efficiency

During early experimentation with our code, we opted for a simple approach in which we multiplied the CSFRD by η(z), the LGRB efficiency given by:

η(z) = e ξz (3.11)
In this case the LGRB comoving rate becomes:

ṅGRB = η(z) * ṅcoll [yr -1 Mpc -3 ] (3.12) = η(z) * p cc (z) ρ * (z) m(z) (3.13) = η(z) * p cc (z) m(z) ν a exp(b(z -z m )) a -b + b exp(a(z -z m )) (3.14) = e ξz * p cc (z) m(z) ν a exp(b(z -z m )) a -b + b exp(a(z -z m )) (3.15)
This has the advantage of having only one free parameter, ξ, at the cost of little flexibility. It was not possible to modify the high redshift part of the distribution without also altering the low redshift. Also, looking at Eq. 3.15, there is a degeneracy between an efficiency evolution and a case where the IMF or m cc evolves with z; what we constrain is actually η(z) * pcc(z) m(z) . Therefore, although numerous tests and exploration where done with this functional form, it was later abandoned in favor of a more natural parametrization of ṅGRB .

Creating mock samples

Broken exponential parametric form

We chose to use a functional form that could adequately represent the case of a constant LGRB efficiency while at the same time having flexibility to deviate from the CSFRD at either high or low redshift. The simplest form we found was a broken exponential 6 given by:

ṅGRB (z) = ṅ0 GRB e az z < z m e bz e (a-b)zm z ≥ z m [yr -1 Mpc -3 ] (3.16)
where z m is the redshift of the break, and a and b are the low-and high-redshift slopes respectively. ṅ0 GRB is a normalization given by our model (see Sect. 4.1.3) This form has 3 free parameters; in many earlier tests, only one or two of the parameters were left free to vary but ultimately we let all 3 vary once we confirmed the MCMC exploration could converge (see Sect. 5.2.2). We fit the CSFRD given in Eq. 3.10 with this new functional form, yielding a = 1.1, b = -0.57 and z m = 1.9, which we used as our hypothesis of an LGRB rate density following the CSFRD (i.e. constant LGRB efficiency).

The LGRB efficiency does not appear explicitly in this parametrization but can be obtained by dividing7 ṅGRB by ṅcoll :

η(z) = ṅGRB (z) ṅcoll (z) (3.17) = m(z) p cc (z) ṅGRB (z) ρ * (z) (3.18)

Creating mock samples

The difficulty in creating samples is that most modern GRB missions have multiple complex detection methods, some relying on a peak flux threshold, others on an image excess with various timescales. For this reason we chose clean samples with a controlled selection on the peak flux to create our mock samples.

From the source frame to the observer frame

Fluxes or fluences in a given band are inherently observer-defined quantities that can be related to the intrinsic properties of a source once its distance is known. Following the definitions given in Sect. 2.2.4, this subsection aims to link these observed quantities to the properties of the source. For the pupose of this derivation, it is more convenient to start in the source frame, at redshift z, where t [s] and E [keV] are the photon emission time and energy in this frame.

The source is emitting light from t start to t end with a power per energy at time t and energy E:

L E (E, t) [erg s -1 keV -1 ] (3.19)
The photon emission rate per energy at time t [s] and energy E [keV] is:

P E (E, t) = L E (E, t) E [ph s -1 keV -1 ] (3.20)
The bolometric power L bol [erg s -1 ] at time t is given by:

L bol (t) = ∞ 0 L E (E, t) dE [erg s -1 ] (3.21)
Similarly, the bolometric photon emission rate P bol [ph s -1 ] at time t is:

P bol = ∞ 0 P E (E, t) dE = ∞ 0 L E (E, t) E dE [ph s -1 ] (3.22)
The bolometric energy E bol [erg] is then given by:

E bol = t end tstart L bol (t) dt = t end tstart ∞ 0 L E (E, t) dE dt [erg] (3.23)
The total number of emitted photons P bol [ph] is thus:

P bol = t end tstart P bol (t) dt = t end tstart ∞ 0 L E (E, t) E dE dt [ph] (3.24)
We can transform time [s] and photon energy [keV] to the observer frame with:

t obs = (1 + z) t and E obs = E (1 + z) (3.25)
Using the definition that

F bol = L bol 4π D 2 L (z)
, the observed energy flux density is then given by:

F E (E obs , t obs ) = (1 + z) 4π D 2 L (z) L E (E, t) [erg s -1 cm -2 keV -1 ] (3.26)
where L E (E, t) is evaluated at E = (1 + z)E obs and t = t obs /(1 + z). This quantity is the one defined in equation 2.5, from which all the other quantities can be derived. Similarly, the observed photon flux density is:

N E (E obs , t obs ) = (1 + z) 2 4π D 2 L (z) L E (E, t) E [ph s -1 cm -2 keV -1 ] (3.27)
where the extra factor of (1 + z) comes from the E obs at the denominator. The observed energy flux is then: 

F (t obs ) = E max,
F E (E = E obs (1 + z), t = t obs / (1 + z)) (1 + z) dE (3.29) = 1 4π D 2 L (z) E max,obs (1+z) E min,obs (1+z) L E (E obs (1 + z), t obs /(1 + z)) dE (3.30)
which becomes bolometric with:

F bol (t obs ) = ∞ 0 F E (E obs , t obs ) dE obs [erg s -1 cm -2 ] (3.31) = L bol (t = t obs / (1 + z)) 4π D 2 L (z) (3.32)
Note that this is exactly the relation expected from the definition of the luminosity distance.

The observed photon flux is thus: Stern et al. (2001) performed an analysis in which they derived the detection efficiency of BATSE (see Sect. 4.1.1 for more details). We therefore define our BATSE sample down to a peak flux of N 50-300 keV = 0.07 ph s -1 cm -2 , which is the limit of the correction efficiency of Stern et al. (2001).

N (t obs ) = E max,

CGRO/BATSE

p det = 1 N 50-300 keV ≥ 0.07 ph s -1 cm -2 0 otherwise (3.42)

Fermi/GBM and Swift/BAT

For our GBM sample, we use a selection criterion based on the peak flux in the 50-300 keV band. Our probability of detection is defined as

p det = 1 N 50-300 keV ≥ 0.9 ph s -1 cm -2 0 otherwise (3.43)
This is of course not representative of the full GBM sample but it is robust up to where GBM is complete (see Sect. 4.2). Similarly we define our BAT sample as

p det = 1 N 15-150 keV ≥ 0.2 ph s -1 cm -2 0 otherwise (3.44)
We also include the eBAT6 sample in the same 15-150 keV band with a threshold of 2.6 ph s -1 cm -2 (see Sect. 4.3.2).

HETE2 /FREGATE and WXM

The HETE2 sample is slightly more complicated since it relies on two different detection thresholds, one for FREGATE and one for WXM:

p det = 1 N 2-10 keV or N 30-400 keV ≥ 1 ph s -1 cm -2 0 otherwise (3.45)
This sample was used in earlier versions of the code to constrain the fraction of XRF but was abandonned due to the increased computational cost relative to the weak constraining power. Having access to the wealth of data1 from past space missions, we can construct well controlled samples to create observational constraints. In order to properly estimate all aspects of an intrinsic population, it is necessary to have independant constraints that cover the properties of interest. With this in mind, three constraints were used in this project: (i) the logN-logP diagram from BATSE (i.e. the same as in D06), (ii) the observed E p distribution from GBM (improved with respect to the E p distribution from BATSE used in D06), and the redshift distribution of the extended BAT6 sample (not included in D06 as it did not exist at the time, and the number of LGRBs with measured redshifts was too small). Their nature and careful selection are described in more detail below.

Intensity Constraint

One of the most important constraints, in particular for the luminosity function of GRBs, is one based on the intensity of the bursts. In this instance, the intensity of the bursts can be assimilated to the peak flux, thus it becomes of interest to constrain the number of bursts at each peak flux, represented in Figure 4.1 as the logN-logP diagram.

logN-logP

This diagram is a good way to estimate the peak isotropic-equivalent luminosity function of GRBs, however there is a difficulty residing in the fact that while peak fluxes are proportional to the luminosity, they also depend on redshift. This means a burst with a high peak flux could be low luminosity at low redshift, or high luminosity at high redshift. Fruitful studies (Kommers et al., 2000;Stern et al., 2001) have focused on the turnover at low peak flux, trying to determine if it is real (i.e. due to a minimum luminosity of GRBs) or if it is caused by the lower efficiency of detectors at these fluxes. Using the catalog from Stern et al. (2001), we reconstructed a modified version of their original logN-logP diagram, using wider bins towards high peak fluxes to insure at least 10 objects in each bin2 . Stern et al. (2001) performed an off-line search for faint bursts in the CGRO/BATSE data and were able to derive an efficiency correction down to about 0.07 ph s -1 cm -2 given by:

Efficiency correction

ef f (N ) = 0.70 1 -exp - N 0.129 2 2.34 (4.1)
where a factor of 0.75 has been applied to convert count fluxes to photon fluxes (Stern et al., 2001, Fig.7). Their logN-logP diagram is thus complete down to this lower peak flux limit, and the normalization of our population to this constraint yields the duration in years of our simulation.

Normalization of the LGRB population

Since the logN-logP diagram from Stern et al. (2001) is corrected for efficiency, normalizing our population model's simulated logN-logP yields the duration of our simulation in the following way. In practice we simulate N GRB ≥ 10 5 , which are then distributed in our simulated logN-logP, i.e. our model gives us the number of bursts observed at each peak flux. One of the advantages of using the BATSE logN-logP is that the live time of the search has been well studied for this mission (which is not the case for Fermi or Swift, since their detection methods are more complex). This means we know how many bursts were detected, during which period, over which fraction of the sky. We can therefore correct the observed logN-logP to show the number of

LGRBs detected per year in the whole sky. Adjusting our simulated logN-logP to this corrected one, we obtain the number of years our simulation represents. This allows us to make predictions about the total number of LGRBs observed (above a given peak flux), but also to estimate the live time of the search for our other simulated samples by reversing this line of reasoning.

Spectral Constraint

In order to constrain the spectral properties of our intrinsic population we focused on a quantity that is fundamental in defining the GRB γ spectrum: the peak energy E p .

Observed E p distribution

Similarly to the logN-logP distribution, the E pobs distribution is the results of the instrinsic E p distribution, convolved with redshift which raises the same aforementioned problems. In addition to this, there is the issue of properly measuring the E p , which is difficult for instruments with a narrow energy band (e.g. Swift/BAT 15-150 keV). To constrain this statistically, we searched for a large sample of GRBs with good E p measurements from an instrument with a large spectral coverage.

GBM sample

We decided to use data from the 3rd Fermi/GBM spectral catalog (Bhat et al., 2016) since GBM is an instrument with a large sample (≥1500 GRBs) and a large spectral bandwidth . In order to have a clean comparison sample, we used certain selection criteria: We created the logN-logP diagram for the GBM sample and compared it to the one from Stern et al. (2001), shown in Fig. 4.2, using the GBM peak flux in the 50-300 keV band. Since a thorough study on the efficiency of the GBM detectors is not yet available, we normalized the logN-logP from GBM to the one from Stern which is corrected for efficiency, live-time of the search T BATSE live and mean solid angle of the sky observed Ω BATSE . This normalization yields T GBM live × Ω GBM = 55 sr yr for the GBM sample (observed over a duration of 8.26 year). We then cut the GBM sample at 0.9 ph s -1 cm -2 , indicated by the red vertical line in Fig. 4.2, below which the logN-logP of GBM and Stern start to diverge. By doing this procedure we are ensuring an E p distribution that is unbiased from faint flux incompleteness, at the price of sample size. The resulting E p distribution is shown in Fig. 4.3.

Redshift Constraint

As illustrated by the previous sections, the distance of GRBs is inherently intertwined with any observable and unfortunately the majority of GRBs have no measured redshift. This is because GRBs from early missions such as CGRO/BATSE, despite being numerous, had very large localization error (this is still the case for Fermi/GBM). With the advent of Swift (Gehrels et al., 2004), the picture has changed significantly, with about 30% of its detected GRBs having a 2001) and Kommers et al. (2000) which is corrected for efficiency, live-time of the search and fraction of the sky observed. The various diagrams agree well between peak fluxes of 1 and 10 ph s -1 cm -2 ; below ∼ 0.9 ph s -1 cm -2 (indicated by the vertical black dashed line) the logN-logP of GBM is incomplete. The adjustment value of GBM should be compared to the duration of the catalog: 8.25 years. Above 10 ph s -1 cm -2 , the scatter becomes large as these are rare events and the binning is quite fine-grained, nonetheless the logN-logP are consistent within errors. The red stars represent our own rebinned version of the BATSE logN-logP from the Stern et al. (2001) catalog; it is thus corrected for efficiency, fraction of sky observed and live-time of the search.

redshift owing to its improved localization capabilities from the onboard X-Ray Telescope (XRT) which provides an error radius of ∼ a few arcseconds. Looking towards the future, SVOM holds the hope to follow more than 60% of its detected GRBs, providing a sample of GRBs with good prompt spectral coverage (down to 4 keV), localization, redshift and afterglow follow-up [START_REF] Wei | [END_REF].

Biases in redshift distributions

To date 3 , the number of GRBs with redshift is around 500, however it is not possible to simply use all GRBs with a redshift. Indeed, as is illustrated in Fig. 4.4, redshift distributions are often plagued with strong selection effect and biases. For instance, the ability to measure a redshift for GRBs relies fundamentally on the capacity to locate it, which biases this distribution against so-called dark bursts (Greiner et al., 2011;[START_REF] Melandri | [END_REF] that present highly extinguished optical afterglows. Another selection effect, called the redshift desert, is due to the fact that most emission and common absorption lines are shifted outside the window of optical spectrographs around z ∼ 2, although the advent of newer spectrographs such as X-Shooter (Vernet et al., 2011) (Bhat et al., 2016), used as a spectral constrain for our population model.

have mostly remedied this. It is therefore crucial to use a well-controlled redshift distribution to avoid biasing the intrinsic LGRB population, even at the cost of statistics, which is why we used the redshift distribution from the BAT6 sample described below. 

BAT6: a well-controlled, complete sample

The BAT6 sample (Salvaterra et al., 2012) is a complete sample of Swift LGRBs with a selection based on the peak flux P 15-150 keV > 2.6 ph s -1 cm -2 and favorable observing conditions (Jakobsson et al., 2006) . These conditions are chosen so that they increase the chance of redshift recovery without biasing the redshift distribution. They are based on criteria which do not

Additional observables for crosschecking and complementary studies

depend on the redshift of the LGRB:

-The burst must be well localized by Swift/XRT and the information was distributed quickly -There is low galactic foreground extinction (A V < 0. 

Additional observables for crosschecking and complementary studies

In addition to the constraints fit by the model, we control that the spectral parameter distributions of the GBM sample generated by our model are consistent with the observed distributions (shown in Fig. 3.2) and include two other observables to help discriminate scenarios with similar likelihood.

The eBAT6 Ep-L plane

The eBAT6 redshift is used as a redshift constraint, but there is more information to be extracted from this complete sample. More specifically, we use the E p -L plane since it contains information about the correlation between the isotropic-equivalent luminosity of the bursts and their peak energy. This is relevant, in particular when trying to distinguish between scenarios with intrinsic "Amati-like" correlation or independant Log-Normal distribution for the peak energy (see Sect. 3.2.2). Figure 4.6 shows the E p -L plane for the eBAT6 sample (data is from Pescalli et al. 2016). Fitting the E p -L plane of the extended BAT6 sample, Pescalli et al. (2016) derived α A = 0.54 ± 0.05, σ Ep = 0.28 and E p0 = 390 keV, their fit is represented by the purple line in Fig. 4.6. It should be noted that ∼ 25% of the original BAT6 sample have peak energies only determined by Swift/BAT, which is not very accurate for determining spectral parameters due to its small bandwidth (15-150 keV). This could potentially impact the E p distribution of the sample, although a precise quantification of this effect has not yet been determined. 

The SHOALS redshift distribution

The Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS, Perley et al. 2016c) is the largest unbiased sample of LGRB host galaxies to date with 119 objects. Despite the larger statistics than the BAT6 sample, the selection methodology is more complex and relies fundamentally on the fluence of the bursts, a quantity which is not straightforwardly calculated by our population model, which is why we do not use it as a constraint but rather as a crosscheck.

Summary

We define our Swift sample as bursts with P 15-150 keV > 0.2 ph s -1 cm -2 and check that this selection includes most LGRBs from the SHOALS sample. By construction, this selection includes more bursts than the SHOALS selection on the fluence, as illustrated in Fig. 4.7. We therefore expect the redshift distribution of our Swift sample to peak at slightly higher redshift than the SHOALS sample. If a model does not display this behavior, we assume it is not an accurate representation of the redshift distribution of LGRBs.

Summary

In this chapter, I presented the 3 different observations used to constrain our population model:

-An intensity constraint based on an efficiency-corrected version of the logN-logP diagram of BATSE/CGRO with a very large number of LGRBs (> 6000). The normalization of our population model to this constraint will yield the duration of our simulation.

-A spectral constraint based on the observed E p distribution of LGRBs from Fermi/GBM, with special attention paid to cut the sample to avoid biases due to low completeness.

-A redshift constraint based on the redshift distribution of a well-controlled sample of

LGRBs.

I discussed two additional observables not used as constraints but as a cross-check:

-The E p -L plane of the eBAT6 sample will allow to distinguish between scenarios with or without intrinsic correlation between spectrum and luminosity parameters.

-The SHOALS redshift distribution will allow to discard models if their simulated Swift sample redshift distribution is not consistent with it. This chapter deals with the more technical aspects of parameter exploration and the identification and quantification of a best-fit model. The recent decades have seen an increase in the number of methods for statistical analysis, in particular Bayesian ones, due to the emergence of affordable computing power. After a brief description of the Bayesian paradigm, I will present the different techniques used to find the best set of parameters for our model.

Statistical tools

Bayesian inference

History

The Bayesian philosophy is named after English reverend Thomas Bayes, who first postulated his theorem in 1740, though its modern mathematical form was presented by Pierre-Simon Laplace in 1774. The Bayesian paradigm can be summarized into one equation, called Bayes' theorem; given a model with parameters θ, the probability of this model explaining the data is given by: P (θ|D) = P (D|θ) P (θ) P (D) (5.1) where P (D|θ) is the likelihood of the data, P (θ) is the prior on the parameters and P (D) is a normalization factor often omitted in inference problems, called the evidence1 . The reader is referred to VanderPlas (2014) and the book of [START_REF] Wasserman | All of Statistics: A Concise Course in Statistical Inference[END_REF] for more information about Bayesianism.

Statistical tools

Choice of priors

The Bayesian paradigm forces one to consider the prior knowledge on the model parameters.

Often one wishes to perform an analysis without prior knowledge to avoid biasing the posterior distribution which results in a common practice of using uninformative priors. These priors, also called flat priors, are usually taken as a step function between physically motivated boundaries as:

P (θ) = 1 u-l if l ≤ θ ≤ u 0 otherwise (5.2)
In our model, we only used flat priors to avoid biasing our results from previous studies, whose bounds are summarized for each parameter in Tab. 5.1. Note that different values for the bounds were tested, but in general we tried to use boundaries as large as physically justifiable; in all cases the best fit parameters from older studies are within our bounds. 
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Goodness of fit estimator

When comparing models with observations, one needs a way to quantify to what degree the models represents the data. This is often called the goodness of fit of a model and can be estimated in different ways depending on the methodology. At its core, a goodness of fit estimator is a number which measures how close or how far the model is to reality, and can be minimized or maximized to find a set of best-fitting parameters.

To bin or not to bin?

One of the questions when dealing with model fitting is whether or not to bin the observational data. The binning of data reduces computing time at the cost of loss of information. In our case, we chose to use binning since our code relies on a goodness of fit estimator that requires binning and computing time was a considerable issue. Due to the curse of dimensionality2 , our histograms used as constraints are all one dimensional (see Chap. 4).

χ 2

The first goodness of fit estimator we used, following in the steps of D06, is ubiquitous across most scientific fields due to its simplicity and ease of manipulation. It is known as the reduced χ 2 , and is calculated using the "unreduced"3 χ 2 defined as

χ 2 = N i E i obs -E i pred σ i obs 2 (5.3)
where E i obs and E i pred are respectively the values observed and predicted by the model, and σ i obs is the observational uncertainty for bin i. The advantage of the χ 2 is that it can be easily extended to more than one histogram since one can simply sum each individual χ 2 . However, in order to use the reduced χ 2 (i.e. the goodness of fit estimator), the number of degrees of freedom has to be clearly defined, which is not the case for non-linear models like our own and is commonly overlooked in astronomy (Andrae et al., 2010). For this reason, despite earlier versions of our model relying on the χ 2 to find the best set of parameters, we had to look for another goodness of fit estimator.

Indirect likelihood

We decided to follow a methodology already used for galaxy catalogs from image extraction (Carassou et al., 2017) which is based on a Parametric Bayesian Indirect Likelihood (pBIL, Drovandi et al. 2015). The basic idea is to use an auxiliary likelihood when a complex problem renders its own likelihood intractable. To this end, we used the binned maximum likelihood method (Barlow & Beeston, 1993) which assumes the number of objects in each bin follows a Poissonian law and we construct our auxiliary likelihood such that for each bin i, the probability of o i given the model s i is:

l i = e -s i s o i i o i ! (5.4)
The likelihood for the entire histogram becomes:

L = b i=1 e -s i s o i i o i ! (5.5)
where b is the total number of bins in the histogram, o i and s i are the observed and simulated number count in bin i respectively 4 . The log-likelihood is thus:

ln L = b i=1 o i ln(s i ) -s i (5.6) 50 

Exploring the parameter space

where the factor ln(o i !) is neglected since it is a constant and our goal is to maximize ln L. This likelihood presents a problem if a single simulated bin is empty therefore we added an infinitesimal = 1e-3. We checked the impact of different values of which affected mostly models with bad likelihood (i.e. models with many empty bins). The effect on good models was negligeable, in part due to the fact that the observed histograms were constructed originally for a χ 2 test, thus having at least 10 objects per bin causing empty bins to be unlikely.

It is worth noting that similarly to the χ 2 , multiple histograms can be included by simply adding the logarithm of the likelihood (i.e. multiplying the likelihoods). However, unlike the χ 2 , the importance of a given histogram relies its the number of objects. For this reason, the intensity constraint (see 4.1) has the strongest weight of our constraints due to its large sample size (N = 6938 once the efficiency correction is taken into account). In order to strengthen the impact of the redshift constraint (weak due to its small sample size, N = 82), we added a weight of 10 to its likelihood. We tested different weights by checking the goodness of fit maps and this one was chosen as a balance between having a notable impact and being unrealistically constraining with respect to the other constraints.

Finally, we use the Bayesian Information Criterion (BIC, Schwarz 1978) to inform us on the best model given the number of free parameters. The BIC, closely linked to the Aikake Information Criterion (AIC) used in frequentist inference problems, penalizes models with too many free parameters and is given by: BIC = ln(s) p -2 ln L max (5.7) where s is the sample size, p the number of free parameters and L max the maximized value of the likelihood function.

Exploring the parameter space

Once a goodness of fit estimator has been chosen, procedures can be implemented to find the best set of parameters that optimize its value. In our case we want to find the parameters that correspond to the maximum of the auxiliary likelihood, and various algorithms can be used to this end.

Brute Force

The simplest method, often referred to as "brute force", consists in creating a grid with n points per parameter and exploring this grid systematically. This works well for low number of parameters but scales as n p where p is the number of parameters, which can become costly for more than 4 parameters5 . Also the precision with which the best set of parameters is determined depends on the n which means lowering it to increase computational speed impacts the quality of the best parameter determination.

Markov Chain Mont Carlo

Concept

Another very popular method for exploring the parameter space is called Markov Chain Monte Carlo (MCMC). The idea is to create a walker that is initialized randomly in the parameter space and jumps to a new location depending on predefined algorithms. The random walk created by this walker is a Markov chain and thus respects the following properties: the transitional kernel of θ (t+1) given {θ (0) , • • • , θ (t) } only depends on θ (t) . This means that any given state relies on the one previously determined, making MCMC methods tricky to parallelize. In lieu of exploring the whole parameter space, these algorithms insure no computational time is wasted in areas of low likelihood. There is a wide variety of different algorithms, many problem-dependent; for our purposes, we used one of the most widespread called the Metropolis-Hastings algorithm. Given a state θ (t) , a new state θ * is generated from a user-defined transition kernel Q(θ * |θ (t) ); the step is accepted with probability:

a = min P (θ * |D) P (θ (t) |D) Q(θ (t) |θ * ) Q(θ * |θ (t) ) , 1 (5.8) 
In our case the transition kernel for every parameter is Gaussian with the current state as location parameter and a scale parameter determined from trial and error. In practice, the scale parameter was chosen after tests on the different chains to insure an adequate sampling; the acceptance ratio -the number of accepted jumps divided by the total number of jumps -was optimized to be around 25-50% (Carassou et al., 2017). The Gaussian transition kernels are symmetric yielding a simpler form:

a = min P (θ * |D) P (θ (t) |D) , 1 (5.9)
where the ratio P (θ * |D) P (θ (t) |D) can be computed directly from the likelihood given by Eq. 5.6 using Bayes' theorem (Eq. 5.1).

Simulated Annealing

One of the pitfalls of the aforementioned MCMC algorithms arises when the posterior distribution has multiple peaks. In such a case, the Metropolis-Hastings algorithm may get stuck in a local maximum and not converge to the best solution. To remedy this we employ a modification to our chains6 based on the idea of cooling metals, named simulated annealing (Kirkpatrick et al. 1983, see also Carassou 2017, Sect. 6.5). The idea is to let the walker initially accept worse likelihoods with a factor τ = τ 0 that decreases at a user-defined rate. As the effective temperature τ decreases, the chain is less and less likely to accept worse jumps until τ → 1, where we return to a classic Metropolis-Hastings algorithm. This modification to the original Metropolis-Hastings algorithm verifies the condition of ergodicity: regardless of the starting point the Markov Chain will converge to the same stationary distribution. The acceptance probability thus becomes:

a =    P (θ * |D) P (θ (t) |D) 1 τ if P (θ (t) |D) > P (θ * |D) 1 if P (θ (t) |D) ≤ P (θ * |D)
(5.10)

Random draws

One of the issues with the type of forward folding models employed here is that each realization of a given set of parameters is different, due to the inherent Monte Carlo approach of drawing random numbers. In most cases this is not a problem, but for specific problems with rare events (e.g. high peak flux bursts, or high redshift bursts), this can cause variations in the goodness of fit estimator for the same set of parameters. To avoid this, we tried to increase the number of

LGRBs drawn for each model from 10 5 to 10 6 , increasing the computation time for a single model by up to a factor of 10; we also tested different random number generators (RNG) with respect to their uniformity. The variation of our goodness of fit estimator (at the time χ 2 was used but see 5.1.2.2) for the same set of parameters as a function of numbers of LGRBs simulation is

Exploring the parameter space

shown in Fig. 5.1. This makes an MCMC exploration suprisingly difficult and different algorithms were tried to remedy this issue (for instance calculating n times the goodness of fit and taking the median value), however most increased the computational time beyond what was deemed reasonable for a good exploration. Ultimately, the most computationally efficient solution was to fix the seeds for the LGRB drawings. With a number of LGRBs drawn large enough, the use of a different seed should yield similar results for the best fitting parameters. We checked this for 3 different seeds and varying only one parameter; the results are shown in Fig. 5.2. ). The top panel shows the normalized histograms and the bottom pannel mirrors their kernel density estimations. As the number of LGRBs drawn increases, the variations in χ 2 diminish, at the cost of computational time. The parameters for this run were: power law luminosity function {L min = 10 50 erg s -1 , L max = 10 53 erg s -1 , slope= 1.6}; redshift distribution following the CSFRD defined by Eq. 3.10; LogNormal E p distribution {E p0 = 600 keV, σ Ep = 0.45}.

Convergence

There are no diagnostics to prove the convergence of an Markov Chain (Cowles & Carlin, 1996), only ones that can disprove it (i.e. necessary but not sufficient). One of the commonly used diagnostics (and also a sanity check) is to run multiple chains and make sure they converge to the same solution. Another popular convergence diagnostic is the traceplot shown in Fig. 5.3 which relates the path taken by the Markov Chain for each parameter. Each run's traceplot was checked to make sure the chain was not too auto-correlated and the acceptance rate was adequat. We focused on these tests to assess the convergence of our chains although more elaborate convergence diagnostics do exist (see e.g. Carassou 2017, Sect. 8.1), but could not be implemented due to time constraints. LGRBs drawn and the right panel for 10 6 LGRBs drawn.

The red dots represent the case where the rand number generator seeds were not fixed. The blue, green and purple points are 3 different fixed seeds; the black curve is an arbitrary second order parabola drawn to guide the eye. At 10 6LGRBs, the different seeds yield very similar χ 2 .

Our implementation

Based on the previous analysis, we fix N GRB = 10 6 . One run with 10 6 LGRBs drawn takes about 10-15 seconds depending on the specific details, on a standard desktop computer, with 4-core i5-6500 processor and our MPI parallel implementation 7 . We therefore determined a reasonable number of models to be 75 000, which translates to ∼ 750 000 seconds or almost 9 days of computing time per machine. We divided this into 3 chains, making each chain 25 000 iterations long. Finally, we imposed the cooling rate and initial temperature of the annealing algorithm so that we recovered a classic Metropolis-Hastings algorithm after 2000 iterations (< 10% of the total chain, which is discarded as a burn-in during the post-processing). With these constraints in mind we explored as many different scenarios as we could, the results of which are compiled in the following chapter. 

Chapter 6

Results and discussion Contents 

Introduction

This chapter compiles the results of the various parameter explorations undertaken with our population model. These explorations and the different models we tested were guided by the following questions:

-What is the luminosity function of LGRBs? Does it evolve with redshift?

-Does the LGRB rate follow the SFR ( ṅGRB ∝ SFR)? i.e. is the LGRB production efficiency constant with redshift?

-If the LGRB rate does not follow the SFR, what is their intrinsic redshift distribution?

-What are the implications for the LGRB production efficiency?

-Is there any intrinsic "Amati-like" correlation?

Methodological check

The models we explored fall into two main categories: LogNormal E p distribution (LN-E p ) and "Amati-like" E p (A-E p ) distribution. These two different E p scenarios were meant to address the question of intrinsic "Amati-like" correlations. Within each scenario, we tested first models where the redshift distribution of LGRBs is fixed and proportional to the SFR (i.e. the LGRB efficiency is constant) and then models where the parameters of the redshift distribution are left free. These runs were performed to test the hypothesis that LGRBs trace star formation. Finally within each case mentioned above, we ran models with a fixed luminosity function (i.e. k evol =0, no redshift evolution of the luminosity function) and models with a varying k evol , sometimes left free, sometimes fixed at a non-zero value for performance reasons (see Sect. 6.3.2). Let us also note that we performed many different tests, for instance using a power law luminosity function, or letting only 1 or 2 of the redshift distribution parameters vary, but here we only present the best scenarios that cover all the various scientifics questions we aim to answer1 .

For convenience, each run is named as k{val}-{E p -model}-{ ṅGRB -model}, where {val} is the value at which k evol is fixed, or F if left free to vary, {E p -model} is LN for LogNormal and A for "Amati-like", and { ṅGRB -model} is nSFR for ṅGRB ∝ SFR and nF for ṅGRB free to vary; these names are compiled in Tab. 6.4. For example, the LN-E p model, with k evol fixed at 0.5 and a free redshift distribution is noted k05-LN-nF.

After a methodological check to make sure the code can recover known input parameters, the best fitting parameter values computed from the MCMC exploration are discussed and reported in Tab. 6.1 and 6.2. Attempts are made to answer some of the aforementioned questions in Sect. 6.5. The chapter ends with some conclusions and perspectives on the results of our population model.

Methodological check

The first verification we made was to generate fake observations with our code from known parameters. We then used these fake observations as our input constraints and tried to recover the input parameters with the code. The first check showed us that if L min is lower than ∼ 10 50 erg s -1 , it is not possible to recover its value from our population model. In fact, the lower the L min , the worse became the estimation of the parameters; due to the slope of the luminosity function, a larger fraction of LGRBs were generated at low luminosities, undetected by our samples. Since the number of LGRBs drawn is fixed, this caused fewer bursts in the samples and an increase in Poissonian fluctuations. This is what motivated us to fix the value2 of L min , which can not be determined precisely with the logN-logP from BATSE. It is worth noting that the value for L min we used can be treated as an upper limit, since if L min were higher, it would start to be detectable in the logN-logP of BATSE, according to our model. The results of the MCMC exploration for the second check (where L min was fixed) are presented in Fig. 6.1, where the code is able to satisfactorily recover the input parameter values: Schechter luminosity function {L break =10 53 erg s -1 , slope= 1.5}, redshift distribution following the CSFRD defined by Eq. 3.10; "Amati-like" E p scenario {E p0 = 10 2.60 keV, σ Ep = 0.30, α A = 0.50}. It should be noted that there is the presence of significant correlation between L break and the slope of the luminosity function, a feature which is present in all of our explorations; this is because a lower L break can give a similarly good fit if the slope is slightly shallower (allowing for a higher proportion of more luminous GRBs). This confirmed that the methodology was sound, after which we performed the MCMC exploration on the real data. 

Scenario without intrinsic spectrum-luminosity correlation

The values for the best fitting parameters in the case of a LogNormal E p model are reported in Tab. 6.1; the corner plots from the MCMC exploration are shown in Appendix A and the fit to the observational constraints are shown in Appendix B. We used K-S tests to quantify the exclusion of certain models, the results of which are compiled in Tab. 6.3, and finally checked the distribution of the normalized residuals (an example is shown in Fig. 6.3). A summary with every model, the number of free parameters, the likelihood and the BIC is presented in Tab. 6.4. 

Scenarios with a constant LGRB efficiency ( ṅGRB ∝ SFR) k0-LN-nSFR

The first simplest case is a non-evolving luminosity function, a LogNormal E p distribution and a constant LGRB efficiency. This model has the fewest free parameters of all: 4. The MCMC exploration of this model converged well (see Fig. A.1), but the best fit parameters poorly represent the observed data (see Fig. 6.2, left panels), and the likelihood value is much lower than for other models. The distribution of normalized residuals (see Fig. 6.3, blue histogram) shows residuals beyond 3, implying that for some bins the model overpredicts the observations by more than 3 times the observed error. Looking at the K-S test results, the p-value from the Intensity Constraint indicates this model can be excluded at the 99% confidence level.

kF-LN-nSFR

Building in complexity, we left the k evol parameter of the luminosity function free to vary, while keeping the redshift distribution fixed and propotional to the SFR (i.e. constant LGRB efficiency). This model has 5 free parameters, the MCMC exploration behaved well and the fit to the data is good as is attested by the p-values of the K-S tests and the distribution of normalized residuals shown in Fig. 6.3 (orange histogram). The corner plots are shown in Fig . A.2, and the fit to the data in Fig. 6.2, right panels. The BIC values in Tab. 6.4 confirm that increasing the number of free parameters by 1 is justified with respect to the improvement in the likelihood. The best fitting values for L break and the slope are lower than for a non-evolving luminosity function, which is caused by the dependence of L(z) = L 0 × (1 + z) k evol . The value of L break found in the non-evolving case is recovered at z ∼ 3.5.

Scenarios with a redshift distribution free to vary

We also tried models where the three parameters from the redshift distribution were allowed to vary, however this meant increasing by 3 the number of free parameters in our model. This had impacts on the performances of the MCMC exploration and in particular the correlation between k evol and the redshift distribution parameters meant that most chains had trouble converging. In order to avoid these types of behaviors between parameters, one often resorts to decorrelation methods such as PCA whitening (e.g. see Carassou et al. 2017). For lack of time, these types of algorithms could not be implemented so we instead explored scenarios with 4 fixed values of Peak flux [ph cm -2 s -1 50 -300 keV] 3) and the distribution of its normalized residuals (see Fig. 6.3) while the kF-LN-nSFR model (right) provides a satisfactory fit to the data and can not be excluded by the K-S test, or its normalized residuals distribution.

k evol3 : 0, 0.5, 1, and 2, corresponding to: no evolution, mild evolution, evolution, and strong evolution of the luminosity function. Despite this, the number of free parameters was large enough to cause trouble with the given chain lengths and annealing implementation; ideally we would have increased the chain length but this would have increased the computational time too much. The parameter values presented in the following paragraphs should therefore be treated with some caution, as the errors are probably underestimated (this is reflected also in the corner plots, in particular for the "Amati-like" E p case, see Appendix A). After running some tests, we saw that the σ Ep parameter in the LogNormal E p case always had the same value (0.43 to 0.47), regardless of the different models. Aiming to reduce the number of parameters without impacting the results significantly, we therefore decided to fix this parameter to σ Ep = 0.45 for LN-E p models in which the redshift distribution was left free to vary.

k0-LN-nF

This model has a non-evolving luminosity function, with a LogNormal E p distribution and the redshift distribution is left free to vary, totaling in 6 free parameters. The MCMC exploration exhibits some multi-peaks for b, the high-redshift slope, but the rest of the parameters behave generally well; the fit to the data is good: 

k1-LN-nF

This model has a an evolving luminosity function, with a LogNormal E p distribution and the redshift distribution is left free to vary, totaling in 6 free parameters. The MCMC exploration behaves well, but again there is some asymmetry in the marginalized posterior PDF of b; the fit to the data is very good: the normalized residual distribution cannot exclude this model with high confidence. It should be noted that the p-value for the intensity constraint is close to 0.05, for which it is possible to exclude the null hypothesis at the 95% confidence level, however given the high likelihood and the lack of large normalized residuals, we decided to keep this model. 

Summary for LN-E p models

A first important result is that we can exclude the k0-LN-nSFR model from further analysis based on its likelihood and the fit to the data as shown by the K-S test results and its distribution of normalized residuals. At least some form of evolution (luminosity function or redshift) is required to acceptably reproduce the data; assuming a constant LGRB efficiency implies a fairly strong evolution of the luminosity function to match the data. Looking at the values in Tab. 

Scenario with intrinsic spectrum-luminosity correlation

L break parameter become smaller (since it evolves more), and correspondingly the slope becomes steeper. Similarly, as k evol becomes larger, the low redshift slope of the redshift distribution becomes flatter, and the high redshift slope becomes steeper, meaning the distribution density shifts towards lower redshift; this is well illustrated in the cumulative redshift distribution plots shown in Fig. 6.4, for both LN-E p and A-E p scenarios. The high redshift slope of the redshift distribution is often asymmetric and sometimes multi-modal, which is probably caused by the small number of bursts at z > 4 in our redshift constraint.

Looking at the likelihood and BIC4 values in Tab. 6.4, LN-E p models with a redshift distribution free to vary are favored over the ones where the redshift distribution is proportional to the SFR, despite the larger number of parameters. The preferred model in the case of a free redshift distribution is k05-LN-nF with k1-LN-nF and k2-LN-nF following.

Scenario with intrinsic spectrum-luminosity correlation

The values for the best fitting parameters in the case of an "Amati-like" E p model are reported in Tab. 6.2. 

k0-A-nSFR

The other simplest case is a non-evolving luminosity function and a constant LGRB efficiency with an "Amati-like" correlation. The MCMC exploration was difficult, with some multi-modal behavior for L break and a non-Gaussian marginalized posterior PDF for α A . Interestingly, the best fit model for a constant efficiency and a non-evolving luminosity function has a negative α A .

We tried other runs reducing the prior range on α A but the likelihood was worse and the chain still converged towards low values of α A yielding results similar to the LN-E p case5 

kF-A-nSFR

This model has a a strongly evolving luminosity function, with an "Amati-like" E p distribution and a fixed redshift distribution, proportional to the SFR, totaling in 6 free parameters. The MCMC exploration behaves well although there is some hints of correlations between the majority of the parameters; the fit to the data is very good: neither the K-S tests nor the normalized residual distribution can exclude this model with confidence. The corner plots are shown in which led us to consider the case with an evolving LGRB efficiency due to the degeneracy between the two parameters.

Scenarios with an LGRB efficiency free to vary

The following models have a redshift distribution whose parameters are left free to vary.

k0-A-nF

This model has a non-evolving luminosity function, with an evolving LGRB efficiency. The MCMC exploration converged but there are some evident correlations between parameters, in particular between L break and the slope of the luminosity function. This causes some slight non-Gaussianity in the marginalized posterior PDFs, especially for L break and the slope of the luminosity function. The fit to the data is very good: the normalized residual distribution cannot exclude this model with confidence. It should be noted that the p-value for the intensity constraint is close to 0.05, for which it is possible to exclude the null hypothesis at the 95% confidence level, however given the high likelihood and the lack of large normalized residuals, we decided to keep this model. The corner plots are shown in 

k05-A-nF

This model has a mildly evolving luminosity function and an evolving LGRB efficiency. The MCMC exploration was difficult due to the correlations between parameters, in particular between L break and the slope of the luminosity function. This causes some significant non-Gaussianity in the marginalized posterior PDFs, especially for L break and the slope of the luminosity function.

The fit to the data is very good: neither the K-S tests nor the normalized residual distribution can exclude this model with confidence, although the corner plot indicates the chain has not satisfactorily converged so the value for the parameters should be taken with some caution. The corner plots are shown in 

Scenario with intrinsic spectrum-luminosity correlation k2-A-nF

This model has a strongly evolving luminosity function with a LGRB efficiency left free to vary.

The MCMC exploration converged despite some correlations between parameters (but better than the k1-A-nF case). This causes some mild non-Gaussianity to appear in the marginalized posterior PDFs, especially for α A and b. The fit to the data is very good: neither the K-S tests nor the normalized residual distribution can exclude this model with confidence. The corner plots are shown in Fig. A.13, and the fit to the data in Fig. B.6, right panels. Note that we obtain a similar fit to kF-A-nSFR, for which the best fit value of k evol , when left free, was ∼ 2. As in the case of k0-LN-nSFR, the k0-A-nSFR model can be excluded from further analysis because of its likelihood and poor fit to the data as shown by the K-S test results and the distribution of normalized residuals, suggesting at least some form of evolution (redshift or luminosity) is required to reproduce the data. We explored both possibilities and we noted that assuming a constant LGRB efficiency implies a strong evolution of the luminosity function to match the data. Similarly to the LogNormal E p case, the "Amati-like" E p models exhibit the same best fit values for z m ∼ 2, which is also the approximate redshift at which the cosmic SFR peaks. This result is robust to both LN-and A-E p models and in the case of an evolution or not of the luminosity function. The L break and slope parameters of the luminosity function exhibit the same behavior as for the LN-E p scenario, i.e. decreasing L break and increasing slope with increasing k evol , and the redshift distribution parameters also behave correspondingly: flattening of the low redshift slope and steepening of the high redshift slope for increasing L break . It should be noted however that the correlations are very strong between parameters here. Interestingly, for the largest values of k evol , we recover a redshift distribution compatible with the CSFRD, which is in line with previous studies (see Sect. 2.3); however one can ask whether such evolutions are physically realistic. Indeed, for k evol =2, the luminosity function is multiplied by a factor of 125 at z = 4, which could be difficult to justify with physical models.

Summary for A-E p models

Looking at the likelihood values in Tab. 6.4, models with a free redshift distribution are favored, however the BIC column indicates the additional free parameters in this case do not justify the increase in likelihood. The preferred model from the constraints used is therefore kF-A-nSFR; there remains to use the additional cross-checks to see if this model holds. Within the free redshift distribution models, the likelihood and BIC favor the k0-A-nF model, followed by the k05-A-nF and k2-A-nF, although it should be noted all models have similar likelihoods.

Discussion

Distinguishing between well-fitting scenarios

Having found the best fitting parameters for each run, we aim to compare their goodness of fit and determine which is most likely to represent reality. The models with no luminosity function evolution and a constant LGRB efficiency can already be ruled out due to their poor fits to the constraints. However, the other models have similar likelihoods and we used the additional observational cross-checks described in Sect. 4.4 combined with their BIC values to discriminate between them. The values for the maximum likelihood and the associated BIC for each run are summarized in Tab. 6.4. 

The SHOALS redshift distribution

The goal of this cross-check is to discard models whose simulated Swift sample cumulative redshift distribution does not agree with the SHOALS cumulative redshift distribution (see Sect. 4.4.2). Models with strong luminosity evolution have steeper high redshift slopes in their redshift distribution, meaning they peak at lower redshift. In particular, both LN-and A-E p scenarios with k evol left free (kF-XX-nSFR) and k evol =2 (k2-XX-nF) have cumulative redshift distributions for their simulated Swift sample that peak at lower redshift than the SHOALS sample, despite both scenarios well reproducing the eBAT6 sample. This would imply that the fraction of redshift recovery in the SHOALS sample is higher for higher redshift bursts, which is highly unlikely (in other words, the SHOALS sample is missing more bursts at low redshift than high redshift compared to all of the Swift bursts). This effect is illustrated in Fig. 6.5, where the top panels show the normalized density of the observed SHOALS sample and the results for the Swift sample (defined in Sect. 3.3.3) from the various models. The bottom panels represent the ratio of the SHOALS and the simulated Swift redshift distributions in each bin. This ratio is used as a proxy for the redshift recovery fraction of SHOALS with respect to the whole Swift sample. This cross-check therefore discards strong luminosity evolution scenarios, in favor of more mild evolutions. Indeed, from k evol =1 and lower, the redshift recovery fraction at z > 4.5 starts becoming consistent with the one at lower redshift. An example of an inconsistent distribution (kF-LN-nF) and a consistent (k05-LN-nSFR) case are shown in Fig. 6.6, the plots for every scenario are reported in App. C.

The eBAT6 Ep-L plane

The goal of this cross-check is to differentiate between well-fitting models with (A-E p ) and without (LN-E p ) an intrinsic spectrum-luminosity correlation. LN-E p scenarios with little or no luminosity evolution (k evol ≤ 0.5) can be ruled out due to their lack of high luminosity -high E p bursts as shown in Fig. 6.7. The A-E p models represent well this observable, regardless of the value of k evol . The plots for every scenario are reported in App. C. In general, this cross-check seems to favour the A-E p scenario, but the LN-E p scenarios with k evol ≥ 1 could be considered marginally compatible. Let us recall that there is some uncertainty to this cross-check due to the inhomogeneity of the determination of E p (i.e. from different instruments, including some with Swift/BAT only) and to the fact that ∼ 17% of the sample does not have a redshift. Furthermore we are still in the process of precisely quantifying the exclusion power of this cross-check. For these reasons we also include the scenarios with k evol < 1 in the following discussion, albeit with a focus on the k evol =1 case.

Cross-check summary

To summarize, the SHOALS cross-check rules out models with strong evolution (k evol =2) in both A-and LN-E p scenarios; while the eBAT6 E p -L plane shows a preference for scenarios with intrinsic spectrum-luminosity correlations ("Amati-like", A-E p ) and some mild luminosity evolution, without entirely excluding LN-E p scenarios with some luminosity evolution. Despite the preference of the E p -L cross-check for "Amati-like" models, the BIC favors LN-E p scenarios, and due to the caveats of this cross-check, we still include LN-E p scenarios in the discussion below, focusing on the k1-LN-nF case 6 . A summary of the compatibility with the two cross-checks for each model is reported in Tab. 6.5.

The intrinsic redshift distribution and the production efficiency of LGRBs

The well-fitting models that pass the cross-checks are: k0-A-nF, k05-A-nF and then marginally k1-A-nF, k0-LN-nF, k05-LN-nF, and k1-LN-nF. Their redshift distributions are shown in Fig. 6.9; since the ones of the A-E p scenarios are similar, we will limit the discussion to the k05-A-nF case; for the LN-E p scenarios we will use the k1-LN-nF scenario since the other ones have redshift distributions similar to the k05-A-nF case (in particular, see parameter values for b in Tab. 6.1).

It is worth noting that the highest redshift LGRB in our redshift constraint is at z < 6; we should be careful in intepreting results beyond this value.

Looking at the LGRB efficiency -defined as the LGRB comoving rate divided by the comoving core-collapse rate (see Sect. 3.2.4.1), it seems to increase by a factor of ∼ 5 between z = 2 and z = 6 for the k05-A-nF case, illustrated in the right panel of Fig. 6.9; the increase for the k1-LN-nF case is less pronounced. We should note that the shape below z = 2 is not physical but due to our simple parametrization which is not precise enough at low redshift. A better approach would be to adjust bins and to derive a step function for the redshift distribution, however even using only 6 bins up to z = 6 would require increasing our number of free parameters by 3 which would severely affect the convergence of our MCMC. On the other hand, the evolution at z > 2 appears regardless of the choice of CSFRD, which suggest the effect is real.

This increasing efficiency with redshift could be caused by the conditions necessary for the progenitor star to produce an LGRB. Among the possible physical properties of the progenitor, one is known to evolve with redshift and can be studied observationally: the metallicity. This axis is explored in the second part of the manuscript by studying the host galaxies of LGRBs. Let us however note that what we are constraining with this model is actually the product of the LGRB efficiency η(z) and pcc (z) m(z) ; our assumption is that the core-collapse probability p cc (z) and the mean mass from the stellar IMF m(z) are constant with redshift, leaving the evolution only to η(z). In reality, some of the evolution could also be due to these factors. Comoving rate density [yr
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What is the luminosity function?

The luminosity functions from our best models are shown in Fig. 6.10, along with a few from the literature. The studies generally all agree on a monotonically decreasing function, the slope(s) of which are similar. There is some variation in the bright end of the luminosity function, mainly because the slope causes bright bursts to be rare, making this part of the luminosity function hard to constrain.

Does the luminosity function of LGRBs evolve with redshift?

If we believe the LogNormal E p scenario, it seems that some evolution of the luminosity function is required to reproduce the observations, however this evolution is not as strong (k evol ≤ 1) as suggested in the past (k evol ≥ 2). In the "Amati-like" E p scenario, little or no evolution of the luminosity function is required to reproduce the data, but rather a strong evolution of the LGRB efficiency. While this is consistent with past results (e.g. Salvaterra et al., 2012) that found that either an evolution of the luminosity function of the LGRB rate was necessary, our results go further and eliminate models with very strong evolution of the luminosity function and models without any redshift evolution. We are able to lift -at least partially -the degeneracy on the evolution of the luminosity function versus LGRB efficiency when older studies could not because our samples go much fainter and we use additional cross-checks.

What is the true LGRB rate?

Using the normalization of our model to the logN-logP diagram (see Sect. 4.1.3) we can derive the global rate of LGRBs pointing towards us. To derive the total rate of LGRBs, we need to assume a mean jet opening angle. Although there are works that have reported some measurements for jet opening angles (e.g. Frail et al., 2001;Ghirlanda et al., 2004;Tanvir et al., 2010), it remains rarely constrained. Taking two extreme values, we can estimate the range of the correction for The luminosity function derived by our model for the k05-A-nF case (red) and the k1-LN-nF case (blue) at z = 0; these functions evolve with redshift as (1 + z) k evol so their shape is also shown at the median redshift of the population in dashed. Other luminosity functions from the literature are also shown; they are generally in agreement. The various curves are shifted for clarity. beaming: if the mean opening angle of the jet is 2.5

• we get a factor of 1000, while taking a value of 25

• gives a correction factor of 10. This means the value quoted from our population model should be multiplied by a factor of 10 to 1000 to account for the true LGRB rate in the Universe, including

LGRBs not pointing towards us. From Eq. 3.8, we get ṅ0 coll ∼ 1.5 × 10 5 yr -1 Gpc -3 , which means that in the worse case scenario, using the strongest redshift evolution of the LGRB efficiency, at z = 6 at most 10% of core-collapse also produce LGRBs. A summary of the normalization values for the various well-fitting runs is presented in Tab. 6.6. The local LGRB rate density ṅ0

GRB is given in column 2, and the values we derive are consistent with the value of WP10 (1.3 +0.6 -0.7 yr -1 Gpc -3 ) and with others in the literature (e.g. Schmidt, 1999;Guetta & Della Valle, 2007), and suprisingly do not vary much depending on the scenario. It is important to note that this value depends strongly on the value of L min , which in our model is fixed at 7 × 10 49 erg s -1 , close to the value of WP10 of 10 50 erg s -1 .

We can also derive recovery fraction of a given mission defined as:

f mission = f u × Ω 4 π (6.1)
where f u is the fraction of useful time 7 and Ω 4 π is the fraction of sky observed, by comparing the detected rates in our model with the observed detected rates. For our observed bright GBM sample8 , there are 1088 bursts fulfilling the peak flux cut over a duration of 8.26 years, resulting in an average yearly rate of 132 GRB yr -1 . For the observed eBAT6 sample, there are 99 bursts over a duration of 9.2 years, resulting in an average yearly rate of 11 GRB yr -1 . The values of

Conclusion

f mission for the bright GBM sample and the eBAT6 sample are given in columns 3 and 4 of Tab 6.6, and do not depend on the scenario, indicating a robust result. The value often found in the literature for f u of GBM is 0.82, and for Ω 4 π is 8.7 (Antier-Farfar, 2016); this yields f GBM = 0.57, entirely consistent with our derived value of 0.59. The value for the extended BAT6 sample is small; it is hard to tell if this is reasonable since the quantification of the selection criteria of the sample on the live-time of the search is impractical. Table 6.6: Summary of the normalizations and the estimations of the recovery fraction for our well-fitting models. There are no errors on the values for ṅ0 GRB as they are computed from the best model in each scenario instead of from the MCMC exploration; a quantification of the uncertainty is in progress but the errors are expected to be fairly small.

Model Name ṅ0

GRB 

f mission [yr -1 Gpc -3 ] bright GBM eBAT6 k1-LN

Is there an intrinsic "Amati-like" correlation?

From our analysis and specifically looking at the E p -L plane of the eBAT6 sample, there seems to be a preference for scenarios with an intrinsic spectrum-luminosity correlation. However, the slope of this correlation is lower than found in the literature (α A ∼ 0.3 from our models versus α A ∼ 0.5 in the literature) and the scatter is larger (σ Ep ∼ 0.4 from our models versus σ Ep ∼ 0.25 from the literature). However, the fact that we can almost reproduce the shape of the correlation for our LN-E p models (i.e. without intrinsic spectrum-luminosity correlation) confirms that there are strong selection effects at play. Our results however suggest that the observed correlation is not entirely due to such selection effects, in agreement with Ghirlanda et al. (2008); Nava et al. (2008); Ghirlanda et al. (2012). In most models the peak energy E p depends on the luminosity, but also on other parameters, which could explain the weaker slope and larger scatter we find here (see the example of the predicted L-Ep plane in the internal shock model discussed in Barraud et al. 2005 andMochkovitch &Nava 2015).

Conclusion

We developed a foward folding Monte Carlo model to generate an LGRB population from intrinsic distributions. The parameters of the intrinsic distributions were constrained by comparison with carefully selected samples of observed LGRBs, covering all the important properties of LGRBs: intensity, spectrum and redshift. We used an enhanced form of MCMC to explore the parameter space efficiently and identified the best-fitting parameters for a variety of different scenarios. We used additional observational cross-checks to discriminate between the various scenarios explored and our results can be summarized as follows:

-Using our carefully selected constraints coupled with additional cross-checks, we find that models with an increasing LGRB efficiency with redshift and some mild luminosity evolution (k evol ≤ 1) are favored.

-The E p -L cross-checks favors "Amati-like" scenarios with intrinsic spectrum-luminosity correlation although LogNormal E p scenarios with some luminosity evolution are marginally consistent. However, the slope of the intrinsic correlation derived from our model is smaller and the scatter larger than found in the literature for the observed correlation.

-The luminosity function parameters are correlated with each other (L break and the slope), but similar values are found for models with and without intrinsic spectrum-luminosity correlations, suggesting these results are not model dependent.

-Our population model is able to lift the degeneracy between a variation of the LGRB efficiency and a redshift evolution of the luminosity function thanks to the redshift distribution of a fainter sample with respect to older studies: SHOALS.

The increasing LGRB production efficiency with redshift can be tied to the conditions necessary for the progenitor star to become an LGRB. The end of life of massive stars is an extremely complex question, with many parameters affecting the outcome, even more so when dealing with binary systems. However, many theoretical and observational studies have suggested metallicity as one of the key regulatory factors for the production of LGRBs (e.g. Woosley 1993;Le Floc'h et al. 2003;Fryer et al. 2006;Perley et al. 2016c;Vergani et al. 2015). In this next part of the manuscript, I present the work I undertook on a complete, unbiased sample of LGRB host galaxies to study the influence of metallicity and other factors on the production of LGRBs by investigating the environments in which they explode. Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] Peak flux [ph cm -2 s -1 50 -300 keV] where b(E obs ) is the noise at a given energy in units of [cts s -1 keV -1 ] from Antier-Farfar ( 2016). The on-axis peak photon rate is given by integrating the peak photon flux N pk over the effective area of the detector:

P on 4-150 keV = 150 keV 4 keV N pk (E obs ) A(E obs ) dE obs [ph s -1 ] (D.2)
where A(E obs ) is the effective area of ECLAIRs, from the PhD thesis of S. Antier. We then have a detection at n σ if:

P on 4-150 keV ∆t ≥ n √ B ∆t (D.3)
where ∆t is the timescale of the peak flux measurement (1.024s in our case). This can be extended to off-axis bursts using a correction for each sky pixel (i, j)

O ij = cos(θ ij ) D ij (D.4)
where θ ij is the incident angle and D ij is the illuminated fraction of the detector. Therefore, the n σ detection for the sky pixel (i, j) is given by:

P on 4-150 keV ∆t ≥ n √ B ∆t O ij (D.5)
If the threshold for detection in ECLAIRS is fixed at n σ, this leads to a detection probability in pixel (i, j) given by:

p det,ij =    1 if P on 4-150 keV ∆t ≥ n √ B ∆t O ij 0 otherwise (D.6)
This allows to compute the detection probability averaged over ECLAIRs field of view, assuming an isotropic distribution of GRBs in the sky:

p det = i,j p det,ij × Ω ij Ω ECLAIRs (D.7)
where Ω ij is the solid angle covered by the sky pixel (i,j) and Ω ECLAIRs = i,j Ω ij is the total field of view of ECLAIRs.

Image mode

We want to add the capability of detecting on long timescales (i.e. with images) without simulating all timescales. We do not have a detailed model for the light curves of our GRBs therefore we settle for simulating a detection on the total duration of the burst; this detection is sensitive to the mean flux N instead of the peak flux N pk , where N is given by:

N = N T 90 [ph s -1 cm -2 ] (D.8)
where N is the photon fluence of the burst. We then use Eq. D.5 with ∆t = T 90 and using N instead of N pk in Eq. D.2.

This detection mode requires two additional quantities that are not straightforwardly produced by our model. (i) T 90 , which we draw from a log-normal distribution of location parameter 1.55 and scale parameter 0.42 (values are derived using the GBM spectral catalog of Bhat et al. 2016). We then correct for time-dilation using the mean value zGBM of the GBM population in our best fit model and dividing by (1 + zGBM ). (ii) N , which we estimate using a proxy quantity C var called the variability indicator, defined as: 

C var ≡ N N pk (D.

Fluence versus peak flux E pobs

An additional difficulty lies in the fact that the peak flux calculated by our model relies on spectral parameters that are defined at the peak flux, and may not necessarily be valid for the fluence spectrum. To check the coherence of this we investigated the impact using the E pobs from the time-integrated (i.e. fluence, noted E ti p,obs ) spectra by comparing for each GRB from the GBM catalog its E pflx p,obs and its E ti p,obs shown in Fig. In this chapter I explain the interest of studying the host galaxies of LGRBs, and review the decennial progress in this field. I then describe the sample we used along with previous works that have paved the way for this project. Finally I present the instrument from which our data originates and the shifts held in the context of the Stargate collaboration. All errors are reported at 1σ confidence and all magnitudes are reported in AB unless stated otherwise. We use a standard cosmology (Planck Collaboration et al., 2014): Ω m = 0.315, Ω Λ = 0.685, H 0 = 67.3 km s -1 Mpc -1 .

Why study the host galaxies of LGRBs?

Studying LGRBs and their progenitors is a particularly difficult exercise because they are inherently cosmological 1 , which compromises the hope of directly resolving their progenitors from archival imaging (such as is possible for some supernovae, see e.g. Maund et al. 2005;Van Dyk et al. 2011a,b). This means that we often have to resort to indirect methods to observationally gather information on LGRBs and their progenitors. For a few cases in the local Universe, recent resolved spectroscopic studies of LGRB hosts using instruments such as MUSE [START_REF] Bacon | Ground-based and Airborne Instrumentation for Astronomy III[END_REF] have allowed authors to explore the sub-kpc scale (up to 150 pc) where the LGRB exploded (e.g. Krühler et al., 2017;Izzo et al., 2017). They found that the regions where the LGRBs explode are consistent with young stellar populations (<30 Myr) hosting massive stars (20-40 M ). This is in line with the observations of core-collapse supernovae (CCSNe) features appearing at late times in the afterglow spectra of nearby LGRBs (e.g. Hjorth et al. 2003;Cano et al. 2017b, see Cano et al. 2017a for a review). At cosmoslogical scales, these types of resolved spectroscopic studies are not possible, so authors resorted to studying the global, integrated properties of their host galaxies and to use these properties as a proxy for the environment in which LGRBs form. Seminal studies of samples of LGRB host galaxies (e.g. Le Floc'h et al., 2003;Christensen et al., 2004;Tanvir et al., 2004;Fruchter et al., 2006;Savaglio et al., 2009) showed that LGRBs occur in actively star-forming, low-mass, low-luminosity galaxies at z < 1. Recently Lyman et al. (2017) showed that LGRBs occur at low galactocentric offset, in the bright regions of their hosts using HST imaging of 39 hosts. These works have cemented the hypothesis

The BAT6 LGRB host sample that

LGRBs are linked to the core-collapse of massive stars, which was suggested theoretically (Woosley, 1993); due to the short-lived nature of massive stars2 , this implies a link between the star-formation rate and the LGRB rate (see also Part II of the manuscript).

Because of their association with the core-collapse of massive stars, many authors have tried to use LGRBs as tracers of star-formation (e.g. Robertson & Ellis, 2012;Kistler et al., 2013). However, these studies were performed on biased samples that did not offer a representative picture of the whole LGRB host population. Indeed, only ∼ 30% of Swift bursts have a redshift (see Sect 4.3)which means a careful selection process must be applied to obtain a sample with high redshift completeness (see e.g. Jakobsson et al. 2006) without biases. Moreover in order to properly estimate the SFR from the LGRB rate, it is important to understand what are the factors that can affect the link between the star-formation rate (SFR) and the LGRB rate (i.e. the LGRB production efficiency, see Sect. 3.2.4.1). In particular, many progenitor models predict that metallicity is a key regulatory factor in the production of an LGRB (e.g. Yoon & Langer, 2006;Hirschi et al., 2005). This is because a higher metallicity increases mass-loss from stellar winds, causing a loss of angular momentum which is crucial for the formation of an ultra-relativistic jet; this suggests that massive stars with low metallicity have a higher LGRB production efficiency.

Indeed it was shown that LGRB hosts were offset towards lower metallicities in the massmetallicity relation (MZR) compared to typical star-forming galaxies from surveys (Levesque et al., 2010a), however subsequent studies discovered some super-solar hosts (e.g. Levesque et al. 2010b;Schady et al. 2015, but see Perley et al. 2016b) and near-infrared (NIR) observations revealed a population of red, high-mass LGRB hosts associated with dust-obscured afterglows -so-called "dark" GRBs (Perley et al., 2009;Rossi et al., 2012;Perley et al., 2013), that had been underrepresented in previous studies. This highlighted the need for unbiased samples of LGRB hosts in order to obtain a complete picture of the environments in which LGRBs form. The Optically Unbiased GRB Host survey (TOUGH, Hjorth et al. 2012) was one of the first 3 of such complete samples, based on R and K band photometry for 69 hosts. More recently the Swift GRB Host Galaxy Legacy Survey (SHOALS, Perley et al. 2016c) has begun an ambitious campaign to provide photometric observations of a complete, unbiased sample of 119 LGRB hosts. Our work presented in the next chapter is based on another unbiased sample: the hosts of BAT6 sample (Salvaterra et al., 2012) presented in Sect. 4.3.2; the previous results from this sample and the past studies on which this work is built are presented in more detail in Sect. 7.2.

The BAT6 LGRB host sample

The work I did in the context of my PhD is a continuation of a bigger effort to characterize a complete and unbiased sample of LGRB hosts and assess the use of LGRBs as tracers of star-formation. This sample of hosts is based on the BAT6 LGRB sample which is selected according to the peak flux of the γ-ray prompt emission and favorable observing conditions (see Sect. 4.3.2). It has been showed that the prompt emission properties do not correlate with the host galaxy properties (see Fig. 7.1, see also Levesque et al. 2010c;Japelj et al. 2016a); this ensures we are randomly sampling the unbiased LGRB host population and that our sample is statistically representative of the entire LGRB host population.

This sample is composed of 58 LGRBs with a 97% redshift completeness extending up to z = 6 and observational efforts were carried out to obtain X-Shooter spectra of the host galaxies up to z = 3; due to their low-luminosity, LGRB hosts are costly to observe in particular at high redshift. There are three main papers that precede the work presented in the next chapter, which are described below. 

Vergani et al. (2015), (V15)

This work was the first to use the host galaxies of complete sample of LGRBs to investigate the relation between LGRBs and SFR (see e.g. Boissier et al. 2013 for previous studies on incomplete samples). They performed an analysis of the 14 hosts of the BAT6 sample at z < 1 by building their Spectral Energy Distributions (SEDs) to determine the stellar masses of their hosts. They then compared their stellar mass distributions with star-forming galaxies from the UltraVISTA survey, with results from semi-analytical models and with simulation of LGRB hosts with different metallicity thresholds for the progenitor star environment. They find that LGRBs form preferentially in low-mass galaxies compared to the general star-forming population at z < 1 and that this can be explained by a cut on the metallicity of Z th = 0.3-0.5 Z caused by the conditions necessary for the progenitor star to produce an LGRB. Finally they conclude that at z < 1, LGRB are not tracers of star-formation since a significant amount of star-formation is happening in galaxies with metallicities above this threshold at this redshift.

Japelj et al. (2016a), (J16)

7.3. The X-Shooter instrument of star-forming galaxies into one curve, and is allegedly redshift independant up to z = 2.5 (Mannucci et al., 2011), and the MZR for LGRB hosts and compared them to the general star-forming population. We found an offset in the FMR for LGRB hosts and although we continued to observe the dearth of hosts above 12 + log(O/H)∼ 8.6, we found a good sampling of LGRB hosts at log(M * /M ) above 9.5. An important point to note is that the stellar masses derived in this paper for the 1 < z < 2 part of the sample were done using NIR observations only, following Perley et al. (2016d), as opposed to the z < 1 part of the sample. In the work presented in the next chapter, the stellar masses at 1 < z < 2 were re-determined by building the SEDs of our hosts, which affects the region of the FMR plot where our hosts lie; this is explained in more detail in Sect. 8.3.2.

The X-Shooter instrument

The work presented in the next chapter is largely based on spectra from the X-Shooter spectrograph, many of which I reduced; this section is devoted to presenting the instrument (see Sect. 8.3.3 for details about the reduction). Additionally, in the context of the Stargate collaboration X-Shooter was used to follow-up GRB alerts from Swift in order to indentify GRB afterglow and determine their redshift; these on-call shifts are described at the end of this section along with my contributions to several papers.

Description of the instrument

The X-Shooter instrument is a state of the art medium-resolution, multi-echelle, slit spectrograph that simultaneously covers the near ultraviolet (NUV), the visible (VIS) and near infrared (NIR) part of the electromagnetic spectrum. X-Shooter is a second generation instrument of the European Southern Observatory (ESO), installed4 at the focus of the UT2 Kuyen telescope on the Paranal site, in Chile. Its resolution R λ ≡ λ ∆ λ ranges from 3000 to 20000 depending on the slit width, and it can simultaneously observe from 3000 Å to 25000 Å with the help of three different spectroscopic arms. A schematic view of the instrument is shown in Fig. 7.2.

The medium-resolution and large wavelength coverage of X-Shooter make it an ideal instrument for studying galaxies by observing their emission lines up to z = 2 and in particular Hα at 6562.8 Å, which is a vital diagnostic of on-going star formation [START_REF] Osterbrock | Astrophysics of gaseous nebulae and active galactic nuclei[END_REF]. An example of a reduced LGRB host galaxy spectrum from X-Shooter is shown in Fig. 7.3. 

Following GRB alerts

X-Shooter is also used in the context of the Stargate collaboration (PI: Nial Tanvir) which is an international consortium that regroups the majority of GRB observers in Europe. Stargate submits proposals5 at ESO which cover most instruments on the Very Large Telescopes (VLTs), including X-Shooter, to follow-up GRB alerts from Swift. This work is part of the effort to gather a large sample of GRBs with redshift and volonteers from the collaboration are on-call for one week every semester. This means during their shifts, the on-call scientists must quickly react to any alert from Swift and determine if follow-up from the VLTs is possible; in the event that it is, they should initiate it and ensure the data is collected. In this context, I contributed to two papers:

• Selsing et al. (2017), where we report the detection of the most distant high-confidence short GRB (SGRB) at z = 2.211 and discuss the implications for the redshift distribution of SGRBs and progenitor channels.

• Selsing et al. (2018), where we report all the GRB afterglows that have been observed with X-Shooter as a result of the work from our collaboration and discuss the statistics of this sample, extending from z = 0.059 to z = 7.84.

Abstract

Abstract

Aims

Long gamma-ray bursts (LGRB) have been suggested as promising tracers of star formation owing to their association with the core-collapse of massive stars. Nonetheless, previous studies we carried out at z < 1 supported the hypothesis that the conditions necessary for the progenitor star to produce an LGRB (e.g. low metallicity), were challenging the use of LGRBs as star-formation tracers, at least at low redshift. The goal of this work is to characterise the population of host galaxies of LGRBs at 1 < z < 2, investigate the conditions in which LGRBs form at these redshifts and assess their use as tracers of star formation.

Methods

We perform a spectro-photometric analysis to determine the stellar mass, star formation rate, specific star formation rate and metallicity of the complete, unbiased host galaxy sample of the Swift/BAT6 LGRB sample at 1 < z < 2. We compare the distribution of these properties to the ones of typical star-forming galaxies from the MOSDEF and COSMOS2015 Ultra Deep surveys, within the same redshift range.

Results

We find that, similarly to z < 1, LGRBs do not directly trace star formation at 1 < z < 2, and they tend to avoid high-mass, high-metallicity host galaxies. We also find evidence for an enhanced fraction of starbursts among the LGRB host sample with respect to the star-forming population of galaxies. Nonetheless we demonstrate that the driving factor ruling the LGRB efficiency is metallicity. The LGRB host distributions can be reconciled with the ones expected from galaxy surveys by imposing a metallicity upper limit of 12 + log(O/H)∼8.55. We can determine upper limits on the fraction of super-solar metallicity LGRB host galaxies of ∼ 20%, 10% at z < 1, 1 < z < 2, respectively.

Conclusions

Metallicity rules the LGRB production efficiency, which is stifled at Z 0.7 Z . Under this hypothesis we can expect LGRBs to trace star formation at z > 3, once the bulk of the star forming galaxy population are characterised by metallicities below this limit. The role played by metallicity can be explained by the conditions necessary for the progenitor star to produce an LGRB. The moderately high metallicity threshold found is in agreement with the conditions necessary to rapidly produce a fast-rotating Wolf-Rayet stars in close binary systems, and could be accommodated by single star models under chemically homogeneous mixing with very rapid rotation and weak magnetic coupling.

Introduction

Long duration gamma-ray bursts (LGRBs, prompt emission duration longer than 2s) have been shown to be connected to the end of life of massive stars (Woosley, 1993;Woosley & Bloom, 2006) from their association with core-collapse supernovae (CCSNe; Hjorth et al. 2003). Due to the short-lived nature of massive stars, LGRBs are thus linked to recent (∼ 10 Myr) star formation (SF) and it has been suggested that their rate is linked to the global star formation rate (SFR) (Porciani & Madau, 2001). Complementary to existing methods such as rest-frame UV measurements, LGRBs offer therefore a promising method of tracing SF up to high redshifts (z ∼ 9 and beyond, Salvaterra et al. 2009Salvaterra et al. , 2013;;Tanvir et al. 2009). Indeed, in addition to their bright afterglows, even at high redshift (Lamb & Reichart, 2000), the detection of LGRBs in the Chapter 8. Are LGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs (Palmerio, Vergani et soft γ-ray domain of the electromagnetic spectrum is largely unaffected by dust. Various authors have tried to use LGRBs to estimate the SFR density at high redshift (e.g. Kistler et al. 2008;Robertson & Ellis 2012), however these studies used intrinsically biased and incomplete samples. The importance of using a carefully selected, unbiased and complete sample of LGRBs and their host galaxies has since been recognized and various samples have been designed to address this issue, such as TOUGH (Hjorth et al., 2012), Swift/BAT6 (Salvaterra et al., 2012) and SHOALS (Perley et al., 2016c).

Different studies using the host galaxies of these samples have tried to obtain information on the LGRB efficiency, i.e. the relation between the LGRB rate and the SFR, fundamental for using LGRBs as tracers of the SFR density. Factors that can impact this relation can be related to the conditions needed for the progenitor star to produce an LGRB. Metallicity is the most commonly invoked factor, as most single-star progenitor models of LGRBs require low metallicity to expel the hydrogen envelope while keeping enough angular momentum, necessary for the production of the GRB jet (e.g. Woosley & Heger 2006;Yoon & Langer 2006). Due to the cosmological origin of the majority of LGRBs it is not possible to study directly the progenitor stars, their environment and their remnants. Therefore current studies focus on the properties of the LGRB host galaxies to gather information on the LGRB efficiency. The results obtained to date using complete unbiased samples of LGRB host galaxies (Vergani et al., 2015;Perley et al., 2016d;Japelj et al., 2016a), agree on the fact that there is a preference for LGRBs to explode in sub-solar metallicity host galaxies. Nonetheless extremely low metallicities are not required, and host galaxies having super-solar metallicities are not excluded (see e.g.: Savaglio et al. 2012), even if much rarer than expected from a direct relation between LGRB rate and SFR. The results obtained from the studies above are based on the comparison of the properties of 8.3. The BAT6 sample of LGRB host galaxies at z > 1

LGRB host galaxies with those of representative star-forming galaxies sampled through galaxy surveys. Due to the faintness of a considerable fraction of the LGRB host galaxies, to date such a comparison, especially when involving spectroscopically-derived properties (SFR, metallicity), has been performed in detail only at z < 1 (Krühler et al., 2015;Japelj et al., 2016a). Improvements of existing photometric surveys (e.g. COSMOS2015, Laigle et al. 2016), and the emergence of deep spectroscopic surveys (e.g. VUDS, Le Fèvre et al. 2015) with access to the near-infrared (e.g. MOSFIRE Deep Evolution Field, i.e., MOSDEF survey, Kriek et al. 2015) allow us now to investigate the LGRB efficiency by comparing the properties of complete samples of LGRB hosts to samples of typical star-forming field galaxies in detail also at z > 1.

This paper is organized as follows. In Section 8.3 we present our sample selection, the observations and analysis of our LGRB hosts, and characterise their properties and the evolution of these properties with redshift. In Section 8.4 we compare our sample with surveys of field galaxies. We discuss our results in more detail in Section 8.5 and our conclusions are summarised in Section 8.6.

All errors are reported at 1σ confidence unless stated otherwise. We use a standard cosmology (Planck Collaboration et al., 2014): Ω m = 0.315, Ω Λ = 0.685, H 0 = 67.3 km s -1 Mpc -1 . The stellar masses (M * ) and SFRs are determined using the Chabrier initial mass function (IMF, Chabrier 2003).

The BAT6 sample of

LGRB host galaxies at z > 1

Selection

Our sample is composed of the hosts of the Swift/BAT6 sample (Salvaterra et al., 2012) of bright (peak flux P 15-150 keV ≥ 2.6 ph cm -2 s -1 ) LGRBs with favourable observing conditions for optical follow-up (Jakobsson et al., 2006). This selection results in 58 LGRBs with a 97% redshift completeness, extending up to z ∼ 6. No correlations have been found between the prompt emission properties (peak energy, luminosity) of LGRBs and their host galaxies' properties (see Levesque et al. 2010c;Japelj et al. 2016a, and Fig F.1 of Appendix F for our sample up to z = 2). Therefore, by construction, our sample is statistically representative of the whole LGRB host galaxy population (including dark LGRBs, Greiner et al. 2011;[START_REF] Melandri | [END_REF]. For the purpose of this paper, we restrict ourselves to the redshift range 1 < z < 2 (see Table 8.1), building on the previous papers of Vergani et al. (2015) and Japelj et al. (2016a) that considered the z < 1 range.

Stellar mass

To determine the host galaxy stellar masses we used photometric measurements (typically covering the visible to near-infrared wavelength range) from the literature, complemented with new values that we measure from archival data for GRB 061007, GRB 100615A and GRB 090201. All of the values and references are reported in the appendix (Tables F.1 and F.2).

We modeled the spectral energy distributions (SEDs) using the code beagle (Chevallard & Charlot, 2016), with 4 different star formation histories (SFHs) (exponentially declining, delayed, delayed + burst, constant) and two different attenuation models (Charlot &Fall 2000 andChevallard et al. 2013). The stellar mass values reported in Table 8.1 are the median of the probability distribution functions from the best-fitting SFH/attenuation prescription. In general, the stellar masses found are consistent within errors independently of the SFH or dust attenuation chosen 1 . The largest dispersion between the stellar mass values obtained from the Chapter 8. Are LGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs [START_REF] Palmerio | Submitted to Astronomy & Astrophysics. (3) Investigation of dust attenuation and star formation activity in galaxies hosting GRBs[END_REF] 125

different SFH and dust attenuation prescriptions is ∼ 0.5 dex. Finally we cross-checked the stellar mass values with the CIGALE SED code (Noll et al. 2009;Serra et al. 2011), and values from Kruehler & Schady (2017), derived using the LePhare SED code (Arnouts et al., 1999;Ilbert et al., 2006). Even if a detailed analysis on the different SED codes to determine stellar masses is far beyond the scope of this paper, we stress that the stellar mass values found are consistent within the errors, and that the overall results of this study would remain unchanged independently of the choice of the aforementioned codes. We noticed a discrepancy (see also Corre et al. 2018;Arabsalmani et al. 2017;Heintz et al. 2017) when computing stellar masses from SED fitting compared to values based on the rest-frame near-infrared (NIR) magnitude only (e.g. from Perley et al. 2016d, used also in Vergani et al. 2017). These stellar mass values are mostly overestimated compared to the values derived by SED fitting. This effect is known, especially at lower stellar masses due to the variations in the mass-to-light ratio as a function of stellar mass (Ilbert et al., 2010). Due to the lack of wide photometric coverage, for 4 of our 15 hosts at 1 < z < 2 (GRB 091208B, GRB 050318, GRB 050802, GRB 060908) it was not possible to perform a SED fitting, therefore the stellar masses are computed with the method described in Perley et al. (2016d), with the aforementioned caveats. These values are considered as upper limits in the analysis. However, as explained later (see Sect. 8.4), they are discarded when performing the statistical test of Sect. 8.4 as they do not comply with the limits of the surveys.

The resulting stellar mass cumulative distribution for the hosts of the BAT6 sample is shown in Fig 8 .1, in the top panel. There is an evolution towards higher median mass between z < 1 and 1 < z < 2. As LGRB host galaxies are selected only by the fact that they host an LGRB explosions, and as we are considering an unbiased and complete sample of LGRB host galaxies, the stellar mass evolution we find is not a selection effect and is intrinsic to the properties of LGRB host galaxies. Nevertheless, we anticipate that higher stellar mass values would be expected considering the SFR determined in Sect. 8.3.3 and the relation found between stellar mass and SFR in SF galaxies (e.g. Shivaei et al. 2015).

We also plot the distribution of the stellar masses or limits for the BAT6 LGRB host galaxies at 2 < z < 3 (see Tab. F.4). Those were determined from rest-frame NIR observations only, and (with the exception of GRB 090201) published by Perley et al. (2016d). The distribution at 2 < z < 3 is riddled with upper limits, and given the different methodology used for the stellar mass determination (and its caveats), we can only tentatively conclude that the median stellar mass does not seem to increase significantly with respect to the one at 1 < z < 2.

Star Formation Rate and Metallicity

SFRs and metallicities were determined using the host galaxy spectra. The data at z > 1 come from the VLT/X-Shooter spectrograph (Vernet et al., 2011), and the spectra have already been presented in Krühler et al. (2015) and Vergani et al. (2017). The large wavelength coverage (3000 to 25000 Å) and sensitivity of X-Shooter allow us to detect the strongest rest-frame optical emission lines up to z = 2, ensuring a homogeneous methodology for the determination of star formation rates and metallicities.

We performed a new data reduction and analysis of the data, with the standard Esoreflex pipeline (version 2.7.3, Modigliani et al. 2010) using the nodding recipe. The spatial width of the 2D to 1D spectrum extraction was scaled according to the spatial width of the detected emission lines to maximise the signal to noise ratio. The flux calibration was cross-checked with the host photometry when available, or otherwise with a telluric standard star taken at similar airmass and seeing, to account for any slit loss or absolute calibration inconsistencies (see Japelj et al. 2016a).

Emission lines were measured using IRAF2 by fitting a one (or more when relevant) component Gaussian function and cross-checked by comparing to the flux resulting from direct integration under the line profile. The resulting fluxes are compiled in Table F.3. In case of a non-detection, a 3σ upper limit is quoted. The measurements are consistent within the errors with the values reported by Krühler et al. (2015) and Vergani et al. (2017). The measured emission line fluxes were corrected for Galactic extinction using the extinction curve of Pei (1992) and the extinction map of Schlafly & Finkbeiner (2011). The Balmer line fluxes were not corrected for Balmer absorption due to the absence of a detectable continuum in most hosts and its weakness in LGRB hosts as expected from their low stellar masses (Zahid et al., 2011). The fluxes were also corrected for the host intrinsic extinction, with the A V measured using the Balmer decrement (assuming case B recombination, [START_REF] Osterbrock | Astrophysics of gaseous nebulae and active galactic nuclei[END_REF]) and an SMC extinction curve 3 following the findings of e.g. Japelj et al. 2015.

SFRs were determined using the dust-corrected Hα luminosities, following Kennicutt (1998) scaled to the IMF of Chabrier (2003). In the few cases where it was not possible to correct for dust extinction, the SFRs are reported as lower limits. As shown in Figure 8. 1, panel (b), the median SFR increases from ∼ 1.3 +0.9 -0.7 M yr -1 at z < 1, to ∼ 24 +24 -14 M yr -1 at 1 < z < 2, in agreement with Krühler et al. (2015).

Gas phase metallicities are notoriously hard to determine at high redshift by direct electron temperature methods due to the weakness of the [OIII]λ4363 line. Instead, alternative methods based on the calibration of strong line ratios are commonly used. Each calibrator has its own relative scale (see Kewley & Ellison 2008 for more details). It is therefore important to use the same method to determine metallicity for all the host galaxy in our sample. Here we infer the metallicity from the method developed by Maiolino et al. (2008) (referred to as M08) which relies on multiple calibrators simultaneously, taking advantage of all the emission lines detected. The bottom panel of Figure 8.1 indicates that, contrary to stellar mass and star formation, the metallicity distribution of LGRB hosts does not seem to evolve (see also Krühler et al. 2015). This provides a first clue suggesting that metallicity is a regulatory factor in the production of LGRBs, which is in line with previous studies (Vergani et al., 2015;Perley et al., 2016d).

Comparison with the star-forming galaxy population

If we assume that LGRBs are direct tracers of SF, then more SF equates to a higher chance of producing an LGRB (for a fixed stellar IMF). Hence from a statistical point of view we expect the various distributions of the properties of LGRB hosts to follow the ones of the general population of star-forming galaxies weighted by their SFR. The lack of agreement between these distributions can be an indication of a factor regulating the production of LGRBs. Vergani et al. (2015) and Japelj et al. (2016a) have already shown discrepancies between the distributions of the Swift/BAT6 LGRB hosts properties and the SFR-weighted ones of star-forming galaxies at z < 1 (see also Krühler et al. 2015, Perley et al. 2016dand Schulze et al. 2015 tackling the same issue using other samples). Here we aim to extend this analysis to higher redshift. Owing to a low number of objects and, in some cases, limits or large errors, we employ a Bayesian approach to provide robust statistical estimates, which we describe in Sect 8.4.2.

Comparison samples

COSMOS 2015 Ultra Deep

The COSMOS2015 (Laigle et al., 2016) is a deep (K s ≤ 24.7) photometric survey of half a million galaxies at z < 6, with wavelength coverage from the near-UV to the infrared. Within this catalog we selected the star-forming galaxies of the COSMOS2015 Ultra Deep stripes of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

3 We also compared with other extinction curves such as the one from Cardelli et al. 1989 and concluded the choice of the extinction curve has a negligible impact on our values.

Comparison with the star-forming galaxy population

(COSMOS2015UD) from the ESO phase 3 archive system4 . The advantage of COSMOS2015UD relies in the large number of objects (∼ 10 4-5 ) with available stellar masses and accurate photometric redshifts. These stellar masses were determined by SED fitting with the LePhare code using a Chabrier ( 2003) IMF (see Ilbert et al. 2015 for more details). While comparing the properties of the BAT6 LGRB host galaxies with COSMOS2015UD, we take into account its redshift-dependent mass completeness and remove the LGRB hosts with stellar masses below this limit, resulting in a comparison subsample of 10 hosts at 1 < z < 2. The COSMOS2015UD SFR are dust-corrected and obtained from SED fitting without the Infrared photometry (http: //www.eso.org/rm/api/v1/public/releaseDescriptions/100). 

MOSDEF

The MOSDEF survey (Kriek et al., 2015) is a deep near-infrared spectroscopic survey of galaxies at 1.37 ≤ z ≤ 3.80 that was carried out using the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE, McLean et al. 2012) on the 10 m Keck I telescope. Targets were selected in three redshift ranges (1.37 ≤ z ≤ 1.70, 2.09 ≤ z ≤ 2.61, and 2.95 ≤ z ≤ 3.80) in which strong rest-frame optical emission lines fall in bands of atmospheric transmission in the near-infrared.

For comparison to the Swift/BAT6 LGRB hosts at 1 < z < 2, we make use of MOSDEF galaxies in the lowest of these three redshift ranges, at z ∼ 1.5. Galaxies were targeted down to fixed rest-optical (observed H-band) magnitudes (H AB ≤ 24.0 at z ∼ 1.5). We select galaxies with detections of both Hα and Hβ at S/N≥3 such that reddening-corrected SFR can be determined.

Requiring detections of both Hα and Hβ does not significantly bias the MOSDEF sample above log(M * /M ) ∼ 9.5 (Shivaei et al., 2015;Sanders et al., 2018). AGN were excluded following the prescriptions described in Shivaei et al. (2015) and references therein. This selection results in a MOSDEF comparison sample of 133 galaxies ranging in redshift from 1.37 to 1.73 with z med = 1.53. SFRs were calculated based on reddening-corrected Hα luminosity using the Kennicutt (1998) calibration with the Chabrier (2003) IMF, the measured Balmer decrement (Hα/Hβ), and the Cardelli et al. (1989) Milky Way extinction curve. The MOSDEF stellar masses (see Sanders et al. 2018) were estimated by fitting flexible stellar population synthesis models (Conroy et al., 2009) to photometry spanning the observed optical to mid-infrared using the SED fitting code FAST (Kriek et al., 2009). Solar metallicity, delayed star formation histories, the Calzetti et al. (2000) dust reddening curve, and the Chabrier (2003) IMF were assumed for the SED fitting. For comparison with the LGRB host galaxies, SFR(Hα) and stellar mass values were calculated assuming the Planck Collaboration et al. ( 2014) cosmology5 , the same as for the BAT6 host sample.

The MOSDEF metallicities used in this paper were determined using the M08 method, in the same way as for the hosts of the BAT6 sample (see Sect. 8.3.3). Of the 133 galaxies in the MOSDEF comparison sample, 127 have sufficient emission line information to calculate metallicities using the M08 method. When comparing this MOSDEF sample with the BAT6

LGRB host galaxies, we excluded from the comparison 6 LGRB hosts with log(M * /M ) < 9.3 because they fall in a stellar mass range in which the MOSDEF sample is significantly incomplete. This results in a BAT6 comparison subsample of 9 LGRB hosts. We note that the SFRs of the LGRB host galaxies in the BAT6 comparison subsample fall within the SFR range of the MOSDEF comparison sample.

Bayesian framework

Our calculations rely on the assumption that the probability distribution function (PDF) for our data can be reasonably well described by an asymmetric Gaussian distribution for which the scale parameter is given by the asymmetric errors and the location parameter is given by the value quoted in our table. For example, the PDF of a quantity µ +σp -σm is given by: (8.1) where A is the normalisation given by:

PDF(x) = A    exp(-(x-µ) 2 2 σ 2 p ) if x ≥ µ, exp(-(x-µ) 2 2 σ 2 m ) if x < µ,
A -1 = +∞ -∞

PDF(x) dx

In the event of upper limits on the stellar mass of our galaxies, we use a uniform distribution (uninformative prior) between log(M * /M ) = 7 and the upper limit for the comparison of BAT6 sample at different redshifts; when comparing with the COSMOS2015UD and MOSDEF surveys, the lower stellar mass limit is set to the mass completeness of the survey6 . For lower limits on the SFR or the specific SFR (sSFR) (objects for which no extinction could be derived), we use a uniform distribution between the limit and a maximum SFR calculated by assuming an A V of 4. We then estimate the median and 95% confidence bounds on our cumulative distribution functions (CDFs), by computing 10000 Monte Carlo realisations of our data sampling from the aforementioned PDFs, this confidence interval is represented as a shaded area in the figures showing CDFs. In a similar fashion, we computed 10000 realisations of the K-S test for each individual CDF when comparing with the MOSDEF and COSMOS2015UD samples7 . 

Stellar Mass

The top panel of Figure 8.4 shows the stellar mass cumulative distribution of the hosts of the BAT6 sample compared to the SFR-weighted distribution of the star-forming field galaxies of the COSMOS2015UD at 1 < z < 2. The distribution of D-statistic and p-values from 10000 Monte Carlo realisations of the 2 sample K-S test are shown in the bottom panels, indicating that the vast majority of realisations exclude the null hypothesis that the two samples are drawn from the same distribution at the 95% confidence level. It should be noted (see Sect. 8.4.1) that the SFR used to weight the COSMOS2015UD distribution are obtained from SED fitting. It has been shown that SFRs determined in such way can be underestimated at SFRs higher than ∼ 50 M yr -1 (e.g. Reddy et al. 2015;Lee et al. 2015). This corresponds to ∼ 12% of the COSMOS2015UD SF galaxies. Considering that high SFR values are normally associated with high stellar mass galaxies, this underestimation would have the effect of increasing the discrepancy between the two distributions. However, we note also that there is a good consistency between the COSMOS2015UD and MOSDEF (see below) SFR-weighted distributions. These considerations are also valid for the SFR-weighted SFR and sSFR distributions presented in the following sections. In Figure 8.5, the same comparison is performed with the SF galaxies of the MOSDEF survey. In this case the SFR used is that determined from the dust-corrected Hα luminosities. We computed 10000 MC realisations of both the BAT6 and the MOSDEF sample with the assumptions described in Sect. 8.4.2, with the difference that each galaxy in the MOSDEF sample is weighted by the realisation of its SFR. For each realisation, we compute the 2 sample K-S test which yields a distribution of p-values firmly excluding the possibility that LGRB hosts are drawn from the same stellar mass distribution as that of MOSDEF galaxies weighted by their SFR.

Another way to look at the discrepancy of the distributions and have some information on the behaviour of the LGRB efficiency as a function of the stellar mass is to use the method presented by Boissier et al. (2013), and used also in Vergani et al. (2015). In the present work, instead of using galaxy models, in Fig. 8.3 we compare the LGRB host galaxies directly with the MOSDEF star-forming galaxies. The efficiency here is defined as the fraction of LGRB hosts divided by the fraction of MOSDEF galaxies in a given stellar mass or metallicity bin. The results are normalised to the first bin value. We apply this method also for the galaxy properties presented in the following sections (SFR, sSFR, and metallicity; see Fig. 8.3).

We also investigated the evolution of the median stellar mass with redshift for the BAT6 hosts compared to the SFR-weighted COSMOS2015UD sample, presented in Fig. 8.2. The discrepancy between the BAT6 hosts and the SFR-weighted field galaxies is most notable at low redshift and decreases up to z = 3 as is shown in the bottom panel, although the last redshift bin is to be taken cautiously due the low number of hosts within it. Additionally, the stellar masses of the LGRB hosts in the last redshift bin (2 < z < 3) are derived using a different methodology (see 8.3.2). With these caveats in mind, this trend is consistent with the observations of Perley et al. 2016d (see also Hunt et al. 2014).

Star Formation Rate

The top panel of Figures 8.6 and 8.7 show the SFR cumulative distribution of hosts of the BAT6 sample compared to SFR-weighted distribution of star-forming field galaxies of COSMOS2015UD and MOSDEF at 1 < z < 2. As confirmed by the p-value distribution, there is good agreement between the two distributions.

The top panel of Figures 8.8 and 8.9 show the specific SFR (sSFR, defined as SFR/M * ) cumulative distribution of hosts of the BAT6 sample compared to the SFR-weighted distribution of star-forming field galaxies of COSMOS2015UD and MOSDEF at 1 < z < 2. The p-value distribution in the bottom panels indicates that in the majority of cases we cannot exclude the null hypothesis that the two samples are drawn from the same distribution for the COSMOS2015UD sample, while for the MOSDEF sample, it is less definitive since the p-value distribution peaks around 0.05. In ∼ 40% of cases, we cannot discard the null hypothesis at the 95% confidence.

We note that we could not determine the SFR for three host galaxies. Nonetheless their stellar masses were lower than the stellar mass completeness of the surveys. Therefore, when comparing with surveys our sample is still complete.

In Figs. 8.10 and 8.11 we plot the BAT6 host galaxies and the MOSDEF star-forming galaxies in the SFR, sSFR vs stellar mass plane, respectively. We fit the SFR vs stellar mass relation from the MOSDEF sample at 1 < z < 2. The red line is the best fit to the MOSDEF data and the dotted lines represent the intrinsic scatter, following the method of Shivaei et al. (2015). The points are coloured by metallicity in the M08 calibrator. Galaxies where no metallicity could be measured are coloured in grey with a cross.

(so-called Main Sequence, e.g. Whitaker et al. 2012) for the MOSDEF sample of star-forming galaxies at 1 < z < 2 following Shivaei et al. (2015). We derived the fraction of galaxies above the 1-sigma intrinsic scatter (see Japelj et al. 2016b) of the relation within the MOSDEF sample to be 27±5%. Excluding the 2 hosts falling in the low mass region, sparsely populated by the MOSDEF sample, the fraction of LGRB host galaxies showing such an enhancement of SFR, with respect to the MOSDEF 1 < z < 2 relation, is 66±22%.

Metallicity

The MOSDEF survey allows us also to perform the comparison of the metallicity distribution, within the same redshift range and using the same calibrator (M08). Fig. 8.12 shows the cumulative distribution of the metallicity of hosts of the BAT6 sample compared to the SFRweighted distribution of star-forming galaxies of the MOSDEF at 1 < z < 2. The distribution of p-values in the bottom right panel indicates we can reject the hypothesis that the MOSDEF star-forming galaxy sample weighted by SFR and the BAT6 sample are drawn from the same distribution at the 95% confidence level.

We note that we could not determine the metallicity for four host galaxies. Nonetheless their stellar masses were lower than the stellar mass completeness of the MOSDEF sample. Therefore, our sample is still complete with respect to the comparison with the MOSDEF galaxies.

Figure 8.13 shows the mass-metallicity relation (MZR) for the BAT6 hosts and the MOSDEF sample, using the M08 calibrator. We see that the LGRB hosts are consistent with the starforming field galaxies at low mass and low metallicity but there is a clear dearth of high mass and high metallicity LGRB host galaxies8 . Indeed there is only one host (which has very large We also computed the Fundamental Metallicity Relation (FMR) as defined by Mannucci et al. (2011), represented in Fig. 8.14. This relation is supposed to be redshift independent. Nonetheless, as Sanders et al. (2015Sanders et al. ( , 2018) ) find a redshift dependence of the FMR built with the MOSDEF sample, we prefer to plot here only the BAT6 hosts at 1 < z < 2, omitting hosts at z < 1.

z = 0.7 z = 2.2 z = 3 -4 1 ≤ z ≤ 2 MOSDEF 1 ≤ z ≤ 2 GRB hosts
In Vergani et al. (2017) the authors noted a discrepancy between the region occupied by the LGRB hosts and the FMR (explained by a metallicity threshold for LGRB production).

Here, it appears the LGRB hosts occupy only the low µ9 area (whereas roughly half of the MOSDEF sample lies at µ > 9.7), and, in this region, they are consistent with the MOSDEF points. However, at those µ values, both the MOSDEF sample and the LGRB hosts seem to have lower metallicities with respect to the FMR predictions. A complete analysis of this discrepancy is beyond the scope of this paper. Here we can point out that this could be due to an underestimation of the FMR slope at low µ, or to an evolution of the relation in redshift (as found by Sanders et al. 2018), as we are comparing galaxies at 1 < z < 2 (our LGRB and MOSDEF samples) with the FMR built mainly with low-redshift galaxies. Indeed, different works showed that evolving physical conditions of ionized gas in HII regions may lead to evolution in the relationships between emission-line ratios and metallicity (e.g. Steidel et al. 2014;Shapley et al. 2015;Sanders et al. 2016). This is not an issue when comparing the metallicities of the BAT6 sample and the MOSDEF one as we selected the same redshift range 1 < z < 2, unless the physical conditions in LGRB hosts are significantly different from those in typical SF MOSDEF galaxies. 

Discussion

The analysis presented in the previous sections clearly shows that the stellar mass and metallicity CDFs of the LGRB hosts do not follow those of typical star-forming galaxies weighted by SFR. This implies that, due to some factors affecting the LGRB production efficiency, at 1 < z < 2 the LGRB rate cannot be used to directly trace star formation. As found in previous work (Vergani et al., 2015;Perley et al., 2016c;Japelj et al., 2016a;Vergani et al., 2017), it seems that metallicity is the main factor involved: LGRB explode preferentially in sub-solar metallicity environments. Indeed, as we will discuss in more detail later in this section, in the commonly used LGRB collapsar progenitor model (Woosley, 1993) a dependence of the LGRB production on metallicity is expected. In this context, the discrepancies in the stellar mass distribution are a direct consequence of the relation between stellar mass and metallicity (lower metallicities correspond to lower stellar masses). Nonetheless, in our analysis there seems to be evidence also for an enhancement of sSFR among LGRB host galaxies compared to star-forming galaxies found in galaxy surveys. In the literature there are indications that starburst galaxies are generally characterised by lower metallicity than non-starburst ones (e.g. Sanders et al. 2018). It is therefore necessary to investigate which is the real driving factor affecting the LGRB efficiency, i.e. if it is the preference for galaxies with enhanced SFR that has as a consequence the preference for sub-solar metallicities, or the opposite. Fig. 8.15 shows that MOSDEF host galaxies with high sSFR have on average lower metallicity than those with lower sSFR values. Nonetheless, within the sSFR range covered by the MOSDEF galaxies considered in this work, for a fixed sSFR the fraction of MOSDEF star-forming galaxies having metallicities larger than 12 + log(O/H)∼ 8.5 is much higher than that of LGRB hosts. Stronger evidence that a possible preference for enhanced SFR would not be the only factor at play comes from the lack of LGRB host galaxies in the high stellar mass -high SFR region of Fig. 8.10, compared to MOSDEF galaxies. Indeed, if enhanced SFR is the driving factor, we should find LGRB host galaxies with enhanced SFR also at stellar masses larger than ∼ 10 10 M . All the results point towards metallicity as the main driving factor. In order to further test this hypothesis, we apply a step-function metallicity cut on the MOSDEF sample and perform the comparison with our LGRB hosts again. We impose different metallicity thresholds. As the metallicity threshold value decreases the BAT6 and MOSDEF CDFs become more and more consistent until the majority of the p-values indicate we cannot confidently discard the null hypothesis that LGRB hosts and MOSDEF star-forming galaxies are drawn form the same population. Using a metallicity cut of 12 + log(O/H)= 8.55, the SFR-weighted CDFs of MOSDEF come into agreement with the ones of the BAT6 sample, as is shown in Figures 8.16,8.17,8.18 and 8.19. The two-sample K-S test results in a distribution of p-values consistent with the null hypothesis that the two samples are drawn from the same underlying distribution in the majority of MC realisations. This implies that the discrepancies observed for the stellar mass and metallicity CDFs can be explained by a simple threshold on the metallicity, without the need for a contribution from a preference for starburst galaxies. This also naturally explains the trend observed in Fig. 8.2. Following the redshift evolution of the MZR, as the redshift increases, to a given stellar mass corresponds a lower metallicity. The metallicity threshold is therefore fulfilled by galaxies more and more massive. This explains the evolution of the median stellar mass of the LGRB host galaxies reaching the agreement with that of SF galaxies at z ∼ 3 (see also Section 8.6).

1 ≤ z ≤ 2 MOSDEF 1 ≤ z ≤ 2 GRB hosts
To verify that enhanced star formation is not the main driving factor affecting LGRB efficiency, we perform the same analysis above, but applying a cut only on sSFR this time. As shown in Figures 8.20,8.21,8.22 and 8.23 even a sSFR cut of MOSDEF galaxies at log(sSFR) ≥ -8.7, (comparable with the sSFR of LGRB host galaxies) is not able to reconcile the stellar mass and metallicity distributions.

In general, we cannot exclude that a preference for galaxies with enhanced star formation (or starbursts) is also at play, but we can affirm that this is not the major factor driving the LGRB efficiency (see also Graham & Fruchter 2017). We tested also the effect of various sSFR cuts on top of a metallicity cut. The impact is very mild and results in a slightly better agreement of the distributions for a metallicity cut between 12 + log(O/H)= 8.55 and 12 + log(O/H)= 8.7. In Kelly et al. (2014) a preference for LGRB to explode in more compact galaxies (smaller half-light radii, higher SFR density and stellar mass density) compared to the SDSS star-forming galaxies is found, in addition to the preference for low-metallicities. However, considering the redshift range and low stellar-masses of our study, a morphological analysis cannot be performed.

The results obtained can be interpreted in terms of the conditions necessary for a massive star undergoing a collapse to form an LGRB. A high metallicity would create too much wind-loss in the final stages of the progenitor's life, causing a loss of angular momentum that is necessary for the formation of an ultra-relativistic jet. However, the threshold we find (corresponding to 0.7 Z in the M08 scale) is higher than the 0.1 -0.3 Z metallicity upper limit values predicted by most single-star progenitor models (e.g. Yoon & Langer 2006;Woosley & Heger 2006). Some studies pointed out that the Kewley & Dopita (2002) photoionization models on which the M08 method is based may overestimate oxygen abundances by 0.2-0.5 dex compared to the metallicity derived using the so-called direct T e method (see e.g., Kennicutt et al. 2003;Yin et al. 2007). On the other hand it should also be noted that the oxygen abundances determined using temperatures derived from collisional-excited lines could be underestimated by 0.2-0.3 dex (see e.g. López-Sánchez et al. 2012;Nicholls et al. 2012). A way to accommodate single star progenitors models with environments characterized by the higher metallicity values found in our works is to invoke chemically homogeneous mixing with very rapid rotation (Brott et al., 2011) and weak magnetic coupling (Georgy et al., 2012;Martins et al., 2013). In such cases LGRB could be produced also up to solar metallicities, but it is still not clear whether their rates would correspond to the LGRB observed rates.

Another possibility to be considered is an enhancement of the [O/Fe] in LGRB host galaxies. Indeed oxygen overabundances have been found in young and/or starburst galaxies (e.g. Vink et al. 2000 and references therein;Izotov et al. 2006) due to the longer time scale needed to produce type Ia SNe, that are the main producer of iron, compared to type II SNe where oxygen is produced. This was also pointed out by Steidel et al. (2016) as an explanation of the higher stellar metallicity compared to the nebular one found for galaxies at z > 2. Indications of low iron abundances compared to oxygen have been found by Hashimoto et al. (2018) in the host galaxies of two very low-redshift GRBs: GRB 980425 and GRB 080517. At the Z values we find, iron is the main driver of the wind mass-loss of Wolf-Rayet (WR) stars Vink & de Koter (2005), the most commonly suggested LGRB progenitors. If the LGRB environment is characterized by oxygen over-abundance, a [O/Fe] 0.5 would imply iron metallicities in agreement with most single star LGRB models. Binary channels where the progenitor star is tidally spun-up by its companion (de Mink et al., 2009;Podsiadlowski et al., 2010) must also be considered. The evolution of massive stars in binaries is more complex to model than as single stars (e.g. Fryer & Heger 2005;Yoon 2015). A few studies on evolutionary models of binary stars have started to investigate the effects of rotation and metallicity (e.g. de Mink et al. 2009;Eldridge et al. 2017). In Song et al. (2016) the evolution of single and close binary stellar models (before any mass transfer) with strong core-envelope coupling is compared. Rotating massive stars in binary systems do not significantly lose their surface velocity, independent of the metallicity. Interestingly, the surface velocity increases with the initial stellar mass and the metallicity, and homogeneous evolution is more favoured at metallicities Z 0.5Z than at lower metallicities. The avoidance of the Roche lobe overflow phase during the main sequence phase is favoured in high-mass star models at metallicities Z 0.5Z . In the proposed scenario the primary star can enter the WR phase at an early stage of its evolution keeping fast rotation and high angular momentum. Even if the final stages of this evolution still need to be studied, this could be a channel for the formation of LGRBs also at moderately high metallicity.

More in general, it must be pointed out that the effect of metallicity goes beyond the final stages of the progenitor's life, and could also possibly affect the IMF of stars. The universality of the IMF is still debated, and different works pointed out the possibility of a metallicity dependence of the IMF, where a larger fraction of massive stars is produced at lower metallicity (e.g. Marks et al. 2012;Martín-Navarro et al. 2015).

It is worth noting that the metallicities derived in this paper are integrated over the entire galaxy. The possibility that the LGRB production site is situated in a low-metallicity pocket of a higher metallicity host should be considered. While this can not be excluded, various authors have shown that LGRB hosts are small and compact (Lyman et al., 2017), and when possible to resolve, little metallicity variation is found throughout the hosts (Levesque et al., 2011;Krühler et al., 2017;Izzo et al., 2017). We stress also that we used a simple step-function for the metallicity threshold because our poor statistics do not allow us to constrain the shape of this function, however, in reality, it is more likely to be a smooth function of decreasing probability of hosting an LGRB with increasing metallicity.

Based on the fact that the hosts of the BAT6 LGRB sample represent a statistically complete sample of LGRB hosts, we can estimate the fraction of super-solar metallicity hosts (in the M08 scale). With the conservative assumption that hosts without a metallicity measurement are super-solar (very unlikely, as they are mostly low mass galaxies), that fraction is less than 31±8% at z < 1 and 33±7% at 1 < z < 2 (15±8% and 7±7%, respectively, if the host without metallicity measurement are sub-solar).

Conclusions

Using a complete and unbiased sample, we showed that the properties of LGRB host galaxies evolve between z < 1 and 1 < z < 2. Their median stellar mass increases from log(M * /M ) 

Figure E.1:

An example of the corner plots from the beagle SED fitting procedure. This case is for the host of GRB 090926B, with a CF00 attenuation model and an exponential SFH. Note that the parameters such as stellar mass and SFR are well constrained while the dust-to-metals mass ratio ξ d remains unconstrained. This is due to the lack of emission lines that observationally contrain this parameter for this galaxy. General conclusion Contents 

Summary of our main results

Over the course of the last 3 years, I studied LGRBs from their γ properties to their host galaxies. I created a population model to constrain their intrinsic population and studied a complete, unbiased sample of their host galaxies to infer the conditions in which they form. The main results from each project are summarized below.

Population model for LGRBs

To quantify the LGRB formation rate and its evolution with redshift, I created a population model of the intrinsic population of LGRBs. I used a Monte Carlo approach to generate LGRBs from a luminosity function, a redshift distribution and distributions of their spectral parameters: E p , α and β. The parameters and functional forms of these distributions were constrained by comparing the generated LGRB population to a set of carefully selected observed distributions: (i) the logN-logP diagram of Stern et al. (2001), (ii) the E p distribution of Fermi/GBM and (iii) the redshift distribution of the complete extended BAT6 sample. Each of these observed distributions was designed to constrain one aspect of the intrinsic population. The best fit parameters of the intrinsic distributions were identified using a state of the art MCMC exploration. The careful selection of the observational constraints, the diversity of samples used and the addition of ex post facto cross-checks allows us to be more precise than earlier works and to partially lift the degeneracy between redshift evolution and luminosity function. The main scientific results are:

-The luminosity function of LGRBs is a monotonically decreasing function well described by a Schechter function with a slope ∼ 1.4 and a cut-off at L break ∼ 10 53 erg s -1 at z = 0. An
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evolution of this luminosity function as (1 + z) k evol is not excluded, as long as it is mild i.e. k evol ≤ 1.

-All models that fit well the observations have some form of redshift evolution, suggesting an increase of LGRB efficiency with redshift is inevitable to be consistent with the data.

-The models that represent best the observations suggest that there is a notable increase in the LGRB production efficiency with redshift up to z = 6, above which our models are no longer robustly constraining. This translates in a LGRB production efficiency larger by a factor of ∼ 5 at z = 6 than at z = 2, suggesting LGRBs are not unbiased tracers of star-formation.

-The models with an intrinsic spectrum-luminosity correlation are favored, however this correlation is found to be milder than previously reported in the literature. This suggests the observed correlation is due in part to important selection effects, but that there is also a genuine intrinsic correlation. This allows to better understand the true constraint on physical models for the prompt emission that should reproduce the parameters of the intrinsic correlation.

-The local rate density of LGRBs pointing towards us is 1-2 yr -1 Gpc -3 (the true rate including LGRBs pointing away from us may be 10 to 1000 times larger depending on their average jet opening angle).

-There is one LGRB pointing towards us for every ∼ 10 5 core-collapse at z = 0. This translates to one LGRB for every 10 2 -10 4 core-collapse at z = 0, depending on the average jet opening angle. This confirms that LGRBs are very rare requiring special conditions from the progenitor star to form. These values increase by a factor ∼ 5 at z = 6, suggesting these special conditions were more readily met in the early Universe.

Some detailed comparison of our results with previous works are still under work (see for instance the comparison with Perley et al. 2016c below) and will be finished soon. We will then submit a paper presenting our work and results, whose preparation is still in its early stages.

Host galaxies of LGRBs

To understand which are the factors regulating the LGRB efficiency, I studied a complete, unbiased sample of LGRB hosts at 1 < z < 2. This sample of hosts is built from the Swift/BAT6 sample of bright LGRBs, already used as one of the observational constraints for our LRGB population model. I reduced and analyzed spectra from X-Shooter, a cutting edge instrument installed on one of the VLTs, among the largest telescopes in the world. I derived the host galaxies' properties, building their SEDs with beagle to determine their stellar masses and using nebular emission lines to derive their SFRs and metallicities. I initiated a collaboration with the MOSDEF survey in order to perform a methodologically coherent comparison between a sample of star-forming galaxies and our sample of LGRB hosts. I enhanced some already-existing statistical methods to improve the robustness of our comparison, allowing us to test the hypothesis that LGRBs are direct tracers of star-formation (i.e. the probability of a galaxy hosting an LGRB is proportional to its SFR). The main scientific results are:

-The stellar mass and SFR of LGRB hosts evolve between z < 1 to 1 < z < 2: the median stellar mass evolves from log(M * /M )∼ 8.9 to ∼ 9.4, the median SFR evolves from ∼ 1.4 to ∼ 33 M yr -1 . On the other hand, their median metallicity stays constant at 12 + log(O/H)∼ 8.45 providing another argument in favor of the regulatory nature of metallicity.
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-Similarly to z < 1, LGRBs are not direct tracers of star-formation at 1 < z < 2; the distributions of stellar mass and metallicity of LGRB hosts are not consistent with the ones predicted from the general population of star-forming galaxies when assuming that the probability of hosting an LGRB is proportional to its SFR.

-The discrepancies between the distributions of SFR-weighted field galaxies and the ones of LGRB hosts can be reconciled by applying a metallicity cut of ∼ 0.7 Z on the general star-forming galaxy population. This can be interpreted in terms of the conditions necessary for the progenitor star to produce an LGRB and suggests that metallicity is a driving factor for the LGRB efficiency.

-There is evidence for an enhanced fraction of starbursts for LGRB hosts compared to typical star-forming galaxies, which could be linked to the preference of LGRBs for lower metallicity and higher sSFR environments (since low metallicity correlates with high sSFR for star-forming galaxies).

These results are submitted as a paper to the journal Astronomy & Astrophysics and are expected to be published soon.

Consequences for LGRB production efficiency

The main results of this thesis are: (i) a confirmation that the production efficiency of LGRBs η(z) -defined as the fraction of core-collapses that give rise to an LGRB -is not constant but rather increases with redshift, as suggested by earlier studies (e.g. Daigne et al., 2006;Wanderman & Piran, 2010;Salvaterra et al., 2012) and (ii) a quantification of this effect through two complementary approaches: a model of the intrinsic LGRB population and the study of a complete sample of LGRB host galaxies. These are well illustrated by the orange curves in the right panel of Fig. 6.9 and more indirectly in Fig. 8.2.

Comparing the LGRB rate from our population model to an unbiased host galaxy sample

The predictions of our population model can be compared to the estimations of the LGRB rate derived from host galaxy studies. These types of results are not yet available for the extended BAT6 LGRB host sample, but they have been derived for the SHOALS sample, which is larger (119 hosts) and includes bursts that are fainter. The fact that the SHOALS galaxy properties are based on photometry only is not an issue here since we are only interested in the redshift distribution. The points from Fig. 6 of Perley et al. (2016c) are shown in Fig. 9.1. Due to the selection criterion of the SHOALS sample based on the fluence (equivalent to a cut on E iso ), the direct comparison with our results is difficult; we are in the process of determining which luminosity cut is most appropriate. In the meanwhile we scaled their points by the fraction of the intrinsic population of our model detected by our simulated Swift sample, although this is preliminary. With these caveats in mind, the shapes and normalization agree surprisingly 1 well. The implementation of a fluence proxy for the predictions of the SVOM /ECLAIRs sample is expected to make this comparison easier (see App D).

Are we dealing only with LGRB efficiency evolution?

As mentioned in Sect. 6.5.2, what we are actually constraining with our population model is the product η(z) × p cc (z)/ m(z). Part of the evolution we derive here could be due to an evolution of Redshift (z)
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Comoving rate [GRB yr We checked that a scenario where the evolution is due solely to p cc and m inf is unrealistic. Indeed even for extreme variations of the IMF (e.g. with x = 1.01 and m inf = 2 M ), we can only get a factor ∼ 4 increase at z = 6, most realistic variations yield at most a factor of 2. We conclude that η(z) is responsible for the majority of the evolution observed, although minor evolution due to the aforementioned quantities can not be excluded.

What is the cause behind the LGRB efficiency evolution?

From our study on a complete sample of LGRB hosts up to z = 2, we show that metallicity is a key regulatory factor of the LGRB efficiency. This result is in line with the expectation derived from our population model that the LGRB efficiency increases with redshift. Indeed, metallicity is a suppressing factor of LGRB production and the average cosmic metallicity decreases with redshift (e.g. Zahid et al., 2014). Metallicity is expected to play an important role in the fate of massive stars as it has a strong impact on mass-loss through stellar winds (mass-loss rates scale approximately as Z 0.8 , Vink et al. 2001;Mokiem et al. 2007). These stellar winds will strongly determine the physical caracteristics of the progenitor's core right before its collapse but also affect the environment in which the GRB jet will propagate. Langer & Norman (2006) parametrized the LGRB rate as a function of the metallicity required for their production, and provided a general purpose equation to do this for other thresholds in Equation 5of their paper. If we use this equation with our threshold derived by host galaxy studies (0.7 Z ), we obtain the result that LGRBs should trace star-formation beyond z = 3 -4, in slight contradiction with our population model. This could be due to the fact that the parametrization of the LGRB rate is too simple in our population model, and needs an additional break at z ∼ 4. However we should note that Eq. 5 of Langer & Norman (2006) is based on the galaxy mass function, which is poorly constrained for faint galaxies at high-redshift. Furthermore, the equation makes a number of simplifying assumptions, often based on outdated values, the impact of which is not quantified but could significantly affect the conclusions. The improvement of this equation with more recent value for the galaxy mass function, the mass-metallicity of galaxies and the cosmic metallicity evolution is a perspective work for the future. In parallel, it would be interesting to push the study of LGRB hosts up to this redshift range to see if we still observe a metallicity aversion, although the statistics due to small sample size and mass completeness would undoubtedly be challenging.

It should also be noted that the impact of metallicity goes beyond the final stages of massive star evolution. There is evidence that the stellar IMF depends on the environment, and in particular on metallicity (La Barbera et al., 2013). Metallicity impacts the fragmentation of gas clouds into protostars by providing efficient pathways to dissipate energy (i.e. by radiative emission of metal lines, see e.g. Bromm 2013), effectively allowing the gas to cool faster. Both of these effects have consequences on the fraction of binary massive stars, another factor which could play a role in the LGRB production efficiency, and possibly imply more than one progenitor channel for LGRBs.

Finally, there could also be a contribution from other factors than metallicity; one can think of stellar initial rotation, which largely defines the angular momentum reservoir of stars (a crucial ingredient in the collapsar model) although constraining this without observations of the progenitor star might prove difficult.

Perspectives

Extending the host galaxy study

A natural extension of the work presented in Part III of this manuscript is to perform the same type of study up to z = 3. This would mean entering the redshift territory where LGRBs potentially start to trace star-formation, however feasibility might be an issue. While the MOSDEF survey has good coverage over 2.1 < z < 2.6, LGRB hosts are faint as illustrated by their stellar masses at 2 ≤ z ≤ 3 (which are mostly upper limits). The faintness of LGRB hosts will pose problems with respect to the mass completeness of current surveys and acquiring decent host spectra will prove expensive in observational time. There is hope however, since the depth of galaxy spectroscopic surveys is expected to improve with the next-generation class of telescopes and instruments (e.g. E-ELT). Let us note that the SVOM sample for which we are deriving the redshift distribution will also benefit from this improved instrumental landscape. Finally, looking farther to the future, the mission THESEUS (Amati et al., 2018), which was just selected for Phase A by the European Space Agency, is expected to significantly increase the number of high-z GRBs and allow the use of GRBs to trace the cosmic SFR out to z = 10.

Predictions for SVOM /ECLAIRs

One of the motivations for the LGRB population model developed during my PhD was to make predictions for the number of detections expected by SVOM /ECLAIRs. Up to now, predictions were made using existing catalogs without correcting for instrumental selection effects (see e.g. Antier-Farfar 2016). The advantage of this approach is that real light curves are available for each GRB in the catalog, along with detailed information on the spectra. We lose the ability to simulate light curves by using our population model, however we gain the ability to make predictions from a synthetic population for which instrumental selection effects have been corrected. Since ECLAIRs will be able to detect bursts on different timescales, we need to provide a way to calculate the fluence for the bursts in our intrinsic population; this work is in 9.3. Perspectives progress and still in the process of being implemented, but our methodology is described in detail in App. D. We expect to confirm or correct previous estimates with the added value that we can predict the redshift distribution of the detected sample. This will allow to prepare possible cosmological applications of the SVOM /ECLAIRs sample by anticipating the accessibility of the associated host galaxy sample.

Parametrization of the redshift distribution of the intrinsic LGRB population

One of the main results of the population model of LGRBs is that the LGRB efficiency increases with redshift up to z = 6. We limit ourselves to z = 6 because that is the redshift of the most distant LGRB in our redshift constraint. In reality, while the LGRB efficiency increases up to z = 6, we do not expect it to increase indefinitely; the shape in the right panel of Fig. 6.9 is the result of our parametrization of the redshift distribution of LGRBs. Since the functional form used is fairly simple, in order to have few free parameters, one can speculate at the impact of adding a parameter to allow more flexibility, in particular at high redshift. This could allow to resolve some of the potential tension2 between the results of our population model and the results of the BAT6 host galaxy studies, that indicate that metallicity is the driving factor of the LGRB efficiency and that LGRBs should trace star-formation around z = 3 -4. One way to do this would be to fix one of the current parameters of the broken exponential function and introduce another break at higher redshift; the most natural parameter to fix is z m = 2.1 since we showed that its value is always the same regardless of the scenarios explored, suggesting a robust result.

Is our model representative of the whole intrinsic GRB population?

Our model is calibrated to represent the classic LGRB population but observations indicate a large diversity beyond the simple picture of long-duration GRBs. We list below a few additional populations which could be explored in the future.

Short GRBs

The first natural class that comes to mind is short GRBs (SGRBs). Of course, our intrinsic population was designed to address only long GRBs so it is natural that it is not representative of this class. However, using the same methodology, it would be possible to compile appropriate observational constraints and run the code to constrain the SGRB population. This would be more difficult since the number of SGRBs is much smaller, nonetheless complete samples similar to the BAT6 sample do exist for SGRBs (see e.g. SBAT4 D' Avanzo et al. 2014).

For this class of GRBs however, we do not expect them to trace star-formation since their progenitors are not massive stars but compact-object mergers (see Berger 2014 for a review). The delay between the formation of the binary system and its coalescence is dominated by the merger time, which is highly sensitive to the initial separation. Therefore, the SGRB rate needs to be parametrized from the SFR by introducing a density of probability of the merger time (see e.g. Guetta & Piran 2005;Wanderman & Piran 2015), which we could aim to constrain with our population model. Moreover, one can ask if the peculiar SGRB event of August 17th 2017 associated with GW170817, which was close but very faint and surely seen off-axis, can be linked to more traditional SGRBs. This raises the question of whether or not every compact object coalescence gives rise to a SGRB, a question we could aim to answer with a population model for SGRBs, for instance by comparing the SGRB rate obtained from the model with the merger rate directly deduced from gravitational wave observations.

Low-luminosity GRBs and X-ray rich GRBs

Even among the LGRB population, observations show a certain diversity and it is difficult at this stage to know if this diversity is well taken into account by our population model. For instance, some LGRBs have very low luminosities (LL-GRBs, see e.g. Liang et al. 2007;Virgili et al. 2009;Stanway et al. 2014) or are very rich in X-rays (X-ray rich GRBs, XRR-GRBs, and X-ray flashes, XRFs, see e.g. Sakamoto et al. 2005Sakamoto et al. , 2008;;Barraud et al. 2005). As these are rarer classes of GRBs, their observational samples are still quite small (Virgili et al., 2009), making the constraint of these classes a challenging task. For XRFs, the γ-ray spectra are not very well characterized as the E p is often below the threshold of the detectors and their afterglows are not always observed (Sakamoto et al., 2008). If the intrinsic spectrum-luminosity correlation is indeed valid, one would expect a link between LL-GRBs and XRR-GRBs/XRFs; this is still debated in the literature, where the possibility of different emission mechanisms is also discussed for these bursts. Only a well characterized sample allowing for measurements of the low-luminosity tail of the luminosity function, or the low-E p tail of the peak energy distribution will help to settle the question. If these peculiar bursts are indeed a tail of the classical LGRB population, our population model should reproduce them with a lower L min threshold (see Sect. 3.2.1). Thanks to the low threshold of ECLAIRs (4 keV), SVOM should be efficient for these types of bursts, providing some hope to gather a well-characterized sample to help understand if they are truly a separate population or just an extension of classical LGRBs (Antier-Farfar, 2016;[START_REF] Wei | [END_REF].

Can we extend the model to other GRB properties?

One of the interesting points of a population approach is the capability of making statistical predictions for an entire population. This is particularly of interest for predicting detection rates for future observatories (e.g. for SVOM, see App. D). One such project could involve including Very High Energy (VHE) emission (above 30 GeV) from GRBs in our model to make predictions for the Cherenkov Telescope Array (CTA) which aims to be operational in the early decade of 2020 (see e.g. Inoue et al. 2013). This VHE could be extrapolated from bursts with GeV emission detected by Fermi/LAT (e.g. Abdo et al., 2009;Ackermann et al., 2010Ackermann et al., , 2011)). Another extension to our population model would be to try to include the afterglow properties, however this may prove limited due to lack of correlations between prompt and afterglow emission at wavelength beyond X-rays.

One final idea would be to try to link this population model to a physical emission model; thus constraining the distribution of physical parameters that govern the luminosity of GRBs instead of the luminosity function itself. First attempts of this type already exist for the internal shock model (e.g. Barraud et al., 2005;Mochkovitch & Nava, 2015).

To conclude, using two complementary approaches we confirmed that the LGRBs are not direct tracers of star-formation. We quantified the evolution of the LGRB efficiency between z = 2 and z = 6 and identified metallicity as a main driver of this evolution. Finally we provided some prospective ideas to pursue in the upcoming years.
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Figure 1 . 1 :

 11 Figure 1.1: Light curve of the first GRB ever detected by Vela. Two separate pulses can be identified over a duration of less than 10 seconds. Credit: https://apod.nasa.gov/apod/ap970702. html.

Figure 1 . 2 :

 12 Figure 1.2: Histogram of the duration of GRBs detected by BATSE. The duration parameter used is T90, which is the time over which a burst emits from 5% to 95% of its total measured counts. Credit: https://gammaray.nsstc.nasa.gov/batse/grb/duration/

Figure 1 . 3 :

 13 Figure 1.3: Standard scenario for GRBs.

Figure 1 . 4 :

 14 Figure 1.4: A mosaic of LGRB hosts illustrating their size and morphology from the HST WFC3/F160W, color-coded by brightness. The location of the LGRB is indicated by the black star, the cross indicates the brightest pixel and the plus sign marks the barycenter of the host as determined by SExtractor (see Lyman et al. 2017 for details).

Figure 1 . 7 :

 17 Figure 1.7: Cosmic star-formation rate density as a function of redshift. The grey crosses represent the estimation of the CSFRD from rest-frame UV surveys. The yellow, blue and red point represent the CSFRD as predicted from LGRBs under various hypothesis regarding the LGRB production efficiency from stars. From Robertson & Ellis (2012).

  Figure 2.1: Reduced χ 2 distribution for Band models from the GBM spectral catalog(Bhat et al., 2016).
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 222 Figure 2.2: A compilation of the various Luminosity Functions forLGRBs from the literature. For the sake of clarity the different curves are shifted.
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Figure 3 . 1 :

 31 Figure 3.1: A basic scheme of our Monte Carlo-based population model for the intrinsic LGRB population.

Figure 3 . 2 :

 32 Figure 3.2: Spectral slopes α and β distribution from the GBM spectral catalog(Bhat et al., 2016) used in our population model.

Figure 3 . 3 :

 33 Figure3.3: Spectral slopes α and β as a function of peak flux for the GBM spectral catalog(Bhat et al., 2016). The entire catalog is in black, the bursts complying with the "good" criteria (i.e. small errors on the parameters) are shown in green, the bursts for which Band is the best-fit spectral model are shown in fuschia. The vertical red line indicates the additional peak flux cut for our α and β samples (seeSect. 4.2). Notice that Band is often the best-fitting model for the high-peak fluxes (i.e. where the signal to noise is good).

Figure 3 . 4 :

 34 Figure 3.4: Cosmic Star Formation Rate Density (CSFRD) as a function of redshift. The points are measurements and the black line is the fit from the Springel & Hernquist (2003) functional form whose values are given in the text. The fit from the broken exponential function form used in our population model is shown in light blue. Adapted from Vangioni et al. (2015).
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Figure 4 . 1 :

 41 Figure 4.1: LogN-logP diagram built from the offline search of Stern et al. (2001), corrected for efficiency of detection at low fluxes.

Figure 4 . 2 :

 42 Figure 4.2: Adjusted logN-logP diagram of the GBM sample compared to the one from Stern et al. (2001) andKommers et al. (2000) which is corrected for efficiency, live-time of the search and fraction of the sky observed. The various diagrams agree well between peak fluxes of 1 and 10 ph s -1 cm -2 ; below ∼ 0.9 ph s -1 cm -2 (indicated by the vertical black dashed line) the logN-logP of GBM is incomplete. The adjustment value of GBM should be compared to the duration of the catalog: 8.25 years. Above 10 ph s -1 cm -2 , the scatter becomes large as these are rare events and the binning is quite fine-grained, nonetheless the logN-logP are consistent within errors. The red stars represent our own rebinned version of the BATSE logN-logP from theStern et al. (2001) catalog; it is thus corrected for efficiency, fraction of sky observed and live-time of the search.

Figure 4 . 3 :

 43 Figure 4.3: E p distribution from the GBM spectral catalog(Bhat et al., 2016), used as a spectral constrain for our population model.

Figure 4 . 4 :

 44 Figure 4.4: Redshift histogram of LGRBs from Swift up to April 2017. The dip before z = 2 is caused by the redshift desert.
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 5 The burst declination is between -70 • and +70 • -The burst's angular distance to the sun is greater that 55 • -There are no nearby bright stars This results in 58 LGRBs for the original BAT6 4 , later extended to 99 LGRBs byPescalli et al. (2016). This extended BAT6 sample (eBAT6) has 82 bursts with a redshift, yielding an 83% redshift completeness, and its redshift distribution is shown in Fig.4.5.
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 45 Figure 4.5: Redshift distribution of the eBAT6 sample, used as a redshift constraint in our population model. The solid line is a Gaussian kernel density estimation of the data.
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 46 Figure 4.6: E p -L plane for the eBAT6 sample. The individual data points are color-coded by redshift and the purple line represents the E p -L iso relation found by Pescalli et al. (2016) for this sample and the dashed line represents the scatter. A 2-D Gaussian kernel density estimation of the data is shown as contours. The black dashed, dot-dashed and dotted lines represent the detection threshold for a peak flux of 2.6 ph s -1 cm -2 and a fixed Band spectrum (α = 0.6, β = 2.5) at different redshifts. The side histograms represent the binned data and the black curve is the 1-D Gaussian kernel density estimation.
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 47 Figure 4.7: Peak flux versus fluence for Swift LGRBs. The horizontal dotted line represents BAT6 selection criterion while the vertical dashed line represents the SHOALS selection criterion. The horizontal dash-dotted line is the simulated Swift sample threshold from our population model.
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Figure 5 . 1 :

 51 Figure5.1: Variations of χ 2 for multiple realizations of an LGRB population with the same set of parameters, with increasing number of LGRBs drawn (blue: 10 5 ; green: 3.10 5 ; red: 10 6 ; purple: 3.10 6 ). The top panel shows the normalized histograms and the bottom pannel mirrors their kernel density estimations. As the number of LGRBs drawn increases, the variations in χ 2 diminish, at the cost of computational time. The parameters for this run were: power law luminosity function {L min = 10 50 erg s -1 , L max = 10 53 erg s -1 , slope= 1.6}; redshift distribution following the CSFRD defined by Eq. 3.10; LogNormal E p distribution {E p0 = 600 keV, σ Ep = 0.45}.

Figure 5 . 2 :

 52 Figure 5.2: Example of the effect of fixing seeds on the goodness of fit estimator for our population model while varying only one parameter. The left panel shows χ 2 as a function of the slope of the luminosity function for 10 5LGRBs drawn and the right panel for 106 LGRBs drawn. The red dots represent the case where the rand number generator seeds were not fixed. The blue, green and purple points are 3 different fixed seeds; the black curve is an arbitrary second order parabola drawn to guide the eye.At 10 6 LGRBs, the different seeds yield very similar χ 2 .
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 53 Figure 5.3: Example of a traceplot for the E p and σ Ep parameters of a LogNormal Peak Energy distribution. The blue, orange and green curves represent the values taken by the 3 different chains at each iteration. The cyan, purple and kaki curves are the difference between the maximum likelihood of the chain and likelihood at each iteration for the 3 chains. The burn-in period where the annealing algorithm takes place can be seen at the iterations < 2000. The other parameters in this run were: Schechter luminosity function {L break free (∼ 10 53.4 erg s -1 ), slope free (∼ 1.5) } and a redshift distribution following the CSFRD defined by Eq. 3.10.

6. 5

 5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Distinguishing between well-fitting scenarios . . . . . . . . . . . . . . . . 6.5.2 The intrinsic redshift distribution and the production efficiency of LGRBs 6.5.3 What is the luminosity function? . . . . . . . . . . . . . . . . . . . . . . 6.5.4 What is the true LGRB rate? . . . . . . . . . . . . . . . . . . . . . . . . 6.5.5 Is there an intrinsic "Amati-like" correlation? . . . . . . . . . . . . . . . 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6 . 1 :

 61 Figure 6.1: Corner plot from the MCMC exploration of fake observations generated from known inputs. The known true values are shown in green. The population model is able to recover the input values satisfactorily.

Figure 6 . 2 :

 62 Figure 6.2: Fits to the observational constraints from the k0-LN-nSFR (left panels) and the kF-LN-nSFR (right panels) models. The k0-LN-nSFR model (left) can be excluded with confidence from the K-S test (see Tab 6.3) and the distribution of its normalized residuals (see Fig.6.3) while the kF-LN-nSFR model (right) provides a satisfactory fit to the data and can not be excluded by the K-S test, or its normalized residuals distribution.

Figure 6 . 3 :

 63 Figure6.3: Normalized residuals from the k0-LN-nSFR (blue) and the kF-LN-nSFR (orange) models, whose fits to the constraints are shown in Fig.6.2. The k0-LN-nSFR residuals for the Intensity Constraint extend up to 6 indicating that for some bins, the model overpredicts the observations by up to 6 times the observed error. The normalized residuals are not computed for the Redshift Constraint as they require Gaussian errors to make sense (i.e. they require at least ∼ 10 objects per bin).

  neither the K-S tests nor the normalized residual distribution can exclude this model with confidence. The corner plots are shown in Fig. A.3, and the fits to the data in Fig. B.1, left panels. k05-LN-nF This model has a mildy evolving luminosity function, with a LogNormal E p distribution and the redshift distribution is left free to vary, totaling in 6 free parameters. The MCMC exploration behaves well, despite some slight multi-modality in the marginalized posterior PDF of b; the fit to the data is very good: neither the K-S tests nor the normalized residual distribution can exclude this model with confidence. The corner plots are shown in Fig. A.4, and the fits to the data in Fig. B.1, right panels.

  The corner plots are shown in Fig. A.5, and the fits to the data in Fig. B.2, left panels.k2-LN-nFThis model has a a strongly evolving luminosity function, with a LogNormal E p distribution and the redshift distribution is left free to vary, totaling in 6 free parameters. The MCMC exploration behaves well, but also shows some slight asymmetry in the marginalized posterior PDF of b; the fit to the data is very good: neither the K-S tests nor the normalized residual distribution can exclude this model with confidence. The corner plots are shown in Fig. A.6, and the fits to the data in Fig. B.2, right panels.

Figure 6 . 4 :

 64 Figure 6.4: Cumulative redshift distribution for the observed eBAT6 sample in orange and the observed SHOALS sample in black. The shaded area around the SHOALS sample is due to the uncertainty caused by the 5 upper limits, represented as black arrows at the bottom of the plot. The predictions for the intrinsic LGRB population from the best model in each scenario is shown in full for LN-E p models and in dashed for A-E p models. As the value of k evol increases, the redshift distribution shifts towards lower redshift.

  . The corner plots for this model are shown inFig. A.7, and A.8 for the smaller prior range on α A . The fit to the data is poor in both cases (seeFig. B.3, left and right panels). Indeed the distribution of normalized residuals also shows residuals beyond 3, implying that for some bins the model overpredicts the observations by more than 3 times the observed error and the p-value of the K-S test from the Intensity Constraint indicates this model can be excluded at the 99% confidence level.

Fig. A. 9 ,

 9 and the fit to the data in Fig. B.4. The value derived for k evol is very high (k evol ∼ 2)

  Fig. A.10, and the fit to the data in Fig. B.5, left panels.

  Fig. A.11, and the fit to the data in Fig. B.5, right panels.k1-A-nFThis model has an evolving luminosity function and LGRB efficiency. The MCMC exploration was difficult with significant correlations between parameters, in particular between L break and the slope of the luminosity function, as well as with the parameters of the E p distribution. This causes some multi-modality to appear in the marginalized posterior PDFs, especially for L break , the slope of the luminosity function, E p0 , α A and σ Ep . The fit to the data is very good: neither the K-S tests nor the normalized residual distribution can exclude this model with confidence, but the values derived from the MCMC exploration do not seem fully converged and caution should be taken when interpreting them. The corner plots are shown in Fig. A.12, and the fit to the data in Fig. B.6, left panels.
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 6566 Figure 6.5: Top panels: the redshift distribution of the observed SHOALS sample (coarsely binned in order to reduce errors) is shown in gray; a Gaussian kernel density estimation is shown in black. The outputs for the Swift sample from the LN-E p scenarios are shown in shades of blue while the A-E p scenarios are shown in shades of pink. Bottom panels: the ratio of the redshift distributions of the SHOALS and the simulated Swift sample as a function of redshift, used as a proxy for the redshift recovery fraction. Scenarios with a recovery fraction larger at z > 4.5 than at z < 1.5 are rejected. The error bars are shifted for clarity. The scenarios with a constant LGRB efficiency are presented in Fig. C.12.
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 67 Figure 6.7: An example E p -L plane cross-check for the k0-LN-nF model. The points are the observed data color-coded by redshift, with their 2D Gaussian kernel density estimation shown in non-filled color contours; the filled color contours are the results from the model. The side histograms of the observed data are shown in orange, while the model is shown in blue; the black line is a 1D Gaussian kernel density estimation of the observed data. Note the high-L part of the plane is not well reproduced by the model. A full description of the figure is given in Fig. 4.6.
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 68 Figure 6.8: Same as Fig. 6.7 but for the k05-A-nF model (A-E p scenario). The high-L part of the plane is better reproduced than in the k0-LN-nF scenario. A full description of the figure is given in Fig. 4.6.

  Figure 6.10:The luminosity function derived by our model for the k05-A-nF case (red) and the k1-LN-nF case (blue) at z = 0; these functions evolve with redshift as (1 + z) k evol so their shape is also shown at the median redshift of the population in dashed. Other luminosity functions from the literature are also shown; they are generally in agreement. The various curves are shifted for clarity.
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 2 Figure A.2: Corner plot for an evolving Schechter LF, LN E p , and ṅGRB ∝ SFR (kF-LN-nSFR); a description of this plot is given in 6.3.1.

Figure A. 4 :

 4 Figure A.4: Corner plot for a mildy evolving Schechter LF (k evol = 0.5), LN E p , and a free redshift distribution (k05-LN-nF); a description of this plot is given in 6.3.2. Note the slight non-gaussianity for b, the high-redshift slope of the redshift distribution.

Figure A. 6 :

 6 Figure A.6: Corner plot for a strongly evolving Schechter LF (k evol = 2), LN E p , and a free redshift distribution (k2-LN-nF); a description of this plot is given in 6.3.2. Note the slight non-gaussianity for b, the high-redshift slope of the redshift distribution.
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 7 Figure A.7: Corner plot for a non-evolving Schechter LF, A E p , and ṅGRB ∝ SFR (k0-A-nSFR); a description of this plot is given in 6.4.1. Note the multi-modality for L break and the non-gaussianity for α A ; the best values for α A are negative.
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 8 Figure A.8: Corner plot for a non-evolving Schechter LF, A E p , and ṅGRB ∝ SFR where the prior range for α A is reduced (k0-A-nSFR); a description of this plot is given in 6.4.1. Note the negative values for α A , which is close to the lower bound of its prior range.
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 10 Figure A.10: Corner plot for a non-evolving Schechter LF, A E p , and a free redshift distribution (k0-A-nF); a description of this plot is given in 6.4.2.

Figure A. 11 :

 11 Figure A.11: Corner plot for a mildly evolving Schechter LF (k evol = 0.5), A E p , and a free redshift distribution (k05-A-nF); a description of this plot is given in 6.4.2. Note the significant correlations between luminosity parameters and spectral parameters. Most parameters's marginalized PDFs are not gaussian, suggesting this model is not entirely converged; the errors on the values should be taken cautiously.
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 12 Figure A.12: Corner plot for an evolving Schechter LF (k evol = 1), A E p , and a free redshift distribution (k1-A-nF); a description of this plot is given in 6.4.2. Note the significant correlations between luminosity parameters and spectral parameters. Most parameters's marginalized PDFs are not gaussian, suggesting this model is not entirely converged; the errors on the values should be taken cautiously.
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 1 Figure B.1:Fit to the observational constraints for k0-LN-nF (left panels) and k05-LN-nF (right panels) models; comments on these plots are given in 6.3.2 and 6.3.2 respectively. Both scenarios reproduce well the data.

Figure B. 2 :

 2 Figure B.2:Fit to the observational constraints for k1-LN-nF (left panels) and k2-LN-nF (right panels) models; comments on these plots are given in 6.3.2 and 6.3.2 respectively. Both scenarios reproduce well the data.

Figure B. 3 :

 3 Figure B.3:Fit to the observational constraints for k0-A-nSFR (left panels) and k0-A-nSFR with a smaller prior range on α A (right panels); comments on these plots are given in 6.4.1. Both cases do not reproduce the data and can be excluded with confidence.

Figure B. 4 :

 4 Figure B.4:Fit to the observational constraints for kF-A-nSFR; comments on these plots are given in6.4.1. This model reproduces well the data, although there is a strong peak around z = 2 in the redshift distribution of eBAT6 (consistent within errors).

Figure B. 5 :

 5 Figure B.5:Fit to the observational constraints for k0-A-nF (left panels) and k05-A-nF (right panels) models; comments on these plots are given in 6.4.2 and 6.4.2 respectively. Both scenarios reproduce well the data.

Figure B. 6 :

 6 Figure B.6:Fit to the observational constraints for k1-A-nF (left panels) and k2-A-nF (right panels) models; comments on these plots are given in 6.4.2 and 6.4.2 respectively. Both scenarios reproduce well the data.

Figure C. 2 :

 2 Figure C.2:The E p -L plane for the eBAT6 sample (see 4.6 for a description of the observed data). The result of the model are shown as the filled contours in the 2D plot and as blue lines in the side histograms. Despite the paucity of high luminosity and high E p , this model is considered marginally compatible with this cross-check.

  pk * C var (D.10) We can calculate C var for the GBM catalog with C var = N /(T 90 N pk ), and its distribution is shown in Fig. D.1 in the case of a Band spectral fit. Note that there are some unphysical values of C var > 1, however we have not yet implemented proper error propagation.

1 Figure D. 1 :

 11 Figure D.1: Distribution of C var for the GBM catalog of Bhat et al. (2016). The slopes represent potential relations for the implementation in our code.

  Figure D.2: E pflx p,obs versus E ti p,obs for the GBM catalog. The black line indicates a 1:1 relationship. The value for the peak flux are generally close to the value for the time-integrated spectra.
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 71 Figure 7.1: Metallicity of the host galaxies of the BAT6 sample at z < 1 versus the isotropicequivalent energy and luminosity, and the peak energy of their associated LGRB. The points are color-coded by redshift.

Figure 7 .

 7 Figure 7.2: A schematic view of the X-Shooter spectrograph and its three spectroscopic arms; there is a fourth arm for acquisition and guiding.
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 73 Figure 7.3: An example of a portion of the reduced spectrum of the host galaxy of GRB 070306. This host is one of the brighter galaxies in our sample (R ∼ 22.9). The strongest emission lines are indicated by arrows and a faint continuum can be seen as a horizontal line in the center of the spectrum. The vertical bars are sky-lines.
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 818 Figure 8.1: Cumulative distributions of stellar mass (upper panel), SFR (middle panel) and metallicity (bottom panel) for the hosts of the BAT6 sample at different redshift ranges. Upper and lower limits are represented as arrows at the bottom of the plots. The shaded area represents the 95% confidence interval around the CDFs. The methodology to create these CDFs is presented in Sect. 8.4.2.
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 82 Figure 8.2: Top panel: Stellar mass as a function of redshift. The grey circles are the individual host galaxies of the BAT6 sample; the orange circles represent the median stellar mass at each redshift bin for hosts above the COSMOS2015UD mass completeness. The blue squares represent the median of the SFR-weighted stellar mass distribution of the COSMOS2015UD sample at each redshift bin. The blue line is the mass completeness of the COSMOS2015UD sample. Bottom panel: Residuals of the difference between the blue and orange points. The errors are computed using Monte Carlo propagation and bootstrapping.
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 8 AreLGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs[START_REF] Palmerio | Submitted to Astronomy & Astrophysics. (3) Investigation of dust attenuation and star formation activity in galaxies hosting GRBs[END_REF] 129
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 83 Figure 8.3: The normalised efficiency of LGRB hosts compared to the MOSDEF sample at 1 < z < 2 as a function of stellar mass (top left panel), SFR (top right panel), sSFR (bottom left panel) and metallicity (bottom right panel). The values are normalized to the first bin. The horizontal grey dashed line indicates a value of 1 to guide the eye.
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 884 Figure 8.4: Top panel: Cumulative stellar mass distribution for the hosts of the BAT6 sample (orange) and the SF galaxies from the COSMOS2015 Ultra Deep catalog (blue) at 1 < z < 2. The COSMOS2015 Ultra Deep CDFs are weighted by SFR. Limits are indicated by arrows at the bottom of the plot. Bottom panels: Normalized histogram of the maximum distance between the BAT6 and the survey CDFs for each Monte Carlo realisation and of the p-value from the two-sample K-S test computed for each Monte Carlo realisation. The black curve represents the Gaussian kernel density estimation. The vertical dashed line indicates a p-value of 0.05, above which it is no longer possible to reject the null hypothesis that the two samples are drawn from the same distribution at a 95% confidence level.
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 85 Figure 8.5: Top panel: Cumulative stellar mass distribution for the hosts of the BAT6 sample (orange) and the SF galaxies from the MOSDEF sample (blue) at 1 < z < 2. The MOSDEF CDFs are weighted by SFR. Limits are indicated by arrows at the bottom of the plot. Bottom panels: See Fig. 8.4
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 88687 Figure 8.6: Top panel: Cumulative SFR distribution for the hosts of the BAT6 sample (orange) and the SF galaxies from the COSMOS2015 Ultra Deep catalog (blue) at 1 < z < 2. The COSMOS2015 Ultra Deep CDFs are weighted by SFR. Limits are indicated by arrows at the bottom of the plot. Bottom panels: See Fig. 8.4.
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 88 Figure 8.8: Top panel: Cumulative sSFR distribution for the hosts of the BAT6 sample (orange) and the SF galaxies from the COSMOS2015 Ultra Deep catalog (blue) at 1 < z < 2. The COSMOS2015 Ultra Deep CDFs are weighted by SFR. Limits are indicated by arrows at the bottom of the plot. Bottom panels: See Fig. 8.4.
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 898810 Figure 8.9: Top panel: Cumulative sSFR distribution for the hosts of the BAT6 sample (orange) and the SF galaxies from the MOSDEF sample (blue) at 1 < z < 2. The MOSDEF CDFs are weighted by SFR. Limits are indicated by arrows at the bottom of the plot. Bottom panels: See Fig. 8.4.

Figure 8 .

 8 Figure 8.11: sSFR versus stellar mass plot for the BAT6 sample at 1 < z < 2. The grey points are from the MOSDEF sample at 1 < z < 2.
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 8128 Figure 8.12: Top panel: Cumulative metallicity distribution for the hosts of the BAT6 sample (orange)and the SF galaxies from the MOSDEF sample of SF galaxies (blue) at 1 < z < 2. The MOSDEF CDF is weighted by SFR. Bottom left panel: See Fig.8.4. 

Figure 8 .

 8 Figure 8.13: Mass-metallicity relation in the M08 calibrator for the BAT6 sample at 1 < z < 2. The grey points are from the MOSDEF sample at 1 < z < 2, with their average uncertainty shown on the bottom right. The curves represent the MZR relation of Mannucci et al. (2009) from z = 0.7 to z = 2.2, with the extrapolation below the mass completeness indicated in dashed.

Figure 8 .

 8 Figure 8.14: FMR for the BAT6 sample at 1 < z < 2 (squares). The grey points are from the MOSDEF sample at 1 < z < 2, with their average uncertainty shown on the bottom right. The grey line is the FMR from Mannucci et al. (2011).

Chapter 8 .

 8 AreLGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs(Palmerio, Vergani et al. 

Figure 8 .

 8 Figure 8.15: Metallicity-sSFR relation for the BAT6 sample at 1 < z < 2 (squares). The grey points are from the MOSDEF sample at 1 < z < 2, with their average uncertainty shown on the upper right.

Figure 8 . 16 :

 816 Figure 8.16: The result of the same analysis as presented in Section 8.4 except using a metallicity cut on the MOSDEF sample of 12 + log(O/H)=8.55. The CDFs match more closely, and the 2 sample K-S tests suggest we can not discard the null hypothesis.

Figure 8 . 17 :

 817 Figure8.17: The result of the same analysis as presented in Section 8.4 except using a metallicity cut on the MOSDEF sample of 12 + log(O/H)=8.55. The CDFs match more closely, and the 2 sample K-S tests suggest we can not discard the null hypothesis.
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 8188 Figure 8.18: The result of the same analysis as presented in Section 8.4 except using a metallicity cut on the MOSDEF sample of 12 + log(O/H)=8.55. The CDFs match more closely, and the 2 sample K-S tests suggest we can not discard the null hypothesis.

Figure 8 . 19 :

 819 Figure 8.19: The result of the same analysis as presented in Section 8.4 except using a metallicity cut on the MOSDEF sample of 12 + log(O/H)=8.55. The CDFs match more closely, and the 2 sample K-S tests suggest we can not discard the null hypothesis.
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 8208821 Figure 8.20:The result of the same analysis as presented in Section 8.4 except using a sSFR cut on the MOSDEF sample of log(sSFR [yr -1 ]) = -8.7. The CDFs match more closely, but the 2 sample K-S tests still suggest we can discard the null hypothesis.

Figure 8 . 22 :

 822 Figure 8.22: The result of the same analysis as presented in Section 8.4 except using a sSFR cut on the MOSDEF sample of log(sSFR [yr -1 ]) = -8.7. The CDFs match more closely, and the 2 sample K-S tests suggest we can not discard the null hypothesis.

Fig. E. 1 ,

 1 Fig. E.1, along with the fit to the photometry shown in Fig. E.2. The best fit template is shown for each host in Figures E.3 to E.8.

Figure E. 3 :

 3 Figure E.3: Best fit SEDs from beagle are shown in grey, with the black circles representing the predicted filter values. Filter transmissions are shown in the bottom panels of each plot in the same color as the corresponding observations shown as crosses in the upper panels. Upper limits are indicated by downward arrows. The unreduced χ 2 is shown in the top left of the upper panels.

Figure E. 5 :

 5 Figure E.4: Same as Fig E.3

  Figure E.5: Same as Fig E.3

Figure E. 7 :

 7 Figure E.6: Same as Fig E.3

Figure F. 1 :

 1 Figure F.1: Metallicity of the LGRB host galaxies of the BAT6 sample at 1 < z < 2 versus the peak of the ν F ν (left panel) and the isotropic-equivalent luminosity (right panel) of the prompt emission of the corresponding LGRB (from Pescalli et al. 2016). The points are colour-coded by redshift. The arrows indicate lower limits.

Figure 9 . 1 :

 91 Figure 9.1:LGRB rate from the k05-A-nF scenario in orange and the k1-LN-nF scenario in red, compared to the values derived for the SHOALS sample(Perley et al., 2016c) scaled to the intrinsic LGRB population.
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Table 2 . 1 :

 21 Non-exhaustive compilation of γ-ray observatories noteworthy for GRB science.

	Satellite name	Energy range	Launch date	Collecting data
	Vela 4a	30 keV -380 MeV	28 April 1967	No
	CGRO	30 keV -30 GeV	5 April 1991	No
	WIND	10 keV -10 MeV	1 November 1994	Yes
	BeppoSAX	0.1 -300 keV	30 April 1996	No
	HETE2	0.5 -400 keV	9 October 2000	No
	INTEGRAL	3 keV -10 MeV	17 October 2002	Yes
	Swift	0.2 -150 keV	20 November 2004	Yes
	AGILE	18 keV -50 GeV	23 April 2007	Yes
	Fermi	10 keV -300 GeV	11 June 2008	Yes
	SVOM	0.3 keV -5 MeV	end of 2021	Not yet
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Table 5 . 1 :

 51 A summary of the flat prior bounds used for the parameters of our population model.

	Functional form	Parameter Lower limit Upper limit Units
			Luminosity Function		
	Power Law	L max slope	10 52 0.3	10 56 3	erg s -1
		L break	10 52	10 56	
	Schechter Function				

Table 6 . 1 :

 61 Best parameter values for LogNormal E p models (LN-E p ). The horizontal line separates models with ṅGRB ∝ SFR and models with a free LGRB rate. Parameter without errors were fixed during the exploration. These parameters have multi-peaked marginalized posterior distributions (see Appendix A); the median and 1 σ errors reported here are not necessarily representative of the best fitting value but are quoted for simplicity.

	Name	Luminosity Function	Peak Energy Distribution	Redshift Distribution
		log L break	Slope	k evol	log E p0	σ Ep	z m	a	b
	k0-LN-nSFR 53.43 +0.15 -0.11	1.52 +0.02 -0.02	0	2.78 +0.02 -0.02	0.44 +0.02 -0.02	1.9	1.1	-0.57
	kF-LN-nSFR 52.35 +0.09 -0.08	1.45 +0.02 -0.02	1.56 +0.14 -0.13	2.86 +0.02 -0.02	0.47 +0.02 -0.02	1.9	1.1	-0.57
	k0-LN-nF	53.03 +0.08 -0.09	1.36 +0.04 -0.06	0.0	2.84 +0.02 -0.02	0.45	2.15 +0.10 -0.09	1.16 +0.08 -0.08	-0.17 +0.13 † -0.06
	k05-LN-nF	52.69 +0.06 -0.05	1.34 +0.03 -0.03	0.5	2.84 +0.02 -0.02	0.45	2.12 +0.08 -0.07	1.01 +0.07 -0.07	-0.19 +0.03 -0.05
	k1-LN-nF	52.56 +0.06 -0.06	1.41 +0.02 -0.02	1.0	2.84 +0.02 -0.02	0.45	2.18 +0.08 -0.09	0.94 +0.08 -0.07	-0.52 +0.16 † -0.06
	k2-LN-nF	52.22 +0.07 -0.07	1.50 +0.02 -0.02	2.0	2.84 +0.02 -0.02	0.45	2.10 +0.08 -0.08	0.66 +0.08 -0.07	-0.62 +0.05 -0.08
	†								

Table 6 . 2 :

 62 Best parameter values for "Amati-like" E p models (A-E p ). The horizontal line separates models with ṅGRB ∝ SFR and models with a free LGRB rate. Parameter without errors were fixed during the exploration.

	Name	Luminosity Function	Peak Energy Distribution	Redshift Distribution
		log L break	Slope	k evol	log E p0	σ Ep	α A	z m	a	b
	k0-A-nSFR 53.35 +0.23 -0.16	1.67 +0.02 -0.02	0.0	2.70 +0.02 -0.02	0.23 +0.03 -0.04	-0.40 +0.04 -0.05	1.9	1.1	-0.57
	kF-A-nSFR 52.47 +0.13 -0.10	1.53 +0.03 -0.03	2.08 +0.09 -0.11	2.80 +0.03 -0.03	0.44 +0.02 -0.02	0.26 +0.04 -0.06	1.9	1.1	-0.57
	k0-A-nF	53.33 +0.12 -0.16	1.44 +0.03 -0.06	0.0	2.79 +0.03 -0.03	0.43 +0.02 -0.02	0.29 +0.05 -0.06	2.15 +0.06 -0.07	1.37 +0.09 -0.09	-0.18 +0.02 -0.02
	k05-A-nF	53.01 +0.30 -0.18	1.42 +0.09 -0.06	0.5	2.80 +0.05 -0.07	0.44 +0.03 -0.07	0.27 +0.17 -0.15	2.11 +0.07 -0.07	1.24 +0.17 -0.15	-0.21 +0.04 -0.06
	k1-A-nF	53.13 +0.26 -0.25	1.54 +0.06 -0.08	1.0	2.71 +0.06 -0.04	0.36 +0.06 -0.05	0.45 +0.05 -0.10	2.08 +0.07 -0.08	1.28 +0.12 -0.12	-0.26 +0.06 -0.03
	k2-A-nF	52.45 +0.14 -0.12	1.52 +0.03 -0.03	2.0	2.80 +0.04 -0.04	0.44 +0.03 -0.03	0.25 +0.08 -0.10	2.10 +0.07 -0.07	0.91 +0.10 -0.11	-0.60 +0.07 -0.06
	6									

.4.1 Scenarios with a constant LGRB efficiency ( ṅGRB ∝ SFR)

  

Table 6 . 3 :

 63 Summary of the K-S test results for each constraint and each model. The D statistic represents the maximum distance between the cumulative disribution functions of the model and the data. The p-value indicates the probability with which this D value can arise by chance (statistical fluctuation). If the p-value is below 0.01, the observed D value becomes significant and the null hypothesis that the two observed distributions are drawn from the same intrinsic distribution can be rejected at a confidence level greater or equal to 99%. The models for which this is the case are shown in bold.

	Model	Name	Intensity Constraint Spectral Constraint Redshift Constraint
			D	p-value	D	p-value	D	p-value
				ṅGRB ∝ SFR	
	LN-E p	k0-LN-nSFR 2.28e-02 1.43e-03 1.87e-02 9.94e-01 1.43e-01 6.43e-02 kF-LN-nSFR 1.43e-02 1.17e-01 3.41e-02 5.91e-01 4.17e-02 9.99e-01
	A-E p	k0-A-nSFR 2.11e-02 4.18e-03 1.16e-02 1.00e+00 1.28e-01 1.24e-01 kF-A-nSFR 9.82e-03 5.13e-01 4.81e-02 1.87e-01 3.46e-02 1.00e+00
					ṅGRB free	
		k0-LN-nF	1.25e-02 2.31e-01 1.68e-02 9.99e-01 3.66e-02 1.00e+00
	LN-E p	k05-LN-nF k1-LN-nF	1.28e-02 2.02e-01 2.06e-02 9.81e-01 3.56e-02 1.00e+00 1.62e-02 5.08e-02 2.16e-02 9.70e-01 3.81e-02 1.00e+00
		k2-LN-nF	8.76e-03 6.59e-01 1.58e-02 1.00e+00 4.22e-02 9.98e-01
		k0-A-nF	1.50e-02 8.80e-02 1.64e-02 9.99e-01 2.58e-02 1.00e+00
	A-E p	k05-A-nF k1-A-nF	1.06e-02 4.11e-01 2.21e-02 9.63e-01 2.93e-02 1.00e+00 1.13e-02 3.36e-01 2.50e-02 9.05e-01 3.78e-02 1.00e+00
		k2-A-nF	8.33e-03 7.20e-01 2.29e-02 9.51e-01 3.65e-02 1.00e+00

Table 6 . 4 :

 64 Summary of the maximum likelihood, number of free parameters and BIC for the best models of our various runs.

	Model	Name	k evol	ln L max Free parameters	BIC
				ṅGRB ∝ SFR		
	LN-E p	k0-LN-nSFR kF-LN-nSFR 1.56 +0.14 0.0 -0.13	39400.6 39481.9	4 5	-78764.9 -78918.3
	A-E p	k0-A-nSFR kF-A-nSFR 2.08 +0.09 0.0 -0.11	39425.5 39488.9	5 6	-78805.7 -78923.3
				ṅGRB free		
		k0-LN-nF	0.0	39487.4	6	-78920.3
	LN-E p	k05-LN-nF k1-LN-nF	0.5 1.0	39491.5 39489.4	6 6	-78928.5 -78924.3
		k2-LN-nF	2.0	39489.5	6	-78924.5
		k0-A-nF	0.0	39493.8	8	-78915.0
	A-E p	k05-A-nF k1-A-nF	0.5 1.0	39492.9 39492.1	8 8	-78913.1 -78911.4
		k2-A-nF	2.0	39492.7	8	-78912.8

Table 6 . 5 :

 65 Summary of the various models explored and which criteria they fulfill. Models for which no good fit was found (based on the p-value of the K-S tests in Tab. 6.3 and the normalized residual distributions) were not cross-checked for the E p -L plane.

	Marginally C.1, C.12

  Left panel: The redshift distributions for the k05-A-nF case (orange) and the k1-LN-nF case (red). The redshift distribution found by WP10 is shown in blue; the errors make it consistent with both our models, with a preference for the k05-A-nF case. The black dashed curve represents the CSFRD fromVangioni et al. (2015) and the black dotted curve represents the CSFRD fromMadau & Dickinson (2014), both arbitrarily shifted for comparison purposes. Right panel: The corresponding LGRB efficiency for the k05-A-nF case (orange) and the k1-LN-nF case (red). The filled line corresponds to a comparison with the CSFRD fit by our functional form (see Sect. 3.2.5.2) while the dashed lines correspond to the CSFRD ofVangioni et al. (2015).
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	k1-LN-nF
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 81 Stellar mass, Star Formation Rate and metallicity for the hosts of the BAT6 LGRB sample at 1 < z < 3. References are : 1)Krühler et al. (2015); 2) this work; 3) Perley et al.

	(2016d)							
	Name	Redshift log(M * /M ) SFR (M /yr) 12 + log(O/H) (M08) M ref SFR ref Z ref
	091208B	1.0633	< 8.3 *			3		
	080413B	1.1012	9.5 +0.2 -0.2	2.1 +3.1 -1.2	8.35 +0.17 -0.29	2	1	2
	090926B	1.2427	9.9 +0.1 -0.1	12.1 +23.0 -6.5	8.48 +0.09 -0.16	2	2	2
	061007	1.2623	8.9 +0.4 -0.5	4.4 +6.2 -2.1	8.13 +0.11 -0.23	2	2	2
	061121	1.3160	9.4 +0.1 -0.1	58.5 +33.8 -17.6	8.51 +0.03 -0.04	2	2	2
	071117	1.3293	< 9.8 †	> 2.8	8.54 +0.13 -0.25	2	2	2
	100615A	1.3979	8.6 +0.2 -0.2	8.6 +13.9 -4.4	8.16 +0.18 -0.36	2	1	2
	050318	1.4436	< 8.6 *			3		
	070306	1.4965	9.7 +0.1 -0.1	90.6 +49.0 -31.0	8.43 +0.03 -0.04	2	2	2
	060306	1.5597	10.4 +0.1 -0.1	12.4 +47.0 -7.8	8.91 +0.16 -0.41	2	2	2
	080605	1.6408	9.6 +0.1 -0.1	42.5 +30.5 -18.2	8.47 +0.04 -0.04	2	2	2
	050802	1.7117	9.0 *	> 1.6		3	2	
	080602	1.8204	9.4 +0.1 -0.1	> 48	8.69 +0.12 -0.21	2	2	2
	060908	1.8836	9.2 *			3		
	060814	1.9223	10.0 +0.1 -0.1	47.5 +72.5 -15.6	8.46 +0.10 -0.16	2	2	2

  An example of the photometry from the beagle SED fitting procedure. This case is for the host of GRB 090926B, with a CF00 attenuation model and an exponential SFH. The photometry from beagle is shown as violin plots due the Bayesian nature of the approach.
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Table F . 1 :

 F1 Observed optical AB magnitudes for the hosts of BAT6 at 1 < z < 2. References: 1) this work; 2)Hjorth et al. (2012); 3) Vergani et al.

	Name Redshift J H Ks IRAC1 IRAC2 Ref	GRB050318 1.4436 >24.16 >25.22 2,4	GRB050802 1.7117 24.86±0.29 4	GRB060306 1.5597 21.94±0.1 21.54±0.02 21.32±0.09 2,4,6	GRB060814 1.9223 22.09±0.15 21.88±0.1 21.88±0.1 21.43±0.04 21.18±0.09 2,4,6	GRB060908 1.8836 24.38±0.43 24.73±0.20 2,4	GRB061007 1.2623 22.9±0.37 23.71±0.15 2,4	GRB061121 1.3160 22.05±0.35 21.92±0.2 21.5±0.01 2,4,8	GRB070306 1.4965 21.88±0.03 21.67±0.03 21.36±0.1 21.33±0.05 21.18±0.05 2,4,6	GRB071117 1.3293 22.9±0.2 >21.88 3	GRB080413B 1.1012 23.22±0.09 4	GRB080602 1.8204 22.39±0.32 21.75±0.29 22.55±0.05 >22.8 3,7	GRB080605 1.6408 22.16±0.3 21.96±0.05 21.75±0.3 21.61±0.1 4,5	GRB090926B 1.2427 21.81±0.13 21.84±0.26 21.39±0.19 21.42±0.04 4,5	GRB091208B 1.0633 >25.22 4	GRB100615A 1.3979 24.12±0.04 23.84±0.14 1,4	(2017); 4) Perley et al. (2016d); 5) Krühler et al. (2011); 6) Perley et al. (2013); 7) Rossi et al. (2012); 8) Perley et al. (2015); 9) Filgas et al. (2011);	10) Blanchard et al. (2016).	† F606W filter of HST.

Table F

 F 

	Table F.3: Measured line fluxes in units of 10 -17 erg s -1 cm -2 , corrected for Galactic foreground extinction.	Name 070328 090201 100728B [N ii]6583 Ref -050922C 080804 081221 090812 081121 References: 1) Krühler et al. (2015); 2) this work. Name Redshift [O ii]3726 [O ii]3729 [Ne iii]3869 Hγ Hβ [O iii]4959 [O iii]5007 GRB050318 1.4436 Hα 080721 081222 050401	2 GRB050802 1.7117 1.7±0.4	Redshift log(M * /M ) M ref 2.0627 10.0 2 2.1000 10.9 1 2.106 <9.3 2 2.4±1.4 1 1 2 <2.4 2 4.5±0.8 2 6.4±0.4 1 <1.2 2 1 2 4.0±0.7 1 <3.0 2 -<1.6 2 2.1995 <9.0 2 2.2059 9.3 2 2.2590 10.8 2 2.452 <9.4 2 2.512 9.2 2 GRB060306 1.5597 0.7±0.4 1.0±0.3 1.1±1.4 1.4±2.0 3.3±4.6 GRB060814 1.9223 26.3±3.7 a 8.3±3.4 8.4±1.8 31.±7.8 GRB060908 1.8836 GRB061007 1.2623 2.4±0.3 a <2.0 1.0±0.4 9.5±1.4 GRB061121 1.3160 8.3±1.1 18.4±1.1 2.5±0.5 4.2±1.4 7.9±1.6 7.9±1.6 26.6±1.4 GRB070306 1.4965 9.1±0.7 7.7±0.7 1.9±0.4 7.7±3.7 11.6±1.4 15.5±1.3 46.0±3.6 GRB071117 1.3293 2.0±0.3 3.4±0.3 <0.4 3.0±0.6 6.6±1.1 GRB080413B 1.1012 0.6±0.2 0.8±0.2 0.2±0.2 0.2±0.2 2.8±0.9 GRB080602 1.8204 28.±4.0 a 21.7±4.0 GRB080605 1.6408 7.9±1.1 9.2±1.5 7.7±1.5 10.3±1.6 29.6±4.6 GRB090926B 1.2427 4.8±0.8 7.1±0.8 <2.2 <2.8 2.4±1.2 3.1±1.0 12.2±1.5 GRB091208B 1.0633 GRB100615A 1.3979 1.8±0.6 2.7±0.6 1.±0.3 <3.0 <2.8 8.9±3.7 28.0±5.7 4.0±0.4 40.0±0.9 53.5±4.0 5.6±1.0 2.6±1.3 43.7±5.0 29.1±4.5 11.5±1.2 2.5914 <9.6 2 2.77 9.6 2 6.4±1.1 2.8983 9.6 2	.2: Observed near infrared AB magnitudes for the hosts of BAT6 at 1 < z < 2. References: 1) this work; 2) Hjorth et al. (2012); 3) Vergani a et al. (2017); 4) Perley et al. (2016d); 5) Krühler et al. (2011); 6) Perley et al. (2013); 7) Rossi et al. (2012); 8) Perley et al. (2015). Cases where the [O ii] doublet is not resolved. The total integrated flux is reported in this column.

Table F . 4 :

 F4 Stellar masses for the hosts of the BAT6 LGRB sample at 2 < z < 3. The galaxy
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stellar masses are computed using only the NIR Spitzer/IRAC1 magnitudes or limits (Perley et al. 2016d; see Sect. 8.3.2). References are : 1) this work; 2) Perley et al. (2016d).
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Vela comes from Spanish and can be translated to "watch" in English, as in to stand watch, or "veille" in French.

Exactly how this energy is injected is an extremely complex question, still poorly understood.

The largest spectroscopically confirmed GRB was observed at z ∼ 8.2Tanvir et al. 2009;Salvaterra et al. 2009 

It is worth noting that the naming nomenclature for transients comes from an observational point of view, but sometimes the physical phenomenum responsible for what is observed is the same. For instance, the event of the 17th of August

is named GRB170817A/GW170817/AT2017gfo depending on whether it was reported by γ/GW/optical observations, but they all refer to the same physical event. This distinction is useful in particular in case of chance associations between unrelated transient phenomena (e.g. a serendipitous supernova Ia located within the error box of a GW event).2 Which is not the case for optical observations, take the example of the [O ii] doublet at 3727 Å -one of the strongest nebular emission lines in the optical, at z ∼ 1, it is observable at 7454 Å, but at z ∼ 8 it is redshifted to 33543 Å, completely out of reach of any optical spectrometer.3 The first publication reporting the detection of GRBs wasKlebesadel et al. (1973), in which this particular GRB did not figure.

Note that FE = Fν h

In the observer frame!

Note this assumption is done by almost everyone doing these types of studies, but in reality it is inconsistent with the observed samples since 1.024 s in the observer frame corresponds to different timescales in the source frame depending on the redshift. However as mentioned previously, this does not impact significantly the values of the peak flux; a rough estimate puts this correction between 7 up to 13% at low and high redshift.

Eiso ≡ 4 π DL 2 × F , where F is given by Eq. 2.12.

The extra factor of (1 + z) -1 comes from the fact that we are dealing with observed rates.

The core-collapse probability pcc(z) is written as depending on z as in principle it could. For our purposes we assumed it constant with redshift.

i.e. effectively the massive star formation rate.

Using this form can lead to a diverging redshift distribution if the high-z slope is positive; we fixed a maximum redshift zmax = 20, the exact value of which does not impact our results significantly as long as the high-z slope is not positive.

Due to the different parametrizations of ṅGRB and ρ * , η(z) is not a smooth function.

A large database is available at https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3catindex.pl

This was done because the first implementation of our population model relied on fitting a χ 2 to the logN-logP diagram hence needing a minimum of objects per bin to preserve gaussianity and avoid instabilities (see Sect. 5.1.2 for more details).

In Part III we study the host galaxies of the original BAT6 sample up to z = 2.

We have shown how we simulate our intrinsic LGRB population in Chapter 3, the observations with which we compare our simulated population have been presented in this chapter; the next chapter will be devoted to presenting the techniques used to find the best set of parameters that reproduce these constraints.

This term is essentially a normalization which can be overlooked when comparing models based on the same data set (since it represents the probability of observing this data set). Regardless, in many of the algorithms below, ratios of likelihood are computed, in which this term cancels out.

This is the fact that as you increase dimensions, the proportion of empty bins becomes larger.

It is worth noting that the χ 2 is NOT a goodness of fit estimator, but rather a cost function. It is like an enhanced least-squares, i.e. it can be minimized to find the best parameter value given your model but it will not tell how good of a fit this best parameter yields.

Note: This model neglects correlations between adjacent bins.

For example, with 1000 points per parameter and 4 parameters, this becomes 10 12 models to explore. At 1 second per model, this would take about 30 000 years to compute.

Note that with this implementation, the chains loose their Markovian nature. However this is not a problem since the algorithm rapidly converges to a classical Metropolis-Hastings one, and the early part of the chain is discarded in the analysis.

Note: increasing the number of cores is not greatly benificial since the only part of the code parallelizable is the random draws of the LGRB population; due to the nature of MCMC exploration these types of codes tend to be hard to parallelize.

For instance, if the same scenario was run with a power law and a Schechter luminosity function, we chose the latter as it is more realistic; regardless, the results are similar whether we use a power law or Schechter luminosity function.

The actual value used was based on the weakest Lmin observed in the eBAT6 sample: 5.10 49 erg s -1 . Other published studies typically used values of 10 48-50 erg s -1 .

Although the best value when k evol is left free, with a constant LGRB efficiency, is ∼ 1.5, this run was not finished when we fixed the values for the exploration with a free LGRB rate, which is why this value is not tested.

We recall that the BIC should be as low as possible.

The "Amati-like" correlation scenario becomes a LogNormal scenario if α A → 0, which is why the Ep0 and σ Ep parameters have the same name in both models.

Since the k05-LN-nF case has similar redshift distribution and luminosity function as the k05-A-nF case which is also discussed.

The fraction of useful time is defined as the live-time of the search divided by the total mission duration: fu ≡ T live T tot .

Which is the GBM sample with a peak flux cut of 0.9 ph s -1 cm -2 .

The closest LGRB is GRB980425 associated with SN1998bw at z = 0.0086, but this case is particular as it is unlike other cosmological LGRBs (in terms of energetics it was very sub-luminous); the mean observed redshift is z ∼

(e.g.Jakobsson et al., 2006).

Since their luminosity L scales with mass as L ∝ M

3.5 3 along with the BAT6 sampleSalvaterra et al. 2012, see Sect. 4.3.2 and 7.2. 

This study performed a similar analysis toVergani et al. (2015) but this time looking at the distributions of SFRs and metallicities of the BAT6 sample of 14 LGRB host at z < 1, using spectra from X-Shooter. This allowed them to compare not only the distributions but also the interrelations between properties (e.g. mass-metallicity relation and the star-forming Main Sequence). They find that LGRB hosts follow the mass-metallicity relation (MZR) up to 12 + log(O/H)∼ 8.5. Above this value, there is a dearth of LGRB hosts whereas the relation is well populated by star-forming galaxies from surveys. They also find that the median SFR is lower for LGRB hosts than for the general star-forming population weighted by SFR (i.e. lower then expected if LGRBs were pure tracers of star-formation), however they observe a hint of an enhanced fraction of starbursts although the low statistics and the mass completeness of surveys make this results tentative. Finally they conclude that a cut on the metallicity can explain their observations, since low-metallicity galaxies are statistically low-mass (from the MZR) and low-mass galaxies statistically have lower SFRs (from the star-forming Main Sequence).

At the time of this writing.

Program ID: 0101.D-0648, 0100.D-0649 and formerly called the X-Shooter GRB collaboration with Program ID: 098.A-0055 and more.

The only debated case is GRB 061121 for which the stellar mass spans values from 7 × 10 8 to

× 10 10 M . We chose the stellar mass corresponding to the SFH prescription that yields SFR and metallicity values consistent with the ones derived by spectroscopy. We note that using the stellar mass value of log(M * /M )∼ 10 would not change the results of our study.

IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association

http://www.eso.org/qi/

The papers published previously in the MOSDEF collaboration used a different cosmology.

The mass completeness of the COSMOS2015UD survey varies with redshift; the value used as lower limit is the mass completeness at the redshift of the host.

For the COSMOS2015UD sample, the CDF built from the median values reported in the catalog was used due to the size of the sample which makes this method statistically less relevant and computationally expensive.

In Vergani et al. (2017) the authors also present the MZR based on the same BAT6 sample but the stellar

Where µ = log(M * /M ) -0.32 log(SFR/M yr -1 )

http://starlink.eao.hawaii.edu/starlink

http://www.stsci.edu/hst/wfc3/analysis/ir_phot_zpt

Or not, which would be even more interesting!

Part II

A population model for Long

Gamma-Ray Bursts

Summary

In this chapter we described the different assumptions and functional forms used in our population model. We presented how we created our mock samples and the detection criteria we imposed. The reasons behind these detection criteria will be made clearer in the next chapter, where we present our observational constraints and the careful selection we employed. the results of the model for the simulated eBAT6, Swift and intrinsic sample are represented in green, red and blue respectively. Limits in the SHOALS distribution are indicated as arrows at the bottom of the plot. As can be seen by the inconsistency between the red curve (simulated Swift) and the black shaded area (SHOALS), this model can be rejected. 

Appendix A

Results from population model MCMC exploration

Appendix D

The SVOM /ECLAIRs sample While for the other samples of our population model we were concerned with having a clean selection (which meant introducing a peak flux cut), here our goal is to make accurate predictions for SVOM. Following the example of Swift/BAT, SVOM /ECLAIRs has multiple detection mode and on different timescales (Antier-Farfar, 2016). This makes it hard to model using our population since we do not generate any lightcurves but instead work with all quantities calculated during the 1.024 s peak flux. In order to make the best predictions possible we need to implement a detection that includes also longer timescales; for this pupose we use a flux mode complemented with an image mode, both detection methods are described in the sections below.

Flux mode

The first mode of detection is based on the peak flux, as for the other samples. Since we do not introduce any peak flux cut, we need to model more realistically the detection efficiency, especially for faint bursts; we thus introduce an off-axis correction and a realistic noise level. Let us define the ECLAIRs noise B as:

Part III

The environment of Long Gamma-Ray Bursts revealed by their host galaxies

Vergani et al. (2017), (V17)

In this work, we focused on the 29 hosts of the BAT6 sample of LGRBs at z < 2. We studied the Fundamental Metallicity Relation (FMR), which ties the SFR, metallicity and stellar mass This part relates our work on a complete, unbiased sample of LGRB host galaxies to investigate the conditions in which their progenitors form and assess their use as tracers of star formation at 1 < z < 2. It will be published as a paper in the journal Astronomy and Astrophysics. There are some modifications due to the different format, mostly regarding the size of the figures, as well as the addition of an appendix (App. E) to provide some more detail on the SED fitting procedure. The results from this paper will be summarized and put into context with the results of Part II in Chap. 9.

Chapter 8. Are

LGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs [START_REF] Palmerio | Submitted to Astronomy & Astrophysics. (3) Investigation of dust attenuation and star formation activity in galaxies hosting GRBs[END_REF]) 145 = 9.0 +0.1 -0.2 to 9.4 +0.2 -0.3 , their median star formation rate increases from SFR = 1.3 +0.9 -0.7 to 24 +24

-14 M yr -1 , while their median metallicity remains constant at 12 + log(O/H) ∼ 8.45 +0.1 -0.1 . Based on the SF galaxy relation between SFR and stellar mass, the stellar mass evolution we found for LGRB host galaxies is weaker than that expected following their SFR evolution. If

LGRB prefer to explode in environments for which the metallicity is below a certain threshold, such a (weaker) evolution is expected. In fact a fixed metallicity threshold would stifle LGRBs from exploding in high stellar mass galaxies, and at the same time would correspond to a higher stellar mass at higher redshift as the mass-metallicity relation evolves towards lower metallicities at fixed mass, or equivalently higher mass at fixed metallicity.

While performing the analysis of LGRB host galaxy properties, we revised some stellar mass values reported in the literature with proper SED fitting, confirming that the use of NIR photometry only can lead to overestimations of the stellar masses. We looked at the LGRB FMR with the revised stellar masses, showing that there is still a shift with respect to the relation found by Mannucci et al. (2011), at lower µ, but that our sample is consistent with the MOSDEF star-forming galaxy sample. This could be due to an underestimation of the FMR slope at low µ or to the current systematic uncertainties regarding evolution of metallicity calibrations with redshift.

We tested the hypothesis that LGRBs are pure tracers of star formation (i.e., the probability of forming an LGRB is proportional to the SFR) by comparing the cumulative distributions of stellar mass, SFR, sSFR and metallicity of our sample with the ones of the COSOMOS2015UD (excluding metallicity) and MOSDEF representative surveys of star-forming galaxies at 1 < z < 2. Even if there is evidence for a preference of LGRB to explode in galaxies with enhanced star formation, we demonstrated that the major factor explaining the discrepancy between the mass and metallicity CDFs is a decrease of LGRB production in galaxies with metallicities above 12 + log(O/H) ∼ 8.55 in the M08 calibrator, although this threshold is to be cautiously treated as an indication rather than an absolute value due to statistics and calibrator robustness. A lower LGRB production efficiency in higher metallicity environments can be understood in terms of the conditions necessary for the progenitor star to form a LGRB. The values found in this study invoke peculiar conditions of massive single star evolutionary models, and may be in better agreement with evolution in binary systems.

If this metallicity threshold is the only factor regulating the LGRB production efficiency, we expect LGRB to trace star formation in an unbiased manner once the bulk of the star-forming population of field galaxies is below this threshold. Assuming a threshold value of Z th = 0.7 Z , following the prescription of Langer & Norman (2006), and assuming that the LGRB luminosity function and density do not vary with redshift, this will happen for z > 3. This scenario is in agreement with the findings of Greiner et al. (2015) and Perley et al. (2016d). It is also supported by the decrease towards z ∼ 3 of the discrepancy of the stellar mass of the LGRB hosts and that of star-forming galaxies in surveys weighted by SFR. The collection of larger sample of high-z LGRBs with future dedicated satellites as the THESEUS mission (Amati et al., 2018) will provide a viable way to probe the star formation history up to z = 10 and beyond. 

Appendix E

Spectral Energy Distribution fitting with BEAGLE

We fit the available observational constraints on the emission-line fluxes and broadband photometry of the galaxies in our sample using the Bayesian spectral interpretation tool beagle (Chevallard & Charlot, 2016), which incorporates in a flexible and consistent way the production of radiation from stars and its transfer through the interstellar and intergalactic media. The version of beagle we use relies on the models of Gutkin et al. (2016), who follow the prescription of Charlot & Longhetti (2001) to describe the emission from stars and the interstellar gas. In particular, the models are computed combining the latest version of the Bruzual & Charlot (2003) stellar population synthesis model with the standard photoionization code cloudy (Ferland et al., 2013). The main adjustable parameters of the photoionized gas are the interstellar metallicity, Z gas , the typical ionization parameter of newly ionized H ii regions, U S (which characterizes the ratio of ionizing-photon to gas densities at the edge of the Stroemgren sphere), and the dust-to-metal mass ratio, ξ d (which characterizes the depletion of metals on to dust grains). We consider here models with hydrogen density n H = 100 cm We use three parametrizations for the star formation histories of model galaxies in beagle constant star-formation, an exponentially declining function ψ(t) ∝ exp(-t/τ SFR ) and an exponentially delayed function ψ(t) ∝ t exp(-t/τ SFR ). For the exponentially declining and exponentially delayed functions, we let the star formation timescale and the star-formation freely vary in the ranges 7 ≤ log(τ SFR /yr) ≤ 11.5 and -4 ≤ log(SF R/M yr -1 ) ≤ 4. Besides, we superpose on the exponentially delayed function a current burst with a variable duration of 6 ≤ log(t current /yr) ≤ 9. For the three star formation histories, we let the age of the galaxy vary in the range 6.0 ≤ log(age/yr) ≤ 10.15 and we adopt a standard Chabrier (2003) initial mass function. We further adopt the same metallicity for stars and star-forming gas (Z = Z ISM ) and assume that all stars in a galaxy have the same metallicity, in the range -2.2 ≤ log(Z/Z ) ≤ 0.25. We let freely vary the dust-to-metal mass ratio and the ionization parameter in the ranges 0.1 ≤ ξ d ≤ 0.5 and -4 ≤ log U S ≤ -1 respectively. We consider V -band dust attenuation optical depths in the range 0 ≤ τV ≤ 5 and let the fraction of this arising from dust in the diffuse ISM rather than in giant molecular clouds freely vary in the range 0 ≤ µ ≤ 1 for both attenuation laws here explored.

With this parametrization, we use beagle to fit the available constraints on the integrated line fluxes and photometry of the galaxies in our sample. We obtain as output the posterior probability distributions of the above free model parameters, an example of which is shown in 

LGRB host galaxies: magnitudes and emission line fluxes

This appendix collects the observational quantities derived for the host galaxies of the BAT6 sample. The optical photometry is reported in Tab. F.1, the NIR photometry is reported in Tab. F.2 and the strongest nebular emission line fluxes are reported in Tab. F.3. A few notes on individual hosts that have not been published yet are also reported.

GRB 061007 host: GROND magnitudes

The host of GRB 061007 was observed in the griz filters with the GROND instrument (Greiner et al., 2008). The data were reduced as outlined in Krühler et al. (2008). Photometric zero-points were obtained from GROND observations of SDSS fields taken right after the GRB field (see e.g. Krühler et al. 2011). Photometry was measured with SExtractor (v2. 8.6, Bertin & Arnouts 1996). Final errors include both statistical errors and the uncertainties in photometric calibration.

GRB 100615A host: GROND and HST magnitudes

The host of GRB 100615A was observed with the GROND instrument (Greiner et al., 2008). The data obtained with the g,i,z filters were reduced as outlined in Krühler et al. (2008). Photometric zero-points were obtained from GROND observations of SDSS fields taken right after the GRB field (see e.g. Krühler et al. 2011). Photometry was measured with SExtractor (v2.8., Bertin & Arnouts 1996). Final errors include both statistical errors and the uncertainties in photometric calibration.

HST-WFC3 near-infrared imaging observations were obtained with the F160W filter on 2010 December 16 from 21:38:48 UT to 22:01:01 UT (P.I.: A. Levan), for a total exposure time of 1.2 ks. We retrieved the resulting preview image from the MAST archive. Aperture photometry was made with the PHOTOM software part of the STARLINK 1 package and calibrated using the standard WFC3 zeropoints 2 .

GRB 090201 host

GRB 090201 was observed by IRAC (Fazio et al., 2004) on the Spitzer Space Telescope [START_REF] Werner | [END_REF] as part of the extended sample of the Swift Galaxy Host Legacy survey (Perley et al., 2016c). We subtracted nearby sources to provide a clean extraction aperture and performed aperture photometry on the host galaxy, and converted the resulting luminosity into a stellar mass, using the methods of Perley et al. (2016d).

Published papers