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Context 
 
The eye is an ideal organ for the development of gene-based therapies as it is easily 

accessible for surgical injection and it responds well to local treatments without systemic 
effects. Moreover, the retina is a post-mitotic tissue where gene transfer can provide long-
term production of a therapeutic protein. It is perhaps due to these favorable properties of 
the eye that the first examples of clinical success in gene therapy have been obtained ten 
years ago for the treatment of Leber Congenital Amaurosis, a rare retinal degenerative 
disease. This has been achieved with the use of adeno-associated viral vectors that 
efficiently carry and deliver therapeutic genes to the retina. Since, the human eye is in the 
forefront of future gene therapy clinical trials and there is now an urgent need to develop 
new viral variants more efficient for retinal gene delivery. Optimization of gene therapy 
vectors is expected to help us spare and save sight in more patients suffering from retinal 
disease in the years to come.  

Photoreceptor degenerative disorders like retinitis pigmentosa and other rod-cone 
dystrophies are characterized by a central island of surviving neuronal tissue until the fifth 
decade of life, and to save this area —i.e. the fovea, from further degeneration or reanimate 
it using vision restoration strategies would be the obvious target for next generation gene 
therapies. Indeed, the fovea is the region of the primate retina responsible for high acuity 
daylight vision and the distinction of colors, and it is crucial to activities such as reading, 
driving and recognizing faces. 

 
Figure 1: Visual perception of patients affected by various retinal disorders. (A) Blurry or distorted images, and blind 

spots are perceived by patients with Age-Related Macular Degeneration (AMD) that affects the fovea. Adapted from 

http://www.scienceofamd.org. (B) Other pathologies however, first lead to peripheral vision loss. Resulting ‘tunnel vision’ is 

typically observed for Retinitis Pigmentosa where the fovea is preserved. End-stage disease development leads to 

blindness. Adapted from http://herbalcareproductstreatment.wordpress.com. 

My thesis objective was to design new gene delivery vectors to non-invasively target 
cone photoreceptors in the fovea, to enable mutation independent gene therapies such as 
vision restoration using optogenetics and neuroprotection. To place my PhD project in 
context, I will first present the structure of the eye and the retina. Second, inherited retinal 
disorders and their causes will be exposed, together with current therapeutic options to fight 
these diseases. Finally, I will stress the importance of viral vector design to obtain 
efficacious treatments, and the different available methods to obtain such vectors.  
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I. Introduction to the visual system 

 

i. Visual system and the retina 

 
 

1. Anatomy of the visual system 

 

 

The visual system is composed of two major organs: the eye, a sensory organ, and the 
brain. They are directly connected via the optic nerve (Figure 2). The laterate geniculate 
nucleus (LGN) is the main central connection between the eye and the visual cortex. The 
LGN –located in the thalamus– is thus a relay center for the visual pathway, and projects to 
the primary visual cortex (V1) at the back of the head in the occipital lobe. Afterwards, 
complex cortico-cortical connexions between other visual areas of the brain allow 
representation of movements, colors, shapes, etc. For example, in the mouse visual system 
there are seven functionally different visual areas that encode a unique information (1). 

 

The retina –lining the back of the eye– is the light sensor of the visual system. Light 
passes through pupil, lens and vitreous before reaching the light-sensitive retina. The fovea 
of primates, responsible for high acuity vision, is located in the central region of the retina, 
referred to as the macula (Figure 2).   

 

 

 
Figure 2: Structure of the visual system. (A) The eye is connected to the brain via the optic nerve, which 

projects to different structures, including the lateral geniculate nucleus (LGN) in the thalamus, the superior 

colliculus, the pretectum and the hypothalamus. Projections of the LGN end in the primary visual cortex (V1) 

also known as the striate cortex. Adapted from Neuroscience, Sinauer Associates, 2001. (B) Schematic 

representation of the eye. The retina is the light sensor of the eye and is located at the back of the eye. The 

fovea is located at the center of the macula.  
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2. Structure of the retina 

 

The retina is a complex and fragile neural tissue composed of five main types of 
neurons (Figure 3). Photoreceptors (PRs) are the primary neurons of the retina that capture 
light and convert it into electrical and chemical signals. There are two types of PRs: first, 
rods that allow night and peripheral vision. Cones however, allow daylight, color vision and 
in primates, they are also necessary for central, high acuity vision. Rod and cone PRs 
sense light with their outer segments (OS) to which they owe their name (Figure 3). OS are 
filled with stacks of membranes containing visual pigments such as rhodopsins or cone 
opsins that absorb photons, which lead to activation of PRs. 

 

 
Figure 3: Structure of the retina and the light-sensitive photoreceptors. (A) Schematic representation of 

major retinal cell types. Adapted from http://www.webvision.med.utah.edu. (B) Schematic representation of 

cone photoreceptor outer segments, where cone opsins are located. Adapted from (2). (C) Schematic 

representation of rod photoreceptor outer segments, where rhodopsin is located. Adapted from (2).	

 

Signals sent by PRs are processed by retinal bipolar cells (3), and finally reach retinal 
ganglion cells (RGCs) (Figure 3) whose axons form the optic nerve connecting the eye to 
the brain (Figure 2). Importantly, horizontal and amacrine cells control and modulate these 
signals (4). The cone-bipolar-horizontal cell synapse constitutes the first synapse of the 
retina. Horizontal cells makes us able to look at both bright and dim objects at the same 
time, by measuring and modulating the levels of illumination that fall upon different regions 
of the retinal surface (Figure 4 and (4, 5)). On the other hand, amacrine cells are controllers 
of ganglion cell responses and have diverse functions –which are mostly unknown (4). An 
example of their role in motion object detection is shown in Figure 4. While there are only 5 
main types of neurons, altogether more than 60 subtypes are found in the mammalian 
retina (4). Retinal circuitry and visual processing is highly complex and not fully understood. 
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Apart from these neurons there are other retinal cell types important for retinal 
functioning such as cells of the retinal pigment epithelium (RPE). The RPE is a melanin 
containing epithelium that lines the back of the eye (Figures 3 and 5). RPE cells are the 
most distant cells to the light that enters the pupil. The RPE not only allows backscattering 
the light that enters the eye, but also actively participates to the visual cycle by its 
involvement in the phototransduction, an enzyme cascade following photon capture by 
visual pigments. Moreover, to maintain normal vision, RPE cells constantly renew 
photoreceptor outer segments through phagocytosis (6).  

 

 

Retinal glia also play vital roles to the health of neurons. Glial cells include astrocytes, 
microglial cells and Müller cells. Astrocytes are located in the RGC layer and are part of the 
blood retinal-barrier. Microglial cells fulfil a key role in controlling immune responses. 
Finally, Müller cells are the major type of glial cells in the retina (Figure 3) responsible for 
homeostasis, metabolic support and neuroprotection (7). They are also more directly 
involved in synaptic activity by the uptake of glutamate. Interestingly, Müller cells also form 
architectural support and act as living optic fibers that guide light from the vitreous side to 
the photoreceptors (8) with their peculiar morphology (Figure 5). Cell bodies of Müller cells 
are located in the inner nuclear layer (INL) while they extend to both RGC side and PR side 
(Figure 3). One endfeet ends at the level at the external limiting membrane (ELM) while the 
other end forms the inner limiting membrane (ILM). Finally, Müller glial cells are involved in 
the formation and maintenance the blood-retinal barrier, and in the uptake of nutrients and 
disposal of metabolites under physiological conditions (9). 

 

 

Blood and oxygen supply of the retina is ensured by the choroid (Figure 5) -located 
under the RPE- whose vessels irrigate the retina (10, 11). The fovea is an exception to that 
as it is avascular (Figure 5), but the minor thickness of this region permits its oxygenation 
via the choroidal circulation (11). 

 

 

I will now focus on the structural and functional properties of retinal light-sensitive 
neurons: the photoreceptors, particularly the cones. 
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Figure 4: Importance of retinal interneurons in visual processing. (A) Horizontal cells modulate both local 

and global signal flows coming from cones (5). (B) Widefield amacrine cell morphology (inset) shows that a 

single widefield amacrine cell covers a large area of the retina (4). A few number of those cells is sufficient to 

cover the whole retinal surface. (C-D) Object motion detection enhancement by widefield amacrine cells. (C) 
Native image. (D) Image transmitted to the brain after object motion enhancement. Widefield amacrine cells 

involved in motion detection stress on perception of moving parts of the visual scenes only, by making retinal 

ganglion cells respond most strongly to objects that are moving relative to stationary surroundings. 
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Figure 5: Importance of non-neuronal cell types in retinal homeostasis. (A) Retinal pigment epithelium 

(RPE) cells closely interact with photoreceptors and allow photoreceptor outer segment (POS) renewal by 

phagocytosis of POS tips. Adapted from (12). (B) Müller cells form living optic fibers that guide light to the 

photoreceptor layer –among other numerous functions. Adapted from (7). (C) Choroid is essential for blood 

supply to the retina, providing nutrients and oxygen. Adapted from (11).	
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ii. Structure and properties of mammalian photoreceptors 

 

1. Interspecies differences in photoreceptor function and distribution 

 
 
Although retinal morphology is similar among many vertebrate species, important 

differences exist. Rods are the sensors of low light levels and can sense as low as one 
single photon (13, 14). They are responsible for night vision, while cones are responsible 
for daylight and color vision –although a recent study shows that rods also contribute to 
daylight vision (15).  

Nocturnal animals such as rodents have rod-dominated retinas, with 97% of rods versus 
3% of cones only, containing about 180,000 cones for 6.4 million rods (16). Diurnal species 
however, have higher number of cones. In the human retina there are approximately 6 
million cones and 100 million rods (i.e. 6% versus 94%, respectively) (17). Rods sense light 
with the photopigment rhodopsin.  

Color vision is possible because there are several subtypes of cones; each associated 
to an opsin that is sensitive to a different wavelength range (Figure 6). There are two cone 
subtypes in rodents: S- and M-cones, which stands for short wavelength and middle 
wavelength cones, or blue and green cones. It is sometimes said that mice have a third 
cone subtype which co-expresses S and M opsins (18). Primates have three subtypes of 
cones: like mice we have S- and M-cones, but we also have L-cones –long-wavelength 
opsin– that are sensitive to red light. 

 

 

 
Figure 6: Opsins and human color vision. (A) Visible spectrum perceived by our visual system. Modified 

from http://www.archives.library.illinois.edu. (B) Absorption spectra of human opsins allow color vision. Rods 

express only one type of opsin: the rhodopsin. Adapted from http://www.physics.stackexchange.com 
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An additional difference in the properties of photoreceptors between rodents and 
primates is their distribution across the retina (Figure 7). In mice, the ventral part of mouse 
retina encodes preferentially dark contrast through blue cones and could be the sky 
sensors of bird preys (19) –when mice look up the image is sensed with the ventral retina. 
The dorsal part of the retina, composed mainly of green cones, is the ground sensor (19). In 
primates, the difference is even more striking, as cone density is much higher in the central 
retina while rods density is higher in the periphery. The highest density of cones is found in 
the fovea. Mice have no fovea and no high acuity vision. 

 

 
Figure 7: Types of photoreceptors and their distribution in the mouse (top panels) versus human 
(bottom panels) retina. Adapted from (18). 

 

Anatomical differences between mouse and primate photoreceptors also exist. In 
primates there are calyceal processes in the intermediate region between the outer and 
inner segments of both rods and cones (Figure 8). These processes are long microvilli that 
emerge from the apical region of the inner segment and ensheathe the basal part of the 
outer segment. Their role is still unknown but mutation in proteins found in the calyceal 
processes are associated to syndromic Retinitis Pigmentosa (20) (as the ocular phenotype 
of Usher syndrome, associated to deafness). 
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Figure 8 : Calyceal processes of the primate retina. (A) Mouse photoreceptors are devoid of calyceal 

processes. (B) Calyceal processes of the macaque retina emerging from the inner segments and ensheathing 

the outer segment. OS: Outer Segment; IS: Inner Segment. Adapted from (20).	

 

 

 

All of these differences between rodent and primate retinas together with differences in 
cortical structure and complexity are responsible for the difference in visual perception, and 
question the pertinence of mouse models for vision science and therapeutics development 
(Figure 9). 

 

 

 

 
Figure 9: Differences between mouse and primate visual system and the resulting visual perception.	
Adapted from (21). 
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2. Functional properties of photoreceptors 

 

The conversion of light into electrical and chemical signals occurs in the outer segments 
of photoreceptors. 

 

In absence of light, all components of the phototransduction cascade are in a dark-
adapted state. The cyclic-nucleotide gated (CNG) channels are cyclic guanosine 
monophosphate (cGMP)-gated. When cGMP binds to CNG channels, it causes the 
channels to open, which allows sodium (Na+) and calcium (Ca2+) ions to flow into the cell. 
The photoreceptor depolarizes (Figure 10). 

 

In presence of light, the phototransduction results from a series of three steps: 

 

Step 1: Light activates the photopigments. 

Activation of the phototransduction cascade begins with absorption of a photon. The 
opsin is composed of two parts: a proteic part, which is located within the disc membranes; 
and a light-absorbing part, which is the retinal –a derivative of the vitamin A. Light 
absorption leads to 11-cis-retinal (dark-adapted state) isomerization into the all-trans-retinal 
isomer configuration (light-adapted state). As a result, the opsin conformation is modified 
and becomes catalytically active. 

 

Step 2: Activation of the photopigments reduces the cGMP concentration. 

The transducin -a member of the G protein family- binds the opsin. Its α-subunit is 
activated by the replacement of GDP by GTP. Then, the α-subunit dissociates from the β-γ 
subunits to activate the membrane-associated phosphodiesterase 6 (PDE) by removing its 
two regulatory (γ) subunits. The activated phosphodiesterase hydrolyses cGMP in GMP.  

 

Step 3: The reduction of cGMP concentration closes CNG channels: the photoreceptor 
is hyperpolarized. 

When cGMP is reduced, CNG channels close. Cation entry is stopped, which induces 
photoreceptor hyperpolarization and activation. 
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Figure 10: Schematic representation of the phototransduction cascade in cones (22). P: phosphate ; 

PDE: phosphodiesterase ; CNG : cyclic-nucleotic gated channel, cGMP : cyclic guanosine monophosphate, 

GUCA: plays a role in the recovery of retinal photoreceptors from photobleaching. 

 

 

After activation, the phototransduction cascade is deactivated. Without this deactivation, 
the photoreceptor will not be able to answer to another light stimulus. Two mechanisms 
terminate light response: the transducin inactivates itself by hydrolyzing bound GTP. 
Second, the rhodopsin kinase phosphorylates the opsin and this phosphorylated opsin 
interacts with the regulatory protein arrestin, leading to its rapid inactivation (23). 

 

It is the combination of the different isoforms of phototransduction cascade proteins, 
together with the structure of outer segments, that are responsible for the better light 
sensitivity of rods compared to cones (24). 

 

 

3. Retinal circuitry after activation of the phototransduction cascade 

 

 

After activation of the visual phototransduction cascade by light, signals are then 
transmitted to the second order neurons -namely bipolar cells- and eventually reach RGCs 
(Figure 11). After hyperpolarization of cones, their synaptic vesicles release less glutamate, 
which activate bipolar cells, and then activate ganglion cells. Eventually, retinal output 
represents a first integration level. The brain then allows visual representation. 
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Figure 11: Retinal circuit activation in response to light stimulus. Adapted from http://www.what-when-

how.com 

	

	

iii. The fovea, responsible for high acuity vision in primates 
 
 

The fovea is the region of the retina responsible for high acuity vision in primates. What 
are the properties of this peculiar and important structure? 

 

1. Human visual field 

 

Most obvious changes in the visual field are motion, which can be perceived with the 
whole field of view, from the periphery to the center (Figure 12). Color is perceivable in a 
smaller angle. However, perception of shapes and especially texts is perceivable in much 
smaller angles. This is directly linked to the distribution of rods and cones in the retina, and 
the presence of the fovea. 
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Figure 12 : Differentiable areas and angles for perception of motion, colors, shapes and texts. Adapted 

from http://technologyreview.com.	

 

 

2. Structure of the fovea 

 

Amongst mammals, only primates possess a fovea. It is located in the central retina and 
represents less than 1% of the total retinal surface area (25). Yet it is a crucial structure as 
it provides the input to more than 50% of the visual cortex. The foveola, located at the 
center of the fovea, contains only cones (Figure 13), and corresponds to the area with peak 
cone density (26). 

 

 

 

 
Figure 13: Structure of the fovea. (A) The foveola, at the center of the fovea, contains only cones. Adapted 

from Dictionary of Optometry and Visual Science, 7th edition, Butterworth-Heinemann. (B) Rod and cone 

density in the retina. Adapted from (2).		
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3. Development of the fovea 

 

Development of the fovea is not fully understood, probably because it is present only in 
primates, which made it difficult to study its development. We now know that foveal 
development requires the definition of a foveal avascular zone (FAZ) (Figure 14), defined 
by absence of retinal blood vessels (27). Then local factors expressed by ganglion cells 
prevent the migration of astrocytes into the central retina and formation of blood vessels. 
After birth, size of the FAZ reduces and capillaries surrounding the fovea form. 

 

 

 
Figure 14: Structure of the foveal avascular zone (FAZ). (A) Human eye fundus image following 

angiography with injection of a agent to visualize retinal blood vessels (28). (B) Close-up to the fovea seen 

with electron microscopy, with the typical foveal pit or foveal slope seen at its center where no blood vessels 

are found. Adapted from (29) (C) Schematic representation of retinal blood vessels and capillaries 

surrounding, but absent from the fovea. Adapted from (29) and reprinted from (26).	

 

 

 

4. Foveal cones 

 

What is responsible for high acuity vision and high spatial resolution, allowed by the 
fovea? It seems that this retinal area has several features that are optimal for high spatial 
resolution. First, highest cone density and elongated shape enables them to pack more 
closely and to act as more efficient waveguides (26). The fovea is a rod- and blue cone-free 
zone, and is also characterized by a lack of vasculature and nerves (30, 31). High acuity 
performance is also related to foveal circuitry itself, which is different from the peripheral 
circuitry. Within the fovea, the ‘midget’ circuitry predominates (32), characterized by a one 
to one relationship where a single cone is connected to a single bipolar cell then connected 
to a single ganglion cell (Figure 15). Also, there are few lateral connections in the central, 
inner retina and foveal midget ganglion cells receive little or no synaptic inhibition (33).  
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Figure 15: Properties of the peripheral versus foveal retinal circuitry. Adapted from (32).	

 

 

The retina is a fragile tissue whose alteration can lead to partial or total blindness. In 
particular, defects in the phototransduction cascade or in proteins involved in 
communication between different retinal neurons can lead to retinal dysfunction and/or 
degeneration. What are the characteristics of retinal diseases and the mechanisms of 
photoreceptor dysfunction or death? 
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II. Gene therapy and retinal diseases: a successful combination? 
 

Vision is of our most valuable sense and its loss is a feared handicap. Retinal 
degenerative diseases can have a huge impact on the quality of life. One of the current 
most promising strategies for treating retinal disorders is gene therapy. 

 

i. Retinal disorders  

 

1. Complexity and heterogeneity of retinal disorders  

 
 
Blindness is not always due to defects in the retina. The leading cause of vision loss 

worldwide is cataract (due to opacification of the lens). Retinal diseases are due to defects 
or loss of retinal cells. Loss of RGCs leads to glaucoma and is the second cause of vision 
loss worldwide (34, 35). In industrialized countries, the most frequent cause of vision loss is 
the progressive loss of photoreceptors and in particular macular degeneration. Age-related 
Macular Degeneration (AMD) is the first cause of blindness in the elderly over 50, and 
affects >30% people over 75 years old (36). AMD is a multifactorial disease caused by 
environmental factors and influenced by many genes (37). 

Inherited forms of retinal degeneration are also common causes of vision loss with a 
prevalence of 1 in 3,000. There has been major progress in the discovery of loci and genes 
involved in retinal diseases in the last 20 years (Figure 16). We have today a list of more 
than 250 identified genes (38). In parallel, there has also been an improved understanding 
of pathophysiological mechanisms involved in such disorders. Besides, numerous proof of 
concept studies in small and large animal models and clinical studies for the treatment of 
retinal diseases, in particular gene therapies, have been developed.  

 

 
Figure 16: Genetic complexity of retinal disorders. (A) Number of identified genes involved in retinal 

disorders has considerably increased the last 20 years. Adapted from (38). (B) Functional categorization of 

genes involved in photoreceptor degeneration. Those genes are involved in numerous and diverse cell and 

tissue functions. Adapted from (36). 
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2. Retinitis Pigmentosa, the most common form of inherited retinal 
degeneration 

 

The most frequent inherited retinal degeneration –but still a rare disease– is Retinitis 
Pigmentosa (RP), that represents 40% of inherited retinal degeneration cases. RP 
prevalence is 1 in 3,500 to 4,000. RP is most of the time a rod-cone dystrophy, where a 
primary loss of rods occurs which leads to night and peripheral blindness. A secondary loss 
of cones then happens. At this point visual field slowly constricts until it spares only the 
macula (Figure 17B), which leads to a ‘tunnel vision’ (Figure 1). At late stages, the macula 
is also affected, eventually causing total blindness (Figure 17C). Patients can be affected 
from early to middle adulthood, between 20 and 64 years (39). Rapidity of disease 
development and vision loss is also variable. Today there is no long-treatment available for 
this disease, current treatments only include slowing down vision loss with sunlight 
protection and vitaminotherapy (40). 

There is a promising approach developed for end-stage RP, namely retinal implants that 
electrically target surviving retinal circuit. They are composed of a photosensitive part (e.g. 
cameras), a processing step that transforms the visual information into electrical signals, 
and an array of electrodes that deliver the electrical signals to target cells. The first 
commercialized visual implant was Argus II device, developed by Second Sight Medical 
Products. Such implants restored light perception in a significant ratio of patients, who could 
achieve visually guided tasks such as object localization and motion discrimination (41). 

 

 
Figure 17 : Eye fundus images of a healthy retina versus Retinitis Pigmentosa (RP) patient retinas. (A) 

Normal eye fundus image. Adapted from (40). (B) Mid-stage RP patient eye fundus image. Presence of retinal 

deposits and abnormal vessels, except in the macula. This lead to tunnel vision as only central retina is 

preserved. Adapted from (40) (C) Late-stage RP patient eye fundus image. Presence of retinal deposits, 

abnormal vessels, even in the macula, and pale optic disk. Modified from (42). 

RP is an extremely complex and heterogeneous group of retinal diseases at the genetic 
level. Cases are classified as autosomal dominant (24%), autosomal recessive (41%) and 
X-linked (22%), and the remaining 12% of cases are presumed to result from non-genetic 
factors, non-Mendelian inheritance (for example, mitochondrial or de novo mutations) or 
complex inheritance (36). There is an important number of genes involved in RP (Figure 
19). 
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Figure 18: Description of Retinitis Pigmentosa (RP). (A) Timecourse of cell death and vision loss in RP. 

Adapted from (43). (B) Genetic forms of RP inheritance and diversity of genes involved. Adapted from (42). 
adRP : autosomal dominant RP ; arRP : autosomal recessive RP ; xlRP : x-linked RP. 

 

In spite of this genetic complexity, there is a common phenotype in these rod-cone 
dystrophies. Usually, the first clinical observation in RP patients is night vision disturbance, 
because mutations lead to loss of rods but not cones. However, in the longer term, when 
most of the rods are lost, cones start to die too. Why are cones lost if the underlying 
mutations do not affect them? Several hypotheses have been proposed to explain cone cell 
death following rod cell death (44). The first explanation is related to the toxicity of dying 
rods for neighboring cones, through the release of toxic substances. A second explanation 
is the reduction of trophic support from rods to cones. There are evidence that a trophic 
factor released by rods promotes cone and outer segment survival (45–49). When absent, 
this factor referred to as Rod-derived Cone Viability Factor (RdCVF), leads to cone 
degeneration. A third hypothesis is that the oxidative stress resulting from rod cell death 
causes cone cell death. It is likely that a combination of both loss of trophic support and 
increase of oxidative stress are responsible for cone cell death, as it has been shown that 
loss of trophic support makes cones more vulnerable to oxidative and metabolic stress (50). 
When rods die, accumulation of reactive oxygen species causes loss of cones, which is 
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worsened by loss of RdCVF expression as it renders cones more vulnerable. Therefore, it 
is highly challenging, given the genetic complexity of RP and the involved cell death 
mechanisms, to develop gene therapies on a case-by-case basis. 
 

 

ii. Current versus emerging ocular gene therapies, and future 
challenges 

 
 

1. General principle of gene therapy and advantages of the eye as a 
target organ 

 
 

Gene therapy consists in providing a therapeutic DNA to a tissue to reverse disease 
phenotype. To transfer this gene a vector must be used. I will not focus here on the different 
vectors used in the field of gene therapy but rather insist on the general principle behind it. 
Vectorology aspects will be addressed in the third section of the introduction. An example of 
vector used today in gene therapy is the adeno-associated viral (AAV) vector (Figure 20). 
So far they are the most frequently used vectors in the context of retinal diseases. 

 

 
Figure 19: Principle of vector and DNA combination for gene therapy with the example of adeno-
associated viral vectors. On the left is shown an AAV vector containing the DNA to be transfered. On the 

right is shown the most important DNA sequences required for expression of the therapeutic gene. ITR : 

Inverted Terminal Repeats, pA : polyA tail. 

 

The very first gene therapy trial has been developed for immune disorders, in particular 
for Severe Combined Immune Deficiency (SCID), also known as the ‘bubble baby disease’ 
(51). SCID is a severe disorder due to genetic mutations causing absence of adaptative 
immune system. As a result, affected children cannot fight pathogens and death occurs in 
the first years of life. 
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These trials were ex vivo gene therapies followed by transplantation of transduced 
CD34+ cells by retroviral vectors. Sadly, there have been setbacks after a clinical trial as 5 
over 20 SCID patients (with γc mutations, SCID-X1) developed leukemia because of 
insertional mutagenesis with the gene therapy vector –nevertheless, in another trial for 
SCID patients with ADA mutations, none of the patients developed any adverse effect. 
Then, major vector improvements allowed treatment of other patients with success. In spite 
of these setbacks, treatment of SCID held promise for such serious disorders, but also for 
other genetic diseases. Since SCID clinical trials, other gene therapies to treat several 
disorders are in development including ocular disorders, hemophilia (52) or lysosomal 
storage diseases (53) -and many others (54). 

Indeed, in parallel, all of the improvements in identification of genes involved in retinal 
disorders and better pathophysiological understanding of these diseases, led to focus on 
the development of gene therapy for retinal dystrophies. The eye is easily accessible for 
surgical injection, it is an immune privileged compartment and it responds well to local 
treatments without systemic effects. Moreover, the retina is a post-mitotic tissue where 
gene transfer can provide long-term production of a therapeutic protein.  

 

 

2. Gene augmentation strategies 

 

There has been fast progress in the field of retinal gene therapy, and groundbreaking 
proof-of-concept has been obtained in three independent groups of clinical trials in 2008 
with the use of AAV vectors for the treatment of type 2 Leber’s Congenital Amaurosis 
(LCA2). LCA2 is a severe, early onset retinal degenerative disorder that affects children 
and that causes blindness in adulthood. One of the genes involved in LCA is the RPE65 
gene, RPE65 being a crucial enzyme expressed by RPE cells and involved in the visual 
cycle. There have been independent but simultaneous clinical trials about 10 years ago in 
the USA and UK (55–57) leaded by three different groups, and a more recent study 
published this year about a trial in France by a fourth group. They all reported safety of 
AAV2-mediated (except for Nantes, which was with AAV4) gene therapy in patients as 
there were no clinically significant side effects or inflammation -except in one study at 
higher doses of 1x1012 vg (58). The results obtained in these trials were: 

 
- The trial in Univ. of Florida&Pennsylvania, USA first included 3 patients from 21 to 24 

years who all had significant improved rod-mediated vision, and cone-mediated 
improved vision for 2 of the 3 patients, 3 months after injection (5.96x1010 vg in 
150µL) (56, 59). One of the patients had foveal thinning (56) which likely is a 
consequence of direct needle insertion through the fovea to deliver the vector 
subretinally. 
A later study with a larger cohort of 11 patients from 11 to 30 years also showed 
vision improvement over 1 year which was stable over 3 years with no visual decline, 
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however retinal degeneration (ONL thinning) continued in spite of this improved 
retinal sensitivity (60). Importantly, these data support the need for a combinatorial 
gene therapy to tackle both photoreceptor dysfunction (with AAV-RPE65) and retinal 
degeneration (which was not achieved with AAV-RPE65), for example with a 
neuroprotective strategy (60). 
The authors then reported longer-term data at 6 years post-injection for two patients 
and 4.5 years for a third patient (61). Sadly, they observed an unabated retinal 
degeneration in all 3 patients, and progressive diminution of visual sensitivity in 
areas where vision was first improved after 3 years. However, retinal sensitivity still 
remained higher than baseline in the treated eye. 
 
 

- The trial in UCL London, UK reported no significant visual acuity (VA) or 
electroretinogram (ERG) improvements in 3 young adults over 1 year (55) (1x1011vg 
in 1mL). However, there was a significantly improved retinal sensitivity and mobility 
for 1 of the 3 patients, and in mobility. 
The longer-term study of UCL on 12 patients (6 to 23 years) over 3 years showed 
modest vision improvements after 6 months to 1 year in 5 of 8 patients (high dose: 
1x1012vg/eye) and 1 of 4 (low dose: 1x1011vg/eye) (58). 5 of the 12 patients reported 
night vision improvements but only after a substantially extended period of dark 
adaptation. There were no VA and ERG improvements in any of 12 patients (except 
1 patient who had VA increase, but it was observed in the untreated eye as well). 
However, there was subsequent visual decline during the following years like in the 
Univ. Florida&Pennsylvania trial. Importantly, 6 of the 10 patients who received sub-
foveal injections had retinal thinning (ONL thinning and inner segment defects) 
although there might also be a vector dose-related effect: it was observed in 1/4 
patients with 1x1011vg while it was observed in 5/6 patients with 1x1012vg. 
 
 

- The more recently published results of the clinical trial for LCA in Nantes, France 
showed a non-significant VA increase over 1 year (9 patients) to 3.5 years (6 
patients) of 9 to 42 years old (62) (1.22x1010 to 4.8x1010 vg/eye in 200-800µL). That 
being said, there was no visual decline, except in the only patient who received a 
subfoveal injection –where retinal thinning was reported during the first year, but no 
further in years 2 and 3. 
 
 

- The trial in University of Pennsylvania, USA gave rise to promising results. They first 
reported vision improvements in 3 patients of 19 to 26 years old (1.5x1010 vg in 
150µL), with significant VA and pupillary response improvements, as well as 
decreased nystagmus –although one of the patient had a macular hole after the 
surgery (57). Positive outcomes were further confirmed in a total of 12 patients 
(1x1010 to 1x1011 vg in 150-300 µL) with improved sensitivity, acuity and mobility in 
most patients up to 1.5 year (57, 63, 64). They then reported a 3 year follow-up 
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showing a VA increase and enlargement of visual field in 5 patients that was stable 
over 3 years with no retinal degeneration (65). Recently, this RPE65 gene therapy 
product has been approved and is made available by the company Spark 
Therapeutics (54). 
Re-administration of the vector in contralateral eye of patients already treated in the 
first eye, did not cause significant immunogenicity, and led to mobility improvement 
but no significant VA increase (1.5×1011 vg in 300µL) (66).  
 

Since the first results for treatment of LCA published in 2008, about 40 clinical trials are 
taking place all around the world to tackle other retinal diseases (Table 1) such as 
choroideremia, X-linked retinoschisis and achromatopsia (67). There are published data for 
choroideremia (UK) of a six month study (68), and a 3.5 year follow-up (69) with positive 
outcomes. Six patients aged from 35 to 63 years showed significant vision improvements 
using REP1 protein with AAV2-CBA-CHM injections under the fovea (6x109 to 1x1010 vg in 
100µL). While 2 of 6 patients had significant VA increase at 6 months which persisted at 3.5 
years, it was not significant for 3 other patients but they had already good VA at baseline. 
Only the patient treated with the lower dose had significant decrease of VA and retinal 
thinning, suggesting again that there might be a side effect resulting from subfoveal 
injections. 

 

 
Table 1: Current retinal gene therapy clinical trials. Adapted from (70). 
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Lessons learned from LCA trials are the following. It is important to reduce injected 
doses to avoid side effects such as inflammatory immune responses (58, 71). Another 
lesson learned from LCA trials is the possibility to target photoreceptor dysfunction but not 
degeneration. Indeed there were often first improvements in visual sensitivity for treated 
eyes while the photoreceptor layer continued to thin, which is indicative of photoreceptor 
degeneration (60).  

 

The reasons behind the described decrease in efficacy in clinical trials are not fully 
understood but might be because of multiple causes. We might need therapeutic gene 
expression all across retina to make the therapy work like suggested in Koch et al. study 
(72). Another cause might be an inflammation related to the gene therapy product: in the 
UCL trial, five of the eight patients in the high dose cohort had intraocular inflammation or 
immune responses, and two of them had VA decline (58). Also, a human RPE65 promoter 
was used (55, 58), which is weaker than other promoters such as CBA used by Univ. 
Pennsylvania/Spark (57, 66), it might be the reason why higher AAV doses were required 
compared to the Univ. Pennsylvania/Spark trial. Related to optimization of vector genome, 
in the Univ. Pennsylvania/Spark trial an optimized human Kozak sequence was used to 
control the expression of RPE65 (57, 66). Besides, it seems important not to inject a high 
volume subretinally. A longer recovery period of a few days was needed in UCL trial, likely 
because of the injection method and much higher delivered volume equal to 1mL (55) –this 
longer recovery period associated to high volumes was also observed for one patient in the 
Nantes trial (800µL) (62). In contrast, blebs resolved within 14 hours after injection of 150µL 
in the Univ. Pennsylvania/Spark trial (57). Additionally, in the Univ. Pennsylvannia/Spark 
trial a surfactant was used to prevent AAV agglomeration in the syringe (57). Regarding the 
production methods, UCL used B50 cells with adenoviruses that can lead to the presence 
of contaminants in viral preparations (73), while Univ. Pennsylvannia/Spark used HEK293 
cell-mediated AAV production where a high number of empty capsids can be removed (74). 
Finally, different immunosuppressive regimens were used in the trials mentioned above. 
Taken together, all these parameters likely enabled the differences in the therapeutic 
benefits between the clinical trials. 

 

 

There is a need to validate more gene-based therapies that can reach the clinic and be 
used to treat patients with more common retinal diseases. However, important challenges 
need to be overcome before these proof-of-concept gene therapies can be extended to 
more common retinal dystrophies such as RP. There are several conditions in order to 
make a gene therapy like the one used for LCA and choroideremia possible. The causative 
mutation has to be identified, the disease has to be monogenic and recessive. Moreover, 
the DNA to be delivered has to be less than 4.7kb –the AAV genome size. There is a 
published study for RP associated to MERTK mutations in 6 patients of 14 to 54 years old 
(75) (5.96x1010 to 1.788x1011vg in 150-450µL). 3 of the 6 patients had improved VA after 
injections of AAV2-VMD2-hMERTK, which decreased after 2 years in 2 patients. 
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As stated above, inherited retinal degenerations are particularly heterogeneous. 
Therefore, it is not possible to develop treatment associated to each mutation in each 
patient, as it would be highly costly and time consuming. Moreover, there would still be a 
lack of therapeutic options for patients whose mutation is unknown, i.e. 40% to 50% (Figure 
20). What are the alternative therapeutic options? 
 

 

3. Mutation-independent gene therapy approaches 

 
 

Alternative gene therapy strategies that are more general and applicable to all RP forms 
are being developed. One promising strategy consists in developing mutation-independent 
therapies, that do not focus on the underlying mutations but rather on the common 
phenotype of all RP patients: rod loss followed by progressive cone degeneration. 

 

The first mutation independent approach that was developed was the use of 
neurotrophic/neuroprotective approach to slow down cell death in RP. Such therapies have 
been widely studied in the past decade. Following the description of nerve growth factor 
(NGF), several such growth factors have been shown to promote neuronal survival in the 
central nervous system, including NGF itself (76), brain-derived neurotrophic factor (BDNF) 
(77), ciliary neurotrophic factor (CNTF) (78), basic fibroblast growth factor (bFGF) (79) and 
glial cell line-derived neurotrophic factor (GDNF) (80, 81). This strategy has proven 
successful in delaying retinal degeneration resulting from gain-of-function or lack of- 
function mutations (82, 83). Several neurotrophic factors have been shown to delay 
photoreceptor cell death in animal models of autosomal dominant RP caused by mutations 
in the rhodopsin gene. AAV vectors carrying the cDNA for GDNF (84), FGF-2, FGF-5, or 
FGF-18 (85, 86) were evaluated in the S334ter-4 rd line of transgenic rats and showed 
photoreceptor function preservation.  

 

 

One factor that is potentially even more relevant in the context of RP is the rod derived- 
cone viability factor (RdCVF) (45) which has recently been shown to be an efficient 
neuroprotective factor to delay vision loss when delivered to the retina of rd10 and p23h 
mice (49). Rod–cone interactions are mediated by secreted proteins and primary loss of 
rods in RP is one of the causes for secondary loss of cones, because such secreted 
proteins are lacking after rod cell death. A systematic expression-cloning strategy helped 
identify one such signaling molecule -RdCVF- encoded by the Nxnl1 gene (45). This gene 
encodes two proteins: RdCVFL thioredoxin-like enzyme and a truncated form of this 
enzyme, called RdCVF (45). This trophic factor is specifically expressed by rods and 
supports cones. RdCVF binds its cell-surface receptor Basigin-1 expressed on the cone 
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membrane, and promotes aerobic glycosis (48). AAV vectors carrying RdCVF can 
efficiently slow down outer segment loss in retinal degeneration for a limited time (46, 49). 
In slow RP forms RdCVF treatment might keep vision for the rest of the patient’s life. 

 

 
Figure 20: Rods feed cones to promote their survival through RdCVF secretion. (A) Under normal 

conditions, RdCVF is secreted by rods and interacts with its cell surface receptor Basigin-1 expressed by 

cones, thereby promoting glucose uptake and outer segment renewal. (B) As a result of rod cell death, 

RdCVF expression is lost which leads to outer segment loss and eventually cone cell death. Adapted from 

(87). 

 

 

 

 
These preventive treatments have been developed for over a decade. A second, 

restorative approach, emerged more recently. The discovery of light-gated channels 
(channelrhodopsin (ChR) (Figure 21) or ReachR) and pumps (halorhodopsin (NpHR) or 
Jaws) enabled to create artificial photoreceptors in the remaining retinal circuits of RP 
retinas, using AAV-mediated gene therapy. One of the most successful applications of this 
mode of treatment was by reactivation of cone cell bodies that have lost their outer 
segments (88, 89) (Figure 22). This strategy used light-sensitive pump halorhodopsin to 
hyperpolarize cone cell bodies in response to light. Indeed it has been shown that the 
expression of eNpHR (Figure 21) (88) or its improved version Jaws (89) in remaining 
photoreceptor cell bodies is able to re-sensitize cones to light after degeneration of their 
light-receptive outer segments (Figure 22) in vivo in mouse animal models for RP but also 
in human retinas ex vivo. Dormant cones are relevant cell targets as they are at the source 
of processing providing closest to natural vision. Until recently there were no evidence of 
the applicability of this strategy in primates. But in rapid forms of RP, cone cell bodies are 
eventually lost. 
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Figure 21: Optogenetic tools from microbial origin used for vision restoration. (A) Channelrhodopsin is 

classically used for neuron depolarization and has been discovered in algae. (B) Halorhodopsin is classically 

used for neuron hyperpolarization and has been discovered in bacteria. Adapted from (90). 

 

Other strategies have been developed in rodents for activation of more downstream 
neurons, namely bipolar or ganglion cells with other opsins such as the channelrhodopsin, 
which are depolarizing opsins (Figure 23). Since then, ganglion cell activation to replace 
missing photoreceptors has been improved with more efficient opsins in rodents such as 
ReachR (91) and then translated to primates with Catch (92), and ChrimsonR with a clinical 
trial planned in RP patients (Gensight Biologics). There are already patients treated using 
AAV-ChR2 (RetroSense Therapeutics, Table 1), but no published results yet. 

 

 
Figure 22: Optogenetic therapy proof-of-concept studies with different target cells. (A) The more 

uptsream neurons are targeted, the easier it is to restore signal processing close the normal healthy retina 
(93). (B) References of studies involving optogenetic vision restoration in animal models. Adapted from (94). 
cPR : cone photoreceptor ; BC : bipolar cell ; AC : amacrine cell ; HC : horizontal cell ; GC : ganglion cell.	
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The stimulation of transduced retinal neurons is not possible under ambient light levels 
as microbial opsins have lower light sensitivity than endogenous opsins. It will however be 
possible using goggles such as the ones developped by GenSight Biologics (Figure 23). 
The image will be amplified at the specific, optimal wavelength required for activation of the 
selected opsin, and then projected to the retina. The device created by GenSight Biologics 
is composed of a camera and a microarray driven by a microprocessor, to send the visual 
information signal and light to the macular region. 

 
 

 
Figure 23: Goggles compatible with optogenetic reactivation. Adapted from www.gensight-biologics.com 

 

There is a need for translating promising therapies like optogenetics and RdCVF from 
mice to patients. In this context, the design of vectors for delivery of therapeutic genes is a 
critical step. To this aim we must engineer highly efficient vectors with enhanced retinal 
gene delivery properties and equip them with adequate promoters for targeting specific cell 
types. 
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III. Vectorology: the puzzle of gene therapy  

 

Our general aim is to provide efficient therapeutic options for those who suffer from 
retinal degenerations. As stated above, gene therapy is today a promising approach to treat 
patients affected with retinal disease. However, conceiving the gene therapy vector in itself 
–before even its testing– is an important step with multiple parameters to consider. Careful 
optimization of the vector is a key condition of gene therapy success in patients, and correct 
assembly of all of the pieces of the puzzle unlocks the full potential of gene therapy. 

 

In principle, the concept of gene therapy is easy. It consists in inserting a gene into a 
vector, which is then delivered to target cells to obtain therapeutic effects. But in reality, it is 
not that simple. There are several objectives to achieve when designing a gene therapy, 
which have to be taken into account from the beginning at the vector design stage. These 
objectives are: 

- Safe and long-lasting gene transfer  

- Specific therapeutic gene expression in target cells 

- Efficacious treatment, measured as prevention of vision loss or vision restoration 

 

What are the parameters to take into account to achieve such objectives when 
designing a vector? Here, I will present the different means to obtain efficient vectors in 
view of these therapeutic goals with focus on AAV vectors, as they are the most efficient 
vectors today in the field. Moreover, I will focus mainly on the targeting of cones, as this has 
been my target cell type for developing gene therapies. 

 

i. How to transfer a DNA drug safely to the retina in the long-term? 
 

How can we transfer gene drugs into specific cell types? There are classically non-
viral and viral approaches to treat retinal diseases (95). Most frequent vectors include those 
derived from viruses, namely adeno-associated viruses and lentiviruses. Adenoviruses; or 
non-viral vectors have also been used to a certain extent (Figure 24). 

 

1. Non-viral vectors 

 

Non-viral approaches include naked DNA or DNA nanoparticles (Figure 25) transferred 
to the retina via physical methods such as electroporation or iontophoresis. DNA particles 
and lipoplexes can also be delivered without physical methods. However, in the context of 
retinal disorders they have generally shown low efficiency (96). Few studies reported vision 
improvements for 120 days in mouse models (97, 98) and long-term expression, up to 1 
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year after subretinal injection in mice (99). In particular, CK30PEG (polyethylene glycol-
substituted 30-mer lysine peptides) nanoparticles (NPs) were shown to be safe (97, 98) and 
transduce the retina without inflammatory response (100, 101). An additional and important 
advantage is their large cargo capacity, up to 14 kb (99). Thanks to this, NPs were used to 
treat Stagardt disease associated to ABCA4 (ATP binding cassette transporter) mutations, 
with improved recovery of dark adaptation and reduced lipofuscin accumulation (99). These 
results will need to be further studied and confirmed in larger animal models. Virus-like but 
synthetic nucleocapsids also seem promising (102), their testing in vivo remain to be 
studied.  

 
 

As non-viral vectors are not efficient enough for now, most pre-clinical studies and 
clinical trials involve the use of viral vectors. 

 

 

2. Adenoviral and retroviral vectors 

 

Both lentiviral and adenoviral vectors have shown promise in small animal models (103). 
However, they seem to be immunogenic after subretinal administration in spite of immune 
privilege. Lentiviral vectors can cause inflammation in NHPs and adenoviral vectors also 
showed evidence of inflammation or toxicity in preclinical studies (104). Besides their large 
size (Figure 25) does not allow efficient diffusion of viral particles and hampers their journey 
within retinal target tissue (95). Another drawback is the possible insertional mutagenesis 
although attempts to tackle this issue with the creation of self-inactivating or integration-
deficient vectors reduced these side effects. 

 

 

 

3. Adeno-associated vectors 

 

AAV vectors have been used in clinical trials in multiple organs for various diseases to 
treat muscle, liver, and central nervous system disorders. AAV use is compatible with many 
strategies namely gene addition (also referred to as gene supplementation or gene 
replacement), gene correction, gene silencing, and also mutation-independent approaches, 
such as the use of neuroprotective therapies or optogenetic vision restoration. What makes 
AAV vectors such a flexible and powerful vector platform? 
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Figure 24: Vectors for gene delivery. Adapted from (105). 

 

 

 

 

 

 
Figure 25: Diversity of gene delivery vector sizes and shapes. (a) Nanoparticles (CK30PEG) with small 

diameter of 8 to 11 nm. (b) The adeno-associated virus (arrowhead) is smaller than the adenovirus (arrow). 

Adapted from (105). 
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- Wild-type adeno-associated virus 

 

The AAV has been first observed in 1965 as a contaminant in adenoviral preparations 
(106). AAV owes its name to its incapacity to replicate and form its capsid without the 
presence of a co-infecting helper virus such as adenovirus, herpesvirus or papillomavirus. 
AAV is a very small (about 25nm in diameter) non-enveloped virus of icosahedral structure 
belonging to the dependovirus genus of the parvovirus family. It packages a positive or 
negative linear single-stranded DNA (ssDNA) of approximately 4.7kb. The viral genome is 
composed of two open-reading frames (ORFs) of structural (cap) and replication (rep) 
genes, like other members of the parvovirus family. The 5’ORF of wild-type AAV generates 
four functional Rep proteins through the use of two different promoters and alternative 
splicing. The 3’ ORF of wild-type AAV generates three structural Cap proteins (VP1, VP2, 
and VP3) through alternative mRNA splicing and alternative start codon usage (107). The 
most unique component of this virus is the presence of Inverted Terminal Repeats (ITRs) 
flanking the viral genes. ITRs are self-complementary CG-rich sequences of approximately 
145 base pairs (bp) in length and form T-shaped structures. ITRs include a terminal 
resolution site and a Rep binding site, playing a crucial role as both origins of replication 
and for packaging of viral genome. 

About 13 distinct AAV serotypes have been identified (108). The tropism of AAV 
serotypes (and their variants) is mainly determined by their capsid (Figure 26) that change 
their interaction with different cell surface receptors for cell entry. Even though our 
understanding of the AAV has improved, AAV still holds secrets event after multiple years 
of study and genetic manipulation for creation of AAV vectors. 

 

- Structure of adeno-associated viral vectors 

 

AAV vectors, or recombinant AAVs, have a different genome than that of wt AAVs. Both 
rep and cap ORFs are replaced by an expression cassette containing cDNA of interest and 
a promoter (Figure 21). Each vector, derived from naturally occurring AAV serotypes, have 
different tropism for cells and tissues. For example, AAV1 and 6 can be chosen to target 
skeletal muscle while AAV9 can transduce the heart more efficiently. Therefore, the 
transduction efficiency of a given tissue or cell type can be improved simply by changing 
the AAV serotype. Over 100 AAV capsid variants have been described (108). However, 
there is still a need for new viral variants overcoming current challenges, which vary 
depending on the target tissue and the route of administration.  

 

Several features make AAV a very attractive vector for retinal gene therapy. Contrary to 
adenoviral vectors, AAV vectors show low immunogenicity. Furthermore, recombinant AAV 
genomes are non-integrative and persist as episomes in the nucleus unlike many retroviral 
vectors that can cause insertional mutagenesis by integration in the host genome. Besides 
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AAV variants are capable of stable transduction leading to efficient, long-term production of 
a therapeutic gene product in post-mitotic tissues such as the retina. Lastly, their small size 
allows easy diffusion into neural tissue, providing access to cell types away from the 
injection site and beyond barriers that stop access to larger viruses or particles.  

 

 

The use of AAV vectors has two main limitations. Its slow transgene expression onset 
compared to other vectors –although that is not so problematic as vision loss in retinal 
diseases usually occurs in long time intervals. Obtaining peak expression several weeks 
after administration is not a limiting factor. The most problematic issue is its cargo capacity, 
which is up to about 5kb but there have been attempts to tackle this issue with the creation 
of dual (109) or even triple (110) AAVs that carry two or three portions of the cDNA, then 
recombining to allow production of the full-length therapeutic protein.  

 

 
Figure 26: Structure of AAV capsid proteins. (A) AAV capsid consist of 60 monomers in (A). There are 9 

hypervariable regions that are numbered I to IX. (B) Close-up to hypervariable regions to visualize 3D 

differences among serotypes. AAV1 is shown in purple, AAV2 in blue and AAV5 in gray. Adapted from (111).	
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- Cell attachment and intracellular trafficking of AAVs 

 
 
The interaction of AAV with its host cell, and attachment to the cell surface occurs via 

glycans in a serotype-dependant manner. Today, there are 23 known glycan primary or 
secondary receptors for AAV serotypes (112). For example, galactose is a receptor for 
AAV9, heparan sulfate proteoglycan (HSPG) for AAV2, AAV3 and AAV6, while sialic acid is 
a cellular receptor for AAV1, AAV4, AAV5, and AAV6. However, the primary receptors for 
AAV7, AAV8, AAV9, AAVrh10, AAV11, AAV12, and AAV13 are still unknown. Recently, a 
multi-serotype proteinaceous receptor has been identified and is referred to as AAVR or 
KIAA0319L (113). The role of AAVR is still not fully understood and has also been 
suggested to be not directly involved in virus uptake, but rather in other infection steps 
during AAV intracellular trafficking –or maybe both functions (114). 

Cell entry then occurs through endocytosis with the formation of vesicles that contain 
AAV particles. AAV escapes the endosomes through the phospholipase domain of its VP1 
protein. It is then retrogradely transported from endosomes to the trans-Golgi network via 
microtubule-dependent pathways, uncoated and imported into the nucleus (115). 

 
 

 

4. Safety and long-lasting effects of AAV vectors 

 
 
Are AAV vectors safe? Since the discovery of the wt AAV, rAAVs have been attractive 

as they are derived from a non-pathogenic virus, which is particularly relevant for its use as 
a therapeutic vector. There have been only anecdotic reports on AAV toxicity. In vitro 
reports of toxicity were about transduction of embryonic stem cells (116) or in vivo in the 
brain, and seem to be due to high-input vector doses (117–119). There are also evidence of 
side effects in the retina after AAV injections but it is not clear whether it is due to AAV itself 
or the transgene –often GFP (71, 120). There are evidence that high levels of GFP are 
neurotoxic (119). This important question remains to be clarified in the context of the retina. 
It is thus important to carefully select the dose before moving to the clinic, by performing 
dose-ranging and toxicity studies in small and large animal models to avoid potential dose-
related toxic effects (121) or immune responses (122). The persistence of AAV genome as 
episomes in the nucleus makes it safe (no insertional mutagenesis). 

 

 

In principle, AAV-mediated gene transfer is long lasting in a post-mitotic tissue as the 
DNA persists as episomes in the nucleus. There is evidence of long-term expression in 
large animal models, up to 36 months after administration in retinas of dogs (123). In 
humans, it is more difficult to assess this, as there is no way to measure transgene 
expression levels in vivo in retinas of patients. That being said, it appears now from both 
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pre-clinical and clinical studies that a key condition to maintain transgene expression in the 
long-term is to avoid any inflammatory immune response. Inflammation is a major concern 
as it can lead to clearance of transduced cell types (122). As AAV is of low immunogenicity, 
and the eye benefits from an immune privilege, AAV vectors are today the best therapeutic 
option to obtain long-term expression, as long as well-tolerated doses are administered and 
there are no double stranded breaks in the genome.  

 

Today, even if the first ocular trials for LCA and choroideremia are promising, and 
there was no obvious major side effect ; in certain cases the visual field reduced again after 
several years in LCA (58, 61). Therefore, there is still a need to optimize gene therapy 
conditions and AAV vectors to obtain better and longer-lasting effects. The most obvious 
solution is to increase the vector dose. But as stated above, there are growing evidence 
that dose increase can be detrimental, and lead to toxicity or immunogenicity (58, 62, 71). 
Another solution could be to use a stronger, specific promoter to avoid off target therapeutic 
gene expression obtained with ubiquitous promoters (92). We can also use new capsids 
that allow dose sparing while increasing transduction efficiency (124). 

 

Modifying these parameters are interesting options, but we also need to better 
investigate the mechanisms involved in toxicity, immunogenicity after AAV injections; and 
the potential link with secondary vision loss. 

 

ii. How to deliver genes specifically to cone photoreceptors? 
 
 

1. Choosing the appropriate administration route  

 
 
 

Our target cell type is the cone photoreceptor. How to attain them with AAVs? The 
classical way to deliver gene therapy vectors to the retina is the subretinal injection, in 
between the photoreceptor layer and the underlying epithelium, creating a ‘bleb’ of injected 
fluid. SR injection creates a retinal detachment that resorbs within 48 hours (125) or even 
less (57).  

 

This local administration route has been widely used in pre-clinical and clinical studies. 
SR injection is the preferred injection since the beginning of ocular gene therapy. SR 
injection has several great advantages such as early-onset and high-level transgene 
expression in PR and RPE cells.  
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Figure 27: Delivery of gene therapy drug to the primate retina using subretinal or intravitreal 
injections. Adapted from (126).	

 

However, this administration route is challenging and requires important surgical 
dexterity, especially when the macula/fovea are detached. Also, this administration route 
gives rise to expression in a limited area of the retina and induces a transitory retinal 
detachment, thereby increasing the risk of surgical damage –especially when targeting of 
the fovea is desired. Retinal adhesiveness to RPE is high (127) and is greater in primate 
than in other vertebrate species (128). Besides the fovea has the highest density of RPE 
cells, and it is also in the fovea that one RPE cell ensheathes a higher number of 
photoreceptor tips compared to the periphery (129). The fovea being responsible for high 
acuity vision, it is particularly important to preserve this region of the retina and not provoke 
side effects because of surgery that would exacerbate disease state. 

Although there are studies suggesting that detaching the macula does not significantly 
damage cones (68, 130), there is also evidence suggesting the opposite and pointing to the 
harmful nature of subretinal foveal detachment. Perhaps the clearest examples come from 
clinical data in LCA trials where there were cases of macular thinning (58, 62, 131) and no 
visual improvements in the fovea compared to the periphery (131). Also, in the 
choroideremia trial, one patient treated with the lower dose had a VA decline compared to 
untreated eye (68, 69). These results support the development of alternative strategies to 
target the fovea (132). 

 

 

 

The intravitreal injection is another local administration route to the eye. It is surgically 
simpler and non-invasive to the retina, making it a very attractive option for delivering gene 
drugs. Using this strategy, AAV2 is able to provide pan-retinal (i.e. spanning the entire 
retina) gene expression and transduce the inner retina (133). However, transduction of 
deep retinal layers with AAVs from the vitreous has been hampered for many years 
because of physical and cellular barriers. 
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- First, AAV vectors injected into the vitreous are highly diluted in the large vitreous 
volume creating very low local concentrations in proximity of the retina. Moreover, the gel-
like structure that fills the eye can trap the vector before it reaches the retina. 

 

- Second, the vector’s capsid structure has to be compatible with retinal access. 
Otherwise, it is ‘rejected’ at the level of the inner limiting membrane, and cannot go beyond 
it even to reach superficial retinal layers. 

 

- Third, the retina is a ‘crowded’, densely packed tissue. It contains dendrites, axons, 
and cell processes of neurons that compose the retinal tissue. AAV vector has to cross all 
of these cellular barriers to reach photoreceptors. 

 

- Fourth, when –and if!– AAV reaches photoreceptors; the viral capsid has to be 
compatible with cell entry. This is achieved thanks to the interaction of AAV with its cell-
surface receptors. Efficient cell entry allows therapeutic efficacy. 

 

For all these reasons, efficient delivery of AAV vectors to the fovea from vitreous has 
been a challenge for many years. 

 

	
Figure 28: Barriers to retinal transduction after intravitreal AAV delivery. 

 

To tackle these issues, i.e. the absence of appropriate vectors compatible with distal 
subretinal or intravitreal administration to the fovea, new AAV capsids that are able to 
overcome these obstacles have been developed. 
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2. Choosing the appropriate capsid 

 

- Limitations of natural capsids and design of new capsids 

 

AAV compatible with SR injections are broadly available and they can target both PRs 
and the RPE. AAV5, 7, 8 and 9 are able to transduce PRs in mice and monkeys via this 
mode of injection (134, 135) while AAV2 can transduce mainly RGCs and MGCs from the 
vitreous in mice and monkeys (133). However, vectors compatible with photoreceptor 
transduction from the vitreous are limited. How to modify AAV properties to enable outer 
retinal gene delivery? AAV capsid can be engineered genetically by manipulating the 
capsid gene. To do so we use molecular biology, namely site directed mutagenesis for 
rational design and techniques such as DNA shuffling or random mutagenesis to generate 
combinatorial libraries for screening. By engineering AAV capsid, we can modify its tropism 
in order to direct it to a tissue or cell type of interest. 

 

- Design of enhanced capsids through rational design 

 

AAV variants capable of transducing all retinal cell layers after intravitreal injection have 
been created. The rational mutagenesis strategy manipulates surface residues to increase 
viral trafficking to the nucleus and has been efficient in increasing efficiency of viral vectors 
(136). Usually, specific lysines (K), serines (S), threonines (T) or tyrosines (Y) are mutated 
to improve AAV efficiency by helping avoid ubiquitination of the capsid. An efficient vector is 
a triple tyrosine to phenylalanine mutant referred to as AAV2-3YF that can transduce 
photoreceptors when delivered into the vitreous of the mouse retina (136, 137). Another 
strategy is the insertion of small peptides on the capsid surface to redirect cell tropism of a 
given AAV. This type of insertion must neither be deleterious for capsid stability nor lead to 
creation of an immunogenic epitope. 

 

- Design of enhanced capsids through directed evolution 

 

A major challenge in the field has been to obtain a virus allowing broad retinal 
transduction from the vitreous in the clinically relevant primate retina. Complex barriers are 
involved in cell surface attachment and viral distribution in a given tissue, and AAV 
structure-function relationships are not fully understood. Therefore, combinatorial 
approaches are more efficient and powerful for making AAVs better suited for a particular 
application. In this context, directed evolution of AAV has been successfully employed to 
select for viral capsids with better gene delivery properties. After creation of libraries of 
millions of AAV capsid variants, an in vivo directed evolution screen has been applied for 
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isolation of a vector capable of photoreceptor transduction. The variants were created with 
random mutagenesis, random peptide insertion, or capsid shuffling. 

 
One of these variants developed through directed evolution, AAV2-7m8, outperforms all 

other AAV variants thus far described for retinal transduction in the mouse and in the NHP 
retina after vitreal administration (124). This variant is characterized by an insertion of a 10 
amino-acid ‘LALGETTRPA’ peptide, composed of a variable heptamer region (LGETTRP). 
This ‘7m8’ peptide is inserted into the cap gene of AAV2 at a site corresponding to the 588 
residue, and it is exposed 60 times on the AAV capsid. This site has been selected for 
insertion because previous studies have proven efficacy for AAV2 re-targeting after non-
viral sequence insertions at this location which is involved in capsid interaction with its 
primary receptor, heparan sulfate (138). Altogether these modifications give to AAV2-7m8 
new transduction properties that allow better penetration properties, pan-retinal transgene 
expression and in all retinal layers. AAV2-7m8 was then applied for the treatment of retinal 
degenerative diseases, namely in the mouse model of X-linked retinoschisis (124), LCA 
(124), RP (91, 139) and further optimized for gene transfer in non-human primates (92). 
Recently, an improved version of AAV2-7m8 has been described: AAV2-MAX (140) with 
four additional Y to F and one T to V substitutions. 

 

 
Figure 29: Directed evolution process to select for best variants to transduce outer retinal layers.	
Modified from (124).		
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Figure 30: AAV2-7m8 enhanced retinal gene delivery properties. (A-C) Structure of AAV2-7m8, with 

peptide in red. (D-E) Transduction of all layers with AAV2-7m8 (E) but not AAV2 (D). Modified from (124)	

 

All of the parameters evoked above show the importance of combining the right capsid 
and the appropriate administration route to better target a cell type of interest. 

 

 

3. Selection of cell-type specific promoters  

 

The capsid structure is not the only determinant of transduction efficiency. Modification 
of AAV genome is also a key parameter of AAV design to improve both the efficiency and 
kinetics of transduction. Transduction of photoreceptors has been achieved with ubiquitous 
promoters such as CAG or CMV (141) which mainly transduces both rods and cones as 
well as RPE cells after SR injection. But specific targeting of photoreceptors can be 
achieved with hGRK1 promoter (142). Specific targeting of rods has been achieved with 
rhodopsin promoter (124, 134). Cone-restricted expression has been attempted especially 
subretinally with mCAR (88), hCAR (but it was leaky in rods) (143), IRBP/GNAT2 chimeric 
promoter and human red opsin-based promoters, namely PR2.1 and PR1.7 (144–146). 
Specific targeting of cones from the vitreous has never been achieved in rodent and 
primates. Although promoter of choice is very important it has to be combined with 
appropriate capsid and administration route to unlock its potential. 

 

 

iii. How to maximize AAV vector efficiency? 
 

1. Optimizing the expression cassette 

 

To further optimize transduction kinetics there is a strategy that consists in producing 
self-complementary AAV vectors (scAAV) instead of classical single-stranded AAV 
(ssAAV). This consists in inserting the transgene in the vector genome so that it will be able 
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to self-hybridize. Therefore, it will not require a step of second strand DNA synthesis for 
initiation of transgene expression. This can drive faster expression onset (147). However, 
because of the double stranded DNA structure, there is a risk that it can activate innate 
immune responses through the activation of TLR-9 (148), and should most likely be 
avoided in a therapeutic context in vivo, especially at higher doses. 

 

Other enhancer sequences can be added to help better transcription or to enhance 
translation. The Kozak consensus sequence plays a major role in the initiation of the 
translation process and can be modified to enhance translation efficiency (149). Addition of 
intronic sequences that promote mRNA export can also be used such as SD/SA (splice 
donor/splice acceptor) splicing sites from simian virus SV40 (146). Stability of transgene 
expression can be further optimized by codon optimization (150) through the use of codons 
that are more often used in humans versus other species. The woodchuck hepatitis virus 
post-transcriptional regulatory element (WPRE) can be added to the expression cassette 
after the transgene sequence to enhance its expression. WPRE has been recently shown 
to enhance AAV-mediated gene expression in the mouse retina and in post-mortem human 
adult retinal explants (151). WPRE sequence is included in Glybera, the first gene therapy 
drug approved in 2012 in the European Union for the treatment of lipoprotein lipase 
deficiency (LPLD) (53) and also in the gene therapy product for Parkison’s disease (clinical 
trial) in the USA (152). 

 

 

2. Other ways of enhancing gene transfer efficiency 

 

 

The use of exosome-associated AAV (exo-AAV) has been suggested to improve overall 
AAV efficiency. Exosomes have been shown to cross biological barriers and mediate 
widespread distribution upon systemic injections applicability in diseases have not been 
widely studied. When applied to the retina exo-AAV enabled broad retinal targeting 
following IVT injection (102) but it is unclear if this type of AAV is compatible with clinical 
use due to a lack of good manufacturing practice (GMP)-compatible production protocol. 

 

 

This is a non-exhaustive list of ameliorations that can be brought to AAV to enhance its 
gene delivery efficiency; they are summed up in Figure 31. Although challenging and time-
consuming, these steps are necessary to achieve efficient gene therapies. Additional 
parameters to be taken into account are interspecies differences and retinal disease state, 
which can dramatically impact transgene expression patterns and efficiency. 
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Figure 31: Summary of methods used to improve gene delivery using AAV vectors. Adapted from (153).	

 

Altogether, vector design and optimization is thus an important step as clever vector 
design enables best use of the small space (genome) in vectors –which is especially true 
for AAVs.  

 

iv. Translation of gene therapy from rodents to primates 
 
 

Retinal gene delivery and therapy tools have been extensively developed and optimized 
in rodents (95). Yet there is a huge gap between results obtained in mouse and their 
translability to primates and human clinical trials. Indeed, AAV vectors proven to be efficient 
in mouse retina do not always perform the same way in larger animal models (124, 133, 
154). AAV2 has been shown to transduce cones in the canine retina (141) while AAV9 is 
more efficient for transducing NHP cones (135). The main reason for this being the 
interspecies difference of retinal structure and the receptors expressed by retinal cell types. 
This results in interspecies variations of AAV’s behavior because of the structure of the 
vector, and is also conditioned by physical and cellular barriers. Thus, it is essential to 
better understand the behavior of AAVs from one species to another, and test gene therapy 
vectors in multiple animal models before translating these tools to the clinic.  

 

 

Transduction characteristics also vary with the disease state, as AAV accessibility to 
retinal layers will depend on retinal health. It has been shown that structural and 
biochemical characteristics are modified when the retina is damaged, thereby changing 
AAV diffusion capacities (155, 156). This is due to the ILM, a natural barrier between the 
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vitreous and the retina. It is constituted by glial Müller cell endfeet and a layer of 
glycosaminoglycans secreted by Müller cells, responsible for the limitation of passage from 
the vitreous to the retina. The ILM is disorganized in retinal degeneration, thereby 
increasing the accessibility for AAV (155, 156). 

 

 
Figure 32: Structure and thickness of the inner limiting membrane (ILM), an important barrier to AAV 
particles and determinant of transduction patterns. The ILM is thinner in the macula (except in the foveola 

where it is very thin) compared to the peripheral retina. Adapted from (157).	

 

 

As already stated the mouse is not always the most appropriate model as the eye 
structure is different than in humans. Mouse eye volume is about 25 microliters, while the 
monkey’s is 100 times greater and the human vitreous volume is 160 times the volume of 
mouse vitreous (Figure 33). The proportion of cones versus rods of photoreceptors is 
different, rodent retinas are rod-dominated and they are nocturnal animals while primates 
have a much higher number of cones and are diurnal species. Also, the immune system of 
rodents is different than that of primates. 

Nevertheless, mouse models of retinal degenerations are widely used for proof-of-
concept gene therapies. There are a large number of mouse models including diseases like 
achromatopsia (145), and retinitis pigmentosa (158) with spontaneous mutations (referred 
to as retinal degeneration 1 (rd1) or rd10). The major limitation of NHP however, is the 
absence of a retinal degeneration model. In the absence of such conditions, experiments 
are performed in wild-type monkeys. They still allow assessment of AAV efficiency and 
expression pattern, as well as safety profile. 

A B
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Figure 33: Differences between mouse and primate eyes. (A) Comparison of mouse, macaque and human 

eye volume. (B) Pros and cons of each animal model for gene therapy research (159).	
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IV. Objectives of the PhD project: gene delivery to cones for mutation 
independent gene therapy 

 

My main objective is to design efficient gene therapies and vectors to prevent vision 
loss, and restore vision. In particular, we focus on RP, as it is the most prevalent inherited 
retinal degeneration, affecting 1.5 million people worldwide with no treatment so far. 

 

 

i. Therapeutic objectives  
 

 

In particular, I looked for vectors that can target cones for treatment of RP patients using 
optogenetic strategies. Another aim was to design a combined protective and restorative 
therapy for longer lasting therapeutic benefits expected than with either therapy alone. 

 
 
To translate cone reactivation strategy from mice to primates, one important challenge 

to overcome is to target the fovea non-invasively. Subretinal injection under the central 
retina is used in most clinical trials to treat the fovea. However it is an invasive technique 
and can be associated to side effects such as macular holes and VA decrease or retinal 
thinning (56, 58, 62, 69, 131) and therefore there is a risk to exacerbate disease state by 
further damaging photoreceptors, especially at advanced disease stages. Given the fragility 
and importance of the fovea, it is important to develop alternative strategies that can spare 
the fovea from its detachment when administering the vector. Keeping in mind available 
data from clinical trials, I found that the gaps in the field to be filled were safer and less 
invasive foveal cone targeting together with high level therapeutic gene expression. 

 

 

In this context, during my thesis I focused on the development of viral tools and surgery 
modalities (Figure 34). To do so I looked for: 

- A vector administered subretinally in the peripheral retina, but that is capable 
of transducing cones of the fovea without detaching it. 

- A vector administered into the eye’s vitreous without any contact with the 
retina or the fovea but able to transduce specifically foveal cones. 

 

In parallel, I investigated the safety and toxicity of these vectors. I also optimized and 
tested combined protective and restorative approaches in the retinal degeneration 10 (rd10) 
mouse model for RP. 
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Figure 34 : Gene therapy strategies to treat the fovea. Strategy n°1: Central subretinal injection. Strategy 
n°2: Distal bleb without foveal detachment. Strategy n°3: Intravitreal injection. Red circle shows the location 

of the fovea.	

 

How to develop vectors adapted to my objectives? I first searched for existing capsids 
and promoters compatible with cone-specific transgene expression. If not possible, creation 
of new capsids and promoters is necessary, using for example high-throughput techniques 
like directed evolution. 

 

There already is a capsid compatible with highly efficient delivery to photoreceptors from 
the vitreous. This vector was discovered in the Flannery and Schaffer labs (USA), and is 
referred to as AAV2-7m8 (124). It was combined with a ubiquitous cytomegalovirus (CMV) 
promoter, thereby transducing all retinal layers. More recently, the company AGTC (USA) 
characterized and developed new cone-specific promoters. In particular, the promoter 
PR1.7 is particularly promising in primates (144, 146). I thus decided to combine these for 
the intravitreal approach. However, the major limitation of intravitreal injections is the pre-
existing AAV immunity in the humans, 72% of the general population has pre-exisiting 
immunity to AAV2 (107). Neutralizing antibodies block AAV from reaching and entering 
target cells, thereby preventing transgene expression. 

Therefore, I still needed to find another strategy for patients who would have high titer 
antibodies against AAV2 vectors (160). However, for the development of the distal 
subretinal approach, AAV2-derived capsids are not the best option as they are not the most 
efficient for transduction of cones in primates. It has been shown that AAV9 has a better 
tropism for cones than AAV2 when administered subretinally (135). We thus focused on the 
development of a new AAV9-derived vector for better transduction of cones from the 
periphery.  

 

Both strategies had to be compatible with ‘dose sparing’ but still lead to high transgene 
expression levels, as high-input vector doses can be harmful. 
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ii. Specific objectives and steps of my thesis 
 

As previously described, numerous parameters can dramatically affect expression 
patterns and therapeutic outcomes, namely AAV capsid, expression cassette design 
involving choice of promoter, enhancer sequences, transgene -not mentioning AAV 
administration route, organ size and retinal health state. 

During my thesis I focused on the following steps for the development and validation of 
new strategies for foveal gene delivery and combinatorial gene therapy for RP. 

 

(1) Dose-ranging and toxicity studies to determine best parameters for future 
therapeutic application 

(2) Development and characterization of AAV capsids compatible with highly 
efficient photoreceptor transduction in vivo in the mouse retina 

(3) Optimization of the expression cassette to obtain cone-specific transduction in 
wild-type and retinal degeneration mice 

To select best tools for later proof-of-concept in macaques, I screened for best capsids 
and promoters in the mouse retina. I chose them based on their performance in mouse, 
macaque and human tissue (88, 89, 124, 144, 145). 

 

(4) Translational study: surgery modalities for foveal transduction in macaques in vivo 

 

(5) Validation of gene therapy products in human tissue 

 

To do so, I focused on two system models: 

a) Retinal organoids derived from human induced pluripotent stem (iPS) cells  

b) Adult human post-mortem retinal explants 

Optimization and validation of a gene-based drug into all of these animal and cellular 
models, in vitro and in vivo, is challenging, but it eventually provides solid evidence for its 
potential future application in patients. 

 

(6) Test of the combined protective and restorative gene therapy  

An additional aim of my thesis was to design a longer-lasting gene therapy strategy, 
where expression of neurotrophic factors such as RdCVF would be combined to Jaws 
expression. In principle, this would enable prolonged cone survival and therefore, prolonged 
and better efficacy of optogenetic-mediated vision restoration. Although we managed to 
complete and publish the other works, this part of my work is still ongoing in the lab. 
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I. Toxicity study of AAV vectors at high-input doses 
 

 
 
Although AAV is generally admitted to be safe, there are a few reports of neurotoxicity in 

the brain (117–119) or immunogenicity in the retina (58, 71) when high doses are used 
(Table 1). Therefore, safety concerns might appear for the very specific conditions of gene 
therapy where high amounts of vectors are administered locally in a small tissue volume. 
However, whether these side effects on the retina are due high amounts of capsid or 
transgene itself remain unclear. Besides, the importance of choosing ubiquitous versus 
specific promoters is not well characterized. We show here that at high doses, all of these 
parameters can potentially contribute to inducing side effects, collectively. Moreover, at high 
doses, we observed apoptosis suggesting cellular toxicity -and not simply inflammation. 
Therefore, dose sparing is crucial to avoid any side effect in retinal gene therapy, and in 
gene therapy in general. Dose sparing can be achieved using newly created capsids, 
and/or more efficient promoters (92). The therapeutic dose of a given protein needs to be 
determined on a case-by-case basis. 

 
 
Manuscript in preparation: 

 
Khabou H., Cordeau C., Vendomèle J., Pacot L., Fisson S., and Dalkara D. 

Deciphering AAV components involved in retinal toxicity at high-input doses. 
 
Additional information including supplementary figures are available in Annex I. 
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Table 1: AAV doses and induction of side effects in the retina 
Study Species AAVs 

used  

Type of injection Injected 

doses 

Inflammat

ory dose 

Observations 

Barker et al. 

2009 (161) 

Mouse AAV2 Subretinal 5x1011 vg None No inflammation (but 

variable expression in 

contralateral eye after 

AAV re administration) 

Vandenbergh

e et al., 2011 

(120) 

Nonhuman 

primate 

AAV2, 

AAV8 

subretinal 108, 109, 

1010, 1011 

1011 Retinal defects and 

inflammation at higher 

but not lower doses 

Dalkara al. 

2013 (124) 

Nonhuman 

primate and 

mouse 

AAV2-

7m8 

intravitreal 5x1012 

vg/eye in 

NHPs; 

1x1012 

vg/eye in 

mice 

5x1012 Inflammation after 

injection and 3 months 

post-injection in NHPs; 

none in mice. 

Ramachandr

an et al. 

(162) 

Nonhuman 

primate 

AAV2-

7m8 

and 

AAV8-

BP2 

Subretinal and 

intravitreal 

109 to 

1012 

1x1012 Glial activation and 

retinal infiltrates, 

especially subretinally 

(at highest dose) 

Reichel et al. 

(71)  

 

Nonhuman 

primate 

AAV8 Subretinal 1011 and 

1012 

1x1012   Inflammation, 

subretinal and 

choroidal infiltrates (at 

higher but not lower 

doses) 

Takahaschi 

et al. (163) 

Nonhuman 

primate 

AAV2-

3YF 

Intravitreal, 1 

month after 

vitrectomy and 

ILM peeling 

9.5x1011 9.5x1011 No serious side effect 

Boye et al. 

(164) 

Nonhuman 

primate 

AAV2 Intravitreal, under 

the ILM (subILM) 

4.5x1010 None No inflammation 

Comander et 

al. 2016 

(165) 

 

Nonhuman 

primate 

AAV2 

and 

Anc80 

Intravitreal after 

ILM « peel and 

puddle » 

1x1011 1x1011 Inflammation related to 

the surgery or GFP? 

Bainbridge et 

al. 2015 (58) 

Human 

(clinical trial 

AAV2 Subretinal 1011 and 

1012 

1x1012 None of the participant 

of the low-dose 
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number 

NCT00643

747) 

(1x1011 vg) cohort had 

inflammation ; but five 

of the eight 

participants from the 

high-dose group 

(1x1012 vg) presented 

intraocular 

inflammation or 

immune responses 

 
 
 
 

	  



Title: 

 

AAV vector components involved in retinal toxicity at high-input doses 

 

 

Authors: 

Hanen Khabou, Chloé Cordeau, Julie Vendomèle, Laure Pacot, Sylvain Fisson 

and Deniz Dalkara 

 

Affiliations :  
1Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 

17 rue Moreau, 75012 Paris, France.  
2Généthon, INSERM U951, Université d'Evry Val d'Essonne. 

Short title: Causes of AAV toxicity in the retina at high doses 

  



Abstract 
 

Today, there are about 40 recruiting or ongoing ocular clinical trials to treat 

retinal disorders, globally. Most of them rely on the use of AAV vectors that have an 

excellent safety profile. Nevertheless there are few reports suggesting neurotoxicity 

at high-input AAV doses in the brain, and clinical reports about inflammation in 

treated eyes despite the ocular immune privilege. Whether this is due to high levels 

of the expressed transgene, the cells in which the protein is expressed or due to the 

AAV capsid itself remains unclear. Here, we aimed to decipher which components of 

AAV-mediated gene expression causes side effects at high input doses in wild-type 

mice. We show that both the capsid and the transgene contribute to toxicity 

regardless of the nature of the transgene and the cell-type specificity of its 

expression. We also found that the toxicity leads to cell death by apoptosis, and local 

inflammation occurs in treated retinas. Nevetheless we did not find significant cellular 

responses towards AAV or its transgene even at the highest doses. Altogether our 

data show the importance of reducing input doses while increasing transgene 

expression levels via the use of more efficient capsids and promoters to avoid side 

effects in gene therapy. 

  



Introduction 
 

Over the past twenty years, considerable efforts have been invested in 

establishing safe and effective gene therapy approaches for a multitude of diseases1. 

Applications in the retina have been particularly succesful with positive outcomes and 

lack of side effects confirming the suitability of the eye as a target organ2. Today, 

more translational studies are being undertaken and there is a noticeable increase in 

the number of clinical trials being prepared with diverse strategies from gene 

replacement3,4 to neuroprotection5 to optogenetics6. The cell targets, the nature and 

amount of proteins being expressed in these newer applications demand higher level 

gene expression in more difficult-to-transduce cell types. These studies and others to 

follow are likely to put higher demands on AAV as a gene delivery vehicle and this 

might lead to the use of higher input doses. In increasing AAV input doses, several 

potential obstacles need to be taken into account. These include but are not limited 

to; 1) phenotoxicity, i.e. problems arising from either overexpression or ectopic 

expression of the transferred gene; 2) immunotoxicity, i.e. harmful immune 

responses to either the vector and/or to the transgene product7,8.		

AAV vectors have been widely adopted as gene delivery vehicles because of 

their ability to transduce a wide variety of tissues, mediating long-term expression of 

the transgene after a single in vivo administration. Wild-type AAV is not associated 

with any disease pathology in humans, and is also naturally replication-defective, 

requiring a helper virus such as adenovirus to replicate9. AAVs are one of the 

simplest gene therapy vectors, containing only the transgene expression cassette 

flanked by two non-coding viral inverted terminal repeats (ITRs) enclosed in a capsid 

composed of three structural proteins, VP1, 2, and 310. The simplicity of AAV vectors, 

and their low efficiency in transducing professional antigen presenting cells (APCs) 

(e.g. macrophages or dendritic cells)11–13 likely contribute to their generally low 

immunogenicity namely in the eye14. Moreover, transferred genomes tend to persist 

inside the cells mainly in an episomal, non-integrated form, reducing the chances of 

insertional mutagenesis15. All of these favorable properties are accountable for the 

success of AAV in gene therapy thus far. 

Current experience indicates that injection of small doses of AAV vector into 

immuno-privileged sites are tolerated however the longevity of expression has been 

debated in recent studies16,17. Lack of sufficient expression was put forward as a 



potential cause of lack of long term efficacy in these studies18 but, there is evidence 

that AAV injections are neurotoxic at high doses in the brain19–21, indicating a clear 

need to adjust the dose of AAV to obtain optimal balance between therapeutic benefit 

while avoiding toxicity. Thus far there have been a few studies reporting AAV gene 

delivery related toxicity in the retina, and what elements of AAV mediated gene 

delivery contribute to toxicity remain unclear.	To answer these questions, we tested 

multiple AAV constructs to determine which parameters of the vector contribute to 

toxicity at high doses. Here we show that several components of AAVs play a role in 

causing retinal toxicity and this leads to local inflammation. AAV capsid protein is 

responsible for some of the toxic effects although non-coding capsids at equal doses 

cause less toxicity. The nature of the expressed protein as well as the cells in which 

they are expressed play smaller role in the development of toxicity. These findings 

collectively support dose sparing to reduce the risk of exacerbating disease state in 

future therapeutic applications. Importantly, they draw attention to the toxicity of high 

concentration AAV-GFP vectors frequently used as controls in gene therapy 

experiments and that can bias the results. 

 

  



Results 
 
High-input AAV doses have deleterious effects on retinal structure and 
function 
 

Subretinal injections have been the preffered administration route for gene 

delivery to photoreceptors and the retinal pigmented epithelium (RPE). High input 

doses are often used to increase therapeutic gene expression in gene therapy 

settings. To investigate the possible toxicity of vectors as a function of input dose, we 

used an AAV8 vector, frequently used for targeting the photoreceptors. The vector 

was produced at high titer and encoded GFP under a ubiquitous CAG promoter. We 

performed subretinal injections at a dose of 5x1011 vg/eye in 1 µL volume in n=5 

animals, bilaterally. Reporter gene expression was monitored on a weekly basis with 

fluorescent fundus imaging. Strong GFP expression was visible in all animals two 

weeks post dosing (Fig. 1A). Interestingly, GFP expression decreased with time as 

seen on the eye fundus images (Fig. 1A,B). We next injected four lower AAV doses 

to find the dose at which toxicity starts. To this aim, 5x108, 5x109, 5x1010, and 5x1011 

viral particles/eye were injected (n=8-10 eyes per condition). Uninjected and PBS-

injected animals served as controls (n=3-5 eyes per condition). We measured the 

electroretinograms (ERGs) five weeks after injections. There was no significant effect 

of the PBS injection, showing that adverse effects are not due to surgical methods. 

However, we found a significant dose related decrease in ERG amplitudes (Fig. 1C). 

To determine whether retinal function alteration was attributable to cell loss we 

prepared retinal cryosections. We found a correlation between damage to the outer 

nuclear layer (ONL) and functional effects as a function of injected dose (Fig. 1D). 

Nearly complete ONL loss was observed at a dose of 5x1011 viral particles/eye. 



 
Figure 1 : Effect of AAV8-GFP injection on retinal structure and function. (A) Representative eye fundus 

images showing GFP fluorescence using 5x1011vg/eye at 2 and 8 weeks post-injection. (B) GFP expression as a 

function of time calculated as mean gray value in fluorescent fundus images across n=10 retinas. Erros bars are 

mean ±SEM. Kruskal-Wallis ANOVA test, P value is expressed as the following: P**** : P<0.0001. (C) Photopic 

ERG b-wave amplitudes averaged across n=8-10 eyes per dose. Erros bars show mean ±SEM. Kruskal-Wallis 

ANOVA test, P value is expressed as the following: P**** : P<0.0001 ; ns : non significant. (D) Representative 

cryosections of retinas injected with increasing AAV doses. Green (GFP), blue (DAPI) vg : viral genome. 

 

 

  



Cellular and humoral immune responses to high input doses of AAV-GFP 
 

We then asked whether observed defects (Figure 1) were due to cellular 

immune responses towards the capsid antigens and/or the transgene. To answer this 

question we first perfomed unilateral subretinal injections of a control AAV8 where 

the transgene is oriented in reverse orientation in between loxP sites. This AAV 

(referred to as AAV8-flox) can only lead to expression in cells expressing Cre 

recombinase and therefore serves as a non-coding control in our experiments. We 

extracted viral DNA from spleens of n=4 unilaterally injected animals and n=4 

uninjected animals (Figure 2). Viral DNA was detected in spleens suggesting that 

AAV diffused from the eye to the spleen and/or that AAV genome was detected in the 

eye and then presented by APCs to splenocytes.  

Next, we checked B- and T-cell responses to the vector capsid and to GFP 

transgene using subretinal unilateral injections of AAV8-GFP, by ELISA and 

interferon gamma ELISpot assay. We used intramuscular injections of AAV1-GFP as 

positive controls and PBS-injected mice as negative controls. We first looked at 

humoral responses using ELISA tests from serum samples 20 to 30 days after 

injections. Cellular responses from splenocytes were assessed using ELISPOT to 

detect IFNγ producing cells 10 to 30 days after injection. We detected humoral 

responses against both capsids, although they were stronger in AAV1-injected 

animals. There was a significant humoral response against GFP with intramuscular 

but not with subretinal injections. There was a non-significant cellular response 

against GFP using AAV1 at day 10 or AAV8 at day 20. These results coincided with 

peak GFP expression for each case. Indeed we observed that muscles were bright 

green at day 10 (D10) upon necropsy, but there was less GFP expression at D20, 

suggesting destruction of GFP-expressing cells. Peak GFP expression occured later 

in retinas (day 15-20). There was also a significant cellular response towards GFP at 

D30 using intramuscular injections of AAV1. 



 
Figure 2 : High AAV doses delivered subretinally elicit humoral but not cellular immune responses 
against capsid and transgene. (A) qPCR for detection of AAV genome after subretinal injection of a non coding-

AAV8-flox (n=4) and uninjected animals (n=4). Unpaired Student t-test and P value = 0,0009. (B) ELISA test to 

detect humoral responses against the capsid. Kruskal-Wallis ANOVA test, P value is expressed as the following: 

P**** : P<0.0001 ; P* : P<0.0332. (C) ELISA test to detect humoral responses against the capsid. Kruskal-Wallis 

ANOVA test, P value is expressed as the following: P**** : P<0.0001 ; P* : P<0.0332. (D) ELISPOT assay from 

spleens of AAV1-injected mice to detect cellular response towards AAV1 capsid. There was no significant 

difference between treated and control groups at any time point, analyzed with an unpaired Student’s t-test 

(P>0,05). (E) ELISPOT assay from spleens of AAV8-injected mice to detect cellular response towards AAV8 

capsid. There was no significant difference between treated and control groups at each time point. Student’s t-test 

(P>0,05). (F) ELISPOT assay from spleens of AAV1- or AAV8-injected mice to detect cellular response towards 

GFP protein. There was a significant difference between AAV1-GFP and PBS groups at D30 but not between 

AAV8-GFP and PBS groups (Kruskal-Wallis ANOVA test, P* : P<0.0332). There were no significant differences at 

the other timepoints. D10, D20, D30 : Day 10, 20 or 30 post-injection. All error bars are mean ±SEM. 

 

 

We then asked whether local immune reponses were elicited within the retina 

at high doses. Two months after subretinal injections of AAV8-GFP, we prepared 

retinal cryosections and found positive immunostainings for GFAP, a marker for 

Müller glial cell activation, and Iba-1, a marker highly expressed by activated 

microglial cells, in AAV-injected retinas. No labeling was observed with either marker 

in PBS-treated retinas (Figure 3). 

 



 
Figure 3 : Local immune reactions to high AAV doses in retinas. Representative retinal cryosections showing 

GFAP and Iba1 immunostainings after subretinal injection of 5x1011vg of (A) AAV-GFP or (B) PBS. 

 
These findings altogether show that high-dose AAV8-GFP injection leads to humoral 

responses against the AAV capsid but not the transgene. No significant cellular 

responses are induced at the peripheral level. However, local inflammation is present 

at the site of injection. 
 
 
 
AAV capsid and transgene overexpression together cause apoptosis  
 

To test whether cell death was due to high levels of GFP protein or high 

amount of AAV capsids administered locally in a small volume, we performed equal 

dose injections with AAV8-GFP or AAV8-flox. As indicated by presece of cleaved 

caspace-3 positive cells, toxicity was observed with both vectors, when the same 

input dose was injected, suggesting that the capsid alone is responsible for part of 

the toxicity.  

 



 
Figure 4 : High AAV doses induce apoptosis. Representative retinal cryosections showing activated caspase 3 

immunostainings 8 weeks  after subretinal injection of 5x1011vg (A) AAV-GFP, ONL still distinguishable, (B) AAV-

GFP, ONL damaged, (C) PBS, (D) and floxed AAV construct. 

 

Finally, since GFP is a protein not normally found in the mammalian retina, we 

asked whether a retinal protein can also induce toxicity at high doses. To adress this 

question, we injected mice with a high dose (5x1011 vg) of AAV8 encoding 

retinoschisin, a protein already expressed in the retina. We found there was a 

significant ERG decrease with the retinoschisin (Figure 5). Altogether these data 

show that AAV capsid and expressed transgenes lead to photoreceptor toxicity and 

vision loss at high input doses. 

 
Contribution of the promoter to cytokine production and ERG reduction 

 
We assessed the expression of several pro- and anti-inflammatory cytokines 

using RT-qPCR in retinas treated with non-coding AAVs compared to AAVs encoding 

GFP. We found expression of IL-6, IL-10 and IL-1B, in AAV-GFP treated retinas 

(Figure 5). These were lower in AAV-flox treated retinas, suggesting again a 

synergistic effect of transgene and capsid in inducing toxicity at high doses -as 

previously seen with apoptosis markers. ERG amplitudes were also reduced in mice 

treated with non-coding AAV, confirming this result (Figure 5). Interestingly, both 

cytokine production and ERG reduction were also observed for AAVs encoding GFP 

under a rod cell specific rhodopsin promoter. GFP expressed under rhdopsin 

promoter led to less cytokine production and a less dramatic decrease in ERG 



compared to GFP expressed under a ubiquitous promoter. This is likely due to 

restriction of transgene expression to a specific subset of cells rather than the overall 

expression levels obtained with each promoter (Supplemental Figure 1). Indeed, we 

see higher expression with rhodopsin promoter although the toxicity is higher with 

CAG. 

 
Figure 5 : Effect of different parameters of AAV vectors on the retina at high doses. (A) Photopic ERG 

recordings using the highest doses, 5x1011vg/eye subretinally. ANOVA test, P value is expressed as the 

following: P**** : P<0.0001 ; ns : non-significant. (B) RT-qPCR to measure cytokine expression. (C) Photopic 

ERG recordings using AAV8-CAG-GFP or AAV8-Rho-GFP, with a dose of 5x1011vg/eye subretinally. ANOVA 

test, P value is expressed as the following: P**** : P<0.0001. All error bars are mean ±SEM. 

 
 

  



Discussion 

 
Gene therapy holds promise for treating patients with inherited diseases. It is 

generally admitted that AAVs have an excellent safety profile, are non toxic and 

display low immunogenicity, nevertheless pre-clinical and clinical experience showed 

that AAV components can be recognized by the host immune system22. The extent of 

the impact of potential toxicity or inflammation on therapeutic efficiency remains 

poorly understood. In this context it is important to investigate what aspects of AAV 

vectors can induce toxic effects, in order to control them in gene therapy protocols. 

Indeed, there are now a few reports supporting acute toxicity from AAV at high-input 

doses, such as injections in the brain19,20 or systemic injections to treat liver 

disorders23, but also when transducing embryonic stem cells in vitro, likely through 

disruption of DNA damage pathways24. Mechanism of AAV iduced toxicity is likely 

distinct for each scenerio.  

We showed here that AAV can be toxic to the retina, at high input doses. High 

levels of both retinal and foreign reporter proteins expressed via AAV8 were 

neurotoxic to photoreceptors leading to ERG decrease. Both the capsid and the 

transgene played a role in toxicity suggesting that GFP encoding vectors should be 

carefully dosed when used as controls in gene therapy experiments. Indeed, high-

level GFP expression in control retinas can give rise to false positive data by 

increasing the difference between control and treated groups. Importantly, high 

amounts of AAV capsids without any transgene expression, also led to retinal defects 

suggesting that the AAV capsid by itself accounts for part of the toxicity.  

There are reports suggesting that the immune system plays a role in the toxic 

side effects observed at higher doses26. This can potentially affect therapeutic 

benefits by causing immune clearance of the transduced cells22. Even if efficient 

transgene expression and vision restoration are obtained at early timepoints, high-

input doses can compromise long-term benefits by causing neurotoxicity and 

inflammation. We did not detect significant anti-AAV cellular responses using 

ELISpot assays. There is often no cellular response to AAVs after administration in 

the eye14, but it occurs with other administration routes27. On the other hand, we 

detected increased but non-significant anti-GFP cellular response after subretinal 

injections. This can be attributed to the fact that GFP is minimally immunogenic in 

C57BL6J mice28. Therefore, a very small number of T cells are likely to respond to 



GFP, falling beneath the sensitivity of our ELISPOT assay. We detected local 

inflammation measured by inflammatory cytokine expression together with GFAP and 

Iba-1 overexpression in eyes treated with AAV-GFP or AAV-flox indicating 

immunogenicity at the local level. 

 

Several studies suggest doseing thresholds to maintain safety26,29. However since 

there are numerous parameters that play a role on the efficacy of transduction and 

transgene expression –such as the promoter, the capsid and other cis regulatory 

elements– it is difficult to define one single dose for all retinal gene therapy settings. 

The threshold dose needs to be determined for each vector and target tissue, as a 

function of the administration route and animal model used. It has been shown in 

NHP studies, that intravitreal injections of 1x1012vg/eye or more is hamrful and 

inflammatory when associated to GFP and ubiquitous promoters32,33. Subretinally the 

threshold seems to be lower and around to 1x1011vg/eye in NHPs3,29,33 as higher 

doses were associated to inflammation26, also in patients16, likely because the vector 

is directly in contact with target cells. In mice the dose range is usually between 

1x108 and 1x1010 3,34,353. 

Dose sparing using enhanced AAVs that allow to use low particle numbers while 

maintaining satisfying expression levels is an attractive strategy to alleviate AAV 

related toxicity issues6. Engineered capsids can be combined with cell-type-specific 

promoters that restrict transgene expression to target cells without the need to 

increase the dose6,36.  

  

 

  



Material and Methods 

 
AAV production 
 
AAV vectors were produced as previously described using the co-transfection 

method and purified by iodixanol gradient ultracentrifugation37. AAV vector stocks 

were titered by quantitative PCR38 using SYBR Green (Thermo Fischer Scientific). 

 
Animals and intraocular injections 
 

Wild-type C57BL6/j mice (Janvier Labs) were used for this study. For ocular 

injections, mice were anesthetized by isofluorane inhalation. Pupils were dilated and 

a 33-gauge needle was inserted into the eye to deliver 1 µL of AAV vector solution 

subretinally. Ophtalmic ointment (Fradexam) was applied after surgery. Eyes with 

extensive subretinal hemorrhage were excluded from the analysis. GFP expression 

was visualized using Micron III ophtalmoscope after dilation of the pupils and under 

isofluorane anesthesia.  

ELISpot assays 

Spleens from injected mice were harvested and pulverized on cell strainers. Cellular 

content was collected in RPMI Medium (ThermoFischer Scientific) and red blood 

cells were lysed. Splenocytes were isolated after centrifugation at 4°C (350g for 5 

minutes) by harvesting the cell pellet, which was resuspended in 2mL of RPMI 

medium. Cell concentration was determined using a 1:10 dilution in trypan blue to 

exclude dead cells. ELISpot plates were coated with anti-IFNγ capture antibody (AN-

18, eBioscience, 1mg/mL). Fifty microlitres of capture antibody (dilution 1/200) was 

added to each well in PBS and plates were incubated overnight at 4°C. The following 

day, plates were washed with PBS and blocked with 150µl per well of RPMI medium 

with 10% serum for 3 hours at 37°C. Plates were then washed again three times with 

PBS. Cells from splenocytes were diluted to 1x106 cells/well transferred to ELISpot 

plates in triplicate. For stimulation, medium contained either AAV8, AAV1 or GFP 

immunodominant peptide39, and a positive stimulation control with Concavalin A was 

included. ELISpot plates were then incubated at 37°C for 24 hours. After this time, 



plates were emptied by flicking and wells were washed five times with 150 µl of PBS 

with 0.05% Tween-20 (Sigma). Anti-IFNγ–biotin detection antibody (XMG1.2, BD 

Pharmingen, 0,5mg/mL) was diluted (1/500) in PBS with 0.1% BSA and 50 µl added 

to each well. Plates were then incubated at 4°C overnight. Plates were washed in 

PBS/Tween0.05% and 50 µl per well of streptavidin (Boehringer-Manheim, 1089161) 

in PBS/BSA0.1% was added to each well. Plates were again incubated at room 

temperature for 1 hour. After final washes of 3x PBS/Tween0.05% and 3x PBS, 

plates were developed for up to 30 minutes with BCIP/NBT. Reactions were stopped 

by washing with tap water after which plates were allowed to dry before spot 

counting. 

 

ERG recordings 

Mice were dark adapted overnight and then anesthetized. Pupils were dilated and 

mice were placed on a 37°C heated pad. Electrodes with contact lenses were 

positioned on the cornea of both eyes. A reference electrode was inserted into the 

forehead and a ground electrode into the back. ERGs were first recorded under 

scotopic conditions (Espion ERG System, Diagnosys) on a dark background. For 

recording of photopic ERGs, mice were initially exposed to a rod-saturating 

background for 10 minutes. Stimuli ranged were 1, 10 and 30 cd×s/m2 and were 

presented 60 times on a lighted background. Flicker ERGs were recorded following 

presentation of a 10-Hz stimulus on a rod-saturating background. Data were 

analyzed with Espion ERG, and then with GraphPad Prism. 

RT-qPCR 

Animals were euthanized by CO2 inhalation and cervical dislocation. Retinas were 

collected from each experimental condition (n = 3-4 retinas). Total RNA was 

harvested using a RNA-extraction kit (NucleoSpin RNA, Macherey-Nagel) and 

subjected to DNase digestion with Turbo DNAse (ThermoFischer Scienfic). Reverse 

transcription was performed with Superscript Reverse Transcriptase III 

(ThermoFischer Scienfic) with oligodT primers (ThermoFischer Scienfic). For qPCR, 

no-RT controls were used to confirm the absence of genomic DNA. The following 

primers were used: B-Actin: forward, 5′-GCTCTTTTCCAGCCTTCCTT-3′ and 



reverse, 5′-CTTCTGCATCCTGTCAGCAA-3′; IL-6: forward, 5′-

AGGATACCACTCCCAACAGACCT-3′ and reverse, 5′-

CAAGTGCATCATCGTTGTTCATAC-3′; IL-10: forward, 5′-

ATTTGAATTCCCTGGGTGAGAAG-3′ and reverse, 5′-

CACAGGGGAGAAATCGATGACA-3′ ; IL-1B: forward, 5′-

ATGGCAACTGTTCCTGAACTCAACT-3′ and reverse, 5′-

CAGGACAGGTATAGATTCTTTCCTTT-3′. cDNA levels were determined with 

relative cDNA quantification and are expressed as the fold induction compared to 

control groups (uninjected or PBS-injected animals). Samples were run in triplicates. 

 

Histology, immunohistochemistry and microscopy 
 
Mouse eyes were enucleated and immediately fixed in 10% formalin – 4% 

formaldehyde for 2 hours for cryosections. After multiple washes and anterior parts 

reomval, eyecups were immersed in PBS-30% sucrose overnight at 4°C. Afterwards 

they were embedded in OCT medium and frozen in liquid nitrogen. 10 µm-thick 

vertical sections were cut with a Microm cryostat. After incubation in the blocking 

buffer, sections were incubated with primary antibodies overnight at 4°C : Iba-1 

antibody (019-19741, Wako); GFAP antibody (G3893, Sigma), Cleaved caspase 3 

(9661S, Ozyme). After multiple washes of the sections, the secondary antibodies 

(Alexa Fluor 488, 594 or 647, Thermo Fischer Scientific) were added for 2 hours at 

room temperature, followed by several washes. Retinal flatmounts or cryosections 

were mounted in Vectashield mounting medium (Vector Laboratories) for 

fluorescence microscopy and retinal sections were visualized using an Olympus 

confocal microscope. 
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II. Design and characterization of enhanced capsids for photoreceptor 
transduction 

 
 

AAV2-7m8 is an AAV2-derived vector that outperforms all other AAVs so far described 
for gene delivery to photoreceptors in the mouse and primate retina (124). However, the 
effect of 7m8 peptide insertion onto AAV2 capsid remained unclear. To better understand 
the effect of 7m8 peptide insertion, we asked whether it is responsible for better infectivity 
or diffusion properties. We also asked if 7m8 insertion could enhance properties of other 
AAV serotypes as it did for AAV2. We therefore inserted 7m8 onto AAV5, 8 and 9, chosen 
because they had better performance for transduction of photoreceptors compared to AAV2 
in mice and large animal models. In this work, we showed that AAV2-7m8 has significantly 
enhanced infectivity compared to AAV2. Moreover, we showed that only AAV9 -but not 
AAV5 and AAV8- benefited from 7m8 insertion, enabling a 30-fold increase in infectivity. 
This newly described AAV9-7m8 vector has great potential in the primate retina as AAV9, 
its parental serotype, is better than other serotypes at transducing cones in monkeys when 
delivered subretinally (135). This set the foundation for our follow up work in non-human 
primates to transduce foveal cones. 

 
 
 
These results have been published as a research article, highlighted 

on the Journal Cover. 
 
Khabou, H., Desrosiers, M.,  Winckler, C., Fouquet S., Auregan, G., 

Bemelmans, AP., Sahel, JA., Dalkara, D. Insight into the mechanisms of 
enhanced retinal transduction by the engineered AAV2 capsid variant -
7m8. Biotechnology and Bioengineering. 2016;12: 2712–2724.  
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ABSTRACT: Recently, we described a modified AAV2 vector—
AAV2-7m8—having a capsid-displayed peptide insertion of 10
amino acids with enhanced retinal transduction properties. The
insertion of the peptide referred to as 7m8 is responsible for
high-level gene delivery into deep layers of the retina when
virus is delivered into the eye’s vitreous. Here, we further
characterize AAV2-7m8 mediated gene delivery to neural tissue
and investigate the mechanisms by which the inserted peptide
provides better transduction away from the injection site. First,
in order to understand if the peptide exerts its effect on its own
or in conjunction with the neighboring amino acids, we inserted
the 7m8 peptide at equivalent positions on three other AAV
capsids, AAV5, AAV8, and AAV9, and evaluated its effect on
their infectivity. Intravitreal delivery of these peptide insertion
vectors revealed that only AAV9 benefited from 7m8 insertion in
the context of the retina. We then investigated AAV2-7m8 and
AAV9-7m8 properties in the brain, to better evaluate the spread
and efficacy of viral transduction in view of the peptide
insertion. While 7m8 insertion led to higher intensity gene
expression, the spread of gene expression remained unchanged
compared to the parental serotypes. Our results indicate that the
7m8 peptide insertion acts by increasing efficacy of cellular
entry, with little effect on the spread of viral particles in neural
tissue. The effects of peptide insertion are capsid and tissue

dependent, highlighting the importance of the microenviron-
ment in gene delivery using AAV.
Biotechnol. Bioeng. 2016;9999: 1–13.
! 2016 Wiley Periodicals, Inc.
KEYWORDS: gene delivery; gene therapy; AAV; directed evolution;
retina

Introduction

Adeno-associated viruses (AAVs) are small (25 nm in diameter)
non-enveloped viruses of icosahedral structure belonging to the
Dependovirus genus of the Parvoviridae family. They are single-
stranded DNA viruses with "4.7 kilobases carrying capacity and
their infectious life cycle depends on helper viruses such as
adeno-, herpes- or papillomaviruses. Recombinant AAV vectors
have a low immunogenicity and an excellent safety profile,
providing long-term therapeutic gene expression, important for
clinical application in gene therapy. Not surprisingly, AAVs are
currently the vectors of choice and have been used successfully in
the treatment of hemophilia (Nathwani et al., 2011, 2014) and in
retinal degeneration (Bainbridge et al., 2008; Cideciyan et al.,
2008; Maguire et al., 2008). Retinal gene therapy has been
successful in the treatment of Leber congenital amaurosis (LCA)
(Bainbridge et al., 2008; Cideciyan et al., 2008; Maguire et al.,
2008) and choroideremia (MacLaren et al., 2014)—although for
LCA the benefits were limited in time (Bainbridge et al., 2015;
Jacobson et al., 2015). However, first generation vector technology
used in these clinical trials needs improvements, for better
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efficacy and for widespread gene delivery to the neural retina.
Vector engineers have thus been working on improving AAV for
future applications in the neural retina over the past 10 years
(Vandenberghe and Auricchio, 2012).

The efficacy of AAV-mediated gene delivery to retinal cells is an
intricate equation involving viral dose, administration route,
disease state, animal model and viral capsid. These aforementioned
parameters determine the ability of AAV to transduce various
retinal cell types—the key cell targets in inherited retinal
degeneration being the photoreceptors and the retinal pigmented
epithelium (RPE) cells. Local ocular administration routes include
subretinal and intravitreal delivery. Subretinal injections are most
commonly used to access the outer retina, where vector is injected
between photoreceptor and RPE cells. These cause a reversible
retinal detachment and lead to high-level transduction in adjacent
cells. One of the benefits of this administration route is the immune
privilege in this compartment. AAV2, !5, !7, !8, !9 have been
successful in gene transfer to photoreceptors when delivered into
the subretinal space (Allocca et al., 2007; Auricchio et al., 2001;
Mowat et al., 2014; Natkunarajah et al., 2008). However, retinal
detachment can be associated with mechanical damage, especially
in the fragile degenerating retina (Jacobson et al., 2012). The second
administration route is intravitreal delivery, which deposits the
vector dose in the vitreous- the gel-filled cavity of the eye.
Intravitreal delivery is surgically simpler and can deliver genes pan-
retinally in the rodent retina without surgical damage. However,
natural AAVs cannot reach deep retinal layers when delivered into
the vitreous, which usually prevents the use of this delivery route for
outer retinal gene therapy. Naturally occurring AAV2 is highly
efficient for pan-retinal transduction of the inner retina (Dalkara
et al., 2013), directly exposed to the viral particles. But the
photoreceptors and the RPE are not efficiently targeted by natural
AAVs as they are buried under inner retinal neurons. Furthermore,
the inner limiting membrane (ILM)—rich in AAV binding sites and
composed of polysaccharides—acts as a strong physical diffusive
barrier that limits AAV particles’ access to the retina, thereby
hampering retinal transduction efficiency from the vitreous
(Dalkara et al., 2009). It has been shown that the vitreoretinal
junction is a serotype-specific obstacle for AAV, and the abundance
of AAV receptors on the ILM is potentially a factor that controls
diffusion across this barrier (Dalkara et al., 2009).

To overcome these issues, various AAV engineering approaches
have been used to create vectors capable of transducing the entire
retina through intravitreal injections (Cronin et al., 2014; Dalkara
et al., 2013; Petrs-Silva et al., 2009, 2011). One photoreceptor
permissive variant was obtained using an in vivo directed evolution
approach (Dalkara et al., 2013). In this study, a large library of
laboratory-generated capsid variants was subjected to selective
pressure for their ability to penetrate into the photoreceptor layer of
the mouse retina when injected into the vitreous. The successful
variant isolated from this screen, called AAV2-7m8, is characterized
by a 10-amino acid peptide “LALGETTRPA,” referred to as “7m8,”
inserted at position 588 of the AAV2 capsid protein sequence. The
insertion is composed of a variable heptamer (LGETTRP) region
and three amino acids used as linkers for creating the library from
which the variant was chosen. This new vector, AAV2-7m8, was
recently used for therapeutic inner and outer retinal gene delivery

in various animal models of retinal disease leading to successful
proof-on-concept gene therapies (Byrne et al., 2014, 2015; Dalkara
et al., 2013; Mac!e et al., 2014).

Directed evolution does not require understanding of AAV’s
structure-function biology, as it uses an unbiased selection
approach. However, it is worth studying the viral variants resulting
from such screens to obtain further information on their
mechanisms of enhanced transduction. The heptamer peptide
(LGETTRP), inserted into the loop IVof AAV2, is responsible for the
enhanced retinal transduction properties of AAV2-7m8 over its
parental serotype AAV2. In this study, we set out to decipher the
mechanisms by which 7m8 provides increased retinal transduction.
We asked whether the peptide exerts an effect on its own or does it
synergize with its surrounding amino-acid environment? To
address this question, we generated AAV5, !8, and !9 (AAV9/
Hu.14) vectors displaying the 7m8 peptide at the residues
corresponding to AAV2’s 588 residue (in loop IV) on their
respective capsids. We found that 7m8 insertion improved retinal
transduction properties of AAV9 when virus is administered into
the vitreous, as previously observed with AAV2-7m8 compared to
AAV2. Peptide insertion had no positive effect on the retinal
transduction properties of AAV5 or !8 after intravitreal injection.
Subsequent intracerebral administration allowed an unbiased
comparison of AAV2-7m8’s diffusion versus increased infectivity,
which could not be fully addressed in the retina because of the
limited thickness of the tissue and the presence of the ILM as an
additional diffusive barrier. This data together with data obtained in
vitro, indicate that 7m8 improves the vectors’ infectivity rather than
tissue diffusion. Altogether, our results suggest that 7m8 peptide
exerts its effects in synergy with surrounding amino acids, and
effects of such insertions on various capsids are dependent on tissue
and cellular environment.

Results

Molecular Modeling of AAV2 and AAV2-7m8

AAV2-7m8 is characterized by the insertion of a 10 amino-acid
peptide “LALGETTRPA” referred to as “7m8” (Fig. 1A–D)
composed of a heptamer (LGETTRP) and three amino acids as
linkers, all inserted in the loop IV. The arginines R585 and R588
interact with each other and are involved in binding to the heparan
sulfate proteoglycan (HSPG) (Fig. 1D) (Kern et al., 2003; Opie et al.,
2003). The 7m8 peptide insertion in position 588 impedes this
interaction (Fig. 1D) thus reducing interactions between the virus
and HSPG. Since HSPG is abundant on the inner limiting
membrane (ILM)—the dense network of glycosaminoglycans
between the vitreous and the retina—we hypothesized that AAV2’s
strong interaction with the HSPG of the ILM limits its diffusion into
the retina. Accordingly, AAV2-7m8’s reduced affinity for HSPG
might increase passage through the ILM, partially accounting for
increased retinal penetration. Alternatively, the 7m8 peptide can
exert an effect on its own, by interacting with another cell-surface
glycan. To tease apart the effect of 7m8 insertion from the properties
of AAV2 capsid (such as HSPG binding), we decided to insert this
peptide onto other AAV capsids and evaluate how the behavior of
vectors change in view of the peptide insertion.
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Generation of 7m8 Inserted AAV Serotypes 5, 8, and 9

To better investigate the effects of 7m8 insertion, we incorporated
7m8 onto the capsid of three other AAVs (Fig. 2A). We used
previously reported potential capsid regions amenable for the
insertion of the 7m8 peptide that may re-direct the natural viral
tropism (Fig. 2B–E) (Boerner et al., [307] Rational Development of
12 Different AAV Serotypes as Scaffolds for Peptide Display. At:
Annual meeting of Am. Soc. Gene and Cell Ther. New Orleans, 2015)
(Koerber et al., 2007; Michelfelder et al., 2011). We hypothesized
that the 7m8 peptide may improve transduction on its own or in
conjunction with its surrounding amino acids. AAV2,!5,!8, and
!9 vectors displaying the 7m8 peptide “LALGETTRPA” were
generated and molecular models of the capsid monomers were
generated using the Robetta prediction software. The molecular
models show the 3D changes of each AAV monomer (Fig. 2A–E)
after 7m8 insertion, which mainly affects the structure of loops III

and IV. The RepCap plasmids generated after DNA sequence
synthesis and cloning were then used for AAV production. In
parallel, we produced control AAVs of each serotype with no peptide
insertion and another scrambled peptide insertion variant where
random 10 amino acids are inserted at the identical location as 7m8
peptide on the AAV2 capsid (Table S1). All AAVs generated encoded
for GFP under the control of a ubiquitous CAG promoter. Genomic
titers were comparable between the parental serotypes and their
7m8 modified variants (Table S1), suggesting that 7m8 peptide
insertion did not significantly impair genome packaging and capsid
stability.

Infectivity of 7m8 Modified Vectors In Vitro

We aimed to test the infectivity and receptor binding properties of
the newly generated peptide insertion vectors compared to their
parental serotypes on relevant cell types, in vitro. In vitro

Figure 1. Structural model of AAV2-7m8 capsid and proposed mechanism for the influence of 7m8 peptide insertion on HSPG binding. (A) Superposition of the 60 monomers
forming AAV2 capsid (dark blue) and one monomer of AAV2-7m8 (red) containing the insertion LALGETTRPA (shown in cyan). (B) Superposition of AAV2 and AAV2-7m8 capsid
monomers. (C) Zoom onto the 7m8 insertion (cyan) in loop IV. (D) Model for the effect of 7m8 insertion on HSPG binding. Schematic for AAV2 or AAV2-7m8 loop IV (top) and three-
dimensional atomic structure of the 587 region with focus on the interaction between the arginines (R). In the AAV2 capsid, the two arginines (R585 and R588 indicated as R) interact
with each other and are part of the heparin-binding motif. In the AAV2-7m8 variant, 7m8 disrupts the HSPG-binding motif, taking the arginines apart. Molecular models were
generated using UCSF Chimera (Pettersen et al., 2004).
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transduction assays allow us to study the efficiency of the vectors in
overcoming cellular barriers (cell entry and nuclear localization) in
absence of more complex extracellular barriers, present in vivo. To
this aim, HEK293T cells were infected at a MOI of 5,000 with each
vector and viral DNA was extracted 22 h after infection. Viral
genomes extracted from each condition were quantified using qPCR
(Fig. 3). We detected higher amounts of viral DNA within the
infected cells for AAV2-7m8—concurring with our previous
observations (Dalkara et al., 2013)—and for AAV9-7m8 compared
to their respective parental vectors, whereas less infection was
observed for AAV5-7m8 compared to AAV5. The infectivity was
similar between AAV8 and AAV8-7m8.

As the amount of genomes present inside the cells does not
directly reflect if the peptide insertion improves cell entry, or
intracellular trafficking; we conducted a follow-up microscopy
study for AAV2 versus its 7m8 variant to gain further insight into
how the 7m8 peptide influences infectivity. We used a commercially

available antibody (A20) to detect AAV capsids in HEK cells. HEK
cells were infected with either AAV2 or AAV2-7m8 and viral
particles were tracked by microscopy essentially as described by
Bartlett and coworkers (Bartlett et al., 2000). Negative controls
without viral particles were used to calibrate images and remove
background. Confocal images of individual cells infected with the
vectors were then processed to visualize the amount of viral
particles present inside the cells versus in the nucleus (Fig. 3 and
Supplemental Movies S1 and S2).

Lastly, to better understand whether the insertion site of the
peptide is critical in the resulting capsid’s properties, we next
generated alanine substitution mutants of each serotype where the
residues responsible for receptor binding are mutated (Schmidt
et al., 2008). Since each of the serotypes we tested bind different
primary receptors via different capsid regions, we blocked the
regions responsible for cell binding for each serotype to mimic the
theoretical mechanism of AAV2 HSPG-ablation. This was done for

Figure 2. Sequence and structural representation of AAV2, 5, 8, and 9 after 7m8 insertion. (A) Schematic representation of the AAV packaging plasmids with the peptide
insertion sites indicated in blue. (B–E) The wild-type AAVmonomers of AAV2 (B), AAV5 (C), AAV8 (D), and AAV9 (D) are represented in white, and their corresponding 7m8 variants in
red. The 7m8 peptide is shown in blue for each capsid. Molecular models were generated using UCSF Chimera (Pettersen et al., 2004). Rep, replication; Cap, capsid.
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each serotype except for AAV8 whose primary receptor is currently
unknown. These alanine substitution mutants are described in
Table S1. The resulting vectors were tested for their infectious
properties in vitro on HEK (for AAV2), 661W (for AAV5) or CHO
Lec2 (for AAV9) cell lines permissive for each serotype vector
(Supplemental Fig. S1). We found that mutating the receptor
binding sites abolished the infectivity of the vectors (with the
exception of AAV2 which retained some infectivity). For AAV5, the
mutated residues were also those surrounding the peptide
insertion, suggesting that disrupting the receptor binding site by
peptide insertion or mutagenesis both impede viral infection. For
AAV9, we have shown through galactose competition transduction
assay that the peptide insertion does not impede galactose binding
(See Supplemental Fig. S2). AAV9-7m8 retains AAV9’s ability to
bind galactose while displaying significantly increased transduction
on both CHO Lec2 and HEK cell lines (Supplemental Fig. S1 and
Fig. 3).

Retinal Transduction Efficiency of AAV2, 5, 8 and 9,
Compared to Their 7m8 Insertion Variants

Next, we questioned whether the LALGETTRPA sequence is
responsible for the increased uptake of AAV2-7m8 or if having
any peptide insertion at the same location results in similar
transduction behavior in vitro and in vivo. A scrambled 10 amino
acid sequence (AAKKTIENRA) was inserted at the same site on
AAV2 capsid as the 7m8. Insertion of this scrambled sequence

had no beneficial effect on the AAV2 capsid’s transduction
efficiency in vivo or in vitro on HEK cells (Fig. 4). To assess
retinal transduction efficiency of the AAV variants described
above, we analyzed GFP expression after intravitreal injections by
eye fundus examination (Figs. 4A and 5). For in vivo
experiments, six eyes of C57BL/6J mice were injected bilaterally
with 1010 vg per eye of each vector encoding GFP under the
ubiquitous CAG promoter. Six weeks after injection eye fundus
exams were conducted to evaluate the extent of GFP expression in
treated retinas. Each peptide insertion variant was compared to
its parental serotype. In agreement with the in vitro results
(Fig. 3A), insertion of 7m8 did not seem to modify retinal
transduction by AAV8, while it had a positive influence when
inserted into the AAV2 and AAV9 capsids. 7m8 insertion
weakened retinal transduction of AAV5 (Fig. 5).
We then focused our analysis on the variants with improved

transduction patterns in the retina: AAV2-7m8, AAV9-7m8, and
their parental capsids for further in vivo studies. Specifically, we
investigated the capacity of AAV9-7m8 to transduce deep retinal
layers. We wondered if AAV9-7m8 was also capable of reaching deep
retinal layers as observed with AAV2-7m8. Using the CAG promoter,
the expression in M€uller glial cells often convolutes the
interpretation of results concerning viral penetration as M€uller
cells span the entire retina making it difficult to distinguish infected
cell types. We therefore evaluated potential photoreceptor
transduction with AAV9 and its 7m8 variant under a rhodopsin
promoter (Allocca et al., 2007) (Fig. 6). In this experiment, GFP

Figure 3. Effect of 7m8 insertion on transduction efficiency. (A) Fold increase in intracellular DNA levels with 7m8 modified AAV2, 5, 8 and 9- vectors with respect to unmodified
serotypes. DNA was extracted from HEK cells infected with MOI of 5,000 for each vector encoding GFP 22 h post infection. Infections were performed in triplicates. After qPCR, the
relative quantitation method was used to calculate fold differences in GFP expression by 7m8 modified vectors normalized against each parental serotype. (B) Nuclear, (C) Cytosolic
and (D) Intracellular localization of AAV2 and AAV2-7m8 particles calculated as number of spots from n¼ 4 cells for AAV2 and n¼ 5 cells for AAV2-7m8 analyzed by Imaris after 3D
reconstructions shown in E and F. Image stacks were acquired with confocal microscopy using the same acquisition parameters, calibrated to control images. A representative z-
projection of a stack is shown for each vector in the first columns of E and F. Localization of the spots with respect to cellular compartments represented in 3D are shown for each
cell in columns 2–5. Scale bars are 5mm.
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expression was observed in photoreceptors using the AAV9-7m8.
AAV9 did not transduce the photoreceptors in the central and
peripheral areas. 7m8 thus improves both AAV2 and AAV9
transduction from the vitreous.

Lastly, the same vectors were tested for their ability to transduce
the retina when injected subretinally (Supplemental Fig. S4). This
comparison revealed results mostly in line with the previous in vitro
and in vivo results except for AAV8-7m8 that was more efficient
than its parental serotype when delivered subretinally. This
disparate result might be due to the variable nature of subretinal
injections. The cell types transduced by the new vectors did not
seem to be modified with respect to their parental serotypes
(Supplemental Fig. S4).

Cerebral Transduction Patterns of AAV2 and 9, Compared
to Their 7m8 Insertion Variants

One of our initial questions was whether 7m8 improved the tissue
diffusion properties and/or infectivity of AAV2. To test this we
performed stereotactic injections in another neural tissue—the
brain parenchyma—to better evaluate spreading of the different
vectors from the site of injection. We performed bilateral intra-
striatal injections of 5! 1010 vg for each vector into brains of
C57BL/6J mice (n¼ 5 mice were injected for each vector). Mice
were sacrificed 6 weeks after injections and sagittal cryosections
were prepared for examination with Nanozoomer technology at

20! resolution. Our results show that the spread of viral particles
was not altered between the peptide insertion vector AAV2-7m8 and
its parental serotype as indicated by area of GFP expression
(Fig. 7B). AAV2 and AAV2-7m8 lead to GFP expression in a
relatively small zone around the injection site (Fig. 7A and B),
whereas both AAV9 and AAV9-7m8 lead to GFP expression in a
broader zone (Fig. 7A and B). Regarding expression intensity,
AAV2-7m8 resulted in significantly higher intensity GFP compared
to its parental serotype AAV2. Interestingly, intensity of gene
expression calculated as mean gray value was reduced with AAV9-
7m8 compared to AAV9. Our results collectively suggest that the
effects of 7m8 insertion depend on the viral capsid on which it is
inserted and for AAV2-7m8, the peptide insertion provides better
infectivity rather than better spread in neural tissue.

There were discrepancies between the cerebral versus in vitro as
well as retinal versus cerebral expression levels with AAV9-7m8.
The discrepancy between the cerebral versus in vitro and retinal
expression with AAV9-7m8 is possibly due to the saturation of the
extent of expression using AAV9 in this brain region (Cearley and
Wolfe, 2006). Indeed, AAV9 already performs very well in brain
transduction, thereby making it difficult to show increase in
intensity under the experimental conditions we used. Furthermore,
the number of particles we used in our study might lead to toxic GFP
expression levels with the more infectious AAV9-7m8 variant
compared to AAV9-GFP (Klein et al., 2006; Vandenberghe et al.,
2011) leading to a reduction in expression.

Figure 4. The effect of 7m8 peptide insertion on AAV2 capsid compared to a random scrambled peptide insertion at identical position. (A) Eye fundus imaging at equal settings
3 weeks after intravitreal injection of AAV2 (n¼ 3), AAV2-scramble (AAKKTIENR) (n¼ 3) or AAV2-7m8 (LALGETTRPA) (n¼ 3). (B) GFP cDNA was extracted from retinas at 4 weeks
after injection. Relative cDNA from each sample was measured by qRT-PCR and expressed as fold-increase relative to AAV2. (C) Transduction efficiency of AAV2, AAV2-scramble
and AAV2-7m8 on HEK cells measured by flow cytometry. GFP fluorescence is shown in percentage relative to the x-mean fluorescence of the AAV2 condition (adjusted to 100%).
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Discussion

Subretinal delivery is the most common administration route to
target deep retinal layers involved in inherited retinal degener-
ations, but intravitreal injections can be preferable because they are
less invasive, provide broader coverage and are surgically simpler.
AAV vectors that are capable of efficient retinal transduction from
the vitreous have been designed only recently, using rational design
(Boyd et al., 2015; Boye et al., 2016; Kay et al., 2013; Petrs-Silva et al.,
2011) or in vivo directed evolution (Cronin et al., 2014; Dalkara

et al., 2013). In the latter study, we used directed evolution of
random peptide libraries displayed on AAV2 capsid for selection of
capsid variants that overcome the natural AAV transduction
barriers of retinal tissue from the vitreous.
Here we wanted to understand the mechanisms by which 7m8

peptide insertion enhances gene delivery to deeper layers of retinal
tissue. Thanks to this peptide insertion, AAV2-7m8 outperforms
other AAV variants thus far described for retinal transduction from
the vitreous in the mouse and in the non-human primate retina
(Dalkara et al., 2013) but it was not clear whether this performance

Figure 5. Effect of 7m8 insertion on retinal transduction efficiency of AAV2-, AAV5-, AAV8- and AAV9-CAG-GFP vectors. In vivo eye fundus imaging showing GFP fluorescence
6 weeks after intravitreal injection with the different AAV vectors. Note that the only variants that benefit from 7m8 insertion are AAV2 and AAV9. All images were acquired using the
same acquisition parameters.
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was the result of better diffusion across extracellular barriers (i.e.,
ILM and extracellular matrix) and/or better cellular/nuclear entry
(Fig. 8). Moreover, it was not clear whether the peptide itself was
responsible for these properties and if it exerted its effects in
conjunctionwith its amino-acid microenvironment. The first aim of
this study was thus to investigate whether the 7m8 peptide could
change AAV5, !8, and !9 properties when inserted at equivalent
sites within these capsids. Second, we aimed to better understand
the effects of 7m8 insertion on the two AAV capsids for which
transduction was increased: was this increase due to better spread
of viral particles and/or better infectivity?

First, we confirmed that the 7m8 peptide sequence was
responsible for the increased transduction properties of AAV2-7m8,
as a scrambled peptide sequence inserted at the same location did
not provide a similar increase in transduction. We found that 7m8
insertion was compatible with capsid assembly of all AAV serotypes
studied with no significant reduction in viral titers upon production
by transient transfection of 293T cells. However, 7m8 insertion had
different effects on each of the viral capsids. These results suggest
that 7m8 exerts its effects in conjunction with its amino-acid
environment, working well with some amino acids and not with
others. The insertion improved AAV2 and AAV9’s transduction
properties in the retina. The other vectors did not benefit from 7m8
insertion. These findings are consistent with previous studies that
demonstrate that peptide functionality is largely determined by the
capsid scaffold, thus preventing a direct transfer of lead sequences
from AAV2 onto other capsids and rather requiring a firsthand

selection for each new serotype (Grimm et al., 2008; Michelfelder
et al., 2011; Varadi et al., 2012; Ying et al., 2010).

The increase in infectivity of AAV2-7m8 and AAV9-7m8 were
observed both in vivo, in the retina and in vitro on HEK cells and
CHO Lec2 cells. AAV9-7m8 gave better results than its parental
serotype AAV9 in the retina but was nevertheless less efficient in
providing photoreceptor transduction compared to AAV2-7m8.
One factor that could explain the performance of AAV2-7m8 in
the retina is its interactions with HSPG and therefore the ILM and
ganglion cell layer (GCL). It is well established that peptide
insertion at the position 587–588 of AAV2 capsid sequence
induces a reduced HSPG binding phenotype (Dalkara et al., 2013;
Lochrie et al., 2006; Opie et al., 2003; Wu et al., 2000), which is
also the case for AAV2-7m8 mutant (Dalkara et al., 2013). It is
thus possible that 7m8 improved AAV2’s access to the deeper
retinal layers by reducing interactions with HSPG, which is
abundant in the ILM and GCL (Clark et al., 2011) (Fig. 7). Several
previous studies established that reduced HSPG binding leads to
increased transduction volumes in the CNS (Arnett et al., 2013;
Nguyen et al., 2001). It remains unclear why reduced HSPG
binding did not allow increased transduction volume for AAV2-
7m8 when vector was delivered into the striatum. Unlike mutants
deficient in HSPG binding, AAV2-7m8 has other new properties
arising from the insertion of the peptide. We think these other
properties (which might include binding to a currently
unidentified cell-surface glycan) might counter-balance diffusion
that would have been afforded by reduced HSPG binding.

Figure 6. Analysis transduction patterns by AAV9 and AAV9-7m8 vectors encoding GFP under the rhodopsin promoter. (Top) Representative eye fundus images acquired at
equal settings showing GFP fluorescence 6weeks after intravitreal injection (Bottom) Transverse sections of representative retinas treated with the same vectors. Endogenous GFP
(green), DAPI (blue), Recoverin (red).
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AAV2 binds HSPG through its interaction with the amino acids
R585 and R588 (required for binding), in addition to R475, R484,
and K532. In a large number of studies the 587/588 position was
chosen for insertional mutagenesis to redirect AAV2 tropismmainly
leading to a reduced-HSPG binding phenotype (Boye et al., 2016;
Dalkara et al., 2013; Perabo et al., 2006). For AAV9, the amino acids
N470, D271, N272, Y446, and W503 form a pocket required for
galactose binding (Bell et al., 2012). In addition, the 512NGR514

sequence has been described as an integrin recognition motif (Shen

et al., 2014). The insertion site for 7m8 in our study was the 588/589
position, which according to the previous studies is not necessary
for galactose binding. Thus, we can suppose that 7m8 insertion did
not affect galactose binding but improved viral cell entry/nuclear
trafficking through another mechanism- although the cerebral
transduction efficiency results with AAV9-7m8 remain discordant
and do not support improved viral trafficking. AAV9 has
remarkable properties for brain transduction compared to AAV2
and lack of HSPG binding likely facilitates its larger spread in neural

Figure 7. Expression patterns resulting from intrastriatal injections of AAV2, 9, and their 7m8 insertion variants. (A) Sagittal brain sections showing extent and intensity of GFP
expression across a representative brain section (at equal settings). (B) Transduction volumes inmm3 based on transduced surface areas across one series of sections multiplied by
total thickness of the sections (n¼ 5 mouse brains for each vector) (left). Mean transduction intensity expressed as mean gray value across the section for each vector measured in
ImageJ in series of sections of 5 mouse brains (right). Error bars represent SEM between different mice.
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tissue (Boye et al., 2016; Zhang et al., 2011). Although AAV9-7m8
did not outperform AAV2-7m8 for transduction of the mouse
retina, it could be interesting to compare the vectors’ efficiency in
the non-human primate retina since AAV9 has higher cone
photoreceptor tropism than AAV2 and this cell type is of interest for
gene therapy applications (Vandenberghe et al., 2013). Indeed the
cone-rich fovea is a region that is accessible through intravitreal
injections and AAV9-7m8 can display favorable properties at this
site. Sialic acid is required for AAV5 binding and infection (Walters
et al., 2004). Afione and collaborators have recently identified AAV5
sialic acid binding region (Afione et al., 2015), showing that
mutation of amino acids 569 and 585 or 587 results in alteration of
sialic acid-dependent transduction. In our study 7m8 was made at
the 575 position, which likely hampered sialic acid binding region
and was detrimental to the vectors performance both in vivo and in
vitro. On the other hand, AAV8’s primary receptor is unknown. The
37-67-kDa laminin receptor (lamR) has been identified as its co-
receptor and AAV8 binding to lamR is mediated by the amino acids
491–547 and 593–623 (Akache et al., 2006). Moreover, peptide
insertions on AAV8 capsid at position 590 allow modification of its
tropism (Michelfelder et al., 2011; Raupp et al., 2012) but amino
acids 588–592 are not necessary for AAV8 binding and uptake. This
region is thus involved in but not necessary for interaction with
cellular receptors (Raupp et al., 2012). In our study the 7m8 peptide

was inserted around this region and we observed no significant
improvement in AAV8’s infectivity.

Lastly, our study sheds light onto the consequences of 7m8
insertion on AAV2’s gene transfer efficiency. Our data suggest that
7m8 “LALGETTRPA” peptide strongly improves AAV2 infectivity by
increasing its efficacy in overcoming cellular barriers (mainly cell
entry). The different effects of 7m8 insertion on various serotypes’
capsids can be explained by the complexity of capsid structure
relationships of AAVs. The capsid structures of all the AAVs used in
this study have been resolved by X-ray crystallography (AAV5, PDB
id 3NTT; AAV8 (Nam et al., 2007), PDB id 2QA0; and AAV9
(DiMattia et al., 2012), PDB id 3UX1). Resolution of the different
AAVs’ capsid structures, identification of their primary or co-
receptors, and mutational analyses of their receptor binding regions
all deepen our understanding of this important vector’s structure-
function relationships. This knowledge is further enriched by the
discovery of artificial serotypes through combinatorial screens and
the mechanistic study of their properties.

Experimental Procedures

AAV Vector Production

Recombinant AAVs were produced as previously described using
the co-transfection method and purified by iodixanol gradient
ultracentrifugation (Choi et al., 2007). Concentration and buffer
exchange was performed against PBS containing 0.001% Pluronic.
AAV vector stocks titers were then determined based on real-time
quantitative PCR titration method (Aurnhammer et al., 2011) using
SYBR Green (Life Technologies, France).

Structure Analysis

VP3 monomers of 7m8 insertion vectors were generated using the
Robetta modeling server (Chivian et al., 2003; Kim et al., 2004) and
superimposed to their parental serotypes using UCSF Chimera
(Pettersen et al., 2004).

AAV Cell Entry and Trafficking Assays

The protocol from Bartlett et al (Bartlett et al., 2000) was used with
the following modifications: cells were incubated with an MOI of
250,000 of each vector. After 2 h, cells were fixed and anti-AAV2
capsid antibody (A20 from American Research Products, Waltham,
MA) was used according to manufacturers instructions to reveal
AAV particles. Cells were additionally labeled with phalloidin and
DAPI. Confocal images were acquired using Olympus FV1000
Inverted confocal microscope at equal settings. To identify cellular
localization of AAV particles, confocal images were processed with
Imaris software (Bitplane). Several masks were created to isolate
cellular compartments: DAPI counterstaining was used to define the
nuclear zone. Phalloidin staining of the cell membrane allowed us to
define the cytosolic compartment by subtraction of the nuclear zone
from the membrane. Each mask was used to segment AAV
immunostaining and spot detection was performed to quantify the
amount of particles in different cellular compartments.

Figure 8. Retinal barriers to AAV transduction. Illustration representing the three
main physical barriers to retinal transduction by AAVs injected into the vitreous. The
vectors first diffuse in the vitreous and reach the first barrier—the inner limiting
membrane (ILM), which is composed of a dense network of polysaccharides secreted
via M€uller glial cell endfeet. The second barrier is the extracellular matrix of retinal
cells which impedes diffusion and cell entry. Lastly AAV particles are faced with the
third barrier for entry inside the nucleus: the cell and nuclear membrane.

10 Biotechnology and Bioengineering, Vol. 9999, No. xxx, 2016



Animals

The experiments were realized in accordance with the National
Institutes of Health Guide for Care and Use of Laboratory Animals
and approved by local ethics committees.
For all experiments AAV vector stocks were titer adjusted by

dilution in PBS containing 0.001% Pluronic. For eye injections, mice
were anesthetized by isofluorane inhalation. Pupils were dilated and
33-gauge needle was inserted into the eye to deliver 2mL of AAV
vector solution (1010 vg) into the vitreous or 1mL subretinally. GFP
expression was visualized using Micron III ophtalmoscope after
dilation of the pupils and under isofluorane anesthesia. For
intrastriatal injections, mice were anesthetized by intraperitoneal
injection of ketamine (100mg/kg) and xylazine (10mg/kg) and
placed on a stereotaxic frame (K€opf Apparatus). After skin incision,
the skull was exposed to position injection cannulae at þ1mm
anteroposterior and"2mm lateral relative to bregma. After drilling
of the skull, the cannulae were lowered to 2.5 mm relative to the
dura and 2mL of viral solution (5# 1010 vg) was injected in 8min.
The skin was sutured and mice monitored until complete
awakening.

Histology and Microscopy

Eyes were enucleated and immediately fixed in 4% paraformalde-
hyde (PFA) at 4$C, for 20min for flatmounts or for 2 h for
cryosections. For brain histology, mice were deeply anesthetized for
trans-cardiac perfusion with ice-cold PBS followed by 4% PFA in
PBS. Brains were then removed and post-fixed for 4 h in the same
fixative. For cryosections, eye-cups and brains were immersed in
PBS-30% sucrose overnight at 4$C. They were embedded in OCT
medium and frozen in liquid nitrogen. Vertical sections were cut
with a Microm cryostat and mounted in Vectashield mounting
medium for fluorescence microscopy. Brain section images were
acquired with Nanozoomer technology (Hamamatsu) and retinal
sections were visualized using an Olympus IX81 and Olympus
FV1000 Inverted confocal microscopes.

Quantification of AAV Vector Internalization In Vitro
Using Quantitative PCR

HEK 293 cells were plated onto 24-well plates coated with
poly-L-lysine and cells were infected with various AAV vectors at
5,000 MOI. After 22 h of incubation at 37$C, cells were washed three
times in PBS and viral DNAwas harvested using a DNA-extraction kit
(NucleoSpin Tissue, Macherey-Nagel). Relative genome quantifica-
tion was performed through qPCR, using primers targeted against
the GFP transgene and actin as the housekeeping gene.

Quantification of AAV Transduction Using Flow Cytometry

Cells were plated in 24 well plates at a concentration of 40,000 cells/
well for Lec2 or 661W and 100,000 cells/well for HEK293s. The
following day, they were infected with AAV vectors or a mix of AAV
vector and PNA lectin (Life Technologies). One day post infection,
cells were dissociated with trypsine and fixed. Ten thousand cells
per sample were counted and analyzed using a CytomicsFC500 flow

cytometer (Beckman Coulter, France). Uninfected control cells were
also counted and analyzed to establish transduction efficiency
baselines. Data were obtained from 3 to 4 technical replicates for
each vector with the exception of AAV9-7m8 alanine mutant where
two technical replicates were used due to low viral titer.

Statistical Tests

Data were analyzed using a Student t-test in Graphpad Prism. Error
bars on the graphs show the Standard Error of the Mean (SEM). P
values are expressed as the following %P< 0.05, %%P< 0.01,
%%%P< 0.001.
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III. Translational aspects: noninvasive foveal targeting and efficient vision 
restoration 

 
 

A gap in the field is the possibility to target foveal cones specifically and non-invasively, 
in particular without sub-foveal vector administration. We sought to develop new vectors to 
achieve this objective, in particular in the context of RP. After characterization of AAV2-7m8 
and AAV9-7m8 in my previous paper (166), I selected these vectors for translational 
application in primates based on the following facts. AAV2-7m8 is the best vector so far 
described for intravitreal delivery in primates (124). Therefore, it is the most relevant vector 
to develop new modalities for foveal cone targeting from the vitreous. On the other hand, 
AAV9 is the most efficient capsid to target cones using a subretinal delivery approach in 
monkeys (135). AAV9-7m8 has a 30-fold increase of infectivity compared to AAV9 (166) so 
it is a promising vector for enhanced gene delivery to cones subretinally when delivered 
away from the fovea. When combined with the strong cell-type specific promoter PR1.7, 
both modalities provided highly efficient delivery to cones. We first proved the efficiency of 
these different tools in the mouse retina. But in a translational context, and since mice do 
not have a fovea, we deemed it necessary to validate these tools in vivo in macaques as 
well as in human tissue. Macaque foveal cones were rendered light sensitive via the 
expression of a highly efficient opsin referred to as Jaws showing the usefulness of our 
vector for optogenetic vision restoration. Collectively, our data provide evidence for 
therapeutic potential of our vectors in the treatment of retinal pathologies associated to 
cone dysfunction such as RP, or achromatopsia.  

 
 
 
 
 

These results have been published this year as a research article, highlighted on the 
Journal Cover of the month issue: https://insight.jci.org/posts/58. It is also one of the Editors 
Picks: https://insight.jci.org/this-month/2018/2. 

 
Khabou H., Garita-Hernandez M., Chaffiol A., Reichman S., Jaillard C., Brazhnikova E., 

Bertin S., Forster V., Desrosiers M., Winckler C., Goureau O., Picaud S., Duebel J., Sahel 
JA., Dalkara D. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight. 
2018; 3(2):e96029. 

 
Additional information including supplemental figures and movie are available here and 

in Annex III: https://doi.org/10.1172/jci.insight.96029DS1   



	 108	

Graphical Abstract 
 

 
 
	  



1insight.jci.org   https://doi.org/10.1172/jci.insight.96029

T E C H N I C A L  A D V A N C E

Conflict of interest: HK, DD, JD, 
and JAS are inventors on pending 
patent applications on noninvasive 
methods to target cone photoreceptors 
(EP17306429.6 and EP17306430.4). 
MGH, AC, DD, JD, and JAS are inventors 
on a pending patent on the use of 
iPSC to treat retinal degeneration 
(EP16306225). DD is an inventor on 
a patent of adeno-associated virus 
virions with variant capsid and methods 
of use thereof with royalties paid to 
Avalanche Biotech (WO2012145601 
A2). SR, OG, and JAS are inventors on 
a patent on iPSC retinal differentiation 
(WO 2014174492 A1). JAS is a founder 
and consultant for Pixium Vision and 
GenSight Biologics and is a consultant 
for Sanofi-Fovea, Genesignal, and Vision 
Medicines. SP is a founder of GenSight 
Biologics and a consultant for Pixium 
Vision. DD and JD are consultants for 
GenSight Biologics.

Submitted: July 5, 2017 
Accepted: December 12, 2017 
Published: January 25, 2018

Reference information: 
JCI Insight. 2018;3(2): e96029. 
https://doi.org/10.1172/jci.
insight.96029.

Noninvasive gene delivery to foveal cones 
for vision restoration
Hanen Khabou,1 Marcela Garita-Hernandez,1 Antoine Chaffiol,1 Sacha Reichman,1 Céline Jaillard,1 
Elena Brazhnikova,1 Stéphane Bertin,1,2 Valérie Forster,1 Mélissa Desrosiers,1 Céline Winckler,1 
Olivier Goureau,1 Serge Picaud,1 Jens Duebel,1 José-Alain Sahel,1,2,3,4 and Deniz Dalkara1

1Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France. 2CHNO des Quinze-Vingts, 
DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France. 3Fondation Ophtalmologique Rothschild, Paris, France. 
4Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Introduction
The fovea — located at the center of  the macula — is a specialized region of  the retina that dominates the 
visual perception of  primates by providing high-acuity color vision (1). The highest density of  cones is 
found at the center of  the fovea (<0.3 mm from the foveal center), devoid of  rod photoreceptors (2). Cone 
density decreases by up to 100-fold with distance from the fovea (3). Cone cells in the fovea are the primary 
targets of  gene therapies aiming to treat inherited retinal diseases like midstage retinitis pigmentosa (4, 
5) and achromatopsia (6). Currently, viral vectors encoding therapeutic proteins need to be injected into 
the subretinal space between the photoreceptors and the retinal pigment epithelium (RPE) cells in order 
to provide gene delivery to cones. In this approach, gene delivery is limited to cells that contact the local 
bleb of  injected fluid. Furthermore, retinal detachment that occurs during subretinal injections is a concern 
in eyes with retinal degeneration. The earliest clinical trials using subretinal delivery of  adeno-associated 
virus (AAV) to deliver a healthy retinal pigment epithelium-specific 65 kilodalton protein (RPE65) gene in 
Leber’s congenital amaurosis patients (7–9) led to some improvements in vision, despite the detachment 
of  the macula to deliver the viral vector (10, 11). However, the treatment was, in certain cases, complicated 
by macular holes and increased macular thinning in the case of  subfoveal injections (11). Furthermore, 
contrary to the surrounding regions, there were no treatment benefits in the fovea (12). Gene therapy using 
AAV has also been studied for patients with choroideremia in which the macula was the target for gene 
delivery (13). The 6-month follow-up results from this latter study thus far suggest that subfoveal retinal 
detachment does not cause vision reduction in this region, but one of  the patients in this trial had visual 
acuity loss in the treated eye compared with his untreated eye (13). With more gene therapies reaching 
clinical stages of  application, there is a growing need to find new methods for delivering gene therapy to the 
fovea without detaching this brittle region (14). This can be achieved by engineering the viral vectors to per-
mit gene delivery away from the injection site. AAV capsids that can provide gene delivery to foveal cones 

Intraocular injection of adeno-associated viral (AAV) vectors has been an evident route for 
delivering gene drugs into the retina. However, gaps in our understanding of AAV transduction 
patterns within the anatomically unique environments of the subretinal and intravitreal space 
of the primate eye impeded the establishment of noninvasive and efficient gene delivery to 
foveal cones in the clinic. Here, we establish new vector-promoter combinations to overcome 
the limitations associated with AAV-mediated cone transduction in the fovea with supporting 
studies in mouse models, human induced pluripotent stem cell–derived organoids, postmortem 
human retinal explants, and living macaques. We show that an AAV9 variant provides efficient 
foveal cone transduction when injected into the subretinal space several millimeters away from 
the fovea, without detaching this delicate region. An engineered AAV2 variant provides gene 
delivery to foveal cones with a well-tolerated dose administered intravitreally. Both delivery 
modalities rely on a cone-specific promoter and result in high-level transgene expression 
compatible with optogenetic vision restoration. The model systems described here provide 
insight into the behavior of AAV vectors across species to obtain safety and efficacy needed for 
gene therapy in neurodegenerative disorders.
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after injection into the vitreous cavity are one possible option. Another option would be through subretinal 
injections in the periphery using vectors that spread laterally to reach the foveal region.

To minimize the risks associated with foveal detachments, we developed vector-promoter combinations that 
can successfully deliver genes into foveal cones without detaching them from their underlying epithelium. As a 
key element to gene therapy, we first searched for promoters that are able to afford high-level transgene expres-
sion in cones without leading to off-target expression in neighboring cells. We then combined this promoter with 
2 potent AAV capsid variants that are able to provide gene delivery to cone photoreceptors when injected intra-
vitreally or via distal subretinal injections outside the fovea. We validated the utility of these gene delivery strat-
egies in the context of cone-directed optogenetic therapy (15) using electrophysiology, histology, in vivo, and ex 
vivo imaging techniques in mouse, macaque, and human retinal tissue. Our results highlight the importance of  
viral vector development in overcoming surgical delivery challenges, as gene therapy to restore vision becomes a 
potentially attainable goal for those who treat inherited retinal degenerations in the clinic.

Results
Selection of  a strong and specific cone cell–specific promoter in murine models. In order to find vector-promoter 
combinations suitable for strong and specific cone targeting away from the injection site, we compared sev-
eral AAVs after intravitreal and subretinal delivery in mouse retinas. To enable efficient cone photoreceptor 
targeting, we used an engineered AAV variant called AAV2-7m8, which has been shown to target photo-
receptors efficiently via both administration routes (16, 17). Specific targeting of  cone cells has never been 
attempted using vitreally administered AAV. In order to find suitable promoter sequences for restricted gene 
expression in cones applicable in the clinic, we focused on promoters that have previously been validated 
in either nonhuman primate (NHP) (18) or human tissue (4). We generated AAV2-7m8 vectors encoding 
GFP under the control of  mouse cone arrestin (mCAR), PR2.1 and PR1.7 promoters (synthetic promoters 
based on the human red opsin gene enhancer and promoter sequences — their size is equal to 2.1 and 1.7 
kilobases, respectively) and injected them at equal titers into eyes of  6-week-old WT mice. Three weeks 
after subretinal injections, retinal cross-sections were stained with cone arrestin, and GFP expression was 
examined (Figure 1, A–C). We found GFP expression in both rod and cone photoreceptors with mCAR 
promoter, while PR2.1 and PR1.7 led to strong expression mostly in cones, as reported previously (18, 19). 
Using the same vectors, we obtained strikingly different expression patterns after intravitreal delivery (Fig-
ure 1, D–F). The mCAR promoter led to GFP expression in some cones but was leaky toward rods as well 
as cells of  the inner nuclear layer (INL) and ganglion cell layer (GCL) (Figure 1D). Both PR2.1 and PR1.7 
promoters led to more cone labeling than the mCAR promoter (Figure 1, D–F, and Supplemental Figure 
1; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.96029DS1). 
PR2.1 transduced more cones than PR1.7, but it also produced nonspecific GFP expression in the INL and 
GCL. Only the PR1.7 promoter showed GFP expression in cones with minimal expression in rods and was 
not leaky toward the inner retina (Figure 1F). Finally, as retinal disease state can influence AAV-mediated 
gene delivery and transgene expression patterns (20, 21), we validated AAV2-7m8-PR1.7 vector–promoter 
combination in a mouse model of  retinal degeneration. We injected AAV2-7m8-PR1.7-GFP intravitreally 
in the retinal degeneration 10 (rd10) mouse model of  retinitis pigmentosa. Two months after injection, 
GFP expression was restricted to cones (Figure 1G and Supplemental Figure 2). Based on these results, we 
decided to test it in the primate retina.

Bioinformatic analysis of  mCAR, PR1.7, and PR2.1 promoter sequences. Before moving on to further stud-
ies in other species, we aimed to better understand the reasons behind the divergent expression patterns 
obtained with the 3 promoters. To do so, we analyzed transcription factor (TF) binding sites within each 
promoter sequence using bioinformatics (Supplemental Tables 1 and 2). The present analysis aimed to 
answer the following questions: (i) why is PR1.7 more efficient than PR2.1 in cones (18), and (ii) why do 
PR2.1 and mCAR promoters lead to off-target expression after intravitreal administration? We hypothe-
sized that the differential expression patterns observed between PR1.7 and PR2.1 are due to additional 
TF binding sites found in the 337-bp sequence located in the 5′ region of  the PR2.1 promoter but not in 
the PR1.7 promoter (Figure 2, A and B). Interestingly, we found a chicken ovalbumin upstream promot-
er-transcription factor I (COUP-TFI) binding site within this 337-bp sequence (Supplemental Table 1). 
COUP-TFI has been shown to suppress green opsin gene (Opn1mw) expression in the mouse retina (22) 
and might thus be accountable for lower expression with the PR2.1 promoter in macaque cones when AAV 
is delivered subretinally as previously shown (18). Within the same specific 337-bp region, we also found 
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multiple binding sites for generic, ubiquitous activator TFs (Figure 2B and Supplemental Table 1), such as 
CCAAT/enhancer binding protein β (CEBPB) and general transcription factor II-I (GTF2I). These addi-
tional binding sites of  TFs that enhance binding and basal transcriptional machinery assembly and that 
are not specifically expressed in cones might be responsible for some of  the off-target expression observed 
with PR2.1 compared with PR1.7 (Figure 2). We also analyzed TF binding sites in the genomic mouse Arr3 
promoter sequence to explain the lack of  specificity using the short version of  this promoter (referred to as 

Figure 1. Adeno-associated viral (AAV) vector administration route defines retinal transduction patterns with mCAR, PR2.1, and PR1.7 promoters. 
(A–C) Representative retinal cross sections of WT mouse retinas (n = 6 eyes per condition) 3 weeks after subretinal injection of AAV2-7m8-mCAR-GFP 
(A), AAV2-7m8-PR2.1-GFP (B), and AAV2-7m8-PR1.7-GFP (C). (D–F) Representative retinal cross sections 2 months after intravitreal injection (n = 6 eyes 
per condition) of AAV2-7m8-mCAR-GFP (D), AAV2-7m8-PR2.1-GFP (E), and AAV2-7m8-PR1.7-GFP (F). Scale bar: 50 μm in A–F. (G) GFP expression in 
rd10 retina (n = 4 eyes) 2 months after intravitreal injection of AAV2-7m8-PR1.7-GFP. Transduced cone cell bodies remaining after degeneration express 
GFP (cyan). Cone arrestin is shown in magenta, and DAPI is shown in blue. Native GFP expression is shown in cyan, and arrows indicate cells where cone 
arrestin is colocalized with GFP. Scale bar is 50 μm in G. mCAR, mouse cone arrestin promoter; PR1.7 and PR2.1, promoters of 1.7 and 2.1 kilobases in length, 
respectively, based on the human red opsin gene enhancer and promoter sequences.
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Figure 2. Model for the regulation of transgene expression under the control of PR2.1 and PR1.7 synthetic promoters and mouse cone arrestin (mCAR) 
promoter. (A) Red opsin gene is located on the X chromosome. It has its own proximal promoter and shares its enhancer sequence with green opsin gene. 
Chromosomal loops between the enhancer and the red opsin proximal promoter provide cell-type specificity of gene expression. PPred, proximal promoter of 
red opsin gene; LCR, locus control region. (B) Schematic representation of PR2.1 and PR1.7 promoter constructs. Interaction with inhibitory transcription factors 
such as COUP-TFI (chicken ovalbumin upstream promoter-transcription factor), that binds the 337bp region specific to PR2.1 might explain low expression 
levels obtained with PR2.1 compared with PR1.7 in macaque cones subretinally (18). On the other hand, activator TFs such as CEBPB (CCAAT/enhancer binding 
protein β) and GTF2I (general transcription factor II-I) that are not specific to cones likely lead to off-target expression in other retinal cells when injected into 
the vitreous. ITRs, inverted terminal repeats. (C) Structure of cone arrestin 3 genomic locus region. Transcription starting sites (TSS) of mouse arrestin 3 (mArr3) 
gene and mouse pyrimidinergic receptor P2Y4 (mP2ry4) gene are separated by 10.5 kilobases. The short 521-bp mCAR promoter used in this study is shown in 
blue and the supposed regulatory region referred to as “Reg” in magenta. (D) Structure of the 521-bp mCAR promoter portion used in this study. This sequence 
contains CRX-binding sites (CBS) and SP (Specificity Protein) binding sites. It also contains 1 TATA and 1 TATA-like box. (E) Interactome network of several tran-
scription factors that bind cone arrestin genomic promoter analyzed using the STRING tool. CRX (cone-rod homeobox protein), SP, RARA (retinoic acid receptor 
α), RXRA (retinoid X receptor α), and THRB (thyroid hormone receptor β 2). (F) NR-MED1 transcription regulator complex confers gene expression specificity. 
MED1 (mediator complex subunit 1) is a transcription activator when associated to nuclear receptors (NRs). RARA, RXRA, and THRB are NRs. Several NR binding 
sites for RARA, RXRA, and THRB were found in the Reg region. AAV, adeno-associated virus; mCAR, mouse cone arrestin promoter; PR1.7 and PR2.1, promoters 
of 1.7 and 2.1 kilobases in length, respectively, based on the human red opsin gene enhancer and promoter sequences.
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mCAR) used in the AAV constructs. The short sequence consists of  a 521-bp portion of  the genomic prox-
imal CAR promoter (Figure 2, C and D) and presents a TATA-box, a TATA-like box, as well as binding 
sites for cone-rod homeobox protein (CRX) and specificity protein (SP) TFs (23) (Figure 2D). However, the 
“Reg” sequence (Figure 2C) modulating Arr3 promoter activity (23) located directly upstream of  the 521-bp 
region is excluded from the short mCAR sequence (Figure 2C). Based on the interactome of  the TFs bind-
ing mCAR promoter obtained from the STRING database (24), CRX and SP TFs interact with each other 
and with retinoic acid receptor α (RARA), retinoid X receptor α (RXRA), and thyroid hormone receptor 
β (THRB) TFs (Figure 2E). These 3 nuclear receptors (NRs) are involved in cell type–specific regulation 
of  gene expression via mediator complex subunit 1 (MED1) (25) by forming a cell-specific transcription 
coactivator complex (26, 27) (Figure 2F). CRX and SP binding sites are located on the 521-bp region, while 
RXRA, RARA, and THRB binding sites are positioned on the Reg region (Figure 2F). Moreover, the Reg 
region contains 5 binding sites for THRB2, an important NR expressed in cones (28) (Supplemental Table 
2). For all of  these reasons, removal of  the Reg region is likely responsible for the off-target expression 
observed with the short mCAR promoter (Figure 2F).

Safe gene delivery to macaque foveal cones via intravitreal administration of  AAV. We and others have shown 
transduction of  macaque cones using AAV variants with ubiquitous promoters (16, 29–32), but achieving 
cone transduction by vitreally administered AAV has only been possible at high doses, leading to inflam-
mation (16, 29). We reasoned that foveal cone targeting could be achieved if  we use a strong cone-specific 
promoter at lower intravitreally injected AAV doses compatible with safety (29, 33). To test if  such “dose 
sparing” is possible, we injected 2 macaque eyes with AAV2-7m8-PR1.7-GFP and 2 other macaque eyes  
were injected with AAV2-7m8-GFP under the control of  the cytomegalovirus (CMV) promoter at a dose 
of  1 × 1011 viral genomes (vg) per eye (Table 1). Using in vivo eye fundus imaging, we observed GFP 
expression as early as 2 weeks after injection with CMV and increased until 2 months after injection (Figure 
3, A and B, and Supplemental Figure 3). GFP fluorescence was predominantly in the periphery and in 
the parafoveal region. GFP expression with PR1.7 became detectable 4–6 weeks after administration and 
was restricted to the fovea (Figure 3, C and D). There was no detectable damage to the fovea as assessed 
by optical coherence tomography (OCT) (Figure 4). We then examined flatmounts of  the maculas and 
cryosections of  the fovea using confocal microscopy, with equal acquisition settings for each eye (Figure 3). 
These images corroborated the in vivo findings showing specific and robust foveal cone transduction from 
the vitreous (Supplemental Video 1), at a dose of  1 × 1011 particles, using AAV2-7m8-PR1.7. About 58% of  
the hCAR+ cells were found to express detectable levels of  GFP in the foveola. The CMV promoter did not 
provide detectable transgene expression in cones at an identical dose.

Therapeutic gene delivery to foveal cones for vision restoration using optogenetics. We next aimed to evaluate 
the possibility of  using this promoter for therapeutic gene delivery. There is no existing blind macaque or 
primate model of  retinal degeneration to test functional outcomes after gene replacement (e.g., CNGB3 for 
treatment of  achromatopsia). However, it is possible to evaluate vision restoration in WT macaques using 
optogenetic strategies, since we can distinguish between optogenetic-mediated light responses versus endog-

Table 1. Summary of injections in nonhuman primates

Animal Age (years) Weight (kg) Sex Injection type; eye AAV capsid Transgene Dose (vg/eye) Volume (μl)
NHP 1 7 8.65 M intravitreal; LE AAV2-7m8 PR1.7-GFP 1 × 1011 vg 100
NHP 2 8 11.81 M intravitreal; LE AAV2-7m8 CMV-GFP 1 × 1011vg 100
NHP 3 13 12.93 M intravitreal; LE 

intravitreal; RE
AAV2-7m8 
AAV2-7m8

PR1.7-GFP 
CMV-GFP

1 × 1011 vg 
1 × 1011 vg

100

NHP 4 4 5.03 M intravitreal; RE AAV2-7m8 PR1.7-Jaws-GFP 1 × 1011 vg 100
NHP 5 4 6.26 M subretinal, sup; RE 

intravitreal; LE
AAV9-7m8 
AAV2-7m8

PR1.7-Jaws-GFP 
PR1.7-Jaws-GFP

1 × 1010 vg 
1 × 1010 vg

50 
50

NHP 6 5 6.83 M subretinal, sup; RE AAV9-7m8 PR1.7-Jaws-GFP 5 × 1010 vg 50
NHP 7 3 3 M subretinal, inf; RE AAV9-7m8 PR1.7-Jaws-GFP 5 × 109 vg 50
NHP 8 3 3.23 M subretinal, inf; RE AAV9-7m8 PR1.7-Jaws-GFP 5 × 109 vg 50

NHP, nonhuman primate; kg, kilograms; M, male; sup, superior bleb; inf, inferior bleb; LE, left eye; RE, right eye; AAV, adeno-associated virus; CMV, 
cytomegalovirus promoter; PR1.7, Promoter 1.7 kilobases, based on human red opsin gene enhancer and promoter sequences; vg, viral genome.

 

Downloaded from http://insight.jci.org on March 10, 2018.   https://doi.org/10.1172/jci.insight.96029



6insight.jci.org   https://doi.org/10.1172/jci.insight.96029

T E C H N I C A L  A D V A N C E

enous cone opsin–mediated responses (4). We evaluated the potential of  optogenetic vision restoration by 
expression of  Jaws, a hyperpolarizing microbial opsin (15), in foveal cones. We injected 1 macaque eye 
with 1 × 1011 vg of  AAV2-7m8-PR1.7-Jaws-GFP in the vitreous to evaluate its therapeutic potential for 
reactivation of  dormant cones in midstage retinitis pigmentosa as described previously in mice (4, 15). We 
found high-level Jaws-GFP expression restricted to the foveal cones in the injected eye (Figure 5, A–C) 
similar to GFP expression alone (Figure 3). The animal was then sacrificed 2 months after injection, and 
half  of  the retina was processed for histology. Retinal flat-mounts showed typical anatomy of  cones in the 
foveola (Figure 5, D and E), the region of  the fovea that contains densely packed cones responsible for our 
high-acuity vision. Immunostaining for hCAR was used to quantify transduced cones (Supplemental Fig-
ure 4). About 50% of  the hCAR+ cells were found to express detectable levels of  Jaws-GFP in this foveola.

The other half  of  the retina was conserved as explants (34) for characterization of  optogenetic light 
responses arising from the hyperpolarizing pump Jaws (Figure 5, F–K). Electrophysiological recordings 
were performed on transduced cones expressing Jaws and in control cones without Jaws expression (Fig-
ure 5, F and G). Whole-cell patch-clamp recordings in GFP+ Jaws cones exhibited robust light responses 
to orange light flashes (n = 4) (Figure 5, H and I). Action spectrum of  recorded cells showed that highest 
light responses were obtained using orange light between 575 nm and 600 nm (Figure 5J) as previously 
shown for Jaws (15). Jaws-expressing cones recorded in current-clamp configuration displayed light-elicited 
hyperpolarizations followed by short depolarizations (n = 4 cells), while control cones did not respond to 
the same light stimuli (n = 3 cells) (Figure 5K).

Finally, we injected intravitreally another macaque eye with 1 × 1010 particles of  AAV2-7m8-PR1.7-
Jaws-GFP to evaluate feasibility of  foveal transduction at even lower doses. We obtained detectable foveal 
Jaws expression even with this lower dose, although expression levels were lower than with 1 × 1011 par-
ticles (Supplemental Figure 5, A and B). Altogether, all 4 macaque eyes injected with AAV2-7m8-PR1.7-
GFP (n = 2) or Jaws-GFP (n = 2) show reproducibility and strength of  the intravitreal approach compatible 
with optogenetic reactivation of  cones.

Enhanced optogenetic responses in foveal cones via distal subretinal administration of  AAV9-7m8-Jaws. Trans-
duction of  foveal cones via intravitreal injection of  AAV2-7m8 with a strong cone promoter is likely an 
ideal approach to treat cones in fragile retinas of  retinitis pigmentosa patients with dormant cones present 
mainly in the foveola. However, for achromatopsia patients, as well as the subset of  retinitis pigmentosa 
patients with strong neutralizing antibody titers against AAV2 (33), a subretinal approach might be advan-
tageous. Previous studies have shown that subretinal injection of  AAV9 leads to efficient transgene expres-
sion in cones both centrally and peripherally at low doses, likely due to the abundance of  galactosylated 
glycans, the primary receptor for AAV9, on cone photoreceptors (30, 35). Based on this, we reasoned that 
an enhanced AAV9 variant might afford efficient transduction of  foveal cones from a distal bleb. We pre-
viously described a variant called AAV9-7m8, which provides a 30-fold increase in infectivity over AAV9 
(17). To promote foveal cone gene delivery through a distal subretinal injection site, we used an AAV9-7m8 
variant. We injected 1 animal subretinally with 5 × 1010 particles of  this vector encoding Jaws-GFP into 
the peripheral retina (Figure 6, A and B) without detaching the fovea. As early as 2 weeks after injection, 
we observed strong Jaws-GFP fluorescence in the bleb (delimited by the dashed cyan line) and also in the 
foveola (Figure 6C). Fluorescence intensity was higher in the foveola compared with intravitreally treated 
retinas. We observed the same result in a second eye injected with 1 × 1010 vg of  the same vector (Supple-
mental Figure 5C). To further confirm that the superior peripheral blebs did not descend toward the fovea 
once the animal was in upright position and to see if  further dose reduction was possible, we injected 2 
other eyes with a dose of  5 × 109 vg, this time inferior to the fovea (Table 1). Using OCT, we observed that 
the fovea was not detached after surgery (Supplemental Figure 6). The same expression pattern, extending 
to the foveal cones, was obtained in these retinas (Supplemental Figure 5D). These results collectively show 
the reproducibility of  this approach and its compatibility with low viral doses.

Flatmounts were then prepared, and fovea was processed for histology and showed strong Jaws-
GFP expression in a large population of  cones (Figure 6D) in the region between the injection site and 
inside the fovea (Figure 6, D–F). Cell counting of  GFP and CAR+ cells showed about 95% of  cones 
were labeled using this subretinal approach (Figure 6, E and F) compared with about 50% obtained 
with intravitreal injection (Supplemental Figure 4). The amplitude of  photocurrents were 5 times higher 
in Jaws cones after subretinal delivery compared with those in Jaws cones after intravitreal delivery, 
with similarly shaped light sensitivity curves (Figure 5H and Figure 6, G and H). This is likely due to 
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Figure 3. Foveal cone transduction with PR1.7 promoter versus cytomegalovirus (CMV) promoter 2–3 months after intravitreal delivery of AAV2-7m8 in 
nonhuman primates. Representative eye fundus images after intravitreal injection of AAV2-7m8-CMV-GFP (n = 2 eyes) (A and B) or AAV2-7m8-PR1.7-GFP 
(n = 2 eyes) (C and D) at 1 × 1011 viral particles per eye. B and D are inset of images shown in A and C. Scale bars: 200 μm. Confocal images of the maculas 
mounted with the ganglion cell layer facing upward using CMV (E) and PR1.7 (F) promoters. Scale bars: 500 μm. (G and H) Zoomed images of the fovea 
with CMV (G) and with PR1.7 (H). Scale bars: 100 μm in G and H. (I–K) Retinal cryosections at the level of the fovea. (I) DAPI staining at the level of the 
fovea. Asterisk represents foveal pit. GFP expression under the control of CMV (J) or PR1.7 (K) promoters. Scale bar: 50 μm in I, J, and K. (L–N) Confocal 
image projection of the whole foveal flatmount showing nuclei (L) and GFP expression in cones (M). Scale bar: 100μm. (N) Zoom into 3-D–reconstructed 
fovea seen in M with close-up to the cell bodies (facing upward). Scale bar: 10μm. AAV, adeno-associated virus; PR1.7, a promoter of 1.7 kilobases in length, 
based on the human red opsin gene enhancer and promoter sequences.
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higher Jaws expression in cones transduced subretinally compared with cones transduced intravitreally. 
Temporal analysis using flicker stimulation at different frequencies showed very fast and robust photo-
current responses from 2 Hz up to 30 Hz at 8 × 1016 photons cm–2·s–1 (Figure 6L). In both cases, the light 
intensity response threshold was observed at around 1 × 1015 photons cm–2·s–1. While recording cones in 
current-clamp configuration in current zero mode enables the experimenter to record the actual resting 
membrane potential of  the cells, we observed light-elicited hyperpolarization (Figure 6, I and J), fol-
lowed by short depolarization, that was more visible with subretinally injected retinas, correlating with 
higher expression levels of  Jaws-GFP than in intravitreally injected retinas. Jaws-induced photocurrents 
varied in amplitude as a function of  stimulation wavelength peaking at 575 nm, as expected (Figure 6K). 
Application of  increasing stimulation frequencies showed that reliable photocurrents could be obtained 
with a return to baseline at up to 30 Hz, at 8 × 1016 photons cm–2·s–1 (Figure 6L).

PR1.7 promoter drives strong and highly specific gene expression in human cones. Altogether, our data in NHPs 
show for the first time to our knowledge noninvasive, specific, and high-level primate foveal cone transduc-
tion compatible with optogenetic applications for vision restoration. However, as promoter activity shows 
important variations across species (16, 29, 36), we deemed it necessary to validate PR1.7 in human cells 
and tissues. Due to the lack of  a good human photoreceptor cell line or other model that could be used to 
test efficiency of  cone promoter activity, we used 3-D retinal organoids derived from human induced plu-
ripotent stem cells (iPSCs) (37). We generated photoreceptor-enriched retinal organoids and infected them 
with AAV2-7m8 vectors encoding GFP under the control of  the PR1.7 promoter (Figure 7, A–C). GFP 
expression was observed as early as 5 days after infection and continued to increase until the experiment 
was terminated for analysis on day 43. GFP expression in these organoids colocalized with human CAR 
(hCAR) immunostaining (Figure 7, D–F). Lastly, as human retinal organoids do not represent all features 
of  mature human retina, we validated the efficacy and specificity of  the PR1.7 promoter in postmortem 

Figure 4. Optical coherence tomography (OCT) follow-up of AAV2-7m8-CMV-GFP– and PR1.7-GFP–treated eyes. (A) Foveal OCT images of CMV-treated eyes 
(n = 2). (B) Foveal OCT images of PR1.7-treated eyes (n = 2). D0, day of injection, predose; M1.5, -2, -3, month 1.5, 2, or 3 after dose; AAV, adeno-associated 
virus; CMV, cytomegalovirus promoter; PR1.7, promoter of 1.7 kilobases in length, based on the human red opsin gene enhancer and promoter sequences.

Downloaded from http://insight.jci.org on March 10, 2018.   https://doi.org/10.1172/jci.insight.96029



9insight.jci.org   https://doi.org/10.1172/jci.insight.96029

T E C H N I C A L  A D V A N C E

Figure 5. Optogenetic activation of foveal cones using AAV2-7m8-PR1.7-Jaws-GFP. (A) Infrared eye fundus image and (B) optical coherence tomogra-
phy (OCT) image of the eye injected intravitreally with AAV2-7m8-PR1.7-Jaws-GFP (n = 1, 1 × 1011 vg and n = 1, 1 × 1010 vg). (C) Eye fundus fluorescence 
image 2 months after injection shows Jaws-GFP expression in the fovea. Inset magnification (B and C): ×1.5. (D) Half foveal flatmount showing efficient 
and specific foveal transduction using AAV2-7m8-PR1.7-Jaws-GFP. Scale bar: 50 μm. Arrow, foveola; red rectangle, close-up to the foveola shown in 
retinal sections in E; scale bar: 20 μm. (F–K) Characteristics of the cone photoreceptor light responses triggered by optogenetic stimulation of Jaws in 
living macaque retinas (n = 4 cells). (F) Superimposed infrared and epifluorescence images showing strong Jaws-GFP fluorescence in the foveal cones of 
patched explants. (G) Infrared image of the same tissue. Patch electrode (black dotted line) is shown in contact with a Jaws-GFP+ cone cell body high-
lighted in cyan. ONL, outer nuclear layer; IS, inner segments; OS, outer segments. (H and I) Whole-cell patch clamp recordings of Jaws-GFP–expressing 
macaque cones. Jaws-induced photocurrents as a function of light intensity. Orange light stimulation ranged from 1 × 1014 to 3 × 1017 photons cm–2·s–1. 
(J) Jaws-induced photocurrents as a function of stimulation wavelength in intravitreally injected macaque eye. Stimuli were applied from 400–650 nm, 
separated by 25-nm steps, at an intensity equal to 8 × 1016 photons cm–2·s–1. Maximal responses were obtained at 575 nm. (K) Jaws-GFP–expressing 
cones recorded in current-clamp configuration in current zero mode (with their resting membrane potential indicated in gray), displaying light-elicited 
hyperpolarizations followed by short depolarizations. AAV, adeno-associated virus; PR1.7, promoter of 1.7 kilobases in length, based on the human red 
opsin gene enhancer and promoter sequences.
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human retinal explants. Human retinal explants were cultured as described previously (38) and infected 
with a single drop of  1 × 1010 particles of  AAV2-7m8-PR1.7-GFP (Figure 7). Fifteen days after infection, 
GFP expression was analyzed on cryosections. The expression was restricted to the ONL (Figure 7I) and 
colocalized with M/L-opsin, a cone cell marker (Figure 7J). These data collectively point toward high effi-
ciency and specificity of  PR1.7 in leading to restricted gene expression in human cones.

Discussion
The fovea accounts for less than 1% of  the retinal surface area in primates, yet it provides the input to 
about 50% of  the cells in the primary visual cortex (1). The high concentration of  cones in the fovea, 
the thinnest and most delicate part of  the retina, allows for high-acuity vision, and it is of  utmost 
importance to preserve the unique functions (39) and architecture (40) of  the cones in this area during 
therapeutic interventions. Foveal cones can be targeted via different administration routes, using either 
subretinal or intravitreal injections (12, 16), but detaching the fovea might lead to mechanical damage, 
especially in the degenerating retina (12). For all of  these reasons, ways to deliver therapeutics to the 
fovea, without detaching this region, are needed. Intravitreal injections are surgically simple ways to 
deliver therapeutics without retinal detachment. Gene therapy vectors can target the outer retina via 
intravitreal injections in rodents without damage to the photoreceptors (16, 17). However, safe and effi-
cient gene delivery to primate cones via intravitreal injection had not been achieved so far, likely due to 
the substantial dilution of  the vector in the vitreous and resulting loss of  efficacy. The use of  cell type–
specific promoters that provide high-level gene expression with a lower local concentration is critical to 
overcome this challenge (29, 41).

In this study, we sought to first achieve strong and exclusive transduction of  cones via noninvasive, 
intravitreal injection using various promoters in combination with AAV2-7m8 capsid. We selected 3 
previously described promoters in view of  their utility in driving gene expression in cones (4, 18, 19, 42, 
43) and tested them for specificity and strength of  cone transduction side by side. All promoters tested in 
vivo in mouse retinas led to transgene expression in the photoreceptor layer when delivered subretinally. 
The mCAR promoter led to expression in rods and cones. Surprisingly, after intravitreal delivery, only 
PR1.7 maintained its specificity toward cones, while PR2.1 and mCAR gave rise to nonspecific gene 
expression in inner retinal neurons. mCAR and PR2.1 gave rise to nonspecific expression in inner retinal 
cells, making them unsuitable for optogenetic applications where any expression in downstream neurons 
would cancel out the response from the photoreceptors. Subsequent in silico analysis of  TF binding 
sites within each promoter sequence proposed a basis for more specific transduction with PR1.7 and the 
observed lack of  specificity with the mCAR promoter. Next, to study the ability of  AAV2-7m8 equipped 
with the PR1.7 promoter to transduce foveal cones, we conducted gene delivery studies in macaque eyes. 
Complete restriction of  gene expression to primate cones was achieved using AAV2-7m8-PR1.7 in the 
fovea via intravitreal administration.

One shortcoming with the intravitreal injection route is the higher susceptibility of  AAVs administered 
into this compartment to interactions with the immune system compared with subretinal administration 
(33). It has been shown that antibody neutralization poses a barrier to intravitreal AAV vector–mediated 
gene delivery in NHPs, and this will likely pose a challenge for human application. We thus aimed to 
develop another gene delivery approach for patients who have neutralizing antibodies toward AAV2. To 
this aim, we tested gene delivery to foveal cones by subretinal administration of  AAV9-7m8 at a distal site 
(Figure 8 and Table 2). We demonstrated that robust light responses could be obtained with this new deliv-
ery approach, thanks to the vector’s ability to diffuse laterally and mediate expression outside of  the bleb. 
Using the same optogenetic cone reactivation strategy, we showed that this approach also affords robust 
light responses mediated by Jaws but in a higher percentage of  cones compared with a intravitreal route. 
AAV9-7m8’s behavior is similar to a previously described AAV2-derived mutant that exhibits enhanced 
lateral spread after subretinal injections in mouse retina (44). However, in the macaque retina, we believe 
that the transduction beyond the bleb with AAV9-7m8 is correlated with its increased infectivity compared 
with its parental serotype (17) rather than with altered binding to its primary receptor.

Our in vivo findings collectively point to 3 important considerations in retinal gene delivery. First, 
enhanced AAV vectors, whether obtained via directed evolution (AAV2-7m8; ref. 16) or rational design 
(AAV9-7m8; ref. 17), can achieve therapeutic objectives where parental serotypes fail to provide suf-
ficient gene delivery. Indeed, AAV2 and AAV9 cannot perform efficient noninvasive foveal targeting 
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Figure 6. AAV9-7m8 transduces the fovea via delivery in a distal bleb and provides robust optogenetic light responses with PR1.7-Jaws. (A) Eye 
fundus infrared image and (B) optical coherence tomography (OCT) image immediately after subretinal delivery of AAV9-7m8 in peripheral retina. (C) 
Eye fundus fluorescence image 1 month after injection shows strong Jaws-GFP expression within the subretinal bleb and away from the injection site, 
including the fovea. Inset magnification: ×1.5. (D–F) Foveal flatmount shows highly efficient and specific foveal transduction using subretinal AAV9-
7m8-PR1.7-Jaws-GFP. Scale bar: 50 μm. (G–L) Characteristics of the light responses triggered by optogenetic stimulation of Jaws. (G) Lateral view of 
Jaws-expressing cones in living tissue using 2-photon imaging. (H and I) Whole-cell patch clamp recordings of Jaws-GFP+ macaque cones. Jaws-in-
duced photocurrents as a function of light intensity. Stimuli were applied from 1 × 1014 to 3 × 1017 photons cm-2 s-1 (n = 9 cells from 2 retinas of 2 
animals). (J) Jaws-GFP+ cones recorded in current-clamp configuration in current zero mode (with resting membrane potential indicated in gray), dis-
playing light-elicited hyperpolarizations followed by short depolarizations. (K) Jaws-induced photocurrents as a function of stimulation wavelength 
in subretinally injected macaque eye. Stimuli were applied from 400–650 nm, separated by 25-nm steps, at an intensity equal to 8 × 1016 photons 
cm–2·s–1. Maximal responses were obtained at 575 nm (asterisk). (L) Characterization of temporal properties. Modulation of Jaws-induced membrane 
photocurrents at increasing stimulation frequencies in Jaws-expressing macaque cones, from 2–30 Hz, at 8 × 1016 photons cm–2·s–1. AAV, adeno-asso-
ciated virus; PR1.7, promoter of 1.7 kilobases in length, based on the human red opsin gene enhancer and promoter sequences. IR, infrared.
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(30, 31) while 7m8 modified vectors bridge this gap. Second, strong cell type–specific promoters allow 
dose sparing (Table 3) important for the safety of  gene therapy (i.e., avoiding immune response). Third, 
our study shows the nonnegligible impact of  the vector administration route on transgene expression 
patterns. Finally, to complement our in vivo results in animals, we performed a battery of  ex vivo tests 

Figure 7. Performance of AAV2-7m8-PR1.7 vector–promoter combination in human cones. (A–C) GFP expression in human induced pluripotent stem 
cell–derived (iPSC-derived) retinal organoids (n = 10 organoids) infected with AAV2-7m8-PR1.7-GFP. (A) Brighfield, (B) epifluorescence, and (C) confocal 
images of 43-day-old whole mount organoids infected with AAV2.7m8-PR1.7-GFP at day 28 with a dose of 5 × 1010 vg/organoid. Scale bar: 200 μm in 
A and B, and 250 μm in C. Outline in C represents the edges of the organoids (D–F) Retinal organoid cryosections for visualization of GFP expression 
(cyan). Transduced cones are visualized by superimposition of GFP (cyan) and human cone arrestin (hCAR) immunostaining (magenta). Scale bar: 20 
μm in D–F. Arrows represent colocalization of GFP and hCAR stainings. (G–I) Efficient and specific transduction of human cones in postmortem retinal 
explants. (G) Postmortem human retinal explant placed in culture. Dashed circle shows the approximate area where 1 × 1010 viral particles were depos-
ited onto the explant (n = 2 explants from 2 eyes of a single donor). (H) Close-up of the transduced area showing high-level GFP fluorescence in region 
of the explant in contact with the vector. Scale bar: 100 μm. (I) GFP expression (cyan) is restricted to the photoreceptor layer as shown by DAPI (blue) 
staining. (J) GFP is expressed in cones as shown by colocalization of GFP staining of cone markers, namely M/L opsin. Scale bar: 50 μm in I–J. Arrows 
represent colocalization of GFP and M/L opsin stainings. AAV, adeno-associated virus; vg, viral genome; PR1.7, promoter of 1.7 kilobases in length, 
based on the human red opsin gene enhancer and promoter sequences.
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in human tissues that, in combination with in vivo experiments, constitute a versatile platform for vali-
dating gene therapy for clinical application. The vector-promoter combinations described here will find 
utility in all retinal diseases where cone targeting is desired. Each administration route and vector can 
be considered based on the serological state of  the patient and natural history of  the targeted disease 
(Table 2). The combination of  PR1.7 and AAV2-7m8 is ideal for therapeutic gene expression in human 
foveal cones when delivered into the vitreous (Figure 8) and can be an ideal way to reanimate remaining 
dormant cones with optogenetics in retinitis pigmentosa (4). Since cones subsist in both the center and 
the periphery in achromatopsia, gene delivery in the periphery using AAV9-7m8-PR1.7 can be more 
efficacious, as it would deliver the therapeutic gene into both the foveal and peripheral cones (Figure 8).

Methods
AAV production. AAV vectors were produced as previously described using the cotransfection method and 
purified by iodixanol gradient ultracentrifugation (45). AAV vector stocks were titered by quantitative PCR 
(qPCR) (46) using SYBR Green (Thermo Fischer Scientific).

Animals and intraocular injections. WT C57BL6/j mice (Janvier Labs) or rd10 mice (bred and raised in 
the animal facility of  the Vision Institute) were used for this study. For eye injections (n = 6 eyes/condition), 

Figure 8. Vector delivery strategies to meet therapeutic gene expression requirements. (A) Central subretinal injection is the most risky and can 
be associated to adverse effects in the macula. (B) Peripheral subretinal injection using classical vectors does not reach the fovea; however, use of 
AAV9-7m8 is a promising strategy for achromatopsia patients. (C) Intravitreal injection is surgically simpler and the safest administration route to 
transduce cones of the foveola, the region responsible for high-acuity vision. It is a preferred delivery approach for retinitis pigmentosa patients to 
benefit from optogenetic therapy. AAV, adeno-associated virus.
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6-week-old female mice were anesthetized by isofluorane inhalation. Pupils were dilated, and a 33-gauge 
needle was inserted into the eye to deliver 2 μl of  AAV vector solution intravitreally or 1 μl subretinally.

Cynomolgus macaques (Noveprim, Mauritius) were first selected based on the absence of  neutralizing 
antibody titers against AAV. Prior to surgery, , they were anesthetized with an intramuscular injection of  
Ketamine, 10mg/kg (Imalgene 1000, Merial) and Xylazine 0.5mg/kg (Rompun 2%, Bayer). Anesthesia 
was maintained with an intravenous injection of  propofol, 1ml/kg/h (PropoVet Multidose 10mg/ml, Zoe-
tis). Then, their pupils were dilated and their eyelids were kept open using eyelid speculum. A 1-ml syringe 
equipped with a 32-mm, 27-gauge needle was used for intravitreal injections. The needle was inserted into 
the sclera approximately 2 mm posterior to the limbus to deliver 100 μl of  the viral vector solution. Finally, 
the needle was slowly removed. Animals did not receive local corticosteroid injections.

For subretinal AAV injections, two 25-gauge vitrectomy ports were set approximately 2 mm posterior 
to the limbus, one for the endo-illumination probe and the other for the subretinal cannula. A 1-ml Ham-
ilton syringe equipped with a 25-gauge subretinal cannula with a 41-gauge tip was used for the injection. 
The endoillumination probe and cannula were introduced into the eye. The viral vector solution (50 μl) was 

Table 2. Adeno-associated viral (AAV) vector administration strategies for cone-directed gene therapy in primates

Injection route Peripheral subretinal Central subretinal Peripheral subretinal (near macula) Intravitreal
Therapeutic gene 
expression

Peripheral Central (macula-fovea) Peripheral and central Central

Potential capsids AAV2-3YF (18, 43) 
AAV9 (18, 30, 43)

AAV2 in clinical trials (7–9) AAV9-7m8 as used in this study AAV2 and its tyrosine mutants 
(7, 32) 

AAV2-7m8 as used in this study
Advantages Immune privilege 

High-level therapeutic gene 
expression

Immune privilege 
High-level therapeutic gene 

expression 
Foveal transduction 
High-acuity vision

Immune privilege 
High-level therapeutic gene 

expression 
Larger expression area that 

includes the fovea 
High-acuity vision 

Not invasive to the fovea

Noninvasive 
Potential high-acuity vision 

Controlled area of expression 
pattern

Disadvantages Invasive 
No foveal transduction 

Low-acuity vision

Invasive, risk of adverse 
effects such as macular 

thinning (11)

Presence of NAbs in the 
vitreous (use of glucocorticoids 

could prevent antivector 
immune response if patient is 
seropositive for AAV2; ref. 50) 
Lower gene expression than 

subretinal
Potential target 
diseases and 
applications

Retinitis pigmentosa: optogenetic vision restoration (Jaws) (4, 15) 
Achromatopsia: CNGA3 or CNGB3 (43)

NAbs, neutralizing antibodies; CNGA3, cyclic nucleotide gated channel α 3; CNGB3: cyclic nucleotide gated channel β 3.

 

Table 3. Summary of studies involving intravitreal injections with the objective of targeting photoreceptors in primates

AAV and expression cassette Dose (vg/eye) Results References
AAV2-7m8-CMV-GFP 5 × 1012 vg Transduction of photoreceptors 16
AAV2-7m8-CMV/CBA-GFP 1 × 1012 vg Transduction of photoreceptors 29
AAV2-CBA-GFP 4.5 × 1010 vg Transduction of photoreceptors in the injected area.  

AAV injections were under the ILM (referred to as subILM injections).
32

AAV2-3YF-CBA-GFP 9.5 × 1011 vg Transduction of PRs in the ILM peeled area, following vitrectomy and 
surgical ILM peeling. AAV injections were done  1 month after surgery.

51

AAV2-7m8-PR1.7-GFP 1 × 1011 vg and 1 × 1010 vg Specific transduction of cone photoreceptors Present study

AAV, adeno-associated virus; CMV, cytomegalovirus promoter; CBA, chicken β-actin promoter; CMV/CBA, hybrid promoter composed of CMV enhancer and 
CBA promoter; PR1.7, Promoter 1.7 kilobases based on human red opsin gene enhancer and promoter sequences; ILM, inner limiting membrane; vg, viral 
genome; PRs: photoreceptors.
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injected subretinally to create a bleb either below or above the fovea. The instruments were then withdrawn. 
Eyes received corticosteroid treatment (47) that consisted of  a laterobulbar injection of  12 mg of  Kenacort 
(Bristol-Myers Squibb) except right eye of  NHP5.

After subretinal or intravitreal vector administration, opthtalmic steroid and antibiotic ointments (Fra-
dexam, TVM) were applied to the corneas after injections.

In vivo macaque eye imaging. After pupil dilation, a Spectralis HRA+OCT system (Heidelberg Engineer-
ing) was used to acquire OCT images and fluorescent images of  GFP using the Fundus Autofluoresence 
mode (excitation wavelength of  488 nm and barrier filter of  500 nm).

Two-photon imaging and ex vivo electrophysiological recordings of  macaque retinas. A 2-photon microscope 
equipped with a 40× water immersion objective (LUMPLFLN40×/W/0.80, Olympus) with a pulsed fem-
to-second laser (InSight DeepSee, Newport Corporation) was used for imaging GFP+ retinal cells from 
whole-mount retinas (with photoreceptor cell side up) or retina slices (vertical sections). AAV-treated 
macaque retinas were isolated and later imaged in oxygenized (95% O2, 5% CO2) Ames medium (Milli-
poreSigma). For live 2-photon imaging, retinas were placed in the recording chamber of  the microscope, 
and Z-stacks were acquired using the excitation laser at a wavelength of  930 nm. Images were processed 
offline using ImageJ (NIH). For whole-cell patch-clamp recordings, an Axon Multiclamp 700B amplifier 
was used. Electrodes were made from borosilicate glass (BF100-50-10, Sutter Instruments) and pulled to 
6–9 MΩ. Pipettes were filled with 115 mM K gluconate, 10 mM KCl, 1 mM MgCl2, 0.5 mM CaCl2, 1.5 
mM EGTA, 10 mM HEPES, and 4 mM ATP-Na2 (pH 7.2). Cells were clamped at a potential of  –40 
mV in voltage-clamp configuration or recorded in current-clamp (current 0) configuration. Retinas were 
dark-adapted at least 30 minutes in the recording chamber prior to recordings.

Human iPSC cultures. We have generated retinal organoids from human iPSCs based on a previ-
ously published protocol (37). Clone hiPSC-2 was expanded and differentiated on fibroblast feeders 
from postnatal human foreskins (ATCC CRL 2429) in proneural medium, as already described (37). 
Starting from highly confluent adherent iPSC cultures and in the absence of  fibroblast growth factor 
2 (FGF2), self-forming retinal organoids can be identified after 2 weeks. At this point, the organoids 
were mechanically isolated and cultured in 3-D conditions for up to 43 days. FGF2 was supplemented 
to the medium in 3 conditions for 7 days after the mechanical isolation of  the organoids to promote 
their growth. The retinal organoids were infected at day 28 of  differentiation at a dose of  5 × 1010 vg/
organoid with AAV2-7m8 vectors carrying the GFP gene under the control of  the PR1.7 promoter. 
DAPT (10 μM; Selleck) was added to the medium for a week from day 28 on to promote cell cycle 
arrest of  the existent cell populations. Fluorescence intensity was observed for the first time 5 days 
after infection and continued to increase up to day 43.

Human postmortem retinal explants. Human retinal explants were prepared using a previously described 
protocol (38). Briefly, eyes were dissected in CO2 independent medium (Thermo Fischer Scientific). The 
anterior parts were removed, and retina was isolated and cut into small pieces. These explants were placed 
photoreceptor side–up on a Transwell cell culture insert (Corning), and 2 ml of  neurobasal medium (Ther-
mo Fischer Scientific) supplemented with B27 (Thermo Fischer Scientific) were added to each well below 
each explant. The following day, each explant was infected with a single 0.5-μl drop of  AAV2-7m8-PR1.7-
GFP containing 1 × 1010 viral particles. Vector-infected explants were incubated for 10–15 days to allow 
GFP expression, which was checked using an epifluorescence macroscope.

Histology, IHC, and microscopy. Mouse eyes were enucleated and immediately fixed in 10% formalin and 
4% formaldehyde (Sigma) for 2 hours for cryosections. Macaque retinas were fixed after dissection in 4% 
formaldehyde (Sigma) for 3 hours. Retinal organoids and human retinal explants were rinsed in PBS at the 
end of  their culture periods and fixed in 4% paraformaldehyde for 10 minutes. For cryosections, mouse and 
macaque retinas, retinal organoids, and human retinal explants were immersed in PBS-30% sucrose (Sigma) 
overnight at 4°C. Mouse eye cups, human retinal explants, and macaque retinas were embedded optimal 
cutting temperature compound (Microm Microtech France) compound and frozen in liquid nitrogen, while 
retinal organoids were embedded in 7.5% gelatin (Sigma) and 10% sucrose (Sigma) in PBS and frozen in 
dry ice-cold isopentane (Merck Millipore). Vertical sections (10 μm–thick) were cut with a Microm cryostat. 
After incubation in the blocking buffer, sections were incubated with primary antibodies overnight at 4°C: 
hCAR antibody (gift from Cheryl Craft, University of  Southern California, Los Angeles, USA), M/L opsin 
antibody (Merck Millipore, AB5405), and mouse cone arrestin antibody (Merck Millipore, AB15282). After 
multiple washes of  the sections, the secondary antibody Alexa Fluor 594 (A10040, Thermo Fischer Scientif-
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ic) and DAPI were added, followed by several washes. Retinal flatmounts or cryosections were mounted in 
Vectashield mounting medium (Vector Laboratories) for fluorescence microscopy, and retinal sections were 
visualized using an Olympus Upright confocal microscope and then analyzed with Fiji software. Three-di-
mensional projections of  the fovea were created with Imaris software (Bitplane).

In silico identification of  potential regulatory elements and transcriptomic analysis. TF binding site analysis 
was performed on red opsin gene promoter sequence — PR2.1 and PR1.7 sequences — and the cone 
arrestin 3 genomic region. The TRANSFAC database 8.3 (http://alggen.lsi.upc.es/) was used for TF 
binding site prediction. Each TF from the predicted list was analyzed using the Knowledge Base for 
Sensory System (KBaSS, http://kbass.institut-vision.org/KBaSS/transcriptomics/index.php) to select 
those expressed in human retina using the transcriptomic experiment RNG209 (48). A filter was used to 
retain TFs with a signal intensity value superior to 40 units in the sample prepared from the experiment 
RNG209 after normalization by robust multi-array average (RMA) as previously described (49). In this 
experiment, human retinal specimens used as controls were postmortem specimens collected within 12 
hours following death of  patients with no past medical history of  eye disease or diabetes. Nineteen sam-
ples were collected from 19 eyes, representing 17 patients. Sex ratio was 12 men/7 women with a mean 
age of  61 years (range 25–78 years).

Statistics. Data were analyzed using ANOVA test in Graphpad Prism (multiple comparison, Tukey cor-
rection). Error bars on the graphs show the ± SEM. P < 0.033 was considered significant.

Study approval. For animals, the experiments were realized in accordance with the NIH Guide for Care and 
Use of  Laboratory Animals (National Academies Press, 2011). The protocols were approved by the Local Animal 
Ethics Committees and conducted in accordance with Directive 2010/63/EU of the European Parliament.

Postmortem human ocular globes from donors were acquired from the School of  Surgery (Ecole de 
Chirugie, Assitance Publique Hôpitaux de Paris, Paris, France). The protocol was approved by the IRBs of  
the School of  Surgery and the Quinze-Vingts National Ophtalmology Hospital (Paris, France). All experi-
ments on postmortem human retinal explants were performed according to the local regulations, as well as 
the guidelines of  the Declaration of  Helsinki.
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IV. Combined gene therapies for longer lasting vision restoration 
 
 

Today, one objective of retinal gene therapy is to obtain and enhance treatment 
longevity (60), to give patients sight as long as possible. In a similar way, it is primordial for 
sight restoration to be effective over the life-span of the patients. Here we build on the past 
work done on optogenetic reanimation of foveal cones using microbial opsins but wish to 
synergize this therapy with the addition of a survival factor in hopes of restoring and 
maintaining vision in future clinical applications. 

 
 
 
 

iii. Aims and methodology 
 
 

The ultimate goal of my PhD project is to design a long-lasting gene therapy for rod-
cone dystrophies such as RP. Indeed, we have evidence from the literature (167) and a 
preliminary clinical study done at our CIC suggesting that 17% of RP patients have dormant 
cones remaining in their fovea (168). This significant proportion of RP patients could be 
treated with the gene therapy strategy presented in the previous chapter, using Jaws to 
restore vision in dormant cones and we have optimized all parameters to enable this (see 
previous chapter). Combining it with a neuroprotective treatment would increase its 
longevity helping maintain cone cell bodies. Indeed, without survival factors it is uncertain 
how long the reanimated cones can be maintained in degenerating retinas. The aim of this 
work was to prove that optogenetics and survival factors could be co-expressed and help 
get longer-term vision restoration than either treatment alone in RP.	

 
 
 
Among different trophic factors that can provide neuroprotection and thereby increase 

photoreceptor survival, RdCVF is the most relevant for the particular preservation of cones 
(47). RdCVF slows down the loss of cones after rod cell death when administered as a 
protein (46), or using AAV-mediated gene delivery in mice (49). Although therapeutic 
outcomes have been achieved using both the optogenetic vision restoration and RdCVF 
secretion, the combination of both treatments has not been attempted so far. In my thesis I 
explored the possibility of combining these mutation independent gene therapies, which 
turned out to be very challenging. I faced several technical issues, in addition to the 
difficulties related to proving vision restoration at late disease stages. These technical 
issues gave rise to interesting research axes that I decided to investigate, although during 
my PhD I could not complete the work on the combination approach using RdCVF and 
optogenetics. Nevertheless, I summarize the results I was able to obtain in going towards 
this goal over the course of several years. 
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The first aim was to co-express RdCVF and Jaws in the rd10 mouse model of RP. This 
mouse model is characterized by milder retinal degeneration than the rd1, thereby allowing 
neuroprotection studies. I first asked how to simultaneously deliver two gene products to 
the mouse retina and which AAVs should be used?  

 
The first possibility was to combine an early systemic injection of AAV9.2YF-CAG-

RdCVF (49), and a later subretinal injection of AAV8-mCAR-Jaws (89, 169), as previously 
used. As the subretinal injection can lead to complications such PR damage or subretinal 
blood (120) –which would decrease benefits from RdCVF, I first focused on the intravitreal 
injection. 

 
AAV2-7m8– in combination with either a ubiquitous CAG promoter to secrete RdCVF in 

the retina or a cone-specific promoter to express Jaws in cones could be used. I chose this 
approach as AAV2-7m8 is compatible with a noninvasive administration route, and is 
therefore clinically relevant. However, intravitreal injection is not relevant for RdCVF 
expression in light-reared rd10 mice as the degeneration occurs too quickly to obtain a 
therapeutic effect. Indeed, it requires 8 weeks to obtain peek transgene expression in all 
retinal layers with lower expression levels than with SR injection. Given that the rd10 retina 
degenerates rapidly and the peak cone degeneration occurs at 8 weeks of age, RdCVF 
expression would not be optimal when using this vector. This is why RdCVF was delivered 
intravitreally in dark-reared rd10 mice (49) as it has been shown to delay vision loss, and I 
could not obtain vision improvements in the light-reared rd10 mice. I went back to systemic 
delivery of AAV-RdCVF. 

 
However, AAV2-7m8 is still potentially compatible with Jaws expression. I first combined 

it with mCAR promoter as it has been used in previous restorative approach papers, 
subretinally with AAV8, the best capsid for mouse cone targeting (88, 89). Surprisingly, 
AAV2-7m8 vector combined with mCAR promoter and an intravitreal injection, led to high-
level expression in rods, and we also obtained undesired expression in ganglion cells and 
other inner retinal neurons using this leaky promoter. This is problematic for vision 
restoration, because many off-target cells can be activated (hyperpolarization of rods) or 
inhibited (depolarization of ganglion cells) at the same time upon light stimulation of Jaws, 
and cancel out retinal output. As a consequence, I went back to the subretinal injection with 
AAV8 combined with the mCAR promoter. But at the same time, I kept looking for a 
promoter compatible with cone-specific expression. PR1.7 promoter was described some 
time later allowing us to target specifically cones. This gave rise to my paper published in 
JCI Insight and presented in the Chapter 3 of the Results section. I am now using this 
promoter to express Jaws in cones via an intravitreal injection in blind rd10 mice. 

 
Under mCAR promoter and AAV8 combined conditions, Jaws expression was high and 

only in photoreceptors, but the subretinal injection of a control vector encoding GFP 
induced a strong deleterious ERG amplitude decrease. I first hypothesized that my 
observations were due to unsuccessful subretinal injections leading to damaging retinal 
detachments. To test this, I compared uninjected wt animals with PBS-injected wt mice (to 
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eliminate any effect due to disease and study the effect of the vectors themselves) and 
found no differences in ERG amplitudes between the two conditions, thereby excluding this 
hypothesis. My second hypothesis was that GFP expression was too high, leading to 
toxicity to retinal cells. I showed later indeed an unwanted death of retinal neurons in 
treated retinas because of high-injected doses. I thus optimized my gene therapy conditions 
by reducing injected doses and looked for the reasons underlying this toxicity, resulting in 
the manuscript presented in the Chapter I of the Results section. 

The results I obtained towards combined RdCVF and Jaws expression after fixing these 
conditions are described below. 

 
 
 

iv. Evaluation of the therapeutic benefits of RdCVF in vivo 
 

It has been previously shown that RdCVF delays cone-mediated vision loss, by 
preserving cone photoreceptors (46). This result was supported by ERG measurements 
(49) as well as cone cell counting in different mouse models, but no behavioral tests had 
been done to support this result so far. The mechanisms by which this occurs, likely is 
maintenance of overall cone health and outer segment metabolism and renewal (48). 

Therefore, I first evaluated the therapeutic benefits of RdCVF using the optokinetics 
reflex of treated and control rd10 mice in photopic conditions at one month of age. This test 
allows measurement of the visual acuity and is a highly relevant way to assess the extent of 
cone-mediated vision restoration. I showed here strongly significant vision improvements 
with RdCVF in rd10 mice (Figure 35), confirming previous ERG data (49), after delivery of 
AAV9-2YF-CAG-RdCVF using intracardiac injections (48). 

 

	
Figure 35: Optokinetics reflex is improved after early AAV-RdCVF administration in rd10 pups. (A) 
Schematic representation of the setup used for analysis of the optokinetic reflex. (B) Quantification of the 

visual improvements at one month of age after systemic injection of AAV9-2YF-scCAG-RdCVF. Data were 

analyzed using a Student t-test. p values are expressed as the following ****P<0.0001. Erros bars show mean 

±SEM. A total number of 23 animals was analyzed: n=10 for AAV-scCAG-RdCVF injected animals, n=8 for 

PBS condition and n=5 for wt C57BL6/J mice. 
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Then I counted the number of cones 1 year after injection on n=4 animals (8 
retinas/condition) per condition. Although these data need to be confirmed on a larger 
number of animals given the variability between animals, they show no significant 
difference between RdCVF and control groups (Figure 36), i.e. no benefits on cone cell 
body preservation in the long-term. 

 

 
Figure 36: Effect of RdCVF on cones in the long-term. Retinas from animals treated with PBS or AAV9-
2YF-CAG-RdCVF were harvested 1 year after injections. The number of cones (cone arrestin-positive cells) 
were quantified using high-resolution confocal images acquired with a 40x confocal microscope, in areas of 
0.1 mm

2
. Error bars show SD. 

 
Thus, these preliminary data suggest that RdCVF does not have a significant effect on 

the number of cone cell bodies after 1 year. An important point that emerged during the last 
years, is the role of RdCVFL. It has been shown that AAV-mediated RdCVFL expression 
can preserve vision, but with less efficiency than with RdCVF (49), as RdCVF promotes 
cone survival through aerobic glycosis (48). This work suggests that RdCVFL had not a 
strong direct effect on cones, but rather that it protects rod function through its 
thioloxidoreductase activity (49). For this reason, I did not focus on RdCVFL at first. 

However, more recent evidence revealed that cones are more vulnerable to oxidative 
stress when trophic support is reduced (50) –which occurs during retinal degeneration. This 
work showed that RdCVFL protects cones in rd10 mice after subretinal injection. 
Therapeutic benefits were measured using ERG recordings and cone counting (170).  

Therefore, it appears now that the co-expression of RdCVF and RdCVFL might be 
better suited than RdCVF alone (170)  to be combined with Jaws in providing long term 
vision restoration. 
 
 

v. Restorative optogenetic therapy using Jaws in blind mice 
 
 
 

Here, I faced several difficulties related to recording functional benefits in vivo using 
optogenetic tools, namely Jaws. 

First, I could not use our regular optokinetic setup to evaluate optogenetic vision 
restoration and combined protective/restorative treatment because of insufficient light 
intensities that are required to activate Jaws. Indeed, Jaws activation requires above 1016 
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photons/cm2/s light intensity. The same was true with all other tests we typically use to 
assess visual improvements such as ERGs. As a consequence, I used another behavioral 
test measuring light perception, and ex-vivo multi-electrode array (MEA) recordings to 
investigate the efficacy of optogenetic cone reactivation using Jaws. 

 
I performed the light/dark box experiment (Figure 37A) using orange light (3x1016 

photons/cm2/s) compatible with optogenetic activation on control versus Jaws-injected rd10 
animals. I first validated the setup and light intensity with a positive control that consists of 
subretinal injections of AAV-Jaws (n=11 mice) compared to untreated animals (n=3) as it 
has previously shown that it is possible to restore vision using this strategy (88, 89). There 
was a significant difference between the control and SR-Jaws groups (Figure 37B). 

 
In the meantime I optimized specific cone delivery from the vitreous (171). We cloned 

both PR1.7-GFP and PR1.7-Jaws-GFP plasmids, produced AAV2-7m8 vectors and then I 
injected them in rd10 mice. There was a significant difference between uninjected (n=3) 
and IVT-Jaws (n=17) groups, but not between the others, including GFP-IVT (n=3) and 
Jaws-IVT (n=17) groups (Figure 37C). I now need to increase the number of animals for 
control groups in this experiment, as there is consequent variability between animals. 

 

	
 

Figure 37: Evaluation of vision restoration in Jaws injected animals. (A) Setup of the light/dark box setup 

with orange light illumination on the left compartment, and a dark compartment (right), to measure light 

perception. (B-C) Time (in %) spent in light compartment. A total number of 34 animals were analyzed: n=3 for 

uninjected mice, n=3 for GFP-IVT, n=11 for Jaws mice injected subretinally and n=17 for mice injected 

intravitreally. 

 
In parallel, I used ex vivo electrophysiology –multi-electrode array recordings (MEA)– to 

assess the effect of Jaws on blind retinas, and confirm whether RGC reactivation occurs in 
IVT Jaws-retinas. This is a more precise way of quantifying vision restoration as it can give 
us the number of ganglion cells responding to light under Jaws treatment condition, which is 
proportional to the number of cones that are being reactivated. 

Jaws-IVT treated retinas showed light responses upon repeated stimulation, which were 
not observed in GFP control retinas (Figure 38). These MEA results show for the first time 
that optogenetic reactivation of dormant cones can be achieved with a gene therapy vector 
delivered intravitreally in blind mice. 
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With this method, we now aim to demonstrate that an efficient combined neuroprotective 
and optogenetic treatment is longer-lasting than each treatment alone. For each 
experimental group, we need to wait for 3 months for the animals to be completely blind– 
meaning that OS are lost and no detection of cone residual activity- at the time of MEA 
experiments. These experiments are challenging, mainly because of the variability of retinal 
degeneration in rd10 mice between each animal, together with the variability associated to 
injections, resulting percentage of transduced cones and expression levels of Jaws. On top 
of that, there is also variability with MEA experiments, and it is difficult to obtain spikes from 
the exact region of interest placed on the microarray. 

 
 
 
 
 

 

	
 
Figure 38: Ex-vivo recordings of retinal activity after injection with Jaws or GFP. (A) A multi-electrode 

array with 254 electrodes. The retina is flat-mounted and placed on top of the electrodes in the center of the 

array. (B) A portion of retina is showed in contact with the electrodes (black dots), ganglion cells facing the 

array. (C-E) Scale bar is 0.5 seconds. (C) An example of a cell in a Jaws-transduced retina that was 

illuminated with orange light. A series of 10 light flashes were applied. Each dot corresponds to a spike and 

each line to a stimulus (a light flash). Note the increase of the number of spikes after the light stimulus (red 

arrow): the spiking frequency is increased. (D) An example of a cell that does not react to light stimuli: the 

spike frequency is not modified upon light stimulation (red arrow). (E) An example of a cell that reacted to the 

light flash: the spike frequency is increased upon light stimulation (red arrow). (F) Quantification of the number 

of cells that respond to light upon light stimulus (average of 10 stimulations, n=3 retinas for each condition). 
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vi. Progress made towards the initial aim and next steps 
 

 
I performed in vivo and ex vivo experiments that allowed me to improve gene delivery to 

cones without side effects and to study the efficacy of each treatment using various tests. I 
eliminated the reason that caused retinal toxicity in my first Jaws-GFP subretinal injection 
groups and optimized safe and efficient gene delivery to the cones from the vitreous, 
thereby facilitating analysis of cone reactivation with MEA recordings. We will now test the 
efficacy of the combined neuroprotective and restorative treatments to obtain maximal 
therapeutic effects using MEA recordings. 
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During my thesis I developed viral tools for mutation independent gene therapy 
strategies to treat rod-cone dystrophies. A certain number of questions were adressed in 
mice, showing importance of dose sparing and promoter choice for safety. We went further 
by developing new surgical modalities for efficient gene transfer to cones in non-human 
primates, with the focus on the fovea for our vision restoration strategy. AAV2-7m8- and 
AAV9-7m8-PR1.7 capsid-promoter combinations with Jaws provided restoration of light 
sensitivity in foveal cones. Finally, as our ultimate goal is to reach the clinic to restore sight 
and maintain it in patients, we are currently attempting to implement a neuroprotective 
strategy to stave off the loss of optogenetically engineered cones. Altogether my PhD work 
points to several important considerations in the field: 

 
 

(1) Vector design is a key factor in gene therapy success 
 

Transduction of target cells is not always feasible with natural capsids. Through the 
combination of directed evolution and rational design, we have been able to create two new 
AAVs that answer our therapeutic needs, namely efficient transduction of photoreceptors 
both intravitreally and subretinally in mice with AAV2-7m8 and AAV9-7m8 (Khabou et al., 
Biotech Bioeng, 2016) while parental capsids AAV2 and AAV9 are less efficient 
(subretinally) or not efficient at all (intravitreally). 

 
 
(2) Dose sparing allows preservation of target cells 

 
There are some evidence that the use of higher vector doses can cause side effects, 

even if the eye is an immune privileged site (71, 120). In this context we showed that high 
input AAV dose in the retina can also cause apoptosis, not simply inflammation (Khabou et 
al., in preparation). Reducing the injected dose can prevent this. The design of highly 
efficient AAVs and promoters is an essential step to avoid any risk of exacerbating disease 
state in patients. 

Even with enhanced capsids dose sparing is not always possible. It is necessary to 
have a strong promoter to unlock full capsid potential. The use of ubiquitous promoters can 
be an option, but is not always relevant in a therapeutic context. For example AAV2-7m8 
used at too high doses combined with ubiquitous promoters can cause significant 
inflammation (124, 162) while when combined with stronger cell type specific promoters 
and lower doses it is safe (92) and (Khabou et al., JCI Insight, 2018). Also, ubiquitous 
promoters can potentially lead to transgene expression in antigen presenting cells and 
therefore compromise long-term therapeutic effects. 

 
 
(3) Translational considerations 

 
One major argument in favor of the use of the gene therapy tools developed during my 

thesis is their performance in all tested system models, including mice (in vivo), macaques 
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(in vivo) and human tissue (in vitro, retinal organoids derived from human iPSCs and post-
mortem adult retinal explants). Validation of the use of AAV2-7m8- or AAV9-7m8-PR1.7 
capsid-promoter combination in cones of these three species (Khabou et al., JCI Insight, 
2018) supports the use of our gene therapy products for clinical applications. 

The combination of efficient capsids and strong, cell specific promoters also allowed the 
development of new surgical modalities to target the fovea in primates, which has been 
classically possible only with sub-foveal injections. Transduction of foveal cones is 
compatible with an intravitreal injection of AAV2-7m8-PR1.7 while a distal subretinal 
delivery of AAV9-7m8-PR1.7 provides expression in both peripheral and central cones 
through lateral spread of the vector (Khabou et al., JCI Insight, 2018). These new vector-
promoter combinations and surgical modalities provide new therapeutic opportunities for 
treatment of patients affected with RP and achromatopsia. 

 
 
 
By taking all of the above-mentioned parameters into account, we can hopefully expand 

longevity and efficiency of current retinal gene therapies. There are several further 
developments and applications that can follow up from the work described in this thesis: 
 

 
(1) Development of a Jaws DNA construct without GFP protein 
 
The paper that originally described the highly efficient hyperpolarizing opsin Jaws, 

reported a version of the protein that is fused to the GFP (89) and we used the same fusion 
protein between Jaws and GFP for our studies. In going towards translation, it will be 
important to design Jaws without GFP as fluorescent proteins should be avoided in clinical 
application. Correct Jaws expression can be checked with an anti-Jaws antibody. Its 
functional effect can be tested as well with patch-clamp recordings though it is very 
challenging without GFP because we cannot easily locate Jaws-cells through fluorescence 
microcopy. This can be circumvented by another DNA construct that contains both Jaws 
and GFP but non-fused, separated for example by 2A peptide or IRES sequences. 

 
 
 

(2) Analysis of immune responses against non-self proteins in mice and primates 
 

When transferred in patients for gene therapy, Jaws –and other optogenetic contructs in 
general– is a non-self protein from microbial origin. Its expression in patients has to be safe, 
not leading to toxicity or immunogenicity in the long term. Although optogenetic vision 
restoration transferred to patients without any adverse effects thus far (i.e. ChR2 
(RetroSense Therapeutics), it will be important to characterize if any immune responses 
towards this type of proteins is observed in large animal models at higher doses–even if the 
eye is an immune privileged site. Whether it happens in the long-term and not only in the 
short-term is also an important point to investigate. 
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(3) Application of newly described vector tools with other therapeutic proteins or 
to other retinal dystrophies 
 
 
We proved here cone reactivation in macaques with Jaws for treatment of late stage RP 

patients. However, the tools we developed can also be used for other applications. 
Some examples include transfer of CNGA3 or CNGB3, which could potentially restore 

vision in achromatopsia patients. Expression of these therapeutic proteins has already been 
done before using peripheral or central subretinal injections in NHPs (71, 144), but not 
distal ones that transduce the fovea, or intravitreal injections.  

AAV2-7m8-PR1.7 provides specific expression of the therapeutic protein in the foveola. 
Although it is a very relevant expression pattern for late stage RP patients, since only cones 
of the fovea are preserved at those stages, it would be preferable to extend expression to 
the periphery for other diseases. In achromatopsia, both peripheral and central cones are 
preserved and their targeting would allow vision restoration in a larger visual field. 
Extension has been achieved in the past with subILM injections (164) or after vitrectomy 
and ILM peeling (163) -although these are more invasive strategies.  

AAV9-7m8-PR1.7 is a relevant vector for treatment of achromatopsia and RP since a 
distal delivery transduces both peripheral and central cones. As it is able to spread laterally 
and transduce larger areas outside of the bleb, it also allows injection of low volumes (50µL 
in our study). Finally, this vector has a good tropism for cones and is 30 more infectious 
than AAV9, thereby allowing dose sparing. 

 
 

 
(4) Design of long-lasting gene therapies 

 
 
 

- Combination of neuroprotection and optogenetics for RP treatment 
 
 

The ectopic expression of Nxnl1 gene products, RdCVF or RdCVFL through AAV 
vectors can slow down vision loss in mice (49, 170), while halorhodopsin (88) or Jaws (89) 
expression restores light-sensitivity of dormant cones from mice and to primates to humans. 
We hypothesize that a combination therapy with a neurotrophic strategy and optogenetic 
protein will be longer lasting than either therapy alone. This would allow us to develop a 
long-term mutation independent treatment applicable to all forms of RP, while restoring high 
acuity, close to natural vision. 

 
The precise characterization of RdCVF and RdCVFL during the last years (48–50, 170) 

suggest that cone death occurs because of RdCVF loss, but also that cones later are 
nonfunctional –loss of OS– and die because of RdCVFL expression decrease, which leads 
to oxidative damage in cones. Thus, it appears now that RdCVFL expression could be more 
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relevant than RdCVF in maintaining dormant cones –i.e. end-stage RP, while RdCVF can 
be better suited for earlier RP stages. We could thus design an expression cassette 
containing both RdCVFL and Jaws separated by 2A peptide and under the control of PR1.7 
promoter to drive the expression of both therapeutic genes in cones and test vision 
restoration using this combination.  

Also, it has been suggested that the expression of both RdCVF and RdCVFL might be 
combined to obtain even better therapeutic effects on cones in RP (170). In mice, the 
strategy to do the proof of concept could be a systemic injection of AAV9-2YF-CAG-
RdCVF-2A-RdCVFL, and later an intravitreal injection of AAV2-7m8-Jaws. In NHPs (and 
potentially in RP patients), a co-injection of AAV2-7m8-CAG-RdCVF and AAV2-7m8-
PR1.7-Jaws-2A-RdCVFL could be envisioned.  

 
 
 

- Combination of neuroprotection and gene addition  
 

The combination of trophic factor secretion with gene replacement could benefit other 
retinal disorders: For example combining RPE65 gene addition and RdCVF-RdCVFL 
mediated neuroprotection may prolong retinal function in LCA (60). 
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I. Supplementary results of Chapter I 
 

	  



Supplementary results 
 
 
Supplementary Figure 1 
 

 
Supplementary figure 1 : GFP expression follow-up using eye fundus imaging after subretinal 
injections of AAV8-CAG-GFP and AAV8-Rho-GFP. A dose of 5x1011 vg was administered. 
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II. Supplementary results of Chapter II 
 

	  



Table S1: AAV vectors used in this study. Genomic titers of AAV-CAG-GFP vector stocks 
were determined by quantitative real-time PCR. 
 

GFP vector Genomic titers (vector genomes vg/mL) 

AAV2 6 x 1012 

AAV2-7m8 3 x 1012 

AAV2-scramble (AAKKTIENRA) 3 x 1012 

AAV2-Ala 8 x 1011 

AAV2-7m8.Ala 2 x 1011 

AAV5 2 x 1013 

AAV5-7m8 1 x 1014 

AAV5-Ala 6.91 x 1012 

AAV5-7m8.Ala 4.91 x 1011 

AAV9 2 x 1013 

AAV9-7m8 6 x 1012 

AAV9-Ala 2.34 x 1012 

AAV9-7m8.Ala 1.42 x 1011 

AAV8 7.5 x 1013 

AAV8-7m8 9 x 1013 

 

  



Figure S1. In vitro transduction efficiency of AAV2, 5, 9 and their mutated versions analyzed 
by flow cytometry. 
 

 

 

  



Figure S2. Receptor binding properties of AAV9 and AAV9-7m8. 
 

 

 

  



Figure S3. Effect of 7m8 insertion on the retinal tropism of AAV5-, AAV8- and AAV9-
CAG-GFP vectors after intravitreal injections. 
 

 

  



Figure S4. Retinal transduction efficiency of AAV2, 5, 8, 9, and their peptide insertion 
variants after subretinal injection. 
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III. Supplementary results of Chapter III 
 

	  



Supplemental data 

Supplemental Figure and Figure Legends 

 

 

Supplemental Figure 1: Quantification of cone transduction efficiency after intravitreal 

administration of AAV2-7m8-GFP in mice using mCAR, PR1.7 or PR2.1 promoters (n=4 eyes 

per condition). (A) Quantification of the percentage of transduced cones based on flatmount images 

and colocalization of GFP and cone arrestin stainings. (B) Evaluation of the specificity of the 

promoters in the photoreceptor layer expressed as the ratio of number of transduced rods over the 

number of transduced cones. Data represent mean ± SEM and were analyzed with ANOVA multiple 

comparison test. AAV: adeno-associated virus; mCAR: mouse cone arrestin promoter; PR1.7 and 

PR2.1: promoters of 1.7 and 2.1 kilobases in length, respectively, based on the human red opsin gene 

enhancer and promoter sequences.  

  



 

Supplemental Figure 2: Cone transduction after intravitreal administration of AAV2-7m8-

GFP in rd10 mice using PR1.7 promoter. (n=4 eyes) (A) GFP expression in a 3-months old rd10 

retinal whole-mount two months after injection. The retina is mounted with photoreceptor layer 

facing upwards. Scale bar is 500 µm. (B-D) Zoom into the whole-mount retina shown in D. Scale bar 

is 40 µm. (B) Cone cell bodies remaining after degeneration expressing GFP (cyan). (C) Cone 

arrestin immunostaining is shown in magenta. (D) Colocalization of GFP and cone arrestin stainings. 

AAV: adeno-associated virus; PR1.7: Promoter 1.7kilobases in length, based on the human red opsin 

gene enhancer and promoter sequences; rd10: retinal degeneration 10 mouse model for retinitis 

pigmentosa. 

  



 

Supplemental Figure 3: GFP expression follow-up after intravitreal administration of AAV2-

7m8 under the control of CMV and PR1.7 promoters (n=2 per condition). (A) Eye fundus 

images of CMV treated eyes. (B) Eye fundus images of PR1.7 treated eyes. D0: Day of injection, 

pre-dose; M1.5, 2, 3: Month 1.5, 2, 3 after injection. AAV: adeno-associated virus; CMV: 

cytomegalovirus promoter; PR1.7: Promoter 1.7kilobases in length, based on the human red opsin 

gene enhancer and promoter sequences.  



 

Supplemental Figure 4: Cone transduction in the fovea after intravitreal administration of 

1x1011 vg of AAV2-7m8-PR1.7-Jaws-GFP in one macaque eye (A) Jaws-GFP expression in foveal 

whole-mount two months after injection (cyan). (B) Human cone arrestin immunostaining is shown 

in magenta. (C) Colocalization of GFP and cone arrestin stainings. Scale bar is 20 µm. AAV: adeno-

associated virus; hCAR: human cone arrestin; PR1.7: Promoter 1.7kilobases in length, based on the 

human red opsin gene enhancer and promoter sequences. 

  



 

Supplemental Figure 5: Macaque eye fundus images for characterization of dose response. 

Jaws-GFP expression two months after intravitreal injection of 1011 particles (n=1 eye) (A) and 1010 

particles (B) of AAV2-7m8-PR1.7-Jaws-GFP (n=1 eye). Jaws-GFP expression two weeks after 

subretinal injection of 1x1010 particles (n=1 eye, superior bleb) (C) and 5x109 particles (n=2 eyes, 

inferior blebs) (D) of AAV9-7m8-PR1.7-Jaws-GFP. AAV: adeno-associated virus, vg: viral genome; 

PR1.7: Promoter 1.7kilobases in length, based on the human red opsin gene enhancer and promoter 

sequences. 

  



 

Supplemental Figure 6: Distal inferior subretinal administration follow-up using in vivo eye 

fundus and optical coherence tomography (OCT) imaging. Images were acquired before and after 

peripheral injection of AAV9-7m8-PR1.7-Jaws-GFP, 5x109 viral particles (n=2 eyes). Eye fundus 

infrared image is centered on the macula and OCT image was taken at the level of the fovea or at the 

level of the bleb shortly before and after the injections. Follow-up images were acquired one hour 

after injections while the animal was kept seated. Another image was acquired 24 hours after 

injections. Bleb: subretinally injected fluid; hrs: hours; AAV: adeno-associated virus, PR1.7: 

Promoter 1.7kilobases in length, based on the human red opsin gene enhancer and promoter 

sequences. Dark blue asterisk: fovea; bold green arrows: OCT image of the retina highlighted with 

the dark green arrow, is shown on the right part of each image; dashed cyan line: delimitation of the 

bleb. 



Supplemental Tables 

Supplemental Table 1: Transcription factors’ binding sites analysis for red opsin gene based 

promoters, PR2.1 and PR1.7.	

Gene 

identification 

number 

Gene title Protein 

symbol 

OPN1LW Promoter fragment Probe set Signal Intensity 

   Site number Identification 

number 

Robust Multi-array 

Average (RMA) 

      2061 bp 1724 bp 337 bp   Mean Standard 

deviation 

196 Aryl hydrocarbon receptor AHR  1 1 0 202820_at 48.4 1.8 

467 Activating transcription factor 3 ATF3  2 2 0 202672_s_at 51.6 14.4 

1051 CCAAT/enhancer binding 

protein beta 

CEBPB 55 41 14 212501_at 206.3 35.5 

1406 Cone-rod homeobox CRX 12 11 1 217510_at 1638.3 96.4 

2002 ELK1. ETS transcription factor ELK1  11 9 2 203617_x_at 86.8 2.6 

2353 Fos proto-oncogene. AP-1 

transcription factor subunit 

FOS 9 8 1 209189_at 744.1 174.7 

2969 General transcription factor Iii GTF2I  54 44 10 210892_s_at 41.6 4.8 

3091 Hypoxia inducible factor 1 

alpha subunit 

HIF1A 1 1 0 200989_at 810.1 29.1 

3725 Jun proto-oncogene. AP-1 

transcription factor subunit 

JUN  27 23 4 201464_x_at 377.4 50.9 

4150 MYC associated zinc finger 

protein 

MAZ  3 3 0 212064_x_at 157.3 6.9 

4205 Myocyte enhancer factor 2A MEF2A 1 1 0 212535_at 203.8 3.5 

4782 Nuclear factor I C NFIC 36 38 8 226895_at 195.6 11.3 

4800 Nuclear transcription factor Y 

subunit alpha 

NFYA  4 3 1 228433_at 43.3 1.7 

10062 Nuclear receptor subfamily 1 

group H member 3 

NR1H3 12 11 1 217370_x_at 174.6 17.2 

7025 Nuclear receptor subfamily 2 NR2F1 / 1 0 1 209505_at 128.6 10.2 



group F member 1 COUP-TF1 

2908 Nuclear receptor subfamily 3 

group C member 1 

NR3C1 173 140 33 201865_x_at 164.7 8.6 

5451 POU class 2 homeobox 1 POU2F1  3 2 1 227254_at 192.6 7.2 

5465 Peroxisome proliferator 

activated receptor alpha 

PPARA  6 5 1 223437_at 232.0 19.6 

5914 Retinoic acid receptor alpha RARA 3 3 0 216300_x_at 40.0 1.9 

5915  Retinoic acid receptor beta RARB  6 6 0 205080_at 64.4 3.0 

3516 Recombination signal binding 

protein for immunoglobulin 

kappa J region 

RBPJ  2 2 0 211974_x_at 435.6 29.7 

5970 RELA proto-oncogene. NF-kB 

subunit 

RELA 3 3 0 201783_s_at 53.3 3.7 

6256 Retinoid X receptor alpha RXRA 26 22 4 202449_s_at 146.0 6.8 

6667 Sp1 transcription factor SP1  2 1 1 224754_at 158.2 6.6 

6772 Signal transducer and activator 

of transcription 1 

STAT1 4 4 0 200887_s_at 160.0 13.7 

6908 TATA-box binding protein TBP  14 11 3 203135_at 76.7 2.7 

6925 Transcription factor 4 TCF4  2 2 0 212386_at 526.0 30.8 

6934 Transcription factor 7 like 2 TCF7L2 6 5 1 212761_at 140.6 8.4 

8463 TEA domain transcription 

factor 2 

TEAD2 8 5 3 243766_s_at 53.4 2.4 

7020 Transcription factor AP-2 alpha TFAP2A 28 23 5 204653_at 264.8 29.5 

7068 Thyroid hormone receptor beta THRB 10 9 1 229657_at 106.4 5.3 

7392 Upstream transcription factor 2 USF2 5 5 0 202152_x_at 176.8 9.4 

7528 YY1 transcription factor YY1 18 15 3 201901_s_at 379.0 22.4 

PR1.7 and PR2.1: promoters of 1.7 and 2.1 kilobases in length, respectively, based on the human red opsin gene enhancer and 

promoter sequences; bp: base pairs. 

 

  



Supplemental Table 2: Transcription factors’ binding sites analysis for mouse cone arrestin 

(mCAR) promoter. 

Gene 

identification 

number 

Gene title 
Protein 

symbol 

Mouse Arr3 Promotor 

fragment 
Probe set Signal Intensity 

      
Site number 

Identification 

number 

Robust Multi-array Average 

(RMA) 

      
3207 bp 521 bp 

  Mean Standard deviation 
(-3170/+37) (-510/+11) 

8546 
Adaptor-related protein complex 3. 

beta 1 subunit  
AP3B1 5 0 203142_s_at 55.3 2.1 

1386 Activating transcription factor 2 ATF2 1 0 212984_at 150.2 5.2 

467 Activating transcription factor 3 ATF3  5 0 202672_s_at 51.6 14.4 

79365 
Basic helix-loop-helix family 

member e41 
BHLHE41 5 0 221530_s_at 1083.9 64.2 

1051 
CCAAT/enhancer binding protein 

beta 
CEBPB 221 37 212501_at 206.3 35.5 

1406 Cone-rod homeobox CRX 19 6 217510_at 1638.3 96.4 

1998 E74 like ETS transcription factor 2 ELF2 2 0 203822_s_at 91.9 2.8 

2002 ELK1. ETS transcription factor ELK1  10 2 203617_x_at 86.8 2.6 

2353 
Fos proto-oncogene. AP-1 

transcription factor subunit 
FOS 146 25 209189_at 744.1 174.7 

2969 General transcription factor Iii GTF2I  3 0 210892_s_at 41.6 4.8 

3280 
Hes family bHLH transcription 

factor 1 
HES1 26 0 203394_s_at 522 71.3 

3725 
Jun proto-oncogene. AP-1 

transcription factor subunit 
JUN 85 8 201464_x_at 377.4 50.9 

3726 
JunB proto-oncogene. AP-1 

transcription factor subunit 
JUNB 2 0 201473_at 369.1 77.6 

3727 
JunD proto-oncogene. AP-1 

transcription factor subunit 
JUND 20 2 203752_s_at 580.8 63.8 



4150 
MYC associated zinc finger 

protein 
MAZ  14 3 212064_x_at 157.3 6.9 

4205 Myocyte enhancer factor 2A MEF2A 4 0 212535_at 203.8 3.5 

4520 
Metal regulatory transcription 

factor 1 
MTF1  2 1 227150_at 112.8 4.9 

4782 Nuclear factor I C NFIC 110 28 226895_at 195.6 11.3 

4784 Nuclear factor I X NFIX 1 0 227400_at 101 8.1 

4800 

Nuclear transcription factor Y 

NFYA 

53 0 

204108_at 44.4 1.8 

4801 NFYB 218127_at 104.1 6.1 

4802 NFYC 202215_s_at 101 4.6 

10062 
Nuclear receptor subfamily 1 

group H member 3 
NR1H3 26 2 217370_x_at 174.6 17.2 

7025 
Nuclear receptor subfamily 2 

group F member 1 

NR2F1 / 

COUP-TF1  
2 1 209505_at 128.6 10.2 

2908 
Nuclear receptor subfamily 3 

group C member 1 
NR3C1 297 46 201865_x_at 164.7 8.6 

5080 Paired box 6 PAX6 1 0 205646_s_at 1430.4 87.3 

5451 POU class 2 homeobox 1 POU2F1  3 0 227254_at 192.6 7.2 

5465 
Peroxisome proliferator activated 

receptor alpha 
PPARA  6 0 223437_at 232 19.6 

5914 Retinoic acid receptor alpha RARA 3 1 216300_x_at 40 1.9 

5915 Retinoic acid receptor beta RARB  11 4 205080_at 64.4 3 

3516 

Recombination signal binding 

protein for immunoglobulin kappa 

J region 

RBPJ  4 1 211974_x_at 435.6 29.7 

5970 
RELA proto-oncogene. NF-kB 

subunit 
RELA 16 2 201783_s_at 53.3 3.7 

6256 Retinoid X receptor alpha RXRA 41 6 202449_s_at 146 6.8 

6670 Sp3 transcription factor SP3 3 1 213168_at 155.7 7.5 

6722 Serum response factor SRF 3 1 202401_s_at 58.6 4.1 

6772 
Signal transducer and activator of 

transcription 1 
STAT1 15 1 200887_s_at 160 13.7 

6908 TATA-box binding protein TBP  110 17 203135_at 76.7 2.7 



6925 Transcription factor 4 TCF4 2 0 212386_at 526 30.8 

6934 Transcription factor 7 like 2 TCF7L2 8 1 212761_at 140.6 8.4 

8463 TEA domain transcription factor 2 TEAD2 1 0 243766_s_at 53.4 2.4 

7020 Transcription factor AP-2 alpha TFAP2A 61 7 204653_at 264.8 29.5 

7024 Transcription factor CP2 TFCP2 5 0 209338_at 100.1 3.6 

7030 
 Transcription factor binding to 

IGHM enhancer 3 
TFE3 65 3 212457_at 226.9 7 

7068 Thyroid hormone receptor beta THRB 5 0 229657_at 106.4 5.3 

7528 YY1 transcription factor YY1 67 5 201901_s_at 379 22.4 

bp: base pairs.	
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Abstract 
 
 
 
 
Vision is our most cherished sense and its loss is a feared handicap. A highly diverse 

and complex array of inherited retinal degenerations leads to irreversible vision loss. Today, 
there is no cure for such disorders. However, in the last decade, many gene therapies 
entered clinical trials offering hope for the treatment of inherited retinal degenerations. In 
this thesis, we explored the contribution of viral vectors within the general context of retinal 
gene therapy. We focused on optimization of viral vectors for mutation-independent gene 
therapies broadly applicable across rod-cone dystrophies. We carefully designed vectors 
for targeting cones and studied their translational potential for optogenetic activation of 
cones in several relevant model systems.  

 
Our vectors were first screened in rodents eliminating vectors lacking specificity. This 

allowed us to choose, a strong cone-cell specific promoter for further development. Since 
mice do not have a fovea, we then validated the efficacy and specificity of our promoter in 
combination with selected capsids and delivery routes in non-human primates. In this 
species we showed that AAV9-7m8 –which is 30 times more infectious than AAV9–
provides efficient foveal cone transduction when injected subretinally several millimeters 
away from the fovea. Moreover, we showed AAV2-7m8 can target foveal cones with a well-
tolerated dose administered intravitreally. Both delivery modalities resulted in high-level 
optogene expression leading to light responses in cones. Lastly, we validated the efficacy 
of these vectors on human cones, using retinal organoids derived from human induced 
pluripotent stem cells (iPS cells) and post-mortem human retinas. Collectively, our data 
support proof of concept for therapeutic potential of this gene therapy product for cone 
reactivation using optogenetics in late-stage RP. Our vector-promoter combinations can 
also be useful in future gene replacement therapy for diseases like achromatopsia where 
large spread of transgene expression is desirable. As a future aim, we hope to extend the 
toolset developed here to allow co-expression of trophic factors prolonging cone survival. 
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Résumé 
 
 
 

 
La vision est notre sens le plus cher et sa perte est un handicap redouté. Or, il existe un 

ensemble très hétérogène et complexe de dégénérescences rétiniennes héréditaires 
entraînant une perte de vision irréversible. Aujourd'hui, il n'y a pas de traitement pour ces 
maladies. Cependant, au cours de la dernière décennie, de nombreuses thérapies 
géniques ont été testées dans des essais cliniques, donnant de l'espoir pour le traitement 
des dégénérescences rétiniennes héréditaires. Dans cette thèse, nous avons exploré 
l'apport des vecteurs viraux dans le contexte général de la thérapie génique rétinienne. 
Nous avons plus particulièrement optimisé des vecteurs viraux pour des thérapies géniques 
indépendantes des mutations, largement applicables à toutes les dystrophies rétiniennes 
avec dégénérescence de bâtonnets puis cônes. Nous avons conçu des vecteurs pour cibler 
les cônes et étudié leur potentiel de translation pour l'activation optogénétique des cônes 
dans plusieurs systèmes modèles pertinents.  

 
Nos vecteurs ont d'abord été testés sur des rongeurs, permettant d'éliminer les 

vecteurs non spécifiques. Cela nous a permis de choisir un promoteur fort et spécifique des 
cônes pour poursuivre l'étude. Comme les souris n'ont pas de fovéa, nous avons ensuite 
validé l'efficacité et la spécificité de notre promoteur en combinaison avec des capsides et 
des voies d'administration choisies pour les primates non humains. Chez cette espèce, 
nous avons montré que l'AAV9-7m8 - qui est 30 fois plus infectieux que l'AAV9- permet une 
transduction efficace des cônes fovéalaires lorsqu'il est injecté sous la rétine à plusieurs 
millimètres de la fovéa. De plus, nous avons montré qu'AAV2-7m8 peut cibler les cônes 
fovélaires avec une dose bien tolérée et administrée par voie intravitréenne. Les deux 
modalités d'administration ont permis une forte expression de l'optogène, permettant la 
sensibilité à la lumière des cônes. Enfin, nous avons validé l'efficacité de ces vecteurs sur 
les cônes humains, à l'aide d'organoïdes rétiniens dérivés de cellules souches pluripotentes 
induites (cellules iPS) et de rétines humaines post-mortem. Collectivement, nos données 
soutiennent la preuve de concept du potentiel thérapeutique de ce produit de thérapie 
génique pour la réactivation des cônes à l'aide de l'optogénétique en phase avancée de 
RP. Nos combinaisons de vecteur-promoteur peuvent également être utiles dans la 
thérapie de remplacement génique pour des maladies comme l'achromatopsie où une large 
distribution de l'expression du transgène est souhaitable. Notre futur objectif est d’étendre 
l'ensemble des outils développés ici pour permettre la co-expression avec des facteurs 
trophiques prolongeant la survie des cônes. 

 


