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Rèsumé détaillé

La découverte de l'interaction des spins avec la radiation électromagnétique aux fréquences rf ou micro-ondes a conduit au développement de la résonance magnétique, dont les pionniers sont Rabi, Bloch et Purcell [START_REF] Rabi | A New Method of Measuring Nuclear Magnetic Moment[END_REF][START_REF] Bloch | Nuclear Induction[END_REF][START_REF] Purcell | Resonance Absorption by Nuclear Magnetic Moments in a Solid[END_REF]. Dans les expériences habituelles de résonance magnétique, le couplage spin-photon est l'échelle d'énergie la plus faible du système. Le rayonnement électromagnétique des spins, qui permet la détection des spins, n'a pas d'impact mesurable sur la dynamique des spins. Cette dernière reste entièrement régie par le couplage à d'autres degrés de liberté de l'environnement, comme le mouvement atomique ou moléculaire, les phonons ou l'interaction dipolaire avec d'autres spins. La température du spin est donc fixée par le réseau hôte indépendamment du rayonnement thermique. Cependant, dejà dans les premier temps de la résonance magnétique, Purcell a prédit que la relaxation radiative des spins devrait être renforcé en insérant l'échantillon dans une cavité résonante de petit volume de mode et de facteur de qualité élevé. Les premières observations de cette prédiction de Purcell avec des spins ont été rapportées en 1985 par Sleator et al. [START_REF] Sleator | Nuclear-spin noise[END_REF] pour un ensemble de spins nucléaires de Cl. Le taux d'émission radiative a été accéléré de 11 ordres de grandeur, pour atteindre 10 -16 s -1 . Le temps de relaxation d'environ 3000 ans était cependant toujours significativement plus important que les temps de relaxation non radiative dominants estimés à l'ordre de jours dans l'expérience, maintenant ainsi les spins bien thermalisés au réseau. Le régime Purcell, dans lequel le rayonnement est le principal canal de relaxation du spin, n'a été atteint que récemment dans les expériences de Bienfait et al. [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF], en utilisant des micro-résonateurs supraconducteurs développés pour des applications d'information quantique. L'amélioration obtenue du couplage spin-photon a été exploitée pour atteindre une sensibilité de la résonance paramagnétique électrique (RPE) record et présente un intérêt potentiel pour l'information quantique [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF]. Le but de cette thèse est d'explorer les conséquences du régime de Purcell sur la thermalisation des spins. Notre idée principale est que, dans le régime Purcell, les spins devraient se thermaliser à la température des photons micro-onde dans la cavité, et devenir en quelque sorte découplés du réseau cristallin dans lequel ils sont insérés. Nous démontrons cette idée en prouvant que les spins peuvent être refroidis à une température inférieure à celle de l'échantillon, simplement par des processus radiatifs. De plus, cette approche de refroidissement des spins représente une nouvelle méthode générale pour hyperpolariser un ensemble de spins électroniques. La première partie du manuscrit est consacrée aux outils conceptuels nécessaires à la compréhension des expériences. Nous fournissons des informations théoriques sur les circuits quantiques à la fréquence des micro-ondes et sur les spins. Nous introduisons la description quantique des modes des cavités et des lignes de transmission, en mettant l'accent sur leur état thermique et leurs propriétés de bruit. Nous abordons ensuite les spins électroniques et leur interaction avec le rayonnement électromagnétique, et nous Tout comme le système de spins, le mode de la cavité échange de l'énergie avec deux bains. Comme le montre la figure 0.1, il est couplé avec le taux κ int aux pertes internes à T phon et avec le taux κ ext au rayonnement thermique émis par une résistance froide de température T froid connectée à l'entrée de la cavité. En concevant le port d'entrée de telle sorte que κ ext κ int , la température du mode cavité est alors thermisée à T cold . En conséquence, les spins du régime Purcell sont censés être refroidis par rayonnement à T cold , quelle que soit la température de l'échantillon. Avant de décrire la réalisation expérimentale du refroidissement radiatif, dans la première partie de la thèse, nous fournissons le contexte théorique nécessaire pour discuter de tous les aspects pertinents de l'expérience. Dans le chapitre 2 nous introduisons la description quantique de notre circuit micro-ondes composé de la cavité supraconductrice, des lignes de transmission et de l'amplificateur. Comme nous sommes particulièrement intéressés par l'état thermique d'un tel circuit, nous nous concentrons sur le bruit thermique et sa détection. Nous passons ensuite, dans le chapitre 3, à la description de la dynamique des spins couplés à une cavité micro-ondes. Deux grandeurs clés sont introduites : le taux de relaxation d'énergie du mode de la cavité κ = κ ext + κ int et la force d'interaction spin-photon g, qui est le produit du moment dipolaire magnétique du spin et des fluctuations du vide du champ magnétique à l'endroit du spin. À la résonance, le taux de relaxation spontanée Purcell est de Γ phot = 4g 2 /κ. La relaxation de Purcell à température finie est également prise en compte car elle est d'une importance capitale dans notre expérience. Le taux de relaxation des spins vers l'équilibre thermique dans le régime Purcell est Γ 1 = Γ phot [2n th (T phot ) + 1], où n th (T phot ) est la population de photons thermiques dans la cavité à T phot . La dernière partie du chapitre fournit une brève description des techniques et concepts standard de la spectroscopie RPE pulsée, et en particulier de la séquence d'écho de Hahn. Pour déduire la température de spins, nous utilisons en effet le fait que l'amplitude de l'écho de spin A e est proportionnelle à la polarisation dépendant de la température p(T spin ). Il est intéressant de noter que p(T spin ) devrait avoir la même dépendance à la température que Γ 1 pour un ensemble de spins 1/2, une prédiction simple que nous testons dans cette thèse.
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Nos expériences sont réalisées avec un système de spin modèle, le spin électronique des donneurs de bismuth dans le silicium. Ils sont constitués d'atomes de bismuth de substitution dans le réseau du silicium à l'état neutre, où ils piègent un électron de conduction. Nous décrivons la structure et les propriétés des donneurs de bismuth dans le silicium dans le chapitre 4.

ESR spectroscopie du bismuth dans le silicium naturel

Dans le chapitre 5 nous décrivons la configuration du spectromètre RPE et rendons compte des expériences de spectroscopie des donneurs de bismuth réalisées à 15 mK avec B 0 entre 0 et 70 mT. La conception du spectromètre est basée sur les travaux de Bienfait et al. [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF]. La cavité est un résonateur supraconducteur de fréquence ω 0 constitué d'une fine couche de niobium modelée sur le dessus de la puce de silicium implantée avec des donneurs de bismuth (voir Fig. 0.2a). L'électron du donneur avec fréquence de Larmor ω spin est accordée en résonance avec la cavité par l'application d'un champ magnétique externe B 0 parallèle au fil inducteur. Les spins proches du fil sont couplés avec force g au mode de la cavité (voir Fig. 0.2b). L'échantillon est monté dans un support en Cu et couplé de manière capacitive à une antenne micro-onde qui règle le taux de couplage κ ext de telle sorte que κ ext κ int . Figure 0.2: Spectromètre RPE avec un résonateur supraconducteur. a, Résonateur supraconducteur en niobium (rouge) placé sur une puce de silicium implantée avec des donneurs de bismuth. b, Section transversale du dispositif autour du fil inducteur (rouge). La constante de couplage spin-photon g (code couleur) est représentée dans la région Bi-dopée. c, Représentation schématique de la configuration du spectromètre avec la séquence d'impulsions de Hahn-écho illustrée sur la ligne d'entrée.

Nous détectons le signal de résonance magnétique au moyen de techniques de spectroscopie RPE pulsées. Nous utilisons en particulier la séquence d'écho de Hahn où une impulsion π/2 est suivie après un temps τ par une impulsion π induisant un rephasage des spins et l'émission d'un écho après un délai supplémentaire τ . Après amplification, l'écho émis est démodulé et enregistré à température ambiante (voir Fig. 0.2c). La mesure de l'amplitude de l'écho A e en fonction de B 0 montre un pic de signal chaque fois qu'une transition de spin d'un donneur de bismuth est en résonance avec la cavité (voir Fig. 0.3a). Nous discutons le spectre dans Sc.5.4.1. Figure 0.3: Spectroscopie RPE du bismuth : principaux résultats. a, En haut, fréquence des transitions RPE calculée en fonction de B 0 . La fréquence du résonateur est indiquée en bleu. En bas, amplitude de l'écho mesurée en fonction de B 0 . b, Relaxation de l'énergie de spins mesurée à B 0 = 62, 5 mT avec la séquence de inversion recovery illustrée dans l'encadré. La ligne rouge en pointillés est un fit exponentiel avec la constante de temps Γ -1

1 . La simulation numérique de la relaxation de Purcell est illustrée en vert. c, Temps de relaxation Γ - 1 1 mesuré en fonction de la température (rouge). La dépendance prévue de la température pour la relaxation Purcell est indiquée en vert. Dans la Sc.5.6 nous montrons qu'à 15 mK la transition de spin de champ la plus élevée se relax au taux d'émission radiative spontanée calculé Γ phot , démontrant que les spins sont dans le régime Purcell (voir Fig. 0.3b). La relaxation des spins est ensuite mesurée en fonction de la température. Le taux de relaxation des spins extrait Γ 1 suit la dépendance du taux Purcell par rapport à la température (voir Fig. 0.3c), montrant que les spins restent dans le régime Purcell à des températures supérieures à 1 K.
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L'étude de la relaxation des spins à un champ magnétique inférieur révèle qu'un processus de relaxation non radiatif est présent. Nous attribuons cela au transfert de polarisation par des processus de flip-flops entre donneurs voisins, rendu possible par l'environnement de spin nucléaire du silicium. Nous étudions expérimentalement ce processus dans le dernier chapitre de la thèse.

Refroidissement radiatif d'un ensemble de spins électroniques

La démonstration de refroidissement radiatif est rapportée au chapitre 6. La configuration est représentée schématiquement dans la Fig. 0.4a. L'échantillon est thermalisé à T phon = 850 mK, tandis que l'entrée de la cavité est connectée via un commutateur soit à une résistance chaude à T phon soit à une résistance froide à T froid = 15 mK. Dans la configuration de l'interrupteur froid, les spins en régime Purcell devraient alors être refroidis à la température du mode de la cavité T phot ≈ T cold , bien en dessous de T phon . Le facteur de refroidissement η est défini comme le rapport de la polarisation du spin dans les deux configurations de commutation. Comme la polarisation de spin et le taux de relaxation Purcell ont la même dépendance à la température, η devrait également être égal au rapport entre le taux de relaxation de spin mesuré dans les deux configurations de commutateur. Nous déterminons d'abord T phot dans les deux configurations du commutateur avec un ensemble de mesure du bruit détaillé dans Sc.6.4. Nous constatons qu'en connectant l'entrée du résonateur à la résistance froide, la température du mode de la cavité est refroidie radiativement jusqu'à T cold phot = 500±60 mK. Nous attribuons le refroidissement partiel à la présence de pertes par micro-ondes entre le résonateur et la résistance froide. Le signal Hahn-echo fait plus que doubler lorsqu'il est mesuré dans la configuration froide (voir Fig. 0.4b), démontrant une hyperpolarisation radiative avec η = 2.3 ± 0.1 (voir Sc.??). Nous mesurons également les taux de relaxation pour les deux réglages du commutateur et trouvons Γ hot 1 /Γ cold 1 = η, comme prévu (voir Fig. 0.4c). Le η mesuré correspond à une température de spins T spin = 350 ± 10 mK, qui est proche (ou même légèrement inférieure) de la température du champ T cold phot estimée à partir des mesures de bruit. Cela prouve que la relaxation spin-reseau cristallin n'est pas le facteur limitant le refroidissement de spins, et que les spins se thermalisent à la température de leur environnement électromagnétique dans les limites de la précision de l'expérience. Nous concluons ce chapitre par une brève discussion des applications possibles de cette nouvelle technique d'hyperpolarisation à la spectroscopie par résonance magnétique.

Transfert de polarisation chez les donneurs de bismuth

Comme nous l'avons vu plus haut, nous observons à bas champ un processus de relaxation qui entre en compétition avec la relaxation radiative Purcell. Dans le dernier chapitre Ch.7 nous étudions expérimentalement son origine. Nous attribuons cet effet au transfert de polarisation entre différents niveaux hyperfins du spectre des donneurs de bismuth via des flip-flops entre des paires de donneurs couplées par l'interaction dipolaire. Un tel transfert de polarisation apparaît comme une relaxation plus rapide sur la transition sondée par la cavité micro-onde. Les lignes pointillées sont les fréquences de transition de spin à ce champ. b, Amplitude de l'écho mesurée pour ω pump /2π = 7.518 GHz en fonction du délai entre une impulsion de pompe de 10 ms et la détection de l'écho.
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Pour étudier ce processus, nous réalisons une expérience de double résonance. Dans cette expérience, la polarisation d'une transition est surveillée tandis qu'une autre est saturée. En présence d'un transfert de polarisation, la polarisation de la transition surveillée devrait diminuer en conséquence de l'excitation de la seconde. Dans la Fig. 0.5a, nous rapportons le résultat de l'amplitude de l'écho A e mesurée en fonction de la fréquence d'une signal de pompe. Une baisse est observée chaque fois que la pompe est en résonance avec une autre transition, ce qui démontre le transfert de polarisation à faible champ. Ce processus n'est par contre pas observé à champ plus élevé, où la relaxation longitudinale de spins est constamment dans le régime de Purcell. Dans une deuxième expérience, nous abordons la dynamique du processus en mesurant le temps nécessaire au transfert de polarisation entre deux transitions. Pour ce faire, nous mesurons l'amplitude de l'écho en fonction du délai après une courte impulsion de pompe saturant une transition différente. Comme le montre la Fig. 0.5b, l'amplitude de l'écho atteint un minimum quelques secondes après l'impulsion, ce qui montre que le transfert de polarisation se fait sur des échelles de temps comparables à la relaxation de Purcell.

Même si une analyse quantitative est nécessaire, nous concluons que le transfert de polarisation est effectivement responsable du processus de relaxation non radiatif observé. Nous soutenons que l'origine physique du processus est constituée par les bascules entre Chapter 1

Introduction

The discovery of the interaction of spins with electromagnetic radiation at rf or microwave frequencies lead to the development of magnetic resonance, pioneered by Rabi, Bloch and Purcell [START_REF] Rabi | A New Method of Measuring Nuclear Magnetic Moment[END_REF][START_REF] Bloch | Nuclear Induction[END_REF][START_REF] Purcell | Resonance Absorption by Nuclear Magnetic Moments in a Solid[END_REF]. In usual magnetic resonance experiments, the spin-photon coupling is the weakest energy scale in the system. Electromagnetic radiation by the spins, which enables spin detection, has no measurable impact on spin dynamics. The latter remains entirely governed by the coupling to other environmental degrees of freedom, such as atomic or molecular motion, phonons, or dipolar interaction with other spins. The spin temperature is thus set by the host lattice independently of the thermal radiation. However, already in the early days of magnetic resonance, Purcell predicted that spin radiative relaxation should be enhanced by inserting the sample in a resonant cavity of small mode volume and high quality factor [START_REF] Purcell | Spontaneous emission probabilities at radio frequencies[END_REF]. First observations of Purcellenhancement with spins were reported in 1985 by Sleator et al. [START_REF] Sleator | Nuclear-spin noise[END_REF] for an ensemble of Cl nuclear spins. The radiative emission rate was accelerated by 11 order of magnitudes, reaching 10 -16 s -1 . The relaxation time of about 3000 years was however still significantly larger than the dominant non-radiative relaxation times estimated to be on the order of days in the experiment, keeping the spins well thermalized to the lattice. The Purcell regime, in which radiation is the dominant spin relaxation channel, was reached only recently in experiments by Bienfait et al. [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF], using superconducting microresonators developed for quantum information applications. The obtained enhancement of the spin-photon coupling has been exploited to reach record ESR sensitivity and has potential interest for quantum information [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF]. The focus of this thesis is to explore the consequences of the Purcell regime on spin thermalization. Our main idea is that, in the Purcell regime, spins should thermalize to the temperature of the microwave photons in the cavity, and become in a sense decoupled from the host lattice. We demonstrate this idea by proving that spins can be cooled at a temperature lower than the sample, simply by radiative processes. Moreover, this spin cooling approach represents a new general method to hyperpolarize an ensemble of electron spins. The first part of the manuscript is dedicated to the conceptual tools necessary to understand the experiments. We provide theoretical background on quantum circuits at microwave frequency, and on spins. We introduce the quantum description of the modes of cavities and transmission lines, with a focus on their thermal state and noise properties. We then turn to electron spins and their interaction with the electromagnetic radiation, and we describe the Purcell effect and the principles of pulsed Electron Spin Resonance (ESR) spectroscopy. Finally, we introduce the electron spin system studied in our experiment: bismuth donors in silicon.

The second part of the thesis contains the main experimental results, which are described in chapters 5, 6 and 7. Chapter 5 describes the implementation of the spectrometer with a superconducting resonator and the spectroscopy of the bismuth donors. Electron-Spin-Echo Envelope Modulation is observed, caused by the bath of 29 Si nuclear spins. As regards spin relaxation, we prove that bismuth donor spins reach the Purcell regime at sufficiently large magnetic field. At lower fields, non-radiative polarization transfer processes enabled by the nuclear spin environment take over Purcell relaxation.

The radiative cooling of the bismuth donors in the Purcell regime is demonstrated in the sixth chapter of the thesis. Spins are first shown to be thermalized to the cavity mode at the sample temperature of 850 mK. The cavity mode is then cooled by connecting its input to a cold resistor at 15 mK. A twofold increase of the spin polarization reveals that the spin temperature is reduced down to 350 mK, proving that spins are radiatively cooled below the sample temperature [START_REF] Albanese | Radiative cooling of a spin ensemble[END_REF].

In the last chapter of the thesis we investigate the origin of the non-radiative spin relaxation observed at low magnetic field. We demonstrate that polarization transfer within the bismuth donor spectrum is present, probably due to spin flip-flop processes.

Principle of spin radiative cooling

To introduce the principle of spin radiative cooling, let us consider a physical system exchanging energy with several baths at different temperatures. The system will equilibrate at an intermediate temperature whose value will depend on the strength Γ j with which the system is coupled to each bath, defined as the rate at which the system relaxes to its ground state by emitting a quantum of energy into bath j if it is at zero temperature. If one relaxation rate Γ j0 is much larger than all the others, the system will thermalize to bath j0, regardless of the temperature of the others.

T phon T cold T spin T phot ~< ~�phon � int � ext � phot Figure 1
.1: Spin radiative cooling principle. Spins (green) in a crystal (red) are coupled both to a bath of phonons at temperature T phon with a rate Γ phon and to a bath of microwave photons at a temperature T phot with a rate Γ phot , which determines their equilibrium temperature T spin . The temperature of the photons T phot is determined by their coupling with rate κ int to the cavity internal losses at T phon and with rate κ ext to the load located at the cavity input. When this load is placed at low temperature T cold , the intra-cavity field is radiatively cooled provided that κ ext κ int and the spins are cooled in turn if Γ phot Γ phon .

The principle of spin radiative cooling is illustrated in Fig. 1.1. The system we aim to cool down is an ensemble of electron spins interacting with two baths: the phonons in its host lattice of temperature T phon and the microwave photons in its electromagnetic environment of temperature T phot . As said earlier, the radiative spontaneous emission rate Γ phot , in usual magnetic resonance conditions, is much lower than the spin-lattice relaxation rate Γ phon , so that the spin temperature T spin equilibrates at T phon . However, the Purcell effect offers the possibility to reverse this scenario: inserting the spins in the small mode volume of a high-quality-factor cavity can accelerate the radiative spontaneous emission rate up to the point Γ phot Γ phon , thus bringing the spins at thermal equilibrium with the cavity mode. The obtained condition T spin ≈ T phot offers then the possibility to cool the spins at a temperature lower than the lattice, by controlling T phot . Similarly to the spin system, the cavity mode exchanges energy with two baths. As seen in Fig. 1.1, it is coupled with rate κ int to the internal losses at T phon and with rate κ ext to the thermal radiation emitted by a cold resistor of temperature T cold connected to the cavity input. By engineering the input port so that κ ext κ int , the cavity mode temperature is then thermalized at T cold . As a consequence, spins in the Purcell regime are expected to be radiatively cooled to T cold , regardless of the sample temperature. Before describing the experimental realization of radiative cooling, in the first part of the thesis we provide the theoretical background necessary to discuss all the relevant aspects of the experiment. In Chapter 2 we introduce the quantum description of our microwave circuit consisting in the superconducting cavity, transmission lines and amplifier. Since we are particularly interested in the thermal state of such a circuit, we focus on thermal noise and its detection. We then move, in Chapter 3, to the description of the dynamics of spins coupled to a microwave cavity. Two key quantities are introduced: the cavity mode energy relaxation rate κ = κ ext + κ int and the spin-photon interaction strength g, which is the product of the spin magnetic dipole moment and the magnetic field vacuum fluctuations at the spin location. At resonance, the Purcell spontaneous relaxation rate is Γ phot = 4g 2 /κ. Purcell relaxation at finite temperature is also considered since it is of key importance in our experiment. The rate at which spins relax to thermal equilibrium in Purcell regime is shown to be Γ 1 = Γ phot [2n th (T phot ) + 1], where n th (T phot ) is the thermal photon population in the cavity at T phot . The last part of the chapter provides a brief description of standard pulse ESR spectroscopy techniques and concepts, and in particular of the Hahn echo sequence. To infer the spin temperature, we indeed use the fact that the spin echo amplitude A e is proportional to the temperature-dependent polarization p(T spin ). Interestingly, p(T spin ) is expected to have the same temperature dependence as Γ 1 for an ensemble of spins 1/2, a simple prediction we test in this thesis. Our experiments are performed with a model spin system, the electron spin of bismuth donors in silicon. They consist of substitutional bismuth atoms in the silicon lattice in their neutral state, where they trap a conduction electron. We describe the structure and properties of bismuth donors in silicon in Chapter 4.

ESR spectroscopy of bismuth in natural silicon

In Chapter 5 we describe the setup of the ESR spectrometer and report on bismuth donor spectroscopy experiments performed at 15 mK with B 0 between 0 and 70 mT. The spectrometer design is based on the work of Bienfait et al. [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF]. The cavity is a superconducting resonator of frequency ω 0 made of a thin film of niobium patterned on top of the silicon chip implanted with bismuth donors (see Fig. 1.2a). The donor electron spins Larmor frequency ω spin is tuned at resonance with the cavity by the application of an external magnetic field B 0 parallel to the inductor wire. Spins close to the wire are coupled with strength g to the cavity mode (see Fig. 1.2b). The sample is mounted in a Cu holder and coupled capacitively to a microwave antenna that sets the coupling rate κ ext such that κ ext κ int . We detect the magnetic resonance signal by means of pulsed ESR spectroscopy techniques. We use in particular the Hahn echo sequence where a π/2 pulse is followed after a time τ by a π pulse inducing rephasing of the spins and the echo emission after a further delay τ . After amplification, the emitted echo is demodulated and recorded at room temperature (see Fig. 1.2c). Measurement of the echo amplitude A e as a function of B 0 shows a peak of signal whenever a bismuth donor spin transition is resonant with the cavity (see Fig. 1.3a). We discuss the spectrum in Sc.5.4.1. In Sc.5.6 we show that at 15 mK the highest field spin transition relaxes at the calculated radiative spontaneous emission rate Γ phot , demonstrating that spins are in the Purcell regime (see Fig. 1.3b). The spin relaxation is then measured as a function of temperature. The extracted spin relaxation rate Γ 1 follows the expected temperature dependence of the Purcell rate (see Fig. 1.3c), showing that spins stay in the Purcell regime at temperatures above 1 K. The study of spin relaxation at lower magnetic field reveals that a non-radiative relaxation process is present. We attribute this to polarization transfer by flip-flop processes between neighbouring donors, enabled by the silicon nuclear spin environment. We experimentally investigate this process in the last chapter 7 of the thesis.

Radiative cooling of an electron spin ensemble

The radiative cooling demonstration is reported in Chapter 6. The setup is schematically represented in Fig. 1.4a. The sample is thermalized at T phon = 850 mK, while the cavity input is connected via a switch either to a hot resistor at T phon or to a cold one at T cold = 15 mK. In the cold switch configuration, spins in the Purcell regime are then expected be cooled at the cavity mode temperature T phot ≈ T cold , well below T phon . The cooling factor η is defined as the ratio of spin polarization in the two switch configurations. Since spin polarization and Purcell relaxation rate have the same temperature dependence, η is also expected to be equal to the ratio between the spin relaxation rate measured in the two switch settings. We first determine T phot in the two switch configurations with a set of noise measurement detailed in Sc.6.4. We find that connecting the resonator input to the cold resistor, the cavity mode temperature is radiatively cooled down to T cold phot = 500 ± 60 mK. We

Polarization transfer in bismuth donors

attribute the only partial cooling to the presence of microwave losses in between the resonator and the cold resistor. The Hahn-echo signal more than doubles when measured in the cold configuration (see Fig. 1.4b), demonstrating radiative hyperpolarization with η = 2.3±0.1 (see Sc.6.5). We also measure the relaxation rates for the two switch settings and find Γ hot 1 /Γ cold 1 = η, as expected (see Fig. 1.4c). The measured η corresponds to a spin temperature T spin = 350 ± 10 mK, which is close to (or even slightly lower than) the field temperature T cold phot estimated from noise measurements. This proves that spin-lattice relaxation is not the factor limiting the spin cooling, and that the spins thermalize to the temperature of their electromagnetic environment within the accuracy of the experiment. We conclude the chapter with a brief discussion of possible applications of this new hyperpolarization technique to magnetic resonance spectroscopy.

Polarization transfer in bismuth donors

As discussed earlier, we observe at low field a relaxation process competing with the radiative Purcell relaxation. In the last chapter Ch.7 we experimentally investigate its origin. We attribute this effect to polarization transfer between different hyperfine levels of the bismuth donor spectrum via flip-flops between pairs of donors coupled by the dipolar interaction. Such polarization transfer appears as a faster relaxation on the transition probed by the microwave cavity. In order to study this process, we perform a double resonance experiment. In such experiment, the polarization of one transition is monitored while another one is saturated.

In the presence of polarization transfer, the polarization of the monitored transition is expected to decrease as a consequence of the excitation of the second one. In Fig. 1.5a we report the result of the echo amplitude A e measured as a function of the frequency of a pump tone. A dip is observed whenever the pump is resonant with another transition, demonstrating polarization transfer at low field. This process is instead not observed at higher field, where spin longitudinal relaxation is consistently in the Purcell regime.

In a second experiment we address the dynamics of the process by measuring how long it takes for polarization to be transferred between two transitions. To do so, we measure the echo amplitude as a function of the delay after a short pump pulse saturating a different transition. As seen in Fig. 1.5b, the echo amplitude reaches a minimum a few seconds after the pulse, showing that polarization transfer takes place on timescales comparable to the Purcell relaxation. Even if a quantitative analysis is needed, we conclude that the polarization transfer is indeed responsible for the observed non-radiative relaxation process. We argue that the physical origin of the process are flip-flops between neighbouring donor spins, that we discuss in Sc.4.3.

We finally notice that in the presence of such population dynamics, the radiative cooling of one transition would hyperpolarize the whole donor ESR spectrum. The reported evidence of spin cooling at low field (see Sc.6.5.2) indicates that this is a realistic scenario. However, we have no experimental evidence of this effect.

Chapter 2

Quantum circuits

In the spin radiative cooling experiment, a central role is played by the microwave cavity to which spins are coupled and by the circuit to which it is connected. In this chapter we provide a quantum description of this microwave environment, forming the framework of the experiments reported in this thesis.

Before that, we address a simple physical question that we are going to encounter all along this thesis, that is how to determine the equilibrium temperature T sys of a physical system coupled to N baths of different temperature T j . As we derive in Appendix A, T sys will be an intermediate temperature dependent on the strength Γ j with which the system is coupled to each bath, defined as the rate at which the system would spontaneously relax from its first excited to its ground state by emitting a quantum of energy into this bath at zero temperature. For a system coupled to N bosonic reservoirs, T sys is obtained by

n th (T sys ) = N j=1 Γ j Γ n th (T j ), (2.1) 
where

n th (T ) = 1 e ωsys/kT -1 (2.2)
is the occupation number of a bosonic mode of frequency ω 0 , and Γ = N j=1 Γ j the total system-bath coupling. If the system is dominantly coupled to one bath j0 (Γ j0 Γ j =0 ), the system therefore equilibrates close to T j0 regardless of the temperature of the other reservoirs. In this chapter, we apply this insight to the thermalization of the mode of a microwave cavity coupled to several reservoirs. We first describe the main properties of quantum microwave fields as well as the principal quantum states used later on. We then recall the quantization of a LC resonator as well as of the propagating modes in a transmission line. We continue by giving elements of input output theory, which describes how the intra-cavity field of a resonator is related to the propagating modes of the transmission lines to which it is coupled. At the end of this part we use the obtained results to calculate the thermal state of the circuit we use in the radiative cooling experiment. In the second part of the chapter we introduce the quantum theory of linear amplifiers to discuss the quantum limits on amplification and introduce the Josephson Travelling Wave Amplifier used in this work. We end this chapter presenting the superconduct-ing microwave switch used in the radiative cooling experiment to study the cooling dynamics.

Quantum description of an electromagnetic mode

In classical electrodynamics, an electromagnetic mode of frequency ω is characterized by its complex amplitude A = |A| e iφ . An equivalent practical representation consists in the in-phase and out-of-phase quadratures X = Re(A) and Y = Im(A), as shown in Fig. 2.1a. The quantum mechanical description of the mode is obtained promoting the canonical conjugate quadratures to the corresponding quantum operators X and Ŷ obeying the commutation relation [ X, Ŷ ] = i/2. The variance of the two quadratures is then bounded by the Heisemberg uncertainty principle ∆ X2 ∆ Ŷ 2 1/16. It is also possible to describe the field by the annihilation and creation operators defined as:

â = X + i Ŷ â † = X -i Ŷ (2.3)
obeying the commutation relation [â, â † ] = 1. The eigenvalue n of the number operator n = â † â represents the number of photons populating the mode. The mode state can then be also defined in the Fock basis of the n operator eigenstates. We now briefly go through three states of an electromagnetic mode that are used in the following of this thesis. We focus on their representation and particularly on their noise properties, relevant for the discussions on the modes thermalization.

Vacuum state

The lowest energy state |n = 0 in the Fock basis is called the vacuum state. It contains zero photons and the expectation value of the two quadratures is also fixed to zero, X = Ŷ = 0. However, the quadratures variance satisfies:

∆ X2 = ∆ Ŷ 2 = 1 4 . (2.4)
The field fluctuations are therefore non-zero even in the vacuum state and coincide with the minimal variance authorized by the Heisenberg principle for two quadratures verifying ∆ X2 = ∆ Ŷ 2 (see Fig. 2.1b). The finite value of these zero point fluctuations (ZPF) determines the coupling strength of a two level system (TLS), such a spin 1/2, to the electromagnetic radiation. Moreover, it fixes the quantum limits to amplification and noise.

Thermal state

In an electromagnetic mode at thermal equilibrium with a bath of temperature T a thermal state is established. It is a statistical mixture of Fock states |n given by the Boltzmann distribution, and the mean-value and variance of the two quadratures (see Fig. 2.1b) can be shown to be:

∆ X = ∆ Ŷ = 0 ∆ X2 = ∆ Ŷ 2 = 2n th + 1 4 .
(2.5)

(2.6)
The noise is therefore an indicator of the mode temperature via the mean number of thermal photons n th (T ).

In the high temperature limit kT ω, the quadrature thermal fluctuations in Eq.2.6 reduce to kT /2 ω, thus showing a linear dependence on T . On the opposite side, in the low temperature limit kT ω, the thermal state tends to the vacuum state and the noise approaches the quantum limit ∆ X2 = 1/4.

Coherent states

The electromagnetic classical signals that are here used as drives for both spins and cavity are well described by the eigenstates |α of the annihilation operator â, called coherent states. The number of photons populating such states obeys Poissonian statistics and its mean value is α| â † â |α = |α| 2 . The coherent state for α = 0 thus coincides with the vacuum state. Concerning the field quadratures, they show the same variance of vacuum ∆ X2 = 1/4, while the mean value is given by α: ∆ X = Re(α), ∆ Ŷ = Im(α), as shown in Fig. 2.1c. If the variance is instead given by the thermal fluctuations of Eq.2.6, we speak of coherent thermal states.

The cavity and the propagating modes

The cavity: an LC resonator

The electromagnetic environment for the spins in the course of this thesis will be the resonant mode of an LC circuit, whose quantum description and relevant characteristics are addressed hereafter. We consider a resonator consisting in an inductance L in parallel with a capacitance C. The magnetic flux Φ in the inductor and the charge q in the capacitor are conjugate variables represented by the operators Φ and q obeying the commutation relation [ Φ, q] = i . The LC harmonic oscillator Hamiltonian is then: which can be expressed in the occupation number representation as:

Ĥ( Φ, q) = Φ2 2L + q2 2C , (2.7) C L a b V(t)
Ĥ = ω 0 (â † â + 1 2 ), (2.8) 
with â and â † related to Φ and q by:

â = 1 √ 2 Z 0 ( Φ + iZ 0 q) â † = 1 √ 2 Z 0 ( Φ -iZ 0 q), (2.9) 
(2.10)

where ω 0 = 1/ √ LC is the resonator frequency and Z 0 = L/C the resonator impedance. We then express the voltage V across the capacitor and the current Î in the inductor as a function of the bosonic operators:

V = q C = iω 0 Z 0 2 (â † -â) Î = Φ L = ω 0 2Z 0 (â † + â).
(2.11)

(2.12)

Fock states |n are eigenstates of Ĥ and verify Ĥ |n = ω 0 (n + 1 2 ). The resonator ground state is the vacuum state |0 and thus voltage and current zero point fluctuations are given by:

δI 2 = 0| Î2 |0 = ω 2 0 2Z 0 δV 2 = 0| V 2 |0 = Z 0 ω 2 0 2 .
(2.13)

(2.14)

The LC circuit current and voltage vacuum fluctuations generate, respectively, a magnetic field B(r) = δB(r)(â + â † ) around the inductor wire and an electric field Ê(r) = iδE(r)(â -â † ) in between capacitor plates, where δB(r) and δE(r) are the fields rms vacuum fluctuations at position r. The amplitude of magnetic field fluctuations δB at the spin locations determines the coupling of the spins to the resonator mode and thus their ability to thermalize to it.

The propagating modes: lossless transmission lines

Z c V(x,t) I(x,t) ldx cdx a b
x 0 The second kind of electromagnetic modes we encounter all along this work are propagating waves in coaxial lines, realizing the main environment to which the LC cavity is coupled. Propagating modes in coaxial cables and planar waveguides are described in classical electromagnetism by transmission line theory [START_REF] Pozar | Microwave Engineering[END_REF]. A transmission line can be modeled as a chain of infinitesimal lumped element LC circuits, with series inductance l and parallel capacitance c per unit length, as shown in Fig. 2.3. The solution of the resulting wave equation describing the circuits are a left and a right propagating wave whose sum gives the voltage across the capacitance c for each location x and time t, V (x, t):

V (x, t) = V (x, t) + V (x, t), ( 2.15) 
where V (x, t) = V 0 cos [ω(t ± x/v ph ) + φ 0 ], with v ph = 1/ √ lc the phase velocity and φ 0 the initial phase. The current I(x, t) in the infinitesimally short inductance l is related to V (x, t) by the characteristic impedance Z c = l/c:

I(x, t) = Z -1 c [V (x, t) -V (x, t)]. (2.16)
In an infinite transmission line, right and left propagating modes are independent. If instead the line is terminated at x = 0 by a load of impedance Z l , this couples the two counter-propagating modes: .17) This leads to the definition of the reflection coefficient R relating the left and right mode amplitudes to the load-line impedance mismatch:

V (t) + V (t) = Z l Z c (V (t) -V (t)). ( 2 
R = V (t) V (t) = - Z l -Z c Z l + Z c . ( 2 

.18)

We now move to the quantum description. A review on quantization of transmission lines is given in [START_REF] Clerk | Introduction to quantum noise, measurement, and amplification[END_REF]; here we go through some useful results for subsequent discussions.

The transmission line can be described by left and right frequency-resolved mode associated to as many left and right annihilation and creation operators, â (ω) and â † (ω), verifying [â (ω), â † (ω )] = 2πδ(ω -ω ). Since we are here generally interested in narrow-band signals of central frequency ω a , it is convenient to work in the time-domain in the rotating frame at ω a . Neglecting contributions from frequencies far from ω a , the rotating wave approximation leads to the following expression for the propagating field operator at x = 0:

V (t) = ω a Z c 4π (â (t) + â † (t)), (2.19) 
where â (t) is the Fourier transform of â (ω) satisfying [â (t), â † (t )] = 2πδ(t -t ) (performing a Markov approximation). We stress here that â (t) are propagating mode operators describing a field flux, thus the expectation value for the number of bosons in the mode gives access to the power carried by the quasi monochromatic wave of frequency ω a :

P (t) = ω a â † (t)â (t) . ( 2 

.20)

A further simplification of the notation is obtained introducing a new operator defining propagating spatio-temporal modes of finite temporal and spectral extension, at variance with the 'infinite bandwidth' operators â (t). We thus define:

â = â (t)u(t)dt, (2.21) 
where u(t) is the envelope of the propagating signal mode of bandwidth ∆ω, obeying the normalization [u(t)] 2 dt = 1. The commutation relation [â , â † ] = 1 being satisfied, these spatio-temporal modes are equivalent to the bosonic annihilation and creation operators and the results of section Sc.2.1 can be used.

Cavity coupled to a transmission line

The cavity is in our experiment coupled to the modes propagating in a transmission line in order to read out its field, to drive it coherently and to achieve control over its thermal state. The LC resonator is then connected via a coupling capacitance C c to a transmission line of characteristic impedance Z c , as shown in Fig. 2.4. A resistor R in parallel to the LC circuit models the internal losses. In this paragraph we introduce the relevant quantities characterizing the circuit before giving a quantum optics description of this system.

Equivalent circuit and cavity damping rates

By coupling the RLC resonator to the transmission line, its resonance frequency ω 0 and its characteristic impedance Z 0 are slightly modified. The resonator impedance Z RLC = 1/R + i(Cω -1/Lω) seen from A (see Fig. 2.4) is now connected in parallel with Z ext = Z c + 1/iC c ω. In the low coupling limit Z c C c ω 0 1 and close to resonance ω ∼ ω 0 , an approximate equivalent R L C circuit can be built (see Fig. impedance are therefore ω 0 = 1/ √ LC and Z 0 = L/C . For the sake of clarity, in the following we keep the notations ω 0 and Z 0 for the renormalized values. More relevantly, the equivalent circuit enables to link the dissipation rates of the cavity to the circuit parameters. The ohmic environment modeled by R is:

1 R = 1 R + 1 R ext , with R ext Z c ≈ 1/Z 2 c C 2 c ω 2 0 . (2.22)
The resonator damping is then obtained from the quality factor of a RLC parallel circuit Q -1 = R -1 L/C. We identify two contributions to the total quality factor

Q -1 = Q -1 ext +Q -1 int : the external losses described by Q -1 ext = R -1
ext L/C and the internal losses described by

Q -1 int = R -1 L/C
. The energy dissipation rate into the two baths is thus defined as κ ext,int = ω 0 /Q ext,int . The above results are valid in the limit of high external quality factor Q ext , where Z c C c ω 0 1. By analogy with optical cavities, the necessary high impedance of the coupling capacitance corresponds to high reflectivity of the output coupler mirror, realizing therefore a field mode well confined in the resonator.

Input-output theory for a driven damped cavity

The cavity mode we want to control and measure is coupled to two baths: it exchanges energy at rates κ int and κ ext with the internal dissipations and with the transmission line modes, respectively. Since we are interested in the field entering and leaking out from the cavity, we need here a quantum description of the full system that includes the bath modes. Such a description is obtained extending to the quantum case the classical theory relating the cavity mode, the incoming and the outcoming waves. This quantum input-output theory is valid for the general case of a system of Hamiltonian Ĥ coupled to many continuum of modes with coupling rates κ i .

Our system is an LC resonator whose Hamiltonian and field operator â have been introduced in Eqs.2.8-2.10. The transmission line constitutes a bath for the resonator and is described by the propagating operators introduced in Eq.2.19, here called âin (t) for the mode propagating toward the cavity port and âout (t) for outcoming mode. The coupling strength κ i can be identified with the energy relaxation rate κ ext if a Markov approximation is performed in the validity limit of coupling to a continuum of modes. The second bath consisting in internal losses is coupled with strength κ int and can be treated in the exact same way as a terminated transmission line connected to a second port, defining the two other propagating operators âin,int and âout,int . The evolution of â(t) in the Heisenberg picture is then given by the following master equation:

∂ t â(t) = [â, Ĥ] i - 1 2 κâ(t) + √ κ int âin,int (t) + √ κ ext âin (t), (2.23) 
where [â, Ĥ]/i = -iω 0 for a LC oscillator and κ = κ int + κ ext = ω 0 /Q is the total cavity damping rate. The (1/2)κâ(t) is a damping term, while the terms √ κ i âin,i (t) are the source terms. A continuity equation holds at the interface between the cavity and the transmission line, imposing that the sum of the right and left propagating fields must be equal to the field radiated by the cavity:

âin,i (t) + âout,i (t) = √ κ i â.
(2.24)

Cavity under coherent driving

The classical fields we send to the cavity in our experiments are described by the coherent states |α introduced in Sec.2.1.3. Under classical drive the cavity input mode is in the eigenstate α in of the propagating operator âin , carrying the power P in = ω |α in | 2 as given by Eq.2.20. The expectation value of the intra-cavity field â (t) = α(t) is then obtained from Eq.2.23:

∂ t α(t) = -iω 0 α(t) - κ ext + κ int 2 α(t) + √ κ ext α in (t). (2.25) 
After Fourier transformation we thus find the steady-state solution for α:

α(ω) = 2 √ κ ext κ int + κ ext -2i(ω -ω 0 ) α in (ω). (2.26)
At resonance, a drive of power P in will stabilize a mean number of intra-cavity photons n = |α| 2 given by:

n = 4κ ext ω 0 (κ ext + κ int ) 2 .
(2.27)

The amplitude of the coherent cavity field is for us of particular relevance since it determines the transverse magnetic field driving the spins through the coherent oscillation of the current in the resonator inductor wire. For an incident drive power P in , the average current and magnetic field are:

Î (t) = 2δI √ n cos (ω 0 t) B(r) (t) = 2δB(r)
√ n cos (ω 0 t).

(2.28)

(2.29)

Scattering matrix measurement

-10 10 -10 10 0 The behavior of a n-port linear device connected to n transmission lines is fully described by the n × n scattering matrix consisting in the reflection and transmission coefficients S i,j for the propagating fields defined as: Ŝi,j (ω) = âout,i âin,j , with âin,k = 0 ∀k = j.

1 π -π (ω-ω 0 )/κ ext (ω-ω 0 )/κ ext
(2.30)

The scattering coefficients S i,j are in general measured using classical coherent input drives, using typically a Vector Network Analyzer (VNA). The propagating field operators can then be replaced by the coherent signals α in,i and α out,i . Eq.2.24 relating the output to input and intra-cavity fields gives α in,i + α out,i = √ κ i α(ω). Using then the expression for the intra cavity field Eq.2.26 we obtain the reflection coefficient S 11 for our LC resonator coupled to a single transmission line:

S 11 (ω) = √ κ ext α(ω) -α in α in = κ ext -κ int + 2i(ω -ω 0 ) κ ext + κ int -2i(ω -ω 0 ) . (2.31)
The relative strength of the external coupling rate κ ext with respect to the internal losses damping rate κ int defines three different regimes, as illustrated in Fig 2 .5:

• The under-coupled regime, where κ int κ ext , see green curves. Only a small dip in amplitude and a small phase shift are expected. Under-coupled cavities only weakly perturb the incident field.

• The critical coupling regime, where κ int ≈ κ ext , see blue curves. The reflected amplitude goes to zero at resonance, where the cavity behaves as an impedance matched load absorbing all the power.

• The over-coupled regime, where κ int κ ext , see red curves. The amplitude dip is small but the phase rotates by 2π across resonance. In the over-coupled regime most of the field is reflected but a large phase shift is caused.

A fit of S 11 (ω) provides access to ω 0 , κ int and κ ext without need of calibration of the line, since |S 11 | = 1 far from resonance. We notice here that the S-parameters are defined as the complex conjugate S i,j (ω) of what is derived here. In section 2.3.2 we have pointed out that the cavity internal dissipation can be described in terms of a second port connected to a transmission line terminated by an impedance matched load. For the following discussion it is then useful to introduce the transmission from this second port toward the output port 1, S 12 , as it determines how the incoming thermal noise from the internal losses via âin,int is transmitted to the output mode âout . Following the same procedure as for S 11 , we get:

S 12 (ω) = 2 √ κ ext κ int κ ext + κ int -2i(ω -ω 0 ) . (2.32)

Thermal population and noise in the cavity-transmission line system

In addition to the coherent control of the cavity, a fundamental requirement in our spin radiative cooling experiment is the possibility to establish and measure a cavity mode thermal state. In this section we first look at the thermal state in a semi-infinite transmission line terminated by different loads and then we move to the the case in which the cavity is connected to such a circuit. We consider a semi-infinite transmission line connected to an impedance-matched load at temperature T load , as depicted in Fig. 2.6a. The reflection coefficient given by Eq.2.18 being zero, the left propagating modes â (ω) are independent from the right propagating modes incoming to the load and they are populated only by the thermal radiation emitted by the load. Such a perfectly absorbing load thus behaves as a black body emitting according to Planck's law Eq.2.2, and thus realizes a thermal state in the left propagating modes satisfying:

â † â (ω) = n th (ω, T load ). (2.33) 
A second case of interest illustrated in Fig. 2.6b is a terminated transmission line connected to an attenuator at temperature T β : a two port impedance matched lossy element therefore characterized by S 11 = S 22 = 0 and S 21 = S 12 = √ 1 -β, with β the attenuation factor commonly expressed in dB. The left propagating mode is thus coupled with relative strength β to the bath at T β and with relative strength 1 -β to the load bath at T load . According to Eq.A.8, the left modes thermalize at an intermediate effective temperature T left defined as:

â † â = n th (T left ) = βn th (T β ) + (1 -β)n th (T load ).
(2.34)

Before moving to the analysis of the circuit illustrated in Fig. 2.6c, we introduce the device named circulator, commonly represented by a circle with arrow inside. It is a lossless non reciprocal three port device that decouples the counter-propagating modes in a transmission lines [START_REF] Pozar | Microwave Engineering[END_REF]. For a clockwise circulator The reflection coefficient at the load is zero so that the left propagating mode consists in the thermal radiation from the load, independently of the incoming state. b, Thermal radiation emitted by an impedance matched load is partially thermalized by an attenuator with transmission coefficient S 21 = √ β and no reflection. c, The cavity mode â is coupled with strength κ int to the thermal radiation at T int and with strength κ ext to the bath consisting in the incoming modes âin . The output modes âout are the sum of the transmitted âin,int and the reflected âin .

|S 21 | = |S 32 | = |S 13 | = 1, while T cold β T int C L κ ext κ int S 12
|S 12 | = |S 23 | = |S 31 | = 0
prevents transmission in the opposite direction. As a result the right propagating modes in the line connected to port 1 of the circulator is transmitted on port 2, while the left propagating mode on the same line is given by the input on port 3. Circulators allow thus to separate input and output lines in microwave experiments and to isolate a device from part of the circuit. The circuit represented in Fig. 2.6c describes in a simplified manner the setup used in the spin radiative cooling experiment. The aim of this circuit is to cool the resonator mode at the temperature T cold , lower than its internal losses temperature T int . As detailed in section Sc.2.3.4, the cavity can be described as a two port device, whose port 2 models its coupling to the internal losses at rate κ int while port 1 realizes the coupling at rate κ ext to the rest of the circuit. Cavity input and output modes on port 1 propagate on two different transmission lines as they are routed by a circulator. From the circuit point of view, the cavity is fully described by its scattering matrix coefficients S 11 and S 12 introduced in Eqs.2.31-2.32, while its internal degree of freedom â evolves according to Eq.2.23. We first look at the thermal state in the three relevant propagating modes: âin,int , âin and âout . The internal loss input mode on port 2 âin,int is at thermal equilibrium with the load at T int and obeys Eq.2.33: â † in,int âin,int (ω) = n th (ω, T int ). The input mode on port 1 âin is the mode routed by the circulator from the transmission line terminated by the load at T cold and attenuated by a factor β at T β , due to unwanted losses. It is therefore at thermal equilibrium at a temperature T ext given by Eq.2.34:

â † in âin = n th (T ext ) = βn th (T β ) + (1 -β)n th (T cold ). (2.35)
Once the two input modes state is known, the outgoing field âout is directly obtained from the cavity scattering parameters: âout (ω) = S 12 (ω)â in,int + S 11 (ω)â in . The output mode thermal equilibrium population n th (T out ) = â † out âout is thus given by:

â † out âout (ω) = |S 11 (ω)| 2 n th (T ext ) + (1 -|S 11 (ω)| 2 )n th (T int ). (2.36)
Far from resonance, the output mode is equal to the reflected input mode and is therefore at the intermediate temperature T ext in between T cold and T β . On the other hand, close to resonance the cavity couples the output mode to the thermal radiation of the cavity internal losses at T int . The outcoming modes are routed to the output transmission line by the circulator. Their thermal state can be characterized by measuring the noise power spectral density:

S(ω) = ∆ X2 + ∆ Ŷ 2 = n th (T out (ω)) + 1/2 (2.37)
with a spectrum analyzer connected to the output line. Such a measurement will provide information on the cavity and circuit modes temperatures. Left, κ int = κ ext /10: the cavity is in the overcoupled regime and at resonance the output mode is only partially thermalized to the hot losses. Middle, κ int = κ ext : the cavity is critically coupled to the output mode that at resonance is perfectly thermalized to the internal losses at 1 K. Right, κ int = 5κ ext : the cavity is in the undercoupled regime.

Now that we have determined the thermal equilibrium of the circuit, we focus on the intra-cavity field â. It is coupled to the internal loss bath at temperature T int with strength κ int and to the continuum of input modes at temperature T ext with strength κ ext . Once again, according to Eq.A.8 the system consisting in the cavity mode thermalizes to an effective bath at the intermediate temperature

T phot : â † â = n th (T phot ) = κ ext κ n th (T ext ) + κ int κ n th (T int ), (2.38) 
where n th (T ext ) is given by Eq.2.35. If the cavity is in the over-coupled regime κ ext κ int and the circuit losses are negligible β 1, then the cavity thermalizes to the cold load rather than to its internal loss bath and thus T phot ≈ T cold .

Thermal noise and amplification

To detect small changes in the thermal noise of the output field, it is essential to have a low-noise amplification chain. A first commonly used solution for measuring weak microwave signals at low temperature are semiconductor High Electron Mobility Transistor (HEMT) that can add an equivalent thermal noise of temperature T N on the order of a few Kelvin. We refer to T N as the amplifier noise temperature. Even lower level of added noise is desirable but it has to be considered that quantum mechanics fixes the limits on the minimum noise that an amplifier adds to the input signal, as shown by Haus and Mullen [START_REF] Haus | Quantum Noise in Linear Amplifiers[END_REF] and Caves [START_REF] Caves | Quantum limits on noise in linear amplifiers[END_REF]. Microwave amplifiers reaching this quantum limit of added noise have been developed in the context of CQED and go under the name of Josephson Parametric Amplifiers (JPA). In the following we introduce the quantum limits on amplification and we present the working principle and main characteristics of the Josephson Travelling Wave Parametric Amplifier (JTWPA) used in our experiments. Chapter 2. Quantum circuits

Quantum limits on amplification

We consider here only phase-preserving amplification. If we naively applied the classical relations between input and output quadratures of a linear amplifier to the quantum case, we would define Xout = √ G Xin and Ŷout = √ G Ŷin . This definition however does not satisfy the commutation relation for the operators âout and âin , besides the trivial case G = 1. Following Caves [START_REF] Caves | Quantum limits on noise in linear amplifiers[END_REF], an internal mode bin of the amplifier, commuting with âin , needs to be introduced to describe the amplification:

âout = √ Gâ in + √ G -1 b † in , ( 2.39) 
with bin satisfying [ bin , b † in ] = 1 and [ bin , âin ] = 0. By assuming bin = 0, one finds:

Xout = √ G Xin Ŷout = √ G Ŷin , ( 2.40) 
(2.41) in analogy to classical description. However, when deriving the quantum version of the input-output equations for the noise, the amplifier internal mode plays an essential role in causing a deviation from the classical limit. When no signal is present, then the outcoming noise referred to the input obeys:

∆ X2 out + ∆ Ŷ 2 out G = ∆ X2 in + ∆ Ŷ 2 in + 1 - 1 G ( ∆ X2 b + ∆ Ŷ 2 b ), (2.42) 
where ∆ X2 b are the internal mode fluctuations. We thus identify two distinct contribution to the output noise: the input noise and the noise added by the amplifier that originates from the internal mode fluctuations. We thus find it convenient to define S out = ∆ X2 out + ∆ Ŷ 2 out the noise detected, and S in = ∆ X2 in + ∆ Ŷ 2 in and S amp = ∆ X2

b + ∆ Ŷ 2 b its two contributions so that, for large gain, S out /G = S in + S amp . If the incoming mode âin is in a thermal state, the input noise is found from Eq.2.6 to be S in = n th (T in ) + 1/2. In the limit k B T in ω, thermal fluctuations are negligible and the detected noise S in = 1/2 is of quantum origin due to the minimum variance admitted by the Heisenberg principle. Like the input modes, the amplifier internal mode fluctuations are also bounded by the Heisenberg principle giving ∆ X2 b ∆ Ŷ 2 b 1/16. By further imposing that the added noise is phase-insensitive ∆ X2 b = ∆ Ŷ 2 b 1/4 [START_REF] Caves | Quantum limits on noise in linear amplifiers[END_REF], the quantum-limit on the amplifier output noise is obtained:

∆ X2 out + ∆ Ŷ 2 out G ∆ X2 in + ∆ Ŷ 2 in + 1/2. (2.43)
This results shows that in case of large gain the minimum noise added by a phasepreserving amplifier is equivalent to half a photon more (S amp 1/2) in the effective input noise power S out /G, as stated by the Haus-Caves theorem. Equivalently, the quantum limits on the amplifier noise temperature reads:

k B T N ω 2 .
(2.44) Figure 2.9: JTWPA equivalent circuit. A nonlinear transmission line is realized with a series of Josephson junctions. Some unit cells, like the one contoured by a dashed line, include a parallel LC resonator guaranteeing the phase matching condition.

Extracted from [START_REF] Macklin | A near-quantum-limited Josephson traveling-wave parametric amplifier[END_REF].

The Josephson Travelling Wave Parametric Amplifier

Amplification at the quantum limit has been reached in the microwave domain exploiting the inductance nonlinearity of Josephson junctions embedded in an almost dissipationless superconducting resonator of frequency ω 0 . As demonstrated in the pioneering work by Yurke et al. [START_REF] Yurke | Observation of parametric amplification and deamplification in a Josephson parametric amplifier[END_REF], such a circuit enables parametric amplification of signals at frequency ω s ≈ ω 0 , by transferring the energy of a pump at frequency ω p to the signal and to a complementary idler of frequency ω I . Two limitations of such devices are the bandwidth typically bounded to a few tens of Megahertz and the low saturation power in general smaller than -110 dBm.

Overcoming these limits has been demonstrated by moving from resonators to transmission lines, where the field is amplified while propagating in the nonlinear medium.

In the device used in this thesis, the distributed nonlinearity in the transmission line is realized with a chain of Josephson junctions, as shown in Fig. 2.9, from which the name of Josephson Travelling Wave Parametric Amplifier (JTWPA). Here the pump tone propagating in the line together with the signal enables a four-wave mixing process satisfying energy conservation 2ω p = ω s + ω i by generation of the idler. Conservation of momentum imposes the phase matching condition 2k p = k s + k i that needs engineering of the dispersion relation k(ω) to compensate for pump-induced phase shifts. For this purpose a series of lumped-element resonators is realized along the transmission line, opening a stop-band in the dispersion relation and allowing to reach the phase matching for different pump powers. For more details refer to ref. [START_REF] Macklin | A near-quantum-limited Josephson traveling-wave parametric amplifier[END_REF], while a characterization of the similar device used in this thesis is provided in the next chapters.

Superconducting microwave switch

Another superconducting device that will be of interest in this thesis is a superconducting microwave switch developed by Pechal et al. [START_REF] Pechal | Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields[END_REF]. We use this device in the radiative cooling experiment to investigate the dynamics of the cooling process. Its interest in our experiment lies in the fact that it is able to switch in a few nanoseconds without heating. It consists of two hybrid couplers connected in a Mach-Zehnder-like configuration, where the two arms are two independently tunable coplanar waveguide resonators (see Fig. 6.16a). Tunability is obtained with a series of 5 quantum-interference-device (SQUID) loops placed in the center of the two resonators. The inductance of these SQUID arrays is controlled by changing the applied magnetic flux with two superconducting coils. When both resonators are detuned, the input signal split by the first coupler is reflected by the resonators and, because of the phase relation between the two outputs of the coupler, recombines in port 2. Conversely, in the resonant configuration the signal is transmitted in the two arms toward the second hybrid coupler, recombining in port 3.

Figure 2.10: Superconducting switch circuit. Schematic diagram of the superconducting switch showing the input signal path for the two switch states. In the off-resonant case (solid arrows), the signal is reflected by the resonators and directed to port 2, while in the resonant case (dashed arrows) it is transmitted and reaches port 3. Extracted from ref. [START_REF] Pechal | Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields[END_REF].

Chapter 3

Spins in a cavity

In this chapter, we first model the dynamics of a spin coupled to a single electromagnetic mode, such as the resonant mode of an LC circuit. We focus in particular on the socalled "weak coupling" regime. We show how the cavity field acts as a reservoir for the spins, enabling spin cooling. After presenting the equation of motion of the spin ensemble, we discuss magnetic resonance detection methods used in our experiments.

We restrict our study in this chapter to electronic spins 1/2. Our discussion also applies without any change to nuclear spins 1/2; for multilevel systems, our treatment applies to a two-level restriction of the full energy spectrum, while effects of the multilevel structure are discussed in the next chapters.

Spin dynamics in the Purcell regime

We discuss in this section the spin radiative relaxation enhancement by a resonant cavity before studying spin thermalization and dynamics.

Cavity-induced relaxation

Consider the system depicted in Fig. 3.1, where a spin is in the mode volume of a damped cavity realized by an LC circuit. As discussed in Ch.2, the Hamiltonian of such a resonator is Ĥphot = ω 0 (ââ † + 1 2 ) and its damping rate is the sum of internal losses and coupling to the measurement line: κ = κ int + κ ext . The current in the inductor wire, Î = δI(â + â † ), generates a magnetic field B1 (r) = δB(r)(â + â † ) at the spin location r, determining the magnitude of spin-photon coupling g.

Spin-cavity interaction Hamiltonian

We first consider a single spin at location r, described by the dimensionless vectorial spin operator Ŝ = ( Ŝx , Ŝy , Ŝz ). A static magnetic field B 0 is applied along z. We isolate a two-level system from the spin energy levels, the ground state |g and the excited state |e , whose field-dependent transition frequency is ω s (B 0 ) = (E e -E g )/ .

We introduce the Pauli matrices (σ x , σy , σz ), where: One can also define the spin rising (σ + ) and lowering (σ -) operators as σ± = 1 2 (σ x ±iσ y ), whose matrix form are:

σx = 0 1 1 0 , σy = 0 -i i 0 and σz = 1 0 0 -1 (3.1) C κ ext L B 1 B 0 a κ int κ ext κ int β â â B 0
σ+ = 0 1 0 0 and σ-= 0 0 1 0 . (3.2)
In the basis {|e , |g }, the spin Hamiltonian reads:

Ĥs (B 0 ) = ω s (B 0 ) 2 σz . (3.3)
The spin interaction with the resonator field results in a magnetic coupling described by the interaction Hamiltonian:

Ĥint = -γ e Ŝ • B1 = -γ e Ŝ • δB(r)(â + â † ), (3.4) 
where γ e = 28 GHz/T is the so-called gyromagnetic ratio of the free electron spin.

In the {|e , |g } restriced spin-basis, treating Ĥint as a perturbation of the uncoupled Hamiltonian Ĥ0 = Ĥphot + Ĥspin and performing the rotating wave approximation yields the Jaynes-Cummings Hamiltonian [START_REF] Walls | Quantum Optics[END_REF]:

Ĥint = g(σ + â + σ- â † ), (3.5) 
where g = -γ e e| Ŝ • δB(r) |g . The two terms in the Hamiltonian describe respectively absorption and emission of photons by the spins. In a perfectly isolated spin-cavity system, the Jaynes-Cummings Hamiltonian predicts the phenomenon known as vacuum

Rabi oscillation [START_REF] Haroche | Exploring the quantum[END_REF]: a spin initially in its excited state will emit and re-absorb reversibly a single photon into an empty cavity at a frequency 2g.

In the presence of interaction with the environment of both the spins and the resonator, the duration of these coherent exchange is limited by two phenomena: the resonator damping rate κ gives a characteristic intra-cavity photon lifetime of 1/κ, while spins lose their coherence at a rate γ = 1/T 2 , where T 2 is the so called spin coherence time that we describe in the following of this chapter. Two regimes can then be distinguished, as shown in Fig. 3.2: • The strong coupling regime, when g κ, γ (see red curve): excitation lifetimes are long compared to the Rabi period and Rabi oscillations may be observed [START_REF] Haroche | Exploring the quantum[END_REF].
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• The weak coupling regime, when g κ, γ (see blue curve): excitations decay faster than the coherent exchange time, thus Rabi oscillation are replaced by an irreversible decay.

In the following, we will focus on the weak coupling that, if other conditions are satisfied, is the relevant regime for realizing radiative cooling of the spins.

Master equation for the open spin-cavity system

Before going to the approximation allowed by the weak coupling regime, let's consider the complete description at zero temperature of the spin-cavity system interacting with the environment (see Fig. 3.3). The spin is coupled to the lattice bath with strength Γ phon while the cavity dissipates into the environment via its internal and external loss channels. Such an open system can be described by the Lindblad master equation Eq.A.1. A microwave drive of amplitude β (linked to the input power by

P in = ω d |β| 2 ) is described by Ĥd / = i √ κ ext (βâ † e -iω d t + β * âe iω d t
). The Hamiltonian of the system in the frame rotating at ω d is then: where ∆ 0 = ω 0 -ω d and ∆ s = ω s -ω d . Three Lindblad operators describe the nonunitary processes at zero temperature. The cavity relaxation via external and internal losses is described by Lphot = √ κâ. The spin-lattice energy relaxation is described by Lphon = Γ phon σ-and spin decoherence by L2 = γ/2σ z . Such a master equation fully describes the system and is valid in the strong and weak coupling regime. Using the density matrix ρ to describe the spin-cavity system, it reads:

Ĥ = ∆ 0 â † â + ∆ s 2 σz + g(σ + â + σ- â † ) + i √ κ ext (βâ † -β * â), (3.6) Γ phon g κ ext κ int C κ ext L a κ int β â g Γ phon b β
dρ dt = - i [ Ĥ, ρ] +( Lphon ρ L † phon - 1 2 L † phon Lphon ρ - 1 2 ρ L † phon Lphon ) +( Lphot ρ L † phot - 1 2 L † phot Lphot ρ - 1 2 ρ L † phot Lphot ) +( L2 ρ L † 2 - 1 2 L † 2 L2 ρ - 1 2 ρ L † 2 L2 ), (3.7) 

Enhanced spontaneous emission in the weak coupling regime: the Purcell Effect

In the weak coupling regime, the large resonator damping κ compared to the coherent exchange rate g makes it possible to treat the resonator mode as an effective Markovian bath for the spin. Here we report the main results of a procedure based on the resonator adiabatic elimination that gets rid of the resonator operators while taking into account the drive [START_REF] Butler | Polarization of nuclear spins by a cold nanoscale resonator[END_REF][START_REF] Julsgaard | Measurement-induced two-qubit entanglement in a bad cavity: Fundamental and practical considerations[END_REF][START_REF] Wang | Dynamical creation of entanglement by homodyne-mediated feedback[END_REF]. A new master equation in the drive rotating frame is thus obtained for the reduced spin density matrix ρ:

dρ dt = - i [ Ĥeff , ρ] +( Lphon ρ L † phon - 1 2 L † phon Lphon ρ - 1 2 ρ L † phon Lphon ) +( Lphot ρ L † phot - 1 2 L † phot Lphot ρ - 1 2 ρ L † phot Lphot ) +( L2 ρ L † 2 - 1 2 L † 2 L2 ρ - 1 2 ρ L † 2 L2 ), (3.8) 
with Ĥeff being the new effective spin Hamiltonian:

Ĥeff = ∆ s -ξ 2 σz + g(ασ + + α * σ-), (3.9) 
where α = 2 √ κ ext β/(κ + 2i∆ 0 ) is the steady state intra-resonator field amplitude calculated in absence of spins with the input-output relations (see Eq.2.26), and ξ =

g 2 ∆ ∆ 2 +κ 2 /4 with ∆ = ∆ 0 -∆ s = ω 0
-ω s being the spin-cavity detuning. The ξ term is renormalization of the spin frequency that we neglect in the following since it is of order g 2 /κ. As a consequence of the resonator adiabatic elimination, the Lindblad operator Lphot describing the resonator losses is replaced by the operator Lphot = Γ phot (∆)σ -acting on the spins. This new operator describes spin radiative relaxation into the effective resonator bath. This cavity-induced spontaneous radiative relaxation was predicted in 1946 by Purcell [START_REF] Purcell | Spontaneous emission probabilities at radio frequencies[END_REF] for spins and is known as the Purcell effect. The rate Γ phot can be shown to be:

Γ phot = κg 2 κ 2 /4 + ∆ 2 .
(3.10)

This exponential relaxation of a spin in a damped cavity is shown in Fig. 3.2, where the numerical solution of Eq.3.7 is reported for ∆ s = ∆ 0 = 0, in the absence of drive (β = 0) and neglecting non radiative processes (γ = Γ phon = 0) for both strong (red) and weak (blue) coupling regimes. The coupling to the cavity induces therefore a new radiative relaxation channel for the spins, which competes with the relaxation by spin-lattice interaction.

Spin equilibrium and dynamics

We now describe in more details spin dynamics in the Purcell regime.

Equation of motion and mapping to Bloch equations

The master equation and effective Hamiltonian obtained from resonator adiabatic elimination (Eqs.3.8-3.9) yield the following semi-classical equations of motion for the spin observables and for the intra-cavity field, calculated in the drive rotating frame and at zero temperature:

d σx dt = ∆ s σy -γ ⊥ σx d σy dt = -∆ s σx -ω 1 σz -γ ⊥ σy d σz dt = ω 1 σy -Γ 1 (0) [ σz + 1] â = α - i2g κ + 2i∆ σ-, (3.11) 
(3.12)

(3.13) (3.14) with γ ⊥ = γ + Γ phon 2 + Γ phot
2 , Γ 1 (0) = Γ phon + Γ phot and, considering α to be a real number, ω 1 = -2gα. We note here that Eqs.3.11-3.13 are identical to the Bloch equations derived with fully classical description of the field, except for the new energy relaxation term given by the Purcell effect. We now recall basic features of spin dynamics on the Bloch sphere. The spin vector σ is conveniently represented in the Bloch sphere of radius one: the south pole indicates the ground state with the spin aligned along z while the equator on the x -y plane is where the vector points in case of full transverse magnetization. Neglecting relaxation and decoherence processes (Γ phot = Γ phon = γ = 0), the spin ensemble explores the surface of the sphere. Under a static magnetic field applied along ẽz , the spin precesses in the laboratory frame at the Larmor frequency ω s . In the rotating frame at ω d , it is static in absence of drive. When turning on the drive, it starts rotating around the vector ω 1 ẽx + ∆ s ẽz at an angular speed called the Rabi frequency:

Ω R = ∆ 2 s + ω 2 1 . (3.15)
When the applied drive is resonant with the spins (∆ s = 0), the magnetization vector precesses at speed ω 1 around ẽx . Such rotation axis depend on the phase of the applied drive α and can thus be arbitrarly chosen within the x -y plane. By realizing a microwave pulse of duration τ p , we can perform a rotation of angle θ p = ω 1 τ p around the chosen axis. Rotations around ẽz can be also realized combining two rotations in the x -y plane. Magnetization can be thus brought to any point on the Bloch sphere.

In our experiments we will mainly use π and π/2 pulses around x and y axes.

The effect of the environment gives rise to two relaxation processes described by Eqs.3.11-3.13:

• Energy relaxation, As we have previously discussed, the term proportional to Γ 1 (0) describes the energy loss from the spin and emitted into the environment at zero temperature in an irreversible process whose characteristic time is generally denoted as T 1 = 1/Γ 1 . The effect of energy relaxation is an exponential decay at rate Γ 1 (0) of the spin polarization p ≡ -σz to its thermal equilibrium state, p(0) = 1 at zero temperature. We discuss in detail the finite temperature case in the next section.

• Decoherence, The terms proportional to γ ⊥ are responsible for the decay of the transverse components σx and σy whose charecteristic time is commonly denoted as the coherence time T 2 and its maximum value is 2T 1 . Note that for spins, as will be seen in the next chapter Ch.4, decoherence is in general due to a local, slowly evolving source of noise. The Markov approximation is then not satisfied, and the decay of σ x,y not exponential.

The steady-state solutions of the Bloch equations are well-known:

σ (s) x = ∆ s ω 1 /γ 2 ⊥ 1 + (∆ s /γ ⊥ ) 2 + ω 2 1 /Γ 1 γ ⊥ σ (s) y = ω 1 /γ ⊥ 1 + (∆ s /γ ⊥ ) 2 + ω 2 1 /Γ 1 γ ⊥ σ (s) z = 1 + (∆ s /γ ⊥ ) 2 1 + (∆ s /γ ⊥ ) 2 + ω 2 1 /Γ 1 γ ⊥ . (3.16) (3.17) (3.18)
The transverse component of the spin shows a maximum for ω 2 1 /Γ 1 γ ⊥ = 1 before the overall spin vector expectation value vanishes when ω 1 Γ 1 γ ⊥ . This saturation condition reached at large drive power corresponds to the two spin levels being populated with equal probability and therefore effectively not any more interacting with the microwave radiation. Besides providing the spin coherent evolution and relaxation in the presence of a drive, Eqs.3.11-3.14 also provide the signal emitted from the spin. The transverse spin component changes the intra-cavity field by 2ig/(κ+2i∆) σ-leading to a signal leaking from the cavity that can be found using the input output theory relation âout = √ κ ext â (see Eq.2.24). At resonance (∆ = 0) the signal emitted from the spin into the output transmission line is thus roughly 2g σ-/ √ κ. It is proportional to the spin-photon coupling g, to 1/ √ κ, and to the transverse spin component σ-.

Homogeneous and inhomogeneous broadening

The decoherence process of a spin corresponds in the frequency domain to a finite spectral linewidth 1/T 2 named 'homogeneous' broadening. In the presence of an ensemble of spins, the linewidth is in general much larger because of the inhomogeneity of the spin environment, resulting in a distribution of Larmor frequencies ρ(ω s ). This 'inhomogeneous' broadening can be modeled as resulting from a sum of contributions of homogeneously broadened subsets, each of them described by the semiclassical Bloch equations Eqs.3.11-3.13. Such a sum results in a decay of the ensemble transverse magnetization σ(ens)

x,y at a rate 1/T * 2 = Γ inh , with Γ inh the width of ρ(ω s ) typically much larger than 1/T 2 .

Thermal equilibrium for a spin coupled to two baths Γ phon Γ phot T spin T phot T phon < Figure The master equation Eq.3.8, valid in the weak spin-cavity coupling regime, describes a spin coupled to two baths: the damped resonator mode and the lattice. Neglecting decoherence terms, Eq.3.8 at finite temperature then reads (see Appendix A):

dρ dt = - i [ Ĥeff , ρ] - Γ 1 (0)[n th (T spin ) + 1] 2 (σ + σ-ρ + ρσ + σ--2σ -ρσ + ) - Γ 1 (0)n th (T spin ) 2 (σ -σ+ ρ + ρσ -σ+ -2σ + ρσ -), (3.19) 
with Ĥeff = ∆s 2 σz g(ασ + + α * σ-) and n th given by Eq.2.1:

n th (T spin ) = Γ phot Γ 1 (0) n th (T phot ) + Γ phon Γ 1 (0) n th (T phon ). (3.20)
If the spin is in the Purcell regime where Γ phot Γ phon , it is expected to thermalize to the resonator mode, T spin ≈ T phot independently on the lattice temperature. This opens the possibility to cool the spin below the host lattice temperature, as we demonstrate in the experiments reported in the next chapters. From Eq.3.13, we derive the evolution of σz :

d σz dt = ω 1 σy -Γ 1 (0)[2n th (T spin ) + 1] σz + 1 2n th (T spin ) + 1 . (3.21)
Two changes are observed in the σz equation of motion with respect to the zero temperature case. First, the relaxation rate towards thermal equilibrium Γ 1 (T spin ) is accelerated:

Γ 1 (T spin ) = Γ 1 (0)[2n th (T spin ) + 1] (3.22)
This is a consequence of the fact that, in addition to the spontaneous emission, absorption and stimulated emission processes become possible thus enhancing the relaxation rate by the factor 2n th (T spin ) + 1. Second, the thermal equilibrium value of the spin polarization p(T spin ) is reduced with respect to the zero temperature value of 1 to:

p(T spin ) = 1 2n th (T spin ) + 1 = tanh ω s 2k B T spin (3.23) (3.24) (3.25)
From Eq.3.24 we see that the total relaxation rate is still the sum of the radiative and spin-lattice relaxation rates, now enhanced by the thermal processes. On the other hand, the polarization of the spin at T spin in Eq.3.25 is an average of the equilibrium polarization at the two bath temperatures weighted by the corresponding thermal relaxation rates.

Ensemble dynamics and equations for numerical simulation

The experiments presented in this thesis involve a large ensemble of spins coupled to the cavity. Due to inhomogeneous broadening and non-unique coupling, simulations of an N -spins ensemble evolution are necessary to reproduce and predict the measurements. More details on the numerical simulations presented here are found in ref. [START_REF] Ranjan | Pulsed electron spin resonance spectroscopy in the Purcell regime[END_REF]. The ensemble is divided in M sub-ensembles with coupling g m and spin resonance frequency

ω d + ∆ (m)
s , each of it regarded as homogeneous and hence described by the semiclassical Bloch equations Eqs.3.11-3.14. The decoherence rate γ is assumed equal for all sub-ensembles. On the other hand, since we're interested in the Purcell regime, the relaxation rate of each sub-ensemble Γ (m) 1 (g m , ∆ m ) is calculated with the Purcell formula Eq.3.10. The equations describing the evolution of the sub-ensemble m together with the intra-cavity field are then:

d σ(m) x dt = ∆ (m) s σ(m) y + 2g k Ŷ σ(m) z -γ σ(m) x d σ(m) y dt = ∆ (m) s σ(m) x -2g k X σ(m) z -γ σ(m) y d σ(m) z dt = 2g k X σ(m) y -2g k Ŷ σ(m) x -Γ (m) 1 σ(m) z + p (m) d X dt = √ κ ext β X - κ 2 X - M j=1 g j σ(j) y d Ŷ dt = √ κ ext β Y - κ 2 Ŷ + M j=1 g j σ(j) x , (3.26) (3.27) 
(3.28)

(3.29) (3.30)
where β X,Y are the in-phase and out of phase parts of the input drive and p (m) is the initial polarization. We note that the last term in equation Eqs.3.29-3.30 couples all the M differential equations by including all feedback effects of the field radiated by the spins on their dynamics. However, in the experiments discussed in this thesis the spin ensemble cooperativity defined as C = 2N g 2 /κγ verifies C 1, making it possible to further simplify the solution of the system of M differential equations. In this regime the field generated by the spins is too small to affect significantly their own dynamics and can thus be neglected for most of the experimental time. The numerical solution of all the sub-ensembles is then obtained independently and finally all contributions are summed with the weights given by ρ(ω s ) and the coupling distribution ρ(g). We use this simplified approach for the simulation of our experiments that are presented in the following of this thesis.

Inductive detection of magnetic resonance

In the previous section we have seen how the spin transverse magnetization σx,y generates a field in the LC resonator that is proportional to the magnetic coupling g realized by the inductive part of the resonant circuit. The field leaking out of the resonator allows then spin detection. Such 'inductive detection' is the most widely used magnetic resonance measurement technique. The transverse magnetization can be produced by either a continuous or a pulsed excitation. In the case of continuous drive, the precessing magnetization can result in an absorption or phase shift of the incoming microwave, which can typically be detected with lock-in techniques. Sequences of drive pulses can instead produce transient transverse magnetization on the time-scale of the relevant relaxation times of the system. Since the latter is the main technique we have used in our experiments, we detail it hereafter for an inhomogeneous ensemble in the simplified case of large cavity bandwidth (κ 1/T * 2 ). Throughout the remaining of this thesis, for the sake of simplicity, we refer to the spin ensemble magnetization normalized to 1 with the same symbol used for the single spin vector operator σ. 

Pulsed electron spin resonance

Free induction decay

The application of a pulse of tipping angle θ p = π/2 brings the equilibrium longitudinal magnetization of an inhomogeneous ensemble of N spins on the equatorial plane realizing the transverse polarization σ-= N p(T spin ). Immediately after the pulse, the magnetization vector precesses around e z at the Larmor frequency ω s while the transverse and longitudinal components are decaying exponentially at rates 1/T * 2 and Γ 1 , respectively (Eqs.3.11-3.13, see Fig. 3.6). This oscillating magnetization generates a damped coherent intra-cavity field (see Eq.3.14) named free induction decay (FID):

â FID (t) ∼ N g κ p(T spin )e iωst e -t/T * 2 (3.31)

Spin echo

The fast decay of the spin ensemble coherence due to inhomogeneous broadening can be made reversible by the pulse sequence named Hahn Echo [START_REF] Hahn | Spin Echoes[END_REF], which is used in most of our experiments (see Fig. 3.6). A first π/2 pulse induces the transverse magnetization σ-= N p(T spin ) decaying in the characteristic time T * 2 while emitting the FID signal. After a delay time τ T * 2 a π pulse 90 • -rotated with respect to the π/2 pulse is applied, effectively reverting the time evolution of the ensemble. As a result, after a second delay of duration τ the magnetization refocuses and reaches its initial value. The time reversal of FID is observed before the coherence decays again in the same T * 2 time. The signal emitted by the refocused magnetization is known as 'spin echo' and, being a revival of the FID, its amplitude is also proportional to the initial ensemble polarization p(T spin ). For this reason the echo signal is the spin thermometer we use in our radiative cooling experiments. If no relaxation processes were present, echo amplitude would stay constant as a function of τ . Instead, it decays due to decoherence at the rate γ ⊥ . A major advantage of spin echo is its time separation from the applied pulses compared to FID. The decay of the intra-cavity field generated by the input pulses overlaps with the FID, possibly preventing the spin signal detection. This effect becomes particularly relevant for small cavity bandwidth with respect to the inhomogeneous spin linewidth, as it is the case in our experiments.

Rabi oscillations in the presence of inhomogeneous broadening

The drive pulse calibration is performed by measuring the Rabi oscillations with the Hahn-echo sequence. For that, the echo is detected as a function of the tipping angle θ p of the refocusing pulse, varied by sweeping the pulse power P in . This results in oscillations of the echo signal, as we detail hereafter. Consider an ensemble spins with identical coupling g and initial polarization p, divided in N subsets of detuning ∆ j , distributed according to ρ(∆). An ideal π/2 pulse applied around the x-axis at time -2τ creates a transversal magnetization state aligned on the y-axis. The evolution of each spin subset j at of detuning ∆ j at times -2 t < -τ is:

       σ(j) x (t) = p sin (∆ j (t + 2τ )) σ(j) y (t) = p cos (∆ j (t + 2τ )) σ(j) z (t) = 0 (3.32)
Applying a pulse of tipping angle θ p around the y-axis at time t = -τ leads to the following evolution at times t -τ for each subset j:

       σ(j) x (t) = p sin (∆ j (t + 2τ )) cos θ p σ(j) y (t) = p cos (∆ j (t + 2τ )) σ(j) z (t) = p sin (∆ j (t + 2τ )) sin θ p (3.33)
Assuming that the tipping angle is identical for all spin subsets, one can show that the transverse magnetization at time t = 0 is:

σx (0) = p 2 (1 + cos θ p ) j sin (2∆ j τ ) σy (0) = p 2 (1 -cos θ p ) + p 2 (1 + cos θ p ) j cos (2∆ j τ ) (3.34)

If 2τ

T * 2 , the sums j sin (2∆ j τ ) and j cos (2∆ j τ ) average to zero and as a result the spin integrated echo signal A e is proportional only to:

A e ∝ p 2 (1 -cos θ p ), (3.35) 
allowing to determine P in corresponding to a π pulse. After the echo detection, waiting a time of about 1/Γ 1 to let the spins come back to equilibrium is necessary before repeating the Hahn Echo sequence and detect a second echo. This limit can be overcome by the Carr-Purcell-Meiboom-Gill (CPMG) sequence that allows to refocus the magnetization several times before decoherence occurs (see Fig. 

CPMG sequence � �/2 x � y � y � y � y � � CPMG /2 � CPMG

Bismuth donors in Silicon

This last chapter of the Background part is dedicated to the spin system we use in our experiments: bismuth donors in silicon (Si:Bi). The first in-depth study of group-V donors in silicon is due to the works from Honig and Feher [START_REF] Honig | Polarization of Arsenic Nuclei in a Silicon Semiconductor[END_REF][START_REF] Feher | Exchange Effects in Spin Resonance of Impurity Atoms in Silicon[END_REF] performed in the 1950s, particularly focused on phosphorus and arsenic. Renewed attention to these systems has emerged in the last twenty years after the Kane's proposal of a quantum computer based on phosphorus donors in silicon [START_REF] Kane | A silicon-based nuclear spin quantum computer[END_REF]. Silicon as a host material for donor spins is of great interest because its main isotope 28 Si has zero nuclear spin so that an enriched 28 Si crystal would realize a very quiet magnetic environment. And indeed, ultra-long coherence times were measured for donor electron spins in silicon, which makes them suitable candidates for quantum information processing and storage. Due to its simple energy spectrum and widespread use in CMOS technology, phosphorus is the most studied silicon donor. Other group-V donors include 31 P, 33 As, 121,123 Sb and 209 Bi(see 4.1). Bismuth is the heaviest atom and shows the largest electron confinement, consistently with the largest hyperfine interaction and ionization energy. It recently gained new attention due to its optimal working point at which its spin transition frequency is at first order independent on magnetic field and thus insensitive to magnetic field noise, leading to the longest measured coherence time for an electron spin in the solid state [START_REF] Wolfowicz | Atomic clock transitions in silicon-based spin qubits[END_REF]. In this chapter we aim at providing the main information on bismuth donors in silicon needed to describe our experiments. We first present the electronic structure before concentrating on the spin Hamiltonian to illustrate the spin energy levels and microwave transitions in the relevant limits. We then move to the decoherence and energy relaxation processes with particular focus on the role of the environment of 29 Si 47 nuclear spins. We briefly discuss the effect of strain before analyzing the phenomena induced by optical illumination. We conclude with some details on the fabrication and characterization of the sample used in our experiments. Silicon is an element of the IV-group crystallizing in a diamond structure, where each silicon atom is at the center of a tetrahedron whose vertices are occupied by its four first neighbours to which is covalently bound (see Fig. 

A substitutional donor in silicon

Electronic state

The V-group donors in silicon are called shallow impurities because E D E g . Since the donor electron wavefunction of such impurities extends over many lattice sites (see Fig. 4.2a), it is naturally written as a linear combination of wavefunctions of electrons in the silicon conduction band, and inherits some of their characteristics. Moreover, the dielectric properties of silicon affects the Coulomb interaction with the central ion. We first consider the approximate solution for the electronic structure obtained applying the method developed by Kohn and Luttinger [START_REF] Luttinger | Motion of Electrons and Holes in Perturbed Periodic Fields[END_REF] (see also [START_REF] Yu | Fundamentals of Semiconductors: Physics and Materials Properties[END_REF]), based on the effective mass theory (EMT). Here the electrostatic potential of the nucleus binding the electron is modeled by the Coulomb potential V (r) = -e 2 /( Si r), where Si is the silicon dielectric constant. The EMT predicts a 1s ground state in the form of a superposition of six degenerate valley wavefunctions consisting of the product of the conduction band function φ kµ (r) with a hydrogen-like envelope function F µ (r) at the µ-th conduction-band valley [START_REF] Wilson | Electron Spin Resonance Experiments on Donors in Silicon. III. Investigation of Excited States by the Application of Uniaxial Stress and Their Importance in Relaxation Processes[END_REF]:

Ψ(r) = µ α µ F µ (r)φ kµ (r). ( 4.1) 
The Bohr radius a 0 reported in Table 4.1 is here the parameter indicating the spatial extension of the hydrogenic envelope function F µ (r). The coefficients |α µ | represent instead the probability for the donor electron to occupy the µ valley state and are called valley populations. The approximations of EMT lead to the same solutions for all the donors, giving the same a 0 and an ionization energy E D = -31.3 meV. These results are in contradiction with the differences observed between the donors as evidenced in Table 4.1. Moreover, the prediction of a single degenerate state is in contradiction with experimental results [START_REF] Zhukavin | Spin-orbit coupling effect on bismuth donor lasing in stressed silicon[END_REF]. Such discrepancies are attributable to the EMT failing in taking into account the environment in the proximity of the donor nucleus. An improved model takes into account the tetrahedric unit cell surrounding the donor together with the core and valence electron screening the the Bi nucleus attractive potential, by adding a phenomenological interaction called 'valley-orbit' [START_REF] Wilson | Electron Spin Resonance Experiments on Donors in Silicon. III. Investigation of Excited States by the Application of Uniaxial Stress and Their Importance in Relaxation Processes[END_REF]. This more accurate model catches the observed ground state degeneracy lifting, predicting three distinct 1s states labeled by their tetrahedral symmetry group designation: a symmetrical ground-state A 1 , a three-fold degenerate level T 2 and a two-fold degenerate level E (see Fig. 4.2b).

The valley-orbit interaction yields the different ionization energy, Bohr radius and hyperfine coupling constant for the various donors in agreement with measurements, as reported in Table 4.1. Bismuth emerges as the most strongly bound donor with E D = 71 meV and consistently with the smallest Bohr radius a 0 = 1.45 nm and largest hyperfine constant A/2π = 1.4754 GHz. In the following, we are mainly interested in the spin properties of the donor in its neutral ground state A 1 . Nonetheless, an important role is played by the higher energy states in various phenomena we discuss in this thesis. 

Charge state

The probability for a donor to be in the neutral or ionized state depends not only on the ionization energy and temperature, but also on the density of implanted atoms N D and the density of states close to the conduction band minimum N c . By calculating the position of the Fermi-level in between the conduction band and the donor ground state A 1 , the equation for the number of ionized donors N + D in a non-degenerate semiconductor is found to be:

N + D = N D 1 + (2N + D /N c )e E D /k B T , ( 4.2) 
where T < 400 K is assumed to neglect the contribution of free carriers excitation from the valence band. Solving Eq.4.2 for a concentration of bismuth donors N D = 10 16 cm -3 and an ionization energy E D = 71 meV (see Fig. 4.3), bismuth donors are found in their neutral state for temperatures up to 40 K. In our experiments performed at T <1.2 K, all donors are expected to be in their neutral state. However, even at low temperatures, donors can also be ionized by externally applied electric field [START_REF] Calderón | External field control of donor electron exchange at the Si/SiO 2 interface[END_REF][START_REF] Lo | Stark shift and field ionization of arsenic donors in 28Si-silicon-on-insulator structures[END_REF] or internal electric field associated to the formation of Schottky barriers [START_REF] Bienfait | Magnetic resonance with quantum microwaves[END_REF].

Spin levels and ESR-allowed transitions

We now consider the spin properties of a neutral bismuth donor, arising from the electron spin S = 1/2 and the nuclear spin I = 9/2 coupled by the hyperfine constant A/2π = 1.4754 GHz. In the presence of an applied magnetic field B, the spin Hamiltonian reads [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF]:

Ĥ/ = B • γ e Ŝ ⊗ 1 -γ n 1 ⊗ Î + A Ŝ • Î, (4.3) 
where γ e /2π = 27.997 GHz/T and γ n /2π = 6.962 MHz/T are the electronic and nuclear gyromagnetic ratios, respectively. The first term describes the Zeeman effect and the second the isotropic hyperfine coupling [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF]. We now follow the analysis made by Mohammady et al. in ref. [START_REF] Mohammady | Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances[END_REF] to discuss the properties of the eigen-states and of the ESR transitions, with particular focus on the limit of low magnetic field. First, we rewrite Eq.4.3 assuming a static magnetic field B 0 = B 0 e z applied along z:

Ĥ0 / = A Ŝz Îz + A 2 ( Ŝ+ Î-+ Ŝ-Î+ ) + ω 0 ( Ŝz -δ Îz ), (4.4) 
where ω 0 = B 0 γ e and δ = γ n /γ e = 10 -3 . The twenty states defining the Zeeman basis {|m s , m i }, with m s = ±1/2 and m i = -9/2...9/2, do not diagonalize the Hamiltonian due to the hyperfine coupling. The eigenstates are therefore hybridized electro-nuclear states we detail hereafter. The energy spectrum as a function of B 0 obtained from diagonalization of the Hamiltonian Eq.4.4 is shown in Fig4.4.

Eigenstates

To introduce the spin system eigenstates, we first consider the application of the Hamiltonian Eq.4.4 on a state of the Zeeman basis:

Ĥ0 / |± 1 2 , m i = ± A 2 m i ± ω 0 2 + ω 0 δm i |± 1 2 , m i + A 2 α |∓ 1 2 , m i . ( 4.5) 
As expected, Zeeman states are mixed by the hyperfine interaction. However, it is evident that the | 1 2 , 9 2 and |-1 2 , -9 2 are unmixed eigenstates of the Hamiltonian since α |∓ 1 2 , ± 9 2 = 0. Their energy is:

E |± 1 2 ,± 9 2 = 9 2 A ± ω 0 2 (1 + 9δ). (4.6)
In the bismuth spectrum (see Fig. 4.4), these two unmixed states are the only ones showing a linear energy dependence on magnetic field.

In the presence of the hyperfine coupling term, the projection of the total angular momentum F = Î+ Ŝ onto e z is still commuting with the Hamiltonian, [ Ĥ0 , Ŝz + Îz ] = 0, and its eigenvalue m = m i +m s is thus a good quantum number. From Eq.4.5 it appears that for |m| < 5,

|± 1 2 , m i = |± 1 2 , m ∓ 1 2 hybridizes with |∓ 1 2 , m i ± 1 = |∓ 1 2 , m ± 1 2 .
As shown in ref. [START_REF] Mohammady | Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances[END_REF], the expression for the eigenstates exact for any field and value of m is then:

|±, m = a ± m |± 1 2 , m ∓ 1 2 + b ± m |∓ 1 2 , m ± 1 2 , ( 4.7) 
where

a ± m = cos θ m 2 b ± m = ± sin θ m 2 , (4.8) (4.9)
with the value of θ m given by: ). The coupled energy-levels E ± m are color-coded from purple to red, the uncoupled energy-levels are in black. Figure adapted from [START_REF] Mohammady | Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances[END_REF][START_REF] Balian | Quantum-Bath Decoherence of Hybrid Electron-Nuclear Spin Qubits[END_REF] The corresponding eigen-energies are:

tan θ m = (25 -m 2 ) 1/2 m + ω 0 A (1 + δ) . ( 4 
E ± m = A 2 (-± R m ), (4.11) 
where:

R 2 m = m + ω 0 A (1 + δ) 2 + (25 -m 2 ) = 1 2 + 2ω 0 mδ. (4.12) (4.13)
We notice that in the high-field limit the Zeeman basis is recovered as the eigen-basis of the Hamiltonian, as expected from the fact that the hyperfine coupling becomes negligible compared to the Zeeman term that is linearly increasing with B 0 . Indeed tan θ m → 0, thus a ± m → 1 and b ± m → 0, leading the |±, m state to converge respectively to the Zeeman eigenstates

|m s = ± 1 2 , m i = m ∓ 1 2 .
Coherently with this analysis, it is apparent that the eigenstates can be labeled in various ways (see Fig. 4.1): by order of increasing energy {|i , i = 1, ...20}, by the coupled basis {|±, m } and in the high field limit by the electron and nuclear spin quantum numbers in the Zeeman basis |m s , m i , m s = ± 1 2 , m i = -9 2 ... 9 2 .

Low-field limit

At B 0 = 0 nine degenerate ground states ('+' in the coupled basis notation) are separated from 11 excited states ('-') by 5A/2π ≈ 7.37 GHz, often called zero-field splitting.

In our experiments we are in the 'low field limit' where ω 0 = B 0 γ e A, or close to it. The following approximation for the + andeigen-energies is then obtained: 

E + m = + 9 4 A + m 10 ω 0 (1 + δ ∓ 10δ) with m ∈ -5, 5 
E - m = + 11 4 A - m 10 ω 0 (1 + δ ∓ 10δ) with m ∈ -4, 4.

ESR-allowed transitions

As discussed in ch.3, in a magnetic resonance experiment the Rabi frequency induced by the drive and the signal emitted by the spin are proportional to the matrix element i Ŝ j . In the following we estimate it for Si:Bi in the relevant limits.

S x transitions allowed at large magnetic field

In the high-field limit, electron and nuclear spins are decoupled and the eigenstates of Si:Bi converge to the Zeeman basis, leading to the usual selection rules for electron spin transitions: |∆m s | = 1. The transitions with non-zero matrix element are the ten correspond anymore to a pure electron spin flip and the the S x matrix element becomes smaller than 1/2 and dependent on m: 

|m s = 1 2 , m i ↔ |m s = -1 2 , m i with the associated 1/2, m i Ŝx -1/2, m i = 1/2,
+, m Ŝx -, m -1 = 1 2 a + m a - m-1 = 1 2 cos θ m 2 cos θ m-1 2 . ( 4 
-, m Ŝx +, m -1 = 1 2 b + m b - m-1 = - 1 2 sin θ m 2 sin θ m-1 2 . ( 4.17) 
A new weaker selection rule for the S x transitions thus appears due to the hyperfine interaction, fixing |∆m| = 1.

We notice here that the transitions |+, m ↔ |-, m -1 and |+, m -1 ↔ |-, m are quasi degenerate in frequency for |m| 4, especially if compared to typical values of inhomogeneous broadening, and that their matrix elements are complementary:

b - m b + m-1 /2 + a + m a - m-1 /2 ≈ 1/2.

NMR-like S x transitions

In addition to the transitions in the GHz range discussed above, the electro-nuclear hybridization allows S x transitions between |±, m and |±, m -1 . These transitions in the MHz range corresponds in the high field limit to pure nuclear spin flips that can only be driven by the nuclear spin matrix element I x . These sizeable S x matrix elements acquired at low field are:

+, m Ŝx +, m -1 = 1 2 a + m b + m-1 = 1 2 cos θ m 2 sin θ m-1 2 -, m Ŝx -, m -1 = 1 2 a - m-1 b - m = - 1 2 cos θ m-1 2 sin θ m 2 . (4.18) (4.19)
Consequently, these transition can be driven faster than the usual nuclear spin transitions, as demonstrated in [START_REF] Morley | Quantum control of hybrid nuclear-electronic qubits[END_REF]. Moreover, their electronic character lead to a stronger spin-spin interaction as we will see in the following.

S z transitions

Another property of Si:Bi caused by the hyperfine coupling is the existence at low field of 9 transitions with sizeable S z matrix element. A microwave field B 1 parallel to be zero can thus excite these transitions connecting the levels |+, m and |-, m , whose matrix element is given by:

+, m Ŝz -, m = sin θ m 2 . (4.20)
Their field dependence of these matrix elements and of the corresponding transition frequency is shown in Fig. 4.6. We notice that their frequency is in-between two S x transitions.

Clock-transitions

In the Si:Bi spectrum shown in Fig. 4.6 exist 8 minima. These df /dB = 0 sweet-spots predicted by Mohamady et al. [START_REF] Mohammady | Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances[END_REF][START_REF] Mohammady | Analysis of quantum coherence in bismuth-doped silicon: A system of strongly coupled spin qubits[END_REF] for V-group donors in silicon are called clock transitions and originates from the interplay of the Zeeman and the hyperfine terms in the Hamiltonian. Observed experimentally by Wolfowicz et al. [START_REF] Wolfowicz | Atomic clock transitions in silicon-based spin qubits[END_REF], clock transitions are of particular interest for quantum information applications since their coupling to magnetic noise is strongly suppressed and substantial increase of coherence time is observed. Among the V-group donors, bismuth is the only one presenting clock transitions in the gigahertz range, thus suitable for quantum information processing in combination with circuit-QED.

Effective spin 1/2 approximation

We discuss here the possibility to describe the twenty-level bismuth spin system as an effective spin 1/2 in a magnetic resonance experiment. The two transitions |+, m ↔ |-, m -1 and |+, m -1 ↔ |-, m are quasi degenerate in the |m| 4 manifold so they are simultaneously resonant with the drive field B 1 . As long as interaction with the environment is negligible, the corresponding four spin states are isolated from the other 16 and the two resonant transitions are well described as two species of spin 1/2 with slightly different Larmor frequency and S x matrix element.

Temperature, T (K)

A e (a.u.) One major deviation from the spin 1/2 approximation is expected for the temperature dependence of the polarization p(T ) of the probed transitions and therefore of the magnetic resonance signal proportional to it. For a spin 1/2, we have seen that p 1/2 = σ z (T ) = tanh( ω/2kT ). The polarization of the two resonant transitions is instead the population distribution unbalance between the two excited and the two ground states: In that case, one can show that p Bi (T ) 1 9 1+e -ω 0 /kT 1+11/9e -ω 0 /kT tanh( ω 0 /2kT ), which can be approxmiated by 1 10 tanh( ω 0 /2kT ) especially when kT > ω 0 , which happens in our case for T > 300 mK. This is visible in Fig. 4.7, where the computed p Bi (T ) (red curve) indeed coincides well with the result for a spin-1/2 p 1/2 (T ) (blue curve) for T > 300 mK (by proper choice of the scale for A e ).

p Bi (T ) = (p |-,m + p |-,m-1 -p |+,m -p |+,m - 

Bismuth donor interactions with the spin bath

Each bismuth donor interacts with two different kinds of neighbouring spins: other bismuth donors and 29 Si nuclear spins. We address in the following the details of these interactions and their effects. The quantitative analysis is based on the parameters of the sample used in our experiments: bismuth donor concentration C = 3 × 10 16 cm -3 and 4.9% natural abundance of 29 Si. In Table 4.2 we report relevant energy and length scale of the spin baths in our sample. Table 4.2: Length and energy scales of the donor and 29 Si spin baths in our sample: Average bismuth electron spin Larmor frequency ω S , average 29 Si nuclear spin Larmor frequency ω I , the average distance between neighbouring 29 Si nuclear spins d29 Si , the average distance between neighbouring Bi donor spins d Bi , the dipolar coupling between two 29 Si spins H Si-Si dip , the dipolar coupling H Bi-Bi dip between two Bi spins separated by d Bi , the dipolar coupling H Si-Si dip between two 29 Si spins separated by d Si , the hyperfine coupling H Bi-Si hf between a Bi donor spin and the closer 29 Si spins, homogeneous Bi donor linewidth γ 2 given by the measured decoherence rate of bismuth ESR transition at 10 mT. The energy values are estimated in the field range 0-70 mT.

Bi

ω S /2π ∼7.4 GHz 29 Si ω I /2π 0 -0.5 MHz d29 Si ∼0.7 nm d Bi ∼20 nm H Si-Si dip /h ∼50 Hz H Bi-Bi dip /h ∼10 kHz H Bi-Si hf /h 1 MHz γ 2 2 kHz

Nuclear spin bath

The 29 Si isotope has a spin 1/2 and constitutes the most relevant magnetic impurity in the otherwise spinless 28 Si environment.

Hamiltonian

In the following we describe a single ESR transition of the bismuth spectrum as an effective spin S = 1/2 of frequency ω S . The interaction of the donor spin with a 29 Si nuclear spin I = 1/2 of frequency ω I is described by the hyperfine hamiltonian Ĥhf = ŜA Î, where A is the hyperfine tensor accounting for both isotropic Fermi contact and dipolar interaction. Since ω S ω I , |A| (see Table 4.2) the donor spin quantization axis is unaffected by the nuclear spin and electro-nuclear spin flip-flop are highly forbidden. The non-secular terms proportional to the S x operators are thus neglected and the Hamiltonian of a donor interacting with a 29 Si nucler spin in a static magnetic field B 0 applied along z is [START_REF] Schweiger | Principles of pulse electron paramagnetic resonance[END_REF]:

Ĥ = ω S S z -ω I I z + BS z I z + CS z I x , ( 4.21) 
where the hyperfine couplings B and C are proportional to the bismuth transition energy sensitivity to the magnetic field df /dB. Each bismuth ESR transition thus interacts with different strength with the nuclear spin bath. The effective spin-1/2 approximation is valid in the high field limit where the hyperfine coupling |A| is much smaller than the energy difference between two hyperfine states of bismuth E +- m -E +- m ≈ γ e B 0 /10. Given that the maximum value of |A| is of the order of 1 MHz, at B 0 < 1 mT the donor spin interaction to the most coupled 29 Si nuclear spins causes mixing of the donor eigenstates and Eq.4.21 is not anymore valid.

Inhomogeneous broadening

The static inhomogeneity of the silicon nuclear spin bath causes via the secular terms in Eq.4.21 the local magnetic field along z seen by each donor to be different and thus contributes to the inhomogeneuos broadening of the ESR spin linewidths. This 29 Si-induced broadening has been measured for phosphorus and bismuth donors in silicon to be 2.5 G [START_REF] Abe | Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei[END_REF] and 4 G [START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF][START_REF] Belli | Pulse electron spin resonance investigation of bismuth-doped silicon: Relaxation and electron spin echo envelope modulation[END_REF], respectively. The difference being caused by the more confined bismuth electron wavefunction that yields larger Fermi contact hyperfine coupling to the closer nuclei. The ESR linewidth can be estimated as ∆B = 2ln2f i A 2 i [START_REF] Abe | Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei[END_REF], where f is the fraction of 29 Si and A i is the Fermi contact hyperfine coupling to the nuclear spin at site i. The relevant Fermi contact hyperfine couplings of bismuth have been estimated by Y. M. Niquet from CEA-INAC, by calculating the donor electron wavefunction at the lattice sites with a tight-binding model [START_REF] Niquet | Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys[END_REF]. Using the calculated A i , the estimated linewidth is ∆B = 4.2 G [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF], close to the experimental value. Notice that the frequency linewidth Γ inh = df dB ∆B originated by the 29 Si static field ∆B = 4 G is expected to be different for each bismuth ESR transition due to their different magnetic field sensitivity df /dB(B 0 ).

Decoherence by spectral diffusion

We consider now the effect of silicon nuclear spin bath fluctuations on the donor spin. As reported in Table 4.2, the average distance of 0.7 nm between nuclear spins gives a nuclear dipolar coupling of the order of ∼ 50 Hz that induces nuclear spin flip-flops. As a consequence, the donor is subjected to a fluctuating magnetic field perturbing its Larmor frequency and causing the loss of the phase information during its coherent evolution. In Ch. [START_REF] Purcell | Resonance Absorption by Nuclear Magnetic Moments in a Solid[END_REF] we have seen that this relaxation of the spin transverse component to zero is known as decoherence. In this process the phase of the two spin states superposition is lost due to interaction with the environment. The Hahn echo sequence suppresses dephasing caused from static inhomogeneity of the magnetic field but is sensitive to the magnetic field fluctuations during the spin evolution time 2τ . This process can be seen as a random walk of the spin frequency within the spin spectral line, and for this reason take the name of spectral diffusion. Increasing the delay time τ the spin-echo amplitudes then disappears in a characteristic time called coherence time T 2 . When dephasing processes are negligible, T 2 is equal to its maximum value of 2T 1 . This is the case for bismuth in silicon at temperatures T > 14 K [START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF]. Our experiments are performed at T < 1.5 K where the spin-lattice T 1 exceeds hours and T 2 is limited by the fluctuations of the nuclear spin bath. At such low temperatures the nuclear spin T 1 is negligibly long and the bath dynamics is dominated by nuclear spin flip-flops.

The nuclear spins closest to the donor cannot easily exchange energy with other spins in the bath, due to their large detuning induced by the strong spatial dependence of the contact hyperfine coupling to the electron and constitute the so called "frozen-core" [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF]. On the other hand, spins too far away negligibly affect the donor spin energy. It is therefore the "active shell" in the intermediate region that causes donor decoherence. This nuclear-induced spectral diffusion results in a stretched exponential decay of the transverse magnetization [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF][START_REF] Sousa | Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots[END_REF]. [START_REF] Duzer | Principles of Superconductive Devices and Circuits[END_REF]. A spectral diffusion coherence time of 400 µs is extracted from fit with a stretched exponential function. Adapted from [START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF].

Coherence time of bismuth in natural silicon has been extensively studied [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF][START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF][START_REF] Belli | Pulse electron spin resonance investigation of bismuth-doped silicon: Relaxation and electron spin echo envelope modulation[END_REF]. A spectral diffusion coherence time T 2 ranging from 0.3 ms to 0.8 ms is observed at 9.7 GHz and B 0 = 0.57 T depending on the B 0 orientation [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF], in agreement with the model of nuclear flip-flop by dipolar coupling. The angular dependence arises from the expression of the nuclear dipolar coupling being strongly affected by the alignment of the nuclei with respect to the field. Due to the different df /dB of the various bismuth transitions at low field, T 2 SD depends on the measured transitions [START_REF] George | Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si[END_REF]. As expected from the dynamics of the nuclear bath, the temperature dependence of T 2 reported in refs. [START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF][START_REF] Belli | Pulse electron spin resonance investigation of bismuth-doped silicon: Relaxation and electron spin echo envelope modulation[END_REF] shows no change below 14 K, thus a similar value for T 2 in between 0.3 ms and 0.8 ms is foreseen in our experiment. As previously discussed, at the clock transitions df /dB = 0 and consequently all the decoherence processes presented above are strongly suppressed. Wolfowicz et. al [START_REF] Wolfowicz | Atomic clock transitions in silicon-based spin qubits[END_REF] showed an enhancement of T 2 from 0.8 ms to 90 ms in natural silicon. In isotopically purified 28 Si samples the contribution of the 29 Si nuclear bath is eliminated and the record value of 2.6 s has been reported [START_REF] Wolfowicz | Atomic clock transitions in silicon-based spin qubits[END_REF].

Electron spin echo envelope modulation

Another effect of the silicon nuclear spins coupled to the donor is the modulation of the echo amplitude at frequencies related to the nuclear transition frequencies. This effect arises from the rotation of the nuclear quantization axis after an electron spin flip. The consequent nuclear precession affects coherently the electron spin motion leading to the electron spin echo modulation (ESEEM) phenomenon. We follow here the approach of references [START_REF] Schweiger | Principles of pulse electron paramagnetic resonance[END_REF][START_REF] Probst | Hyperfine spectroscopy in a quantum-limited spectrometer[END_REF] to introduce it. The system of an electron spin S=1/2 coupled to a nuclear spin I=1/2 and subjected to a B 0 field applied along z is described by the Hamiltonian in Eq.4.21. The term C Ŝz Îx is responsible for the dependence of the nuclear spin quantization axis on the electron spin state. The angle of this axis with respect to the z direction when the electron spin is in the |↑ or |↓ state is:

η ↑ = arctan C B + 2ω I η ↓ = arctan C B -2ω I (4.22) (4.23)
The nuclear state thus now depend on the electron state, and the two corresponding new nuclear transition frequencies are:

ω ↑ = (ω I + B 2 ) cos η ↑ - C 2 sin η ↑ ω ↓ = (ω I - B 2 ) cos η ↓ - C 2 sin η ↓ . (4.24) (4.25)
The hybridization of the eigenstates originated by this rotation of the effective field seen by the nuclear spin leads to new allowed nuclear-spin-non-preserving transitions illustrated in Fig. 4.9 together with the states energies. These transitions changing simultaneously the electron and spin states have a matrix element equal to sin η, where η = (η ↑ -η ↓ )/2. In the trivial case of C = 0, η ↑,↓ = 0 and only the nuclear-spinpreserving transition having matrix element equal to cos η are allowed.

The new transitions in the hybridized four level system lead to the appearance of ES-EEM in the Hahn echo measurement as a function of the delay time τ . The application of pulses resonant with the uncoupled electron spin transition ω S and having bandwidth larger than ω ↑,↓ , results in the excitation of the four possible transitions. After the π pulse the coherence of one transition is redistributed on all the four transitions, each of it with its own frequency. The different phase acquired by the four coherences in the time τ after the refocusing pulse yields a periodic modulation of the echo amplitude A e (τ ) that neglecting decoherence and assuming ideal pulses is found to be [START_REF] Schweiger | Principles of pulse electron paramagnetic resonance[END_REF]:

A e (τ ) = 1 - k 4 [2 -2 cos(ω ↑ τ ) -2 cos(ω ↓ τ ) + cos((ω ↑ -ω ↓ )τ ) + cos((ω ↑ + ω ↓ )τ )], (4.26) 
where the modulation visibility k is given by:

k = sin 2 (2η) = Cω I ω ↑ ω ↓ 2 . (4.27)
The frequency spectrum of this modulation contains information on the hyperfine coupling and Larmor frequency of neighboring nuclear spins, and thus constitutes a powerful tool of pulsed ESR. In the two extreme limits of very weak coupling (ω I B, C) and very strong coupling (ω I B, C) there is a vanishing electron-spin dependent quantization axis for the nuclear spin and the visibility tends to zero. In the weak coupling regime k = (C/ω I ) 2 and is thus proportional to 1/B 2 0 . In this limit the modulation spectrum simplifies including only the Larmor frequency ω I and its double. The maximum of visibility is instead reached when η = π/4, corresponding to ω I ≈ ±B/2. When the electron is coupled to many nuclear spins, the resulting echo amplitude is a product of the modulation factors given by Eq.4.26 for each nucleus. Decoherence is taken into account by an extra exponential factor describing the transverse relaxation as a function of τ . ESEEM oscillations have been studied in natural silicon [START_REF] Abe | Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei[END_REF][START_REF] Witzel | Decoherence induced by anisotropic hyperfine interaction in Si spin qubits[END_REF] at high field (B 0 ≈ 0.57 T) and more recently in an isotopically purified sample [START_REF] Probst | Hyperfine spectroscopy in a quantum-limited spectrometer[END_REF] at very low field (B 0 < 0.4 mT). The ESEEM measurements reported in this thesis fall in a third different regime, beeing measured in a natural silicon sample at low field (1 < B 0 < 10 mT). In Fig. 4.10 it is shown the echo decay we measured at 10 mT, where ESEEM oscillation at about 100 kHz are clearly visible.

In the presence of ESEEM, the electron spin frequency oscillates in a range γ eff that may be much larger than the homogeneous linewidth given by the decoherence rate γ 2 . We now give an estimate of this effective linewidth for the measurement shown in Fig. 4.10, as it will be used in the next section. In a semi-classical picture, after the application of the π pulse, the magnetic field seen by the nuclear spin changes its axis triggering a Larmor nutation of the nuclear spins around this new axis at frequency ω I . In turn, this nutation feeds back onto the electron spin, modulating its Larmor frequency with periodicity τ I = 2π/ω I . The amplitude of this modulation can be roughly estimated from the visibility of the ESEEM oscillations k. When the pulse delay is a multiple of the ESEEM period τ = mτ I , no phase is acquired by the electron spin during the pulse sequence time 2τ and the echo amplitude is maximum. When instead the pulse delay is an odd multiple of half the ESEEM period τ = (2m + 1)τ I /2, the electron spin acquires a random phase φ πγ eff τ I . When the maximum value of φ approaches π, the echo amplitudes reaches zero, k = 1 and γ eff = ω I /2π. The effective linewidth for a small value of k is then approximately

γ eff = (ω I /π 2 ) arccos(1 -k).
The ESEEM oscillations in the echo decay of Fig. 4.10 show a modulation at about ω I /2π = 100 kHz and a visibility k ∼ 0.3, thus resulting in an effective electron spin linewidth γ eff ∼ 25 kHz. This value is about one order of magnitude larger than the spectral diffusion linewidth γ 2 = 1/T 2 ∼ 2 kHz.

Donor spin bath

Hamiltonian

We now turn to the interaction of a bismuth donor with the surrounding spin bath realized by the other donors. As reported in Table 4.2, the average distance between bismuth dopants in our sample is d Bi = (3/4πC) 1/3 = 20 nm, where C = 3 × 10 16 cm -3 is the peak doping concentration. Given that d Bi is much larger than the 1.45 nm bismuth electron wavefunction radius, the hyperfine Fermi contact coupling between neighbouring donor is negligible and a purely dipolar interaction Hamiltonian Ĥdip can be assumed. Considering two electron spins Ŝ1 and Ŝ2 separated by r, Ĥdip reads: where r = r(sin θ cos φe x + sin θ sin φe y + cos θe z ) in the polar coordinates system. The value of 2πµ 0 γ 2 e /(d 3 Bi ) ≈ 10 kHz gives the order of magnitude of the dipolar coupling for two electron spins separated by d Bi = (3/4πC) 1/3 = 20 nm. This coupling is reduced for most of bismuth transitions, which have a smaller magnetic dipole with respect to a pure electron spin transition. As we have seen for the interaction with silicon nuclear spins, terms proportional to S z lead to broadening of the ESR linewidth. However, in our sample the ∼ 10 kHz dipolar coupling to neighbouring donors contributes negligibly to the inhomogeneous broadening, which is instead determined by the 29 Si environment (see 3.1.2). Similarly, the dynamics of the bismuth donor bath is expected not to contribute to the decoherence of the central bismuth spin compared to the 29 Si bath. As a consequence, the terms A, C and D are neglected hereafter. Contrary to the description of the donors interaction to the 29 Si bath, we are interested in the non-secular terms proportional to S +,-of Eq.4.28 yielding to polarization transfer via flip-flop processes.

Ĥdip = 2πµ 0 γ 2 e 2 r 3 (A + B + C + D + E + F ) A = Ŝ1z Ŝ2z (1 -3 cos 2 θ) B = - 1 4 ( Ŝ1+ Ŝ2-+ Ŝ1-Ŝ2+ )(1 -3 cos 2 θ) C = - 3 2 ( Ŝ1+ Ŝ2z + Ŝ1z Ŝ2+ ) sin θ cos θe -iφ D = - 3 2 ( Ŝ1-Ŝ2z + Ŝ1z Ŝ2-) sin θ cos θe iφ E = - 3 4 Ŝ1+ Ŝ2+ sin 2 θe -2iφ F = - 3 4 Ŝ1-Ŝ2-sin

Flip flop rate

A flip-flop process can be described as an incoherent transfer of energy from the center donor to a neighbouring spin. Consider two bismuth donors separated by a distance r initially in the state |E, m ⊗|G, n and flip-flopping to the final state |E , m ⊗|G , n via the transitions |E, m → |E , m and |G, n → |G , n . The flip-flop rate can be estimated as:

Γ m→m n→n (∆ f ) = 2π E , m | ⊗ G , n | Ĥdip (r) |E, m ⊗ |G, n 2 1 γ Bi γ 2 Bi γ 2 Bi + ∆f 2 , ( 4.36) 
where γ Bi is the donor transition linewidth and ∆ f is the frequency detuning between the two spin transitions. In the simple case of exponential coherence decay, the linewidth γ Bi coincides with the decoherence rate γ 2 . However, in our experiment at magnetic fields of 10 mT or lower, ESEEM oscillations attest that the spin frequency undergoes larger fluctuations. One can thus model the transition linewidth as being given by γ Bi ≈ γ eff , as discussed in the previous section. By defining d eff as the average distance between two resonant spins satisfying ∆f ≈ γ eff , Eq.4.36 can be rewritten as:

Γ m→m n→n = 2π E , m | ⊗ G , n | Ĥdip (d eff ) |E, m ⊗ |G, n 2 1 γ eff . (4.37)
The B, E and F terms in Eq.4.28 allows a number of different flip-flop processes for neighbouring bismuth donors. Their rate is too slow to be relevant for decoherence processes. However, as we detail in the following, a subset of the allowed flip-flops can lead to polarization transfer within the hyperfine level manifold.

Polarization transfer

Consider the bismuth energy level scheme in Fig. Flip-flops between neighbouring donors, in which the resonant ESR transition relaxes to its ground state while a non-resonant transition is excited, are highly suppressed by energy conservation. Indeed, the detuning ∆ f in Eq.4.36 is of tens of MHz at the typical applied field B 0 , much larger than the ESR linewidth of a few MHz. Such electron-spin flip-flop rate does not thus play any role in the longitudinal relaxation process. Other flip-flop processes involving the hyperfine transitions are however possible.

The hyperfine NMR-like transitions are degenerate in couples, as depicted in Fig. 4.11a. However, at field as low as 10 mT, the inhomogeneous broadening induced by 29 Si magnetic field causes all the hyperfine transition lines to highly overlap (see Fig. In order to give a rough estimate for a B-term flip-flop rate, we need to evaluate the effective average distance d eff between two donors able to flip-flop. We focus on the ground state manifold at 10 mT and at a temperature for which all thestates are equally populated and the + manifold is empty. The central donor can then flip-flop with almost any neighbour, the only exception being for the m = ±4 states that can change m uniquely in one sense. However, due to inhomogeneous broadening the fraction of resonant spins is about γ eff /Γ inh . As previously discussed, the transition effective linewidth at 10 mT due to ESEEM oscillations is γ eff ∼ 25 kHz. The 29 Siinduced inhomogeneous broadening is Γ inh = 4 G • df /dB ≈ 1 MHz. The effective resonant donor concentration is thus C eff = Cγ eff /Γ inh ≈ 8 × 10 14 , corresponding to an effective average distance d eff = (3/4πC eff ) 1/3 ≈ 70 nm. We can then write the B-term flip-flop rate for themanifold using Eq.4.37 as:

Γ m→m+1 n→n-1 = 2π 2 2πµ 0 γ 2 e 2 r 3 2 1 16 (1 -3 cos 2 θ) 2 b 2 n a 2 n-1 a 2 m b 2 m+1 1 γ eff , ( 4.38) 
where a m,n and b m,n are the bismuth spin eigenstate mixing coefficients given by Eqs.4.8-4.9, whose values at 10 mT are listed in Table 4.3. The rate for r = d eff is then found to be of the order of 10 -2 s -1 . This value is however much larger for the couples of resonant donors separated by less probable distances r < d eff due to the 1/r 6 dependence of the rate.

The E (F ) term of Eq.4.28 proportional to Ŝ1+ Ŝ2+ ( Ŝ1-Ŝ2-) yield the ∆m = +2 (∆m = -2) selection rule. The corresponding resonant flip flop processes are illustrated in Fig. 

Γ m→m+1 n→n+1 = 2π 2 2πµ 0 γ 2 e 2 r 3 2 9 16 sin 4 θ a 2 n b 2 n+1 b 2 m a 2 m+1 1 γ eff Γ m→m-1 n→n-1 = 2π 2 2πµ 0 γ 2 e 2 r 3 2 9 16 sin 4 θ b 2 n a 2 n-1 a 2 m b 2 m-1 1 γ eff . (4.39) (4.40)
The flip-flop rate for the E and F processes is thus one order of magnitude faster, corresponding to a rate of about 10 -1 s -1 for r ≈ d eff .

The evolution of ∆N (t) after the excitation is described by a rate equation including all relevant flip-flop and relaxation processes. The contributions of donors at different relative positions must be taken into account by averaging over the probability distribution for the spatial coordinates r and θ. In Chapter 7 we report evidences of such polarization transfer taking place at fields B 0 ranging from 0 to 10 mT.

Bismuth donor interaction with the lattice 4.4.1 Spin-lattice relaxation

The spin of bismuth donors in silicon can relax by exchanging energy with the lattice via phonon emission and absorption. As depicted in Fig4.13, two processes can be distinguished: relaxation with conservation of the nuclear spin (∆m s = ±1, ∆m i = 0) with characteristic time T s , and diagonal relaxation with an additional nuclear spin flip (∆m s = ±1, ∆m i = ∓1) with a characteristic time labeled T x (see Fig. 4.13). Diagonal relaxation labeled T x involving a double spin flip (∆m s = ±1, ∆m i = ±1) is instead highly forbidden [START_REF] Honig | Electron Spin-Lattice Relaxation in Phosphorus-Doped Silicon[END_REF].

In the following we isolate a two-level system {|e , |g } in the bismuth spectrum having transition frequency ω s . We describe it as an effective spin 1/2 coupled to the phonon radiation bath of temperature T latt and thermal occupation number n th (ω, T latt ) given by Eq.2.2.

Direct-phonon process

We first consider the case in which the spin exchanges energy with the resonant phonon modes of frequency ω s . The effective spin 1/2 polarization is then given by Eq.3.21 with T spin = T latt . From Eq.3.22, the temperature dependence of spin lattice relaxation in the direct-phonon case is then: where Γ dir (0) is the relaxation rate when the coupled resonant phonon modes are in their ground state and depends on the spin and material properties. In the case of shallow donors in silicon, Γ dir (0) has been estimated theoretically by Roth [START_REF] Roth | g Factor and Donor Spin-Lattice Relaxation for Electrons in Germanium and Silicon[END_REF] and Hasegawa [START_REF] Hasegawa | Spin-Lattice Relaxation of Shallow Donor States in Ge and Si through a Direct Phonon Process[END_REF] based on two different models where the spin-lattice coupling originates from the modulation of the spin-orbit coupling by crystal strain. From the formula derived by Hasagawa [START_REF] Hasegawa | Spin-Lattice Relaxation of Shallow Donor States in Ge and Si through a Direct Phonon Process[END_REF][START_REF] Morello | Single-shot readout of an electron spin in silicon[END_REF], it is possible to extract the following expression for Γ dir (0) in the case of T s -type process:

Γ dir (T latt ) = Γ dir (0)[2n th (T latt ) + 1] (4.41)
Γ dir (0) = c(∆E) -2 ω 5 s , (4.42) 
where ∆E is the energy difference between the first excited valley state and the ground state, and c is a coefficient expected to be similar for all shallow donors in silicon in the derivation of Hasegawa [START_REF] Hasegawa | Spin-Lattice Relaxation of Shallow Donor States in Ge and Si through a Direct Phonon Process[END_REF]. Its value can be estimated from the measurements reported by Morello et al. [START_REF] Morello | Single-shot readout of an electron spin in silicon[END_REF] for phosphorus donors at 40 mK. They found the expected ω 5 sdependence: Γ dir = 0.015(ω s /γ e ) 5 s -1 T -5 , where γ e is the gyromagnetic ratio for phosphorus. The correspondent value of c would then be c ≈ 1.5-3.2×10 -13 s -1 GHz -5 eV 2 . We can then obtain a rough estimate for the direct phonon relaxation of bismuth in silicon, yielding at zero temperature and ω s /2π = 7 GHz, Γ -1 dir (0) ≈ 2 × 10 5 s

Two-phonon processes

At sufficiently high temperature, other processes involving two phonons start competing with the single phonon regime. These processes are schematically illustrated in Fig. 4.13.

In the Orbach process, the relaxation is mediated by the first excited valley state. The spin relaxes by absorbing a phonon of energy ∆E and emitting a phonon of energy ∆E -ω s . In the case of Raman process, the excited state is replaced by a virtual state. Any phonon can thus be absorbed or emitted, the only matching condition being | ω 1 -ω 2 | = ω s . In the high temperature limit k B T ω s when these processes are relevant, their temperature and frequency dependence is:

Orbach process [START_REF] Abragam | Electron Paramagnetic Resonance of Transition Ions[END_REF]:

Γ latt ∝ a exp(-∆E/k b T )
Raman process [START_REF] Abragam | Electron Paramagnetic Resonance of Transition Ions[END_REF]:

Γ latt ∝ bT 9 + b ω 2 s T 7 , (4.43) (4.44)
where a, b, b are temperature and frequency independent coefficients that are expected to be different for T s and T x processes [START_REF] Castner | Orbach Spin-Lattice Relaxation of Shallow Donors in Silicon[END_REF]. The three different processes illustrated above are predominant in three different temperature ranges depending on the values of the a, b, b , c coefficients, and consequently 2 K, Γ -1 1 = 9 s is for example reported by Wolfowicz et al [START_REF] Wolfowicz | Atomic clock transitions in silicon-based spin qubits[END_REF]. The only measurement of bismuth non-radiative energy relaxation at temperatures where direct phonon process is expected to be dominant has been reported by Bienfait et al. [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF]. In their work they measure Γ -1 1 = 1500 s at 20 mK using a superconducting resonator similar to the one of our experiments, a value somewhat smaller than the predicted direct-phonon relaxation time of the order of 10 5 s, indicating that other relaxation processes such as spatial spin diffusion and/or charge hopping might contribute as well. The estimation of the spin-lattice relaxation rate for our radiative cooling experiment performed at about 1 K is thus not straightforward. From the Γ -1 1 = 9 s at 4.2 K reported by Wolfowicz et al [START_REF] Wolfowicz | Atomic clock transitions in silicon-based spin qubits[END_REF], we can then estimate the lower bound on the twophonon process at 1 K to be roughly Γ -1 1 = 10 4 s assuming a T 7 -dependence of the Raman process. On the other hand, given the lower concentration of bismuth donors in our sample compared to ref. [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF], we can assume Γ -1 1 = 1500 s as the minimum expected non-radiative relaxation time for our case.

Effect of strained silicon lattice

The effect of strain in the silicon lattice on the donor spin spectrum has been first observed in ref. [START_REF] Wilson | Electron Spin Resonance Experiments on Donors in Silicon. III. Investigation of Excited States by the Application of Uniaxial Stress and Their Importance in Relaxation Processes[END_REF] and had since then attracted a lot of interest [START_REF] Wilson | Electron Spin Resonance Experiments on Donors in Silicon. III. Investigation of Excited States by the Application of Uniaxial Stress and Their Importance in Relaxation Processes[END_REF][START_REF] Hale | Ground-State Wave Function of Shallow Donors in Uniaxially Stressed Silicon: Piezohyperfine Constants Determined by Electron-Nuclear Double Resonance[END_REF][START_REF] Koiller | Strain effects on silicon donor exchange: Quantum computer architecture considerations[END_REF][START_REF] Huebl | Phosphorus Donors in Highly Strained Silicon[END_REF][START_REF] Usman | Strain and electric field control of hyperfine interactions for donor spin qubits in silicon[END_REF], recently motivated by the perspective of controlling the spin properties for quantum computing applications [START_REF] Huebl | Phosphorus Donors in Highly Strained Silicon[END_REF][START_REF] Dreher | Electroelastic Hyperfine Tuning of Phosphorus Donors in Silicon[END_REF]. The usual model to describe the effect of strain on the donor spin is the valley repopulation model. Strain lifts the degeneracy between the valley states, which leads to changes in the ground state wavefunction, no longer described by the symmetric combination of Eq.4.1. This model predicts that the hyperfine coupling A should decrease quadratically with strain. However, this is in contradiction with experimental data, which observe a linear dependence of A on strain for all donors in silicon [START_REF] Mansir | Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain[END_REF]. This was attributed to the dependence of the central cell correction on the hydrostatic component of the strain hs . For Bismuth, dA/d hs = 28.2 GHz. Pla et al. [START_REF] Pla | Strain-Induced Spin-Resonance Shifts in Silicon Devices[END_REF] explains the broadening of Si:Bi spectral lines measured in refs. [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF][START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF] as an effect of this hydrostatic strain linearly changing the hyperfine coupling A. The spectra of refs. [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF][START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF] are measured with an aluminum superconducting resonator very similar to the niobium resonator used in our experiments, fabricated on top of an isotopically purified 28 Si sample. The strain induces a line broadening of more than one order of magnitude with respect to Si:Bi line in bulk 28 Si, leading to a FWHM linewidth of about 2 G (see Fig. 4.15). The origin of this strain is attributed to differential thermal contraction between the aluminum film of the resonator and the silicon substrate while cooling the sample from ambient to cryogenic temperatures. In Chapter 5 we report the observation of the same phenomenon due to the thermal contraction of the resonator niobium film. In our case the strain broadening is however competing with the comparable 29 Si-induced broadening.

Optical illumination

Above-gap light

The irradiation of silicon with light at frequency larger than the band-gap generates conduction electrons interacting with the donors. The interaction of the carriers with the donor spins gives rise to a shortening of the spin lifetime, via a variety of processes whose detail is not yet fully understood.

Transfer of the conduction electron spin polarization to the donor

One possible effect of above-gap light is an effective transfer of polarization from the photo-excited conduction electrons spins to the donors. Feher and Gere [START_REF] Feher | Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects[END_REF] attribute to such a spin-exchange process the observation of a faster electron spin relaxation under illumination. The transfer of polarization can result from trapping of conduction electrons by the neutral donor to form either negative charged donor state D -in Si:P [START_REF] Thornton | Shallow-Donor Negative Ions and Spin-Polarized Electron Transport in Silicon[END_REF][START_REF] Morley | Long-Lived Spin Coherence in Silicon with an Electrical Spin Trap Readout[END_REF] or bound exciton D 0 X in Si:Bi when an electron-hole pair is trapped [START_REF] Sekiguchi | Hyperfine Structure and Nuclear Hyperpolarization Observed in the Bound Exciton Luminescence of Bi Donors in Natural Si[END_REF]. In the case of D - formation, the random re-emission of one of the two electrons yield the donor spin polarization to relax to the free electron equilibrium polarization value [START_REF] Morley | Long-Lived Spin Coherence in Silicon with an Electrical Spin Trap Readout[END_REF]. In the case of donor bound-exciton D 0 X formation the transfer of polarization happens via donor ionization. The D 0 X state decay by recombination of the electron-hole pair and Auger emission of the second electron to the positive charged donor state D + (see Fig. 4.16). The subsequent capture of a conduction electron to form the stable neutral D 0 state equilibrate the donor polarization to the conduction electron spins. Any other donor ionization process in the presence of conduction electron would lead to the same polarization transfer effect.

Donor nuclear spin hyperpolarization

The above-gap illumination has been observed to cause donor nuclear spin hyperpolarization under different experimental conditions. The mechanism underlying this effect is still debated. Build-up of negative nuclear polarization of phosphorus donor has been observed at high field and low temperature, where the electron spins are highly polarized, under white light illumination [START_REF] Mccamey | Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon[END_REF]. The proposed mechanism is an Overhauser-like effect where phonon-induced cross-relaxation of the donor spin to a higher temperature bath compete with the pure electron-spin relaxation induced by capture and re-emission process [START_REF] Morley | Long-Lived Spin Coherence in Silicon with an Electrical Spin Trap Readout[END_REF].

In very similar experimental conditions, Morley et al. [START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF] have instead observed for bismuth donors the build-up of positive nuclear polarization. The authors attribute the process to photo-excited conduction electron spin relaxing to the equilibrium high polarization state by flip-flopping with the bismuth nuclear spin. Negative nuclear polarization for bismuth in silicon is instead observed at 2 T and 1.4 K (high electron spin polarization) illuminating the sample with infrared light from a 1047 nm laser and thus only slightly above-gap [START_REF] Sekiguchi | Hyperfine Structure and Nuclear Hyperpolarization Observed in the Bound Exciton Luminescence of Bi Donors in Natural Si[END_REF]. The authors propose a crossrelaxation process mediated by the donor electro-nuclear hyperfine interaction. In their model the capture of a conduction electron and a hole by the donor lead the formation of a D 0 X with parallel electron spins. This triplet state rapidly relax to a singlet state by flipping the donor nuclear spin due to the hyperfine coupling. The process stops when all donors are in the m i = -9/2 state.

Donor bound-exciton transitions

Due to the silicon indirect band gap, D 0 X relaxation is dominated by the non-radiative Auger recombination preventing coherent optical manipulation of Si:Bi spin. However, resonant excitation of D 0 X by spin-dependent optical transition can be used to polarize and readout the donor nuclear and electronic spin state [START_REF] Yang | Optical Detection and Ionization of Donors in Specific Electronic and Nuclear Spin States[END_REF]. With phosphorus donors, Yang et al. achieved electronic polarization of 90% and nuclear polarization of 76% at 1.4 K and 42.5 mT in an isotopically purified 28 Si sample where the optical transitions are well resolved [START_REF] Yang | Simultaneous Subsecond Hyperpolarization of the Nuclear and Electron Spins of Phosphorus in Silicon by Optical Pumping of Exciton Transitions[END_REF]. A few years later Steger et al. [START_REF] Steger | Quantum Information Storage for over 180 s Using Donor Spins in a 28 Si "Semiconductor Vacuum[END_REF] reach the even higher electronic polarization of 97% and nuclear polarization of 90% at 4.2 K and 84.5 mT. Moreover, the detection of the Auger electron by photo-conductivity measurements leads to very sensitive NMR experiment at low donor concentration [START_REF] Steger | Quantum Information Storage for over 180 s Using Donor Spins in a 28 Si "Semiconductor Vacuum[END_REF]. We note here that at field lower than 100 mT and temperature higher than 1 K, above-gap light at 1047 nm is observed to depolarize both electron and nuclear spin transitions [START_REF] Yang | Simultaneous Subsecond Hyperpolarization of the Nuclear and Electron Spins of Phosphorus in Silicon by Optical Pumping of Exciton Transitions[END_REF][START_REF] Steger | Quantum Information Storage for over 180 s Using Donor Spins in a 28 Si "Semiconductor Vacuum[END_REF][START_REF] Saeedi | Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28[END_REF].

The same bound-exciton transitions between D 0 and D 0 X as Si:P appears in Si:Bi (see Fig. 4.16). Sekiguchi et al. [START_REF] Sekiguchi | Hyperfine Structure and Nuclear Hyperpolarization Observed in the Bound Exciton Luminescence of Bi Donors in Natural Si[END_REF] observed them by photoluminescence spectroscopy with above-gap laser illumination at 1047 nm. They resolve the zero-field hyperfine splitting but the natural abundance of 29 Si prevented them to resolve the nuclear states.

Repeating the experiment with a 28 Si sample could provide a new way to hyperpolarize Si:Bi electron and nuclear spin. Bismuth impurities can be introduced during silicon crystal growth to provide bulkdoped natural silicon wafers or can be implanted in existing substrates. Due to the high atomic mass of bismuth (atomic weight=209), the implantation process creates many lattice defects. An annealing step above 600 • C is required to heal the implantation damage and ensure that the implanted bismuth atoms are converted into substitutional impurities. Studer et al. [START_REF] Studer | Studying atomic scale structural and electronic properties of ion implanted silicon samples using cross-sectional scanning tunneling microscopy[END_REF] reported a conversion yield of ≈ 100% with a two-step annealing (3 min at 650 • C followed by 10 min at 900 • C). The sample used in this work is a silicon chip with natural isotopic abundance of 4.7% of 29 Si nuclear spins. It was implanted with bismuth atoms in an energy range of 500 -3000 keV, resulting in an estimated implantation profile shown in Fig. 4.17. The sample was then annealed at a temperature of 900 • C, for 5 minutes, under nitrogen flow. Based on [START_REF] Weis | Electrical activation and electron spin resonance measurements of implanted bismuth in isotopically enriched silicon-28[END_REF], we expect an activation yield of 60%. The total number of dopants was confirmed by standard EPR spectroscopy as well as conductance measurements.

Chapter 5

ESR spectroscopy of bismuth donors in natural silicon

Despite its versatility, conventional inductive-detected ESR spectroscopy has a limited sensitivity that prevent its use to study nanoscale samples. Several alternative techniques such as STM tips [START_REF] Manassen | Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces[END_REF], mechanical resonators [START_REF] Rugar | Mechanical detection of magnetic resonance[END_REF][START_REF] Rugar | Single spin detection by magnetic resonance force microscopy[END_REF] or NV centers [START_REF] Taylor | High-sensitivity diamond magnetometer with nanoscale resolution[END_REF] have been developed to overcome this limit, reaching even single spin detection [START_REF] Morello | Single-shot readout of an electron spin in silicon[END_REF][START_REF] Rugar | Single spin detection by magnetic resonance force microscopy[END_REF][START_REF] Gruber | Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers[END_REF][START_REF] Durkan | Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance[END_REF]. However, effort has been still put on increasing the sensitivity of spectrometers based on inductive detection due to its universal applicability [START_REF] Malissa | Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy[END_REF][START_REF] Sigillito | Fast, low-power manipulation of spin ensembles in superconducting microresonators[END_REF][START_REF] Artzi | Induction-detection electron spin resonance with spin sensitivity of a few tens of spins[END_REF][START_REF] Dayan | Advanced surface resonators for electron spin resonance of single microcrystals[END_REF]. One promising direction is the use of superconducting resonators at low temperature, that allows to reduce the magnetic mode volume while keeping high quality factors [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF][START_REF] Sigillito | Fast, low-power manipulation of spin ensembles in superconducting microresonators[END_REF][START_REF] Artzi | Induction-detection electron spin resonance with spin sensitivity of a few tens of spins[END_REF][START_REF] Benningshof | Superconducting microstrip resonator for pulsed ESR of thin films[END_REF][START_REF] Sigillito | Allelectric control of donor nuclear spin qubits in silicon[END_REF][START_REF] Eichler | Electron Spin Resonance at the Level of 10 4 Spins Using Low Impedance Superconducting Resonators[END_REF]. Sensitivity of 12 spins/ √ Hz has been recently reached using a superconducting resonator with femtoliter detection volume together with a quantum limited amplifier [START_REF] Ranjan | Electron Spin Resonance spectroscopy with femtoliter detection volume[END_REF]. The use of small-mode-volume and high-quality-factor superconducting resonators can also allow to reach the Purcell regime, where the cavity induced relaxation is the fastest spin relaxation process [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF][START_REF] Eichler | Electron Spin Resonance at the Level of 10 4 Spins Using Low Impedance Superconducting Resonators[END_REF]. One benefit of the Purcell-enhanced relaxation is the possibility to repeat the measurements much faster than what the intrinsic slow relaxation rate would impose, especially at low temperature, increasing the spectrometer sensitivity. In this chapter we report the ESR spectroscopy of bismuth donors in natural silicon performed with a spectrometer based on a superconducting resonator very similar to the one described in refs [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF][START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF]. The donors more coupled to the resonator are thus expected to be in the Purcell regime. Rapid Purcell relaxation allows us to measure the ESR spectroscopy of bismuth at magnetic field lower than 70 mT in the 10 mK-1 K temperature range, whereas intrinsic relaxation time is expected to be longer than tens of minutes. Recently, spectroscopy of bismuth donors implanted in an isotopically purified silicon sample has been performed with superconducting resonators in similar field and temperature regimes [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF][START_REF] Probst | Hyperfine spectroscopy in a quantum-limited spectrometer[END_REF][START_REF] Ranjan | Electron Spin Resonance spectroscopy with femtoliter detection volume[END_REF]. The Si:Bi spectroscopy reported hereafter differs for being measured in a silicon sample with natural abundance of 29 Si isotope carrying a nuclear spin I = 1/2.

Superconducting ESR resonator of high quality factor and small mode volume

For our purpose of realizing a sensitive spectrometer in the Purcell regime, two distinct figures of merit are required for the resonator. As detailed in ch.3, the spin signal emitted in the output line is roughly proportional to the ratio g/ √ κ while the Purcell relaxation rate is Γ rad = 4g 2 /κ. A strong space confinement of the mode magnetic energy is thus needed for a large value of g, together with a low loss-rate κ. The design of such a small-mode-volume and high-quality-factor resonator is based on the previous work of Bienfait et al. [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF][START_REF] Bienfait | Magnetic resonance with quantum microwaves[END_REF]. We report here the main motivations of the design and implementation choices.

Design

Small mode volume

The spin-photon coupling g is given by g = -γ e e| Ŝ • δB(r) |g , where δB 1 is the magnetic field at the spin location generated by the vacuum fluctuations of the resonator current δI. From Eq.2.14, we have that one must minimize the resonator impedance Z 0 in order to maximize the current fluctuations. A small resonator inductance and a short distance between the spins and the flowing current are thus targeted. The above criteria are well satisfied by a planar lumped-element geometry implemented by a small inductor wire in parallel with a large interdigitated capacitance. This structure is realized by a thin superconducting film patterned on top of the chip hosting the spins. The spins closer to the superconducting wire are the most coupled and constitute the probed ensemble.

High quality factor

The total resonator damping rate κ = κ int + κ ext is limited by the minimum reachable internal loss rate κ int . The coupling rate κ ext to the measurement line can be freely designed in a large range of values and is determined by κ int . As we discuss in the next chapter on radiative cooling, we aim in our experiment at the overcoupled regime, where κ ext κ int . However, in order to keep the total damping rate κ sufficiently low, we target κ ext ≈ 10κ int . The internal losses of superconducting lumped-element resonator have been intensively studied, especially in the frame of quantum computing research, and internal quality factors in the range of 10 6 have been demonstrated [START_REF] Megrant | Planar superconducting resonators with internal quality factors above one million[END_REF]. The sources of internal losses can be grouped according to the four different physical phenomena that cause them: the motion of magnetic vortices trapped in the superconducting thin films [START_REF] Song | Reducing microwave loss in superconducting resonators due to trapped vortices[END_REF], the presence of out of equilibrium quasi particles (i.e. non-superconducting quasi particles) [START_REF] Barends | Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits[END_REF], dielectric losses [START_REF] O'connell | Microwave dielectric loss at single photon energies and millikelvin temperatures[END_REF], originating mostly from dirty interfaces and in particular from the substrate-metal interface [START_REF] Wisbey | Effect of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides[END_REF], and finally radiation from the resonator electric dipole [START_REF] Houck | Controlling the Spontaneous Emission of a Superconducting Transmon Qubit[END_REF]. While the first three can be optimized by material choices, fabrication procedures and geometry, the latter can be made negligible by enclosing the sample in a leak-tight metallic box, as shown in Fig. 5.1a [START_REF] Paik | Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture[END_REF]. The box is designed so that all its modes have frequencies well above the planar LC resonator frequency. Despite the fact that superconducting boxes lead to better quality factors [START_REF] Reagor | Reaching 10 ms single photon lifetimes for superconducting aluminum cavities[END_REF], we use an oxygen-free high-conductivity copper box to be able to apply magnetic fields for our ESR measurements. The coupling of the LC resonator to the measurement line is realized via capacitive coupling to an antenna that is entering the box through a drilled hole (see Fig. 5.1a). The antenna is soldered to the inner conductor of a SMA connector screwed in the cavity wall. The insertion-depth of the SMA in the box wall determine the length of the antenna inside the box that can thus be tuned by several millimeters. The resulting coupling rate κ ext is the sum of two contributions. The first one is a direct capacitive coupling to the antenna while the second one is an evanescent coupling mediated by the first mode of the copper box. The copper box mode frequency and quality factor thus have to be designed to reach the target resonator κ ext . The box must have the total quality factor smaller than its internal quality factor in order to couple the resonator to the antenna rather than to an additional loss channel. The box internal quality factor being of the order of several thousands, we aim at Q box 1000. The more the frequency of the first box mode is detuned with respect to the resonator, the lower κ ext . We find that ω box /2π = 8.5 GHz The resonator is made of a 50 nm film of niobium. The choice of this material is due to the known possibility to reach high quality factor at temperatures higher than 1 K, that is the desired working point for the radiative cooling experiment. While aluminum would then be incompatible to the operating temperature too close to its superconducting critical temperature, another suitable superconducting material would be NbTiN. In the future the use of NbTiN could enable operation above 4 K and at even higher magnetic field. In our experiment however the maximum applicable magnetic field of about 140 mT parallel to the Nb surface is limited by the setup and not by the induced losses in the resonator. The resonator frequency is chosen to be sufficiently close to the Si:Bi zero-field splitting of about 7.4 GHz. In the 0-100 mT range of applied B 0 , several ESR transitions cross the resonator frequency provided that it is only a few hundreds of MHz detuned from the zero-field splitting.

Electromagnetic simulations

The resonator frequency and coupling to the measurement line via the copper box and the antenna are designed using 3D electromagnetic simulations realized with CST microwave studio. The real device is shown in Fig. 5.1a. The CST model reproduces the geometry of the inside of the copper box (assuming perfect conductivity of the walls), the antenna, the silicon sample holder and chip (with relative dielectric constant r = 11.5) as well as the superconducting resonator (a perfect electrical conductor of zero-thickness). The copper sample holder and the resonator eigenmode frequencies can be determined in the software by exciting the port placed on the antenna and analyzing the frequency response, given as a S-parameters matrix. The resonator geometry reported in Fig. 5.1a consists in a 2-µm-wide inductive wire of lenght 705 µm in parallel with an interdigitated capacitance of 10 50-µm-wide fingers spaced by 50 µm. The whole structure fits in a rectangle of 1 mm by 1. phase signals we extract the two resonance frequencies and coupling rates. The resonator external coupling quality factor of the order of 10 4 is sufficiently low compared to the expected internal quality factor of 10 5 in order to be in the targeted overcoupled regime. Further reduction is however realized in the experiment by increasing the antenna length. The resonator impedance is extracted by determining the AC current I sim cos(ω 0 t) flowing in the inductor for the simulated input power P in = 0.5 W at the port. We find that I sim = 57 A. Together with the fitted Q ext = 3.6 × 10 4 , this gives the intra-cavity mean photon number n by using Eq.2.27. The resonator current vacuum fluctuations δI and impedance Z 0 are then obtained via Eqs. 2.12 and 2.12:

δI = I sim /2 √ n = 50 nA Z 0 = ω 2 0 2δI 2 = 46 Ω, (5.1) 
(5.2)

corresponding to an inductance L ∼ 1 nH and a capacitance C ∼ 0.5 pF. In the simulation we have neglected the contribution of the superconducting film kinetic inductance. However, a surface kinetic inductance of about 0.1 pH/square has been measured for our sputtered niobium of 50 nm thickness. Given the inductor wire dimension, this would correspond to kinetic contribution to the total inductance of about 40 pH, resulting in an expected resonance frequency lower by a few percent.

Experimental implementation

Resonator fabrication

The resonator is patterned on the sputtered niobium film with an optical lithography process followed by reactive ion etching. A preliminary HF surface cleaning step is performed to minimize the contribution of the silicon-metal interface to the resonator microwave losses [START_REF] Bruno | Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates[END_REF]. Due to the chip small size of 3.5 mm x 4 mm, a thicker optical resist is formed at the chip edges after spin-coating. The insufficient UV exposure of these thick resist edges yield to residual niobium after the first etching step. A second reactive ion etching step is thus performed after resist development to remove the niobium from the silicon chip edges, otherwise causing additional losses. During this final etching step a hard silicon mask protects the center of the silicon chip and the resonator. The fabrication steps are:

• Substrate cleaning: 10' in a Piranha acid mixture at 120 • C followed by deionized water rinsing and blowing dry.

• Surface deoxidation: 10" in HF followed by deionized water rinsing and blowing dry.

• Niobium sputtering: 25" deposition for a final thickness of 50 nm.

• Optical lithopgraphy: Hard contact 20" UV exposure of positive photoresist S1813.

• Resist development: 1'30" MF319 followed by deionized water rinsing and blowing dry.

• Etching: Reactive ion etching with a plasma of SF 6 with 30% Ar for 50" at 155 V acceleration voltage and 13 µbar.

• Resist removal: 10' in 65 • C acetone followed by IPA rinsing and blowing dry.

• Silicon chip edge etching: SF 6 Reactive ion etching for 1'. During this step the resonator is protected by a silicon hard mask.

During the first reactive ion etching step, after the unprotected niobium is removed, the silicon substrate is etched all around the resonator. Profilometer measurement reveals 500 nm silicon over-etching, as shown in the resonator inductor wire cross section reported in Fig. 5.2. The fabricated sample is inserted in the copper box by gluing it to a silicon sample holder with small amounts of vacuum grease. The silicon sample holder is then glued in the copper box sample groove, also using vacuum grease (see Fig. 5.1a). Finally, the 5.1. Superconducting ESR resonator of high quality factor and small mode volume79 closed copper box is mounted in a coil providing a static magnetic field B 0 parallel to the resonator inductive wire (see Fig. 5.3a) up to 140 mT. The last step to guarantee a high-quality factor is to protect the superconducting thin film from losses occurring through out-of-equilibrium quasi-particles and vortices. Low-pass filters containing absortive material are put on each line to minimize the quasi-particles (see Fig. 5.2.1. The coil is inserted in a 1-mm-thick cryoperm magnetic shield to minimize stray magnetic field which may introduce vortices in the film during cool down of the film through its critical temperature (see Fig. 5.3b). In the right panel, the same data are reported in the complex plane.

Sample mounting

Microwave characterization

We characterized the LC resonator by measuring the reflection coefficient S 11 at 15 mK with the VNA. The detailed setup is depicted in Figs.5.8-5.9.

From the fit of S 11 with Eq.2.31 we extract the internal and external loss rates κ int , κ ext together with the resonance frequency ω 0 (see Fig. 5.4). The internal loss rate is about 10 times lower than the external loss rate at a mean number of intra-cavity photon n ≈ 0.1, placing the resonator in the targeted overcoupling regime where its mode temperature can be set by the input microwave thermal radiation. The external coupling rate is about 3 times larger than what obtained from simulation, meaning that the antenna is inserted a little deeper in the copper box, which is consistent with a measured Q box ≈ 40. As discussed in Sc.5.1.2, the lower ω 0 of about ∼ 100 MHz with respect to the simulated value is probably due to the kinetic inductance contribution. Slight variations of the resonator parameters are observed for each experimental realization, corresponding to different cooldowns of the cryostat. The resonator frequency decreased since its fabrication by a few MHz, possibly due to aging of the niobium oxide layer. Variations of κ ext are instead attributed to small differences in the thermal contraction of the antenna from room temperature to below 1 K. n is given by Eq.2.27. b Magnetic field dependence of resonance frequency (top) and loss rates (bottom).

Power dependence of the internal loss rate

Measuring S 11 as a function of the input power P in gives information on the origin of internal losses. Two-Level Systems are known to cause power-dependent losses in superconducting micro-resonators [START_REF] O'connell | Microwave dielectric loss at single photon energies and millikelvin temperatures[END_REF], as observed also in our measurements.. The measured increased losses at low n by more than a factor 2 (see Fig. 5.5a), indicates that dielectric losses contribute to about half of the total internal losses.

Magnetic field dependence

The application of the static magnetic field B 0 parallel to the superconducting film surface, has almost unmeasurable effect to the internal losses up to 100 mT while the resonance frequency is reduced quadratically by ∼ 0.6 MHz due to the increase of the thin-film kinetic inductance (see Fig. 5.5b). Above 10 mT, systematic fitting of the resonator reflection is required to determine its frequency and apply a resonant drive to the spins.

Schottky barrier

The niobium thin-film deposited directly on top of the silicon substrate gives rise to a Schottky barrier in which donor may be ionized. The difference in the work function of niobium and silicon causes band-bending responsible for the ionization of the donor over an area called depletion region. In Fig. 5.6 we report the results of the depletion region calculation for our device performed by Yann-Michel Niquet. A Schottky barrier height of 0.5 eV is assumed based on [START_REF] Heslinga | Schottky barrier and contact resistance at a niobium/silicon interface[END_REF]. Given the donor implantation profile (see Fig. 4.17), the electrostatic potential shown in Fig. 5.6a is obtained. The resulting depletion region extends for 170 nm below the surface. In the following, we take into account this donor ionization in the cal- 

f i = N + d /N 0 d .
culation of the coupling distribution ρ(g). The difference with respect to the scenario without Schottky barrier is however small.

Estimate of spin-photon coupling distribution

The coupling of the bismuth donors to the resonator mode is obtained by calculating the amplitude of the magnetic field vacuum fluctuations δB 1 generated by the current fluctuations δI in the inductor wire. The magnetic field is computed using the COM-SOL magnetostatic solver. The static approximation is sufficient since the length scales that come into play are very much smaller than the wavelength. In order to calculate the field fluctuations, we first need the estimate of the current fluctuations magnitude and its distribution along the wire transverse direction. As detailed in Sec.5.1.2, we extract from CST simulation the amplitude of the current vacuum fluctuations δI = 50 nA. The current distribution over the superconducting wire cross-section used in the magnetostatic simulation is given by the following formula [START_REF] Bienfait | Reaching the quantum limit of sensitivity in electron spin resonance[END_REF][START_REF] Duzer | Principles of Superconductive Devices and Circuits[END_REF]:

f (x) =        δJ(0)[1 -(2y/w r ) 2 ] -1/2 for |y| |w r /2 -λ 2 /(2b)| δJ(w r /2)e -(wr/2-|y|)b/λ 2 for |w r /2 -λ 2 /(2b)| < |y| < w r /2 (1.165/λ) √ w r bδJ(0) for y = w r /2,
In these expressions y is the wire transverse coordinate indicated in Fig. 5.7a, w r = 2 µm is the wire width, b = 50 nm is its thickness and λ = 110 nm is the penetration depth of the niobium film [START_REF] Gubin | Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films[END_REF]. The normalization constant δJ(0) is determined by the condition wr/2 -wr/2 δJ(y)dy = δI. We finally use δJ(y) to compute the magnitude of the field fluctuations δB 1 (x, y) using COMSOL magnetostatic solver (see Fig. 5.7a). 

Experimental setup

Low-temperature setup

The experiment reported in this chapter is performed at 15 mK in a cryogen free dilution refrigerator fabricated by the company Cryoconcept. This refrigerator has five stages at different temperatures (70 K, 4 K, 900 mK, 100 mK and 12 mK) separated by radiation shields. Both the ESR resonator and the TWPA are anchored at a temperature of 15 mK. As shown in Fig. 5.8, the resonator is connected via the antenna to the circulator, separating input and output signals.

Coaxial transmission lines link the room-temperature apparatus to the resonator and the TWPA. To prevent heat transfer from higher to lower temperature stages, the transmission lines are made of CuNi (or Silver-plated-CuNi) coaxial cables from roomtemperature to 4 K and of NbTi superconducting cables from 4 K to 15 mK. In order for the microwave field to be at thermal equilibrium at 15 mK, it is also needed to stop thermal and technical noise coming from the room temperature apparatus. This common experimental challenge for all cQED experiments, is tackled differently for input and output lines. For input lines, the solution is to thermalize the incoming modes to the cryostat temperature by means of impedance matched attenuators. As described in Sec.2.3.5, the number of input noise photons is reduced by the attenuation factor while the thermal radiation at the attenuator temperature is added. As shown in Fig. 5.8, we use a 20 dB attenuator at 4 K followed by 30 dB more attenuation at 15 mK. Using Eq.2.34, we find that the number of propagating ∼ 7 GHz room-temperature noise photons n th (300 K) ≈ 900 is reduced to n th ≈ 0.01 at the resonator input, corresponding to a mode temperature of about 75 mK. For the output line however the signal cannot be attenuated without degrading the signal-to-noise ratio of the measurement. To nevertheless protect the sample from thermal photons and noise photons emitted by the amplifiers, microwave circulators are placed along the line at 15 mK together with filters. The isolation provided by each circulator is of about 18 dB, thus approximately doubled for the two circulators in series. All input and output lines are provided with infrared filters to limit the out-of-equilibrium quasi-particle generation in the superconducting devices. The output signal is first amplified by the TWPA and then by the HEMT at 4 K. The 3-12 GHz isolator realizes a 50 Ω load for the TWPA output in the whole amplification range, while the following filters prevents noise coming from the HEMT to reach the TWPA. The double circulator in between the TWPA and the resonator, in addiction to protect the resonator from the incoming noise and pump tone leakage, prevents interferences between the two devices. The TWPA pump tone is sent via a dedicated line and a hybrid coupler to the TWPA input. A total 50 dB attenuation of the TWPA pump line, prevents the room temperature noise to couple to the output.

Room-temperature setup

The room-temperature setup is depicted in Fig. 5.9. The resonator and the TWPA can be characterized either by a commercial VNA, or direct homodyne demodulation followed by digitalization with a rapid acquisition card. Microwave switches allow to use eiher the VNA or homodyne setup on-demand. For homodyne detection a microwave source provides both a coherent signal sent towards the resonator as well as continuous tone which serves as the local oscillator of an IQ mixer to demodulate the output signal. The resulting I and Q quadratures are then amplified and filtered in several stages before being recorded by a fast digitizer (Acquiris DC282) and transfered to a computer for processing. The phase of the homodyne detection is set manually via a tunable phase-shifter. A 10-MHz-synchronization loop running through every instrument guarantees phase stability.

TWPA characterization

The TWPA is pumped with a microwave tone whose frequency and power can be tuned to optimize its figures of merit. The pump frequency ranges from 7.85 GHz to 8.15 GHz, while the power is tuned by few dB around -70 dBm. In each experimental realization the optimal parameters are slightly changed. Gain up to G TWPA =25 dB can be reached. As a general tendency, we observe that to larger gains corresponds lower saturation power, higher noise and more pronounced ripples in the gain frequency dependence. In Fig. 5.10a it is shown the typical gain spectrum after optimization of the pump parameters. The onset of saturation is observed at input power of about -100 dBm, where the gain is changed by ∼ 1 dB with respect to the low power value (see Fig 5.10b).

We check that the TWPA added noise is the dominating source of noise of the amplification chain by comparing the noise power spectrum on the output line with and without the TWPA pump. To do so, we connect a spectrum analyzer to the output line after the room-temperature microwave amplifier. This measurement is performed with G TWPA =25 dB. The noise power level at a frequency detuned of a few MHz from the resonator is observed to increase by ∼ 10 dB when the pump is turned on (see ). This provides a way to estimate the improvement in signal-to-noise ratio. From Eq.2.42 we get the following expression for the measured noise power ratio S ON /S OFF :

S ON S OFF = S bg + (G TWPA -1)S TWPA S bg , ( 5.3) 
where S TWPA is the noise added by the TWPA and S bg is the contribution to the noise coming from the rest of the amplification chain: the HEMT and the room-temperature amplifiers. Eq.5.3 yields for the measured S ON /S OFF = 10 dB and G TWPA = 25 dB the ratio of the two noise contributions S bg /S TWPA = 35, which corresponds to a SNR improvement by √ 35 = 5.9.

Hahn echo detection

The spin signal of our spectrometer is in all that follows given by the area of the spin echoes generated via Hahn echo sequences π/2 -τ -π -τ , often followed by the CPMG train of π pulses to detect additional refocused echoes. We briefly outline here the implementation of this detection technique.

Pulse generation and echo acquisition

We generate the microwave pulses with the setup of Fig. 5.11, part of the room-temperature setup of Fig. 5.9. The two main requirements for the drive pulses are an high on/off ratio to avoid heating the spins while not driving, and MHz bandwidth to drive all the spins within the resonator linewidth. This is realized by shaping the pulses with microwave switches with an on/off ratio of 80 dB controlled by an arbitrary waveform generator (AWG5011C from Tektronix). Two pulses of different amplitude are obtained by using two switches in parallel, each in series with a tunable attenuator. The relative phase is adjusted manually with a phase shifter. After adding the two parallel lines, a power amplifier allows to increase the dynamic range. A third switch isolates the resonator from the amplifier noise when pulses are not applied. Moreover, the microwave source is switched off during the waiting time between two pulse sequences. Given the total attenuation of the line after the last switch, we can deliver at the resonator input pulses of power P in up to -40 dBm. The reflected pulses and the emitted echo signal are demodulated at ω 0 and their I and Q quadratures are detected using the setup shown in Fig. 5.9. The acquisition by the digitizer is triggered by the AWG.

Hahn echo sequence and CPMG

Before discussing the ESR spectroscopy, we first detail the acquisition of the spin signal with the CPMG sequence. The 301 echoes shown in Fig. 5.12a are detected at B 0 = 62.5 mT, where transitons |-, -1 ↔ |+, 0 and |-, 0 ↔ |+, -1 are resonant with the superconducting cavity. A π/2 pulse of duration t π/2 = 125 ns is followed after a time τ = 15 µs by a π pulse of duration t π = 250 ns. Unless specified, the same t π and t π/2 are used all througout this thesis. After a second delay τ the first echo is emitted (first echo in the inset of Fig. 5.12a and blue dots in Fig. 5.12b). The pulse power P in is calibrated by performing Rabi oscillations, as will be explained in the following. This echo is refocused N times by as many π pulses of same amplitude and duration as the first one, equally spaced by 2τ . As shown in Fig. 5.12a, 300 echoes with slightly reduced amplitudes are being recorded at 62.5 mT, spaced by 2τ = 30 µs. All echoes are averaged with a weight given by the measured amplitude decay, in order to optimize the signal to noise improvement (see Fig. 5.12b). The whole sequence is repeated with period t rep of the order of the spin relaxation time Γ -1

1 . In the following, we quantify the echo signal using the integrated quadrature signal denoted A e . Simulation of the first Hahn echo is shown in Fig. 5.12b, and is in good agreement with the data. No adjustable parameters are used and the CPMG sequence is not included in the simulation. The Hahn-echo simulation is performed for g values in the 5-200 Hz range and the results are averaged using the g distribution shown in Fig. 5.7c.

Rabi oscillations

We calibrate the pulse power by performing Hahn-echo detected Rabi oscillations. To do so, we measure the echo amplitude as a function of the refocusing pulse tipping angle θ p , which is varied by changing the pulse power P in (see Fig.5.13). This results in the appearance of oscillations in the integrated echo signal A e , as shown in Fig. 5.13. As detailed in Sc.3.2.1, or each subset of spins coupled to the resonator with strength g, the echo signal is A e ∝ p 2 (1 -cos θ p ), where p is the initial spin polarization. A spin driven by a resonant coherent drive rotates at frequency ω 1 (t) = 2g â(t) (see Sec.3.1.2). As a result, upon a square pulse of duration t p the spin undergoes a Rabi oscillation of angle:

θ p = t ω 1 (t) = 2g √ nt p , (5.4) 
where n is the steady-state intra-resonator photon number linked to P in by Eq.2.27. Since we probe an ensemble of spins with a broad coupling distribution, the measured Rabi oscillations are a sum of oscillations largely spread in frequency. Each spin subset of coupling g experiences a different tipping angle θ p (g) that for large rotations yield A e in Eq.3.35 to the averaged value of p/2. This damping of the Rabi oscillations for large tipping angle is visible in Fig. 5.13 and is well reproduced by the simulation. amplitude A e as a function of the second pulse input power P in . The value of P π is calibrated with the first maximum of the signal. b Relative contribution A e (g)ρ(g) to the echo amplitude A e at P in = P π as a function of the spin-resonator coupling g. A e (g) is the echo amplitude simulated for an ensemble of N spins with the same coupling g.

We have until now neglected the effect of the cavity bandwidth on the spin dynamics. However, in our experiment the ESR linewidths are much broader than the cavity and the finite pulse excitation bandwidth must be taken into account. Since we apply short pulses satisfying t p << 2π/κ, the excitation bandwidth of a π pulse is set by κ due to the cavity filtering. This means that spins within the ESR linewidth have different Rabi frequencies and undergo rotations of different angles under the same pulses. The Rabi frequencies Ω R depends indeed on their detuning ∆ s , Ω R = ∆ 2 s + ω 1 , and their rotation axis is tilted in the x -z plane by an angle φ = arctan(∆ s /ω 1 ) (see Ch.3). A quick and rough consistency check is easily performed using the Rabi oscillations in Fig. 5.13, by evaluating the input power corresponding to a π pulse using the estimated input line attenuation. We find P π = 6 nW, corresponding to n ≈ 10 9 . Using Eqs.2.27 and Eq.5.4, we find then that the average value of g for the spins most contributing to the echo signal is ḡ/2π = 30 Hz. This value is only about a factor 2 lower than the value of coupling maximally contributing to the echo amplitude g/2π = 65 Hz obtained from the simulation (see Fig. 5.13). We attribute this discrepancy to the poor calibration of the power P in .

Strain broadened transitions

The coil inside which the sample is mounted provides a static magnetic field B 0 up to 140 mT. In this field range the resonator crosses 11 transitions, among which 5 couples of quasi degenerate transitions. The magnetic field, matrix element and slope of these transitions at resonance are reported in 

Spectrum

We first measure the echo amplitude A e as a function of the static field B 0 applied along z (see Fig 5.14). The six peaks of echo signal coincide with the calculated magnetic fields at which the spin transitions are resonant with the superconducting cavity. The two spectra reported in Fig 5 .14 are measured in two different runs of the experiment, where resonator parameters slightly varied with negligible consequences. Due to the resonator frequency dependence on magnetic field, at each B 0 the resonator reflection is measured, fitted and the microwave source adjusted to this frequency using an automated routine; after that the echo sequence is run. CPMG averaging is used to improve the SNR and a repetition rate of the order of the spin relaxation rate Γ 1 is used.

The different peak height of the measured ESR lines is mainly due to three reasons. The first is that the reported spectra are measured with constant pulse amplitude, while the matrix elements of most transitions are different. This makes the tipping angle of the pulses in the Hahn echo sequence to vary from peak to peak. This effect is clearly visible comparing the two measurement in the two panels of The second contribution to the peak height differences has to be found in the dependence of the spin coherence time on field, as we discuss in the rest of this chapter. In particular the coherence times of the 10 mT and 60 mT transitions is more than one order of magnitude larger with respect to the lower field transitions. Both effects are amplified by the use of CPMG averaging, as highlighted in Fig 5 .14b. Finally, the repetition time t rep affects the relative amplitude of the spin signal at the six transitions due to the different associated relaxation times. t rep is in both cases chosen to be of the order of the longest measured spin relaxation time.

By fitting the ESR spectrum in Fig. 5.14 with a sum of Lorentzians, we extract the linewidths of the six resolvable ESR lines; the fit results are reported in Table 5.2. As we discussed in Ch.4, the expected linewidth of Si:Bi is 0.4 mT due to the inhomogeneous linewidth caused by the 29 Si nuclear spin bath. However, we observe for increasing field linewidths going from 0.4 mT up to 1.4 mT. The value for the last two transitions is The frequency linewidth is extracted using the df /dB values reported in Table 5.1.

thus more than 3 times larger than the expected 29 Si-induced broadening, meaning that another effect is dominating. As we anticipated in Ch.4, we attribute this additional broadening to strain induced by the niobium thin film.

Strain simulation

The measured linewidth of 5 MHz at 62.5 mT gives us an estimate of the strain-induced frequency shift. At lower magnetic fields this effect is instead masked by the 29 Siinduced broadening that reaches 10 MHz on the first transition due to the large df /dB. We attribute the origin of the strain to the different thermal contraction of the niobium film with respect to the silicon substrate when cooling down the sample from room temperature. In order to confirm the physical validity of the strain-induced frequency shift hypothesis, we performed strain simulation using COMSOL software. The results are shown in Fig. 5.15. Simulations show that in the region below the wire, were the donors more contributing to the signal lie, the hydrostatic strain hs varies of a few 10 -5 . For example, at the center of the wire it goes from -3 × 10 -5 at the surface to -1 × 10 -5 at y ∼ -1µm (see Fig. 5.15). This corresponds to a frequency shift df /d hs = 5(dA/d hs ) hs varying of about 4.5 MHz. Variations of similar magnitude are expected on x direction in the middle of the implanted region. This simulated strain-induced shift of a few MHz is in good agreement with the additional broadening measured in the spectral lines.

Rabi frequency dependence on B 0

We performed a second measurement to confirm the strain-induced broadening of ESR linewidths. Due to the spatial dependence of the coupling g(x, y) and of the strain-induced frequency shift, the Rabi frequency and the Larmor frequency are expected to show correlations that are absent in usual ESR experiments. By measuring Rabi oscillations as a function of the applied B 0 , we indeed observe slower oscillations at higher field, confirming that g and ω spin are correlated in agreement with the calculated strain effect. However, a quantitative analysis has not been carried out. 

Coherence time

At each ESR peak of the spectrum we have measured the echo decay by varying the delay τ between the two pulses in the Hahn-echo sequence (see Ch.4). We define the coherence time T 2 by fitting the echo decay with a Gaussian. The results reported in Fig. 5.17 show a significant reduction of T 2 by more than one order of magnitude as the field is reduced from 62.5 mT to 1.3 mT. Moreover, clear echo amplitude oscillations are observed at intermediate magnetic fields.

The T 2 = 600 µs at 62.5 mT is in the range of expected values for bismuth donors in natural silicon (see Sec.4.3.1). The Gaussian decay at 62.5 mT can thus be attributed to spectral diffusion induced by the 29 Si nuclear spin bath dynamics. The observed shortening of T 2 for lower field is instead incompatible with spectral diffusion. The spectral diffusion rate would indeed be proportional to the spin transition df /dB, while the observed dependence of the decoherence rate on df /dB is not (see Fig. 5.18). We ascribe the coherence decay of the first four transitions to the ESEEM phenomenon, as we discuss in the following.

ESEEM

The 29 Si nuclear spins closer to the resonant donors give rise to the ESEEM phenomenon (see Sec. components at 100 kHz and at 15 kHz. The nuclear spin Larmor frequency at 9.7 mT is ω I /2π = γ Si B 0 = 82kHz, where γ Si /2π = 8.45 MHz/T is the 29 Si gyromagnetic ratio. The discrepancy between ω I and the ESEEM frequencies suggests that the weak-coupling approximation is not valid. At the lower field of 3.4 mT, the ESEEM oscillations have larger amplitude and are slower, compatibly with smaller ω I . Moreover, the overall coherence decay is about 5 times faster than at 9.7 mT. Even more pronouced shortening of the coherence time is observed at 2.3 mT. At this field the signal drops by ∼ 80% in 20 µs while small oscillations around this value survives for a few hundreds of microseconds. A full decay to zero in ∼ 20 µs is then recorded at the two lowest fields (we note here that the fist two transitions are highly overlapping, as seen in the spectrum in Fig. 5.14a).

B 0 =62.5 mT B 0 =9.73 mT B 0 =3.37 mT T 2 =95 �s T 2 =22 �s T 2 =21 �s T 2 =17 �s T 2 =560 �s T 2 =600
We attribute this effective faster decoherence to the interference of several ESEEM oscillations of large amplitude. The different contributions that interfere destructively originates from all the possible configurations of the 29 Si in the silicon lattice sites close to the donor. More analysis is needed for a quantitative account of this phenomenon.

Purcell limited energy relaxation

We now analyze the longitudinal relaxation of the various ESR transitions comparing it to the predicted radiative relaxation enhanced by the Purcell effect (see Sec.3.1). We measure the relaxation using the inversion recovery sequence (see inset of Fig. 5.

20b).

A first π pulse inverts the spins bringing the population in the excited state. After a varying delay time ∆t, during which the spins relax to the ground state, we detect the polarization with the Hahn-echo sequence. For a spin ensemble coupled to an effective Markovian thermal bath, the echo area A e is expected to decay exponentially

A e ∝ (1 -2e -Γ 1 ∆t ).
In Fig. 5.20 we report the spin relaxation measurement performed at 62.5 mT. Echo curves for ∆t Γ -1 1 and ∆t Γ -1 1 are shown in Fig. 5.20a. At short ∆t the phase of the echo is inverted with respect to the long ∆t, as expected from the application of the first π pulse. The shape of the inverted echo is a consequence of the dependence of the tipping angle θ p on the spin-cavity detuning ∆ s , as we discussed in Sec.5.3.3, and it is well reproduced by the simulation (see Fig. 5.20a). The decay of A e (∆t) is well fitted by an exponential decay of time constant Γ -1 1 = 5.9 s (see Fig. 5.20b). The data are in agreement with the simulation of the experiment that considers only radiative relaxation at rate Γ phot induced by the Purcell effect. This is a strong indication that the spins are indeed in the Purcell regime Γ -1 1 ≈ Γ phot Γ phon . Using the extracted value of Γ phot and the value of κ for this experimental realization (reported in Fig. 5.4) in Eq.3.10, we get ḡ ≈ 65 Hz, consistently with the Rabi oscillations measurement and simulation. The result of the inversion-recovery measurement on all the 6 resonant transitions is reported in Fig5.21. We first focus on the transition at 9.7 mT, since it has almost identical properties with respect to the 62.5 mT transition. In particular it has the same matrix elements (see Table 5.1) and thus the same coupling distribution ρ(g). Besides a correction due to slightly different resonator linewidth when measuring the first five transitions (κ ext = 4.2 × 10 6 s -1 and κ int = 3 × 10 5 s -1 ), we would expect the same decay observed at 62.5 mT. However, the relaxation shown in Fig5.21e is poorly fitted by an exponential. Moreover, contrary to the 62.5 mT case, simulations are poorly reproducing the data. We thus conclude that a competing relaxation mechanism is present at lower magnetic field impacting the echo decay. In Chapter 7 we discuss how this effect can be attributed to polarization transfer to the non-resonant bismuth donor transitions. A qualitatively similar relaxation with the respect to the 9.7 mT measurement is observed at the first five transitions. In a time of the order of 1 s the polarization relaxes to ∼ 2/3 of its equilibrium value while the rest of the decay happens at a much slower rate. -1 = 5.9 s 

� 1 -1 = 0.6 s � 1 -1 = 0.6 s � 1 -1 = 0.8 s � 1 -1 = 1.4 s � 1 -1 = 3.4 s

Relaxation rate dependence on spin-cavity detuning

The integral of the echo signal is only part of the information carried by its temporal shape. The Fourier transform of each echo trace gives the contribution to the signal A e (∆) as a function of their detuning to the cavity ∆. The limit on the spin detuning is in our case given by the cavity filtering of the signal emitted by the spins and is then of the order of κ. By Fourier transforming the echo decay A e (∆t) recorded at 62.5 mT (see Fig. 5.20), we thus get the spin relaxation for different detuning values within the cavity bandwidth. In Fig. 5.22a we report the relaxation of two normalized Fourier components (∆ = 0 and ∆ = 0.5κ), showing a relaxation rate Γ 1 slower of a factor ∼ 1.5 for the detuned spins. The Γ 1 dependence on the detuning ∆ is another proof that the spin relaxation is Purcell-enhanced. In Fig. 5.20b we compare Γ 1 (∆) obtained from the exponential fit of the Fourier components Ãe ∆t with the dependence on the detuning given by the Purcell formula Eq.3.10, revealing a discrepancy. To understand this difference Γ 1 (∆) is extracted from the Fourier transform of the simulated echoes, showing a good agreement with the data. The deviation from Eq.3.10 is due to the broad coupling distribution ρ(g). The large-∆ components of the spin echo come from spins more strongly coupled than those contributing to the ∆ = 0 component. We attribute this to the tipping angle θ dependence on ∆. 

Spin ensemble cooperativity

In our model of the spin dynamics in the Purcell regime we assume that the N spins coupled to the cavity radiate independently at the Purcell rate Γ phot . We provide experimental evidence of the validity of this assumption by measuring the resonator losses induced by resonant spins. The radiative properties of an ensemble of N identical spins are deeply modified by collective effects, that range from supperradiance to dark state trapping [START_REF] Dicke | Coherence in Spontaneous Radiation Processes[END_REF]. However, spin decoherence and inhomogeneous broadening can lead to suppression of any collective phenomenon, recovering the single spin dynamics [START_REF] Butler | Polarization of nuclear spins by a cold nanoscale resonator[END_REF][START_REF] Wood | Cavity cooling to the ground state of an ensemble quantum system[END_REF][START_REF] Temnov | Superradiance and Subradiance in an Inhomogeneously Broadened Ensemble of Two-Level Systems Coupled to a Low-Q Cavity[END_REF]. To discriminate between the 'independent' or 'collective' radiative regime, one has to consider a dimensionless parameter called the ensemble cooperativity and defined as:

C = 2N g 2 κΓ inh (5.5)
Independent radiation from each spin at Γ phon is expected for C 1, the so-called weak collective coupling regime. Cooperativity can be estimated by measuring the resonator reflection. When the spins are at resonance with the cavity they cause an increase of the resonator internal losses ∆κ int that is indeed proportional to the cooperativity [START_REF] Diniz | Strongly coupling a cavity to inhomogeneous ensembles of emitters : potential for long lived solid-state quantum memories[END_REF]. It can be shown that the cooperativity is given by:

C = ∆κ int κ (5.6)
In order to determine the cooperativity we measure the resonator reflection as a function of B 0 using low input power to limit spin saturation. The result reported in Fig. 5.23 shows ∆κ int ∼ 2 × 10 4 s -1 when the spins are resonant with the cavity. Given κ = 3.5 × 10 6 s -1 we found C ∼ 0.005, demonstrating that spins are in the independent radiative regime as expected from the energy relaxation measurements.

Chapter 6

Radiative cooling of a spin ensemble with a cavity

Introduction

Spins in solid are generally thermalizing at rate Γ phon to the lattice of temperature T phon in which they are embedded. The recent demonstration of the Purcell regime for an ensemble of electron spins [START_REF] Bienfait | Controlling Spin Relaxation with a Cavity[END_REF], however, showed that the coupling to the electromagnetic mode of a microwave cavity at rate Γ phot can become their dominant relaxation channel.

Having the electron spins predominantly coupled to cavity opens the possibility to cool them below T phon by reducing the electromagnetic mode temperature T phot . In the following, we demonstrate such a radiative spin cooling introducing a new universal method to increase the electron spin polarization above thermal equilibrium, what we refer to as hyperpolarization. are coupled both to a bath of phonons at temperature T phon with a rate Γ phon and to a bath of microwave photons at a temperature T phot with a rate Γ phot , which determines their equilibrium temperature T spin . The temperature of the photons T phot is determined by their coupling with rate κ int to the cavity internal losses at temperature T int and with rate κ ext to the load located at the cavity input. When this load is placed at low temperature T cold , the intra-cavity field is radiatively cooled provided that κ ext κ int and the spins are cooled in turn if Γ phot Γ phon .

T phon T int T cold T spin T phot ~< < � phon � int � ext � phot
The principle of the method is illustrated in Fig. 6.1. The electromagnetic mode of a cavity is cooled by connecting the cavity input to a resistor at temperature T cold , colder than the cavity internal loss bath of temperature T int ≈ T phon . Provided that 101 the cavity coupling rate κ ext to the cold resistor is much larger than its internal loss rate κ int , T phot ≈ T cold (see Sc.2.3.5). The spins inside the cavity mode volume are in the Purcell regime Γ phot Γ phon and thus thermalize to the cold cavity mode T spin ≈ T cold (Sc.3.1.2), realizing the purpose of a spin ensemble colder than the host lattice.

Purcell regime in a hot cavity

In the previous chapter we have seen how the two quasi-degenerate electron spin transitions at 62.5 mT are in the Purcell regime at 15 mK, relaxing to thermal equilibrium with an exponential decay of time constant Γ -1 1 = Γ -1 phot = 5.9 s given by Eq.3.10. However, in the radiative cooling experiment the sample is anchored at about 1 K and we therefore need to test whether the spins are still in the Purcell regime up to this temperature. In order to verify this condition necessary for the radative cooling, in a first experiment we measure the spin relaxation to thermal equilibrium as a function of temperature. Because the JTWPA can only work at T < 300 mK, we removed it from the setup.

Temperature dependence of the energy relaxation rate

In Sc.3.1.2 we have shown that in the presence of n th thermal photons in the cavity, the spin relaxation rate in the Purcell regime is expected to be Γ 1 = Γ phot [2n th (T phot ) + 1], due to absorption and stimulated emission. In the setup used for this experiment T phot = T phon = T spin = T , where T is the temperature of the mixing chamber plate to which the sample is anchored and the microwave field is thermalized. (red dots) as a function of the mixing chamber temperature T . The green curve is a fit to the data between 300 mK and 1.2 K using the function Γ -1 phot /(2n th (T ) + 1), with Γ -1 phot as an adjustable parameter.

We measure the energy relaxation with the inversion recovery sequence as a function of T and an exponential fit yields Γ 1 (T ), as reported in Fig. 6.2. The measurement shows the agreement of the relaxation time with the expected 1/[2n th (T ) + 1] dependence, demonstrating that the bismuth donor spins are in the Purcell regime at least up to 1 K.

Temperature dependence of polarization

As the temperature is increased from 15 mK, the thermal equilibrium polarization p Bi (T ) of the bismuth donor spins is expected to decrease. For an electron spin 1/2 it would follow the exact same temperature dependence as the Purcell relaxation time, p 1/2 (T ) = 1/[2n th (T ) + 1]. However, as we discuss in Sc.4.2.3, a slight deviation from this law is expected at temperatures lower than 300 mK for p Bi due to the thermal occupancy of the hyperfine levels.

The observation of the calculated p Bi (T ) is slightly complicated by the existence of nonequilibrium processes, as evidenced below. We first measure the polarization's temperature dependence of the quasi-degenerate transitions |4, 0 ↔ |5, -1 and |4, -1 ↔ |5, 0 at B 0 = 62.5 mT. We wait several hours at each temperature value before measuring the echo amplitude A e with a repetition time t rep = 120 s Γ -1 1 . The result reported in Fig. 6.3a (red dots) shows a significant deviation below 200 mK from the calculated p Bi (T ) (red line). In Fig. 6.3b we report the same experiment but performed at 9.3 mT, measuring the polarization of transitions |4, 1 ↔ |5, -1 and |4, -1 ↔ |5, 0 . In this case the measured polarization follows the calculated p Bi (T ) for these two transitions at temperatures as low as ∼ 100 mK. We then repeat the polarization measurement for the transitions |4, 0 ↔ |5, -1 and |4, -1 ↔ |5, 0 using a different protocol. At each temperature we first set B 0 = 9.3 mT for 20 min, then set back B 0 = 62.5 mT, wait 4 min and finally measure A e . The so obtained result is reported in Fig. 6.3a (black dots) and shows agreement with the p Bi (T ) calculated for the considered transitions as if it was measured at 9.3 mT. The above results lead us to the following conclusions. At 9.3 mT, the spin system is well thermalized to the cryostat from the highest temperature down to at least ∼ 100 mK, as evidenced by the measurement of the two couples of transitions at this field (black dots in the two panels of Fig. 6.3). At 62.5 mT an unknown process dominates over the thermalization dynamics at temperature lower than 200 mK and drives the spins toward a non-thermal state (red dots in Fig. 6.3a). A possible origin of this phenomenon could be residual infrared radiation reaching the sample. We have indeed seen in Sc.4.5 how this can cause redistribution of population in the bismuth hyperfine levels. In a fourth measurement we investigate the dynamics of the depolarization process taking place at 62.5 mT. At T = 83 mK we first set B 0 = 9.3 mT during 20 min, then we set B 0 =62.5 mT and immediately after we record continuously A e as a function of time. The result reported in the inset of Fig. 6.3a shows the spins reaching the equilibrium non-thermal state in the time-scale of hours, orders of magnitude longer than the 4 min waiting time used to detect the thermal equilibrium polarization after the field sweep from 9.3 mT to 62.5 mT. This long timescale is consistent with our hypothesis that the non-equilibrium processes observed affect the hyperfine level manifold occupation probabilities, and not so much the EPR transition itself. Several hours are waited at each temperature before recording A e . The red line is the calculated p Bi (T ) for the considered transitions at 62.5 mT. A second polarization measurement of the same transition is reported (black dots). In this second experiment, for each temperature value, B 0 is first set to 9.3 mT during 20 min, then it is set to 62.5 mT and finally after 4 min A e is recorded. The black line is the calculated p Bi (T ) for the same transitions at 9.3 mT. The polarization p 1/2 (T ) = 1/(2n th (T ) + 1) of a spin 1/2 is also shown for comparison (green). 

Radiative cooling setup

For demonstrating the electron spin radiative cooling we modify the setup described in the last chapter as follows (see Fig. 6.4). The sample is now mounted at the still plate of the cryostat, at a temperature T phon = 850 mK. The cavity port is connected via an antenna to a circulator, separating input and output modes. The resonator input is connected via an electromechanical switch either to a 50 Ω resistor thermalized at the same temperature T phon of the sample (hot configuration) or to a 50 Ω resistor thermalized at the mixing chamber plate of the cryostat, at a temperature T cold = 15 mK (cold configuration). The 50 Ω load at T cold is connected to the switch sitting at T phon via a NbTi superconducting cable that is thermally insulating and whose MW losses are of the order of 0.1 dB. The control microwave pulses are now sent via a 20 dB coupler in order to minimize the thermal noise reaching the cavity from the pulse input line. This ensures that the temperature of the microwave radiation field incident onto the resonator, and therefore the mode temperature T phot , is dominantly determined by the switch setting. The equivalent electrical circuit that we use to estimate the equilibrium temperatures T phot of the cavity mode and T spin of the spins is shown in Fig. 6.5. The resonator is coupled with rate κ int to the internal losses bath of temperature T int and with rate κ ext to the incoming microwave radiation on the input. The switch connects the input to a resistor thermalized either at T phon or at T cold . Losses in between the circulator and the cold 50 Ω are modeled by an attenuator at T phon , absorbing a fraction α of the photons. Such a model is an over-simplification since a fraction of the losses necessarily takes place at an intermediate temperature in between T phon and T cold . However, its physical justification originates from the fact that only the superconducting cable is in between the two temperatures. With our model we are thus assuming that all the temperature drop happens across the cable and that its microwave losses are negligible.

Equivalent electrical circuit

Cooling factor

To infer T hot,cold spin in the two switch configurations, we measure the echo amplitude A e , proportional in the spin 1/2 approximation to the temperature-dependent polarization p(T hot,cold spin ) = 1/[2n th (T hot,cold spin ) + 1]. We thus define the spin radiative cooling factor η as the ratio of the polarization in the cold and hot setting, η ≡ p cold /p hot . From Eq.3.25, η coincides then with the ratio of spin relaxation times in the two switch configurations Γ hot 1 /Γ cold 1 :

η ≡ p cold /p hot = Γ phot [2n th (T hot phot ) + 1] + Γ phon [2n th (T phon ) + 1] Γ phot [2n th (T cold phot ) + 1] + Γ phon [2n th (T phon ) + 1] . ( 6.1) 
Since we have demonstrated that spins are in the Purcell regime, Eq.6.1 for our experiment simplifies to:

η = 2n th (T hot phot ) + 1 2n th (T cold phot ) + 1 . (6.2)

Cavity mode temperature

In a first series of experiments, we perform noise measurements to directly determine the temperature T phot in the two switch configurations.

Internal loss temperature

As a first test, we measure the resonator reflection coefficient with switch in cold and hot configurations. No difference is expected, since the resonator physical properties are entirely unchanged by the switch setting. The results are shown in Fig. 6.6. At high power, we find that the reflection coefficients are indeed identical, which confirms that the switch setting has no measurable influence on the impedance seen by the resonator. However, at low powers, we observe a sizeable difference: the internal loss rate κ int is more than 30% higher in the cold configuration.

We interpret this surprising result as an evidence for radiative cooling of the two-level systems (TLS) that are known to play an important role in superconducting resonator losses. In the hot configuration, such TLS are highly saturated and absorb little energy from the resonator. On the contrary, in the cold configuration TLS are radiatively cooled, increasing their degree of polarization and thus making them more absorptive.

In agreement with this hypothesis, the measurement of κ int as a function of the input power P in shows that this effect decreases for larger intra-cavity photon number n(P in ), disappearing for n ≈ 10 where TLS are highly saturated in both switch states. We will then consider T int to be in-between T phon and T phot , and will treat it as an adjustable parameter to obtain the best fit to our final data.

JTWPA gain and added noise

We estimate the JTWPA added noise by setting the switch in the hot configuration and measuring the noise power S hot at the output as a function of the still temperature T phot . Far from resonance, the noise at the input of the JTWPA is the thermal radiation n th (T phon ) of the hot 50Ω resistor that is reflected at the resonator input and routed by the circulator toward the JTWPA. The output noise power spectral density at the end of the amplification chain of gain G is then:

S hot (T phon )/G = n th (T phon ) + 1/2 + S JTWPA . (6.3)
We measure S hot (T phon ) at (ω 0 -ω)/2π = 2.7 MHz for T phon ranging from 840 mK to 1.15 K (see Fig. 6.7b). Fitting the result with Eq.6.3 we extract S JTWPA = 0.75 ± 0.25, indicating that the JTWPA operates close to the quantum limit S JTWPA = 1/2. In the same temperature range we measure the JTWPA gain in the two switch configurations (see Fig. 6.7b). The T phon dependence of the gain is negligible, however a 0.3 dB larger gain is observed in the cold configuration. Solid lines are plot of S hot (red) and S cold (blue) with parameters obtained from the frequency dependence fits performed at all T phon , and with S JTWPA = 0.75.

Cavity mode temperature estimate

As detailed in Sc.2.3.5, by meausuring the output noise across the cavity resonance we can extract T phot in the two switch states. From Eqs.2.35-2.37 and Eq.2.42 we get:

S hot (ω, T phon )/G = |S 11 (ω)| 2 n th (T phon ) + (1 -|S 11 (ω)| 2 )n th (T hot int ) + 1/2 + S JTWPA S cold (ω, T phon )/G = α |S 11 (ω)| 2 n th (T phon ) + (1 -|S 11 (ω)| 2 )n th (T cold int ) + 1/2 + S JTWPA . ( 6 
.4) (6.5) where |S 11 (ω)| is the measured resonator reflection function. Fig. 6.8a shows the measured S hot,cold at T phon = 840 mK, all normalized to the value of S hot at large detuning.

The measured S hot (ω) shows a small peak at resonance, indicating that T hot int is slightly higher than the hot 50 Ω resistor, possibly due to poor sample thermalization. The fit of S hot (ω) gives T hot int = 910 mK. Conversely, by then fitting the measured S cold (ω) we extract T cold int = 770 mK, in agreement with the resonator reflection measurement suggesting the radiative cooling of the internal losses when connecting to the cold load. The second parameter obtained from the fit of S cold (ω) is the parasitic losses α = 0.47 ± 0.1. The extracted parameters allow then to calculate the cavity thermal photon population n th (T hot,cold phot ). From Eq.2.38 we get for the two switch configurations:

n th (T hot phot ) = κ ext κ n th (T phon ) + κ int κ n th (T hot int ) n th (T cold phot ) = α κ ext κ n th (T phon ) + κ int κ n th (T cold int ). (6.6) (6.7)
Using the parameters obtained from the noise measurements in Eqs.6.6-6.7 we find T hot phot = 850 mK and T cold phot = 500 ± 60 mK, which, according to Eq.6.2 corresponds to a spin cooling factor η = 1.65 ± 0.2. The measurement of S thus proves that the cavity microwave mode is indeed cooled radiatively, but that this cooling is only partial due to the presence of the microwave losses α in between the load at T cold and the sample at T phon . We finally repeat the measurement of S hot,cold (ω) for T phon in the range 840 mK-1.15 K. In Fig. 6.8b we compare it with the temperature dependence that we calculate using the fit results obtained at T phon = 840 mK. The agreement between the data and the calculation validates our model. Similar demonstration of radiative cooling of a resonator has been recently shown in two works by Xu et al. [START_REF] Xu | Radiative cooling of a superconducting resonator[END_REF] and Wang et al. [START_REF] Wang | Quantum Microwave Radiometry with a Superconducting Qubit[END_REF]. In their experiment the superconducting resonator is mounted at 1 K and radiatively linked to a cold source noise at about 70 mK with κ int /κ ∼ 0.3. By measuring the resonator output noise they extract T phot ∼ 450 mK.

Spin radiative cooling 6.5.1 Demonstration at 62.5 mT

The first evidence of the bismuth donor spin radiative cooling is the echo signal enhancement. Hahn-echoes are measured for the two switch settings, under the exact same conditions (puse amplitude and repetition time). Fig. 6.9 shows that echo amplitude is more than doubled when the switch is connected to the cold load, demonstrating radiative spin hyperpolarization with η = 2.3. The radiative nature of the effect is confirmed by the energy relaxation time measured with the inversion recovery sequence for the two switch states. As reported in Fig. 6.9, we indeed observe the decrease of the Purcell relaxation rate in the cold configuration, and find Γ hot 1 /Γ cold 1 = η, as expected. Note that in this experiment κ ext = 4.8 × 10 6 s -1 , 1.4 times larger than its value in the measurement of the relaxation rate temperature dependence. The measured Purcell rate are consistently 1.4 times larger here with respect to the value reported in Fig. 6.2. From the cooling factor η = 2.3±0.1, we obtain that the spin temperature is cooled from T hot spin = 850 mK to T cold spin = 350 ± 10 mK. This value is slightly lower than the measured cavity mode temperature T cold phot = 500 ± 60 mK. Given the possibly oversimplified model used to extract T cold phot , the agreement between the two measurements confirms that the value of η is limited by the efficiency with which we cool the cavity mode, thus ultimately by the microwave losses α, and not by the competition with non-radiative relaxation. We get from T cold spin = 350 ± 10 mK the more accurate estimate α = 0.23 ± 0.03, corresponding to 1.15 ± 0.15 dB. This is a plausible value for the combined effect of circulator insertion losses, directional coupler contribution and possible spurious reflections due to impedance mismatch in the line. The Rabi oscillations reported in Fig. 6.10a shows that the rotation angle induced by the drive pulses is not affected by the switch state and the same cooling efficiency is recorded at all input powers. We verify that the increase in echo amplitude is not due to a change in coherence time by measuring T 2 in the two switch states. Fig. 6.10b

shows that the same T 2 = 600 µs is recorded in the two cases. The sensitivity enhancement obtained by radiative spin hyperpolarization does not scale like η as in other hyperpolarization schemes such as DNP but only as √ η, because the optimal waiting time t rep between subsequent experimental sequences is of order Γ -1 1 and thus scale as η. We demonstrate this by measuring the mean value and standard deviation of A e for 500 echo traces as a function of the repetition time t rep (see Fig. 6.10c). The highest sensitivity is obtained for t rep 1.25[Γ cold,hot 1 ] -1 , both in the cold and the hot load cases. It is 1.6 times larger in the cold than in the hot configuration, slightly larger than √ η = 1.52 because switching to the cold load also substantially reduces the effective noise temperature of our detection chain: the echo standard deviation is smaller by 7%, consistently with the noise power measurement of Fig 6 .8.

Radiative cooling at lower field

We now consider radiative cooling of the other bismuth donor spin transitions. As seen in the spectrum reported in Fig. 6.11, we measure larger echo amplitude in the cold load case at all the six resonant transitions. The signal enhancement in between 1.5 and 1.75 is to be attributed to t rep = 5 s, short compared to the average spin relaxation time. Despite the fact that at lower field another relaxation mechanism is acting in addition to Purcell (see Sc.5.21), radiative relaxation is still effective. We then measure the spin relaxation for the two switch configurations at 9.3 mT (see Fig. 6.12). The baseline, corresponding the echo amplitude at equilibrium, increases by a factor η = 2 in the cold load case. Even if the exponential fit is poor (see Chapter 5, Sc.5.6), the extracted relaxation rates satisfy Γ hot 1 /Γ cold 1 = η. It thus seems that radiative relaxation works even when the competing relaxation mechanism discussed in Chapter 5 plays a role. We defer to Chapter 7 a qualitative explanation of this observation. 

Controlling the cooling with a tunable spin relaxation channel

We now study how the radiative hyperpolarization works when spins are coupled to a second bath of temperature T IR by a relaxation mechanism of rate Γ IR . We introduce this second relaxation channel by applying infrared illumination (IR) to the sample with a 950 nm light emitting diode (LED), known to reduce the spin relaxation time of donors [START_REF] Feher | Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects[END_REF] (see Sc.4.5).

Superconducting resonator response under IR illumination

The LED illumination has two effects on the sample: it generates quasi-particles in the superconductor and, since it is slightly above the silicon energy gap, conduction electrons in the substrate. These two phenomena increase the resonator losses and affect its resonance frequency. Quasi particles increase the microwave Ohmic losses of the superconductor and its kinetic inductance, thus decreasing the resonance frequency [START_REF] Day | A broadband superconducting detector suitable for use in large arrays[END_REF].

On the other hand, the photo-generated conduction electrons increase the energy dissipation in the substrate, and decrease the capacitance leading to an increase of the resonance frequency [START_REF] Engstrom | Infrared reflectivity and transmissivity of boron-implanted, laserannealed silicon[END_REF] We characterize the resonator parameters dependence on the IR light intensity by measuring the resonator reflection S 11 as a function of the LED drive current I. Fig. 6.13a shows that the resonator internal loss rate κ int increases by one order of magnitude when I reaches 100µA, bringing the resonator close to the critical coupling regime. This effect is expected to contribute to the reduction of η by both affecting Γ phot and n(T cold phot ) (see Fig. 6.14b). The resonance frequency increases by ∼ 1 MHz in the same range of I (Fig. 6.13b). This resonance frequency increment indicates that the dominant origin of the resonator microwave losses is probably the photo-excited silicon conduction electrons.

Suppression of radiative cooling

We then measure the spin relaxation in the hot configuration Γ hot 1 (I) and from this we extract Γ IR (I) (see Fig. 6.14a). Neglecting Γ phon , the introduction of Γ IR (I) modifies Eq.6.1 for the cooling factor η as follows: 

η(I) = Γ IR (I) + Γ phot (2n(T hot phot ) + 1) Γ IR (I) + Γ phot (2n(T cold phot ) + 1) , ( 6.8) 
where Γ phot and T cold phot are indirectly dependent on the current I via the resonator κ int (I). The measurement of κ int (I) and Γ IR (I) then allows to estimate with Eq.6.8 the expected η(I) and the relative contributions of the resonator internal losses and of the light-induced relaxation (see Fig. 6.14b. Finally, we measure the cooling efficiency η(I) by recording the echo amplitude as a function of I in the two switch states. The η(I) dependence predicted by our model agrees semi-quantitatively with the data. The ratio of relaxation rates Γ hot 1 /Γ cold 1 also closely follows the measured η(I), as expected.

Polarization dependence on IR illumination

In addition to changes in the spin relaxation rate, we also observe that the echo amplitude is reduced upon optical illumination (see Fig. 6.15, magenta curve). This reduction is in part due to the changes of the resonator properties. The increased resonator losses lead to a reduced pulse amplitude inside the resonator and to a larger fraction of the spin-echo signal dissipated rather than emitted into the output line. Both effects thus yield a smaller echo amplitude for larger κ int . Simulation provides an easy estimate of expected echo reduction. The red curve in Fig. 6.15 shows the measured A I normalized by the simulated decay, demonstrating that the increased resonator losses do not explain the observed echo amplitude reduction. As a tentative to account for the observations, we model the relaxation mechanism induced by the IR light as driving the spin toward the equilibrium spin polarization of the photo-generated carriers. The physical interpretation is the following. The absorption of the above-gap light by the silicon generates conduction electrons whose spin has a low polarization p el ≈ 0.05 at 62.5 mT and 850 mK. We then assume that that the donors are ionized at rate Γ IR under illumination. Following the ionization, donors recapture a conduction electron on a much faster timescale, leading to an effective transfer of the conduction electron polarization to the bismuth ESR transitions. Such process could be caused by donor-bound exciton formation and relaxation (see Sc.4.5). The donor polarization is then resulting from the competition between the Purcell rate and Γ IR driving it toward p(T hot phot ) and p el , respectively. The current dependence of the polarization is thus given by: The measured echo decay as a function of I, normalized by the simulated effect of κ(I) on A e (red curve in Fig. 6.15), shows a semi-quantitative agreement with the decay calculated with Eq.6.9 (green curve), supporting our model. The less good agreement at higher I could be caused by heating caused by the IR light. We finally consider the hypothesis of the echo amplitude reduction caused entirely by heating of the sample, rather than the ionization process described above. In order to account for an echo reduction of more than a factor 3 (red curve in Fig. 6.15), the sample temperature should rise from 850 mK up to 2.7 K. Two observations are against this possibility. The first being that the cryostat temperature changes less than 15 mK. The second reason lies in the positive resonator frequency shift, incompatible with the generation of quasi-particles expected for such a temperature increase.

p(I) = Γ phot [2n th (T hot phot ) + 1] Γ hot 1 (I) p(T hot phot ) + Γ IR (I) Γ hot 1 (I) p el . ( 6 

Cooling dynamics

In a last experiment we investigate the dynamics of the spin radiative hyperpolarization. For that, we replace the electromechanical switch with the superconducting switch described in 2.5, able to switch in a few nanoseconds without heating [START_REF] Pechal | Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields[END_REF]. The switch is this time placed at the mixing chamber plate. As seen in Fig. 6.16, the echo area A e is measured at 9.5 mT as a function of the delay ∆t after the switch configuration is changed, either from cold to hot or vice-versa. The )+ 1] determined by the new thermal population n th after the switching. n th is instead expected to reach the equilibrium value in a few µs, the relaxation time-scale of the resonator. An exponential fit of the two curves gives (Γ hot 1 ) -1 = 3.7 s and (Γ cold 1 ) -1 = 6.4 s. The approximate equality of the two measured ratios, Γ hot 1 /Γ cold 1 = 1.7 and p cold /p hot = 1.5, is again in agreement with our model. The reduced η with respect to the previously presented result is explained by a measured 3 dB insertion loss of the superconducting switch.

Conclusion

In this chapter we have reported the thermalization of an electron spin ensemble to the electromagnetic environment consisting in the resonant mode of a superconducting cavity. We have then shown that having the spins at thermal equilibrium with the microwave field makes possible to cool them below the host lattice temperature, enhancing their polarization. We now consider the real world applications of such new hyperpolarization technique. In our scheme, the sample is thermally anchored at a temperature higher than the lowest temperature stage in the cryostat, which is instead used to cool the thermal radiation source. Keeping the sample hot while cooling only the spins can be useful in situations in which large cooling powers are needed, for example in spin-based microwave-optical transduction experiments, which require large optical powers [START_REF] Williamson | Magneto-Optic Modulator with Unit Quantum Efficiency[END_REF]. The fact that the minimum achievable spin temperature is set by the cryostat base temperature is however the main drawback of the method presented here. Nevertheless, one could imagine to radiative hyperpolarize the electron spins at an arbitrarily low temperature by cooling the resonator field with parametric processes in a circuit quantum electrodynamics platform. We briefly introduce our proposal to realize this idea in Chapter 8. Regarding the applications to magnetic resonance spectroscopy, we first notice that to our knowledge the only existing hyperpolarization methods for electron spins are based on optical illumination [START_REF] Steger | Quantum Information Storage for over 180 s Using Donor Spins in a 28 Si "Semiconductor Vacuum[END_REF][START_REF] Wong | Chemically induced dynamic electron polarization. II. A general theory for radicals produced by photochemical reactions of excited triplet carbonyl compounds[END_REF][START_REF] Doherty | The nitrogen-vacancy colour centre in diamond[END_REF]. As an example in the solid state, we have seen in Sc.4.5 that the optical transitions of donors in silicon can be exploited to hyperpolarize both the electron and nuclear spin of the donor [START_REF] Sekiguchi | Hyperfine Structure and Nuclear Hyperpolarization Observed in the Bound Exciton Luminescence of Bi Donors in Natural Si[END_REF][START_REF] Steger | Quantum Information Storage for over 180 s Using Donor Spins in a 28 Si "Semiconductor Vacuum[END_REF]. Similarly, NV centers can be optically hyperpolarized even at room temperature [START_REF] Doherty | The nitrogen-vacancy colour centre in diamond[END_REF]. Optical hyperpolarization works only for certain electron spin systems possessing the appropriate level structure. On the contrary, radiative cooling only requires a spin transition and is thus potentially universal. The demonstrated sensitivity increase of at least √ η, corresponding to a reduction of the measurement time by a factor η, could be of practical interest for a large variety of ESR measurements (including field-sweeps, g-tensor measurements, HYSCORE, DEER, ENDOR etc.). This approach would exclude only ESR studies of the spin-lattice relaxation processes in itself.

Concerning the spin-species suitable for radiative cooling, the main criterion is the possibility to reach the Purcell regime at cryogenic temperature, where electron spinlattice relaxation time Γ -1 1 lies typically in the range 10 -3 -10 3 s [START_REF] Castle | Resonance Modes at Defects in Crystalline Quartz[END_REF][START_REF] Gayda | Temperature dependence of the electronic spin-lattice relaxation time in a 2-iron-2-sulfur protein[END_REF][START_REF] Zhou | Electron Spin Lattice Relaxation Rates for S = 12 Molecular Species in Glassy Matrices or Magnetically Dilute Solids at Temperatures between 10 and 300 K[END_REF]. Since a Purcell time of ∼ 10 -3 s has been demonstrated with a different resonator geometry [START_REF] Ranjan | Electron Spin Resonance spectroscopy with femtoliter detection volume[END_REF], we can then envision this technique to be applicable to most species. Another requirement of our scheme is the low resonator internal losses, which can only be achieved with superconducting materials and therefore sets an upper bound to the sample temperature. High quality factor resonators made out of NbTiN, which has higher critical temperature (Tc) than niobium and and withstands larger magnetic fields, have been demonstrated [START_REF] Kroll | Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments[END_REF]. Radiative cooling at liquid Helium temperature should then be possible using this material, with the additional advantage of the application of larger magnetic field B 0 . Approaching liquid nitrogen sample temperature would require high-Tc superconductors. Spin-photon coupling of the order of 1 Hz have been reached in YBCO resonators, with quality factor of ∼ 10 4 at 50 K [START_REF] Ghirri | YBa 2 Cu 3 O 7 microwave resonators for strong collective coupling with spin ensembles[END_REF]. However, resonators with such materials seem to suffer from higher internal losses if µm-constrictions are patterned on thin films [START_REF] Bonizzoni | Coherent coupling of molecular spins with microwave photons in planar superconducting resonators[END_REF], making it challenging to reach larger spin-photon coupling g. Besides its application to ESR, hyperpolarization of electron spins may be of interest for nuclear magnetic resonance. The non-thermal electron polarization can indeed be transferred to nuclear spins by Dynamical Nuclear Polarization (DNP) [START_REF] Abragam | Principles of dynamic nuclear polarisation[END_REF]. The possible application of radiative cooling to the radicals used in DNP as polarizing agents could lead to a large nuclear spin signal enhancement in less demanding conditions that those usually required, namely lower magnetic field, lower microwave frequencies or higher temperature [START_REF] Ardenkjaer-Larsen | Increase in signal-to-noise ratio of 10,000 times in liquid-state NMR[END_REF].

Chapter 7

Polarization transfer in bismuth donors

In this chapter we report our experimental investigation of the phenomenon of polarization transfer via spin flip-flops introduced in Sc.4.3.3, to which we attribute the non-exponential longitudinal relaxation measured at 9.3 mT (see Sc.5.6). In the following, we provide evidence of such polarization transfer at low field by performing double resonance experiments. Even if a quantitative understanding of the observed spin longitudinal relaxation is still missing, our results shows that the polarization transfer can qualitatively explain the observed non-exponential decay. 119

Double resonance spectroscopy

The principle of the double resonance experiment is illustrated in Fig. 7.2. The Hahnecho amplitude is measured repeatedly at one field while the frequency ω pump of a continuous-wave pump tone sent to the resonator input is varied. Whenever a bismuth transition is resonant with ω pump , it is saturated by the long pump drive. In the absence of polarization transfer between hyperfine levels, the polarization of the probed transition is unaffected by the pump tone and the echo signal should show no dependence on ω pump . If on the other hand polarization transfer is significant, we expect a reduction of echo signal when ω pump is resonant with another transition. This experiment is thus sensitive to the polarization transfer in a complementary way with respect to the inversion recovery measurement, where the polarization is transferred from the non-resonant to the probed transition.

To perform the experiment, we modify the setup used in Ch.5 by removing the JTWPA and by connecting a second microwave source, via a 3 dB splitter at room temperature, to the input line. We use this second source to generate the microwave pump tone. The pump signal is switched off only during the Hahn-echo sequence, starting from 1 ms before the π/2 pulse, to avoid saturation of the amplifiers. It is thus off for less than 1/10000 of the experimental time. 

Double resonance at 9.5 mT

We first measure A e at 9.5 mT for ω pump going from 7.12 GHz to 7.65 GHz. In this range of frequencies, the pump tone crosses all bismuth ESR transitions (see Fig. suppression is trivially reached for ω pump = ω 0 , when the probed transition is directly saturated. Interestingly, a relatively smaller echo reduction is also observed in correspondence of S z transitions. Even if S z transitions should not be allowed in our geometry, a small misalignment of B 0 with respect to the z direction could explain the result .We note that S z transitions happen at the same frequency as two-photon processes, which we can thus not exclude. We finally notice that the pump tone decreases the echo amplitude also when no resonance condition is satisfied, yielding a background signal centered at the resonator frequency. More insight on these effect is provided in the following.

Double resonance at 2.3 mT and 62.5 mT

The same measurement is repeated at 2.3 mT, where all spin transitions lie in the 7.32 GHz-7.44 GHz range (see Fig. 7.3a). The non-resonant background signal is much stronger than at 9.3 mT and only few double-resonance dips are visible in A e (ω pump ). Performing the measurement at different pump powers P pump confirms the few visible double-resonance dips at ω pump /2π = 7.384, 7.396, 7.40235, 7.4148 and 7.421 GHz. Moreover, it shows that the overall effect of the pump tone on A e is enhanced as the pump power increases. We finally measure A e (ω pump ) at 62.5 mT in the 6.5 GHz to 7.9 GHz range of ω pump (see Fig. 7.3d). No double-resonance signal is observed at this field and also the nonresonant background is suppressed: only the ω pump = ω 0 dip is visible. The magneticfield dependence of the large background signal indicates that its origin is not a direct effect of the pump tone on the probed transition or on the resonator (such as heating). We thus think that it is caused by the overlap of the double-resonance echo dips. The absence of any evidence of polarization transfer at 62.5 mT is in agreement with the model detailed in Sc.4.3.3 and with the inversion recovery measurement at the same field: spin flip-flops would indeed be largely inhibited due to the larger detuning of neighbouring spins. However, we notice that the absence of double-resonance signal can be, at least in part, due to the larger pump-resonator detuning necessary to drive the other spin transitions.

Dynamics of polarization transfer

We investigate the timescale at which the polarization is transferred by performing a pulsed double resonance experiment. As shown in Fig. 7.4, a pump pulse of duration t pump is sent to the resonator and after a delay time ∆t the polarization of the transition resonant with the cavity is measured with the Hahn-echo. We enhance the saturation of the broad spin lines induced by the short pump pulse by sweeping ω pump in a range of a few MHz during t pump . The waiting time between two repetitions of the pulse sequence t wait is chosen to be t wait = t rep -∆t, to keep the time interval t rep between two Hahn-echo sequences fixed. Doing so, the probed spin transition has the same time to relax to equilibrium after the π/2 pulse independently of ∆t. A e (∆t) is thus constant, unless ∆N dynamics is induced by the pump. In the following t rep = 60 s, t pump = 10 ms and the pump frequency is swept from ω pump -5 MHz to ω pump + 5 MHz. 

Polarization dynamics at 9.5 mT

We measure A e (∆t) for four values of ω pump (see Fig. 7.5a). The results for ω pump /2π = 7.246 GHz, 7.301 GHz and 7.518 GHz reported in Fig. 7.5b show the same qualitative behaviour. In the first few seconds the echo amplitude decreases with ∆t before increasing again at a slower rate. In the measurements at ω pump /2π = 7.301 GHz (green) and ω pump /2π = 7.518 GHz (magenta) the pump drives two transitions symmetric with respect to ω 0 . The two A e (∆t) curves show almost the same polarization dynamics, with an echo minimum at about 4 s. On the other hand, the measurement at ω pump /2π = 7.246 GHz (blue dots), where a transition more detuned from ω 0 is excited, shows a smaller echo reduction and a slower dynamics. A radically different result is instead observed for ω pump = 7.355 GHz (see Fig. 7.5c).

Here the echo amplitude is minimum for the smaller ∆t and increases monotonically at slower rate for large delay. The above results agree qualitatively with our polarization transfer model. Because of the time needed for the polarization transfer to happen, no effect is expected immediately after the saturation, consistently with the observations. Then, polarization transfer progressively takes place over some delay from the probed transition via flip-flop processes and ∆N reaches its minimum value. The presence of the Purcell relaxation at rate Γ 1 prevails for larger ∆t when ∆N increases again toward its thermal equilibrium value. The longer delay at which the minimum of A e appears for ω pump = 7.246 GHz (blue dots) is explained by the fact that more flip-flop processes are needed for ∆N to be affected. The measurement reported in Fig. 7.5c provides a consistency check of our analysis. The pump pulse with ω pump = 7.355 GHz directly reduces ∆N by de-populating |5 and exciting spins in |15 . No delay between the pump pulse and the appearance of a minimum in A e is thus expected, as confirmed by the measurement outcome. Comparing the two results reported in Fig. 7.6b, we notice that at 2.3 mT the ∆N dynamics after the pump pulse is significantly faster and the echo reduction more evident with respect to the measurement at 9.5 mT.

Comparison with the estimated flip-flop rate

In Sc. be dependent on the effective spin line broadening γ eff caused by the ESEEM phenomenon that at low field partially compensates the detuning between the bismuth hyperfine transitions. We then calculate with Eq.4.37 the average flip-flop rate expected at 9.5 mT, finding Γ -1 ff ≈ 10 s. The pulsed double-resonance experiment at 9.5 mT reveals a polarization transfer that takes place on the order of a few seconds, which is not too far off compared to the estimated Γ ff . The calculated Γ ff is thus probably about one order of magnitude too slow to explain our observations. We thus find that our results with the oversimplified model of Sc.4.3.3 are encouraging to confirm the validity of the proposed physical process. Measurements at 2.3 mT provide further support to the model. The observed acceleration of polarization transfer can be indeed explained by two effects included in our model. The first is that lowering the field reduces the average detuning between the hyperfine transitions, leading to an increased probability of finding neighbouring resonant donors. At 9.3 mT, this detuning ranges from ∼ 100 kHz to ∼ 2 MHz, while at 2.3 mT it goes from ∼ 10 kHz to ∼ 100 kHz. The second (and possibly dominant) effect is that the amplitude of ESEEM oscillations is larger at 2.3 mT (see Sc.5.5), yielding an increase of γ eff . To go beyond this preliminary study, we are working in collaboration with W. Coish from McGill University to develop a complete model able to quantitatively reproduce our measurements. In particular, a rigorous treatment requires considering all different hyperfine transition frequencies and matrix elements, and proper averaging of flip-flop processes between neighbouring donors at different angles and distances.

Conclusion

The double resonance experiments discussed in this chapter demonstrate that polarization transfer in the bismuth donor spin manifold happens at B 0 < 10 mT with characteristic times comparable to and even faster than the Purcell rate. The observed phenomenon seems thus to be compatible with the non-exponential spin relaxation measured with the inversion recovery sequence at B 0 as high as 10 mT. However, a quantitative analysis is needed for a conclusive answer. The reported results encourage us to confirm the spin flip-flop mechanism described in Sc.4.3.3 as the cause of the observed population dynamics, even if a quantitative agreement is missing. The calculated average flip-flop rate of 10 -1 s -1 is comparable even though slightly smaller than the characteristic rate of the polarization transfer measured. However, a more detailed calculation could possibly demonstrate the validity of the proposed physical process. We finally come to the efficiency of radiative cooling in the presence of polarization transfer. The measurements performed at 9.3 mT show radiative cooling with η = 2, only slightly lower than η = 2.3 recorded at 62.5 mT. This demonstrates that radiative cooling can be efficient also for an interacting spin ensemble. While spin-lattice and radiative relaxation put the spins in thermal contact with two different baths, polarization transfer represents a thermalization process internal to the spin system that does not prevent its cooling. Despite the fact that Purcell relaxation acts only on the resonant transitions, polarization transfer would, in a sufficiently long time, lead to hyperpolarization of all the ESR donor transitions. However, we have no experimental evidence of this interpretation.

Chapter 8

Conclusion and future directions 8.1 Radiative cooling of a spin ensemble

The experiments reported in this thesis show that an ensemble of electron spins can thermalize to their electromagnetic environment. We have then exploited this regime to radiative cool the ensemble below the temperature of the crystal in which it is hosted, demonstrating a novel universal method of electron spin hyperpolarization. To demonstrate this effect, we have used an ensemble of bismuth donors in silicon coupled to a superconducting resonator. We have shown that, in appropriate conditions, the relaxation of these donors can be dominated by radiative processes at temperatures between 10 mK and 1 K. The demonstration of radiative cooling is reported in Chapter 6. Connecting the resonator input to a resistor colder than the sample we record a more than twofold increase of spin polarization, showing that spins are indeed cooled below the lattice temperature. In the last chapter Ch. 7 we report evidences of a polarization transfer process in Si:Bi present at low applied magnetic field. By performing double resonance experiment we show that spin population is transferred from one bismuth transition to another on timescales of the order of seconds. This suggests that all Si:Bi hyperfine levels may be cooled by the radiative cooling of the resonant transition, although we have no direct proof.

Future direction: active radiative cooling

Radiative spin cooling is potentially able to cool an arbitrary spin species below the sample temperature. The main drawback of this technique is that the minimum reachable spin temperature is ultimately limited by the lowest temperature stage in the cryostat because of the necessity to physically cool down the cold 50 Ω resistor. This raises the question: is it possible to do better, and to cool down arbitrary electron spins to an arbitrarily low temperature (i.e., even lower than the lowest physically available in the cryostat) using radiative cooling? This would constitute an interesting development for ESR spectroscopy. However, such a goal requires cooling the microwave field by a method different from the one demonstrated here. In the rest of this paragraph, we outline an idea of how to achieve this. This idea consists in actively cooling the cavity mode with a parametric process enabled by a non-linear microwave circuit, as demonstrated in recent experiments [START_REF] Gely | Observation and stabilization of photonic Fock states in a hot radio-frequency resonator[END_REF]. The 127 Chapter 8. Conclusion and future directions intra-cavity thermal photons would be upconverted to a higher frequency, and then dissipated in a resistor at the sample temperature. If sufficient energy is provided, this active cooling scheme could in principle reduce the photon and thus the spin temperature to an arbitrary value below the cryostat base temperature. The principle of such active radiative cooling is illustrated in Fig. 8.1a. In a sample at temperature T phon , the spins are resonantly coupled to a microwave resonator of frequency ω 1 populated at thermal equilibrium by n th (ω 1 , T phon ) microwave photons.
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Figure 0 . 1 :

 01 Figure 0.1: Principe de refroidissement radiatif des spins. Les spins (vert) d'un cristal (rouge) sont couplés à la fois à un bain de phonons à température T phon avec un taux Γ phon et à un bain de photons micro-ondes à température T phot avec un taux Γ phot , qui détermine leur température d'équilibre T spin . La température des photons T phot est déterminée par leur couplage avec le taux κ int aux pertes internes de la cavité à T phon et avec le taux κ ext à la résistance connectée à l'entrée de la cavité. Lorsque cette charge est placée à basse température T froid , le champ intracavité est refroidi radiativement à condition que κ ext κ int et les spins sont refroidis à leur tour si Γ phot Γ phon .
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 0405 Figure 0.4: Principe de refroidissement par rayonnement et principaux résultats. a, Représentation schématique de l'expérience. b, amplitude de l'écho de Hahn mesurée lorsque le commutateur est connecté à la résistance chaude (rouge) et froide (bleue). c, relaxation des spins mesurée lorsque l'interrupteur est réglé sur la résistance chaude (rouge) et froide (bleue). Les lignes solides sont des fits exponentiels avec constante de temps Γ -1 1 .
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 12 Figure 1.2: ESR spectrometer with a superconducting resonator. a, Niobium superconducting resonator (red) patterned on top of a silicon chip implanted with bismuth donors. b, Device cross section around the inductor wire (red). The spinphoton coupling constant g (color code) is represented in the Bi-doped region. c, Schematic representation of the spectrometer setup with the Hahn-echo pulse sequence illustrated on the input line.

Figure 1 . 3 : 1 .

 131 Figure 1.3: ESR spectroscopy of bismuth: main results. a, Top, calculated ESR transitions frequency as a function of B 0 . The resonator frequency is reported in blue. Bottom, measured echo amplitude as a function of B 0 . b, Spin longitudinal relaxation measured with the inversion recovery sequence illustrated in the inset at B 0 = 62.5 mT. Dashed red line is an exponential fit with time constant Γ -1 1 . Numerical simulation of the Purcell relaxation is shown in green. c, Relaxation time Γ -11 measured as a function of temperature (red). The expected temperature dependence for Purcell relaxation is shown in green.
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 14 Figure 1.4: Radiative cooling principle and main results. a, Schematic representation of the experiment. b, Hahn echo amplitude measured when the switch is connected to the hot (red) and cold (blue) resistor. c, Spin relaxation measured in the hot (red) and cold (blue) switch setting. Solid lines are exponential fit with time constant Γ -1 1 .
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 15 Figure 1.5: Polarization transfer. a, Echo amplitude as a function of the pump frequency at B 0 = 10 mT. The pump is almost constantly on. Dashed lines are the spin transition frequencies at this field. b, Echo amplitude measured for ω pump /2π = 7.518 GHz as a function of the delay between a 10 ms pump pulse and echo detection.

Figure 2 . 1 :

 21 Figure 2.1: Electromagnetic field state phase-space representation. a Classical picture. b Vacuum (solid fill) and thermal (red dashed) states. c Coherent (blue fill) and coherent thermal (dashed red line) states.
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 22 Figure 2.2: LC oscillator. a, Schematic b, Example of implementation: a superconducting planar resonator comprising a interdigitated capacitance (red) in parallel with an inductor wire (blue).
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 23 Figure 2.3: Transmission line. a Two wire representation. b Each infinitesimal part of a transmission line can be modeled as an LC.
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 24 Figure 2.4: Cavity coupled to a transmission line. a The energy stored in the mode of the LC resonator is dissipated into the internal resistance at rate κ int and leaks out into the capacitively coupled transmission line with rate κ ext b Norton equivalent circuit. c Quantum optics equivalent representation.
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 25 Figure 2.5: Cavity reflection measurement. Reflection coefficient S 11 (ω) calculated for κ int = 10κ ext (green), κ int = κ ext (blue) and κ int = κ ext /4 (red). Left and right panel represent the modulus and phase of S 11 (ω), respectively.
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 26 Figure 2.6: Thermalization of electromagnetic modes in a microwave circuit. a, A transmission line terminated by an impedence mateched load. The reflection coefficient at the load is zero so that the left propagating mode consists in the thermal radiation from the load, independently of the incoming state. b, Thermal radiation emitted by an impedance matched load is partially thermalized by an attenuator with transmission coefficient S 21 = √ β and no reflection. c, The cavity mode â is coupled with strength κ int to the thermal radiation at T int and with strength κ ext to the bath consisting in the incoming modes âin . The output modes âout are the sum of the transmitted âin,int and the reflected âin .
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 27 Figure 2.7: Output mode thermal equilibrium population n th [T out (ω)]. The mean number of thermal photons in the output modes is calculated with Eq.2.36 taking T β = T int = 1 K, T cold = 20 mK and ω 0 /2π = 7.4 GHz for three different values of attenuation: β = 0 (blue), β = 3 dB (orange) and β = 20 dB (green).Left, κ int = κ ext /10: the cavity is in the overcoupled regime and at resonance the output mode is only partially thermalized to the hot losses. Middle, κ int = κ ext : the cavity is critically coupled to the output mode that at resonance is perfectly thermalized to the internal losses at 1 K. Right, κ int = 5κ ext : the cavity is in the undercoupled regime.
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 31 Figure 3.1: Spin-cavity coupling. a A spin polarized by a static magnetic field B 0 is coupled to an LC resonator by the transverse field B 1 generated by the inductor current. The resonator is damped by internal and external losses while it is driven by the input signal of amplitude β. b The quantum optics equivalent representation.
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 32 Figure 3.2: Weak and strong coupling regime for a single spin.The population of the spin excited state |e is calculated solving Eq.3.7 in absence of drive (β = 0), neglecting non-radiative processes (Γ phon = γ = 0) and at resonance (ω s = ω 0 ). In the strong coupling regime (g > κ) it shows oscillations while in the weak coupling regime it decays exponentially at rate 4g 2 /κ.
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 33 Figure 3.3: Spin-cavity open system. a The spin is coupled to the lattice bath and coherently exchanges energy with the resonator which is damped by losses and driven by the input signal β. b Quantum optics equivalent representation including the sample (red).
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 34 Figure 3.4: Spin coherent dynamics and relaxation. a Under a static magnetic field, the spin vector σ precesses at frequency ω s in the laboratory frame. b Rotating frame of an oscillating magnetic field B 1 . c In such a rotating frame, the application of a short microwave pulse allows to rotate the spin. d Longitudinal relaxation process bringing the spin vector to thermal equilibrium. e Decoherence process leading to a fan-out of the spin transverse component.
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 5 Spin thermalization in the Purcell regime. Quantum optics representation of the spin coupled to the lattice bath with strength Γ phon and to the resonator effective bath with strength Γ phot . In the Purcell regime (Γ phot Γ phon ) spins thermalize to the resonator mode temperature T phot .
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 36 Figure 3.6: Free induction decay and echo. Starting from thermal equilibrium, the application of a first microwave pulse around ẽx rotates the ensemble magnetization to the equatorial plane of the Bloch sphere, inducing the emission of a coherent signal (the FID) before decoherence takes place. After a delay time τ a second pulse rotates the magnetization around ẽy by a angle of π yielding a magnetization refocusing after another delay τ with consequent emission of the echo signal. The effects of the finite cavity bandwidth are neglected. Top graph: The resonator field â . In black the field originated by the drive; the coloured line is the field emitted by the spins. Middle graph: The three components of the ensemble magnetization (extracted from numerical simulation for typical ESR parameters). Bottom: Bloch sphere representation of the collective spin evolution with the effect of the pulses illustrated by the black arrows.
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 37 Figure 3.7: CPMG sequence. The spin echo generated by the Hahn echo sequence can be refocused m times by a series of equally spaced π pulses applied along the echo phase direction.

  3.7). The first part of CPMG is the Hahn echo sequence. A delay time τ CPMG /2 (generally different from τ ) after the echo, a train of m π pulses equally spaced by τ CPMG is applied. Each π pulse causes an additional magnetization refocusing and therefore emission of an extra echo. As a result, in a single experimental sequence m extra echoes are detected in the same measurement time. Averaging all the echoes would lead to an ideal √ m-fold improvement of the signal-to-noise ratio (SNR), that is however limited at high m by the residual decoherence rate. In many experiments we use the CPMG sequence to increase the SNR and perform faster measurements.Chapter 4
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 41 Figure 4.1: Bismuth donor in silicon. a A single bismuth substitutional impurity in silicon diamond lattice. b Silicon energy band diagram; valence band maximum and conduction band minimum highlighted in red and yellow, respectively. c First Brillouin Zone, with the six degenerate valleys of the conduction band indicated in yellow. Blue ellipsoids symbolize isoenergy surfaces.

  4.1a). The corresponding Brillouin zone in the reciprocal space is shown in Fig.4.1c. The band structure represented in Fig.4.1b, shows an indirect band-gap of energy E g = 1.1 eV at 300 K. While the valence band maximum is at the center Γ of the Brillouin zone, the six-fold degenerate conduction band minimum takes place at a distance 0.85 2π/a from Γ along the six vectors ±k x , ±k x and ±k z , a = 0.543 nm being the silicon lattice parameter. These six degenerate conduction band minima are called silicon valleys. A bismuth donor is an impurity substituting a silicon atom in the lattice. Four of its valence electrons form a covalent bond with the four neighbouring silicon atoms, keeping almost unaltered the local geometry (see Fig.4.1). The fifth electron is either bound to the bismuth nucleus Coulomb potential forming the 'neutral donor' (state D 0 ) or ionized to the conduction band (state D + ). The ionization energy is E D =71 meV[START_REF] Ramdas | Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors[END_REF].
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 42 Figure 4.2: Bismuth electronic states. a Illustrative schematic of the donor wave function and of the Coulomb potential compared to the lattice parameter. b Six-fold degenerate ground states predicted by effective mass theory with an additional valleyorbit interaction perturbation.
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 43 Figure 4.3: Bismuth charge state. a At non-zero temperature, electrons bound to donors are excited to the conduction band, resulting in a partial ionization of the donors and a lowering of the Fermi energy level. b Fraction of ionized donors N + D /N D as a function of temperature in the case of bismuth, evaluated with E D = 71 meV and N D = 10 16 cm -3 .
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 1044 Figure 4.4: Bismuth energy spectrum. a Energy-levels computed from the diagonalisation of the Si:Bi Hamiltonian as a function of B 0 (Eq.4.4). The coupled energy-levels E ±m are color-coded from purple to red, the uncoupled energy-levels are in black. Figure adapted from[START_REF] Mohammady | Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances[END_REF][START_REF] Balian | Quantum-Bath Decoherence of Hybrid Electron-Nuclear Spin Qubits[END_REF] 

  In this limit, the effect of B 0 is to linearly lift the degeneracy within the two multiplets. The magnetic field dependence of all the energies, and the coefficients a ± m and b ± m describing the mixing of the Zeeman states, are strongly dependent on m in this regime.
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 45 Figure 4.5: Transition schematics. a At high field, the usual ESR transition between levels |m s = 1 2 , m i ↔ |m s = -1 2 , m i are allowed (brown arrows). At lower fields, the hyperfine coupling renders the Zeeman basis invalid to describe the hybridized electronnuclear states (symbolized by the blue ellipses) b In the low-field limit an accurate description is given by the coupled basis |±, m . The high field transitions are now labeled |+, m ↔ |-, m -1 . The hyperfine-induced mixing allows in addition the transitions |-, m ↔ |+, m -1 (blue arrow), as well as |+, m ↔ |+, m -1 and |-, m ↔ |-, m -1 in the MHz range (grey arrows).

  as expected for an electronic spin 1/2.S x transitions allowed at low magnetic fieldAt lower field, the states |1 2 , m i and |-1 2 , m i are changed in the hybrid states |+, m and |-, m -1 as illustrated in Fig.4.5. The same transition at lower field does not

Figure 4 . 6 :

 46 Figure 4.6: Bismuth ESR transitions. a Energy levels diagram with ESR allowed transitions symbolized with arrows: S x transitions allowed at large B 0 |+, m ↔ |-, m -1 (brown arrows, panel b), S x transitions forbidden at large B 0 |+, m ↔ |-, m + 1 (blue square arrows, panel c) and S z transitions forbidden at large B 0 |+, m ↔ |-, m (pink circle arrows, panel d). NMR-like transitions are shown with grey triangle arrows. The additional grey level shows the position of the |+, -5 level at large B 0 . b-d Frequencies of ESR allowed transitions as a function of B 0 . The curves coloring indicates the transition matrix element value. The color scale is identical for all panels and given in inset of panel b. The grey circles in a and on the right-side of panels b-d frames indicate degenerate transitions (see main text). Figure extracted from [37].

. 16 )

 16 Beside reducing the matrix element of these 10 transitions, hybridization enables at low field 9 extra transitions between |-, m and |+, m -1 . The frequency and matrix elements of these 9 transitions forbidden at high field are plotted in Fig.4.6. Their matrix elements, tending to zero at high field, are:

Figure 4 . 7 :

 47 Figure 4.7: Polarization dependence on temperature. Polarization p Bi (T ) (red) of the two quasi-degenerate transitions |+, 0 ↔ |-, -1 and |+, -1 ↔ |-, 0 at B 0 = 62.5 mT as a function of temperature compared to the polarization p 1/2 (T ) (blue) of a spin 1/2 having the same transition frequency. The two curves are normalized to assume the value of 1 at 1.2 K.

  1 ), where p |±,m = e -E ±,m /kT /Z is the occupation probability of |±, m , with Z = ±,m e -E ±,m /kT the partition function. The red line in Fig.4.7 shows p Bi (T ) for the quasi degenerate transitions |+, 0 ↔ |-, -1 and |+, -1 ↔ |-, 0 at B 0 = 62.5 mT compared to the p 1/2 (T ) of a spin 1/2 with the same transition frequency ω 0 /2π = 7.41 GHz. As long as T > 100 mK and B 0 < 70 mT, the thermal energy is much larger than the energy difference between hyperfine states of both + andmanifolds E |±,m -E |±,m-1 .
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 48 Figure 4.8: Coherence time of bismuth in natural silicon. Spin echo decay measured in natural silicon for bismuth concentration of 3 × 10 15 cm -3 at 10 K and at 8.81 T with field aligned along[START_REF] Duzer | Principles of Superconductive Devices and Circuits[END_REF]. A spectral diffusion coherence time of 400 µs is extracted from fit with a stretched exponential function. Adapted from[START_REF] Morley | The initialization and manipulation of quantum information stored in silicon by bismuth dopants[END_REF].
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 49 Figure 4.9: ESEEM model system for electron spin S=1/2 and nuclear spin I=1/2. a Nuclear spin (purple) subject to external field B 0 and dipole field (blue) of a nearby electron spin (green) located at relative position r. b Energy diagram showingthe electron transitions (green), the nuclear transitions (purple), and the (normally forbidden) electron-nuclear transitions (orange). The energy levels |1 , ..., |4 are labeled according to the eigenstate of the Zeeman basis. c Quantization axes ω ↑ and ω ↓ due to mixing of the nuclear states, which results in inclination of the axis from z by the angles η ↑ and η ↓ , respectively. d EPR spectrum showing the electron transitions (green) and the electro-nuclear transitions (orange) as well as the relation of these transitions to the nuclear frequencies ω ↑ and ω ↓ (purple). Figure taken from[START_REF] Probst | Hyperfine spectroscopy in a quantum-limited spectrometer[END_REF] 
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 410 Figure 4.10: ESEEM oscillation in Si:Bi at 96 G. Hahn echo decay measured at 15 mK and ω 0 /2π = 7.409 GHz.
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 411 Figure 4.11: Hyperfine transitions spectrum. a Sketch of a subensemble of Si:Bi spin energy levels. The quasi-degenerate ESR transitions |16 ↔ |5 and |15 ↔ |4 (grey arrows) are resonant with the detection cavity. The small arrows of the same colour represent the pairs of quasi-degenerate hyperfine transitions of frequency ∆F . b Spectrum of the 6 considered hyperfine transitions at B 0 = 10 mT. c Spectrum of the hyperfine transitions at B 0 = 60 mT.
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 412 Figure 4.12: Flip-flop processes at 10 mT. a Example of flip-flops induced by the B term in Eq.4.28 between two spin in the + excited state manifold (red) and two spins in the ground state manifold (blue). In both cases ∆N is reduced by 2. b Example of flip-flops induced by the E (red) and F (blue) term between two spins sitting one in the + and the other in themanifold. Both examples correspond to a decrease of ∆N by 2. In the two panels spin states are labeled by index of increasing energy (grey) and by the coupled basis (black).
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 43 Mixing coefficients of bismuth donor eigenstate. Calculated for B 0 = 9.6 mT. 327 0.461 0.562 0.646 0.720 0.786 0.846 0.901 0.952 1 b m 1 0.945 0.888 0.827 0.763 0.694 0.619 0.534 0.434 0.306 0 in the same manifold can flip-flop in a B-term process: |±, m → |±, m + 1 with |±, n → |±, n -1 or viceversa. For example, in the ground manifold a spin in |3 state can flip to |4 reducing ∆N while the neighbouring donor in the |8 can flop to the lower energy state |7 .
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 413 Figure 4.13: Spin-lattice relaxation processes. a Subset of Si:Bi level schemes with the various spin-lattice relaxation processes. b Direct, Orbach and Raman phonon relaxation mechanisms. c Relaxation paths available for the spin system.

Figure 4 .

 4 Figure 4.14: T 1 dependences as a function of temperature. Above T = 25 K an Orbach process dominates, whereas for lower temperature a Raman process is observed. The experiment is realized at B 0 = 0.57 T on the highest frequency transition at f = 9.76 GHz with a sample of concentration [Bi] = 5 × 10 14 cm -3 . Extracted from [46].
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 415 Figure 4.15: Spectrum of bismuth donors in strained silicon.The echo amplitude A e as a function of magnetic field (red) shows two peaks with opposite sign of frequency shift with respect to the expected ESR spectrum (grey). The positive and negative resonance frequency shifts corresponds to different regions of the sample with opposite sign of the hydrostatic strain, that is linearly proportional to the hyperfine coupling change. Extracted from[START_REF] Pla | Strain-Induced Spin-Resonance Shifts in Silicon Devices[END_REF].
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 416 Figure 4.16: Bound-exciton optical transitions. a Sketch of the spins for states D 0 X, D 0 and D + together with the transitions in between. b Zeeman splitting for D 0 and D 0 X along with the dipole allowed optical transitions. c Observed stimulated photoluminescence spectrum for Si:Bi in a natural sample. a is extracted from [37], b and c from [68].

Figure 4 . 17 :

 417 Figure 4.17: Implantation profile. Calculated from implantation parameters.
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 51 Figure 5.1: Electromagnetic simulation. a Copper box with the LC oscillator coupled to the measurement line via a tunable antenna mounted on a SMA through. On the right, the resonator layout. b Phase of the simulated S 11 parameter. c The first mode of the resonator (left) and of the copper sample holder (right). The coupling quality factors of the two modes are extracted from the fit (green line) with Eq.2.31.
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 52 Figure 5.2: Niobium resonator. a Micrograph of the niobium resonator. b Profilometer measurement around the central inductor wire.
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 53 Figure 5.3: Sample mounting. a Open copper box next to the coil inside which it is mounted. b Sample and coil inside the cryoperm magnetic shielding thermally anchored to the mixing chamber plate.

�Figure 5 . 4 :

 54 Figure 5.4: Characterization of the superconducting resonator at 15 mK. The input power used to probe the resonator corresponds to n ≈ 0.1. In the left panel, phase (top) and amplitude (bottom) of S 11 are shown together with the fit (green solid line).In the right panel, the same data are reported in the complex plane.
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 1155 Figure 5.5: Power and Magnetic field dependence of the resonator properties. a Input power dependence of the resonator loss rates extracted from the fit of S 11 .n is given by Eq.2.27. b Magnetic field dependence of resonance frequency (top) and loss rates (bottom).
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 56 Figure 5.6: Schottky barrier at the Si/Nb interface below the inductor wire. a Electrostatic potential. b Density of ionized bismuth donors. c Density of neutral bismuth donors. d Fraction of ionized over neutral donors f i = N + d /N 0 d .
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 57 Figure 5.7: Spin-photon coupling g. a Niobium resonator on the silicon chip. Right, map of the magnetic field vacuum fluctuations δB 1 at the device cross section around the inductor wire (black). The direction of the field at each location is represented by black arrows. The bismuth implantation profile is as well shown, with the border of the depletion region indicated by the dashed line. b Left, map of the spin photon coupling rate g computed for | S x | = 0.28, corresponding to the |-, -1 ↔ |+, 0 transition at 62.5 mT and to the |-, 0 ↔ |+, 1 transition at 10 mT. Right, map of the spin photon coupling rate g computed for | S x | = 0.21, corresponding to the |-, 0 ↔ |+, -1 transition at 62.5 mT and to the |-, 1 ↔ |+, 0 transition at 10 mT. c Coupling distribution for the resonant transitions at 62.5 mT and 10 mT (blue), sum of the coupling distribution calculated for | S x | = 0.28 (green) and | S x | = 0.21 (red).
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 58 Figure 5.8: Low temperature setup. Microwave setup connecting the roomtemperature apparatus to the 15 mK experimental stage, on which is mounted the ESR resonator.
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 59 Figure 5.9: Room temperature setup.
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 510 Figure 5.10: TWPA characterization. a Gain spectrum. b Gain saturation. c Noise power spectral density measured at the end of the amplification chain for the on and off TWPA states. A coherent tone at 7.410146 GHz is sent to the TWPA input. The power increase of the coherent signal reveals a TWPA gain G TWPA =25 dB for this experiment.

Figure 5 . 11 :

 511 Figure 5.11: Pulse setup. Two independent microwave pulses can be generated via two microawave switches in parallel, each being in series with a tunable attenuator to control the pulse input power P in referred to the port of the resonator. The pulses' phases are set by a manual phase shifter. All signals are controlled with an AWG.
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 512 Figure 5.12: Hahn echo detection. a, First and last four echoes in the CPMG sequence at 62.5 mT. All π pulses have been removed from the plot. b, First echo of the CPMG sequence (blue), CPMG average (red) and simulation of the Hahn echo (green) obtained by using the ρ(g) shown in Fig.5.7c.
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 513 Figure 5.13: Rabi oscillations. a, Top, pulse sequence used to measure Rabi oscillations. Bottom, measured (blue dots) and simulated (green line) integrated echo amplitude A e as a function of the second pulse input power P in . The value of P π is calibrated with the first maximum of the signal. b Relative contribution A e (g)ρ(g) to the echo amplitude A e at P in = P π as a function of the spin-resonator coupling g. A e (g) is the echo amplitude simulated for an ensemble of N spins with the same coupling g.
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 514 While the spectrum of Fig 5.14a is measured using P π calibrated on the first transition at 1.25 mT, for the spectrum of Fig 5.14b P π is calibrated at 9.6 mT.
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 51452 Figure 5.14: Spectrum. a, Top, black lines are calculated electron spin resonance transitions of the bismuth donors. The resonator frequency ω 0 /2π = 7.4078 GHz (blue line) is resonant with 6 transitions in the 0-70 mT range. Bottom, measured integrated spin-echo amplitude A e (blue) as a function of B 0 , showing the expected transitions.The Hahn-echo pulse power P in is calibrated on the first transition, CPMG averaging is used and the experiment repetition time is t rep = 5.8 s. The black line is a fit with a sum of six Lorentzians. b Top, calculated transitions in the 0-12 mT range (black). The resonator frequency ω 0 /2π = 7.4087 GHz (blue) is about one MHz lower than in the measurement of panel a. Bottom, measured integrated spin-echo amplitude A e with (red) and without (blue) CPMG averaging. The Hahn-echo pulse power P in is calibrated on the fifth transition at 9.7 mT, t rep = 10 s. The black line is a fit with a sum of five Lorentzians.
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 515 Figure 5.15: Strain simulation. a, Hydrostatic strain hs map at the inductor-wire cross-section. Dashed lines represent the cuts shown in panels b-c. b, Cut along y at x = 0 of the hs map. c, Three cuts along x of the hs map. The corresponding bismuth donor spin frequency shift is reported on the right axis of panels b-c.
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 516 Figure 5.16: Rabi oscillations versus B 0 at the sixth ESR line.

  4.3.1). ESEEM oscillations on top of the spectral-diffusion decoherence at 9.7 mT are clearly visible in Fig.5.17e. Fig.5.19a shows these oscillations normalized to the mean value extracted with the Gaussian fit and represented around zero. A Fourier transform of this ESEEM signal is shown in Fig.5.19b, highlighting two main frequency
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 517518 Figure 5.17: Coherence time at the six resonant transitions. Measured (blue) integrated echo A e as a function of pulse delay τ in the Hahn echo sequence. Red lines gaussian fit of time constant T 2 .
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 519 Figure 5.19: ESEEM oscillations at 9.7 mT. a, ESEEM oscillations normalized to the mean value and referred to zero. b Power spectrum of the ESEEM oscillations.
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 520 Figure 5.20: Energy relaxation at 62.5 mT. a, Measured (blue dots) and simulated (green line) echo signals at short and long ∆t. b Measured (blue dots) and simulated (green line) integrated echo A e as a function of ∆t. The dashed red line is an exponential fit of time constant Γ -11 . The used inversion recovery pulse sequence is shown in the inset.
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 521 Figure 5.21: Energy relaxation at the six resonant transitions. Measured (blue) integrated echo A e as a function of the waiting time ∆t. Dashed red line is an exponential fit of time constant Γ -1 1 . The solid green line in panels e and f are simulations. The resonator parameters for measurements in panels a-e are: ω 0 /2π = 7.4087 GHz, κ ext = 4.2 × 10 6 s -1 and κ int = 3 × 10 5 s -1 . The resonator parameters for measurements in panels f are ω 0 /2π = 7.4078 GHz, κ ext = 3.4 × 10 6 s -1 and κ int = 3.7 × 10 5 s -1 .
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 522 Figure 5.22: Relaxation rate dependence on spin-cavity detuning ∆. a, Normalized Fourier component of the echo at ∆ = 0 (red) and ∆ = 0.5κ as a function of the delay time ∆t of the inversion recovery sequence. The solid line is an exponential fit of time constant Γ -1 1 . b Relaxation time Γ -1 1 as a function of the detuning ∆ for measured (blue) and simulated (red) inversion recovery. Dashed line is the expected Γ -1 1 (∆) dependence based on the Purcell formula Eq.3.10 and on the measured Γ -1 1 at ∆ = 0.
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 523 Figure 5.23: Spin-induced resonator internal losses. Top, bismuth donor spin transitions frequency (black) as a function of the applied field. Resonator frequency is shown in blue. Bottom, resonator internal losses κ int measured at P in = -120 dBm as a function of B 0 .
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 61 Figure 6.1: Radiative spin cooling principle. Spins (green) in a crystal (magenta)are coupled both to a bath of phonons at temperature T phon with a rate Γ phon and to a bath of microwave photons at a temperature T phot with a rate Γ phot , which determines their equilibrium temperature T spin . The temperature of the photons T phot is determined by their coupling with rate κ int to the cavity internal losses at temperature T int and with rate κ ext to the load located at the cavity input. When this load is placed at low temperature T cold , the intra-cavity field is radiatively cooled provided that κ ext κ int and the spins are cooled in turn if Γ phot Γ phon .
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 621 Figure 6.2: Relaxation time dependence on temperature at 62.5 mT. a, Measured integrated echo A e as a function of the waiting time ∆t at T =15 mK (blue) and T =1.2 K (red). Black lines are exponential fit of time constant Γ -1 1 . The data are normalized to the baseline of the corresponding fits. b Measured relaxation time Γ -1 1
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 63 Figure 6.3: Polarization dependence on temperature. a, Transitions |4, 0 ↔ |5, -1 and |4, -1 ↔ |5, 0 . Equilibrium polarization measured at 62.5 mT (red dots).Several hours are waited at each temperature before recording A e . The red line is the calculated p Bi (T ) for the considered transitions at 62.5 mT. A second polarization measurement of the same transition is reported (black dots). In this second experiment, for each temperature value, B 0 is first set to 9.3 mT during 20 min, then it is set to 62.5 mT and finally after 4 min A e is recorded. The black line is the calculated p Bi (T ) for the same transitions at 9.3 mT. The polarization p 1/2 (T ) = 1/(2n th (T ) + 1) of a spin 1/2 is also shown for comparison(green). A e as a function of time is measured at T = 83 mK and B 0 = 62.5 after B 0 has been set to 9.3 mT for 20 min. The same data are represented in the main plot with a blue arrow. b, Transitions |4, 1 ↔ |5, 0 and |4, 0 ↔ |5, 1 . Equilibrium polarization measured at 9.3 mT (black dots). The black line is the calculated p Bi (T ) for the considered transitions at 9.3 mT. The p 1/2 (T ) is also shown for comparison (green).

  Figure 6.3: Polarization dependence on temperature. a, Transitions |4, 0 ↔ |5, -1 and |4, -1 ↔ |5, 0 . Equilibrium polarization measured at 62.5 mT (red dots).Several hours are waited at each temperature before recording A e . The red line is the calculated p Bi (T ) for the considered transitions at 62.5 mT. A second polarization measurement of the same transition is reported (black dots). In this second experiment, for each temperature value, B 0 is first set to 9.3 mT during 20 min, then it is set to 62.5 mT and finally after 4 min A e is recorded. The black line is the calculated p Bi (T ) for the same transitions at 9.3 mT. The polarization p 1/2 (T ) = 1/(2n th (T ) + 1) of a spin 1/2 is also shown for comparison(green). A e as a function of time is measured at T = 83 mK and B 0 = 62.5 after B 0 has been set to 9.3 mT for 20 min. The same data are represented in the main plot with a blue arrow. b, Transitions |4, 1 ↔ |5, 0 and |4, 0 ↔ |5, 1 . Equilibrium polarization measured at 9.3 mT (black dots). The black line is the calculated p Bi (T ) for the considered transitions at 9.3 mT. The p 1/2 (T ) is also shown for comparison (green).
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 64 Figure 6.4: Radiative cooling setup. The sample is mounted at the still plate of the cryostat. The cavity port is connected to a circulator separating the resonator input and output modes. An electromechanical switch connects the input either to a hot or a cold 50 Ω impedance-matched load. Control microwave pulses are sent to the input via a 20 dB coupler. The output signal is amplified by first by the JTWPA at 15 mK and then by the HEMT at 4 K.
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 65 Figure 6.5: Simplified equivalent electrical circuit. The LC resonator and the spins are thermally anchored at T phon = 850 mK and are coupled with rate Γ phot . The resonator is then coupled with rate κ int to the internal loss bath of temperature T int and with rate κ ext either to a hot or a cold 50 Ω thermal source. The signal emitted or reflected by the resonator is routed by the circulator to the output line.
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 66 Figure 6.6: Resonator internal losses in the two switch configurations. a, Magnitude of S 11 at n ≈ 0.1 for the hot (red) and cold (blue) configurations. Black lines are fit with Eq.2.31. b κ int obtained from the fit of S 11 as a function of the n(P in ) for the two switch configurations.
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 67 Figure 6.7: TWPA gain and added noise. a, TWPA gain for the cold (blue) and hot (red) switch state as a function of the still plate temperature T phon . b Noise power spectral density S measured 2.7 MHz detuned from the resonator (red triangles). Solid lines are fit to the data with S hot for S JTWPA = 1 (black), S JTWPA = 0.75 (red) and S JTWPA = 0.5 (green).
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 68 Figure 6.8: Noise power spectral density measurement. a Frequency dependence of the noise power spectral density S measured at T phon =840 mK for the hot (red circles) and cold (blue circles) switch configurations. Solid lines are fit with S hot (ω) (solid red) and S cold (ω) (solid blue). The blue dashed line indicates the expected S cold (ω) for α=0. b, Still temperature T phon dependence of S measured at ω = ω 0 (open circles) and at ω -ω 0 = -2.7 MHz (open triangles) for both hot (red) and cold (blue) configurations.Solid lines are plot of S hot (red) and S cold (blue) with parameters obtained from the frequency dependence fits performed at all T phon , and with S JTWPA = 0.75.
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 691 Figure 6.9: Radiative cooling demonstration at 62.5 mT. a, Measured spin-echo signal showing a η = 2.3 increase in amplitude in the cold configuration (blue). b Measurements (open circles) and exponential fits (solid lines) with time constant Γ -1 1 of the integrated echo area A e as a function of the waiting time ∆t of the inversion recovery pulse sequence.
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 6101 Figure 6.10: Rabi oscillations, coherence time and SNR improvement with cooling. a, Rabi oscillations measured for the two switch settings. b, Measured (circles) and Gaussian fit (solid line) of the echo are A e decay as a function of the waiting time τ in the Hahn-echo sequence, yielding T 2 = 600 µs in both switch configurations. c,Measured (open circles) signal-to-noise ratio SNR, obtained by dividing the mean value of 500 echo samples by their standard deviation, as a function of the repetition time t rep (see pulse sequence on top), for both switch configurations. Solid lines are fit with p(1 -e -Γ 1 trep )/(σ √ t rep ), where σ is the mean of all the σ e and p is the equilibrium polarization, yielding η = Γ hot 1 /Γ cold 1 = p cold /p hot = 2.1.
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 611 Figure 6.11: Radiative cooling the first six ESR lines. Measured echo area A e as a function of the applied magnetic field for the cold (blue) and hot (red) switch configurations, with t rep = 5 s. .
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 612 Figure 6.12: Radiative relaxation and cooling at 9.3 mT. Measurements (open circles) and exponential fits (solid lines) with time constant Γ -11 of the integrated echo area A e as a function of the waiting time ∆t of the inversion recovery pulse sequence.

Figure 6 . 13 :

 613 Figure 6.13: Effect of LED illumination on the resonator. a Extracted κ, κ int and κ ext from the fit of the measured resonator reflection S 11 as a function of I. b Extracted resonator frequency ω 0 from the S 11 measurement.
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 615 Figure 6.15: Polarization dependence on LED illumination. Measured (triangles) A e reduction as a function of the applied LED current I in the hot configuration. The measured decay normalized by the simulated effect of κ int (I) on the echo amplitude (circles) is also shown. p(I) calculated with Eq.6.9 (stars) reproduces semiquantitatively the normalized data (circles).
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 616 Figure 6.16: Cooling dynamics. Measured integrated echo area A e (open circles) at 9.5 mT as a function of the waiting time ∆t between a rapid change of switch configuration and the echo sequence shown on top. Solid lines are exponential fits, yielding Γ -1 1 = 6.4 ± 0.3 s from hot to cold (blue) and Γ -1 1 = 3.7 ± 0.3 s from cold to hot (red)
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 771 Figure 7.1: Polarization transfer after population inversion. Spin population (gray circles) represented in the bismuth donor spin energy levels (black) immediately after an ideal π pulse inverting the population of the |16 ↔ |5 and |15 ↔ |4 quasidegenerate transitions (blue). Flip-flop processes (red arrows) of rate Γ ff may compete with the Purcell relaxation rate Γ 1 , leading to a non-exponential spin relaxation of the population unbalance ∆N = N |16 + N |15 -N |5 -N |4 .
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 72 Figure 7.2: Polarization transfer in a double resonance experiment. Spin population (gray circles) represented in the bismuth donor spin energy levels (black) in the presence of a pump tone saturating the |18 ↔ |3 and |17 ↔ |2 quasi-degenerate transitions. Flip-flop processes may redistribute the population as illustrated by the red arrows, leading to a reduced polarization of the probed transition resonant with the cavity (blue).
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 73 Figure 7.3: Double resonance spectroscopy. a, Calculated S x (blue) and S z (red) bismuth donor spin transitions as a function of B 0 . The resonator frequeny is reported (gray), as well as the three pump frequency sweeps (green) at 2.3 mT, 9.5 mT and 62.5 mT. b, A e (ω pump ) measured at 9.5 mT with t rep = 60 s and P pump = -37 dBm. S x (blue) and S z (red) transition frequencies are represented by dashed lines. c, A e (ω pump ) measured at 2.25 mT, for P pump = -47 dBm (red), P pump = -67 dBm (green), P pump = -87 dBm (purple). Repetition times are 40 s (red) and 10 s (green and purple). S x (blue) and S z (red) transition frequencies are represented by dashed lines. d, A e (ω pump ) measured at 62.5 mT (green) with t rep = 60 s and P pump = -37 dBm. S x (blue) and S z (red) transition frequencies at the same field are represented by dashed lines. A e (ω pump ) measured at 9.5 mT (black) and 2.3 mT (red) are also shown for comparison.
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 74 Figure 7.4: Pulse setup and sequence. a, Pump line added to the roomtemperature setup of Fig.5.11. b, Pulse sequence. ω pump is shifted during the pump pulse proportionally to the frequency modulation signal.
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 75722 Figure 7.5: Polarization transfer dynamics at 9.5 mT. a, Spin transitions resonant with the four different pump frequencies are represented by coloured solid arrows. Purcell relaxation and flip-flop processes determining the dynamics of ∆N = N |16 + N |15 -N |5 -N |4 are illustrated by gray dashed arrows. b, A e (∆t) measured for 3 values of ω pump : 7.246 GHz (blue), 7.301 GHz (green) and 7.518 GHz (magenta). c, A e (∆t) measured with ω pump = 7.355 GHz.
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 76 Figure 7.6: Polarization transfer dynamics at 2.3 mT. a, Transitions resonant with the pump drive of frequency ω pump = 7.384 GHz (yellow). Gray arrows illustrate the competing Purcell relaxation rate Γ 1 and the spin flip-flop processes at rate Γ ff . b, Comparison of polarization dynamics at 2.3 mT and at 9.5 mT. Left, S x transition frequencies (blue) and resonator frequency (gray). Pump frequencies in the considered experiment at 9.5 mT (magenta dot) and in the 2.3 mT experiment (yellow dot). Right, A e (∆t) measured at 2.3 mT (yellow) and at 9.5 mT (magenta, same curve as in panel b of Fig.7.5b). The two curves are normalized by A e (∆t = 60 s).
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 81 Figure 8.1: Active cooling principle. a, Active cooling principle. b, Left, schematic representation of a λ/4 CPW resonator mad of NbTiN (gray), where the kinetic inductance contribution is represented by the non linear inductor in the inner conductor. Right, current profile of the first mode (blue) and of the m-th harmonic of the CPW resonator.

Table 4 .1: Group V donors characteristics: ionization

 4 energy (E D ), apparent Bohr radius (a 0 ), nuclear spin and hyperfine coupling constant (A) and the energy difference between the first excited valley state and the ground state (∆E). Extracted from[START_REF] Hale | Shallow Donor Electrons in Silicon. I. Hyperfine Interactions from ENDOR Measurements[END_REF][START_REF] Zhukavin | Spin-orbit coupling effect on bismuth donor lasing in stressed silicon[END_REF][START_REF] Ramdas | Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors[END_REF][START_REF] Feher | Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects[END_REF][START_REF] Sousa | Silicon quantum computation based on magnetic dipolar coupling[END_REF]. Donor 31 P 33 As 123 Sb 121 Sb 209 Bi

	E D	(meV) 45.6 53.8 42.8	42.8	71
	a 0	(nm) 1.82 1.66 1.86	1.86	1.45
	∆E	(meV)	13	22.5 12.3	12.3	41
	I		1/2 3/2	5/2	7/2	9/2
	A	(MHz) 118 198	186	101	1475.4

  4.12b. Donors in one manifold can flip-flop with neighbours occupying any state of the other manifold:|±, m → |±, m + 1 while |∓, n → |∓, n + 1 (|±, m → |±, m -1 while |∓, n → |∓, n -1 ). For example a spin in the excited manifold state |16 can flip to the higher energy state |17 reducing ∆N while a neighbouring spin in the ground state manifold flop from state |3 to state |2 . Similarly to the case of B-term processes, the flip-flop rate of the the E and F terms are obtained from Eq.4.37:
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	Transition	Field (mT)	S x	df /dB (MHz/mT)
	|-, 4 ↔ |+, 5	1.25	0.47	25.22
	|-, 4 ↔ |+, 3	1.6	0.07	19.7
	|-, 3 ↔ |+, 4	1.6	0.42	19.7
	|-, 3 ↔ |+, 2	2.25	0.12	14.2
	|-, 2 ↔ |+, 3	2.25	0.37	14.2
	|-, 2 ↔ |+, 1	3.7	0.17	8.75
	|-, 1 ↔ |+, 2	3.7	0.32	8.75
	|-, 1 ↔ |+, 0	9.6	0.21	3.8
	|-, 0 ↔ |+, 1	9.6	0.28	3.8
	|-, 0 ↔ |+, -1	62.7	0.21	3.8
	|-, -1 ↔ |+, 0	62.9	0.28	3.8
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 51 Expected ESR transitions at ω 0 /2π = 7.4087 GHz, with their respective matrix elements and field dependence df /dB. Quasi degenerate transitions are grouped by dashed lines. The results are obtained from analytical solution of Eq.4.4 .

The temperature dependence of spin polarization is thus given by the Curie law, resulting from the Boltzmann distribution of spin population between ground and excited state. We note here that both the energy relaxation rate and the polarization show the same temperature behaviour, as we have Γ 1 (T spin )/Γ 1 (0) = p(0)/p(T spin ) = 2n th (T spin ) + 1. By substituting Eq.3.20 into the expressions of both the relaxation rate (Eq.3.22) and the polarization (Eq.3.23), we get:Γ 1 (T spin ) =Γ phot [2n th (T phot ) + 1] + Γ phon [2n th (T phon ) + 1] p(T spin ) = Γ phot [2n th (T phot ) + 1] Γ 1 (T spin ) p(T phot ) +Γ phon [2n th (T phon ) + 1] Γ 1 (T spin ) p(T phon ).
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shows partial agreement with the data (blue circles). b Calculated cooling factor η(I) using Eq.6.8 in three cases: including only the effect of κ int (I) (black stars), only the effect of Γ IR (I) (magenta squares), and the two combined contributions (green circles). c Measured p cold /p hot (black) and Γ cold 1 /Γ hot 1 (orange) as a function of I. The calculated η(I) (green circles, same as panel b) is in semi-quantitative agreement with the measurement.

Appendix A

Thermalization of a quantum system interacting with N baths

Throughout this thesis we deal with quantum systems interacting with their environment. If the environment is a bath satisfying the conditions of a Markov approximation, then the system quantum state at time t, described by the density matrix ρ(t), evolves according to a master equation that can be expressed in the Lindblad form:

where L µ is a non-hermitian operator describing an interaction of the system with the environment.

Central to this thesis is the question: what is the effective temperature T sys of a quantum system coupled with strength Γ j to N reservoirs of different temperatures T j . We assume that these reservoirs consist of a continuum of bosonic modes (which can represent the lattice vibrations, or the microwave field). The system thermalizes by emission into and absorption from the environment of energy quanta ω sys . Γ j is defined as the rate at which the system spontaneously emits such a quantum of excitation into bath j if the latter is in its ground state. The emission process corresponds to the annihilation of a system excitation described by the operator ô-. On the other hand, the absorption corresponds to the action of the creation operator ô+ = ô † -. In the master equation for such a system, for each bath j the Lindblad operator L j-= Γ j-ô-accounts for emission into the bath j at rate Γ j-, while the operator L j+ = Γ j+ ô+ accounts for absorption from the same bath at rate Γ j+ . The Γ j-and Γ j+ rates can be obtained from generic thermodynamical arguments, as reported in [START_REF] Haroche | Exploring the quantum[END_REF]. The emission (absorption) process corresponds indeed to a jump upwards (downwards) between two levels in the bath j separated by the energy ω sys . The ratio of emission and absorption rates Γ j-/Γ j+ is then equal to the probability of finding the bath in the lower energy state divided by the probability of finding it in the excited state, that assuming the bath is in thermal equilibrium is given by the Boltzmann distribution:

where 131
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is the occupation number of a bosonic mode of frequency ω sys . The two rates can then be expressed as a function of the spontaneous emission rate Γ j as:

Eq.A.1 for the system coupled to N bosonic baths takes then the form:

It is however possible to rewrite Eq.A.6 in terms of a single effective bath of temperature T sys :

where Γ = N j=1 Γ j is the total system-bath coupling. The system temperature T sys is so obtained from the new effective bath occupation number:

n th (T j ). (A.8)

If the coupling of the system to one bath j0 is dominant (Γ 0 Γ j =j0 ) the system will therefore equilibrate to T sys ≈ T j0 regardless of the other baths.