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Résumé

La modélisation des signaux peut être vue comme la pierre angulaire de la méthodologie

contemporaine de traitement du signal et de l’image. La modélisation parcimonieuse per-

mets la représentation des signaux en termes de combinaisons linéaires d’un ensemble sous-

jacent, appelé dictionnaire, de signaux élémentaires connus sous le nom d’atomes. La force

motrice de ce modèle est la rareté des coefficients de représentation, c’est-à-dire la décrois-

sance rapide des coefficients de représentation sur le dictionnaire. L’objectif principal de

cette thèse est de fournir de nouvelles applications pour cette méthode de modélisation du

signal en abordant plusieurs problèmes sous différents angles. On se concentre sur une autre

application importante de la modélisation parcimonieuse des signaux, à savoir la résolu-

tion des problèmes inverses, notamment la compensation des erreurs, la reconstruction des

images incomplètes et la reconstruction des images compresses à partir d’un nombre limité

de mesures aléatoires. La modélisation du signal est généralement utilisée comme une con-

naissance préalable du signal pour résoudre ces problèmes NP-difficiles. Puis, Il commence

par l’application directe de la représentation éparse, c’est-à-dire a la compression d’image.

Un nouveau codec image basé sur la représentation éparse adaptative sur un dictionnaire

formé est proposé, dans lesquels différents niveaux de densité sont assignés aux correctifs

d’image appartenant aux régions saillantes. Dans cette thèse, ces défis sont transférés dans

des cadres distincts d’acquisition comprimée et plusieurs méthodes de reconstruction sont

proposées.
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Abstract

Signal models are a cornerstone of contemporary signal and image processing methodology.

In this , two particular signal modeling methods, called analysis and synthesis sparse

representation, are studied which have been proven to be effective for many signals, such

as natural images, and successfully used in a wide range of applications. Both models

represent signals in terms of linear combinations of an underlying set, called dictionary, of

elementary signals known as atoms. The driving force behind both models is sparsity of

the representation coefficients, i.e. the rapid decay of the representation coefficients over

the dictionary. On the other hands, the dictionary choice determines the success of the

entire model. According to these two signal models, there have been two main disciplines

of dictionary designing; harmonic analysis approach and machine learning methodology.

The former leads to designing the dictionaries with easy and fast implementation, while

the latter provides a simple and expressive structure for designing adaptable and efficient

dictionaries.

The main goal of this thesis is to provide new applications to these signal modeling

methods by addressing several problems from various perspectives. It begins with the an

important application of the sparse signal modeling, i.e. solving inverse problems, espe-

cially for error concealment (EC), wherein a corrupted image is reconstructed from the

incomplete data, and Compressed Sensing recover, where an image is reconstructed from

a limited number of random measurements. Signal modeling is usually used as a prior

knowledge about the signal to solve these NP-hard problems. In this thesis, inspired by

the analysis and synthesis sparse models, these challenges are transferred into two distinct

sparse recovery frameworks and several recovery methods are proposed. Compared with

the state-of-the-art EC and CS algorithms, experimental results show that the proposed

methods show better reconstruction performance in terms of objective and subjective eval-

uations. This thesis is finalized by giving some conclusions and introducing some lines for

future works.

In the end part of thesis, it focuses on direct application of the sparse representation, i.e.

image compression. The line of research followed in this area is the synthesis-based sparse
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representation approach in the sense that the dictionary is not fixed and predefined, but

learned from training data and adapted to data, yielding a more compact representation.

A new Image codec based on adaptive sparse representation over a trained dictionary is

proposed, wherein different sparsity levels are assigned to the image patches belonging to

the salient regions, being more conspicuous to the human visual system. Experimental

results show that the proposed method outperforms the existing image coding standards,

such as JPEG and JPEG2000, which use an analytic dictionary, as well as the state-of-

the-art codecs based on the trained dictionaries.
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Chapter 1

Introduction

Signal models are fundamental tools for efficiently processing of the signals of interesting,

including audio recordings, natural images, video clips, and medical scans, to name just

a few. A signal model formulates a mathematical description of the family of signals of

interesting in a way which faithfully captures their behavior. Designing accurate signal

models, which efficiently capture useful characteristics of the signals, has been a crucial

aim in the signal processing area for so many years and a variety of mathematical forms

has been proposed by now [1]. One of the simplest and most common forms is that

the signals are coming from some priori probability distribution assumed on the signal

space [2, 3]. While this representation is mostly useful when employing statistical signal

processing methods, many practical signals cannot be directly associated to a probabilistic

distribution.

Sparsity-based modeling has been used in many applications in which each signal is

represented in terms of linear combinations of an underlying set, called dictionary, of

elementary signals known as atoms, resulting in simple and compact models. The driving

force behind this model is sparsity, i.e. the rapid decay of the representation coefficients

over the dictionary. In this signal modeling, the dictionary plays an important role for the

success of entire model in an efficient representation of the signal.

Finding appropriate dictionaries with good predictive power of various signal classes

of interest and high compactness ability, especially natural images, has been an active

field of research during past decades. The early attempts for designing dictionaries were

based on building the model using harmonic analysis of the signal classes and extracting

some mathematical functions, resulting in a fixed off-the-shelf dictionary called analytic

or mathematical dictionary. The sparse representation using these fixed mathematical

dictionaries is called analysis sparse modeling. The long series of works on designing the

analytic dictionaries lead to appearing various transforms such as Fourier and its discrete

version, discrete cosine [4], wavelets [5], curvelets [6], contourlets [7], bandlets [8, 9], and

1
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steerable wavelets [10].

A significantly different approach to the sparse modeling, originally introduced by Ol-

shausen and Field [11], consists of learning a dictionary from some training data. The

sparse representation using this trained dictionary is called, synthesis sparse modeling.

The trained dictionaries, also called synthetic dictionary, could efficiently capture the un-

derlying structures in the natural image patches and are well adapted to a large class of

natural signals.

A straightforward application of the sparse signal modeling in the field of image process-

ing has been image compression due to providing a compact representation of the signal.

Another important success of the sparse signal modeling has been its ability for solving the

inverse problems such as denoising, reconstruction from incomplete data, or more generally

restoration problems. The restoration problems are indeed often difficult to solve without

a priori knowledge of the data source. The sparse signal modeling provides a strong tool

for a priori model of the data source. The sparse signal modeling based on the predefined

mathematical (analytic) dictionaries has led to the design effective algorithms for many

image processing applications, such as compression [5, 9, 12–14], denoising [15–20], super-

resolution [21,22], inpainting [23,24], and compressed sensing reconstruction [25], and more.

Furthermore, the idea of learning a synthetic dictionary, instead of using a predefined one,

has been successfully applied in numerous applications in many fields, notably in image

processing and computer vision, such as image compression [26–28], denoising [29, 30],

super-resolution [31], inpainting [32], and compressed sensing reconstruction [33], deblur-

ing [34], to name just a few.

1.1 Main Objectives of the Thesis

This thesis presents the theoretical and practical aspects of the dictionary-based sparse

signal modeling. The theoretical aspects include addressing the analysis and the synthesis

sparse signal modeling and their relationship. The practical aspects consider several state-

of-the-art applications of the analysis and synthesis sparse signal modeling. We address

several questions relating to some important applications of the sparse modeling: How to

efficiently represent an image over a trained dictionary in order to improve the performance

of the image compression? How can the sparse modeling be employed for solving the in-

verse problems? The first problem is error concealment (EC) application, where groups

of adjacent pixels in the image are lost, and second problem is Compressed Sensing (CS)
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reconstruction, where an image is reconstructed from a few number of random measure-

ments. We try to answer these questions using different tools from convex and non-convex

optimization techniques and some image processing methods.

For the CS reconstruction problem, we consider different concepts to improve the re-

covery quality. First, inspired by the fact that the visually salient regions of the image are

more conspicuous to the human visual system, an adaptive CS method is presented, which

provides a higher recovered image quality with respect to the existing algorithms. The

analysis sparse signal modeling is used to reconstruct the image form the random mea-

surements. Then, we extend the concept of prediction and residual reconstruction to the

image CS recovery. A prediction is produced to create a measurement-domain residual of

the image to be recovered. Considering the local strong correlation, local sparsity, and non-

local similarities among the image patches within an image, several methods for generation

of the prediction are proposed. Specifically, a prediction of the image is estimated using

synthesis sparse representation technique via a trained over-complete dictionary which

models the image patches as a linear combination of very few number of atoms chosen

from an overcomplete dictionary. We show that using the synthesis sparse signal modeling

for generation of the prediction leads to a significant improvement of the quality of the

reconstructed image. Finally, objective experimental results are given for each algorithm

in terms of peak-signal to noise ratio (PSNR) and the significant gains of the presented CS

recovery methods are compared to the state-of-the-art algorithms.

We then address the EC problem by casting the inverse problem as a sparse recovery

problem. First, we show that the dictionary learning-based synthesis sparse modeling

can be useful for predicting the missing visual information, leading to the state-of-the-art

results for the image EC. Specifically, joint sparse representation (JSR) model, which has

recently emerged as a powerful technique with wide variety of applications, is extended

to the EC application, being effective to recover a high quality image from a corrupted

input. This model is based on jointly learning a dictionary pair and two mapping matrices

that are trained offline from external training images. In order to improve the accuracy

and stability of the proposed JSR-based EC algorithm and avoid unexpected artifacts, the

local and non-local priors are seamlessly integrated into the JSR model. The non-local

prior is based on the self-similarity within natural images and helps to find an accurate

sparse representation by taking a weighted average of similar areas throughout the image.

The local prior is based on learning the local structural regularity of the natural images
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and helps to regularize the sparse representation, exploiting the strong correlation in the

small local areas within the image.

In the next work, being related to the EC problem, the analysis sparse signal modeling

via a mathematical dictionary (wavelet basis) is employed to achieve the analysis sparse

recovery and reconstruct the missing information. The proposed approach is motivated by

the recent results in the sparse recovery theory, which suggest that, under mild conditions,

the sparse signal can be recovered from its far fewer measurements. For this purpose, a

robust encoder is carefully designed in order to mitigate the negative effects of the packet

loss. At the receiver side, the sparse structure of the wavelet coefficients is explicitly

exploited in order to model the error recovery problem as a sparse recovery framework.

We show that both the proposed analysis and synthesis based sparse recovery approaches

achieve the state-of-the-art results for the image EC and compete with existing algorithms.

The last, but not least, contribution of this thesis is addressing an adaptive sparse

representation with respect to a trained dictionary in order to efficiently compress the

images. Based on this representation, different sparsity levels are assigned to the image

patches belonging to the salient regions of the image that are more conspicuous to the

human visual system. Experimental results show that the proposed method outperforms

the existing image coding standards, such as JPEG and JPEG2000, which use an analytic

dictionary, as well as the state-of-the-art codecs based on the trained dictionaries.

1.2 Thesis Outline

The remainder of thesis is organized as follows: The first part of Chapter 2 starts with the

concept of sparsity in signal processing. The use of sparse representation modeling with

respect to over-complete mathematical and trained dictionaries is presented. Next, several

formulations for the sparse representation using over-complete dictionaries are presented,

which have been extensively used during the past two decades. This part is concluded

with a brief description of a well-known and yet effective dictionary learning algorithm,

introduced by Elad and Aharon [35]. The end of Chapter 2 is devoted to the inverse

problem formulation that has received a large attention in recent years.

With all these formulations in hand, the four additional Chapters in this thesis docu-

ment our recent works on using the sparse modeling for different applications. In Chap-

ter 3, the concept of CS in the image processing is introduced and a brief description of

a well-known and yet effective CS reconstruction algorithm, called block-based CS with
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smoothed-projected Landweber reconstruction (BCS-SPL), is presented. In the next part

of this chapter, several methods for the prediction generation are discussed. First, con-

sidering the strong correlation among the neighboring areas within an image, we present

an image CS recovery by providing an intra-image prediction. Further, the local sparsity

and nonlocal similarities among the image patches are implicitly exploited to generate

an optimal prediction, improving the performance of the image CS recovery. Finally, at

the end part of chapter, objective experimental results are given for each algorithm and

the significant gains of the presented CS recovery methods are compared to the BCS-SPL

algorithm.

In Chapter 4, a receiver-based image error concealment algorithm, inspired by the syn-

thesis sparse representation model, is proposed using the overcomplete trained dictionaries.

In this thesis, the JSR model is extended to the EC application, being effective to recover a

high quality image from a corrupted input. In order to improve the accuracy and stability

of the proposed JSR-based EC algorithm and avoid unexpected artifacts, the local and non-

local priors are seamlessly integrated into the JSR model and an improved EC algorithm

is given. The objective and subjective evaluations, compared with the state-of-the-art EC

algorithms, are reported at the end of chapter.

In Chapter 5, another error recovery algorithm is proposed in which a high quality image

is guaranteed, even at the high loss scenarios, at the expense of a simple modification at

the transmitter. Different from the receiver-based EC algorithm, proposed in Chapter 4,

wherein the synthesis signal modeling has been done at the receiver side, the proposed

scheme benefits from implicitly mathematical modeling of the EC scheme as an analysis

sparse recovery framework at the receiver. Furthermore, the recovery stability and upper

bound for the expected distortion are considered in this chapter. At the end of chapter,

an experimental framework is described wherein the proposed EC method is validated for

several transmission scenarios.

We discuss the use of sparse signal modeling for discovering the underlying structure

of natural image patches, being useful for image compression, image EC, and image CS

reconstruction. A straightforward application of the sparse signal modeling is discussed

in Chapter 6, where a generic image compression scheme is developed and implemented,

based entirely on adaptive sparse representation. The rate-distortion analysis of the pro-

posed method compared with the conventional image coding standards, such as JPEG and

JPEG2000, which use an analytic dictionary, and the state-of-the-art codecs based on a
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trained dictionary is also reported.

Finally, Chapter 7 concludes the thesis and provides some seeds for future research.



Chapter 2

Sparsity-Based Signal Models

2.1 Abstract

In recent years, a large amount of multi-disciplinary research has been conducted on sparse

models and their applications. In signal processing, sparse coding consists of representing

data with linear combinations of a few dictionary elements. In this chapter, a review

of sparse modeling and its applications to image processing is given. First, a historical

view of sparse representation and two well-known techniques of sparse signal modeling are

introduced. Then, a dictionary learning formulation, which is a key component of most

applications presented later in this , is introduced. A brief description of a well-known and

yet effective dictionary learning algorithm, called K-SVD, is also presented. Finally, the

chapter is concluded with some theoretical aspects, such as the concept of inverse problem

and sparse recovery that has attracted much attention in recent years.

2.2 Introduction

One of the well-known methods in designing of the signal models is linear approximation.

In this modeling technique, given a set of vectors [dk ∈ RN ]K−1k=0 , a signal x ∈ RN is

represented as a linear combination of K basis,

x '
K−1∑
k=0

ckdk, (2.1)

where set [ck]
K−1
k=0 consists of representation coefficients. The signal approximation (2.1)

can be reformulated in a matrix form as

x ' Dc, (2.2)

where c = [c1, c2, · · · ck]T ∈ RK is the coefficients vector. The matrix D = [d1d2 · · ·dK ] ∈

RN×K is called dictionary and its columns constitute the dictionary atoms. If the dic-

tionary D is a basis, i.e. K = N , and atoms are linearly independent, it is often

7
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said to be complete. The representation coefficients vector c ∈ RK is obtained via

c = Θ(x) = Ωx = D−1x. Generally, in the orthogonal basis, D−1 = DT . It means

each representation coefficient ci can be computed as inner product of the signal x and the

i−th atoms of Ω.

With the right choice of dictionary, the coefficients vector c is expected to be sparse,

in the sense that its sorted coefficients decay rapidly. Motivated by this idea, the design

of efficient orthogonal and bi-orthogonal dictionaries was an active area of research during

the last decades of 20th century. The well-known Fourier transform [4] is the result of

these works which sparsifies uniformly the smooth signals. In the process, in order to

achieve sparsity more efficiently, some fundamental concepts (localization, multi-resolution,

and adaptivity) were formed, guiding more efficient dictionary design [36]. The Short

Time Fourier Transform (STFT) [37], used in the JPEG compression standard [38], Gabor

transform [39], wavelet transform [5], used in JPEG2000 compression standard [40], and

packet wavelet [41] are the designed transforms based on these concepts. It has been

shown that the representation using the wavelet basis is optimal for piecewise smooth 1-d

signals with a finite number of discontinuities (point singularities) [42]. However, it loses

its optimality in representation of the image signals due to existence of curve singularities

(elongated edges) in these types of signals [36]. As an instance, the images encoded by the

JPEG2000 standard suffer from the ringing (smoothing) artifacts near edges.

Although these dictionaries have been used in many applications due to their math-

ematical simplicity, their limited expressiveness of these orthogonal dictionaries leads to

outweigh this simplicity. Consequently, the complete dictionaries are not well equipped

for representing increasingly complex natural and high dimensional signals. This weakness

is due to estimation of the small and fixed number of atoms (K = N) in the dictionary,

which is dictated by the orthogonality. In the case of bi-orthogonal dictionaries, invertiblity

imposes a strict limit on the number of atoms in the dictionary (K = N).

In an attempt to minimize this weakness of the orthonormal dictionaries, the design of

more general over-complete dictionaries, which have more atoms than the dimension of sig-

nal, i.e. K > N , has been investigated over the past decades, and is still intensely ongoing.

These dictionaries have a more descriptive ability to represent a wide range of interesting

signals, in comparison with the invertible complete dictionaries. Over-complete dictionar-

ies such as steerable pyramids [10], complex wavelets [43], curvelets [6], contourlets [7],

surfacelets [44] and shearlets [45], as well as a wide range of trained dictionaries [11,35,46]
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are especially advantageous for multi-dimensional signal data, where invertible complete

dictionaries lose much of their effectiveness.

2.3 Sparse Modeling using Over-complete Dictionaries

Compared to the complete case, representation with overcomplete dictionaries must be

more carefully defined. There are two distinct paths for representing a signal using the

over-complete dictionaries: analysis path and synthesis path. The analysis sparse modeling

relies on the classical basics of the signal modeling in which the representation of the signal

is identified as a linear combination of atoms,

x ' Dca, (2.3)

where the coefficients vector ca is obtained via the inner products of the signal and the

dictionary ca = Ωx = DTx. This method has the advantage of providing a simple and

efficient way to achieve sparse representation over the dictionary. In this case, every signal

has an unique representation as a linear combination of the dictionary atoms.

Increasing sparsity, in order to obtain a well-defined representation, requires departure

from this linear representation towards a more flexible and non-linear representation. Each

signal is represented using a different set of atoms from a pool, called dictionary, in order

to achieve the best sparsity. Thus, the approximation process becomes

x ' Dcs, (2.4)

where the coefficients vector cs is obtained via a non-linear approach, in contrast to the

linear-based approach in the analysis path. This signal modeling approach, called synthesis

sparse representation, needs further refinement to find the well-defined representation due

to degrees of freedom identified by the null-space of D [36], which leads to a non-unique

choice of cs in (2.4), as opposed to the analysis sparse modeling which has a unique solution.

In order to find the most informative representation, the coefficients vector cs is obtained

with respect to some cost function F(·), which minimizes the sparsity of the coefficients

vector cs under a reconstruction constraint:

cs = arg min
c∈RK

F(c) subject to ‖x−Dc‖22 ≤ ε, (2.5)

where ε is the prior knowledge about the noise level. The penalty function F(·) is defined

in a way that is tolerant to the large coefficients and aggressively penalizes the small



10 Chapter 2. Sparsity-Based Signal Models

coefficients [36]. The normal choice for this function is `p norm with 0 ≤ p ≤ 1. Of specific

interest is the `0 case, i.e. F(c) = ‖c‖0, which counts the number of non-zeros in the

representation. For this case, the problem (2.5) becomes

cs = arg min
c∈RK

‖c‖0 subject to ‖x−Dc‖22 ≤ ε. (2.6)

This problem, known to be NP-hard in general, can be efficiently approximated based

on the idea of iterative greedy pursuit. The earliest and yet effective one includes the

orthogonal matching pursuit (OMP) [47]. Their successors include the stagewise OMP

(StOMP) [48] and the regularized OMP (ROMP) [49]. The sparsity adaptive matching

pursuit (SAMP) [50] and compressive sampling matching pursuit (CoSaMP) [51] are other

methods for solving this optimization problem.

Another compelling choice for F(·) is the `1 norm, i.e. F(c) = ‖c‖1, which provides a

powerful combination of robustness and convexity. The resulting problem is given by [52]

cs = arg min
c∈RK

‖c‖1 subject to ‖x−Dc‖22 ≤ ε. (2.7)

Another equivalent formulation with (2.7), from a convex optimization perspective, consists

of a penalty instead of a constraint [52]:

cs = arg min
c∈RK

‖x−Dc‖22 + λ‖c‖1, (2.8)

where λ is a parameter that controls the tradeoff between the fidelity term and sparsity

term. This formulation forms a convex linear programming problem, for which a variety of

solvers are available. An approach is based on finding a solution, cs, supported over a basis

of RN within D. This approach is named Basis Pursuit (BP) [52]. Alternatively, more spe-

cialized algorithms include least absolute shrinkage and selection operator (LASSO) [53],

gradient projection for sparse reconstruction(GPSR) [54], focal underdetermined system

solver (FOCUSS) [55], and iterative thresholding methods [25,56–58].

These three formulations (2.6)-(2.8) have gained a large success beyond the statistics

and signal processing communities and have been extensively employed in different signal

processing algorithms. In the image processing applications, since the size of natural images

is too large, it is chosen to partition the image into blocks and the sparse modeling is done

on the set of image blocks X = [x1 x2 · · ·xL], each of size
√
N ×

√
N pixels, where where

√
N is an integer value and xi ∈ RN is lexicographically stacked representation of the i-th

image patches.
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2.3.1 Dictionary Choice

In the discussion so farit is assumed that the dictionaries of the analysis and synthesis

models are known. Choosing the dictionary carefully is an important and involving task,

in which substantial research has been invested. Based on analysis and synthesis models,

the scientific community has developed two main routes for designing the dictionaries [36].

The first one is analytic dictionaries derived from a set of mathematical assumptions

made on the family of the signals. The dictionaries of this type are generated by finding the

appropriate mathematical functions through harmonic analysis of the interesting signals

for which an efficient representation is obtained. For instance, Fourier basis is designed for

optimal representation of smooth signals, while the wavelet dictionary is more suitable for

piecewise-smooth signals with point singularities.

Designing analytic over-complete dictionaries are formulated as DDTx = x for all x.

Then, the approach tries to establish an appropriate dictionary by analyzing the behavior

of DTx and establishing a decay rate. The Curvelet [6], contourlet [7], and bandlet [8]

transforms are some of the analytic dictionaries which provide comprehensive frameworks

in order to handle the multi-dimensional signals.

Finding the more compact sparse representation has been a major driving force for

the continued development of more efficient dictionaries. The synthesis formulation of the

sparse representation paved the way to the design of an efficient dictionary, called syn-

thetic dictionaries, from signal realizations via machine-learning techniques. The basic

assumption behind this approach is that the structure of the complex natural signals can

be more accurately extracted directly from the data than by using a general mathematical

model [36]. In fact, this approach replaces prior assumptions on the signal behavior with a

training process which constructs the dictionary based on the observed signal properties.

Compared to the analytic dictionaries, the synthetic dictionaries deliver an increased flexi-

bility and the ability to adapt to specific signals and are superior in terms of representation

efficiency at the cost of a non-structured and substantially more complex dictionary.

In this approach, a dictionary is trained for the sparse representation of small patches

collected from a number of training signals. The desire to efficiently train a dictionary

for the sparse representation led to developing some algorithms so far [11, 35, 46, 59, 60].

The earlier works on the dictionary learning mostly focused on statistical methods. Given

the training image patches X = [x1 x2 · · ·xL], where L is the number of training patches,

this method finds a dictionary which either maximizes the likelihood of the training data
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P(X | D) [61] or the posterior probability of the dictionary P(D | X) [62]. These formula-

tions lead to some optimization problems that are solved in an expectation-maximization

fashion, alternating estimation of the sparse representation and the dictionary using gra-

dient descent or similar methods.

In neuroscience area, Olshausen et al. [11] proposed a significantly different approach

for designing the dictionary using the training data, benefiting from modeling the receptive

fields of simple cells in the mammalian primary visual cortex. In another attempt, the K-

SVD algorithm introduced by Aharon et al. [35] is one of the well-known methods of

dictionary learning. Given a set of examples X = [x1 x2 · · ·xL], the goal of the K-SVD

algorithm is to search the best possible dictionary D ∈ RN×K for the sparse representation

of the training set X through the optimization problem of (2.9):

arg min
C,D

L∑
i=1

‖ci‖0 subject to ‖X−DC‖22 ≤ ε, (2.9)

where ε is a fixed small value and C = [c1 c2 · · · cL] is a matrix of size K × L, consisting

of the representation coefficients vectors [ci]Li=1 of the training samples. The expression

in (2.9) is performed iteratively. First, by considering an initial dictionary, the algorithm

tries to find the best coefficients matrix C that can be found. Once D is known, the

penalty, posed in (2.9), reduces to a set of L sparse representation operations, like the

ones seen in (2.6). The OMP algorithm [47] is used for the near-optimal calculation of the

coefficients matrix C.

At the next stage, the columns of dictionary are sequentially updated and relevant

coefficients in the matrix C are simultaneously changed. At a time, one column is updated

and the process of updating one column is based on the singular value decomposition (SVD)

on the residual data matrices, computed only on the training samples that use this atom.

The K-SVD algorithm includes a mechanism to control and rescale the `2-norm of the

dictionary elements. Indeed, without such a mechanism, the norm of D would arbitrarily

go to infinity. For more details, refer to [35].

In the image processing applications, since the size of natural images is too large for

learning a full matrix D, it is chosen to learn the dictionary on a set of natural image

patches X = [x1 x2 · · ·xL], each of size
√
N ×

√
N pixels, where

√
N is an integer value

and xi ∈ RN is lexicographically stacked representations of the i-th image patches.
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2.3.2 Analysis versus Synthesis

As mentioned before and also outlined in [36], some of the most important elements of

effective dictionary design include localization, multi resolution, and adaptivity. Mod-

ern dictionaries typically provide localization in both the analysis and synthesis routes.

However, multi-resolution property is usually better supported by the analytic structures,

whereas adaptivity is mostly found in the synthetic methods.

The most important advantage of the analytic dictionaries is the easy and fast imple-

mentation. On the other hands, the main advantage of the trained dictionaries is their

ability to provide a much higher degree of specificity to the particular signal properties,

allowing them to produce better results in many practical applications such as image com-

pression, feature extraction, content-based image retrieval and others. On the other hand,

the compactness promoted by the synthesis approach might also come as a weakness. In

such a framework, where only a small number of atoms are used to represent each signal,

the significance of every atom differs enormously. Consequently, any wrong choice of one

atom could potentially lead to additional erroneous atoms that are selected as compensa-

tion, deviating further from the desired reconstruction. This weakness is usually appeared

in the `0-norm based non-convex optimization problem of (2.6). The convex relaxation

approaches from `0 to `1 are more stable for the sparse representation at the expense of

computational complexity. In the analysis formulation, however, all atoms take an equal

part in describing the signal, thus minimizing the dependence on each individual one, and

stabilizing the recovery process.

2.4 Inverse Problem Solution Using Synthesis Models

Different applications of the analysis and synthesis sparse modeling approaches are consid-

ered in this research. The direct and explicit application of these modeling types is their

ability to provide more sparse representation, allowing them to produce better results in

image compression.

This section is devoted to another application of the sparse signal modeling. In fact,

there are many signal processing applications for which sparse modeling is successfully

gained. As an instance, Elad and Aharon in [29] proposed an image denoising algorithm

that achieved state-of-the-art results compared to other approaches at that time.

Inverse problem regularization is another important use of the signal models whose
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purpose is to reconstruct the original signal x ∈ RN from its degraded observed version

y ∈ RM (M ≤ N). This ill-posed problem can be generally formulated as:

y = Hx + n, (2.10)

where n ∈ RM is the system noise (usually additive Gaussian white noise). In the case of

image signals, x and y are lexicographically stacked representation of the original image and

the degraded image, respectively. H is a non-invertible matrix representing degradation

operator.

A wide range of fundamental image processing routines, generally called image restora-

tion (IR) algorithms, are described using this formulation; such as denoising, interpola-

tion, super-resolution, inpainting, compressive sensing, and deblurring. The special choice

of H = I, where I is an identity matrix, represents the denoising problem [32]. If H

is a diagonal matrix, whose diagonal entries are either 0 or 1, the problem (2.10) be-

comes an image impainting problem [32, 63]. If H is a random measurement matrix of

size M × N (M < N), the formulation (2.10) describes compressed sensing (CS) [33].

When H is a filtering operator, the IR problem is the deblurring challenge [34] and in the

case of H being a composite operator of blurring and downsampling, Eq. (2.10) shows an

interpolation or super-resolution problem [31].

Without prior knowledge on x, recovering x from y is an impossible task. Furthermore,

the degradation operator H introduces further complexity, as it is typically lossy, making

its direct inversion highly ill-posed and unstable. To cope with the ill-posed nature of

the inverse problems, the regularization-based techniques [56, 64, 65] lead to the following

minimization problem by regularizing the solution space:

arg min
x∈RN

‖y−Hx‖22 + λS(x), (2.11)

where ‖y −Hx‖22 is the fidelity term and S(·) is the regularization term, denoting prior

assumptions about the signal behavior, used to regularize the solution space and guide the

solver towards an optimal solution. λ is a regularization parameter balancing the fidelity

and regularity terms. Finding and modeling the appropriate prior knowledge of the signals,

especially natural images, plays an important role for the performance of the regularizer

and directly determines the success of the image restoration process.

Some early works are based on smoothness assumptions, leading for instance to the

Tikhonov regularization [66] and the total variation [64,65]. These regularization methods
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tend to over-smooth the images due to the piecewise constant assumption. Sparsity-based

signal models form another powerful regularizes and have achieved great success for solution

of the inverse problems [15–24, 29–34, 63]. Quite often, the requisite sparsity exists with

respect to some dictionary D. In this case, the key to the sparse recovery is the production

of a sparse set of significant coefficients c, whose entries’ magnitude decays rapidly when

sorted, and the ideal recovery procedure searches for c with the smallest `p norm consistent

with the observed y. Then, x is reconstructed by x = Dc.

Plugging the sparse signal modeling, i.e. x = Dc, in (2.11) leads to the following

optimization problem:

ĉ = arg min
c∈RK

‖y−HDc‖22 + λ‖c‖`p , (2.12)

where D is either an analytic or synthetic dictionary. The `p-norm measures the sparsity of

the representation coefficients c and penalizes the denser representations. For instance, the

`2-norm aims to decrease the length of c, while penalizes the large coefficients and givs less

attention to the smaller ones. On the other hand, the family of `p-norms, where 0 ≤ p ≤ 1,

provides more robust tool for measuring the sparsity. Excepting `1-norm by which all

magnitude of coefficients c are equally penalized, other measures penalize more the non-

vanishing small coefficients, while tolerating a limited number of large ones. Further, such

measures are much better in capturing the rate of decay of a vector, and are more useful

for describing modern sparsifying transforms, which are known to produce heavy-tailed

coefficient distributions in natural signal data. Of specific interest is the choice p = 1, as

it represents the most robust convex option for (2.12).

Clearly, the optimization problem (2.12) is similar to the minimization problem of (2.5),

except that the minimization problem (2.12) is more severly under-determined and it has

a much larger number of unknowns in comparison with (2.5). In other words, it equals the

sparse representation of degraded signal y over the overcomplete matrix HD; therefore, it

can be typically solved using a suitable variant of the algorithms mentioned in Section 2.3.

Indeed, in this , the term of sparse recovery is used, instead of sparse representation, for

the description of optimization problem (2.12) in order to make clear its difference with

the sparse representation.

Using a synthetic dictionary, the problem (2.12) is called analysis sparse recovery which

has been successfully applied in a wide range of inverse problems, leading to state-of-

the-art results for image denoising, inpainting, CS reconstruction, deblurring, and super-

resolution [29–34,63], to name just a few.
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2.5 CS-based Image Acquisition and Analysis Sparse Reconstruction

Unlike the traditional point-by-point sampling (Nyquist sampling theorem), the CS theory

provides a new approach for signal acquisition wherein the signal can be exactly recon-

structed using a small number of random linear measurements, under certain sparsity

conditions [67, 68]. Since most signals are indeed compressible or sparse with respect to

some transform domains Ψ, the CS has attracted a lot of attentions in many applications,

including medical imaging, camera design and multimedia sensor networks, due to its po-

tential of reduction of sampling rates, power consumption and computation complexity in

the image acquisition.

Mathematically, the CS effectively acquires the real-valued signal x ∈ RN , via a linear

projection of the signal onto some random measurement basis Φ of size M × N where

M � N , i.e.:

y = Φx + n, (2.13)

where y ∈ RM is the measurements vector and n ∈ RM is the system noise (usually

Gaussian additive white noise). The rate of sampling, called subrate, achieved by (2.13),

is defined as S = M/N . The sampling operator Φ, called also measurement matrix, is

a non-invertible matrix and should be incoherent with Ψ [68]. A sufficient condition for

the unique and exact recovery of the signal is restricted isometry property (RIP) of the

measurement matrix Φ [67,68]. The matrix Φ ∈ RM×N satisfies the RIP of order k if there

is constant δk (0 < δk < 1) such that, for all vectors x ∈ RN with ‖x‖0, i.e. k−sparse

signals, it holds:

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22. (2.14)

The smallest nonnegative value for δk is called restricted isometry constant (RIC) of order

k. The construction of a measurement matrix which satisfies the RIP is a central problem

in CS. If sparse signals with maximum possible sparsity level k can be exactly and stably

recovered, it is said the measurement matrix Ψ has sparsity order k. The signals with a k

lower this bound can only be exactly reconstructed. In practice, to recover a signal textbfx

with a large k, is desirable to have a measurement matrix with a δk as small as possible.

The fundamental concept of the CS theory states that, although the number of unknowns

is larger than the number of measurements, the signal can still be exactly recovered, if

it is sparse enough [67, 68]. To address this problem, there have been great efforts to
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develop optimal CS reconstruction algorithms which differ based on their computational

complexity and also the reconstruction quality [25,52,69,70].

How to efficiently reconstruct the image with good recovery quality and low compu-

tational complexity is always a focused topic in the CS applications field. Without prior

knowledge about the original signal, recovering x from y is an impossible task. Further-

more, the measurement matrix Φ introduces further complexity because of its lossy nature

that leads to the highly ill-posed and unstable direct inversion. To cope with the ill-posed

nature of the CS recovery, regularization-based techniques [56,64,65] lead to the following

minimization problem:

x̂ = arg min
x∈RN

‖y−Φx‖22 + λS(x), (2.15)

where ‖y−Φx‖22 is the fidelity term and S(x) is the regularization term, used to regularize

the solution space and guide the solver towards an optimal solution. λ is a regulariza-

tion parameter balancing the fidelity and regularity terms. S(·) in (2.15) expresses prior

assumptions about the signal behavior. Finding and modeling the appropriate prior knowl-

edge of the signals, especially natural images, plays an important role for the performance

of the regularizer and directly determines the success of the image restoration process.

The analysis sparse modeling provides some regularization methods that are based on

this fact that the requisite sparsity exists using some sparse transform x → Ψ(x) and it

is expected that the representation coefficients Ψ(x) is sparse in the sense that the sorted

coefficients decay rapidly. Based on the sparse signal modeling, the regularization term S(·)

in (2.15) can be defined in way to measure the sparsity of the representation coefficients

Ψ(x) and penalizes denser representations. In practice, the `p-norms achieve these goals

and can be considered as the sparsity measure. For instance, the `2-norm aims to decrease

the length of Ψ(x), while penalizing the large coefficients and giving less attention to the

smaller ones. On the other hand, the family of `p-norm, where 0 ≤ p ≤ 1, provides a more

robust tool for measuring the sparsity. Excepting `1-norm wherein the magnitudes of all

coefficients Ψ(x) are equally penalized, other norms penalize more the non-vanishing small

coefficients, while tolerating a limited number of large ones.

Given the sparse transform Ψ(·) and incorporating this model into the minimization

problem (2.15), the recovery is achieved by solving the following optimization problem:

x̂ = arg min
x∈RN

‖y−Φx‖22 + λ‖Ψ(x)‖p. (2.16)
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Based on this modeling, the recovery algorithm searches for a sparse set of significant

coefficients, c = Ψ(x) that are consistent with the observed measurements y and the mag-

nitude of its entries decays rapidly when sorted. Then, x is reconstructed by x̂ = Ψ−1(c),

where Ψ−1(·) is the inverse transform of Ψ(·). Of specific interest is the choice p = 1, as

it represents the most robust convex option for the minimization problem (2.16), which

is efficiently solved by the well-known BP algorithm [52]. Alternatively, more special-

ized algorithms include LASSO [53], GPSR [54], FOCUSS [55], and iterative thresholding

methods [25,56–58].

The design of an efficient orthogonal transform was an active area of research during

the last decades. The well-known DCT [4], STFT [37], Gabor transform [39], wavelet

transform [5], and wavelet packets [41] are the proposed transforms based on this concept.

Although these dictionaries have been used in many applications due to their mathematical

simplicity, their limited expressiveness of the orthogonal dictionaries leads to outweigh this

simplicity. Consequently, the complete dictionaries are not well equipped for representing

increasingly complex natural and high dimensional signals. For instance, the represen-

tation using the wavelet basis is optimal for piecewise smooth 1-d signals with a finite

number of discontinuities (point singularities) [42]. However, it loses its optimality in the

representation of image signals due to existence of curve singularities in these types of

signals [36]. This weakness is due to the small and fixed number of atoms (K = N) in the

dictionary, which is the consequence of the orthogonality. On the other hand, transform

reversibility imposes a strict limit on the number of atoms in the dictionary (K = N).

In an attempt to minimize this weakness of the orthonormal dictionaries, the design

of more general over-complete dictionaries which have more atoms than the dimension of

the signal, i.e. K > N , has been investigated. These dictionaries have a more descriptive

ability to represent a wide range of interesting signals, when compared with the reversible

complete dictionaries. Over-complete dictionaries such as steerable pyramids [10], com-

plex wavelets [43], curvelets [6], contourlets [7], surfacelets [44] and shearlets [45], as well

as a wide range of trained dictionaries [11, 35, 46] are especially advantageous for multi-

dimensional signals, where invertible dictionaries lose much of their effectiveness.

2.6 Block-based CS Reconstruction

When the signal x is an image or video, the CS reconstruction methods need a large memory

and computational burden due to the multidimensional nature of image data. Furthermore,
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a large memory is needed when storing the measurement matrix Φ. Low complexity of the

sensing and recovery schemes play an important role in designing an imaging sensor. Block-

based compressed sensing (BCS) comes to solve these issues by splitting the image into

K non-overlapping blocks of size
√
Nb ×

√
Nb and then, the acquisition is achieved block

by block independently using the same measurement matrix Φb for each block [25, 71].

Assuming xi is a vector of size Nb, representing the i-th block of the image in the vector

format, the corresponding measurements xi are obtained via:

yi = Φbxi, (2.17)

where Φb is the measurement matrix of size Mb × Nb (Mb < Nb) [69]. This procedure

can be applied directly on the entire image by creating the block-diagonal matrix Φ =

diag(Φb, · · · ,Φb) [25].

At the receiver side, each block can be reconstructed separately using the algorithm

mentioned in the previous section. However, these recovery algorithms usually create

unpleasant blocking artifacts. To overcome this weakness, several BCS reconstruction

algorithms have been designed [25, 72, 73]. Recently, the authors in [25] proposed a BCS

reconstruction algorithm, called BCS with smoothed projected Landweber reconstruction

(BCS-SPL), that is based on successive projections and thresholding in the transform

domain. Given an initial approximation of the image x̂[0], at each iteration k, the BCS-

SPL algorithm updates the i−th block x̂[k]
i as:

x̂[k]
i = x̂[k]

i + ΦT
(
yi −Φx̂[k]

i

)
. (2.18)

In the next step, all the reconstructed blocks at iteration k, i.e. [x̂[k]
i ]Ki=1, are put back

into the full-image plane to update the reconstructed image x̂[k+1] using smoothing and

thresholding operations. The BCS-SPL algorithm uses a smoothing operator via Wiener

filtering, which reduces the blocking artifacts, and a thresholding process in the trans-

form domain Ψ(·), which controls the local sparsity. The BCS-SPL algorithm offers the

advantage of easily allowing the utilization of a wide range of sparse transforms, such as

directional transforms; the most effective one is proven by experiments to be the dual-tree

discrete wavelet transform (DDWT) [25]. Throughout this chapter, the BCS-SPL algo-

rithm is coupled with the DDWT as the sparsity basis. Such a procedure is iterated until

‖x̂[k+1]− x̂[k]‖2 ≤ ε. The details of the BCS-SPL algorithm is summarized in Algorithm 1.

In Algorithm 1, the operator R(·) splits the image into K non-overlapping blocks and the

operator R−1(·) puts back the reconstructed blocks into the corresponding positions in
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Algorithm 1 BCS-SPL
1: Input: Φb, [yi]

K
i=1, Np, Ψ(·)

2: Output: x̂

3: Initialize: k ← 0 and x̂[0] = 0

4: Repeat

5:
[
x̂[k]
i

]K
i=1

= R
(
x̂[k]
)

6: For i← 1 to K do

7: x̂[k]
i = x̂[k]

i + ΦT
(
yi −Φx̂[k]

i

)
8: End

9: x̂[k] = R−1
([

x̂[k]
i

]K
i=1

)
10: x̂[k] = Wiener

(
x̂[k]
)

11:
[
x̂[k]
i

]K
i=1

= R
(
x̂[k]
)

12: For i← 1 to K do

13: x̂[k]
i = x̂[k]

i + ΦT
(
yi −Φx̂[k]

i

)
14: End

15: x̂[k] = R−1
([

x̂[k]
i

]K
i=1

)
16: x̃[k] = Ψ(x̂[k])

17: x̃[k] = Threshold(x̃[k])

18: x̂[k+1] = Ψ−1(x̃[k])

19: Until ‖x̂[k+1] − x̂[k]‖2 ≤ µ

the reconstructed image, padded with zeros elsewhere. The BCS-SPL algorithm provides

a good trade-off between the computational complexity and the reconstruction quality.

Please refer to [25] for more details.
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Image Compressed Sensing Recovery

The material of this part is essentially based on the following works

• A. Akbari, M. Trocan, and B. Granado, “Image compressed sensed recov-

ery using saliency-based adaptive sensing and residual reconstruction,” in

Compressed Sensing: Methods, Theory and Applications. New York: Nova

Science Publishers, 2018

• A. Akbari, D. Mandache, M. Trocan, and B. Granado, “Adaptive saliency-

based compressive sensing image reconstruction,” in Proceedings of IEEE

International Conference on Multimedia Expo Workshops (ICMEW), Seat-

tle, WA, July 2016, pp. 1–6

• D Mandache, A. Akbari, M. Trocan, and B. Granado, “Image compressed

sensing recovery using intra-block prediction,” in Proceedings of IEEE Inter-

national Conference on Telecommunications Forum (TELFOR), Belgrade,

Serbia, Nov. 2015, pp. 748–751

• A. Akbari, M. Trocan, and B. Granado, “Residual based compressed sens-

ing recovery using sparse representations over a trained dictionary,” in Pro-

ceedings of International ITG Conference on Systems, Communications and

Coding (SCC), Hamburg, Germany, Feb. 2017, pp. 1–6

3.1 Introduction

Signal models are fundamental tools for efficient signal processing, including audio record-

ings, natural images, video clips and medical scans, to name just a few. A signal model

formulates a mathematical description of the family of interesting signals in a way which

21
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faithfully captures their behavior. Designing accurate signal models, which efficiently cap-

ture the useful characteristics of the signals, has been a crucial aim in the signal processing

area for so many years and a variety of mathematical forms has been proposed by now [1].

One of the simplest and most common forms is that signals have some priori probability

distribution assumed on the signal space [2, 3]. While this representation is mostly useful

when employing statistical signal processing methods, many signals in practical use cannot

be directly associated to a probabilistic distribution.

One efficient signal modeling methods is the sparse representation which has been

proven to be effective for many signals, such as natural images, and successfully used in a

wide range of applications. This model represents signals in terms of linear combinations

of an underlying set, called dictionary, of elementary signals, known as atoms. The driving

force behind this model is the sparsity of the representation coefficients, i.e. the rapid

decay of the representation coefficients over the dictionary.

The sparse signal modeling has the ability to solve inverse problems such as compressed

sensing (CS) recovery, denoising, and so on. The CS recovery are indeed often difficult to

solve without a priori knowledge of the data source. The sparse signal modeling provides

a strong tool for an a priori model of the data source. The main goal of this chapter is to

provide new applications of the sparse signal modeling for the CS recovery from various

perspectives.

3.1.1 Contributions

In this chapter, several image CS recovery methods are studied. First, by joining the block

based sampling and the human visual system (HVS) characteristics, an adaptive block

based CS scheme is presented in order to achieve a smart-human recovery performance.

Visual saliency is a cognitive mechanism of the HVS. A human always focuses on the salient

regions while ignoring non-salient areas when exploring a natural scene. To the best of our

knowledge, there is no application of the visual saliency in the image CS domain. Different

from previous approaches in the adaptive CS, we adopt the adaptive CS framework by

access to side information, such as a saliency map, which leads to an efficient CS image

reconstruction. In this sense, we try to obtain a saliency model of the original image. Since

the complex human visual system performs numerous functions when viewing, it is not

possible to combine it into the direct sensing process. Beside the hardware problems, the

process of integrating the salient region detection into the cameras is not straightforward
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due to its time and energy consuming process. However, by considering a feedback channel

between the sensor and the receiver, the CS can gain from the visual saliency for improving

the image reconstruction quality. In addition, the feedback information should be as few

as possible, then a low bandwidth channel is required. The procedure begins with a fixed-

rate compressive sampling for all blocks and a primary recovery at the receiver. Then a

classical graph based [78] is used to compute the saliency map, so that the HVS interesting

regions are extracted. Then, a binary map, where the ones represent the blocks belonging

to the salient region, is organised. We achieve the adaptivity in sampling by establishing a

feedback channel between the sensor and receiver, making subsequent measurements more

directly into the salient regions of the image.

As a second contribution to improve the perofromance of CS reconstruction, we ex-

tend the concept of prediction and residual reconstruction to the image CS recovery. A

prediction is produced to create a measurement-domain residual of the image to be re-

covered; such a residual is typically more compressible than the original one, making it

more adapted to the CS reconstruction. Several methods for the prediction generation are

discussed in this chapter. First, considering the strong correlation among the neighboring

areas within an image, we present an CS recovery of images by providing an intra-image

prediction. Further, the local sparsity and nonlocal similarities among the image patches

are implicitly exploited to generate an optimal prediction, improving the performance of

the image CS recovery. Specifically, a prediction of the image is estimated using synthe-

sis sparse representation technique vis a trained over-complete dictionary which models

the image patches as a linear combination of very few number of atoms chosen from an

over-complete dictionary. A novel sparse representation modeling of natural images, called

group-based sparse representation (GSR) [32], is exploited. In this method, the concept of

group which is composed of non-local patches with similar structures, is considered as the

means unit of sparse representation.

3.1.2 Adaptive block-based CS recovery

The conventional BCS scheme acquires all blocks with the same number of measurements,

ignoring the subjective importance of each block to the HVS. On the other hand, from

the view of biological vision and scientific analysis, the visual significance of each block

varies with its spatial position [79]. Some regions can be more sensitive to the HVS, while

others have a lower level of visual interest. Therefore, it is necessary to design an adaptive
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BCS scheme by joining the block-based sampling and the HVS characteristics in order to

achieve a smart-human recovery performance.

In order to improve the limitations of the traditional fixed-rate BCS, several adap-

tive BCS from various perspectives have been proposed in the literature. In [80], the

authors give a theoretical analysis of the adaptive compressed sampling and confirm that

the adaptive measurements significantly outperform the non-adaptive systems in practice.

The existing adaptive acquisition techniques are based on extracting local features, such

as standard deviation [81, 82], edge counting [83] or estimation of the reconstruction er-

ror [84] in the measurement domain. Inspired by relationship between compressibility and

redundancy of the natural images, an adaptive scheme is proposed in [85] by estimation

of the compressibility based on the local redundancy, measured by the statistics of the

pre-sensed measurements. These adaptive samples can benefit from on-the-fly acquisition,

but are often not accurate. Some few works perform the adaptive BCS by combining the

sampling and reconstruction together. In [86], this joint sampling is used to improve the

reconstruction quality for pedestrian tracking in the video surveillance applications.

3.1.3 Saliency-based BCS recovery

Visual saliency is a cognitive mechanism of the HVS in order to accurately identify the

significant visual information (salient or foreground regions) and filter out other redundant

visual information (non-salient or background regions) when exploring the natural scenes.

Since the HVS performs numerous functions when viewing, it is not possible to combine

this complex function into the direct sensing process. Beside of the hardware problems, the

process of integrating the salient region detection into the cameras is not straightforward

due to its time- and energy- consuming process. However, by considering a feedback

channel between the sensor and the receiver, the BCS can gain from the visual saliency to

improve the image reconstruction quality [75]. The graph-based visual saliency (GBVS)

model [78] is a well-known algorithm to extract the salient regions within the image. In

the following, the GBVS and BCS-SPL algorithms are employed to build up an image CS

recovery algorithm in an adaptive way to the human visual perception, called saliency-

based BCS with smoothed-projected reconstruction (SBCS-SPL). Following this adaptive

procedure, the high sampling rates are assigned to the salient regions while the low sampling

rates are allocated to the non-salient regions, lead to a better recovery quality.

The block diagram of the SBCS-SPL scheme is shown in the Fig. 3.1. Firstly, the basic
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Figure 3.1: Block diagram of the SBCS-SPL framework.

BCS acquisition is done at the sensor side, i.e. the image is partitioned into
√
Nb ×

√
Nb

non-overlapping blocks sampled at the same subrate S. At the receiver side, an initial

reconstruction of the image is obtained using the BCS-SPL algorithm. In the next step,

a saliency map for the whole image is computed using the initial reconstructed image via

the GBVS model [78]. The GVBS consists of the following three main steps:

Feature map extraction: A feature map represents the image based on a well-defined

feature. These maps can be extracted and computed either from the first-order statistics

of stimulus features such as intensity, color, orientation, and texture or by linear filtering

on the image followed by some elementary nonlinearity. For example, a contrast map

computed using intensity variance in the local patches of the image or a simply an intensity

of the grayscale values can be considered as a feature map.

Activation map computation: In the second step, the feature map is transformed to

an activation map in which the parts of the scene, according to a specific feature, that

strongly differ from its surrounding are highlighted. The process is implemented by a

graph-based random walk which can be applied on feature map to extract local activities

for each feature type. At first, a graph is generated by connecting the nodes in a feature

map. Then, by assignment a weight between nodes, the graph is interpreted as Markov

chains. It accumulates mass at nodes that have high dissimilarity with their surrounding

nodes and is considered as activation and saliency values.

Normalization and combination: In the last stage of the attention model, a saliency

map is generated by normalization of the activation map in order to prevent some salient

regions masked by noise or interfered by less-salient regions. A similar approach based on
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(a)

(b)

Figure 3.2: (a) Initial reconstructed images. (b) Corresponding saliency maps at the

S = 0.3. The saliency maps were quantized for better display.

graph over activation map is also implemented in this step. Mass will flow preferentially

to those nodes with high activation. Please refer to [78] and its references herein for more

details.

Fig. 3.2 shows some initial reconstructed images and their corresponding saliency maps

at the target subrate S = 0.3. Brighter regions in the saliency maps represent the salient

area within the test images, while the darker sections show the less-saliency regions.

Based on the obtained saliency map, a binary label is assigned to each block; label 1

for the blocks belonging to the salient regions and label 0 for the blocks within the other

area of the image. To this purpose, the saliency map of the input image is normalized into

the range of [0, 1]. The pixel values of the normalized saliency map can be interpreted as

the probability of that pixel belonging to the salient regions. A block is considered to be

salient (labelled with 1), if the averaged probability of its pixels, called the salience value

of the block, is greater than a predetermined threshold T in the range [0, 1]; otherwise, it

is considered as a non-salient block (labelled with 0). Obviously, the percentage of blocks

falling into the salient regions will be increased by decreasing the threshold. The obtained
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saliency values depend on the performance of the GVBS model. However, one can design a

new model to extract more precise saliency value for each block. Finding the exact value of

T is not a non-trivial task. In the following, a simple procedure for finding an appropriate

threshold T is proposed.

Following the above step, the new sampling subrates are computed based on this binary

block labeling. The aim is thus to allocate different subrates to the salient and non-salient

blocks, provided that the overall subrate equal (or slightly inferior) to the target subrate

S. Mathematically, the subrates, assigned to the salient and non-salient blocks, i.e. Ss

and Sns respectively, are adjusted such that:

NsSs +NnsSns = (Ns +Nns)S, (3.1)

where Ns and Nns denote the number of salient and non-salient blocks, respectively. As-

sume the salient and non-salient subrates are the fractions of a constant value U ; i.e.

Ss = KsU and Sns = KnsU, (3.2)

subject to

0 < Kns < Ks < 1 and Ks +Kns = 1, (3.3)

whereKs andKns are two predetermined parameters being related to the proportion of the

salient and non-salient blocks in the corresponding number of measurements. From (3.2)

and (3.3), one can easily solve (3.1) for U by:

U =
(Ns +Nns)S

KsNs +KnsNns
. (3.4)

It should be noted that taking a small value for the parameter Kns can lead to serious

distortion in the non-salient regions, while a selection of large value for Kns cannot reflect

the superiority of this scheme because of the inconspicuous contribution in the adaptive

sampling.

At high target subrate S, finding the subrates Ss and Sns using (3.2) may lead to

Ss > 1. In this case, we impose Ss = 1 and then Sns can be easily computed from (3.1)

via the following equation:

Sns =
(Ns +Nns)S −Ns

Nns
. (3.5)

In contrast, the value of subrate Sns obtained with (3.2) is very small at a low target

subrate S and can result into inaccurate reconstruction of the non-salient blocks. In order

to guarantee that the assigned subrate to the non-salient blocks is not too small, a minimum
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subrate Sm is considered for the subrate Sns. We set up Sm = K × S, where 0 < K < 1

is a predefined parameter to adjust the minimum subrate for the non-salient blocks. After

obtaining Ss and Sns using (3.2), if Sns ≤ Sm, we set Sns = Sm and the subrate of the

salient blocks is re-calculated using (3.1) via:

Ss =
(Ns + (1−K)Nns)S

Ns
. (3.6)

Finally, the block labels and the sampling subrates corresponding to the salient and

non-salient blocks, i.e. Ns and Nns, are sent to the sensor in order to perform a new

adaptive acquisition. As an overall result, the measurements for i-th block is achieved

by yi = Φbxi, where a smaller subrate than S, i.e. Sns, is assigned to the non-salient

regions, while the visually significant blocks are sampled at a higher subrate than S, i.e.

Ss, so that the overall subrate of image is unchanged. After getting the new adaptive

measurements for each block, the SBCS-SPL scheme follows the same procedure with the

BCS-SPL algorithm to recover the original image.

It is worth saying that each block has a different saliency value. Therefore, the quality

of the reconstructed image is improved by assigning different sampling rates based on their

saliency value. On the other hand, this procedure increases the overhead information to

send back to the sensor which needs a high-bandwidth feedback connection. However,

the SBCS-SPL scheme just sends a binary sequence and two obtained values of sampling

subrates, i.e. Ss and Sns, to the sensor. Therefore, a low-bandwidth connection is enough

for transmitting the side information to the sensor. The length of binary sequence depends

on the number of blocks in the image. It should be noted that one can assign different

labels, instead of only two binary levels, to each block in order to allocate more precise

sampling rate. However, this increases the size of the side information.

The number of salient and non-salient blocks, Ns and Nns, depends on the predeter-

mined value of the threshold T . Finding an appropriate threshold T is a non-trivial task.

Choosing a large threshold value T leads to a small number of the salient blocks which

does not have a big effect on the performance. On the other hand, with considering a small

value of the threshold T , a large part of the image is considered as the salient region. To se-

lect an appropriate value for the threshold value, several experiments have been conducted

on several test images by changing T from 0 to 1. At each threshold, the test images are

sampled using the SBCS-SPL scheme and then the peak signal to noise ratio (PSNR) value

of the reconstructed image is computed. The resulting PSNR values versus T is shown in

Fig. 3.3 for the Lena image at the target subrate S = 0.3. This curve provides a reliable
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Figure 3.3: Effect of threshold value T on quality of the reconstructed image Lena in terms

of PSNR at the overall subrate S = 0.3.

comparison of how proportion of the salient regions, resulted by changing the threshold

T , has an effect on the reconstructed image. As can be seen in Fig. 3.3, the PSNR does

not change proportionally with the percentage of the salient regions. As T increases, the

PSNR value increases, but a larger value of T does not yield higher performance. It is easy

to understand that the PSNR value first rises and then declines, when the the threshold

T becomes larger. A good recovery precision can be achieved by choosing the threshold T

by:

T =
1

2(R× C)

R−1∑
x=0

C−1∑
y=0

H(x, y), (3.7)

where R and C are the width and height of the normalized saliency map H, respectively,

and H(x, y) is the saliency value of the pixel at the position (x, y). As can be observed in

the Fig. 3.3, the obtained threshold for the Lena image is T = 0.13 which is near to the real

maximum of the curve. At this case, the percentage of salient regions is %53.9. Given the

threshold T , relatively high sampling rates are assigned to the blocks in the salient regions

and low sampling rates are assigned to the rest of blocks. For instance, for the Lena image

at the target subrate S = 0.3, the obtained subrates for the salient and non-salient areas

are Ss = 0.46 and Sns = 0.11, respectively.

3.2 Residual-based Image CS Reconstruction Algorithms

In the previous section, an image BCS recovery algorithm has been presented by which

the recovery quality is improved via establishing a feedback channel between the receiver

and the sensor in an adaptive acquisition framework. This section focuses on introducing
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receiver-based CS recovery algorithms without any change in the signal acquisition part.

In video compression, motion estimation and compensation are used to support the

temporal sparsity. In this technique, the first frame within a group of pictures (GOP)

is firstly encoded. Exploiting the high resemblance among the frames within the same

GOP, instead of fully encoding the next frame, the residual between the original frame

and its prediction from the previous frame, is encoded. This resulted residual is obvi-

ously more sparse. The same encoding procedure is conducted for the multi-view image

and video compression, exploiting disparity estimation and compensation methods. The

fundamental property of the CS theory states that a very sparse signal can be perfectly re-

constructed. Therefore, higher sparsity can be provided by estimating a prediction of that

image and exploiting it for the CS reconstruction [87, 87, 88] by implicitly increasing the

signal compressibility [89]. In this paradigm, during the reconstruction step, a prediction of

the current block is obtained by exploiting the strong correlation among the blocks within

an image. Then, the CS reconstruction algorithm is driven by the measurement-domain

residual that is obtained by difference between the measurements of current block and its

prediction [69, 76, 77]. Suppose the measurements of block xi is obtained via yi = Φbxi.

Let x̃i is a prediction of the block xi, then the measurement-domain residual of the i−block

is obtained by ri = yi−Φbx̃i. Given the measurement-domain residuals for all blocks, i.e.

r, the final reconstructed frame x̂ is computed as:

x̂ = x̃ + BCS-SPL(r,Φb), (3.8)

where x̃ is the prediction image. As the residual (difference between x and x̃) is more

compressible (sparser) than the block itself, a better approximation of the signal is obtained

by the CS recovery [87,88]. This is demonstrated empirically in Fig. 3.4 wherein it is seen

that the coefficient magnitudes decay more quickly for a residual frame than for the original

video image. A good prediction always makes the residual very sparse and also random.

However, in the CS reconstruction algorithms, the randomness is not an issue for recovery.

Until the measurement matrix satisfies the restricted isometry property (RIP) and the

signal to be recovered is sparse enough, the recovery can be done.

3.2.1 Residual-based CS reconstruction using intra-image prediction

In this section, the basic framework of intra-image prediction is exploited to propose a novel

strategy for the block-based image CS reconstruction, called block-based CS reconstruction
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Figure 3.4: Decay of the magnitudes of coefficients as compared to that of residual.

using intra-image prediction (BCS-IIP).

First, each image is partitioned into K non-overlapping blocks of size
√
Nb ×

√
Nb

pixels and then the measurements are separately obtained for each block using a Mb ×Nb

Gaussian measurement matrix Φb via yi = Φbxi at the subrate S = Mb/Nb, where xi is

the vector representation of the i-th block. Block diagram of the BCS-IIP algorithm is

depicted in Fig. 3.5. The algorithm consists of two phases: initial and enhancement phase.

In the initial phase, the BCS-IIP algorithm builds an initial reconstruction of the image,i.e.

x̂. This reconstruction can be achieved using any CS reconstruction algorithm. The BCS-

SPL algorithm is employed in our implementation. Moving forward to the enhancing

phase, the initial reconstructed image x̂ is partitioned into L non-overlapping blocks of

size
√
Np ×

√
Np. Np is not necessarily the same as Nb. For the prediction goal, the

small block sizes improve the prediction quality, whilst in the case of CS, the bigger the

block the better the reconstruction will be. For the former, the selection of a smaller block

size increases the correlation among the neighboring blocks, leading to a more accurate

prediction. For the latter, the larger blocks for the acquisition provides more sparse blocks,

a necessary condition for the success of CS reconstruction algorithms.

Let set S = z1, z2, · · · z8 consist of 8 surrounding blocks of the current block z in the

initial reconstruction image x̂, as shown in Fig. 3.6. The similarity between the block z

and its k−th surrounding block is measured by sum of absolute differences (SAD) as:

SADk =

Np∑
m=1

Np∑
n=1

|zk(m,n)− z(m,n)|. (3.9)

Using these similarity measure, the decoder can decide if the block z and its 8 surrounding
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Figure 3.5: Block diagram of the BCS-IIP algorithm.

blocks are part of the same smooth area within the image. This decision is achieved as:

SADk < T, (3.10)

where the threshold T is related to the block size and the maximal intensity value within

the image. T can be effectively determined by T = B2
p .I, which is equivalent to the sum

of values within a block of size
√
Np ×

√
Np pixels, whose all pixel values equals to I.

Based on the SAD values and the threshold T , the neighboring blocks that satisfy the

condition (3.10) are taken into account to generate a prediction for the current block z.

The way of using the blocks in the set S influences the quality of the obtained prediction

for the current block z. A weighting scheme is used to control the influence of each sample



3.2. Residual-based Image CS Reconstruction Algorithms 33

Figure 3.6: 8 surrounding blocks of the current block z.

in the resulted prediction. The weighting function allows us to emphasize the pixels which

are closer to the current block and thus more important for the prediction. Consider a

low-pass weighting window of size 3
√
Np × 3

√
Np pixels, which is depicted in Fig. 3.7.

The Hamming function [90] is used for generating this weighting window. By splitting

this weighting matrix into
√
Np ×

√
Np blocks, the corresponding weighting coefficients

for the 8 corresponding blocks are obtained, as shown in Fig. 3.8. The central block in

the weighting window, denoted by wc, is replaced with a block whose all values equal to

1, meaning that the current block z contributes entirely to its prediction. Finally, the

prediction of the current block z is obtained by the following equation:

zp =
z +

∑
k∈Ss

zk ∗wk

wc +
∑

k∈Ss
wk

, (3.11)

where ∗ shows element-wise matrix multiplication and the set Ss denotes the set of neigh-

boring blocks which respect to (3.10). wk is the corresponding submatrix for the block zk

belonging to the set S. This prediction process is done for all the blocks within the initial

image x̂ to generate a prediction x̃ for the image x.

With respect to the same BCS at the encoder side, the prediction image x̃ is partitioned

into
√
Nb×

√
Nb blocks and then the measurements are separately obtained for each block

by ỹi = Φbx̃i. Note that the same measurement matrix should be used for sensing the

blocks in the original and predicted images. Given the measurements ỹi, a residual in the

measurement domain is obtained for each block via ri = yi − ỹi. Given the measurement

matrix Φb and the measurement-domain residuals r = [ri]Li=1 for all blocks within the im-

age, the spatial-domain residual image is obtained using the BCS-SPL algorithm. Finally,

the image is obtained by combining the prediction image x̃ and the reconstructed residual
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Figure 3.7: Hamming weighting window.

Figure 3.8: Corresponding weighting coefficients for 8 corresponding blocks.

image:

x = x̃ + BCS-SPL(r,Φb), (3.12)

Inspired by the CS theory, the CS reconstruction algorithms are able to recover this resid-

ual image more accurate by than recovering the original image. Therefore, building a

CS reconstruction based on the residual measurements and coupling it with the image

prediction results in the enhancement of recovery quality.

3.2.2 Residual-based compressed sensing recovery using a trained dictionary

In the previous section, a residual-based CS reconstruction algorithm has been described

wherein the final reconstructed image is obtained using a measurement-domain residual.

Generally, the CS recovery of the residual image, obtained by difference of the original
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image and its prediction, increases the CS reconstruction performance [76, 91]. In the

BCS-IIP algorithm, the weighted average of the spatially surrounding blocks is computed

to obtain a prediction for each block. However, the limitation of this method is that its

performance relies heavily on the obtained prediction that is based on the assumption of

similarity among the adjacent blocks within an image. To address this issue, the non-local

self-similarities of image patches within an image can be exploited in order to produce a

prediction that is as close as possible to each block in order to generate a highly compress-

ible residual [77].

The well-known SR models the image patches as a linear combination of a very few

number of atoms chosen from an over-complete dictionary. GSR [32] is a novel modeling

technique of the natural images. In this technique, instead of modeling the single image

patches, a group of non-local image patches with similar structures is considered as the

basic unit of the sparse representation. Based on this concept, the GSR is used to obtain

a prediction for each block. This prediction drives a residual-based CS reconstruction

algorithm, called block-based CS reconstruction using group sparse representation (BCS-

GSR).

Assume the image x of size
√
N ×

√
N pixels is partitioned into K non-overlapping

blocks of size
√
Nb×

√
Nb pixels. Then, each block is sampled as yi = Φbxi, where xi ∈ RNb

is the vector representation of i-th block of the image, yi ∈ RMb is the measurement vector,

and Φb is the measurement matrix of size Mb ×Nb. Assume all block are sampled at the

same subrate; therefore, the overall subrate is S = Mb/Nb.

Given the measurement vectors [yi]Ki=1, the object is to recover the image patches [xi]Ki=1

in order to reconstruct the whole image x. In the first step, the aim is to find an optimal

prediction of the image x by solving the following minimization problem:

x̃ = arg min
z
‖x− z‖2 + λΘ(z), (3.13)

where ‖x−z‖2 is the `2 data-fidelity term, Θ(z) is the regularization term that regularizes

the solution space of the fidelity term, and λ is the regularization parameter. As discussed

in Section 2.5, one of the most significant regularization terms is sparsity, which means

that the natural images are locally sparse. In other words, each local image patch can be

accurately represented as a few elements chosen from a dictionary [29, 31, 36]. Further,

there are many repetitive high level patterns and regular structures globally positioned in

the images [32]. This significant property between similar patches within an image, called

non-local self-similarity, in combination with the local sparsity existing in the natural
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images, can be used as a more suitable and efficient regularization term to regularize the

solution space of the minimization problem in (3.13) and develop a much more accurate

prediction [32,34,92]. the obtained residual has a random nature, it is s deep sparse signal

that can be recovered more accurate from the corresponding measurements.

Assume an image u is firstly partitioned into L overlapping patches of size
√
Np×

√
Np

pixels, represented as column vectors [upi ]
L
i=1, where upi ∈ RNp . Assume matrix Hi ∈

RNp×C consists of C similar patches to the xi within a large enough window of size B×B

pixels, as shown in Fig. 3.9. The Euclidean distance is considered as the similarity measure.

Lets define the operator Ri(·) that extracts matrix Hi from the image u, i.e. Hi = Ri(u).

Given all the matrices [Hi]
L
i=1, the image u is estimated by:

x =
L∑
i=1

RT
i (Hi) · /

L∑
i=1

RT
i (1Nb×C), (3.14)

where the operator RT
i (·) puts back the patches in the matrix Hi into the corresponding

positions in the reconstructed image, padded with zeros elsewhere. The operator ·/ denotes

the pixel-wise division and 1Ns×C is a unit matrix of the same size as matrix Hi. It can be

easily seen that the reconstructed image via Equation (3.14) is obtained by averaging all the

overlapped patches. As will be seen later, this overlapping partitioning technique ensures

that the obtained prediction does not suffer from the blocking artifacts and provides a high

quality prediction.

The prediction in the BCS-GSR algorithm is obtained by assuming that each group

of similar patches, i.e. Hi, can be represented by linear combinations of a few of atoms

chosen from an over-complete dictionary D. Suppose D = [D1D2 · · ·DM ] whose atoms

[Dj ]
M
j=1 are matrices of the same size as matrix Hi. With this structure, the dictionary D

is a matrix of size Ns ×CM . Given the dictionary D with M atoms, the object is to find

the sparse representation of each group Hi with respect to dictionary D. In other words,

we want to find a sparse vector αi ∈ RM such that Hi '
∑M

j=1 αi,jdj , where αi,j is the

j-th element of the sparse vector αi. Mathematically, the sparse coding of Hi with respect

to D is obtained by solving the following minimization problem:

arg min
αi∈RM

‖Hi −
M∑
j=1

αi,jdj‖2 + λ‖αi‖0, (3.15)

where λ is a regularization parameter. In this framework, the `0-norm of αi enforces the

sparsity and the self-similarity of patches is considered in the definition of Hi. Given the

sparse representation vectors [αi]
L
i=1 and by considering Equation (3.14), image u can be
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Figure 3.9: One image patch and its associated window for finding the similar patches.

estimated as:

u ' D�α =
L∑
i=1

RT
i

 M∑
j=1

αi,jDj

 · / L∑
i=1

RT
i (1Np×C). (3.16)

where α denotes the concatenation of all sparse representation vectors [αi]
L
i=1. The nota-

tion D�α is just for simplicity of the following equations.

In the following, we combine this approach of prediction generation into the CS recon-

struction algorithm. By considering Equations (3.13), (3.15), and (3.16), we propose the

reconstructed image via x ' D�α as a prediction for the image, where α is obtained by

solving the following minimization problem:

arg min
α
‖x−D�α‖2 + λ‖α‖0. (3.17)

However, Since the original image x is unknown, the CS recovery cannot be directly

achieved. However, it can be successfully solved by applying an iterative procedure. First,

an initial image, denoted by x̂[0], is reconstructed using the BCS-SPL algorithm. At each

iteration k, the reconstructed image is updated through two steps as follows:

Step1-Prediction Generation: The scheme tries to find a solution for the following

minimization problem:

α̃[k] = arg min
α
‖x̃[k] −D�α[k]‖2 + λ‖α[k]‖0. (3.18)
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Given the dictionary D, the minimization problem (3.18) is efficiently solved by the algo-

rithm proposed in [32]. Given α̃[k], the generated prediction at iteration k is updated by

x̃[k] = D� α̃[k].

Step2-Residual Reconstruction: In this step, the residual-based CS reconstruction al-

gorithm is employed to recover the image. To this purpose, the obtained prediction x̃[k]

is partitioned into K Nb ×Nb non-overlapping blocks [x̃[k]
i ]Ki=1, similar to the partitioning

procedure that has been done at the transmitter side. Then, each block is projected onto

the measurement domain via ỹ[k]
i = Φbx̃

[k]
i . After computing the measurement-domain

residuals r[k] = [r[k]i ]Ki=1, where ri = y[k]
i − ỹ[k]

i , the spatial-domain residual image is ob-

tained using the BCS-SPL algorithm. Finally, the image is obtained by combining the

prediction image x̃ and the reconstructed residual image as:

x̂[k+1] = x̃[k] + BCS-SPL(r[k],Φb). (3.19)

The reconstruction quality is then improved by repeating step1 (prediction generation)

and step2 (residual reconstruction). The details of the BCS-GSR algorithm is summarized

in Algorithm 2. The decoder terminates the iterations when ‖x̂[k+1] − x̂[k]‖2 ≤ 0.001.

However, the decoder can terminate the reconstruction algorithm early depending on its

hardware abilities.

The discussion so far has assumed that the dictionaryD is known. Choosing the dictio-

nary D is an important task for finding an optimal solution to the minimization problem

in (3.18). The scientific community has developed two main ways for designing the dic-

tionaries [36]: 1- mathematical modeling and 2- training procedure [36]. The former tries

to find the dictionary from a set of mathematical assumptions made on the family of the

signals. For instance, Fourier basis is designed for optimal representation of smooth sig-

nals, while the wavelet dictionary is more suitable for piecewise-smooth signals with point

singularities. The latter provides an ability to design a dictionary adapted to a specific

data signal via machine-learning techniques. The basic assumption behind this approach is

that the structure of the complex natural signals can be more accurately extracted directly

from the data than by using a general mathematical model [36]. Compared to the mathe-

matical dictionaries, the trained dictionaries deliver an increased flexibility and the ability

to adapt to specific signals are superior in terms of representation efficiency, at the cost of

a non-structured and substantially more complex dictionary. In the BCS-GSR algorithm,

a dictionary is trained usinf a set of training image patches collected from a number of
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Algorithm 2 BCS-GSR
1: Input: Φb, [yi]Ki=1

2: Output: x̂

3: Initialize: k ← 0 and x̂[0] = BCS-SPL([yi]Ki=1,Φb)

4: Repeat

5: Step1: Prediction Generation

6: Solve: α̃[k] = arg minα‖x̃[k] −D�α[k]‖2 + λ‖α[k]‖0

7: Compute prediction: x̃[k] = D� α̃[k]

8: Step2: Residual Reconstruction

9: Split x̃[k] into K non-overlapping blocks: [x̃[k]
i ]Ki=1

10: For i← 1 to K do

11: r[k]i = y[k]
i −Φbx̃

[k]
i (i = 1, 2, · · ·K)

12: End

13: Update: x̂[k+1] = x̃[k] + BCS-SPL(r[k],Φb)

14: Until ‖x̂[k+1] − x̂[k]‖2 ≤ µ

training signals. We adopt the dictionary learning algorithm method in [32] wherein a

self-adaptive dictionary is learned.

3.3 Experimental Results

In this section, the performance of the SBCS-SPL, BCS-IIP, and BCS-GSR algorithms

will be evaluated via a suite of simulations carried out on a set of 8-bit grayscale standard

images of size 512×512 pixels, including Lena, Peppers, Goldhill and Mandrill. The quality

performance is assessed by the peak signal-to-noise ratio measure (PSNR) at different

subrates S, ranging from 0.1 to 0.5. The performance of these algorithms is also compared

with the BCS-SPL algorithm1. The same measurement matrix Φb is employed for all

competing algorithms. Due to the randomness of the measurement matrix Φb, the PSNR

values are obtained by running the the competing methods 10 times and the average results

are reported as the final values.

1The MATLAB code of the BCS-SPL algorithm is available in authors’ website:

http://my.ece.msstate.edu/faculty/fowler/BCSSPL/



40 Chapter 3. Image Compressed Sensing Recovery

For all the competing algorithms, size of the non-overlapped blocks for the acquisition

step at the sensor side is set to 32× 32 pixels. In the SBCS-SPL algorithm, the sampling

subrates of the salient and non-salient blocks, i.e. Ss and Sns, respectively, are determined

by the Equation (3.2) and the parameters Kns, Ks, and K are set as 0.2, 0.8, and 0.2,

respectively. In the BCS-IIP algorithm, size of the non-overlapped blocks for the prediction

generation step is considered to 4× 4 pixels and the parameter I for determination of the

threshold T in (3.10) is set as 8. In the BCS-GSR algorithm, size of the overlapped

image patches for the prediction generation step is considered to be 8 × 8 pixels and the

overlapping depth between adjacent patches is set to 2 pixels. Further, size of the search

window for finding the similar patches is set to be 40×40 pixels and number of the similar

patches in each group Hi is set to C = 60.

Table 3.1 gives the averaged PSNR values of the reconstructed images by different CS

reconstruction techniques at various subrates, ranging from 0.1 to 0.5. As can be seen,

performance of the SBCS-SPL, BCS-IIP, and BCS-GSR algorithms is better than the BCS-

SPL algorithm. The results of the BCS-IIP algorithm are nearly similar to the BCS-SPL

algorithm, with the PSNR improvement up to 0.25 dB. The PSNR improvement by the

SBCS-SPL algorithm is between 0.1 dB to 1.3 dB. It can be concluded that if the salient

parts are extracted accurately, better performance of the CS reconstruction can be realized.

The results indicate that the BCS-GSR achieves the best performance at all subrates and

can indeed help to significantly increase the reconstructed image quality in terms of PSNR,

especially at the higher subrates. The BCS-GSR algorithm achieves up to 3.50 dB higher

PSNR than the BCS-SPL algorithm.

The enlarged parts of the reconstructed image Lena by different CS recovery algorithms

are shown in Fig. 3.10 at the target subrate S = 0.3. It can be generally inferred that the

reconstruction error of the BCS-GSR method is lower, when it compared with the BCS-

SPL algorithm. As can be seen, the fine details and sharper image edges in the salient

regions of the image become much clearer compared with those by the other methods,

especially in some complex regions which contain high frequencies (strong hairs).

The computational complexity of the above-mentioned algorithms is evaluated in terms

of reconstruction time (second) in Table 3.2 at various subrates. The experiments are con-

ducted on a PC with an Intel(R) Xeon(R) processor at 3.20 GHz and 8-GB of RAM at

64-bits operating system of WINDOWS 7 with a non-optimized MATLAB implementa-

tion. As can be seen, the SBCS-SPL method is slower than the BCS-SPL one due to
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Table 3.1: Comparison of quality of reconstructed images by differenct CS recovery tecnique

in terms of PSNR (dB)

Target Subrate (S)

0.1 0.2 0.3 0.4 0.5

Lena

BCS-SPL 28.00 31.28 33.31 35.15 36.44

SBCS-SPL 28.83 32.44 34.61 36.28 37.76

BCS-IIP 28.08 31.38 33.43 35.28 36.57

BCS-GSR 28.68 32.65 35.17 37.17 38.91

Peppers

BCS-SPL 28.99 31.95 33.62 34.95 36.17

SBCS-SPL 29.24 32.44 34.09 35.38 36.51

BCS-IIP 29.15 32.18 33.86 35.19 36.41

BCS-GSR 30.31 33.45 35.27 36.66 37.95

Goldhill

BCS-SPL 26.79 28.59 29.88 31.08 32.28

SBCS-SPL 27.00 29.03 30.37 31.63 32.91

BCS-IIP 26.84 28.71 30.05 31.28 32.50

BCS-GSR 27.42 30.34 32.07 33.93 35.70

Mandrill

BCS-SPL 20.51 21.45 22.31 23.22 24.26

SBCS-SPL 20.66 21.70 22.64 23.66 24.84

BCS-IIP 20.53 21.48 22.33 23.23 24.27

BCS-GSR 20.76 22.98 24.31 25.98 26.79

the extra process of the initial reconstruction and also extracting the salient blocks. In

addition, as expected, the BCS-IIP and BCS-GSR algorithms cannot be faster than the

BCS-SPL algorithm, mostly due to the prediction time. However, its advantage in image

reconstruction with high accuracy is interesting.

In the SBCS-SPL, BCS-IIP, and BCS-GSR algorithms, the BCS-SPL algorithm is

involved as the core of the reconstruction process. Therefore, the computational burden

of the recovery process of these algorithms is substantially increased using the iterative

nature of the BCS-SPL algorithm. It is worthwhile to mention that, thanks to the block-

based reconstruction, it is plausible to the extent that a parallel implementation of the

BCS-SPL algorithm can be trivially accomplished in hardware, which is suitable for the

real-time applications. In the other words, the BCS-SPL algorithm can be easily executed

in a parallel manner to provide an acceptable computational cost using an array of multiple

instructions multiple data (MIMD)-based parallel processors. In the BCS-GSR algorithm,

in addition to this parallel implementation, the decoder can early terminate the iterations,
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(a) Original Image (b) BCS-SPL (c) SBCS-SPL

(d) BCS-IIP (e) BCS-GSR

Figure 3.10: Subjective results for the image Lena by different CS recovery techniques at

the subrate S = 0.3.

depending on its computational power, to decrease the computational complexity and yet

obtain a visually satisfactory image reconstruction. Finally, it should be noted that the

SBCS-SPL method can be effectively and usefully employed for the pedestrian tracking

in the video surveillance applications and also sampling of the low-to-normal dynamics

video sequences without increasing the computational complexity. At these applications,

only the first frame within a group of pictures (GOP) is used for the saliency computation

and the rate allocation. Given the high resemblance among the frames within the same

GOP, the adaptive sensing uses this saliency information to guide the sampling of the next

frames in order to optimize the gain of new information.

3.4 Conclusion

Several new CS reconstruction algorithms have been considered at this chapter. First,

a summary of the CS methodology and a brief description of the well-known BCS-SPL

algorithm have been presented in the first part of this thesis. Inspired by the saliency
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Table 3.2: Averaged reconstruction time (second) at various subrates for different CS

reconstruction algorithms

Target Subrate (S)

0.1 0.2 0.3 0.4 0.5

Lena

BCS-SPL 21.72 10.92 6.62 4.77 3.92

SBCS-SPL 57.62 29.45 18.24 13.65 12.55

BCS-IIP 28.63 16.25 10.84 6.48 5.12

BCS-GSR 166.62 155.90 151.91 149.35 148.91

based model of the visual attention, an adaptive BCS scheme has been introduced in order

to enhance the reconstruction performance of the BCS-SPL algorithm. More specifically,

based on a binary saliency map, obtained by a graph-based algorithm, the presented adap-

tive scheme enhances the recovery quality by finding an optimal subrate trade-off between

the salient and non-salient areas. In the end part of the chapter, we have moved to the

residual based CS reconstruction and extended the concept of prediction to the CS re-

covery. The idea is based on creating an optimal prediction comparable to the original

image using the strong local correlation among neighboring blocks or exploiting the non-

local self-similarities existing within natural images. This prediction is used to produce

a measurement-domain residual which is more compressible, thus enhancing the quality

of the reconstructed image. The efficiency of the above-mentioned methods has been

evaluated via a wide range of experiments on several test images in comparison with the

BCS-SPL algorithm.
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Chapter 4

Receiver-based Error Concealment based on

Synthesis Sparse Recovery

The material of this part is essentially based on the following works:

• A. Akbari, M. Trocan, and B. Granado, “Image error concealment using

sparse representations over a trained dictionary,” in Proceedings of IEEE

Picture Coding Symposium (PCS), Nuremberg, Germany, Dec. 2016, pp.

1–5

• ——, “Joint-domain dictionary learning-based error concealment using com-

mon space mapping,” Proceedings of IEEE International Conference on Dig-

ital Signal Processing (DSP), pp. 1–5, Aug. 2017

• ——, “Image error concealment based on joint sparse representation and

non-local similarity,” Proceedings of IEEE Global Conference on Signal and

Information Processing (GlobalSIP), Nov. 2017

• A. Akbari, M. Trocan, S. Sanei, and B. Granado, “Joint sparse learning

with nonlocal and local image priors for image error concealment,” IEEE

Transactions on Circuits and Systems for Video Technology, 2018

4.1 Introduction

Image and video transmission over error-prone channels, such as communication networks,

always suffers from packet loss, leading to serious distortions in the received image/video.

In the existing image/video transmission systems, a frame is divided into non-overlapped

blocks which are coded separately. In the packetization step, one or more blocks are fed

45
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(a) (b) (c)

Figure 4.1: Typical block loss patterns [97]: black blocks denote

the corrupted blocks of size 8 pixels. (a) Isolated loss. (b)

Consecutive loss. (c) Random loss.

into one packet; therefore, while transmitted over an error-prone channel, undesired packet

erasure leads to missing a portion of the frame, resulting thus into the unsettled subjective

and objective quality. Fig. 4.1 shows the three common cases of block loss: isolated loss,

consecutive loss, and random loss. It is, therefore, crucial to design the error recovery

techniques which guarantee the quality of the received image and video, that is of utmost

importance for the end users.

Over past decades, many error control techniques have been proposed. Generally,

they can be classified into two general categories: transmitter-based and receiver-based

methods. The transmitter-based approaches retransmit the lost packets or send additional

information from the transmitter to the receiver, trading the channel bandwidth for the

increased error robustness. Although these methods generally work well for low packet

loss rate (PLR), their performance is known to degrade as the PLR increases [98, 99].

Recently, a robust image transmission scheme has been proposed in [98] and [100], by

which a high quality image can be recovered, even at the high PLRs, at the expense of

adding a simple random linear encoder at the transmitter side. However, the transmitter

still needs to send extra information, degrading the efficiency of transmission through the

low bandwidth connections.

In contrast to the transmitter-based methods, error concealment (EC), as a receiver-

based method, is an alternative solution to mitigate the negative effects of the packet

loss. The EC techniques recover the missing information without modifying the encoder or

sending any additional information, leading to a better bandwidth efficiency [101]. These

methods exploit the high spatial or temporal correlations existing among the lost areas

and correctly received neighboring pixels to reconstruct a high quality image or video from
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its degraded version. Appropriate modeling of this intrinsic characteristic of the natural

images plays an important role in the recovery performance of the EC algorithms which

has been extensively studied over the past decades.

Sparse representation (SR) has been a powerful tool for image processing over the past

decade. In this technique, a signal can be represented by linear combination of a few atoms

chosen from a pool called dictionary [102]. Based on analysis sparse modeling (2.3) and

synthesis sparse modeling (2.4), the used dictionary can be designed by some mathematical

functions or learned from some training examples [36]. In this chapter, the synthesis sparse

representation model is extended to EC application, being effective to recover a high quality

image from a corrupted input.

4.1.1 Previous Works on Error Concealment

Many EC approaches have been developed in the literature and newer techniques are

still emerging. These methods can be classified into three categories: interpolation-based,

statistical-based and sparse recovery-based methods.

The simple interpolation-based methods typically exploit the strong correlation among

the neighboring blocks in the image [101, 103–106]. Edge-directed interpolation-based EC

is proposed in [107]. A more advanced algorithm for reconstruction of more complex

visual features is proposed in [101,105,106]. In these methods, an edge descriptor method

over the missing block is integrated into the error control system for obtaining a more

visually pleasing texture reconstruction. Although these methods are effective for real-

time applications, in many cases, the quality of the concealed images is unsatisfactory in

practice.

The statistical-based methods usually assume that the missing pixels can be estimated

by employing some fixed-function kernels or adaptive-structure kernels [108–111]. A mini-

mum square error estimator is used in [109] to conceal the lost blocks by modeling the prob-

lem of error recovery as a regression problem. The missing pixels are estimated from their

known context using a minimum square error estimator which uses a probability density

function obtained by kernel density estimation. In [111], the missing blocks are recovered

by the computation of conditional expectation of the missing pixels by the surrounding

available ones in a Bayesian framework. Markov random fields model is considered in [108]

for filling the missing pixels. In [110], using a pair of Gaussian kernels and capturing the

block-level similarity, the lost blocks are recovered as a weighted average of the neighboring
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pixels.

In contrast to the aforementioned block-based approaches, a sequential orientation

adaptive interpolation (OAI) method is proposed in [112], wherein the pixels in the missing

blocks are successively recovered by exploiting a linear predictor on a small spatial window.

This algorithm overcomes the blocking and blurring effects of the simple interpolation-

based methods and exhibits the edge-preserving property. Another sequential estimation

of the missing pixels is proposed in [97] by using an adaptive linear predictor (ALP) in

which a Bayesian information criterion is adopted to explicitly determine the order of the

predictor (e.g. the available neighbouring pixels suitable for estimation). Different from

the algorithm proposed in [97,112], the algorithm in [113,114] focuses on seeking a distinct,

robust, and sparse linear predictor (SLP) to select a linear combination of a few number

of neighboring pixels for estimation of the lost pixels. These approaches, however, may

address the error propagation by the incorrect estimation of the missing pixels, causing

undesirable blurred details. In addition, at the high packet loss rates, where consecutive

blocks are lost, this impairment becomes more severe.

The sparse recovery-based EC schemes tackle these shortcomings. In these methods,

the restoration is done by transferring the recovery problem into the SR domain with

respect to some trained or mathematical dictionaries. Then, the reconstructed image is

obtained by back projection into the spatial domain. In other words, these methods im-

prove the quality of corrupted images by uncovering the relationships among the corrupted

and original image patches in the SR domain, where these relationships can be achieved

more adaptively and accurately than the abovementioned techniques proposed for the spa-

tial domain. Especially, this correlation is efficiently modeled by means of the synthesis

sparse representation of the correctly received neighboring area using a learned dictionary.

The synthesis sparse recovery-based approaches are superior to both interpolation-

based and statistical-based methods, since they are able to produce novel details that

cannot be recovered by the aforementioned methods. Several sparse recovery-based EC

methods have been proposed in [93] and [115]. The method in [93] assumes that the sparse

representation of the lost area in the image is the same as that of the known neighboring

areas with respect to an off-line trained dictionary. However, this assumption is not satisfied

when the lost area is located in the high textural region or the size of missing area becomes

larger. Therefore, there is no guarantee for an accurate recovery of the missing regions.

Motivated by the joint sparse representation model, the works in [94], [95], and [115] try to
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learn the relationships between the patches in the corrupted and original images using two

external training datasets of the original and corrupted image patches. This relationship

can be effectively found by transferring the original and corrupted patches into the sparse

representation space over the trained dictionaries. In addition to these works, instead of

using external training datasets, the authors in [115] train a mapping function between a

lost block and its neighboring pixels by finding the similar patches in the input corrupted

image in order to transfer knowledge of available regions to the missing regions for the EC

purpose. However, in the extreme, when the similar patches cannot be found in the image,

it is impossible to learn a good mapper.

4.1.2 Joint Sparse Representation (JSR)

In recent years, the sparse data representation has been extensively utilized in different

applications by means of `0-norm and `1-norm minimization techniques [116]. Based on

this modeling, an image patch is represented using a small number of basis functions chosen

out of an over-complete dictionary [102]. The choice of over-complete dictionary plays an

important role in the sparse representation modeling. One of the most flexible ways to

obtain such an over-complete dictionary is by learning from a set of example image patches,

which has been an active field of research over the past decade [23,35,36,117].

Recently, Yang et al. proposed a joint sparse representation modeling for image super

resolution [118]. They assume that there exist two coupled over-complete dictionaries for

two different modalities (low resolution (LR) and high resolution (HR) image patches), over

which each paired samples of modalities have the same sparse representations. Based on

this modeling, a coupled dictionary learning is proposed, in which the coupling is realized

by enforcing the low and high resolution patches to share the same sparse feature space.

This joint sparse representation modeling has been extensively used in other applications,

including classification [119], cross-model matching [120], and multispectral image change

detection [121]. In [122], it is assumed that the sparse representations of the two modalities

are related to each other via a linear mapping function. This type of modeling relaxes the

strong assumption of the coupled dictionary learning algorithm in [118], and brings more

flexibility to characterize the image structures. However, using a single linear mapping

may not be good enough for the sparse representations of two modalities accurately [123].

In the field of cross-model matching, a new coupling model has been recently proposed

which uses two linear mappings to project the sparse representations of the paired samples
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from the two different modalities into a common space to enable joint assessment of the

two modalities [124].

4.1.3 Contributions

In this chapter, the image EC task is considered as an inverse problem of recovering the

original image from the corrupted received image. This recovery procedure is generally a

severely ill-posed problem due to the limited and insufficient information of the correctly

received areas of the image. However, one can solve this NP-hard problem by the sparse

signal modeling techniques and the strong correlations among the adjacent pixels in the

image. The present chapter models the error concealment scheme as a synthesis sparse

recovery framework (see Eq. (2.12)) using a trained dictionary. We use the learned dic-

tionary in order to adaptively select the most relevant basis for representing each patch

of the image, including the correctly received surrounding areas of the lost region. Then,

these basis and corresponding coefficients are used to conceal the corrupted region.

In this work, we build upon the recent success of the JSR techniques and propose a novel

EC method. Different from [122,124,125] wherein the authors use the learned mappings and

dictionaries for image synthesis and recognition, we reformulated the JSR-based dictionary-

mapping algorithm in [124] for error concealment application. Throughout the chapter,

we describe the settings for learning the dictionaries and mappings. As in the JSR, two

dictionaries corresponding to the original clean and corrupted image patches are trained in

a coupled manner. It is assumed that the dictionaries of the original and corrupted patches

are coupled to each other by identifying a mapping function. Based on this assumption,

the objective is to learn the mapping function jointly with the dictionary pair. As the

sparse representation of the original clean patch and the corrupted patch may not be

well correlated, several coupling approaches are proposed in this chapter to address this

problem. In the recovery phase, the dictionary corresponding to the corrupted dataset is

used to compute the sparse representation of the corrupted patch. This is then transformed

into the common space using the respective mapping function in order to find a good

estimation of the sparse representation of the original patch. Following this step, the

dictionary corresponding to the original dataset is used to recover the original patch.

Apart from the JSR model to error recovery, some natural image priors can also be

used as the regularization term to make the above joint encoding model more effective

and robust for the EC application. In this chapter, non-local self-similarity (NS) and local
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regularity (LR) priors are integrated into the proposed JSR model to further regularize

the solution space. The NS model benefits from many repetitive image structures in the

whole image and best preserves the edge sharpness and complex texture [126, 127] in the

concealed image. On the other hand, the LR model characterizes the local image structures,

wherein each pixel is estimated via linear combination of its surrounding pixels within the

support of the LR model [34, 128]. The way we mixed the local and non-local properties

with the learned mappings and dictionaries is our main and second contribution in this

chapter. In contrast to the existing approaches that use these priors in the spatial domain,

the novelty here is in the use of modeling the local and non-local priors in a transformed

space. The reason is that it provides a more robust and accurate estimation of the sparse

representation of the corrupted patch and the main features of the corrupted area can be

recovered more accurately in comparison with those from spatial domain. Combining the

JSR, LR, and NS models into a framework leads to a minimization problem. Designing

a fast and efficient solution for this minimization problem is another contribution of this

chapter. The main contributions of this chapter are therefore summarized as:

• We reformulated the JSR-based dictionary-mapping algorithm in [124] for the EC

application.

• By combining the JSR model, NS and LR priors into a unified framework, a robust

EC technique, namely joint sparse representation based-EC with the non-local and

local regularization (JSR+NL) is proposed.

• A fast and effective algorithm for solving the designed minimization problem is pro-

posed.

• A number of experiments are conducted to demonstrate the effectiveness of the pro-

posed JSR+NL method in comparison with recent EC algorithms. Further, we an-

alyze different parameter settings for our proposed approach, including the image

patch size and the dictionary size.

4.2 Joint Sparse Representation for EC

In this section, we firstly formulate the image EC problem to be considered in this chap-

ter. Next, based on the concept of joint sparse representation, a joint dictionary-mapping

learning algorithm is introduced. Finally, the JSR model for the image EC is proposed.
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Figure 4.2: Structure of the corrupted patch y. Each square stands for one pixel. L denotes

the lost block and S denotes the support area.

4.2.1 Problem Formulation

Let L denotes a B × B lost block in the corrupted image and S be the set of available

pixels, called support area. Consider a corrupted patch of size
√
M ×

√
M , represented

as a column vector y = [u,v]T , where v ∈ RP is a group of P unknown pixels in L and

u ∈ RM−P contains a set of adjacent and available pixels in S, as shown in Fig. 4.2. The

image EC problem asks: given a corrupted image patch y, recover the original image patch

x using just the correctly received information. This problem is formulated as follows:

x̂ = arg min
x
‖y−Hx‖22, (4.1)

whereH is anM×M diagonal matrix, whose diagonal entries are either 0 or 1. Here, value

0 refers to loss and 1 to correctly received corresponding pixel in the image. In this section,

in order to solve this ill-posed problem, a joint sparse representation model is considered

to regularize the solution space. The local and non-local priors are considered as another

regularization term in the next section.

The corrupted and original patches belong to different visual observation subspaces X

and Y, respectively. There is an intrinsic relationship, represented by mapping function

F , between these subspaces and if we could find this relationship, the error recovery can

be achieved easily. One of the most flexible ways to discover the mapping function F

is by learning. In this way, F is learned from the training data offline. This mapping

function is then utilized in the image reconstruction step [129,130]. However, learning the

mapping function F in the spatial domain is difficult due to the existence of a complex

structure among the training data in the spatial domain. This complexity makes it hard
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to correlate the data of different modalities accurately. On the other hand, it is well-

known that the image patches are sparse when represented by dictionaries [102]. Inspired

by this fact, the mapping function F can be found in the sparse representation domain

more accurately. Therefore, a straightforward way to find the mapping function is to

build two such dictionaries, one of which is responsible for the original patches in the

observation subspace X , whereas the other one is responsible for the corrupted patches

in the observation subspace Y. The JSR model [118, 122, 124] provides a powerful tool to

learn these dictionaries jointly with the mapping function F .

4.2.2 Joint Dictionay-Mapping Learning

In this section, we reformulate the JSR-based dictionary- mapping learning algorithm

in [124], for EC. The main idea is to learn a dictionary pair for the corrupted and original

patches in a coupled manner such that the sparse representations of the corresponding

patches are maximally correlated in some transformed space.

To learn the dictionary pair, firstly, two training datasets X and Y are constructed as

follows: A set of training images are corrupted by generating the isolated loss pattern (see

Fig. 4.1). The lost blocks are recovered by a simple interpolation algorithm to generate

an initial estimation for each corrupted image. The image patches of size
√
M ×

√
M ,

containing both known and corrupted pixels as shown in Fig. 4.2, are extracted and con-

sidered as the set of corrupted training patches. The corresponding image patches at the

same locations in the original images are recorded as the set of original training patches.

The mean intensity value of each patch is subtracted in order to improve the numerical

stability of the dictionaries in representing the patch textures.

Let X = [xi]Ni=1 and Y = [yi]Ni=1 denote the two generated training sets, where the

vectors xi ∈ RM and yi ∈ RM are the vector representations of the i-th original patch and

corresponding corrupted patch of size
√
M×

√
M , respectively. Suppose Dx ∈ RM×K and

Dy ∈ RM×K denote the trained dictionaries for the sparse representation of the original and

corrupted patches X and Y, respectively. These dictionaries are obtained by minimizing

the following objective functions:

arg min
Λx,Dx

(
‖X−DxΛx‖22 + λx‖Λx‖1

)
,

arg min
Λy ,Dy

(
‖Y−DyΛy‖22 + λy‖Λy‖1

)
, (4.2)

where Λx ∈ RK×N and Λy ∈ RK×N represent the corresponding sparse representation
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matrices. λx and λy are the regularization parameters and ‖·‖1 denotes the `1-norm1. It

should be noted that the sparsity is controlled by values of the parameters λx and λy.

It is assumed that the sparse representation matrices, Λx and Λy, are directly related

to each other via a linear mapping matrix M ∈ RK×K . In [95, 122], a mapping term,

defined as:

Emapping = ‖Λx −MΛy‖22, (4.3)

is incorporated into the dictionary learning algorithm to find the two dictionaries, Dx

and Dy, jointly with the mapping matrix M. Although this coupled dictionary-mapping

learning algorithm has been successfully applied to several tasks, such as image super

resolution and image classification [122], as discussed in Section 4.4, it might not guarantee

accurate matching of the corrupted and original patches for the EC application, especially

when some important structures of the patches are corrupted. In other words, a more

complex mapping matrix M should be learned to achieve a more robust performance.

Recently, the authors in [124] proposed a common space mapping approach for the

cross-modal matching task, wherein a more efficient relationship is found for two different

datasets X and Y. Inspired by this, we assume that the projections of the sparse repre-

sentation matrices, Λx and Λy, into a K-dimensional common space using two mapping

matrices, Mx ∈ RK×K and My ∈ RK×K , are the same with high probability. In this case,

a mapping term is defined as:

Emapping = ‖MxΛx −MyΛy‖22, (4.4)

and incorporated into the dictionary learning algorithm (4.2), leading to the following

minimization problem:

arg min
Dx,Dy ,Λx,Λy ,Mx,My

(
‖X−DxΛx‖22 + ‖Y−DyΛy‖22 + γ‖MxΛx −MyΛy‖22

+ λx‖Λx‖1 + λy‖Λy‖1 + λm
(
‖Mx‖22 + ‖My‖22

))
, (4.5)

where the first and second terms are fidelity terms associated with the data reconstruction

error. These terms ensure that the data in two modalities are reconstructed accurately

with minimum error. The third term denotes the mapping fidelity term to represent energy

associated with the mapping error between the sparse representations of the corrupted and

1The `1-norm is defined as follows: for x ∈ RN , ‖x‖1 =
∑N

i=1 |xi| where | · | stands for the absolute

value operator.
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original training patches. Moreover, The fourth and fifth terms ensure that the represen-

tations of the data in two modalities X and Y with respect to dictionaries Dx and Dy are

sparse. The terms γ, λx, and λy balance the image representation and sparsity, respec-

tively. The `2-norms on Mx and My impose additional constraints, regularized by λm, in

order to provide numerical stability and avoid over-fitting.

The objective function (4.5) is convex with respect to each of Dx,Dy, Λx, Λy, Mx, and

My when the others are fixed. An effective way to tackle the energy-minimization of (4.5)

is proposed as follows: first, the dictionary pair, Dx and Dy, and the mapping matrices,

Mx and My, are initialized as PCA basis and identity matrix, respectively. Then, three

following steps are iterated until convergence: (1) updating the sparse coefficients, Λx and

Λy, by fixingDx, Dy, Mx, andMy; (2) updating the dictionary pair, Dx andDy, by fixing

Mx, My, Λx, and Λy; (3) updating the mapping matrices, Mx and My, by fixing Dx,

Dy, Λx, and Λy. More details can be found in [124]. The step of updating the mapping

matrices is a ridge regression problem that is solved by the algorithm described in [124]. In

this algorithm, a positive constant is added to the main diagonals of the mapping matrices.

This small perturbation produces the diagonal mapping matrices and also guarantees that

the obtained mapping matrices are invertible. This means that the solution always exists.

More details can be found in [124].

At the case of using direct mapping term (4.3) and plugging into the dictionary learning

algorithm, the following optimization problem will be resulted:

arg min
Dx,Dy ,Λx,Λy ,Mx,My

(
‖X−DxΛx‖22 + ‖Y−DyΛy‖22 + γ‖Λx −MΛy‖22

+ λx‖Λx‖1 + λy‖Λy‖1 + λm
(
‖Mx‖22 + ‖My‖22

))
, (4.6)

Fig. 4.3 shows the difference between two joint dictionary learning algorithms using direct

mapping term (4.3) and common space mapping term (4.4).

4.2.3 The JSR based EC

Given the trained dictionaries Dx and Dy, and the learned mappings Mx and My, the

sparse representation of the corrupted patch y (as shown in the Fig. 4.2), can be easily

converted to the sparse representation of the original patch using the following optimization

problem:

arg min
αy ,αx

(
‖y−Dyαy‖22 + ‖x−Dxαx‖22 + γ‖Mxαx −Myαy‖22 + λy‖αy‖1 + λx‖αx‖1

)
.(4.7)
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(a)

(b) b

Figure 4.3: Block diagram of coupled dictionary learning algorithm using: (a) Direct

mapping term, (b) Common space mapping term

This optimization problem is iteratively solved by alternatingly updating αy and αx using

the two following problems:

arg min
αy

(
‖y−Dyαy‖22 + γ‖Mxαx −Myαy‖22 + λy‖αy‖1

)
,

arg min
αx

(
‖x−Dxαx‖22 + γ‖Mxαx −Myαy‖22 + λy‖αy‖1

)
. (4.8)

Finally, the concealed patch is obtained via x = Dxαx. Instead of using this iterative

algorithm here, a fast and yet effective way is proposed to obtain an approximated solution

for the minimization problem (4.7).
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Figure 4.4: Block diagram of the proposed joint sparse representation based image EC

algorithm.

Fig. 4.4 shows the pipeline of proposed JSR-based EC algorithm. First, an initial

image is obtained using a simple interpolation algorithm [108]. As explained later, this

initial interpolation simplifies much of the subsequent work without a computational cost.

Given a corrupted patch y, its mean intensity value is subtracted from, and then its

sparse representation, αy, with respect to the dictionary Dy is obtained via the following

minimization problem:

arg min
αy

(
‖y−Dyαy‖22 + λs‖αy‖p

)
, (4.9)

where ‖αy‖p is the sparsity-inducing regularization term and λs denotes the regularization

parameter that balances the tradeoff between the fidelity and sparsity terms. If p = 1,

then λs = λy. It has been illustrated in [126], given a trained dictionary learned with

`1-norm, the sparse representation of the image patches with respect to this dictionary

is in general of higher accuracy when using the `0-norm. Therefore, we consider p = 0

in our implementations2. The `0-normalization problem (4.9) is efficiently solved by the

well-known orthogonal matching pursuit (OMP) algorithm [47].

Once αy is obtained by solving the minimization problem (4.9), it is projected into the

K-dimensional common domain by αc = Myαy. It is assumed that the projection of the

sparse representation of the original patch, αx, into the common domain by Mxαx, is also
2The ‖ · ‖0 denotes the `0-norm counting the nonzero elements
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associated with the αc, i.e. Myαy = Mxαx. We next derive

αx = M−1x αc = M−1x Myαy. (4.10)

For simplicity, we consider P = M−1x My, then αx = Pαy. Further, the concealed patch

is obtained via x = Dxαx. Following this, the mean intensity value of the patch is added

back to the estimated patch. Finally, the unknown pixels, i.e. v, are replaced by the

corresponding pixels in the concealed patch x (see Fig. 4.2).

4.2.4 Block Recovery Order

As it can be seen in Fig. 4.2, the corrupted patch y contains P missing pixels of the

lost block (In this , we consider P = 4.) So, the lost block cannot be recovered at one

time. Instead, as in [113], we propose to recover the lost block sequentially. First, the

lost block is partitioned into
√
P ×

√
P blocks, as shown in Fig. 4.5. Then, the subblocks

are recovered one by one based on a predetermined order. Consider the subblock that

is located at the upper-left corner of the lost block in Fig. 4.5. In order to recover this

subblock, the corresponding corrupted patch of size
√
T ×
√
T , consisting of this subblock

and its avaialable adjacent pirxels, as shown in Fig. 4.2, is formed. Next, the patch is

recovered using the procedure described at the previous section. Finally, the corrupted

subblock is replaced with the corresponding pixels in the recovered patch. These steps are

repeated for the next subblocks.

In order to improve the quality of the reconstructed block, two further considerations

are employed: recovery order and overlap width. The reconstruction order, i.e. the order

that subblocks are recovered, plays an important role to the performance of the proposed

JSR-based EC algorithm. Since the accuracy of the recovered subblock depends on the

reliability of its available adjacent pixels, the subblocks that have more reliable information

at their support area are firstly recovered. This leads to a more precise estimation of the

sparse coefficients via (4.9) and thus better reconstruction quality. The recovery order of

an isolated lost block of size 8×8 pixels is shown in Fig. 4.5 where the subblocks illustrated

by a brighter gray-level are recovered first. Using this order for recovering the subblocks

also ensures that more reliable information at the support area of the next subblocks is

already provided.

Addition to the recovery order, we also consider an overlap depth between the adjacent

subblocks in order to avoid the blocking artifacts resulting from partitioning. Since the size
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Figure 4.5: Recovery order of an isolated lost 8× 8-pixels block. The pixels illustrated by

a brighter gray-level are recovered first.

of each subblock is 2 × 2 pixels, we set 1-pixel-width overlap depth between the adjacent

subblocks. Next, the subblocks are recovered one by one and the value of recovered pixels

located on the overlap area are averaged as their final values.

4.3 JSR-based EC with Non-local and Local Regularization (JSR+NL)

Clearly, it is expected that the sparse representation vectorαx, obtained by Equation (4.10)

should be as close as to the true sparse representation vector αt
x of the patch to be recov-

ered. However, the JSR model, presented in the Section 4.2.3, may not lead to recover the

true sparse representation αt
x due to the corrupted pixels in the input patch y. Further,

there are many repetitive patterns and regular structures throughout the natural images.

This NS model in combination with the LR prior existing in the natural images can be used

as a regularization term to regularize the solution space of the minimization problem (4.9)

and develop a much more accurate sparse representation model. The NS and LR models

have been used in many applications, such as image compression [131, 132] and inverse

problems [34, 128,133]. However, in these works, the NS and LR models are implemented

in the spatial domain whereas here they are in the sparse representation domain. This

regularization term is incorporated into Equation (4.9) to develop a more effective EC

algorithm, called JSR-based EC with the NS and LR models (JSR+NL).

The EC performance depends on the difference αx −αt
x. To faithfully reconstruct the

original image, this difference should be close to zero. By incorporating this difference into

the minimization problem (4.9), we propose the following optimization problem:

arg min
αy

(
‖y−Dyαy‖22 + λs‖αy‖0 + λnl‖Pαy −αt

x‖1
)
, (4.11)

where λnl represents the regularization parameter. This model enforces the sparse repre-

sentation vector αy to be estimated in a way that Pαy is close to αt
x. However, αt

x is
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unknown and the `1-norm in the objective function (4.11) cannot be directly measured.

Nonetheless, if we find a good estimation of αt
x, then we can develop a much more accurate

sparse representation model.

Generally, αt
x can be estimated in various ways. We propose to achieve a good esti-

mation of αt
x using the rich non-local and local redundancies existing in the input image.

Then, a good estimation of αt
x can be computed as the weighted average of the sparse

representation associated with an estimation of the input patch from the non-local similar

patches within the image and the sparse representation associated with an estimation of

the input patch from the local neighboring pixels. This leads to the following optimization

problem:

arg min
αy

(
‖y−Dyαy‖22 + λs‖αy‖0 + λnl‖Pαy − (aβns + bβlr)‖1

)
, (4.12)

where βns is the sparse representation vector of the estimated patch obtained via linear

combination of the non-local similar patches within the image and βlr is the sparse rep-

resentation vector of the estimated patch obtained from the local neighboring pixels. a

and b are two constants balancing the contribution of the NS and LR models (a+ b = 1).

In the following section, we discuss how the sparse representation vectors βns and βlr are

obtained.

For understanding how these estimations of αt
x, obtained by βns and βlr, can improve

the quality, we should pay attention to the second regularization term in (4.11). This

term regularizes the solution space of the first term in the minimization problem (4.11)

more effectively than the first regularization term. Since, βns and βns capture the main

features of the patches yns and ylr, respectively, this regularization term adds an efficient

constraint in order to improve the accuracy of Pαy.

4.3.1 Non-local Self-similarity for Regularization

The NS model is based on this fact that the higher level patterns, e.g. edges and texture,

tend to repeat themselves within the image [126, 127, 133]. Based on this concept, an

estimation of each input patch y can be obtained via:

yns =

L∑
i=1

wiyi, (4.13)

where yi is the i-th similar patch to the input patch y and L denotes the number of similar

patches within a large enough window of size H × H pixels. As can be seen in Fig. 4.6,
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Figure 4.6: Search window of the NS model. The search window includes the area that is

clean or already recovered.

the search window includes the area that is clean or already recovered. The weights wi

are calculated as a decreasing function of the weighted Euclidean distance between patch

y and the i -th similar patch:

wi =
1

κ
exp(−‖y− yi‖22/h), (4.14)

where h is a pre-determined scalar and κ denotes the normalization factor. The patches

with a smaller Euclidean distance have larger weights in the average. The exponential

function provides further control on the influence of similar patches on the estimation of

the patch y. The parameter h controls the slop of the exponential function and therefore

the decay of the weights as a function of the Euclidean distances [134]. This weighting

procedure emphasizes the patches which are closer to patch y.

Given the estimated patch yns, the sparse representation βns can be easily found by

arg min
βns

(
‖yns −Dxβns‖22 + λns‖βns‖0

)
, (4.15)

The well-known OMP algorithm [47] is used to solve this minimization problem.

4.3.2 Local Structural Regularity for Regularization

The LR model is based on this assumption that a local area in the image is stationary, which

states that there are meaningful local structures in the spatial domain of the natural image.

Based on this property, one target pixel zi can be predicted by weighted combination of

its neighbors si (called context of the LR model), i.e. z = si ∗ ai, where ai includes the

weighting coefficients (see Fig. 4.7). Therefore, an estimation of each input patch y can be

obtained by estimating all its pixels sequentially.
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The major challenge in the LR model is development of an accurate and fast predictive

model, i.e. how to find the optimal weights in order to fully exploit the information

contained in the context. In [132,135], the weighting coefficients are estimated by a training

procedure, where the training set is collected from the initially recovered image by searching

the similar patch in the entire image. But, this procedure may not adapt the LR model

to the image characteristics due to the poor quality of the initially recovered image and

tends to produce the visual artifacts [34]. In this chapter, we propose a learning procedure,

wherein an external database of the high-quality training examples are used to obtain the

weighting coefficients.

Let S be an N×Q matrix including N training vectors, extracted from a set of training

images. Each row of S consists of a 1×Q vector that includes the pixels in the context of a

target pixels z, as shown in Fig. 4.7. Let z be an N × 1 vector including the corresponding

target pixels. Intuitively, the training vectors in the matrix S are grouped into several

clusters, and then an LR model is learned for each cluster. In this chapter, the well-

known K-means algorithm [136] is used for clustering. Let S = {S1,S2, · · · ,SC}, where

Sk ∈ RNk×Q represents submatrix of Nk training vectors in the matrix S which belongs to

the cluster k and C is the total number of clusters. The weighting coefficients of the LR

model of the k-th cluster, denoted by Q× 1 column vector ak, is obtained by solving the

following least squares minimization problem:

a = arg min
a

‖zk − Ska‖22, (4.16)

where zk is aNk×1 column vector that consists of the target pixels in z corresponding to the

training vectors in submatrix Sk. A well-known closed-form solution for this minimization

problem is ak = (STk Sk)
−1(STk zk) [132]. Note that ak includes the weighting coefficients of

the LR model of k − th cluster.

Given an input patch y and all C learned LR models, first, the k − th LR model

is assigned to each pixel yi of y based on the minimum distance between its context,

i.e. si ∈ R1×Q as shown in Fig. 4.7, and the centroid of clusters {µ1,µ2, · · ·µC}, i.e.

k = arg mink ‖si − µk‖. Finally, the pixel yi is updated via yi = si ak. All pixels in

the input patch y is sequentially estimated to obtain a prediction ylr for the input patch

y. Finally, the sparse representation vector βlr is obtained by following the minimization

function that is solved by the OMP algorithm [47]:

arg min
βlr

(
‖ylr −Dxβlr‖22 + λs‖βlr‖0

)
, (4.17)
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Figure 4.7: Target pixel and its causal neighbors (context) of the LR model. Each square

stands for one pixel.

4.3.3 Recovery Algorithm

The optimization problem (4.11) can be solved through two following separate steps.

Step1) First, an initial sparse representation vector, denoted by α
[0]
y , is obtained by the

following optimization problem:

α[0]
y = arg min

α

(
‖y−Dyα‖22 + λs‖α‖0

)
. (4.18)

This minimization problem is solved by the OMP algorithm [47]. Then the initial esti-

mation of x, denoted by x[0], is estimated as x[0] = DxPα
[0]
y . Based on the x[0], initial

non-local estimation of βns and local prediction of βlr, i.e. β
[0]
ns and β

[0]
lr respectively, are

obtained using Equations (4.15) and (4.17).

Step2) The accuracy of the sparse representation αy is improved using an iterative

process. At each iteration l + 1, for fixed βns and βlr obtained from previous iteration,

the updated sparse representation vector α[l+1]
y is obtained via solving the following mini-

mization problem:

arg min
αy

(
‖y−Dyαy‖22 + λnl‖Pαy − aβ[l]

ns − bβ
[l]
lr ‖1
)
, (4.19)

Then, Equations (4.15) and (4.17) are used to update βns and βlr. Given α
[l+1]
y , the

concealed image patch is updated as x[l+1] = DxPα
[l+1]
y , which can be used to estimate the

β
[l+1]
ns and β

[l+1]
lr using the minimizations in (4.15) and (4.17), respectively. The improved

β
[l+1]
ns and β

[l+1]
lr are then used to enhance the accuracy of αy, and so on. The accuracy of

the sparse representation αy is gradually improved, which in turn improves the accuracy

of αx and thus the EC quality. Such a procedure is iterated until convergence. In the

proposed algorithm, the recovery process can be stopped when ‖x[l+1] − x[l]‖2 ≤ ε.

A specific extension of the shrinkage algorithm [133], originally proposed in [56], is

adapted to solve the minimization problem (4.19) iteratively. At the j + 1-th iteration,
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Algorithm 3 JSR+NL for EC
1: Input: a corrupted image patch y, Dx,Dy, Mx, and My;

2: Output: a concealed image patch x;

3: Initialize: α
[0]
y by (4.18), x[0] = DxPα

[0]
y , β[0]

ns and β
[0]
lr using (4.15) and (4.17), respectively;

4: Repeat on l = 0, 1, · · ·L− 1

5: Compute: β[l] = aβ
[l]
ns + bβ

[l]
lr ;

6: Set: α
[l,0]
y = α

[l−1]
y ;

7: For j = 0, 1, · · · J − 1 do

8: ν [l,j] = α
[l,j]
y + DT

y (y−Dyα
[l,j]
y )/ξ;

9: α
[l,j+1]
y = P−1S

(
Pν [l,j] − β[l]

)
+ P−1β[l];

10: End for

11: Update:

12: α
[l+1]
y = α

[l,J]
y ;

13: x[l+1] = DxPα
[l+1]
y ;

14: β
[l+1]
ns and β

[l+1]
lr using (4.15) and (4.17);

15: Until ‖x[l+1] − x[l]‖2 ≤ ε.

α
[l,j+1]
y is obtained by the following shrinkage operator:

α[l,j+1]
y = P−1S

(
Pν [l,j] − β[l]

)
+ P−1β[l], (4.20)

where ν [l,j] = α
[l,j]
y +DT

y (y−Dyα
[l,j]
y )/ξ, β[l] = aβ

[l]
ns+bβ

[l]
lr , ξ is a constant, and S(·) is the

soft-thresholding operator that accelerates the convergence of the recovery algorithm. At

the first iteration, i.e. j = 0, α[l,0]
y is set as α[l−1]

y and when the last iteration is done α[l+1]
y

is updated as α
[l,J ]
y , where J is the number of iterations for solving (4.19). It should be

noted that P−1 = M−1y Mx. The complete details of the recovery algorithm are described

in Algorithm 3.

4.3.4 Discussion

As mentioned at first of this section, the existing LR and NS models are implemented in

the spatial domain. In these approaches, one can use the estimated patches, yns and ylr,

and simply improve the quality of the reconstructed image in the spatial domain instead

of solving the minimization problem (4.11). However, it should be noted that the obtained

patches, yns and ylr, consist of a certain level of noise. When these noisy patches are used

for recovery of the original patch in the spatial domain, the recovered patch looks unpleas-
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Figure 4.8: 8-bit grayscale test images of size 512×512. From left to right: Lena, Peppers,

Goldhill, Mandrill, and Zelda.

ant. In contrast, when the LR and NS models are implemented in the sparse representation

domain, βns and βlr, which are obtained by Equations. (4.15) and (4.17), respectively, the

noise is mitigated significantly. In other words, Equations. (4.15) and (4.17) tend to extract

the main features of the predicted patches yns and ylr, respectively. Therefore, it leads to

more robust and accurate estimation of the sparse representation of the corrupted patch.

This is one of the most important characteristics of the sparse representation techniques

which has been used in many applications, especially image denoising.

4.4 Experimental Study

In this section, we briefly introduce the training datasets used by the joint dictionary-

mapping learning algorithm, described in Section 4.2.2. Then, the influences of the related

parameters on the EC performance are evaluated in order to select the appropriate values of

these parameters. Finally, the performance of the proposed JSR and JSR+NL algorithms,

presented in Sections 4.2 and 4.3 respectively, are evaluated via a suite of simulations

carried out on a set of 8-bit grayscale standard images of size 512 × 512 pixels, including

Lena, Peppers, Goldhill, Mandrill, and Zelda, as shown in Fig. 4.8. The EC performance

is assessed by the peak signal to noise ratio (PSNR) and the image perceptual quality

index (MSSIM) [137]. Note that the MSSIM index lies in the range [0, 1]. To evaluate the

proposed methods, different types of loss patterns, i.e. isolated loss, consecutive loss, and

random loss as shown in Fig. 4.1, are considered with the lost blocks of size 8 × 8 pixels

with different PLR, ranging from 10% up to 50%. In the case of random loss pattern, the

PSNR and MSSIM values are obtained by running the proposed methods 10 times and the

average results are reported as the final values.
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4.4.1 Training Sets Description

The CVG-Granada database3 is used for collecting the training data. This dataset consists

of 96 natural gray-level images of size 512 × 512 pixels. 20 images are randomly selected

for training. A corrupted training image set is also generated by creating the isolated

loss pattern for each image. The lost blocks are recovered by a simple interpolation al-

gorithm [108]. Then, the training sets X and Y are generated following the procedure

described in Section 4.2.2. A total number of 100000 patches of size
√
M ×

√
M , which

are rich in edges and textures, are randomly cropped from each set of training images. In

practice, in order to make dictionaries more descriptive, the smooth patches are removed

from the training datasets [138]. This guarantees that the meaningful patches with a cer-

tain amount of edge structures will be involved in the training algorithm. In this chapter,

only the patches with the intensity variance greater than a threshold σ = 4 are kept.

4.4.2 Experimental Setup

Several parameters should be selected carefully: dictionary size D, size of image patch

M , values of the regularization parameters, and the related parameters in the NS and

LR models, such as number of similar patches and number of clusters. By conducting a

wide range of experiments, all the parameters are carefully tuned according to their best

performance. The parameters ξ, h, λx, λy, λm, γ, λnl, a and b are evaluated by varying

one of the parameters, and keeping the others constant. By conducting a wide range of

experiments, these parameters are selected as 0.02, 65, 0.01, 0.01, 0.1, 0.1, 0.1, 0.8, and 0.2

respectively. It should be noted that the parameter λs in Equations (4.9), (4.15), and (4.17)

are related to the number of non-zero entities (S) in the corresponding sparse representation

vector. In our implementation, we set S as the nearest integer number to M/4. This

sparsity value guarantees to capture the important component of the corresponding patch.

In the JSR model, the dictionary size and patch size would jointly influence the quality

of the bases in the dictionary pair and also the precision of the corresponding mappings,

thus having a great effect on the EC quality. In the following sections, the influence of

these parameters on the EC performance is analyzed. In each experiment, the test images

are corrupted with the isolated loss pattern and restored by the proposed JSR-based EC

method.

3http://decsai.ugr.es/cvg/dbimagenes/

http://decsai.ugr.es/cvg/dbimagenes/
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To evaluate the influence of dictionary size D on the EC quality, we set M = 25 and

D as 64, 128, 256, 512, and 1024. For each size, the dictionary pair and the mapping

matrices are learned using the joint dictionary-mapping learning algorithm. Table 4.1

shows the effect of dictionary size on the EC performance using the proposed JSR-based

EC algorithm in terms of PSNR. As D increases, the PSNR value increases, but a larger

value of D does not yield higher performance. It is easy to understand that the PSNR

value first rises and then declines, when the dictionary size becomes larger. Further, for

the high textured images, like Mandrill, the value of improvement is negligible with respect

to the dictionary size. We also evaluate the performance of the proposed JSR-based EC

algorithm with different M from 16 to 64. Best dictionary pair and mappings are trained

for each patch size. Table 4.2 shows the results according to different values of M . As can

be seen, the PSNR values increase when M increases. Using a larger patch means that

the area u (see Fig. 4.2) contains more reliable information. Note that the size of area v

is always fixed (2× 2 pixels). The EC quality increases because more reliable information

is used for patch recovery.

Generally, larger D and M are more suitable in the proposed JSR model for the EC.

The reason lies behind the fact that larger D and M will strengthen the representation

ability of the dictionary pair and the matching precision of the mapping matrices. On the

other hand, choosing a large patch size and dictionary size leads to more computational

complexity. Therefore, we select an appropriate patch size to obtain good EC performance

with lower computational costs, i.e. M = 25 and D = 256.

Other parameters: The number of similar patches in the NS model is set to L = 10

and the size of search window is set to 20 × 20 pixels. In addition, in order to avoid

the data over-fitting, a LR model of the order 10 (i.e. J = 10) is used. The optimal

selection of the number of clusters in the LR model is a nontrivial task. If the number

of clusters is small, the distinctiveness of the LR models is decreased. On the contrary,

choosing a large number of clusters leads the LR models less representative and reliable.

To select an appropriate value for the clusters number in the LR model, we conduct several

experiments by changing the clusters number. We have found that the performance of the

proposed JSR+NS method is stable when cluster number is greater than 200. The last

parameter that should be set is the iterations number. The EC performance of the proposed

JSR+NS algorithm is monotonically improved by increasing the iteration number. In our

implementation, when the difference of the PSNR value of the reconstructed image in
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Table 4.1: Effect of dictionary size on the EC quality using the JSR-based EC algorithm

in terms of PSNR (M is set to 5)

Dictionary Size D

10 20 30 40 50

Lena 34.59 34.90 34.92 34.76 34.68

Peppers 34.52 34.98 34.97 34.86 34.80

Goldhill 32.53 32.71 32.67 32.64 32.60

Mandrill 26.95 27.02 27.02 27.00 27.00

Zelda 37.23 37.49 37.51 37.39 37.36

Table 4.2: Effect of patch size on the EC quality using the JSR-based EC algorithm in

terms of PSNR (best dictionary size is obtained for each patch size)

Patch Size M

4 5 6 7 8

Lena 34.57 34.92 34.97 35.05 35.07

Peppers 37.72 34.98 35.05 35.17 35.19

Goldhill 32.55 32.67 32.69 32.73 32.80

Mandrill 26.96 27.01 27.02 27.05 27.08

Mandrill 37.31 37.51 37.52 37.59 37.63

successive iteration falls below a predefined threshold (ε = 0.005), the recovery algorithm

is stopped. All above-mentioned parameters are fixed for all the experiments throughout

this chpater.

4.4.3 EC Quality

The performance of the proposed JSR+NL algorithm is compared with those of other state-

of-the-art EC techniques, including non-normative spatial EC for H.264 (AVC) [103], EC

using projections onto convex sets (POCS) [104], content adaptive technique (CAD) [106],

edge recovery technique based on visual clearness (VC) [105], Markov Random Fields

approach (MRF) [108], multivariate kernel density estimation (MKDE) [109], sparse linear
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Table 4.3: PSNR and MSSIM Values of the concealed images using several EC techniques

for different loss patterns (isolated loss, consecutive loss and random loss with 30% PLR)

EC Technique

Loss Pattern AVC POCS CAD VC MRF MKDE SLP LSR ALP JSR JSR+NL

Lena

Isolated
PSNR 32.04 29.15 33.97 34.58 34.38 34.55 33.72 34.45 35.69 35.08 35.78

MSSIM 0.976 0.950 0.982 0.986 0.985 0.985 0.983 0.983 0.989 0.987 0.989

Consecutive
PSNR 28.84 26.21 27.43 22.83 31.09 30.57 29.48 30.13 32.14 31.80 32.56

MSSIM 0.950 0.898 0.945 0.781 0.969 0.964 0.959 0.952 0.975 0.973 0.976

Random
PSNR 28.92 26.94 26.45 18.18 31.55 31.45 30.62 31.35 32.61 31.91 32.38

MSSIM 0.945 0.921 0.915 0.576 0.971 0.970 0.966 0.963 0.977 0.973 0.975

Peppers

Isolated
PSNR 32.77 28.92 34.70 34.45 34.42 35.30 34.68 34.91 35.72 35.15 35.96

MSSIM 0.983 0.954 0.988 0.988 0.988 0.988 0.987 0.985 0.990 0.990 0.991

Consecutive
PSNR 29.59 25.78 28.75 23.20 31.37 30.57 29.77 30.67 32.36 32.10 33.03

MSSIM 0.965 0.901 0.964 0.804 0.976 0.969 0.965 0.959 0.979 0.979 0.982

Random
PSNR 28.98 26.70 26.97 18.40 31.44 30.95 30.23 31.25 32.29 31.76 32.34

MSSIM 0.956 0.924 0.938 0.601 0.976 0.972 0.968 0.969 0.979 0.977 0.980

Goldhill

Isolated
PSNR 32.54 29.38 32.72 32.45 32.34 32.99 32.46 32.40 33.44 32.77 33.51

MSSIM 0.969 0.939 0.971 0.972 0.971 0.973 0.971 0.971 0.976 0.973 0.979

Consecutive
PSNR 29.43 26.44 29.04 24.34 29.32 28.99 28.49 29.11 30.12 29.73 30.43

MSSIM 0.935 0.874 0.936 0.847 0.940 0.931 0.927 0.937 0.949 0.945 0.952

Random
PSNR 29.80 27.77 28.28 18.77 30.22 30.03 29.46 30.15 30.89 30.51 30.97

MSSIM 0.936 0.903 0.919 0.569 0.947 0.944 0.940 0.945 0.955 0.949 0.955

Mandrill

Isolated
PSNR 26.18 24.89 26.36 26.84 26.89 26.71 25.05 26.78 27.44 27.07 27.14

MSSIM 0.936 0.914 0.942 0.951 0.949 0.945 0.930 0.948 0.956 0.951 0.950

Consecutive
PSNR 23.19 22.17 22.36 20.72 23.88 23.34 21.73 23.82 24.33 24.04 24.12

MSSIM 0.864 0.822 0.854 0.766 0.889 0.867 0.839 0.885 0.906 0.894 0.895

Random
PSNR 24.83 24.09 22.10 17.55 25.57 25.18 23.62 25.23 25.87 25.68 25.77

MSSIM 0.896 0.878 0.799 0.491 0.917 0.905 0.889 0.914 0.924 0.919 0.920

Zelda

Isolated
PSNR 36.41 32.76 37.25 37.40 37.13 37.06 36.67 36.81 38.87 37.66 38.35

MSSIM 0.985 0.962 0.988 0.990 0.989 0.988 0.987 0.857 0.992 0.990 0.992

Consecutive
PSNR 33.46 29.54 32.73 26.15 34.30 33.40 32.79 32.38 35.68 34.86 35.57

MSSIM 0.971 0.917 0.971 0.864 0.979 0.973 0.969 0.955 0.984 0.981 0.984

Random
PSNR 32.95 30.47 31.76 20.65 34.40 33.42 32.95 33.64 35.51 34.59 35.13

MSSIM 0.962 0.932 0.955 0.628 0.975 0.970 0.967 0.966 0.982 0.977 0.980
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AVC POCS CAD VC MRF

MKDE SLP LSR ALP JSR JSR+NL

Figure 4.9: Subjective comparison between the proposed JSR+NL results and those of

other EC techniques for random loss patterns with 30% PLR using Lena concealed image.

prediction (SLP) [113], learning sparse representation-based EC (LSR) [93], and adaptive

linear prediction (ALP) based EC [97]4. In order to see the effect of LR and NS models

on the EC performance, the PSNR and MSSIM values of the reconstructed image using

the JSR-based EC algorithm is also reported.

Table 4.3 provides the EC results of all the methods for the test images corrupted by

different loss scenarios (isolated loss, consecutive loss, and random loss with 30% PLR).

The best values are marked in bold. In terms of PSNR and MSSIM, the performance

of the proposed JSR-based EC algorithm is better than most of the competing methods,

especially in the consecutive and random loss patterns. The EC performance can be further

improved by the proposed JSR+NL algorithm. As can be seen in Table 4.3, the EC results

of competing methods are significantly lower than those provided by the proposed JSR+NL

algorithm for the images Lena and Peppers, which demonstrate its effectiveness for the error

recovery by exploiting jointly the non-local self-similarity and local structural regularity.

Although, the performance of the JSR+NL algorithm for the high texture images, such as

Mandrill, is lower than the ALP method in terms of PSNR, the MSSIM values, which are

more consistent with the human visual system, are nearly the same. However, as discussed

later, the JSR+LN algorithm is much faster than the ALP algorithm.

The zoomed parts of the concealed image Lena, reconstructed by different EC methods,

are shown in Fig. 4.9 for visual comparisons. The image is corrupted by the random loss

pattern (30%PLR). As it can be seen, the CAD and VC fail to recover the lost blocks

and the AVC and POCS cannot restore the lost blocks well. In comparison, the MRF,

4The Implementation of some techniques are available online at http://dtstc.ugr.es/~jkoloda/

download.html

http://dtstc.ugr.es/~jkoloda/download.html
http://dtstc.ugr.es/~jkoloda/download.html
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MKDE, SLP, and LSR can preserve more image details. However, these algorithms blur

the image edges. In contrast, the ALP algorithm is more effective in reconstruction of

both the smooth area and the complex regions, including texture and edges. Similar to

the ALP algorithm, the proposed JSR+NL method achieves much better results than the

others. Evidently, it can preserve most of image details and sharper image edges and

generates much less artifacts, leading to visually much more pleasant recovery. It can also

be observed that the JSR-based EC scheme can well reconstruct the image. However, there

are some artifacts around the edges.

The superior performance of the proposed JSR+NL algorithm comes from both the

joint sparse representation modeling and the natural image priors of the non-local self-

similarity and the local structural regularity. By analyzing the objective and subjective

results, the following observations are made: 1) In general, the JSR-based EC approach

performs better as compared to the interpolation based methods like SLP and statistical

based methods like MKDE, although its performance is comparable with that of ALP.

2) By incorporating the local and non-local models into the recovery phase, the image

quality can be further improved. Using the NS and LR models lead to the consistent good

performance.

4.4.4 Computational Costs

The run time of the proposed JSR+NL algorithm is compared with the state-of-the-art

EC methods in Table 4.4 for the random loss pattern (PLR=30%) on a typical computer

(Intel(R) Xeon(R) CPU @ 3.20 GHz 8 GB RAM) based on a non-optimized MATLAB im-

plementation. A similar random loss pattern is used for all the above-mentioned algorithms

and the average run time over 10 trials is given for each algorithm. It can be seen that

the proposed algorithm is much faster than the recently proposed ALP algorithm, which

is the best among the competing algorithms. Although, the proposed JSR+NL algorithm

has a considerably large error recovery time in comparison with the AVC, CAD and MRF

methods, its advantage in precisely estimation of the corrupted information is obvious in

terms of objective evaluations.

It should be noted that the dictionaries and mappings are trained offline and the compu-

tational cost of the proposed JSR+NL algorithm is usually dominated by the computation

of the sparse representation of the input patches using the OMP algorithm. In the worst

case, B2 vectors should be obtained via (4.18) for each lost block of size B × B. The
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Table 4.4: Reconstruction time (in seconds) for the concealed image Lena using several

EC techniques for different loss patterns (isolated loss, consecutive loss and random loss

with 30% PLR)
EC Technique

Loss Pattern AVC POCS CAD VC MRF MKDE SLP LSR ALP JSR JSR+NL

Isolated 0.09 6.07 4.10 559 9.23 236 82 64 158 22 39

Consecutive 0.20 8.70 5.22 1079 16.73 363 126 126 281 41 58

Random 0.15 5.83 3.90 586 10.34 253 85 75 171 25 42

computational cost of the sparse representation is also proportional to the dictionary and

patch sizes. As discussed before, we set D = 256 and M = 25 to balance the EC quality

and the reconstruction time. Further, the NS and LR models add additional computational

costs which come from the iterative shrinkage algorithm [56] and also finding the similar

patches for the NS model and searching the best LR model for each patch.

However, our approach can be modified in order to reduce the recovery time as follow-

ing:

• When building the patch y, one can consider more corrupted pixels P in the patch

to be recovered. This approach reduces the number of vectors to be recovered for

each lost block. In this chapter, we consider P = 4. It is also possible to decrease

the overlap depth between the adjacent subblocks (see Section 4.2.4).

• The algorithm could be optimized by using a fast NS algorithm [139]. Further, for

faster computation of the LR models, one can obtain one LR model for all the pixels

in the input patch, instead of finding different LR models for each pixel.

• The computational burden of the recovery process is substantially increased using

the iterative shrinkage algorithm [56]. For decreasing the complexity, the receiver

can early terminate the iterations, depending on its computational power, and yet

obtain a visually satisfactory image reconstruction.

• The proposed method can be easily executed in parallel manner and obtain an ac-

ceptable computational cost using an array of multiple instructions multiple data

(MIMD)-based parallel processors.

Finally, it should be noted that the initial interpolation by [108] simplifies much of

the subsequent work without any computational cost. If the initial reconstructed im-

age has a lower quality, it leads to a final low quality recovered image, reconstructed
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by the JSR algorithm. However, the second part of our algorithm can compensate

this quality loss with a larger number of iterations that leads to a slower reconstruc-

tion. So, this initial reconstructed image influences the computational cost of the

algorithm. In fact, the higher the initial recovery quality, the faster the eventual

recovery algorithm. We use the algorithm in [108] for the initial recovery that gives

us an acceptable reconstruction time for the JSR-NL algorithm. How to choose the

initial recovery algorithm to guarantee the low computational cost and how to make

the algorithm less sensitive to the initial reconstruction, and more generally, to noise,

will be part of our future research.

4.4.5 Performance Analysis of the Proposed Algorithm

The proposed method offers several benefits. Firstly, learning a separate dictionary for

each domain preserves the main structure of the data in the both domains, which can be

represented well by sparse linear combinations of the dictionary atoms. Further, learning

a mapping function in the sparse representation domain makes it more accurate since the

irrelevant information in the spatial domain is discarded. We have introduced several

mapping approaches in Section 4.2.2 which relate the sparse representations of the original

and corrupted patches in different ways. In this section, the effect of the employed common

space mapping, defined in (4.4), on the EC performance is evaluated in comparison with

the direct mapping, defined by the term (4.3). We also evaluate the EC performance of

the proposed coupling method in [93], wherein the mapping matrix M in (4.3) is set as an

identity matrix.

Table 4.5 reports the experimental results in terms of PSNR, where the image Lena

is corrupted with the random loss pattern at different PLRs, ranging from 10% until

50%. The image is concealed using the JSR-based EC algorithm with above coupling

terms. “JSR-I", “JSR-D", and “JSR-C" means mapping with the identity matrix, direct

mapping, and common space mapping, respectively. It can be observed that coupling of the

sparse coefficients using a common space performs better error recovery than other coupling

methods. The reason is that transferring the sparse representations into a common space

provides more freedom to uncover the relationships between the sparse coefficients of the

original and corrupted patches. It means that using an accurate coupling term in the

objective function (4.5) plays an important role in the enhancement of error recovery.
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Table 4.5: Effect of mapping approach on the EC performance (PSNR) for the image Lena

at different PLRs

PLR (%)

Mapping 10 20 30 40 50

JSR-C 38.41 34.96 32.31 30.13 27.28

JSR-D 38.31 34.87 32.23 30.05 27.26

JSR-I 37.35 33.88 31.16 29.24 27.24

4.5 Conclusion

In this chapter, a new image EC has been developed by integrating the LR and the NS

properties of natural images into the JSR. The JSR model estimates the corrupted patch via

a dictionary pair and two mapping matrices that are trained offline from two given training

datasets. By using this model, the error concealment is achieved by transferring the error

recovery problem into a common space via the two learned dictionaries and mappings. Such

transformation provides more freedom and flexibility for error concealment. Integrating

this model with the local and non-local priors, as a new regularization term in the sparse

representation domain, better preserves the sharp edges and suppresses visual artifacts.

The performance of the proposed method has been evaluated and compared with the

state-of-the-art methods, both quantitatively and perceptually.



Chapter 5

Transmitter-based Error Concealment based

on Sparse Recovery

The material of this part is essentially based on the following works

• A. Akbari and M. Trocan, “Sparse recovery-based error concealment for mul-

tiview images,” in Proceedings of IEEE International Workshop on Com-

putational Intelligence for Multimedia Understanding (IWCIM), Prague,

Czech Republic, Oct. 2015, pp. 1–5

• A. Akbari, M. Trocan, and B. Granado, “Sparse recovery-based error con-

cealment,” IEEE Transactions on Multimedia, vol. 19, no. 6, pp. 1339–1350,

June 2017

5.1 Inroduction

In Chapter 4, an receiver-based error concealment (EC) technique was proposed. However,

the annoying visual artifacts can still be observed for the high loss scenarios. In this

chapter, another error recovery algorithm is proposed in which a high quality image is

guaranteed, even at the high packet loss rates, at the expense of a simple modification

at the transmitter. The proposed approach is motivated by the recent results in the

compressed sensing theory [68, 140], which suggest that, under some mild conditions, the

sparse signal can be recovered from far fewer measurements of it.

This chapter of the thesis answers the following question: Is it possible to model the

error recovery scheme as an analysis sparse recovery framework; thereby, recovery of the

lost information is efficiently achieved by the correctly received data? In the sequel, the

proposed EC scheme will show that one may employ a simple linear projection to the signal

75
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to be transmitted in order to mitigate the negative effects of the packet loss caused by the

channel impairments. Especially, the proposed algorithm projects signal’s components into

a random basis, such that each generated projection contributes equally to the transmitted

information. If some of these projection are discarded, the signal can still be recovered, as

a sufficient amount of information about the signal is maintained in the correctly received

projections. At the receiver, the proposed approach simply discards the lost coefficients

and models the problem of error recovery as a sparse image reconstruction framework using

the remaining, received linear coefficients.

Furthermore, the proposed algorithm provides a more robust image transmission by

partitioning the wavelet coefficients into sparse trees followed by the linear random projec-

tor and a simple packetization scheme, at the transmitter side. The sparse image recovery

is achieved by adaptation of a well-known iterative sparse reconstruction to the defined tree

structure in the wavelet domain. Different from the receiver-based algorithm, proposed in

the Chapter 4, wherein the synthesis signal modeling has been done at the receiver side,

the proposed scheme benefits from the analysis signal modeling at the transmitter side

and implicitly mathematical modeling of the EC scheme as an analysis sparse recovery

framework at the receiver. For this reason, the proposed method is named Analysis Sparse

Recovery-based error concealment (SREC).

5.2 Analysis Sparse Recovery-based EC

In the sequel, the adaptation of the analysis sparse recovery for the image EC is investi-

gated.

5.2.1 Transmitter Side

As shown in Fig. 5.1, the key operations of the proposed SREC algorithm at the encoder

side consist of dividing wavelet coefficients into non-overlapping spatial groups which are

further projected onto a random basis independently. The projected groups are then

packetized appropriately prior to transmission over a Gaussian channel.

I. Partitioning of Wavelet Coefficients

First, an L-level 2D-wavelet decomposition Ω is applied to an image of size R×C pixels to

decompose it into 3L+1 subbands, i.e. X = Ωx, where X denotes the wavelet coefficients.
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Figure 5.1: Block diagram of the proposed SREC method.

The size of subbands at each decomposition level l is R2−l×C2−l pixels where l = 1, 2, · · ·L

(assuming for simplicity that R and C are powers of two). A 4-level wavelet decomposition

of the Lena image of size 512× 512 pixels is shown in Fig. 5.2(a).

Based on the well-known spatial-frequency relationship among the wavelet coefficients [141],

different structures are defined in [141,142] in which the wavelet coefficients that bear the

information associated with the same location and orientation across the wavelet subbands

are grouped into a wavelet tree structure. The proposed algorithm exploits this spatial-

frequency relationship of the wavelet coefficients and defines a different tree structure,

called Spatial Tree (ST). Instead of creating the tree in a certain orientation, the ST is

branched across three dimensions (horizontal, vertical, or diagonal) on the hierarchical

pyramid that is more appropriate for the sparse recovery.

The ST is rooted by one coefficient at the lowest frequency subband and then branched

to three corresponding coefficients in the same relative position in each of the other three

lowest level subbands. These three coefficients are considered as the offspring of the root

coefficient. Each of these three nodes and all the subsequent coefficients in the higher

subbands have four offspring grouped in 2 × 2 adjacent coefficients in the same relative

position in the next higher level subbands of the pyramid. The union of the root and its

entire offspring gives the ST structure. An example of a single ST in the wavelet transform

domain is shown in Fig. 5.2(b). It should be noted that this partitioning structure partitions

the wavelet coefficients into non-overlapping groups.

If the arrangement of one ST’s wavelet coefficients is changed, as shown in Fig. 5.2(c),

they constitute a block, called Spatial Block (SB). Conceptually, each SB contains the

frequency components corresponding to a block of the same size in the pixel domain.
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Fig. 5.2(c) shows the relationship between each SB and the corresponding image content.

Using an L-level wavelet decomposition, the size of one SB is 2L × 2L. Note that the

SB can be generated by one or m× n adjacent STs. In this case, the size of the SB would

be m2L×n2L. The number of decomposition levels (L) and the number of trees generating

a SB (TSB) are chosen to meet a desired block size, typically 8× 8, 16× 16, or 32× 32.

II. Linear Encoding of Wavelet Coefficients

Suppose S1,S2, · · ·ST denote the SBs, where T is the number of generated SBs. T is equal

to NLL/mn, where NLL is the number of coefficients in the lowest frequency subband

(NLL = RC/4L). Assume Zi, i = 1, 2, · · ·T is a vector of size N × 1 representing, in

a raster-scan fashion, the wavelet coefficients of the corresponding SB, i.e. Si, where

N = mn4L). Each Zi is then projected onto a basis Φi of size N × N by Pi = ΦiZi

to obtain the projection vector Pi of size N . Φi is a random matrix whose entries are

independently Gaussian distributed with unit variance. We assume Φi is also chosen to

be orthonormal (ΦT
i Φi = I, where I is identity matrix.) This is done by orthonormalizing

the rows of the above Gaussian matrix.

Generating the linear coefficients using the random matrix Φi provides two significant

properties associated with the entries of each Pi. First, each entry of Pi carries roughly

the same amount of information about the corresponding SB (Si). This property is called

democracy property [140]. Second, each entry of one Pi picks up a little bit of information

about the relating SB (Si) [143]. As will be discussed in the next section, these properties

enable the decoder to still achieve accurate recovery of the wavelet coefficients of the SBs

so long as enough, but not fully, entries of each Pi are received.

III. Packetization

In the following, the packetization algorithm is discussed. The packetization scheme in-

volves distribution of the entries of Pi-s into packets in a way that reduces the impact of

the packet loss to the image quality. To further enhance both robustness and image qual-

ity of the proposed method, the entries of the projections vectors, Pi-s, are evenly spread

among the packets, so that no two coefficients from a certain projection vector appear in

the same packet. The allocation process can be seen in Fig. 5.3, where all the underlying

coefficients assigned to a particular packet are denoted by the same shade pattern. If each
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(a) (b) (c)

Figure 5.2: (a) 4-level wavelet decomposition of the Lena image (512×512 pixels). (b) ST

structure. (c) SB construction and its relationship with corresponding image content.

Figure 5.3: Packetization scheme. Coefficients with the same shading pattern map to one

packet.

packet includes κ coefficients, it can be easily found that the number of generated packets

equals 4−LNRC/κmn.

This type of packetization ensures that if one packet is lost, only one entry of the Pi,

belonging to that packet, is lost. Then, only a fraction of entries of each Pi is lost due to

the packet loss, especially in the case of burst errors, thus preserving more entries of each

Pi for the image recovery. Furthermore, it mitigates the simultaneous loss of the whole

coefficients for a certain Pi, the fact that would have an impact on the performance of the

proposed error recovery algorithm.

Due to the democracy property of the linear projections in the Pi-s [140], the gen-

erated packets are expected to share the information equivalently, and thus there is no

need to transmit the packets with priority, opposed to other encoding and packetization

methods [144] that generate unequally important packets (i.e. , unequal protection over

the noisy channel is mandatory in these schemes). In the proposed approach, therefore,

the image quality is proportional to the number of received packets and not to specific
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packets [145]. This type of packetization in connection with the linear projection of the

wavelet coefficients introduces more robustness and error-resilience into the transmission

system and ensures that a high quality image can be recovered, even for the high packet

loss rates.

5.2.2 Receiver Side

At the receiver, the decoder can easily recover each SB as:

Z̃i = Φ−1i Ṗi, (5.1)

where Ṗi denotes the received projections vector which equals the Pi in a lossless channel.

Reconstruction via (5.1) leads to a low quality image in the case of transmission over an

error-prone channel. But how does the proposed SREC method help the decoder in a

lossy channel? In fact, the random and linear nature of the projected coefficients of each

Pi, produced by the encoder, provides a certain degree of the error protection. The error

recovery starts by simply discarding some rows of the matrix Φi to generate a submatrix

Φi, called Channel Matrix (CM), for each received Ṗi. Then, it performs the signal

reconstruction by mathematically modelling of the error recovery as a sparse recovery

problem. The structure of the decoder is depicted in the Fig. 5.1.

I. EC via Sparse Recovery

Assume Ei is a length-N binary vector with 1 at the position of the correctly received

entries of the corresponding Pi. It should be noted that the loss pattern in each Ei can

be detected easily. Since each packet is sequentially numbered before the transmission at

the encoder side, the locations of the lost coefficients of each Pi are easily identified at

the decoder during the depacketization step. Consider Γi ⊂ {1, 2, · · ·N} whose entries

denote the set of indices corresponding to the correctly received entries of the Pi. Then,

the received Ṗi, at the decoder side, is:

Ṗi = Ei · ∗ Pi = Ei · ∗ (ΦiZi) = Φ̇iZi, (5.2)

where ·∗ denotes an element-wise matrix product. It should be noted that the matrix Φ̇i

equals with the matrix Φi for the rows indexed by Γi and it is zero for the remaining ones.

By Φi, we mean a |Γi| × N matrix (CM)1, obtained by selecting the rows of Φi indexed
1|·| denotes the number of entries of a set.
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by Γi. Then, Eq. (5.2) can be reformulated as:

Pi = ΦiZi, (5.3)

where Pi is a |Γi| × 1 vector obtained by removing the zero elements from the Ṗi. Here,

the object is to recover Zi from Pi. In this undetermined linear system, the number of

unknowns is much larger than the received coefficients. To cope with the ill-posed nature of

this inverse problem, as discussed in Section 2.4, the regularization-based technique leads

to the following minimization problem:

Z̃i = arg min
Zi∈RN

‖Pi −ΦiZi‖22 + λ‖Zi‖1, (5.4)

where λ is the regularization parameter. It should be noted that the analysis sparse

modeling has been implicitly done by using the wavelet basis at the transmitter side, in

contrast to the algorithm, proposed in Chapter 4, that synthesis sparse modeling is achieved

at the receiver side.

II. Recovery Algorithm

In sequel, a specific instance of the projected Landweber algorithm [25], as decribed in

Section 2.6, is adopted for the sparse recovery of the wavelet coefficients to find a solution

for the cost function (5.4). At the receiver side, when all Pi-s and their corresponding

Φi-s are extracted, the reconstruction is finally achieved by the adaptation of the PL in a

way to accommodate the situation in which the sparse reconstruction takes place within

the defined tree structure in the wavelet domain. The recovery algorithm also involves

a thresholding procedure to accelerate the convergence of the LP algorithm. It tries to

approach the minimizer of (5.4) by an iterative process which goes as follows.

For sake of simplicity, it is focused on a single iteration. Each iteration includes two

stages as follows: first, the algorithm employs the PL algorithm on each SB separately in

the form of Z̃
[k+1]
i = Z̃

[k]
i + Φ

T
i (Pi − ΦiZ̃

[k]
i ). Z̃

[k]
i of size N × 1 represents, in a raster-

scan fashion, the reconstructed wavelet coefficients of the corresponding SB, i.e. Si at

the k -th iteration. At each iteration, the back projection term of Φ
T
i (Pi − ΦiZ̃

[k]
i ) is a

distance measure to the previous solution. When added to the resulting solution at the

k -th iteration, it promotes proximity between subsequent estimates of the iterative process.

In the next step, after rearranging the SBs into the corresponding spatial trees in the

full-wavelet decomposition plane, the bivariate shrinkage thresholding process, as discussed
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in [25], is interleaved with the PL stage in order to promote the sparsity in the domain of

full-image wavelet transform. The thresholding step enforces prior information (sparsity)

on the Zi-s to be reconstructed in order to accelerate the convergence of the LP iteration

by simply setting some weights to the reconstructed coefficients, benefiting from the prop-

erty of spatial localization of the wavelet coefficients. Finally, the L-level inverse wavelet

transform is applied to the reconstructed wavelet coefficients X̃ to obtain the concealed

image x̃. The complete details of the recovery algorithm are described in Algorithm 4.

Threshold(·) in Line 11 denotes the thresholding process used to provide the requisite

sparsity constraint. In the proposed algorithm, the decoder terminates the recovery pro-

cess when ‖x̃[k+1] − x̃[k]‖2 ≤ 0.001. However, decoder can early terminate the iterations

depending on its hardware limitations. It should be noted that the PL loop is indepen-

dently applied on each SB. After reconstruction of all SBs at k -iteration, the resulting SBs

should be transformed back into the full-wavelet plane in order to employ thresholding.

As shown in Fig. 5.2(c), each recovered SB corresponds to one block of the same size in

the original image. Then, the appearance of the blocking artifacts is predictable, especially

for the high packet loss rates. As will be shown in the next section, the proposed recovery

method does not introduce the blocking artifacts. In fact, the inverse wavelet transform

performs a weighted average of the reconstructed coefficients within the filter span. Thus,

the wavelet coefficients relating to the neighboring STs contribute to the values of pixels

in the block boundaries in the spatial domain.

5.2.3 Discussion

I. Recovery Stability and Error Robustness

As mentioned in Section 5.2.2, the recovery algorithm 4 is a specific instance of the PL

algorithm [25]. The convergence of this algorithm has been well proven in [146] and [56],

if the restricted isometry property (RIP) holds and signal has enough sparsity level. As

discussed in the Section 5.2.2, Φi, which is a submatrix of Φi and made up of rows corre-

sponding to the coefficients that were not lost, must hold the RIP property in order to be

able to recover a sparse signal. In the proposed algorithm, Φi is a random matrix whose

entries are independent realizations of a Gaussian distribution; then, with high probabil-

ity, all |Γi| ×N submatrices (Φi) of Φi satisfy the RIP, provided |Γi| ≥ O(Ki log(N/Ki)),

where Ki is the sparsity level of the corresponding SB (see Appendix).

Moreover, the wavelet coefficients of the natural signals (voice, image and video) are
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Algorithm 4 ASR
1: Input: Φi and Ṗi(i = 1, 2, · · ·T )

2: Output: Φi and Φi(i = 1, 2, · · ·T )

3: Initialize: k ← 0 and X̃
[0] ← 0

4: Repeat

5: Extract SBs: Z̃
[k]
i (i = 1, 2, · · ·T )

6: Compute PL for each SB:

7: For i← 1 to T do

8: Z̃
[k+1]
i = Z̃

[k]
i + Φ

T
i (Pi −ΦiZ̃

[k]
i )

9: End

10: Reshape the SBs into full-wavelet plane: X̃
[k+1]

11: Control the sparsity: Threshold(X̃
[k+1]

)

12: Apply inverse wavelet decomposition:

13: x̃[k+1] = Ω−1X̃
[k+1]

14: Until ‖x̃[k+1] − x̃[k]‖2 ≤ 0.001

known for being compressible [147]. Fig. 5.2(a) illustrates this property, that is, the sub-

bands contain large values at the low frequencies and decreasing values as the frequency

of subbands increases. As a consequence, the defined tree structure (SB) (and then the

corresponding Zi) provides approximately Ki-sparse structures (i.e. Ki � N) and gives a

guarantee for recovering the image using only a fraction of the correctly received informa-

tion.

For description that the PL loop, including in the algorithm 4, guarantees the improve-

ment in each iteration, it can be written that

‖Z̃[k+1]
i − Z̃

[k]
i ‖2 ≤ ‖I−Φ

T
i Φi(Z̃

[k]
i − Z̃

[k−1]
i )‖2 ≤ ‖(Z̃

[k]
i − Z̃

[k−1]
i )‖2. (5.5)

By replacing Z̃
[k+1]
i − Z̃

[k]
i = Φ

T
i (Pi − ΦiZ̃

[k]
i ) and Z̃

[k]
i − Z̃

[k−1]
i = Φ

T
i (Pi − ΦiZ̃

[k−1]
i ),

it can be easily found that the algorithm converges as k → ∞. It should be noted that

the inequality is a consequence of the condition ‖Φi‖2 ≤ 1, which ensures that the term

I − Φ
T
i Φi is positive definite. Furthermore, it will be experimentally discussed in the

Section 5.2.4 that the accuracy of the reconstructed image is further improved iteration by

iteration.

Instead of using Gaussian matrix Φi, a more general class of sub-Gaussian matrices,
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such as i.i.d ±1 Rademacher matrix, can also be used in the proposed algorithm, given

that any arbitrary subset of their rows satisfy the RIP property [140].

II. Distortion Estimation

To evaluate the effectiveness of the proposed SREC algorithm, it is assumed that the

packets are transmitted through a memoryless channel with a probability of the packet

loss given by a parameter ε. The object is to calculate the expected value of the cor-

rectly received coefficients for each SB. The probability of correctly receiving k out of N

coefficients in each SB is given by the probability mass function:

Pr(k) =

(
N

k

)
(1− ε)kεN−k. (5.6)

According to this formula, there are
(
N
k

)
different ways of receiving exactly k coefficients

with probability of (1 − ε)k and N − k failures with probability of εN−k. The expected

value of the correctly received coefficients for each SB can now be calculated as:

M̃ =

N∑
k=0

kPr(k). (5.7)

Moreover, according to the Theorem 1.1 in [148] (see Appendix), the reconstruction error

for each SB obeys:

‖Zi − Z̃i‖2 ≤ C(
M̃

logN
)−r r =

1

βi
− 1

2
, (5.8)

where 0 < βi < 1 and C is a fixed constant depending on βi. βi is selected such that the

r-th largest component of the Zi holds Zi(r) ≤ αr−1/βi , where α is a constant. Therefore,

βi is relating to the sparsity level of the corresponding SB; larger values for the highly

textured SBs and lower values for the smoothed SBs are assigned. It results from the

Parseval’s theorem that the overall distortion of the reconstructed image can be calculated

as:

‖x− x̃‖2 =

T∑
i=1

‖Zi − Z̃i‖2 ≤ Dexp = C ′(
M̃

logN
)−r

′
, (5.9)

where r′ = 1
β −

1
2 and T , as defined in the Section 5.2.1, represents the number of SBs. β

is the average value of βi(i = 1, 2, · · ·T ) and can be considered as a factor depending on

the sparsity level of the full-wavelet coefficients. For the wavelet coefficients, β usually lies

in the range of 0.3 < β < 0.7 [147]. C ′ is a fixed constant depending on the β. Dexp is

thus considered as a bound of the expected reconstruction error and will be used in next

section for evaluating the performance of the proposed SREC.
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III. Compatibility

The proposed method can be easily extended to either spatial or other transform domains

like Discrete Cosine Transform (DCT). It is just needed to apply the linear combination to

the spatial or transformed blocks like DCT ones. What is important in the error recovery

performane of the proposed method is that the blocks should be sparse in order to have

a good recovery. As will be discussed in the Section 5.2.4, if the blocks are more sparse,

the performance of the EC will be higher. In this chapter, the tree-sparse structure of

the wavelet coefficients is explicitly exploited. In addition, the localization property of the

wavelet transform achieves a superior sparsity in comparison with other transforms and

allows more flexible representation based on the local signal characteristics. It also limits

the effects of irregularities which are the main source of large coefficients [36].

For an instance of compatibility of the proposed scheme, it can be easily extended for

error protection of the intra frames encoded by the video coding standards, like MPEG,

H.264, and HEVC. After partitioning the frame, DCT transform and quantization steps,

the random linear combinations of coefficients of each block are then adopted to provide

a high error recovery capability for the intra frames. This linear process coupled with

the proposed simple packetization method introduces more robustness and error-resilience

into the transmission system. At the receiver side, the sparse property of the DCT blocks

is explicitly exploited in order to model the error recovery problem as a sparse recovery

framework.

5.2.4 Experimental Results

In this section, the performance of the proposed EC technique described in the Section 5.2

will be evaluated via a suite of simulations carried out on a set of 8-bit grayscale standard

images of size 512× 512 pixels, as shown in Fig. 5.4(a), including Lena, Peppers, Goldhill,

Barbara, and Mandrill. In each set of simulations, 10 trials are performed due to the

random nature of packet loss then, the average performance is computed. In order to

better take into account the stability and robustness of this recovery method, the Peak

Signal-to-Noise Ratio (PSNR) and the Structural SIMilarity (SSIM) index [149] are chosen

as objective measurements in the experiments. The SSIM index tends to automatically

capture the visually important perception similarities (luminance, contrast, and structure)

within the image and marginalize the influence of changes in the intensity; therefore, it
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(a)

(b)

(c)

(d)

Figure 5.4: Subjective results for the test images. (a) Original image, (b) Received images

with PLR = %30, (c) Concealed images with PLR = %30, (d) Concealed images with PLR

= %70. From left to right: Lena, Peppers, Goldhill, Barbara, and Mandrill.
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provides a more pertinent perceptual quality measure [149]. Note that the SSIM index lies

in [0, 1], a perfect image reconstruction having an SSIM index of 1.

5.2.5 Reconstruction Quality

A 4-level wavelet decomposition using the Daubechies biorthogonal 9/7 filter bank [150]

is applied to the original image, and then the SBs are extracted from the hierarchical

subbands. In this set of experiments, each SB consists of only one spatial tree. In this

case, 1024 16 × 16 SBs are constructed. Finally, the SBs are projected via a Gaussian

random matrix Φi. The packetization process is done as described in the Section III.

and each packet includes 4 coefficients. At this case, 65536 packets are generated. As

mentioned before, no advantages are gained by using priority for the packet transmission.

A packet erasure channel model is implemented to evaluate the error robustness. The

packets are randomly dropped according to a certain PLR, ranging from %10 to %80.

As we discussed in the Section III. , the generated packets are expected to share the

information equivalently, and thus there is no need to transmit the packets with priority.

It means the performance of the proposed algorithm does not change, if the scenario of

packet loss is changed.

The accuracy of the reconstructed image is improved iteration after each iteration. In

Fig. 5.5(a), the reconstruction PSNR values (in dBs) versus iteration number are given

for the test images at %30 PLR. As can be seen, in the 10th iteration, the PSNR values

for different iterations appear to level off at 39 dBs, 37 dBs, 35 dBs, 33 dBs, and 26 dBs

for the Lena, Peppers, Goldhill, Barbara, and Mandrill, respectively. The PSNR values of

the Lena image versus iteration number for different PLRs are illustrated in Fig. 5.5(b).

As can be observed, more iterations are needed for the higher loss rates to satisfy the

convergence condition. Generally, the computational burden of the recovery process is

substantially increased using such iterative process. For decreasing the complexity, one

receiver can early terminate the iterations, depending on its computational power, and yet

obtain a visually satisfactory image reconstruction.

The reconstruction PSNR performance of the SREC at various PLR values, ranging

from %10 to %80, is displayed in Fig. 5.6(a) for different test images. The solid lines show

the concealed image using the SREC algorithm and the dotted lines depict the received

image reconstructed via (5.1) directly without using the proposed SREC algorithm. The

dashed line denotes the minimum expected PSNR values. This curve is obtained by the
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Figure 5.5: Reconstruction quality (average PSNR) vs. iteration number at: (a) PLR =

%30 for different test images and (b) for different PLR values for Lena image.

average value of 20 log(255/
√
Dexp) over β in the range of 0.3 < β < 0.7. Fig. 5.6(b)

further illustrates the SSIM results of each test image. By comparing the results, it can be

seen that the SREC algorithm can indeed help to increase the reconstructed image quality.

In order to assess the superior performance of the proposed SREC model, the subjective

quality comparisons for different test images are given in Fig. 5.4(c) over the channel with

%30 PLR. For the sake of comparison, the reconstructed images using the proposed method

are also shown in Fig. 5.4(b). It can be found that more image details (texture and edges)

are recovered gradually as the SREC advances into the image reconstruction.

As can be seen, the PSNR and SSIM values for the received images decrease as the

packet loss rate increases. However, the SREC algorithm provides surprisingly good per-

formance in the high packet loss rates (where more than %50 of information is lost) due

to the sparse property of the wavelet coefficients and the democratic characteristics of the

linear random projections. Fig. 5.4(d) shows the concealed image for the loss scenario with

%70 PLR that confirms the superior performance of the SREC for the high PLR values,

subjectively.

For images with a small sparsity level, like highly textured images, more wavelet co-

efficients are needed for each SB to approximate the image with small errors. This also

implies that more coefficients should arrive at the receiver end for an accurate recovery.

The plots in Fig. 5.6 reflect this scenario. For the same PLR, both PSNR and SSIM values

for the Mandrill image are less than ones obtained for other images.
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Figure 5.6: Quality of received and concealed images vs. PLR (averaged values) in term

of (a) PSNR (b) SSIM. Solid lines depict the quality of reconstructed images. Dotted line

depicts the quality of the received images reconstructed by (5.1). Dashed line depicts the

minimum expected quality (PSNR) obtained by (5.9).

From the objective results reported in Fig. 5.6 and the subjective results illustrated by

the Fig. 5.4, it should be noted that considerable robustness is achieved at the expense of

adding a simple random linear encoder at the transmitter side. In the sequel, other factors

relevant to the system’s performance are considered, including the wavelet functions and

size of the generated SBs which is based on the number of wavelet decomposition levels

(L) and the number of included spatial trees in each SB (TSB).

5.2.6 Packet length Effect

Fig. 5.7 shows the performance of proposed EC method for different packet sizes for the

Lena image at different PLRs. As can be observed in the Fig. 5.7, at a given PLR, there

is no difference in the EC performance by changing the packet size. It can be concluded

that the proposed scheme can be used in the networks in which the packets with different

size can pass onwards. It should be taken into consideration that a larger packet carries

more user data which brings greater efficiency in the network throughput. However using

large packets are problematic in the presence of the communications errors. In fact, when

a packet is corrupted at a certain time due to the corruptions in a communication network,

more information is lost at the same time, when compared with a network in which smaller

packet size is used.
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Figure 5.7: Effect of packet length on the EC performance for the Lena image.

Table 5.1: Average PSNR Values for Lena Image for Different Wavelet Functions

PLR%

10 20 30 40 50 60 70 80

Daubechies 9/7 44.49 41.23 39.17 37.60 36.23 34.93 33.56 31.85

Daubechies 5/3 42.88 39.63 37.65 36.13 34.82 33.57 32.25 30.46

LeGall 5/3 37.70 35.62 33.93 32.37 30.82 29.13 27.13 24.52

5.2.7 Wavelet Functions Effect

The choice of wavelet function is a factor that influences the performance of the proposed

SREC scheme. Therefore, it is of interest to investigate the relative impact of using different

wavelet filters. In Tables 5.1 and 5.2, the error performances of different wavelet functions

is compared in term of PSNR and SSIM, respectively. In addition to the Daubechies 9/7

filters, the performance of the Daubechies 5/3 [151] and the LeGall 5/3 filters [152] are also

tested. The parameter set L = 4 and TSB = 1 is taken as the settings of these experiments.

The 9/7 filters provide the substantial gain (PSNR: 1.3−1.6 dBs and SSIM: 0.002−0.017)

over the Daubechies 5/3 filters and (PSNR: 5.23 − 7.33 dB and SSIM: 0.01 − 0.134) over

the LeGall 5/3 filters under different PLRs. The reason comes from the fact that the

floating-point 9/7 filter bank is nearly orthogonal, and it generates excellent sparse trees.

In contrast, the floating-point Daubechies 5/3 and fixed-point LeGall 5/3 filter have less

compaction characteristics than 9/7 ones.
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Table 5.2: Average SSIM values for Lena Image for Different Wavelet Functions

PLR%

10 20 30 40 50 60 70 80

Daubechies 9/7 0.997 0.994 0.990 0.985 0.980 0.972 0.962 0.946

Daubechies 5/3 0.995 0.991 0.985 0.979 0.972 0.963 0.950 0.929

LeGall 5/3 0.987 0.978 0.967 0.954 0.937 0.914 0.878 0.812

5.2.8 SB Size Effect

As mentioned in Section II. , the size of generated SBs depends on the number of wavelet

decomposition levels (L) and the number of included spatial trees in each SB (TSB).The

SB size also makes some differences in the error recovery performance under a fixed PLR.

In order to evaluate the effect of SB size on the reconstructed image, at first, the number

of wavelet decomposition levels (L) is fixed to 3 and the SBs with size of 8 × 8, 16 × 16,

and 32× 32 pixels are generated by inserting 1, 4, and 16 adjacent spatial trees in one SB,

respectively. Table 5.3 illustrates that there is a difference of approximately 0.2-2.34 dBs

between the reconstructed quality with 32 × 32 and 8 × 8 SBs in the case that the same

type of loss has occurred.

In the second set of experiments, the number of included spatial trees in each SB (TSB)

is fixed to 1 and different number of wavelet decomposition levels (3, 4, and 5) is applied.

In this scenario, the size of SBs will be 8 × 8, 16 × 16, and 32 × 32 pixels, respectively.

The impact of errors in the reconstructed image decreases as the number of decomposition

levels increases, as can be seen in Table 5.4. This is due to the fact that when the size of

SB is larger (either by increasing the L and/or TSB), more sparse-tree structures would

appear in each SB, and thus a better quality image is obtained when the same number of

packets is lost (see Fig. 5.2).

In both above cases, the SB size has a great effect on the quality of the concealed image

for the high packet loss rates, as can be observed in the Table 5.3 and 5.4 for the PLR

= %80. However, it is worthy to note that a significant issue arises when the size of the

SB increases. From the perspective of the practical implementation, the dimension of Φi

grows up as the size of SBs increases, which implies that more memory is needed to store
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Table 5.3: Effect of Number of Spatial Trees in each SB (TSB) on Average PSNR Values

for the Lena Image

PLR%

TSB SB size 10 20 30 40 50 60 70 80

1 8× 8 44.47 41.21 39.19 37.58 36.17 34.79 33.07 29.63

4 16× 16 44.61 41.36 39.30 37.76 36.37 35.04 33.59 31.63

16 32× 32 44.71 41.44 39.40 37.85 36.48 35.18 33.80 31.97

Table 5.4: Effect of Number of Decomposition Levels (L) on Average PSNR Values for the

Lena Image

PLR%

L SB size 10 20 30 40 50 60 70 80

3 8× 8 44.46 41.21 39.23 37.60 36.17 34.79 33.03 29.39

4 16× 16 44.46 41.22 39.17 37.60 36.23 34.92 33.51 31.74

5 32× 32 44.65 41.34 39.30 37.71 36.34 35.02 33.69 32.03

it.

5.2.9 Comparison

The performance of proposed SREC is compared with other state-of-the-art EC tech-

niques, such as content adaptive technique (CAD) [106], Markov Random Fields approach

(MRF) [108], sparse linear prediction (SLP) [113], edge recovery technique based on visual

clearness (VC) [105], frequency selective extrapolation (FSE) [114], multivariate kernel

density estimation (MKDE) [109], and adaptive linear prediction (ALP) [97]2. We also

compare with our JSR+NL algorithm that was peoposed in the previous chapter. In each

trial, a similar random loss pattern is used for all algorithms and finally the average PSNR

2The Implementation of [114] is available at https://sites.google.com/site/jingliu198810/

publication and other techniques’ codes are available online at http://dtstc.ugr.es/~jkoloda/

research.html.

https://sites.google.com/site/ jingliu198810/publication
https://sites.google.com/site/ jingliu198810/publication
http://dtstc.ugr.es/~jkoloda/research.html
http://dtstc.ugr.es/~jkoloda/research.html
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and SSIM values over 10 trials are reported.

In the above-mentioned algorithms, it is assumed that the image is divided into 8× 8

non-overlapping blocks which are coded separately at the transmitter side. In the packeti-

zation step, one or more coded blocks are fed into one packet; therefore, while transmitted

over an error-prone channel, undesired packet erasure leads on missing an area of the im-

age. These EC techniques rely on the estimation of the lost information from the correctly

received data of the neighboring blocks by exploiting the high spatial correlation among

them. Therefore, the packetization is done in a way that decreases the simultaneous loss

of neighboring blocks in order to increase the EC performance.

Similar to the above-mentioned algorithms, the proposed SREC algorithm estimates the

lost information from the correctly received data at the expense of a small modification

of the transmitter. Using the linear combination at the transmitter side makes to each

coefficient picks up a little bit of information about an area of the image (spatial trees);

then, if some of these coefficients are discarded, the image recovery can still be done, as

sufficient amount of information about the image is maintained in the correctly received

coefficients. In addition, as we discussed in the Section III. , the generated packets are

expected to share the information equivalently, and thus there is no need to transmit the

packets with priority, opposed to other encoding and packetization methods [144]. This

type of packetization in connection with the linear projection of the wavelet coefficients

introduces more robustness and error-resilience into the transmission system and ensures

that a high quality image can be recovered, even for the high packet loss rates.

I. Subjective and Objective Reconstruction Quality

As it can be observed in Table 5.5, the objective performance of the proposed SREC is

generally superior to that achieved using other state-of-the art techniques in terms of PSNR

and SSIM. The comparison with the SLP and FSE is particularly interesting since they are

also sparse recovery based EC. Although, the improvement value of the SREC algorithm

for the high texture Mandrill image in term of PSNR is smaller in comparison with the

Lena image, its SSIM value which is more consistent with the human visual system proves

the considerable visually improvements of the SREC scheme.

The significant superiority of the proposed SREC scheme is its great ability in the

image error recovery at high PLRs, as it can be seen in Table 5.5 and Fig. 5.8. In fact,

at high error rates, the loss of neighboring blocks occurs with high probability; therefore,
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Table 5.5: Average PSNR and SSIM for Lena and Mandrill Images Reconstructed using

Several EC Techniques

EC Technique

PLR% CAD MRF SLP VC FSE MKDE ALP JSR+NL SREC

Lena

25
PSNR 31.23 31.53 31.58 32.35 32.38 32.47 33.89 34.98 40.07

SSIM 0.947 0.956 0.960 0.964 0.964 0.966 0.971 0.979 0.992

50
PSNR 23.19 26.86 27.56 17.12 28.75 28.46 29.81 29.86 36.15

SSIM 0.811 0.904 0.905 0.887 0.918 0.919 0.936 0.937 0.979

75
PSNR 17.65 21.86 20.55 8.97 22.56 21.47 22.51 22.49 33.01

SSIM 0.600 0.741 0.712 0.128 0.763 0.726 0.792 0.793 0.954

Mandrill

25
PSNR 25.13 26.13 24.77 26.04 26.29 26.14 26.42 26.52 27.46

SSIM 0.875 0.886 0.877 0.890 0.892 0.891 0.874 0.877 0.952

50
PSNR 18.20 22.19 21.02 16.33 22.78 22.58 23.49 23.51 23.85

SSIM 0.606 0.759 0.730 0.640 0.771 0.761 0.798 0.799 0.859

75
PSNR 15.35 20.06 18.23 9.15 20.13 19.22 19.62 20.01 21.22

SSIM 0.446 0.551 0.475 0.162 0.553 0.501 0.549 0.555 0.656

the performance of the aforementioned methods is degraded, as it can be observed in the

Table 5.5 for PLR = %50 and %70.

Visually, the existing approaches may address the error propagation at the high PLRs

due to the incorrect estimation of the missing pixels, causing blocking artifacts and un-

desirable blurred details. These annoying visually artifacts can be observed for the high

packet loss rates in the Fig. 5.8. In fact, these algorithms have not been designed for han-

dling the large consecutive packet loss which usually occurs in the high PLR values. As can

be observed, the restored image using the proposed algorithm is visually more plausible

and coherent and has the most constant performance in concealing the smooth, edge and

texture blocks, even for the high PLR values.
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Figure 5.8: Subjective comparison for Lena by different EC techniques with (a) %25 PLR,

(b) %50 PLR, and (c) %75 PLR.

II. Reconstruction Time

The reconstruction complexity of the SREC is related to many factors, especially the

number of iterations, which is depending on the PLR rate, as shown in Fig. 5.5(b), and the

size of SBs. In Table 5.6, the run time of the Lena image reconstructed using several EC

techniques is examined at %25 and %50 PLR on a typical computer (3.2 GHz Intel Xeon

Core and 8 GB Memory) with a non-optimized MATLAB implementation. A similar

random pattern is used for all the algorithms and finally the average run time over 10

trials are given. As can be observed, more time is consumed for %50 PLR. In addition, the

reconstruction time decreases when the SB size increases. Indeed, the higher sparse-tree

structure of larger SBs makes the PL algorithm converge faster.
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Table 5.6: Reconstruction Time (in Second) Obtained for Lena Image using Several EC

Techniques

EC Technique

PLR% CAD MRF SLP VC FSE MKDE ALP
SREC

8× 8 16× 16 32× 32

25 6.77 9.68 370 305 37.23 1387 147 33.65 18.90 11.23

50 9.07 19.22 444 610 83.86 1853 275 59.54 29.55 18.45

It can be seen that the proposed algorithm is much faster than the recently proposed

ALP and MKDE algorithms. Although the proposed algorithm has a considerably large

error recovery time in comparison with the CAD and MRF, its advantage in precisely

estimation of the corrupted information is obvious in terms of objective and subjective

evaluations. Moreover, it is worthy to note that the time complexity of the SREC can

be reduced by using an array of multiple instructions multiple data (MIMD) parallel pro-

cessors. In the parallel implementation, each SB can be reconstructed independently by

separate processors. An additional output processor must be used to organize the SBs and

control the full-wavelet sparsity.

5.3 Conclusion

In this chapter, a novel approach to recovery of the lost information, occurred during

image transmission over the error-prone channels, has been presented through modeling of

the error recovery issue onto the sparse recovery framework. The proposed robust image

transmission scheme achieves error robustness by partitioning the wavelet coefficients into

the spatial trees and coding each tree in the form of an embedded linear coder followed

by a simple packetization scheme. The core idea behind the proposed technique is the

random linear projection of the spatial trees that provides a way to adapt the sparse

recovery framework for recovering a high degree of the packet losses. This framework goes

beyond simply assuming that the wavelet decomposition has a tree-sparse structure. At

the receiver, the corrupted image is concealed using an iterative sparse reconstruction in

the wavelet domain.

Performance of the proposed scheme and significant gains over existing EC techniques
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have also been demonstrated by various simulations of the proposed scheme. The ability

of the proposed algorithm for the error protection for the high packet loss rates, combined

with the property of being highly parallel-friendly, makes the algorithm a strong candidate

for the image transmission on the error-prone channels.
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Chapter 6

Sparse Representation-based Image Compres-

sion

The material of this part is essentially based on the following work:

• A. Akbari, M. Trocan, and B. Granado, “Image compression using adaptive

sparse representations over trained dictionaries,” in Proceedings of IEEE In-

ternational Workshop on Multimedia Signal Processing (MMSP), Montreal,

Canada, Sep. 2016, pp. 1–6

6.1 Introduction

The objective of lossy image compression is minimization of the file size without significant

degradation of the image quality in order to be able to transmit or store the image effi-

ciently. There are several different ways in which the image files can be compressed [154].

All these techniques aim to reduce the redundancy of the image data from different points

of view. The most commonly used method is to transform the image to a domain with

compressible coefficients which capture a large part of the image information with only

a few significant coefficients. Therefore, the image compression can be well achieved by

storing or transmitting the significant transform coefficients. The analysis and synthesis

sparse modelings are two powerful tools for transforming the image into a compressible

domain. The JPEG [38] and the JPEG2000 standards [40] are the results of using the

analysis sparse representation of the image by designing some analytic dictionaries, e.g.

discrete cosine transform (DCT) basis and discrete wavelet transform (DWT) basis, re-

spectively. The analysis sparse modeling of the image is typically over-simplistic and has

a weak ability to represent the high-textured images efficiently [36]. Due to the weakness

99
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of the analytic dictionaries in the efficient expressiveness, an extensive body of literature

has recently focused on the various applications of the synthesis sparse signal modeling

via a trained dictionary. In this way, the performance can be significantly improved for

the image compression application, benefiting the sparse representation of the image over

a dictionary specifically adapted to it.

6.1.1 Related Work

In order to improve the limitations of the traditional sparse representation approaches over

a trained dictionary, several studies have been conducted in the area of image compression.

In [26], a set of dictionaries are trained and the compression performance is improved by

the sparse representation of each image patch over an optimal dictionary from the set

of trained dictionaries to fit it efficiently. In [27], the authors propose a dictionary that

consists of some sub-dictionaries in a tree structure. The dictionary in each tree level is

learned from residuals of the previous level, thus using an adaptive sparse representation

scheme implying the selection of the atoms among tree branches according to the sparsity

of each level. In [28], multisample sparse representation (MSR) concept is introduced

and incorporated into the dictionary learning process. The MSR considers encoding of

the image patches with different sparsity levels. Instead of sparse representation of the

patches independently, it handles multiple neighboring image patches to explore different

sparse levels. In addition to this new learning dictionary algorithm, the authors propose

an MSR-based image coding approach to image compression.

6.1.2 Contributions

Given a trained dictionary, the sparse representation of the image patches can be achieved

in different ways such as the basis pursuit algorithms, matching pursuit techniques and

other schemes [102]. However, the conventional sparse representation approaches consider a

fixed number of atoms, called sparsity level, for all the image patches that can lead to a weak

performance in the context of image compression. In this section, we adopt an adaptive

sparse representation approach. From the view of biological vision and scientific analysis,

the visual significance of each block (visual saliency) varies with its spatial position [155].

Some regions can be more sensitive to the Human Visual System (HVS) (salient regions),

while others have a lower level of visual interest. Therefore, it is necessary to design an

adaptive sparse representation scheme by joining the sparse representation and the HVS
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Figure 6.1: Block diagram of the proposed image coding framework.

characteristics in order to achieve an efficient compression performance.

6.2 Image Compression using Adaptive Sparse Representations over Trained

Dictionaries

Fig. 6.1 presents the block diagram of the proposed image coding framework. This frame-

work mainly consists of four parts, including pre-processing, dictionary learning, adaptive

sparse representation and entropy coding. At the pre-processing step, the input image is

partitioned into L non-overlapping image patches X = [xi]Li=1, where xi ∈ <N denotes a

B ×B vectorized image block, containing N pixel values. As other compression schemes,

like JPEG, the DC components, namely the mean values of image patches M = [mi]
L
i=1

and AC components Y = [yi]Li=1 are encoded separately. The DC values are subsequently

quantized and entropy coded and the AC values are sparsely represented over an overcom-

plete dictionary D of size N ×K using the ROMP method [156]. The dictionary is trained

using the K-SVD dictionary learning algorithm [35], which is supposed to be a general

dictionary shared between encoder and decoder. Benefiting from the visual saliency infor-

mation, an adaptive sparse representation scheme is incorporated into the image coding

framework to encode AC components in order to further reduce the reconstructed errors.

Finally, the obtained sparse coefficients C = [ci]Li=1 are entropy coded, where ci ∈ <K

denotes the coefficients vector of the i - block. In the sequel, we propose to describe the

adaptive sparse representation and entropy coding, respectively. At the decoder, the image

can be easily retrieved by a minor application of the above steps.
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6.2.1 Adaptive Synthesis Sparse Representation

To encode image patches effectively, the process of sparse representation plays an important

role in the rate-distortion performance. Given the good performance of the Graph Based

Visual Saliency (GBVS) model in [78] that aims to predict the scene locations focused by

a human observer, we propose to use it in the following in order to build up an adap-

tive synthesis sparse representation scheme to compress the image efficiently. Please refer

to 3.1.3 for the details of the GVBS model. This saliency map of the image is exploited to

determine the visual significance of the blocks in order to allocate different sparsity levels

to each block according to its visual significance to the HVS.

In order to obtain the proper sparsity level for each block, the saliency map of the

input image is normalized to [0, 1]. The output is a map where the intensity of each

pixel represents the probability belonging that pixel to a salient region. By partitioning

the saliency map into B × B non-overlapping blocks, the saliency value of the blocks

are obtained by averaging the saliency values of pixels belonging to each block. Let Hi

represents the saliency value of i-th block. It should be noted that each block has a different

saliency value and assigning the appropriate sparsity level to each block according to its

saliency value will improve the reconstruction quality.

Let the sparsity level for block i be:

Si = αiS. (6.1)

Our goal is thus to allocate a different sparsity level Si to each block while the overall

sparsity level should be equal (or slightly inferior) to the target sparsity level S. Given a

target sparsity level S and a set of saliency values [Hi]
L
i=1, one can easily find:

αi =
L×Hi∑L
i=1Hi

. (6.2)

As a result, a set of sparsity levels [Si]
L
i=1 is obtained via (6.1). Based on these new obtained

sparsity levels, the sparse representation of each patch xi over the dictionary D is achieved

by:

argmin
ci
‖xi −Dci‖2 Subject To ‖ci‖0 ≤ Si. (6.3)

The ORMP method in [156] is used to solve this problem. By assigning different sparsity

level Si to each block, a more effective sparse representation of the image is obtained.
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Table Barbara Boat Couple Lena Hill

Figure 6.2: The Original images and their saliency maps.

6.2.2 Quantization and Entropy Coding

DC values are quantized and coded by differential pulse-coded modulation (DPCM) predic-

tion. Instead of quantifying M = [mi]
L
i=1, the encoder computes the residuals, E = [ei]

L
i=1,

between the DC values, where ei = mi−mi−1 is thus the residual between two neighboring

patches i and i− 1 (m0 is considered 0). Then, ei is quantized by round(ei/b) where b is

a fixed constant. A dead-zone quantizer is used for quantization of the residuals [156].

In order to further remove the redundancy, the quantized DC values are entropy coded

by Huffman coding with predefined codeword tables which are constructed offline and

initially stored at both encoder and decoder sides. The nonzero coefficients of the C =

[ci]Li=1 are also quantized and entropy coded with the same procedure.

The indices of the representation coefficients, I, occupy a large part of the output

bitstream due to the random structure of the coefficients position in C = [ci]Li=1. In order

to efficiently compress them, a quad-tree splitting algorithm is used. At first, each vector

ci is partitioned into two equal sections. Then, a binary test is done on each section:

if the subsection includes at least one nonzero coefficient, the encoder inserts 1 at the

output bitstream; otherwise, it is coded by 0. Each subsection including one or more

nonzero coefficients, is again partioned into two subsections. This process continues until

the maximum depth of partitioning is reached. This process encodes the indices of nonzero

coefficients more efficient than the fixed length coding that is proposed in [28].

6.3 Experimental Results

In this section, the performance of the proposed approach is evaluated via a suite of simu-

lations carried out on a set of 8-bit grayscale standard images of 512×512 pixel resolution,
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as shown in Fig. 6.2, including Table, Barbara, Boat, Couple, Lena and Hill. In order

to better take into account the rate-distortion performance of the proposed image coding

scheme, the Peak Signal-to-Noise Ratio (PSNR) is chosen as the objective measurement

in the experiments.

The saliency maps of the test images, computed using the GBVS [78], are shown in

the second row of Fig. 6.2 (the saliency maps were quantized for better display). In the

saliency maps, brighter regions represent the salient locations on which a human observer

pays more attention to, while the darker areas represent the less salient regions. According

to the saliency maps shown in the Fig. 6.2, relatively larger sparsity levels are assigned to

the blocks with higher saliency values.

A block dimension of size 8 × 8 is considered for the partitioning step and also for

dictionary learning, as proposed in [35]. A 64 × 440 dictionary is learned using the K-

SVD method on the training images from the CVG-Granada dataset1. 1500 patches are

randomly selected from 8 training images to form a training data set with L = 12000

patches. The ORMP algorithm [156] is used for the atom selection in the dictionary

learning step, as well as later in the sparse representation process for compression. The

error limit is adjusted during learning to match a target PSNR equal to 38 dB for the

training images. 1000 epochs, each processing L = 12000 training vectors, are considered

for the K-SVD training algorithm.

Rate-distortion graphs for the test images are presented in Fig. 6.3 for several base-

line algorithms for comparison, including JPEG2, JPEG20003 and a K-SVD based image

compression algorithm4, in which a fixed sparsity level is considered for all patches [35].

Clearly, the proposed method gains remarkably when compared with the existing image

coding standards, JPEG and JPEG2000. It can be observed that there is a 0.98 dB on

average improvement over the JPEG2000 and a 1.22 dB improvement over the K-SVD

based codec using a fixed S, slightly more evident at the high bit rates. Generally, the pro-

posed method typically performs better on the highly textured images due to the fact that

the trained dictionary has a great ability to capture and efficiently represent the contours,

when compared with the analytic dictionaries like the wavelet transform basis.

Furthermore, we can find that the application of conventional image sparse representa-

1http://decsai.ugr.es/cvg/dbimagenes
2http://www.ijg.org
3http://www.openjpeg.org
4http://www.ux.uis.no/~karlsk/ICTools/ictools.html

http://decsai.ugr.es/cvg/dbimagenes
http://www.ijg.org
http://www.openjpeg.org
http://www.ux.uis.no/~karlsk/ICTools/ictools.html
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Figure 6.3: Rate-distortion performance compared with JPEG, JPEG2000 and K-SVD

based codec using fixed S in terms of PSNR for several test images (size 512× 512 pixels,

gray-level).

tion over the K-SVD dictionary, in which a fixed sparsity level is used in order to compress

the images, induces larger reconstructed errors in comparison with the proposed adaptive

sparse representation over the same dictionary. Thus, we incorporate the adaptivity into

the sparse coding step and use it to compress natural images, achieving much reduced

reconstructed errors. It can be concluded that if the salient parts are extracted accurately,

better performance of the sparse representation can be realized that leads to the better

rate-distortion performance. This leads to a better visual quality at low bit rate regime,

which is more suitable for the band-limited transmission systems.

6.4 Conclusion

In this chapter, an adaptive sparse representation over a trained over-complete dictionary

is proposed to compress the images. More specifically, in the proposed approach, given the

saliency map of the image to be encoded, an image patch can be well represented with the

linear combination of atoms selected from an overcomplete dictionary based on the sparsity

level constrained by the proposed adaptive sparse representation. The experimental results

demonstrated that the proposed image compression framework greatly outperforms some

others such as JPEG and JPEG2000, which use an analytic dictionary, and the state-of-

the-art codecs based on a trained dictionary.
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Chapter 7

Conclusion and Future Directions

Sparse signal modeling is a powerful and widely successful approach for efficient represent-

ing the natural signal phenomena. The idea of describing signals through a dictionary of

the elementary atoms, controlled by the sparsity constraint, has had a profound impact

on the research community, with applications spanning a wide scope of fields and tasks.

It has been used for tackling several image processing problems and is a key component

of many state-of-the-art methods in the signal processing area. The two main directions

of the dictionary-based models are the analysis and synthesis sparse signal representation

via designing analytic (mathematical) and synthetic (trained) dictionaries.

A brief summary of the signal modeling methodology and its applications has been

given at the first chapter of thesis. Then, several new CS reconstruction algorithms have

been developed at the next chapter of thesis. First, a summary of the CS methodology and

a brief description of the well-known BCS-SPL algorithm have been presented at the first

part of this chapter. Inspired by the saliency based model of the visual attention, an adap-

tive BCS scheme has been introduced in order to enhance the reconstruction performance

of the BCS-SPL algorithm. More specifically, based on a binary saliency map, obtained

with a graph-based algorithm, the presented adaptive scheme enhances the recovery qual-

ity by finding an optimal subrate trade-off between the salient and non-salient areas. At

the end part of the chapter, we have moved to the residual based CS reconstruction and

extended the concept of prediction to the CS recovery. The idea is based on creating

an optimal prediction comparable to the original image using the strong local correlation

among neighboring blocks or exploiting the non-local self-similarities existing within nat-

ural images. This prediction is used to produce a measurement-domain residual which is

more compressible, thus enhancing the quality of the reconstructed image. The efficiency

of the above-mentioned methods has been evaluated via a wide range of experiments on

several test images in comparison with the BCS-SPL algorithm.

In our second contribution, we moved to more implicit application of sparse represen-

107
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tation modeling i.e. sparse recovery suitable for solving the inverse problems such as error

concealment (EC) and compressed sensing (CS). A novel image EC approach has been pre-

sented, through casting the error recovery issue onto a synthesis sparse recovery framework

using over-complete and trained dictionaries. The core idea of our EC algorithm is that,

under mild conditions, the sparse representation of an image patch and a portion of this

patch are related to each other by a linear mapping function. Under this assumption, the

missing pixels have been recovered using the sparse representation coefficients of the lost

region’s neighboring pixels. Especificaly, the joint sparse representation (JSR) model has

been proposed. The JSR model estimates the corrupted patch via a dictionary pair and

two mapping matrices that are trained offline from two given training datasets. By using

this model, the EC is achieved by transferring the error recovery problem into a common

space via the two learned dictionaries and mappings. Such transformation provides more

freedom and flexibility for error concealment. Further, a new image EC has been developed

by incorporating this model using the local and non-local priors, as a new regularization

term in the sparse representation domain, which produces sharper edges and suppresses vi-

sual artifacts. The performance of the proposed method has been evaluated and compared

with the state-of-the-art methods, both quantitatively and perceptually.

In another work relating to the EC problem, a novel approach to recovery of the lost

information, occurred during the image transmission over the error-prone channels, was

presented through modeling of the error recovery issue onto the analysis-based sparse

recovery framework. The proposed robust image transmission scheme achieves the error

robustness by partitioning the wavelet coefficients into the spatial trees and coding each

tree in the form of an embedded linear coder, followed by a simple packetization scheme.

The core idea behind the proposed technique is the random linear projection of the spatial

trees that provides a way to implicitly adapt the analysis-based sparse recovery framework

for recovering a high degree of the packet losses. This framework goes beyond simply

assuming that the wavelet decomposition has a tree-sparse structure. At the receiver,

the corrupted image is concealed using an iterative sparse reconstruction in the wavelet

domain. Performance of the proposed scheme and its significant gains over the existing

EC techniques have also been demonstrated by various simulations. The ability of the

proposed algorithm for the error protection for the high packet loss rates, combined with

the property of being highly parallel-friendly, makes the algorithm a strong candidate for

the image transmission on the error-prone channels.
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Finally, we ended with the explicit and straightforward formulation of the sparse rep-

resentation being more suitable for the compression tasks. We have just focused on the

synthesis-based signal modeling because of being mature of the image compression using

the analysis-based sparse signal modeling. An adaptive sparse representation over a trained

over-complete dictionary was proposed to compress the images. More specifically, given

the saliency map of the image to be encoded, an image patch could be well represented

with the linear combination of atoms selected from an overcomplete and trained dictionary

based on the sparsity level constrained by the proposed method. The experimental results

demonstrated that the proposed image compression framework greatly outperforms image

coding standards, such as JPEG and JPEG2000, which use an analytic dictionary, and

also the state-of-the-art codecs based on trained dictionaries.

To summarize, this thesis exposes three contributions of this thesis so far:

• It introduces several concepts for the CS reconstruction in order to improve the

quality of the reconstructed image.

• It introduces several formulation to exploit both the analysis and synthesis sparse

coding for the image EC.

• It introduces a formulation to exploit the synthesis-based sparse coding for the image

compression.

Future Works

Video EC

Typical error control techniques do not very well suit for video transmission. On the other

hand, video transmission over error prone channels has increased greatly, e.g., over IP and

wireless networks. These two facts combined together provided the necessary motivation

for the development of a new set of EC techniques capable of dealing with transmission

errors in video systems.

Video coding standards such as HEVC (H.265) rely on predictive coding to achieve

high compression efficiency. Predictive coding consists of predicting each frame using pre-

ceding frames. However, predictive coding incurs a cost when transmitting over unreliable

networks: the frames are no longer independent and the loss of data in one frame may

affect future frames. The study of the effectiveness of sparse signal modeling in mitigating
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the effect of errors on the decoded video can be considered as one of solutions to improve

the EC on HEVC decoders. The way to work in this situation is to realize that a real

video signal varies very smoothly both in time and space, which means that spatial and

temporal information correctly received, in the neighborhood of the affected area of an

image, can be used to dissimulate the effects of the transmission errors. A sparse signal

model for video data can be obtained offline and is thereafter utilized online in order to

restore lost blocks from spatial and temporal surrounding information.

The proposed EC algorithm in the Chapter 4 can be efficiently used to compensate a

lost macroblock in intra-coded frames (I-frames), in which no useful temporal information

is available. This algorithm can be also easily extended for replenishing missing pixels

in a lost macroblock of inter-coded frames (P-frames) with the information in previous

frames. For the error concealment of P-frames, temporal, as well as spatial, information

is available. In fact, temporal correlation is much higher than spatial correlation in real

world image sequences so that P-frames can be more effectively concealed than I-frames.

Multiview Image CS

Multi-view image and video streaming has the potential to enable a new generation of effi-

cient and low-power pervasive surveillance systems that can capture scenes of interest from

multiple perspectives, at higher resolution, and with lower energy consumption. However,

state-of-the-art multiview image coding architectures require relatively complex predictive

encoders, thus resulting in high processing complexity and power requirements. Recently,

a new encoding and decoding architecture for multiview video systems based on the CS

principles has been proposed in order to overcome many limitations of traditional encoding

techniques, specifically massive storage requirements and high computational complexity

Next on our future work is to include the image prediction techniques, proposed in

the Chapter 3 into multiview image CS reconstruction to exploit the high degree of inter-

view and temporal correlation common to multiview scenarios. The high degree of cor-

relation between views can be efficiently exploited to enhance recovery performance over

straightforward independent view recovery. Instead of recovering each individual frame

independently, neighboring frames in both the view and temporal directions are used to

calculate a prediction of a target frame, and the difference is used to drive a residual-based

compressed-sensing reconstruction. Especially, group sparse representation modeling can

be exploited for the CR recovery. Grouping similar patches together coupled with learn-
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ing the adaptive basis from the similar groups, gets sparser representation and thereby

performs better in CS recovery.

Fast and improved EC

In the Chapter 4, we start from a large collection of image patches and use a sparsity con-

straint to jointly train two dictionaries so that they are able to represent corrupted patches

and their corresponding original counterparts using sparse representation coefficients and

two mapping matrices. Once the dictionaries are trained, the algorithm searches for a

sparse representation of each input patch. Then, the sparse representation of the original

patch is obtained by multiplication of the sparse representation of the input patch and

mapping function. Other approach as a future work would be to cluster the training image

patches into a relatively small number of groups and to learn a separate mapping from

corrupted patch space to original patch space for each cluster. The mapping coefficients

can be learned offline and stored for each cluster.

Further, the proposed EC model based on sparse representation with respect to a

trained dictionary demands larger computation resources and is not suitable for network

edge devices like mobile, tablet and IoT devices. Deep convolutional neural networks (Deep

CNN) have demonstrated superior performance to the previous hand-crafted models either

in speed and restoration quality. A highly efficient and faster image EC can be obtained

with Deep CNN. Current trend is using deeper CNN layers to improve performance. Op-

timizing the number of layers and filters of each CNN also achieves faster and efficient

computation.
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Appendices

Suppose that Φ is a M ×N matrix with entries φi,j ∼ N (0, 1/M̃), where 0 < M̃ ≤ 1. Let

a > 0 and b > a be given. Then, all M̃ ×N submatrices Φ̃ of Φ satisfy

a‖x‖22 ≤ ‖Φ̃x‖22 ≤ b‖x‖22 (.1)

for all x ∈ RN with ‖x‖0 ≤ K. The proof of this theorem can be found in [140].

Furthermore, suppose entries of the signal x is rearranged in the decreasing order of

magnitude |x1| ≥ |x2| ≥ · · · ≥ |xN |; so that, |xN | ≤ Rn−1/p, where R is a constant and

0 < p < 1 controls the speed of the decay; the smaller p, the faster the decay. Then, the

solution to

x̃ = arg min
x∈RN

‖x‖1 such that y = Φ̃x, (.2)

obeys

‖x− x̃‖2 ≤ Cp(
M̃

logN
)−r r =

1

p
− 1

2
, (.3)

where Cp is a fixed constant depending on p only (see Theorem 1.1 of [148].)
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