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Rèsumé détaillé

La découverte de l’interaction des spins avec la radiation électromagnétique aux fréquences
rf ou micro-ondes a conduit au développement de la résonance magnétique, dont les pi-
onniers sont Rabi, Bloch et Purcell [1–3]. Dans les expériences habituelles de résonance
magnétique, le couplage spin-photon est l’échelle d’énergie la plus faible du système.
Le rayonnement électromagnétique des spins, qui permet la détection des spins, n’a
pas d’impact mesurable sur la dynamique des spins. Cette dernière reste entièrement
régie par le couplage à d’autres degrés de liberté de l’environnement, comme le mou-
vement atomique ou moléculaire, les phonons ou l’interaction dipolaire avec d’autres
spins. La température du spin est donc fixée par le réseau hôte indépendamment du
rayonnement thermique. Cependant, dejà dans les premier temps de la résonance mag-
nétique, Purcell a prédit que la relaxation radiative des spins devrait être renforcé en
insérant l’échantillon dans une cavité résonante de petit volume de mode et de facteur
de qualité élevé. Les premières observations de cette prédiction de Purcell avec des
spins ont été rapportées en 1985 par Sleator et al. [4] pour un ensemble de spins nu-
cléaires de Cl. Le taux d’émission radiative a été accéléré de 11 ordres de grandeur,
pour atteindre 10−16 s−1. Le temps de relaxation d’environ 3000 ans était cependant
toujours significativement plus important que les temps de relaxation non radiative
dominants estimés à l’ordre de jours dans l’expérience, maintenant ainsi les spins bien
thermalisés au réseau.
Le régime Purcell, dans lequel le rayonnement est le principal canal de relaxation du
spin, n’a été atteint que récemment dans les expériences de Bienfait et al.[5], en utilisant
des micro-résonateurs supraconducteurs développés pour des applications d’information
quantique. L’amélioration obtenue du couplage spin-photon a été exploitée pour attein-
dre une sensibilité de la résonance paramagnétique électrique (RPE) record et présente
un intérêt potentiel pour l’information quantique [6].
Le but de cette thèse est d’explorer les conséquences du régime de Purcell sur la ther-
malisation des spins. Notre idée principale est que, dans le régime Purcell, les spins
devraient se thermaliser à la température des photons micro-onde dans la cavité, et de-
venir en quelque sorte découplés du réseau cristallin dans lequel ils sont insérés. Nous
démontrons cette idée en prouvant que les spins peuvent être refroidis à une tempéra-
ture inférieure à celle de l’échantillon, simplement par des processus radiatifs. De plus,
cette approche de refroidissement des spins représente une nouvelle méthode générale
pour hyperpolariser un ensemble de spins électroniques.
La première partie du manuscrit est consacrée aux outils conceptuels nécessaires à la
compréhension des expériences. Nous fournissons des informations théoriques sur les
circuits quantiques à la fréquence des micro-ondes et sur les spins. Nous introduisons la
description quantique des modes des cavités et des lignes de transmission, en mettant
l’accent sur leur état thermique et leurs propriétés de bruit. Nous abordons ensuite les
spins électroniques et leur interaction avec le rayonnement électromagnétique, et nous
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2 Contents

décrivons l’effet Purcell et les principes de la spectroscopie RPE pulsés. Enfin, nous
introduisons le système de spin électronique étudié dans notre expérience : les donneurs
de bismuth dans le silicium.
La deuxième partie de la thèse contient les principaux résultats expérimentaux, qui
sont décrits dans les chapitres 5, 6 et 7. Le chapitre 5 décrit la mise en œuvre du
spectromètre avec un résonateur supraconducteur et la spectroscopie des donneurs de
bismuth. On observe une modulation de l’enveloppe de l’écho par les électrons, causée
par le bain de 29Si de spins nucléaires. En ce qui concerne la relaxation des spins, nous
prouvons que les spins des donneurs de bismuth atteignent le régime de Purcell à un
champ magnétique suffisamment important. À des champs plus faibles, les processus de
transfert de polarisation non radiative rendus possibles par l’environnement des spins
nucléaires prennent le relais de la relaxation de Purcell.
Le refroidissement radiatif des donneurs de bismuth dans le régime Purcell est démontré
dans le sixième chapitre de la thèse. Il est d’abord démontré que les spins sont ther-
malisés au mode de la cavité à la température de l’échantillon de 850mK. Le mode de
la cavité est ensuite refroidi en connectant son entrée à une résistance froide à 15mK.
Une augmentation de polarisation des spins par un facteur supérieur à 2 révèle que la
température des spins est réduite jusqu’à 350mK, prouvant que les spins sont refroidis
radiativement en dessous de la température de l’échantillon[7].
Dans le dernier chapitre de la thèse, nous étudions l’origine de la relaxation non ra-
diative du spin observée à faible champ magnétique. Nous démontrons que le transfert
de polarisation dans le spectre du donneur de bismuth est présent, probablement en
raison des processus de flip-flops des spins.

Principe de refroidissement radiatif des spins

Pour introduire le principe du refroidissement radiatif des spins, considérons un système
physique échangeant de l’énergie avec plusieurs bains à différentes températures. Le
système va s’équilibrer à une température intermédiaire dont la valeur dépendra de la
force Γj avec laquelle le système est couplé à chaque bain, définie comme la vitesse à
laquelle le système se détend jusqu’à son état de base en émettant un quantum d’énergie
dans le bain j s’il est à température zéro. Si un taux de relaxation Γj0 est beaucoup
plus important que tous les autres, le système se thermalisera à la température du bain
j0, quelle que soit la température des autres.
Le principe du refroidissement radiatif de spin est illustré dans la Fig.0.1. Le système
que nous visons à refroidir est un ensemble de spins électroniques interagissant avec
deux bains : les phonons dans son réseau hôte de température Tphon et les photons
micro-ondes dans son environnement électromagnétique de température Tphot. Comme
indiqué précédemment, le taux d’émission radiative spontanée Γphot, dans les conditions
habituelles de résonance magnétique, est bien inférieur au taux de relaxation spin-réseau
cristallin Γphon, de sorte que la température du spin Tspin s’équilibre à Tphon.
Cependant, l’effet Purcell offre la possibilité d’inverser ce scénario : l’insertion des spins
dans le petit volume de mode d’une cavité à facteur de qualité élevé peut accélérer le
taux d’émission radiative spontanée jusqu’au point Γphot � Γphon, amenant ainsi les
spins à l’équilibre thermique avec le mode de la cavité. La condition obtenue Tspin ≈
Tphot offre alors la possibilité de refroidir les spins à une température inférieure à celle
du réseau, en contrôlant Tphot.
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Figure 0.1: Principe de refroidissement radiatif des spins. Les spins (vert) d’un
cristal (rouge) sont couplés à la fois à un bain de phonons à température Tphon avec un
taux Γphon et à un bain de photons micro-ondes à température Tphot avec un taux Γphot,
qui détermine leur température d’équilibre Tspin. La température des photons Tphot est
déterminée par leur couplage avec le taux κint aux pertes internes de la cavité à Tphon et
avec le taux κext à la résistance connectée à l’entrée de la cavité. Lorsque cette charge
est placée à basse température Tfroid, le champ intracavité est refroidi radiativement à
condition que κext � κint et les spins sont refroidis à leur tour si Γphot � Γphon.

Tout comme le système de spins, le mode de la cavité échange de l’énergie avec deux
bains. Comme le montre la figure 0.1, il est couplé avec le taux κint aux pertes internes
à Tphon et avec le taux κext au rayonnement thermique émis par une résistance froide
de température Tfroid connectée à l’entrée de la cavité. En concevant le port d’entrée de
telle sorte que κext � κint, la température du mode cavité est alors thermisée à Tcold.
En conséquence, les spins du régime Purcell sont censés être refroidis par rayonnement
à Tcold, quelle que soit la température de l’échantillon.
Avant de décrire la réalisation expérimentale du refroidissement radiatif, dans la pre-
mière partie de la thèse, nous fournissons le contexte théorique nécessaire pour discuter
de tous les aspects pertinents de l’expérience. Dans le chapitre 2 nous introduisons la
description quantique de notre circuit micro-ondes composé de la cavité supraconduc-
trice, des lignes de transmission et de l’amplificateur. Comme nous sommes partic-
ulièrement intéressés par l’état thermique d’un tel circuit, nous nous concentrons sur
le bruit thermique et sa détection.
Nous passons ensuite, dans le chapitre 3, à la description de la dynamique des spins
couplés à une cavité micro-ondes. Deux grandeurs clés sont introduites : le taux de
relaxation d’énergie du mode de la cavité κ = κext + κint et la force d’interaction
spin-photon ~g, qui est le produit du moment dipolaire magnétique du spin et des
fluctuations du vide du champ magnétique à l’endroit du spin. À la résonance, le
taux de relaxation spontanée Purcell est de Γphot = 4g2/κ. La relaxation de Purcell à
température finie est également prise en compte car elle est d’une importance capitale
dans notre expérience. Le taux de relaxation des spins vers l’équilibre thermique dans
le régime Purcell est Γ1 = Γphot[2nth(Tphot) + 1], où nth(Tphot) est la population de
photons thermiques dans la cavité à Tphot. La dernière partie du chapitre fournit une
brève description des techniques et concepts standard de la spectroscopie RPE pulsée,
et en particulier de la séquence d’écho de Hahn. Pour déduire la température de spins,
nous utilisons en effet le fait que l’amplitude de l’écho de spin Ae est proportionnelle
à la polarisation dépendant de la température p(Tspin). Il est intéressant de noter que
p(Tspin) devrait avoir la même dépendance à la température que Γ1 pour un ensemble
de spins 1/2, une prédiction simple que nous testons dans cette thèse.
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Nos expériences sont réalisées avec un système de spin modèle, le spin électronique
des donneurs de bismuth dans le silicium. Ils sont constitués d’atomes de bismuth
de substitution dans le réseau du silicium à l’état neutre, où ils piègent un électron de
conduction. Nous décrivons la structure et les propriétés des donneurs de bismuth dans
le silicium dans le chapitre 4.

ESR spectroscopie du bismuth dans le silicium naturel

Dans le chapitre 5 nous décrivons la configuration du spectromètre RPE et rendons
compte des expériences de spectroscopie des donneurs de bismuth réalisées à 15mK
avec B0 entre 0 et 70mT. La conception du spectromètre est basée sur les travaux
de Bienfait et al. [6]. La cavité est un résonateur supraconducteur de fréquence ω0
constitué d’une fine couche de niobium modelée sur le dessus de la puce de silicium
implantée avec des donneurs de bismuth (voir Fig.0.2a). L’électron du donneur avec
fréquence de Larmor ωspin est accordée en résonance avec la cavité par l’application
d’un champ magnétique externe B0 parallèle au fil inducteur. Les spins proches du fil
sont couplés avec force g au mode de la cavité (voir Fig.0.2b). L’échantillon est monté
dans un support en Cu et couplé de manière capacitive à une antenne micro-onde qui
règle le taux de couplage κext de telle sorte que κext � κint.
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Figure 0.2: Spectromètre RPE avec un résonateur supraconducteur. a, Ré-
sonateur supraconducteur en niobium (rouge) placé sur une puce de silicium implantée
avec des donneurs de bismuth. b, Section transversale du dispositif autour du fil in-
ducteur (rouge). La constante de couplage spin-photon g (code couleur) est représentée
dans la région Bi-dopée. c, Représentation schématique de la configuration du spec-
tromètre avec la séquence d’impulsions de Hahn-écho illustrée sur la ligne d’entrée.

Nous détectons le signal de résonance magnétique au moyen de techniques de spectro-
scopie RPE pulsées. Nous utilisons en particulier la séquence d’écho de Hahn où une
impulsion π/2 est suivie après un temps τ par une impulsion π induisant un rephasage
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des spins et l’émission d’un écho après un délai supplémentaire τ . Après amplification,
l’écho émis est démodulé et enregistré à température ambiante (voir Fig.0.2c).
La mesure de l’amplitude de l’écho Ae en fonction de B0 montre un pic de signal chaque
fois qu’une transition de spin d’un donneur de bismuth est en résonance avec la cavité
(voir Fig.0.3a). Nous discutons le spectre dans Sc.5.4.1.

7.30

7.40

7.50

7.60

0 10 20 30 40 50 60
0

2

4

6

F
ré

qu
en

ce
 (

G
H

z)
A

e 
(u

.a
.)

Champ magnétique B0 (mT)

a b

Délai �t (s)

A
e 

(u
.a

.)

B0=62.5 mT

0 10 20 30 40 50 60

0.5

0.0

0.5

1.0

c

���1=5.9 s

�t

�/2 �
echo

�

Ae

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

Température, T (K)

� 1
-1
(s
)

Figure 0.3: Spectroscopie RPE du bismuth : principaux résultats. a, En
haut, fréquence des transitions RPE calculée en fonction de B0. La fréquence du
résonateur est indiquée en bleu. En bas, amplitude de l’écho mesurée en fonction de
B0. b, Relaxation de l’énergie de spins mesurée à B0 = 62, 5mT avec la séquence
de inversion recovery illustrée dans l’encadré. La ligne rouge en pointillés est un fit
exponentiel avec la constante de temps Γ−1

1 . La simulation numérique de la relaxation
de Purcell est illustrée en vert. c, Temps de relaxation Γ−1

1 mesuré en fonction de
la température (rouge). La dépendance prévue de la température pour la relaxation
Purcell est indiquée en vert.

Dans la Sc.5.6 nous montrons qu’à 15mK la transition de spin de champ la plus élevée
se relax au taux d’émission radiative spontanée calculé Γphot, démontrant que les spins
sont dans le régime Purcell (voir Fig.0.3b). La relaxation des spins est ensuite mesurée
en fonction de la température. Le taux de relaxation des spins extrait Γ1 suit la
dépendance du taux Purcell par rapport à la température (voir Fig.0.3c), montrant
que les spins restent dans le régime Purcell à des températures supérieures à 1K.
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L’étude de la relaxation des spins à un champ magnétique inférieur révèle qu’un pro-
cessus de relaxation non radiatif est présent. Nous attribuons cela au transfert de
polarisation par des processus de flip-flops entre donneurs voisins, rendu possible par
l’environnement de spin nucléaire du silicium. Nous étudions expérimentalement ce
processus dans le dernier chapitre de la thèse.

Refroidissement radiatif d’un ensemble de spins
électroniques

La démonstration de refroidissement radiatif est rapportée au chapitre 6. La configu-
ration est représentée schématiquement dans la Fig.0.4a. L’échantillon est thermalisé
à Tphon = 850mK, tandis que l’entrée de la cavité est connectée via un commutateur
soit à une résistance chaude à Tphon soit à une résistance froide à Tfroid = 15mK.
Dans la configuration de l’interrupteur froid, les spins en régime Purcell devraient alors
être refroidis à la température du mode de la cavité Tphot ≈ Tcold, bien en dessous de
Tphon. Le facteur de refroidissement η est défini comme le rapport de la polarisation
du spin dans les deux configurations de commutation. Comme la polarisation de spin
et le taux de relaxation Purcell ont la même dépendance à la température, η devrait
également être égal au rapport entre le taux de relaxation de spin mesuré dans les deux
configurations de commutateur.
Nous déterminons d’abord Tphot dans les deux configurations du commutateur avec un
ensemble de mesure du bruit détaillé dans Sc.6.4. Nous constatons qu’en connectant
l’entrée du résonateur à la résistance froide, la température du mode de la cavité est
refroidie radiativement jusqu’à T cold

phot = 500±60mK. Nous attribuons le refroidissement
partiel à la présence de pertes par micro-ondes entre le résonateur et la résistance froide.
Le signal Hahn-echo fait plus que doubler lorsqu’il est mesuré dans la configuration
froide (voir Fig.0.4b), démontrant une hyperpolarisation radiative avec η = 2.3 ± 0.1
(voir Sc.??). Nous mesurons également les taux de relaxation pour les deux réglages
du commutateur et trouvons Γhot

1 /Γcold
1 = η, comme prévu (voir Fig.0.4c). Le η mesuré

correspond à une température de spins Tspin = 350± 10mK, qui est proche (ou même
légèrement inférieure) de la température du champ T cold

phot estimée à partir des mesures
de bruit. Cela prouve que la relaxation spin-reseau cristallin n’est pas le facteur limitant
le refroidissement de spins, et que les spins se thermalisent à la température de leur
environnement électromagnétique dans les limites de la précision de l’expérience.
Nous concluons ce chapitre par une brève discussion des applications possibles de cette
nouvelle technique d’hyperpolarisation à la spectroscopie par résonance magnétique.

Transfert de polarisation chez les donneurs de bismuth

Comme nous l’avons vu plus haut, nous observons à bas champ un processus de re-
laxation qui entre en compétition avec la relaxation radiative Purcell. Dans le dernier
chapitre Ch.7 nous étudions expérimentalement son origine.
Nous attribuons cet effet au transfert de polarisation entre différents niveaux hyperfins
du spectre des donneurs de bismuth via des flip-flops entre des paires de donneurs
couplées par l’interaction dipolaire. Un tel transfert de polarisation apparaît comme
une relaxation plus rapide sur la transition sondée par la cavité micro-onde.
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Figure 0.5: Transfert de polarisation. a, Amplitude de l’écho en fonction de la
fréquence de la pompe à B0 = 10mT. La pompe est presque constamment en marche.
Les lignes pointillées sont les fréquences de transition de spin à ce champ. b, Amplitude
de l’écho mesurée pour ωpump/2π = 7.518GHz en fonction du délai entre une impulsion
de pompe de 10ms et la détection de l’écho.
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Pour étudier ce processus, nous réalisons une expérience de double résonance. Dans
cette expérience, la polarisation d’une transition est surveillée tandis qu’une autre
est saturée. En présence d’un transfert de polarisation, la polarisation de la transi-
tion surveillée devrait diminuer en conséquence de l’excitation de la seconde. Dans la
Fig.0.5a, nous rapportons le résultat de l’amplitude de l’écho Ae mesurée en fonction de
la fréquence d’une signal de pompe. Une baisse est observée chaque fois que la pompe
est en résonance avec une autre transition, ce qui démontre le transfert de polarisation
à faible champ. Ce processus n’est par contre pas observé à champ plus élevé, où la
relaxation longitudinale de spins est constamment dans le régime de Purcell.
Dans une deuxième expérience, nous abordons la dynamique du processus en mesurant
le temps nécessaire au transfert de polarisation entre deux transitions. Pour ce faire,
nous mesurons l’amplitude de l’écho en fonction du délai après une courte impulsion
de pompe saturant une transition différente. Comme le montre la Fig.0.5b, l’amplitude
de l’écho atteint un minimum quelques secondes après l’impulsion, ce qui montre que
le transfert de polarisation se fait sur des échelles de temps comparables à la relaxation
de Purcell.
Même si une analyse quantitative est nécessaire, nous concluons que le transfert de po-
larisation est effectivement responsable du processus de relaxation non radiatif observé.
Nous soutenons que l’origine physique du processus est constituée par les bascules entre
les spins de donneurs voisins, dont nous parlons dans Sc.4.3.
Nous remarquons enfin qu’en présence d’une telle dynamique de population, le re-
froidissement radiatif d’une transition hyperpolariserait l’ensemble du spectre RPE des
donneurs. Les preuves rapportées d’un refroidissement du spin à faible champ (voir
Sc.6.5.2) indiquent qu’il s’agit d’un scénario réaliste. Cependant, nous ne disposons
d’aucune preuve expérimentale de cet effet.



Chapter 1

Introduction

The discovery of the interaction of spins with electromagnetic radiation at rf or mi-
crowave frequencies lead to the development of magnetic resonance, pioneered by Rabi,
Bloch and Purcell [1–3]. In usual magnetic resonance experiments, the spin-photon
coupling is the weakest energy scale in the system. Electromagnetic radiation by the
spins, which enables spin detection, has no measurable impact on spin dynamics. The
latter remains entirely governed by the coupling to other environmental degrees of free-
dom, such as atomic or molecular motion, phonons, or dipolar interaction with other
spins. The spin temperature is thus set by the host lattice independently of the thermal
radiation. However, already in the early days of magnetic resonance, Purcell predicted
that spin radiative relaxation should be enhanced by inserting the sample in a resonant
cavity of small mode volume and high quality factor [8]. First observations of Purcell-
enhancement with spins were reported in 1985 by Sleator et al. [4] for an ensemble of Cl
nuclear spins. The radiative emission rate was accelerated by 11 order of magnitudes,
reaching 10−16 s−1. The relaxation time of about 3000 years was however still signifi-
cantly larger than the dominant non-radiative relaxation times estimated to be on the
order of days in the experiment, keeping the spins well thermalized to the lattice.
The Purcell regime, in which radiation is the dominant spin relaxation channel, was
reached only recently in experiments by Bienfait et al. [5], using superconducting micro-
resonators developed for quantum information applications. The obtained enhancement
of the spin-photon coupling has been exploited to reach record ESR sensitivity and has
potential interest for quantum information [6].
The focus of this thesis is to explore the consequences of the Purcell regime on spin
thermalization. Our main idea is that, in the Purcell regime, spins should thermalize
to the temperature of the microwave photons in the cavity, and become in a sense de-
coupled from the host lattice. We demonstrate this idea by proving that spins can be
cooled at a temperature lower than the sample, simply by radiative processes. More-
over, this spin cooling approach represents a new general method to hyperpolarize an
ensemble of electron spins.
The first part of the manuscript is dedicated to the conceptual tools necessary to un-
derstand the experiments. We provide theoretical background on quantum circuits at
microwave frequency, and on spins. We introduce the quantum description of the modes
of cavities and transmission lines, with a focus on their thermal state and noise prop-
erties. We then turn to electron spins and their interaction with the electromagnetic
radiation, and we describe the Purcell effect and the principles of pulsed Electron Spin
Resonance (ESR) spectroscopy. Finally, we introduce the electron spin system studied

9
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in our experiment: bismuth donors in silicon.
The second part of the thesis contains the main experimental results, which are de-
scribed in chapters 5, 6 and 7. Chapter 5 describes the implementation of the spec-
trometer with a superconducting resonator and the spectroscopy of the bismuth donors.
Electron-Spin-Echo Envelope Modulation is observed, caused by the bath of 29Si nu-
clear spins. As regards spin relaxation, we prove that bismuth donor spins reach the
Purcell regime at sufficiently large magnetic field. At lower fields, non-radiative polar-
ization transfer processes enabled by the nuclear spin environment take over Purcell
relaxation.
The radiative cooling of the bismuth donors in the Purcell regime is demonstrated in the
sixth chapter of the thesis. Spins are first shown to be thermalized to the cavity mode
at the sample temperature of 850mK. The cavity mode is then cooled by connecting
its input to a cold resistor at 15mK. A twofold increase of the spin polarization reveals
that the spin temperature is reduced down to 350mK, proving that spins are radiatively
cooled below the sample temperature [7].
In the last chapter of the thesis we investigate the origin of the non-radiative spin
relaxation observed at low magnetic field. We demonstrate that polarization transfer
within the bismuth donor spectrum is present, probably due to spin flip-flop processes.

1.1 Principle of spin radiative cooling

To introduce the principle of spin radiative cooling, let us consider a physical system
exchanging energy with several baths at different temperatures. The system will equi-
librate at an intermediate temperature whose value will depend on the strength Γj
with which the system is coupled to each bath, defined as the rate at which the system
relaxes to its ground state by emitting a quantum of energy into bath j if it is at zero
temperature. If one relaxation rate Γj0 is much larger than all the others, the system
will thermalize to bath j0, regardless of the temperature of the others.

TphonTcold TspinTphot ~ <~

�phon

�int�ext

�phot

Figure 1.1: Spin radiative cooling principle. Spins (green) in a crystal (red) are
coupled both to a bath of phonons at temperature Tphon with a rate Γphon and to a bath
of microwave photons at a temperature Tphot with a rate Γphot, which determines their
equilibrium temperature Tspin. The temperature of the photons Tphot is determined by
their coupling with rate κint to the cavity internal losses at Tphon and with rate κext
to the load located at the cavity input. When this load is placed at low temperature
Tcold, the intra-cavity field is radiatively cooled provided that κext � κint and the spins
are cooled in turn if Γphot � Γphon.

The principle of spin radiative cooling is illustrated in Fig.1.1. The system we aim to
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cool down is an ensemble of electron spins interacting with two baths: the phonons in
its host lattice of temperature Tphon and the microwave photons in its electromagnetic
environment of temperature Tphot. As said earlier, the radiative spontaneous emission
rate Γphot, in usual magnetic resonance conditions, is much lower than the spin-lattice
relaxation rate Γphon, so that the spin temperature Tspin equilibrates at Tphon.
However, the Purcell effect offers the possibility to reverse this scenario: inserting
the spins in the small mode volume of a high-quality-factor cavity can accelerate the
radiative spontaneous emission rate up to the point Γphot � Γphon, thus bringing the
spins at thermal equilibrium with the cavity mode. The obtained condition Tspin ≈
Tphot offers then the possibility to cool the spins at a temperature lower than the
lattice, by controlling Tphot.
Similarly to the spin system, the cavity mode exchanges energy with two baths. As
seen in Fig.1.1, it is coupled with rate κint to the internal losses at Tphon and with rate
κext to the thermal radiation emitted by a cold resistor of temperature Tcold connected
to the cavity input. By engineering the input port so that κext � κint, the cavity mode
temperature is then thermalized at Tcold. As a consequence, spins in the Purcell regime
are expected to be radiatively cooled to Tcold, regardless of the sample temperature.
Before describing the experimental realization of radiative cooling, in the first part of
the thesis we provide the theoretical background necessary to discuss all the relevant
aspects of the experiment. In Chapter 2 we introduce the quantum description of
our microwave circuit consisting in the superconducting cavity, transmission lines and
amplifier. Since we are particularly interested in the thermal state of such a circuit, we
focus on thermal noise and its detection.
We then move, in Chapter 3, to the description of the dynamics of spins coupled to a
microwave cavity. Two key quantities are introduced: the cavity mode energy relaxation
rate κ = κext + κint and the spin-photon interaction strength ~g, which is the product
of the spin magnetic dipole moment and the magnetic field vacuum fluctuations at the
spin location. At resonance, the Purcell spontaneous relaxation rate is Γphot = 4g2/κ.
Purcell relaxation at finite temperature is also considered since it is of key importance
in our experiment. The rate at which spins relax to thermal equilibrium in Purcell
regime is shown to be Γ1 = Γphot[2nth(Tphot) + 1], where nth(Tphot) is the thermal
photon population in the cavity at Tphot. The last part of the chapter provides a
brief description of standard pulse ESR spectroscopy techniques and concepts, and in
particular of the Hahn echo sequence. To infer the spin temperature, we indeed use
the fact that the spin echo amplitude Ae is proportional to the temperature-dependent
polarization p(Tspin). Interestingly, p(Tspin) is expected to have the same temperature
dependence as Γ1 for an ensemble of spins 1/2, a simple prediction we test in this thesis.
Our experiments are performed with a model spin system, the electron spin of bismuth
donors in silicon. They consist of substitutional bismuth atoms in the silicon lattice in
their neutral state, where they trap a conduction electron. We describe the structure
and properties of bismuth donors in silicon in Chapter 4.

1.2 ESR spectroscopy of bismuth in natural silicon

In Chapter 5 we describe the setup of the ESR spectrometer and report on bismuth
donor spectroscopy experiments performed at 15mK with B0 between 0 and 70mT.
The spectrometer design is based on the work of Bienfait et al. [6]. The cavity is a
superconducting resonator of frequency ω0 made of a thin film of niobium patterned
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on top of the silicon chip implanted with bismuth donors (see Fig.1.2a). The donor
electron spins Larmor frequency ωspin is tuned at resonance with the cavity by the
application of an external magnetic field B0 parallel to the inductor wire. Spins close
to the wire are coupled with strength g to the cavity mode (see Fig.1.2b). The sample
is mounted in a Cu holder and coupled capacitively to a microwave antenna that sets
the coupling rate κext such that κext � κint.
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Figure 1.2: ESR spectrometer with a superconducting resonator. a, Niobium
superconducting resonator (red) patterned on top of a silicon chip implanted with
bismuth donors. b, Device cross section around the inductor wire (red). The spin-
photon coupling constant g (color code) is represented in the Bi-doped region. c,
Schematic representation of the spectrometer setup with the Hahn-echo pulse sequence
illustrated on the input line.

We detect the magnetic resonance signal by means of pulsed ESR spectroscopy tech-
niques. We use in particular the Hahn echo sequence where a π/2 pulse is followed
after a time τ by a π pulse inducing rephasing of the spins and the echo emission after
a further delay τ . After amplification, the emitted echo is demodulated and recorded
at room temperature (see Fig.1.2c).
Measurement of the echo amplitude Ae as a function of B0 shows a peak of signal
whenever a bismuth donor spin transition is resonant with the cavity (see Fig.1.3a).
We discuss the spectrum in Sc.5.4.1.
In Sc.5.6 we show that at 15mK the highest field spin transition relaxes at the calcu-
lated radiative spontaneous emission rate Γphot, demonstrating that spins are in the
Purcell regime (see Fig.1.3b). The spin relaxation is then measured as a function of
temperature. The extracted spin relaxation rate Γ1 follows the expected temperature
dependence of the Purcell rate (see Fig.1.3c), showing that spins stay in the Purcell
regime at temperatures above 1K.
The study of spin relaxation at lower magnetic field reveals that a non-radiative relax-
ation process is present. We attribute this to polarization transfer by flip-flop processes
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Figure 1.3: ESR spectroscopy of bismuth: main results. a, Top, calculated ESR
transitions frequency as a function of B0. The resonator frequency is reported in blue.
Bottom, measured echo amplitude as a function of B0. b, Spin longitudinal relaxation
measured with the inversion recovery sequence illustrated in the inset at B0 = 62.5mT.
Dashed red line is an exponential fit with time constant Γ−1

1 . Numerical simulation of
the Purcell relaxation is shown in green. c, Relaxation time Γ−1

1 measured as a function
of temperature (red). The expected temperature dependence for Purcell relaxation is
shown in green.
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between neighbouring donors, enabled by the silicon nuclear spin environment. We ex-
perimentally investigate this process in the last chapter 7 of the thesis.

1.3 Radiative cooling of an electron spin ensemble

The radiative cooling demonstration is reported in Chapter 6. The setup is schemati-
cally represented in Fig.1.4a. The sample is thermalized at Tphon = 850mK, while the
cavity input is connected via a switch either to a hot resistor at Tphon or to a cold one
at Tcold = 15mK. In the cold switch configuration, spins in the Purcell regime are then
expected be cooled at the cavity mode temperature Tphot ≈ Tcold, well below Tphon. The
cooling factor η is defined as the ratio of spin polarization in the two switch configura-
tions. Since spin polarization and Purcell relaxation rate have the same temperature
dependence, η is also expected to be equal to the ratio between the spin relaxation rate
measured in the two switch settings.
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Figure 1.4: Radiative cooling principle and main results. a, Schematic rep-
resentation of the experiment. b, Hahn echo amplitude measured when the switch is
connected to the hot (red) and cold (blue) resistor. c, Spin relaxation measured in
the hot (red) and cold (blue) switch setting. Solid lines are exponential fit with time
constant Γ−1

1 .

We first determine Tphot in the two switch configurations with a set of noise measure-
ment detailed in Sc.6.4. We find that connecting the resonator input to the cold resistor,
the cavity mode temperature is radiatively cooled down to T cold

phot = 500 ± 60mK. We
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attribute the only partial cooling to the presence of microwave losses in between the
resonator and the cold resistor.
The Hahn-echo signal more than doubles when measured in the cold configuration (see
Fig.1.4b), demonstrating radiative hyperpolarization with η = 2.3±0.1 (see Sc.6.5). We
also measure the relaxation rates for the two switch settings and find Γhot

1 /Γcold
1 = η,

as expected (see Fig.1.4c). The measured η corresponds to a spin temperature Tspin =
350± 10mK, which is close to (or even slightly lower than) the field temperature T cold

phot
estimated from noise measurements. This proves that spin-lattice relaxation is not the
factor limiting the spin cooling, and that the spins thermalize to the temperature of
their electromagnetic environment within the accuracy of the experiment.
We conclude the chapter with a brief discussion of possible applications of this new
hyperpolarization technique to magnetic resonance spectroscopy.

1.4 Polarization transfer in bismuth donors

As discussed earlier, we observe at low field a relaxation process competing with the
radiative Purcell relaxation. In the last chapter Ch.7 we experimentally investigate its
origin.
We attribute this effect to polarization transfer between different hyperfine levels of the
bismuth donor spectrum via flip-flops between pairs of donors coupled by the dipolar
interaction. Such polarization transfer appears as a faster relaxation on the transition
probed by the microwave cavity.
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Figure 1.5: Polarization transfer. a, Echo amplitude as a function of the pump
frequency at B0 = 10mT. The pump is almost constantly on. Dashed lines are the
spin transition frequencies at this field. b, Echo amplitude measured for ωpump/2π =
7.518GHz as a function of the delay between a 10ms pump pulse and echo detection.

In order to study this process, we perform a double resonance experiment. In such ex-
periment, the polarization of one transition is monitored while another one is saturated.
In the presence of polarization transfer, the polarization of the monitored transition is
expected to decrease as a consequence of the excitation of the second one. In Fig.1.5a
we report the result of the echo amplitude Ae measured as a function of the frequency of
a pump tone. A dip is observed whenever the pump is resonant with another transition,
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demonstrating polarization transfer at low field. This process is instead not observed
at higher field, where spin longitudinal relaxation is consistently in the Purcell regime.
In a second experiment we address the dynamics of the process by measuring how long
it takes for polarization to be transferred between two transitions. To do so, we measure
the echo amplitude as a function of the delay after a short pump pulse saturating a
different transition. As seen in Fig.1.5b, the echo amplitude reaches a minimum a few
seconds after the pulse, showing that polarization transfer takes place on timescales
comparable to the Purcell relaxation.
Even if a quantitative analysis is needed, we conclude that the polarization transfer
is indeed responsible for the observed non-radiative relaxation process. We argue that
the physical origin of the process are flip-flops between neighbouring donor spins, that
we discuss in Sc.4.3.
We finally notice that in the presence of such population dynamics, the radiative cooling
of one transition would hyperpolarize the whole donor ESR spectrum. The reported
evidence of spin cooling at low field (see Sc.6.5.2) indicates that this is a realistic
scenario. However, we have no experimental evidence of this effect.



Chapter 2

Quantum circuits

In the spin radiative cooling experiment, a central role is played by the microwave
cavity to which spins are coupled and by the circuit to which it is connected. In this
chapter we provide a quantum description of this microwave environment, forming the
framework of the experiments reported in this thesis.
Before that, we address a simple physical question that we are going to encounter all
along this thesis, that is how to determine the equilibrium temperature Tsys of a physical
system coupled to N baths of different temperature Tj . As we derive in AppendixA,
Tsys will be an intermediate temperature dependent on the strength Γj with which
the system is coupled to each bath, defined as the rate at which the system would
spontaneously relax from its first excited to its ground state by emitting a quantum
of energy into this bath at zero temperature. For a system coupled to N bosonic
reservoirs, Tsys is obtained by

nth(Tsys) =
N∑
j=1

Γj
Γ nth(Tj), (2.1)

where

nth(T ) = 1
e~ωsys/kT − 1

(2.2)

is the occupation number of a bosonic mode of frequency ω0, and Γ =
∑N
j=1 Γj the total

system-bath coupling. If the system is dominantly coupled to one bath j0 (Γj0 � Γj 6=0),
the system therefore equilibrates close to Tj0 regardless of the temperature of the other
reservoirs.
In this chapter, we apply this insight to the thermalization of the mode of a microwave
cavity coupled to several reservoirs. We first describe the main properties of quantum
microwave fields as well as the principal quantum states used later on. We then recall
the quantization of a LC resonator as well as of the propagating modes in a transmission
line. We continue by giving elements of input output theory, which describes how the
intra-cavity field of a resonator is related to the propagating modes of the transmission
lines to which it is coupled. At the end of this part we use the obtained results to
calculate the thermal state of the circuit we use in the radiative cooling experiment.
In the second part of the chapter we introduce the quantum theory of linear amplifiers
to discuss the quantum limits on amplification and introduce the Josephson Travelling
Wave Amplifier used in this work. We end this chapter presenting the superconduct-
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ing microwave switch used in the radiative cooling experiment to study the cooling
dynamics.

2.1 Quantum description of an electromagnetic mode

In classical electrodynamics, an electromagnetic mode of frequency ω is characterized
by its complex amplitude A = |A| eiφ. An equivalent practical representation consists
in the in-phase and out-of-phase quadratures X = Re(A) and Y = Im(A), as shown
in Fig.2.1a. The quantum mechanical description of the mode is obtained promoting
the canonical conjugate quadratures to the corresponding quantum operators X̂ and Ŷ
obeying the commutation relation [X̂, Ŷ ] = i/2. The variance of the two quadratures
is then bounded by the Heisemberg uncertainty principle 〈∆X̂2〉〈∆Ŷ 2〉 > 1/16. It is
also possible to describe the field by the annihilation and creation operators defined as:

â = X̂ + iŶ

â† = X̂ − iŶ
(2.3)

obeying the commutation relation [â, â†] = 1. The eigenvalue n of the number operator
n̂ = â†â represents the number of photons populating the mode. The mode state can
then be also defined in the Fock basis of the n̂ operator eigenstates.

Figure 2.1: Electromagnetic field state phase-space representation. a Classical
picture. b Vacuum (solid fill) and thermal (red dashed) states. c Coherent (blue fill)
and coherent thermal (dashed red line) states.

We now briefly go through three states of an electromagnetic mode that are used in
the following of this thesis. We focus on their representation and particularly on their
noise properties, relevant for the discussions on the modes thermalization.

2.1.1 Vacuum state

The lowest energy state |n = 0〉 in the Fock basis is called the vacuum state. It contains
zero photons and the expectation value of the two quadratures is also fixed to zero,
〈X̂〉 = 〈Ŷ 〉 = 0. However, the quadratures variance satisfies:

〈∆X̂2〉 = 〈∆Ŷ 2〉 = 1
4 . (2.4)
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The field fluctuations are therefore non-zero even in the vacuum state and coincide with
the minimal variance authorized by the Heisenberg principle for two quadratures veri-
fying 〈∆X̂2〉 = 〈∆Ŷ 2〉 (see Fig.2.1b). The finite value of these zero point fluctuations
(ZPF) determines the coupling strength of a two level system (TLS), such a spin 1/2,
to the electromagnetic radiation. Moreover, it fixes the quantum limits to amplification
and noise.

2.1.2 Thermal state

In an electromagnetic mode at thermal equilibrium with a bath of temperature T a
thermal state is established. It is a statistical mixture of Fock states |n〉 given by the
Boltzmann distribution, and the mean-value and variance of the two quadratures (see
Fig.2.1b) can be shown to be:

〈∆X̂〉 = 〈∆Ŷ 〉 = 0

〈∆X̂2〉 = 〈∆Ŷ 2〉 = 2nth + 1
4 .

(2.5)

(2.6)

The noise is therefore an indicator of the mode temperature via the mean number of
thermal photons nth(T ).

In the high temperature limit kT � ~ω, the quadrature thermal fluctuations in
Eq.2.6 reduce to kT/2~ω, thus showing a linear dependence on T . On the opposite
side, in the low temperature limit kT � ~ω, the thermal state tends to the vacuum
state and the noise approaches the quantum limit 〈∆X̂2〉 = 1/4.

2.1.3 Coherent states

The electromagnetic classical signals that are here used as drives for both spins and
cavity are well described by the eigenstates |α〉 of the annihilation operator â, called co-
herent states. The number of photons populating such states obeys Poissonian statistics
and its mean value is 〈α| â†â |α〉 = |α|2. The coherent state for α = 0 thus coincides
with the vacuum state. Concerning the field quadratures, they show the same vari-
ance of vacuum 〈∆X̂2〉 = 1/4, while the mean value is given by α: 〈∆X̂〉 = Re(α),
〈∆Ŷ 〉 = Im(α), as shown in Fig.2.1c. If the variance is instead given by the thermal
fluctuations of Eq.2.6, we speak of coherent thermal states.

2.2 The cavity and the propagating modes

2.2.1 The cavity: an LC resonator

The electromagnetic environment for the spins in the course of this thesis will be the
resonant mode of an LC circuit, whose quantum description and relevant characteristics
are addressed hereafter. We consider a resonator consisting in an inductance L in
parallel with a capacitance C. The magnetic flux Φ in the inductor and the charge q
in the capacitor are conjugate variables represented by the operators Φ̂ and q̂ obeying
the commutation relation [Φ̂, q̂] = i~. The LC harmonic oscillator Hamiltonian is then:

Ĥ(Φ̂, q̂) = Φ̂2

2L + q̂2

2C , (2.7)
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CL

a b

V(t)

Figure 2.2: LC oscillator. a, Schematic b, Example of implementation: a supercon-
ducting planar resonator comprising a interdigitated capacitance (red) in parallel with
an inductor wire (blue).

which can be expressed in the occupation number representation as:

Ĥ = ~ω0(â†â+ 1
2), (2.8)

with â and â† related to Φ̂ and q̂ by:

â = 1√
2~Z0

(Φ̂ + iZ0q̂)

â† = 1√
2~Z0

(Φ̂− iZ0q̂),

(2.9)

(2.10)

where ω0 = 1/
√
LC is the resonator frequency and Z0 =

√
L/C the resonator impedance.

We then express the voltage V̂ across the capacitor and the current Î in the inductor
as a function of the bosonic operators:

V̂ = q̂

C
= iω0

√
~Z0

2 (â† − â)

Î = Φ̂
L

= ω0

√
~

2Z0
(â† + â).

(2.11)

(2.12)

Fock states |n〉 are eigenstates of Ĥ and verify Ĥ |n〉 = ~ω0(n + 1
2). The resonator

ground state is the vacuum state |0〉 and thus voltage and current zero point fluctuations
are given by:

δI2 = 〈0| Î2 |0〉 = ~ω2
0

2Z0

δV 2 = 〈0| V̂ 2 |0〉 = ~Z0ω
2
0

2 .

(2.13)

(2.14)

The LC circuit current and voltage vacuum fluctuations generate, respectively, a mag-
netic field B̂(r) = δB(r)(â+ â†) around the inductor wire and an electric field Ê(r) =
iδE(r)(â − â†) in between capacitor plates, where δB(r) and δE(r) are the fields rms
vacuum fluctuations at position r. The amplitude of magnetic field fluctuations δB at
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the spin locations determines the coupling of the spins to the resonator mode and thus
their ability to thermalize to it.

2.2.2 The propagating modes: lossless transmission lines

Zc V(x,t)
I(x,t)

ldx

cdx

a b

x0

Figure 2.3: Transmission line. a Two wire representation. b Each infinitesimal part
of a transmission line can be modeled as an LC.

The second kind of electromagnetic modes we encounter all along this work are
propagating waves in coaxial lines, realizing the main environment to which the LC
cavity is coupled. Propagating modes in coaxial cables and planar waveguides are
described in classical electromagnetism by transmission line theory [9]. A transmission
line can be modeled as a chain of infinitesimal lumped element LC circuits, with series
inductance l and parallel capacitance c per unit length, as shown in Fig.2.3. The
solution of the resulting wave equation describing the circuits are a left and a right
propagating wave whose sum gives the voltage across the capacitance c for each location
x and time t, V (x, t):

V (x, t) = V⇁(x, t) + V↼(x, t), (2.15)

where V �(x, t) = V �0 cos [ω(t± x/vph) + φ�0 ], with vph = 1/
√
lc the phase velocity

and φ�0 the initial phase. The current I(x, t) in the infinitesimally short inductance l
is related to V (x, t) by the characteristic impedance Zc =

√
l/c:

I(x, t) = Z−1
c [V⇁(x, t)− V↼(x, t)]. (2.16)

In an infinite transmission line, right and left propagating modes are independent. If
instead the line is terminated at x = 0 by a load of impedance Zl, this couples the two
counter-propagating modes:

V⇁(t) + V↼(t) = Zl
Zc

(V⇁(t)− V↼(t)). (2.17)

This leads to the definition of the reflection coefficient R relating the left and right
mode amplitudes to the load-line impedance mismatch:

R = V↼(t)
V⇁(t) = −Zl − Zc

Zl + Zc
. (2.18)

We now move to the quantum description. A review on quantization of transmission
lines is given in [10]; here we go through some useful results for subsequent discussions.
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The transmission line can be described by left and right frequency-resolved mode as-
sociated to as many left and right annihilation and creation operators, â�(ω) and
â�†(ω), verifying [â�(ω), â�†(ω′)] = 2πδ(ω − ω′). Since we are here generally inter-
ested in narrow-band signals of central frequency ωa, it is convenient to work in the
time-domain in the rotating frame at ωa. Neglecting contributions from frequencies
far from ωa, the rotating wave approximation leads to the following expression for the
propagating field operator at x = 0:

V̂ �(t) =

√
~ωaZc

4π (â�(t) + â�†(t)), (2.19)

where â�(t) is the Fourier transform of â�(ω) satisfying [â�(t), â�†(t′)] = 2πδ(t− t′)
(performing a Markov approximation). We stress here that â�(t) are propagating mode
operators describing a field flux, thus the expectation value for the number of bosons
in the mode gives access to the power carried by the quasi monochromatic wave of
frequency ωa:

P�(t) = ~ωa 〈â�†(t)â�(t)〉 . (2.20)

A further simplification of the notation is obtained introducing a new operator defin-
ing propagating spatio-temporal modes of finite temporal and spectral extension, at
variance with the ’infinite bandwidth’ operators â�(t). We thus define:

â� =
∫
â�(t)u(t)dt, (2.21)

where u(t) is the envelope of the propagating signal mode of bandwidth ∆ω, obeying the
normalization

∫
[u(t)]2dt = 1. The commutation relation [â�, â�†] = 1 being satisfied,

these spatio-temporal modes are equivalent to the bosonic annihilation and creation
operators and the results of section Sc.2.1 can be used.

2.3 Cavity coupled to a transmission line

The cavity is in our experiment coupled to the modes propagating in a transmission
line in order to read out its field, to drive it coherently and to achieve control over its
thermal state. The LC resonator is then connected via a coupling capacitance Cc to a
transmission line of characteristic impedance Zc, as shown in Fig.2.4. A resistor R in
parallel to the LC circuit models the internal losses. In this paragraph we introduce the
relevant quantities characterizing the circuit before giving a quantum optics description
of this system.

2.3.1 Equivalent circuit and cavity damping rates

By coupling the RLC resonator to the transmission line, its resonance frequency ω0
and its characteristic impedance Z0 are slightly modified. The resonator impedance
ZRLC = 1/R + i(Cω − 1/Lω) seen from A (see Fig.2.4) is now connected in parallel
with Zext = Zc + 1/iCcω. In the low coupling limit ZcCcω0 � 1 and close to resonance
ω ∼ ω0, an approximate equivalent R′L′C ′ circuit can be built (see Fig.2.4), with
L′ = L and C ′ ≈ C + Cc. The slightly renormalized frequency and characteristic
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Figure 2.4: Cavity coupled to a transmission line. a The energy stored in the
mode of the LC resonator is dissipated into the internal resistance at rate κint and leaks
out into the capacitively coupled transmission line with rate κext b Norton equivalent
circuit. c Quantum optics equivalent representation.

impedance are therefore ω′0 = 1/
√
LC ′ and Z ′0 =

√
L/C ′. For the sake of clarity, in the

following we keep the notations ω0 and Z0 for the renormalized values. More relevantly,
the equivalent circuit enables to link the dissipation rates of the cavity to the circuit
parameters. The ohmic environment modeled by R′ is:

1
R′

= 1
R

+ 1
Rext

, with Rext
Zc
≈ 1/Z2

cC
2
cω

2
0. (2.22)

The resonator damping is then obtained from the quality factor of a RLC parallel
circuit Q−1 = R−1√L/C. We identify two contributions to the total quality factor
Q−1 = Q−1

ext+Q−1
int : the external losses described by Q−1

ext = R−1
ext
√
L/C ′ and the internal

losses described by Q−1
int = R−1√L/C ′. The energy dissipation rate into the two baths

is thus defined as κext,int = ω0/Qext,int.
The above results are valid in the limit of high external quality factor Qext, where
ZcCcω0 � 1. By analogy with optical cavities, the necessary high impedance of the
coupling capacitance corresponds to high reflectivity of the output coupler mirror, re-
alizing therefore a field mode well confined in the resonator.

2.3.2 Input-output theory for a driven damped cavity

The cavity mode we want to control and measure is coupled to two baths: it exchanges
energy at rates κint and κext with the internal dissipations and with the transmission
line modes, respectively. Since we are interested in the field entering and leaking out
from the cavity, we need here a quantum description of the full system that includes
the bath modes. Such a description is obtained extending to the quantum case the
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classical theory relating the cavity mode, the incoming and the outcoming waves. This
quantum input-output theory is valid for the general case of a system of Hamiltonian
Ĥ coupled to many continuum of modes with coupling rates κi.
Our system is an LC resonator whose Hamiltonian and field operator â have been
introduced in Eqs.2.8-2.10. The transmission line constitutes a bath for the resonator
and is described by the propagating operators introduced in Eq.2.19, here called âin(t)
for the mode propagating toward the cavity port and âout(t) for outcoming mode. The
coupling strength κi can be identified with the energy relaxation rate κext if a Markov
approximation is performed in the validity limit of coupling to a continuum of modes.
The second bath consisting in internal losses is coupled with strength κint and can be
treated in the exact same way as a terminated transmission line connected to a second
port, defining the two other propagating operators âin,int and âout,int. The evolution of
â(t) in the Heisenberg picture is then given by the following master equation:

∂tâ(t) = [â, Ĥ]
i~
− 1

2κâ(t) +
√
κintâin,int(t) +

√
κextâin(t), (2.23)

where [â, Ĥ]/i~ = −iω0 for a LC oscillator and κ = κint + κext = ω0/Q is the total
cavity damping rate. The (1/2)κâ(t) is a damping term, while the terms √κiâin,i(t) are
the source terms. A continuity equation holds at the interface between the cavity and
the transmission line, imposing that the sum of the right and left propagating fields
must be equal to the field radiated by the cavity:

âin,i(t) + âout,i(t) =
√
κiâ. (2.24)

2.3.3 Cavity under coherent driving

The classical fields we send to the cavity in our experiments are described by the
coherent states |α〉 introduced in Sec.2.1.3. Under classical drive the cavity input mode
is in the eigenstate αin of the propagating operator âin, carrying the power Pin =
~ω |αin|2 as given by Eq.2.20. The expectation value of the intra-cavity field 〈â〉 (t) =
α(t) is then obtained from Eq.2.23:

∂tα(t) = −iω0α(t)− κext + κint
2 α(t) +

√
κextαin(t). (2.25)

After Fourier transformation we thus find the steady-state solution for α:

α(ω) =
2√κext

κint + κext − 2i(ω − ω0)αin(ω). (2.26)

At resonance, a drive of power Pin will stabilize a mean number of intra-cavity
photons n̄ = |α|2 given by:

n̄ = 4κext
~ω0(κext + κint)2 . (2.27)

The amplitude of the coherent cavity field is for us of particular relevance since it deter-
mines the transverse magnetic field driving the spins through the coherent oscillation of
the current in the resonator inductor wire. For an incident drive power Pin, the average
current and magnetic field are:
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〈Î〉 (t) = 2δI
√
n̄ cos (ω0t)

〈B̂(r)〉 (t) = 2δB(r)
√
n̄ cos (ω0t).

(2.28)
(2.29)

2.3.4 Scattering matrix measurement

-10 10 -10 10
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1 π
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(ω-ω0)/κext (ω-ω0)/κext

Figure 2.5: Cavity reflection measurement. Reflection coefficient S11(ω) calcu-
lated for κint = 10κext (green), κint = κext (blue) and κint = κext/4 (red). Left and
right panel represent the modulus and phase of S11(ω), respectively.

The behavior of a n-port linear device connected to n transmission lines is fully
described by the n × n scattering matrix consisting in the reflection and transmission
coefficients Si,j for the propagating fields defined as:

Ŝi,j(ω) = âout,i
âin,j

, with âin,k = 0 ∀k 6= j. (2.30)

The scattering coefficients Si,j are in general measured using classical coherent input
drives, using typically a Vector Network Analyzer (VNA). The propagating field oper-
ators can then be replaced by the coherent signals αin,i and αout,i. Eq.2.24 relating the
output to input and intra-cavity fields gives αin,i + αout,i = √κiα(ω). Using then the
expression for the intra cavity field Eq.2.26 we obtain the reflection coefficient S11 for
our LC resonator coupled to a single transmission line:

S11(ω) =
√
κextα(ω)− αin

αin
= κext − κint + 2i(ω − ω0)
κext + κint − 2i(ω − ω0) . (2.31)

The relative strength of the external coupling rate κext with respect to the internal
losses damping rate κint defines three different regimes, as illustrated in Fig 2.5:

• The under-coupled regime, where κint � κext, see green curves. Only
a small dip in amplitude and a small phase shift are expected. Under-coupled
cavities only weakly perturb the incident field.

• The critical coupling regime, where κint ≈ κext, see blue curves. The
reflected amplitude goes to zero at resonance, where the cavity behaves as an
impedance matched load absorbing all the power.
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• The over-coupled regime, where κint � κext, see red curves. The amplitude
dip is small but the phase rotates by 2π across resonance. In the over-coupled
regime most of the field is reflected but a large phase shift is caused.

A fit of S11(ω) provides access to ω0, κint and κext without need of calibration of the
line, since |S11| = 1 far from resonance. We notice here that the S-parameters are
defined as the complex conjugate Si,j(ω)? of what is derived here.
In section 2.3.2 we have pointed out that the cavity internal dissipation can be described
in terms of a second port connected to a transmission line terminated by an impedance
matched load. For the following discussion it is then useful to introduce the transmission
from this second port toward the output port 1, S12, as it determines how the incoming
thermal noise from the internal losses via âin,int is transmitted to the output mode âout.
Following the same procedure as for S11, we get:

S12(ω) =
2√κextκint

κext + κint − 2i(ω − ω0) . (2.32)

2.3.5 Thermal population and noise in the cavity-transmission line
system

In addition to the coherent control of the cavity, a fundamental requirement in our
spin radiative cooling experiment is the possibility to establish and measure a cavity
mode thermal state. In this section we first look at the thermal state in a semi-infinite
transmission line terminated by different loads and then we move to the the case in
which the cavity is connected to such a circuit.
We consider a semi-infinite transmission line connected to an impedance-matched load
at temperature Tload, as depicted in Fig.2.6a. The reflection coefficient given by Eq.2.18
being zero, the left propagating modes â↽(ω) are independent from the right propagat-
ing modes incoming to the load and they are populated only by the thermal radiation
emitted by the load. Such a perfectly absorbing load thus behaves as a black body
emitting according to Planck’s law Eq.2.2, and thus realizes a thermal state in the left
propagating modes satisfying:

〈â↽†â↽〉 (ω) = nth(ω, Tload). (2.33)

A second case of interest illustrated in Fig.2.6b is a terminated transmission line con-
nected to an attenuator at temperature Tβ: a two port impedance matched lossy ele-
ment therefore characterized by S11 = S22 = 0 and S21 = S12 =

√
1− β, with β the

attenuation factor commonly expressed in dB. The left propagating mode is thus cou-
pled with relative strength β to the bath at Tβ and with relative strength 1− β to the
load bath at Tload. According to Eq.A.8, the left modes thermalize at an intermediate
effective temperature Tleft defined as:

〈â↽†â↽〉 = nth(Tleft) = βnth(Tβ) + (1− β)nth(Tload). (2.34)

Before moving to the analysis of the circuit illustrated in Fig.2.6c, we introduce the
device named circulator, commonly represented by a circle with arrow inside. It is a
lossless non reciprocal three port device that decouples the counter-propagating modes
in a transmission lines [9]. For a clockwise circulator |S21| = |S32| = |S13| = 1, while
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Figure 2.6: Thermalization of electromagnetic modes in a microwave circuit.
a, A transmission line terminated by an impedence mateched load. The reflection
coefficient at the load is zero so that the left propagating mode consists in the thermal
radiation from the load, independently of the incoming state. b, Thermal radiation
emitted by an impedance matched load is partially thermalized by an attenuator with
transmission coefficient S21 =

√
β and no reflection. c, The cavity mode â is coupled

with strength κint to the thermal radiation at Tint and with strength κext to the bath
consisting in the incoming modes âin. The output modes âout are the sum of the
transmitted âin,int and the reflected âin.

|S12| = |S23| = |S31| = 0 prevents transmission in the opposite direction. As a result the
right propagating modes in the line connected to port 1 of the circulator is transmitted
on port 2, while the left propagating mode on the same line is given by the input on port
3. Circulators allow thus to separate input and output lines in microwave experiments
and to isolate a device from part of the circuit.
The circuit represented in Fig.2.6c describes in a simplified manner the setup used in
the spin radiative cooling experiment. The aim of this circuit is to cool the resonator
mode at the temperature Tcold, lower than its internal losses temperature Tint. As
detailed in section Sc.2.3.4, the cavity can be described as a two port device, whose
port 2 models its coupling to the internal losses at rate κint while port 1 realizes the
coupling at rate κext to the rest of the circuit. Cavity input and output modes on
port 1 propagate on two different transmission lines as they are routed by a circulator.
From the circuit point of view, the cavity is fully described by its scattering matrix
coefficients S11 and S12 introduced in Eqs.2.31-2.32, while its internal degree of freedom
â evolves according to Eq.2.23. We first look at the thermal state in the three relevant
propagating modes: âin,int, âin and âout. The internal loss input mode on port 2 âin,int
is at thermal equilibrium with the load at Tint and obeys Eq.2.33: 〈â†in,intâin,int〉 (ω) =
nth(ω, Tint). The input mode on port 1 âin is the mode routed by the circulator from
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the transmission line terminated by the load at Tcold and attenuated by a factor β at
Tβ, due to unwanted losses. It is therefore at thermal equilibrium at a temperature
Text given by Eq.2.34:

〈â†inâin〉 = nth(Text) = βnth(Tβ) + (1− β)nth(Tcold). (2.35)

Once the two input modes state is known, the outgoing field âout is directly obtained
from the cavity scattering parameters: âout(ω) = S12(ω)âin,int +S11(ω)âin. The output
mode thermal equilibrium population nth(Tout) = 〈â†outâout〉 is thus given by:

〈â†outâout〉 (ω) = |S11(ω)|2 nth(Text) + (1− |S11(ω)|2)nth(Tint). (2.36)

Far from resonance, the output mode is equal to the reflected input mode and is there-
fore at the intermediate temperature Text in between Tcold and Tβ. On the other hand,
close to resonance the cavity couples the output mode to the thermal radiation of the
cavity internal losses at Tint. The outcoming modes are routed to the output transmis-
sion line by the circulator. Their thermal state can be characterized by measuring the
noise power spectral density:

S(ω) = 〈∆X̂2〉+ 〈∆Ŷ 2〉 = nth(Tout(ω)) + 1/2 (2.37)

with a spectrum analyzer connected to the output line. Such a measurement will
provide information on the cavity and circuit modes temperatures.

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

(ω-ω0)/κext

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

(ω-ω0)/κext

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

(ω-ω0)/κext

n
th
[T
ou
t(
ω
)]
/n
th
(T
in
t)

n
th
[T
ou
t(
ω
)]
/n
th
(T
in
t)

n
th
[T
ou
t(
ω
)]
/n
th
(T
in
t)

Figure 2.7: Output mode thermal equilibrium population nth[Tout(ω)]. The
mean number of thermal photons in the output modes is calculated with Eq.2.36 taking
Tβ = Tint = 1K, Tcold = 20mK and ω0/2π = 7.4GHz for three different values of
attenuation: β = 0 (blue), β = 3 dB (orange) and β = 20 dB (green). Left, κint =
κext/10: the cavity is in the overcoupled regime and at resonance the output mode is
only partially thermalized to the hot losses. Middle, κint = κext: the cavity is critically
coupled to the output mode that at resonance is perfectly thermalized to the internal
losses at 1K. Right, κint = 5κext: the cavity is in the undercoupled regime.

Now that we have determined the thermal equilibrium of the circuit, we focus on
the intra-cavity field â. It is coupled to the internal loss bath at temperature Tint
with strength κint and to the continuum of input modes at temperature Text with
strength κext. Once again, according to Eq.A.8 the system consisting in the cavity
mode thermalizes to an effective bath at the intermediate temperature Tphot:

〈â†â〉 = nth(Tphot) = κext
κ
nth(Text) + κint

κ
nth(Tint), (2.38)
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where nth(Text) is given by Eq.2.35. If the cavity is in the over-coupled regime κext �
κint and the circuit losses are negligible β � 1, then the cavity thermalizes to the cold
load rather than to its internal loss bath and thus Tphot ≈ Tcold.

2.4 Thermal noise and amplification

To detect small changes in the thermal noise of the output field, it is essential to
have a low-noise amplification chain. A first commonly used solution for measuring
weak microwave signals at low temperature are semiconductor High Electron Mobility
Transistor (HEMT) that can add an equivalent thermal noise of temperature TN on the
order of a few Kelvin. We refer to TN as the amplifier noise temperature. Even lower
level of added noise is desirable but it has to be considered that quantum mechanics
fixes the limits on the minimum noise that an amplifier adds to the input signal, as
shown by Haus and Mullen [11] and Caves [12]. Microwave amplifiers reaching this
quantum limit of added noise have been developed in the context of CQED and go under
the name of Josephson Parametric Amplifiers (JPA). In the following we introduce
the quantum limits on amplification and we present the working principle and main
characteristics of the Josephson Travelling Wave Parametric Amplifier (JTWPA) used
in our experiments.

2.4.1 Quantum limits on amplification

G,TN
X,Y

x

ya b

Figure 2.8: Linear amplifiers. a A linear amplifier of gain G and noise temperature
TN is used to detect a narrow band signal. b, Phase-space representation in the limit
of high gain. The disks indicate the standard deviation of the quadratures before and
after amplification. A phase-preserving amplifier degrades the SNR, with the added
noise represented in red.

A microwave amplifier of gain G is a two-port device connected to an input and an
output transmission lines (see Fig.2.8). Input and output signals of frequency ω and
of narrow bandwidth ∆ω are conveniently described by the right propagating spatio-
temporal modes âin and âout introduced in Eq.2.21.
The amplified signal is measured at the end of the output transmission line either by a
homodyne demodulation, yielding the quadratures I and Q, or by a frequency spectrum
analyzer giving the spectral power density S. The I and Q quadratures obtained by
the homodyne demodulation are proportional to the X̂ and Ŷ operators, with arbitrary
rotation in the XY plane tuned via the local oscillator phase. The average signal in
one quadrature is then proportional to 〈X̂〉 and the variance to 〈∆X̂2〉. The outcome
of the spectrum analyzer measurement is instead 〈X̂2 + Ŷ 2〉, which, in the absence of
a signal coincides with the noise power 〈∆X̂2〉+ 〈∆Ŷ 2〉.
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We consider here only phase-preserving amplification. If we naively applied the classical
relations between input and output quadratures of a linear amplifier to the quantum
case, we would define X̂out =

√
GX̂in and Ŷout =

√
GŶin. This definition however does

not satisfy the commutation relation for the operators âout and âin, besides the trivial
case G = 1. Following Caves [12], an internal mode b̂in of the amplifier, commuting
with âin, needs to be introduced to describe the amplification:

âout =
√
Gâin +

√
G− 1b̂†in, (2.39)

with b̂in satisfying [b̂in, b̂†in] = 1 and [b̂in, âin] = 0. By assuming 〈b̂in〉 = 0, one finds:

〈X̂out〉 =
√
G 〈X̂in〉

〈Ŷout〉 =
√
G 〈Ŷin〉 ,

(2.40)
(2.41)

in analogy to classical description. However, when deriving the quantum version of the
input-output equations for the noise, the amplifier internal mode plays an essential role
in causing a deviation from the classical limit. When no signal is present, then the
outcoming noise referred to the input obeys:

〈∆X̂2
out〉+ 〈∆Ŷ 2

out〉
G

= 〈∆X̂2
in〉+ 〈∆Ŷ 2

in〉+
(

1− 1
G

)
(〈∆X̂2

b〉+ 〈∆Ŷ 2
b 〉), (2.42)

where 〈∆X̂2
b〉 are the internal mode fluctuations. We thus identify two distinct contri-

bution to the output noise: the input noise and the noise added by the amplifier that
originates from the internal mode fluctuations. We thus find it convenient to define
Sout = 〈∆X̂2

out〉+ 〈∆Ŷ 2
out〉 the noise detected, and Sin = 〈∆X̂2

in〉+ 〈∆Ŷ 2
in〉 and Samp =

〈∆X̂2
b〉+ 〈∆Ŷ 2

b 〉 its two contributions so that, for large gain, Sout/G = Sin + Samp.
If the incoming mode âin is in a thermal state, the input noise is found from Eq.2.6 to
be Sin = nth(Tin) + 1/2. In the limit kBTin � ~ω, thermal fluctuations are negligible
and the detected noise Sin = 1/2 is of quantum origin due to the minimum variance
admitted by the Heisenberg principle.
Like the input modes, the amplifier internal mode fluctuations are also bounded by
the Heisenberg principle giving 〈∆X̂2

b〉 〈∆Ŷ 2
b 〉 > 1/16. By further imposing that the

added noise is phase-insensitive 〈∆X̂2
b〉 = 〈∆Ŷ 2

b 〉 > 1/4 [12], the quantum-limit on the
amplifier output noise is obtained:

〈∆X̂2
out〉+ 〈∆Ŷ 2

out〉
G

> 〈∆X̂2
in〉+ 〈∆Ŷ 2

in〉+ 1/2. (2.43)

This results shows that in case of large gain the minimum noise added by a phase-
preserving amplifier is equivalent to half a photon more (Samp > 1/2) in the effective
input noise power Sout/G, as stated by the Haus-Caves theorem. Equivalently, the
quantum limits on the amplifier noise temperature reads:

kBTN >
~ω
2 . (2.44)
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Figure 2.9: JTWPA equivalent circuit. A nonlinear transmission line is realized
with a series of Josephson junctions. Some unit cells, like the one contoured by a
dashed line, include a parallel LC resonator guaranteeing the phase matching condition.
Extracted from [13].

2.4.2 The Josephson Travelling Wave Parametric Amplifier

Amplification at the quantum limit has been reached in the microwave domain ex-
ploiting the inductance nonlinearity of Josephson junctions embedded in an almost
dissipationless superconducting resonator of frequency ω0. As demonstrated in the pi-
oneering work by Yurke et al. [14], such a circuit enables parametric amplification of
signals at frequency ωs ≈ ω0, by transferring the energy of a pump at frequency ωp
to the signal and to a complementary idler of frequency ωI . Two limitations of such
devices are the bandwidth typically bounded to a few tens of Megahertz and the low
saturation power in general smaller than −110 dBm.
Overcoming these limits has been demonstrated by moving from resonators to trans-
mission lines, where the field is amplified while propagating in the nonlinear medium.
In the device used in this thesis, the distributed nonlinearity in the transmission line
is realized with a chain of Josephson junctions, as shown in Fig.2.9, from which the
name of Josephson Travelling Wave Parametric Amplifier (JTWPA). Here the pump
tone propagating in the line together with the signal enables a four-wave mixing process
satisfying energy conservation 2ωp = ωs+ωi by generation of the idler. Conservation of
momentum imposes the phase matching condition 2kp = ks+ki that needs engineering
of the dispersion relation k(ω) to compensate for pump-induced phase shifts. For this
purpose a series of lumped-element resonators is realized along the transmission line,
opening a stop-band in the dispersion relation and allowing to reach the phase matching
for different pump powers. For more details refer to ref. [13], while a characterization
of the similar device used in this thesis is provided in the next chapters.

2.5 Superconducting microwave switch

Another superconducting device that will be of interest in this thesis is a superconduct-
ing microwave switch developed by Pechal et al. [15]. We use this device in the radiative
cooling experiment to investigate the dynamics of the cooling process. Its interest in
our experiment lies in the fact that it is able to switch in a few nanoseconds without
heating. It consists of two hybrid couplers connected in a Mach-Zehnder-like configura-
tion, where the two arms are two independently tunable coplanar waveguide resonators
(see Fig.6.16a). Tunability is obtained with a series of 5 quantum-interference-device
(SQUID) loops placed in the center of the two resonators. The inductance of these
SQUID arrays is controlled by changing the applied magnetic flux with two supercon-
ducting coils. When both resonators are detuned, the input signal split by the first
coupler is reflected by the resonators and, because of the phase relation between the
two outputs of the coupler, recombines in port 2. Conversely, in the resonant config-
uration the signal is transmitted in the two arms toward the second hybrid coupler,
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recombining in port 3.

Figure 2.10: Superconducting switch circuit. Schematic diagram of the super-
conducting switch showing the input signal path for the two switch states. In the
off-resonant case (solid arrows), the signal is reflected by the resonators and directed
to port 2, while in the resonant case (dashed arrows) it is transmitted and reaches port
3. Extracted from ref. [15].



Chapter 3

Spins in a cavity

In this chapter, we first model the dynamics of a spin coupled to a single electromagnetic
mode, such as the resonant mode of an LC circuit. We focus in particular on the so-
called "weak coupling" regime. We show how the cavity field acts as a reservoir for
the spins, enabling spin cooling. After presenting the equation of motion of the spin
ensemble, we discuss magnetic resonance detection methods used in our experiments.
We restrict our study in this chapter to electronic spins 1/2. Our discussion also applies
without any change to nuclear spins 1/2; for multilevel systems, our treatment applies
to a two-level restriction of the full energy spectrum, while effects of the multilevel
structure are discussed in the next chapters.

3.1 Spin dynamics in the Purcell regime

We discuss in this section the spin radiative relaxation enhancement by a resonant
cavity before studying spin thermalization and dynamics.

3.1.1 Cavity-induced relaxation

Consider the system depicted in Fig.3.1, where a spin is in the mode volume of a
damped cavity realized by an LC circuit. As discussed in Ch.2, the Hamiltonian of
such a resonator is Ĥphot = ~ω0(ââ† + 1

2) and its damping rate is the sum of internal
losses and coupling to the measurement line: κ = κint + κext. The current in the
inductor wire, Î = δI(â+ â†), generates a magnetic field B̂1(r) = δB(r)(â+ â†) at the
spin location r, determining the magnitude of spin-photon coupling g.

Spin-cavity interaction Hamiltonian

We first consider a single spin at location r, described by the dimensionless vectorial
spin operator Ŝ = (Ŝx, Ŝy, Ŝz). A static magnetic field B0 is applied along z. We
isolate a two-level system from the spin energy levels, the ground state |g〉 and the
excited state |e〉, whose field-dependent transition frequency is ωs(B0) = (Ee − Eg)/~.
We introduce the Pauli matrices (σ̂x, σ̂y, σ̂z), where:

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
(3.1)

33
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Figure 3.1: Spin-cavity coupling. a A spin polarized by a static magnetic field
B0 is coupled to an LC resonator by the transverse field B1 generated by the inductor
current. The resonator is damped by internal and external losses while it is driven by
the input signal of amplitude β. b The quantum optics equivalent representation.

One can also define the spin rising (σ̂+) and lowering (σ̂−) operators as σ̂± = 1
2(σ̂x±iσ̂y),

whose matrix form are:

σ̂+ =
(

0 1
0 0

)
and σ̂− =

(
0 0
1 0

)
. (3.2)

In the basis {|e〉 , |g〉}, the spin Hamiltonian reads:

Ĥs(B0) = ~ωs(B0)
2 σ̂z. (3.3)

The spin interaction with the resonator field results in a magnetic coupling described
by the interaction Hamiltonian:

Ĥint = −~γeŜ · B̂1 = −~γeŜ · δB(r)(â+ â†), (3.4)

where γe = 28GHz/T is the so-called gyromagnetic ratio of the free electron spin.
In the {|e〉 , |g〉} restriced spin-basis, treating Ĥint as a perturbation of the uncoupled
Hamiltonian Ĥ0 = Ĥphot+Ĥspin and performing the rotating wave approximation yields
the Jaynes-Cummings Hamiltonian [16]:

Ĥint = ~g(σ̂+â+ σ̂−â
†), (3.5)

where g = −γe 〈e| Ŝ · δB(r) |g〉. The two terms in the Hamiltonian describe respectively
absorption and emission of photons by the spins. In a perfectly isolated spin-cavity
system, the Jaynes-Cummings Hamiltonian predicts the phenomenon known as vacuum
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Rabi oscillation [17]: a spin initially in its excited state will emit and re-absorb reversibly
a single photon into an empty cavity at a frequency 2g.
In the presence of interaction with the environment of both the spins and the resonator,
the duration of these coherent exchange is limited by two phenomena: the resonator
damping rate κ gives a characteristic intra-cavity photon lifetime of 1/κ, while spins
lose their coherence at a rate γ = 1/T2, where T2 is the so called spin coherence time
that we describe in the following of this chapter. Two regimes can then be distinguished,
as shown in Fig.3.2:

t*4g

Figure 3.2: Weak and strong coupling regime for a single spin. The population
of the spin excited state |e〉 is calculated solving Eq.3.7 in absence of drive (β = 0),
neglecting non-radiative processes (Γphon = γ = 0) and at resonance (ωs = ω0). In the
strong coupling regime (g > κ) it shows oscillations while in the weak coupling regime
it decays exponentially at rate 4g2/κ.

• The strong coupling regime, when g � κ, γ (see red curve): excitation
lifetimes are long compared to the Rabi period and Rabi oscillations may be
observed [17].

• The weak coupling regime, when g � κ, γ (see blue curve): excitations
decay faster than the coherent exchange time, thus Rabi oscillation are replaced
by an irreversible decay.

In the following, we will focus on the weak coupling that, if other conditions are satisfied,
is the relevant regime for realizing radiative cooling of the spins.

Master equation for the open spin-cavity system

Before going to the approximation allowed by the weak coupling regime, let’s consider
the complete description at zero temperature of the spin-cavity system interacting with
the environment (see Fig.3.3). The spin is coupled to the lattice bath with strength
Γphon while the cavity dissipates into the environment via its internal and external
loss channels. Such an open system can be described by the Lindblad master equation
Eq.A.1. A microwave drive of amplitude β (linked to the input power by Pin = ~ωd |β|2)
is described by Ĥd/~ = i

√
κext(βâ†e−iωdt + β∗âeiωdt). The Hamiltonian of the system

in the frame rotating at ωd is then:

Ĥ = ∆0â
†â+ ∆s

2 σ̂z + g(σ̂+â+ σ̂−â
†) + i

√
κext(βâ† − β∗â), (3.6)
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Figure 3.3: Spin-cavity open system. a The spin is coupled to the lattice bath
and coherently exchanges energy with the resonator which is damped by losses and
driven by the input signal β. b Quantum optics equivalent representation including
the sample (red).

where ∆0 = ω0 − ωd and ∆s = ωs − ωd. Three Lindblad operators describe the non-
unitary processes at zero temperature. The cavity relaxation via external and internal
losses is described by L̂phot =

√
κâ. The spin-lattice energy relaxation is described by

L̂phon =
√

Γphonσ̂− and spin decoherence by L̂2 =
√
γ/2σ̂z. Such a master equation

fully describes the system and is valid in the strong and weak coupling regime. Using
the density matrix ρ to describe the spin-cavity system, it reads:

dρ
dt = − i

~
[Ĥ, ρ]

+(L̂phonρL̂†phon −
1
2 L̂
†
phonL̂phonρ−

1
2ρL̂

†
phonL̂phon)

+(L̂photρL̂†phot −
1
2 L̂
†
photL̂photρ−

1
2ρL̂

†
photL̂phot)

+(L̂2ρL̂†2 −
1
2 L̂
†
2L̂2ρ−

1
2ρL̂

†
2L̂2),

(3.7)

Enhanced spontaneous emission in the weak coupling regime: the Purcell
Effect

In the weak coupling regime, the large resonator damping κ compared to the coherent
exchange rate g makes it possible to treat the resonator mode as an effective Markovian
bath for the spin. Here we report the main results of a procedure based on the resonator
adiabatic elimination that gets rid of the resonator operators while taking into account
the drive [18–20]. A new master equation in the drive rotating frame is thus obtained
for the reduced spin density matrix ρ̃:
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dρ̃
dt = − i

~
[Ĥeff, ρ̃]

+(L̂phonρ̃L̂†phon −
1
2 L̂
†
phonL̂phonρ̃−

1
2ρL̂

†
phonL̂phon)

+(L̂photρ̃L̂†phot −
1
2 L̂
†
photL̂photρ̃−

1
2 ρ̃L̂

†
photL̂phot)

+(L̂2ρ̃L̂†2 −
1
2 L̂
†
2L̂2ρ̃−

1
2 ρ̃L̂

†
2L̂2),

(3.8)

with Ĥeff being the new effective spin Hamiltonian:

Ĥeff = ∆s − ξ
2 σ̂z + g(ασ̂+ + α∗σ̂−), (3.9)

where α = 2√κextβ/(κ + 2i∆0) is the steady state intra-resonator field amplitude
calculated in absence of spins with the input-output relations (see Eq.2.26), and ξ =

g2∆
∆2+κ2/4 with ∆ = ∆0 − ∆s = ω0 − ωs being the spin-cavity detuning. The ξ term
is renormalization of the spin frequency that we neglect in the following since it is of
order g2/κ.
As a consequence of the resonator adiabatic elimination, the Lindblad operator L̂phot
describing the resonator losses is replaced by the operator L̂phot =

√
Γphot(∆)σ̂− acting

on the spins. This new operator describes spin radiative relaxation into the effective
resonator bath. This cavity-induced spontaneous radiative relaxation was predicted in
1946 by Purcell [8] for spins and is known as the Purcell effect. The rate Γphot can be
shown to be:

Γphot = κg2

κ2/4 + ∆2 . (3.10)

This exponential relaxation of a spin in a damped cavity is shown in Fig. 3.2, where the
numerical solution of Eq.3.7 is reported for ∆s = ∆0 = 0, in the absence of drive (β = 0)
and neglecting non radiative processes (γ = Γphon = 0) for both strong (red) and weak
(blue) coupling regimes. The coupling to the cavity induces therefore a new radiative
relaxation channel for the spins, which competes with the relaxation by spin-lattice
interaction.

3.1.2 Spin equilibrium and dynamics

We now describe in more details spin dynamics in the Purcell regime.

Equation of motion and mapping to Bloch equations

The master equation and effective Hamiltonian obtained from resonator adiabatic elim-
ination (Eqs.3.8-3.9) yield the following semi-classical equations of motion for the spin
observables and for the intra-cavity field, calculated in the drive rotating frame and at
zero temperature:



38 Chapter 3. Spins in a cavity

d 〈σ̂x〉
dt = ∆s 〈σ̂y〉 − γ⊥ 〈σ̂x〉

d 〈σ̂y〉
dt = −∆s 〈σ̂x〉 − ω1 〈σ̂z〉 − γ⊥ 〈σ̂y〉

d 〈σ̂z〉
dt = ω1 〈σ̂y〉 − Γ1(0) [〈σ̂z〉+ 1]

〈â〉 = α− i2g
κ+ 2i∆ 〈σ̂−〉 ,

(3.11)

(3.12)

(3.13)

(3.14)

with γ⊥ = γ + Γphon
2 + Γphot

2 , Γ1(0) = Γphon + Γphot and, considering α to be a real
number, ω1 = −2gα. We note here that Eqs.3.11-3.13 are identical to the Bloch
equations derived with fully classical description of the field, except for the new energy
relaxation term given by the Purcell effect.

a b c

d e

Figure 3.4: Spin coherent dynamics and relaxation. a Under a static magnetic
field, the spin vector 〈σ̂〉 precesses at frequency ωs in the laboratory frame. b Rotating
frame of an oscillating magnetic field B1. c In such a rotating frame, the application
of a short microwave pulse allows to rotate the spin. d Longitudinal relaxation process
bringing the spin vector to thermal equilibrium. e Decoherence process leading to a
fan-out of the spin transverse component.

We now recall basic features of spin dynamics on the Bloch sphere. The spin vector 〈σ̂〉
is conveniently represented in the Bloch sphere of radius one: the south pole indicates
the ground state with the spin aligned along z while the equator on the x− y plane is
where the vector points in case of full transverse magnetization. Neglecting relaxation
and decoherence processes (Γphot = Γphon = γ = 0), the spin ensemble explores the
surface of the sphere. Under a static magnetic field applied along ẽz, the spin precesses
in the laboratory frame at the Larmor frequency ωs. In the rotating frame at ωd, it
is static in absence of drive. When turning on the drive, it starts rotating around the
vector ω1ẽx + ∆sẽz at an angular speed called the Rabi frequency:
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ΩR =
√

∆2
s + ω2

1. (3.15)

When the applied drive is resonant with the spins (∆s = 0), the magnetization vector
precesses at speed ω1 around ẽx. Such rotation axis depend on the phase of the applied
drive α and can thus be arbitrarly chosen within the x − y plane. By realizing a
microwave pulse of duration τp, we can perform a rotation of angle θp = ω1τp around
the chosen axis. Rotations around ẽz can be also realized combining two rotations in
the x− y plane. Magnetization can be thus brought to any point on the Bloch sphere.
In our experiments we will mainly use π and π/2 pulses around x and y axes.
The effect of the environment gives rise to two relaxation processes described by
Eqs.3.11-3.13:

• Energy relaxation, As we have previously discussed, the term proportional to
Γ1(0) describes the energy loss from the spin and emitted into the environment at
zero temperature in an irreversible process whose characteristic time is generally
denoted as T1 = 1/Γ1. The effect of energy relaxation is an exponential decay at
rate Γ1(0) of the spin polarization p ≡ −〈σ̂z〉 to its thermal equilibrium state,
p(0) = 1 at zero temperature. We discuss in detail the finite temperature case in
the next section.

• Decoherence, The terms proportional to γ⊥ are responsible for the decay of
the transverse components 〈σ̂x〉 and 〈σ̂y〉 whose charecteristic time is commonly
denoted as the coherence time T2 and its maximum value is 2T1. Note that for
spins, as will be seen in the next chapter Ch.4, decoherence is in general due to
a local, slowly evolving source of noise. The Markov approximation is then not
satisfied, and the decay of σx,y not exponential.

The steady-state solutions of the Bloch equations are well-known:

〈σ̂〉(s)x = ∆sω1/γ
2
⊥

1 + (∆s/γ⊥)2 + ω2
1/Γ1γ⊥

〈σ̂〉(s)y = ω1/γ⊥
1 + (∆s/γ⊥)2 + ω2

1/Γ1γ⊥

〈σ̂〉(s)z = 1 + (∆s/γ⊥)2

1 + (∆s/γ⊥)2 + ω2
1/Γ1γ⊥

.

(3.16)

(3.17)

(3.18)

The transverse component of the spin shows a maximum for ω2
1/Γ1γ⊥ = 1 before the

overall spin vector expectation value vanishes when ω1 � Γ1γ⊥. This saturation con-
dition reached at large drive power corresponds to the two spin levels being populated
with equal probability and therefore effectively not any more interacting with the mi-
crowave radiation.
Besides providing the spin coherent evolution and relaxation in the presence of a drive,
Eqs.3.11-3.14 also provide the signal emitted from the spin. The transverse spin compo-
nent changes the intra-cavity field by 2ig/(κ+2i∆) 〈σ̂−〉 leading to a signal leaking from
the cavity that can be found using the input output theory relation 〈âout〉 = √κext 〈â〉
(see Eq.2.24). At resonance (∆ = 0) the signal emitted from the spin into the output
transmission line is thus roughly 2g 〈σ̂−〉 /

√
κ. It is proportional to the spin-photon

coupling g, to 1/
√
κ, and to the transverse spin component 〈σ̂−〉.
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Homogeneous and inhomogeneous broadening

The decoherence process of a spin corresponds in the frequency domain to a finite spec-
tral linewidth 1/T2 named ’homogeneous’ broadening. In the presence of an ensemble
of spins, the linewidth is in general much larger because of the inhomogeneity of the
spin environment, resulting in a distribution of Larmor frequencies ρ(ωs).
This ’inhomogeneous’ broadening can be modeled as resulting from a sum of contribu-
tions of homogeneously broadened subsets, each of them described by the semiclassical
Bloch equations Eqs.3.11-3.13. Such a sum results in a decay of the ensemble transverse
magnetization σ̂(ens)x,y at a rate 1/T ∗2 = Γinh, with Γinh the width of ρ(ωs) typically much
larger than 1/T2.

Thermal equilibrium for a spin coupled to two baths

Γphon

Γphot

Tspin Tphot Tphon<~

Figure 3.5: Spin thermalization in the Purcell regime. Quantum optics rep-
resentation of the spin coupled to the lattice bath with strength Γphon and to the
resonator effective bath with strength Γphot. In the Purcell regime (Γphot � Γphon)
spins thermalize to the resonator mode temperature Tphot.

The master equation Eq.3.8, valid in the weak spin-cavity coupling regime, describes
a spin coupled to two baths: the damped resonator mode and the lattice. Neglecting
decoherence terms, Eq.3.8 at finite temperature then reads (see AppendixA):

dρ̃
dt = − i

~
[Ĥeff, ρ̃]− Γ1(0)[nth(Tspin) + 1]

2 (σ̂+σ̂−ρ̃+ ρ̃σ̂+σ̂− − 2σ̂−ρ̃σ̂+)

−Γ1(0)nth(Tspin)
2 (σ̂−σ̂+ρ̃+ ρ̃σ̂−σ̂+ − 2σ̂+ρ̃σ̂−),

(3.19)

with Ĥeff = ∆s
2 〈σ̂z〉 g(ασ̂+ + α∗σ̂−) and nth given by Eq.2.1:

nth(Tspin) = Γphot
Γ1(0)nth(Tphot) + Γphon

Γ1(0)nth(Tphon). (3.20)

If the spin is in the Purcell regime where Γphot � Γphon, it is expected to thermalize to
the resonator mode, Tspin ≈ Tphot independently on the lattice temperature. This opens
the possibility to cool the spin below the host lattice temperature, as we demonstrate
in the experiments reported in the next chapters.
From Eq.3.13, we derive the evolution of σ̂z:

d 〈σ̂z〉
dt = ω1 〈σ̂y〉 − Γ1(0)[2nth(Tspin) + 1]

[
〈σ̂z〉+ 1

2nth(Tspin) + 1

]
. (3.21)
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Two changes are observed in the σ̂z equation of motion with respect to the zero tem-
perature case. First, the relaxation rate towards thermal equilibrium Γ1(Tspin) is ac-
celerated:

Γ1(Tspin) = Γ1(0)[2nth(Tspin) + 1] (3.22)

This is a consequence of the fact that, in addition to the spontaneous emission, absorp-
tion and stimulated emission processes become possible thus enhancing the relaxation
rate by the factor 2nth(Tspin) + 1. Second, the thermal equilibrium value of the spin
polarization p(Tspin) is reduced with respect to the zero temperature value of 1 to:

p(Tspin) = 1
2nth(Tspin) + 1 = tanh

(
~ωs

2kBTspin

)
(3.23)

The temperature dependence of spin polarization is thus given by the Curie law, re-
sulting from the Boltzmann distribution of spin population between ground and ex-
cited state. We note here that both the energy relaxation rate and the polarization
show the same temperature behaviour, as we have Γ1(Tspin)/Γ1(0) = p(0)/p(Tspin) =
2nth(Tspin) + 1.
By substituting Eq.3.20 into the expressions of both the relaxation rate (Eq.3.22) and
the polarization (Eq.3.23), we get:

Γ1(Tspin) =Γphot[2nth(Tphot) + 1] + Γphon[2nth(Tphon) + 1]

p(Tspin) =Γphot[2nth(Tphot) + 1]
Γ1(Tspin) p(Tphot) + Γphon[2nth(Tphon) + 1]

Γ1(Tspin) p(Tphon).

(3.24)

(3.25)

From Eq.3.24 we see that the total relaxation rate is still the sum of the radiative and
spin-lattice relaxation rates, now enhanced by the thermal processes. On the other
hand, the polarization of the spin at Tspin in Eq.3.25 is an average of the equilibrium
polarization at the two bath temperatures weighted by the corresponding thermal re-
laxation rates.

Ensemble dynamics and equations for numerical simulation

The experiments presented in this thesis involve a large ensemble of spins coupled to the
cavity. Due to inhomogeneous broadening and non-unique coupling, simulations of an
N -spins ensemble evolution are necessary to reproduce and predict the measurements.
More details on the numerical simulations presented here are found in ref. [21]. The
ensemble is divided inM sub-ensembles with coupling gm and spin resonance frequency
ωd + ∆(m)

s , each of it regarded as homogeneous and hence described by the semiclas-
sical Bloch equations Eqs.3.11-3.14. The decoherence rate γ is assumed equal for all
sub-ensembles. On the other hand, since we’re interested in the Purcell regime, the re-
laxation rate of each sub-ensemble Γ(m)

1 (gm,∆m) is calculated with the Purcell formula
Eq.3.10. The equations describing the evolution of the sub-ensemble m together with
the intra-cavity field are then:
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d 〈σ̂(m)
x 〉

dt = ∆(m)
s 〈σ̂(m)

y 〉+ 2gk 〈Ŷ 〉 〈σ̂(m)
z 〉 − γ 〈σ̂(m)

x 〉

d 〈σ̂(m)
y 〉

dt = ∆(m)
s 〈σ̂(m)

x 〉 − 2gk 〈X̂〉 〈σ̂(m)
z 〉 − γ 〈σ̂(m)

y 〉

d 〈σ̂(m)
z 〉

dt = 2gk 〈X̂〉 〈σ̂(m)
y 〉 − 2gk 〈Ŷ 〉 〈σ̂(m)

x 〉 − Γ(m)
1

[
〈σ̂(m)
z 〉+ p(m)

]
d 〈X̂〉

dt =
√
κextβX −

κ

2 〈X̂〉 −
M∑
j=1

gj 〈σ̂(j)
y 〉

d 〈Ŷ 〉
dt =

√
κextβY −

κ

2 〈Ŷ 〉+
M∑
j=1

gj 〈σ̂(j)
x 〉 ,

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where βX,Y are the in-phase and out of phase parts of the input drive and p(m) is the
initial polarization. We note that the last term in equation Eqs.3.29-3.30 couples all
theM differential equations by including all feedback effects of the field radiated by the
spins on their dynamics. However, in the experiments discussed in this thesis the spin
ensemble cooperativity defined as C = 2Ng2/κγ verifies C � 1, making it possible to
further simplify the solution of the system of M differential equations. In this regime
the field generated by the spins is too small to affect significantly their own dynamics
and can thus be neglected for most of the experimental time. The numerical solution
of all the sub-ensembles is then obtained independently and finally all contributions
are summed with the weights given by ρ(ωs) and the coupling distribution ρ(g). We
use this simplified approach for the simulation of our experiments that are presented
in the following of this thesis.

3.2 Inductive detection of magnetic resonance

In the previous section we have seen how the spin transverse magnetization 〈σ̂x,y〉
generates a field in the LC resonator that is proportional to the magnetic coupling
g realized by the inductive part of the resonant circuit. The field leaking out of the
resonator allows then spin detection. Such ’inductive detection’ is the most widely used
magnetic resonance measurement technique.
The transverse magnetization can be produced by either a continuous or a pulsed ex-
citation. In the case of continuous drive, the precessing magnetization can result in an
absorption or phase shift of the incoming microwave, which can typically be detected
with lock-in techniques. Sequences of drive pulses can instead produce transient trans-
verse magnetization on the time-scale of the relevant relaxation times of the system.
Since the latter is the main technique we have used in our experiments, we detail it
hereafter for an inhomogeneous ensemble in the simplified case of large cavity band-
width (κ� 1/T ∗2 ). Throughout the remaining of this thesis, for the sake of simplicity,
we refer to the spin ensemble magnetization normalized to 1 with the same symbol
used for the single spin vector operator σ̂.
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Figure 3.6: Free induction decay and echo. Starting from thermal equilibrium, the
application of a first microwave pulse around ẽx rotates the ensemble magnetization
to the equatorial plane of the Bloch sphere, inducing the emission of a coherent signal
(the FID) before decoherence takes place. After a delay time τ a second pulse rotates
the magnetization around ẽy by a angle of π yielding a magnetization refocusing after
another delay τ with consequent emission of the echo signal. The effects of the finite
cavity bandwidth are neglected. Top graph: The resonator field 〈â〉. In black the
field originated by the drive; the coloured line is the field emitted by the spins. Middle
graph: The three components of the ensemble magnetization (extracted from numerical
simulation for typical ESR parameters). Bottom: Bloch sphere representation of the
collective spin evolution with the effect of the pulses illustrated by the black arrows.

3.2.1 Pulsed electron spin resonance

Free induction decay

The application of a pulse of tipping angle θp = π/2 brings the equilibrium longitudi-
nal magnetization of an inhomogeneous ensemble of N spins on the equatorial plane
realizing the transverse polarization 〈σ̂−〉 = Np(Tspin). Immediately after the pulse,
the magnetization vector precesses around ez at the Larmor frequency ωs while the
transverse and longitudinal components are decaying exponentially at rates 1/T ∗2 and
Γ1, respectively (Eqs.3.11-3.13, see Fig.3.6). This oscillating magnetization generates
a damped coherent intra-cavity field (see Eq.3.14) named free induction decay (FID):

〈â〉FID (t) ∼ Ng

κ
p(Tspin)eiωste−t/T

∗
2 (3.31)
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Spin echo

The fast decay of the spin ensemble coherence due to inhomogeneous broadening can
be made reversible by the pulse sequence named Hahn Echo [22], which is used in most
of our experiments (see Fig.3.6). A first π/2 pulse induces the transverse magnetization
〈σ̂−〉 = Np(Tspin) decaying in the characteristic time T ∗2 while emitting the FID signal.
After a delay time τ � T ∗2 a π pulse 90◦-rotated with respect to the π/2 pulse is
applied, effectively reverting the time evolution of the ensemble. As a result, after a
second delay of duration τ the magnetization refocuses and reaches its initial value. The
time reversal of FID is observed before the coherence decays again in the same T ∗2 time.
The signal emitted by the refocused magnetization is known as ’spin echo’ and, being a
revival of the FID, its amplitude is also proportional to the initial ensemble polarization
p(Tspin). For this reason the echo signal is the spin thermometer we use in our radiative
cooling experiments. If no relaxation processes were present, echo amplitude would
stay constant as a function of τ . Instead, it decays due to decoherence at the rate γ⊥.
A major advantage of spin echo is its time separation from the applied pulses compared
to FID. The decay of the intra-cavity field generated by the input pulses overlaps with
the FID, possibly preventing the spin signal detection. This effect becomes particularly
relevant for small cavity bandwidth with respect to the inhomogeneous spin linewidth,
as it is the case in our experiments.

Rabi oscillations in the presence of inhomogeneous broadening

The drive pulse calibration is performed by measuring the Rabi oscillations with the
Hahn-echo sequence. For that, the echo is detected as a function of the tipping angle
θp of the refocusing pulse, varied by sweeping the pulse power Pin. This results in
oscillations of the echo signal, as we detail hereafter.
Consider an ensemble spins with identical coupling g and initial polarization p, divided
in N subsets of detuning ∆j , distributed according to ρ(∆). An ideal π/2 pulse applied
around the x−axis at time −2τ creates a transversal magnetization state aligned on the
y−axis. The evolution of each spin subset j at of detuning ∆j at times −2 6 t < −τ
is:


〈σ̂(j)
x (t)〉 = p sin (∆j(t+ 2τ))
〈σ̂(j)
y (t)〉 = p cos (∆j(t+ 2τ))
〈σ̂(j)
z (t)〉 = 0

(3.32)

Applying a pulse of tipping angle θp around the y-axis at time t = −τ leads to the
following evolution at times t > −τ for each subset j:


〈σ̂(j)
x (t)〉 = p sin (∆j(t+ 2τ)) cos θp
〈σ̂(j)
y (t)〉 = p cos (∆j(t+ 2τ))
〈σ̂(j)
z (t)〉 = p sin (∆j(t+ 2τ)) sin θp

(3.33)

Assuming that the tipping angle is identical for all spin subsets, one can show that the
transverse magnetization at time t = 0 is:

{
〈σ̂x(0)〉 = p

2(1 + cos θp)
∑
j sin (2∆jτ)

〈σ̂y(0)〉 = p
2(1− cos θp) + p

2(1 + cos θp)
∑
j cos (2∆jτ)

(3.34)
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If 2τ � T ∗2 , the sums
∑
j sin (2∆jτ) and

∑
j cos (2∆jτ) average to zero and as a result

the spin integrated echo signal Ae is proportional only to:

Ae ∝
p

2(1− cos θp), (3.35)

allowing to determine Pin corresponding to a π pulse.

CPMG sequence

 �
�/2x �y �y �y �y

� �CPMG/2 �CPMG

Figure 3.7: CPMG sequence. The spin echo generated by the Hahn echo sequence
can be refocused m times by a series of equally spaced π pulses applied along the echo
phase direction.

After the echo detection, waiting a time of about 1/Γ1 to let the spins come back to
equilibrium is necessary before repeating the Hahn Echo sequence and detect a second
echo. This limit can be overcome by the Carr-Purcell-Meiboom-Gill (CPMG) sequence
that allows to refocus the magnetization several times before decoherence occurs (see
Fig.3.7). The first part of CPMG is the Hahn echo sequence. A delay time τCPMG/2
(generally different from τ) after the echo, a train of m π pulses equally spaced by
τCPMG is applied. Each π pulse causes an additional magnetization refocusing and
therefore emission of an extra echo. As a result, in a single experimental sequence
m extra echoes are detected in the same measurement time. Averaging all the echoes
would lead to an ideal

√
m-fold improvement of the signal-to-noise ratio (SNR), that is

however limited at high m by the residual decoherence rate. In many experiments we
use the CPMG sequence to increase the SNR and perform faster measurements.





Chapter 4

Bismuth donors in Silicon

This last chapter of the Background part is dedicated to the spin system we use in our
experiments: bismuth donors in silicon (Si:Bi). The first in-depth study of group-V
donors in silicon is due to the works from Honig and Feher [23, 24] performed in the
1950s, particularly focused on phosphorus and arsenic. Renewed attention to these
systems has emerged in the last twenty years after the Kane’s proposal of a quantum
computer based on phosphorus donors in silicon [25].
Silicon as a host material for donor spins is of great interest because its main isotope
28Si has zero nuclear spin so that an enriched 28Si crystal would realize a very quiet mag-
netic environment. And indeed, ultra-long coherence times were measured for donor
electron spins in silicon, which makes them suitable candidates for quantum informa-
tion processing and storage. Due to its simple energy spectrum and widespread use in
CMOS technology, phosphorus is the most studied silicon donor. Other group-V donors
include 31P, 33As, 121,123Sb and 209Bi(see 4.1). Bismuth is the heaviest atom and shows
the largest electron confinement, consistently with the largest hyperfine interaction and
ionization energy. It recently gained new attention due to its optimal working point at
which its spin transition frequency is at first order independent on magnetic field and
thus insensitive to magnetic field noise, leading to the longest measured coherence time
for an electron spin in the solid state [26].

Table 4.1: Group V donors characteristics: ionization energy (ED), apparent Bohr
radius (a0), nuclear spin and hyperfine coupling constant (A) and the energy difference
between the first excited valley state and the ground state (∆E). Extracted from
[27–31].

Donor 31P 33As 123Sb 121Sb 209Bi
ED (meV) 45.6 53.8 42.8 42.8 71
a0 (nm) 1.82 1.66 1.86 1.86 1.45

∆E (meV) 13 22.5 12.3 12.3 41
I 1/2 3/2 5/2 7/2 9/2
A (MHz) 118 198 186 101 1475.4

In this chapter we aim at providing the main information on bismuth donors in sil-
icon needed to describe our experiments. We first present the electronic structure
before concentrating on the spin Hamiltonian to illustrate the spin energy levels and
microwave transitions in the relevant limits. We then move to the decoherence and
energy relaxation processes with particular focus on the role of the environment of 29Si

47
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nuclear spins. We briefly discuss the effect of strain before analyzing the phenomena
induced by optical illumination. We conclude with some details on the fabrication and
characterization of the sample used in our experiments.

4.1 A substitutional donor in silicon

Figure 4.1: Bismuth donor in silicon. a A single bismuth substitutional impurity
in silicon diamond lattice. b Silicon energy band diagram; valence band maximum and
conduction band minimum highlighted in red and yellow, respectively. c First Brillouin
Zone, with the six degenerate valleys of the conduction band indicated in yellow. Blue
ellipsoids symbolize isoenergy surfaces.

Silicon is an element of the IV-group crystallizing in a diamond structure, where each
silicon atom is at the center of a tetrahedron whose vertices are occupied by its four first
neighbours to which is covalently bound (see Fig.4.1a). The corresponding Brillouin
zone in the reciprocal space is shown in Fig.4.1c. The band structure represented
in Fig.4.1b, shows an indirect band-gap of energy Eg = 1.1 eV at 300K. While the
valence band maximum is at the center Γ of the Brillouin zone, the six-fold degenerate
conduction band minimum takes place at a distance 0.85 2π/a from Γ along the six
vectors ±kx, ±kx and ±kz, a = 0.543 nm being the silicon lattice parameter. These
six degenerate conduction band minima are called silicon valleys.
A bismuth donor is an impurity substituting a silicon atom in the lattice. Four of its
valence electrons form a covalent bond with the four neighbouring silicon atoms, keeping
almost unaltered the local geometry (see Fig.4.1). The fifth electron is either bound
to the bismuth nucleus Coulomb potential forming the ’neutral donor’ (state D0) or
ionized to the conduction band (state D+). The ionization energy is ED =71meV [29].

4.1.1 Electronic state

The V-group donors in silicon are called shallow impurities because ED � Eg. Since
the donor electron wavefunction of such impurities extends over many lattice sites (see
Fig.4.2a), it is naturally written as a linear combination of wavefunctions of electrons
in the silicon conduction band, and inherits some of their characteristics. Moreover,
the dielectric properties of silicon affects the Coulomb interaction with the central
ion. We first consider the approximate solution for the electronic structure obtained
applying the method developed by Kohn and Luttinger [32] (see also [33]), based on the
effective mass theory (EMT). Here the electrostatic potential of the nucleus binding
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Figure 4.2: Bismuth electronic states. a Illustrative schematic of the donor wave
function and of the Coulomb potential compared to the lattice parameter. b Six-fold
degenerate ground states predicted by effective mass theory with an additional valley-
orbit interaction perturbation.

the electron is modeled by the Coulomb potential V (r) = −e2/(εSir), where εSi is
the silicon dielectric constant. The EMT predicts a 1s ground state in the form of a
superposition of six degenerate valley wavefunctions consisting of the product of the
conduction band function φkµ(r) with a hydrogen-like envelope function Fµ(r) at the
µ-th conduction-band valley [34]:

Ψ(r) =
∑
µ

αµFµ(r)φkµ(r). (4.1)

The Bohr radius a0 reported in Table 4.1 is here the parameter indicating the spatial
extension of the hydrogenic envelope function Fµ(r). The coefficients |αµ| represent
instead the probability for the donor electron to occupy the µ valley state and are
called valley populations. The approximations of EMT lead to the same solutions for
all the donors, giving the same a0 and an ionization energy ED = −31.3meV.
These results are in contradiction with the differences observed between the donors
as evidenced in Table 4.1. Moreover, the prediction of a single degenerate state is
in contradiction with experimental results [28]. Such discrepancies are attributable to
the EMT failing in taking into account the environment in the proximity of the donor
nucleus. An improved model takes into account the tetrahedric unit cell surrounding the
donor together with the core and valence electron screening the the Bi nucleus attractive
potential, by adding a phenomenological interaction called ’valley-orbit’ [34]. This
more accurate model catches the observed ground state degeneracy lifting, predicting
three distinct 1s states labeled by their tetrahedral symmetry group designation: a
symmetrical ground-state A1, a three-fold degenerate level T2 and a two-fold degenerate
level E (see Fig.4.2b).
The valley-orbit interaction yields the different ionization energy, Bohr radius and hy-
perfine coupling constant for the various donors in agreement with measurements,
as reported in Table 4.1. Bismuth emerges as the most strongly bound donor with
ED = 71meV and consistently with the smallest Bohr radius a0 = 1.45nm and largest
hyperfine constant A/2π = 1.4754GHz. In the following, we are mainly interested in
the spin properties of the donor in its neutral ground state A1. Nonetheless, an impor-
tant role is played by the higher energy states in various phenomena we discuss in this
thesis.
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Figure 4.3: Bismuth charge state. a At non-zero temperature, electrons bound
to donors are excited to the conduction band, resulting in a partial ionization of the
donors and a lowering of the Fermi energy level. b Fraction of ionized donors N+

D /ND
as a function of temperature in the case of bismuth, evaluated with ED = 71meV and
ND = 1016 cm−3.

4.1.2 Charge state

The probability for a donor to be in the neutral or ionized state depends not only on
the ionization energy and temperature, but also on the density of implanted atoms ND
and the density of states close to the conduction band minimum Nc. By calculating
the position of the Fermi-level in between the conduction band and the donor ground
state A1, the equation for the number of ionized donors N+

D in a non-degenerate semi-
conductor is found to be:

N+
D = ND

1 + (2N+
D /Nc)eED/kBT

, (4.2)

where T < 400K is assumed to neglect the contribution of free carriers excitation from
the valence band. Solving Eq.4.2 for a concentration of bismuth donorsND = 1016 cm−3

and an ionization energy ED = 71meV (see Fig.4.3), bismuth donors are found in their
neutral state for temperatures up to 40K. In our experiments performed at T <1.2K,
all donors are expected to be in their neutral state. However, even at low temperatures,
donors can also be ionized by externally applied electric field [35, 36] or internal electric
field associated to the formation of Schottky barriers [37].

4.2 Spin levels and ESR-allowed transitions

We now consider the spin properties of a neutral bismuth donor, arising from the elec-
tron spin S = 1/2 and the nuclear spin I = 9/2 coupled by the hyperfine constant
A/2π = 1.4754GHz. In the presence of an applied magnetic field B, the spin Hamil-
tonian reads [38]:

Ĥ/~ = B ·
(
γeŜ ⊗ 1− γn1⊗ Î

)
+AŜ · Î, (4.3)

where γe/2π = 27.997GHz/T and γn/2π = 6.962MHz/T are the electronic and nuclear
gyromagnetic ratios, respectively. The first term describes the Zeeman effect and the
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second the isotropic hyperfine coupling [38]. We now follow the analysis made by Mo-
hammady et al. in ref.[39] to discuss the properties of the eigen-states and of the ESR
transitions, with particular focus on the limit of low magnetic field. First, we rewrite
Eq.4.3 assuming a static magnetic field B0 = B0ez applied along z:

Ĥ0/~ = AŜz Îz + A

2 (Ŝ+Î− + Ŝ−Î+) + ω0(Ŝz − δÎz), (4.4)

where ω0 = B0γe and δ = γn/γe = 10−3. The twenty states defining the Zeeman basis
{|ms,mi〉}, with ms = ±1/2 and mi = −9/2...9/2, do not diagonalize the Hamiltonian
due to the hyperfine coupling. The eigenstates are therefore hybridized electro-nuclear
states we detail hereafter. The energy spectrum as a function of B0 obtained from
diagonalization of the Hamiltonian Eq.4.4 is shown in Fig4.4.

4.2.1 Eigenstates

To introduce the spin system eigenstates, we first consider the application of the Hamil-
tonian Eq.4.4 on a state of the Zeeman basis:

Ĥ0/~ |±
1
2 ,mi〉 =

(
±A2 mi ±

ω0
2 + ω0δmi

)
|±1

2 ,mi〉+ A

2 Î± |∓
1
2 ,mi〉 . (4.5)

As expected, Zeeman states are mixed by the hyperfine interaction. However, it is
evident that the |12 ,

9
2〉 and |−

1
2 ,−

9
2〉 are unmixed eigenstates of the Hamiltonian since

Î± |∓1
2 ,±

9
2〉 = 0. Their energy is:

E|± 1
2 ,±

9
2 〉

= 9
2A±

ω0
2 (1 + 9δ). (4.6)

In the bismuth spectrum (see Fig.4.4), these two unmixed states are the only ones
showing a linear energy dependence on magnetic field.
In the presence of the hyperfine coupling term, the projection of the total angular
momentum F̂ = Î+Ŝ onto ez is still commuting with the Hamiltonian, [Ĥ0, Ŝz+Îz] = 0,
and its eigenvaluem = mi+ms is thus a good quantum number. From Eq.4.5 it appears
that for |m| < 5, |±1

2 ,mi〉 = |±1
2 ,m∓

1
2〉 hybridizes with |∓1

2 ,mi ± 1〉 = |∓1
2 ,m±

1
2〉.

As shown in ref.[39], the expression for the eigenstates exact for any field and value of
m is then:

|±,m〉 = a±m |±
1
2 ,m∓

1
2〉+ b±m |∓

1
2 ,m±

1
2〉 , (4.7)

where

a±m = cos θm2

b±m = ± sin θm2 ,

(4.8)

(4.9)

with the value of θm given by:

tan θm = (25−m2)1/2

m+ ω0
A (1 + δ) . (4.10)
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Figure 4.4: Bismuth energy spectrum. a Energy-levels computed from the di-
agonalisation of the Si:Bi Hamiltonian as a function of B0 (Eq.4.4). The coupled
energy-levels E±m are color-coded from purple to red, the uncoupled energy-levels are
in black. Figure adapted from [39, 40]

The corresponding eigen-energies are:

E±m = A

2 (−ε±Rm), (4.11)

where:

R2
m =

[
m+ ω0

A
(1 + δ)

]2
+ (25−m2)

ε = 1
2 + 2ω0mδ.

(4.12)

(4.13)

We notice that in the high-field limit the Zeeman basis is recovered as the eigen-basis
of the Hamiltonian, as expected from the fact that the hyperfine coupling becomes
negligible compared to the Zeeman term that is linearly increasing with B0. Indeed
tan θm → 0, thus a±m → 1 and b±m → 0, leading the |±,m〉 state to converge respectively
to the Zeeman eigenstates |ms = ±1

2 ,mi = m∓ 1
2〉. Coherently with this analysis, it is

apparent that the eigenstates can be labeled in various ways (see Fig.4.1): by order
of increasing energy {|i〉 , i = 1, ...20}, by the coupled basis {|±,m〉} and in the high
field limit by the electron and nuclear spin quantum numbers in the Zeeman basis{
|ms,mi〉 ,ms = ±1

2 ,mi = −9
2 ...

9
2

}
.

Low-field limit

At B0 = 0 nine degenerate ground states (’+’ in the coupled basis notation) are sepa-
rated from 11 excited states (’−’) by 5A/2π ≈ 7.37GHz, often called zero-field splitting.
In our experiments we are in the ’low field limit’ where ω0 = B0γe � A, or close to it.
The following approximation for the ′+′ and ′−′ eigen-energies is then obtained:
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E+
m = +9

4A+ m

10ω0(1 + δ ∓ 10δ) with m ∈ −5, 5

E−m = +11
4 A−

m

10ω0(1 + δ ∓ 10δ) with m ∈ −4, 4.

(4.14)

(4.15)

In this limit, the effect of B0 is to linearly lift the degeneracy within the two multiplets.
The magnetic field dependence of all the energies, and the coefficients a±m and b±m
describing the mixing of the Zeeman states, are strongly dependent onm in this regime.

Figure 4.5: Transition schematics. a At high field, the usual ESR transition between
levels |ms = 1

2 ,mi〉 ↔ |ms = −1
2 ,mi〉 are allowed (brown arrows). At lower fields, the

hyperfine coupling renders the Zeeman basis invalid to describe the hybridized electron-
nuclear states (symbolized by the blue ellipses) b In the low-field limit an accurate
description is given by the coupled basis |±,m〉. The high field transitions are now
labeled |+,m〉 ↔ |−,m− 1〉. The hyperfine-induced mixing allows in addition the
transitions |−,m〉 ↔ |+,m− 1〉 (blue arrow), as well as |+,m〉 ↔ |+,m− 1〉 and
|−,m〉 ↔ |−,m− 1〉 in the MHz range (grey arrows).

4.2.2 ESR-allowed transitions

As discussed in ch.3, in a magnetic resonance experiment the Rabi frequency induced
by the drive and the signal emitted by the spin are proportional to the matrix element
〈i
∣∣∣Ŝ∣∣∣ j〉. In the following we estimate it for Si:Bi in the relevant limits.

Sx transitions allowed at large magnetic field

In the high-field limit, electron and nuclear spins are decoupled and the eigenstates
of Si:Bi converge to the Zeeman basis, leading to the usual selection rules for electron
spin transitions: |∆ms| = 1. The transitions with non-zero matrix element are the ten
|ms = 1

2 ,mi〉 ↔ |ms = −1
2 ,mi〉 with the associated 〈1/2,mi

∣∣∣Ŝx∣∣∣− 1/2,mi〉 = 1/2, as
expected for an electronic spin 1/2.

Sx transitions allowed at low magnetic field

At lower field, the states |12 ,mi〉 and |−1
2 ,mi〉 are changed in the hybrid states |+,m〉

and |−,m− 1〉 as illustrated in Fig.4.5. The same transition at lower field does not
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Figure 4.6: Bismuth ESR transitions. a Energy levels diagram with ESR
allowed transitions symbolized with arrows: Sx transitions allowed at large B0
|+,m〉 ↔ |−,m− 1〉 (brown arrows, panel b), Sx transitions forbidden at large B0
|+,m〉 ↔ |−,m+ 1〉 (blue square arrows, panel c) and Sz transitions forbidden at
large B0 |+,m〉 ↔ |−,m〉 (pink circle arrows, panel d). NMR-like transitions are
shown with grey triangle arrows. The additional grey level shows the position of the
|+,−5〉 level at large B0. b-d Frequencies of ESR allowed transitions as a function of
B0. The curves coloring indicates the transition matrix element value. The color scale
is identical for all panels and given in inset of panel b. The grey circles in a and on the
right-side of panels b-d frames indicate degenerate transitions (see main text). Figure
extracted from [37].

correspond anymore to a pure electron spin flip and the the Sx matrix element becomes
smaller than 1/2 and dependent on m:

〈+,m
∣∣∣Ŝx∣∣∣−,m− 1〉 = 1

2a
+
ma
−
m−1 = 1

2 cos θm2 cos θm−1
2 . (4.16)

Beside reducing the matrix element of these 10 transitions, hybridization enables at
low field 9 extra transitions between |−,m〉 and |+,m− 1〉. The frequency and matrix
elements of these 9 transitions forbidden at high field are plotted in Fig.4.6. Their
matrix elements, tending to zero at high field, are:

〈−,m
∣∣∣Ŝx∣∣∣+,m− 1〉 = 1

2b
+
mb
−
m−1 = −1

2 sin θm2 sin θm−1
2 . (4.17)

A new weaker selection rule for the Sx transitions thus appears due to the hyperfine
interaction, fixing |∆m| = 1.
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We notice here that the transitions |+,m〉 ↔ |−,m− 1〉 and |+,m− 1〉 ↔ |−,m〉
are quasi degenerate in frequency for |m| 6 4, especially if compared to typical val-
ues of inhomogeneous broadening, and that their matrix elements are complementary:∣∣∣b−mb+m−1

∣∣∣ /2 +
∣∣∣a+
ma
−
m−1

∣∣∣ /2 ≈ 1/2.

NMR-like Sx transitions

In addition to the transitions in the GHz range discussed above, the electro-nuclear
hybridization allows Sx transitions between |±,m〉 and |±,m− 1〉. These transitions
in the MHz range corresponds in the high field limit to pure nuclear spin flips that
can only be driven by the nuclear spin matrix element Ix. These sizeable Sx matrix
elements acquired at low field are:

〈+,m
∣∣∣Ŝx∣∣∣+,m− 1〉 = 1

2a
+
mb

+
m−1 = 1

2 cos θm2 sin θm−1
2

〈−,m
∣∣∣Ŝx∣∣∣−,m− 1〉 = 1

2a
−
m−1b

−
m = −1

2 cos θm−1
2 sin θm2 .

(4.18)

(4.19)

Consequently, these transition can be driven faster than the usual nuclear spin transi-
tions, as demonstrated in [41]. Moreover, their electronic character lead to a stronger
spin-spin interaction as we will see in the following.

Sz transitions

Another property of Si:Bi caused by the hyperfine coupling is the existence at low field
of 9 transitions with sizeable Sz matrix element. A microwave field B1 parallel to be
zero can thus excite these transitions connecting the levels |+,m〉 and |−,m〉, whose
matrix element is given by:

〈+,m
∣∣∣Ŝz∣∣∣−,m〉 = sin θm2 . (4.20)

Their field dependence of these matrix elements and of the corresponding transition
frequency is shown in Fig.4.6. We notice that their frequency is in-between two Sx
transitions.

Clock-transitions

In the Si:Bi spectrum shown in Fig.4.6 exist 8 minima. These df/dB = 0 sweet-spots
predicted by Mohamady et al. [39, 42] for V-group donors in silicon are called clock
transitions and originates from the interplay of the Zeeman and the hyperfine terms in
the Hamiltonian. Observed experimentally by Wolfowicz et al. [26], clock transitions
are of particular interest for quantum information applications since their coupling
to magnetic noise is strongly suppressed and substantial increase of coherence time
is observed. Among the V-group donors, bismuth is the only one presenting clock
transitions in the gigahertz range, thus suitable for quantum information processing in
combination with circuit-QED.
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4.2.3 Effective spin 1/2 approximation

We discuss here the possibility to describe the twenty-level bismuth spin system as an
effective spin 1/2 in a magnetic resonance experiment. The two transitions |+,m〉 ↔
|−,m− 1〉 and |+,m− 1〉 ↔ |−,m〉 are quasi degenerate in the |m| 6 4 manifold so
they are simultaneously resonant with the drive field B1. As long as interaction with
the environment is negligible, the corresponding four spin states are isolated from the
other 16 and the two resonant transitions are well described as two species of spin 1/2
with slightly different Larmor frequency and Sx matrix element.

Temperature, T (K)

A
e 
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.u

.)

4

6

2
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Figure 4.7: Polarization dependence on temperature. Polarization pBi(T ) (red)
of the two quasi-degenerate transitions |+, 0〉 ↔ |−,−1〉 and |+,−1〉 ↔ |−, 0〉 at B0 =
62.5mT as a function of temperature compared to the polarization p1/2(T ) (blue) of
a spin 1/2 having the same transition frequency. The two curves are normalized to
assume the value of 1 at 1.2K.

One major deviation from the spin 1/2 approximation is expected for the temperature
dependence of the polarization p(T ) of the probed transitions and therefore of the
magnetic resonance signal proportional to it. For a spin 1/2, we have seen that p1/2 =
〈σz〉 (T ) = tanh(~ω/2kT ). The polarization of the two resonant transitions is instead
the population distribution unbalance between the two excited and the two ground
states: pBi(T ) = (p|−,m〉+ p|−,m−1〉− p|+,m〉− p|+,m−1〉), where p|±,m〉 = e−E±,m/kT /Z is
the occupation probability of |±,m〉, with Z =

∑
±,m e

−E±,m/kT the partition function.
The red line in Fig.4.7 shows pBi(T ) for the quasi degenerate transitions |+, 0〉 ↔
|−,−1〉 and |+,−1〉 ↔ |−, 0〉 at B0 = 62.5mT compared to the p1/2(T ) of a spin 1/2
with the same transition frequency ω0/2π = 7.41GHz.
As long as T > 100mK and B0 < 70mT, the thermal energy is much larger than the
energy difference between hyperfine states of both + and −manifolds E|±,m〉−E|±,m−1〉.
In that case, one can show that pBi(T ) ' 1

9
1+e−~ω0/kT

1+11/9e−~ω0/kT
tanh(~ω0/2kT ), which can be

approxmiated by 1
10 tanh(~ω0/2kT ) especially when kT > ~ω0, which happens in our

case for T > 300mK. This is visible in Fig.4.7, where the computed pBi(T ) (red curve)
indeed coincides well with the result for a spin-1/2 p1/2(T ) (blue curve) for T > 300mK
(by proper choice of the scale for Ae).
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4.3 Bismuth donor interactions with the spin bath

Each bismuth donor interacts with two different kinds of neighbouring spins: other
bismuth donors and 29Si nuclear spins. We address in the following the details of these
interactions and their effects. The quantitative analysis is based on the parameters of
the sample used in our experiments: bismuth donor concentration C = 3 × 1016 cm−3

and 4.9% natural abundance of 29Si. In Table 4.2 we report relevant energy and length
scale of the spin baths in our sample.

Table 4.2: Length and energy scales of the donor and 29Si spin baths in our
sample: Average bismuth electron spin Larmor frequency ωS , average 29Si nuclear
spin Larmor frequency ωI , the average distance between neighbouring 29Si nuclear
spins d29Si, the average distance between neighbouring Bi donor spins dBi, the dipolar
coupling between two 29Si spins HSi-Si

dip , the dipolar coupling HBi-Bi
dip between two Bi

spins separated by dBi, the dipolar coupling HSi-Si
dip between two 29Si spins separated by

dSi, the hyperfine coupling HBi-Si
hf between a Bi donor spin and the closer 29Si spins,

homogeneous Bi donor linewidth γ2 given by the measured decoherence rate of bismuth
ESR transition at 10mT. The energy values are estimated in the field range 0-70mT.

Bi ωS/2π ∼7.4GHz
29Si ωI/2π 0− 0.5MHz

d29Si ∼0.7 nm
dBi ∼20 nm

HSi-Si
dip /h ∼50Hz

HBi-Bi
dip /h ∼10 kHz

HBi-Si
hf /h .1MHz
γ2 2 kHz

4.3.1 Nuclear spin bath

The 29Si isotope has a spin 1/2 and constitutes the most relevant magnetic impurity
in the otherwise spinless 28Si environment.

Hamiltonian

In the following we describe a single ESR transition of the bismuth spectrum as an
effective spin S = 1/2 of frequency ωS . The interaction of the donor spin with a
29Si nuclear spin I = 1/2 of frequency ωI is described by the hyperfine hamiltonian
Ĥhf = ŜAÎ, where A is the hyperfine tensor accounting for both isotropic Fermi
contact and dipolar interaction. Since ωS � ωI , |A| (see Table 4.2) the donor spin
quantization axis is unaffected by the nuclear spin and electro-nuclear spin flip-flop
are highly forbidden. The non-secular terms proportional to the Sx operators are thus
neglected and the Hamiltonian of a donor interacting with a 29Si nucler spin in a static
magnetic field B0 applied along z is [43]:

Ĥ = ωSSz − ωIIz +BSzIz + CSzIx, (4.21)
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where the hyperfine couplings B and C are proportional to the bismuth transition
energy sensitivity to the magnetic field df/dB. Each bismuth ESR transition thus
interacts with different strength with the nuclear spin bath.
The effective spin-1/2 approximation is valid in the high field limit where the hyperfine
coupling |A| is much smaller than the energy difference between two hyperfine states of
bismuth E+−

m −E+−
m ≈ γeB0/10. Given that the maximum value of |A| is of the order

of 1MHz, at B0 < 1mT the donor spin interaction to the most coupled 29Si nuclear
spins causes mixing of the donor eigenstates and Eq.4.21 is not anymore valid.

Inhomogeneous broadening

The static inhomogeneity of the silicon nuclear spin bath causes via the secular terms
in Eq.4.21 the local magnetic field along z seen by each donor to be different and
thus contributes to the inhomogeneuos broadening of the ESR spin linewidths. This
29Si-induced broadening has been measured for phosphorus and bismuth donors in
silicon to be 2.5G [44] and 4G [45, 46], respectively. The difference being caused
by the more confined bismuth electron wavefunction that yields larger Fermi contact
hyperfine coupling to the closer nuclei. The ESR linewidth can be estimated as ∆B =√

2ln2f
∑
iA

2
i [44], where f is the fraction of 29Si and Ai is the Fermi contact hyperfine

coupling to the nuclear spin at site i. The relevant Fermi contact hyperfine couplings
of bismuth have been estimated by Y.M.Niquet from CEA-INAC, by calculating the
donor electron wavefunction at the lattice sites with a tight-binding model [47]. Using
the calculated Ai, the estimated linewidth is ∆B = 4.2G [38], close to the experimental
value. Notice that the frequency linewidth Γinh = df

dB∆B originated by the 29Si static
field ∆B = 4G is expected to be different for each bismuth ESR transition due to their
different magnetic field sensitivity df/dB(B0).

Decoherence by spectral diffusion

We consider now the effect of silicon nuclear spin bath fluctuations on the donor spin.
As reported in Table 4.2, the average distance of 0.7 nm between nuclear spins gives a
nuclear dipolar coupling of the order of ∼ 50Hz that induces nuclear spin flip-flops.
As a consequence, the donor is subjected to a fluctuating magnetic field perturbing its
Larmor frequency and causing the loss of the phase information during its coherent
evolution.
In Ch.3 we have seen that this relaxation of the spin transverse component to zero is
known as decoherence. In this process the phase of the two spin states superposition
is lost due to interaction with the environment. The Hahn echo sequence suppresses
dephasing caused from static inhomogeneity of the magnetic field but is sensitive to
the magnetic field fluctuations during the spin evolution time 2τ . This process can be
seen as a random walk of the spin frequency within the spin spectral line, and for this
reason take the name of spectral diffusion. Increasing the delay time τ the spin-echo
amplitudes then disappears in a characteristic time called coherence time T2.
When dephasing processes are negligible, T2 is equal to its maximum value of 2T1. This
is the case for bismuth in silicon at temperatures T > 14K [45]. Our experiments are
performed at T < 1.5K where the spin-lattice T1 exceeds hours and T2 is limited by
the fluctuations of the nuclear spin bath. At such low temperatures the nuclear spin
T1 is negligibly long and the bath dynamics is dominated by nuclear spin flip-flops.
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The nuclear spins closest to the donor cannot easily exchange energy with other spins
in the bath, due to their large detuning induced by the strong spatial dependence of
the contact hyperfine coupling to the electron and constitute the so called "frozen-core"
[38]. On the other hand, spins too far away negligibly affect the donor spin energy. It
is therefore the "active shell" in the intermediate region that causes donor decoherence.
This nuclear-induced spectral diffusion results in a stretched exponential decay of the
transverse magnetization [38, 48].

Figure 4.8: Coherence time of bismuth in natural silicon. Spin echo decay
measured in natural silicon for bismuth concentration of 3× 1015 cm−3 at 10K and at
8.81T with field aligned along [100]. A spectral diffusion coherence time of 400µs is
extracted from fit with a stretched exponential function. Adapted from [45].

Coherence time of bismuth in natural silicon has been extensively studied [38, 45, 46].
A spectral diffusion coherence time T2 ranging from 0.3ms to 0.8ms is observed at 9.7
GHz and B0 = 0.57T depending on the B0 orientation [38], in agreement with the
model of nuclear flip-flop by dipolar coupling. The angular dependence arises from the
expression of the nuclear dipolar coupling being strongly affected by the alignment of
the nuclei with respect to the field. Due to the different df/dB of the various bismuth
transitions at low field, T2 SD depends on the measured transitions [38]. As expected
from the dynamics of the nuclear bath, the temperature dependence of T2 reported in
refs. [45, 46] shows no change below 14K, thus a similar value for T2 in between 0.3ms
and 0.8ms is foreseen in our experiment.
As previously discussed, at the clock transitions df/dB = 0 and consequently all the
decoherence processes presented above are strongly suppressed. Wolfowicz et. al [26]
showed an enhancement of T2 from 0.8ms to 90ms in natural silicon. In isotopically
purified 28Si samples the contribution of the 29Si nuclear bath is eliminated and the
record value of 2.6 s has been reported [26].

4.3.2 Electron spin echo envelope modulation

Another effect of the silicon nuclear spins coupled to the donor is the modulation of the
echo amplitude at frequencies related to the nuclear transition frequencies. This effect
arises from the rotation of the nuclear quantization axis after an electron spin flip. The
consequent nuclear precession affects coherently the electron spin motion leading to the
electron spin echo modulation (ESEEM) phenomenon. We follow here the approach of
references [43, 49] to introduce it.
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Figure 4.9: ESEEM model system for electron spin S=1/2 and nuclear spin
I=1/2. a Nuclear spin (purple) subject to external field B0 and dipole field (blue) of a
nearby electron spin (green) located at relative position r. b Energy diagram showing
the electron transitions (green), the nuclear transitions (purple), and the (normally for-
bidden) electron-nuclear transitions (orange). The energy levels |1〉 , ..., |4〉 are labeled
according to the eigenstate of the Zeeman basis. c Quantization axes ω↑ and ω↓ due to
mixing of the nuclear states, which results in inclination of the axis from z by the angles
η↑ and η↓, respectively. d EPR spectrum showing the electron transitions (green) and
the electro-nuclear transitions (orange) as well as the relation of these transitions to
the nuclear frequencies ω↑ and ω↓ (purple). Figure taken from [49]

The system of an electron spin S=1/2 coupled to a nuclear spin I=1/2 and subjected
to a B0 field applied along z is described by the Hamiltonian in Eq.4.21.
The term CŜz Îx is responsible for the dependence of the nuclear spin quantization axis
on the electron spin state. The angle of this axis with respect to the z direction when
the electron spin is in the |↑〉 or |↓〉 state is:

η↑ = arctan C

B + 2ωI

η↓ = arctan C

B − 2ωI

(4.22)

(4.23)

The nuclear state thus now depend on the electron state, and the two corresponding
new nuclear transition frequencies are:

ω↑ = (ωI + B

2 ) cos η↑ −
C

2 sin η↑

ω↓ = (ωI −
B

2 ) cos η↓ −
C

2 sin η↓.

(4.24)

(4.25)

The hybridization of the eigenstates originated by this rotation of the effective field
seen by the nuclear spin leads to new allowed nuclear-spin-non-preserving transitions
illustrated in Fig.4.9 together with the states energies. These transitions changing
simultaneously the electron and spin states have a matrix element equal to sin η, where
η = (η↑ − η↓)/2. In the trivial case of C = 0, η↑,↓ = 0 and only the nuclear-spin-
preserving transition having matrix element equal to cos η are allowed.
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The new transitions in the hybridized four level system lead to the appearance of ES-
EEM in the Hahn echo measurement as a function of the delay time τ . The application
of pulses resonant with the uncoupled electron spin transition ωS and having bandwidth
larger than ω↑,↓, results in the excitation of the four possible transitions. After the π
pulse the coherence of one transition is redistributed on all the four transitions, each of
it with its own frequency. The different phase acquired by the four coherences in the
time τ after the refocusing pulse yields a periodic modulation of the echo amplitude
Ae(τ) that neglecting decoherence and assuming ideal pulses is found to be [43]:

Ae(τ) = 1− k

4 [2− 2 cos(ω↑τ)− 2 cos(ω↓τ) + cos((ω↑ − ω↓)τ) + cos((ω↑ + ω↓)τ)],

(4.26)
where the modulation visibility k is given by:

k = sin2(2η) =
(
CωI
ω↑ω↓

)2

. (4.27)

The frequency spectrum of this modulation contains information on the hyperfine cou-
pling and Larmor frequency of neighboring nuclear spins, and thus constitutes a pow-
erful tool of pulsed ESR. In the two extreme limits of very weak coupling (ωI � B,C)
and very strong coupling (ωI � B,C) there is a vanishing electron-spin dependent
quantization axis for the nuclear spin and the visibility tends to zero. In the weak
coupling regime k = (C/ωI)2 and is thus proportional to 1/B2

0 . In this limit the modu-
lation spectrum simplifies including only the Larmor frequency ωI and its double. The
maximum of visibility is instead reached when η = π/4, corresponding to ωI ≈ ±B/2.
When the electron is coupled to many nuclear spins, the resulting echo amplitude is a
product of the modulation factors given by Eq.4.26 for each nucleus. Decoherence is
taken into account by an extra exponential factor describing the transverse relaxation
as a function of τ .
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Figure 4.10: ESEEM oscillation in Si:Bi at 96G. Hahn echo decay measured at
15mK and ω0/2π = 7.409GHz.

ESEEM oscillations have been studied in natural silicon [44, 50] at high field (B0 ≈
0.57T) and more recently in an isotopically purified sample [49] at very low field (B0 <
0.4mT). The ESEEM measurements reported in this thesis fall in a third different
regime, beeing measured in a natural silicon sample at low field (1 < B0 < 10mT). In
Fig.4.10 it is shown the echo decay we measured at 10mT, where ESEEM oscillation
at about 100 kHz are clearly visible.
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In the presence of ESEEM, the electron spin frequency oscillates in a range γeff that may
be much larger than the homogeneous linewidth given by the decoherence rate γ2. We
now give an estimate of this effective linewidth for the measurement shown in Fig.4.10,
as it will be used in the next section. In a semi-classical picture, after the application
of the π pulse, the magnetic field seen by the nuclear spin changes its axis triggering
a Larmor nutation of the nuclear spins around this new axis at frequency ω′I . In turn,
this nutation feeds back onto the electron spin, modulating its Larmor frequency with
periodicity τ ′I = 2π/ω′I . The amplitude of this modulation can be roughly estimated
from the visibility of the ESEEM oscillations k. When the pulse delay is a multiple
of the ESEEM period τ = mτ ′I , no phase is acquired by the electron spin during the
pulse sequence time 2τ and the echo amplitude is maximum. When instead the pulse
delay is an odd multiple of half the ESEEM period τ = (2m+ 1)τ ′I/2, the electron spin
acquires a random phase φ 6 πγeffτ

′
I . When the maximum value of φ approaches π,

the echo amplitudes reaches zero, k = 1 and γeff = ω′I/2π. The effective linewidth for
a small value of k is then approximately γeff = (ω′I/π2) arccos(1− k).
The ESEEM oscillations in the echo decay of Fig.4.10 show a modulation at about
ω′I/2π = 100 kHz and a visibility k ∼ 0.3, thus resulting in an effective electron spin
linewidth γeff ∼ 25 kHz. This value is about one order of magnitude larger than the
spectral diffusion linewidth γ2 = 1/T2 ∼ 2 kHz.

4.3.3 Donor spin bath

Hamiltonian

We now turn to the interaction of a bismuth donor with the surrounding spin bath
realized by the other donors. As reported in Table 4.2, the average distance between
bismuth dopants in our sample is dBi = (3/4πC)1/3 = 20nm, where C = 3× 1016 cm−3

is the peak doping concentration. Given that dBi is much larger than the 1.45 nm
bismuth electron wavefunction radius, the hyperfine Fermi contact coupling between
neighbouring donor is negligible and a purely dipolar interaction Hamiltonian Ĥdip can
be assumed. Considering two electron spins Ŝ1 and Ŝ2 separated by r, Ĥdip reads:

Ĥdip = 2πµ0γ
2
e~2

r3 (A+B + C +D + E + F )

A = Ŝ1zŜ2z(1− 3 cos2 θ)

B = −1
4(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+)(1− 3 cos2 θ)

C = −3
2(Ŝ1+Ŝ2z + Ŝ1zŜ2+) sin θ cos θe−iφ

D = −3
2(Ŝ1−Ŝ2z + Ŝ1zŜ2−) sin θ cos θeiφ

E = −3
4 Ŝ1+Ŝ2+ sin2 θe−2iφ

F = −3
4 Ŝ1−Ŝ2− sin2 θe+2iφ

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

where r = r(sin θ cosφex+sin θ sinφey +cos θez) in the polar coordinates system. The
value of 2πµ0γ

2
e~/(d3

Bi) ≈ 10 kHz gives the order of magnitude of the dipolar coupling
for two electron spins separated by dBi = (3/4πC)1/3 = 20nm. This coupling is reduced
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for most of bismuth transitions, which have a smaller magnetic dipole with respect to
a pure electron spin transition.
As we have seen for the interaction with silicon nuclear spins, terms proportional to
Sz lead to broadening of the ESR linewidth. However, in our sample the ∼ 10 kHz
dipolar coupling to neighbouring donors contributes negligibly to the inhomogeneous
broadening, which is instead determined by the 29Si environment (see 3.1.2). Similarly,
the dynamics of the bismuth donor bath is expected not to contribute to the decoher-
ence of the central bismuth spin compared to the 29Si bath. As a consequence, the
terms A, C andD are neglected hereafter. Contrary to the description of the donors
interaction to the 29Si bath, we are interested in the non-secular terms proportional to
S+,− of Eq.4.28 yielding to polarization transfer via flip-flop processes.

Flip flop rate

A flip-flop process can be described as an incoherent transfer of energy from the center
donor to a neighbouring spin. Consider two bismuth donors separated by a distance r
initially in the state |E,m〉 ⊗|G,n〉 and flip-flopping to the final state |E′,m′〉 ⊗|G′, n′〉
via the transitions |E,m〉 → |E′,m′〉 and |G,n〉 → |G′, n′〉 . The flip-flop rate can be
estimated as:

Γm→m′n→n′ (∆f ) = 2π
~

∣∣∣〈E′,m′| ⊗ 〈G′, n′| Ĥdip(r) |E,m〉 ⊗ |G,n〉
∣∣∣2 1

~γBi
γ2
Bi

γ2
Bi + ∆f2 ,

(4.36)

where γBi is the donor transition linewidth and ∆f is the frequency detuning be-
tween the two spin transitions. In the simple case of exponential coherence decay,
the linewidth γBi coincides with the decoherence rate γ2. However, in our experiment
at magnetic fields of 10mT or lower, ESEEM oscillations attest that the spin frequency
undergoes larger fluctuations. One can thus model the transition linewidth as being
given by γBi ≈ γeff, as discussed in the previous section.
By defining deff as the average distance between two resonant spins satisfying ∆f ≈ γeff,
Eq.4.36 can be rewritten as:

Γm→m′n→n′ = 2π
~

∣∣∣〈E′,m′| ⊗ 〈G′, n′| Ĥdip(deff) |E,m〉 ⊗ |G,n〉
∣∣∣2 1

~γeff
. (4.37)

The B, E andF terms in Eq.4.28 allows a number of different flip-flop processes for
neighbouring bismuth donors. Their rate is too slow to be relevant for decoherence
processes. However, as we detail in the following, a subset of the allowed flip-flops can
lead to polarization transfer within the hyperfine level manifold.

Polarization transfer

Consider the bismuth energy level scheme in Fig.4.11a. The two quasi-degenerate tran-
sitions |16〉 ↔ |5〉 and |15〉 ↔ |4〉 are resonant with the drive signal used to measure
the electron spin resonance. The echo amplitude is then proportional to the population
unbalance ∆N = N|16〉 +N|15〉 −N|5〉 −N|4〉. After excitation, spin longitudinal relax-
ation is measured by recording ∆N(t) via the echo. Transfer of polarization from the
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probed transition to other non-resonant transitions via flip-flop processes at time scales
comparable with the relevant Γ1 processes can contribute to the observed longitudinal
relaxation.
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Figure 4.11: Hyperfine transitions spectrum. a Sketch of a subensemble of Si:Bi
spin energy levels. The quasi-degenerate ESR transitions |16〉 ↔ |5〉 and |15〉 ↔ |4〉
(grey arrows) are resonant with the detection cavity. The small arrows of the same
colour represent the pairs of quasi-degenerate hyperfine transitions of frequency ∆F .
b Spectrum of the 6 considered hyperfine transitions at B0 = 10mT. c Spectrum of
the hyperfine transitions at B0 = 60mT.

Flip-flops between neighbouring donors, in which the resonant ESR transition relaxes
to its ground state while a non-resonant transition is excited, are highly suppressed by
energy conservation. Indeed, the detuning ∆f in Eq.4.36 is of tens of MHz at the typical
applied field B0, much larger than the ESR linewidth of a few MHz. Such electron-spin
flip-flop rate does not thus play any role in the longitudinal relaxation process. Other
flip-flop processes involving the hyperfine transitions are however possible.
The hyperfine NMR-like transitions are degenerate in couples, as depicted in Fig.4.11a.
However, at field as low as 10 mT, the inhomogeneous broadening induced by 29Si
magnetic field causes all the hyperfine transition lines to highly overlap (see Fig.4.11b).
As for the ESR transitions, this broadening can be calculated as Γinh = 4G · df/dB.
df/dB is different for all transitions but leads to an average broadening of 1 MHz, much
larger than the detuning between the hyperfine transitions at 10mT (see Fig.4.11b).
As a result, resonant flip-flops where the donor spins change their quantum number
m are possible. Such processes redistribute the population within the two + and −
manifolds leading to a reduction of the measured ∆N at the resonant transitions.
At magnetic field as high as B0 ≈ 60mT, the detuning between the couples of quasi-
degenerate hyperfine transitions increases up to a few MHz, larger than the line broad-
ening (see Fig.4.11). Energy conservation thus inhibits most of flip-flop processes. The
only flip-flops still allowed are between the couples of quasi-degenerate transitions, that
however do not change ∆N or redistribute the population, and have then no effect on
spin relaxation.
We now try to estimate the rate at which the flip-flop processes between hyperfine tran-
sitions takes place at 10mT, leading to transfer of polarization outside of the probed
transition |16〉 ↔ |5〉 and |15〉 ↔ |4〉. Two different flip-flop processes can be dis-
tinguished, the first caused by the B term and the second by the E and F terms in
Eq.4.28.
The B term of the dipolar coupling proportional to Ŝ1+Ŝ2− has a non-zero matrix
element only for flip-flops satisfying ∆m = 0 (see Fig.4.12a). This selection rule together
with the resonance condition imposed by energy conservation implies that only donors
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Figure 4.12: Flip-flop processes at 10mT. a Example of flip-flops induced by the
B term in Eq.4.28 between two spin in the + excited state manifold (red) and two spins
in the ground state manifold (blue). In both cases ∆N is reduced by 2. b Example of
flip-flops induced by the E (red) and F (blue) term between two spins sitting one in
the + and the other in the − manifold. Both examples correspond to a decrease of ∆N
by 2. In the two panels spin states are labeled by index of increasing energy (grey) and
by the coupled basis (black).

Table 4.3: Mixing coefficients of bismuth donor eigenstate. Calculated for
B0 = 9.6mT.

m -5 -4 -3 -2 -1 0 1 2 3 4 5
am 0 0.327 0.461 0.562 0.646 0.720 0.786 0.846 0.901 0.952 1
bm 1 0.945 0.888 0.827 0.763 0.694 0.619 0.534 0.434 0.306 0

in the same manifold can flip-flop in a B-term process: |±,m〉 → |±,m+ 1〉 with
|±, n〉 → |±, n− 1〉 or viceversa. For example, in the ground manifold a spin in |3〉 state
can flip to |4〉 reducing ∆N while the neighbouring donor in the |8〉 can flop to the lower
energy state |7〉. In order to give a rough estimate for a B-term flip-flop rate, we need
to evaluate the effective average distance deff between two donors able to flip-flop. We
focus on the ground state manifold at 10mT and at a temperature for which all the −
states are equally populated and the + manifold is empty. The central donor can then
flip-flop with almost any neighbour, the only exception being for the m = ±4 states
that can change m uniquely in one sense. However, due to inhomogeneous broadening
the fraction of resonant spins is about γeff/Γinh. As previously discussed, the transition
effective linewidth at 10mT due to ESEEM oscillations is γeff ∼ 25 kHz. The 29Si-
induced inhomogeneous broadening is Γinh = 4G · df/dB ≈ 1MHz. The effective
resonant donor concentration is thus Ceff = Cγeff/Γinh ≈ 8× 1014, corresponding to an
effective average distance deff = (3/4πCeff)1/3 ≈ 70 nm. We can then write the B-term
flip-flop rate for the − manifold using Eq.4.37 as:

Γm→m+1
n→n−1 = 2π

~2

(
2πµ0γ

2
e~2

r3

)2 1
16(1− 3 cos2 θ)2b2na

2
n−1a

2
mb

2
m+1

1
γeff

, (4.38)

where am,n and bm,n are the bismuth spin eigenstate mixing coefficients given by
Eqs.4.8-4.9, whose values at 10mT are listed in Table 4.3. The rate for r = deff is
then found to be of the order of 10−2 s−1. This value is however much larger for the
couples of resonant donors separated by less probable distances r < deff due to the 1/r6

dependence of the rate.
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The E (F ) term of Eq.4.28 proportional to Ŝ1+Ŝ2+ (Ŝ1−Ŝ2−) yield the ∆m = +2
(∆m = −2) selection rule. The corresponding resonant flip flop processes are illustrated
in Fig.4.12b. Donors in one manifold can flip-flop with neighbours occupying any
state of the other manifold: |±,m〉 → |±,m+ 1〉 while |∓, n〉 → |∓, n+ 1〉 (|±,m〉 →
|±,m− 1〉 while |∓, n〉 → |∓, n− 1〉). For example a spin in the excited manifold state
|16〉 can flip to the higher energy state |17〉 reducing ∆N while a neighbouring spin
in the ground state manifold flop from state |3〉 to state |2〉. Similarly to the case of
B-term processes, the flip-flop rate of the the E and F terms are obtained from Eq.4.37:

Γm→m+1
n→n+1 = 2π
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(4.39)

(4.40)

The flip-flop rate for the E and F processes is thus one order of magnitude faster,
corresponding to a rate of about 10−1 s−1 for r ≈ deff.
The evolution of ∆N(t) after the excitation is described by a rate equation including
all relevant flip-flop and relaxation processes. The contributions of donors at different
relative positions must be taken into account by averaging over the probability distri-
bution for the spatial coordinates r and θ. In Chapter 7 we report evidences of such
polarization transfer taking place at fields B0 ranging from 0 to 10mT.

4.4 Bismuth donor interaction with the lattice

4.4.1 Spin-lattice relaxation

The spin of bismuth donors in silicon can relax by exchanging energy with the lattice
via phonon emission and absorption. As depicted in Fig4.13, two processes can be
distinguished: relaxation with conservation of the nuclear spin (∆ms = ±1,∆mi = 0)
with characteristic time Ts, and diagonal relaxation with an additional nuclear spin flip
(∆ms = ±1,∆mi = ∓1) with a characteristic time labeled Tx (see Fig.4.13). Diagonal
relaxation labeled Tx′ involving a double spin flip (∆ms = ±1,∆mi = ±1) is instead
highly forbidden [51].
In the following we isolate a two-level system {|e〉 , |g〉} in the bismuth spectrum having
transition frequency ωs. We describe it as an effective spin 1/2 coupled to the phonon
radiation bath of temperature Tlatt and thermal occupation number nth(ω, Tlatt) given
by Eq.2.2.

Direct-phonon process

We first consider the case in which the spin exchanges energy with the resonant phonon
modes of frequency ωs. The effective spin 1/2 polarization is then given by Eq.3.21
with Tspin = Tlatt. From Eq.3.22, the temperature dependence of spin lattice relaxation
in the direct-phonon case is then:

Γdir(Tlatt) = Γdir(0)[2nth(Tlatt) + 1] (4.41)
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Figure 4.13: Spin-lattice relaxation processes. a Subset of Si:Bi level schemes
with the various spin-lattice relaxation processes. b Direct, Orbach and Raman phonon
relaxation mechanisms. c Relaxation paths available for the spin system.

where Γdir(0) is the relaxation rate when the coupled resonant phonon modes are in
their ground state and depends on the spin and material properties. In the case of
shallow donors in silicon, Γdir(0) has been estimated theoretically by Roth [52] and
Hasegawa [53] based on two different models where the spin-lattice coupling originates
from the modulation of the spin-orbit coupling by crystal strain. From the formula
derived by Hasagawa [53, 54], it is possible to extract the following expression for
Γdir(0) in the case of Ts-type process:

Γdir(0) = c(∆E)−2ω5
s , (4.42)

where ∆E is the energy difference between the first excited valley state and the ground
state, and c is a coefficient expected to be similar for all shallow donors in silicon in the
derivation of Hasegawa [53]. Its value can be estimated from the measurements reported
by Morello et al.[54] for phosphorus donors at 40 mK. They found the expected ω5

s -
dependence: Γdir = 0.015(ωs/γe)5s−1T−5, where γe is the gyromagnetic ratio for phos-
phorus. The correspondent value of c would then be c ≈ 1.5−3.2×10−13 s−1GHz−5eV2.
We can then obtain a rough estimate for the direct phonon relaxation of bismuth in
silicon, yielding at zero temperature and ωs/2π = 7GHz, Γ−1

dir(0) ≈ 2× 105 s

Two-phonon processes

At sufficiently high temperature, other processes involving two phonons start competing
with the single phonon regime. These processes are schematically illustrated in Fig.4.13.
In the Orbach process, the relaxation is mediated by the first excited valley state. The
spin relaxes by absorbing a phonon of energy ∆E and emitting a phonon of energy
∆E − ~ωs. In the case of Raman process, the excited state is replaced by a virtual
state. Any phonon can thus be absorbed or emitted, the only matching condition being
|~ω1 − ~ω2| = ~ωs. In the high temperature limit kBT � ~ωs when these processes are
relevant, their temperature and frequency dependence is:

Orbach process [55]: Γlatt ∝ a exp(−∆E/kbT )
Raman process [55]: Γlatt ∝ bT 9 + b′ω2

sT
7,

(4.43)
(4.44)

where a, b, b′ are temperature and frequency independent coefficients that are expected
to be different for Ts and Tx processes [56].
The three different processes illustrated above are predominant in three different tem-
perature ranges depending on the values of the a, b, b′, c coefficients, and consequently
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Figure 4.14: T1 dependences as a function of temperature. Above T = 25K an
Orbach process dominates, whereas for lower temperature a Raman process is observed.
The experiment is realized at B0 = 0.57T on the highest frequency transition at f =
9.76GHz with a sample of concentration [Bi] = 5× 1014 cm−3. Extracted from [46].

changing for all the donors. In the case of bismuth, it has been experimentally deter-
mined that for Ts relaxation Orbach process is dominant above 25K [45, 46, 57]. At
lower temperatures Raman process overcomes, with experiments showing T 7 [38, 45,
46, 57] and T 9 [26, 58] dependence. At 4.2K, Γ−1

1 = 9 s is for example reported by
Wolfowicz et al [26]. The only measurement of bismuth non-radiative energy relaxation
at temperatures where direct phonon process is expected to be dominant has been re-
ported by Bienfait et al. [5]. In their work they measure Γ−1

1 = 1500 s at 20mK using
a superconducting resonator similar to the one of our experiments, a value somewhat
smaller than the predicted direct-phonon relaxation time of the order of 105 s, indicat-
ing that other relaxation processes such as spatial spin diffusion and/or charge hopping
might contribute as well.
The estimation of the spin-lattice relaxation rate for our radiative cooling experiment
performed at about 1K is thus not straightforward. From the Γ−1

1 = 9 s at 4.2K
reported by Wolfowicz et al [26], we can then estimate the lower bound on the two-
phonon process at 1K to be roughly Γ−1

1 = 104 s assuming a T 7-dependence of the
Raman process. On the other hand, given the lower concentration of bismuth donors
in our sample compared to ref.[5], we can assume Γ−1

1 = 1500 s as the minimum expected
non-radiative relaxation time for our case.

4.4.2 Effect of strained silicon lattice

The effect of strain in the silicon lattice on the donor spin spectrum has been first
observed in ref.[34] and had since then attracted a lot of interest [34, 59–62], recently
motivated by the perspective of controlling the spin properties for quantum computing
applications [61, 63].
The usual model to describe the effect of strain on the donor spin is the valley repop-
ulation model. Strain lifts the degeneracy between the valley states, which leads to
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changes in the ground state wavefunction, no longer described by the symmetric com-
bination of Eq.4.1. This model predicts that the hyperfine coupling A should decrease
quadratically with strain.
However, this is in contradiction with experimental data, which observe a linear de-
pendence of A on strain for all donors in silicon [64]. This was attributed to the
dependence of the central cell correction on the hydrostatic component of the strain
εhs. For Bismuth, dA/dεhs = 28.2GHz.
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Figure 4.15: Spectrum of bismuth donors in strained silicon. The echo ampli-
tude Ae as a function of magnetic field (red) shows two peaks with opposite sign of
frequency shift with respect to the expected ESR spectrum (grey). The positive and
negative resonance frequency shifts corresponds to different regions of the sample with
opposite sign of the hydrostatic strain, that is linearly proportional to the hyperfine
coupling change. Extracted from [65].

Pla et al.[65] explains the broadening of Si:Bi spectral lines measured in refs.[5, 6] as an
effect of this hydrostatic strain linearly changing the hyperfine coupling A. The spectra
of refs.[5, 6] are measured with an aluminum superconducting resonator very similar
to the niobium resonator used in our experiments, fabricated on top of an isotopically
purified 28Si sample. The strain induces a line broadening of more than one order of
magnitude with respect to Si:Bi line in bulk 28Si, leading to a FWHM linewidth of
about 2G (see Fig.4.15). The origin of this strain is attributed to differential thermal
contraction between the aluminum film of the resonator and the silicon substrate while
cooling the sample from ambient to cryogenic temperatures. In Chapter 5 we report
the observation of the same phenomenon due to the thermal contraction of the res-
onator niobium film. In our case the strain broadening is however competing with the
comparable 29Si-induced broadening.

4.5 Optical illumination

4.5.1 Above-gap light

The irradiation of silicon with light at frequency larger than the band-gap generates
conduction electrons interacting with the donors. The interaction of the carriers with
the donor spins gives rise to a shortening of the spin lifetime, via a variety of processes
whose detail is not yet fully understood.
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Transfer of the conduction electron spin polarization to the donor

One possible effect of above-gap light is an effective transfer of polarization from the
photo-excited conduction electrons spins to the donors. Feher and Gere [30] attribute
to such a spin-exchange process the observation of a faster electron spin relaxation
under illumination.
The transfer of polarization can result from trapping of conduction electrons by the
neutral donor to form either negative charged donor state D− in Si:P [66, 67] or bound
exciton D0X in Si:Bi when an electron-hole pair is trapped [68]. In the case of D−
formation, the random re-emission of one of the two electrons yield the donor spin
polarization to relax to the free electron equilibrium polarization value [67]. In the
case of donor bound-exciton D0X formation the transfer of polarization happens via
donor ionization. The D0X state decay by recombination of the electron-hole pair
and Auger emission of the second electron to the positive charged donor state D+ (see
Fig.4.16). The subsequent capture of a conduction electron to form the stable neutral
D0 state equilibrate the donor polarization to the conduction electron spins. Any other
donor ionization process in the presence of conduction electron would lead to the same
polarization transfer effect.

Donor nuclear spin hyperpolarization

The above-gap illumination has been observed to cause donor nuclear spin hyperpolar-
ization under different experimental conditions. The mechanism underlying this effect
is still debated.
Build-up of negative nuclear polarization of phosphorus donor has been observed at
high field and low temperature, where the electron spins are highly polarized, under
white light illumination [69]. The proposed mechanism is an Overhauser-like effect
where phonon-induced cross-relaxation of the donor spin to a higher temperature bath
compete with the pure electron-spin relaxation induced by capture and re-emission
process [67].
In very similar experimental conditions, Morley et al.[45] have instead observed for
bismuth donors the build-up of positive nuclear polarization. The authors attribute
the process to photo-excited conduction electron spin relaxing to the equilibrium high
polarization state by flip-flopping with the bismuth nuclear spin.
Negative nuclear polarization for bismuth in silicon is instead observed at 2T and
1.4K (high electron spin polarization) illuminating the sample with infrared light from
a 1047 nm laser and thus only slightly above-gap [68]. The authors propose a cross-
relaxation process mediated by the donor electro-nuclear hyperfine interaction. In their
model the capture of a conduction electron and a hole by the donor lead the formation
of a D0X with parallel electron spins. This triplet state rapidly relax to a singlet state
by flipping the donor nuclear spin due to the hyperfine coupling. The process stops
when all donors are in the mi = −9/2 state.

4.5.2 Donor bound-exciton transitions

Due to the silicon indirect band gap, D0X relaxation is dominated by the non-radiative
Auger recombination preventing coherent optical manipulation of Si:Bi spin. However,
resonant excitation of D0X by spin-dependent optical transition can be used to polarize
and readout the donor nuclear and electronic spin state [70]. With phosphorus donors,
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Figure 4.16: Bound-exciton optical transitions. a Sketch of the spins for states
D0X, D0 and D+ together with the transitions in between. b Zeeman splitting for
D0 and D0X along with the dipole allowed optical transitions. c Observed stimulated
photoluminescence spectrum for Si:Bi in a natural sample. a is extracted from [37], b
and c from [68].

Yang et al. achieved electronic polarization of 90% and nuclear polarization of 76% at
1.4K and 42.5mT in an isotopically purified 28Si sample where the optical transitions
are well resolved [71]. A few years later Steger et al. [72] reach the even higher electronic
polarization of 97% and nuclear polarization of 90% at 4.2K and 84.5mT. Moreover,
the detection of the Auger electron by photo-conductivity measurements leads to very
sensitive NMR experiment at low donor concentration [72]. We note here that at field
lower than 100mT and temperature higher than 1K, above-gap light at 1047 nm is
observed to depolarize both electron and nuclear spin transitions [71–73].
The same bound-exciton transitions between D0 and D0X as Si:P appears in Si:Bi
(see Fig.4.16). Sekiguchi et al. [68] observed them by photoluminescence spectroscopy
with above-gap laser illumination at 1047 nm. They resolve the zero-field hyperfine
splitting but the natural abundance of 29Si prevented them to resolve the nuclear states.
Repeating the experiment with a 28Si sample could provide a new way to hyperpolarize
Si:Bi electron and nuclear spin.
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Figure 4.17: Implantation profile. Calculated from implantation parameters.
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Bismuth impurities can be introduced during silicon crystal growth to provide bulk-
doped natural silicon wafers or can be implanted in existing substrates. Due to the high
atomic mass of bismuth (atomic weight=209), the implantation process creates many
lattice defects. An annealing step above 600 ◦C is required to heal the implantation
damage and ensure that the implanted bismuth atoms are converted into substitutional
impurities. Studer et al.[74] reported a conversion yield of ≈ 100% with a two-step
annealing (3min at 650 ◦C followed by 10min at 900 ◦C).
The sample used in this work is a silicon chip with natural isotopic abundance of 4.7%
of 29Si nuclear spins. It was implanted with bismuth atoms in an energy range of
500 − 3000 keV, resulting in an estimated implantation profile shown in Fig.4.17. The
sample was then annealed at a temperature of 900 ◦C, for 5 minutes, under nitrogen
flow. Based on [75], we expect an activation yield of 60%. The total number of dopants
was confirmed by standard EPR spectroscopy as well as conductance measurements.



Chapter 5

ESR spectroscopy of bismuth
donors in natural silicon

Despite its versatility, conventional inductive-detected ESR spectroscopy has a limited
sensitivity that prevent its use to study nanoscale samples. Several alternative tech-
niques such as STM tips [76], mechanical resonators [77, 78] or NV centers [79] have been
developed to overcome this limit, reaching even single spin detection [54, 78, 80, 81].
However, effort has been still put on increasing the sensitivity of spectrometers based
on inductive detection due to its universal applicability [82–85]. One promising direc-
tion is the use of superconducting resonators at low temperature, that allows to reduce
the magnetic mode volume while keeping high quality factors [6, 83, 84, 86–88]. Sen-
sitivity of 12 spins/

√
Hz has been recently reached using a superconducting resonator

with femtoliter detection volume together with a quantum limited amplifier [89].
The use of small-mode-volume and high-quality-factor superconducting resonators can
also allow to reach the Purcell regime, where the cavity induced relaxation is the fastest
spin relaxation process [5, 88]. One benefit of the Purcell-enhanced relaxation is the
possibility to repeat the measurements much faster than what the intrinsic slow relax-
ation rate would impose, especially at low temperature, increasing the spectrometer
sensitivity.
In this chapter we report the ESR spectroscopy of bismuth donors in natural silicon
performed with a spectrometer based on a superconducting resonator very similar to
the one described in refs [5, 6]. The donors more coupled to the resonator are thus
expected to be in the Purcell regime. Rapid Purcell relaxation allows us to measure
the ESR spectroscopy of bismuth at magnetic field lower than 70mT in the 10mK-
1K temperature range, whereas intrinsic relaxation time is expected to be longer than
tens of minutes. Recently, spectroscopy of bismuth donors implanted in an isotopically
purified silicon sample has been performed with superconducting resonators in similar
field and temperature regimes [6, 49, 89]. The Si:Bi spectroscopy reported hereafter
differs for being measured in a silicon sample with natural abundance of 29Si isotope
carrying a nuclear spin I = 1/2.

73
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5.1 Superconducting ESR resonator of high quality
factor and small mode volume

For our purpose of realizing a sensitive spectrometer in the Purcell regime, two distinct
figures of merit are required for the resonator. As detailed in ch.3, the spin signal
emitted in the output line is roughly proportional to the ratio g/

√
κ while the Purcell

relaxation rate is Γrad = 4g2/κ. A strong space confinement of the mode magnetic
energy is thus needed for a large value of g, together with a low loss-rate κ. The design
of such a small-mode-volume and high-quality-factor resonator is based on the previous
work of Bienfait et al.[6, 37]. We report here the main motivations of the design and
implementation choices.

5.1.1 Design

Small mode volume

The spin-photon coupling g is given by g = −γe 〈e| Ŝ · δB(r) |g〉, where δB1 is the
magnetic field at the spin location generated by the vacuum fluctuations of the resonator
current δI. From Eq.2.14, we have that one must minimize the resonator impedance
Z0 in order to maximize the current fluctuations. A small resonator inductance and a
short distance between the spins and the flowing current are thus targeted.
The above criteria are well satisfied by a planar lumped-element geometry implemented
by a small inductor wire in parallel with a large interdigitated capacitance. This struc-
ture is realized by a thin superconducting film patterned on top of the chip hosting the
spins. The spins closer to the superconducting wire are the most coupled and constitute
the probed ensemble.

High quality factor

The total resonator damping rate κ = κint + κext is limited by the minimum reachable
internal loss rate κint. The coupling rate κext to the measurement line can be freely
designed in a large range of values and is determined by κint. As we discuss in the
next chapter on radiative cooling, we aim in our experiment at the overcoupled regime,
where κext � κint. However, in order to keep the total damping rate κ sufficiently low,
we target κext ≈ 10κint.
The internal losses of superconducting lumped-element resonator have been intensively
studied, especially in the frame of quantum computing research, and internal qual-
ity factors in the range of 106 have been demonstrated [90]. The sources of internal
losses can be grouped according to the four different physical phenomena that cause
them: the motion of magnetic vortices trapped in the superconducting thin films [91],
the presence of out of equilibrium quasi particles (i.e. non-superconducting quasi parti-
cles) [92], dielectric losses [93], originating mostly from dirty interfaces and in particular
from the substrate-metal interface [94], and finally radiation from the resonator elec-
tric dipole [95]. While the first three can be optimized by material choices, fabrication
procedures and geometry, the latter can be made negligible by enclosing the sample
in a leak-tight metallic box, as shown in Fig.5.1a [96]. The box is designed so that all
its modes have frequencies well above the planar LC resonator frequency. Despite the
fact that superconducting boxes lead to better quality factors [97], we use an oxygen-
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free high-conductivity copper box to be able to apply magnetic fields for our ESR
measurements.
The coupling of the LC resonator to the measurement line is realized via capacitive
coupling to an antenna that is entering the box through a drilled hole (see Fig.5.1a).
The antenna is soldered to the inner conductor of a SMA connector screwed in the
cavity wall. The insertion-depth of the SMA in the box wall determine the length of
the antenna inside the box that can thus be tuned by several millimeters. The resulting
coupling rate κext is the sum of two contributions. The first one is a direct capacitive
coupling to the antenna while the second one is an evanescent coupling mediated by
the first mode of the copper box.
The copper box mode frequency and quality factor thus have to be designed to reach
the target resonator κext. The box must have the total quality factor smaller than its
internal quality factor in order to couple the resonator to the antenna rather than to
an additional loss channel. The box internal quality factor being of the order of several
thousands, we aim at Qbox 6 1000. The more the frequency of the first box mode is
detuned with respect to the resonator, the lower κext. We find that ωbox/2π = 8.5GHz
The resonator is made of a 50 nm film of niobium. The choice of this material is
due to the known possibility to reach high quality factor at temperatures higher than
1K, that is the desired working point for the radiative cooling experiment. While
aluminum would then be incompatible to the operating temperature too close to its
superconducting critical temperature, another suitable superconducting material would
be NbTiN. In the future the use of NbTiN could enable operation above 4K and at even
higher magnetic field. In our experiment however the maximum applicable magnetic
field of about 140mT parallel to the Nb surface is limited by the setup and not by the
induced losses in the resonator.
The resonator frequency is chosen to be sufficiently close to the Si:Bi zero-field splitting
of about 7.4GHz. In the 0-100mT range of applied B0, several ESR transitions cross
the resonator frequency provided that it is only a few hundreds of MHz detuned from
the zero-field splitting.

5.1.2 Electromagnetic simulations

The resonator frequency and coupling to the measurement line via the copper box
and the antenna are designed using 3D electromagnetic simulations realized with CST
microwave studio. The real device is shown in Fig.5.1a. The CST model reproduces
the geometry of the inside of the copper box (assuming perfect conductivity of the
walls), the antenna, the silicon sample holder and chip (with relative dielectric constant
εr = 11.5) as well as the superconducting resonator (a perfect electrical conductor of
zero-thickness). The copper sample holder and the resonator eigenmode frequencies
can be determined in the software by exciting the port placed on the antenna and
analyzing the frequency response, given as a S-parameters matrix.
The resonator geometry reported in Fig.5.1a consists in a 2-µm-wide inductive wire of
lenght 705µm in parallel with an interdigitated capacitance of 10 50-µm-wide fingers
spaced by 50µm. The whole structure fits in a rectangle of 1mm by 1.4mm and is
fabricated on a silicon sample of 3.5mm times 4mm.
The simulated reflection parameter S11 is shown in Fig.5.1b. Since no losses are in-
cluded, the sample holder and resonator modes results only in a 2π phase shift across
the two resonances while the reflected amplitude is not affected. By fitting the two
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Figure 5.1: Electromagnetic simulation. a Copper box with the LC oscillator
coupled to the measurement line via a tunable antenna mounted on a SMA through.
On the right, the resonator layout. b Phase of the simulated S11 parameter. c The
first mode of the resonator (left) and of the copper sample holder (right). The coupling
quality factors of the two modes are extracted from the fit (green line) with Eq.2.31.
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phase signals we extract the two resonance frequencies and coupling rates. The res-
onator external coupling quality factor of the order of 104 is sufficiently low compared
to the expected internal quality factor of 105 in order to be in the targeted overcou-
pled regime. Further reduction is however realized in the experiment by increasing the
antenna length.
The resonator impedance is extracted by determining the AC current Isim cos(ω0t)
flowing in the inductor for the simulated input power Pin = 0.5W at the port. We find
that Isim = 57A. Together with the fitted Qext = 3.6× 104, this gives the intra-cavity
mean photon number n̄ by using Eq.2.27. The resonator current vacuum fluctuations
δI and impedance Z0 are then obtained via Eqs. 2.12 and 2.12:

δI = Isim/2
√
n̄ = 50nA

Z0 = ~ω2
0

2δI2 = 46 Ω,

(5.1)

(5.2)

corresponding to an inductance L ∼ 1 nH and a capacitance C ∼ 0.5 pF. In the simula-
tion we have neglected the contribution of the superconducting film kinetic inductance.
However, a surface kinetic inductance of about 0.1 pH/square has been measured for our
sputtered niobium of 50 nm thickness. Given the inductor wire dimension, this would
correspond to kinetic contribution to the total inductance of about 40 pH, resulting in
an expected resonance frequency lower by a few percent.

5.1.3 Experimental implementation

Resonator fabrication

The resonator is patterned on the sputtered niobium film with an optical lithography
process followed by reactive ion etching. A preliminary HF surface cleaning step is
performed to minimize the contribution of the silicon-metal interface to the resonator
microwave losses [98].
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Figure 5.2: Niobium resonator. a Micrograph of the niobium resonator. b Pro-
filometer measurement around the central inductor wire.

Due to the chip small size of 3.5mmx4mm, a thicker optical resist is formed at the
chip edges after spin-coating. The insufficient UV exposure of these thick resist edges
yield to residual niobium after the first etching step. A second reactive ion etching step
is thus performed after resist development to remove the niobium from the silicon chip
edges, otherwise causing additional losses. During this final etching step a hard silicon
mask protects the center of the silicon chip and the resonator. The fabrication steps
are:
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• Substrate cleaning: 10’ in a Piranha acid mixture at 120 ◦C followed by deion-
ized water rinsing and blowing dry.

• Surface deoxidation: 10” in HF followed by deionized water rinsing and blowing
dry.

• Niobium sputtering: 25” deposition for a final thickness of 50 nm.

• Optical lithopgraphy: Hard contact 20” UV exposure of positive photoresist
S1813.

• Resist development: 1’30” MF319 followed by deionized water rinsing and
blowing dry.

• Etching: Reactive ion etching with a plasma of SF6 with 30% Ar for 50” at
155V acceleration voltage and 13µbar.

• Resist removal: 10’ in 65 ◦C acetone followed by IPA rinsing and blowing dry.

• Silicon chip edge etching: SF6 Reactive ion etching for 1’. During this step
the resonator is protected by a silicon hard mask.

During the first reactive ion etching step, after the unprotected niobium is removed,
the silicon substrate is etched all around the resonator. Profilometer measurement
reveals 500 nm silicon over-etching, as shown in the resonator inductor wire cross section
reported in Fig.5.2.

Sample mounting

magnetic shielding

mixing chamber plate

coil

a b

Figure 5.3: Sample mounting. a Open copper box next to the coil inside which
it is mounted. b Sample and coil inside the cryoperm magnetic shielding thermally
anchored to the mixing chamber plate.

The fabricated sample is inserted in the copper box by gluing it to a silicon sample
holder with small amounts of vacuum grease. The silicon sample holder is then glued
in the copper box sample groove, also using vacuum grease (see Fig.5.1a). Finally, the
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closed copper box is mounted in a coil providing a static magnetic field B0 parallel to
the resonator inductive wire (see Fig.5.3a) up to 140mT.
The last step to guarantee a high-quality factor is to protect the superconducting
thin film from losses occurring through out-of-equilibrium quasi-particles and vortices.
Low-pass filters containing absortive material are put on each line to minimize the
quasi-particles (see Fig.5.2.1. The coil is inserted in a 1-mm-thick cryoperm magnetic
shield to minimize stray magnetic field which may introduce vortices in the film during
cool down of the film through its critical temperature (see Fig.5.3b).

5.1.4 Microwave characterization
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Figure 5.4: Characterization of the superconducting resonator at 15mK. The
input power used to probe the resonator corresponds to n̄ ≈ 0.1. In the left panel, phase
(top) and amplitude (bottom) of S11 are shown together with the fit (green solid line).
In the right panel, the same data are reported in the complex plane.

We characterized the LC resonator by measuring the reflection coefficient S11 at 15mK
with the VNA. The detailed setup is depicted in Figs.5.8-5.9.
From the fit of S11 with Eq.2.31 we extract the internal and external loss rates κint, κext
together with the resonance frequency ω0 (see Fig.5.4). The internal loss rate is about 10
times lower than the external loss rate at a mean number of intra-cavity photon n̄ ≈ 0.1,
placing the resonator in the targeted overcoupling regime where its mode temperature
can be set by the input microwave thermal radiation. The external coupling rate is
about 3 times larger than what obtained from simulation, meaning that the antenna
is inserted a little deeper in the copper box, which is consistent with a measured
Qbox ≈ 40. As discussed in Sc.5.1.2, the lower ω0 of about ∼ 100MHz with respect to
the simulated value is probably due to the kinetic inductance contribution.
Slight variations of the resonator parameters are observed for each experimental real-
ization, corresponding to different cooldowns of the cryostat. The resonator frequency
decreased since its fabrication by a few MHz, possibly due to aging of the niobium
oxide layer. Variations of κext are instead attributed to small differences in the thermal
contraction of the antenna from room temperature to below 1K.
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Figure 5.5: Power and Magnetic field dependence of the resonator properties.
a Input power dependence of the resonator loss rates extracted from the fit of S11. n̄
is given by Eq.2.27. b Magnetic field dependence of resonance frequency (top) and loss
rates (bottom).

Power dependence of the internal loss rate

Measuring S11 as a function of the input power Pin gives information on the origin
of internal losses. Two-Level Systems are known to cause power-dependent losses in
superconducting micro-resonators [93], as observed also in our measurements.. The
measured increased losses at low n̄ by more than a factor 2 (see Fig.5.5a), indicates
that dielectric losses contribute to about half of the total internal losses.

Magnetic field dependence

The application of the static magnetic field B0 parallel to the superconducting film
surface, has almost unmeasurable effect to the internal losses up to 100mT while the
resonance frequency is reduced quadratically by ∼ 0.6MHz due to the increase of the
thin-film kinetic inductance (see Fig.5.5b). Above 10mT, systematic fitting of the
resonator reflection is required to determine its frequency and apply a resonant drive
to the spins.

5.1.5 Schottky barrier

The niobium thin-film deposited directly on top of the silicon substrate gives rise to a
Schottky barrier in which donor may be ionized. The difference in the work function
of niobium and silicon causes band-bending responsible for the ionization of the donor
over an area called depletion region.
In Fig.5.6 we report the results of the depletion region calculation for our device per-
formed by Yann-Michel Niquet. A Schottky barrier height of 0.5 eV is assumed based
on [99]. Given the donor implantation profile (see Fig.4.17), the electrostatic potential
shown in Fig.5.6a is obtained. The resulting depletion region extends for 170 nm below
the surface. In the following, we take into account this donor ionization in the cal-
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a b

c d

Figure 5.6: Schottky barrier at the Si/Nb interface below the inductor wire.
a Electrostatic potential. b Density of ionized bismuth donors. c Density of neutral
bismuth donors. d Fraction of ionized over neutral donors fi = N+

d /N
0
d .

culation of the coupling distribution ρ(g). The difference with respect to the scenario
without Schottky barrier is however small.

5.1.6 Estimate of spin-photon coupling distribution

The coupling of the bismuth donors to the resonator mode is obtained by calculating
the amplitude of the magnetic field vacuum fluctuations δB1 generated by the current
fluctuations δI in the inductor wire. The magnetic field is computed using the COM-
SOL magnetostatic solver. The static approximation is sufficient since the length scales
that come into play are very much smaller than the wavelength.
In order to calculate the field fluctuations, we first need the estimate of the current
fluctuations magnitude and its distribution along the wire transverse direction. As
detailed in Sec.5.1.2, we extract from CST simulation the amplitude of the current
vacuum fluctuations δI = 50nA. The current distribution over the superconducting
wire cross-section used in the magnetostatic simulation is given by the following for-
mula [6, 100]:

f(x) =


δJ(0)[1− (2y/wr)2]−1/2 for |y| 6 |wr/2− λ2/(2b)|
δJ(wr/2)e−(wr/2−|y|)b/λ2 for |wr/2− λ2/(2b)| < |y| < wr/2
(1.165/λ)

√
wrbδJ(0) for y = wr/2,

In these expressions y is the wire transverse coordinate indicated in Fig.5.7a, wr = 2µm
is the wire width, b = 50 nm is its thickness and λ = 110 nm is the penetration depth
of the niobium film [101]. The normalization constant δJ(0) is determined by the
condition

∫ wr/2
−wr/2 δJ(y)dy = δI. We finally use δJ(y) to compute the magnitude of the

field fluctuations δB1(x, y) using COMSOL magnetostatic solver (see Fig.5.7a).
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The AC magnetic field δB1 is located in the x − y plane perpendicular to the res-
onator wire and to the applied static field B0 directed along z. The spin-photon
coupling g for the Sx transition between the states |−,m〉 and |+,m′〉 is thus g =
γeδB1 |〈−,m|Sx|+,m′〉 |. Fig.5.7b shows the coupling g(x, y) of the donors closer to the
inductor wire obtained from the δB1 map for the two quasi-degenerate resonant tran-
sitions at 62.5mT |−,−1〉 ↔ |+, 0〉 and |−, 0〉 ↔ |+,−1〉, having Sx matrix elements
equal to 0.28 and 0.21, respectively. The two contributions are used for computing
the coupling distribution ρ(g) expected at 62.5mT. The same distribution is also valid
for the two quasi-degenerate transitions that are instead resonant with the cavity at
10mT, |−, 0〉 ↔ |+, 1〉 and |−, 1〉 ↔ |+, 0〉, since they have matrix elements identical
to the the other two transitions.

5.2 Experimental setup

5.2.1 Low-temperature setup

The experiment reported in this chapter is performed at 15mK in a cryogen free dilution
refrigerator fabricated by the company Cryoconcept. This refrigerator has five stages at
different temperatures (70K, 4K, 900mK, 100mK and 12mK) separated by radiation
shields. Both the ESR resonator and the TWPA are anchored at a temperature of
15mK. As shown in Fig.5.8, the resonator is connected via the antenna to the circulator,
separating input and output signals.
Coaxial transmission lines link the room-temperature apparatus to the resonator and
the TWPA. To prevent heat transfer from higher to lower temperature stages, the
transmission lines are made of CuNi (or Silver-plated-CuNi) coaxial cables from room-
temperature to 4K and of NbTi superconducting cables from 4K to 15mK. In order
for the microwave field to be at thermal equilibrium at 15mK, it is also needed to
stop thermal and technical noise coming from the room temperature apparatus. This
common experimental challenge for all cQED experiments, is tackled differently for
input and output lines.
For input lines, the solution is to thermalize the incoming modes to the cryostat tem-
perature by means of impedance matched attenuators. As described in Sec.2.3.5, the
number of input noise photons is reduced by the attenuation factor while the ther-
mal radiation at the attenuator temperature is added. As shown in Fig.5.8, we use a
20 dB attenuator at 4K followed by 30 dB more attenuation at 15mK. Using Eq.2.34,
we find that the number of propagating ∼ 7GHz room-temperature noise photons
nth(300K) ≈ 900 is reduced to nth ≈ 0.01 at the resonator input, corresponding to a
mode temperature of about 75mK.
For the output line however the signal cannot be attenuated without degrading the
signal-to-noise ratio of the measurement. To nevertheless protect the sample from
thermal photons and noise photons emitted by the amplifiers, microwave circulators
are placed along the line at 15mK together with filters. The isolation provided by
each circulator is of about 18 dB, thus approximately doubled for the two circulators
in series. All input and output lines are provided with infrared filters to limit the
out-of-equilibrium quasi-particle generation in the superconducting devices.
The output signal is first amplified by the TWPA and then by the HEMT at 4K. The
3-12GHz isolator realizes a 50Ω load for the TWPA output in the whole amplification
range, while the following filters prevents noise coming from the HEMT to reach the
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Figure 5.8: Low temperature setup. Microwave setup connecting the room-
temperature apparatus to the 15mK experimental stage, on which is mounted the
ESR resonator.

TWPA. The double circulator in between the TWPA and the resonator, in addiction
to protect the resonator from the incoming noise and pump tone leakage, prevents
interferences between the two devices. The TWPA pump tone is sent via a dedicated
line and a hybrid coupler to the TWPA input. A total 50 dB attenuation of the TWPA
pump line, prevents the room temperature noise to couple to the output.

5.2.2 Room-temperature setup

The room-temperature setup is depicted in Fig.5.9. The resonator and the TWPA
can be characterized either by a commercial VNA, or direct homodyne demodulation
followed by digitalization with a rapid acquisition card. Microwave switches allow to
use eiher the VNA or homodyne setup on-demand.
For homodyne detection a microwave source provides both a coherent signal sent to-
wards the resonator as well as continuous tone which serves as the local oscillator of
an IQ mixer to demodulate the output signal. The resulting I and Q quadratures are
then amplified and filtered in several stages before being recorded by a fast digitizer
(Acquiris DC282) and transfered to a computer for processing. The phase of the homo-
dyne detection is set manually via a tunable phase-shifter. A 10-MHz-synchronization
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Figure 5.9: Room temperature setup.

loop running through every instrument guarantees phase stability.

5.2.3 TWPA characterization

The TWPA is pumped with a microwave tone whose frequency and power can be
tuned to optimize its figures of merit. The pump frequency ranges from 7.85GHz to
8.15GHz, while the power is tuned by few dB around -70 dBm. In each experimental
realization the optimal parameters are slightly changed. Gain up to GTWPA =25 dB
can be reached. As a general tendency, we observe that to larger gains corresponds
lower saturation power, higher noise and more pronounced ripples in the gain frequency
dependence.
In Fig.5.10a it is shown the typical gain spectrum after optimization of the pump pa-
rameters. The onset of saturation is observed at input power of about -100 dBm, where
the gain is changed by ∼ 1 dB with respect to the low power value (see Fig 5.10b).
We check that the TWPA added noise is the dominating source of noise of the am-
plification chain by comparing the noise power spectrum on the output line with and
without the TWPA pump. To do so, we connect a spectrum analyzer to the output
line after the room-temperature microwave amplifier. This measurement is performed
with GTWPA =25 dB. The noise power level at a frequency detuned of a few MHz from
the resonator is observed to increase by ∼ 10dB when the pump is turned on (see
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The power increase of the coherent signal reveals a TWPA gain GTWPA =25 dB for this
experiment.

Fig 5.10c). This provides a way to estimate the improvement in signal-to-noise ratio.
From Eq.2.42 we get the following expression for the measured noise power ratio
SON/SOFF:

SON
SOFF

= Sbg + (GTWPA − 1)STWPA
Sbg

, (5.3)

where STWPA is the noise added by the TWPA and Sbg is the contribution to the noise
coming from the rest of the amplification chain: the HEMT and the room-temperature
amplifiers. Eq.5.3 yields for the measured SON/SOFF = 10dB and GTWPA = 25 dB
the ratio of the two noise contributions Sbg/STWPA = 35, which corresponds to a SNR
improvement by

√
35 = 5.9.

5.3 Hahn echo detection

The spin signal of our spectrometer is in all that follows given by the area of the
spin echoes generated via Hahn echo sequences π/2− τ − π − τ , often followed by the
CPMG train of π pulses to detect additional refocused echoes. We briefly outline here
the implementation of this detection technique.

5.3.1 Pulse generation and echo acquisition

We generate the microwave pulses with the setup of Fig.5.11, part of the room-temperature
setup of Fig.5.9. The two main requirements for the drive pulses are an high on/off
ratio to avoid heating the spins while not driving, and MHz bandwidth to drive all
the spins within the resonator linewidth. This is realized by shaping the pulses with
microwave switches with an on/off ratio of 80 dB controlled by an arbitrary waveform
generator (AWG5011C from Tektronix).
Two pulses of different amplitude are obtained by using two switches in parallel, each
in series with a tunable attenuator. The relative phase is adjusted manually with a
phase shifter. After adding the two parallel lines, a power amplifier allows to increase
the dynamic range. A third switch isolates the resonator from the amplifier noise when
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pulses are not applied. Moreover, the microwave source is switched off during the
waiting time between two pulse sequences. Given the total attenuation of the line after
the last switch, we can deliver at the resonator input pulses of power Pin up to -40 dBm.
The reflected pulses and the emitted echo signal are demodulated at ω0 and their I
and Q quadratures are detected using the setup shown in Fig.5.9. The acquisition by
the digitizer is triggered by the AWG.

5.3.2 Hahn echo sequence and CPMG

Before discussing the ESR spectroscopy, we first detail the acquisition of the spin signal
with the CPMG sequence. The 301 echoes shown in Fig.5.12a are detected at B0 =
62.5mT, where transitons |−,−1〉 ↔ |+, 0〉 and |−, 0〉 ↔ |+,−1〉 are resonant with
the superconducting cavity. A π/2 pulse of duration tπ/2 = 125 ns is followed after a
time τ = 15µs by a π pulse of duration tπ = 250 ns. Unless specified, the same tπ and
tπ/2 are used all througout this thesis. After a second delay τ the first echo is emitted
(first echo in the inset of Fig.5.12a and blue dots in Fig.5.12b). The pulse power Pin is
calibrated by performing Rabi oscillations, as will be explained in the following.
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Figure 5.12: Hahn echo detection. a, First and last four echoes in the CPMG
sequence at 62.5mT. All π pulses have been removed from the plot. b, First echo of
the CPMG sequence (blue), CPMG average (red) and simulation of the Hahn echo
(green) obtained by using the ρ(g) shown in Fig.5.7c.

This echo is refocused N times by as many π pulses of same amplitude and duration
as the first one, equally spaced by 2τ . As shown in Fig.5.12a, 300 echoes with slightly
reduced amplitudes are being recorded at 62.5mT, spaced by 2τ = 30µs. All echoes
are averaged with a weight given by the measured amplitude decay, in order to optimize
the signal to noise improvement (see Fig.5.12b). The whole sequence is repeated with
period trep of the order of the spin relaxation time Γ−1

1 . In the following, we quantify
the echo signal using the integrated quadrature signal denoted Ae.
Simulation of the first Hahn echo is shown in Fig.5.12b, and is in good agreement with
the data. No adjustable parameters are used and the CPMG sequence is not included
in the simulation. The Hahn-echo simulation is performed for g values in the 5-200 Hz
range and the results are averaged using the g distribution shown in Fig.5.7c.

5.3.3 Rabi oscillations

We calibrate the pulse power by performing Hahn-echo detected Rabi oscillations. To
do so, we measure the echo amplitude as a function of the refocusing pulse tipping
angle θp, which is varied by changing the pulse power Pin (see Fig.5.13). This results
in the appearance of oscillations in the integrated echo signal Ae, as shown in Fig.5.13.
As detailed in Sc.3.2.1, or each subset of spins coupled to the resonator with strength
g, the echo signal is Ae ∝ p

2(1 − cos θp), where p is the initial spin polarization. A
spin driven by a resonant coherent drive rotates at frequency ω1(t) = 2g 〈â(t)〉 (see
Sec.3.1.2). As a result, upon a square pulse of duration tp the spin undergoes a Rabi
oscillation of angle:

θp =
∫
t
ω1(t) = 2g

√
n̄tp, (5.4)

where n̄ is the steady-state intra-resonator photon number linked to Pin by Eq.2.27.
Since we probe an ensemble of spins with a broad coupling distribution, the measured
Rabi oscillations are a sum of oscillations largely spread in frequency. Each spin subset
of coupling g experiences a different tipping angle θp(g) that for large rotations yield
Ae in Eq.3.35 to the averaged value of p/2. This damping of the Rabi oscillations for
large tipping angle is visible in Fig.5.13 and is well reproduced by the simulation.



5.4. Strain broadened transitions 89

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0 4.0

0.4

0.8

1.2
A

e 
(a

.u
.)

0
0

A
e(
g)
�(
g)

 (
a

.u
.)

 
�

�/2 � echo

Ae�

Pin
1/2/P�

1/2

Pin

Pin=P�

g/2� (Hz)

a b

Figure 5.13: Rabi oscillations. a, Top, pulse sequence used to measure Rabi os-
cillations. Bottom, measured (blue dots) and simulated (green line) integrated echo
amplitude Ae as a function of the second pulse input power Pin. The value of Pπ is
calibrated with the first maximum of the signal. b Relative contribution Ae(g)ρ(g) to
the echo amplitude Ae at Pin = Pπ as a function of the spin-resonator coupling g. Ae(g)
is the echo amplitude simulated for an ensemble of N spins with the same coupling g.

We have until now neglected the effect of the cavity bandwidth on the spin dynamics.
However, in our experiment the ESR linewidths are much broader than the cavity and
the finite pulse excitation bandwidth must be taken into account. Since we apply short
pulses satisfying tp << 2π/κ, the excitation bandwidth of a π pulse is set by κ due
to the cavity filtering. This means that spins within the ESR linewidth have different
Rabi frequencies and undergo rotations of different angles under the same pulses. The
Rabi frequencies ΩR depends indeed on their detuning ∆s, ΩR =

√
∆2
s + ω1, and their

rotation axis is tilted in the x− z plane by an angle φ = arctan(∆s/ω1) (see Ch.3).
A quick and rough consistency check is easily performed using the Rabi oscillations in
Fig.5.13, by evaluating the input power corresponding to a π pulse using the estimated
input line attenuation. We find Pπ = 6 nW, corresponding to n̄ ≈ 109. Using Eqs.2.27
and Eq.5.4, we find then that the average value of g for the spins most contributing to
the echo signal is ḡ/2π = 30Hz. This value is only about a factor 2 lower than the value
of coupling maximally contributing to the echo amplitude g/2π = 65Hz obtained from
the simulation (see Fig.5.13). We attribute this discrepancy to the poor calibration of
the power Pin.

5.4 Strain broadened transitions

The coil inside which the sample is mounted provides a static magnetic field B0 up to
140mT. In this field range the resonator crosses 11 transitions, among which 5 couples
of quasi degenerate transitions. The magnetic field, matrix element and slope of these
transitions at resonance are reported in Table 5.1.
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Transition Field (mT) 〈Sx〉 df/dB (MHz/mT)
|−, 4〉 ↔ |+, 5〉 1.25 0.47 25.22
|−, 4〉 ↔ |+, 3〉 1.6 0.07 19.7
|−, 3〉 ↔ |+, 4〉 1.6 0.42 19.7
|−, 3〉 ↔ |+, 2〉 2.25 0.12 14.2
|−, 2〉 ↔ |+, 3〉 2.25 0.37 14.2
|−, 2〉 ↔ |+, 1〉 3.7 0.17 8.75
|−, 1〉 ↔ |+, 2〉 3.7 0.32 8.75
|−, 1〉 ↔ |+, 0〉 9.6 0.21 3.8
|−, 0〉 ↔ |+, 1〉 9.6 0.28 3.8
|−, 0〉 ↔ |+,−1〉 62.7 0.21 3.8
|−,−1〉 ↔ |+, 0〉 62.9 0.28 3.8

Table 5.1: Expected ESR transitions at ω0/2π = 7.4087GHz, with their respective
matrix elements and field dependence df/dB. Quasi degenerate transitions are grouped
by dashed lines. The results are obtained from analytical solution of Eq.4.4

.

5.4.1 Spectrum

We first measure the echo amplitude Ae as a function of the static field B0 applied along
z (see Fig 5.14). The six peaks of echo signal coincide with the calculated magnetic fields
at which the spin transitions are resonant with the superconducting cavity. The two
spectra reported in Fig 5.14 are measured in two different runs of the experiment, where
resonator parameters slightly varied with negligible consequences. Due to the resonator
frequency dependence on magnetic field, at each B0 the resonator reflection is measured,
fitted and the microwave source adjusted to this frequency using an automated routine;
after that the echo sequence is run. CPMG averaging is used to improve the SNR and
a repetition rate of the order of the spin relaxation rate Γ1 is used.
The different peak height of the measured ESR lines is mainly due to three reasons. The
first is that the reported spectra are measured with constant pulse amplitude, while the
matrix elements of most transitions are different. This makes the tipping angle of the
pulses in the Hahn echo sequence to vary from peak to peak. This effect is clearly visible
comparing the two measurement in the two panels of Fig 5.14. While the spectrum of
Fig 5.14a is measured using Pπ calibrated on the first transition at 1.25mT, for the
spectrum of Fig 5.14b Pπ is calibrated at 9.6mT. The second contribution to the peak
height differences has to be found in the dependence of the spin coherence time on field,
as we discuss in the rest of this chapter. In particular the coherence times of the 10mT
and 60mT transitions is more than one order of magnitude larger with respect to the
lower field transitions. Both effects are amplified by the use of CPMG averaging, as
highlighted in Fig 5.14b. Finally, the repetition time trep affects the relative amplitude
of the spin signal at the six transitions due to the different associated relaxation times.
trep is in both cases chosen to be of the order of the longest measured spin relaxation
time.
By fitting the ESR spectrum in Fig. 5.14 with a sum of Lorentzians, we extract the
linewidths of the six resolvable ESR lines; the fit results are reported in Table 5.2. As we
discussed in Ch.4, the expected linewidth of Si:Bi is 0.4mT due to the inhomogeneous
linewidth caused by the 29Si nuclear spin bath. However, we observe for increasing field
linewidths going from 0.4mT up to 1.4mT. The value for the last two transitions is
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Figure 5.14: Spectrum. a, Top, black lines are calculated electron spin resonance
transitions of the bismuth donors. The resonator frequency ω0/2π = 7.4078GHz (blue
line) is resonant with 6 transitions in the 0-70mT range. Bottom, measured integrated
spin-echo amplitude Ae (blue) as a function of B0, showing the expected transitions.
The Hahn-echo pulse power Pin is calibrated on the first transition, CPMG averaging
is used and the experiment repetition time is trep = 5.8 s. The black line is a fit with
a sum of six Lorentzians. b Top, calculated transitions in the 0-12mT range (black).
The resonator frequency ω0/2π = 7.4087GHz (blue) is about one MHz lower than in
the measurement of panel a. Bottom, measured integrated spin-echo amplitude Ae
with (red) and without (blue) CPMG averaging. The Hahn-echo pulse power Pin is
calibrated on the fifth transition at 9.7mT, trep = 10 s. The black line is a fit with a
sum of five Lorentzians.

Field (mT) Linewidth (mT) Linewidth (MHz)
1.2 0.4 10
1.6 0.5 9.8
2.2 0.5 7.1
3.7 0.9 7.9
9.6 1.4 5.3
62.5 1.3 4.9

Table 5.2: Fitted ESR lines parameters.Results of the Lorentzian fit shown in
Fig 5.14a for the first 5 lines, and from fit shown in Fig 5.14b for the 62.5mT transition.
The frequency linewidth is extracted using the df/dB values reported in Table 5.1.
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thus more than 3 times larger than the expected 29Si-induced broadening, meaning that
another effect is dominating. As we anticipated in Ch.4, we attribute this additional
broadening to strain induced by the niobium thin film.

5.4.2 Strain simulation

The measured linewidth of 5MHz at 62.5mT gives us an estimate of the strain-induced
frequency shift. At lower magnetic fields this effect is instead masked by the 29Si-
induced broadening that reaches 10MHz on the first transition due to the large df/dB.

We attribute the origin of the strain to the different thermal contraction of the
niobium film with respect to the silicon substrate when cooling down the sample from
room temperature. In order to confirm the physical validity of the strain-induced
frequency shift hypothesis, we performed strain simulation using COMSOL software.
The results are shown in Fig.5.15.
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Figure 5.15: Strain simulation. a, Hydrostatic strain εhs map at the inductor-wire
cross-section. Dashed lines represent the cuts shown in panels b-c. b, Cut along y at
x = 0 of the εhs map. c, Three cuts along x of the εhs map. The corresponding bismuth
donor spin frequency shift is reported on the right axis of panels b-c.

Simulations show that in the region below the wire, were the donors more contributing
to the signal lie, the hydrostatic strain εhs varies of a few 10−5. For example, at the
center of the wire it goes from −3 × 10−5 at the surface to −1 × 10−5 at y ∼ −1µm
(see Fig.5.15). This corresponds to a frequency shift df/dεhs = 5(dA/dεhs)εhs varying
of about 4.5MHz. Variations of similar magnitude are expected on x direction in the
middle of the implanted region. This simulated strain-induced shift of a few MHz is in
good agreement with the additional broadening measured in the spectral lines.

5.4.3 Rabi frequency dependence on B0

We performed a second measurement to confirm the strain-induced broadening of ESR
linewidths. Due to the spatial dependence of the coupling g(x, y) and of the strain-
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induced frequency shift, the Rabi frequency and the Larmor frequency are expected
to show correlations that are absent in usual ESR experiments. By measuring Rabi
oscillations as a function of the applied B0, we indeed observe slower oscillations at
higher field, confirming that g and ωspin are correlated in agreement with the calculated
strain effect. However, a quantitative analysis has not been carried out.
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Figure 5.16: Rabi oscillations versus B0 at the sixth ESR line.

5.5 Coherence time

At each ESR peak of the spectrum we have measured the echo decay by varying the
delay τ between the two pulses in the Hahn-echo sequence (see Ch.4). We define the
coherence time T2 by fitting the echo decay with a Gaussian. The results reported in
Fig.5.17 show a significant reduction of T2 by more than one order of magnitude as the
field is reduced from 62.5mT to 1.3mT. Moreover, clear echo amplitude oscillations
are observed at intermediate magnetic fields.
The T2 = 600µs at 62.5mT is in the range of expected values for bismuth donors in
natural silicon (see Sec.4.3.1). The Gaussian decay at 62.5mT can thus be attributed
to spectral diffusion induced by the 29Si nuclear spin bath dynamics. The observed
shortening of T2 for lower field is instead incompatible with spectral diffusion. The
spectral diffusion rate would indeed be proportional to the spin transition df/dB, while
the observed dependence of the decoherence rate on df/dB is not (see Fig.5.18). We
ascribe the coherence decay of the first four transitions to the ESEEM phenomenon,
as we discuss in the following.

5.5.1 ESEEM

The 29Si nuclear spins closer to the resonant donors give rise to the ESEEM phenomenon
(see Sec.4.3.1). ESEEM oscillations on top of the spectral-diffusion decoherence at
9.7mT are clearly visible in Fig.5.17e. Fig.5.19a shows these oscillations normalized to
the mean value extracted with the Gaussian fit and represented around zero. A Fourier
transform of this ESEEM signal is shown in Fig.5.19b, highlighting two main frequency
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Figure 5.17: Coherence time at the six resonant transitions. Measured (blue)
integrated echo Ae as a function of pulse delay τ in the Hahn echo sequence. Red lines
gaussian fit of time constant T2.
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components at 100 kHz and at 15 kHz. The nuclear spin Larmor frequency at 9.7mT
is ωI/2π = γSiB0 = 82kHz, where γSi/2π = 8.45MHz/T is the 29Si gyromagnetic
ratio. The discrepancy between ωI and the ESEEM frequencies suggests that the
weak-coupling approximation is not valid.
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Figure 5.19: ESEEM oscillations at 9.7mT. a, ESEEM oscillations normalized to
the mean value and referred to zero. b Power spectrum of the ESEEM oscillations.

At the lower field of 3.4mT, the ESEEM oscillations have larger amplitude and are
slower, compatibly with smaller ωI . Moreover, the overall coherence decay is about 5
times faster than at 9.7mT. Even more pronouced shortening of the coherence time
is observed at 2.3mT. At this field the signal drops by ∼ 80% in 20µs while small
oscillations around this value survives for a few hundreds of microseconds. A full
decay to zero in ∼ 20µs is then recorded at the two lowest fields (we note here that
the fist two transitions are highly overlapping, as seen in the spectrum in Fig.5.14a).
We attribute this effective faster decoherence to the interference of several ESEEM
oscillations of large amplitude. The different contributions that interfere destructively
originates from all the possible configurations of the 29Si in the silicon lattice sites close
to the donor. More analysis is needed for a quantitative account of this phenomenon.

5.6 Purcell limited energy relaxation

We now analyze the longitudinal relaxation of the various ESR transitions comparing
it to the predicted radiative relaxation enhanced by the Purcell effect (see Sec.3.1). We
measure the relaxation using the inversion recovery sequence (see inset of Fig.5.20b).
A first π pulse inverts the spins bringing the population in the excited state. After
a varying delay time ∆t, during which the spins relax to the ground state, we detect
the polarization with the Hahn-echo sequence. For a spin ensemble coupled to an
effective Markovian thermal bath, the echo area Ae is expected to decay exponentially
Ae ∝ (1− 2e−Γ1∆t).
In Fig.5.20 we report the spin relaxation measurement performed at 62.5mT. Echo
curves for ∆t� Γ−1

1 and ∆t� Γ−1
1 are shown in Fig.5.20a. At short ∆t the phase of

the echo is inverted with respect to the long ∆t, as expected from the application of
the first π pulse. The shape of the inverted echo is a consequence of the dependence of
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Figure 5.20: Energy relaxation at 62.5mT. a, Measured (blue dots) and simulated
(green line) echo signals at short and long ∆t. b Measured (blue dots) and simulated
(green line) integrated echo Ae as a function of ∆t. The dashed red line is an exponential
fit of time constant Γ−1

1 . The used inversion recovery pulse sequence is shown in the
inset.

the tipping angle θp on the spin-cavity detuning ∆s, as we discussed in Sec.5.3.3, and
it is well reproduced by the simulation (see Fig.5.20a).
The decay of Ae(∆t) is well fitted by an exponential decay of time constant Γ−1

1 = 5.9 s
(see Fig.5.20b). The data are in agreement with the simulation of the experiment that
considers only radiative relaxation at rate Γphot induced by the Purcell effect. This is a
strong indication that the spins are indeed in the Purcell regime Γ−1

1 ≈ Γphot � Γphon.
Using the extracted value of Γphot and the value of κ for this experimental realization
(reported in Fig.5.4) in Eq.3.10, we get ḡ ≈ 65Hz, consistently with the Rabi oscillations
measurement and simulation.
The result of the inversion-recovery measurement on all the 6 resonant transitions
is reported in Fig5.21. We first focus on the transition at 9.7mT, since it has almost
identical properties with respect to the 62.5mT transition. In particular it has the same
matrix elements (see Table 5.1) and thus the same coupling distribution ρ(g). Besides
a correction due to slightly different resonator linewidth when measuring the first five
transitions (κext = 4.2 × 106 s−1 and κint = 3 × 105 s−1), we would expect the same
decay observed at 62.5mT. However, the relaxation shown in Fig5.21e is poorly fitted
by an exponential. Moreover, contrary to the 62.5mT case, simulations are poorly
reproducing the data. We thus conclude that a competing relaxation mechanism is
present at lower magnetic field impacting the echo decay. In Chapter 7 we discuss how
this effect can be attributed to polarization transfer to the non-resonant bismuth donor
transitions.
A qualitatively similar relaxation with the respect to the 9.7mT measurement is ob-
served at the first five transitions. In a time of the order of 1 s the polarization relaxes
to ∼ 2/3 of its equilibrium value while the rest of the decay happens at a much slower
rate.
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Figure 5.21: Energy relaxation at the six resonant transitions. Measured
(blue) integrated echo Ae as a function of the waiting time ∆t. Dashed red line is
an exponential fit of time constant Γ−1

1 . The solid green line in panels e and f are
simulations. The resonator parameters for measurements in panels a-e are: ω0/2π =
7.4087GHz, κext = 4.2× 106 s−1 and κint = 3× 105 s−1. The resonator parameters for
measurements in panels f are ω0/2π = 7.4078GHz, κext = 3.4 × 106 s−1 and κint =
3.7× 105 s−1.

5.6.1 Relaxation rate dependence on spin-cavity detuning

The integral of the echo signal is only part of the information carried by its temporal
shape. The Fourier transform of each echo trace gives the contribution to the signal
Ae(∆) as a function of their detuning to the cavity ∆. The limit on the spin detuning
is in our case given by the cavity filtering of the signal emitted by the spins and is
then of the order of κ. By Fourier transforming the echo decay Ae(∆t) recorded at
62.5mT (see Fig.5.20), we thus get the spin relaxation for different detuning values
within the cavity bandwidth. In Fig.5.22a we report the relaxation of two normalized
Fourier components (∆ = 0 and ∆ = 0.5κ), showing a relaxation rate Γ1 slower of a
factor ∼ 1.5 for the detuned spins. The Γ1 dependence on the detuning ∆ is another
proof that the spin relaxation is Purcell-enhanced.
In Fig.5.20b we compare Γ1(∆) obtained from the exponential fit of the Fourier compo-
nents Ãe∆t with the dependence on the detuning given by the Purcell formula Eq.3.10,
revealing a discrepancy. To understand this difference Γ1(∆) is extracted from the
Fourier transform of the simulated echoes, showing a good agreement with the data.
The deviation from Eq.3.10 is due to the broad coupling distribution ρ(g). The large-∆
components of the spin echo come from spins more strongly coupled than those con-
tributing to the ∆ = 0 component. We attribute this to the tipping angle θ dependence
on ∆.
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Figure 5.22: Relaxation rate dependence on spin-cavity detuning ∆. a, Nor-
malized Fourier component of the echo at ∆ = 0 (red) and ∆ = 0.5κ as a function of
the delay time ∆t of the inversion recovery sequence. The solid line is an exponential
fit of time constant Γ−1

1 . b Relaxation time Γ−1
1 as a function of the detuning ∆ for

measured (blue) and simulated (red) inversion recovery. Dashed line is the expected
Γ−1

1 (∆) dependence based on the Purcell formula Eq.3.10 and on the measured Γ−1
1 at

∆ = 0.

5.6.2 Spin ensemble cooperativity

In our model of the spin dynamics in the Purcell regime we assume that the N spins
coupled to the cavity radiate independently at the Purcell rate Γphot. We provide
experimental evidence of the validity of this assumption by measuring the resonator
losses induced by resonant spins.
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Figure 5.23: Spin-induced resonator internal losses. Top, bismuth donor spin
transitions frequency (black) as a function of the applied field. Resonator frequency is
shown in blue. Bottom, resonator internal losses κint measured at Pin = −120 dBm as
a function of B0.

The radiative properties of an ensemble of N identical spins are deeply modified by
collective effects, that range from supperradiance to dark state trapping [102]. How-
ever, spin decoherence and inhomogeneous broadening can lead to suppression of any
collective phenomenon, recovering the single spin dynamics [18, 103, 104]. To discrim-
inate between the ’independent’ or ’collective’ radiative regime, one has to consider a
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dimensionless parameter called the ensemble cooperativity and defined as:

C = 2Ng2

κΓinh
(5.5)

Independent radiation from each spin at Γphon is expected for C � 1, the so-called
weak collective coupling regime.
Cooperativity can be estimated by measuring the resonator reflection. When the spins
are at resonance with the cavity they cause an increase of the resonator internal losses
∆κint that is indeed proportional to the cooperativity [105]. It can be shown that the
cooperativity is given by:

C = ∆κint
κ

(5.6)

In order to determine the cooperativity we measure the resonator reflection as a function
of B0 using low input power to limit spin saturation. The result reported in Fig.5.23
shows ∆κint ∼ 2 × 104 s−1 when the spins are resonant with the cavity. Given κ =
3.5 × 106 s−1 we found C ∼ 0.005, demonstrating that spins are in the independent
radiative regime as expected from the energy relaxation measurements.





Chapter 6

Radiative cooling of a spin
ensemble with a cavity

6.1 Introduction

Spins in solid are generally thermalizing at rate Γphon to the lattice of temperature Tphon
in which they are embedded. The recent demonstration of the Purcell regime for an
ensemble of electron spins [5], however, showed that the coupling to the electromagnetic
mode of a microwave cavity at rate Γphot can become their dominant relaxation channel.
Having the electron spins predominantly coupled to cavity opens the possibility to cool
them below Tphon by reducing the electromagnetic mode temperature Tphot. In the
following, we demonstrate such a radiative spin cooling introducing a new universal
method to increase the electron spin polarization above thermal equilibrium, what we
refer to as hyperpolarization.

Tphon TintTcold TspinTphot ~ ~<<

�phon

�int�ext

�phot

Figure 6.1: Radiative spin cooling principle. Spins (green) in a crystal (magenta)
are coupled both to a bath of phonons at temperature Tphon with a rate Γphon and to
a bath of microwave photons at a temperature Tphot with a rate Γphot, which deter-
mines their equilibrium temperature Tspin. The temperature of the photons Tphot is
determined by their coupling with rate κint to the cavity internal losses at tempera-
ture Tint and with rate κext to the load located at the cavity input. When this load
is placed at low temperature Tcold, the intra-cavity field is radiatively cooled provided
that κext � κint and the spins are cooled in turn if Γphot � Γphon.

The principle of the method is illustrated in Fig.6.1. The electromagnetic mode of
a cavity is cooled by connecting the cavity input to a resistor at temperature Tcold,
colder than the cavity internal loss bath of temperature Tint ≈ Tphon. Provided that

101
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the cavity coupling rate κext to the cold resistor is much larger than its internal loss rate
κint, Tphot ≈ Tcold (see Sc.2.3.5). The spins inside the cavity mode volume are in the
Purcell regime Γphot � Γphon and thus thermalize to the cold cavity mode Tspin ≈ Tcold
(Sc.3.1.2), realizing the purpose of a spin ensemble colder than the host lattice.

6.2 Purcell regime in a hot cavity

In the previous chapter we have seen how the two quasi-degenerate electron spin tran-
sitions at 62.5mT are in the Purcell regime at 15mK, relaxing to thermal equilibrium
with an exponential decay of time constant Γ−1

1 = Γ−1
phot = 5.9 s given by Eq.3.10.

However, in the radiative cooling experiment the sample is anchored at about 1K and
we therefore need to test whether the spins are still in the Purcell regime up to this
temperature.
In order to verify this condition necessary for the radative cooling, in a first experiment
we measure the spin relaxation to thermal equilibrium as a function of temperature.
Because the JTWPA can only work at T < 300mK, we removed it from the setup.

6.2.1 Temperature dependence of the energy relaxation rate

In Sc.3.1.2 we have shown that in the presence of nth thermal photons in the cavity, the
spin relaxation rate in the Purcell regime is expected to be Γ1 = Γphot[2nth(Tphot) + 1],
due to absorption and stimulated emission. In the setup used for this experiment
Tphot = Tphon = Tspin = T , where T is the temperature of the mixing chamber plate to
which the sample is anchored and the microwave field is thermalized.
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Figure 6.2: Relaxation time dependence on temperature at 62.5mT. a, Mea-
sured integrated echo Ae as a function of the waiting time ∆t at T =15mK (blue) and
T =1.2K (red). Black lines are exponential fit of time constant Γ−1

1 . The data are
normalized to the baseline of the corresponding fits. b Measured relaxation time Γ−1

1
(red dots) as a function of the mixing chamber temperature T . The green curve is a
fit to the data between 300mK and 1.2K using the function Γ−1

phot/(2nth(T ) + 1), with
Γ−1
phot as an adjustable parameter.

We measure the energy relaxation with the inversion recovery sequence as a function of
T and an exponential fit yields Γ1(T ), as reported in Fig.6.2. The measurement shows
the agreement of the relaxation time with the expected 1/[2nth(T ) + 1] dependence,
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demonstrating that the bismuth donor spins are in the Purcell regime at least up to
1K.

6.2.2 Temperature dependence of polarization

As the temperature is increased from 15mK, the thermal equilibrium polarization
pBi(T ) of the bismuth donor spins is expected to decrease. For an electron spin 1/2 it
would follow the exact same temperature dependence as the Purcell relaxation time,
p1/2(T ) = 1/[2nth(T ) + 1]. However, as we discuss in Sc.4.2.3, a slight deviation from
this law is expected at temperatures lower than 300mK for pBi due to the thermal
occupancy of the hyperfine levels.
The observation of the calculated pBi(T ) is slightly complicated by the existence of non-
equilibrium processes, as evidenced below. We first measure the polarization’s tempera-
ture dependence of the quasi-degenerate transitions |4, 0〉 ↔ |5,−1〉 and |4,−1〉 ↔ |5, 0〉
at B0 = 62.5mT. We wait several hours at each temperature value before measuring
the echo amplitude Ae with a repetition time trep = 120 s� Γ−1

1 . The result reported
in Fig.6.3a (red dots) shows a significant deviation below 200mK from the calculated
pBi(T ) (red line).
In Fig.6.3b we report the same experiment but performed at 9.3mT, measuring the po-
larization of transitions |4, 1〉 ↔ |5,−1〉 and |4,−1〉 ↔ |5, 0〉. In this case the measured
polarization follows the calculated pBi(T ) for these two transitions at temperatures as
low as ∼ 100mK.
We then repeat the polarization measurement for the transitions |4, 0〉 ↔ |5,−1〉 and
|4,−1〉 ↔ |5, 0〉 using a different protocol. At each temperature we first set B0 = 9.3mT
for 20min, then set back B0 = 62.5mT, wait 4min and finally measure Ae. The so
obtained result is reported in Fig.6.3a (black dots) and shows agreement with the pBi(T )
calculated for the considered transitions as if it was measured at 9.3mT.
The above results lead us to the following conclusions. At 9.3mT, the spin system is well
thermalized to the cryostat from the highest temperature down to at least ∼ 100mK,
as evidenced by the measurement of the two couples of transitions at this field (black
dots in the two panels of Fig.6.3). At 62.5mT an unknown process dominates over
the thermalization dynamics at temperature lower than 200mK and drives the spins
toward a non-thermal state (red dots in Fig.6.3a). A possible origin of this phenomenon
could be residual infrared radiation reaching the sample. We have indeed seen in Sc.4.5
how this can cause redistribution of population in the bismuth hyperfine levels.
In a fourth measurement we investigate the dynamics of the depolarization process
taking place at 62.5mT. At T = 83mK we first set B0 = 9.3mT during 20min, then we
set B0 =62.5mT and immediately after we record continuously Ae as a function of time.
The result reported in the inset of Fig.6.3a shows the spins reaching the equilibrium
non-thermal state in the time-scale of hours, orders of magnitude longer than the 4min
waiting time used to detect the thermal equilibrium polarization after the field sweep
from 9.3mT to 62.5mT. This long timescale is consistent with our hypothesis that
the non-equilibrium processes observed affect the hyperfine level manifold occupation
probabilities, and not so much the EPR transition itself.
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Figure 6.3: Polarization dependence on temperature. a, Transitions |4, 0〉 ↔
|5,−1〉 and |4,−1〉 ↔ |5, 0〉. Equilibrium polarization measured at 62.5mT (red dots).
Several hours are waited at each temperature before recording Ae. The red line is
the calculated pBi(T ) for the considered transitions at 62.5mT. A second polarization
measurement of the same transition is reported (black dots). In this second experiment,
for each temperature value, B0 is first set to 9.3mT during 20min, then it is set to
62.5mT and finally after 4min Ae is recorded. The black line is the calculated pBi(T )
for the same transitions at 9.3mT. The polarization p1/2(T ) = 1/(2nth(T ) + 1) of a
spin 1/2 is also shown for comparison (green). Ae as a function of time is measured at
T = 83mK and B0 = 62.5 after B0 has been set to 9.3mT for 20min. The same data
are represented in the main plot with a blue arrow. b, Transitions |4, 1〉 ↔ |5, 0〉 and
|4, 0〉 ↔ |5, 1〉. Equilibrium polarization measured at 9.3mT (black dots). The black
line is the calculated pBi(T ) for the considered transitions at 9.3mT. The p1/2(T ) is
also shown for comparison (green).
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Figure 6.4: Radiative cooling setup. The sample is mounted at the still plate of the
cryostat. The cavity port is connected to a circulator separating the resonator input
and output modes. An electromechanical switch connects the input either to a hot or
a cold 50 Ω impedance-matched load. Control microwave pulses are sent to the input
via a 20 dB coupler. The output signal is amplified by first by the JTWPA at 15mK
and then by the HEMT at 4K.
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6.3 Radiative cooling setup

For demonstrating the electron spin radiative cooling we modify the setup described
in the last chapter as follows (see Fig.6.4). The sample is now mounted at the still
plate of the cryostat, at a temperature Tphon = 850mK. The cavity port is connected
via an antenna to a circulator, separating input and output modes. The resonator
input is connected via an electromechanical switch either to a 50 Ω resistor thermalized
at the same temperature Tphon of the sample (hot configuration) or to a 50 Ω resistor
thermalized at the mixing chamber plate of the cryostat, at a temperature Tcold =
15mK (cold configuration). The 50 Ω load at Tcold is connected to the switch sitting
at Tphon via a NbTi superconducting cable that is thermally insulating and whose MW
losses are of the order of 0.1 dB. The control microwave pulses are now sent via a 20 dB
coupler in order to minimize the thermal noise reaching the cavity from the pulse input
line. This ensures that the temperature of the microwave radiation field incident onto
the resonator, and therefore the mode temperature Tphot, is dominantly determined by
the switch setting.

6.3.1 Equivalent electrical circuit

CL

850 mK

15 mK

Tint

�phot

�ext

�int

�

Tcold

Tphon

JTWPA

-20 dB

Figure 6.5: Simplified equivalent electrical circuit. The LC resonator and the
spins are thermally anchored at Tphon = 850mK and are coupled with rate Γphot. The
resonator is then coupled with rate κint to the internal loss bath of temperature Tint
and with rate κext either to a hot or a cold 50 Ω thermal source. The signal emitted or
reflected by the resonator is routed by the circulator to the output line.

The equivalent electrical circuit that we use to estimate the equilibrium temperatures
Tphot of the cavity mode and Tspin of the spins is shown in Fig.6.5. The resonator is
coupled with rate κint to the internal losses bath of temperature Tint and with rate κext
to the incoming microwave radiation on the input. The switch connects the input to a
resistor thermalized either at Tphon or at Tcold. Losses in between the circulator and the
cold 50 Ω are modeled by an attenuator at Tphon, absorbing a fraction α of the photons.
Such a model is an over-simplification since a fraction of the losses necessarily takes
place at an intermediate temperature in between Tphon and Tcold. However, its physical
justification originates from the fact that only the superconducting cable is in between
the two temperatures. With our model we are thus assuming that all the temperature
drop happens across the cable and that its microwave losses are negligible.



6.4. Cavity mode temperature 107

Cooling factor

To infer T hot,cold
spin in the two switch configurations, we measure the echo amplitude Ae,

proportional in the spin 1/2 approximation to the temperature-dependent polarization
p(T hot,cold

spin ) = 1/[2nth(T hot,cold
spin ) + 1]. We thus define the spin radiative cooling factor η

as the ratio of the polarization in the cold and hot setting, η ≡ pcold/phot. From Eq.3.25,
η coincides then with the ratio of spin relaxation times in the two switch configurations
Γhot

1 /Γcold
1 :

η ≡ pcold/phot =
Γphot[2nth(T hot

phot) + 1] + Γphon[2nth(Tphon) + 1]
Γphot[2nth(T cold

phot) + 1] + Γphon[2nth(Tphon) + 1]
. (6.1)

Since we have demonstrated that spins are in the Purcell regime, Eq.6.1 for our exper-
iment simplifies to:

η =
2nth(T hot

phot) + 1
2nth(T cold

phot) + 1
. (6.2)

6.4 Cavity mode temperature

In a first series of experiments, we perform noise measurements to directly determine
the temperature Tphot in the two switch configurations.

6.4.1 Internal loss temperature

As a first test, we measure the resonator reflection coefficient with switch in cold and
hot configurations. No difference is expected, since the resonator physical properties
are entirely unchanged by the switch setting. The results are shown in Fig.6.6. At high
power, we find that the reflection coefficients are indeed identical, which confirms that
the switch setting has no measurable influence on the impedance seen by the resonator.
However, at low powers, we observe a sizeable difference: the internal loss rate κint is
more than 30% higher in the cold configuration.
We interpret this surprising result as an evidence for radiative cooling of the two-level
systems (TLS) that are known to play an important role in superconducting resonator
losses. In the hot configuration, such TLS are highly saturated and absorb little energy
from the resonator. On the contrary, in the cold configuration TLS are radiatively
cooled, increasing their degree of polarization and thus making them more absorptive.
In agreement with this hypothesis, the measurement of κint as a function of the input
power Pin shows that this effect decreases for larger intra-cavity photon number n̄(Pin),
disappearing for n̄ ≈ 10 where TLS are highly saturated in both switch states. We will
then consider Tint to be in-between Tphon and Tphot, and will treat it as an adjustable
parameter to obtain the best fit to our final data.

6.4.2 JTWPA gain and added noise

We estimate the JTWPA added noise by setting the switch in the hot configuration
and measuring the noise power Shot at the output as a function of the still temperature
Tphot. Far from resonance, the noise at the input of the JTWPA is the thermal radiation
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nth(Tphon) of the hot 50Ω resistor that is reflected at the resonator input and routed
by the circulator toward the JTWPA. The output noise power spectral density at the
end of the amplification chain of gain G is then:

Shot(Tphon)/G = nth(Tphon) + 1/2 + SJTWPA. (6.3)

We measure Shot(Tphon) at (ω0 − ω)/2π = 2.7MHz for Tphon ranging from 840mK to
1.15K (see Fig.6.7b). Fitting the result with Eq.6.3 we extract SJTWPA = 0.75± 0.25,
indicating that the JTWPA operates close to the quantum limit SJTWPA = 1/2. In the
same temperature range we measure the JTWPA gain in the two switch configurations
(see Fig.6.7b). The Tphon dependence of the gain is negligible, however a 0.3 dB larger
gain is observed in the cold configuration.

a b
1

0.25

0

1.3

1

0.7
-1 0 1

S
p
ec

tr
al

 d
en

si
ty

, 
S
 (

a.
u
.)

T (K)(ω-ω0)/2� (MHz)
0.85 0.95 1.15

0.5

1.05

0.75
S
p
ec

tr
al

 d
en

si
ty

, 
S
 (

a.
u
.)

Figure 6.8: Noise power spectral density measurement. a Frequency dependence
of the noise power spectral density S measured at Tphon=840mK for the hot (red circles)
and cold (blue circles) switch configurations. Solid lines are fit with Shot(ω) (solid red)
and Scold(ω) (solid blue). The blue dashed line indicates the expected Scold(ω) for α=0.
b, Still temperature Tphon dependence of S measured at ω = ω0 (open circles) and at
ω − ω0 = −2.7MHz (open triangles) for both hot (red) and cold (blue) configurations.
Solid lines are plot of Shot (red) and Scold (blue) with parameters obtained from the
frequency dependence fits performed at all Tphon, and with SJTWPA = 0.75.

6.4.3 Cavity mode temperature estimate

As detailed in Sc.2.3.5, by meausuring the output noise across the cavity resonance we
can extract Tphot in the two switch states. From Eqs.2.35-2.37 and Eq.2.42 we get:

Shot(ω, Tphon)/G = |S11(ω)|2 nth(Tphon) + (1− |S11(ω)|2)nth(T hotint ) + 1/2 + SJTWPA

Scold(ω, Tphon)/G = α |S11(ω)|2 nth(Tphon) + (1− |S11(ω)|2)nth(T coldint ) + 1/2 + SJTWPA.

(6.4)
(6.5)

where |S11(ω)| is the measured resonator reflection function. Fig.6.8a shows the mea-
sured Shot,cold at Tphon = 840mK, all normalized to the value of Shot at large detuning.
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The measured Shot(ω) shows a small peak at resonance, indicating that T hotint is slightly
higher than the hot 50 Ω resistor, possibly due to poor sample thermalization. The fit
of Shot(ω) gives T hotint = 910mK. Conversely, by then fitting the measured Scold(ω) we
extract T coldint = 770mK, in agreement with the resonator reflection measurement sug-
gesting the radiative cooling of the internal losses when connecting to the cold load. The
second parameter obtained from the fit of Scold(ω) is the parasitic losses α = 0.47±0.1.
The extracted parameters allow then to calculate the cavity thermal photon population
nth(T hot,cold

phot ). From Eq.2.38 we get for the two switch configurations:

nth(T hot
phot) = κext

κ
nth(Tphon) + κint

κ
nth(T hot

int )

nth(T cold
phot) = α

κext
κ
nth(Tphon) + κint

κ
nth(T cold

int ).

(6.6)

(6.7)

Using the parameters obtained from the noise measurements in Eqs.6.6-6.7 we find
T hot
phot = 850mK and T cold

phot = 500± 60mK, which, according to Eq.6.2 corresponds to a
spin cooling factor η = 1.65 ± 0.2. The measurement of S thus proves that the cavity
microwave mode is indeed cooled radiatively, but that this cooling is only partial due
to the presence of the microwave losses α in between the load at Tcold and the sample
at Tphon.
We finally repeat the measurement of Shot,cold(ω) for Tphon in the range 840mK-1.15K.
In Fig.6.8b we compare it with the temperature dependence that we calculate using
the fit results obtained at Tphon = 840mK. The agreement between the data and the
calculation validates our model.
Similar demonstration of radiative cooling of a resonator has been recently shown in two
works by Xu et al. [106] and Wang et al. [107]. In their experiment the superconducting
resonator is mounted at 1K and radiatively linked to a cold source noise at about
70mK with κint/κ ∼ 0.3. By measuring the resonator output noise they extract Tphot ∼
450mK.

6.5 Spin radiative cooling

6.5.1 Demonstration at 62.5mT

The first evidence of the bismuth donor spin radiative cooling is the echo signal en-
hancement. Hahn-echoes are measured for the two switch settings, under the exact
same conditions (puse amplitude and repetition time). Fig.6.9 shows that echo ampli-
tude is more than doubled when the switch is connected to the cold load, demonstrating
radiative spin hyperpolarization with η = 2.3.
The radiative nature of the effect is confirmed by the energy relaxation time measured
with the inversion recovery sequence for the two switch states. As reported in Fig.6.9,
we indeed observe the decrease of the Purcell relaxation rate in the cold configuration,
and find Γhot

1 /Γcold
1 = η, as expected. Note that in this experiment κext = 4.8×106 s−1,

1.4 times larger than its value in the measurement of the relaxation rate temperature
dependence. The measured Purcell rate are consistently 1.4 times larger here with
respect to the value reported in Fig. 6.2.
From the cooling factor η = 2.3±0.1, we obtain that the spin temperature is cooled from
T hot
spin = 850mK to T cold

spin = 350± 10mK. This value is slightly lower than the measured
cavity mode temperature T cold

phot = 500±60mK. Given the possibly oversimplified model
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Figure 6.9: Radiative cooling demonstration at 62.5mT. a, Measured spin-echo
signal showing a η = 2.3 increase in amplitude in the cold configuration (blue). b
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of the integrated echo area Ae as a function of the waiting time ∆t of the inversion
recovery pulse sequence.

used to extract T cold
phot, the agreement between the two measurements confirms that

the value of η is limited by the efficiency with which we cool the cavity mode, thus
ultimately by the microwave losses α, and not by the competition with non-radiative
relaxation. We get from T cold

spin = 350 ± 10mK the more accurate estimate α = 0.23 ±
0.03, corresponding to 1.15 ± 0.15dB. This is a plausible value for the combined effect
of circulator insertion losses, directional coupler contribution and possible spurious
reflections due to impedance mismatch in the line.
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Figure 6.10: Rabi oscillations, coherence time and SNR improvement with
cooling. a, Rabi oscillations measured for the two switch settings. b, Measured
(circles) and Gaussian fit (solid line) of the echo are Ae decay as a function of the waiting
time τ in the Hahn-echo sequence, yielding T2 = 600µs in both switch configurations.
c,Measured (open circles) signal-to-noise ratio SNR, obtained by dividing the mean
value of 500 echo samples by their standard deviation, as a function of the repetition
time trep (see pulse sequence on top), for both switch configurations. Solid lines are fit
with p(1−e−Γ1trep)/(σ̄√trep), where σ̄ is the mean of all the σe and p is the equilibrium
polarization, yielding η = Γhot

1 /Γcold
1 = pcold/phot = 2.1.

The Rabi oscillations reported in Fig.6.10a shows that the rotation angle induced by
the drive pulses is not affected by the switch state and the same cooling efficiency is
recorded at all input powers. We verify that the increase in echo amplitude is not due
to a change in coherence time by measuring T2 in the two switch states. Fig.6.10b
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shows that the same T2 = 600µs is recorded in the two cases.
The sensitivity enhancement obtained by radiative spin hyperpolarization does not
scale like η as in other hyperpolarization schemes such as DNP but only as √η, because
the optimal waiting time trep between subsequent experimental sequences is of order
Γ−1

1 and thus scale as η. We demonstrate this by measuring the mean value and
standard deviation of Ae for 500 echo traces as a function of the repetition time trep
(see Fig. 6.10c). The highest sensitivity is obtained for trep ' 1.25[Γcold,hot

1 ]−1, both
in the cold and the hot load cases. It is 1.6 times larger in the cold than in the hot
configuration, slightly larger than √η = 1.52 because switching to the cold load also
substantially reduces the effective noise temperature of our detection chain: the echo
standard deviation is smaller by 7%, consistently with the noise power measurement of
Fig 6.8.

6.5.2 Radiative cooling at lower field

We now consider radiative cooling of the other bismuth donor spin transitions. As seen
in the spectrum reported in Fig.6.11, we measure larger echo amplitude in the cold
load case at all the six resonant transitions. The signal enhancement in between 1.5
and 1.75 is to be attributed to trep = 5 s, short compared to the average spin relaxation
time. Despite the fact that at lower field another relaxation mechanism is acting in
addition to Purcell (see Sc.5.21), radiative relaxation is still effective.
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Figure 6.11: Radiative cooling the first six ESR lines. Measured echo area Ae
as a function of the applied magnetic field for the cold (blue) and hot (red) switch
configurations, with trep = 5 s. .

We then measure the spin relaxation for the two switch configurations at 9.3mT (see
Fig.6.12). The baseline, corresponding the echo amplitude at equilibrium, increases by
a factor η = 2 in the cold load case. Even if the exponential fit is poor (see Chap-
ter 5, Sc.5.6), the extracted relaxation rates satisfy Γhot

1 /Γcold
1 = η. It thus seems that

radiative relaxation works even when the competing relaxation mechanism discussed
in Chapter 5 plays a role. We defer to Chapter 7 a qualitative explanation of this
observation.
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Figure 6.12: Radiative relaxation and cooling at 9.3mT. Measurements (open
circles) and exponential fits (solid lines) with time constant Γ−1

1 of the integrated echo
area Ae as a function of the waiting time ∆t of the inversion recovery pulse sequence.

6.6 Controlling the cooling with a tunable spin
relaxation channel

We now study how the radiative hyperpolarization works when spins are coupled to a
second bath of temperature TIR by a relaxation mechanism of rate ΓIR. We introduce
this second relaxation channel by applying infrared illumination (IR) to the sample
with a 950 nm light emitting diode (LED), known to reduce the spin relaxation time of
donors [30] (see Sc.4.5).

6.6.1 Superconducting resonator response under IR illumination

The LED illumination has two effects on the sample: it generates quasi-particles in the
superconductor and, since it is slightly above the silicon energy gap, conduction elec-
trons in the substrate. These two phenomena increase the resonator losses and affect
its resonance frequency. Quasi particles increase the microwave Ohmic losses of the su-
perconductor and its kinetic inductance, thus decreasing the resonance frequency [108].
On the other hand, the photo-generated conduction electrons increase the energy dis-
sipation in the substrate, and decrease the capacitance leading to an increase of the
resonance frequency [109]
We characterize the resonator parameters dependence on the IR light intensity by mea-
suring the resonator reflection S11 as a function of the LED drive current I. Fig.6.13a
shows that the resonator internal loss rate κint increases by one order of magnitude
when I reaches 100µA, bringing the resonator close to the critical coupling regime.
This effect is expected to contribute to the reduction of η by both affecting Γphot and
n̄(T coldphot) (see Fig.6.14b). The resonance frequency increases by ∼ 1MHz in the same
range of I (Fig.6.13b). This resonance frequency increment indicates that the dominant
origin of the resonator microwave losses is probably the photo-excited silicon conduction
electrons.

6.6.2 Suppression of radiative cooling

We then measure the spin relaxation in the hot configuration Γhot1 (I) and from this we
extract ΓIR(I) (see Fig.6.14a). Neglecting Γphon, the introduction of ΓIR(I) modifies
Eq.6.1 for the cooling factor η as follows:
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Figure 6.13: Effect of LED illumination on the resonator. a Extracted κ, κint
and κext from the fit of the measured resonator reflection S11 as a function of I. b
Extracted resonator frequency ω0 from the S11 measurement.

η(I) =
ΓIR(I) + Γphot(2n̄(T hot

phot) + 1)
ΓIR(I) + Γphot(2n̄(T cold

phot) + 1)
, (6.8)

where Γphot and T cold
phot are indirectly dependent on the current I via the resonator

κint(I). The measurement of κint(I) and ΓIR(I) then allows to estimate with Eq.6.8
the expected η(I) and the relative contributions of the resonator internal losses and of
the light-induced relaxation (see Fig.6.14b.
Finally, we measure the cooling efficiency η(I) by recording the echo amplitude as a
function of I in the two switch states. The η(I) dependence predicted by our model
agrees semi-quantitatively with the data. The ratio of relaxation rates Γhot1 /Γcold1 also
closely follows the measured η(I), as expected.

6.6.3 Polarization dependence on IR illumination

In addition to changes in the spin relaxation rate, we also observe that the echo ampli-
tude is reduced upon optical illumination (see Fig.6.15, magenta curve). This reduction
is in part due to the changes of the resonator properties. The increased resonator losses
lead to a reduced pulse amplitude inside the resonator and to a larger fraction of the
spin-echo signal dissipated rather than emitted into the output line. Both effects thus
yield a smaller echo amplitude for larger κint. Simulation provides an easy estimate
of expected echo reduction. The red curve in Fig.6.15 shows the measured AI normal-
ized by the simulated decay, demonstrating that the increased resonator losses do not
explain the observed echo amplitude reduction.
As a tentative to account for the observations, we model the relaxation mechanism
induced by the IR light as driving the spin toward the equilibrium spin polarization
of the photo-generated carriers. The physical interpretation is the following. The
absorption of the above-gap light by the silicon generates conduction electrons whose
spin has a low polarization pel ≈ 0.05 at 62.5mT and 850mK. We then assume that that
the donors are ionized at rate ΓIR under illumination. Following the ionization, donors
recapture a conduction electron on a much faster timescale, leading to an effective
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Figure 6.14: Suppression of cooling by carrier injection. a, Measured relaxation
rate Γhot,cold

1 as a function of I in the hot (red circles) and cold (blue circles) settings.
Calculated Purcell rates Γphot(I)(2nth(T hot,cold

phot ) + 1) using the measured κint(I) in the
the hot (red dashed line) and cold (blue dashed line) cases are also shown, together with
the extracted ΓIR(I) = Γhot

1 (I)− Γphot(I)[2nth(T hot
phot) + 1] (magenta dashed line). The

calculated Γcold
1 (I) = ΓIR(I) + Γphot(I)(2nth(T cold

phot) + 1) (green solid line) shows partial
agreement with the data (blue circles). b Calculated cooling factor η(I) using Eq.6.8
in three cases: including only the effect of κint(I) (black stars), only the effect of ΓIR(I)
(magenta squares), and the two combined contributions (green circles). c Measured
pcold/phot (black) and Γcold

1 /Γhot
1 (orange) as a function of I. The calculated η(I) (green

circles, same as panel b) is in semi-quantitative agreement with the measurement.
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transfer of the conduction electron polarization to the bismuth ESR transitions. Such
process could be caused by donor-bound exciton formation and relaxation (see Sc.4.5).
The donor polarization is then resulting from the competition between the Purcell rate
and ΓIR driving it toward p(T hot

phot) and pel, respectively. The current dependence of the
polarization is thus given by:

p(I) =
Γphot[2nth(T hot

phot) + 1]
Γhot

1 (I)
p(T hot

phot) + ΓIR(I)
Γhot

1 (I)
pel. (6.9)
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Figure 6.15: Polarization dependence on LED illumination. Measured (trian-
gles) Ae reduction as a function of the applied LED current I in the hot configura-
tion. The measured decay normalized by the simulated effect of κint(I) on the echo
amplitude (circles) is also shown. p(I) calculated with Eq.6.9 (stars) reproduces semi-
quantitatively the normalized data (circles).

The measured echo decay as a function of I, normalized by the simulated effect of
κ(I) on Ae (red curve in Fig.6.15), shows a semi-quantitative agreement with the decay
calculated with Eq.6.9 (green curve), supporting our model. The less good agreement
at higher I could be caused by heating caused by the IR light.
We finally consider the hypothesis of the echo amplitude reduction caused entirely by
heating of the sample, rather than the ionization process described above. In order
to account for an echo reduction of more than a factor 3 (red curve in Fig.6.15), the
sample temperature should rise from 850mK up to 2.7K. Two observations are against
this possibility. The first being that the cryostat temperature changes less than 15mK.
The second reason lies in the positive resonator frequency shift, incompatible with the
generation of quasi-particles expected for such a temperature increase.

6.7 Cooling dynamics

In a last experiment we investigate the dynamics of the spin radiative hyperpolarization.
For that, we replace the electromechanical switch with the superconducting switch
described in 2.5, able to switch in a few nanoseconds without heating [15]. The switch
is this time placed at the mixing chamber plate.
As seen in Fig.6.16, the echo area Ae is measured at 9.5mT as a function of the delay
∆t after the switch configuration is changed, either from cold to hot or vice-versa. The
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1 = 3.7 ± 0.3 s from cold to

hot (red)

relaxation times in the two cases are expected to be the two values Γphot[2nth(T hot,cold
phot )+

1] determined by the new thermal population nth after the switching. nth is instead
expected to reach the equilibrium value in a few µs, the relaxation time-scale of the
resonator. An exponential fit of the two curves gives (Γhot

1 )−1 = 3.7 s and (Γcold
1 )−1 =

6.4 s. The approximate equality of the two measured ratios, Γhot
1 /Γcold

1 = 1.7 and
pcold/phot = 1.5, is again in agreement with our model. The reduced η with respect to
the previously presented result is explained by a measured 3 dB insertion loss of the
superconducting switch.

6.8 Conclusion

In this chapter we have reported the thermalization of an electron spin ensemble to
the electromagnetic environment consisting in the resonant mode of a superconduct-
ing cavity. We have then shown that having the spins at thermal equilibrium with
the microwave field makes possible to cool them below the host lattice temperature,
enhancing their polarization.
We now consider the real world applications of such new hyperpolarization technique.
In our scheme, the sample is thermally anchored at a temperature higher than the
lowest temperature stage in the cryostat, which is instead used to cool the thermal
radiation source. Keeping the sample hot while cooling only the spins can be use-
ful in situations in which large cooling powers are needed, for example in spin-based
microwave–optical transduction experiments, which require large optical powers [110].
The fact that the minimum achievable spin temperature is set by the cryostat base
temperature is however the main drawback of the method presented here. Neverthe-
less, one could imagine to radiative hyperpolarize the electron spins at an arbitrarily
low temperature by cooling the resonator field with parametric processes in a circuit
quantum electrodynamics platform. We briefly introduce our proposal to realize this
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idea in Chapter 8.
Regarding the applications to magnetic resonance spectroscopy, we first notice that to
our knowledge the only existing hyperpolarization methods for electron spins are based
on optical illumination[72, 111, 112]. As an example in the solid state, we have seen in
Sc.4.5 that the optical transitions of donors in silicon can be exploited to hyperpolarize
both the electron and nuclear spin of the donor[68, 72]. Similarly, NV centers can
be optically hyperpolarized even at room temperature [112]. Optical hyperpolarization
works only for certain electron spin systems possessing the appropriate level structure.
On the contrary, radiative cooling only requires a spin transition and is thus potentially
universal.
The demonstrated sensitivity increase of at least √η, corresponding to a reduction of
the measurement time by a factor η, could be of practical interest for a large vari-
ety of ESR measurements (including field-sweeps, g-tensor measurements, HYSCORE,
DEER, ENDOR etc.). This approach would exclude only ESR studies of the spin-lattice
relaxation processes in itself.
Concerning the spin-species suitable for radiative cooling, the main criterion is the
possibility to reach the Purcell regime at cryogenic temperature, where electron spin-
lattice relaxation time Γ−1

1 lies typically in the range 10−3 − 103 s [113–115]. Since a
Purcell time of ∼ 10−3 s has been demonstrated with a different resonator geometry [89],
we can then envision this technique to be applicable to most species.
Another requirement of our scheme is the low resonator internal losses, which can only
be achieved with superconducting materials and therefore sets an upper bound to the
sample temperature. High quality factor resonators made out of NbTiN, which has
higher critical temperature (Tc) than niobium and and withstands larger magnetic
fields, have been demonstrated [116]. Radiative cooling at liquid Helium temperature
should then be possible using this material, with the additional advantage of the ap-
plication of larger magnetic field B0. Approaching liquid nitrogen sample temperature
would require high-Tc superconductors. Spin-photon coupling of the order of 1Hz
have been reached in YBCO resonators, with quality factor of ∼ 104 at 50K [117].
However, resonators with such materials seem to suffer from higher internal losses if
µm-constrictions are patterned on thin films [118], making it challenging to reach larger
spin-photon coupling g.
Besides its application to ESR, hyperpolarization of electron spins may be of interest
for nuclear magnetic resonance. The non-thermal electron polarization can indeed
be transferred to nuclear spins by Dynamical Nuclear Polarization (DNP) [119]. The
possible application of radiative cooling to the radicals used in DNP as polarizing agents
could lead to a large nuclear spin signal enhancement in less demanding conditions
that those usually required, namely lower magnetic field, lower microwave frequencies
or higher temperature [120].



Chapter 7

Polarization transfer in bismuth
donors

In this chapter we report our experimental investigation of the phenomenon of po-
larization transfer via spin flip-flops introduced in Sc.4.3.3, to which we attribute the
non-exponential longitudinal relaxation measured at 9.3mT (see Sc.5.6).
Fig.7.1 illustrates schematically how the flip-flops at rate Γff, in competition with the
Purcell relaxation at rate Γ1, would affect the inversion recovery measurement of the
spin relaxation. Consider the case B0 = 9.3mT, where the echo amplitude is propor-
tional to the population unbalance ∆N = N|16〉+N|15〉−N|5〉−N|4〉. After the π pulse,
flip-flop processes tend to refill the ground states N|5〉 and N|4〉, while emptying the
excited states N|16〉 and N|15〉. If Γff is sufficiently fast compared to Γ1, deviation from
the Purcell exponential relaxation are then expected.
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Figure 7.1: Polarization transfer after population inversion. Spin population
(gray circles) represented in the bismuth donor spin energy levels (black) immediately
after an ideal π pulse inverting the population of the |16〉 ↔ |5〉 and |15〉 ↔ |4〉 quasi-
degenerate transitions (blue). Flip-flop processes (red arrows) of rate Γff may compete
with the Purcell relaxation rate Γ1, leading to a non-exponential spin relaxation of the
population unbalance ∆N = N|16〉 +N|15〉 −N|5〉 −N|4〉.

In the following, we provide evidence of such polarization transfer at low field by per-
forming double resonance experiments. Even if a quantitative understanding of the
observed spin longitudinal relaxation is still missing, our results shows that the polar-
ization transfer can qualitatively explain the observed non-exponential decay.

119
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7.1 Double resonance spectroscopy

The principle of the double resonance experiment is illustrated in Fig.7.2. The Hahn-
echo amplitude is measured repeatedly at one field while the frequency ωpump of a
continuous-wave pump tone sent to the resonator input is varied. Whenever a bismuth
transition is resonant with ωpump, it is saturated by the long pump drive. In the ab-
sence of polarization transfer between hyperfine levels, the polarization of the probed
transition is unaffected by the pump tone and the echo signal should show no depen-
dence on ωpump. If on the other hand polarization transfer is significant, we expect a
reduction of echo signal when ωpump is resonant with another transition. This experi-
ment is thus sensitive to the polarization transfer in a complementary way with respect
to the inversion recovery measurement, where the polarization is transferred from the
non-resonant to the probed transition.

To perform the experiment, we modify the setup used in Ch.5 by removing the
JTWPA and by connecting a second microwave source, via a 3 dB splitter at room
temperature, to the input line. We use this second source to generate the microwave
pump tone. The pump signal is switched off only during the Hahn-echo sequence,
starting from 1ms before the π/2 pulse, to avoid saturation of the amplifiers. It is thus
off for less than 1/10000 of the experimental time.
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Figure 7.2: Polarization transfer in a double resonance experiment. Spin
population (gray circles) represented in the bismuth donor spin energy levels (black) in
the presence of a pump tone saturating the |18〉 ↔ |3〉 and |17〉 ↔ |2〉 quasi-degenerate
transitions. Flip-flop processes may redistribute the population as illustrated by the
red arrows, leading to a reduced polarization of the probed transition resonant with
the cavity (blue).

7.1.1 Double resonance at 9.5mT

We first measure Ae at 9.5mT for ωpump going from 7.12GHz to 7.65GHz. In this
range of frequencies, the pump tone crosses all bismuth ESR transitions (see Fig.7.3a).
The echo amplitude Ae(ωpump), proportional to the population unbalance in the probed
transitions ∆N = N|16〉+N|15〉−N|5〉−N|4〉, shows a dip at pump frequencies resonant
with spin transitions (see Fig.7.3b). Their amplitude decreases as the pump-resonator
detuning increases and the pump tone gets more and more filtered. The observed dips
validate the hypothesis that polarization transfer takes place at 9.5mT, leading to a
reduction of ∆N when any other transition is saturated by the pump. Complete echo
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Figure 7.3: Double resonance spectroscopy. a, Calculated Sx (blue) and Sz
(red) bismuth donor spin transitions as a function of B0. The resonator frequeny
is reported (gray), as well as the three pump frequency sweeps (green) at 2.3mT,
9.5mT and 62.5mT. b, Ae(ωpump) measured at 9.5mT with trep = 60 s and Ppump =
−37 dBm. Sx (blue) and Sz (red) transition frequencies are represented by dashed lines.
c, Ae(ωpump) measured at 2.25mT, for Ppump = −47 dBm (red), Ppump = −67dBm
(green), Ppump = −87dBm (purple). Repetition times are 40 s (red) and 10 s (green and
purple). Sx (blue) and Sz (red) transition frequencies are represented by dashed lines.
d, Ae(ωpump) measured at 62.5mT (green) with trep = 60 s and Ppump = −37 dBm. Sx
(blue) and Sz (red) transition frequencies at the same field are represented by dashed
lines. Ae(ωpump) measured at 9.5mT (black) and 2.3mT (red) are also shown for
comparison.
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suppression is trivially reached for ωpump = ω0, when the probed transition is directly
saturated.
Interestingly, a relatively smaller echo reduction is also observed in correspondence of
Sz transitions. Even if Sz transitions should not be allowed in our geometry, a small
misalignment of B0 with respect to the z direction could explain the result .We note
that Sz transitions happen at the same frequency as two-photon processes, which we can
thus not exclude. We finally notice that the pump tone decreases the echo amplitude
also when no resonance condition is satisfied, yielding a background signal centered at
the resonator frequency. More insight on these effect is provided in the following.

7.1.2 Double resonance at 2.3mT and 62.5mT

The same measurement is repeated at 2.3mT, where all spin transitions lie in the
7.32GHz-7.44GHz range (see Fig.7.3a). The non-resonant background signal is much
stronger than at 9.3mT and only few double-resonance dips are visible in Ae(ωpump).
Performing the measurement at different pump powers Ppump confirms the few visi-
ble double-resonance dips at ωpump/2π = 7.384, 7.396, 7.40235, 7.4148 and 7.421GHz.
Moreover, it shows that the overall effect of the pump tone on Ae is enhanced as the
pump power increases.
We finally measure Ae(ωpump) at 62.5mT in the 6.5GHz to 7.9GHz range of ωpump
(see Fig.7.3d). No double-resonance signal is observed at this field and also the non-
resonant background is suppressed: only the ωpump = ω0 dip is visible. The magnetic-
field dependence of the large background signal indicates that its origin is not a direct
effect of the pump tone on the probed transition or on the resonator (such as heating).
We thus think that it is caused by the overlap of the double-resonance echo dips.
The absence of any evidence of polarization transfer at 62.5mT is in agreement with
the model detailed in Sc.4.3.3 and with the inversion recovery measurement at the
same field: spin flip-flops would indeed be largely inhibited due to the larger detuning
of neighbouring spins. However, we notice that the absence of double-resonance signal
can be, at least in part, due to the larger pump-resonator detuning necessary to drive
the other spin transitions.

7.2 Dynamics of polarization transfer

We investigate the timescale at which the polarization is transferred by performing a
pulsed double resonance experiment. As shown in Fig.7.4, a pump pulse of duration
tpump is sent to the resonator and after a delay time ∆t the polarization of the transition
resonant with the cavity is measured with the Hahn-echo. We enhance the saturation
of the broad spin lines induced by the short pump pulse by sweeping ωpump in a range
of a few MHz during tpump. The waiting time between two repetitions of the pulse
sequence twait is chosen to be twait = trep −∆t, to keep the time interval trep between
two Hahn-echo sequences fixed. Doing so, the probed spin transition has the same
time to relax to equilibrium after the π/2 pulse independently of ∆t. Ae(∆t) is thus
constant, unless ∆N dynamics is induced by the pump. In the following trep = 60 s,
tpump = 10ms and the pump frequency is swept from ωpump−5MHz to ωpump+5MHz.
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Figure 7.4: Pulse setup and sequence. a, Pump line added to the room-
temperature setup of Fig.5.11. b, Pulse sequence. ωpump is shifted during the pump
pulse proportionally to the frequency modulation signal.

7.2.1 Polarization dynamics at 9.5mT

We measure Ae(∆t) for four values of ωpump (see Fig.7.5a). The results for ωpump/2π =
7.246GHz, 7.301GHz and 7.518GHz reported in Fig.7.5b show the same qualitative
behaviour. In the first few seconds the echo amplitude decreases with ∆t before in-
creasing again at a slower rate. In the measurements at ωpump/2π = 7.301GHz (green)
and ωpump/2π = 7.518GHz (magenta) the pump drives two transitions symmetric
with respect to ω0. The two Ae(∆t) curves show almost the same polarization dy-
namics, with an echo minimum at about 4 s. On the other hand, the measurement at
ωpump/2π = 7.246GHz (blue dots), where a transition more detuned from ω0 is excited,
shows a smaller echo reduction and a slower dynamics.
A radically different result is instead observed for ωpump = 7.355GHz (see Fig.7.5c).
Here the echo amplitude is minimum for the smaller ∆t and increases monotonically
at slower rate for large delay.
The above results agree qualitatively with our polarization transfer model. Because
of the time needed for the polarization transfer to happen, no effect is expected im-
mediately after the saturation, consistently with the observations. Then, polarization
transfer progressively takes place over some delay from the probed transition via flip-flop
processes and ∆N reaches its minimum value. The presence of the Purcell relaxation at
rate Γ1 prevails for larger ∆t when ∆N increases again toward its thermal equilibrium
value. The longer delay at which the minimum of Ae appears for ωpump = 7.246GHz
(blue dots) is explained by the fact that more flip-flop processes are needed for ∆N
to be affected. The measurement reported in Fig.7.5c provides a consistency check of
our analysis. The pump pulse with ωpump = 7.355GHz directly reduces ∆N by de-
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populating |5〉 and exciting spins in |15〉. No delay between the pump pulse and the
appearance of a minimum in Ae is thus expected, as confirmed by the measurement
outcome.
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Figure 7.5: Polarization transfer dynamics at 9.5mT. a, Spin transitions res-
onant with the four different pump frequencies are represented by coloured solid ar-
rows. Purcell relaxation and flip-flop processes determining the dynamics of ∆N =
N|16〉 +N|15〉 −N|5〉 −N|4〉 are illustrated by gray dashed arrows. b, Ae(∆t) measured
for 3 values of ωpump: 7.246GHz (blue), 7.301GHz (green) and 7.518GHz (magenta).
c, Ae(∆t) measured with ωpump = 7.355GHz.

7.2.2 Polarization dynamics at 2.3mT

At 2.3mT the |18〉 ↔ |3〉 and |17〉 ↔ |2〉 quasi-degenerate transitions are resonant with
the cavity, and thus Ae is proportional to ∆N = N|18〉+N|17〉−N|3〉−N|2〉 (see Fig.7.6a).
We measure Ae(∆t) at this field with ωpump = 7.384GHz. The pump pulse then excites
the transitions |16〉 ↔ |5〉 and |15〉 ↔ |4〉, that are resonant with the cavity at 9.5mT
(see Fig.7.6b). The Ae(∆t) measurement at 2.3mT (yellow dots in Fig.7.6b) is thus
complementary to the Ae(∆t) recorded at 9.5mT with ωpump = 7.518GHz (magenta
curves in Fig.7.6b and Fig.7.5b), meaning that the probed and the pumped transitions
are exchanged in the two experiments.
Comparing the two results reported in Fig.7.6b, we notice that at 2.3mT the ∆N
dynamics after the pump pulse is significantly faster and the echo reduction more
evident with respect to the measurement at 9.5mT.

7.2.3 Comparison with the estimated flip-flop rate

In Sc.4.3.3 we have presented a model of the flip-flop processes between adjacent donors
that could explain the observed polarization transfer. The flip-flop rate Γff is found to
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Figure 7.6: Polarization transfer dynamics at 2.3mT. a, Transitions resonant
with the pump drive of frequency ωpump = 7.384GHz (yellow). Gray arrows illustrate
the competing Purcell relaxation rate Γ1 and the spin flip-flop processes at rate Γff.
b, Comparison of polarization dynamics at 2.3mT and at 9.5mT. Left, Sx transition
frequencies (blue) and resonator frequency (gray). Pump frequencies in the considered
experiment at 9.5mT (magenta dot) and in the 2.3mT experiment (yellow dot). Right,
Ae(∆t) measured at 2.3mT (yellow) and at 9.5mT (magenta, same curve as in panel
b of Fig.7.5b). The two curves are normalized by Ae(∆t = 60 s).

be dependent on the effective spin line broadening γeff caused by the ESEEM phe-
nomenon that at low field partially compensates the detuning between the bismuth
hyperfine transitions. We then calculate with Eq.4.37 the average flip-flop rate ex-
pected at 9.5mT, finding Γ−1

ff ≈ 10 s.
The pulsed double-resonance experiment at 9.5mT reveals a polarization transfer that
takes place on the order of a few seconds, which is not too far off compared to the
estimated Γff. The calculated Γff is thus probably about one order of magnitude too
slow to explain our observations. We thus find that our results with the oversimplified
model of Sc.4.3.3 are encouraging to confirm the validity of the proposed physical
process.
Measurements at 2.3mT provide further support to the model. The observed acceler-
ation of polarization transfer can be indeed explained by two effects included in our
model. The first is that lowering the field reduces the average detuning between the
hyperfine transitions, leading to an increased probability of finding neighbouring res-
onant donors. At 9.3mT, this detuning ranges from ∼ 100 kHz to ∼ 2MHz, while at
2.3mT it goes from ∼ 10 kHz to ∼ 100 kHz. The second (and possibly dominant) effect
is that the amplitude of ESEEM oscillations is larger at 2.3mT (see Sc.5.5), yielding
an increase of γeff.
To go beyond this preliminary study, we are working in collaboration with W.Coish
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from McGill University to develop a complete model able to quantitatively reproduce
our measurements. In particular, a rigorous treatment requires considering all different
hyperfine transition frequencies and matrix elements, and proper averaging of flip-flop
processes between neighbouring donors at different angles and distances.

7.3 Conclusion

The double resonance experiments discussed in this chapter demonstrate that polar-
ization transfer in the bismuth donor spin manifold happens at B0 < 10mT with
characteristic times comparable to and even faster than the Purcell rate. The observed
phenomenon seems thus to be compatible with the non-exponential spin relaxation
measured with the inversion recovery sequence at B0 as high as 10mT. However, a
quantitative analysis is needed for a conclusive answer.
The reported results encourage us to confirm the spin flip-flop mechanism described
in Sc.4.3.3 as the cause of the observed population dynamics, even if a quantitative
agreement is missing. The calculated average flip-flop rate of 10−1 s−1 is comparable
even though slightly smaller than the characteristic rate of the polarization transfer
measured. However, a more detailed calculation could possibly demonstrate the validity
of the proposed physical process.
We finally come to the efficiency of radiative cooling in the presence of polarization
transfer. The measurements performed at 9.3mT show radiative cooling with η = 2,
only slightly lower than η = 2.3 recorded at 62.5mT. This demonstrates that radiative
cooling can be efficient also for an interacting spin ensemble. While spin-lattice and
radiative relaxation put the spins in thermal contact with two different baths, polar-
ization transfer represents a thermalization process internal to the spin system that
does not prevent its cooling. Despite the fact that Purcell relaxation acts only on the
resonant transitions, polarization transfer would, in a sufficiently long time, lead to
hyperpolarization of all the ESR donor transitions. However, we have no experimental
evidence of this interpretation.



Chapter 8

Conclusion and future directions

8.1 Radiative cooling of a spin ensemble

The experiments reported in this thesis show that an ensemble of electron spins can
thermalize to their electromagnetic environment. We have then exploited this regime to
radiative cool the ensemble below the temperature of the crystal in which it is hosted,
demonstrating a novel universal method of electron spin hyperpolarization.
To demonstrate this effect, we have used an ensemble of bismuth donors in silicon
coupled to a superconducting resonator. We have shown that, in appropriate conditions,
the relaxation of these donors can be dominated by radiative processes at temperatures
between 10mK and 1K.
The demonstration of radiative cooling is reported in Chapter 6. Connecting the res-
onator input to a resistor colder than the sample we record a more than twofold increase
of spin polarization, showing that spins are indeed cooled below the lattice temperature.
In the last chapter Ch. 7 we report evidences of a polarization transfer process in Si:Bi
present at low applied magnetic field. By performing double resonance experiment we
show that spin population is transferred from one bismuth transition to another on
timescales of the order of seconds. This suggests that all Si:Bi hyperfine levels may be
cooled by the radiative cooling of the resonant transition, although we have no direct
proof.

8.2 Future direction: active radiative cooling

Radiative spin cooling is potentially able to cool an arbitrary spin species below the
sample temperature. The main drawback of this technique is that the minimum reach-
able spin temperature is ultimately limited by the lowest temperature stage in the
cryostat because of the necessity to physically cool down the cold 50Ω resistor. This
raises the question: is it possible to do better, and to cool down arbitrary electron spins
to an arbitrarily low temperature (i.e., even lower than the lowest physically available
in the cryostat) using radiative cooling? This would constitute an interesting develop-
ment for ESR spectroscopy. However, such a goal requires cooling the microwave field
by a method different from the one demonstrated here. In the rest of this paragraph,
we outline an idea of how to achieve this.
This idea consists in actively cooling the cavity mode with a parametric process enabled
by a non-linear microwave circuit, as demonstrated in recent experiments [121]. The
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intra-cavity thermal photons would be upconverted to a higher frequency, and then
dissipated in a resistor at the sample temperature. If sufficient energy is provided,
this active cooling scheme could in principle reduce the photon and thus the spin
temperature to an arbitrary value below the cryostat base temperature.
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Figure 8.1: Active cooling principle. a, Active cooling principle. b, Left, schematic
representation of a λ/4 CPW resonator mad of NbTiN (gray), where the kinetic in-
ductance contribution is represented by the non linear inductor in the inner conductor.
Right, current profile of the first mode (blue) and of the m−th harmonic of the CPW
resonator.

The principle of such active radiative cooling is illustrated in Fig.8.1a. In a sample
at temperature Tphon, the spins are resonantly coupled to a microwave resonator of
frequency ω1 populated at thermal equilibrium by nth(ω1, Tphon) microwave photons.
A second resonator of frequency ω2 � ω1 has instead a thermal equilibrium population
nth(ω2, Tphon)� nth(ω1, Tphon). If the non-linear inductance of one resonator depends
on the current flowing in the other one, parametric processes can be activated by a
proper pump current satisfying the energy conservation conditions. It can indeed be
shown that a pump tone of frequency ωpump = ω2 − ω1 enables conversion of photons
from low to high frequency. We notice that the described mechanism is similar to the
sideband cooling in optomechanical systems, where the frequency of the optical cavity
depends on the displacement of the mechanical resonator. If the high frequency res-
onator is well thermalized to a resistor at Tphon, we then reduce the low frequency mode
thermal population down to nth(ω1) ≈ nth(ω2, Tphon). This means that its tempera-
ture is effectively lowered below Tphon. Spins in the Purcell regime coupled to the low
frequency cavity are then radiatively cooled below the sample temperature, as desired.
The design of the non-linear superconducting circuit offers a few possible alternative
approaches. One possibility is represented by the use of the intrinsic non-linearity of dis-
ordered superconductors like NbTiN, whose main advantage would be its compatibility
with the magnetic field needed in ESR experiments. The two LC resonators could be
implemented with two modes of a distributed-parameter resonator, such as the coplanar
waveguide (CPW) resonator illustrated in Fig.8.1b. The first and the m-th harmonics
would realize the low and high frequency mode, respectively (see Fig.8.1b). The non-



8.2. Future direction: active radiative cooling 129

linearity originated by the current dependence of the NbTiN kinetic inductance would
then make possible to implement the parametric processes described above.





Appendix A

Thermalization of a quantum
system interacting with N baths

Throughout this thesis we deal with quantum systems interacting with their environ-
ment. If the environment is a bath satisfying the conditions of a Markov approximation,
then the system quantum state at time t, described by the density matrix ρ(t), evolves
according to a master equation that can be expressed in the Lindblad form:

dρ
dt = − i

~
[Ĥ, ρ] +

∑
µ

(LµρL†µ −
1
2L
†
µLµρ−

1
2ρL

†
µLµ) (A.1)

where Lµ is a non-hermitian operator describing an interaction of the system with the
environment.
Central to this thesis is the question: what is the effective temperature Tsys of a quan-
tum system coupled with strength Γj to N reservoirs of different temperatures Tj . We
assume that these reservoirs consist of a continuum of bosonic modes (which can repre-
sent the lattice vibrations, or the microwave field). The system thermalizes by emission
into and absorption from the environment of energy quanta ~ωsys. Γj is defined as the
rate at which the system spontaneously emits such a quantum of excitation into bath j
if the latter is in its ground state. The emission process corresponds to the annihilation
of a system excitation described by the operator ô−. On the other hand, the absorption
corresponds to the action of the creation operator ô+ = ô†−. In the master equation
for such a system, for each bath j the Lindblad operator Lj− =

√
Γj−ô− accounts for

emission into the bath j at rate Γj−, while the operator Lj+ =
√

Γj+ô+ accounts for
absorption from the same bath at rate Γj+.
The Γj− and Γj+ rates can be obtained from generic thermodynamical arguments,
as reported in [17]. The emission (absorption) process corresponds indeed to a jump
upwards (downwards) between two levels in the bath j separated by the energy ~ωsys.
The ratio of emission and absorption rates Γj−/Γj+ is then equal to the probability
of finding the bath in the lower energy state divided by the probability of finding it
in the excited state, that assuming the bath is in thermal equilibrium is given by the
Boltzmann distribution:

Γj−
Γj+

= e~ωsys/kT = nth(Tj) + 1
nth(Tj)

, (A.2)

where
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nth(T ) = 1
e~ωsys/kT − 1

(A.3)

is the occupation number of a bosonic mode of frequency ωsys. The two rates can then
be expressed as a function of the spontaneous emission rate Γj as:

Γj− = Γj [nth(Tj) + 1]
Γj+ = Γjnth

(A.4)
(A.5)

Eq.A.1 for the system coupled to N bosonic baths takes then the form:

dρ
dt = − i

~
[Ĥ, ρ]−

N∑
j=1

Γj [nth(Tj) + 1]
2 (ô+ô−ρ+ ρô+ô− − 2ô−ρô+)

−
N∑
j=1

Γjnth(Tj)
2 (ô−ô+ρ+ ρô−ô+ − 2ô+ρô−).

(A.6)

It is however possible to rewrite Eq.A.6 in terms of a single effective bath of temperature
Tsys:

dρ
dt = − i

~
[Ĥ, ρ]− Γ[nth(Tsys) + 1]

2 (ô+ô−ρ+ ρô+ô− − 2ô−ρô+)

−Γnth(Tsys)
2 (ô−ô+ρ+ ρô−ô+ − 2ô+ρô−),

(A.7)

where Γ =
∑N
j=1 Γj is the total system-bath coupling. The system temperature Tsys is

so obtained from the new effective bath occupation number:

nth(Tsys) =
N∑
j=1

Γj
Γ nth(Tj). (A.8)

If the coupling of the system to one bath j0 is dominant (Γ0 � Γj 6=j0) the system will
therefore equilibrate to Tsys ≈ Tj0 regardless of the other baths.
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Titre : Refroidissement radiatif d’un ensemble de spins

Mots clés : résonance magnétique, résonance paramagnétique électrique, hyperpolarisation, circuits supra-
conducteurs, donneurs de bismuth, micro-ondes

Résumé : Les spins dans le solides interagissent fai-
blement avec leur environnement électromagnétique
et atteignent presque toujours l’équilibre thermique en
échangeant de l’énergie avec le réseau cristallin dans
lequel ils sont insérés. Cependant, comme prédit par
Purcell, des expériences récentes ont démontré que
l’émission radiative peut devenir le canal de relaxa-
tion d’énergie le plus rapide pour les spins d’électron
si l’échantillon est inséré dans une cavité micro-onde
résonante avec petit volume de mode et de faible
taux de perte. Dans ce régime, les spins devraient
se thermaliser à la température des photons présents
dans le mode de la cavité, indépendamment de la
température de l’échantillon. Cette thèse présente la
démonstration de cette idée, en montrant que les
spins peuvent être refroidis en manière radiatif au-
dessous de la température de l’échantillon en cou-

plant la cavité à une source de rayonnement ther-
mique froid. L’expérience est réalisée avec un en-
semble de spins électroniques réalisés par des don-
neurs de bismuth dans le silicium, couplés à un
résonateur supraconducteur de taille micrométrique.
La température de spin est déduite en mesurant la po-
larisation de spin avec des techniques de résonance
paramagnétique électrique pulsés. Une augmentation
de polarisation par un facteur supérieur à 2 est ob-
servée lorsque le résonateur est connectée à une
résistance froide, prouvant que les spins sont refroi-
dis radiativement par rapport au cristal de silicium
qui les héberge. La technique démontrée représente
une méthode nouvelle et universelle pour améliorer la
polarisation de spin au-delà de l’équilibre thermique,
avec des applications potentielles en résonance
magnétique.

Title : Radiative cooling of a spin ensemble

Keywords : magnetic resonance, electron spin resonance, hyperpolarization, superconducting circuits, bis-
muth donors, microwave measurements

Abstract : Spins in solids interact only weakly with
their electromagnetic environment and in usual situa-
tions they reach thermal equilibrium by exchanging
energy with their host lattice. However, recent experi-
ments have demonstrated that radiative emission can
become the fastest energy relaxation channel for the
electron spins if the sample is inserted in a resonant
microwave cavity of small mode volume and low loss
rate, as predicted by Purcell. In this regime spins are
then expected to thermalize to the cavity mode re-
gardless of the lattice temperature. This thesis pre-
sents the demonstration of this idea, by showing that
spins can be radiatively cooled below the sample tem-
perature by coupling the cavity to a cold thermal ra-

diation source. The experiment is realized with an
ensemble of electron spins consisting in bismuth do-
nors in silicon coupled to a micron-size superconduc-
ting resonator and the spin temperature is inferred by
measuring the spin polarization with pulsed electron
spin resonance techniques. A more than twofold in-
crease of polarization is observed when the resona-
tor input is connected to a cold resistive load, proving
that spins are radiatively cooled with respect to their
host lattice. The demonstrated technique represents
a new and universal method to enhance electron spin
polarization beyond thermal equilibrium, with potential
applications in electron spin resonance spectroscopy.
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