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RÉSUMÉ

Cette thèse traite de problèmes discrets d’optimisation convexe et s’intéresse à des es-
timations de leurs taux de convergence. Elle s’organise en deux parties indépendantes.

Dans la première partie, nous étudions le taux de convergence de l’algorithme de
Sinkhorn et de certaines de ses variantes. Cet algorithme apparaît dans le cadre du
Transport Optimal (TO) par l’intermédiaire d’une régularisation entropique. Ses itéra-
tions, comme celles de ses variantes, s’écrivent sous la forme de produits composante
par composante de matrices et de vecteurs positifs. Pour les étudier, nous proposons
une nouvelle approche basée sur des inégalités de convexité simples et menant au taux
de convergence linéaire observé en pratique. Nous étendons ce résultat à un certain
type de variantes de l’algorithme que nous appelons algorithmes de Sinkhorn équili-
brés de dimension 1. Nous présentons ensuite des techniques numériques traitant le
cas de la convergence vers zéro du paramètre de régularisation des problèmes de TO.
Enfin, nous menons l’analyse complète du taux de convergence en dimension 2.

Dans la deuxième partie, nous donnons des estimations d’erreur pour deux discré-
tisations de la variation totale (TV) dans le modèle de Rudin, Osher et Fatemi (ROF).
Ce problème de débruitage d’image, qui revient à calculer l’opérateur proximal de la
variation totale, bénéficie de propriétés d’isotropie assurant la conservation de discon-
tinuités nettes dans les images débruitées, et ce dans toutes les directions. En discré-
tisant le problème sur un maillage carré de taille h et en utilisant une variation totale
discrète standard dite TV isotrope, cette propriété est perdue. Nous démontrons que
dans une direction particulière l’erreur sur l’énergie est d’ordre h2/3, ce qui est relati-
vement élevé face aux attentes pour de meilleures discrétisations. Notre preuve repose
sur l’analyse d’un problème équivalent en dimension 1 et de la TV perturbée qui y
intervient. La deuxième variation totale discrète que nous considérons copie la défini-
tion de la variation totale continue en remplaçant les champs duaux habituels par des
champs discrets dits de Raviart-Thomas. Nous retrouvons ainsi le caractère isotrope du
modèle ROF discret. Pour conclure, nous prouvons, pour cette variation totale et sous
certaines hypothèses, une estimation d’erreur en O(h).
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ABSTRACT

This thesis deals with discrete optimization problems and investigates estimates of their
convergence rates. It is divided into two independent parts.

The first part addresses the convergence rate of the Sinkhorn algorithm and of some
of its variants. This algorithm appears in the context of Optimal Transportation (OT)
through entropic regularization. Its iterations, and the ones of the Sinkhorn-like vari-
ants, are written as componentwise products of nonnegative vectors and matrices. We
propose a new approach to analyze them, based on simple convex inequalities and lead-
ing to the linear convergence rate that is observed in practice. We extend this result to
a particular type of variants of the algorithm that we call 1D balanced Sinkhorn-like
algorithms. In addition, we present some numerical techniques dealing with the con-
vergence towards zero of the regularizing parameter of the OT problems. Lastly, we
conduct the complete analysis of the convergence rate in dimension 2.

In the second part, we establish error estimates for two discretizations of the total
variation (TV) in the Rudin-Osher-Fatemi (ROF) model. This image denoising prob-
lem, that is solved by computing the proximal operator of the total variation, enjoys
isotropy properties ensuring the preservation of sharp discontinuities in the denoised
images in every direction. When the problem is discretized into a square mesh of size
h and one uses a standard discrete total variation – the so-called isotropic TV – this
property is lost. We show that in a particular direction the error in the energy is of
order h2/3 which is relatively large with respect to what one can expect with better
discretizations. Our proof relies on the analysis of an equivalent 1D denoising problem
and of the perturbed TV it involves. The second discrete total variation we consider
mimics the definition of the continuous total variation replacing the usual dual fields
by discrete Raviart-Thomas fields. Doing so, we recover an isotropic behavior of the
discrete ROF model. Finally, we prove a O(h) error estimate for this variant under
standard hypotheses.
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NOTATIONS

General notations

[[a, b]] the set of integers {a, . . . , b} for a, b ∈ Z

R
+,R− respectively the sets [0,+∞) and (−∞, 0] of nonnegative

and nonpositive reals

R
+
∗ ,R

−
∗ respectively the sets (0,+∞) and (−∞, 0) of positive and

negative reals

{x}+ the positive part of x ∈ R given by {x}+ = max(0, x)

Jf(x) the Jacobian matrix of the function f at point x

Df(x) the differential of the function f at point x

f|X the restriction of the function f to the smaller domain X
f(x+), f(x−) respectively the right and left limits of the function f at

point x

f ′(x+), f ′(x−) respectively the right and left derivatives of the function f
at point x

1E the indicator function of a set E given by 1E(x) = 1 if
x ∈ E, 0 otherwise

|S|, |E| the number of elements of a finite set S or the volume of a
measurable set E

XN the set of sequences of elements of X
∂Ω the boundary of a domain Ω ⊂ R

d
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NOTATIONS

Vectors and matrices

(R+)d×d the set of nonnegative square matrices of size d

(R+
∗ )
d×d the set of positive square matrices of size d

d(x) the diagonal matrix of Rd×d with main diagonal given by
x ∈ R

d

1 the vector (1, . . . , 1) of size given by the context

X the smallest entry of the matrix or vector X

X the largest entry of the matrix or vector X

AT the transpose of the matrix A

Sp(A) the spectrum of the matrix A

ρ(A) the spectral radius of the matrix A

Componentwise operations

For vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d and matrices A,B ∈ R

d×d

x ≤ y all the inequalities x1 ≤ y1, . . . , xn ≤ yn
xy the vector (x1y1, . . . , xdyd) ∈ R

d

x
y the vector (x1

y1
, . . . , xd

yd
) ∈ R

d

xθ for θ ∈ R, the vector (xθ1, . . . , x
θ
d) ∈ R

d

log(x) the vector (log(x1), . . . , log(xd)) ∈ R
d

exp(x) the vector (exp(x1), . . . , exp(xd)) ∈ R
d

exp(A) the matrix of Rd×d such that exp(A)i,j = exp(Ai,j)

Ax the usual matrix-vector product

AB the usual matrix-matrix product

A⊙B the matrix of Rd×d such that (A⊙B)i,j = Ai,jBi,j

A⊙p the matrix A⊙ · · · ⊙A (p times)

x⊕ y the matrix of Rd×d such that (x⊕ y)i,j = xi + yj

x⊗ y the matrix of Rd×d such that (x⊗ y)i,j = xiyj
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NOTATIONS

Norms and scalar products on R
d

For a positive vector s ∈ (R+
∗ )
d

〈.|.〉 the standard scalar product on R
d or Rd×d seen as Rd

2

||.||2 the standard Euclidean norm on R
d

|.| the standard Euclidean norm on R
2

||.||∞ the standard ℓ∞ norm on R
d given by ||x||∞ = maxk |xk|

||.||ℓ1 the standard ℓ1 norm on R
d given by ||x||ℓ1 =

∑
k |xk|

〈.|.〉s the scalar product on R
d given by 〈x|y〉s =

∑
k skxkyk

||.||s the Euclidean norm on R
d given by ||x||s =

√∑
k skx

2
k

〈x〉s the value of 〈x|1〉s

Function spaces and norms

For an open subset Ω ⊂ R
d and a function f : Ω→ R

Ck(Ω,Rn) the space of k times continuously differentiable functions
from Ω to R

n, smooth functions for k =∞
Ck(Ω) the space Ck(Ω,R)
Ckc (Ω) the space of functions of Ck(Ω) with compact support

H1(Ω) the space of functions of L2(Ω) whose distributional
derivatives belong to L2(Ω)

||f ||Lp(Ω) the standard Lp norm given by ||f ||Lp(Ω) =
(∫

Ω
|f |p

)1/p
for p ∈ [1,∞)

||f ||∞ the standard L∞ norm given by ||f ||∞ = supx∈Ω |f(x)|
||f ||∞,X the value of ||f|X ||∞

9





Part I

Linear convergence rate of
Sinkhorn-like algorithms
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INTRODUCTION DE LA PARTIE I

Dans la première partie de cette thèse nous nous intéressons à un algorithme qu’il est
possible de décrire en seulement quelques lignes de code Matlab1 :

1 a = ones(N,1);

2 b = ones(N,1);

3 for k=1:100 % nombre d'itérations souhaitées

4 a = f ./ A*b;

5 b = g ./ A'*a;

6 end

7 X = diag(a)*A*diag(b);

Étant donnés une matrice positive A ∈ (R+)N×N et deux vecteurs f, g ∈ (R+
∗ )
N ,

l’objectif de cet algorithme est de trouver des réels αi, βj tels que la matrice X donnée
par Xi,j = αiAi,jβj ait f pour somme de ses lignes et g pour somme de ses colonnes.
Comme ces conditions se traduisent par les deux équations α = f/Aβ et β = g/ATα
(où la division s’entend composante par composante), la démarche proposée par cet
algorithme est assez naturelle : après avoir initialisé α et β à 1, modifier α pour que la
première équation soit satisfaite, puis β pour que la deuxième le soit, et ainsi de suite.
Il s’agit donc de la procédure suivante :

Algorithme I.1. Étant donnés une matrice positive A ∈ (R+)N×N et deux vecteurs
f, g ∈ (R+

∗ )
N , depuis α(0) = β(0) = 1, faire pour n = 0, 1, ...

α(n+1) =
f

Aβ(n)
; β(n+1) =

g

ATα(n+1)
(1)

1Rappelons que ones(N,1) désigne le vecteur de R
N dont toutes les composantes sont 1, que ./

réalise la division composante par composante, que A’ désigne la transposée de A et enfin que la fonction
diag forme la matrice diagonale dont les coefficients sont ceux de son argument.
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INTRODUCTION DE LA PARTIE I

Un examen très complet des occurences de cet algorithme et des différentes ap-
proches envisagées pour son étude est proposé par Idel dans [Ide16]. On y comprend
que la simplicité des itérations (1) a conduit à leur redécouverte successive par des
communautés mathématiques indépendantes. La multiplicité des dénominations de cet
algorithme nous paraît illustrer la diversité des domaines où il apparaît ; sans volonté
d’exhaustivité citons : “méthode des doubles facteurs” pour Kruithof aux Pays-Bas
dans les années 30 (voir [Kru37, dB]), nous développerons cet exemple en guise d’in-
troduction à l’algorithme ; “Iterative proportional fitting procedure (IPFP)” ou “RAS
method”, noms plus communs en économie ou en traitement de données statistiques ;
ainsi qu’“algorithme de Sinkhorn” du nom d’un mathématicien américain ayant donné
les premières preuves de convergence dans les années 60 dans [Sin64, Sin67] puis dans
[SK67] en collaboration avec Knopp. Ce dernier nom semble finalement s’être relati-
vement imposé dans le domaine de l’optimisation – même si on note encore aujour-
d’hui l’existence de deux pages Wikipedia indépendantes “Iterative Fitting Procedure”
[Wika] et “Sinkhorn’s theorem” [Wikb]. Nous désignerons donc l’algorithme I.1 par
“algorithme de Sinkhorn”.

Dans cette thèse, le cadre dans lequel nous étudions l’algorithme de Sinkhorn
est celui fourni par la théorie du Transport Optimal. Le problème de Transport Op-
timal trouve son origine dans les travaux de Monge [Mon81] à la fin du XVIIIème

siècle puis est reformulé sous la forme qui nous intéresse par Kantorovitch [Kan42]
dans les années 40. Dans le cadre discret, il s’agit de trouver un plan de transport
x∗ ∈ Π(f, g) := {x ∈ (R+)N×N tel que x1 = f, xT 1 = g} entre deux mesures de
probabilité discrètes f, g ∈ ΣN := {p ∈ (R+

∗ )
N tel que

∑
k pk = 1} minimisant le

coût de transport correspondant
∑
i,j wi,jxi,j associé à un coût w ∈ R

N×N . Il s’agit
donc du problème linéaire suivant :

Ww(f, g) = min
x∈Π(f,g)

〈w|x〉 (2)

Les algorithmes usuels pour résoudre ce problème linéaire (notamment la méthode dite
hongroise ou des enchères, voir [Wal17]) se révèlent difficiles à mettre en œuvre quand
la dimension N devient élevée. Une solution alternative, popularisée notamment par
Cuturi dans [Cut13], consiste à calculer uniquement une approximation W ε

w(f, g) de
Ww(f, g) via une méthode de point intérieur par perturbation entropique :

W ε
w(f, g) = min

x∈Π(f,g)
〈w|x〉+ ε〈x| log x− 1〉 (3)

Le plan de transport approché x(ε) solution de ce problème s’obtient alors comme le
résultat de l’algorithme de Sinkhorn appliqué à la matrice A = exp(−wε ) et peut donc
être calculé par cette méthode très efficacement (voir [PC19]).

Lorsque le poids w régissant le problème de transport optimal est donné selon une
distance d(pi, pj) entre des points p1, . . . , pN de R

d, la valeur Ww(f, g) de (2) définit
une distance sur l’espace des mesures discrètes ΣN appelée distance de Wasserstein

12



INTRODUCTION DE LA PARTIE I

(voir encore [PC19]). Cette métrique donne naissance à de nouveaux problèmes, si-
milaires à (2). Nous étudions celui du barycentre de Wasserstein entre deux mesures
f0, f1 ∈ ΣN . Suivant [AC11], un tel barycentre est défini pour θ ∈ [0, 1] comme la
moyenne de Fréchet selon la distance Ww :

fθ ∈ argmin
f∈ΣN

θWw(f
0, f) + (1− θ)Ww(f, f

1)

= argmin
f∈ΣN

min
x0∈Π(f0,f)

x1∈Π(f,f1)

θ〈w|x0〉+ (1− θ)〈w|x1〉

En introduisant une perturbation entropique, on obtient le problème approché suivant :

fθ(ε) = argmin
f∈ΣN

θW ε
w(f

0, f) + (1− θ)W ε
w(f, f

1)

= argmin
f∈ΣN

min
x0∈Π(f0,f)

x1∈Π(f,f1)

θ〈w|x0〉+ (1− θ)〈w|x1〉

+ εθ〈x0 log x0 − 1〉+ ε(1− θ)〈x1 log x1 − 1〉

dont la solution peut se calculer via une variante de l’algorithme de Sinkhorn proposée
dans [BCC+15] :

Algorithme I.2. Étant données deux matrices A0, A1 ∈ (R+
∗ )
N×N , et deux margi-

nales f0, f1 ∈ ΣN , depuis α(0) = β(0) = γ(0) = 1, faire pour n = 0, 1, ...

α(n+1) =
f0

A0( 1
γ(n) )1−θ

; β(n+1) =
f1

A1T (γ(n))θ
; γ(n+1) =

A0Tα(n+1)

A1β(n+1)

Appliquer cet algorithme avec les matrices A0 = A1 = A = exp(−wε ) permet
d’obtenir le barycentre approché fθ(ε) sous la forme fθ(ε) = γθ(Aβ). On peut éga-
lement rechercher simultanément les points f

k
K pour k ∈ [[1,K − 1]] de la géodésique

(fθ)θ∈[0,1] en résolvant

argmin
f1,...,fK−1∈ΣN

K−1∑

k=0

Ww(f
k, fk+1)

À nouveau, l’introduction d’une pertubation entropique permet de résoudre une version
approchée de ce problème et d’obtenir une approximation des barycentres sous la forme
fk(ε) = γk(Aγ

−1
k+1), oùA = exp(−wε ) et où les variables γk sont obtenues en prenant

les matrices Ak = A pour tout k dans la variante suivante de l’algorithme de Sinkhorn
(décrite ici pour K pair) :

13



INTRODUCTION DE LA PARTIE I

Algorithme I.3. Étant donnés K = 2P matrices A0, ..., AK−1 ∈ (R+
∗ )
N×N et deux

marginales f0, fK ∈ ΣN , depuis γk(0) = 1 pour tout k ∈ [[0,K]], faire pour n=0,1,...

Étape A :

γ
(n+1)
0 =

f0

A0 1

γ
(n)
1

; γ
(n+1)
K =

AK−1T γ
(n)
K−1

fK
;

∀k ∈ [[1, P − 1]], γ
(n+1)
2k =

√√√√√
A2k−1T γ

(n)
2k−1

A2k 1

γ
(n)
2k+1

Étape B :

∀k ∈ [[0, P − 1]], γ
(n+1)
2k+1 =

√√√√ A2kT γ
(n+1)
2k

A2k+1 1

γ
(n+1)
2k+2

Par sa structure fondée sur un graphe “ligne” à K points, l’algorithme I.3 est rela-
tivement proche de ceux étudiés dans les domaines du Transert de Message (ou Propa-
gation des Croyances, en anglais “Message Passing” ou “Belief Propagation”) [Pea88]
et des Champs Aléatoires Conditionnels (“Conditional Random Fields” ou “Markov
Random Fields”) [WJ08]. La dernière variante du problème de transport optimal (2)
que nous étudions est un problème d’affectation apparaissant notamment dans ces do-
maines et formulé sur un graphe (biparti) non orienté (V, E). Il consiste à attribuer à
chaque sommet i de V un label ℓ d’un ensemble fini L fixé (correspondant par exemple
à des objets à identifier dans une image dans le contexte de Segmentation Sémantique,
ou à des niveaux de gris, voir [KSS+20, AZJ+18]) de manière à résoudre le problème
suivant :

min
(ℓi)∈LV

∑

i∈V
θi(ℓi) +

∑

{i,j}∈E
θi,j(ℓi, ℓj)

où θ sont des fonctions codant une énergie se décomposant en un terme centré sur les
sommets du graphe (θi pour i ∈ V) et un terme centré sur les liens entre les pixels
(θi,j pour i ∼ j c’est-à-dire tels que {i, j} ∈ E). Après ajout d’un terme entropique dit
entropie de Bethe [PA02, MJGF09], on obtient le problème suivant :

min
∑

i,ℓ

θi(ℓ)v
ℓ
i + βεvℓi log v

ℓ
i +

∑

{i,j},ℓ,m
θi,j(ℓ,m)wℓ,mi,j + εwℓ,mi,j logwℓ,mi,j

où le minimum porte sur les couples (v, w) ∈ R
V×L × R

E×L×L tels que

∀i ∈ V,
∑

ℓ

vℓi = 1 ; ∀{i, j} ∈ E , ∀m ∈ L,
∑

ℓ

wℓ,mi,j = vmj

14
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Une variante de l’algorithme de Sinkhorn associée à ce problème est :

Algorithme I.4. Étant donnés un graphe non orienté biparti (V = V1⊔V2, E), des ma-
tricesXi,j ∈ (R+

∗ )
N×N pour {i, j} ∈ E , des vecteurs yi ∈ (R+

∗ )
N et β > −mini∈V ni

où ni désigne le nombre d’arêtes issues de i ∈ V , depuis αi,j(0) = 1 pour tout
{i, j} ∈ E , faire pour n = 0, 1, ...

Étape A :

∀i ∈ V1, ∀j ∼ i, α(n+1)
j,i =

(
yi
∏
j′:i∼j′ Xi,j′α

(n)
i,j′

) 1
ni+β

Xi,jα
(n)
i,j

Étape B :

∀i ∈ V2, ∀j ∼ i, α(n+1)
j,i =

(
yi
∏
j′:i∼j′ Xi,j′α

(n+1)
i,j′

) 1
ni+β

Xi,jα
(n+1)
i,j

La première partie de cette thèse s’intéresse plus précisément aux taux de conver-
gence linéaires des algorithmes I.1, I.2, I.3, I.4 décrits ci-dessus. Il s’agit donc de mon-
trer qu’il existe pour chaque algorithme une valeur λ ∈ [0, 1) telle que l’erreur ek qu’il
commet après k itérations soit contrôlée sous la forme ek ≤ cλk pour une constante
c > 0. Si l’on revient à [Ide16], on constate encore la diversité des approches possibles
de l’algorithme de Sinkhorn I.1 à travers les différentes preuves de convergence propo-
sées. Alors que dès les premières démonstrations, avec celle fournie par Sinkhorn dans
[Sin64] – citons aussi les taux en distance de Hilbert [FL89] que nous présenterons –
des taux linéaires sont donnés, il faut attendre Knight dans [Kni08] pour que soit en-
noncé (dans le cas particulier f = g = 1) la valeur du taux de convergence observé en
pratique. Nous fournissons une nouvelle preuve et une généralisation de ce résultat au
cas f et g quelconques :

Théorème I.1. Soient A ∈ (R+)N×N et f, g ∈ ΣN . Les itérés α(n), β(n) définis
par l’algorithme I.1 convergent vers α∗, β∗ ∈ (R+

∗ )
N tels que la matrice associée

X = d(α∗)A d(β∗) appartienne à Π(f, g) dès que de tels vecteurs existent. De plus
il existe deux suites de réels (un), (vn) ∈ (R+

∗ )
N convergeant vers 1, et une norme

euclidienne ‖.‖s sur R2N telles que : ∀δ > 0, ∃nδ tel que ∀n ≥ nδ,
∥∥∥∥
(
α(n+1)

β(n+1)

)
−
(
un+1α

∗

vn+1β
∗

)∥∥∥∥
s

≤ (λ2 + δ)

∥∥∥∥
(
α(n)

β(n)

)
−
(
unα

∗

vnβ
∗

)∥∥∥∥
s

où λ2 = max{|λ|, λ ∈ Sp(M) tel que |λ| < 1} est la deuxième valeur propre de
M = d( 1g )X

T d( 1f )X .

Notre preuve se base sur l’obtention d’inégalités de convexité pour les itérations
(1), et passe par le théorème suivant :
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Théorème I.2. Soit M ∈ (R+)N×N une matrice primitive stochastique symétrique
pour un produit scalaire 〈.|.〉s donné par s ∈ ΣN . Si (xn) ∈ ((R+

∗ )
N )N est une suite

telle que :

∀n ∈ N, xn+1 ≤Mxn et
1

xn+1
≤M 1

xn

Alors il existe x∗ ∈ R
+
∗ tel que xn −→

n→+∞
x∗1 avec l’estimation suivante : pour tout

δ > 0 il existe nδ ∈ N tel que,

∀n ≥ nδ, ||xn+1 − 〈xn+1〉s1||s ≤ (λ2 + δ) ||xn − 〈xn〉s1||s

où λ2 = max{|λ|, λ ∈ Sp(M) tel que |λ| < 1} est la deuxième valeur propre de M .

Le cadre fourni par ce théorème nous permet alors de généraliser le résultat de
convergence de l’algorithme de Sinkhorn I.1 aux variantes I.2, I.3, I.4 que nous avons
décrites. Nous démontrons successivement que toutes les suites α(n), β(n), γ(n), γ

(n)
k

introduites convergent vers des points fixes des itérations α∗, β∗, γ∗, γ∗k (qui four-
nissent les solutions des problèmes initiaux), et qu’il existe des suites (un), (vn) conver-
geant vers 1, des normes euclidiennes ‖.‖s et des valeurs λ2 < 1 apparaissant comme
deuxièmes valeurs propres de matrices bistochastiques symétriques fournissant les es-
timations suivantes : ∀δ > 0, ∃nδ ∈ N tel que ∀n ≥ nδ,

• Pour l’algorithme I.2 du barycentre simple :
∥∥∥γ(n+1) − un+1γ

∗
∥∥∥
s
≤ (λ2 + δ)

∥∥∥γ(n) − unγ∗
∥∥∥
s

• Pour l’algorithme I.3 des barycentres multiples :
∥∥∥γ(n+1)

[1] − un+1γ
∗
[1]

∥∥∥
s
≤ (λ2 + δ)

∥∥∥γ(n)[1] − unγ∗[1]
∥∥∥
s

• Pour l’algorithme I.4 sur un graphe “ligne” ou “cercle” (c’est-à-dire d’arité maxi-
male 2) et avec β = 0 :

∥∥∥∥∥

(
γ
(n+1)
[0]

γ
(n+1)
[1]

)
−
(
un+1γ

∗
[0]

vn+1γ
∗
[1]

)∥∥∥∥∥
s

≤ (λ2 + δ)

∥∥∥∥∥

(
γ
(n)
[0]

γ
(n)
[1]

)
−
(
unγ

∗
[0]

vnγ
∗
[1]

)∥∥∥∥∥
s

où γ[0] (respectivement γ[1]) désigne la concaténation des variables γk pour k pair (res-
pectivement impair).

Si pour certaines applications l’ajout du terme entropique ε〈x| log x− 1〉 avec ε re-
lativement grand permet de régulariser les données en jeu (voir [BCP19]), il est généra-
lement d’usage de chercher à faire tendre ε vers 0 pour approcher au mieux la solution
exacte des problèmes considérés. Cominetti et San Martin montrent dans [CSM94] que
le problème perturbé (3) converge vers le problème exact (2) en O(exp(− cε )) pour une
constante c > 0. Ce résultat positif est contrebalancé par le fait que les matrices sur
lesquelles l’algorithme de Sinkhorn et ses variantes sont appliqués s’obtiennent sous la
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forme A = exp(−wε ), particulièrement instable numériquement quand ε tend vers 0.
Une stratégie permettant d’accéder à de plus petites valeurs de ε consiste à travailler
avec des variables logarithmiques (voir [Sch19, SGG11]). Nous proposons également
d’utiliser l’entropie de Bethe pour atténuer la régularisation entropique et explicitons
cette technique dans le cas du barycentre de deux mesures. Nous présentons enfin une
méthode itérative, proposée dans un article, [XWWZ18], alors que ce travail de thèse
était en cours, consistant à recentrer le terme de perturbation entropique sur l’itéré pré-
cédent en posant x1ε = x(ε) puis pour tout n ≥ 1,

xn+1
ε = argmin

x∈Π(f,g)

〈w|x〉+ ε〈x| log x

xnε
〉

Nous démontrons qu’appliquer n pas de cette méthode correspond à diviser le para-
mètre ε par n : xnε = x( εn ), et proposons d’autres variantes.

Enfin, même si les taux de convergence “en λ2” des algorithmes de Sinkhorn que
nous démontrons sont effectivement ceux observés en pratique, ils ne sont malheu-
reusement pas directement accessibles avant d’avoir effectué l’algorithme (ou d’en
connaître la valeur limite) ; notre étude reste donc à ce titre relativement théorique. Des
études plus récentes de l’algorithme de Sinkhorn [KLRS08, CK18, DGK18] semblent
d’ailleurs se détourner d’une description du taux de convergence linéaire effectif pour
obtenir des garanties de convergence a priori dépendant de la matrice A, des margi-
nales f, g ou de la dimension N . Ainsi Altschuler et ses co-auteurs démontrent dans
[ANWR17] le théorème suivant :

Théorème I.3. L’algorithme I.1 fournit des valeurs α(n) et β(n) telles que la matrice
X(n) = d(α(n))A d(β(n)) satisfasse

||X(n)
1− f ||ℓ1 + ||X(n)T

1− g||ℓ1 ≤ η

après un nombre d’itérations n = 4η−2 log S
m où S =

∑
i,j Ai,j et m = mini,j Ai,j .

Si sa dépendance en η−2 peut sembler sous-optimale au regard de la convergence
linéaire obervée en pratique, il est remarquable que ce taux ne dépende de la dimension
N qu’à travers la somme des coefficients de A. Dans le but d’approcher le problème
de transport optimal exact (2) par sa version perturbée (3), il est intéressant de savoir
comment le taux de convergence de l’algorithme de Sinkhorn évolue pour une matrice
A donnée par A = exp(−wε ) lorsque ε tend vers 0. Le théorème précédent fournit
donc un taux de convergence en O(η−2ε−1(w − w) logN) où w = maxi,j wi,j et
w = mini,j wi,j .

La comparaison avec le taux linéaire que nous proposons au théorème I.1 semble
difficile à mener en toute généralité. Nous traitons uniquement le cas de la dimension
2 où des calculs explicites peuvent être menés, démontrant pour ε tendant vers 0 la
convergence de λ2 vers une valeur limite en O(exp(− cε )) pour une constante c > 0.
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Cette partie s’organise comme suit. Dans le premier chapitre, nous introduisons
l’algortihme de Sinkhorn en présentant un exemple historique concret issu de [Kru37]
et en détaillant son apparition dans le cadre du transport optimal. Le chapitre 2 est
consacré à l’étude de sa convergence linéaire et démontre notamment les théorèmes I.1
et I.2. Le chapitre 3 décrit et étudie les variantes I.2, I.3, I.4 de l’algorithme de Sin-
khorn. Enfin, le chapitre 4 s’intéresse à l’évolution du problème perturbé (3) quand le
paramètre ε tend vers 0 et décrit les stratégies envisagées pour surmonter les difficultés
engendrées ; il se termine par l’étude complète du cas de la dimension 2.

Le travail présenté dans cette partie fait l’objet d’un article actuellement en prépa-
ration.

18



CHAPTER 1

EMERGENCE OF THE SINKHORN ALGORITHM

1.1 Historical example of Telephone Forecasting

In his review [Ide16], Idel emphasizes the fact that tracing back the Sinkhorn algorithm
to its origins is a difficult task. Following his research, one can say that one of the first
mentions of the algorithm dates back to the 30’s in a telephone traffic Dutch article by
Kruithof [Kru37]. Relying on the translation of this untraceable Dutch-written article
made by de Boer [dB], we can give an interpretation of its motivations for introducing
the Sinkhorn algorithm in the context of Telephone Traffic Forecasting (under the name
“method of double factors”).

Model the telephone traffic as a collection of exchanges between originating nodes
i ∈ [[1, N ]] and terminating nodes j ∈ [[1,M ]]. At a given time, say the year 1937, the
situation of the telephone network is known, that is we have the number ai,j of calls
from node i to node j for all (i, j) ∈ [[1, N ]]× [[1,M ]]. For the following year, experts
on the extension of the telephone network predict that the total of calls emanating
from node i will move from its current value

∑
j ai,j to a certain value fi. They also

predict that the total of calls terminating to node j,
∑
i ai,j will change to gj . What

prediction of the telephone traffic for the year 1938 can we make? and how should
we modify the infrastructures of the originating and terminating nodes to support this
evolution? Motivated by this second question, one can try to predict the new number
bi,j of calls from i to j under the form bi,j = αiai,jβj . The factors αi and βj will
then be interpreted as growth factors for nodes i and j. To fulfill the predictions of the
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experts, one would want for bi,j to satisfy the equations

∀i ∈ [[1, N ]],

M∑

j=1

bi,j = αi

M∑

j=1

ai,jβj = fi

∀j ∈ [[1,M ]],

N∑

i=1

bi,j = βj

N∑

i=1

ai,jαi = gj

Several procedures could be considered to find – if they exist – such αi and βj . The
one we are interested in, and that is probably the most natural, is the following. First
set αi = βj = 1 so that our first guess for bi,j simply is to make no change to the
current situation bi,j = ai,j . Then chose αi such that the first equations are fulfilled,
namely

∀i ∈ [[1, N ]], αi =
fi∑M

j=1 ai,jβj
(1.1)

Then bi,j is such that the total number of emanating calls from i is coherent with the
prediction. But the number of terminating calls to j is not, so we now set βj so that the
second equations are fulfilled, namely

∀j ∈ [[1,M ]], βj =
gj∑N

i=1 ai,jαi
(1.2)

But then of course the first equations are no longer satisfied for this value of β, so one
repeats step (1.1), and then step (1.2) and so on. If this procedure converges, we would
have found in αi, βj and bi,j = αiai,jβj a solution to our problem. Finally, rephras-
ing it with matrix-vector multiplications and componentwise divisions, we obtain the
Sinkhorn algorithm that is under study:

Algorithm I.1. Given a nonnegative matrix A ∈ (R+)
N×M

with no zero line or col-

umn, and given two marginals f ∈ (R+)
N
, g ∈ (R+)

M
, starting from ∀i, j α(0)

i =

β
(0)
j = 1, do for n = 0, 1, ...

α(n+1) =
f

Aβ(n)
; β(n+1) =

g

ATα(n+1)
(1.3)

One can first make an obvious remark: for this procedure to converge, one must
have

∑
i fi =

∑
j gj – that is the predictions of the experts on originating and termi-

nating calls give the same total amount of communications. Without loss of generality,
we can suppose f and g belong to the simplex ΣN = {p ∈ (R+

∗ )
N ,
∑
k pk = 1}. Note

that later on we will focus on the caseM = N for simplicity of notations. However, all
the presented results (with exception of the doubly stochastic case for which M = N
is mandatory) adapt with no modification to the setting M 6= N .

This telephone forecasting problem we described is of course a modest insight
of the large area where the Sinkhorn algorithm, and more broadly questions of matrix
scaling, appear. Matrix scaling problems are problems where one wants to obtain a new
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matrix satisfying some property by multiplying the lines and columns of a given matrix
by some quantities, or in other words by multiplying the given matrix by diagonal
matrices on the right and on the left hand sizes. The resulting matrix is called a scaling
of the original matrix. From that point of view, the matrix scaling problem related to
the Sinkhorn algorithm is the following:

Problem I.1. Given a nonnegative matrixA ∈ (R+)
N×N

and f, g ∈ ΣN , can one find
diagonal matrices D1 and D2 with positive diagonal entries such that B = D1AD2

has f and g as marginals, meaning that B1 = f and BT 1 = g?

Such issues of matrix scaling can arise in many practical situations; in [BR97], Ba-
pat and Raghavan mention for instance budget allocation or scaling contingency tables
problems (which are problems similar to our telephone forecasting example), scaling
in Gaussian elimination (which consists of applying an appropriate scaling improving
condition numbers before solving a linear system), and Markov chain issues (estimat-
ing the transition matrix from observations of the states). These issues also admit gen-
eralizations to continuous settings and to positive maps, see for instance [Rus95] and
[Gur03]. Furthermore, they arise naturally in the analysis of transportation problems
through entropic regularization.

1.2 Appearance in Optimal Transportation

In the 2000’s, a renewed interest for the Sinkhorn algorithm aroused from the Optimal
Transport community. Especially with the success of [Cut13], it became a popular
way of computing the optimal transport cost Ww(f, g) between two discrete measures
f, g ∈ ΣN with respect to a ground cost w ∈ R

N×N . In finite dimension, Optimal
Transport deals with solving the following linear problem (see for instance [PC19] for
a large background on the subject):

Ww(f, g) = min
x∈Π(f,g)

〈w|x〉 :=
N∑

i,j=1

wi,jxi,j (1.4)

where Π(f, g) = {x ∈ (R+)N×N , x1 = f, xT 1 = g} is the admissible transport
plans polytope.

Under some hypothesis on the ground costw (typicallywi,j = ||pi−pj ||22 for some
fixed points p1, ..., pN ∈ R

d), the (square root of the) optimal transport cost Ww(f, g)
defines a distance on ΣN known as the Wasserstein distance. This distance enjoys nice
properties (such as taking into account the geometry of the underlying space) which
make it a valuable tool for comparing measures, see again [PC19]. However, as the
transport plan variable x has dimension N2, classical linear solvers fail to tackle this
problem when N becomes too large. Introducing an entropic regularization to the
linear problem (1.4) will make the dimension of the variable at stake drop from N2 to
2N . By strong convexity of the regularization, this interior point method also ensures
uniqueness of the minimizer (which we did not have in (1.4)). The perturbed problem
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under study is, for a (small) ε > 0:

W ε
w(f, g) = min

x∈Π(f,g)
〈w|x〉+ ε〈x| log x− 1〉 :=

N∑

i,j=1

wi,jxi,j + εxi,j(log(xi,j)− 1)

(1.5)

To see the link with the matrix scaling problem I.1 and the Sinkhorn algorithm, one
has to focus on the corresponding dual problem in the sense of convex duality. We
first associate Lagrange multipliers λ, µ ∈ R

N respectively to the equality constraints
x1 = f and xT 1 = g to form the Lagrangian

L(x, λ, µ) := 〈w, x〉+ ε〈x| log x− 1〉+ 〈λ|f − x1〉+ 〈µ|g − xT 1〉

Then we need the following well-known calculus of the Legendre-Fenchel conjugate
of the entropy. Together with its variant Proposition I.5 below, we will extensively
exploit this relation in the following sections.

Proposition I.1. For any a ∈ R
N×N and η > 0 one has

min
x∈(R+)N×N

〈x|a〉+ η〈x| log x− 1〉 = −η〈exp
(−a
η

)
|1〉

Proof. The optimality condition of this convex problem writes a+ η log x = 0 so that

the optimizer is x = exp
(

−a
η

)
which gives the announced value.

Using this proposition to calculate the value of F (λ, µ) = minx L(x, λ, µ) for
any λ, µ, we form the dual problem maxλ,µ F (λ, µ) of (1.5). One concludes that the
minimization problem (1.5) is equivalent to the following maximization problem:

max
λ,µ∈RN

〈λ|f〉+ 〈µ|g〉 − ε
∑

i,j

exp

(−wi,j + λi + µj
ε

)
(1.6)

It is noteworthy to mention that this dual problem is unconstrained. This is a crucial
advantage when compared to the dual of the original unregularized optimal transport
problem (1.4) which writes as:

max
λ,µ∈R

N s.t.
∀i,j, λi+µj≤wi,j

〈λ|f〉+ 〈µ|g〉 (1.7)

While enjoying the same reduction of the number of variables fromN2 to 2N , problem
(1.6) alleviates through an exponential penalty the N2 constraints of (1.7) that make
it difficult to tackle. Optimality conditions ∇F (λ, µ) = 0 for problem (1.6) can be
expressed using the variables

α = exp

(
λ

ε

)
; β = exp

(µ
ε

)
; A = exp

(−w
ε

)
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and one recovers that λ, µ are optimal values in problem (1.6) if and only if

α =
f

Aβ
; β =

g

ATα
(1.8)

Hence one can apply the Sinkhorn algorithm to the matrix A = exp(−wε ) to find a
solution of the dual problem. The primal solution is then recovered through xi,j =

exp
(
λi+µj−wi,j

ε

)
as X = d(α)A d(β) ∈ Π(f, g) is indeed the transport plan formed

by this procedure.

Remark I.1. Depending on the context, some forms of the entropy term may appear
more natural than others. One can for instance replace 〈x| log x − 1〉 by 〈x| log x〉
or 〈x| log x

f⊗g 〉. One can check that this simply leads to multiplying the matrix A =

exp(−wε ) by a constant or by diagonal matrices. As a consequence this has no effect
on the resulting Sinkhorn algorithm as we will see below (however one should keep in
mind that the value of the optimization problem is modified).

In this context, the Sinkhorn algorithm can be interpreted in several ways. In terms
of the variables λ and µ, the iterates (1.3) correspond to

λ
(n+1)
i = ε log(fi)− ε log




N∑

j=1

exp

(
µ
(n)
j − wi,j

ε

)


µ
(n+1)
j = ε log(gj)− ε log

(
N∑

i=1

exp

(
λ
(n+1)
i − wi,j

ε

)) (1.9)

which can be seen as alternate maximizations on the dual (1.6). Another interesting
point of view is provided by Benamou and co-authors in [BCC+15]. They remark that
the corresponding primal iterates of this process actually achieve alternate projections
with respect to the so-called Kullback-Leiber divergence onto the constraints x1 = f
and xT 1 = g as follows. For any positive matrices x, y > 0 define

KL(x, y) = 〈x| log x
y
− 1〉 :=

N∑

i,j=1

xi,j(log
xi,j
yi,j
− 1)

then the primal formulation (1.5) writes as

x∗ = argmin
x∈Π(f,g)

KL(x, exp
(
−w
ε

)
)

Interpreting KL as a distance on (R+
∗ )
N×N (or more precisely as a Bregman distance,

see Definition I.5), this corresponds to finding the projection of x(0) = exp(−wε ) onto
the intersection Π(f, g) = Π(f) ∩ ΠT (g) where Π(f) = {x ∈ (R+)N×N , s.t. x1 =
f} and ΠT (g) = {x ∈ (R+)N×N , s.t. xT 1 = g}. A natural strategy, following
for instance Karczmarz’s method for solving linear systems [Kar37], is to perform
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alternate projections on Π(f) and ΠT (g) defining for all n ≥ 0:

x(n+
1
2 ) = argmin

x∈Π(f)

KL(x, x(n))

x(n+1) = argmin
x∈ΠT (g)

KL(x, x(n+ 1
2 ))

One easily computes that this corresponds to setting

x(n+
1
2 ) = d(

f

x(n)1
)x(n)

x(n+1) = x(n+
1
2 ) d(

g

x(n+
1
2 )T 1

)

(1.10)

so that the Sinkhorn algorithm is recovered noticing that x(n) = d(α(n))A d(β(n)) and
x(n+

1
2 ) = d(α(n+1))A d(β(n)). In addition, this point of view ensures convergence of

such a process thanks to a general theorem on iterated projections on affine sets proved
in [Bre67] (but we also refer to [BL00], where this is proved in a more general setting).

The historical setting of the Sinkhorn algorithm deals with an interesting special
case: the doubly-stochastic setting. It corresponds to taking f = g = 1 (or f = g =
1
N 1 if one wants to keep f, g ∈ ΣN ; in the following we do not use this no effect
renormalization). In that setting, the polytope Π(1, 1) =: BN of doubly stochastic
matrices has a simple structure. In particular, its extreme points correspond exactly to
the permutation matrices so that the optimal transport problem (1.4) in that setting:

argmin
x∈BN

N∑

i,j=1

wi,jxi,j (1.11)

appears as the convex relaxation of the so called assignment problem:

argmin
σ∈SN

N∑

i=1

wi,σ(i) (1.12)

where SN denotes the set of permutations of {1, ..., N}. This famous problem (see
[BDM09] for more background on this subject) aims at obtaining an optimal alloca-
tion when distributing some tasks with costs wi,j to agents: one wants to find a way
of assigning each task i ∈ {1, ..., N} to an agent j ∈ {1, ..., N} through a one to one
correspondence that minimizes the global cost of the operation. Classical solvers for
this problem include the celebrated Hungarian (or auction) algorithm, first introduced
by Kuhn in [Kuh55], and that can be extended to the general optimal transport setting
(see for instance [BC89, BE88, Wal17]). The equality of problems (1.11) and (1.12) is
the classical equivalence between Monge and Kantorovitch formulations of the Opti-
mal Transportation problem.
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The context of Optimal Transport gives us a first result on the matrix scaling prob-
lem I.1. If one can write the matrix A as A = exp(−wε ) for some w ∈ R

N×N , in other
words if A is positive, then the existence and uniqueness of a minimizer of problem
(1.5), is a proof to the existence and uniqueness of the matrix B = D1AD2 such that
B1 = f and BT 1 = g. Furthermore, the strict concavity with respect to λi+µj of the
objective in the dual problem (1.6) is a proof that the scaling diagonal matrices are in
that case unique up to a scalar multiple: if (D1, D2) and (D′

1, D
′
2) are two couples of

diagonals matrices such that B = D1AD2 = D′
1AD

′
2 then D′

1 = rD1 and D′
2 = 1

rD2

for some r > 0.

However, this existence and uniqueness result does not prove (linear) convergence
of the Sinkhorn algorithm; and one may ask what happens if A is no longer positive
but only nonnegative. We answer these questions in the following chapter.
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CHAPTER 2

LINEAR CONVERGENCE OF THE CLASSICAL
SINKHORN ALGORITHM

2.1 First linear rates for positive matrices

2.1.1 Min-max analysis

When the matrix A is positive, Sinkhorn proved convergence of the algorithm, first
for constant marginals f = g = 1 in his first paper on the subject [Sin64], then in
the general case in [Sin67]. His proofs rely on the monotonicty of the minimum and
maximum values of the intermediate matrices – the matrices d(α(n))A d(β(n)) and
d(α(n+1))A d(β(n)). As such they are very close to the first convergence proof we
give below. We wish to reproduce this proof here for three reasons: first, it is a simple
and straightforward proof often omitted to our knowledge in the literature; second, it
introduces the rescaled variables we will use in our convergence rate analysis; third,
like the historical proof in [Sin67], it gives a first linear convergence rate that we will
refine later on.

First, knowing that a solution to the scaling problem I.1 exists, one can reformulate
the Sinkhorn algorithm in terms of variables rescaled by this solution.

Lemma I.1. Let (α(n), β(n)) be the Sinkhorn iterates defined by (1.3), denote by α∗, β∗

a solution of the scaling problem I.1 and by X = d(α∗)A d(β∗) ∈ Π(f, g) the corre-
sponding scaling, then the rescaled variables

a(n) =
α(n)

α∗ ; b(n) =
β(n)

β∗
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satisfy the following iteration rule:

a(n+1) =
1

d( 1f )Xb
(n)

; b(n+1) =
1

d( 1g )X
Ta(n+1)

(2.1)

Proof. Just compute

a
(n+1)
i =

1

α∗
i

fi∑
j Ai,jβ

(n)
j

=
1

∑
j

1
fi
α∗
iAi,jβ

∗
j b

(n)
j

=
1

(d( 1f )Xb
(n))i

and similarly for b(n+1).

This rescaling process forces the appearance of the stochastic matrices d( 1f )X and

d( 1g )X
T that make our estimates easier to understand. We now make use of the fol-

lowing lemma (appearing also in [BL18]):

Lemma I.2. Let M ∈ R
N×N
+∗ be a stochastic matrix: M1 = 1, and let m =M . Then

for any x ∈ R
N ,

x+m(x− x) ≤ Mx ≤ Mx ≤ x−m(x− x)

Proof. Write Mx = x1 +M(x− x1). For any i and any j one has

(M(x− x1))i =
∑

k

mi,k(xk − x) ≥ m(xj − x)

The first inequality comes from taking j such that x = xj . Similarly, writing that
Mx = x1−M(x1− x) and

(M(x1− x))i =
∑

k

mi,k(x− xk) ≥ m(x− xj)

for j such that x = xj gives the second inequality.

We are now able to state our first linear convergence rate of the classical Sinkhorn
algorithm:

Theorem I.1. When A is a positive matrix, the rescaled variables a(n) and b(n) con-
verge to constant vectors a∞1 and b∞1 and one has ∀n ≥ 0,

b
(n+1) − b(n+1) ≤ (1− 2xa) (b

(n) − b(n))
a(n+1) − a(n+1) ≤ (1− 2xb) (a

(n) − a(n))

where xb = d( 1g )X
T and xa = d( 1f )X .

27



CHAPTER 2. LINEAR CONVERGENCE OF THE SINKHORN ALGORITHM

Proof. On one hand, from 1
a(n+1) = d( 1f )Xb

(n) we derive thanks to our lemma:

b(n) + xa(b
(n) − b(n)) ≤ 1

a(n+1)
≤ 1

a(n+1)
≤ b(n) − xa(b

(n) − b(n))

On the other hand, from b(n+1) = 1
d( 1

g )X
T a(n+1) we get, thanks to a weaker version of

our lemma:
1

a(n+1)
≤ b(n+1) ≤ b(n+1) ≤ 1

a(n+1)

Combining these two inequalities gives

b(n) + xa(b
(n) − b(n)) ≤ b(n+1) ≤ b(n+1) ≤ b(n) − xa(b

(n) − b(n))

which first shows that (b
(n)

) is nonincreasing and bounded below, while (b(n)) is non-
decreasing and bounded above so these sequences converge. Next, it also shows that
the announced inequality is true. As, for N ≥ 2, one has xa ∈ (0, 12 ] because the ma-

trix d( 1f )X is stochastic, this proves that (b
(n)

) and (b(n)) have the same limit b∞ ∈ R

and consequently b(n) → b∞1. The proof for a(n) is similar.

Note that the limit values a∞, b∞ depend on the choice of the first vectors a(0), b(0)

that depend themselves on the choice of the solution α∗, β∗ used to rescale the variables
α(n), β(n). Of course picking another solution rα∗, 1rβ

∗ would lead to the limits a∞

r
and rb∞. At this point, we also notice that the convergence of the Sinkhorn algorithm is
also guaranteed for any initial vectors α(0), β(0) (that is, not just for α(0) = β(0) = 1).

2.1.2 Hilbert distance analysis

The fact that multiplying all vectors by positive constants has no effect on conver-
gence, as well as the componentwise divisions that are characteristic to the Sinkhorn
algorithm, make the Hilbert distance very appropriate for its study. This projective
metric is defined on the quotient space (R+

∗ )
N/ ∼ where for any x, y ∈ (R+

∗ )
N we

have x ∼ y if and only if y = rx for some r > 0. We add some straightforward results
to the definition below:

Definition-Proposition I.1. (Hilbert distance) The function dH given by

∀x, y ∈ (R+
∗ )
N , dH(x, y) = log max

1≤i,j≤N
xiyj
xjyi

defines a distance on (R+
∗ )
N/ ∼ that is such that:

1. ∀f, u, v ∈ (R+
∗ )
N , dH(fu, fv) = dH(u, v)

2. ∀f, u, v ∈ (R+
∗ )
N , dH( fu ,

f
v ) = dH(u, v)

3. ∀u, v ∈ (R+
∗ )
N , ∀θ ∈ R, dH(uθ, vθ) = |θ|dH(u, v)

4. ∀a, b, c, d ∈ (R+
∗ )
N , dH(ab, cd) ≤ dH(a, c) + dH(b, d)
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Also note that dH(x, y) = log z − log z where z = x
y , so that the analysis of

Sinkhorn’s iterations in Hilbert distance is really close to the analysis of Theorem I.1.
We refer to [BR97] for more background on such distances that can be defined on
any pointed convex cone similar to (R+

∗ )
N (precisely, K is a pointed convex cone

when x, y ∈ K, λ, µ ∈ R
+ ⇒ λx + µy ∈ K and x, y ∈ K, x + y = 0 ⇒

x = y = 0). The fundamental result we need to prove convergence of the Sinkhorn
algorithm is originally due to Birkhoff [Bir57] (but we refer to [BR97] and [Car04]
for the proof1). It states that the linear operator A – which is indeed defined from
(R+

∗ )
N/ ∼ to (R+

∗ )
N/ ∼ as A is positive – is a contraction in the Hilbert metric:

Lemma I.3. When A is a positive matrix, one has

∀x, y ∈ (R+
∗ )
N , dH(Ax,Ay) ≤ κ(A)dH(x, y)

where θ(A) = max
1≤i,j,k,l≤N

ai,kaj,l
aj,kai,l

and κ(A) =

√
θ(A)− 1√
θ(A) + 1

.

Furthermore, this constant is optimal in the sense that κ(A) = sup
x,y∈(R+

∗ )N

x 6∼y

dH(Ax,Ay)

dH(x, y)
.

Note that κ(A) = κ(AT ). As first noticed by Franklin and Lorenz in [FL89],
this result directly shows linear convergence of the Sinkhorn algorithm in the Hilbert
metric:

Theorem I.2. When A is a positive matrix, the Sinkhorn iterates α(n), β(n) converge
in (R+

∗ )
N/ ∼ to the fixed point α∗, β∗ with,

∀n ≥ 0,

{
dH(α(n+1), α∗) ≤ κ(A)2dH(α(n), α∗)
dH(β(n+1), β∗) ≤ κ(A)2dH(β(n), β∗)

Proof. Make use of point 1 of Definition-Proposition I.1 and Lemma I.3 to get

dH(β(n+1), β∗) = dH(
g

ATα(n+1)
,

g

ATα∗ ) = dH(ATα(n+1), ATα∗)

≤ κ(A)dH(α(n+1), α∗)

= κ(A)dH(
f

Aβ(n)
,
f

Aβ∗ ) = κ(A)dH(Aβ(n), Aβ∗)

≤ κ(A)2dH(β(n), β∗)

and similarly for α(n).

Note that this linear convergence is only expressed in the quotient space (R+
∗ )
N/ ∼.

One would need additional arguments – typically, the ones we gave in Theorem I.1 – to
ensure that the actual Sinkhorn iterates do not crash to 0, become unbounded or even
oscillate between multiples of the solution.

1Historical proofs and [BR97] only show the inequality given below. [Car04] gives the remark on the
optimality of the constant κ(A).
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Both Theorems I.1 and I.2 express a linear convergence rate of the Sinkhorn it-
erates which is indeed what we observe in practice. However, the proposed rates in
1−2x and κ(A)2 are pessimistic as one can witness from Figure 2.1. In this numerical
experiment, we compare these rates to the actual error evolution (represented here by
||β(n) − β∗||2, identical plots being obtained for the variable α) of the Sinkhorn algo-
rithm run in dimension N = 100 on random marginals f, g and A = exp(−wε ) with
the cost w given by an L1 distance on equidistant points in [0, 1] and ε = 0.2. Unless
otherwise specified, this setting will be the one we use, with additional parameters or
variations, for the subsequent experiments on classical and generalized Sinkhorn algo-
rithms. In this particular experiment, we get that the Sinkhorn iterates converge linearly
with rate λ = 0.338 while 1 − 2xa = 0.863 and κ(A)2 = 0.999. In addition, these
rates can only be written when A is positive. We give in the following section a more
precise estimation of the linear convergence rate.

Figure 2.1 – Error evolution of the classical Sinkhorn algorithm (plain black) vs Hilbert
distance (dotted red) and min-max (dotted blue) rates

2.2 General linear rate

We now turn to the general situation. We place ourselves in the weakest setting one can
ask to consider the Sinkhorn’s iteration: A is a nonnegative matrix with no zero line or
column.

2.2.1 Convergence conditions

Before any consideration on linear convergence, we must first precise what we mean
exactly by the words “the Sinkhorn algorithm converges”, and state when this situ-
ation occurs. Indeed, in our introduction to the algorithm we deliberately presented
Sinkhorn’s iterations as acting on the variables α(n) and β(n), that is on the coefficients
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of the diagonal matrices D1 and D2 for which D1AD2 would belong to Π(f, g). This
is of course what is done in practice, as a key advantage of the Sinkhorn algorithm is
to be led on 2N rather than N2 variables. However, the historical point of view upon
the Sinkhorn algorithm (for instance in our telephone forecasting example [Kru37] and
Sinkhorn’s papers [Sin64, Sin67]) focuses on the matrix itself. For instance in [Sin64],
the corresponding convergence theorem is stated the following way:

The iterative process of alternately normalizing the rows and columns of a strictly
positive N ×N matrix is convergent to a strictly positive doubly stochastic matrix.

meaning that the author is actually concerned by the sequences of matrices A(k) ob-
tained as A(0) = A and A(n+ 1

2 ) = d(α(n+1))A d(β(n)) (whose rows sum to f ),
A(n+1) = d(α(n+1))A d(β(n+1)) (whose columns sum to g). It turns out that this
notion of convergence is actually strictly weaker than the convergence of the variables
α(n), β(n) that we considered previously: for instance taking

A =

(
1 1
0 1

)
with f = g =

(
1
1

)

one checks that the sequences (α(n)) and (β(n)) are divergent (with α(n)
1 , β

(n)
2 → 0

and α(n)
2 , β

(n)
1 → +∞) while the corresponding matrices

A(n) =

(
1 1

2n+1

0 2n
2n+1

)
and A(n+ 1

2 ) =

(
2n+1
2n+2

1
2n+2

0 1

)

converge to the identity matrix.

Actually, in this example one couldn’t expect the sequences (α(n)), (β(n)) to con-
verge as there is no positive diagonal matrices D1, D2 such that D1AD2 is doubly
stochastic. However, the convergence of A(k) reveals that the matrix A is such that
for any ε > 0, there exist positive diagonal matrices D1, D2 such that B = D1AD2

satisfies ‖B1 − f‖ ≤ ε and ‖BT 1 − g‖ ≤ ε. This weaker scaling notion is known
as approximate scaling, we refer again to the survey [Ide16] for more background on
this subject. In the following we will not study this setting but focus on the case where
(α(n)) and (β(n)) converge. Still, we wish to mention that the convergence speed of the
sequence of matrices (A(k)) is deeply affected by the convergence of (α(n)) and (β(n)).
Indeed, when (α(n)) and (β(n)) converge we will prove below that their convergence –
hence the one of (A(k)) – is linear; however, when (α(n)) and (β(n)) diverge the con-
vergence of (A(k)) is always worse than linear as proved by Achilles in [Ach93] (for
the case f = g = 1). In the following, the phrase “the Sinkhorn algorithm converges”
will always refer to the situation where the sequences (α(n)) and (β(n)) converge.

We have seen that a necessary condition for the Sinkhorn algorithm to converge is
the existence of diagonal matrices D1, D2 with positive entries such that the matrix
D1AD2 belongs to Π(f, g). We will prove in the following section that this condition
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is sufficient to obtain linear convergence. The question of when such diagonal matrices
exist has already been answered in the literature: we rely on the articles [Men68],
[Bru68] and [HRS88] which prove that it depends on the pattern of A, that is the
position of its non-zero entries.

Definition I.1. We say that two nonnegative matricesA,B ∈ (R+)N×N have the same
pattern when

∀i, j ∈ [[1, N ]], ai,j > 0⇔ bi,j > 0

Of course having the same pattern as a matrix of Π(f, g) is a necessary condition
for a scaling to exist. Actually it is also sufficient as stated by Menon in [Men68]:

Theorem I.3. Given A ∈ (R+)N×N and f, g ∈ (R+
∗ )
N , there exist diagonal matrices

D1, D2 such that D1AD2 ∈ Π(f, g) if and only if there exists a nonnegative matrix
B ∈ Π(f, g) having the same pattern as A.

This existence condition was turned into a criteria one can “test” directly (either
theoretically, or numerically if A does not have to many zero entries) when given A, f
and g by Brualdi in [Bru68]. This condition is quite natural: suppose that A takes the

form A =

(
A1 X
0 A2

)
and admits a diagonal scaling B = D1AD2 =

(
B1 Y
0 B2

)

such that B ∈ Π(f, g). Denote by I = [[N1 + 1, N ]] and J = [[1, N2]] the sets such
that ai,j = bi,j = 0 for (i, j) ∈ I × J . Looking at column sums, the sum of all the
coefficients of B1 must be equal to

∑
j∈J gj . However, looking at row sums, the sum

of all these coefficients added to those of Y must be equal to
∑
i 6∈I fi. This can only

be achieved if
∑
i 6∈I fi ≥

∑
j∈J gj . In [Bru68], Brualdi shows that this condition is

actually enough to ensure the existence of a diagonal scaling:

Theorem I.4. Let A ∈ (R+)N×N and f, g ∈ (R+
∗ )
N . There exists a nonnegative

matrix B ∈ Π(f, g) having the same pattern as A if and only if for every subsets
I, J ⊂ [[1, N ]] one has

(
∀i ∈ I, ∀j ∈ J, ai,j = 0

)
⇒




∑
i 6∈I fi >

∑
j∈J gj

or( ∑
i 6∈I fi =

∑
j∈J gj and

∀i 6∈ I, ∀j 6∈ J, ai,j = 0

)




As a consequence, we will state our convergence theorem under the hypothesis
of Theorem I.4 that we denote (I.4). Historically, the first case studied is the doubly
stochastic setting f = g = 1. In that case, a more specific characterization of the
support can be given.
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First, we need the following definition:

Definition I.2. Let A ∈ (R+)N×N be a nonnegative matrix. For (i, j) ∈ [[1, N ]]2,
we say that the entry ai,j of A lies on a positive diagonal of A when there exists a
permutation σ of [[1, N ]] such that j = σ(i) and ∀k ∈ [[1, N ]], ak,σ(k) > 0.

We say that A has support when it admits at least one positive diagonal, and total
support when every non zero entry of A lies on a positive diagonal.

In [SK67], Sinkhorn and Knopp give the following criteria:

Theorem I.5. A nonnegative matrixA ∈ (R+)N×N admits diagonal matricesD1, D2

with positive entries such that D1AD2 is doubly stochastic if and only if A has total
support.

Remark I.2. Still concerning the doubly stochastic setting, [SK67] also proves that a
necessary and sufficient condition for the sequence of matrices (A(k)) to converge is
that A has support.

To finish with, as the diagonal matrices D1 and D2 will appear as the limit values
of the sequences (α(n)), (β(n)) we are not only interested in their existence, but also
wonder about their uniqueness. We find in [Men68] and in [HRS88] the following
result:

Theorem I.6. Let A ∈ (R+)N×N and f, g ∈ (R+
∗ )
N . Suppose there exist diagonal

matrices D1, D2 such that D1AD2 ∈ Π(f, g). Then:

1. The matrix D1AD2 belonging to Π(f, g) is unique.
2. If there is no permutation matrices P and Q such that PAQT =

(
A1 0
0 A2

)

(with A1 and A2 rectangular matrices), then D1 and D2 are unique up to scalar
multiple, meaning that ifD1AD2 = D′1AD′2 thenD′1 = rD1 andD′2 = 1

rD
2

for some r > 0.

The additional condition required on the matrix A in the second point is actually
natural. Indeed, applying the Sinkhorn algorithm to any matrix A always reduces
to applying it in parallel to several matrices A1, ..., Ak which satisfy this condition.

More precisely, suppose A is such that PAQT =

(
A1 0
0 A2

)
for some permuta-

tion matrices P,Q corresponding to permutations σ, ρ and some rectangular matrices
A1 ∈ (R+)N1×N2 , A2 ∈ (R+)N

′
1×N ′

2 . Then denoting f̃i = fσ(i), g̃j = gρ(j), one
checks that the Sinkhorn algorithm on A, f, g is split into the Sinkhorn algorithms on
A1, (f̃i)1≤i≤N1

, (g̃j)1≤j≤N2
and A2, (f̃i)N1+1≤i≤N , (g̃j)N2+1≤j≤N . Note that one

can have P 6= Q which makes it tricky to catch such a decomposition at first glance
on a given matrix. Note also that the smaller Sinkhorn algorithms that appear are led
on the rectangular matrices A1, A2. As we wanted to keep our analysis with square
matrices, we do not ask this uniqueness hypothesis in our theorems but lead another
equivalent reduction instead, see Remark I.3.
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In the doubly stochastic setting, this reduction hypothesis is simplified thanks to
the following lemma that we present here because we will use similar arguments in our
result I.6 concerning reduction of symmetric stochastic matrices.

Lemma I.4. Suppose A is a nonnegative matrix admitting positive diagonal scalings
D1, D2 such that D1AD2 is doubly stochastic. Then we have equivalence between:

1. There exist permutation matrices P,Q such that PAQT =

(
A1 0
0 A2

)
for

rectangular matrices A1, A2, and

2. There exist permutation matrices P,Q such that PAQT =

(
A1 X
0 A2

)
for

square matrices A1, A2.

Proof. Suppose we have 1., asA admits a doubly stochastic scaling there exist a doubly

stochastic matrix B =

(
B1 0
0 B2

)
with B1 and B2 having the same sizes as A1 and

A2. But then B1 and B2 ought to be doubly stochastic as well, hence square. Suppose

now we have 2., then there exist a doubly stochastic matrix B =

(
B1 Y
0 B2

)
with the

same pattern as PAQT . Denote N1 the size of B1. From B1 = BT 1 = 1 one deduces
for appropriate sizes of the unit vector 1: B11 + Y 1 = 1 and BT1 1 = 1 hence the sum
of the coefficients of Y is equal to 〈Y 1|1〉 = 〈1−B11|1〉= N1−〈1|BT1 1〉 = 0, hence
Y = 0, which implies X = 0.

Therefore the previous theorem about uniqueness of the diagonal matrices D1, D2

reduces in that setting to the following result due to [SK67]:

Proposition I.2. Let A be a nonnegative matrix with total support. The diagonal ma-
trices D1, D2 such that D1AD2 is doubly stochastic are unique up to scalar multiple
if and only if A is fully indecomposable, meaning that there is no permutation matrices

P,Q such that PAQT =

(
A1 X
0 A2

)
for square matrices A1, A2.

2.2.2 A linear convergence rate

As we have already mentioned, although the convergence of the Sinkhorn iterates is
indeed linear, the rates we gave in subsection 2.1 are pessimistic. To a obtain the exact
convergence rate, one must study the spectrum of the iterated function T : (R+

∗ )
N →

(R+
∗ )
N such that T (α(n), β(n)) = (α(n+1), β(n+1)) near a fixed point (α∗, β∗). This

strategy was already suggested by Menon and Schneider in [MS69], but it is not until
[Kni08] (see also [Sou91]) that a linear convergence rate involving the subdominant
eigenvalue of the appropriate matrix was stated by Knight in the doubly stochastic
setting.
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His proof is based on the study of the distance of the iterates to the line of multiples
of the solution, and relies on his Lemma 4.3. When iterating the function T near a
multiple (sα∗, 1sβ

∗) of the fixed point (α∗, β∗), one wants to estimate the value of

min
r>0
||T (sα∗ + dα,

1

s
β∗ + dβ)− (rα∗,

1

r
β∗)||

for small dα, dβ and in a certain norm ||.||. Knight obtains a bound written as

|λ2|2||(dα, dβ)||+ o (||(dα, dβ)||)

for some λ2 ∈ (0, 1). However, we do not clearly see how the dependence on s of the
o (||(dα, dβ)||) term is avoided in order to lead to the concluding Theorem 4.4. In the
following we give a different proof of this convergence result that furthermore extends
to arbitrary marginals f, g.

Remember from Lemma I.1 that provided the scaling problem I.1 admits a solution
one can study the Sinkhorn iterates on the rescaled variables a(n), b(n). The iterations
write

a(n+1) =
1

d( 1f )Xb
(n)

; b(n+1) =
1

d( 1g )X
Ta(n+1)

where X = d(α∗)A d(β∗) ∈ Π(f, g) so that the matrices d( 1f )X and d( 1g )X
T are

stochastic. As in Lemma I.2, we use the stochasticity of these matrices to obtain our
bounds. More precisely, we now exploit the following lemma that simply derives from
the convexity of the inverse function:

Lemma I.5. Let M ∈ (R+)N×N be a stochastic matrix. Then for any positive vector
x ∈ (R+

∗ )
N , one has

1

Mx
≤M 1

x

Using this lemma with M = d( 1f )X and M = d( 1g )X
T finally gives us:

Fact I.1. On the rescaled variables a(n), b(n) of the Sinkhorn iterates, one has ∀n ≥ 0,

a(n+1) ≤Maa
(n) ;

1

a(n+1)
≤Ma

1

a(n)

b(n+1) ≤Mbb
(n) ;

1

b(n+1)
≤Mb

1

b(n)

(2.2)

where Ma = d( 1f )X d( 1g )X
T and Mb = d( 1g )X

T d( 1f )X .

What can we say about the matrices Ma and Mb? First, d(f)Ma and d(g)Mb

are symmetric, or in other words Ma is symmetric for the scalar product 〈.|.〉f , and
Mb for 〈.|.〉g . This shows that Ma and Mb are diagonalizable, and their spectrum,
which is the same as Sp(Y Z) = Sp(ZY ) for any square matrices Y, Z, is real.
Next, as X ∈ Π(f, g), Ma and Mb are stochastic matrices, hence their spectral radius

35



CHAPTER 2. LINEAR CONVERGENCE OF THE SINKHORN ALGORITHM

ρ(Ma) = max{|λ|, λ ∈ Sp(Ma)} is 1. In the objective of obtaining a contraction re-
sult for a convergence rate, one would also like 1 to be a strictly dominant eigenvalue,
meaning that ∀λ ∈ Sp(Ma)\{1}, |λ| < 1. This last point is not true in general, but we
will reduce our setting to it thanks to a result about reduction of stochastic symmetric
matrices. To do so, let us first introduce a standard definition (see [Min88] chapters I.2
and III):

Definition I.3. A nonnegative matrix A ∈ (R+)N×N is called reducible when there
exists a permutation matrix P such that

PAPT =

(
B X
0 C

)

where B and C are square submatrices. Otherwise A is called irreducible.

When dealing with symmetric stochastic matrices, the natural reduction of any non-
negative matrix to an upper triangular matrix with irreducible matrices on the diagonal
can be made into diagonal form:

Lemma I.6. Let M ∈ (R+)N×N be a stochastic matrix which is symmetric for some
scalar product 〈.|.〉s given by a positive vector s ∈ (R+

∗ )
N . Then there exist a per-

mutation matrix P and stochastic irreducible square matrices M1, ...,Mr which are
symmetric for scalar products 〈.|.〉si given by positive vectors si of appropriate sizes
such that :

PMPT =



M1 0

. . .
0 Mr




Proof. Suppose M is reducible and write PMPT =

(
M1 X
0 M2

)
for some square

matricesM1 ∈ (R+)k×k,M2 ∈ (R+)(N−k)×(N−k) andX ∈ (R+)k×(N−k). First, the
fact that M1 = 1 gives in particular (with appropriates lengths for 1) M11 +X1 = 1.
Second, the fact that MT s = s (which comes from M1 = 1 and the symmetry of
d(s)M ) gives in particular MT

1 s1 = s1 with s1 ∈ (R+
∗ )
k being the first k components

of Ps. Then one has 〈s1|X1〉 = 〈s1|1 −M11〉 = 〈s1|1〉 − 〈MT
1 s1|1〉 = 0 so that

X = 0 (because s1 > 0). The result follows by induction.

On the later, we will apply this reduction to the matrices Ma,Mb; it is important
to notice that this does not affect the relations (2.2). We mean that if Ma is reduced
through the permutation matrix Pa then the relation (2.2) on the vector a(n) splits into
smaller identical relations on partitions of the vector Paa(n). We will denote a(n)s such
partitions: the vectors a(n)s simply consist of reorderings of the components of the
vector a(n) that satisfy the relations

a(n+1)
s ≤Ma,sa

(n)
s ,

1

a
(n+1)
s

≤Ma,s
1

a
(n)
s
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for some irreducible matrices Ma,s. The process is of course similar for b(n) with Mb.
We now wish to have results about the spectrum of these smaller irreducible matrices
Ma,s and Mb,s and introduce the notion of primitivity:

Definition I.4. A nonnegative matrix M ∈ (R+)N×N is called primitive when it is
irreducible and such that ∀λ ∈ Sp(M)\{ρ(M)}, |λ| < ρ(M).

Many characterizations of primitive matrices can be found in [Min88, BP79]. We
will need the two following practical results (found in [BP79] (Theorem 2.7 and Corol-
lary 2.28)):

Proposition I.3. For a nonnegative matrix M ∈ (R+)N×N ,

1. M is primitive if and only if there exists p ∈ N such that Mp is positive.

2. If M is irreducible and if Tr(M) > 0 then2 M is primitive.

In our setting, every diagonal coefficient of the matrices Ma and Mb is positive.
Indeed, remember that Ma = d( 1f )X d( 1g )X

T with X = D1AD2 being the diagonal

scaling of A, hence Ma has the same pattern as AAT . But (AAT )i,i =
∑
k a

2
i,k > 0

because A has no zero line. Similarly, Mb has the pattern of ATA hence its main diag-
onal entries are positive becauseA has no zero column. This proves that the irreducible
matrices that appear in the block diagonal decomposition of Ma and Mb have positive
trace hence are primitive. Finally, the Sinkhorn iterates on a(n), b(n) write as parallel it-
erates on a(n)s , b

(n)
s satisfying (2.2) with primitive stochastic symmetric matrices Ma,s

and Mb,s. This is what we needed to conclude with our general linear convergence
theorem:

Theorem I.7. LetM ∈ (R+)N×N be a primitive stochastic matrix which is symmetric
for some scalar product 〈.|.〉s given by s ∈ ΣN . Suppose (xn) ∈ ((R+

∗ )
N )N is a

sequence satisfying:

∀n ∈ N, xn+1 ≤Mxn and
1

xn+1
≤M 1

xn

Then there exists x∗ ∈ R
+
∗ such that xn −→

n→+∞
x∗1 with the following estimate:

∀δ > 0, ∃nδ ∈ N such that ∀n ≥ nδ

||xn+1 − 〈xn+1〉s1||s ≤ (λ2 + δ) ||xn − 〈xn〉s1||s

where 1 > λ2 = maxSp(M)\{1} is the subdominant eigenvalue of M .

We postpone the proof of this theorem to section 2.3. Now let us conclude: for
each smaller variable a(n)s , b

(n)
s we have convergence towards a certain multiple x∗1

of the unit vector 1, which corresponds to a solution of the scaling problem I.1. Had
we rescaled the initial variables α(n), β(n) by this solution instead of a random α∗, β∗,

2The converse is wrong: M =





0 1 1
1 0 1
1 1 0



 is primitive but Tr(M) = 0.
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all the variables a(n)s , b
(n)
s would have converged towards 1. With this new rescale,

the matrices Ma and Mb remain unchanged (as the diagonal scaling X ∈ Π(f, g) is
unique, Theorem I.6) and one still has asymptotically

∥∥∥a(n+1) − 〈a(n+1)〉f1
∥∥∥
f
≤ (λ2 + δ)

∥∥∥a(n) − 〈a(n)〉f1
∥∥∥
f∥∥∥b(n+1) − 〈b(n+1)〉g1

∥∥∥
g
≤ (λ2 + δ)

∥∥∥b(n) − 〈b(n)〉g1
∥∥∥
g

with λ2 = max{|λ|, λ ∈ Sp(Ma) s.t. |λ| < 1} being the subdominant eigenvalue
of Ma and Mb. Then un = 〈a(n)〉f and vn = 〈b(n)〉g converge to 1 and one checks
that the linear convergence of a(n), b(n) in the ||.||f and ||.||g norms reformulates in the
norm given by s = ( f

α∗2 ,
g
β∗2 ) into the following theorem:

Theorem I.8. Let A ∈ (R+)N×N and f, g ∈ ΣN satisfying hypothesis (I.4). The
Sinkhorn iterates (α(n), β(n)) corresponding to A, f, g and defined by (1.3) converge
to α∗, β∗ ∈ (R+

∗ )
N which are solutions of the scaling problem I.1. In addition there

exist sequences of real numbers (un), (vn) ∈ (R+
∗ )

N converging to 1, and a norm ‖.‖s
on R

2N such that: ∀δ > 0, ∃nδ such that ∀n ≥ nδ,
∥∥∥∥
(
α(n+1)

β(n+1)

)
−
(
un+1α

∗

vn+1β
∗

)∥∥∥∥
s

≤ (λ2 + δ)

∥∥∥∥
(
α(n)

β(n)

)
−
(
unα

∗

vnβ
∗

)∥∥∥∥
s

where λ2 = max{|λ|, λ ∈ Sp(M) s.t. |λ| < 1} is the subdominant eigenvalue of the
matrix M = d( 1g )X

T d( 1f )X and X = d(α∗)A d(β∗) ∈ Π(f, g) is the limit matrix of
the Sinkhorn iterations.

Remark I.3. During the course of the proof, we dealt in Lemma I.6 with the reduc-
tion as diagonal blocks of irreducible matrices of the matrix M = d( 1f )X d( 1g )X

T .
This step could have been overlooked by previously reducing the matrix A itself to the
form described in Theorem I.6 that ensures uniqueness of the scaling diagonal matrices

D1, D2. Remember that this reduction writes PAQT =

(
A1 0
0 A2

)
with rectangular

matricesA1, A2 and that the Sinkhorn iterates split into smaller blocks so that the con-
vergence of the algorithm is obtained by the convergence of each block. Actually, the
two decompositions coincide so that reducing A is enough to ensure the irreducibility
of M . This result relies on the fact that M has the pattern of AAT and writes as the
following proposition. However, we chose to present our reduction on the matrix M to
keep all the Sinkhorn iterates on square matrices.

Proposition I.4. For a nonnegative matrix A having no zero row or column, we have
equivalence between:

1. There is no permutation matrices P,Q such that PAQT =

(
A1 0
0 A2

)
with

A1, A2 being rectangular matrices, and

2. There is no permutation matrix P such that PAATPT =

(
M1 0
0 M2

)
with

M1,M2 being square matrices.

38



CHAPTER 2. LINEAR CONVERGENCE OF THE SINKHORN ALGORITHM

Proof. The fact that 2. implies 1. is easy. For the converse, suppose AAT admits the

decomposition AAT =

(
M1 0
0 M2

)
with M1 ∈ R

N1×N1 (the case P 6= Id falls into

this setting just replacing A by PA). One wants to find a permutation matrix Q such

that AQT =

(
A1 0
0 A2

)
. In other words one wants to split the columns of A into two

groups: one group E such that ∀k ∈ E, ∀i > N1, ai,k = 0 and one group F such that
∀k ∈ F, ∀j ≤ N1, aj,k = 0. The hypothesis on AAT gives that:

∀i > N1, ∀j ≤ N1, (AA
T )i,j =

∑

k

ai,kaj,k = 0

This implies that for all k ∈ [[1, N ]], ∀i > N1, ∀j ≤ N1, ai,k = 0 or aj,k = 0. Then
setting E = {k s.t. ∃i > N1 s.t. ai,k > 0} and F = {k s.t. ∃j ≤ N1 s.t. aj,k > 0}
gives the desired result.

To conclude, we note that numerical computations confirm that the second eigen-
value λ2 of the matrix M = d( 1g )X

T d( 1f )X is the actual linear convergence rate of
the Sinkhorn algorithm, see Figure 2.2. In this experiment, we took the same setting
than for Figure 2.1, and run it for different the values of the parameter ε. Sadly, this
convergence rate is given according to the limit matrix X of the iterates, which is un-
known a priori. Future works should try to understand how this rate depends on the
algorithm data A, f, g. In section 4.3 we explore the case N = 2 where everything can
be computed explicitly enlightening this dependency.

Figure 2.2 – Error evolution of the classical Sinkhorn algorithm (plain lines) and pre-
dicted λ2 rate (dotted lines) for different values of ε
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2.3 Proof of general theorem

To prepare the proof of Theorem I.7, we need the following lemma:

Lemma I.7. Let M ∈ (R+)N×N be a stochastic matrix and let s ∈ (R+
∗ )
N . For

any c > 0, there exists µ > 0 such that for any positive vector x ∈ (R+
∗ )
N satisfying

〈x〉s ≥ c and x ≥ 1
2 〈x〉s1 one has

1

M 1
x

≥Mx− µ‖x− 〈x〉s1‖2s

Proof. First use the fact that ∀t ≥ − 1
2 ,

1
1+t ≤ 1− t+ 2t2, so that for x ∈ (R+

∗ )
N and

h ∈ R
N such that h ≥ − 1

2 〈x〉s1 one has componentwise:

1

〈x〉s1 + h
=

1

〈x〉s
1

1 + h
〈x〉s

≤ 1

〈x〉s
(1− h

〈x〉s
+ 2

h2

〈x〉2s
)

As M ≥ 0 and M1 = 1 we derive successively:

M
1

〈x〉s1 + h
≤ 1

〈x〉s
(1− 1

〈x〉s
Mh+

2

〈x〉2s
M(h2))

1

M 1
〈x〉s1+h

≥ 〈x〉s
1

1 + (− 1
〈x〉sMx+ 2

〈x〉2s
M(h2))

Using now that 1
1+t ≥ 1− t we get:

1

M 1
〈x〉s1+h

≥ 〈x〉s(1 +
1

〈x〉s
Mh− 2

〈x〉2s
M(h2))

Taking h = x− 〈x〉s1, we obtain, if h ≥ − 1
2 〈x〉s1 i.e. if x ≥ 1

2 〈x〉s1 :

1

M 1
x

≥ 〈x〉s1 +Mx− 〈x〉sM1− 2

〈x〉s
M((x− 〈x〉s1)2)

≥Mx− 2

〈x〉s
1

s
||x− 〈x〉s1||2s1

where the last inequality uses the fact that all the coefficients of M are bounded by 1
to state that:

∀x ∈ (R+
∗ )
N , M(x2) ≤ 1

s
||x||2s1

The result dealing with the case where 〈x〉s ≥ c follows by taking µ = 2
cs .
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We now turn to the proof of our main theorem that we recall below:

Theorem I.9. LetM ∈ (R+)N×N be a primitive stochastic matrix which is symmetric
for some scalar product 〈.|.〉s given by s ∈ ΣN . Suppose (xn) ∈ ((R+

∗ )
N )N is a

sequence satisfying:

∀n ∈ N, xn+1 ≤Mxn and
1

xn+1
≤M 1

xn

Then there exists x∗ ∈ R
+
∗ such that xn −→

n→+∞
x∗1 with the following estimate:

∀δ > 0, ∃nδ ∈ N such that ∀n ≥ nδ
||xn+1 − 〈xn+1〉s1||s ≤ (λ2 + δ) ||xn − 〈xn〉s1||s

where 1 > λ2 = maxSp(M)\{1} is the subdominant eigenvalue of M .

Proof. Step 1: We give here a first estimate which is valid for all iterations and consti-
tutes a convergence proof.

First, note that since xn+1 ≤ Mxn and M1 = 1, applying the nonnegative matrix
M to the inequality xn ≤ xn1 leads to xn+1 ≤ xn. Using similarly that 1

xn+1 ≤M 1
xn

leads to xn+1 ≥ xn. Consequently the sequences (xn) and (xn) both converge. We
denote x∗ ∈ R

+
∗ the limit of (xn) and we will show that xn −→

n→+∞
x∗1.

Second, since M is stochastic and primitive, it has 1 as a dominant and simple
eigenvalue. Exploiting the fact that M is also symmetric for 〈.|.〉s, we obtain that

1 > λ2 = sup
x 6=0 s.t.
〈x〉s=0

‖Mx‖s
‖x‖s

which we will use by saying that for any vector x one has

‖M(x− 〈x〉s1)‖2s ≤ λ22‖x− 〈x〉s1‖2s (2.3)

Our analysis starts with saying that xn+1 ≤Mxn implies that

xn+1 − xn+11 ≤M(xn − 〈xn〉s1) + (〈xn〉s − xn)1

As these vectors are nonnegative, this componentwise inequality transfers to a norm
inequality

‖xn+1 − xn+11‖2s ≤ ‖M(xn − 〈xn〉s1) + (〈xn〉s − xn)1‖2s
Then, we develop these two square norms using orthogonality: for x ∈ R

N such that
〈x〉s = 0 and r ∈ R one has ||x+ r1||2s = ||x||2s+ r2 because ||1||2s = 1. Applying this
result to x = xn+1− 〈xn+1〉s1 and to x =M(xn− 〈xn〉s1) (which satisfies 〈x〉s = 0
because M is symmetric), we get:

‖xn+1 − 〈xn+1〉s1‖2s + |〈xn+1〉s − xn+1|2 ≤ λ22‖xn − 〈xn〉s1‖2s + |〈xn〉s − xn|2
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To obtain a geometric convergence from this inequality, we compare the two terms
by noting that for any vector x one has |〈x〉s − x|2 ≤ 1

s‖x − 〈x〉s1‖2s. It follows that
for any η > 0:

‖xn+1 − 〈xn+1〉s1‖2s + |〈xn+1〉s − xn+1|2

≤ (λ22 + η)‖xn − 〈xn〉s1‖2s + (1− ηs)|〈xn〉s − xn|2

Taking η > 0 such that λ22 + η = 1− ηs i.e. η =
1−λ2

2

1+s > 0 we obtain

‖xn+1 − 〈xn+1〉s1‖2s + |〈xn+1〉s − xn+1|2

≤ (λ22 + η)
(
‖xn − 〈xn〉s1‖2s + |〈xn〉s − xn|2

)

with λ22 + η =
1+sλ2

2

1+s < 1 so that (〈xn〉s − xn) and (xn − 〈xn〉s1) are converging
sequences. As we already know that xn −→

n→+∞
x∗ we finally get that xn −→

n→+∞
x∗1.

Step 2: We now derive the sharper asymptotic rate.

As xn −→
n→+∞

x∗1 for some real number x∗ > 0, we are in the context of Lemma I.7:

∃c > 0, ∃N ∈ N such that ∀n ≥ N, xn ≥ 1

2
〈xn〉s1 ≥

1

2
c1

hence

∃µ > 0 such that ∀n ≥ N, 1

M 1
xn

≥Mxn − µ||xn − 〈xn〉s1||2s

and we can then write:

M(xn − 〈xn〉s1)− µ||xn − 〈xn〉s1||2s1 ≤ 1

M 1
xn

− 〈xn〉sM1

≤ xn+1 − 〈xn〉s1 ≤M(xn − 〈xn〉s1)
Denoting en = xn−〈xn〉s1 and fn = xn+1−〈xn〉s1 the previous inequalities can

be written as Men − µ||en||2s1 ≤ fn ≤Men or 0 ≤Men − fn ≤ µ||en||2s1. Passing
to the norm on these nonnegative vectors yields ||Men − fn||s ≤ µ||en||2s and finally:

||fn||s ≤ ||Men||s + µ||en||2s
But one easily shows that for z ∈ R

N the minimum value of ||z − t1||s is obtained for
t = 〈z〉s so that ||fn||s ≥ ||en+1||s, and we obtain:

||en+1||s ≤ ||Men||s + µ||en||2s
To finish with, we use the symmetry of M through property (2.3) and get:

∃µ > 0 ∃N ∈ N such that ∀n ≥ N, ||en+1||s ≤ λ2||en||s + µ||en||2s
from which the conclusion of the theorem follows by taking nδ ≥ N large enough to
ensure ||en||s ≤ δ

µ .
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CHAPTER 3

LINEAR CONVERGENCE OF SINKHORN-LIKE
ALGORITHMS

The Sinkhorn algorithm computes an approximate Wasserstein distance between two
measures. The growing use of Wasserstein distances in problems involving measure
comparisons (see [PC19]) induced the emergence of variants of the Sinkhorn iter-
ates. These variants arise most of the time from an entropic regularization of a lin-
ear program with marginal constraints. We describe and analyze below some of the
Sinkhorn-like algorithms that appear in this context. By “Sinkhorn-like” we mean that
all these algorithms involve componentwise products of nonnegative matrices and vec-
tors. Some of these variants also come with a matrix scaling problem similar to I.1.

3.1 Barycenter of two measures

3.1.1 Simple barycenter

The first variant of the Sinkhorn algorithm we study deals with finding the Wasserstein
barycenter of two discrete mesures f0, f1 ∈ ΣN . Following for instance the work of
Benamou and co-authors in [BCC+15], one introduces this notion of barycenter as a
Fréchet mean in the Wasserstein metric space, meaning that for θ ∈ (0, 1), one seeks
to find fθ ∈ ΣN minimizing the weighted sum θWw(f

0, fθ) + (1 − θ)Ww(f
θ, f1)

whereWw denotes, as in (1.4), the Wasserstein distance according to some ground cost
w ∈ R

N×N . This notion actually coincides with the McCann interpolation of f0 and
f1, first introduced in [McC97], so that the path (fθ)θ∈(0,1) is the geodesic between
f0 and f1 in the Wasserstein metric space.
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Figure 3.1 – A Wasserstein barycenter f
1
2 (middle) of two marginals f0 (left) and f1

(right) computed through the Sinkhorn-like algorithm I.2

Again, our approch deals with the entropic regularizations of Wasserstein distances,
so that our problem actually consists of finding for a small ε > 0 the minimizer of
θW ε

w(f
0, fθ) + (1 − θ)W ε

w(f
θ, f1) where W ε

w is the regularization (1.5) of Ww. Al-
though this is not what one does in practice to find barycenters, our following analysis
does not require that the two Wasserstein distances appearing in this problem be cal-
culated according to the same ground cost w. As a consequence we state our problem
with two ground costs w0, w1 ∈ R

N×N as:

min
x0,x1

θ〈w0|x0〉+εθ〈x0| log x0−1〉+(1−θ)〈w1|x1〉+ε(1−θ)〈x1| log x1−1〉 (3.1)

where the minimum runs over x0 ∈ Π(f0, fθ), x1 ∈ Π(fθ, f1) where fθ = x0
T

1 =

x11 or in other words x0, x1 ∈ (R+)N×N such that x01 = f0, x1
T

1 = f1 and

x0
T

1 = x11. Introducing the Lagrange multipliers λ, µ, ν ∈ R
N for, respectively,

x01 = f0, x1
T

1 = f1 and x0
T

1 = x11, we obtain using Proposition I.1 the following
dual formulation:

sup
λ,µ,ν∈RN

〈λ|f0〉+ 〈µ|f1〉

− ε
N∑

i,j=1

θ exp

(
−θw0

i,j + λi + νj

εθ

)
+ (1− θ) exp

(
−(1− θ)w1

i,j + µj − νi
ε(1− θ)

)

(3.2)
Making the variable change

Ai = exp

(−wi
ε

)
; α = exp

(
λ

εθ

)
; β = exp

(
µ

ε(1− θ)

)
; γ = exp

( −ν
εθ(1− θ)

)

the optimality conditions for this unconstrained problem constitute a scaling problem
for the matrices A0 and A1 that is finding positive vectors α, β, γ such that:

α =
f0

A0( 1γ )
1−θ ; β =

f1

A1T γθ
; γ =

A0Tα

A1β
(3.3)
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The link between primal and dual problems indicates that the optimal transport
plans solving (3.1) are given by X0 = d(α∗)A0 d(γ∗θ−1) ∈ Π(f0, fθ) and X1 =
d(γ∗θ)A1 d(β∗) ∈ Π(fθ, f1) where α∗, β∗, γ∗ are solutions of the equations (3.3),

and where the barycenter is finally given by fθ = (γ∗)θ−1A0Tα∗ = (γ∗)θA1β∗. The
strict concavity of problem (3.2) with respect to λi+νj and µj+νi ensures the existence
of a solution (α∗, β∗, γ∗) to this scaling problem as well as its uniqueness up to scalar
multiple, meaning that all the other solutions are of the form (r1−θα∗, rθβ, rγ) for
some r > 0. As in the classical Sinkhorn algorithm, one can solve these equations
by alternately updating α, β and γ according to one equation only. This procedure
corresponds to the alternate maximizations on the dual problem (3.2), and constitutes
the following Sinkhorn-like algorithm:

Algorithm I.2. Given two positive matrices A0, A1 ∈ (R+
∗ )
N×N , and two marginals

f0, f1 ∈ ΣN , starting from α(0) = β(0) = γ(0) = 1, do for n = 0, 1, ...

α(n+1) =
f0

A0( 1
γ(n) )1−θ

; β(n+1) =
f1

A1T (γ(n))θ
; γ(n+1) =

A0Tα(n+1)

A1β(n+1)
(3.4)

Remark I.4. We only consider this variant of the Sinkhorn algorithm in the case where
A0 and A1 are positive matrices. However, one could consider this algorithm as well
as the scaling problem (3.3) for general nonnegative matrices and wonder what pattern
conditions are needed in that context. We wish to emphasize that thanks to the reduction
Lemma I.6, our main result I.12 would extend to the context where the scaling problem
(3.3) admits a solution.

From the point of view of primal iterates x0, x1, one checks that these iterations
still write as alternate KL-projections. More precisely, iterations on α, β correspond
to projections on the constraints x01 = f0 and x1

T
1 = f1 while iteration on γ corre-

sponds to x0
T

1 = x11. Similarly to what we did for the classical Sinkhorn algorithm
in section 2.1, we can first analyze these iterations in the Hilbert metric using the prop-
erties given in Definition-Proposition I.1:

Theorem I.10. The Sinkhorn-like iterates α(n), β(n), γ(n) converge in (R+
∗ )
N/ ∼ to

the fixed point α∗, β∗, γ∗ with the estimate

∀n ≥ 0, dH(γ(n+1), γ∗) ≤
(
(1− θ)κ(A0)2 + θκ(A1)2

)
dH(γ(n), γ∗)

Proof. Using in particular the third point of Definition-Proposition I.1 one gets

dH(α(n+1), α∗) ≤ (1− θ)κ(A0)dH(γ(n), γ∗)

dH(β(n+1), β∗) ≤ θκ(A1)dH(γ(n), γ∗)

And the fourth point gives

dH(γ(n+1), γ∗) ≤ κ(A0)dH(α(n+1), γ∗) + κ(A1)dH(β(n+1), β∗)

which leads to the result.
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To state our following convergence rates, we rely again on the rescaled variables
that satisfy the same iteration rules with A0, A1 replaced by the limit transport plan
matrices X0, X1. The fact that X0 6= X1 even when A0 = A1 motivated the choice
of taking two different ground costs w0, w1.

Lemma I.8. Let α(n), β(n), γ(n) be the Sinkhorn-like iterates defined by (3.4), and
let α∗, β∗, γ∗ be a solution of the scaling problem (3.3). Denote the correspond-
ing transport plan matrices by X0 = d(α∗)A0 d( 1

γ∗1−θ ) ∈ Π(f0, fθ) and X1 =

d(γ∗θ)A1 d(β∗) ∈ Π(fθ, f1), then the rescaled variables

a(n) =
α(n)

α∗ ; b(n) =
β(n)

β∗ ; c(n) =
γ(n)

γ∗

satisfy the iteration rules

a(n+1) =
1

d( 1
f0 )X0( 1

c(n) )1−θ
; b(n+1) =

1

d( 1
f1 )X1T (c(n))θ

; c(n+1) =
X0Ta(n+1)

X1b(n+1)

(3.5)

The appearance of the stochastic matrices Ma = d( 1
f0 )X

0 and Mb = d( 1
f1 )X

1T

leads to a min-max analysis similar to Theorem I.1:

Theorem I.11. The rescaled variables a(n), b(n), c(n) converge to constant vectors
a∞1, b∞1 , c∞1 and one has the following estimate:

∀n ≥ 0, c(n+1) − c(n+1) ≤
(
1− θmb − (1− θ)c

(0)

c(0)
ma

)
(c(n) − c(n))

where ma =Ma and mb =Mb.

Proof. Denote p(n) = (c(n))θ and q(n) = (c(n))θ−1. Applying Lemma I.2 to the
iterates on a and b yields:

q(n) +ma(q
(n) − q(n)) ≤

(
1

a(n+1)

)
≤
(

1

a(n+1)

)
≤ q(n) −ma(q

(n) − q(n))

p(n) +mb(p
(n) − p(n)) ≤

(
1

b(n+1)

)
≤
(

1

b(n+1)

)
≤ p(n) −mb(p

(n) − p(n))

Besides, as X0T 1 = X11 = fθ one has

c(n+1) =
X0Ta(n+1)

X1b(n+1)
≤ X0Ta(n+1)1

X1b(n+1)1
=
a(n+1)

b(n+1)

X0T 1
X11

=
a(n+1)

b(n+1)
1

so that c(n+1) ≤ a(n+1)

b(n+1)
and similarly c(n+1) ≥ a(n+1)

b
(n+1)

. Together with the previous
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inequalities, this gives:

c(n+1) ≤
p(n) −mb(p

(n) − p(n))
q(n) +ma(q

(n) − q(n))
= c(n)

1−mb

[
1−

(c(n)

c(n)

)θ]

1 +ma

[(c(n)
c(n)

)1−θ
− 1

] (3.6)

c(n+1) ≥
p(n) +mb(p

(n) − p(n))
q(n) −ma(q

(n) − q(n))
= c(n)

1 +mb

[(c(n)
c(n)

)θ
− 1

]

1−ma

[
1−

(c(n)

c(n)

)1−θ] (3.7)

Then first exploit (3.6) just saying that for any u, v ≥ 0 one has 1−u
1+v ≤ 1− u to get:

c(n+1) ≤ cn −mb

(
c(n) − (c(n))1−θ(c(n))θ

)

≤ cn −mb

(
c(n) − (1− θ)c(n) − θc(n)

)

≤ c(n) − θmb(c
(n) − c(n)) (3.8)

where we used that xθy1−θ ≤ θx+(1−θ)y for any x, y > 0. Second, exploit similarly
(3.7) using 1+u

1−v ≥ 1 + v to get:

c(n+1) ≥ c(n) +ma

(
c(n) − (c(n))2−θ(c(n))θ−1

)

= c(n) +
c(n)

c(n)
ma

(
c(n) − (c(n))1−θ(c(n))θ

)

≥ c(n) + c(n)

c(n)
ma(1− θ)(c(n) − c(n))

≥ c(n) + c(0)

c(0)
ma(1− θ)(c(n) − c(n)) (3.9)

To obtain the last inequality (3.9) we used the fact that (c(n)) is nonincreasing while
(c(n)) is nondecreasing. This indeed comes from equations (3.6) and (3.7); moreover it
first provides that these sequences converge so that the estimate stated in the theorem –
that derives from equations (3.8) (3.9) – proves that (c(n)) converges to some constant
c∞1. The convergence of (a(n)) and (b(n)) towards constant vectors follows.

Again, these two linear rates are pessimistic. Similar to the observations we made
in Figure 2.1 and following the same setting with θ = 0.5, we show in Figure 3.2
an example in which the evolution of the error made by the algorithm on the variable
γ is governed by λ = 0.320 while the Hilbert distance and min-max guaranties are
respectively of 0.862 and 0.998.
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Figure 3.2 – Error evolution of the Sinkhorn algorithm for the barycenter (plain black)
vs Hilbert distance (dotted red) and min-max (dotted blue) rates

To obtain a rate similar to Theorem I.8, we will fit into the general Theorem I.7
thanks to another lemma, similar to I.5, that expresses the concavity of t 7→ tθ for
θ ∈ (0, 1):

Lemma I.9. Let M ∈ (R+)N×N be a stochastic matrix. Then for any positive vector
x ∈ (R+

∗ )
N , one has for all θ ∈ (0, 1)

M(xθ) ≤ (Mx)θ

We also force the appearance of the stochastic matrices d( 1
fθ )X

0T and d( 1
fθ )X

1

in the update rule of variable c:

c(n+1) =
X0Ta(n+1)

X1b(n+1)
=

d( 1
fθ )X

0Ta(n+1)

d( 1
fθ )X1b(n+1)

so that making use of Lemmas I.5 and I.9, we get:

c(n+1) ≤
(
d(

1

fθ
)X0Ta(n+1)

)(
d(

1

fθ
)X1 1

b(n+1)

)

≤
(
d(

1

fθ
)X0T d(

1

f0
)X0(c(n))1−θ

)(
d(

1

fθ
)X1 d(

1

f1
)X1T (c(n))θ

)

≤
(
d(

1

fθ
)X0T d(

1

f0
)X0c(n)

)1−θ (
d(

1

fθ
)X1 d(

1

f1
)X1T c(n)

)θ

≤
(
(1− θ) d( 1

fθ
)X0T d(

1

f0
)X0 + θ d(

1

fθ
)X1 d(

1

f1
)X1T

)
c(n)
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i.e. c(n+1) ≤Mc(n) with M = (1− θ) d( 1
fθ )X

0T d( 1
f0 )X

0 + θ d( 1
fθ )X

1 d( 1
f1 )X

1T

being a stochastic positive (hence primitive) matrix. One also sees that d(fθ)M is
symmetric; and similar reasoning shows that 1

c(n+1) ≤ M 1
c(n) . Finally, we are ex-

actly in the context of Theorem I.7, which allows to conclude the following theorem

concerning the convergence of the variable γ with s = fθ

γ∗2 :

Theorem I.12. Let A0, A1 ∈ (R+
∗ )
N×N be two positive matrices and f0, f1 ∈ ΣN .

The Sinkhorn iterates (α(n), β(n), γ(n)) corresponding to (A0, A1, f0, f1) and defined
by (3.4) converge to α∗, β∗, γ∗ ∈ (R+

∗ )
N which are solutions of the scaling problem

(3.3). In addition there exist a sequence of real numbers (un) ∈ (R+
∗ )

N converging to
1, and a norm ‖.‖s on R

N such that: ∀δ > 0, ∃nδ such that ∀n ≥ nδ,
∥∥∥γ(n+1) − un+1γ

∗
∥∥∥
s
≤ (λ2 + δ)

∥∥∥γ(n) − unγ∗
∥∥∥
s

where 0 < λ2 < 1 is the subdominant eigenvalue of the matrixM = (1−θ)M0+θM1

with M0 = d( 1
fθ )X

0T d( 1
f0 )X

0 and M1 = d( 1
fθ )X

1 d( 1
f1 )X

1T ; and where we also

denoted the transport plans between the marginals f0, f1 and the barycenter fθ by
X0 = d(α∗)A0 d( 1

γ∗1−θ ) ∈ Π(f0, fθ), X1 = d(γ∗θ)A1 d(β∗) ∈ Π(fθ, f1).

Remark I.5. During our min-max study of the algorithm, we saw in particular that

(c(n))1−θ1 ≤ a(n+1) ≤ (c(n))1−θ1

(c(n))−θ1 ≤ b(n+1) ≤ (c(n))−θ1

These inequalities allows one to expect the same convergence speed for α and β as
stated for γ in the theorem.

This rate provided by Theorem I.12 is actually observed in practice as shown in
Figure 3.3 where we display it together with the evolution of the error made on the
variable γ for different parameter values.
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Figure 3.3 – Error evolution of the Sinkhorn algorithm for the barycenter (plain lines)
and predicted λ2 rate (dotted lines) for different values of ε and θ

3.1.2 Multiple barycenters

As the path of the barycenters (fθ)θ∈(0,1) describes the Wasserstein geodesic between
f0 and f1, one might be interested in getting simultaneously several barycenters such
as all the f

k
K for k ∈ [[1,K − 1]]. For notational convenience, we now denote by f0

and fK the fixed marginals and by f1, ..., fK−1 the intermediate barycenters. A way
of computing these barycenters1 simultaneously is to solve the following problem:

min
f1,...,fK−1∈ΣN

K−1∑

k=0

W ε
wk(f

k, fk+1)

for some ground cost matrices wk ∈ R
N×N . Expanding the minimas corresponding to

the Wasserstein distances, this problem writes:

min
x0,...,xK−1

K−1∑

k=0

〈wk|xk〉+ ε〈xk| log xk − 1〉

1To be exact, even for ε = 0 the barycenter f
k
K defined in this section’s way is not equal to the

barycenter fθ for θ = k
K

as defined “individually” above by f
k
K = argminf

k
K
Ww1 (f1, f) +

K−k
K

Ww2 (f, f2). However, this two barycenters are close because those definitions coincide in a con-
tinuous setting (in the case where a transport map exists for instance).
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where the minimum runs overs x0, ..., xK−1 ∈ (R+)N×N such that

x01 = f0 ; xK−1T 1 = fK ; ∀k ∈ [[0,K − 2]], xk+11 = xk
T

1

Introducing the Lagrange multipliers µ0 for x01 = f0, µK for xK−1T 1 = fK and

µk for xk+11 = xk
T

1, one derives the dual problem using again Proposition I.1:

sup
µ0,...,µK∈RN

〈µ0|f0〉 − 〈µK |fK〉 − ε
K−1∑

k=0

∑

i,j

exp

(
−wki,j + µki − µk+1

j

ε

)

Making our usual variable change

Ak = exp(
−wk
ε

) ; γk = exp(
µk

ε
)

the optimality conditions for this unconstrained problem constitute a scaling problem
of the matrices Ak that is finding positive vectors γk such that:

γ0 =
f0

A0 1
γ1

; γK =
AK−1T γK−1

fK
; ∀k ∈ [[1,K − 1]], γk =

√√√√Ak−1T γk−1

Ak 1
γk+1

(3.10)

For simplicity we now suppose that K = 2P is even. We conduct the iterations of
the associated Sinkhorn-like algorithm in the following order:

Algorithm I.3. Given K = 2P positive matrices A0, ..., AK−1 ∈ (R+
∗ )
N×N and two

marginals f0, fK ∈ ΣN , starting from γk
(0) = 1 for all k ∈ [[0,K]], do for n = 0, 1, ...

Step A:

γ
(n+1)
0 =

f0

A0 1

γ
(n)
1

; γ
(n+1)
K =

AK−1T γ
(n)
K−1

fK
;

∀k ∈ [[1, P − 1]], γ
(n+1)
2k =

√√√√√
A2k−1T γ

(n)
2k−1

A2k 1

γ
(n)
2k+1

Step B:

∀k ∈ [[0, P − 1]], γ
(n+1)
2k+1 =

√√√√ A2kT γ
(n+1)
2k

A2k+1 1

γ
(n+1)
2k+2

Again, step A and B appear as Bregman projections on primal transport plans. It
is also still possible to analyze these iterations in terms of Hilbert distance (showing
that maxk dH(γ

(n)
2k+1, γ

∗
2k+1) converges linearly to 0 with rate κ2) as well as in terms

of min-max. However we focus on the asymptotic theorem:
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Theorem I.13. LetA0, ..., AK−1∈ (R+
∗ )
N×N be positive matrices, and let f0, fK∈ΣN .

Let γ(n) = (γ
(n)
k )0≤k≤K be the sequence obtained by algorithm I.3, and denote γ(n)[0]

(respectively γ(n)[1] ) the concatenation of the γ(n)k for k even (respectively odd). Then

(γ(n)) converges to a solution γ∗ = (γ∗[0], γ
∗
[1]) of the scaling problem (3.10) and there

exist s ∈ (R+
∗ )
NP , a sequence of real numbers (un) converging to 1, and λ2 ∈ (0, 1)

such that

∀δ > 0, ∃nδ ∈ N : ∀n ≥ nδ,
∥∥∥γ(n+1)

[1] − un+1γ
∗
[1]

∥∥∥
s
≤ (λ2 + δ)

∥∥∥γ(n)[1] − unγ∗[1]
∥∥∥
s

Proof. The rescaled variables c(n)k =
γ
(n)
k

γ∗
k

– where (γ∗k)k is a solution of the scaling
problem (3.10) (such a solution exists by strict concavity of the dual problem) – satisfy
the same iterations than the initial variables γk, but with the matricesAk being replaced
by the transport plan matrices:

Xk = d(γ∗k)A
k d(

1

γ∗k+1

) ∈ Π(fk, fk+1) for 0 ≤ k ≤ K − 1

Lemma I.5 gives

c
(n+1)
0 ≤ d(

1

f0
)X0c

(n)
1 ; c

(n+1)
K ≤ d(

1

fK
)XK−1T c

(n)
K−1

∀k ∈ [[1, P − 1]], c
(n+1)
2k ≤ 1

2

(
d(

1

f2k
)X2k−1T c

(n)
2k−1 + d(

1

f2k
)X2kc

(n)
2k+1

)

∀k ∈ [[0, P − 1]], c
(n+1)
2k+1 ≤

1

2

(
d(

1

f2k+1
)X2kT c

(n+1)
2k + d(

1

f2k+1
)X2k+1c

(n+1)
2k+2

)

(3.11)

Denote by c
(n)
[0] the concatenation of the c(n)2k for k = 0, ..., P and by c

(n)
[1] the

concatenation of the c(n)2k+1 for k = 0, ..., P − 1. We deduce from the inequalities

(3.11) that c(n+1)
[1] ≤ Mc

(n)
[1] where M ∈ (R+)NP×NP is the block tridiagonal matrix

defined by

M =




M0 N0

L1 M1 N1

. . .
. . .

. . .

LP−2 MP−2 NP−2

LP−1 MP−1



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with

M0 =
1

2
d(

1

f1
)X0T d(

1

f0
)X0 +

1

4
d(

1

f1
)X1 d(

1

f2
)X1T

N0 =
1

4
d(

1

f1
)X1 d(

1

f2
)X2

LP−1 =
1

4
d(

1

fK−1
)XK−2T d(

1

fK−2
)XK−3T ;

MP−1 =
1

4
d(

1

fK−1
)XK−2T d(

1

fK−2
)XK−2 +

1

2
d(

1

fK−1
)XK−1 d(

1

fK
)XK−1T

as well as ∀1 ≤ k ≤ P − 2,

Lk =
1

4
d(

1

f2k+1
)X2kT d(

1

f2k
)X2k−1T ;

Mk =
1

4

(
d(

1

f2k+1
)X2kT d(

1

f2k
)X2k + d(

1

f2k+1
)X2k+1 d(

1

f2k+2
)X2k+1T

)
;

Nk =
1

4
d(

1

f2k+1
)X2k+1 d(

1

f2k+2
)X2k+2

Similarly one also obtains 1

c
(n+1)

[1]

≤ M 1

c
(n)

[1]

. Denote by s the concatenation of the

f2k+1 for k = 0, ..., P − 1 (divided by P to get s ∈ ΣPN ). One checks that d(s)M is
symmetric. Furthermore,M is tridiagonal hence primitive andM is stochastic because
Xk ∈ Π(fk, fk+1).

To conclude, the convergence of γ[1] and the announced rate are obtained using
again theorem I.7. For the convergence of γ[0], note that inequalities (3.11) also easily

lead to c(n+1)
[0] ≤ c(n)[1] 1 and similarly one has 1

c
(n+1)

[0]

≤ 1

c
(n)

[1]

1 hence

c
(n)
[1] 1 ≤ c(n+1)

[0] ≤ c(n)[1] 1

so that the convergence of γ[0] follows from the one of γ[1].

Numerical experiments confirm once again the validity of this rate in practice, see
Figure 3.4 where we use our usual setting for different values of P .
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Figure 3.4 – Error evolution of the Sinkhorn algorithm for multiple barycenters (plain
lines) and predicted λ2 rates (dotted lines) for different values of P

3.2 Graph labelling problem

In this section we consider an assignment problem, close to problem (1.12), that will
lead to a Sinkhorn-like algorithm on a undirected graph. This section relies on an un-
published work of Caillaud, Chambolle, Pock, for which the connection with Message
Passing algorithms has to be investigated further.

3.2.1 General setting

Consider an undirected graph (V, E) – V is a finite set of vertices and E ⊂ P2(V) (the
set of 2-elements subsets of V) a set of edges – and a set of labels L = {1, ..., N}.
We want to assign a label ℓi ∈ L to each vertex i ∈ V while solving the following
minimization problem:

min
(ℓi)∈LV

∑

i∈V
θi(ℓi) +

∑

{i,j}∈E
θi,j(ℓi, ℓj) (3.12)

54



CHAPTER 3. LINEAR CONVERGENCE OF SINKHORN-LIKE ALGORITHMS

where θi : L → R, θi,j : L × L → R are some cost functions such that θi,j(ℓ,m) =
θj,i(m, ℓ) for our notations to make sense. We will denote j ∼ i when {i, j} ∈ E , and
ni = |{j ∈ V, j ∼ i}| will stand for the number of edges at vertex i.

Such energy minimization problems appear widely in Image Processing tasks. In
that context, one takes V = [[1, N1]]× [[1, N2]] the set of pixels of an image, and chooses
for E a set of edges corresponding to a notion of neighbor or linked pixels. Then
through the choice of the functions θ one can express any minimization problem in-
volving a term centered on the pixels (with the θi for i ∈ V) and a term centered on
the links between pixels (with the θi,j for {i, j} ∈ E). In the context of Semantic Seg-
mentation, the label set L can consist in classes of objects that one must identify in the
picture; for Image Restoration, L ⊂ [0, 1] can represent gray levels of the pixels with 0
corresponding to “black” and 1 to “white”. We refer to [AZJ+18] for an overview on
applications.

To illustrate the expressiveness of problem (3.12), we detail one choice of functions
θi, θi,j that encodes a famous image processing model: the ROF image denoising prob-
lem, introduced by Rudin, Osher and Fatemi in [ROF92]. We refer to our introduction
of part II of this manuscript for more details on the ROF model. In this setting, the
label set L = {1, ..., N} corresponds to the possible values of the pixels: for instance
one can choose that pixel i ∈ V is set to label ℓ ∈ L when it has value ℓ

N ∈ [0, 1]. The
ROF model aims at denoising a noisy image f ∈ LV by minimization of a combination
of two terms: a fidelity term to the data which is the pixel-centered term, given by

∀i ∈ V, ∀ℓ ∈ L, θi(ℓ) =
1

2

∣∣∣∣
ℓ

N
− fi

∣∣∣∣
2

and a regularity term known as the total variation which penalizes the differences be-
tween neighbor pixels, given by:

∀{i, j} ∈ E , ∀(ℓ, k) ∈ L2, θi,j(ℓ, k) =
1

λ

∣∣∣∣
ℓ

N
− k

N

∣∣∣∣

In this setting, one can use for E the standard 4-neighborhood configuration, meaning
that each vertex is linked to its four closest neighbors. In addition, the parameter λ > 0
describes the trade-off between fidelity and regularization; when it is set to an appro-
priate value, solving (3.12) allows one to achieve the denoising of the noisy image f ,
see Figure 3.5.

Similarly to the relaxation process for problem (1.12), one can reformulate prob-
lem (3.12) as a linear program with marginal constraints by introducing probability
densities matrices. Indeed, defining new variables (vℓi ) (respectively wℓ,mi,j ) that equals
1 when ℓi = ℓ (respectively (ℓi, ℓj) = (ℓ,m)) and 0 otherwise, one sees that our
problem writes as

min
∑

i,ℓ

θi(ℓ)v
ℓ
i +

∑

{i,j},ℓ,m
θi,j(ℓ,m)wℓ,mi,j (3.13)
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where the minimum runs over variables v ∈ (R+)V×L and w ∈ (R+)E×L×L (with the
convention wℓ,mi,j = wm,ℓj,i ) such that

∀i ∈ V,
∑

ℓ

vℓi = 1 ; ∀{i, j} ∈ E , ∀m ∈ L,
∑

ℓ

wℓ,mi,j = vmj (3.14)

From the solution v∗ of this new minimization problem, we will finally recover the
optimal assignment of our original problem (3.12), by letting ℓi = argmaxℓ v

∗ℓ
i (or

ℓi ∈ argmaxℓ v
∗ℓ
i if there exist several optimal assignments).

Once again, we deal with an entropic regularization of this linear problem. We in-
troduce two regularizing terms that may be of different amplitudes, one for the variable
w and one for the variable v, hence we write for two parameters ε, β > 0:

min
(v,w)

s.t. (3.14)

∑

i,ℓ

θi(ℓ)v
ℓ
i + βεvℓi log v

ℓ
i +

∑

{i,j},ℓ,m
θi,j(ℓ,m)wℓ,mi,j + εwℓ,mi,j logwℓ,mi,j

(3.15)

We introduce the Lagrange multiplier λmi,j for the constraint
∑
ℓ w

ℓ,m
i,j = vmj . Un-

like the previous dualization processes, we replace the use of Proposition I.1 to keep
our computations on the spaces of variables v and w such that

∑
ℓ v

ℓ
i = 1 for all i ∈ V

and
∑
ℓ,m w

ℓ,m
i,j = 1 for all {i, j} ∈ E . Formally, we use the following well-known

fact:

Proposition I.5. For any a ∈ R
d and η > 0 one has:

min
x≥0 s.t. 〈x|1〉=1

〈a|x〉+ η〈x| log x〉 = −η log
∑

k

exp(−ak
η
)

Proof. Adding the Lagrange multiplier ν for the constraint 〈x|1〉 = 1, one finds that
the value of this problem equals

sup
ν∈R

ν − η exp(ν
η
)e−1

∑

k

exp(−ak
η
)

via x = exp(−1+ ν−a
η ). Then the optimal value of ν is ν = η− η log∑k exp(−akη );

this leads to the announced result which corresponds to x =
exp(− a

η )

〈exp(− a
η )|1〉 .

Doing so, we are led to the following dual problem of (3.15):

−ε min
λ∈RE×L

β
∑

i

log
∑

ℓ

exp

(
−
θi(ℓ) +

∑
j:j∼i λ

ℓ
j,i

εβ

)

+
∑

{i,j}
log
∑

ℓ,m

exp

(
λmi,j + λℓj,i − θi,j(ℓ,m)

ε

)
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Note that this dual energy has the same value when one replaces any λℓj,i by λℓj,i +
cj,i1 for some cj,i ∈ R. This will be reflected in the optimality conditions that we will
express in our usual exponential variables

yi = exp(−θi
ε
) ; αi,j = exp(

λi,j
ε

) ; Xi,j = exp(−θi,j
ε

)

Note for future reasoning that as θi,j(ℓ,m) = θj,i(m, ℓ), the matrices Xi,j are such
that: XT

i,j = Xj,i. When differentiating the dual objective with respect to λℓj,i, one
computes that αℓj,i is optimal if and only if

(
yi∏

j′:i∼j′ αj′,i

) 1
β

〈(
yi∏

j′:i∼j′ αj′,i

) 1
β

|1
〉 =

αj,i (Xi,jαi,j)

〈αj,i (Xi,jαi,j) |1〉

which in other words states that αj,i (Xi,jαi,j) and Z
1
β

i where Zi = yi
∏
j′:j′∼i α

−1
j′,i

are multiple vectors. As any scalar normalization of the αj,i remains an optimum, we

chose to seek for α such that Z
1
β

i = αj,i (Xi,jαi,j). Taking the product over j ∼ i

leads to Z
ni
β

i = yi
Zi

∏
j:j∼i (Xi,jαi,j) where we recall that ni = |{j ∈ V , j ∼ i}| is

the number of edges at vertex i. This allows one to express Zi in terms of the αi,j for
j ∼ i and we obtain finally the following optimality conditions that constitute a scaling
problem for the matrices Xi,j :

∀{i, j} ∈ E , αj,iXi,jαi,j =


yi

∏

j′:i∼j′
Xi,j′αi,j′




1
ni+β

(3.16)

This calculation being done, let us stop briefly for some remarks. First, the entropic
regularization we introduced in (3.15) is known as the Bethe (free) energy in commu-
nities of Conditional (or Markov) Random Fields. We refer the reader to the second
chapter of the book [WJ08], where Wainwright and Jordan explain in several ways how
the minimization problem (3.13) arises in these settings, see also [Hes06, YFW05].
Second, and quite surprisingly at first sight, this energy can actually be considered not
only for β > 0 but for β > −ni for all i ∈ V , while remaining strictly convex. Indeed,
this derives from writing the entropy terms under the following form thanks to (3.14):

βvℓi log v
ℓ
i +

∑

j∼i,m
wℓ,mi,j logwℓ,mi,j =

∑

j∼i,m
wℓ,mi,j log

wℓ,mi,j
vℓi

+ (β + ni)v
ℓ
i log v

ℓ
i

and noticing that the function (x, y) 7→ x log x
y is strictly convex in the domain 0 <

x < y. One can find more conditions for convexity of the general Bethe energy on
graphs in [PA02, MJGF09]. Second, although our previous calculations required β > 0
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to be rigorous, our final optimality conditions (3.16) still make sense for β > −ni.
Moreover, one can check that they express the cancellation of the derivatives of the La-
grangian associated to (3.15), so that solving these equations still lead to the solution of
(3.15) for admissible values of β ≤ 0. Finally, different algorithms can be proposed to
find the αi,j factors satisfying (3.16). In the context of Belief Propagation or Message
Passing introduced in [Pea88], the current values of αi,j are seen as pieces of informa-
tion that can be transmitted from a vertex to its neighbors by updating αj,i thanks to
αi,j′ for j′ ∼ i. The corresponding update rule

αj,i =
1

Xi,jαi,j


yi

∏

j′:i∼j′
Xi,j′αi,j′




1
ni+β

(3.17)

leads to so-called Sum-Product algorithms (the “sum” standing for the matrix-vector
product Xi,j′αi,j′ ), and the underlying question is now to decide how to organize the
traversal of the graph (V, E), that is, in which order iterations (3.17) should be run,
to reach a fixed point solving (3.16). In this view, some standard schemes resemble
dynamic programming procedures relying on the progression of “solved” parts of the
graph for which values do not change after some time. On the contrary, the update
rules we propose below, inspired by Sinkhorn-like algorithms and alternate Bregman
projection, impacts half the vertices of the graph at every step. It is close to the method
proposed by Kushinsky and co-authors in [KMDL19].

We want to perform alternate iterations solving (3.16) that correspond to alternate
Bregman projections on two groups of constraints of the perturbed linear program
(3.15). To do so we make the further assumption that our graph (V, E) is bipartite,
meaning that its vertices can be split into two sets, V = V1 ⊔ V2 such that for every
edge {i, j} ∈ E , either (i, j) ∈ V1 × V2 or (i, j) ∈ V2 × V1. This allows to alternately
solve equations (3.16) by deducing the variables (αj,i)j∼i for i ∈ Vp from the variables
(αj′,i′)j′∼i′ for i′ ∈ V\Vp. This procedure constitutes the following Sinkhorn-like al-
gorithm:

Algorithm I.4. Given a bipartite undirected graph (V = V1⊔V2, E), positive matrices
Xi,j ∈ (R+

∗ )
N×N for {i, j} ∈ E , yi ∈ (R+

∗ )
N and β > −mini∈V ni, where ni

denotes the number of edges at vertex i ∈ V , starting from vectors α(0)
i,j = 1 for all

{i, j} ∈ E , do for n = 0, 1, ...

Step A:

∀i ∈ V1, ∀j ∼ i, α(n+1)
j,i =

(
yi
∏
j′:i∼j′ Xi,j′α

(n)
i,j′

) 1
ni+β

Xi,jα
(n)
i,j

Step B:

∀i ∈ V2, ∀j ∼ i, α(n+1)
j,i =

(
yi
∏
j′:i∼j′ Xi,j′α

(n+1)
i,j′

) 1
ni+β

Xi,jα
(n+1)
i,j
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Algorithm I.5. Starting from α
(0)
i,j = 1 for all {i, j} ∈ E , do for n = 0, 1, ...

Step A: for i ∈ V even,





α
(n+1)
i+1,i = y

1
2+β

i

(Xi,i−1α
(n)
i,i−1)

1
2+β

(Xi,i+1α
(n)
i,i+1)

1+β
2+β

α
(n+1)
i−1,i = y

1
2+β

i

(Xi,i+1α
(n)
i,i+1)

1
2+β

(Xi,i−1α
(n)
i,i−1)

1+β
2+β

Step B: for i ∈ V odd,





α
(n+1)
i+1,i = y

1
2+β

i

(Xi,i−1α
(n+1)
i,i−1 )

1
2+β

(Xi,i+1α
(n+1)
i,i+1 )

1+β
2+β

α
(n+1)
i−1,i = y

1
2+β

i

(Xi,i+1α
(n+1)
i,i+1 )

1
2+β

(Xi,i−1α
(n+1)
i,i−1 )

1+β
2+β

Remark I.6. In the case of the straight line, iterations for “inside” variables remain
the same while on the “boundary” we get the following modifications. First note that
there is no variable α0,1, α1,0 (or αK,1, α1,K); second the iterates for i = P in step A
and B are replaced by

α
(n+1)
K−1,K = y

1
1+β

K

(
1

XK,K−1α
(n)
K,K−1

) β
1+β

; α
(n+1)
2,1 = y

1
1+β

1

(
1

X1,2α
(n+1)
1,2

) β
1+β

We now turn to the convergence analysis of these iterations in the Hilbert metric,
and prove the following:

Theorem I.14. For β > −1, the Sinkhorn-like iterates α(n)
i,j defined in algorithm I.5

converge in (R+
∗ )
N/ ∼ to the fixed point α∗

i,j with the estimate

∀n ≥ 0,





d
(n+1)
[1] ≤ κ2d(n)[1]

d
(n+1)
[0] ≤ κ2d(n)[0]

(3.18)

where for τ ∈ {0, 1}, d(n)[τ ] = maxj,i dH(α
(n)
j,2i+τ , α

∗
j,2i+τ ) denotes the largest error

on even vertices for τ = 0 and odd vertices for τ = 1 after n iterations, and where
κ = maxi,j κ(Xi,j) < 1 is the worst contraction rate of the positive matrices Xi,j .
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Proof. Using properties of the Hilbert distance I.1, we get from step A for i ∈ V even:

dH(α
(n+1)
i+1,i , α

∗
i+1,i) = dH


y

1
2+β

i

(Xi,i−1α
(n)
i,i−1)

1
2+β

(Xi,i+1α
(n)
i,i+1)

1+β
2+β

, y
1

2+β

i

(Xi,i−1α
∗
i,i−1)

1
2+β

(Xi,i+1α∗
i,i+1)

1+β
2+β




= dH


 (Xi,i−1α

(n)
i,i−1)

1
2+β

(Xi,i+1α
(n)
i,i+1)

1+β
2+β

,
(Xi,i−1α

∗
i,i−1)

1
2+β

(Xi,i+1α∗
i,i+1)

1+β
2+β




≤ 1

2 + β
dH(Xi,i−1α

(n)
i,i−1, Xi,i−1α

∗
i,i−1)

+
1 + β

2 + β
dH(Xi,i+1α

(n)
i,i+1, Xi,i+1α

∗
i,i+1)

≤ 1

2 + β
κ(Xi,i−1)dH(α

(n)
i,i−1, α

∗
i,i−1)

+
1 + β

2 + β
κ(Xi,i+1)dH(α

(n)
i,i+1, α

∗
i,i+1)

≤ κd(n)[1]

We also get similarly dH(α
(n+1)
i−1,i , α

∗
i−1,i) ≤ κd

(n)
[1] so that d(n+1)

[0] ≤ κd
(n)
[1] and

iterations of step B lead to d(n+1)
[1] ≤ κd(n+1)

[0] which gives the desired rate.

Remark I.7. In the straight line case, one has to impose β > − 1
2 to get

dH(α
(n+1)
2,1 , α∗

2,1) ≤
|β|

1 + β
κ(X1,2)dH(α

(n+1)
1,2 , α∗

1,2) ≤ κd(n+1)
[0]

dH(α
(n+1)
K−1,K , α

∗
K−1,K) ≤ |β|

1 + β
κ(XK,K−1)dH(α

(n)
K,K−1, α

∗
K,K−1) ≤ κd(n)[1]

and finally, the same rate holds. Note that this estimate indeed vanishes for β = 0 as
α2,1 and αK−1,K are then prescribed to be multiples of y1 and yK .

Second, for our “λ2” analysis we now suppose β = 0. As a consequence, our
iterates in algorithm I.5 satisfy at every step αi−1,iαi+1,i = yi and denoting γi =
αi−1,i it reduces to

Step A : for i ∈ V even, γ(n+1)
i =

√√√√√√
yi
Xi,i+1γ

(n)
i+1

Xi,i−1
yi−1

γ
(n)
i−1

Step B : for i ∈ V odd, γ(n+1)
i =

√√√√√√
yi
Xi,i+1γ

(n+1)
i+1

Xi,i−1
yi−1

γ
(n+1)
i−1

(3.19)
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Remark I.8. In the case of the straight line with β = 0, iterations on α2,1 and αK−1,K

state that these variables are respectively constant to y1 and yK so that we do not
compute them in practice. However it is appropriate to keep them for our convergence
analysis, and we also introduce γ1 = y1

α2,1
, γK = αK,K−1. Doing so, the iterations

(3.19) in the case of the line remain the same on the variables γi = αi−1,i for all
i ∈ {2, ...,K − 1}, while we just keep at every step γ1 = γK = 1.

We can now proceed to our usual analysis of such iterations, and get the following
theorem:

Theorem I.15. Let Xi,j ∈ (R+
∗ )
N×N for i ∈ V = [[1,K]] and j ∈ {i − 1, i + 1}

be positive matrices such that XT
i,j = Xj,i, and let y1, ..., yK ∈ (R+

∗ )
N . Let γ(n) =

(γ
(n)
i )1≤i≤K be obtained by iterations (3.19), and denote γ(n)[0] (respectively γ(n)[1] ) the

concatenation of the γ(n)i for i even (respectively odd). Then (γ(n)) converges to a
fixed point γ∗ = (γ∗[0], γ

∗
[1]) and there exist s ∈ (R+

∗ )
NK , sequences of real numbers

(un), (vn) converging to 1, and λ2 ∈ (0, 1) such that ∀δ > 0, ∃nδ ∈ N such that:

∀n ≥ nδ,
∥∥∥∥∥

(
γ
(n+1)
[0]

γ
(n+1)
[1]

)
−
(
un+1γ

∗
[0]

vn+1γ
∗
[1]

)∥∥∥∥∥
s

≤ (λ2 + δ)

∥∥∥∥∥

(
γ
(n)
[0]

γ
(n)
[1]

)
−
(
unγ

∗
[0]

vnγ
∗
[1]

)∥∥∥∥∥
s

Proof. Denote by γ∗ a fixed point of iterations (3.19) and define:

Yi,i+1 = d(
yi
γ∗i

)Xi,i+1 d(γ
∗
i+1) ; Yi,i−1 = d(γ∗i )Xi,i−1 d(

yi−1

γ∗i−1

)

as well as the matricesW (which constitute in fact the solution of the original labelling

problem (3.15)) given by Wi,j = d(
1

Yi,j1
)Yi,j for all i ∈ V, j ∈ {i− 1, i+ 1}. Since

Yi,i−11 = Yi,i+11 =

√
yi
(
Xi,i+1γ∗i+1

) (
Xi,i−1

yi−1

γ∗
i−1

)
, one checks that the rescaled

variables c(n)i =
γ
(n)
i

γ∗i
satisfy in fine:

Step A : for i ∈ V even, c(n+1)
i =

√√√√Wi,i+1c
(n)
i+1

Wi,i−1
1

c
(n)
i−1

Step B : for i ∈ V odd, c(n+1)
i =

√√√√Wi,i+1c
(n+1)
i+1

Wi,i−1
1

c
(n+1)
i−1
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with matrices W being stochastic. Consequently, Lemma I.5 yields for i even:

c
(n+1)
i ≤

√(
Wi,i+1c

(n)
i+1

)(
Wi,i−1c

(n)
i−1

)
≤ 1

2

(
Wi,i+1c

(n)
i+1 +Wi,i−1c

(n)
i−1

)

1

c
(n+1)
i

≤

√√√√
(
Wi,i−1

1

c
(n)
i−1

)(
Wi,i+1

1

c
(n)
i−1

)
≤ 1

2

(
Wi,i+1

1

c
(n)
i+1

+Wi,i−1
1

c
(n)
i−1

)

and similarly for i odd with (n+ 1) instead of (n).

Combining these inequalities, one gets for i even:

c
(n+1)
i ≤ 1

4
(Wi,i−1Wi−1,i−2)c

(n)
i−2+

1

4
(Wi,i+1Wi+1,i +Wi,i−1Wi−1,i)c

(n)
i +

1

4
(Wi,i+1Wi+1,i+2)c

(n)
i+2

which can be wrapped into c(n+1)
[0] ≤Mc

(n)
[0] with c[0] being the concatenation of the ci

for even i, and M being the block matrix defined by:

M =
1

4




M1,1 M1,2 . . . M1,P

M2,1 M2,2 M2,3 . . .

...
. . .

...

MP,1 . . . MP,P−1 MP,P




where the square submatrices Mi,j are defined by

Mi,i =W2i,2i+1W2i+1,2i +W2i,2i−1W2i−1,2i

Mi,i+1 =W2i,2i+1W2i+1,2i+2 ; Mi,i−1 =W2i,2i−1W2i−1,2i−2

and all other entries of M are zeros. One similarly gets 1

c
(n+1)

[0]

≤M 1

c
(n)

[0]

.

At this point, note that since the W matrices are stochastic so is M . In addition,
the zero pattern of M is smaller than the one of a tridiagonal matrix, but such a matrix
is primitive according to point 1 of Proposition I.3: finally, M is primitive. In the
objective of applying the main theorem I.7, we just need to find some positive vector
s ∈ ΣPN such that d(s)M is symmetric. To do so, just remember that by assumption
we have θi,j(ℓ,m) = θj,i(m, ℓ) so that XT

i,j = Xj,i and Y Ti,j = Yj,i, then defining the
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vectors si = Y2i,2i+11 = Y2i,2i−11 we get:

d(si)Mi,i = Y2i,2i+11W2i,2i+1W2i+1,2i + Y2i,2i−11W2i,2i−1W2i−1,2i

= Y2i,2i+1
1

Y2i+1,2i1
Y2i+1,2i + Y2i,2i−1

1

Y2i−1,2i1
Y2i−1,2i

= Y T2i,2i+1

1

Y2i+1,2i1
Y2i,2i+1 + Y T2i,2i−1

1

Y2i−1,2i1
Y2i,2i−1

and one can consequently take for s the concatenation of the si (divided by the appro-
priate constant to ensure s ∈ ΣPN ). The same analysis holds for c[1] with a similar
matrix M ′. To conclude just take λ2 to be the smallest subdominant eigenvalue of M
and M ′.

Remark I.9. The same estimates remain valid in the case of the straight line as the
inside iterations are unchanged and one can write, for instance for the variable γ2:

c
(n+1)
2 ≤ 1

4
W2,3W3,4c

(n)
4 +

1

4
W2,3W3,2c

(n)
2 +

1

2
W2,1c

(n)
0

for a fictional variable c(n)0 = 1. No modification is needed however for cK−2 when

we use the fictional variable c(n)K = 1.Finally, we obtain that c(n+1)
[0] ≤ Mc

(n)
[0] where

M is the matrix given by

M =
1

4




4I 0 . . . . . . . . . . . . 0

2W2,1 W2,3W3,2 W2,3W3,4 0 . . . . . . 0

0 M2,1 M2,2 M2,3 0 . . . 0

...
...

...
...

...
...

...

0 . . . . . . 0 MP−1,P−2 MP−1,P−1 MP−1,P

0 . . . . . . . . . . . . 0 4I




where we use the matrices Mi,j defined above, and one obtains similar results.

Remark I.10. The hypothesis we made that the graph (V, E) is bipartite only aims at
giving a natural way of conducting the iterations (3.17), and hence the corresponding
inequalities of our proofs. This setting also provides great similarity with our previous
Sinkhorn-like algorithms that always lead iterations on two separate groups of vari-
ables. However, it seems that the key argument of the proofs we give in the case of the
circle and the line graphs is more the fact that each iteration involves at most 2 other
variables than the fact that we ultimately only have 2 steps (A andB) in our procedure.
As such, the bipartite hypothesis could be released, but not the arity restriction, so that
this would not lead to more complex graphs.
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3.3 Final remarks

3.3.1 Limits of the analysis: 1D balanced Sinkhorn-like algorithms

While we stated our last Sinkhorn-like algorithm I.4 on a general bipartite graph (V, E),
we only presented its convergence analysis in a 1D setting. This is because the analysis
supported by the general Theorem I.7 does not seem to extend directly to a general
setting. To apprehend why, first consider the analysis in Hilbert distance we presented
in Theorem I.14. The analogous estimate for algorithm I.4 writes

dH(α
(n+1)
j,i , α∗

j,i) ≤
∑

j′∼i,j′ 6=j

1

ni + β
κ(Xi,j′)dH(α

(n)
i,j′ , α

∗
i,j′)

+ (1− 1

ni + β
)κ(Xi,j)dH(α

(n)
i,j , α

∗
i,j)

≤ (ni − 1)
1

ni + β
κd

(n)
[j] + (1− 1

ni + β
)κd

(n)
[j]

=
2ni − 2 + β

ni + β
κd

(n)
[j]

To prove convergence with the same argument one would then need 2ni−2+β
ni+β

≤ 1
which only occurs for ni ≤ 2. This is why we requested our graph to have maximal
arity 2. The appearance of all the (ni − 1) terms in the above calculation is similar to
the obstruction we obtain when trying to write an estimate of the type a(n+1) ≤Ma(n)

with a stochastic matrix M on the rescaled variables a = α
α∗ .

The same phenomenon prevents us from generalizing the analysis of the Sinkhorn-
like algorithm for the barycenter we led in section 3.1.1. The Fréchet mean definition
of the barycenter of two measures can of course be generalized to an arbitrary num-
ber of measures f1, ..., fK for K > 2, see [AC11, BCC+15]. Given a family of
weights θk ∈ (0, 1) such that

∑K
k=1 θk = 1, one defines the corresponding Wasser-

stein barycenter f ∈ ΣN as the minimizer of
∑K
k=1 θkWw(f

k, f). One can also study
this procedure for different cost matrices wk. Adding entropic regularizations, that is
replacing Wwk by W ε

wk , and dualizing the constraints leads to the dual problem:

max
λ,µ∈(RN)

K

s.t.
∑K

k=1 µ
k=0

∑

k

〈λk|fk〉 − ε
∑

k

θk
∑

i,j

exp

(
−θkwki,j + µkj + λki

εθk

)

When making the following change of variables

Ak = exp(−w
k

ε
) ; αk = exp(

λk

ε
) ; βk = exp(

µk

ε
)

optimality conditions write as the scaling problem:

∀k ∈ [[1,K]], αk =
fk

Akβk
; βk =

∏K
ℓ=1

(
Aℓ Tαℓ

)θℓ

Ak Tαk
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This gives rise to the following Sinkhorn-like barycenter algorithm, that generalizes
algorithm I.2:

Algorithm I.6. Given positive matricesA1, ..., AK ∈ (R+
∗ )
N×N , marginals f1, ..., fK

∈ ΣN and weights θ1, ..., θK ∈ (0, 1) such that
∑
k θk = 1, starting from αk (0) =

βk (0) = 1 for all k ∈ [[1, N ]], do for n = 0, 1...

∀k ∈ [[1,K]], αk (n+1) =
fk

Akβk (n)
; βk (n+1) =

∏K
ℓ=1

(
Aℓ Tαℓ (n+1)

)θℓ

Ak Tαk (n+1)
(3.20)

As noted by [BCC+15], one can also interpret these iterates as Bregman projec-
tions on the primal variables xk ∈ Π(fk, f) that form the transport plans between the
marginals and the barycenter. Iterates on αk correspond to a projection onto the con-
straints xk1 = fk while iterates on βk correspond to xk T 1 = xℓ T 1 for all k, ℓ. These
transport plans will finally be obtained, after convergence of this procedure towards
positive vectors αk ∗, βk ∗, through Xk = d(αk ∗)Ak d(βk ∗) ∈ Π(fk, f) where

f =
∏K
ℓ=1

(
Aℓ Tα∗ (n+1)

)θℓ is the desired barycenter. To pursue with an analysis
close to what we did for the case K = 2, one notices that at every step of algorithm
I.6,

∏
k(β

k)θk = 1 so that one can get rid of the variable βK . Doing so, we still have
K − 1 variables βk in the second step of the iterations written as a product over the K
variables αk. If K ≥ 3, it appears that we are not able to introduce a new variable γ to
simplify these products as we did for algorithms I.2, I.3, I.4.

Finally, these two examples show us that our analysis is restricted to the case of
Sinkhorn-like algorithms in which all the iterations involve at most two other vari-
ables. We name these types of Sinkhorn variants the 1D Sinkhorn-like algorithms.

Actually, this “1D” setting is not enough to guarantee the success of our analy-
sis. For instance it does not work either on the natural over-relaxation of the classical
Sinkhorn algorithm proposed by Thibault and co-authors in [TCDP17]2:

Algorithm I.7. Given a positive matrix A ∈ (R+
∗ )
N×N , marginals f, g ∈ ΣN and a

parameter ω ∈ (1, 2), starting from α(0) = β(0) = 1, do for n = 0, 1, ...

α(n+1) =
(α̂(n))ω

(α(n))ω−1
where α̂(n) =

f

Aβ(n)

β(n+1) =
(β̂(n+1))ω

(β(n))ω−1
where β̂(n+1) =

g

ATα(n+1)

(3.21)

If we first try to analyze these iterations in Hilbert distance, we get stuck by the
appearing exponents and can only write:

dH(α(n+1), α∗) ≤ ωκdH(β(n), β∗) + (ω − 1)dH(α(n), α∗)

and similar expression for β(n+1), which ultimately does not lead to a contraction rate.
This is because the Hilbert distance does not take into account the simplification of

2In this article, the authors prove convergence of a slightly altered version of this scheme and show it
indeed improves the local convergence rate of the Sinkhorn algorithm.
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the exponents, introducing their absolute value in point 3 of Proposition-Definition I.1.
The same reason imposed bounds on the parameter β in our Hilbert analysis on 1D
graphs (β > −1 for the circle, and β > − 1

2 for the line) in Theorem I.14.

We also note that our analysis of the Sinkhorn-like algorithm for the barycenter
section 3.1.1 deeply relies on the use of the convex inequality xθy1−θ ≤ θx+(1− θ)y
for x, y > 0 and θ ∈ (0, 1). Consequently, the exponents ω and ω − 1 with ω ∈ (1, 2)
appearing in algorithm I.7 do not seem to be suited for a similar analysis because the
sum of their absolute values is not 1.

Finally, our method applies to 1D balanced Sinkhorn-like algorithms, meaning that
each iteration involves at most two other variables and that the absolute values of the
appearing exponents sum to 1.

3.3.2 Degenerate direction of Sinkhorn algorithm

However, numerical experiments confirm that the two algorithms I.6, I.7 do converge
linearly and that their convergence rate is also given by the subdominant eigenvalue of
a matrix with rows summing to 1. This matrix is the Jacobian matrix of the iterated
function at the fixed point. To understand what is at stake here, let us first go back to
the classical Sinkhorn algorithm. Focus on the variable b of the Sinkhorn iterates (2.1):

a(n+1) =
f

Xb(n)
; b(n+1) =

g

XTa(n+1)

where X = d(α∗)A d(β∗). One can write this iteration rule as b(n+1) = φ(b(n)) for
the function φ : (R+

∗ )
N → (R+

∗ )
N defined by

φ(b) =
g

XT
f

Xb

In that view, (b(n)) is the sequence obtained by iterating φ from b(0) = 1
β∗ where β∗ is

the limit value of the Sinkhorn algorithm. We showed in the previous sections that this
sequence converges to b∗ = 1 which is a fixed point of φ. It is then natural to look at
Jφ(1), the Jacobian matrix of φ at 1. An easy computation shows that

Jφ(1) = d(
1

g
)XT d(

1

f
)X =Mb

is the stochastic matrix involved in our analysis3. Unfortunately, the spectral radius of
this Jacobian matrix is 1 as it posses the eigenvector 1. This prevents us from using
directly the following classical linear convergence result:

3One can also lead this computation directly on the variable β, that is on the sequence given by
β(n+1) = ψ(β(n)) where ψ is the function φ with X being replaced by A. At the fixed point β∗ one
finds Jψ(β∗) = d(β∗)Mb d(β

∗)−1 so that the spectrum analysis remains the same.
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Theorem I.16. Let E be a real finite dimensional vector space and let φ : E → E be
a C1 function admitting x∗ ∈ E as a fixed point: φ(x∗) = x∗. Suppose that Dφ(x∗)
is diagonalizable and that its spectral radius is less than 1: ρ(Dφ(x∗)) = ρ < 1, then
there exists a norm ||.|| on E and R > 0 such that: if x0 ∈ E satisfies ||x0 − x∗|| ≤ R
then the sequence (xn) given by xn+1 = φ(xn) converges to x∗ with the following
estimate: ∀δ > 0, ∃nδ ∈ N such that

∀n ≥ nδ, ||xn+1 − x∗|| ≤ (ρ+ δ)||xn − x∗||

Proof. Write that

xn+1 − x∗ = φ(xn)− φ(x∗) =
∫ 1

0

Dφ(x∗ + t(xn − x∗))(xn − x∗) dt (3.22)

As Dφ(x∗) is diagonalizable, defining for instance ||.|| to be the infinite norm in a
diagonalization basis of Dφ(x∗) we have:

∀h ∈ E, ||Dφ(x∗)h|| ≤ ρ||h||

Then, as φ is C1, for any ρ′ ∈ (ρ, 1) one can find R > 0 such that

||x− x∗|| ≤ R⇒
(
∀h ∈ E, ||Dφ(x)h|| ≤ ρ′||h||

)

Using this bound in (3.22) shows that if ||x0 − x∗|| ≤ R then one has for all n,
||xn − x∗|| ≤ Rρ′n. Hence (xn) converges to x∗, and the convergence rate follows
using the same argument.

Remark I.11. The hypothesis that Dφ(x∗) is diagonalizable is mandatory to recover

exactly the spectral radius through the operator norm suph 6=0
||Dφ(x∗)h||

||h|| . However as

this spectral radius equals the supremum of all the operator norms ofDφ(x∗), one can
get a similar, but norm-dependant, result if Dφ(x∗) is no longer diagonalizable: the
sequence (xn) converges to x∗ and for all δ > 0, there exist a norm ||.||δ and nδ ∈ N

such that
∀n ≥ nδ, ||xn+1 − x∗||δ ≤ (ρ+ δ)||xn − x∗||δ

In our setting, the differential of φ represented by its Jacobian matrix Mb has 1 as
a degenerate direction. This is related to the non-uniqueness of the scaling diagonal ma-
tricesD1, D2 such thatX=D1AD2, which can be replaced byD′1= rD1, D′2 = 1

rD
2

for any r > 0. Going back to the logarithmic variables λ = ε logα and µ = ε log β
that appeared in the Optimal Transportation formulation of the scaling problem section
1.2, remember that the Sinkhorn algorithm corresponds to the iterates (1.9):

λ
(n+1)
i = ε log(fi)− ε log




N∑

j=1

exp

(
µ
(n)
j − wi,j

ε

)


µ
(n+1)
j = ε log(gj)− ε log

(
N∑

i=1

exp

(
λ
(n+1)
i − wi,j

ε

)) (3.23)
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This procedure actually achieves the alternate maximizations on the dual objective of
the perturbed Optimal Transportation problem

max
λ,µ∈RN

〈λ|f〉+ 〈µ|g〉 − ε
∑

i,j

exp

(−wi,j + λi + µj
ε

)
=: F (λ, µ)

As noticed by Bezdek and co-authors in a general setting in [BHH+87], when search-
ing for the maximum (λ∗, µ∗) of F through alternate maximizations, one iterates the
functions S ◦ T and T ◦ S where

T (λ) = argmax
µ∈RN

F (λ, µ) ; S(µ) = argmax
λ∈RN

F (λ, µ)

and the spectral radius of D(S ◦ T )(λ∗) and D(T ◦ S)(µ∗) (which is the same) is less
than 1 if and only if the Hessian matrix of F at (λ∗, µ∗) is negative definite. In our
case, we stress again that we are not in this situation because the maximum (λ∗, µ∗) of
F is not unique as F (λ∗ + r1, µ∗ − r1) = F (λ∗, µ∗) for any r ∈ R. However, this
setting with variables λ and µ emphasizes the linear structure of this obstruction, and
calls for an interpretation in terms of quotient variables. We develop this point of view
below.

The Sinkhorn algorithm can be written as (λ(n+1), µ(n+1)) = ϕ(λ(n), µ(n)) where
ϕ : R2N → R

2N is given by

ϕ(λ, µ) =



ε log

f

A
(
exp

(µ
ε

)) , ε log g

AT
f

A
(
exp

(µ
ε

))




At a fixed point (λ∗, µ∗) ∈ R
2N of ϕ, one computes the following Jacobian matrix:

Jϕ(λ∗, µ∗) =

(
0 − d( 1f )X

0 d( 1g )X
T d( 1f )X

)

where X = D1AD2 ∈ Π(f, g). Then one checks that the function ϕ satisfies:

∀(λ, µ) ∈ R
2N , ∀r ∈ R, ϕ(λ+ r1, µ− r1) = ϕ(λ, µ) + r(1,−1)

which shows that it can be considered on the quotient space E = R
2N/R(1,−1). We

denote the elements of this space by (λ, µ) = (λ, µ)+R(1,−1), and define the function
φ : E → E given by φ((λ, µ)) = ϕ(λ, µ). The space E comes with the Euclidean
structure inherited from R

2N that correspond to the distance on the orthogonal space
of R(1,−1) and given by

||(λ, µ)||E = min
r∈R

||(λ+ r1, µ− r1)||2

where ||.||2 denotes the Euclidean norm on R
2N . Now the differential of φ is of course

obtained from the one of ϕ thanks to the following proposition:
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Proposition I.6. Let ϕ : Rd → R
d and let z ∈ R

d such that ∀x ∈ R
d, ∀r ∈ R,

ϕ(x+ rz) ∈ ϕ(x) + Rz; consider φ : E → E given by φ(x) = ϕ(x) on the quotient
space E = R

d/Rz. Suppose ϕ is differentiable at x ∈ R
d then φ is differentiable at

x ∈ E and Dφ(x) is given by: ∀h ∈ E, Dφ(x)(h) = Dϕ(x)(h).

Proof. First, the fact that ϕ(x + z) = ϕ(x) + rz for some r ∈ R implies that
Dϕ(x)(z) = rz so that the proposed differential is correctly defined. Second, de-
fine ε : Rd → R

d given by ε(h) = ϕ(x+ h)−ϕ(x)−Dϕ(x)(h). For δ > 0 fixed, by
definition of the differential of ϕ there exists η > 0 such that :

∀h ∈ R
d, ||h||2 ≤ η ⇒ ||ε(h)||2 ≤ δ ||h||2

Then if h ∈ E is such that ||h||E ≤ η, write that ||h||E = ||h − sz||2 for some
s ∈ R to get that ||ε(h − sz)||2 ≤ δ||h||E . Now notice that ε(h− sz) = ε(h) so that
||ε(h)||E ≤ ||ε(h− sz)||2. Finally we showed that ε(h) = o(h) in E which gives our
result.

As a consequence, the differential of φ at its unique fixed point (λ∗, µ∗) is given by
the action of Jϕ(λ∗, µ∗) on the space E = R

2N/R(1,−1). At this point, we see that
the quotienting achieves exactly the desired operation on the spectrum, and that we get

Sp(Dφ((λ∗, µ∗))) = Sp(Jφ(λ∗, µ∗))\{1} (3.24)

Indeed, the matrix Jϕ(λ∗, µ∗) admits precisely 2N linear independent eigenvectors
which are: the (e(k), 0) for k = 1, ..., N where e(k) is kth basis vector of RN , asso-
ciated to the eigenvalue 0; and (− d( 1f )Xv

(k), v(k)) for k = 1, ..., N where v(k) are

the eigenvectors of the stochastic matrix Mb = d( 1g )X
T d( 1f )X . Among these lasts

vectors is (−1, 1), associated to the eigenvalue 1 and that reduces to 0 in the quotient.
All the other eigenvectors being associated to the other eigenvalues of Mb, which are
smaller than 1 in magnitude, we finally get that the spectral radius of Dφ((λ∗, µ∗)) is
less than 1. Searching for these eigenvalues, we also proved that Dφ((λ∗, µ∗)) is diag-
onalizable, so that one can use Theorem I.16 and get the following convergence result,
expressed in the quotient space and under a condition on the initial value (λ(0), µ(0)):

Theorem I.17. If minr∈R ||(λ(0) − λ∗ + r1, µ(0) − µ∗ − r1||2 is small enough, then
the iterates (λ(n), µ(n)) of the Sinkhorn algorithm defined by (3.23) converge in the
quotient space E = R

2N/R(1,−1) towards (λ∗, µ∗). In addition, there exists a norm
||.|| on E such that ∀δ > 0, ∃nδ ∈ N such that ∀n ≥ nδ:

||(λ(n+1), µ(n+1))− (λ∗, µ∗)|| ≤ (λ2 + δ)||(λ(n), µ(n))− (λ∗, µ∗)||

where λ2 = max{|λ|, λ ∈ Sp(Mb) s.t. |λ| < 1}.

Remark I.12. It is also possible to obtain a result on “true” variables rather than
on the quotient space using a natural representation of E such as (R(1,−1))⊥ =
{(λ, µ) ∈ R

2N s.t.
∑
i λi =

∑
j µj}. However in that setting, the iterated function

φ : (R(1,−1))⊥ → (R(1,−1))⊥ leads to a slightly different version of the Sinkhorn

algorithm. Indeed, as the constraint
∑
i λ

(n)
i =

∑
j µ

(n)
j is satisfied at each step, the
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corresponding exponential variables will be updated in such a way that the quantities∏
i α

(n)
i and

∏
j β

(n)
j are constant. In other words, we then get a renormalization step

and actually are studying the Sinkhorn variant:

Algorithm I.8. Given a nonnegative matrixA∈ (R+)
N×N

and two marginalsf, g ∈ΣN,
starting from α(0) = β(0) = 1, do for n = 0, 1, ...

α(n+1) =
α̂(n+1)

∏
i α̂

(n+1)
i

where α̂(n+1) =
f

Aβ(n)

β(n+1) =
β̂(n+1)

∏
j β̂

(n+1)
j

where β̂(n+1) =
g

ATα(n+1)

Of course the directions of such iterates are the same as the ones of the classical
Sinkhorn algorithm. However to transfer the convergence analysis we would obtain
for these iterates by Theorem I.16 to the initial iterates, one would need to control the
growth of

∏n
k=1

∏
i α

(k)
i . These types of rescaling constants appear widely in conver-

gence analyses of the Sinkhorn algorithm.

The result of Theorem I.17 could possibly be adapted to prove that the local con-
vergence rates of algorithms I.6 and I.7 are, in some sense, given by the subdomi-
nant eigenvalues of their Jacobian matrices at their fixed points. These matrices take
the following form. For algorithm I.6, using rescaled variables ak (n), bk (n), one
rephrases iterations (3.20) as b(n+1) = φ(b(n)) where b(n) = (bk (n))1≤k≤K−1 and
φ : (R+

∗ )
N(K−1) → (R+

∗ )
N(K−1) is given by

φ(b) =


dKθK ckθk−1∏

ℓ 6=k
cℓ
θℓ




1≤k≤K−1

where





∀k ∈ [[1,K − 1]], ck = Xk T fk

Xkbk

dK=XK T fK
(
XK

∏
k (b

k)
− θk

θK

)−1

The Jacobian matrix, which generalizes the matrix M = (1− θ)M0 + θM1 we intro-
duced in Theorem I.12 is:

Jφ(1) =




θ1M
K + (1− θ1)M1 θ2(M

K −M2) . . . θK−1(M
K −MK−1)

θ1(M
K −M1) θ2M

K + (1− θ2)M2 . . .
...

... θ2(M
K −M2) . . .

...
...

... . . . θK−1(M
K −MK−1)

θ1(M
K −M1) θ2(M

K −M2) . . . θK−1M
K + (1− θK−1)M

K−1




where Mk are the stochastic matrices given by Mk = d( 1f )X
kT d( 1

fk )X
k. Concern-

ing algorithm I.7, iterations (3.21) on rescaled variables a(n), b(n) can be written as
(a(n+1), b(n+1)) = φ(a(n), b(n)) with φ : (R+

∗ )
2N → (R+

∗ )
2N defined by

φ(a, b) =
(
a1−ω

(
f

Xb

)ω
, b1−ω

(
g

a1−ω
(
f

Xb

)ω

)ω )
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It admits the following Jacobian matrix

Jφ(1) =
(

(1− ω)I −ω d( 1f )X

ω(ω − 1) d( 1g )X
T (1− ω)I + ω2 d( 1g )X

T d( 1f )X

)

For both cases, we observe in Figures 3.6, 3.7 (for which we used our usual setting)
that the iterates converge linearly with rate given by the second eigenvalue of Jφ(1).

Figure 3.6 – Error evolution of the Sinkhorn-like algorithm I.6 with K = 3 (α in plain
black, β in plain blue) and λ2 rate of the Jacobian matrix (dotted red)

Figure 3.7 – Error evolution of the Sinkhorn-like algorithm I.7 (plain lines) and λ2 rate
of the Jacobian matrix (dotted lines) for different values of ω
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Finally, the use of the quotient space E in Theorem I.17 is a natural way to get
rid of the degenerate direction associated to the eigenvalue 1. The cancellation of
this eigenvalue in (3.24) was also the objective of the so-called Wielandt deflation
used by Knight in [Kni08]. We can say that dealing with this degenerate direction is
precisely the point of any convergence analysis of the Sinkhorn algorithm. The method
we proposed in the previous sections through the use of Theorem I.7 achieves this
goal in an original way; however, it is possible that this last point of view could be
generalized to a much wider class of Sinkhorn-like algorithms.
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CHAPTER 4

ISSUES OF THE SETTING WHEN ε→ 0

Remember from section 1.2 that the Sinkhorn algorithm was introduced in the context
of Optimal Transport to solve the approximate transportation problem:

x(ε) = argmin
x∈Π(f,g)

〈c|x〉+ ε〈x| log x− 1〉 (4.1)

We saw that x(ε) can be obtained by performing the Sinkhorn iterates on the matrix
A = exp(−cε ). However, what is actually sought for is a solution of the exact trans-
portation problem:

x∗ ∈ argmin
x∈Π(f,g)

〈c|x〉 (4.2)

In this chapter, we are interested in the behavior of x(ε), as well as the behavior of its
computation through the Sinkhorn algorithm, when ε tends to 0.

We first present the theoritical results about the function ε 7→ x(ε) next turn to
computational issues occurring for small values of ε. In the last subsection we exten-
sively treat the case of the dimension N = 2 for which all computations can be led
explicitly, enlightening the dependency of the convergence rates to ε.

4.1 Theoretical issues

First of all, the strategy of tackling the transportation problem (4.2) through a perturbed
problem (4.1) is of course appropriate in the sense that one recovers x∗ as the limit of
x(ε) when ε tends to 0. To be precise, as the exact transportation problem (4.2) may
have several solutions, x(ε) converges to the solution with the highest entropy:
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Proposition I.7. As ε→ 0, one has x(ε)→ x∗ where

x∗ = argmin
x∈X

〈x| log(x)〉 and X = argmin
x∈Π(f,g)

〈c|x〉

Proof. The result follows from the fact that x 7→ 〈x| log x − 1〉 is continuous on
Π(f, g). Indeed, as x(ε) belongs to the compact set Π(f, g) for all ε > 0 one can
suppose x(ε)→ x0 for some x0 ∈ Π(f, g). First, passing to the limit ε→ 0 in

∀x ∈ Π(f, g), 〈c|x(ε)〉+ ε〈x(ε)| log x(ε)− 1〉 ≤ 〈c|x〉+ ε〈x| log x− 1〉
gives x0 ∈ X . Second, for any x ∈ X one has

〈x| log x− 1〉 = 1

ε
(〈c|x〉+ ε〈x| log x− 1〉)− 1

ε
〈c|x〉

≥ 1

ε
(〈c|x(ε)〉+ ε〈x(ε)| log x(ε)− 1〉)− 1

ε
〈c|x〉 (4.3)

= 〈x(ε)| log x(ε)− 1〉+ 1

ε
(〈c|x(ε)〉 − 〈c|x〉)

≥ 〈x(ε)| log x(ε)− 1〉 (4.4)

where we used the definition of x(ε) in (4.3) and the fact that x ∈ X in (4.4). As
〈x(ε)|1〉 = 〈x|1〉 = 1, taking ε→ 0 in that last inequality finally gives x0 = x∗.

The strong convexity of the entropic regularization implies that the solution x∗ be-
longs to the relative interior of the set of solutions of the optimal transport problem. In
the case of the assignment problem – that is f = g = 1, see equations (1.11), (1.12)
– this has an important consequence: although there always exists an optimal transport
plan that takes the form of a permutation matrix, as soon as we do not have uniqueness
of this solution the limit x∗ of x(ε) is not a permutation matrix. More generally, the
limit x∗ will always have the worse sparsity among the solutions of the optimal trans-
port problem.

Another interesting question to be raised is the regularity of the function ε 7→ x(ε).
For this study, it is useful to remember that the primal problem (4.1) defining x(ε)
admits a unconstrained dual problem:

(λ(ε), µ(ε)) ∈ argmax
λ,µ∈RN

〈λ|f〉+ 〈µ|g〉 − ε
∑

i,j

exp

(−wi,j + λi + µj
ε

)
(4.5)

The solution (λ(ε), µ(ε)) is defined up to a constant, meaning that only the quantities
λ(ε)i + µ(ε)j are uniquely defined and that if (λ, µ) and (λ̂, µ̂) are two solutions of
equation (4.5) then there exists a constant r ∈ R such that λ̂ = λ+ r1 and µ̂ = µ− r1.
Solutions of the primal and dual problems are linked through

x(ε)i,j = exp

(
λ(ε)i + µ(ε)j − wi,j

ε

)
= ai,j exp

(
λ(ε)i + µ(ε)j

ε

)
(4.6)

To state precisely our results, we define (λ(ε), µ(ε)) to be the unique solution of (4.5)
such that λ(ε)N = 0. Doing so we can make use of the inverse function theorem to
state the regularity of ε 7→ x(ε):
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Proposition I.8. λ(ε), µ(ε) and x(ε) are C∞ functions of ε.

Proof. Optimality conditions in problem (4.5) state that (λ(ε), µ(ε)) = (ℓ(ε), 0, µ(ε))
where (ℓ(ε), µ(ε)) is the only zero of the function fε : RN−1 × R

N −→ R
N−1 × R

N

defined by

fε(ℓ, µ) =
({
fi −

N∑

j=1

ai,j exp
(ℓi + µj

ε

)}

1≤i≤N−1
,

{
gj − aN,j exp

(µj
ε

)
−
N−1∑

i=1

ai,j exp
(ℓi + µj

ε

)}

1≤j≤N

)

As a result the function

f : R
+
∗ × R

N−1 × R
N −→ R

N−1 × R
N

: (ε, ℓ, µ) 7−→ fε(ℓ, µ)

satisfies f(ε, ℓ, µ) = 0 ⇔ (ℓ, 0, µ) = (λ(ε), µ(ε)). Provided the partial derivative
of f with respect to (ℓ, µ) is invertible, the inverse function theorem will transfer the
regularity of f with respect to ε to (λ(ε), µ(ε)) and, as a consequence of (4.6) to x(ε).
Writing (f ℓi )1≤i≤N−1 et (fµj )1≤j≤N for the components of f , one has

∂f

∂(ℓ, µ)
=




(∂f ℓi1
∂ℓi2

)

1≤i1,i2≤N−1

(∂f ℓi
∂µj

)
1≤i≤N−1
1≤j≤N(∂fµj

∂ℓi

)
1≤j≤N
1≤i≤N−1

( ∂fµj1
∂µj2

)

1≤j1,j2≤N




and one computes
∂f ℓi
∂µj

=
∂fµj
∂ℓi

=
−xi,j
ε

as well as

∂f ℓi1
∂ℓi2

=





−1
ε

N∑

j=1

xi,j if i1 = i2 = i

0 otherwise

;
∂fµj1
∂µj2

=





−1
ε

N∑

i=1

xi,j if j1 = j2 = j

0 otherwise

where ∀j ∈ [[1, N ]], xi,j = ai,j exp
(
ℓi+µj

ε

)
if i ∈ [[1, N ]] and xN,j = aN,j exp

(µj

ε

)

are positive.
Doing so, one sees that the matrix M = −ε ∂f

∂(ℓ,µ) is symmetric positive definite as

for any U = (u, v) 6= 0 ∈ R
N−1 × R

N :

UTMU =
N−1∑

i=1

ui

(
ui

N∑

j=1

xi,j +

N∑

j=1

xi,jvj

)
+

N∑

j=1

vj

(
vj

N∑

i=1

xi,j +

N−1∑

i=1

xi,jui

)

=

N∑

j=1

v2jxN,j +
∑

i∈[[1,N−1]]
j∈[[1,N ]]

xi,j(ui + vj)
2 > 0

hence ∂f
∂(ℓ,µ) is invertible.
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In [SGG11], Sharify and co-authors even obtain the analyticity of x: making use
of the theory of real ordered fields they establish that each coefficient of the matrix
x(ε) writes as a generalized Dirichlet series in exp(− 1

ε ) meaning that there exist real
numbers cn such that

x(ε)i,j =

∞∑

n=0

cn exp
(
−αn
ε

)

where the sequence of real numbers (αn) is such that αn → +∞.

Remark I.13. Note that we only stated here the regularity of x(ε) according to ε. The
question of the regularity of the limit matrix X of the Sinkhorn algorithm according to
the iterated matrixAmay be more subtle. We ought to mention [Sin72] where Sinkhorn
proves the continuity of X with respect to A in the doubly stochastic case.

We now address the convergence rate of x(ε) towards x∗. It is deeply linked to
the convergence of the dual solution (λ(ε), µ(ε)) towards a solution (λ∗, µ∗) of the
unregularized dual problem (1.7)

max
λ,µ∈R

N s.t.
∀i,j, λi+µj≤ci,j

〈λ|f〉+ 〈µ|g〉

Cominetti and San Martin gave in [CSM94] the proof of the following result:

Theorem I.18. There exist vectors λ∗, µ∗ ∈ R
N and d∗ ∈ R

2N such that for all ε > 0,

(λ(ε), µ(ε)) = (λ∗, µ∗) + εd∗ + η(ε)

for a function η : R+
∗ → R

2N converging to 0 exponentially fast, meaning that there
exist constants K, c > 0 such that for ε small enough

||η(ε)||∞ ≤ K exp(− c
ε
)

Remark I.14. The limit value (λ∗, µ∗) is called the centroïd of the polytope of solu-
tions of the dual problem (1.7). It is defined by a shrinkage of constraints that remain
unsatured by the solutions of this linear problem.

From this point we can use the relation between primal and dual solutions (4.6) and
first understand the following: if (i, j) is such that λ∗i + µ∗

j < wi,j then we will have
x∗i,j = 0 and x(ε)i,j will tend to 0 exponentially fast. However if λ∗i + µ∗

j = wi,j
then x∗i,j > 0 will be given by exp(d∗) and again convergence of x(ε)i,j towards x∗i,j
is exponential. The study in [CSM94] is a bit more precise and gives values for the
constants of the exponential convergence:

Theorem I.19. Let λ∗, µ∗ be the limits of λ(ε), µ(ε) when ε → 0. Denote I =
{(i, j) ∈ [[1, N ]]2 s.t. λ∗i + µ∗

j < wi,j}, C = min(i,j)∈I wi,j − λ∗i − µ∗
j and K =∑

(i,j)∈I wi,j − λ∗i − µ∗
j then for any c < C there exists ε0 > 0 such that

∀ε ≤ ε0, ||x(ε)− x∗||∞ ≤
2
√
K

c
exp(− c

2ε
)
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Remark I.15. This theorem remains correct in the case where I = ∅ taking K = 0
(and C = +∞). Indeed, in this situation, the cost matrix w splits into λ∗ ⊕ µ∗ hence
any transport plan x ∈ Π(f, g) is optimal. Then according to the Sinkhorn algorithm
on the splitted matrixA = exp(−λ∗

ε )⊗exp(−
µ∗

ε ), x(ε) is equal for any ε to x∗ = f⊗g
(which is as a consequence the element of Π(f, g) with highest entropy).

Remark I.16. We focused on the simple optimal transport setting. However the results
of this section rely only on the fact that we considered an entropic regularization of a
linear problem. As such, they remain correct for the barycenter and graph variants we
presented above.

4.2 Numerical issues

In the context of Optimal Transport, one wants to perform the Sinkhorn algorithm on
the matrix A = exp(−wε ) where w ∈ R

N×N is the ground cost matrix. When taking
ε close to zero, the values appearing in the matrix A become very small and numerical
issues arise. In addition, it is worth noticing that the Sinkhorn algorithm suffers from
a great dependency of the zero pattern of the matrix it is applied to, see the general
theorems of section 2.2.1 As a consequence, if some entries of the matrixA are numer-
ically set to 0 the pattern of the matrix is changed and divergence of the iterations may
occur. This phenomenon is added to the general computational errors that arise to any
procedure involving calculus with exp(−wε ) terms.

4.2.1 Log domain computation

A first numerical trick that helps improving the range of the parameter ε one can access
to is to work on the “log domain”, meaning that one computes the Sinkhorn iterates on
the variables λ = ε logα, µ = ε log β rather than on the usual α, β. This method is
presented for instance in [Sch19, SGG11] and is widely used in practice (see [PC19]).
Remember we saw in equation (1.9) that the Sinkhorn iterates on these variables write:

λ
(n+1)
i = ε log(fi)− ε log




N∑

j=1

exp

(
µ
(n)
j − wi,j

ε

)


µ
(n+1)
j = ε log(gj)− ε log

(
N∑

i=1

exp

(
λ
(n+1)
i − wi,j

ε

)) (4.7)

The ε log
∑

exp( .ε ) operator that appears in these expressions is often called a
softmax operator as it approaches the maximum of a vector when ε goes to 0:

Proposition I.9. For any x ∈ R
N one has when ε→ 0

ε log

N∑

k=1

exp
(xk
ε

)
→ max

1≤k≤N
xk
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Proof. Denote xk∗ = maxk xk. First, ε log
∑
k exp

(
xk

ε

)
≥ xk∗ . Second, as for any

k, one has xk − xk∗ ≤ 0, we can write

ε log
∑

k

exp
(xk
ε

)
− xk∗ = ε log

∑

k

exp

(
xk − xk∗

ε

)
≤ ε logN

which concludes the proof.

In the case of the assignment problem, that is f = g = 1, the limit as ε→ 0 of the
iterations (4.7) is consequently

λ
(n+1)
i = min

1≤j≤N
wi,j − µ(n)

j ; µ
(n+1)
j = min

1≤i≤N
wi,j − λ(n+1)

i

which is exactly the “bidding” step of the auction algorithm (or Hungarian method,
see [Kuh55, BE88, BC89, Wal17, PC19]). In the general setting, it seems fundamental
to keep the appearance of the marginals f and g. We therefore are interested in the
first order approximation of (4.7). Taking care of the number of times the maximum is
reached, that is:

λ
(n+1)
i = wi,j∗ − µ(n)

j∗ + ε log
( fi
|J∗|

)
where j∗ ∈ J∗ := argmin

1≤j≤N
wi,j − µ(n)

j

µ
(n+1)
j = wi∗,j − λ(n+1)

i∗ + ε log
( gj
|I∗|

)
where i∗ ∈ I∗ := argmin

1≤i≤N
wi,j − λ(n+1)

i

(4.8)
Equations (4.8) are consequently a first order approximation of the Sinkhorn iterates
that one can use while treating the remaining o(ε) terms such as

−ε log


1 +

1

|J∗|
∑

j 6∈J∗

exp

(
µ
(n)
j − wi,j − µ(n)

j∗ + wi,j∗

ε

)


with the Taylor expansion of log(1 + x). This leads to greater stability of the iterates
and allows one to reach smaller values of ε. Similar formulas could be obtained for
Sinkhorn-like algorithms.

4.2.2 Bethe entropy for barycenter

The quality of the approximation x(ε) of x∗ is governed by the size of the chosen reg-
ularization ε〈x| log x− 1〉. To lower down this perturbation while keeping the benefits
of the entropic regularizer – that is its convexity and the Sinkhorn-like structure it pro-
vides – one can use the Bethe entropy presented section 3.2 about Sinkhorn algorithm
on a graph. In this section, we present this strategy in the case of the simple barycenter
setting described section 3.1.1.

Remember the form of the linear program defining the barycenter of f0, f1 ∈ ΣN :

argmin
x01=f0, x1T 1=f1

x0T 1=x11=fθ

θ〈w0|x0〉+ (1− θ)〈w1|x1〉
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To lower our usual entropic perturbation acting on x0, x1, it is possible to substract the
term (1− δ)ε〈fθ| log fθ−1〉 while keeping the convexity of the energy. Indeed, under
the constraint x0T 1 = x11 = fθ one can write

θ〈x0| log x0 − 1〉+ (1− θ)〈x1| log x1 − 1〉 − (1− δ)〈fθ| log fθ − 1〉

= θ〈x0| log x0

fθ ⊗ 1
− 1〉+ (1− θ)〈x1| log x1

1⊗ fθ − 1〉+ δ〈fθ| log fθ − 1〉

and invoque the strict convexity of (x, y) 7→ x log x
y for 0 < x < y. Finally, we write

for ε, δ > 0 the following optimization problem

min
x01=f0, x1T 1=f1

x0T 1=x11=fθ

θ〈w0|x0〉+ (1− θ)〈w1|x1〉
+ εθ〈x0| log x0

fθ ⊗ 1
− 1〉+ ε(1− θ)〈x1| log x0

1⊗ fθ − 1〉

+ εδ〈fθ| log fθ − 1〉

which is a lower-regularized version of (3.1) when δ < 1. We introduce the Lagrange
multipliers λ0, λ1, µ0, µ1 for respectively x01= f0, x1T 1= f1, x0T 1= fθ, x11= fθ

followed by our usual changes of variables

α = exp

(
−λ

0

εθ

)
; β = exp

(
− λ1

ε(1− θ)

)

γk = exp

(
µk

ε

)
; Ak = exp

(
−w

k

ε

)
for k ∈ {0, 1}

Then one checks that (x0, x1, fθ) is solution of our problem if and only if it writes

x0 = d(α)A0 d(γ0), x1 = d(γ1)A1 d(β) and fθ =
(
(A0Tα)θ(A1β)1−θ

) 1
δ for

(α, β, γ0, γ1) such that

α =
f0

A0γ0
; β =

f1

A1T γ1

γ0 =
(
A0Tα

) θ
δ−1 (

A1β
) 1−θ

δ ; γ1 =
(
A0Tα

) θ
δ
(
A1β

) 1−θ
δ −1

This leads to our last Sinkhorn-like algorithm:

Algorithm I.9. Given two positive matrices A0, A1 ∈ (R+
∗ )
N×N , two marginals

f0, f1 ∈ ΣN and δ > 0, from α(0) = β(0) = γ0(0) = γ1(0) = 1 do for n = 0, 1, ...

α(n+1) =
f0

A0γ0(n)
; β(n+1) =

f1

A1T γ1(n)

γ0(n+1) =
(
A0Tα(n+1)

) θ
δ−1 (

A1β(n+1)
) 1−θ

δ

γ1(n+1) =
(
A0Tα(n+1)

) θ
δ
(
A1β(n+1)

) 1−θ
δ −1

(4.9)
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This algorithm coincides with the classical Sinkhorn-like algorithm for the barycen-

ter I.2 when δ = 1 through the variable γ = γ0
1

θ−1 = γ1
1
θ . Taking δ < 1 actually

improves the quality of the approximation for simple barycenter problems. We present
in Figure 4.1 the result obtained for a barycenter of two shapes: f0 and f1 are given as
indicator functions of circles,A0 = A1 = exp(−wε ) for an L2 costw on the grid [0, 1]2

discretized into a 60 × 60 image size and ε = 10−3. We compute the barycenter for
θ = 0.5 and compare the case δ = 1 corresponding to the classical Sinkhorn-like algo-
rithm I.2 to the case δ = 0.51 (values of δ lower than 0.5 being theoretically excluded,
and numerically instable as well).

Figure 4.1 – A Wasserstein barycenter f
1
2 of two marginals f0 (left) and f1 (right)

computed through algorithm I.9 with δ = 1 (top middle) and δ = 0.51 (bottom middle)

Finally, we are able to conduct an analysis of these iterations in Hilbert metric:

Theorem I.20. For δ ≥ max(θ, 1 − θ), the Sinkhorn iterates α(n), β(n), γ0(n), γ1(n)

defined by (4.9) converge in (R+
∗ )
N/ ∼ to the fixed point α∗, β∗, γ0∗, γ1∗ with the

following estimate: ∀n ≥ 0,

dH(γ0(n+1), γ0∗) + dH(γ1(n+1), γ1∗) ≤ κ2
(
dH(γ0(n), γ0∗) + dH(γ1(n), γ1∗)

)

where κ = max(κ(A0), κ(A1)) < 1.

Proof. Using Proposition I.1 we get

dH(γ0(n+1), γ0∗) ≤ 1− θ
δ

κ dH(β(n+1), β∗) +
∣∣∣
θ

δ
− 1
∣∣∣κ dH(α(n+1), α∗)

≤ κ2
(1− θ

δ
dH(γ1(n+1), γ1∗) +

∣∣∣
θ

δ
− 1
∣∣∣dH(γ0(n+1), γ0∗)

)

And similarly

dH(γ1(n+1), γ1∗) ≤ κ2
(∣∣∣

1− θ
δ
− 1
∣∣∣dH(γ1(n+1), γ1∗) +

θ

δ
dH(γ0(n+1), γ0∗)

)

The hypothesis δ ≥ max(θ, 1− θ) allows one to get rid of the absolute values and the
result follows summing the two estimates.
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Once again, numerical experiments (see Figure 4.2) show that the actual conver-
gence rate is governed by the subdominant eigenvalue of the matrix M below, that
is the Jacobian matrix of the iterations (calculated at the fixed point and on rescaled
variables):

M =




(
1− θ

δ

)
M0 θ − 1

δ
M1

−θ
δ
M0

(
1 +

θ − 1

δ

)
M1




where M0 = d( 1
fθ )X

0T d( 1f )X
0 and M1 = d( 1

fθ )X
1 d( 1g )X

1T .

Figure 4.2 – Error evolution of the Sinkhorn-like algorithm I.9 (plain lines) and λ2 rates
of the Jacobian matrix (dotted lines) for two extreme values of δ

4.2.3 Iterated process

If working in the log domain or dealing with more subtle entropic regularization can
allow one to reach smaller values of ε, one still has to perform operations involv-
ing exp(−wε ), and the computation still remains uncertain when ε is very small. In
[XWWZ18], Xie and co-authors state that this is a real issue in the sense that some
problems (such as the Wasserstein barycenter) actually demand to obtain the true opti-
mal transport plan x∗ at the limit ε→ 0. We explain below a way to witness in practice
the convergence of x(ε) towards x∗. This method was presented in [XWWZ18] (which
appeared as we were studying it) together with applications to Wasserstein barycenters.
It tackles the problem differently by fixing a value of ε for which the matrix exp(−wε )
is computable and building a sequence (xnε ) converging to x∗ when n→ +∞.

Remember we perturbed the transportation problem 1.4 into

x(ε) = argmin
x∈Π(f,g)

〈w|x〉+ ε〈x| log x− 1〉
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The entropy term 〈x| log x− 1〉 can be interpreted as a Bregman divergence, a type
of function introduced by [Bre67] and for which we take the definition of [CT93]:

Definition I.5. (Bregman divergence) Let Ω be an open and convex subset of Rd, and
let ψ : Rd → R ∪ {+∞} such that:

• ψ is strongly convex with constant 1

• The domain of ψ is Ω

• ψ is continuous on Ω and continuously differentiable on Ω

• The subdifferential of ψ is empty on the boundary of Ω: ∀x ∈ ∂Ω, ∂ψ(x) = ∅
We define the Bregman divergence associated to ψ as

Dψ : R
d × Ω −→ R ∪ {+∞}

: (x, y) 7−→ ψ(x)− ψ(y)− 〈∇ψ(y)|x− y〉

In our setting, the Bregman divergence is given by the function ψ(x) = 〈x| log x〉
on Ω = (R+

∗ )
N×N , which leads to Dψ(x, y) = 〈x| log x

y 〉 + 〈y − x|1〉. Then the
perturbation we add to the transportation problem is Dψ(x, 1).

One can actually interpret the Bregman divergence as a sort of nonsymmetric dis-
tance on Ω. This leads to saying that in our search of a first approximation x1ε = x(ε)
of the exact optimal transport solution x∗ we chose to penalize the distance from x(ε)
to 1. In the search of x∗ it is interesting to now consider a second approximation x2ε
obtained by penalizing the distance to x1ε, and pursue this process setting for all n ≥ 1:

xn+1
ε = argmin

x∈Π(f,g)

〈w|x〉+ εDψ(x, x
n
ε ) (4.10)

This method referred to as nonlinear proximal iteration (as it generalizes the Euclidean
proximity operator given for ψ(x) = ||x||22) has been introduced in [CZ92]. Chen and
Teboulle proved its convergence in a very general setting in [CT93]. We explain below
the iterates to which it leads and what it can achieve.

It turns out that the update rule (4.10) rewrites as our original regularized trans-
portation problem (1.5) up to a change of the cost matrix w. Indeed, suppose that
xnε ∈ Π(f, g), then for any x ∈ Π(f, g), one has 〈x|1〉 = 〈xnε |1〉 so that

〈w|x〉+ εDψ(x, x
n
ε ) = 〈w|x〉+ ε〈x| log x

xnε
〉 = 〈w − ε log xnε |x〉+ ε〈x| log x〉

As a consequence, computing xnε is achieved by leading the Sinkhorn algorithm on
the matrix An = exp(−w−ε log xn

ε

ε ) = A0 ⊙ xnε where A0 = exp(−wε ), and where
we recall that ⊙ stands for the componentwise matrix multiplication (and .⊙p for the
componentwise exponentiation). As several Sinkhorn iterations will be led, we take
the following notation:

Notation. For fixed marginals f, g ∈ ΣN , and for a matrix A ∈ (R+)N×N satisfying
hypothesis (I.4), let D1, D2 be diagonal matrices such that X = D1AD2 ∈ Π(f, g).
We denote SK(A) := X .
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Finally the proximal iterated algorithm (4.10) writes as:

Algorithm I.10. Given two marginals f, g ∈ ΣN , a cost matrix w ∈ R
N×N and

ε > 0, compute A0 = exp(−wε ), x1ε = SK(A0), and then for all n ≥ 1,

An = A0 ⊙ xnε and xn+1
ε = SK(An)

Remark I.17. When implementing such iterated Sinkhorn algorithms, one should keep
in mind that they can be lead from any initial values of α(0), β(0) ∈ (R+

∗ )
N , that is

not just from α(0) = β(0) = 1. As the whole process converges, the calculation of
SK(An+1) would need less Sinkhorn steps if one starts with α and β set to the ending
values obtained when calculating SK(An).

Actually, this n step process achieves the same result as dividing ε by n. To see this
we make use of the following lemma which is a direct consequence of the uniqueness
part of Theorem I.6:

Lemma I.10. Let A be a nonnegative matrix, and let D1, D2 be any diagonal positive
matrices. Then

SK(D1AD2) = SK(A)

We then have the announced result:

Proposition I.10. The sequence (xnε ) ∈ (RN×N )N defined by algorithm I.10 is such
that:

∀n ≥ 1, xnε = x
( ε
n

)

where for all η > 0, x(η) = argminx∈Π(f,g) 〈w|x〉+ η〈x| log x− 1〉.

Proof. In other words, we want to prove that xnε = SK(exp(−nwε )) = SK((A0)⊙n).
This is true for n = 1 and supposing the result is true for some n ≥ 1, there exist
diagonal positive matrices D1, D2 such that xnε = D1(A

0)⊙nD2 so that applying the
previous lemma gives:

xn+1
ε = SK(A0 ⊙ xnε ) = SK(A0 ⊙ (D1(A

0)⊙nD2))

= SK(D1(A
0)⊙n+1D2)

= SK((A0)⊙n+1)

Remark I.18. Another proof of this result consists in writing the optimality conditions
for equation (4.10). If we work in the affine space V spanned by Π(f, g), one sees that
they write w|V + ε

(
∇x(Dψ(x

n+1
ε , xnε ))

)
= w|V + ε

(
∇ψ(xn+1

ε )−∇ψ(xnε )
)
= 0

where w|V is the orthogonal projection of w in V and ∇ denotes de gradient operator
in V . Then it leads to ∇ψ(xnε ) = ∇ψ(x0ε) − nw

ε just as x( εn ) = argminx〈w|x〉 +
εDψ(x, x

0
ε) would. So finally xnε = x(ε/n) by uniqueness of the solution to this equa-

tion. One sees that the key argument here is that the original problem minx∈Π(f,g)〈x|x〉
is linear.
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Remember an issue of the direct calculation of SK(exp(−wε )) was the appearance
of numerical zero entries modifying the pattern of the matrix to which the Sinkhorn
algorithm is applied, hence possibly compromising its convergence. To this extent,
calculating x( εn ) through algorithm I.10 is more stable than the direct computation of
SK(exp(−nwε )). Indeed, considering that SK(A) andA have the same pattern (which
is true theoretically but can be lost numerically), the only way for entry (i, j) of xnε to
be numerically set to 0 is when it gets multiplied by A0

i,j = exp(−wi,j

ε ). If ε is large
enough, this will only happen after a repeated number of multiplications by A0, in
other words only if n is large enough. In that view it becomes more likely that this
entry is set to 0 because its corresponding limit value x∗i,j indeed vanishes.

We note that the relation between xnε and x(ε) simply relies on the good behavior of
the Sinkhorn operator SK with respect to diagonal scaling and componentwise multi-
plication. As such one can propose many other procedures similar to algorithm I.10 of
the form xn+1

ε = SK(ynε ⊙A0) for some matrix ynε depending on the previous iterates.
This will lead to relations of the form xnε = x( ε

un
) for some real numbers un → +∞.

One can suggest many schemes to get a sequence (un) that grows very fast to infinity;
however, the efficiency of these procedures highly depends on the ability to compute
without numerical errors the matrices ynε . We give two methods below. The first one is
an over-relaxed version of algorithm I.10:

Algorithm I.11. Given two marginals f, g ∈ ΣN , a cost matrix w ∈ R
N×N and

ε > 0, compute A0 = exp(−wε ), x0ε = x1ε = SK(A0), and then for all n ≥ 0,

An+1 = A0 ⊙ (xn+1
ε )⊙2

xnε
and xn+2

ε = SK(An+1)

Achieving n steps of this algorithm theoretically corresponds to dividing the pa-
rameter ε by a O(n2) factor:

Proposition I.11. Thesequence(xnε )∈(RN×N )N defined by algorithm I.11 issuchthat:

∀n ≥ 1, xnε = x

(
2ε

n2 − n+ 2

)

Proof. The same reasoning as before shows that xnε = SK(exp(−un wε )) for a se-
quence (un) such that u0 = u1 = 1 and un+2 = 2un+1 − un + 1 which is solved into
un = 1

2n
2 − 1

2n+ 1.
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The second method we propose does componentwise exponentiation of the current
approximation:

Algorithm I.12. Given two marginals f, g ∈ ΣN , a cost matrix w ∈ R
N×N , p > 1

and ε > 0, compute A0 = exp(−wε ), x1ε = SK(A0) and then for all n ≥ 1,

An = A0 ⊙ (xnε )
⊙p and xn+1

ε = SK(An)
Achieving n steps of this algorithm theoretically corresponds to dividing the pa-

rameter ε by a O(pn) factor:

Proposition I.12. Thesequence(xnε )∈(RN×N )N defined by algorithm I.12 issuchthat:

∀n ≥ 1, xnε = x

(
ε(p− 1)

pn − 1

)

Proof. The same reasoning as before shows that xnε = SK(exp(−un wε )) for a se-
quence (un) such that u1 = 1 and un+1 = pun + 1 which is solved into un =
pn−1
p−1 .

In the doubly stochastic setting, and if the optimal assignment problem admits a
unique optimal permutation x∗, methods like algorithm I.12 can achieve quick conver-
gence to the solution at least in some cases (and provided one knows the appropriate
size for the parameter ε, for instance by previously testing different parameters for sim-
ilar ground costs w). Indeed, in this particular setting the entries of x(ε) converge to
either 0 or 1. As a consequence, the exponentiation step somehow realizes a threshold-
ing of the entries of xnε enhancing the gap between higher entries – that may converge
to 1 – and smaller ones – that may converge to 0.

The disadvantage of all these iterated algorithms is that they rely on the computa-
tion of the matrices An on which the Sinkhorn algorithm is performed at every step.
One must consequently successively store N2 variables rather than the 2N variables
needed to perform a classical Sinkhorn algorithm. In practice, to speed up compu-
tation one can stop the inside Sinkhorn algorithms before convergence happens. In
[XWWZ18], the authors chose for instance to perform only one Sinkhorn iterate (that
is, one step on the rows and one step on the columns) when following algorithm I.10.
They also provide an error analysis to guarantee convergence of this inexact scheme.

Remark I.19. Similar algorithms can be implemented for Sinkhorn-like variants. For
instance, the same reasoning in the case of the barycenter of two measures, corre-
sponds to first perform the usual Sinkhorn-like algorithm I.2

α(n+1) =
f0

A0( 1
γ(n) )1−θ

; β(n+1) =
f1

A1T (γ(n))θ
; γ(n+1) =

A0Tα(n+1)

A1β(n+1)

wihch leads to the first approximate transport plans X0 = d(α∗)A0 d(γ∗θ−1), X1 =
d(γ∗θ)A1 d(β∗) and then repeat the same algorithm replacing the matricesA0 andA1

respectively by A0⊗X0 and A1⊗X1 and so on. In particular, this also motivates the
differenciation of the matrices A0 and A1 although one uses the same ground cost w.
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4.3 Behavior of rates in dimension 2

We believe the complete treatment of the dimension N = 2 enlights the possible be-
havior of the convergence rates we described with respect to the coefficients of the
matrix A or to ε. We start with the doubly stochastic setting where formulas are quite
simple and then give explicit formulas, a bit more tedious to analyze, in the general

case. We denote A =

(
a1,1 a1,2
a2,1 a2,2

)
the nonnegative matrix on which the Sinkhorn

algorithm is applied.

4.3.1 Doubly stochastic setting

As mentioned in section 2.2.1, in the doubly stochastic setting the matrix A must have
total support for the Sinkhorn algorithm to converge. Excluding the trivial cases where
the iterations split into two iterations on matrices of size N = 1, this only leaves us
with the positive case A > 0. The setting in dimension 2 is easy to treat because the
doubly stochastic matrices are precisely those of the form

B(t) =

(
t 1− t

1− t t

)

for t ∈ [0, 1]. For B(t) to be a scaling of the positive matrix A one more precisely
has to have t ∈ (0, 1). The simplest way of computing the unique t ∈ (0, 1) such that
B(t) writes as d(α)A d(β) for positive vectors α, β is probably to use the following
fact (extensively used in the analysis of the Sinkhorn iterates in particular [Sin64]):

Fact I.2. If two positive matricesA,B ∈ (R+
∗ )
N×N are such thatB=d(α)A d(β) for

positive vectors α, β ∈ (R+
∗ )
N , then for any permutations σ1, σ2 of [[1, N ]] one has

N∏

k=1

bk,σ1(k)

bk,σ2(k)
=

N∏

k=1

ak,σ1(k)

ak,σ2(k)

When N = 2 this reduces to saying that the ratio ∆ =
a1,2a2,1
a1,1a2,2

must be preserved

after scaling. Hence one has
(1− t)2
t2

= ∆ which leads to t =
1

1 +
√
∆

. To conclude,

the convergence of the Sinkhorn iterates is governed by the spectrum of the matrix
B(t)B(t)T which is {1, (2t− 1)2} so that we get the following conclusion:

Proposition I.13. In the doubly stochastic setting f = g = 1, the Sinkhorn algorithm

applied to the matrix A =

(
a1,1 a1,2
a2,1 a2,2

)
converges linearly with rate

(√
∆− 1√
∆+ 1

)2

where ∆ =
a1,2a2,1
a1,1a2,2

.
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Note that the expression of this rate is invariant when replacing ∆ by ∆−1 and

as a consequence when replacing ∆ by θ(A) = max
i,j,k,l

ai,kaj,l
aj,kai,l

: finally in the doubly

stochastic setting we recover the Hilbert distance contraction rate of Theorem I.2. One
can also check that the case ∆ = 1, which corresponds to a linear speed of 0, occurs
for matrices on which convergence is achieved in a finite number of Sinkhorn iterations.

To finish with, one can apply this result to the setting of the approximated assign-
ment problem (1.12), that is making the assumption that A = exp

(
−wε

)
for some cost

matrix w ∈ R
2×2. Then one finds ∆ = exp

(
w
ε

)
for w = w1,1 + w2,2 − w1,2 − w2,1,

so that the solution of the perturbed assignment problem is

x(ε) =
1

1 + e−w/2ε

(
e−w/2ε 1

1 e−w/2ε

)

and of course the limit matrix x∗ = limε→0 x(ε) is given by the sign of w:

• If w > 0 then x∗ =

(
0 1
1 0

)
and ||x(ε)− x∗|| ∼

ε→0
c e−w/2ε.

• If w < 0 then x∗ =

(
1 0
0 1

)
and ||x(ε)− x∗|| ∼

ε→0
c ew/2ε.

• If w = 0 then all the doubly stochastic matrices are solution and for all ε > 0,

x(ε) =
1

2

(
1 1
1 1

)
= x∗ is the solution with the highest entropy (and lowest

sparsity).

To finish with, expect when w = 0, the convergence rate of the Sinkhorn algorithm
converges to 1 when ε→ 0 as more precisely it is equal to

λ2(ε) =

(
exp( w2ε )− 1

exp( w2ε ) + 1

)2

=

(
1− 2

exp( w2ε ) + 1

)2

And 1− λ2(ε) ∼
ε→0

2 exp

(−|w|
2ε

)
. In particular, the speed of the Sinkhorn algorithm

deteriorates as ε→ 0.

4.3.2 General setting

We now turn to the case of general marginals f =

(
f1

1− f1

)
and g =

(
g1

1− g1

)
for

some f1, g1 ∈ (0, 1). To avoid trivial cases, one can only allow up to one entry of A
to vanish, for instance a2,1 = 0. We first treat this case and then focus on the positive
case.
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If a2,1 = 0, then according to section 2.2.1 one must also suppose that f1 > g1 for
A to admit a scaling belonging to Π(f, g). Respecting the zero pattern of A the limit
matrix of the Sinkhorn iterates must be

X =

(
g1 f1 − g1
0 1− f1

)

Then one checks that the matrix M = d( 1f )X d( 1g )X
T is given by

M =




g1
f1

+
(f1 − g1)2
f1(1− g1)

(f1 − g1)(1− f1)
f1(1− g1)

f1 − g1
1− g1

1− f1
1− g1




and its subdominant eigenvalue is λ2 = Tr(M) − 1=
g1(1− f1)
f1(1− g1)

. Note that as

1 > f1 > g1 > 0 one has indeed λ2 ∈ (0, 1). It is noteworthy to mention that
both the limit matrix X and this convergence rate do not depend on the entries of A.

In the positive setting, one looks for a limit matrix of the form

X(t) =

(
t f1 − t

g1 − t 1− f1 − g1 + t

)

for some t such that 0 < t < f1 and f1 + g1 − 1 < t < g1. Applying Fact I.2, one
finds that t must satisfy

(g1 − t)(f1 − t)
t(1− f1 − g1 + t)

= ∆ =
a1,2a2,1
a1,1a2,2

(4.11)

Solving this equation to find t and computing the subdominant eigenvalue of the matrix
M = d( 1f )X(t) d( 1g )X(t)T finally gives the following conclusions:

Proposition I.14. The Sinkhorn algorithm applied with marginals f =

(
f1

1− f1

)
and

g =

(
g1

1− g1

)
to the positive matrix A =

(
a1,1 a1,2
a2,1 a2,2

)
converges linearly with rate

given by:

λ2 =





(t− f1g1)2
f1(1− f1)g1(1− g1)

if ∆ 6= 1

0 otherwise

where t =





1
2

(
f1 + g1 +

∆
1−∆ −

√
δ
)

if ∆ < 1

1
2

(
f1 + g1 +

∆
1−∆ +

√
δ
)

if ∆ > 1

with δ = (f1 + g1 +
∆

1−∆
)2 − 4f1g1

1−∆
and ∆ =

a1,2a2,1
a1,1a2,2

.
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Proof. We start from equation (4.11). The case where ∆ = 1 is easily treated as the
limit matrix of the Sinkhorn iterates is X = f ⊗ g. Then M = f ⊗ 1 has second
eigenvalue 0.

Suppose now ∆ 6= 1. Then, the value of the discriminant of equation (4.11) is given
by δ stated in the proposition. Note that one always has δ > 0 (if ∆ < 1, just notice
that δ = h( 1

1−∆ ) for a degree 2 polynomial h whose minimum occurs in R
−, hence

δ > h(1)> 0). To decide which sign in front of
√
δ is appropriate to obtain the correct

value of t, we use that t < 1
2 (f1+g1) for ∆< 1 and t > f1+g1 − 1 for ∆> 1.

In the context of Optimal Transport, that is when A = exp(−wε ), this convergence
rate is still given according to ∆ = exp(wε ) for w = w1,1 + w2,2 − w1,2 − w2,1.
Furthermore, the value of its limit is given by the marginals f, g in the following way:

Proposition I.15. Denote λ2(ε) the convergence rate of the Sinkhorn algorithm ap-
plied to the matrix A = exp(−wε ) described in Theorem I.14, and w = w1,1 + w2,2 −
w1,2−w2,1. If w = 0 then λ2(ε) ≡ 0, otherwise λ2(ε) converges to a limit λ02 ∈ (0, 1]
given by

λ02 =





min

(
f1(1− g1)
g1(1− f1)

,
g1(1− f1)
f1(1− g1)

)
if w < 0

min

(
f1g1

(1− f1)(1− g1)
,
(1− f1)(1− g1)

f1g1

)
if w > 0

Furthermore, there exists a constant K > 0 depending only on f, g such that for ε
small enough:

|λ2(ε)−λ02| ≤





K exp

(−|w|
ε

)
if w < 0 and f1 6= g1, or if w > 0 and f1 6= 1− g1

K exp

(−|w|
2ε

)
otherwise

Proof. We only treat the case w < 0, the case w > 0 is similar. With notations
of Theorem I.14, t → t0 = 1

2 (f1 + g1 − |f1 − g1|). If f1 ≥ g1, then t0 = g1

and λ02 = (t0−f1g1)2
f1(1−f1)g1(1−g1) = g1(1−f1)

f1(1−g1) ≤ 1 while if g1 ≥ f1 then t0 = f1 and

λ02 = f1(1−g1)
g1(1−f1) ≤ 1. The further distinction on f1 6= g1 comes from the appearance of√

δ with δ → (f1 − g1)2. In the case where f1 6= g1, λ2(ε) writes as a C1 function
h of exp(wε ) and the announced rate follows taking K > |h′(0)| (for instance when

f1 > g1 one computes h′(0) = − 2g1(1−f1)
f1(1−g1)(f1−g1) ). In the case where f1 = g1, which

is the case such that λ02 = 1, then λ2 is no longer a regular function of ∆. However

writing that δ = (2f1+
∆

1−∆ )2− 4f2
1

1−∆ = ∆
1−∆ (4f1(1−f1)+ ∆

1−∆ ) ≤ ∆
(1−∆)2 (because

f1(1− f1) ≤ 1
4 ) we see that

1 ≥ λ2(ε) ≥


f1(1− f1)−

√
∆−∆

2(1−∆)

f1(1− f1)




2

The result follows as 1−λ2(ε) is bounded by a regular function of
√
∆ = exp( w2ε ).
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Remark that a limit value λ02 < 1 indicates the situations where the convergence
rate is more favorable. In dimension 2 it is when |f1−g1| (respectively |f1− (1−g1)|)
is large in the case w < 0 (respectively w > 0). In that perspective, the doubly
stochastic setting where f1 = 1 − f1 = g1 = 1 − g1 = 1

2 corresponds to (one of) the
worst possible marginals because λ02 = 1. This last fact is also true in any dimension,
provided the corresponding assignment problem has a unique solution, as noticed by
Sharify and co-authors in [SGG11]. Indeed, in that case the result of the Sinkhorn
algorithm x(ε) converges when ε → 0 to the optimal permutation matrix x∗. As a
consequence the subdominant eigenvalue λ2(ε) of x(ε)Tx(ε) converges to the one of
x∗Tx∗ which is again a permutation matrix hence only has eigenvalues of modulus
1. Authors of [SGG11] also show that the O(exp(− cε )) convergence speed of λ2(ε)
towards 1 showed in Proposition I.15 for dimension 2 holds in that setting.

The example of dimension 2 shows that there exist situations where the limit value
of the convergence rate λ02 is strictly less than 1. We do not know however how to
characterize these situations in higher dimension. Furthermore, the typical behavior of
the convergence rate λ2(ε) we obtained in the numerical experiments we realized is
the one plotted in Figure 4.3 (here in dimension N = 100 with random marginals f, g
and cost w), leading to believe that for larger values of the dimension the limit value
λ02 often approaches 1.

Figure 4.3 – Value of the convergence rate λ2(ε) of the classical Sinkhorn algorithm as
a function of ε
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CONCLUSION OF PART I

In the first part of this thesis, we built a new systematic approach to analyze the
Sinkhorn-like algorithms we presented. This method leads to the linear convergence
rate which is observed in practice, and can be summarized as follows:

1. Rescale the variables of the algorithm by dividing them by solutions of the asso-
ciated scaling problem. The convergence of these new variables towards constant
vectors is equivalent to the convergence of the initial variables towards a fixed
point of the iterations.

2. Check that the update rules for these rescaled variables are similar to the initial
iterations but also make appear some stochastic matrices.

3. Apply convexity inequalities using these stochastic matrices to obtain a linear
convergence rate expressed as the subdominant eigenvalue of some stochastic
symmetric primitive matrix.

This study seems to be limited to 1D balanced Sinkhorn-like algorithms meaning that
each iteration must involve at most two other variables, and that the absolute values of
the appearing exponents must sum to 1.

We also presented some techniques to reach smaller values of the regularizing pa-
rameter of Optimal Transportation problems, among which a proximal iterated process
and the use of the Bethe entropy. In addition we gave the complete analysis of the
convergence rate of the Sinkhorn algorithm in dimension 2. Future works could gener-
alize our results to more complicated Sinkhorn-like iterates, showing how the Jacobian
matrix of the iterated function relates to the linear convergence through its subdomi-
nant eigenvalue. More investigations could also be undertaken to understand precisely
the behavior of these convergence rates with respect to the entries of the matrices and
marginals at stake, as well as when the regularizing parameter tends to zero.
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Part II

Error estimates for
discretizations of the ROF

model
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INTRODUCTION DE LA PARTIE II

Dans la première partie, nous avons étudié des algorithmes permettant de calculer des
objets de la métrique de Wasserstein comme des barycentres. Cette métrique s’avère
particulièrement adéquate pour comparer deux mesures d’un point de vue “géométri-
que”. Par exemple dans le contexte continu, pour le coût w(x, y) = ||x − y||22 dans
R
d, le barycentre de Wasserstein de deux mesures gaussiennes centrées en des points

p0 et p1 est encore une mesure gaussienne dont le centre parcourt le segment joignant
p0 à p1. Ceci en fait un outil approprié pour étudier des problèmes dont l’inconnue est
un ensemble E (régulier) de R

d représenté par la mesure uniforme 1E . Par exemple,
étant donnés deux ensembles E0 et E1 de même volume |E0| = |E1| = 1 on peut
s’intéresser au problème de barycentre suivant :

argmin
E tel que |E|=1

θWw(1E0 , 1E) + (1− θ)Ww(1E , 1E1)

Malheureusement ce problème est mal posé au sens où il n’admet pas toujours de
minimiseur, le barycentre de 1E0 et 1E1 ne s’écrivant pas forcément sous la forme 1E .
Après avoir relâché cette contrainte, et dans le but de retrouver des mesures proches
d’indicatrices, on peut envisager de pénaliser le périmètre P (E) des ensembles en jeu.
Pour cela on utilise le fait que P (E) = TV(1E) où TV désigne la variation totale sur
un domaine Ω ⊂ R

d définie par :

TV(u) = sup

{
−
∫

Ω

u divφ, φ ∈ C1c (Ω,R2) tel que || |φ| ||∞ ≤ 1

}

Cette quantité, finie pour toute fonction u : Ω → R dont la dérivée distributionnelle
Du est une mesure de Radon (voir [AFP00]), mesure en effet les sauts de la fonction
u puisque TV(u) =

∫
Ω
|Du| (identité qui prolonge au cas où u n’est pas régulière la

relation TV(u) =
∫
Ω
|∇u|). Dès lors on peut envisager d’étudier des problèmes du

type :
argmin

u
W (u) + TV(u)
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oùW (u) est un terme faisant intervenir la distance de Wasserstein, comme par exemple
W (u) = θWw(1E0 , u)+(1− θ)Ww(u, 1E1) ou plus simplement W (u) =Ww(u, u

0)
pour un certain u0 fixé. Ce dernier problème, appelé flot de gradient Wasserstein de
la variation totale [AGS08] et qu’on peut étudier avec ou sans la contrainte u = 1E ,
est lié à la discrétisation d’équations aux dérivées partielles d’évolutions [CP19, CL19,
Ott98]. Pour résoudre ce type de problèmes par des techniques classiques d’optimi-
sation convexe (comme par exemple l’algorithme primal dual [CP11]), il est utile de
pouvoir calculer l’opérateur proximal associé à la variation totale, c’est-à-dire de savoir
résoudre pour tout g et tout λ > 0 :

argmin
u

1

2λ
||u− g||2L2(Ω) + TV(u)

Ce problème est en fait un problème de débruitage d’image bien connu, introduit par
Rudin, Osher et Fatemi dans [ROF92] et appelé modèle de ROF. Dans la deuxième
partie de cette thèse nous étudions des discrétisations de ce modèle.

Dans sa version continue, le modèle ROF repose sur le fait que TV(u) est une
mesure de la quantité de “bruit” d’une image donnée u : Ω → R (nous prendrons
Ω = (0, 1)2). La variation totale pénalise en effet les oscillations, et sa sensibilité
aux perturbations aléatoires est telle qu’une version bruitée d’une image est suscep-
tible d’avoir une variation totale bien plus grande que sa version nette. Le modèle ROF
propose donc de rechercher une version débruitée u : Ω → R d’une image donnée
g : Ω → R sous la forme d’un minimiseur de la variation totale relativement proche
de la donnée initiale g. Dans sa première version, le problème de minimisation corres-
pondant est :

argmin
{

TV(u), u tel que ||u− g||2L2(Ω) ≤ σ
}

(1)

où le paramètre σ > 0 indique à quelle distance L2 maximale on s’autorise à s’éloigner
de g pour trouver u. Dans [CL97], Chambolle et Lions montrent que (1) admet une
reformulation équivalente où la contrainte devient second terme de l’objectif : à chaque
valeur de σ > 0 correspond une valeur de λ > 0 telle que la solution de (1) soit la même
que celle de :

u = argmin
u

1

2λ
||u− g||2L2(Ω) + TV(u) (2)

Nous étudions cette version du problème, qui s’inscrit dans la famille des méthodes
variationnelles à travers la présence d’un terme de fidélité aux données ||u − g||2L2(Ω)

et d’un terme de régularisation TV(u). L’équilibre entre ces deux termes est contrôlé
par le paramètre λ > 0 : quand λ → 0 le terme de fidélité l’emporte et u → g,
quand λ→ +∞ le terme de régularisation est le plus important et u converge vers une
constante.

Il peut sembler surprenant d’avoir choisi d’utiliser une norme L1 du gradient de
u pour définir la variation totale alors qu’une norme L2 semble tout aussi apte à cap-
ter les oscillations de l’image, tout en offrant un cadre théorique et numérique plus
simple. Cette version L2 (et finalement H1) du problème porte le nom de régularisa-
tion de Tychonov et il est connu (voir [VKV16, CCC+10]) qu’elle possède un effet
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régularisant se traduisant in fine par un flou au niveau des discontinuités de l’image dé-
bruitée. Cet écueil est résolu par l’utilisation d’une norme L1 permettant d’obtenir des
discontinuités nettes. La variation totale possède également dans sa version continue
l’avantage d’être isotrope, c’est-à-dire de ne privilégier aucune direction. Ainsi peu im-
porte l’orientation des discontinuités de g, celles-ci pourront être restituées de manière
nette dans le minimiseur u.

Cette dernière propriété est toutefois difficile à transposer au contexte discret, qui
est celui qu’on utilise en pratique face à une image g se présentant sous la forme d’un
tableau de pixels. Dans ce cadre, il faut en effet redéfinir le problème (2) pour l’adap-
ter à des fonctions discrètes c’est-à-dire, dans notre cas où Ω = (0, 1)2, données par
uh, gh : [[1, N ]] × [[1, N ]] → R où h = 1/N désigne la largeur du maillage. Au pro-
blème continu (2) correspond donc le problème discret suivant :

uh = argmin
uh

1

2λ
||uh − gh||22 + TVh(uh) (3)

où le terme de fidélité L2 correspond naturellement à une norme euclidienne ||.||2 et où
TVh désigne une variation totale discrète. De nombreux choix de définitions de TVh

s’offrent alors à nous. Citons notamment la variation totale dite anisotrope TVha , les va-
riations totales dites isotropes TVhi,⊕,⊖ pour ⊕,⊖ ∈ {+,−} et leur version moyennée
TVhi,∗ introduite dans [WL11], la variation totale centrée TVhc étudiée dans [LLW09],
ou encore la variation totale “upwind” TVhu introduite dans [OS88] dont les définitions
sont les suivantes :

TVha(u
h) = h

∑

i,j

|uhi+1,j − uhi,j |+ |uhi,j+1 − uhi,j |

TVhi,⊕,⊖(u
h) = h

∑

i,j

√
(uhi⊕1,j − uhi,j)2 + (uhi,j⊖1 − uhi,j)2

TVhi,∗(u
h) =

1

4

(
TVhi,++(u

h) + TVhi,+−(u
h) + TVhi,−+(u

h) + TVhi,−−(u
h)
)

TVhc (u
h) = h

∑

i,j

√√√√
(
uhi+1,j − uhi−1,j

2

)2

+

(
uhi,j+1 − uhi,j−1

2

)2

TVhu(u
h) = h

∑

i,j

√
{uhi,j − uhi+1,j}2+ + {uhi,j − uhi−1,j}2+

+{uhi,j − uhi,j+1}2+ + {uhi,j − uhi,j−1}2+

Chaque variation totale discrète possède ses avantages et ses inconvénients. La varia-
tion totale anisotrope est relativement simple à implémenter par des méthodes efficaces
de programmation linéaire mais privilégie les directions horizontales et verticales (voir
[Cha05] et le chapitre 4 de [LG12]). Les variations totales isotropes induisent un flou
dans la direction correspondant au quadrant donné par leur signe (nous développons
ce point ci-dessous). Les variations totales moyennées, centrées et “upwind” sont plus
isotropes mais aussi plus complexes à mettre en œuvre numériquement.
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Afin de comparer toutes ces variations totales, une méthode systématique consiste à
évaluer la vitesse de convergence du problème discret (3) vers le problème continu (2).
Au sens de la gamma-convergence [Bra02], par exemple dans L2(Ω), toutes les dis-
crétisations TVh suggérées, à l’exception de TVha , tendent en effet vers TV quand h
tend vers 0 (voir [CTV17]). Par conséquent, le minimiseur uh de (3) converge vers u,
minimiseur de (2), et on peut chercher à estimer l’ordre de grandeur de ||uh−u||L2(Ω).
Grâce à la forte convexité des énergies en jeu, on peut estimer l’erreur commise sur
les minimiseurs à partir de celle commise sur les valeurs minimales des problèmes

correspondants, notées E
h

pour (3) et E pour (2). On cherchera donc à obtenir des

estimations du type |Eh − E| = O(hθ) ou |Eh − E| = o(hθ) pour un certain para-
mètre θ > 0. Ainsi, Lai et ses co-auteurs montrent dans [LLW09] que sous certaines

hypothèses |Eh − E| ≤ c
√
h pour le choix TVh = TVhc . De même, Wang et Lucier

prouvent dans [WL11] que |Eh − E| ≤ ch
α

α+1 (où α est l’ordre de Lipschitz de g)
pour le choix TVh = TVhi,∗. Dans ce même article, les auteurs obtiennent également

que ||uh − u||2L2 ≤ ch
α

α+1 . Les résultats que nous présentons dans cette partie II sont
de ce type.

Tout d’abord nous donnons un premier taux de convergence dans le cas de la va-
riation totale isotrope TVhi = TVhi,++. Nous nous plaçons dans le cas particulier où g
présente une discontinuité orientée selon une certaine direction ν ∈ R

2 (choisie telle
que |ν| = 1). Plus précisément, g = gν est donné par :

gν(x) =

{
1 si 〈x|ν〉 ≥ a
0 sinon

où a est une valeur fixée par exemple a = 〈( 12 , 12 )|ν〉. On constate que la variation
totale dite isotrope TVhi se comporte moins bien dans les directions proches de ν =
1√
2
(−1, 1) que dans les directions proches de ν = 1√

2
(1, 1), engendrant un flou dans le

premier cas là où les sauts sont nets dans le deuxième. Nous quantifions ce phénomène
en démontrant le résultat suivant :

Théorème II.1. Sur un domaine approprié Ω = Ωper, et pour TVh = TVhi on a :

1. Pour ν = 1√
2
(1, 1), le débruitage est exact au sens où la solution du problème

discret uh est l’image la plus proche de la solution du problème continu u.

2. Pour ν = 1√
2
(−1, 1), le débruitage commet une erreur d’ordre O(h2/3) au sens

où il existe des constantes h, c, c′ > 0 dépendant seulement de λ telles que

∀h ≤ h, ch2/3 ≤ Eh − E ≤ c′h2/3

Alors que l’estimée E
h − E ≤ c′h2/3 est du même type que les résultats cités

précédemment pour d’autres variations totales, signalons l’originalité du résultat “né-

gatif”E
h−E ≥ ch2/3. Cette estimation inférieure, plus difficile à obtenir que la borne

d’erreur, constitue le résultat principal de cette partie.
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Dans un deuxième temps, nous étudions une variation totale discrète TVhRT basée
sur des champs discrets introduits par Raviart et Thomas dans [RT77], et qui apparaît
également dans ce contexte dans [DJS07, DJS12]. Cette partie est largement basée sur
le travail de Chambolle et Pock dans [CP20], mais adapte les résultats obtenus sur un
maillage triangulaire à notre contexte de maillage carré. Le principe de cette variation
totale est de gagner en isotropie en utilisant la définition duale de la variation totale
continue que nous avons déjà mentionnée :

TV(u) = sup

{
−
∫

Ω

u divφ, φ ∈ C1c (Ω,R2) tel que || |φ| ||∞ ≤ 1

}

Dans cette définition, nous substituons à l’espace des champs continûment différen-
tiables à support compact C1c (Ω,R2) l’espace des champs Raviart-Thomas d’ordre 0
s’annulant au bord RT00. Comme cet espace de champs discrets contient tous les
champs constants (si on relâche la contrainte d’annulation au bord), on récupère une
propriété d’isotropie pour la variation totale discrète suivante :

TVhRT (u
h) = sup

{
−
∫

Ω

uh divφh, φh ∈ RT00 tel que || |φh| ||∞ ≤ 1

}

Nous sommes enfin en mesure de démontrer notre deuxième estimation d’erreur :

Théorème II.2. Pour le choix TVh = TVhRT , si g ∈ BV (Ω), et si le problème dual
associé au problème continu (2) admet une solution lipschitzienne, alors le débruitage
commet une erreur d’ordreO(h) au sens où il existe une constante c > 0 ne dépendant
que de λ et de la valeur de l’optimum E telle que

∀h > 0, |Eh − E| ≤ ch

Cette partie s’organise comme suit. Le chapitre 5 donne les définitions précises
des variations totales continues et isotropes dans les contextes Neumann et Dirichlet
et formule le constat de l’anisotropie de la variation totale isotrope. Les chapitres 6,
7 et 8 s’enchaînent pour démontrer le théorème II.1. Ils reposent sur la réduction à un
problème de débruitage en dimension 1 et sur l’étude du problème dual associé. Le cha-
pitre 9 présente la variation totale “Raviart-Thomas” étudiée puis démontre le théorème
II.2 par des estimées sur les énergies primale et duale. Enfin le chapitre 10 présente des
tests numériques comparant ces différentes variations totales sur des tâches simples.

Le travail présenté dans cette partie a fait l’objet d’un article, [CC20], actuellement
soumis pour publication.
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CHAPTER 5

THE ROF MODEL WITH ISOTROPIC TOTAL
VARIATION

5.1 Continuous setting of the ROF model

We begin with the presentation of the ROF model, introduced by Rudin, Osher and
Fatemi in [ROF92]. In the continuous setting, we place ourselves in an open subset
Ω of R

2 and use the total variation TV as a regularizer. This quantity is given by
TV(u) =

∫
Ω
|∇u| when u is regular (recall that |.| denotes the Euclidean norm in R

2),
and extends to functions of weaker regularity through the formula

TV(u) = sup

{
−
∫

Ω

u divφ, φ ∈ C1c (Ω,R2) s.t. || |φ| ||∞ ≤ 1

}

where C1c (Ω,R2) is the space of continuously differentiable and compactly supported
fields from Ω to R

2, and || |φ| ||∞ = supx∈Ω |φ(x)|. We are consequently interested in
the space of functions of bounded total variation BV (Ω) given by

BV (Ω) = {u ∈ L1(Ω) s.t. TV(u) < +∞}

This space coincides with the set of functions u ∈ L1(Ω) such that the distributional
derivative Du is a (vector valued) Radon measure, see [AFP00, CCC+10] for more
details. The ROF model then writes as

u = argmin
u∈BV ∩L2(Ω)

1

2λ
||u− g||2L2 + TV(u) =: E(u) (5.1)

where the regularizing parameter λ > 0 is fixed and where g is our noisy image, for
which we will suppose g ∈ L∞(Ω) as well as g ∈ BV (Ω) when needed.
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To be more precise, we consider both Neumann and Dirichlet boundary conditions
to this setting. This will result in two different variants of (5.1): in the Neumann setting
we study:

uN = argmin
u∈BV ∩L2(Ω)

1

2λ
||u− g||2L2 + TVN (u) =: EN (u) where (5.2)

TVN (u) = sup

{
−
∫

Ω

u divφ, φ ∈ C1c (Ω,R2) s.t. || |φ| ||∞ ≤ 1

}

while in the Dirichlet setting, we add the constraint that u = b on ∂Ω for some
b ∈ BV ∩ L∞(∂Ω) (naturally, one usually takes b = g|∂Ω), and replace TVN by

sup

{
−
∫

Ω

u divφ+

∫

∂Ω

u 〈φ|~n〉, φ ∈ C1(Ω,R2) s.t. || |φ| ||∞ ≤ 1

}

where ~n denotes the outer normal unit vector. Equivalently, we formulate the Dirichet
problem as:

uD = argmin
u∈BV ∩L2(Ω)

1

2λ
||u− g||2L2 + TVD(u) =: ED(u) where (5.3)

TVD(u) = sup

{
−
∫

Ω

u divφ+

∫

∂Ω

b 〈φ|~n〉, φ ∈ C1(Ω,R2) s.t. || |φ| ||∞ ≤ 1

}

In the following, we will denote for B ∈ {N,D} the optimal value of the continuous
problems EB = EB(uB). When no subscript (N or D) is used, it means our state-
ment is valid under both boundary conditions. From now on, we also focus on the case
where Ω = (0, 1)× (0, 1).

The continuous ROF model enjoys the property that its solution u behaves equally
according to the “orientation” of the source term g. This isotropy result can be stated
rigorously in the Dirichlet setting the following way. Given a direction ν ∈ R

2 with
|ν| = 1, take g = gν defined by gν(x) = 1 if 〈x|ν〉 ≥ a and gν(x) = 0 otherwise where
a is some fixed real number (for instance a = 〈(1/2, 1/2)|ν〉). Then, problem (5.3)
with boundary condition b = gν |∂Ω has solution uD = gν , no matter the orientation of
ν. This comes from the following important fact1:

Fact II.1. Fix ν ∈ R
2 with |ν| = 1. When using the boundary condition b = gν |∂Ω,

the value of TVD(gν) is reached for φ ≡ ν so that TVD(gν) =
∫
∂Ω
gν〈ν|~n〉.

Our claim is indeed a direct consequence: if u ∈ BV ∩L2(Ω) is such that we have
u|∂Ω = gν |∂Ω, then taking the admissible field φ ≡ ν gives

TVD(u) ≥
∫

∂Ω

gν〈ν|~n〉 = TVD(gν)

and the result follows.
1that just derives from the fact that −

∫

Ω gνdivφ+
∫

∂Ω gν〈φ|~n〉 =
∫

{x s.t. 〈x|ν〉=a}〈ν|φ〉
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5.2 Isotropic total variation

In practice, Ω is discretized into N × N square pixels of size h = 1/N , namely
Ω = ∪1≤i,j≤NCi,j with Ci,j = [(i − 1)h, ih] × [(j − 1)h, jh]. Images are now
elements of P0 = {u : Ω → R s.t. ∀i, j ∈ [[1, N ]], ∃ui,j ∈ R s.t. u = ui,j in Ci,j}.
One introduces the projection of the continuous image gh = ΠP0(g) given by (gh)C =
1
h2

∫
C
g for every square pixel C, and the discrete counterpart of (5.1) is the following:

uh = argmin
uh∈P0

1

2λ
||uh − gh||2L2 + TVh(uh) =: Eh(uh) (5.4)

where TVh is some discretization of the total variation defined on P0. In the Dirichlet
setting, TVh can involve the discretization bh of b given by (bh)e = 1

h

∫
e
b for every

boundary edge e.

A widely used choice for TVh is the so called “isotropic” total variation which
discretizes the expression TV(u) =

∫
Ω
|∇u| using a finite difference operator D to

approximate the continuous ∇ operator. It is given by

TVhi (u
h) = h

∑

1≤i,j≤N
|(Duh)i,j | where (Duh)i,j =

(
uhi+1,j − uhi,j
uhi,j+1 − uhi,j

)
(5.5)

(with either uhN+1,j = bh
N+ 1

2 ,j
, uhi,N+1 = bh

i,N+ 1
2

in the Dirichlet boundary conditions

or uhN+1,j − uhN,j = uhi,N+1 − uhi,N = 0 in the Neumann boundary conditions). The
term “isotropic” refers to the behavior of this functional as the mesh size h tends to
zero. One can indeed show that TVhi gamma converges in L2(Ω) to TV when h → 0.
More precisely, if we define on L2(Ω) the functionals

Fh(u) =

{
TVhi (u

h) if u = uh ∈ P0
+∞ otherwise

and F (u) =

{
TV(u) if u ∈ BV
+∞ otherwise

then we have the following proposition (see [Bra02] for more background on gamma
convergence):

Proposition II.1. When h→ 0, Fh gamma converges to F in L2(Ω), that is:

1. ∀u ∈ L2(Ω), ∀uh → u, F (u) ≤ lim inf Fh(u
h)

2. ∀u ∈ L2(Ω), ∃uh → u, F (u) ≥ lim supFh(u
h)

Proof. We emphasize below the main arguments of the proof following [CTV17] where
this is proved for a more complicated total variation. We begin with the second point
that simply derives from approximation. The result is true if u ∈ C∞(Ω) by just taking
uh = ΠP0; to extend it to u ∈ L2(Ω) we use the following lemma (obtained through
convolution, see Theorem 3.9. in [AFP00]):

Lemma II.1. For any u ∈ BV (Ω), there exists a sequence (un) ∈ (C∞(Ω))N such
that un → u in L2(Ω) and TV(un)→ TV(u).
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For the first point, if uh → u, then we can in fact suppose that Fh(uh)→ ℓ < +∞
and uh ∈ P0, and we need to prove that TV(u) ≤ ℓ.

For φ = (φ1, φ2) ∈ C∞c (Ω,R2) with |φ| ≤ 1 on Ω, we integrate by parts:
∫

Ω

uh divφ =
∑

i,j

∫

Ci,j

uhi,j divφ =
∑

i,j

∫

∂Ci,j

uhi,j〈φ|~n〉

=
∑

i,j

uhi,j

(
φ1i+ 1

2 ,j
− φ1i− 1

2 ,j
+ φ2i,j+ 1

2
− φ2i,j− 1

2

)

=
∑

i,j

φ1i+ 1
2 ,j

(
uhi,j − uhi+1,j

)
+ φ2i,j+ 1

2

(
uhi,j − uhi,j+1

)

≤
∑

i,j

√(
φ1
i+ 1

2 ,j

)2
+
(
φ2
i,j+ 1

2

)2√(
uhi,j − uhi+1,j

)2
+
(
uhi,j − uhi,j+1

)2

where for k = 1, 2, φke =
∫
e
φk is the flux of φk along the edge e oriented from bottom

to top (respectively from right to left) for vertical (respectively horizontal) edges. As φ
is smooth, if pi,j denotes the center of Ci,j we have

φ1i+ 1
2 ,j

= hφ1(pi,j) +O(h2) and φ2i,j+ 1
2
= hφ2(pi,j) +O(h2)

with O(h2) being uniform in i, j. Then

√(
φ1
i+ 1

2 ,j

)2
+
(
φ2
i,j+ 1

2

)2
= h|φ(pi,j)|+O(h2) ≤ h+O(h2)

and finally,
∫

Ω

uh divφ ≤ TVhi (u
h) (1 +O(h)) = Fh(u

h) (1 +O(h))→ ℓ

But as uh → u in L1 we also have
∫
Ω
uh divφ →

∫
Ω
u divφ so

∫
Ω
u divφ ≤ ℓ. As

this is true for any φ we obtain F (u) = TV(u) ≤ ℓ, which concludes the proof.

A classical consequence of Proposition II.1 is that the minimizers uh converge in
L2 to u, the minimizer of (5.1). This leads to saying that TVhi inherits of the isotropy
of TV for denoising problems such as ROF.

However, this convergence result does not guarantee the isotropy of the discrete
isotropic total variation itself. In fact TVhi (g

h
ν ) can be quite far from TV(gν) which

equals the length of the line drawn by gν . What is worse is that the value of TVhi (g
h
ν )

actually depends on the orientation of ν. The case of the 45◦ diagonal is eloquent: as
noted for instance in [CP20], the choice of the finite difference operator D induces a
difference of roughly 40% between the main diagonal, that is ν = 1√

2
(1, 1), and its

flipped version ν = 1√
2
(−1, 1). In Figure 5.1, we represented the vector (Duh)i,j at

each pixel (i, j) where it does not vanish. When ν = 1√
2
(1, 1) (on the left image),

there are approximately N such pixels (that is, when not addressing the issue of border
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Figure 5.2 – Denoising with TVhi : noisy and denoised circle with Neumann bound-
ary conditions; “good” (2nd column) and “bad” (3rd column) diagonals with Dirichlet
boundary conditions and N = 10, 20, 50, 100.
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CHAPTER 6

REDUCTION TO A 1D TOTAL VARIATION
DENOISING PROBLEM

To study the orientation dependent error of the isotropic total variation, we introduce
the following experiment. Placing ourselves in a well-chosen periodic domain Ω =
Ωper, we reduce the 2D TVhi denoising problem in the case of a diagonal image g = gν
with ν = 1√

2
(−1, 1) to a 1D problem. In the following, we will denote respectively

TV and tv the 2D and 1D total variations. The first point of Theorem II.1, which is
the case ν = 1√

2
(1, 1), will be quickly obtained. We next present some general results

about the case ν = 1√
2
(−1, 1) that will be useful to prove the second point of Theorem

II.1 in the following chapters.

6.1 Setting on periodic domain

We actually do not consider the ROF model (5.4) on a square domain, but on a periodic
strip oriented along the diagonal at stake, see the figure below in which each square
pixel is of size h = 1/N and where the green dotted lines are to be identified. For
ν = 1√

2
(−1, 1), we now work with a variable uhi,j defined for (i, j) ∈ Z

2 such that

−N ≤ i − j ≤ N ; 0 ≤ i + j ≤ D and satisfying uhi+D,j+D = uhi,j for any (i, j).

Making the change of variables n = i − j ; d = ⌊ i+j2 ⌋, one checks that our domain
can be represented by

Ωper = {(n, d), −N ≤ n ≤ N, d ∈ Z/DZ}

Our source term gh : Ωper → R is given by gh(n, d) = 1 for n > 0, gh(n, d) = 0 for
n < 0 and gh(0, d) = 1/2, for all d ∈ Z/DZ.
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Later on we will deduce from the Dirichlet setting the same rate for the Neumann
boundary conditions:

{
uh(N + 1, d) = uh(N, d)

uh(−N − 1, d) = uh(−N, d)

The benefit of this periodic setting is to reduce the problem from 2D to 1D as at
the optimum one has uh(n, d) = uh(n, d′) for all n and d, d′ ∈ Z/DZ. Indeed, as all
the terms in the objective are invariant when changing d to d + 1, the shifted image
ũh : (n, d) 7→ uh(n, d+ 1) has the same energy Eh, hence ũh = uh by uniqueness of
the optimizer.

We keep the letter u for this now 1D variable, and divide our energy by a factor√
2Dh which is the width of our 2D domain. The problem then rewrites as:

uh = argmin
uh∈R

2N+1

s.t. BC

Eh(uh) :=
h

2
√
2λ
||uh − gh||22 + tvhi (u

h) (6.1)

where we defined




||uh − gh||22 =

N∑

n=−N
(uhn − ghn)2

tvhi (u
h) =

1√
2

N∑

n=−N

√
(uhn+1 − uhn)2 + (uhn − uhn−1)

2

with ghn = 0 for n < 0, ghn = 1 for n > 0 and gh0 = 1/2 and where BC stands for the
following boundary conditions:

{
uhN+1 = uhN = 1 and uh−N−1 = uh−N = 0 for Dirichlet

uhN+1 = uhN and uh−N−1 = uh−N for Neumann

This problem is therefore a 1D signal denoising relying on a biased 1D total vari-

ation 1√
2

∑
n

√
(uhn+1 − uhn)2 + (uhn − uhn−1)

2. This bias is responsible for the bad

behavior of TVhi on this diagonal.
As a comparison, when dealing with the “good” diagonal one introduces the sym-

metric domain of Ωper, similar in all aspects but oriented along the direction 1√
2
(1, 1).

Then, doing the same analysis, one checks that this leads to a 1D denoising with
the classical 1D discrete total variation tvh(uh) =

∑
n |uhn+1 − uhn|. As a conse-

quence, the denoising is exact: uh = gh. Indeed, the problem (in the Dirichlet
setting) is to minimize ||uh − gh||22 + c tvh(uh) for some constant c > 0 and un-
der the constraint that uhN+1 = uhN = 1 and uh−N = 0. This constraint gives

tvh(uh) ≥
∣∣∣
∑N
n=−N u

h
n+1 − uhn

∣∣∣ = 1 = tvh(gh), hence we obtain the first point

of Theorem II.1.
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6.2 Continuous solution

In this section we investigate the continuous 1D denoising problem obtained when
passing to the limit h → 0 in problem (6.1). Assuming uh is the discretization of a
smooth function u defined on [−1, 1], we write:

Eh(uh) =
1

N
√
2

N∑

n=−N

1

2λ
(u(nh)− ghn)2

+

√(
u(nh+ h)− u(nh)

h

)2

+

(
u(nh)− u(nh− h)

h

)2

and we see that this converges as h→ 0 to

E(u) =

∫ 1

−1

1

2
√
2λ

(u− g)2 + |u′| (6.2)

with
∫ 1

−1
|u′| =: tv(u) being the continuous 1D total variation. It is easily shown that

(6.2) is also the gamma-limit of the discrete problem, so that the minimizers uh of (6.1)
will converge to the minimizer of (6.2).

For the Dirichlet setting, we enforce the constraint u = g at the boundary of the
domain i.e. u(−1) = 0 and u(1) = 1. In that situation, for any admissible u we have:

∫ 1

−1

|u′| ≥
∣∣∣∣
∫ 1

−1

u′
∣∣∣∣ = |u(1)− u(−1)| = 1 =

∫ 1

−1

|g′|

which directly shows that the energy (6.2) is minimal for u = g with value ED = 1.

In the Neumann setting however, no boundary condition is required. To find the so-
lution, one can write the optimality conditions given by duality theory (see [CCC+10]):

tv(u) = −
∫ 1

−1

uz′ and
1√
2λ

(u− g)− z′ = 0

for some function z such that |z| ≤ 1 and z(−1) = z(1) = 0. If these equations are met
for some couple (u, z) then u is optimal in problem (6.2). We search for u of the form
u = ua for some a ∈ R with ua(x) = a if x ∈ (−1, 0) and ua(x) = 1−a if x ∈ (0, 1).
This leads to taking z(x) = a√

2λ
(x + 1) if x ∈ (−1, 0) and z(x) = a√

2λ
(1 − x) if

x ∈ (0, 1). Then one must try to fulfill the equations tv(ua) = −
∫ 1

−1
ua z

′ that is

|1 − 2a| = 1√
2λ
a(1 − 2a) and |z| ≤ 1 that is |a| ≤

√
2λ. These two equations on

a always give rise to a unique solution: if λ ≤ λ∗ :=
√
2
4 then ua is optimal with

a = aopt :=
√
2λ and the minimal energy is E

≤
N := 1 −

√
2λ. If λ > λ∗ then ua

is optimal with a = 1
2 and the minimal energy is E

>

N := 1
4
√
2λ

. In the following, we

will see that in the case λ > λ∗ the discrete problem is exact (uh ≡ 1
2 ), therefore we

will always place ourselves in the case λ ≤ λ∗, and we denoteEN := E
≤
N = 1−

√
2λ.
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6.3 Form of discrete solution

Before turning to the proof of the O(h2/3) bounds, we make some general remarks on
the form of the solution of (6.1):

Proposition II.2. The solution uh of problem (6.1) (either with Dirichlet or Neumann
boundary conditions) satisfies:

1. ∀n ∈ [[−N,N ]], uh−n = 1− uhn, in particular uh0 = 1
2 .

2. ∀n ∈ [[1, N ]], 1 ≥ uhn ≥ 1
2 , hence ∀n ∈ [[−N,−1]], 0 ≤ uhn ≤ 1

2 .

3. uh is nondecreasing: ∀n ∈ [[−N,N − 1]], uhn+1 ≥ uhn.

Proof. For the first point, the symmetry of gh and tvhi yields that ũhn = 1−uh−n satisfies
Eh(ũh) = Eh(uh). By uniqueness of the minimizer, ũh = uh.

For the second point, the truncated variable ûhn = max(ghn,min(uhn,
1
2 )) satisfies

|ûhn − gn| ≤ |uhn − ghn| and |ûhn+1 − ûhn| ≤ |uhn+1 − uhn| for any n, hence Eh(ûh) ≤
Eh(uh) and uh = ûh.

For the third point, finally consider the staircase version of uh given by: ǔhn =
max{uhk , 0 ≤ k ≤ n} if n > 0, ǔh0 = 1

2 and ǔhn = min{uhk , n ≤ k ≤ 0} if n < 0. As
uhn ∈ [0, 1] we have |ǔhn − ghn| ≤ |uhn − ghn|, and again |ǔhn+1 − ǔhn| ≤ |uhn+1 − uhn| for
any n, hence Eh(ǔh) ≤ Eh(uh) and uh = ǔh.

Proposition II.3. We denote λ∗ =
√
2
4 . The solution uh of problem (6.1) is such that:

1. With Dirichlet boundary conditions, uh1 >
1
2 for any λ.

2. With Neumann boundary conditions, uh ≡ 1
2 for any λ ≥ λ∗ and uh1 > 1

2 for
any λ < λ∗h where λ∗h is such that |λ∗h − λ∗| ≤ ch1/3 for some constant c > 0.
In particular, for any λ < λ∗ one has uh1 >

1
2 for h small enough.

Proof. For u ∈ R
2N+1 satisfying the three properties of Proposition II.2 and such that

u1 = 1
2 , we define k ∈ [[1, N ]] such that u−1 = u0 = ... = uk = 1

2 and uk+1 >
1
2 .

Suppose first that k ≤ N − 2 then the energy of u can be written

Eh(u) =
h

2
√
2λ

(uk − 1)2 +
1√
2
|uk − 1

2 |+
1√
2

√
(uk+1 − uk)2 + (uk − 1

2 )
2

+
1√
2

√
(uk+2 − uk+1)2 + (uk+1 − uk)2 +R(u)

where R(u) does not depend on uk. As uk+1 >
1
2 , we have the following derivatives
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or subgradients where we denote tvk =
√
(uk+1 − uk)2 + (uk − 1

2 )
2 and tvk+1 =

√
(uk+2 − uk+1)2 + (uk+1 − uk)2:

∂

∂uk
(tvk)|uk=

1
2
=


 (uk − uk+1) + (uk − 1

2 )√
(uk+1 − uk)2 + (uk − 1

2 )
2




|uk=
1
2

= −1

∂

∂uk
(tvk+1)|uk=

1
2
=

1
2 − uk+1√

( 12 − uk+1)2 + (uk+2 − uk+1)2
= −d < 0

∂

∂uk

(
(uk − 1)2

)
|uk=

1
2

= −1 and
∂

∂uk

(
|uk − 1

2 |
)
|uk=

1
2

= [−1, 1]

Finally ∂Eh

∂uk |uk=
1
2

= − h
2
√
2λ

+ 1√
2
[−1, 1] − 1√

2
(1 + d) ⊂ R

−
∗ so that 0 6∈ ∂Eh

∂uk |uk=
1
2

hence u is not optimal. For k = N − 1 the same reasoning is correct in the Dirichlet
setting noting that uk+2 = 1 whereas in the Neumann setting it is changed to

Eh(u) =
h

2
√
2λ

(uk − 1)2 +
1√
2
|uk − 1

2 |

+
1√
2

√
(uk+1 − uk)2 + (uk − 1

2 )
2 +

1√
2
|uk+1 − uk|+R(u)

for which one computes ∂Eh

∂uk |uk=
1
2

= − h
2
√
2λ

+ 1√
2
[−1, 1] − 2√

2
⊂ R

−
∗ and gets

the same conclusion. This concludes the proof in the Dirichlet setting as in this case
k < N .

In the Neumann setting, the case k = N corresponds to our alternative uh ≡ 1
2 so

that we only have to exhibit an admissible uh such that Eh(uh) < E( 12 ) to prove that
uh1 >

1
2 . We postpone this construction to section 7.4 where, provided that λ < λ∗, we

will explicitly build a uh such thatEh(uh) ≤ 1−λ
√
2+ch2/3 for some constant c > 0.

In comparison the energy of the constant uh ≡ 1
2 isEh( 12 ) =

h
2
√
2λ
×2N×( 12 )2 =

√
2

8λ .

The conclusion comes from studying when 1− λ
√
2 + ch2/3 <

√
2

8λ .

Finally, suppose now that λ ≥ λ∗, we want to prove that uh ≡ 1
2 . For any u ∈

R
2N+1 satisfying the three properties of Proposition II.2, denoting a = u−N ∈ [0, 12 ]

we form the following estimate. On one hand, as u is nondecreasing, the L2 term
||u−gh||2 is bounded below by ||ua−gh||2 where uan = a for n < 0, ua0 = 1

2 and uan =

1− a for n > 0. On the other hand, we write that
√

(un − un+1)2 + (un − un−1)2 ≥√
2|un+1 − un−1| =

√
2(un+1 − un−1). We obtain:

Eh(u) ≥ h

2
√
2λ
× 2Na2 +

1

2

(
uN+1 + uN − u−N−1 − u−N

)
=

√
2

2λ
a2 + 1− 2a

As λ ≥ λ∗ =
√
2
4 , minimizing this quantity over a ∈ [0, 12 ] leads to taking a = 1

2 , and

we get Eh(u) ≥
√
2

8λ = Eh( 12 ), hence uh ≡ 1
2 .
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UPPER BOUND ESTIMATE

In this chapter we prove the upper bound estimate of the point 2 of Theorem II.1, that
is: ∃h, c > 0 such that

∀h ≤ h, Eh − E ≤ ch2/3

We first focus on the Dirichlet setting and will present later on the modifications
needed for Neumann boundary conditions. As no reference to the continuous problem
will appear in this chapter (except from its valueE) we drop the exponent h and denote
the variables uh, gh simply by u, g ∈ R

2N+1. Recall that the primal problem in the
Dirichlet setting is:

u = argmin
(un)−2N≤n≤2N

u2N+1=u2N=1
u−2N−1=u−2N=0

h

2
√
2λ
||u− g||22 + tvhi (u) := Eh(u)

with tvhi (u) =
1√
2

2N∑

n=−2N

√
(un+1 − un)2 + (un − un−1)2

and where gn = 0 for n < 0, gn = 1 for n > 0 and g0 = 1/2. The limit continuous
energy is E = ED = 1.

In the following we propose admissible functions u of a particular form to get upper
bound estimates of the type

E
h ≤ Eh(u) ≤ E + chθ

for 0 < θ < 1.

111



CHAPTER 7. UPPER BOUND ESTIMATE

7.1 General strategy

The idea is to take a function u such that u− g has a compact support of vanishing size
but containing a number of points going to infinity. This is achieved by taking un, for
−N ≤ n ≤ N , of the form (remember that N = 1

h ):

un = f

(
n

Nα

)
with Nα = ⌈h−α⌉ and 0 < α < 1

where f is some continuous function increasing from f(x) = 0 for x ≤ −1 to f(x) =
1 for x ≥ 1. We also suppose in all what follows that f satisfies f(−x) = 1 − f(x)
for any x ∈ R to fulfill the conclusions of Proposition II.2.

As u = g is constant for |n| ≥ Nα, one only has to consider what is happening in
the transition phase, that is for |n| < Nα for the L2 terms, and for |n| ≤ Nα for the
total variation terms. To understand what is at stake, let us first try with the piecewise
affine function

f(x) =





0 if x < −1
x+1
2 if − 1 ≤ x ≤ 1

1 if x > 1

First compute the fidelity term:

h

2
||u− g||22 = h

Nα−1∑

1

(f( n
Nα

)− 1)2

=
h

4N2
α

Nα−1∑

1

n2

=
hNα
12
− h

8
+

h

24Nα

and then the total variation term:

tvhi (u) =
1√
2

Nα−1∑

−Nα+1

√(
n+ 1

2Nα
− n

2Nα

)2

+

(
n

2Nα
− n− 1

2Nα

)2

+
1√
2

∣∣∣∣1−
1

2

(
Nα − 1

Nα
+ 1

)∣∣∣∣+
1√
2

∣∣∣∣
1

2

(−Nα + 1

Nα
+ 1

)∣∣∣∣

=
1√
2

(
(2Nα − 1)×

√
2× 1

4N2
α

+
1

Nα

)

= 1 +

√
2− 1

2Nα

Note that the value of the limit energy appears in the above expression as 1 = E.

112



CHAPTER 7. UPPER BOUND ESTIMATE

Combining the two terms finally leads to:

Eh(u)− E =

√
2− 1

2Nα
+

hNα

12
√
2λ
− h

8
√
2λ

+
h

24
√
2λNα

≤
√
2− 1

2
hα +

h(h−α + 1)

12
√
2λ

− h

8
√
2λ

+
hα+1

24
√
2λ

≤
√
2− 1

2
hα +

h1−α

12
√
2λ

+
hα+1

24
√
2λ

The optimal choice of α is then to make the two dominant terms in hα and h1−α of the
same order, hence α = 1/2. We conclude that, for any c >

√
2−1
2 + 1

12
√
2λ

, one has for
h small enough

Eh(u)− E ≤ c
√
h

In the following we show that with a cubic function f , realizing a smoother tran-
sition, this procedure leads to the announced better result: there exist constants c > 0
and h > 0 depending only on λ such that:

∀h ≤ h, Eh(u)− E ≤ ch2/3 (7.1)

7.2 Approach for a general function

In fact for any function f that is regular enough (C1), we have the following conver-
gence when h → 0: uh converges to g in L2 so h||uh − gh||22 → 0, and tvhi (u) →
tv(g) = 1. So E(u)→ E. We want to estimate the speed of this convergence.

The L2 term is easy to estimate:

h

2
||u− g||22 = h

Nα−1∑

n=1

(f( n
Nα

)− 1)2

= hNα
1

Nα

Nα−1∑

1

(f( n
Nα

)− 1)2

∼ h1−α
∫ 1

0

(f − 1)2 when Nα →∞

hence for any c1 > 1√
2λ

∫ 1

0
(f − 1)2, we have for h small enough:

h

2
√
2λ
||u− g||22 ≤ c1h1−α (7.2)

113



CHAPTER 7. UPPER BOUND ESTIMATE

Manipulations on the total variation term are trickier, it is given by:

tvhi (u) =
1√
2

Nα−1∑

n=−Nα+1

√(
f(n+1

Nα
)− f( n

Nα
)
)2

+
(
f( n

Nα
)− f(n−1

Nα
)
)2

+
1√
2
|1− f(Nα−1

Nα
)|+ 1√

2
|f(−Nα+1

Nα
)|

The boundary terms simplify into

1√
2
|1− f(Nα−1

Nα
)|+ 1√

2

∣∣∣f(−Nα+1
Nα

)
∣∣∣ =
√
2(1− f(1− 1

Nα
))

For the middle terms, we use the following lemma with un = f( n
Nα

):

Lemma II.2. If (un) is an increasing sequence, then for any n:

1√
2

√
(un+1 − un)2 + (un − un−1)2 ≤

1

2
(un+1 − un−1) + dn

with

dn =
1

8
(un+1 − un−1)(2un − un+1 − un−1)

(
1

un+1 − un
− 1

un − un−1

)
(7.3)

=
(un+1 − un−1)(2un − un+1 − un−1)

2

8(un+1 − un)(un − un−1)
(7.4)

Proof. Denote A =
√
(un+1 − un)2 + (un − un−1)2 the quantity we want to esti-

mate. Using
√
x+ h ≤ √x+ 1

2
√
x
h we get:

A =
√

2(un+1 − un)2 + (un − un−1)2 − (un+1 − un)2

=
√
2(un+1 − un)2 + (un+1 − un−1)(2un − un+1 − un−1)

≤
√
2(un+1 − un) +

1

2
√
2(un+1 − un)

(un+1 − un−1)(2un − un+1 − un−1)

And similarly

A =
√

2(un − un−1)2 + (un+1 − un)2 − (un − un−1)2

≤
√
2(un − un−1)−

1

2
√
2(un − un−1)

(un+1 − un−1)(2un − un+1 − un−1)

The result is obtained as the average of these two estimates.

Using this lemma leads to splitting the total variation terms under study into two
terms. The term in 1

2 (un+1 − un−1) = 1
2 (f(

n+1
Nα

) − f(n−1
Nα

)) is responsible for the
convergence towards 1 as

Nα−1∑

−Nα+1

1

2

(
f(n+1

Nα
)− f(n−1

Nα
)
)
=

1

2

(
f(1) + f(1− 1

Nα
)− f(−1)− f(−1 + 1

Nα
)
)

= f(1− 1
Nα

)
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For the term in dn note that the symmetry of f gives d0 = 0 and d−n = dn so that the
sum is reduced to n ∈ [[1, Nα − 1]] and we get the expression:

tvhi (u) ≤ 1 + (
√
2− 1)(1− f(1− 1

Nα
)) +

Nα−1∑

1

dn (7.5)

Now a general study of the sum
∑Nα−1

1 dn using only assumptions on the deriva-
tives of f seems to fail: we explain why below. However our result will come from its
exact computation in the case of a cubic function f : we give this calculation in the next
section.

To keep it with a general f , in order to bound dn in its expression (7.3) one would
assume (and these assumptions are indeed satisfied by our successful cubic f below):

1. f ′ and f ′′ are bounded on (0, 1)

2. f ′ > 0 and f ′′ < 0 on (0, 1) (that is, f is increasing to 1 f ′ is decreasing to 0)

This allows one to write:

• 0 ≤ un+1 − un−1 = f(n+1
Nα

)− f(n−1
Nα

) ≤ 2
Nα
||f ′||∞

• 0 ≤ 2un − un−1 − un+1 = 2f( n
Nα

)− f(n−1
Nα

)− f(n+1
Nα

) ≤ 1
N2

α
||f ′′||∞

• 0 ≤ 1

un+1 − un
− 1

un − un−1
=

1

f(n+1
Nα

)− f( n
Nα

)
− 1

f( n
Nα

)− f(n−1
Nα

)

and we therefore obtain:

Nα−1∑

1

dn ≤
1

4N3
α

||f ′||∞||f ′′||∞
Nα−1∑

1

1

f(n+1
Nα

)− f( n
Nα

)
− 1

f( n
Nα

)− f(n−1
Nα

)

≤ 1

4N3
α

||f ′||∞||f ′′||∞
(

1

f(1)− f(1− 1
Nα

)
− 1

f( 1
Nα

)− f(0)

)

≤ 1

4N3
α

||f ′||∞||f ′′||∞
1

1− f(1− 1
Nα

)

(we drop the term in − 1
f ′(0) as it will not count against the unbounded one in 1

f ′(1) )

Finally, from (7.5) we have

tvhi (u) ≤ 1 + (
√
2− 1)(1− f(1− 1

Nα
)) +

1

4N3
α

||f ′||∞||f ′′||∞
1

1− f(1− 1
Nα

)

At this point there seems to be a trade off between (1−f(1− 1
Nα

)) and its inverse. We
should therefore make a reasonable assumption on the decay of f ′ to 0 in 1: we want
to suppose that

1− f(1− 1

Nα
) ∼

(
1

Nα

)p
(7.6)
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for some p > 0 such that the terms 1− f(1− 1
Nα

) and
(
N3
α(1− f(1− 1

Nα
))
)−1

are

of the same order, that is p = 3 − p i.e. p = 3/2. This could be fine and lead to
tvhi (u) ≤ 1+ c2h

3
2α so Eh(u) ≤ E+ c1h

1−α+ c2h
3
2α which we would optimize into

α = 2/5 and have finally Eh(u) ≤ E + ch3/5.

However, the assumption 1− f(1− 1
Nα

) ∼ (Nα)
−3/2 contradicts the fact that f ′′

is bounded near 1 which we use in the upper bound for dn. For a bounded f ′′ one can

only chose p ≥ 2 in (7.6) and get a N−1
α term from

(
N3
α(1− f(1− 1

Nα
))
)−1

. Finally

this general analysis seems to only lead to a rate in
√
h as before.

7.3 Result for a particular function

If we compute exactly the dn term for an easy to deal with function f , the derivative
terms in f ′ and f ′′ are multiplied and oddly give a better estimate. We chose to take a
polynomial f given by:

f(t) =





0 if t ≤ −1
1
2 (1 + t)k if − 1 ≤ t ≤ 0
1− 1

2 (1− t)k if 0 ≤ t ≤ 1
1 if t ≥ 1

(7.7)

for some integer k ≥ 1. As 1− f(1− 1
Nα

) = 1
Nk

α
we have from equation (7.5):

tvhi (u) ≤ 1 + (
√
2− 1)

1

Nk
α

+

Nα−1∑

1

dn (7.8)

and then we can explicitly the sum of the dn for small values of k. As we have seen in
the beginning, for k = 1 one finds

∑
dn to be of order N−1

α and this leads to the
√
h

rate. For k = 2 one can obtain

Nα−1∑

1

dn ≤ c
logNα
N2
α

for some constant c > 0, and this would lead to a rate in hθ for any θ < 2/3. We get
even better when taking k = 3 (and numerical results seem to show that taking k > 3
does not lead to better estimates):

Fact II.2. For the choice of f given by (7.7) with k = 3, one has

Nα−1∑

1

dn ≤
3

N2
α
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Proof. Let us denote

∆+ := f(n+1
Nα

)− f( n
Nα

) = 1
2

(
(1− n

Nα
)3 − (1− n+1

Nα
)3
)

= 1
2

(
3(1− n

Nα
)2 1
Nα
− 3(1− n

Nα
) 1
N2

α
+ 1

N3
α

)

= 3
2Nα

(
(1− n

Nα
)2 − (1− n

Nα
) 1
Nα

+ 1
3N2

α

)

Similarly (that is, taking n← n− 1),

∆− := f( n
Nα

)− f(n−1
Nα

) = 3
2Nα

(
(1− n

Nα
)2 + (1− n

Nα
) 1
Nα

+ 1
3N2

α

)

so that

∆+ +∆− = f(n+1
Nα

)− f(n−1
Nα

) = 3
Nα

(
1

3N2
α
+ (1− n

Nα
)2
)

∆− −∆+ = 2f( n
Nα

)− f(n+1
Nα

)− f(n−1
Nα

) = 3
N2

α
(1− n

Nα
)

and

∆+ ×∆− =
(
f(n+1

Nα
)− f( n

Nα
)
)(
f( n

Nα
)− f(n−1

Nα
)
)

= 9
4N2

α

(
(1− n

Nα
)2 + 1

N3
α
− (1− n

Nα
) 1
N

)

×
(
(1− n

Nα
)2 + 1

N3
α
+ (1− n

Nα
) 1
N

)

= 9
4N2

α

((
(1− n

Nα
)2 + 1

3N2
α

)2 −
(
(1− n

Nα
) 1
Nα

)2)

We can now estimate dn thanks to expression (7.4):

dn = 1
8 ×

(

3
Nα

(

1
3N2

α
+(1− n

Nα
)2

))

×
(

3
N2

α
(1− n

Nα
)

)2

9
4N2

α

((
(1− n

Nα
)2+

1
3N2

α

)2
−
(
(1− n

Nα
)

1
Nα

)2)

= 3
2N3

α
(1− n

Nα
)2 ×

1
3N2

α
+(1− n

Nα
)2

(
(1− n

Nα
)2+

1
3N2

α

)2
−(1− n

Nα
)2

1
N2

α

Then as n ≤ Nα − 1 we can use

(
(1− n

Nα
)2 + 1

3N2
α

)2 − (1− n
Nα

)2 1
N2

α
≥ (1− n

Nα
)4 − 1

3N2
α
(1− n

Nα
)2 > 0

and make the variable change n← N − n to get:

Nα−1∑

n=1

dn ≤
3

2N3
α

Nα−1∑

1

n2
1

3N2
α
+ n2

n4 − 1
3N2

α
n2
≤ 3

2N3
α

Nα−1∑

1

2 ≤ 3

N2
α

because 1
3N2

α
+ n2 ≤ 2(n2 − 1

3N2
α
).
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This concludes our proof of the upper bound inequality for the main Theorem II.1.
Indeed, when combining the total variation estimate (7.5) with the L2 estimate (7.2),
we finally are able to state the following: for any c1 > 1√

2λ

∫ 1

0
(f − 1)2 = 1

28
√
2λ

and
c2 > 3, there exists h > 0 such that

∀h ≤ h, Eh(u) ≤ E + c1h
1−α + c2h

2α (7.9)

Taking α = 1/3 then proves our result (7.1). More precisely, given c1, c2 and h > 0,
the best α in (7.9) must satisfy −c1h1−α log h + 2c2h

2α log h = 0 which leads to
α = 1

3 −
log(2c2/c1)

3 log h and gives the upper bound Eh(u) ≤ E + ch2/3 for the constant

c = (21/3 + 2−2/3) c
2/3
1 c

1/3
2 . We note that the value of c varies in λ−2/3.

7.4 Modifications for Neumann boundary conditions

In this section we adjust the admissible variable u from the previous section to explain
why the upper bound result (7.1) remains valid for Neumann boundary conditions. In
the following, c denotes a constant depending only on λ that can change from line to
line.

Remember from section 6.2 that with the Neumann boundary conditions, the limit
continuous value of the energy is changed toE = EN = 1−

√
2λwhen λ ≤ λ∗ =

√
2
4 .

Because of the form of this continuous solution, it is natural to consider, for u the cubic
transition in the Dirichlet setting of the previous section, the variable v given by

∀n ∈ [[−N,N ]], vn =
1

2
+ µ(un −

1

2
)

Here µ ∈ (0, 1) is a shrinking parameter that we adjust so that vN = 1 − aopt =
1−
√
2λ: as uN = 1 this corresponds to taking µ = 1− 2

√
2λ.

We write vn = fµ(
n
Nα

) for the function fµ = 1
2 + µ(f − 1

2 ) which is such that

fµ(x) =
1+µ
2 = 1−

√
2λ for x ≥ 1. This leads to splitting the fidelity term into:

h

2
||v − g||22 = h

Nα∑

n=1

(vn − 1)2 + h

N∑

n=Nα+1

(vn − 1)2

Then on one hand when Nα →∞,

h

Nα∑

n=1

(vn − 1)2 ∼ h1−α
∫ 1

0

(fµ − 1)2 so h

Nα∑

n=1

(vn − 1)2 ≤ ch1−α

and on the other hand

h

N∑

n=Nα+1

(vn − 1)2 = h(N −Nα)× 2λ2 ≤ 2λ2
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For the total variation term, we have

tvhi (v) = µtvhi (u) = (1− 2
√
2λ)tvhi (u)

≤ (1− 2
√
2λ)(1 + ch2α)

≤ 1− 2
√
2λ+ ch2α

so finally

Eh(v) =
h

2
√
2λ
||v − g||22 + tvhi (v)

≤
√
2λ+ ch1−α + 1− 2

√
2λ+ ch2α

≤ E + ch2/3

when taking α = 1/3, and we indeed have the same estimate for Neumann than for
Dirichlet boundary conditions.

119



CHAPTER 8

LOWER BOUND ESTIMATE

In this chapter we now prove the lower bound estimate of the point 2 of Theorem II.1,
that is: ∃h, c > 0 such that

∀h ≤ h, ch2/3 ≤ Eh − E
Symmetrically to what we did before, we will obtain this bound by proposing an ad-
missible solution, but for the dual problem. However, the proof we present will be less
direct than in the previous chapter as we will first have to study the continuous problem

corresponding to the limit value of the rescaled energy h−2/3(E
h − E).

8.1 Dual problem

Writing that
√
(un+1 − un)2 + (un − un−1)2 = max

p2n+q
2
n≤1

qn(un+1 − un) + pn(un − un−1)

we obtain the following dual problem of (6.1):

max
p2n+q

2
n≤1

−N≤n≤N

min
u∈R2N+1

1√
2

{ N∑

n=−N

h

2λ
(un − gn)2 +qn(un+1 − un)+pn(un − un−1)

}

= max
p2n+q

2
n≤1

−N≤n≤N

min
u∈R2N+1

1√
2

{ N∑

n=−N

h

2λ
(un − gn)2 +

N−1∑

n=−N+1

un
(
qn−1 − qn + pn − pn+1

)

+ uN
(
qN−1 − qN + pN

)
+ u−N

(
− q−N + p−N − p−N+1

)

+ uN+1qN − u−N−1p−N
}
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From this point on, we focus exclusively on Dirichlet boundary conditions, that is
uN = uN+1 = 1 ; u−N = u−N−1 = 0. See section 8.5 for Neumann boundary
conditions.

For |n| < N , we find that un = gn − λ
h (qn−1 − qn + pn − pn+1), and the value of

the dual problem is consequently (after simplification using the value of gn):

max
p2n+q

2
n≤1

−N≤n≤N

1√
2

{1
2
(q−1 + q0 + p0 + p1)−

λ

2h

N−1∑

n=−N+1

(qn−1 − qn + pn − pn+1)
2
}

Now we make two more simplifications before turning to an evaluation of the con-
vergence rate of this quantity. First, one easily checks that the objective is concave
and invariant by the change (qn, pn) → (p−n, q−n): as a consequence, one can find a
solution satisfying qn = p−n for all n.

Second, duality indicates that at the optimum one should have for all n the re-
lation

√
(un+1 − un)2 + (un − un−1)2 = qn(un+1 − un) + pn(un − un−1). Tak-

ing n = 0 in this equality gives, thanks to the symmetry of u (Proposition II.2), that√
2|u1 − u0| = (q0 + p0)(u1 − u0) so that q0 = p0 =

√
2
2 because u1 > u0 = 1

2
(Proposition II.3). Simplifying the term (qn−1 − qn + pn − pn+1)

2 which is invariant
by n→ −n and vanishes at n = 0, we finally get

E
h
= max

1

2
+

1√
2
p1 −

λ√
2h

N−1∑

n=1

(p−n+1 − p−n + pn − pn+1)
2 (8.1)

with the constraint that p2n + p2−n ≤ 1 for all n ∈ [[1, N ]] and that p0 =
√
2
2 .

8.2 Change of variables

We are interested in the evaluation of the convergence rate of the value of the problem
(8.1) towards its continuous limit E = ED = 1. To begin with, we notice that taking

pn ≡
√
2/2 gives E

h ≥ E. Consequently, we expect the optimal value of p to be close
to
√
2/2 for N large. Together with the symmetry regarding n→ −n of the objective,

this leads us to proposing the following change of variables: for n ∈ [[0, N ]]

sn =
1√
2
(pn + p−n)− 1 ; rn =

1√
2
(pn − p−n)

for which we calculate

p−n+1 − p−n + pn − pn+1 =
1√
2
(sn−1 − sn+1 + 2rn − rn−1 − rn+1)

p2n + p2−n ≤ 1 ⇐⇒ s2n + 2sn + r2n ≤ 0
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and it gives rise to

E
h−E = max

(sn,rn)0≤n≤N

s0=r0=0
s2n+2sn+r

2
n≤0

1

2
(s1+r1)−

λ

2
√
2h

N−1∑

n=1

(sn−1−sn+1+2rn−rn−1−rn+1)
2

We would like to show that E
h−E ≥ cN−α for some exponent 0 < α < 1. If we

introduce τ = 1/Nβ for some β ∈ (0, α) and σn = Nαsn, ρn = Nα−βrn, then we
can force the appearance of first and second discrete derivatives for σ and ρ as

(E
h − E)Nα = max

(σn,ρn)
0≤n≤N

1

2
(σ1 +

ρ1

τ
)

− λ

2
√
2
N1−α−βτ

N−1∑

n=1

(
σn−1 − σn+1

τ
+

2ρn − ρn−1 − ρn+1

τ2

)2

along with the constraints σ0 = ρ0 = 0 and N−α
σ

2
n + 2σn +N2β−α

ρ
2
n ≤ 0.

If 1 − α − β = 0, we find that as N → ∞, the limiting energy in the variational
problem should be of the form,

max
1

2
ρ′(0)− λ

2
√
2

∫ ∞

0

|2σ′ + ρ′′|2

for functions σ, ρ : [0,∞) → R with σ(0) = ρ(0) = 0. The constraint, on the other
hand, becomes





ρ2 = 0 if 2β − α > 0

2σ + ρ2 ≤ 0 if 2β − α = 0⇔ β = 1/3, α = 2/3

2σ ≤ 0 if 2β − α < 0.

In the first case, which is when α < 2/3, this continuous limit problem has value
zero so we may expect that the discrete renormalized energy goes to zero, and as a

consequence that E
h − E = o(N−α) as N → ∞. In the third case, the continuous

problem has value +∞ and we expect that Nα(E
h − E) → +∞ for α > 2/3. We

would like to show that in the second case, that is α = 2/3, the limiting problem has a

positive value c so that E
h − E ≥ cN−2/3 for sufficiently large N . Consequently we

deal with the problem

max
(σ,ρ)∈S

1

2
ρ′(0)− λ

2
√
2

∫ ∞

0

(2σ′ + ρ′′)2 =: D(σ, ρ) (8.2)

where S is the set of couples of functions σ, ρ : [0,∞)→ R such that: σ(0) = ρ(0) = 0,
2σ+ ρ2 ≤ 0, ρ admits a right derivative at 0 and the distributional derivative 2σ′ + ρ′′

is in L2(0,∞).
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Our strategy is now the following: in section 8.3 we prove that problem (8.2) has
a positive value and investigate the form of the solution (σ, ρ). Then in section 8.4 we
explain how to discretize it in order to get the positivity, for h small enough, of our
discrete problem:

(E
h − E)h−2/3 = max

(σn,ρn)0≤n≤N

σ0=ρ0=0

N−2/3
σ

2
n+2σn+ρ

2
n≤0

Dh(σ,ρ) (8.3)

with Dh(σ,ρ) :=
1

2
(σ1+

ρ1

τ
)− λ

2
√
2
τ

N−1∑

n=1

(
σn−1−σn+1

τ
+

2ρn− ρn−1− ρn+1

τ2

)2

8.3 Study of the limit problem

First, the change of variables σ̂(t) = λ−2/3σ(tλ−1/3), ρ̂(t) = λ−1/3ρ(tλ−1/3) shows
that (adding the parameter λ to the arguments of D)

maxD(σ, ρ, λ) = λ−2/3 maxD(σ, ρ, 1)

or even, for any λ0 > 0, that

maxD(σ, ρ, λ) =

(
λ

λ0

)−2/3

maxD(σ, ρ, λ0)

Consequently, we can restrict our study of the problem to a single value of λ. In all the
following, we chose to take λ = 1√

2
so that problem (8.2) writes:

1

2
max

(σ,ρ)∈S
ρ′(0)− 1

2

∫ ∞

0

(2σ′ + ρ′′)2

8.3.1 A dual of the dual

To understand the solution of problem (8.2), we derive a dual of it writing

− 1

2

∫ ∞

0

(2σ′ + ρ′′)2 = inf
ψ

∫ ∞

0

(2σ′ + ρ′′)ψ +
1

2

∫ ∞

0

ψ2 (8.4)

where the infimum lies on ψ ∈ C∞c ([0,∞)), the set of the restrictions to [0,∞) of
smooth functions with compact support in R. Note that if σ, ρ are regular enough one
has at the optimum ψ = −(2σ′ + ρ′′). Integrating by parts and using the fact that
σ(0) = ρ(0) = 0 for any (σ, ρ) ∈ S, we obtain the dual problem

1

2
inf
ψ

1

2

∫ ∞

0

ψ2 + sup
(σ,ρ)∈S

(1− ψ(0))ρ′(0) +
∫ ∞

0

(ρψ′′ − 2σψ′)

First, taking for ρ a bounded smooth function with |ρ′(0)| as large as we want, we
see that one must have ψ(0) = 1. Second, we relax the constraint (σ, ρ) ∈ S in the
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remaining integral into just 2σ + ρ2 ≤ 0 (we will show below that strong duality with
problem (8.2) actually occurs) to get:

1

2
inf

ψ(0)=1

1

2

∫ ∞

0

|ψ|2 +
∫ ∞

0

H(ψ′, ψ′′)

where the function H is defined for x, y ∈ R by

H(x, y) = sup
2σ+ρ2≤0

−2σx+ ρy =





+∞ if x > 0 or x = 0, y 6= 0,

0 if (x, y) = (0, 0),
y2

4|x| if x < 0.

(taking ρ = 0, σ = −N for the case x > 0 or x = 0, y 6= 0; and ρ = −y/2x, σ =
−ρ2/2 for the case x < 0). Observe that necessarily ψ′ ≤ 0. Denoting φ =

√−ψ′

gives φ′ = −ψ′′/(2
√−ψ′) so that H(ψ′, ψ′′) = |φ′|2. Then, one has ψ(x) = 1 −∫ x

0
φ(t)2dt. In particular as ψ2 is integrable, one must have

∫∞
0
φ(t)2dt = 1 and

ψ(x) =
∫∞
x
φ(t)2dt. Hence the dual problem can be rewritten (extending the search

of φ to H1(0,∞) by density)

1

2
inf

(φ,ψ)∈S′

{
1

2

∫ ∞

0

|ψ|2 +
∫ ∞

0

|φ′|2
}

(8.5)

where S′ = {(φ, ψ) s.t. φ ∈ H1(0,∞), ‖φ‖2L2 = 1 and ψ(x) =
∫∞
x
φ(t)2dt}.

It turns out this problem has a positive value:

Proposition II.4. Problem (8.5) admits a minimizer (φ, ψ) ∈ S′.

Proof. Consider a minimizing sequence (φn, ψn): as φn is bounded in H1(0,∞),
up to a subsequence it converges to some φ, moreover the convergence is strong in
L2(0, T ) for any T > 0, and

∫∞
0
φ2 ≤ 1. We also assume that ψn converges, weakly in

L2(0,+∞), to some ψ. In addition, ψn(x) = 1−
∫ x
0
φ2n → 1−

∫ x
0
φ2 =: ψ̃(x) for any

x ≥ 0, and one even has |ψn(x)− ψ̃(x)| = |
∫ x
0
(φn−φ)(φn+φ)| ≤ 2‖φn−φ‖L2(0,x)

hence the convergence is locally uniform. Consequently, it must be that ψ̃ = ψ. As∫∞
0
|ψ|2 < +∞, we deduce that ψ (which is nonincreasing) goes to 0 at infinity, hence∫∞

0
φ2 = 1. It follows that (φ, ψ) is a minimizer of (8.5).

To recover the positive value of problem (8.2), we now need to show that strong
duality holds. To do that we first prove some properties of the minimizer (φ, ψ).

Proposition II.5. The minimizer (φ, ψ) ∈ S′ of problem (8.5) satisfies:

1. ψ, φ ∈ C∞([0,∞)) ∩ L2(0,∞).

2. φ′(0) = 0 and φ′′ = kφ where k is the primitive of ψ given by k(t) =
∫ t
0
ψ −A

with A = ‖φ′‖2L2 + ‖ψ‖2L2 .

3. φ ≥ 0, φ(0) > 0, and φ is nonincreasing and tends to zero at infinity.
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Proof. A first remark is that ψ′ = −φ2 ∈ L1(0,∞) and ψ′′ = −2φφ′ ∈ L1(0,∞),
hence ψ is at least C1. Moreover, if (φ, ψ) is a minimizer, so is (|φ|, ψ). The solution
of (8.5) being unique, one has φ ≥ 0.

From this solution (φ, ψ), let us form for ε ∈ R and for a test function η

φε =
φ+ εη

||φ+ εη||L2

; ψε(x) =

∫ ∞

x

φ2ε

Then (φε, ψε) are admissible in the dual of the dual problem and one computes:

φ2ε = φ2 + 2εηφ− 2εφ2
∫ ∞

0

φη +O(ε2)

ψ2
ε(x) = ψ2(x) + 4εψ(x)

∫ ∞

x

φη − 4εψ2(x)

∫ ∞

0

φη +O(ε2)

φ′ε = φ′ + εη′ − εφ′
∫ ∞

0

φη +O(ε2)

so that, after noting that
∫∞
0
ψ(x)

∫∞
x
φη dx =

∫∞
0
φην with ν(t) =

∫ t
0
ψ, one has

∫ ∞

0

|φ′ε|2 =

∫ ∞

0

|φ′|2 − 2ε

∫ ∞

0

|φ′|2
∫ ∞

0

φη + 2ε

∫ ∞

0

φ′η′ +O(ε2)

∫ ∞

0

|ψε|2 =

∫ ∞

0

|ψ|2 − 4ε

∫ ∞

0

|ψ|2
∫ ∞

0

φη + 4ε

∫ ∞

0

φην +O(ε2)

Now the optimality of (ψ, φ) in problem (8.5) leads to
∫ ∞

0

φην −
∫ ∞

0

|ψ|2
∫ ∞

0

φη +

∫ ∞

0

φ′η′ −
∫ ∞

0

|φ′|2
∫ ∞

0

φη = 0 (8.6)

First, as this relation holds for any η ∈ C∞c (0,∞), we have φ′′ = kφ (with k = ν −A
where A = ||ψ||2L2 + ||φ′||2L2 ) in the weak sense. However this relation induces the
regularity of φ and ψ which are finally C∞. In addition, re-evaluating the relation (8.6)
with now η ∈ C∞c ([0,∞)), we also deduce that φ′(0) = 0.

To finish with, one must have φ(0) > 0 as otherwise φ would be zero everywhere
as solution of φ′′ = kφ, φ′(0) = φ(0) = 0. And for its monotonicity, note that
φ′′ = kφ has the sign of k which is nonincreasing since k′ = ψ ≥ 0. Hence φ′′ is
first nonpositive (starting at φ′′(0) = −Aφ(0) ≤ 0) then possibly nonnegative. As a
consequence, φ′ is first nonincreasing, and hence nonpositive since φ′(0) = 0, then can
become nondecreasing. But even in that case, φ′ has to remain nonpositive otherwise
one has φ′(t) ≥ c > 0 for t large enough so φ(t) ≥ ct + c′ which contradicts the fact
that φ2 is integrable. This concludes the proof.

In the following, functions φ, ψ, k and constant A denote the solution described in
Proposition II.5. We show that strong duality holds between problems (8.2) and (8.5)
by building an admissible couple (σ, ρ) ∈ S satisfying ψ = −(2σ′ + ρ′′) and using
identity (8.4). We divide our study in two cases: either φ > 0 on R

+ (the “positive”
case), or φ > 0 on [0, a) and φ = 0 on [a,+∞[ for some a > 0 (the “compact support”
case). Note that numerical experiments seem to show we actually are in the “compact
support” case, see Figure 8.1.
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8.3.2 Strong duality result

In the “positive” case, recalling how the dual problem was obtained, one defines the
following functions: ρ = −φ′/φ, σ = −ρ2/2 and then checks that 2σ + ρ2 ≤ 0,
σ(0) = ρ(0) = 0, ρ′(0) = A and 2σ′ + ρ′′ = −ψ so that strong duality holds as:

1

2

{
ρ′(0)− 1

2

∫ ∞

0

|2σ′ + ρ′′|2
}
=

1

2

{∫ ∞

0

φ′2 +
1

2

∫ ∞

0

ψ2
}

In the “compact support” case, one still defines ρ = −φ′/φ and σ = −ρ2/2 on
[0, a). Then one has to decide what to do on [a,+∞). First, for t < a:

ρ(t) = −φ
′(t)

φ(t)
=

1

φ(t)

∫ a

t

φ′′(s)ds =

∫ a

t

φ(s)

φ(t)
k(s)ds

As φ is nonincreasing, φ(s)φ(t) ≤ 1 in the above integral and we deduce

|ρ(t)| ≤
∫ a

t

k(s)ds→ 0 when t→ a

and also σ(t) = −ρ(t)2/2 → 0 when t → a. The first guess would then consist in
extending σ and ρ by continuity and one could set σ = ρ = 0 on [a,+∞).

This would actually lead to a discontinuous ρ′. Indeed on one hand ρ is right differ-
entiable in a with right derivative ρ′(a+) = 0. On the other hand, ρ′(t) = ρ2(t)− k(t)
for t ∈ (0, a) with ρ(t) → 0 and k(t) → k(a) when t → a, hence1 ρ is also left
differentiable in a but with left derivative ρ′(a−) = −k(a). Finaly ρ′ is discontinuous
at a (and C∞ elsewhere), so ρ′′ has a dirac mass at a. Whereas σ = −ρ2/2 on (0, a)
as well as on [a,+∞) is continuous and has derivative σ′ = −ρ′ρ also continuous at a
as ρ(a) = 0. As a consequence 2σ′ + ρ′′ 6∈ L2 and (σ, ρ) 6∈ S.

This is why one should not take σ = 0 but rather σ = −k(a)/2 on (a,+∞) and
still ρ = 0. With this setting, 2σ+ ρ′ is continuous at a and the two dirac masses com-
pensate each other so that 2σ′ + ρ′′ ∈ L2. One just needs to check that 2σ + ρ2 ≤ 0,

1This is an easy result we recall for clarity:

Lemma II.3. Suppose f : (a, b) → R is a C1 function such that f ′(t) → ℓ ∈ R when t → b. Then f
admits a limit in b, is differentiable in b, and f ′(b) = ℓ.

Proof. For any η > ε > 0, we have according to the mean value theorem that |f(b − ε) − f(b − η)| =
(η−ε)|f ′(b−ν)| for some ν ∈ (ε, η). As f ′ converges in b it is bounded, hence (f(b−ε))ε→0 is Cauchy
and converges. We further denote f(b) its limit.
For the differentiability of f in b: fix ε > 0 and take δ > 0 such that |f ′(t)− ℓ| ≤ ε for any t ∈ (b− δ, b).
For any η < δ we can write:

∣

∣

∣

∣

f(b)− f(b− η)

η
− ℓ

∣

∣

∣

∣

≤
1

η

∫ b

b−η

|f ′(t)− ℓ| dt ≤
1

η
× ηε = ε
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Figure 8.1 – Primal solution u (left), dual solutions p and q (center), corresponding σ
(blue) and ρ (red) (right) in the Dirichlet setting with N = 100.

that is that k(a) ≥ 0. This comes again from the fact that φ′′ = kφ: if k(a) < 0
then, as φ > 0 on [0, a) and k is nondecreasing, one would obtain that φ′ is (strictly)
decreasing on [0, a). Starting with φ′(0) = 0 we obtain that φ′(a) < 0, which contra-
dicts the regularity of φ as φ = 0 on [a,+∞). Finally, (σ, ρ) ∈ S and, just as before,
2σ′ + ρ′′ = −ψ so strong duality holds.

8.4 Return to the discrete problem

Recall we denoted

D(σ, ρ) =
1

2

{
ρ′(0)− 1

2

∫ ∞

0

|2σ′ + ρ′′|2
}

Dh(σ,ρ) =
1

2

{
σ1 +

1

τ
ρ1 −

τ

2

N−1∑

n=1

(
σn−1 − σn+1

τ
+

2ρn − ρn−1 − ρn+1

τ2

)2 }

the objectives of the continuous and discrete problems respectively (where again τ =
N−1/3). The constraints on σ, ρ : R+ → R and σ,ρ ∈ R

N+1 are

σ(0) = ρ(0) = 0 and 2σ + ρ2 ≤ 0 on R
+

σ0 = ρ0 = 0 and ∀n ∈ [[1, N ]], N−2/3
σ

2
n + 2σn + ρ

2
n ≤ 0

Given an admissible (σ, ρ) of the continuous problem with D(σ, ρ) > 0 we chose
the following discretization: set σ0 = 0 and ∀n ≥ 1, σn = σ(τn) − τ as well as
ρn = ρ(τn) for all n ∈ [[0, N ]]. Then – provided σ is bounded – (σ,ρ) is indeed
admissible in the discrete problem as σ0 = ρ0 = 0 and

N−2/3
σ

2
n + 2σn + ρ

2
n = N−2/3(σ(τn)− τ)2 − 2τ + 2σ(τn) + ρ(τn)2

≤ N−2/3(σ(τn)− τ)2 − 2N−1/3

with this quantity being nonpositive as soon as |σ(τn)−N−1/3| ≤
√
2N1/6 which is

true for N sufficiently large when σ is bounded.
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Therefore we just need to check that with this discretizationDh(σ,ρ) converges to
D(σ, ρ) when N →∞ as expected in the first place. First note that σ1 = σ(τ)− τ →
σ(0) = 0 (as long as σ is continuous) and that 1

τ ρ1 = ρ(τ)−ρ(0)
τ → ρ′(0). As a re-

sult we focus next on the convergence of the Riemann sum towards the desired integral.

Second, we can in fact take σ to be σn = σ(τn). Indeed this only affects the first
term of the sum adding:

−τ
2

∣∣∣∣
σ(2τ)−τ

τ
+
ρ(2τ)−2ρ(τ)+ρ(0)

τ2

∣∣∣∣
2

+
τ

2

∣∣∣∣
σ(2τ)−σ(0)

τ
+
ρ(2τ)−2ρ(τ)+ρ(0)

τ2

∣∣∣∣
2

with ρ(2τ)−2ρ(τ)+ρ(0)
τ2 → ρ′′(0), σ(2τ)−σ(0)τ → 2σ′(0) and σ(2τ)−τ

τ → 2σ′(0) − 1, so
that this quantity tends to zero when τ → 0.

To ensure the convergence of the sum, we will need additional regularity on σ and
ρ. In the compact support case, we find a new couple (σ,ρ), more regular and still
satisfying D(σ, ρ) > 0 whereas in the positive case we stick with the (σ, ρ) defined
above but show they decrease exponentially fast.

8.4.1 Compact support case

Recall that in this case we have σ, ρ : R+ → R satisfyingD(σ, ρ) > 0 with ρ = σ′ = 0
on (a,+∞) and σ, ρ of class C∞ on [0,∞)\{a}. We extend σ and ρ to R

− by 0
and regularize them into C∞ functions on [0,∞) while keeping their admissibility in
problem (8.2) as well as the compactness of their support and the value of ρ′(0).

To this end, we first regularize by convolution with a function η ∈ C∞c (R) such
that η ≥ 0,

∫∞
0
η = 1, and η(x) = 0 for any x 6∈ (0, 1): we obtain functions ρε =∫

R
ρ(. + εt)η(t)dt and σε =

∫
R
σ(. + εt)η(t)dt which are C∞ on [0,∞) and satisfy

ρε = σ′
ε = 0 on (a,∞) as well as 2σε + ρ2ε ≤ 0 since this constraint is convex, that is

C = {(s, r) ∈ R
2 : 2s+ r2 ≤ 0} is a convex set.

However, we lost the values of ρ(0), σ(0) and more importantly of ρ′(0) which
appears in problem (8.2). To this end, take ν ∈ C∞ a plateau function such that
ν = 1 on (−∞, a3 ) and ν = 0 on ( 2a3 ,+∞), and set σ̂ε = νσ + (1 − ν)σε, ρ̂ε =
νρ + (1 − ν)ρε. As σ and ρ are C∞ on [0,+∞) except in a which is avoided, σ̂ε and
ρ̂ε are C∞ on [0,+∞), and as ρ̂ε = ρ, σ̂ε = σ near 0 we keep σ̂ε(0) = ρ̂ε(0) = 0 and
ρ̂ε

′(0) = ρ′(0). Furthermore, the constraint 2σ̂ε + ρ̂ε
2 ≤ 0 is still fulfilled by convex

combination. Finally one checks that:

2σ̂ε
′+ρ̂ε

′′=2σ′
ε+ρ

′′
ε+{2(σ′−σ′

ε)+(ρ′′−ρ′′ε )}ν+{(σ−σε)+2(ρ′−ρ′ε)}ν′+{ρ−ρε}ν′′

so that when ε goes to 0:

• 2σ′
ε + ρ′′ε converges to 2σ′ + ρ′′ in L2(0,∞).

• σ′, ρ′′ are continuous on [0, 2a3 ] hence 2(σ′ − σ′
ε) + (ρ′′ − ρ′′ε ) converges to 0

uniformly on [0, 2a3 ]. As ν = 0 on ( 2a3 ,+∞) this implies that {2(σ′ − σ′
ε) +

(ρ′′ − ρ′′ε )}ν converges to 0 in L2(0,∞).
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• ν′ = ν′′ = 0 outside of [a3 ,
2a
3 ] where σ, σ′ and ρ′ are continuous hence {(σ −

σε) + 2(ρ′ − ρ′ε)}ν′ + {ρ− ρε}ν′′ converges to 0 uniformly hence in L2(0,∞).

To conclude, D(σ̂ε, ρ̂ε)→ D(σ, ρ). This shows that one can find (σ, ρ) admissible
in the continuous problem such that D(σ, ρ) > 0 and σ, ρ are C∞ on [0,+∞), with ρ
and σ′ having compact supports. In particular all the functions σ, σ′, σ′′, ρ, ρ′, ρ′′ and
ρ′′′ can be uniformly bounded by some constant M > 0.

Then to estimate convergence of Dh(σ,ρ) towards D(σ, ρ) we can truncate the
Riemann sum at n = ⌊aτ ⌋ where the supports of σ′ and ρ are included in [0, a]. Doing
so it is easy to show that

τ
N−1∑

n=1

∣∣∣∣
σn+1 − σn−1

τ
+

ρn+1 − 2ρn + ρn−1

τ2

∣∣∣∣
2

= τ

⌊ a
τ ⌋∑

n=1

|2σ′(τn) + ρ′′(τn)|2+O(τ)

And we conclude saying that as (2σ′ + ρ′′)2 is Riemann integrable one has

τ

⌊ a
τ ⌋∑

n=1

|2σ′(τn) + ρ′′(τn)|2 →
∫ a

0

(2σ′ + ρ′′)2 =

∫ ∞

0

(2σ′ + ρ′′)2

hence the desired convergence.

8.4.2 Positive case

Recall that in this case we have σ, ρ : R+ → R satisfyingD(σ, ρ) > 0 with σ = −ρ2/2
and ρ = −φ′/φ for some φ > 0 which is C∞ on R

+. We also had that φ′ ≤ 0 and
φ′′ = kφ for some function k such that k′ ≥ 0. Therefore ρ satisfies on R

+:

ρ′ = −φ
′′

φ
+
φ′2

φ2
= ρ2 − k

This relation allows us to show that the derivatives of ρ tends to 0 exponentially fast,
which will compensate the non compactness of their support. It is important to note
that the key argument in the following proofs is that this relation holds on the whole
R

+: in the case of compact support it only holds on [0, a) and one cannot obtain the
same conclusions (especially, in the compact support case, we cannot have ρ′(t) ≥ 0
for all t ≥ 0 as shown below). Our analysis begins with the two following lemmas that
derive from easy manipulations and antidifferentiation.

Lemma II.4. Let ρ, k : R+ → R be C1 functions such that for all t ≥ 0, ρ′(t) =
ρ2(t)− k(t), ρ(t) ≥ 0 and k′(t) ≥ 0. Then for all t ≥ 0, ρ′(t) ≥ 0.

Proof. Suppose ρ′(t) = −r < 0 for some t ≥ 0, then thanks to the hypotheses
ρ(t), k′(t) ≥ 0 we obtain that ρ′′(t) ≤ 0. From this reasoning it is easy to prove that
ρ′ will remain nonpositive on (t,∞). But then again, as ρ, k′ ≥ 0, this implies that
ρ′ = ρ2 − k is nonincreasing. Consequently, ρ′(s) ≤ −r for any s ≥ t and we obtain
ρ(s) ≤ ρ(t)− r(s− t) which cannot stand with the hypothesis that ρ ≥ 0.
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Lemma II.5. Let t1 ∈ R and let ρ : [t1,+∞[→ R
+ be a C1 function. There is no

L ∈ R such that ∀t ≥ t1

ρ2(t)− L 6= 0 and
ρ′(t)

ρ2(t)− L ≥ 1

Proof. Depending, on the sign ofL, one integrates ρ′

ρ2−L into: − 1
ρ ifL = 0, log

(
ρ−

√
L

ρ+
√
L

)

if L > 0, or arctan
(

ρ√
−L

)
if L < 0. In either cases, taking the limit at infinity leads

to a contradiction.

Thanks to the first lemma, ρ is nonnegative and nondecreasing (and not zero ev-
erywhere), so ρ(t) → R ∈ (0,+∞] when t → ∞. In particular there exist c > 0

and t0 > 0 such that ∀t ≥ t0, −φ
′(t)
φ(t) = ρ(t) ≥ c > 0 which leads to φ(t) ≤

φ(t0) exp(−c(t − t0)). As a consequence, we deduce that the function k is bounded.
To do so, remember that k(t) =

∫ t
0
ψ(u)du − A with ψ(u) =

∫∞
u
φ2(s)ds hence

k(t) =
∫ t
0

∫∞
u
φ2(s) ds du−A =

∫∞
0

min(s, t)φ2(s) ds−A. Finally the exponential
bound on φ shows that k is bounded, and since it is increasing it converges to some
L ∈ R. In addition the convergence is exponential since :

L− k(t) =
∫ ∞

t

(s− t)φ2(s)ds ≤M exp(−2ct) for some M > 0

Next we must have R < +∞ and more precisely R2 ≤ L. Indeed, otherwise we
would have a t1 > 0 such that ∀t ≥ t1, ρ

′(t) = ρ2(t) − k(t) ≥ ρ2(t) − L > 0 hence
ρ′(t)

ρ(t)2−L ≥ 1 which is impossible according to the second lemma. To finish with, as

ρ′ = ρ2 − k stays nonnegative and converges to R2 − L, R2 = L and finally:

∀t ≥ 0, ρ′(t) = ρ2(t)− L+ L− k(t) ≤ L− k(t) ≤M exp(−2ct)

As a consequence, σ′, ρ′′, σ′′ and ρ′′′ decrease exponentially to zero. Indeed:

• σ′ = −ρ′ρ with ρ bounded.

• ρ′′ = 2σ′σ − ψ with σ = −ρ2/2 bounded and ψ decreasing exponentially to
zero (as ψ(t) =

∫∞
t
φ2 with φ decreasing exponentially).

• σ′′ = −ρ′2 − ρ′′ρ.

• ρ′′′ = 2ρ′′ρ+ 2ρ′2 + φ2.

Then we get the following estimate for our discretization: write for n ∈ [[1, N − 1]]

σn+1 − σn−1

τ
= 2σ′(τn+ ηn) and

ρn+1 − 2ρn + ρn−1

τ2
= ρ′′(τn+ η̃n)

for some ηn, η̃n ∈ (−τ, τ), so that we have:
∣∣∣∣∣

∣∣∣∣
σn+1−σn−1

τ
+

ρn+1−2ρn+ρn−1

τ2

∣∣∣∣
2

− |2σ′(τn)+ρ′′(τn)|2
∣∣∣∣∣= ∆−

n ×∆+
n
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with

∆−
n := |2σ′(τn+ ηn)− 2σ′(τn) + ρ′′(τn+ η̃n)− ρ′′(τn)|
≤ 2τ × (2||σ′′||∞,(τn−τ,τn+τ) + ||ρ′′′||∞,(τn−τ,τn+τ))

≤ τM exp(−c(τn− τ))
∆+
n := |2σ′(τn+ ηn) + 2σ′(τn) + ρ′′(τn+ η̃n) + ρ′′(τn)|
≤ 4||σ′||∞,(τn−τ,τn+τ) + 2||ρ′′||∞,(τn−τ,τn+τ)
≤M exp(−c(τn− τ))

for some constants M, c > 0 and finally one can write (for other constants M, c > 0):
∣∣∣∣∣τ
N−1∑

n=1

∣∣∣∣
σn+1 − σn−1

τ
+

ρn+1 − 2ρn + ρn−1

τ2

∣∣∣∣
2

− τ
N−1∑

n=1

|2σ′(τn)− ρ′′(τn)|2
∣∣∣∣∣

≤ τ2
N−1∑

n=1

M exp(−c(τn− τ))

≤Mτ2
∞∑

n=0

exp(−cτ)n =M
τ2

1− exp(−cτ) ∼M
τ2

cτ
→ 0 as N →∞

To conclude, that is to obtain Dh(σ,ρ)→ D(σ, ρ), we state that

τ

N−1∑

n=1

(2σ′(τn) + ρ′′(τn))2 →
∫ ∞

0

(2σ′ + ρ′′)2 as N →∞

This comes from taking f = (2σ′ + ρ′′)2 = ψ2 – which is indeed nonincreasing as
ψ′ = −φ2 ≤ 0 and ψ ≥ 0 – in the following result:

Proposition II.6. Let f : R+ → R be a continuous and nonincreasing function such
that

∫∞
0
f converges. Let a > b > 0 and c1, c2, c3 ∈ R constants. Then

SN :=
1

N b

⌊c2Na+c3⌋∑

l=⌊c1⌋
f

(
l

N b

)
→
∫ ∞

0

f when N →∞

Proof. To simplify, assume c1 = c3 = 0, c2 = 1 and a, b are integers. Let ε > 0 and let
M ∈ N

∗ such that ∀x, y ≥M − 1,
∣∣∫ y
x
f
∣∣ ≤ ε. As f tends to zero at infinity it is uni-

formly continuous so one can find δ > 0 such that |x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε
M .

For N such that Na > MN b and N b > 1
δ , write SN = S1

N + S2
N with

S1
N =

1

N b

MNb−1∑

0

f

(
l

N b

)
and S2

N =
1

N b

Na∑

MNb

f

(
l

N b

)

Then on one hand, using that | l
Nb − t| < δ we have:

∣∣∣∣∣S
1
N −

∫ M

0

f

∣∣∣∣∣ =

∣∣∣∣∣∣

MNb−1∑

0

∫ l+1

Nb

l

Nb

f( l
Nb )− f(t)dt

∣∣∣∣∣∣
≤MN b × 1

N b
× ε

M
= ε
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and on the other hand, writing S2
N =

∑Na

MNb

∫ l+1

Nb

l

Nb

f( l
Nb ) =

∑Na−1
MNb−1

∫ l+1

Nb

l

Nb

f( l+1
Nb )

and using that f is nonincreasing we get:
∫ Na−b

M− 1

Nb

f ≥ S2
N ≥

∫ Na−b+ 1

Nb

M

f

with these two integrals bounded by ε in absolute value by choice ofM andN . Finally,
∣∣∣∣SN −

∫ ∞

0

f

∣∣∣∣ ≤
∣∣∣∣∣S

1
N −

∫ M

0

f

∣∣∣∣∣+
∣∣S2
N

∣∣+
∣∣∣∣
∫ ∞

M

f

∣∣∣∣ ≤ 3ε

which completes the proof.

8.5 Modifications for Neumann boundary conditions

Dealing with Neumann boundary conditions takes us back to the 1D problem (6.1),
where we now take uN+1 = uN and u−N−1 = u−N . We also suppose λ < λ∗ so
that u 6≡ 1

2 . Thanks to Proposition II.3, we can suppose p0 = q0 =
√
2/2 in the dual

problem (8.1), and one checks that it is changed into

E
h
= max
p2n+p

2
−n≤1

−N≤n≤N
p0=

√
2/2

1

2
+

1√
2
p1−

λ

h
√
2

N−1∑

n=1

(p−n+1−p−n+pn−pn+1)
2− λ

h
√
2
(p−N+1+pN )2

Remember from section 6.2 that the limit value when h = 1
N → 0 is E = EN =

1 −
√
2λ. This value is (almost) achieved when taking pn =

√
2/2 − |n|/

√
2N as it

gives E
h ≥ 1−

√
2λ+ 3λ−

√
2

2
√
2
h (but 3λ−

√
2 < 0). Let us denote

F (p, λ) =
1

2
+

1√
2
p1 −

λ√
2h

N−1∑

n=1

(p−n+1 − p−n + pn − pn+1)
2

F̃ (p̃, λ) =
1

2
+

1√
2
p̃1−

λ√
2h

N−1∑

n=1

(p̃−n+1− p̃−n+ p̃n− p̃n+1)
2− λ√

2h
(p̃−N+1+ p̃N )2

Note that the constraint on p in Dirichlet and Neumann problems is the same: p0 =√
2/2 and p2n + p2−n ≤ 1. Now suppose p is the Dirichlet variable constructed in the

previous sections, and form p̃n = pn − |n|√
2N

. We want to compare F̃ (p̃, λ) − EN to

F (p, λ)−ED. As EN = 1− λ
√
2 = ED − λ

√
2, we split λ

√
2 into N × λ√

2h
× 2

N2

and allocate each 2
N2 to a term involving p2 in the expression of Ẽ. This will make

appear:

(p̃−n+1 − p̃−n + p̃n − p̃n+1)
2 − 2

N2
= (p−n+1 − p−n + pn − pn+1 +

√
2

N
)2 − 2

N2

= x2n +
2
√
2

N
xn
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where we denoted xn = p−n+1 − p−n + pn − pn+1. When summing, we will recover
the term in x2n appearing in E(p, λ), along with

N−1∑

n=1

xn = p1 − pN + p0 − p−N+1 = (p1 −
√
2

2
)− (pN + pN−1 −

√
2)

Besides, one has

(p̃−N+1 + p̃N )2 − 2

N2
= (p−N+1 + pN −

√
2)2 +

√
2

N
(p−N+1 + pN −

√
2)− 3

N2

Then we obtain:

F̃ (p̃, λ)− EN =
1

2
+

1√
2
p1 −

1

2N
− 1− λ√

2h

N−1∑

n=1

x2n

− λ√
2h
× 2
√
2

N
(p1 −

√
2

2
)− λ√

2h
(p−N+1 + pN −

√
2)2

− λ√
2h
×
√
2

N
(p−N+1 + pN −

√
2) +

λ√
2h

3

N2

= F (p, λ)− ED − 2λ(p1 −
√
2

2
) +R (8.7)

where R = λ(pN + p−N+1 −
√
2)− λ√

2h
(pN + p−N+1 −

√
2)2 + 3

√
2λ−1
2N .

At this point, remember p was obtained from continuous functions σ and ρ through
{
pn = 1√

2
(σn + 1 + ρn) ; p−n = 1√

2
(σn + 1− ρn)

with σn = N−2/3(σ(τn)− τ) ; ρn = N−1/3ρ(τn)

As ρ and σ are bounded, one sees that pn converges to
√
2
2 uniformly as N goes to

infinity (that is max−N≤n≤N |pn −
√
2
2 | → 0 as N → ∞). This first shows that p̃

is admissible in the dual problem (meaning that p̃2n + p̃2−n ≤ 1): indeed p is itself
admissible and pn ≥ p̃n ≥ −1 ≥ −pn for N sufficiently large. Second, remember
that, at infinity, σ converges to −k(a) < 0 or to 0, and ρ converges to 0. Writing

p−N+1 + pN −
√
2 =

1√
2
(σN + σN−1 + ρN − ρN−1)

one sees that N2/3R → 0 when N → ∞. Then we apply a last trick to include
2λ(p1 −

√
2
2 ) from (8.7) into our energies: we remark that

F (p, λ)− ED − 2λ(p1 −
√
2

2
) = (1− 2

√
2λ)
(
F (p,

λ

1− 2
√
2λ

)− ED
)

This finally shows that

N2/3
(
F̃ (p̃, λ)− EN

)
= N2/3

(
(1− 2

√
2λ)
(
F (p,

λ

1− 2
√
2λ

)− ED
))

+N2/3R

converges to a positive value when N tends to infinity; hence the O(h2/3) rate is also
true in the Neumann setting.
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CHAPTER 8. LOWER BOUND ESTIMATE

Remark II.1. Although it gives the correct estimate, note that the variable p̃ obtained
in the way we described from the optimal p of the Dirichlet setting is probably not
optimal in the Neumann setting, see the numerical experiments 8.2. The ideal situation
would be to understand the continuous limit of the Neumann problem as we did in the
Dirichlet setting. But doing the natural changes of variables σn = 1√

2
(pn + p−n) −

1 + n
2N ; ρn = 1√

2
(pn − p−n) followed by σ̃n = N2/3σn ; ρ̃n = N1/3ρn leads to

expressing N2/3(Eh(uh)− E(u)) as the supremum of ( 1√
2
×)

(λ− λ2)(σ̃1 +
ρ̃1
τ
− τ/2) + λ2(σ̃N−1 + σ̃N +

ρ̃N − ρ̃N−1

τ
)

− λ2

2
τ

N−1∑

1

(
σ̃n−1 − σ̃n+1

τ
+
−ρ̃n−1 + 2ρ̃n − ρ̃n+1

τ2

)2

− λ2

2
τ

(
σ̃N−1 − σ̃N√

τ
+
ρ̃N − ρ̃N−1

τ
√
τ

+

√
τ

2

)2

with still τ = N−1/3 and under the constraint

τ2(σ̃n −
1

2
nτ)2 + 2(σ̃n −

1

2
nτ) + ρ̃2n ≤ 0

When N →∞, this constraint becomes 2σ(t) + ρ2(t) ≤ t (recall that nτ corresponds
to t); however the energy at stake remains unclear to us.

Figure 8.2 – The variable p̃ (in red) obtained from the optimal value p of the Dirichlet
setting (in green) does not match the optimal value of the Neumann problem (in blue)
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CHAPTER 9

THE ROF MODEL WITH RAVIART-THOMAS
TOTAL VARIATION

In this chapter, we present and analyze another choice of discrete total variation that
is based on the space of Raviart-Thomas fields. These fields have already been used
in the context of discretization of the ROF problem, for instance in [DJS07, DJS12,
HHS+18]. We give a convergence analysis and obtain a O(h) error bound on the
energy under standard hypothesis.

9.1 Definitions

The idea behind the definition of the isotropic total variation is of course to catch the L1

norm of the gradient of u based on a discretization of the expression TV(u) =
∫
Ω
|∇u|.

To do so, one chooses a finite differences operator D, defined on the mesh Ω = ∪Ci,j
introduced in section 5.2, and designed to approximate ∇. However, the non isotropy
of the grid itself prevents D from being isotropic, as it has to involve a notion of neigh-
bor on this two-directional grid. On the contrary, the dual definition of TV offers the
possibility to discretize a field rather than an operator. In the formulas

TVN (u) = sup
{
−
∫

Ω

u divφ, φ ∈ C1c (Ω,R2) s.t. || |φ| ||∞ ≤ 1
}

TVD(u) = sup
{
−
∫

Ω

u divφ+

∫

∂Ω

b〈φ|~n〉, φ ∈ C1(Ω,R2) s.t. || |φ| ||∞≤ 1
} (9.1)

we will keep the exact operator div but replace the spaces C1c (Ω,R2) and C1(Ω,R2)
of (compactly supported) C1 fields from Ω to R

2 by a space of discrete fields RT0
favouring no direction in the sense that it contains any constant field φ ≡ ν ∈ R

2. This
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will indeed bring more isotropy. Indeed, let us define for either continuous or discrete
function and boundary term u, b:

TVhRT,D(u) = sup

{
−
∫

Ω

u divφ +

∫

∂Ω

b〈φ|~n〉, φ ∈ RT0 s.t. || |φ| ||∞≤ 1

}
(9.2)

Then provided one can approximate RT0 fields by C1 fields (which will be the case,
see Lemma II.6), one will have for any u, TVhRT,D(u) ≤ TV(u). And for u = gν ,
the fact that ν ∈ RT0 finally gives TVhRT,D(gν) = TV(gν) =

∫
∂Ω
gν〈ν|~n〉. As a

consequence the same reasoning than in the continuous case section 5.1 shows that for
b = gν one has u = gν for any ν in the following ROF model (mixing a discrete TV
term to a continuous L2 term):

u = argmin
u∈BV ∩L2(Ω)
u|∂Ω=gν |∂Ω

1

2λ
||u− gν ||2L2 + TVhRT,D(u)

The most simple space one can think of to play the role of RT0 is the space of
piecewise affine functions φ : Ω → R

2. Denoting pi,j = (xi,j , yi,j) the center of the
square Ci,j , these fields are given by

∀(x, y) ∈ Ci,j , φ(x, y) =
(
a1i,j(x− xi,j) + b1i,j(y − yi,j) + c1i,j
a2i,j(x− xi,j) + b2i,j(y − yi,j) + c2i,j

)

for any real numbers aki,j , b
k
i,j , c

k
i,j , k ∈ {1, 2}. In fact, it is interesting to lower a bit the

dimension of our space. First, as only divφ is involved one can take b1i,j = a2i,j = 0.
Second, to ensure the identity −

∫
Ω
u divφ =

∫
Ω
〈∇u|φ〉 holds for regular u, one

requires that the boundary terms
∫
∂Ci,j

u〈φ|ν〉 cancel each other. Imposing this can-

cellation for any u and any ν gives, for the horizontal cancellation between cells (i, j)
and (i+ 1, j), the equations:

∀i, j ∈ [[1, N − 1]], a1i,j
h

2
+ c1i,j = a1i+1,j

−h
2

+ c1i+1,j =: fi+ 1
2 ,j

We get similar equations for the vertical cancellation. In addition, in the Neumann
setting we also require the cancellation of this flux at the boundary of the domain:
fN+ 1

2 ,j
= a1N,j

h
2 + c1N,j = 0, f 1

2 ,j
= a11,j

−h
2 + c11,j = 0. Finally, all these equations

on a, b, c lead to the definition of the lowest order Raviart-Thomas fields as presented in
[RT77]. These fields are defined via their fluxes through the edges of the squares. We
will denote fi+ 1

2 ,j
(resp. fi,j+ 1

2
) the flux through the edge between the squares Ci,j

and Ci+1,j (resp. Ci,j and Ci,j+1), and remember that (xi,j , yi,j) denotes the center of
the square Ci,j . Then the Raviart-Thomas fields are the elements of

RT0 =
{
φ : Ω→ R

2 s.t. ∃(fi+ 1
2 ,j
, fi,j+ 1

2
)i,j s.t. ∀i, j ∈ [[1, N ]],

φ(x, y) =




fi+ 1
2 ,j

+ fi− 1
2 ,j

2
+ (fi+ 1

2 ,j
− fi− 1

2 ,j
)
x− xi,j

h
fi,j+ 1

2
+ fi,j− 1

2

2
+ (fi,j+ 1

2
− fi,j− 1

2
)
y − yi,j

h


 in Ci,j

} (9.3)
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In the sequel, we will write φ = φf ∈ RT0 to precise that f denotes the fluxes of
the Raviart-Thomas field φ according to (9.3). In the Neumann setting, we add the
condition that these fields vanish on the boundary of Ω, and we denote:

RT00 =
{
φf ∈ RT0 s.t. ∀i, j ∈ [[1, N ]], f 1

2 ,j
= fN+ 1

2 ,j
= fi, 12 = fi,N+ 1

2
= 0
}

Finally, the definitions of the discrete Raviart-Thomas total variation that we will
use are the following. In the Neumann setting, we define for any uh ∈ P0:

TVhRT,N (uh) = sup
{
−
∫

Ω

uh divφ, φ = φf ∈ RT00 s.t. || |φ| ||∞ ≤ 1
}

(9.4)

while in the Dirichlet setting, and for any discrete boundary term bh, we define:

TVhRT,D(u
h) = sup

{
−
∫

Ω

uh divφ+

∫

∂Ω

bh〈φ|~n〉, φ = φf ∈ RT0 s.t. || |φ| ||∞ ≤ 1
}

(9.5)

We stress the fact that no discontinuity jump appears in the calculus of divφf so
that, for instance in the Neumann setting, for φf ∈ RT00:

−
∫

Ω

uh divφf = −
∑

i,j

h2uhi,j
1

h
(fi+ 1

2 ,j
− fi− 1

2 ,j
+ fi,j+ 1

2
− fi,j− 1

2
)

= h
∑

i,j

fi+ 1
2 ,j

(uhi+1,j − uhi,j) + h
∑

i,j

fi,j+ 1
2
(uhi,j+1 − uhi,j)

= h
∑

i,j

〈(
fi+ 1

2 ,j

fi,j+ 1
2

)
|
(
(uh)i+1,j − (uh)i,j

(uh)i,j+1 − (uh)i,j

)〉
= h

〈
f |Duh

〉

for the classical finite difference operator D used previously in section 5.2. In partic-
ular, as noted by Lee and co-authors in [LPP19], the isotropic total variation can be
recovered in the context of Raviart-Thomas fields total variation as

TVhi (u
h) = sup

{
−
∫

Ω

uh divφ, φ = φf ∈ RT00 s.t. ∀i, j,
∣∣∣∣∣

(
fi+ 1

2 ,j

fi,j+ 1
2

)∣∣∣∣∣ ≤ 1
}

It has been noticed by Condat [Con17] that the fact that the variables uhi,j and

fi+ 1
2 ,j
, fi,j+ 1

2
lie on different grids is an obstruction to the isotropy of TVhi . Following

Hintermüller and co-authors [HRH14], he proposes to fix this offset by interpolating
the two grids at stake through constraints more complicated than |(fi+ 1

2 ,j
, fi,j+ 1

2
)| ≤ 1

and defines:

TVhCondat(uh) = sup
{
−
∫

Ω

uh divφf , φf ∈ RT00 s.t. ∀i, j ∈ [[1, N ]],

max(|(L•φf )i,j |, |(L↔φf )i,j |, |(Llφf )i,j |) ≤ 1
}
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where




(L•φf )i,j =
1

2

(
fi+ 1

2 ,j
+ fi− 1

2 ,j

fi,j+ 1
2
+ fi,j− 1

2

)

(L↔φf )i,j =

(
1
4 (fi+ 1

2 ,j
+ fi− 1

2 ,j
+ fi+ 1

2 ,j+1 + fi− 1
2 ,j+1)

fi,j+ 1
2

)

(Llφf )i,j =

(
fi+ 1

2 ,j

1
4 (fi,j+ 1

2
+ fi,j− 1

2
+ fi+1,j+ 1

2
+ fi+1,j− 1

2
)

)

With the point of view of Raviart-Thomas fields, one can check that these operators
correspond to taking the values in the center of the cells – denoted pi,j = (xi,j , yi,j) –
and two averages of the values in the middle of the edges:





(L•φf )i,j = φf (xi,j , yi,j)

(L↔φf )i,j =
1
2

(
φf (xi,j +

h
2

−
, yi,j) + φf (xi,j +

h
2

+
, yi+1,j)

)

(Llφf )i,j =
1
2

(
φf (xi,j , yi,j +

h
2

−
) + φf (xi,j+1yi,j +

h
2

+
)
)

where the exponent + or − indicates that we take the right or left limit of φf at the
point at stake; and where we note that the coordinates of the centers of the cells satisfy
xi,j+1 = xi,j and yi+1,j = yi,j . In comparison, the isotropic total variation imposed
|L1(φf )i,j | ≤ 1 where

L1(φf )i,j =

(
fi+ 1

2 ,j

fi,j+ 1
2

)
= φf (xi,j +

h
2

−
, yi,j +

h
2

−
)

is the value of the field at the upright corner of the cell.

In TVhRT however, the constraint on φf is the same as on φ on the continuous TV,
namely that |φf (x)| ≤ 1 for all x ∈ Ω. Note that since the two components of φf are
piecewise affine, the constraint of being less than 1 everywhere on Ω reduces to being
less than 1 in the corners of the mesh, that is

TVhRT,N (uh) = sup
{
−
∫

Ω

uh divφf , φf ∈ RT00 s.t.

∀i, j ∈ [[1, N ]], max
1≤k≤4

|(Lkφf )i,j | ≤ 1
}

TVhRT,D(uh) = sup
{
−
∫

Ω

uh divφf +
∫

∂Ω

bh〈φf |~n〉, φf ∈ RT0 s.t.

∀i, j ∈ [[1, N ]], max
1≤k≤4

|(Lkφf )i,j | ≤ 1
}
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with





(L1φf )i,j = φf (xi,j +
h
2

−
, yi,j +

h
2

−
)

(L2φf )i,j = φf (xi,j − h
2

−
, yi,j +

h
2

−
)

(L3φf )i,j = φf (xi,j − h
2

−
, yi,j − h

2

−
)

(L4φf )i,j = φf (xi,j +
h
2

−
, yi,j − h

2

−
)

•
2

•
3

•
4

•
1

(xi,j , yi,j)×

Finally, the Raviart-Thomas formulation offers a unified framework to deal with
these three total variations, see chapter 10.

9.2 Error estimate

In [CP20] Chambolle and Pock have studied a total variation based on Crouzeix-
Raviart finite elements on a triangular mesh. This total variation can be computed
by approximating the dual fields with Raviart-Thomas fields under a norm constraint
in the center of each triangle. Given a source term g ∈ L∞, and under a regularity as-
sumption on the dual field, they show there exists a constant c (depending on g and the

value of the continuous ROF problem) such that |E − Eh| ≤ ch where we recall that

E and E
h

are respectively the optimal values of the continuous and discrete problems:

u = argmin
u∈BV (Ω)

1

2λ
||u− g||2L2 + TV(u) =: E(u) (9.6)

uh = argmin
uh∈P0

1

2λ
||uh − gh||2L2 + TVhRT (u

h) =: Eh(uh) (9.7)

with appropriate variants for Dirichlet and Neumann boundary conditions (recall that
when no subscriptN orD is specified, the proposed results are valid for both settings).
Thanks to the strong convexity of the energy these estimates are also controlling the
squared L2 error between u and uh. We also refer the reader to [Bar20] for a similar
result (Proposition 4.2.) and for many extensions. This study easily transposes to our
context and this section is devoted to the proof of the following theorem.

Theorem II.2. Suppose that g ∈ L∞(Ω) and that the dual problem of the continuous
ROF model (9.6) has a Lipschitz solution. Then there exists a constant c > 0 depending
only on λ and E such that

∀h > 0, ||uh − u||L2(Ω) ≤ c
√
h

If in addition g ∈ BV (Ω), then there exists a constant c′ > 0 depending only on λ and
E such that

∀h > 0, |Eh − E| ≤ c′h

The proof of this error estimate is two-fold: a first estimate comes from the primal
problems, a second one from the dual problems.
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9.2.1 Primal estimate

The first part of the proof relies on the conformal aspect of our discrete total variation
TVhRT (9.4), (9.5) with respect to the continuous total variation TV (9.1). Following a
similar strategy than in [BNS15], it follows from the following TV-diminishing lemma
(recall that ΠP0 is the projection on P0 defined in section 5.2):

Lemma II.6. For any function u ∈ BV ∩ L2(Ω) satisfying u|∂Ω = b if one works in
the Dirichlet setting with boundary condition b, one has TVhRT (ΠP0u) ≤ TV (u).

Proof. The main argument is that if φ ∈ RT0, then divφ is piecewise constant so that
uh = ΠP0(u) satisfies ∫

Ω

uh divφ =

∫

Ω

u divφ

From that, TVhRT (u
h) appears in both Dirichlet and Neumann setting as a supremum

over a smaller set of admissible fields φ (and hence is lower than TV(u)) modulo a
density result about Raviart-Thomas fields that we detail below.

In the Neumann setting, for φ ∈ RT00 such that |φ| ≤ 1, one wants to find a
sequence (φn) ∈ (C1c (Ω,R2))N such that |φn| ≤ 1 and divφn converges to divφ in
L2(Ω) (actually, a weak convergence would be sufficient). As on ∂Ω, 〈φ|~n〉 = 0, we
naturally extend φ by zero to R

2\Ω. Then one would like to regularize φ by convo-
lution. However, this would not lead to functions with compact support in Ω. To fix
this, we introduce a small offset and rather deal with ψ = φ ◦∆ where ∆ : R2 → R

2

realizes a shrinkage centered at p = ( 12 ,
1
2 ) (the center of Ω) through

∀x ∈ R
2, ∆(p+ x) = p+ (1 + δ)x

where δ > 0 is designed to tend to zero. Doing so, one checks that if ||x||∞ ≥ 1
2(1+δ)

then ∆(x) 6∈ Ω, hence ψ(x) = 0. We then regularize and set

∀x ∈ R
2, φn(x) =

∫

R2

ψ(x− y)n2ρ(ny) dy

where ρ is a smooth function such that
∫
R2 ρ = 1 and ρ(x) = 0 for ||x||∞ ≥ 1. We

find that φn(x) = 0 for ||x||∞ ≥ 1
n + 1

2(1+δ) , so that for any δ > 0, φn ∈ C∞c (Ω,R2)

for n large enough. It is also clear that if |φ| ≤ 1 then |φn| ≤ 1. Now let us prove
the desired convergence: first as divψ ∈ L2(Ω), (divφn) converges to divψ in L2(Ω).
Then one has to compare divψ to divφ. As

∀x ∈ R
2, div (ψ)(x) = (1 + δ)(divφ)(∆(x))

we get, denoting M a bound for the piecewise constant field divφ:

||divψ − divφ||L2(Ω) ≤ δM + ||(divφ) ◦∆− divφ||L2(Ω)

To finish with, as divφ is piecewise constant, for most of the x ∈ Ω we will have
(divφ)(∆(x))− divφ(x) = 0. The x ∈ Ω for which this is not true are those such that
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x and ∆(x) belong to different cells Ci,j . This situation can only happen if x is close,
precisely at distance at most δ, to a border of a cell. The volume of the set of these
particular x is easily bounded by 4Nδ (very broadly, this set is included in 2N stripes
centered on the edges of the mesh and of width 2δ). In addition, for any of these x, we
can bound (divφ)(∆(x))− divφ(x) by 2M . Therefore, we get

||(divφ) ◦∆− divφ||L2(Ω) ≤ 4M
√
Nδ

which finally shows that divψ converges to divφ in L2(Ω) when δ → 0, and concludes
the proof.

In the Dirichlet setting, one also has to ensure that the quantity
∫
∂Ω
b〈φn|~n〉 con-

verges to
∫
∂Ω
b〈φ|~n〉. We use the exact same offset and regularization as before except

we extend φ by

∀x = (x1, x2) ∈ R
2\Ω, φ(x) =





φ(0, x2) if x1 < 0 and x2 ∈ (0, 1)

φ(1, x2) if x1 > 1 and x2 ∈ (0, 1)

φ(x1, 0) if x2 < 0 and x1 ∈ (0, 1)

φ(x1, 1) if x2 > 1 and x1 ∈ (0, 1)

(0, 0) otherwise

We divide the integral over ∂Ω into eight integrals over the half sides of the square, and
focus here on the bottom left segment S = {0}× [0, 12 ] (the proof is of course the same
for the other segments). Thanks to the shift given by ∆, the function φn is actually
constant to φ on a significant part of S. Indeed, for j such that jh ∈ [0, 12 ), we find that

if x = (0, x2) is such that 2jh+δ
2(1+δ) < x2 <

2(j+1)h+δ
2(1+δ) , then ∆(x) ∈ (−∞, 0)×(jh, (j+

1)h) and consequently ψ(x) = φ(0, (j+ 1
2 )h). As a result, after convolution we obtain

that if 2jh+δ
2(1+δ)+

1
n < x2 <

2(j+1)h+δ
2(1+δ) − 1

n then φn(x) = φ(0, (j+ 1
2 )h) = φ(x). Finally

for n such that for any j, 2(j+1)h+δ
2(1+δ) − 1

n > (j + 1)h we can write

∣∣∣∣
∫

S

〈φn − φ|~n〉
∣∣∣∣ =

∣∣∣∣∣∣

∑

j

∫ (j+1)h

jh

〈φn(0, x2)− φ(0, x2)|~n(0, x2)〉 dx2

∣∣∣∣∣∣

≤
∑

j

∫ 2jh+δ
2(1+δ)

+ 1
n

jh

||φn − φ||∞

≤
∑

j

(
2jh+ δ

2(1 + δ)
+

1

n
− jh

)
× 2

≤ N
(

δ

2(1 + δ)
+

1

n

)

hence the desired convergence when n→∞ and δ → 0.

This lemma leads the first estimate:
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Proposition II.7. The solutions u, uh of (9.6), (9.7) satisfy

1

2λ
||uh −ΠP0u||2L2 ≤ E − Eh − 1

2λ

(
||u− g||2L2 − ||ΠP0(u− g)||2L2

)

Proof. First, use the strong convexity of E
h

and write

1

2λ
||uh −ΠP0u||2L2 ≤ Eh(ΠP0u)− E

h

second, thanks to the previous lemma we have

Eh(ΠP0u) ≤
1

2λ
||ΠP0u−gh||2L2+TV(u) = E(u)+

1

2λ
(||ΠP0u−gh||2L2−||u−g||2L2)

and the result follows.

9.2.2 Dual estimate

The second estimate relies on the evaluation of the dual problems of (9.6) and (9.7).
In the continuous setting, switching the min operator from (9.6) with the supremum
defining the total variation leads to the following dual problems:

φN ∈ argmax
φ∈H0 s.t.

|| |φ| ||∞≤1

−
∫

Ω

g divφ− λ

2
||divφ||2L2 =: DN (φ) (9.8)

φD ∈ argmax
φ∈H s.t.

|| |φ| ||∞≤1

−
∫

Ω

g divφ− λ

2
||divφ||2L2 +

∫

∂Ω

b〈φ|~n〉 =: DD(φ) (9.9)

whereH = {φ ∈ L∞(Ω) s.t. divφ ∈ L2(Ω)} andH0 is the subset ofHmade of fields
vanishing at the boundary in the weak sense H0 = { φ ∈ H s.t. ∀u ∈ H1(Ω),∫
Ω
〈∇u|φ〉 = −

∫
Ω
u divφ}. As usual, because of how these problems are obtained

one has D(φ) ≤ E(u) for any admissible couple (φ, u). We find in [CCC+10] a
proof that strong duality holds between these dual and primal problems. It relies on the
Euler-Lagrange equation of the ROF problem that states, for instance in the Neumann
setting, that u is a minimizer of (9.6) if and only if there exists φ ∈ H such that
u − g = λdivφ, || |φ| ||∞ ≤ 1 and −

∫
Ω
u divφ = TV(u). Choosing φ = φ in the

above inequality shows strong duality between primal and dual problems. Finally, this
result also holds in the Dirichlet setting and one has: D := D(φ) = E through the
relation u = g + λdivφ.

The same relations arise in the discrete case, which is completely similar, and the
discrete dual problems are:

φ
h

N ∈ argmax
φh∈RT00

|| |φh| ||∞≤1

−
∫

Ω

gh divφh − λ

2
||divφh||22 =: Dh

N (φh)

φ
h

D ∈ argmax
φh∈RT0

|| |φh| ||∞≤1

−
∫

Ω

gh divφh − λ

2
||divφh||22 +

∫

∂Ω

bh〈φh|~n〉 =: Dh
D(φ

h)
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As previously, one has to be able to get a discrete field from a continuous one
through a projection operator similar to ΠP0. This will be achieved by the operator
ΠRT0 : H → RT0 which takes z = (z1, z2) : Ω → R

2 to φ = φf ∈ RT0 given by
the fluxes through the edges of the mesh f that are defined as

fi+1/2,j =
1

h

∫

Ei+1/2,j

z2 ; fi,j+1/2 =
1

h

∫

Ei,j+1/2

z1

where Ei+1/2,j = ∂Ci,j ∩ ∂Ci+1,j and Ei,j+1/2 = ∂Ci,j ∩ ∂Ci,j+1. This projection
operator enjoys two properties that derive from simple integration formulas.

Lemma II.7. ∀φ ∈ H, div (ΠRT0(φ)) = ΠP0(divφ).

Proof. Using density of smooth functions, we suppose φ = (φ1, φ2) is C1, and focus
on a squareC of the mesh, centered at (xC , yC) and with edges labeled e1 (respectively
e′1, e2, e

′
2) for the left (respectively right, bottom and top) side of C. According to the

definition of the projection operator ΠRT0, we have that

divΠRT0(φ) =
1

h2

(∫

e′1

φ1 −
∫

e1

φ1 +

∫

e′2

φ2 −
∫

e2

φ2

)

Besides, recall that the side of the square has length h so

∫

e′1

φ1 −
∫

e1

φ1 =

∫ yC+h
2

yC−h
2

φ1(xC +
h

2
, y)− φ1(xC −

h

2
, y) dy

=

∫ yC+h
2

yC−h
2

∫ xC+h
2

xC−h
2

∂φ1
∂x

(x, y) dxdy =

∫

C

∂φ1
∂x

Similarly,
∫
e′2
φ2 −

∫
e2
φ2 =

∫
C
∂φ2

∂y and the result follows.

Lemma II.8. If φ : Ω → R
2 is L-Lipschitz and if || |φ| ||∞ ≤ 1 then its projection

φh = ΠRT0(φ) satisfies || |φh| ||∞ ≤ 1 +
√
2
2 Lh

Proof. Denote φ = (φ1, φ2) and consider a square C of the mesh. To prove that

|φh| ≤ 1 +
√
2
2 Lh in C one only has to prove it at the four corners of C as this field is

affine. We only focus on the top right corner, denoted X1 and linked to the right and
top edges, denoted e′1 and e′2. According to the definition of the projection operator
ΠRT0, the value of the field φh at X1 is

φh(X1) =
1

h

(∫
e′1
φ1

∫
e′2
φ2

)
so |φh(X1)|2 =

(
1

h

∫

e′1

φ1

)2

+

(
1

h

∫

e′2

φ2

)2

Then using Jensen’s inequality and denoting Id + v the rotation taking e′1 to e′2 (see
the drawing below) we have:
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•X
1

e′2
e′1

•x

•
x+ v(x)

|φh(X1)|2 ≤ 1

h

(∫

e′1

φ21 +

∫

e′2

φ22

)

=
1

h

(∫

e′1

φ21(x) + φ22(x+ v(x)) dx

)

=
1

h

(∫

e′1

φ21 + φ22

)
+

1

h

(∫

e′1

φ22(x+ v(x))− φ22(x) dx
)

≤ 1+
1

h

∫

e′1

|φ2(x+v(x))−φ2(x)||φ2(x+v(x))+φ2(x)| dx

≤ 1 +
2L

h

∫

e′1

|v(x)| dx

where we used that φ2 is L-Lipschiz and |φ2| ≤ 1. To finish with, we compute:

∫

e′1

|v(x)| dx =

∫ h

0

t
√
2 dt =

h2

2

√
2

so that |φh(X1)| ≤
√

1 +
√
2Lh ≤ 1 +

√
2
2 Lh.

In our analysis, we will consequently need a Lipschitz hypothesis to hold on the
optimal dual field φ. As noticed by [CP20], this hypothesis is reasonable in the sense
that it is known to hold when g is the characteristic of a disk and Ω = R

2, as well
as in the case g = gν (where one can even take L = 0 as φ = ν is a solution). It
seems plausible that this hypothesis is satisfied as long as g ∈ L∞(Ω) (when working
in a bounded convex domain Ω of R2), however we are not aware that such a result is
known for the time being.

We now apply these two lemmas to get an admissible solution in the discrete dual
problem from a (by hypothesis) Lipschitz solution of the continuous dual problem. We
get the second estimate:

Proposition II.8. Suppose the dual continuous problem (9.8) (9.9) admits aL-Lipschitz
solution, then one has:

DN ≤ (1 +

√
2

2
Lh)D

h

N +
1

2λ
||g − gh||2L2(Ω)

DD ≤ (1 +

√
2

2
Lh)D

h

D +
1

2λ
||g − gh||2L2(Ω) + ||b− bh||L1(∂Ω)

144



CHAPTER 9. THE ROF MODEL WITH RAVIART-THOMAS TV

Proof. We apply Lemma II.8 to this L-Lipschitz continuous solution φ and we denote
φ̃ = ΠRT0(φ) and l =

√
2
2 L. Then φh = 1

1+lh φ̃ is admissible in the dual discrete
problem and we write, for Neumann setting:

Dh
N (φ̃) = −〈gh|div φ̃〉 − λ

2
||div φ̃||2L2

= −λ
2
(1 + lh)2||divφh||2L2 − (1 + lh)〈gh|divφh〉

≤ −λ
2
(1 + lh)||divφh||2L2 − (1 + lh)〈gh|divφh〉 = (1 + lh)Dh

N (φh)

≤ (1 + lh)D
h

N

Besides, thanks to Lemma II.7 and Jensen’s inequality:

Dh
N (φ̃) = −λ

2
||div φ̃||2L2 − 〈gh|div φ̃〉 = 1

2λ
||gh||2L2 − 1

2λ
||gh + λdiv φ̃||2L2

=
1

2λ
||gh||2L2 − 1

2λ
||ΠP0(g + λdivφ)||2L2

≥ 1

2λ
||gh||2L2 − 1

2λ
||g + λdivφ||2L2 = DN (φ)− 1

2λ

(
||g||2L2 − ||gh||2L2

)

The desired estimation follows (just noticing that ||g − gh||2L2 = ||g||2L2 − ||gh||2L2

because gh = ΠP0(g)). In the Dirichlet setting, the same proof applies to get the

estimate Dh
D(φ̃) ≤ (1 + lh)D

h

D; and noticing that
∫
∂Ω
bh〈φ̃|~n〉 =

∫
∂Ω
bh〈φ|~n〉, one

finally obtains

Dh
D(φ̃) ≥ DD +

1

2λ
(||gh||2L2 − ||g||2L2) +

∫

∂Ω

(bh − b)〈φ|~n〉

which leads to the result.

9.2.3 Combination of the two estimates

Now combining Propositions II.7 and II.8, we deduce, for instance in the Neumann
setting, that there exists a constant c > 0, depending on the optimal energy E such
that, thanks to Jensen’s inequality:

1

2λ
||uh −ΠP0u||2L2 ≤ ch+

1

2λ

(
||g − gh||2L2 − (||u− g||2L2 + ||ΠP0(u− g)||2L2

)

= ch+
1

2λ

(
||ΠP0u||2L2 − ||u||2L2 + 2

∫

Ω

ug − 2

∫

Ω

(ΠP0u)g
h

)

≤ ch+
1

λ

∫

Ω

g(u−ΠP0u)

≤ ch+
1

λ
||g||∞||u−ΠP0u||L1(Ω)

≤ c′h

where in the final inequality we used the first part of following lemma:
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Lemma II.9. For any f ∈ BV (Ω) and b ∈ BV (∂Ω), one has:

||f − fh||L1(Ω) ≤
4

3
π
√
2hTV(f) and ||b− bh||L1(∂Ω) ≤ hTV(b)

Proof. We give here the proof for f , the arguments are the same for b. As there exists
a sequence (fn) ∈ (C∞(Ω))N such that fn → f in L1(Ω) (so that fhn → fh in L1(Ω)
as well) and TV(fn) → TV(f), one can suppose f ∈ C∞(Ω). In addition, as f is
continuous, TVΩ(f) =

∑
i,j TVCi,j

(f) so we only need to prove the estimate on a
square C = Ci,j for some (i, j). We have:

||f − fh||L1(C) =

∫

x∈C

∣∣∣∣f(x)−
1

|C|

∫

y∈C
f(y) dy

∣∣∣∣ dx

=
1

|C|

∫

x∈C

∣∣∣∣
∫

y∈C
f(x)− f(y) dy

∣∣∣∣ dx

≤ 1

|C|

∫

x,y∈C
|f(x)− f(y)| dy dx

We then write y = x+a and note that as C is a square of size h, one has |a| ≤
√
2h

so that denoting B the disk of radius
√
2h we can estimate:

||f − fh||L1(C) ≤
1

|C|

∫

x∈C

∫

a∈B s.t.
x+a∈C

|f(x)− f(x+ a)| da dx

≤ 1

|C|

∫

a∈B

∫

x∈C s.t.
x+a∈C

|f(x)− f(x+ a)| dx da

≤ 1

|C|

∫

a∈B
|a| TVC(f) da =

4

3
π
√
2h TVC(f)

where we used the following lemma for the last inequality:

Lemma II.10. Let D ⊂ R
2 be a convex domain and f ∈ C1(D) ∩ BV (D), then for

any a ∈ R
2, ∫

x∈D s.t.
x+a∈D

|f(x+ a)− f(x)| dx ≤ |a|TVD(f)

Proof. Using the convexity of D to integrate along the line [x, x+ a] we get:

∫

x∈D s.t.
x+a∈D

|f(x+ a)− f(x)| dx ≤
∫

x∈D s.t.
x+a∈D

∫ 1

0

|∇f(x+ sa)| |a| dx ds

≤ |a|
∫ 1

0

∫

x∈D s.t.
x+sa∈D

|∇f(x+ sa)| dx ds

≤ |a|
∫ 1

0

∫

y∈D
|∇f(y)| dy ds = |a|TVD(f)

which concludes the proof.
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This lemma also applies to get the same estimate in the Dirichlet setting using that
b ∈ BV (∂Ω). We finally showed that, under the hypotheses g ∈ L∞(Ω) and φ is
Lipschitz, there exists a constant c > 0 such that ||uh − ΠP0u||L2 ≤ c

√
h. However,

to estimate the convergence of the energies |E−Eh| it seems mandatory to control the
term ||g − gh||2L2 through Lemma II.9 and ask that g ∈ BV (Ω). In this situation, we
finally get the announced convergence rate: for some c > 0 depending on g and on the
continuous energy E, provided φ is Lipschitz,

∀h > 0, |E − Eh| ≤ ch

As the error ||g − gh||2L2 made on the discretization of g ∈ BV (Ω) is precisely
of order O(h), this estimate on the energy is in a way “optimal”. Note finally that the
same rates would be obtained with a weaker TV-diminishing lemma only demanding:
TVh(ΠP0(u)) ≤ (1+ch)TV(u) which could be true for other discrete total variations.

Remark II.2. One could also chose to consider the discrete problem where gh is re-
placed by g in the L2 term, that is to minimize Ẽh(uh) = 1

2λ ||uh− g||2L2 +TVhRT (u
h).

Actually this leads to the same optimizer uh as Ẽh = Eh + 1
2λ ||g − gh||2L2 . However,

denoting Ẽh the optimal value of this energy, Proposition II.8 then writesE−Ẽh ≤ ch.
Meanwhile, after using the already mentioned calculation

||u− g||2L2 − ||ΠP0(u− g)||2L2 = ||u−ΠP0u||2L2 + ||g− gh||2L2 − 2

∫

Ω

g(u−ΠP0u)

one sees that Proposition II.7 implies E − Ẽh ≥ − 1
λ

∫
Ω
g(u− ΠP0u) ≥ −ch so that

finally, even when g ∈ L∞(Ω) is such that g 6∈ BV (Ω) (but still under the assumption
that there exists a Lipschitz dual field φ), one has

∣∣E − Ẽh
∣∣ ≤ ch
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CHAPTER 10

IMPLEMENTATION AND RESULTS

In this chapter we briefly present the way we implemented the different total variations
through a united Raviart-Thomas framework, and the way we computed solutions of
the ROF problem through a primal-dual algorithm. Finally, we give numerical results
illustrating the O(h2/3) estimate obtained for the isotropic total variation and the be-
havior of the Raviart-Thomas total variation on simple problems.

10.1 A united framework

As we have seen, the Raviart-Thomas fields offer a united framework to deal with
different total variations. Indeed, TVhi , TVhRT as well as the total variation proposed in
[Con17, HRH14] TVhCondat can all be expressed in the form:

TVLN (uh) = sup
{
−
∫

Ω

uh divφ, φ ∈ RT00 s.t. || |Lφ| ||∞ ≤ 1
}

TVLD(u
h) = sup

{
−
∫

Ω

uh divφ+

∫

∂Ω

bh〈φ|~n〉, φ ∈ RT0 s.t. || |Lφ| ||∞ ≤ 1
}

where L : RT0 →
(
R

2
)I

is some linear operator and I a finite set of indices. This
operator gives the constraints that the dual field must satisfy, namely that for all k ∈ I,
∀i, j, |(Lkφ)i,j | ≤ 1.

In the case of the isotropic total variation, the set I only has one element, and, using
notations of section 9.1, one has L = L1. For the Raviart-Thomas total variation, there
are |I| = 4 types of constraints and L = (L1, L2, L3, L4). Finally, for Condat total
variation, |I| = 3 and L = (L•, L↔, L↔).
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All these L operators are easily computed through the following relations, express-
ing their values on φ = φf ∈ RT0: for all i, j ∈ [[0, N ]],

(L1(φf ))i,j =

(
fi+ 1

2 ,j

fi,j+ 1
2

)
(L2(φf ))i,j =

(
fi− 1

2 ,j

fi,j+ 1
2

)

(L3(φf ))i,j =

(
fi− 1

2 ,j

fi,j− 1
2

)
(L4(φf ))i,j =

(
fi+ 1

2 ,j

fi,j− 1
2

)

(L•φf )i,j =
1

2

(
fi+ 1

2 ,j
+ fi− 1

2 ,j

fi,j+ 1
2
+ fi,j− 1

2

)

(L↔φf )i,j =

( 1
4 (fi+ 1

2 ,j
+ fi− 1

2 ,j
+ fi+ 1

2 ,j+1 + fi− 1
2 ,j+1)

fi,j+ 1
2

)

(Llφf )i,j =

(
fi+ 1

2 ,j

1
4 (fi,j+ 1

2
+ fi,j− 1

2
+ fi+1,j+ 1

2
+ fi+1,j− 1

2
)

)

with fk,l = 0 for couples (k, l) such that this quantity is not defined.

Note that the four variants of the isotropic total variation obtained through the four
combinations of directions selected to discretize the ∇ operator (and that we denoted
TVhi,⊕,⊖ for ⊕,⊖ ∈ {+,−} in the introduction) correspond to enforcing the con-
straints || |Lk(φf )| ||∞ ≤ 1 for 1 ≤ k ≤ 4 separately. On the contrary, the Raviart-
Thomas total variation enforces the four of them simultaneously.

10.2 Resolution by a primal-dual algorithm

To solve it numerically, we write the (dual) ROF problem in the following way, for
instance for Neumann boundary conditions:

min
uh∈P0

1

2λ
||uh − gh||2L2 + sup

{
−
∫

Ω

uh divφf , φf ∈ RT00 s.t. || |Lφf | ||∞ ≤ 1
}

= sup
φf∈RT00

min
uh∈P0

1

2λ
||uh − gh||2L2 −

∫

Ω

uh divφf − F (Lφf )

= − min
φf∈RT00

G(φf ) + F (Lφf )

whereG(φf ) = λ
2 ||divφf ||2L2+

∫
Ω
ghdivφf andF :

(
R

2
)I → R is given byF (z) = 0

if || |z| ||∞ ≤ 1, +∞ otherwise. Note that the optimal primal solution uh will be
obtained from the optimal φf through uh = gh + λdivφf .
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Figure 10.3 – Denoising lines and circle with TVhi (left column and second circle),
TVhRT (middle column and third circle) and TVhCondat (right column and fourth circle)
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Figure 10.4 – Inpainting lines with TVhi (left), TVhRT (middle) and TVhCondat (right)
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CONCLUSION OF PART II

In the second part of this thesis, we studied two discretizations of the ROF denoising
problem, that is the minimization of the sum of a quadratic term and a total variation
term. We first proved aO(h2/3) error estimate when using the standard “isotropic” dis-
cretization of the total variation for discontinuities in the “bad” direction 1√

2
(−1, 1).

Our proof relies on the analysis of a translational invariant problem which reduces to
a 1D problem with a non standard discretization of the 1D total variation of the form∑
n

√
(un+1−un)2+(un−un−1)2. We only stated our result in terms of energies of

the problems, leaving the convergence rate of the minimizer to later studies. For the
same problem, we find that the error is essentially zero in the 90◦ flipped “good” direc-
tion 1√

2
(1, 1). Additional investigations on the behavior of the problem in intermediate

directions could be led; for instance the direction 1√
5
(2, 1) could be reduced to a 1D de-

noising problem with a total variation of the form
∑
n

√
(un+2−un)2+(un−un−1)2.

In a second part, we performed the study of error rates for the same problem, but
with a discretization of the total variation based on Raviart-Thomas fields. We found
an optimal O(h) error estimate under standard hypotheses. We numerically showed
that this total variation behaves well on the denoising problem but we also observed
that it is quite poor at “inpaiting” tasks, that is the completion of missing features, such
as discontinuities. It would remain to establish consistency and error estimates for to-
tal variations doing well on both problems such as a discretization recently analyzed
by Condat.

Finally, as we presented briefly in the introduction of Part II, the two parts of this
thesis can be united in the context of optimization problems involving both a total vari-
ation term and a Wasserstein distance term. Among these problems are the Wasserstein
flow of the total variation or of the perimeter, and the computation of total variation-
regularized barycenters of indicator functions. We hope that this can serve as a starting
point for future works on these subjects.
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