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Résumé

Cette thése est organisée en trois parties. Dans la premiére on examine les relations entre la
dynamique microscopique et macroscopique du marché en se concentrant sur les propriétés
de la volatilité. Tout d’abord on montre que le principe d’absence d’opportunité d’arbitrage
implique que la volatilité suit un modeéle rough Heston, puis on étudie des extensions du modéle
rough Heston permettant de reproduire 'effet Zumbach. On utilise ensuite ces extensions
pour la calibration jointe des nappes de volatilité du SPX et du VIX. Dans la deuxiéme partie
on s’intéresse au controle optimal stochastique de processus ponctuels. On commence par
proposer une méthode pour résoudre des problémes de contréle stochastique de processus
de Hawkes. On examine ensuite les limites d’échelle de problémes de contréle de dynamique
de population. Finalement dans la troisiéme partie on étudie deux problématiques de market
design: tout d’abord la question de l'organisation des marchés de produits dérivés puis la celle
de la durée optimale d’enchére pour un marché organisé enchéres séquentielles.

On commence cette thése par I’étude des liens entre le principe d’absence d’opportunité
d’arbitrage et 'irrégularité de la volatilité. A I'aide d’'une méthode de changement d’échelle
on montre que l'on peut effectivement connecter ces deux notions par I'analyse du market
impact des métaordres. Plus précisément on modélise le flux des ordres marchés en utilisant
des procesus de Hawkes linéaires. Puis on montre que le principe d’absence d’opportunité
d’arbitrage ainsi que I'existence d’un market impact non trivial impliquent que la volatilité est
rugueuse et plus précisément qu’elle suit un modéle rough Heston. On examine ensuite une
classe de modéles microscopiques ou le flux d’ordre est un processus de Hawkes quadratique.
Lobjectif est d’étendre le modéle rough Heston & des modéles continus permettant de
reproduire I'effet Zumbach. Finalement on utilise un de ces modéles, le modéle rough
Heston quadratique, pour la calibration jointe des nappes de volatilité du SPX et du VIX.

Motivé par 'usage intensif de processus ponctuels dans la premiére partie, on s’intéresse dans
la deuxiéme au contréle stochastique de processus ponctuels. Notre objectif est de fournir des
résultats théoriques en vue d’applications en finance. On commence par considérer le cas
du contrdle de processus de Hawkes. On prouve I'existence d’une solution puis I'on propose
une méthode permettant d’appliquer ce contréle en pratique. On examine ensuite les limites
d’échelles de problémes de contréles stochastiques dans le cadre de modéles de dynamique
de population. Plus exactement on considére une suite de modéles de dynamique d’une
population discréte qui converge vers un modéle pour une population continue. Pour chacun
des modéles on considére un probléme de contréle. On prouve que la suite des controles
optimaux associés aux modéles discrets converge vers le contrdle optimal associé au modéle
continu. Ce résultat repose sur la continuité, par rapport a différents parameétres, de la solution
d’une équation différentielle schostatique rétrograde.

Dans la derniére partie on s’intéresse a deux problématiques de market design. On examine
d’abord la question de l'organisation d’un marché liquide de produits dérivés. En se concentrant



sur un marché d’options, on propose une méthode en deux étapes pouvant facilement étre
appliquée en pratique. La premiére étape consiste a choisir les options qui seront listées sur le
marché. Pour cela on utilise un algorithme de quantification qui permet de sélectionner les
options les plus demandées par les investisseurs. On propose ensuite une méthode d’incitation
tarifaire visant a encourager les market makers a proposer des prix attractifs. On formalise
ce probléme comme un probléme de type principal-agent que I'on résoud explicitement.
Finalement, on cherche la durée optimale d’une enchére pour les marchés organisés en
enchéres séquentielles, le cas de la durée nulle correspondant a celui d’'une double enchére
continue. On utilise un modéle ou les market takers sont en compétition et on considére que
la durée optimale est celle correspondant au processus de découverte du prix le plus efficace.
Apreés avoir prouvé I'existence d’un équilibre de Nash pour la compétition entre les market
takers, on applique nos résultats sur des données de marchés. Pour la plupart des actifs, la
durée optimale se trouve entre 2 et 10 minutes.
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Abstract

This thesis is made of three parts. In the first one, we study the connections between the
dynamics of the market at the microscopic and macroscopic scales, with a focus on the
properties of the volatility. We begin with showing that the no-arbitrage principle implies that
volatility follows a rough Heston model. Then we study extensions of this model reproducing
the so-called Zumbach effect and use them for simultaneous calibration of SPX and VIX
options smiles. In the second part we deal with optimal control for point processes. We first
propose a method to solve stochastic control problems driven by Hawkes processes. Then
we consider the scaling limits of stochastic control problems in the framework of population
modeling. Finally in the third part we study two questions of market design. We start by
analyzing the organization of a derivatives exchange. Then we look for the optimal auction
duration in sequential auctions markets.

We begin this thesis with studying the links between the no-arbitrage principle and the
(ir)regularity of volatility. Using a microscopic to macroscopic approach, we show that we can
connect those two notions through the market impact of metaorders. We model the market
order flow using linear Hawkes processes and show that the no-arbitrage principle together
with the existence of a non-trivial market impact imply that the volatility process has to be
rough, more precisely a rough Heston model. Then we study a class of microscopic models
where order flows are driven by quadratic Hawkes processes. The objective is to extend the
rough Heston model building continuous models that reproduce the feedback of price trends
on volatility: the so-called Zumbach effect. We show that using appropriate scaling procedures
the microscopic models converge towards price dynamics where volatility is rough and that
reproduce the Zumbach effect. Finally we use one of those models, the quadratic rough Heston
model, to solve the longstanding problem of joint calibration of SPX and VIX options smiles.

Motivated by the extensive use of point processes in the first part of our work we focus in
the second part on stochastic control for point processes. Our aim is to provide theoretical
guarantees for applications in finance. We begin with considering a general stochastic
control problem driven by Hawkes processes. We prove the existence of a solution and more
importantly provide a method to implement the optimal control in practice. Then we study
the scaling limits of solutions to stochastic control problems in the framework of population
modeling. More precisely we consider a sequence of models for the dynamics of a discrete
population converging to a model with continuous population. For each model we consider a
stochastic control problem. We prove that the sequence of optimal controls associated to the
discrete models converges towards the optimal control associated to the continuous model.
This result relies on the continuity of the solution to a backward stochastic differential equation
with respect to the driving martingale and terminal value.

In the last part we address two questions of market design. We are first interested in designing
a liquid electronic market of derivatives. We focus on options and propose a two steps method

that can be easily applied in practice. The first step is to select the listed options. For this we
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use a quantization algorithm enabling us to pick the options capturing most of market demand.
The second step is to design a make-take fees policy for market makers to incentivize them to
set attractive quotes. We formalize this issue as a principal agent problem that we explicitly
solve. Finally we look for the optimal auction duration that should be used on a market
organized in sequential auctions, the case of auctions with 0 second duration corresponding
to the continuous double auctions situation. To do so, we use an agent based model where
market takers are competing. We consider that the optimal auction duration is the one leading
to the best quality of price formation process. After proving existence of a Nash equilibrium
for the competition between market takers we apply our results on stocks market data. We
find that for most of the stocks, the optimal auction duration lies between 2 and 10 minutes.

viii



List of papers being part of this thesis

e P. Jusselin and M. Rosenbaum, No-arbitrage implies power-law market impact and rough
volatility, to appear in Mathematical Finance, 2019.

» A. Dandapani, P. Jusselin and M. Rosenbaum, From quadratic Hawkes processes to super-
Heston rough volatility models with Zumbach effect, under revision, 2019.

¢ J. Gatheral, P. Jusselin and M. Rosenbaum, The quadratic rough Heston model: fitting
simultaneously historical volatility together with SPX and VIX smiles with a continuous
model, to appear in Risk Magazine, 2020.

P. Jusselin, Optimal market making under persistent order flow, submitted, 2020.

o P. Jusselin, T. Mastrolia, Scaling limit for stochastic control problems in population dynamics,
submitted, 2019.

 B. Baldacci, P. Jusselin, M. Rosenbaum, How to design a derivatives market?, submitted,
2019.

¢ P. Jusselin, T. Mastrolia, M. Rosenbaum, Optimal auction duration: A price formation
viewpoint, under revision, 2019.

ix






Contents

Contents xi
Introduction 1
Motivations . . . .. ...

Outline . . . ... ... . 4
1 Part I: Microstructural foundations of volatility properties . . . . ... ... ... 6
11 Chapter I: No-arbitrage implies power-law market impact and rough
volatility . . .. ... ... 6
12 Chapter II: From quadratic Hawkes processes to super-Heston rough
volatility models with Zumbach effect . ... ................ 12
L3 Chapter III: The quadratic rough Heston model: fitting simultaneously
historical volatility together with SPX and VIX smiles with a continuous
model . . . ... 16
2 Part II: Optimal control for point processes . ... ................. 18
2.1 Chapter IV: Optimal market making with persistent order flow . . . . . 18
2.2 Chapter V: Scaling limit for stochastic control problems in population
dynamics . . . . ... 22
3 Part III: Market design . . ... ... ... ... . . . ... ... . . . ... ..., 26
31 Chapter VI: How to design a derivatives market? . . ........... 26

3.2 Chapter VII: Optimal auction duration: A price formation viewpoint . 31

Part I Microstructural foundations of volatility properties 39
I  No-arbitrage implies power-law market impact and rough volatility 41
1 Introduction . . . .. . ... 41

2 Market impact is power-law . . .. ... L 45

2.1 Asymptotic framework and metaorders modeling . ............ 45

2.2 Market impact in the Hawkes setting . . . ... ............... 46

2.3 Scaling limit of the market impact . ... .................. 47

3 Macroscopic limit of the price . . . ... ... ... ... 50

31 Scaling limit of the price process . ... ................... 50

3.2 Conclusion . . ... ... ... ... . .. 52

xi



4

LA

Proofs . . . . . o e 53

4.1 Proof of Theorem 1. . ... ... ... ... .. ... .. .. ... ...... 53
4.2 Proof of Theorem 2 . ... ... ... ... ... .. ... .. .. ... ... 56
4.3 Proof of Theorem 3 . . ... ... ... ... .. ... ... .. .. ..... 66
Appendix . .. ... e 66
LAl  Mittag-Leffler functions . . . . ... ... ... ... .. ......... 66
LLA.2 Tauberian theorems . ... ... .. .. ... .. ... ... .0 ..... 67
LLA.3  Fractional derivative . . . ... ... ... ... ... .. .. .. 67
ILA4 A result on inhomogenous Poisson process . ................ 68

II'  From quadratic Hawkes processes to super-Heston rough volatility models

with Zumbach effect 69
1 Introduction . . . ... ... 69
2 Asymptotic behavior of purely quadratic Hawkes models . ... ... ... ... 73
21 Scaling procedure. . . . . .. ... L 73
2.2 Assumptions and results in the purely quadratic case . . . ... ... .. 74
2.3 Discussion of Theorem 1 . .. ... ..... ... .. ..... ... ..... 75
3 General quadratic Hawkes models: the stable case . ... ... .......... 76
3.1 Suitable scaling in the general case . . . . ... ... ... ......... 76

3.2 Assumptions and results in the presence of a linear component in the
stablecase . . ... ... 77
3.3 Discussion of Theorem 2 . . . ... ... ... ... ... .. ... .... 78
4 Nearly unstable quadratic Hawkes models . .. ... ........ ... ..... 79
41 An adapted scaling procedure in the nearly unstable case . .. ... .. 80
4.2 Assumptions and results in the nearly unstable case. . . . ... ... .. 81
4.3 Discussion of Theorem 3 . . . ... .... .. ... ... ... ..... 83
5 Proofs. . . . . .. 84
51 Proof of Theorem 1. . ... ... ... ... ... ... ... .. ... .... 84
52 Proof of Theorem 2 ... ... ... ... .. .. ... ... .. . ...... 84
5.3 Proof of Theorem 3 . . ... ... ... . ... . ... ... ........ 89

III' The quadratic rough Heston model: fitting simultaneously historical volatility

together with SPX and VIX smiles with a continuous model 93

1 Introduction . . . ... ... 93
2 Rough volatility and the Zumbach effect. . . . .. ............... ... 95
3 The quadratic rough Hestonmodel . . . . .. ... ... ... ... ..... 96
31 The quadratic rough Heston process . . ... ................ 97

3.2 Parameter interpretation . . ... ... .. ... ... ... o L. 98

3.3 Infinite dimensional Markovian representation . . . . .. ... ... ... 99

4 Numerical results . . . . . ... ... ... 99

xii



Part II Optimal control with point processes and application to finance 103

IV Optimal market making with persistent order flow 105
1 Introduction . . . . ... ... 105
2 Solving the market maker problem using viscosity solutions . . . . ... ... .. 108

2.1 Appropriate domain for the process X . . ... ...... .. ... ... 108
2.2 Hamilton-Jacobi-Bellman equation associated to the control problem . 109
2.3 Viscosity solutions: some definitions . . ... ................ 111
2.4 Existence of an optimal control . . .. ... ... .. ...... ... ... 12
3 How to approach the optimal control . . ... ... ................. 113
31 Convergence of solutions and optimal controls . . . .. ... ....... 113
3.2 Solving the optimal control for Ke & ... ................ 114
3.3 Density of #& in the set of completely monotone function . ... ... 116
3.4 Conclusion on approaching the optimal control . .. ........... 116
4 Numerical applications . . ... ... ... ... .. . . ... ... . 118
41 The small dimension case. . . ... ........... ... ........ 18
42 The large dimension case . . . . .. ....... ... ... . ... 119
5 Proofs. . . . . . . 121
51 Formal definition of the probability space . . ... ... .......... 121
5.2 Proof of Theorem 1. . . ... ... ... ... .. ... ... . ....... 123
5.3 Proof of Proposition 1. . . .. ... ... ... .. ... ... .. . ... 135
54 Proof of point (iv) of Theorem 2 . . . ... ..... ... .. ....... 137
IVA Proofof Lemmal . ................. ... . . .. . . .. .. . .. ... 137
IVB A prioriinequalities . . . .. ... ... ... ... . . . 138
IVB.1 Hawkes processes . . . . . . . oo vttt 138
IVB.2 Aprioriestimateson X .. ... ............. ... ........ 139
IVB.3 Rewriting of theutility. . . . ... ... ... .. ..., .. 141
IV.C Equivalence between the two definitions of viscosity solutions . ......... 141
IVD Crandall Ishi’slemma . . ... ........ ... ... ... ... ... ....... 143
IVE Existence of Z%Y . .. ... ... . ... 146
IVF Proofof Lemma 2 . ... ............. . ... . . . . . . . . . ... ..., 147
IV.G Probabilistic representation of IPDE in high dimension. . . . ... ... ... .. 147
IV.G.1 Existence of a measure for the particle method . . . . . . ... ... ... 149

V  Scaling limit for stochastic control problems in population dynamics 151
1 Introduction . . . . ... ... 151
2 From a discrete to a continuous population model . ... ... ... .. .. ... 154

21 Definition of the discrete population models . . ... ... ........ 154
2.2 Scaling limit of the sequence XKYk20 oo 156
2.3 Uniform exponential moments . . . .. ....... ... ... ...... 157
3 Ilustration of the study onatoymodel . ... ... ... .............. 158
31 Discrete populations models . . . ... ... ... ... .. o 0. 158
3.2 Continuous populations model . . . . .. ... ... ... ... . ..., 160
4 Convergence of BSDEs . . .. ... ... .. ... ... . .. ... 161



41 Convergence of martingale representations . . ... ............ 162

4.2 Convergence of BSDEs . .. ... ... ... .. .. ... ... ... 163

5 Application to a control problem . . . ... ... ... o L 165
51 The discrete problem . . ... ... ... . ... ... L. 165

5.2 The continuous problem . . ... ....... . ... . . ... ... 167

53 Convergence of the value functions and of the optimal controls. . . . . 169

6 Proofs. . . . . . . 170
6.1 Proof of Theorem 1. ... ... ... ... .. . ... ... .. ...... 170

6.2 Proof of Proposition 2. . . . . . . ... ... L 174

6.3 Proof of Theorem 2. . . . ... ... ... .. . . ... ... . . .. ..... 175

6.4 Proof of Theorem 3 . .. ... ... ... ... ... ... ... ... ... 181

6.5 Proof of Theorem 4 . . ... ... ... ... . . . ... .. .. ..... 181

6.6 Proof of Theorem b5 . .. ... ... ... ... ... ... ... .. ... 182

V.A Spacesand notations . . . ...... ... ... ... 185
V.B Change of measure for initial population . ... ... ................ 186
V.C Admissibility of the controls in the toymodel . ... ................ 187
V.C1 Discretemodels . . ... ..... ... ... .. . . . ... .. . . ... 187
V.C2 Continuousmodels. . ... .................. ... .. ... 187

V.D Feller property of themodel . . ... ... ... ... ... ... ... ...... 187
VE Martingale representation with respect to MX . . .. ... ... ... ..., ... 188
V.F  Proof of Proposition1 . . .. ... .. ... ... . . . ... 189
VUF1  Step I: exponential moments for linear branching processes . . . . . . . 189
VFE2  Step 2: domination of XX by linear process . . . ... ........... 192
VFE3 Step3:conclusion . ................... ... .. ... ... 193
Part IIIMarket design 195
VI How to design a derivatives market? 197
1 Introduction . . . ... ... 197
2 Market driven selection of the listed options . . . .. ................ 199
21 How to choose the strikes in order to match market demand? . . . . . . 200

2.2 Solving the quantization problem . . .. ... ................ 201

2.3 Application . . ... ... 202

3 Incentive policy of the exchange . . . ... ... ... ... ... .. ...... 207
31 Themarket . ... ... ... .. ... .. ... ... . .. 208

3.2 Market maker’s problem and contract representation . . ... ... ... 210

3.3 Solving the exchange’s problem . . ... ................... 212

3.4 Numerical results . . . ... ... ... ... .. .. . L 215

3.5 Conclusion . . .. ... ... ... . 217
VLA Appendix . ... ... e 217
VLAl Proof of the convergence of the Lloyd’s algorithm . ... ... ... ... 217
VILA.2 Stochasticbasis . ... ...... ... ... ... .. ... ... .. ... 218
VLA.3 Well-posedness of the optimization problems . . . . .. ... ....... 219

Xiv



VILA.4 Dynamic programming principle . ... ... ... ........ .. ... 219

VLA Proofof Lemmal. .. ...... .. ... ... . ... ....... .. ... 221
VLA.6 Proof of Theorem 1. .. ... .. ... ... ... ... ... ... ..... 224
VLA.7 Proofof Theorem 2 . ... ... ... ... ... ... ... ... .. .... 225

VII Optimal auction duration: A price formation viewpoint 229
1 Introduction . . . . . . ... 229
2 Themodel . . . . ... ... . . 234
21 Auction market design. . . . ... ... L o oL 234

2.2 Market makers and market takers . . . . ... .o o o L0 234

2.3 Clearingrule . ... ... ... . . . ... ... . 237

2.4 A metric for the quality of the price formation process . . . .. ... .. 237

3 Strategic market takers . . ... ... L o oL 239
3.1 Trading costs of market takers . . . ... ... ... ... ... . .. ... 240

3.2 Nash equilibrium . . . . ... ... ... ... o 241

4 Optimal auction durations for some European stocks. . . ... ... ... .... 242
41 Description of thedata . .. ... ..... ... ... . ........... 243

42 Calibration of model parameters . ...................... 243

4.3 Numerical results . . . . ... ... ... .. . . 244

1 Proof of Theorem 1. . . . . ... ... ... ... . . . 248
2 Computation of the expected square imbalance in the Poisson case . . ... .. 250
3 Existence of a Nash equilibrium . . . . . . ... ... ... ... ... ... 250
3.1 Nash equilibrium . . . . ... ... ... .. . 250

3.2 Proof of Theorem 3 . . ... ... ... ... . ... ... .. .. ... 254

3.3 Proof of Corollary 1 and numerical method . . . . ... .......... 264

4 Model extension: Market makers can cancel their limit orders . . .. ... ... 265
5 Proof of Lemmal .. ... ... ... ... ... ... ... ... .. ... .. 266
Bibliography 267

XV






Introduction

This thesis is split into three parts. In the first one, our goal is to find microstructural
foundations for some important properties of volatility. The second part deals with problems
related to stochastic control for point processes. Our objective here is to provide mathematical
guarantees for some original and relevant control problems with applications in finance in
mind. The third part is devoted to market design. More precisely we aim at building solutions
to practical market design issues based on a quantitative analysis.

Motivations

Many recent studies have shown that historical volatility is very irregular and shares the scaling
properties of a fractional Brownian motion with Hurst index close to 0.1. To sum up those
stylized facts one says that volatility is rough. This roughness property has been measured
on more than 6000 assets and therefore seems to be universal. Hence it must be related to
the only concept which is somehow universal in finance: the no-arbitrage principle. The first
question we consider in this thesis is therefore:

Question 1. Can we explain the roughness of volatility based on some no-arbitrage principle?

To tackle this question we consider a very general tick-by-tick model based on Hawkes
processes for market order flow. Then we show that under no-statistical arbitrage assumption,
rough volatility arises at the scaling limit: more precisely the price follows a rough Heston
model. Furthermore we also show that in this setting market impact of metaorders is necessarily
a power-law with exponent related to the Hurst index of volatility. Though it reproduces many
empirical properties of volatility both under the historical and risk neutral measures the rough
Heston model has some limitations. In particular it does not generate any feedback of price
trends on the volatility, which is also referred to as the Zumbach effect. So,

Question 2. Can we extend the rough Heston model to a rough volatility model with Zumbach

effect?

To address this issue, we go beyond linear Hawkes processes and use quadratic Hawkes
processes to model the market order flow. As a matter of fact, those processes naturally
reproduce the Zumbach effect at the microscopic level. Then using different scaling procedures
we obtain three new volatility models. All of them generate Zumbach effect and can be
viewed as extensions of the rough Heston model. A next step is to wonder whether they can



Introduction

outperform the rough Heston model into fitting options market data. In particular we are
interested in the holy grail of volatility modeling: the joint calibration of SPX and VIX options
smiles. This is a very challenging task that no model with continuous paths has been able to
complete so far. Hence we are concerned with the following question:

Question 3. Can we find a (rough) continuous model fitting simultaneously SPX and VIX options
smiles?

In order to answer this question we consider a specific model among the ones obtained for
Question 2: the quadratic rough Heston model. We show that it is possible to achieve a very
accurate joint calibration of SPX and VIX options smiles using this model.

The microscopic models used for Questions 1, 2 and 3 all rely on Hawkes processes. Hawkes
processes allow us to reproduce many properties of market order flow such as its self-exciting
behavior and long memory. These are important stylized facts that must be taken into account
by market participants while designing their trading strategies. Since Hawkes processes are a
very convenient tool to reproduce those properties we want to address the following question:

Question 4. How to deal with stochastic control problems driven by Hawkes processes?

To tackle this question we consider the problem of market making when the market order flow
is driven by Hawkes processes. We formalize it as a stochastic control problem for which we
prove existence of a solution. Then we propose a methodology to approach numerically the
optimal control and implement it in practice. Our experiments suggest that taking into account
the self exciting and long memory properties of market order flow in a trading strategy leads
to great improvements of the risk management. Another interesting point is to understand
how trading strategies scale with respect to their time horizon or their size. To address this
issue we consider the following question:

Question 5. Are stochastic control problems for point processes robust to scaling?

We address this question in the specific framework of population modeling. More precisely
we consider a sequence of models for the dynamics of a discrete population (population with
values in N) converging at the scaling limit towards a continuous model. To each of these
models we associate a stochastic control problem modeling the problem faced by a resource
manager controlling the population. This gives an optimal control for each of the model
with discrete population. We show that this sequence converges towards the optimal control
associated to the continuous model. To obtain this result, we prove that solution to a backward
stochastic differential equation (BSDE for short) is continuous with respect to the BSDE’s diving
martingale and terminal value.

BSDEs are also one the key ingredients to deal with finite horizon principal agent problems.
Such approaches have been recently used, in the purpose of improving markets design, to
build incentives policy for market participants. More precisely using a principal-agent model
one can derive an optimal fees policy to incentivize market makers to quote attractive spreads.



Motivations

However results have only been obtained for stocks and options have not been investigated.

So,

Question 6. How to use principal-agent approaches to help design an options market?

To deal with this question, we take the point of view of an exchange willing to design its
options market in a way that attracts liquidity, in order to collect transaction fees. We proceed
into two steps. First we select the options that are going to be listed on the platform. For this
we show that selecting the set of most suitable options is equivalent to solving a quantization
problem. In a second step we design a make-take fees policy to incentivize market makers,
that have to deal with all the listed options simultaneously, to provide competitive liquidity.
To do this we view the exchange problem as a principal-agent problem. We fully solve this
problem and illustrate numerically that our methodology enables us to significantly reduce the
spreads of all the listed options.

Question 6 addresses a very specific part of the general topic of market design. Another
interesting issue, rarely investigated, is the trading organization of exchanges. On most of
them trading is organized as a continuous double auction system. We refer to this type of
organization as continuous limit order book (CLOB for short) markets . Traders can send
and cancel limit orders and fill the limit order book (LOB for short) or send market orders.
However on some venues trading is organized in sequential auctions. This means that during a
given period traders can send or cancel buy or sell limit and market orders, which are matched
at the end of the auction period. Auction markets represent an increasing part of the trading
activity and even in CLOB markets, a large fraction of the traded volume is actually made
during the opening and closing auctions. Therefore it is important to consider the following
question:

Question 7. Is CLOB optimal compared to sequential auctions and what is the optimal auction
duration?

To provide an answer to this question we propose a model for a sequential auctions market with
constant auction duration, such that the zero seconds duration case corresponds to a CLOB
market. We consider two types of agents: market makers that are non strategic and provide
liquidity in the LOB based on their knowledge of the efficient price and market takers that
are strategic and seek for the lowest possible transaction costs. This generates a competition
between buyers and sellers market takers for which we prove existence of a Nash equilibrium.
Assuming that we are in the Nash situation we consider that the optimal duration is the one
maximizing the quality of price formation process. Finally we calibrate our model on intra
day market data for French stocks traded on the Euronext platform. For most of the assets we
obtain that the optimal duration lies between 2 and 10 minutes and that CLOB are always not
so far from being optimal.
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This thesis is split into three parts. In the first part we deal with the connections between
market microstructure and volatility: Questions 1, 2 and 3. Then in the second part we tackle
Questions 4 and 5 on stochastic control problems for point processes. Finally in the last part
we address market design issues: Questions 6 and 7.

In Chapter I we answer Question 1 by drawing a link between the no-arbitrage principle
and the roughness of volatility. For this we use the statistical version of the no-arbitrage
principle operating at the microstructural level: the absence of round trip strategies with
positive expected profit. It has been shown that this property implies that the permanent
market impact of metaorders is linear. This allows us to write the dynamics of the price under
a very general form, valid for any order flow model. Then to reproduce the long memory
and self exciting property of the order flow we consider that market order flow is driven by a
Hawkes process without any assumption on its parameters. We finally investigate the scaling
limit of the model under the constraint that transient market impact is not trivial. We show
that asymptotically the only possibility is that market impact is a power-law function and that
volatility follows a rough Heston model. Moreover we get a relationship between the roughness
of the volatility and the shape of the market impact. If the volatility is rough with Hurst index
equal to H, then the market impact must be a power-law function with exponent H +1/2.

We turn to Question 2 in Chapter II where we look for an extension of the rough Heston
model reproducing the Zumbach effect. We recall that Zumbach effect refers to the feedback
of price trends on volatility and more precisely to the fact that volatility depends on the past
behavior of the price. In order to address this question we study the possible scaling limits of
a tick-by-tick model describing the arrival times of buy and sell market orders. The model is a
natural extension of the one considered in Chapter I since we consider that market order flow
is now driven by quadratic Hawkes processes. We use those processes because they naturally
reproduce the Zumbach effect at the microscopic scale since the intensity of event arrival is
partially driven by a squared moving average of past price returns. So if price is trending,
the intensity of market order arrival increases. We find three different possible scaling limits
for the model, depending on the way we rescale its parameters. All these models are rough
volatility models reproducing the Zumbach effect and can be considered as extensions of the
rough Heston model.

In Chapter III we tackle Question 3. Following an intuition that came out from a discussion
with Julien Guyon, we define a new rough volatility model in the spirit of the ones considered
in Chapter II: the quadratic rough Heston model. We then illustrate that this model manages
to fit simultaneously SPX and VIX options smiles remarkably well.

We answer to Question 4 in Chapter IV. We consider a general order flow model driven

by two Hawkes processes, one representing the buy order flow and the other the sell order
flow. Then we focus on solving the problem of a market maker controlling the bid and ask
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spreads, which affect the market order intensities. His goal is to maximize its profit while
managing its inventory risk. We start by building a Markovian representation of the model
in infinite dimension. We then prove existence and uniqueness of a viscosity solution to the
Hamilton-Jacobi-Bellman (HJB for short) equation associated to the control problem and the
Markovian representation. This characterizes an optimal control solving the problem. The
drawback of this approach is that it does not allow the development of classical numerical
methods since we use an infinite dimensional representation. To circumvent this issue we
first show that we can find a sequence of approximating controls converging towards the
optimal control. The approximating controls are actually solution to the same control problem
when we consider specific kernels for the Hawkes processes, allowing for finite dimensional
Markovian representations. Hence we can approach numerically the approximating controls
and therefore the optimal control.

In Chapter V we deal with Question 5. We consider a sequence of models for the dynamics of
a discrete population that converges in law towards a continuous model. By construction, a
converging sequence of martingales is associated to the converging sequence of discrete models.
We first prove a convergence result for martingale representation relatively to this sequence.
We extend this property by considering a sequence of BSDEs driven by those martingales. We
show that, under some natural assumptions on the behavior of the sequences of generators and
terminal values, the solutions to those BSDEs converge towards the solution of a BSDE driven
by the limiting martingale. Based on this property we then associate a non Markovian control
problem to each of the models. We finally prove that the sequence of controls solving the
discrete control problems converges towards the control solving the continuous control problem.

We address Question 6 in Chapter VI where we propose a tractable methodology to help
exchanges design a derivatives market. Our goal is to design the market in order to satisfy
investors’ demand and provide high quality liquidity. We first focus on selecting the options
that are going to be listed on our market. To do this we use a quantization algorithm on
historical market data. This allows us to select a finite number of options that concentrate
most of client’s demand. We then work on improving liquidity. The interest of market takers
for a product is naturally decreasing with respect to the quoted spread. Therefore in order to
be competitive a platform must offer small spreads. However the exchange cannot directly
decide the spreads that are set by market makers. It can only try to influence a market maker,
what we formalize as a principal-agent problem. More precisely we consider a market with a
single market maker dealing with all the listed options simultaneously. In order to incentivize
the market maker to quote small spreads, the exchange offers him a contract whose payoff
depends on the whole market order flow. Consequently the market maker adapts its behavior
to the contract. The exchange problem then boils down to find the contract maximizing a
certain measure of the liquidity on the platform. We are able to exhibit an optimal contract for
the exchange problem. Thanks to it, one gets significantly lower spreads on any of the listed
options.

Finally we study Question 7 in Chapter VIL In order to compare sequential auctions markets
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with CLOB markets, we build a model for sequential auctions market such that when the
auction duration is zero the market is equivalent to a CLOB market. We consider that during
and in between auctions, market makers send limit orders in the LOB according to a linear
supply function centered on their view on the efficient price at the next clearing time. We
assume that market makers do not optimize their behavior and that their arrivals are given
by a Poisson process. On the aggressive side of the market, we consider two agents, a buyer
and a seller that can only send market orders. The first market order sent after the closing of
an auction triggers a new auction. During auctiond, the buyer and seller adapt their trading
intensities in order to minimize their transaction costs at the clearing time. We show that
there exists a Nash equilibrium for the competition occurring between the buyer and the seller.
Finally we consider that the optimal auction duration is the one maximizing the quality of
the price formation process. Formally it corresponds to the duration minimizing the expected
squared difference between the clearing price and the efficient price at the clearing time.
We calibrate the parameters of our model on intraday market data provided by Euronext.
Assuming that market takers are in the Nash equilibrium, we then compute the optimal auction
duration for each asset in our database. For most of them we find that the optimal auction
duration lies between 2 and 10 minutes. For some assets the CLOB system is optimal. We also
observe numerically that CLOB are always not far from being optimal.

Let us now rapidly review the main results of this thesis.

1 Part I: Microstructural foundations of volatility properties

In this first part we study microstructural foundations of some essential properties of the
volatility. We start with the rough behavior of volatility that we prove to be a consequence
of the no-arbitrage principle. Then we deal with the Zumbach effect. Finally based on these
properties, we build a model fitting simultaneously SPX and VIX options smiles.

11 Chapter I: No-arbitrage implies power-law market impact and rough
volatility

Rough volatility is a universal phenomenon in finance. Therefore one gets the intuition that
it must related to the most fundamental property in quantitative finance: the no-arbitrage
principle. We start this thesis by drawing the link between these two concepts.

We first study the consequences of the no-statistical arbitrage principle on the price dynamics.
Based on previous works we know that this principle implies that long term market impact of
metaorders is linear. This property allows us to fully specify the dynamics of the price from
market order flow, independently of the model used.

We then consider a model for the order flow based on Hawkes processes. Using our relationship
between price and order flow, we obtain closed form formulas for the price dynamics and the

market impact. From several empirical evidences, we know that market impact is non-trivial at
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the macroscopic level. By non-trivial we mean that market impact has a transient part. Thus
we investigate the possible scaling limits of the model under the constraint that market impact
is non-trivial at the limit. We find that necessarily, at the scaling limit, the transient part of the
market impact is an increasing concave power-law function and that volatility follows a rough
Heston model.

111 No-statistical arbitrage and permanent market impact

To understand the consequences of the no-statistical arbitrage principle at the microstructural
level, we need to introduce two notions: round trip strategy and permanent market impact
of a metaorder. A round trip strategy is a trading strategy starting and finishing with null
inventory. The no-statistical arbitrage principle is the absence of round trip strategies with
positive average profit and loss (P&L for short). A metaorder is a large order which is not
executed at once, but split by a broker over a time horizon that can go from a few minutes
to several days. The permanent market impact of a metaorder with volume V, denoted by
PMI(V), is defined as the long time average difference between the price before and after the
execution of the metaorder (independently of the trading strategy),

PMI(V)= lim E[P;— Py|V].
t—+o0o

One can show using various approaches that the absence of round trip strategies with positive
P&L implies that permanent market impact is a linear function of the volume, or equivalently
PMI(V) =«V, for some positive constant x, that we take equal to one without loss of generality.
We furthermore assume that the price is a martingale, then from the linearity of permanent
market impact we get

P, = lim E[V&-VEZ), 1)
S—+oo

where V@ (resp. V!) is the total number of buy (resp. sell) market orders sent between
time 0 and time ¢ and (%);>¢ the natural filtration of the process (V/, th )¢=0- According to
Equation (1), when an order is executed, price moves because market participants reconsider
their expectation about the long term accumulated volume imbalance. Note that the relation
between price and order flow given in Equation (1) is always valid under no-statistical arbitrage
and does not depend on the model for the order flow. We use this dynamic for the price in
the rest of this chapter.

11.2 A Hawkes based model for market order flow

We now specify a model for the order flow. We respectively denote by N* and N? the total
number of buy and sell market orders (assumed to be of unit size) and consider that they are
independent. More precisely for i € {a, b} the intensity of the process N' is given by

. t .
Al,:,wf (- AN,
0
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where p is a positive constant and ¢ a positive function in LY(R,) such that lplly is smaller
than one. From Equation (1), we can show that

t
P, :f &(t—s)(dN%—dND), )
0

where

€(t)=1+(1—||¢||1)‘1ft oo(l)(u)du.

The above kernel ¢ quantifies how market digests the order flow. A single market order has an
instantaneous impact £(0). Then its impact decays towards a permanent impact, corresponding
to the limit of ¢ at infinity.

We write T for the horizon of our model, that corresponds to the duration of a metaorder. The
time-length of metaorders is typically large compared to the inter-arrivals of individual market
orders. Hence it is natural to investigate the possible scaling limits of Model (2) when T goes
to infinity. To do this, we rescale the different processes involved in the model from [0, T onto
[0,1] using a proper scaling factor and let T goes to infinity. In order to be very general, we
even allow the parameters of the model to depend on T. Hence we use a superscript T to
stress the dependence of the parameters with T. We make no assumptions on the parameters,
except for the kernel of the Hawkes processes that we assume to be of the form ¢! = al¢p
where ¢ is a positive function in L'(R,), with norm equal to one and @ rso a sequence with
values in [0,1).

From Equation (1), we see that the price is homogeneous to the volume. Hence the natural
scaling factor for the price process is the average number of market orders sent between time

T
u
;7 The

0 and time 7. In the stationary version of the model, it is equal to TB? where g7 =
rescaled price process is therefore given by

=T r 1

P, =P, r———.

In the next step, we take the point of view of an agent executing a metaorder and focus on its
market impact.

11.3 Market impact and its scaling limit in the model

We consider a market participant executing a buy metaorder. Its trading flow is added to the
global market order flow given by the processes N and N”. We assume that the metaorder is
split through unitary market orders sent according to a non-homogenous Poisson process with
intensity

v =yl f(t1T),

where y € (0,1) and f is a positive function in LY(R,) with norm equal to 1 and supported on
[0,1]. This specification of the intensity corresponds to a metaorder executed on the interval

8
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[0, T1 and whose size is non-negligible compared to the global order flow. Using Equation (2),
we can write the market impact function of this metaorder as

t
MIT =[P, = Py] :f &7 (- v (5)ds.
0

From the definition of ¢7, we get that market impact can be decomposed as MIT = TMIT +
PMI" with

PMI! = f

t t
vI(s)ds and TMI :f Il -svl(s)ds,
0 0

where

+00
r'fo=a- aT)_lf oL (wdu.
t

Hence market impact is the sum of a vanishing term TMI": the transient market impact, and
a non-vanishing term, PMI T that is linear in the metaorder volume: the permanent market
impact. The rescaled transient and permanent market impact functions are therefore

- t
PMI; =PMI% TB! = yfo fwdu,

aT(l_aT)_l tT

TMI, =TMIL/TB =y .

+00
f(t—u/T)f ¢(v)dvdu.
u
Our goal is to derive the possible scaling limits of the price process under the constraint that
market impact is non-trivial at the limit. We recall that by trivial market impact we mean a

—T
market impact with no transient part. So our constraint is that (TMI )7x¢ is non-vanishing

—T
at the limit. We can actually characterize the limit of (TMI )7>¢ under the assumption that
this limit exists and is non-trivial for any homogeneous metaorder. Formally we consider the
following assumption.

Assumption 1. For constant execution rate, that is f = 1o 5 for some s € (0,11, the scaling limit of
the market impact function exists pointwise and is non-increasing after time s. Furthermore, there
exists t > s such that the value of this limiting function at time t is strictly smaller than that at
time s.

This assumption is very natural since metaorders do generate transient market impact at the
macroscopic scale in practice. Under this assumption, we obtain the following result.

Result 1. For any measurable non-negative function f defined on R, continuous on [0,1] and
supported on 0,11, the corresponding macroscopic market impact function and its transient part
exist. More precisely, there exist parameters a € (0,1] and K > 0 such that for any f and t >0, when
a<l,
- t
lim TMI (f,1)=yK(Q —a)f Flt-wudu,
0

T—+oo

and when a =1 .
lim TMI (f, 1) = yKf(®).

T—+oco
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Furthermore, the Hawkes kernel ¢ has to satisfy

t pt+oo
f f G(wyduds = t1"% L(p),
0 Js

where L is a slowly varying function. Finally we necessarily have
1-a")'T*L(T)—K,
so necessarily a’ — 1.

Therefore, at the scaling limit the transient market impact of an homogeneous metaorder is a
power-law function, see Figure .1 for an illustration. Remark that we obtain that a necessary
condition to get a non-trivial market impact at the limit is that (a’)rs( converges to 1. Since
ar measures the degree of endogeneity of the market order flow, this means that a non-trivial
market impact can only exist in a highly endogenous market.

Figure .1 - Illustration of the decomposition of the macroscopic market impact function for a
metaorder executed uniformly over [0, 1], with @ =0.5. Time is on the x—axis.

11.4 Scaling limit of the price

We finally study the consequences of Assumption 1 on the scaling limit of the price. We need
an additional technical assumption.

Assumption 2. For some 6 >0, we have

(l—aT)pTTT—> 5.

—+00
=T
Then under Assumptions 1 and 2 we obtain the convergence of the sequence (P )rxo.

10
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Result 2. The sequence of rescaled price processes (ﬁT)Tzo converges in law for the Skorokhod
topology towards a martingale P with bracket X solution of following stochastic Volterra equation

2
=5f F“(s)ds+—f FOM (¢ — §)d M,

where M is a continuous martingale with bracket equal to X, a is given in Result 1, A is a positive
constant and F®* is the Mittag-Leffler cumulative distribution function, see [HMSTI] for more
details.

We can say more on the process X, notably when a >1/2.
Result 3.

(i) For any € > 0, the process X has Hilder regularity 1 A 2a —¢€). It is not continuously
differentiable when a < 1/2 and it is when a > 1/2. In this case its derivative Y is solution
of the stochastic Volterra equation

(t-s)t =9V
f o A(——Y)+f IR — /Y dw,

where W is a Brownian motion. The process Y has Holder regularity a —1/2—¢€ for any
positive €.

(ii) For any continuously differentiable function h from R, into R such that h(0) =0, we have

t t
K(h,t) = [E[exp(fo ih(t-s)dX;)] = exp(/o g(s)ds),

with g the unique continuous solution to the Volterra Riccati equation
t 1
g(t) =f FoMe- s)(é_lzg(s)z +0712ih(s))ds
0

where %" is the Mittag-Leffler density function, see [HMSTI] for more details.

Thus assuming only no-statistical arbitrage and non-trivial market impact, we manage to
prove that necessarily market impact is a power-law and volatility is rough. Moreover we have
obtained a relationship between the Hurst index of volatility, @ —1/2, the market order flow
memory and the shape of market impact: power-law with exponent 1 —a. This is consistent
with empirical studies that suggest that in practice the parameter « is close to 0.5. In the case
where a > 1/2 the volatility follows a rough Heston model. We have also identified a class of
hyper-rough volatility models, corresponding to a < 1/2. We have shown that for those models
instantaneous variance does not exist and only cumulative variance, here X, makes sense.

The results of Chapter I are yet other elements demonstrating the fundamental aspect of rough
volatility models in finance. However the rough Heston model we obtained in the limit in
Chapter I may have limitations in practice. Hence in the next chapter, we look for an extension
of this model that allows us to reproduce even more stylized facts of volatility.

11
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1.2 Chapter II: From quadratic Hawkes processes to super-Heston rough
volatility models with Zumbach effect

In this chapter we want to improve the rough Heston model in two directions. First we focus on
the tail of volatility, which is known to be quite heavy. So, even though the rough Heston model
manages to almost perfectly fit SPX options smile and does produce heavy volatility tails, we
may wonder how to generate even fatter distribution queues. The other aspect, brought to our
attention by Jean-Philippe Bouchaud, is the existence of so-called Zumbach effect. Essentially
Zumbach effect is the fact that volatility is correlated to price trends. More precisely if price is
trending down then volatility is going to be higher than in standard situations. This is also
referred to as the feedback of price on volatility. It is a somehow vague notion which is hard
to define and measure. To quantify this effect, econophysicists usually consider the difference
between the correlation of past squared price returns with future volatility and the correlation
of past volatility with future squared price returns. This quantity is typically positive on market
data. The rough Heston model does enjoy this property when H < 1/2. Nevertheless this is
not because of a causal link between price paths and volatility, as described in the original
idea by Zumbach. It is only due to leverage effect together with the fact that H <1/2. Hence
we call this property of correlations weak Zumbach effect and introduce the strong Zumbach
effect. It is defined as the fact that conditional law of future volatility is not fully determined
by past volatility but by past prices and past volatility together. The rough Heston model does
not reproduce the strong Zumbach effect because of its Markovian structure, see [EER18].

Our goal in this chapter is therefore to propose an extension of the rough Heston model that
reproduces the Zumbach effect. We also wish that the instantaneous variance of volatility
is equal to the classical square root term of Heston like models multiplied by a non-trivial
process, in order to enhance volatility tails. Any model satisfying the latter property will be
called a super-Heston model.

We proceed with the same methodology as that used in Chapter I. We first consider a sequence
of models indexed by T. Each model is then rescaled from [0, T] onto [0,1]. Inspired by
[BDB17], we model the market order flow using quadratic Hawkes processes which naturally
generate Zumbach effect at the microscopic scale. We then investigate the possible limits of the
sequence. We distinguish two types of limit depending on whether or not we are in a highly
endogenous regime as in Chapter I. Each of those limits corresponds to a super-Heston rough
volatility model and reproduces the Zumbach effect.

121 Quadratic Hawkes based model for the order flow

We start by defining our model. For a given T we model the arrival of market orders moving
the price by the event times of a counting process N!. Each market order is either a buy or
a sell market order of unit volume with probability 1/2. The price P is then the difference
between the total number of buy orders, N7% and the total number of sell orders, N”?. Finally

12
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we assume that the intensity of N7 is that of a quadratic Hawkes process and given by
t t
A =ur+HE +1212, with Hf:f ¢r(t—s)dNI and Zf:f kr(t—9dPI,  (3)
0 0

where (u7)1=0 is a positive sequence, (¢1)T=0 a sequence of positive LY(R,) functions and
(kT)T=0 @ sequence of positive L[%(R,) functions such that ar = ol + IIlelg <1 for any T.
This is a stability condition playing the same role as [[¢r|l <1 in the linear case.

Compared with the model of Chapter I, market order intensity is driven by two components. A
linear self-exciting term H, which corresponds to the intensity of a linear Hawkes process and
a quadratic term, |Z7|?. Notice that ZT is a moving average of the price returns. Therefore
when the past price is trending, Z T is large in absolute value and therefore AT s large, which
will eventually lead to high volatility. Hence Model (3) basically generates Zumbach effect.

To be as general as possible in the scaling procedure, we use a generic sequence of scaling
factors (wr) 70 for the intensity. The rescaled intensity is therefore given by A:T = wT/ltTT and
the rescaled price process by P; ! = \/wT/TPtTT.

1.2.2 The stable case

In this section we assume that for any T, ||¢7ll; = f and IIlelg =y where f§ and y are positive
constants such that f+7y < 1. In this case, the magnitude of average market order intensity
does not depend on T and we can take wr = 1. So the rescaled intensity is

Ml =ur+H T+ 127,
with

T ! dNTT T ! T
Hf :fo Tor(T(t-s)) TS and Z; :fo VTkr(T(t-s5)dP;".

Note that up to a martingale term, we have dNtTT/T = A;‘Tdt and d(P*Ty, = A;‘Tdt. Since
the order of magnitude of the intensity essentially does not depend on T, the sequences
(N_TT/T) 70 and (P*T)7( can be considered tight. Hence to ensure that (Z*T) 20 is tight it is
natural to assume that the sequence of integrands converges. Thus we consider the following
specification:

pr =g, dr(n) = %p(t/ T) and kr(f) = \/;k(t/ T),

for p=0, ¢ a positive LY(R,) function with norm equal to 1 and k a positive [%(R,) function
with norm equal to 1. We formalize here this assumption together with some technical ones.

Assumption 3.

i) The sequence of kernels (P, k1) >0 is defined by

_B. - _\/f -
o =200 and ky =\ Lrh)
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with0<y+pf <1 and ¢ and k two non-negative measurable functions such that |pll, = lkll2 = 1.
Furthermore we take ur = > 0.

it) The function k belongs to L**¢ for some € >0 and for any0<t <1t <1,
t
f lk(t' =)= k(t—s)*ds < Cl¢' — 1",
0

for some r >0 and C>0 and

1 (! UL k() — k(s)[?
—f |k(t)|2t‘2”dt+f Mdsdt<+oo,
nJo o Jo |t—s|t*2n

for some n € (0,1).
Under this assumption we prove the following result.

Result 4. The process (P*T)7sq is C-tight for the Skorokhod topology on [0,1] and for any limit
point P there exists a Brownian motion B such that

t
p; :f v VsdBs,
0

with V solution on [0,1] of
Vy=u+BH,+yZ?%, (4)

where

t t
thf Ot —s)Vids andZt:f k(t - s)\/VsdBs.
0 0

Ifk is equal to the Mittag Leffler density function fH+V2* for He (0,1/2) and A >0, the process
V is almost surely H— e Holder for any € > 0.

This result extends the one in [BDB17] where the authors focused on exponential kernels for
¢ and k. We then check that the model defined by Equation (4) is a super-Heston model
reproducing the strong Zumbach effect.

If k is continuously differentiable and continuous in 0, up to finite variation term we have
dV; =2k(0)Z;+/ VsdBs.

Hence Model (4) is a super-Heston volatility model. To investigate the Zumbach effect we
consider that ¢(f) =xe ™" and k(#) = v2ve . With this setting, we can write

Vigsn =+ Hy+ 72+ Zye " + 22, 67" Z) + Hye ™,

where

r t
f]t=f ¢(t —5)Vy,+5ds and Zt:f k(t—s)dPy+s.
0 0
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1. Part I: Microstructural foundations of volatility properties

The process Z cannot be deduced from observation of V because of the square, so Z;, is
not U((Vs) s< to) measurable. So the law of the future volatility depends both on the past of
volatility and price. This shows that the process Z generates Zumbach effect in Model (4).

It is important to remark that here there is no need to consider nearly unstable models (ar — 1)
to obtain stochastic volatility at the limit. This is in contrast with the situation described in
Chapter I. However in Model (4), the Brownian motion driving the volatility is the same as that
driving the price. We will see in the next section that when the model is nearly unstable at the
limit, we get an extra source of randomness in the volatility. We also remark that in Model
(4) roughness of volatility is a consequence of the behavior in 0 of the function k whereas in
Chapter I it is generated by the tail of the Hawkes kernel.

1.2.3 Nearly unstable case

We now investigate the situation where the model is nearly unstable at the scaling limit.
More precisely we assume that ar converges to 1 as T goes to infinity. So we naturally take
wt = (1-ar)/ur. This is very similar to the case of nearly unstable linear Hawkes processes
studied in Chapter 1. Here also we take ¢ = Br¢p with (B1) >0 a positive sequence and ¢
a L'(R,) positive function with norm equal to 1 satisfying ¢(x) ~ x~ %% for some a € (0, 1).
Such shape for the tail will generate rough volatility at the scaling limit, as for purely linear
Hawkes. The main difference with the stable case is that we have to use the resolvent of the
kernel ¢ to derive the limiting model. More precisely we write

t t
A;T=(1—aT)+wT|ZtTT|2+fO Tu/T(T(t—s))a)T(pT+IZsTle)ds+f0 yr(T(t-9)ordM;

where M = NI - fot)lsTds and yr=Y[% (/)*Ti. The following assumptions are key to ensure
the tightness of P*Ty 2.

Assumption 4.
i) The sequence (Br)r=0 satisfies Br = 2ar —1) with (ar)r=0 a sequence in (0,1) and ¢ a
non-negative measurable function such that |plly = 1. Furthermore for some K >0 and a € (0,1),

+00

lim ax® P(s)ds =K.
X—+00 X
.. . _ l—aT . . .
ii) The sequence of kernels (k)70 satisfies kr = k(-/T)\/ =" with k a non-negative continuously

differentiable function (in particular k(0) < +oo) such that | kll2 =1 .

iii) Set 6 = KT'(1 — )/ a, there are two positive constants A and ™ such that
Tl_igl@(l —ar)T* =16 and Tl—iH—looTl_a”T = u*(‘)‘_l.

Under Assumption 4 we have the following result.
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Result 5. The sequence (P*T) =g is C-tight for the Skorohod topology on [0,1]. Any of its limit
point P is a continuous martingale with brackets X satisfying

1
VAu*

where M is a continuous martingale with bracket equal to X such that (P, M) =0 and

t] t]
Xt:fo 5F“’*(r—s)u+Z§)ds+f0 Ef“v"(t—s) Mds, (5)

t
Z =f k(t - s)dP;.
0

If a €(1/2,1), the process X is almost surely continuously differentiable with derivative V solution

of

'l L1 1
Vi=| —foMe-9(1+22 ds+f ~f*Me-s V/VsdB,
=, gt s 15t g— Vva,
where B is a Brownian motion. For any € >0, V has almost surely a — 5 — ¢ Holder regularity for
any € > 0.

From the last point, we get that the limiting model (5) is a rough volatility model. Here
roughness is generated by the tail of the kernel ¢ as in Chapter I. Moreover up to a finite
variation term we have

t 1 t
V, :f aA(p— ) VsdB +[ FOM (= )k (0) Zs\/ Vsd W,
=) f Wﬁ s+ ) oV Ved W

where W is a Brownian motion independent of B. Hence Model (5) is a super-Heston rough

volatility model. Finally similarly as in the stable case we can show that the process Z generates
Zumbach effect in Model (5).

Since quadratic Hawkes processes generalize linear Hawkes processes, that lead to the rough
Heston model, Models (4) and (5) can be seen as extensions of the rough Heston model. Hence
we expect them to outperform the rough Heston model in fitting market data. In particular we
know that the rough Heston model, even though fitting very well the SPX options smile, fails
to reproduce the concave shape of VIX options smile. Hence in the next chapter we investigate
the joint calibration of SPX and VIX options smiles using a model inspired from (4) and (5).

1.3 Chapter III: The quadratic rough Heston model: fitting simultaneously
historical volatility together with SPX and VIX smiles with a continuous
model

In this chapter we address a longstanding question brought to our knowledge by Julien Guyon,
which he refers to as the grail of volatility modeling : can we find a continuous model that
allows for simultaneous fitting of SPX and VIX options smiles? We focus here on a specific
model, the quadratic rough Heston model, which is an extension of Model (4). We show that
this parsimonious model can achieve an almost perfect fit of SPX and VIX options smiles at
the same time.
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1. Part I: Microstructural foundations of volatility properties

1.3.1 The quadratic rough Heston model

We define the quadratic rough Heston model as the following joint dynamic for a stock price S
and its volatility V:

dS; =8,/ VidW,;, Vi=a(Z,—b?*+c, (6)
with . 1 . 1

7, =f0 (t- s)“‘lm(Ho(s) - Zs)ds+f0 (- s)“‘lm\/ﬁdws,

where A >0, @ € (1/2,1) and 0 is a deterministic function. The existence of this model is
ensured by an extension of Result 4. It is a path dependent volatility model. This means here
that volatility is a deterministic functional of the price paths without any additional source of
randomness. The variable Z is essentially a moving average of price log-returns since we can
write

t t
thf f“”l(t—s)Ho(s)ds+f FOr = $)\/VedWs.
0 0

Thus in the quadratic rough Heston model, volatility is simply a polynomial of degree two of
an appropriately chosen weighted moving average of log-returns. Note that due to the property
of the kernel f** the process Z, and consequently V, is & —1/2 — ¢ Holder for any £ > 0. So
volatility is indeed rough. This will allow the model to reproduce the short term asymptotic of
at the money (ATM for short) skew.

Note that when b = 0, this model corresponds to Model (4) defined in Chapter II with §=0.
Thus we have just introduced an additional asymmetry in the feedback of price trends on
volatility. Indeed since b is positive, for a same absolute value of Z, the volatility is higher
when Z is negative. This simply reflects the fact that market reacts more to downward trends
than to upward ones. This phenomenon is observable on historical data where we can see
that the VIX index spikes when the SPX index tumbles down. This is also illustrated by the
asymmetry of the SPX options smiles. Finally we highlight the fact that, as Model (4), the
quadratic rough Heston model reproduces the Zumbach effect.

1.3.2 Numerical results

For calibration of the model, we have used market data from a randomly chosen day with
typical shapes for the SPX and VIX options smiles. We have focused on short maturities, from
2 to 8 weeks, since we know from the literature that short maturities are the ones which are
the hardest to fit. We restrict our model to the following form for Z:

t t

Zi=2 —fo (t—s)a_1%23d5+fo (t—s)“_I%n\/Vdes,
which is equivalent to take 6y (f) = Zyt~*/AI'(1 — a). To calibrate the model we minimize the
mean squared error between market implied volatilities and implied volatilities given by the
quadratic rough Heston model. To price options we simply use Monte-Carlo simulations. The
corresponding SPX and VIX options smiles are plotted in Figures .2 and .3 with the market
smiles. The fits obtained are almost perfect for both SPX and VIX options. In particular we
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manage to conciliate the ATM skew of SPX options with the ATM implied volatility of VIX
options.
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Figure .2 - Implied volatility of SPX options for the 19" May 2017. The blue and red points
are respectively the market bid and ask implied volatilities and in green is the implied volatility
curve given by the quadratic rough Heston model. The strikes are in log-moneyness and T is
the maturity in years.

In this first part we have extensively used point processes for financial modeling at the
microscopic scale. Using such models allows for accurate representation of many stylized
facts of market order flows. It is therefore natural to take into account these properties
when optimizing trading strategies. This is why we aim at giving in the next part theoretical
guarantees for stochastic control problems for point processes.

2 Part II: Optimal control for point processes

In the second part of this thesis, we first provide theoretical basis for problems related to
market making when the order flow is driven by Hawkes processes. Then we investigate the
scaling limits of solutions of control problems when the underlying models are point processes
converging in law towards a continuous process.

2.1 Chapter IV: Optimal market making with persistent order flow

Hawkes processes are at the heart of Chapters I and II. Those processes have been introduced
in finance because they reproduce remarkably well the self exciting property of order flows.
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2. Part II: Optimal control for point processes
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Figure .3 - Implied volatility of VIX options for the 19" May 2017. The blue and red points
are respectively the bid and ask implied volatilities and in green is the implied volatility curve
given by the quadratic Heston model. The strikes are in log-moneyness and T is the maturity
in years.

This refers to various empirical evidences showing that order flow dynamics strongly depends
on their own past. One of these stylized facts is the long memory property of the sign of market
order flow (+1 for a buy order —1 for a sell order). Formally it means that the autocorrelation
function of market orders sign is slowly decreasing. It is crucial for high frequency market
participants, for example market makers, to be able to adapt their strategies to such key
property of the order flow. It is therefore natural to model the market making problem as a
stochastic control problem driven by Hawkes processes. Hence in this chapter we take the
point of view of a market maker and study a general class of stochastic control problems driven
by Hawkes processes. Our goal is to derive an explicit optimal control. To do so, we study
the HJB equation associated to the problem and characterize an optimal control by proving
existence and uniqueness of a viscosity solution to the HJB equation. Finally we propose a
tractable method to approach and implement in practice the optimal control.

211 The control problem

We assume that there is a single asset and a single market maker in the market. We consider
N% and N? two independent counting processes that respectively denotes the total number
of buy and sell market orders. The market maker’s inventory is therefore i = N” — N%. The
market maker controls the bid and ask spreads: 6% and 6”. The set of admissible controls is
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therefore
o =16=06%6"¢ R?, s.t. & is predictable},

where predictability refers to the filtration generated by N4, N b and P, the fundamental price
of the asset. When the market maker control is &, the intensities of the processes N* and N?
are respectively

t t
140 = 9—55?q>(f0 K(t—5)dN®) and 12? = e_g‘slgq)(fo K(t—s$)dNY),

where K is a L' (R,) positive completely monotone function!, ® a continuous positive function
and o and k two positive constants. Hence market order intensities are decreasing with respect
to the spreads and depend on a self exciting term. The constant ¢ is the volatility of P. The
dynamic of the price is not affected by the control and is given by

dPt = d(t,Pt)dt'FO'th,

where d is a Lipschitz function. Finally we consider that the market maker wishes to solve

T
sup E°[Glir, Pre”"T + f e (gis, POds + 55dNg + 67dNT) |, (7)
besd 0

where r is a positive constant and g and G are two continuous functions with at most quadratic
growth. The former represents a continuous reward received by the market maker (besides its
P&L) and the latter is a final lump sum payment paid to the market maker at the end of its
trading. We have two goals: prove the existence of a solution to the problem (7) and provide a
tractable method to implement this solution in practice.

2.1.2 Existence of a solution

To get an explicit control, it is convenient to study the HJB equation associated to (7). In order
to do this we need a Markovian representation of the model. For this purpose we consider the
following processes which associate a random function to any given ¢,

t ¢
f:f K(-—s)dN% and 6? :f K(-—s)dNP e L'®,)2.
0 0
Then the process X; = (P, it,G?,Hf) is Markovian since for j € {a, b} we have

d6) = K(-— dN! and 170 = e 5% 0(0/ (1)).

We could use L!(R,) as state space for the processes 0% and 6% but to apply the theory of
viscosity solutions it is convenient to work on a locally compact domain. We notice that for
j € {a, b} we have almost surely for any ¢ € [0, T,

. n
0] €Of ={} K(-T), neN, Ty =---<T, s T}cOf.
i=1

1A completely monotone function of Ry is an infinitely differentiable function of Ry such that, (-1)” f P > 0,
for all peN.
2We consider that K is defined on R with zero value on R*.
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2. Part II: Optimal control for point processes

Endowed with the topology of L' (R,) the set @IT( is locally compact. Hence a convenient state
space for the process (f, X;) =0 is

&K =1(1,p,i,04,0") €10, T) xR x Z x O x 0K},

which is locally compact. From now on, when we consider x € X we always assume the
decomposition x = (¢, p, i,0%,6%). Under this representation the HJB equation associated to
Problem (7) is

F(x,U),VU(x),05,U(x), DXU(x)) = 0, for x€ &X,

(HIB): { U(x) = G(i, p), for x = (T, p, i,0%,0") € &K,

with VU = (0,U,0,U), DXU = (DX U, D{; U), where DX and D{f are the infinitesimal generators
associated toN* and N, defined for any x € &X by
DXU) =U(t,p,i-1,0°+0(-—1),0°)-U(x) and DXUx) = U(t,p,i+1,6%0"+0(-—1))-U (x).

The function F is defined for (x,u,q, A, I) € EK xR x R? x R x R? by

1
F(x,u,q,A D =ru—q,—d(t,p)qs - EUZA— gi,p)
~®(0%(0)supe ¥°(5 + 1) —d(O (1)) supe” ¥ (6 + I).
0€eR, OeR,

We have the following result of existence and uniqueness for (HJB)k.

Result 6. (i) There exists a unique viscosity solution UX with polynomial growth to (HJB)x.

(ii) Problem (7) admits a solution given by 6} = 5K (¢, X,), with 6K = (65,65) where
8% = (o/k-DXUX), and 6% = (o/k-D{UY),.

Thus we have succeeded in finding an expression for an optimal control solving Problem (7).

213 How to approximate the optimal control

To make the above result useful in practice, we need a way to implement the optimal control §X,
or at least an approximation of it. Since the set &X is a subset of an infinite dimensional space
we cannot use classical finite differences methods to numerically solve (HJB)x. Our strategy
is therefore to build approximating controls that are optimal with respect to approximated
versions of Problem (7) and admitting a Markovian representation in finite dimension. We
proceed in two steps.

+ We show the continuity of §% with respect to K.

Result 7. Consider a sequence (K;) o of completely monotone functions in L'(R.) that
converges towards K (also completely monotone) in LYR,) and uniformly on [0, T], then we
have

oK = lim  6%(y) where & = &K x joo} U ( L 65 x {n}).

(y,n)€&—(x,+00) n=0
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« Inspired by [AJEE19] we show that for any completely monotone function K in L!(R;) we
can find a sequence (K)o that converges towards K in LY(R,) and uniformly on [0, T
and such that for any n, K, is a positive linear combination of decreasing exponential
functions. We then prove the following result.

Result 8. For any n, up to a change of variable, the value function U is the unique
viscosity solution of a finite dimensional PDE. Thus we can approximate numerically 5%
using standard methods.

Combining Results 7 and 8 gives a way to approach the optimal control §X for any kernel K.
The remaining issue with this methodology is that the dimension of the approximating PDE is
increasing with 7. So when n is large it is very unlikely that finite differences methods can
be applied. To tackle this problem we use a probabilistic representation for semi-linear PDEs
introduced in [HLT'T14]. This approach being probabilistic it has the advantage to circumvent
the curse of dimensionality.

2.2 Chapter V: Scaling limit for stochastic control problems in population
dynamics

In Chapters I and II we focus on scaling limits of microscopic financial models and in Chapter
IV we study stochastic control for such type of models. We now naturally address the question
of scaling to stochastic control problems. This issue is particularly interesting since it is
often less convenient to deal with point processes based microscopic models than with their
continuous counterpart, obtained passing to the scaling limit.

More precisely, we consider a sequence of population models appropriately rescaled in size.
Under appropriate assumptions, we prove that it converges to a continuous limiting model.
We then take the point of view of a resource manager controlling the population. For each
discrete model the manager’s problem is equivalent to a non-Markovian control problem for
which we prove existence of a solution. This defines a sequence of controls. To investigate
the convergence of this sequence we prove a general continuity result for solutions to BSDEs
with respect to the driving martingale and terminal value. Using this result, we show that
under reasonable scaling assumptions the sequence of optimal controls converges. The limit
corresponds to a control solving the manager’s problem in the continuous limiting model. We
also show that the law of the population dynamic driven by the optimal control converges in
law at the scaling limit.

2.2.1 Scaling limit of a population model

We start by defining a sequence of population models. Each model is driven by the same
dynamic but for different initial sizes. We note N” (resp. N) the number of birth (resp.
death) in the population and fix 7 € N. The population size is indexed by K. We consider
that for the K — th model the population size is given by NX = nK + N” — N%. The rescaled
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2. Part II: Optimal control for point processes

population process is XX = NX/K. We denote by PX the law of the K — th model, under which
the intensities of N” and N¢ are respectively

AP = kP (xE) + K202 XK 12 and 259 = K F4(XK) + K202 XK 12,

where f?, f¢ are positive functions and o is a positive constant. The process
K,b K,d K,b b ! b K,d d ! d
ME = M7, M%), where M = N —f A¥Pds and M4 = N —f A%dgs,
0 0

is a PX local martingale. The natural scaled version of MX is M" = MX/K. We have the
following result.

—K,b —K,d
Result 9. Under suitable regularity assumptions, the sequence (XK,MK M k=0 converges
in law for the Skorohod topology towards a process (X, MY, M%) such that M = (M?, M%) is a
bi-dimensional martingale. Moreover we have

t
(Mb, Mm%y =0, (Mh)t:<Md>t:fo o2 Xds/2

and

t
X, = f f(Xs)ds+dM,
0
with f = f?— f4 andeszf—Mf.

Using the Skorohod representation theorem, we can actually assume that the processes
—K,b —K,d -
XK, M, M k=0 and (X, M?, M?) are defined on the same probability space, (,P,F) and
that the convergence actually holds in .#2, where . dp is the set of F-predictable R valued
process X such that
IXI15 =E[ sup [1X;7] < +oo.
t€[0,T]

We write FX = (%K) (0,1 the natural filtration associated to the process XX and FX =
(FX)te0,1) the natural filtration associated to the process X. We now investigate the
convergence of a sequence of BSDEs driven by the martingales (MX)g~o. We start by a
result on the continuity of martingale representation.

2.2.2 Continuity of martingale representations

For any K, we consider ¢K a gf —measurable L2(Q) random variable. From [CF13] we know
that ¢K has the representation property relative to MX. So there exists ZX, a FK-predictable
R? valued process, such that

t
EEX1# K :[E[6K1+f zKdmK.
0
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We also consider ¢ a ?7}5 -measurable L2(Q) random variable and prove that there exists a
FX-predictable real valued process Z such that

t
E[E1F ] = E[¢] +f0 Z;dMX.

We have the following continuity result.

Result 10. If the sequence k=0 converges towards & in L**¢ for some € > 0, we have the
convergence

(@%,(@,@%), (@5, M) = (Q,4Q @, (@, M), a5 K — +o0,
in F2HE x FSIEI2  FS2HE for any €' € [0,€), where the processes Q and QX are defined by

t t
QK = fo ZKdMX and Q, = fo ZgdMY.

We then extend this result to the continuity of solutions to BSDEs.

2.2.3 Continuity of solutions to BSDEs

For any K, let (K a g{f —measurable random variable and g€? and g¥¢ two continuous
functions from R3 into R. For any (x,),2) ERx R x R? we write

g5, y,2 = (50 (x, 3,2, g5 (x, y, 29),
where have implicitly used the decomposition z = (z%, z%). We consider the BSDE driven by
MK with terminal value ¢X and generator gX:

T T
B)k: Yt:£K+f gf(xk, YS,ZS)-¢§dA§—f Zs-dMXK,
t t

where
! b aKd K_ w2 M A
AKzf K2 ALP +A5%ds and ¢f = K*( ,
0= ) KA CT KR R KD K

).

We also consider ¢ a 977)5 —measurable random variable and g a function from R® into R. The
BSDE driven by MX with generator g and terminal value ¢ is then

T T
B): Y, = <f+f g(Xs, Ys, Z9)d A —f ZSdMSX,
r ¢

where dA; = 0?X,dt. For any K, under suitable assumptions, the BSDE (B)x admits a unique
solution, (YX,ZX), and (B) has a unique solution, (Y, Z). The notion of solution is made
precise in Chapter V Section 4.2. Moreover under appropriate convergence of (¢X, g€) g
towards (¢, g) we show the following result.

Result 11. We have in S? x S x S} x FL,
lim (YK,f Z{(.de,(YK,]\_/[K),(YK)):(Y,f Z:dM{, (Y, M), (V).
K—+o0 0 0

We can now deal with the scaling limit of stochastic control problems.
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2. Part II: Optimal control for point processes

2.2.4 Application to stochastic control and convergence of optimal controls

For any K, we consider a manager controlling the death intensity of the population, for
say a ranger dealing with a population of boars. When the control is @ the law of the
population is denoted by PX:% ﬂtf‘d’“ =
/lf’d +hK (XtK ,a;) where hX is a real function defined on R%. The set of admissible controls is
given by

, under which the death intensity of the population is

AK = ja-FK predictable s.t. @ € [-a,al}.

We consider that the manager receives a continuous reward cX related to his effort and a lump
sum payment at time T, depending on the whole history of the population. In the case of
a ranger dealing with boars, ¢ can for example be proportional to the time spent by the
population size in a given interval. We formalize the manager’s goal as the following stochastic
control problem

T
P)x: V<= sup J* with J¢ :[EK'“[€K+f K XK agds],
aca K 0

where EX'® denotes the expectation under the probability PX'*. We also consider the equivalent
problem in the continuous framework. The law of the population size under the control « is
given by P% under which the process X is a strong solution of

t
Xt:x0+f (f(Xs)_h(Xs,as))ds'f'M?,y
0

where M7 = Mf( + fot h(Xs, as)ds is a P*—martingale. The set of admissible control is
o ={a— FX predictable s.t. a € [-a,al}.

As for the discrete framework, we assume that the manager’s problem is to solve the
maximization problem

T
(P): Vo =sup J§ with J§ = [E“[€+f c(Xs, as)ds],
acesd 0

where E* denotes the expectation under the probability P%, c is a reward function related to
the manager’s effort and ¢ is a lump sum received by the manager at the end of its work.

Using a technical assumption we show that for any K, (P)x admits a solution a’* and that
(P) has a solution a*. These optimal controls are characterized via the BSDEs associated to
the control problems. Finally denoting PX* the law of XX under the control a®* and P* the
law of X under the control a*, we prove that under suitable convergence of &K, K K k=0
towards (¢, ¢, h) the following result holds.

Result 12. (i) The sequence (VOK)KEO converges towards Vy,

(ii) we have in S} x F}

lim (fo af'*/lf’dl(_zds,fo(af'*)z/lf'dK_zds)z(fo anAs/z,fO a2dA;/2),

K—+o00
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(iii) the sequence (PX*) k=0 converges (for the Skorohod topology) towards P*.

In this part we have focused on providing theoretical basis for stochastic control problems
driven by point processes. This is of important practical interest for market participants aiming
at improving their risk management and their understanding of trading strategies. In the last
part of this thesis we now take the point of view of other important actors of the financial
ecosystem, the exchanges and regulators, and deal with issues related to market design.

3 Part III: Market design

This part is dedicated to market design problems. First we consider the organization of a
derivatives exchange. Then we address the question of finding the optimal duration for markets
operating in sequential auctions.

3.1 Chapter VI: How to design a derivatives market?

In this chapter we answer to Question 6 and study the issue of market design for derivatives
exchanges. This work has been motivated by discussions with collaborators from Euronext,
one of the largest European exchanges.

To tackle this question, we take the point of view of an exchange that wants to create an
options market. We consider that the goal of the exchange is to attract liquidity towards its
platform and to be attractive for market takers, which boils down to having small quoted
spreads. Our method goes in two steps: first we select according to market takers demand the
options that are going to be listed on the platform, then we design a make-take fees policy for
market makers in order to encourage them to quote attractive spreads.

3.11 Market driven selection of listed options

Theoretically all strikes and maturities could be displayed, but offering the possibility to
trade them all will surely generate heavy technical difficulties and scarce liquidity. Hence the
exchange needs to select a finite set of options to list on its platform. Therefore he wishes to
choose the options that are the most relevant for market takers. We focus on selecting the
strikes for call options at a given maturity. To address this problem we model the trading
behavior of market takers as follows.

If a market taker would ideally buy a call option with strike K and that the listed strikes are
given by Kj < --- < Ky, then we assume that he is going to buy the option with strike K; where
i is such that
i =argmin|K - Kjl.
1<jsn

The regret of the market maker for not being able to buy exactly the strike K is measured
by |K - K;|P where p = 2. We finally assume that market takers demand is represented by a
random variable K distributed according to some distribution P™ " which can be estimated
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3. Part III: Market design

using historical market data. In order to be attractive, the exchange looks for the set of strikes
(Kj)1=j<n that minimizes the average regret of market makers:

argmin E"*'[ min |K - K;|P]. (8)
Ki<-<K, 15]5}’[

This is a so-called quantization problem for which we prove the following result.

Result 13. IfP"X" is compactly supported, then for any p = 2 Problem (8) admits a unique solution
of the form Ky < --- < K, which is a fixed point of the Lloyd’s algorithm. In practice we then iterate
the Lloyd’s algorithm to approximate the solutions. This is illustrated in Figure .4 where we use
historical data provided by Euronext.

T
mm 3M<Ts=6M

0.3 0.5 0.7 0.9 11 13 15 17

Figure .4 - The Lloyd’s algorithm applied to options with maturities between 3 and 6 months:
In red is the empirical distribution of market demand over the strikes (in % of the spot value).
The black dotted lines correspond to the strikes selected by the Lloyd’s algorithm.

3.1.2 Incentive policy of the exchange

We then design a make-take fees policy in order to encourage market makers to quote attractive
spreads on each of the listed options. Since the exchange wants to influence the market spreads
that are set by market makers, which he cannot control, we interpret this issue as a principal-
agent problem. For the sake of simplicity, we assume that there is only one market maker. The
exchange offers a contract to this market maker. The contract’s payoff depends on the whole
market order flow. The market maker adapts its strategy to the payoff according to its utility
function. Thus knowing the market maker’s response to any given contract, the problem of the
exchange boils down to design the contract that maximizes its own utility function.
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The market model: We note A the set of listed strikes and 9 the set of listed maturities.
The underlying asset price is denoted by S and we assume that

dSt = UdWS,

where 0 is a positive constant. The price of the option with maturity 7 and strike k is written
C*T and has dynamic
dck™ = oakTdw,,

where A®T is the Bachelier delta of the option at the beginning of the trading day. The set of
admissible controls of the market maker is

of = {(6[)[€[0,T] = (5];’7’i)te[0,T], ke #,t1e€J,ic{a,b}, predictable and s.t |5I;’T’i| < 500},

where 8o, > 0 is a constant. The quantities §%7? and 657 represent respectively the bid and
ask spread on the option C*7. Hence when the control is &, the best bid and ask prices on the
option Ck7 are respectively

phTh = bt _ 80P and PETA = CFT 4557 e 0, 0.

We write QT for the number of options C*7 held by the market maker and define its
aggregated delta weighted inventory as

Qt — Z Ak’TQk’T.
k,te X xI

We assume that all market orders have unit size and denote by N¥7¢ (resp. N¥7?) the number
of buy (resp. sell) market orders sent towards the option C*7. Since large spreads lead to
smaller trading intensities we assume that when the control is & the intensity of N®™/ (for
i €{a, b}) is given by

. C .
Ak,r (6Itc,r,l,Qt) = Aexp ( - ;(ﬁltcvf,t + fk'r))1¢(i)9[_>—ﬁ’
where ¢(a) =1, ¢(b) = -1, A, C are positive constants, fF7 is a transaction fee fixed by the

exchange on the option C*7 and G is the maximal delta weighted inventory admissible by the
market maker. We now define the market maker’s maximization problem.

The market maker’s problem: The market maker’s profit and loss is
PLY =W +2,S;,

where #7 is the cash process of the market maker given by

t t

o _ k,T,a k,7,a k,T,b k,7,b

we= ) fpu dn;, —fpu dN,; ™7
(k,T)EX xT 0 0
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3. Part III: Market design

Additionally to its trading P&L, the market maker receives at time T the payoff of the contract
offered by the exchange, ¢ which is a #7-measurable random variable, where (%;)o<;<T is
the natural filtration associated to the canonical space of our model. Thus the market maker
problem boils down to the following maximization problem

Vv (&) = sup E? [ —exp ( -y + PL‘ST))],
=

where y is a positive constant and E® denotes the expectation under the probability associated
to the control §. To make sure that the above quantity is well defined we need to assume some
integrability conditions on ¢. More precisely we assume that for some y’ >y and 1’ > 7 (the
constant 7 is related to the exchange’s problem, see below) we have

sup E9[e "'¢] < +00 and sup E9[e"¢] < +00.
desd oesd

We also need to assume that the payoff ensures a minimum reservation utility R <0 to the
market maker. More precisely we require ¢ to satisfy Vip($) = R. We say that any Fr
measurable random variable satisfying those conditions is an admissible contract and note €
the set of admissible contracts.

There is a special class of contract for which we can compute explicitly the market maker
optimal strategy. Those contracts are indexed by Yy >0 and

Ck,r k, ,.
Z=Z Z ! l)kel,ref/‘,ie{a,b} €Z,

a definition of Z is given Chapter VI. The corresponding payoff is written YTYO’Z and is defined
by

T

Yo, Z ki 4nrk,T,i, »CFT Ak,

| (X X zErankriezEtack)
0 “i=a,bk,1)eX xT

1 7 2
Hzro?( X abTEbn) -HZ, Qn)dr,
(K, 1) e xT

where for (z,q) € RZ#AX#T « R with z = (Zi'k'r)(l',ky-[)e{u,b}x(]{xg', the function H is given by

H(z,q)= sup Y ). Y—l(l_exp(_y(zk,r,i+6k,r,i)))/lk,r(5k,r,iyq).

SeERZH#AMT j=q b (k,T)EHX xT
We prove that this class of contract is exactly the set of admissible contracts.

Result 14. Any ¢ € € has a unique representation & = YTYO’Z for some (Yo, Z) € Rx Z with
Yy = Yy = —log(-R)/y.

When the exchange offers the payoff Y7¥°’Z to the market maker, we have the following result
characterizing the market maker’s optimal response.
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Result 15. The market maker’s utility is VMM(YTYO'Z) = —exp(—yYo). It is associated to the optimal
bid-ask policy 5]:’7’i(€) = Ai(Zf'T’i), where

. 1
A (2) = (—6) V (— z+ ;log(l + a_g)) Ao, foric€{a,b}.
We now specify and solve the exchange’s problem.

The exchange’s problem: Recall that the first aim of the exchange is to maximize the
liquidity or equivalently to maximize the numbers of market orders sent towards the listed
options. He also wishes to encourage market makers to quote attractive spreads for commercial
reasons. Since the exchange’s objective in terms of liquidity may not be the same for all the
listed options, we consider the weighted total number of trades
N, = Z Z Ck'TNtk’T’i,
i=a,b(k,1)eX xT

k,

where ¢®7" is a positive constant measuring the relative importance that the exchange attributes

to the option C*7. To quantify the second objective we consider

T . .
A=y § | elotr-skant,
i=a,b (ke xg J0

where w € [0,1) and (5’06(’,7 is a spread threshold the exchange would like to impose to the market
maker for the option C kT Thus using an exponential utility function the exchange objective is
to maximize

E© —eXp(—n(WT—ﬁf?@—f))

)

where 7) is a positive constant and ) (&) is the market maker’s control associated to the contract
¢ which is defined in Result 15. From Result 14 the exchange’s problem boils down to the
following optimization problem,

VOE = sup A
ZeZ

—exp(—n(JVTZ —$TZ - YT?O'Z))

: ©)
We prove that if we take 6, large enough, then this problem admits an explicit solution.
Result 16. The maximization problem (9) admits a solution Z* given by

1 log( ,Bng(t,Qt—) )
a=p TlaxlTUu(r,2, - AkTP0))

d 7*C"" 1, kry_ __V k,r'
an (t,Q;") Y+77Qt

ZRH 1, 2,0) =

for any (k,7,i) € X xT x{a,b}, where a, B, (x{c"[)kal’reg" and x» are constants and U is such

-~ _ C
that U = (=U) 10 is the unique solution of the following linear PDE on [0, T] x R:

0=0,0t,2) -0t D5 550522+ ¥ ¥ CF 05,2 - A1)y 055,
(E)ex: - ' v+ 201-0) i=a,b(k,1)eX xT ( ('b ) PpH2>-q
UT,2)=1,

where the C*7s are positive constants.
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3. Part III: Market design

From this result we get that the contract the exchange should offer to the market maker is

~ T

*x _ vYo,Z" _ % *xk,T,i k,T,i *Ck7 k,T
F=yh —Y0+f Y zrbriangn 4 2 ackr)
0 (ke xT ‘i=ab

T 1 2 k7, »xCkT k,T 2 _ *
| Gre?( X AR Qb)) - HZE Qn)dr,
0o \2 (k1) e X xT

which is explicit up to solving the linear PDE (E)... Note that even though the exchange’s
problem had initially 2 x #5 x #.#  dimensions, (E).y is only a two dimensional PDE. So we
have made the exchange’s problem tractable. To solve (E).y it is possible to use a Monte-Carlo
method based on the following representation.

~ r =, _k’ "
U(t)q):[E[exp(‘/; —C(Qg'q)z_}_.z Z O_/1871(:18)], (10)
i=a,b(k,1)e X xT
ith
wi p s kit qkTb  —kt,a
24— g+ D [F Yy
U (kT)eX xT

. k1,0, . o1 . kT
where for any (k,7) € £ xJ and i €{a, b}, N "is a point process with intensity A, =

k,T
C™' i 2ts g

Numerical experiments: We illustrate the efficiency of our method to lower spreads and
attract liquidity. We consider the following parameters setting

A=155s"', 0=C=03s"12, n=1, y=0.001, T =100s and 7 =40
and that there are 3 options on the market with characteristics
&7 =105,0.8,0.8], 657 = 2,3,3], AFT =10.5,0.8,0.2].

We plot in Figures .5 and .6 the optimal spreads at time ¢ =0 for each option as a function
of the market maker’s initial inventory. The situation without the exchange intervention
corresponds to the case ¢ =w =0. As expected, raising w reduces the spread on all the listed
options and raising ¢ for an option induces a decrease of the associated spread.

3.2 Chapter VII: Optimal auction duration: A price formation viewpoint

In this last chapter of this thesis we deal with Question 7.

Recent studies about market design have raised many arguments suggesting that a CLOB
system may not be the optimal way to organize electronic markets. One of the main points is
that continuous trading promotes speed so that fast traders can systematically benefit from
arbitrage opportunities due to latency advantages. It is suggested in [BCS15] that designing
markets in sequential batch auctions, where settlement takes place after an auction period,
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Figure .5 - Spread at initial time with respect to the market maker inventory, w = 0.
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Figure .6 - Spread at initial time with respect to the market maker inventory, w = 0.2.

eliminates a large part of the advantages due to speed. Auctions represent an increasing part
of the daily exchanged volume. Even in CLOB markets, a large fraction of the volume is
executed during the opening and closing auctions and some exchanges, such as BATS-Cboe,
already offer to their clients to trade in a sequential auctions market. Therefore designing
those markets is an important issue.

In this chapter, we focus on one key aspect of this problematic, finding the optimal auction
duration for a sequential auctions market. Furthermore we want to investigate whether auctions
are optimal or suboptimal compared to CLOB. To tackle this question we begin by designing
a class of models that encompasses CLOB and sequential auctions markets. Then we define
our price discovery based criterion to determine the optimal duration. In order to take into
account the competition between market participants, we consider that market takers are
competing. We model this competition and show it has a Nash equilibrium. Finally, assuming
that we are in the Nash equilibrium situation, we compute the optimal auction duration for
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3. Part III: Market design

different French stocks after calibration of the model on market data. We find that for most of
the stocks, CLOB are suboptimal compared to sequential auctions and more precisely that the
optimal auction duration lies between 2 and 10 minutes depending on the stock.

3.21 The model

We describe our model for a sequential auctions market.

Auction rules: An auction opens after the end of the previous auction when a first market
order is sent, it ends & seconds later. With this convention the case i =0 is equivalent to
a CLOB market since every market order is instantaneously matched. The starting times
of auctions are given by the sequence (T;.)p)izo and their closing times by (Tfl = T?p + N);>o-
During and after an auction, market participants can send limit and market orders. We
distinguish two types of participants, market makers that only use limit orders and market
takers that only send market orders.

Market makers: During the i — th market phase, market makers arrival times are given by
(Tﬁl +T§C’mm)k20 where T;C’mm is the k-th event time of a counting process N*™”. When he
arrives on the market, the k—th market maker sends a sequence of limit orders according to a
supply function Si. More precisely Si(p) represents the number of shares the k—th market

maker is willing to sell at a price greater than p. We assume that
Sk(p) =K(p—Py),

where K is a positive constant and Py is the value of fair price at the clearing according to the
k-th market maker. We assume it has the following form

Pk = Prﬁl_'_r;‘c,mm + gk,
where (gx) k=0 is a sequence of independent identically distributed random normal variables
with variance o2, independent of all the other processes. The process P represents the
fundamental price of the asset. We assume it has the form P, = Py +0 s W; where o ¢ a positive

constant and W is a Brownian motion independent of all the other processes. We finally
assume that after the auction clearing, the unmatched limit orders are canceled.

Market takers: During the i-th market phase the arrival time of the k-th buy (resp. sell)

cl i,a i,b i,a i,by . . .
i T (resp. T ) where T (resp. T ) is the k-th event time of a counting

process N (resp. N”'P). Note that by definition we have T?p = Tﬁl +7

market order is T

;C,a \Y; T;C’b. We assume

that market orders have a constant volume v and we write I’ = U(N;"” - N;’b) the cumulated
imbalance of market orders for the i-th auction.

Clearing rule: At the end of the i-th auction, a clearing price P¢, is set and sellers who

7

are willing to sell below it sell their shares at price P/, to buyers ready to buy above it. The
T

i
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clearing price is chosen in order to maximize the exchanged volume. It is therefore the solution
of
Ny
Y Sk(p) -1}, =0,
i=1

where A; =71¢L - T?l. We thus obtain

i—1
Ni,rnm i
cl 1 < 4 ]- IA,‘
Pr?l = imm Z Pr+ E i,mm
i P{&' k=1 PV&
1 1

In order to get a regenerative model we make the following assumption.
Assumption 5.

i) After each auction clearing, the market regenerates: the processes (Nbmm Nba LD gy
are independent and identically distributed.

ii) The random variables (Ti’” A Ti'b)izo are i.i.d. exponential random variables with parameter
V.

iii) The random variables ergl“ and NTl;,b are squared integrable.
1 1

Since it is very unlikely that a market taker would send a market order if the LOB is empty, we
make the following assumption ensuring that some limit orders are sent before the auction
clearing.

Assumption 6. Let u>0. The density of(T}’mm, (Ti’a A Ti’b)) at point (s, 1) € R? is given by

pe —vt
IOSSSHhmds ve ""1yzodt (1)
and (Nl’ml'?,lnm— 1)o<s<n is a Poisson process with intensity p, independent of P and (Nsl’a, Nsl’b)PTme.
=1

S+T,

Thanks to this assumption, the LOB is never empty at clearing times. In particular when h =0
we are in the situation of a CLOB market.

3.2.2 A metric for the quality of the price formation process

We want to select the auction duration that leads to the best price discovery. Equivalently we
look for the duration that minimizes the cumulated difference between the clearing price and
the efficient price. We measure this cumulated error as

t
—cl —=
zh = f (P; —Py)?ds,
0
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—cl —
where £ is the auction duration and Pi and P; are respectively the last clearing price before
time ¢ and the efficient price at the last clearing time before time f. The optimal auction
duration is h* such that Z"" is asymptotically smaller than any other Z". We show the
following result.
Result 17. We have almost surely
. Zth cl 2
A, 7 = P = P

Hence the optimal auction duration is the minimizer of
E(h) = EI(PF = Pro)’].
Some computations leads to the following semi-explicit formula

Result 18.

E[1?,]

. Y +00 ut 1 N eu -1
E(h) = " (h) +—T;(1—e‘“h—)‘1ev’1f ve_”e_’”f —f dudsdt,
K v+u h o SJo u

with EMd () given by

v oo t Kt e
(l—e’“h—)’lemf ve’”((a?—+02)e’“tf
v+ h 6 0

Emid

s_

1 2 J —ut
ds+af§(1 —-e ))dt.

The function corresponds to the situation where there is no market takers. We see from
Result 18 that the market takers squared imbalance plays a central role in the determination of
the optimal auction duration. A first possibility is to consider that market orders arrival times

are given by a Poisson processes with intensity v, in this case we get
ELIZ,) = v*(vh+1).
1

However this model is probably too naive and may lead to a non reliable optimal duration.
Hence we propose a finer model allowing market takers to optimize their trading intensity.

3.2.3 The market takers competition

We consider that market takers aim at minimizing their asymptotic transaction costs by
controlling their trading intensities. For example if a seller observes that a large number of
buy market orders have been sent, moving the clearing price up to his advantage, he is more
likely to send sell market orders. We assume that there are only two market takers, a buyer,
denoted by a, and a seller, b. We do not consider that market makers are strategic.

The accumulated trading cost of player a at time ¢ is

NCI

Z Nl “A(PC = PLa).

Assuming that the market takers strategies reset after each auction, we can characterize their
asymptotic trading costs.
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Result 19. We have almost surely

C
lim —L = [Nlj(N“‘ NLbyE|
t—+o0o [ K 7]

A;

Since N la’,f VN 0,, is equal to one by assumption, the problem of a boils down to minimize

[Nl a(Nl ,a N;ll’b)]'

when (Né’a,Né’b) =(1,0) or when (Né'“,Né’b) = (0,1). Symmetrically the objective of b is to
minimize [E[N}ll’b(N }ll’b —N;l’“)]. The market takers control their trading intensity: a controls 1%,

the intensity of N»% and b controls A?, the intensity of N''?. The set of admissible controls of
market takers is

& ={A, predictable process with values in [1_, 1,1},

where A_ and A, are two positive constants and predictability is relative to the natural filtration
of (N%@, NV?). This a non zero-sum game situation for which we prove existence of a Nash
equilibrium.

Result 20. There exists a Nash equilibrium to the simultaneous optimization problem faced by
players a and b given by some Markovian controls (A}, A};) satisfying

Ax AT

inf VP A A5 = B INE(NE — NDY(NE, ND) = (@, B,

and -~

nf v, VPP Ap) =B IND(ND - NOIINE, NP = (@, B)).
€

This result is not only theoretical since its proof also provides a natural method to compute
the associated value functions. This enables us to get the optimal durations since we have the
following result.

Result 21. At the Nash equilibrium (A}, A7), we have

1= VO AR AD) + VIO AL,

[ P +h

3.2.4 Application on market data

For numerical applications we use intra-day market data from 77 of the most liquid stocks
traded on Euronext for all trading days of September 2018. For any of the stocks we calibrate
the model and compute the minimizer of the function E in two situations:

. non optimizing market takers with Poisson trading intensity v,

2. competing market takers at the Nash equilibrium.
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DurationPoisson | DiffrelPoisson | DurationNash | DiffrelNash
Bouygues 228 [226;230] 1% 152 [1505153] 20%
Alstom 0 [050] 0% 180 [178;181] 14%
Orange 382 [379;385] 21% 274 [273.6;278] 42%
Veolia Environ. 350 [346;353] 3% 253 [251;256] 21%
Credit Agricole | 87.7 [87.2;88.5] 2% 58.6 [68;59.4] 22%

Table .1 - Optimal auction durations (in seconds) Part 1 with a 90% confidence interval.

Results are partially reported in Table .1. The optimal durations for the Poisson case are
reported in column DurationPoisson and in the competitive case in the column DurationNash.
We have also reported the relative difference between the utility function for the optimal
duration and for duration 0, (E(0) — E(h*))/E(h™), in order to investigate the quality of the
CLOB mechanism. We observe for most of the stocks that the optimal duration is between 2
and 10 minutes. The optimal duration when market takers are strategic is smaller than when
they are naive, except for the stocks where CLOB market is optimal for naive market takers.
When market takers are strategic CLOB is always suboptimal. We also notice that the CLOB is
always not so far from being optimal.
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CHAPTER I

No-arbitrage implies power-law market
impact and rough volatility

Abstract

Market impact is the link between the volume of a (large) order and the price move
during and after the execution of this order. We show that in a quite general framework,
under no-arbitrage assumption, the market impact function can only be of power-law
type. Furthermore, we prove that this implies that the macroscopic price is diffusive with
rough volatility, with a one-to-one correspondence between the exponent of the impact
function and the Hurst parameter of the volatility. Hence we simply explain the universal
rough behavior of the volatility as a consequence of the no-arbitrage property. From a
mathematical viewpoint, our study relies in particular on new results about hyper-rough
stochastic Volterra equations.

Keywords: No-arbitrage property, market impact, rough volatility, rough Heston model,
hyper-rough Heston model, Hawkes processes.

1 Introduction

It is now well-admitted that volatility is rough. This stylized fact first established in [GJR18] and
confirmed in [BLP16, LMPRI8] means that the (log-)volatility process of an asset essentially
behaves as a fractional Brownian motion (fBm for short) with Hurst parameter of order 0.1.
Recall that a fBm (WtH) t=0 with Hurst parameter H € (0,1) is a Gaussian process that can be
written under the Mandelbrot-van Ness representation as

0 1 1 ! 1
Wﬁ:f ((t—s)f2 —(—s)f)st+f (t—)"2dB,,
—00 0

with (Bf)s=0 a classical Brownian motion. For any & > 0, the sample paths of (WtH)tEO are
almost surely H—¢ Hélder (and not H Hélder). Therefore the trajectories are very rough when
H is small.
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I. No-arbitrage implies power-law market impact and rough volatility

Various rough volatility models have been recently introduced in the literature, notably for the
purpose of risk management of derivatives, such as the rough Heston model of [EER19] where
the asset price (Py)s>o satisfies

dp
——=VVi(pdB; +/1-p*dB;)
t
with
V, = V0+Lft(t—s)H‘i(e(t)—V)dH ;ft(t—s)H_éx/V dBl, (1
rH+HJo Y rH+H e

where By and B, are independent Brownian motions, A and v two positive constants, 6 a
deterministic non-negative function and p € (—1,1) a correlation factor. The particular interest
of this model is that, as for the classical Heston model, semi-explicit pricing and hedging
formulas can be obtained, see [EER19, EERI18].

A puzzling question is the origin of the universal rough volatility property of financial assets.
A first explanation is proposed in [EEFRI18]. In this work, the authors place themselves in a
highly endogenous market, meaning that most orders are sent in reaction to other orders and
without economic motivation. They show that in this context, the widely used trading practice
of metaorders splitting (see below for definition of a metaorder) leads to the rough Heston
dynamic (1) for the macroscopic price. However, this result is found using a quite specific
parametric model for the high frequency price.

In this paper, we wish to obtain a fundamental explanation underlying the rough volatility
property. In fact we prove that in a quite general framework, rough volatility is simply a
consequence of the no-arbitrage principle together with the existence of market impact.

Market impact is the fact that on average, a buy order moves the price up and a sell order
moves the price down. There are two main viewpoints on market impact. The first one is to
consider that agents receive information and reveal their information through transactions,
hence impacting the market. The other one is purely mechanical, not referring to any notion
of information, and considering that prices move up and down only through volume pressures,
following supply and demand. We adopt the mechanical paradigm in this work. The impact
of a single order being very difficult to assess, one usually considers large sets of orders split
by brokers, so-called metaorders. Empirical studies of market impact have shown that for a
buy metaorder (and symmetrically for a sell metaorder) market impact can be decomposed in
two phases: a transient phase with a concave rise of the price during the metaorder execution,
and a decay phase, where the price decreases towards a long-term level after the execution is
completed, see [BILL15, TLD"11, DB15, LFMO03].

Let us consider a buy (say) metaorder and let (g;);>0 be the cumulative volume of this
metaorder executed between the initial time 0 and time ¢. The market impact function of this
metaorder is defined as

MI(1) = [P, = Py,
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where we put the superscript (gs)s<; on P to insist on the fact that the price dynamic depends
on the execution process of the metaorder. Of course the above formula only makes sense in a
model where P,E%)SSI is a well-defined stochastic process, as will be the case in the next sections.

The permanent market impact (PMI for short) of this metaorder is given by the quantity

PMI= lim MI(t).
t—+oo

Intuitively, it is quite clear that in the long run, the permanent impact of a metaorder with
volume Q should be the same as that of two consecutive orders of volume Q/2. This is
formalized in Theorem 1 in [HS04] and further developed in [GatlO] where it is shown that
under mild modeling assumptions, the absence of price manipulation on a market! implies that
the permanent market impact is proportional to the total volume of the metaorder. In particular
it does not depend on the metaorder execution strategy. From now on, we take this linear
permanent market impact property as granted. This has consequences for the price dynamics.
In particular, we now assume that the price P is a martingale. We take this martingale
hypothesis as a simplifying and convenient version of the classical mathematical finance
condition of no almost sure arbitrage which states that price should be a semi-martingale. In
this setting, it is shown in Theorem 2.1 in [Jail5] that under the purely mechanical view for
market impact,

P, = lim E[V{ - V7|7, 2)

where V¢ (resp. V?) is the cumulated volume of buy (resp. sell) market orders since the initial
time 0 and (%) ;>0 corresponds to the filtration generated by the order flow process. Hence
the price moves when orders arrive on the market because market participants revise their
anticipation about the long term cumulative imbalance of the order flow. Remark that to derive
(2), we only use the set of assumptions that we consider here as our no arbitrage conditions:
martingale price and linear permanent market impact.

As for the transient part of the market impact, empirical measurements show that provided the
execution rate of the metaorder is relatively constant, the function M1 is close to a power-law
with respect to time, that is MI(f) ~ 1% with a € (0,1), see [BILL15, Boul0, LFM03, TLD*11].
More precisely, the coefficient a is found to be about 1/2 so that the so-called square root
law is approximately satisfied. Actually, it is proved in [PRST17] that under some leverage
neutrality assumption, the square root law can be simply derived from dimensional analysis.

We show in this work that under no-arbitrage assumption (represented by the linear permanent
impact, the martingale price and thus (2)), the market impact function has indeed to be a
power-law of the form MI(t) ~ t17% Then we prove that for any a € (0, 1), the scaling limit of
the price (2) exists and satisfies

P; = By,

1p price manipulation is a round-trip (strategy starting and finishing with null inventory) whose expected cost
is negative.
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I. No-arbitrage implies power-law market impact and rough volatility

with 5 ot . .
X =—f F“”l(s)ds+—f FOA (¢t — s)dWy, 3
t 5 0 5\/1 0 X ( )

where W and B are two Brownian motions, § and A two positive constants and FoA g
the Mittag-Leffler cumulative distribution function, see Appendix I.A.1 for definition. The
correlation between the Brownian motions B and W is stochastic and related to the order flow
imbalance. The above equation is a generalization of the rough Heston model (1). Indeed we
can show that when «a > 1/2, after differentiation, Equation (3) can be rewritten under the form
of (1) (up to a stochastic correlation factor) with associated Hurst parameter H = @ —1/2. For
a < 1/2, we prove that X is not continuously differentiable but has Holder regularity 2a — € for
any € > 0. Therefore we call (3) the hyper-rough Heston model when a < 1/2. Hence we are able
to define rough Heston models for Hurst parameter in (—%, %].

To obtain our results, we only need to specify a model for the order flow dynamics. We
indeed see from Equation (2) that we do not need to model metaorders individually. Only
the aggregated order flow matters in order to derive the price dynamic. More precisely, we
consider for buy and sell market order arrivals two independent Hawkes processes N* and N?
and assume that each order is of unit size, see [EEFRI8, JR16]. Recall that a Hawkes process
N is a self-exciting point process whose intensity (1;);>¢ is defined by

t
Ar= ,u+f ¢(t— s)dNs,
0

with p a positive constant and ¢ a non-negative locally integrable function. Such dynamic
is a generalization of the Poisson process which is usually considered when modeling order
flows, see among others [CDLI13, CST10, SFGKO03]. It is non-parametric and very flexible so
that it is really reasonable to assume that the actual order flow can be well approximated by a
Hawkes based model, see [BMM15, BM16]. Note that we will not put any restriction on the
Hawkes parameters p and ¢, except the non-negativity of y, the local integrability of ¢ and
the fact that they are the same for the buy and sell flows. In this case, it is shown in [Jail5] that
the price process (2) satisfies

t
Po=Po+ [ E-9dNe - NP, )
0
with
+00 +00
6(t)=1+(1+f0 w(u)du)[ P du (5)
t
and .
y=)Y (P,
i>1

where (¢)*! = ¢ and for k =2, (¢)** denotes the convolution product of (@) **=D with ¢.

Using a rescaling procedure to describe the macroscopic behavior of (4), we show that only
one very subtle specification of the Hawkes processes can lead to a non-trivial market impact,
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2. Market impact is power-law

which has to be power-law. Furthermore, it implies that the market is highly endogenous. In
addition, depending on the market impact shape, the scaling limit of the price is a rough or
hyper-rough Heston model (3), with a one-to-one correspondence between the exponent of the
impact function and the Hurst parameter of the volatility.

The paper is organized as follows. In Section 2, we show that under the assumption that the
market impact function is not degenerate, it can only be a power-law with parameter 1— a for
some « € (0,1). Then in Section 3 we explain that the macroscopic limit of (4) is a rough or
hyper-rough Heston model with Hurst parameter H=a —1/2.

2 Market impact is power-law

In this section, we show that if there exists a non-degenerate market impact function, it has
to be a power-law. Moreover we will see that it implies a highly endogenous market. By non-
degenerate we essentially mean a market impact function which is ultimately decreasing for buy
metaorders (and conversely for sell metaorders), see Assumption 1. This is the formalization of
the two phases behavior of market impact discussed in the introduction.

2.1 Asymptotic framework and metaorders modeling

Let T be our final horizon time for the metaorders we will define in the sequel. Recall that
the market order flow on [0, T'] (and after T) is given by two Hawkes processes with the same
parameters, N“ for the buy market orders and N? for the sell orders, with respective intensities
A% and AP. As the time-length of a metaorder is typically large compared to the inter-arrivals
of individual market orders, it is natural to consider that T goes to infinity.

We want to work in a general setting which enables us to be compatible with empirical
studies showing that markets are highly endogenous. In the Hawkes process context, the
degree of endogeneity of the market is measured by the L! norm of ¢, denoted by ll¢pll1, see
[FS15, HBB13, JR15, JR16]. Therefore a highly endogenous market corresponds to the case
where [[¢ll; is close but smaller than unity. So we allow the model parameters to possibly
depend on T. Thus, from now on, we use the superscript T for all quantities that could
depend on T. In particular [[¢7[|; may go to one as T tends to infinity. We also write N7,
NPT uT T to describe the market order flow and model parameters corresponding to the
time-horizon T, and we set ¢7 = a’ ¢ for ¢ a non-negative function such that ||¢[; =1 and
(al) o a real sequence in (0,1). Note that we do not impose that al goes to one. In fact we
will show that one does need to have a’ tends to one for the existence of a non-degenerate
market impact function.

We finally need to define a formalism for a sequence of buy (say) metaorders which will be
added to the global order flow. We assume that a metaorder is split through market orders of

size one over [0, T]. In the spirit of [Jail5], we consider that the arrival times of the market
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I. No-arbitrage implies power-law market impact and rough volatility

orders are given by a non-homogenous Poisson process with intensity
V(0 =17 f ()
T )

f a non-negative continuous function on [0,1] with integral one and I7 a sequence of non-
negative real numbers such that the expected total volume of the metaorder is I7 T. The order
of magnitude of its duration is 7. Note that this is slightly smaller than T as the metaorder will
end after the last jump time of the Poisson process before T. We allow f to be different from
a constant to get more realistic splitting schemes than those given by constant rate Poisson
processes. Suitable choices for f may be exponentially decaying (arrival price benchmark) or

linearly decaying (VWAP benchmark), see for example [ACO1, HLRI15].

To compute the market impact function in practice, one typically considers the empirical mean
of the price movements over many metaorders with similar durations and volumes counted
in proportion of the total traded volume. So in our setting, it is natural to take I T'sr (the
order of magnitude of the total volume of our metaorder) essentially proportional to the total
number of other orders executed over [0, T']. To do so we take the intensities proportional

IT — YﬂT’ with ﬁT — IJ,T(I _ aT)—l’
where y < 1 and B7 is the long-term average intensity of the Hawkes process N®T (87 =

tlir+n (1/1) fot A¢ds, see BDHMI3]). Thus, the proportion of the order flow which is due to the
—+00

considered metaorder is essentially y/(1+ ) and y will be considered reasonably small.

2.2 Market impact in the Hawkes setting

In this section the parameter T is fixed. Assuming that the volume of our metaorder is small
enough, the total order flow is not deeply modified by it. Hence other agents do not observe
significant changes in the order flow dynamics. So the way the market reacts to the incoming
orders remains unchanged. Recall that in our model, the market reaction to the order flow
(without our metaorder) is given by (4).

We work under the setting of the previous section assuming that the number of shares bought
through our metaorder is a non-homogenous Poisson process (1n!) ;0. Therefore we obtain

t
PtT:P0+f (- s)d(NeT = NPT 4 0T,
0

where (N;Z’T,N;7 '"T) 0 corresponds to the aggregated order flows of all other agents. Indeed
all orders being anonymous in the market, our metaorder cannot be distinguished from the
global order flow. Thus the market digests the order flow through the kernel ¢, as if it is a
bivariate Hawkes process with parameters ¢ and ¢ (y being small).
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2. Market impact is power-law

Now we are in the position to properly compute the market impact function of our metaorder.
We have

t
MIT(t) =E[P] - Py] :fo (- 9E[dn].

This equation together with (5) shows that for any ¢ = 0, the market impact function can be
decomposed into two terms as follows

MIT(t)=PMIT (6)+ TMIT (v),

where
PMIT () =E[n]]
and .
TMIT(t):f r7(t-s)Eldn!],
0
with

+00
rTu)=(y—aﬁ—{[ o (wdu,

where we have used the fact that
T

+00 T +00 +00 T k a
fo Y (u)du:Z(fO ¢ (wdu)" = s

k=1 l-a

Note that the definition of PMI” (¢) is compatible with that of the permanent market impact
PMI given in the introduction. Indeed the order intensity from our metaorder being eventually
null and because I'7 (¢) tends to zero as t goes to infinity, we get

lim TMI'(¢)=0.
I—+o00

The effect of the term TMIT is thus only temporary. That is why this term is called transient
part of the market impact.

2.3 Scaling limit of the market impact

We now rescale the market impact function as the horizon time T goes to infinity. If the
sequence of rescaled market impact functions converges, we call its limit macroscopic market
impact function.

First we reparametrize in time and consider (MI T frtT)er+ (we put the function f as
parameter of MI? to insist on the fact that the market impact function depends on the
metaorder strategy). Thus £ =1 corresponds essentially to the end of the metaorder. Regarding
the scaling in space, because in our framework the size of a metaorder is measured relatively
to the total volume, which is of order TﬁT on [0, T1, we finally define our rescaled market

impact function MI' onR* by

MIT(f,tT)

o =PMI (f,0)+ TMI (f,1),

MI' (f,1) =
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I. No-arbitrage implies power-law market impact and rough volatility

with .
PMI' (f,1) = yf Fx)dx
0

the rescaled permanent impact and

aT(l _ aT)—l

™I (f,0) =y -

Tt +00
f f(t—x/T)f ¢(u)dudx
0 X

the rescaled transient impact. Remark that the permanent impact term does not depend
on T. Thus there always exists a macroscopic permanent market impact function and the

convergence of the sequence (mT(f, ) T=0 is equivalent to that of (TMIT(f, ) 1=0. Motivated
by the empirical results on market impact [BILL15, Boul0, GW15, LFM03, PB03| discussed in

the introduction, we make the following natural assumption.

Assumption 1. For constant execution rate, that is f = 15 for some s € (0,1, the scaling limit of
the market impact function exists pointwise and is non-increasing after time s. Furthermore, there
exists t > s such that the value of this limiting function at time t is smaller than that at time s.

There do exist some model parameters such that Assumption 1 is satisfied. For example any
kernel ¢ such that ¢(f) ~o0 ct~* 1 with ¢ > 0. Assumption 1 implies that for f =1 with
s€(0,1], we can define the macroscopic market impact function MI( f, 1) and its transient and
permanent components J{I\Tl(f, t) and m(f, 1) as

MI(f,0) = lim MI (f,5), TMI(f,t)= lim TMI (f,1), PMI(f,)= lim PMI (f,0.
T—+o0 T—+oo T—+o0

Using Tauberian theorems, see Appendix I.A.2, we obtain the following result.

Theorem 1. Under Assumption 1, for any non-negative function f defined on R*, continuous on
[0,1] and supported on (0,11, the macroscopic market impact function and its transient part exist.
More precisely, there exists a parameter a € (0,1] such that for any t >0, when a <1,

t
lim TMI (f,1) =yK( —a)f Flt-wudu, (6)
0

T—+o0

for some K >0, and when a =1
lim TMI (f, ) =yKf(t). )

T—+o00

Furthermore, the Hawkes kernel ¢ necessarily satisfies

t pt+oo
f f Gwyduds = t1"% L(1),
0 Js

where L is a slowly varying function (see definition in Appendix 1.A.2). Finally we necessarily have
1-a")'TT*L(D)—K,

and consequently a® — 1 (see Proposition 7 in Appendix 1A.2).
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2. Market impact is power-law

Considering for example f =1j9 1], Theorem 1 shows that under no-arbitrage together with
the assumption of the existence of the macroscopic market impact function, the transient part
of the market impact is power-law while the permanent part is linear. Moreover Equation (6)
gives that the decay of the market impact is essentially a power-law with exponent —a, see
Figure L1 for illustration.

Figure 1.1 - Illustration of the decomposition of the macroscopic market impact function for a
metaorder executed uniformly over [0, 1], with @ = 0.5. Time is on the x—axis.

We see that the connection between ar and T is completely specified in Theorem 1. For given
a, there is only one asymptotic regime leading to a non-trivial limit. Note that the fact that
ar goes to one implies that the non-linear transient part of the market impact (case @ <1) can
arise only in a highly endogenous market. This is actually very natural for the following reason.
A non-linear transient impact means that the market reacts differently to a child order which
is in the end of the metaorder compared to a child order in the beginning of the metaorder.
For this to be possible, one needs that correlations in the order flow to survive all over the
time-length of our metaorder. In our probabilistic setting, using the population approach to
Hawkes processes, see [BM16, FS15, JR15, JR16], it is easily seen that such property can hold
only provided ar goes to one.

In this regard the case @ =1 is quite degenerate because the market has somehow no memory
and reacts the same way to market orders, independently of their position within the metaorder.
Even more, the price instantaneously decreases to its permanent level when the metaorder
is completed. This means that the market is able to detect instantaneously the end of a
metaorder, which seems unrealistic and incompatible with empirical measurements.
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I. No-arbitrage implies power-law market impact and rough volatility

3 Macroscopic limit of the price

We finally show in this section that under Assumption 1, the macroscopic price, that is the limit
as time goes to infinity of the properly rescaled microscopic price (4), is diffusive with rough or
hyper-rough volatility. Moreover, we make explicit the link between the market impact shape
exponent and the Hurst parameter of the volatility.

3.1 Scaling limit of the price process

We start with an assumption which is necessary to get a non-trivial long term limit for the
price (4).

Assumption 2. For some 0 >0, we have

1-ahu'rt — 6.
T—+00
Assumption 2 is classical in the context of Hawkes processes with kernel whose L! norm tends
to one, see [JR16]. Indeed, it ensures that the number of events does not explode asymptotically.

According to Equation (2), price and volume are homogenous. Therefore we rescale the price
the same way as the metaorders. Taking for simplicity and without loss of generality Py =0,
we define for £ €[0,1]

— 1 1 al
P, = I
TﬁT

— [Nt o)y - ng),

where oo ,
=0 +f wT(u)du)(l—f ¢" (wdu).
0 0

Let a be the parameter of the market impact function in Theorem 1, K the constant introduced
in Equations (6) and (7) and A = (KT'(2—a))~!. We have the following result for the macroscopic
limit of the price process, whose proof is given in Section 4.2.

Theorem 2. Under Assumptions 1 and 2, the sequence of rescaled price processes (ﬁT)TEO converges
in law for the Skorokhod topology towards a process P such that for t € [0,1]

SO | b

Pi= =By~ Byy).

where B* and BP are two independent Brownian motions such that B, and B;b are two
t t
martingales, X is increasing and satisfies

Xf:[ F‘”(s)ds+—f For (e - S)dBau
0

and XY is increasing and solution of the same equation as above replacing the superscript a by b.
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3. Macroscopic limit of the price

In particulay, there exists a Brownian motion W such that the integrated variance X = (X*+XP)/6
of P is solution of the stochastic rough Volterra equation

2 [t 1 [t
X =—f F“(s)ds+—f FOM (¢t — ) dWy.. 8
"ol 5vA Jo s ®)

Moreover, for any € > 0, the process X has Hilder regularity 1 A Qa —¢€). It is continuously
differentiable for a > 1/2 and not continuously differentiable for a < 1/2.

Theorem 2 shows that the no-arbitrage principle together with the existence of market impact
imply that the macroscopic price? is a diffusive process whose cumulative variance is solution
of a stochastic rough Volterra equation (except when @ =1 which corresponds to the classical
Heston model, see Corollary 1). Note that X plays the role of an integrated variance and that
when a < 1/2 it is not continuously differentiable. Thus, in that case, the spot variance is not
well-defined and only its integrated version makes sense. This is why for a < 1/2, we call this

model hyper-rough volatility model (more precisely hyper-rough Heston model, see below).

From Theorem 3.2 in [JR16], we have that for @ > 1/2, the process X“ is almost surely
differentiable and its derivative Y“ is the unique solution of

A t 1 4
vi=—([ -9 t1-v9Hd +—f t-5)%L\/vadBa).
t F(a)(fo( 97 (A= Yoods \/ﬁo( s) )

The same result holds for Y? replacing the superscript a by b. We deduce that when a > 1/2,
the integrated volatility admits a derivative and the macroscopic limit of the price follows a
rough Heston model. More precisely, we have the following corollary.

Corollary 1. When a > 1/2, the process X is differentiable almost surely and its derivative Y is
the unique solution of the stochastic rough Volterra equation

A

Y, = (YO+YD)6 = —
t (t+ t) l_,(a)

t 2 1 t
_aa-1l.c - _qa-1
(fo (=973 Ys)ds+6\/zf0 (t—9)* 1/ YdWy),

with W a Brownian motion. Furthermore the dynamic of the price P is

PO |
dP, = %( YAdBY —\/Y}PdBY).

This result highlights the fact that at the macroscopic limit, the correlation p; between the two
Brownian motions driving price and volatility is stochastic. More precisely we have

Yi-vp

Pt=——op"
YA+Y,

2Remark that under our completely symmetric setting, price can become negative. This is however obviously
not very important for our purpose here.
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I. No-arbitrage implies power-law market impact and rough volatility

Hence the correlation sign depends on that of Y- YP. The process Y% (resp. Y?)
corresponding to the volatility of the ask (resp. bid) side of the market (see Step 4 in
Section 4.2), this can be interpreted in terms of order flow dynamics. Indeed suppose that
Y% Y? and that price is increasing. Then the instantaneous imbalance has the same sign
as price returns. Thus the volatility increases as the order flow excites the price dynamic.
Conversely, if the price increases and Y% < Y, the volatility decreases as the order flow tends
to compensate the upward price variation.

To prove the convergence in law in Theorem 2, we show that (ﬁT)TZO is tight and that all limit
points have the same law. This is done using the characteristic function of Hawkes processes in
the spirit of [EER19]. A direct proof would consist in obtaining uniqueness in law for solutions
of Equation (8) as done in [AJLP19] for a > 1/2. However, such approach seems quite intricate
to adapt for a < % We have the following result whose proof is given in Section 4.3.

Theorem 3. Let X be the cumulated variance process given in Theorem 2 and h a continuously
differentiable function from R* to R such that h(0) =0. The function

t
y(h,t) = [E[exp(f ih(t—s)dX;)]
0

satisfies
t
w(h, )= exp(/o g(s)ds),

with g the unique continuous solution of the Volterra Riccati equation
t 1
g(®) :f M- s)(6_11g(s)2 +67"2ih(s))ds, 9)
0

where f®* is the Mittag-Leffler density function, see Appendix LA.1.

Theorem 3 extends some already known results about characteristic functions related to rough
Heston models for a > %, see [EEGRI19, EER19, AJLP19]. Note that the characteristic function
of the macroscopic price process P; can also be obtained using the same type of proof as that
for Theorem 3.

3.2 Conclusion

We have considered three main assumptions in this work:

» No arbitrage, in the sense that the price process is a martingale and permanent market
impact is linear.

* Existence of market impact with a transient component,

* The order flow can be fitted by a Hawkes process (with no restriction on the Hawkes
parameters).
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4. Proofs

We have shown that in this quite general framework, the market impact function can only be a
power-law with exponent 1 — & for some a € (0,1) (we drop here the case @ =1 which leads to
a somehow degenerate market impact function). The parameter @ also appears necessarily

1+a)

in the tail of the kernel of the Hawkes process driving the order flow: ¢(x) ~ x~ as x

goes to infinity. Furthermore, this also implies that the market is highly endogenous. Even
more interestingly, we obtain that the macroscopic behavior of the price is that of a rough or
hyper-rough Heston model with Hurst parameter H = a —1/2.

The relationship between market impact, tail of Hawkes kernel and volatility Hurst parameter
enables us to confront our results to empirical measurements. In [BILL15] it is found that
the market impact function fits a power-law with exponent 0.45. In [GJR18] it is shown that
volatility is rough with a Hurst parameter of order 0.1. Finally in [HBB13], the authors calibrate
a Hawkes process on market orders arrival and obtain that the kernel decays as a power-law
function with exponent around —1.45. All these measurements are compatible with our results
(and suggest that market impact is close to square root).
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4 Proofs

41 Proof of Theorem 1

Let f=110,5, s € (0,1]. From Assumption 1, we have the pointwise convergence of (mT(f, N r1=0-
As previously explained, this is equivalent to the convergence of (TMI T( f*)) r=0. Moreover,

(PMI (f,"))T=0 being independent of T, Assumption 1 implies that the sequence of functions
-7 t +00o
TMI (f,t) :yf al( —aT)‘lf Gwduf(t-ydy, (10)
0 yT

converges pointwise. The function ¢ being non-negative and integrable, TMT T( f>) is non-

negative, non-decreasing and concave on [0, s] and then non-increasing. Hence mT( fr)
reaches its maximum in s. By pointwise convergence, m(f, -) has the same properties.
Because we have assumed that TVTI(f, 1< M\I(f, s) for some t > s and m(f, -) is non-
decreasing, we deduce that TMI(f,s) > 0.

Let g() = y_l T/\zvu(l[o,[], t) for t € (0,1] and consider

t ptoo
R(1) :fo f ¢d(w)dudy > 0.
y
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I. No-arbitrage implies power-law market impact and rough volatility

According to Equation (10), we have for ¢ € (0,1]

R(T?) g1

—

R(T) T—+o0 g(1)

>0. (11)

By the characterisation theorem, see Theorem 4 in Appendix 1.A.2, we deduce that the
previous limit holds for all ¢ > 0 with some suitable extension of the function g. Moreover
there exist some f€R, K>0 and L a slowly varying function such that for >0

g()=KtP, R(t)= L) P

Remark that for t € (0,1], we have g(¢) = m(l[o,l], t), which is concave. Thus S € [0,1].
Taking s =t =1 in the pointwise convergence (10), we get
1-al)!
aT( )

T p+oo
/f pwdudy=a’(1-aH)'TPIL(T) — g)=K>0. (12)
T 0 ¥y T—+o00

Consider now the sequence of functions

+

d(u)du.
Ty

—T _
I'=a'a-a"H"!
We get from (11), (12) and property of slowly varying function that for any ¢ >0
t_r
lim f T (y)dy=KtP.
T—+00Jg
Suppose that §#0. Let 0<a<b and y € [a, b]. We have

=T
Yy T B _ 4P
lim b_T(u) du:yﬁ aﬁ.
T—+oc0Jg fal-* (U)dl) bP—a

The right hand side is the cumulative distribution function of a random variable with support

on [a, b] whose law is denoted by mg ,- Hence we have the convergence in law

=T
I' (w)du
1[a,b1_(—) - mﬁ,b(du).

a

So for any bounded continuous function g on [a, bl, we get

b T b
lim T(u)g(u)duzf g(u)mgb(du).
I=+ooJa ffr (v)dv a ’

Consequently,

) b—T b B 5 5 b fo1
lim r (u)g(u)dusz gwm,  (duw)(b —a)=K,Bf gwuP~'du.

T—+oco
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Now let & be a non-negative measurable function defined on R*, continuous on [0,1] and
supported on [0,1]. For £ <1 we have

t t
fh(t—u)fT(u)du - K,Bf h(t—wuPldu
0 T—+o00 0

and for t>1

t t

h(t—u)fT(u)du — Kp h(t—u)uﬁfldu,
T—+o00o -1

t =T
f h(t—wT (wdu=
0

-1

Finally for any £ =0
- t
TMI(h,0)= lim TMI (h,1) = yKﬁf Bt — wubdu.
T—+o00 0

Thus when f € (0, 1], we have the existence of a macroscopic limit for the transient part of the
market impact function (and therefore for the market impact function). Remark that for =1

t
TMI(f, 1) :)/Kf fwdu.
0

Consequently, in that case, TM1(1jg,1,-) is a non-decreasing function. This is in contradiction
with Assumption 1, hence § cannot be equal to 1.

Suppose that §=0. For any ¢ >0 we have

—T
I' (w)du
log———— _ — 06o(duw),

foth(U)dl) T—+00
where & is the Dirac measure in 0. Then for any bounded continuous function g
=T
LT
lim T(u)g(u)du:g(O).
I=teoJo (T (v)dv

Now let f be a non-negative measurable function defined on R*, continuous on [0,1] and
supported on [0,1]. For <1 we have

t
ff(r—s)fT(s)ds —~ Kf(®)
0 T—+oo

and for t>1 , .
OSf f(t—s)fT(s)dssf Fe-9T (9ds — 0,
0 0 T—+o0

with f is a non-negative continuous extension of f1p1; on Rt supported on [0,1+ %1]. Finally
for any t=0
TMI(f,t) =yKf(r).

Consequently for § =0, we also have the existence of a macroscopic limit for the transient
part of the market impact function (and therefore of the market impact function). We obtain
the result letting @ =1 - .
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I. No-arbitrage implies power-law market impact and rough volatility

4.2 Proof of Theorem 2

We proceed in five steps.

1. Step 1: We first prove a preliminary result on the characteristic function of Hawkes
processes that we use later in Step 3.

—T
2. Step 2: We rewrite the sequence (P )= in a convenient way.

3. Step 3: We adapt results from [EER19] and [JR16] on scaling limits of nearly unstable
heavy-tailed Hawkes processes to our more general framework.

4. Step 4: We deduce from the previous steps the convergence in law for the Skorokhod
topology of the sequence (ﬁT)Tzo and make explicit the equation satisfied by the limit.

5. Step 5: We prove the results on the regularity of solutions of Equation (8).

For simplicity and without loss of generality we take Py =0.

421 Stepl

We derive a result on the characteristic function of Hawkes processes using similar arguments
as those introduced in [EER19]. Recall that the notation # stands for the convolution product
on R*. More precisely for f and g suitable measurable functions and m a measure

t
(f*8)(1) =f0 ft—s)g(s)ds

and

t
(f *dm) (1) =f ft—s)ym(ds).
0
We have the following proposition.
Proposition 1. Let N be a Hawkes process with parameters (v,¢), with v a locally integrable
non-negative function and ¢ a non-negative measurable function such that |¢p|l, < 1. For any
continuous function h from R* into R,

L(h, t) = Elexp((ih * dN)(2))]

satisfies

t
Lh, 1) = exp(f (C(h,s)—Dv(t—s)ds),
0
where C is solution of the equation
C(h,") =exp(ih+ (C(h,) — 1) * ).
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Proof Let N be a Hawkes process with parameters (¢,¢) and N° a Poisson process with
intensity v. Let (N/)jen+ be independent copies of N, also independent of N°. Using the
population interpretation of Hawkes processes, see Appendix C.1 in [EERI18], we deduce the
following equality in law

L, N
< A0 N
N, =N;+) N/,
Jj=1
where (T) jen~ are the jump times of the process N°. Consequently

N ,
(iR« dN)(D Z (ih+dN) D) + Y (ih*dN) (- T)).
j=1

Then taking the exponential and conditional expectation with respect to N° we get

N?
exp((ih=dN®) [] L(h, t-T})
j=1

exp(((ih+log(i(h,-))) * dNO)([)),

E[exp((ih* dN)(8))|IN?]

where L is defined as L with N instead of N. Remark that

N
((ih+1og(L(h,))) *dN°)(t) = Y_ ih(¢— Tj) +log(L(h, t - T}))

j=1

and that Re(log (I:(h, ))) <0 as |L(h,)| < 1. Thus using Proposition 8 in Appendix I.A.4, we
get
ro _
L(h,t) = exp(f (eI L(h, t - 5) - 1)v(s)ds).
0

In the same way, we have

t X _
L(h,t)= exp(f (eI L(h, t—5)—1)p(s)ds).
0
Thus setting
C(h,t)=e"DL(n,1),

we obtain
¢

L(h, 1) :exp(f (C(h, ) =1)v(t - s)ds)
0

and

C(h,") =exp(ih+(C(h,") —1) * ¢).
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I. No-arbitrage implies power-law market impact and rough volatility

4.2.2 Step 2
We consider the price model (4). Let M%T be defined by

t
MT = NOT f 8T ds.
0

We define MP7 the same way replacing the superscript @ by b in the above equation. We have
the following result.

Lemma 1. The price process (4) can be written as
oo T _ 2 bT
Pl = (1+f0 v (dv)(m' - M) h.

Proof. We have

t—u

t +00
szf (1 +[ UIT(U)dU)(l— (PT(V)dU)d(Na’T—Nb’T)u.
0 0 0

We first deal with the term T; defined by

t +o00 t—u
T f (1 +[ v (v)dv) o7 (wdvd(N*T - NPT,
0 0 0

+00 ¢ ¢
(1 +f '(,UT(U)dl))]v f (,bT(l}— u)dUd(Na’T—Nb»T)u'
0 o Ju

Using Fubini-Tonelli theorem we get

+00 t rv
T = (1+f wT(v)dv)ff(/)T(v—u)d(N“’T—Nb'T)udv.
0 0 JoO

Thus we deduce
+00 t
T = (1+f wT(v)dv)f (ALT — - 2AbT 4 W) dw.
0 0

Finally

o
=N
Il

+00 t
(1+f0 wT(V)dV)fO (AN®T - A%Tdy—dNDT + AL Tdy)

+00
(1 +f0 y T wdv)M®T - MPT),

Lemma 1 leads to ’
_T 1-a +00 T b
P, :T—“T(l +f0 v wdv) & - M.
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423 Step3

We temporarily drop the superscripts a and b. Indeed, the results are valid both for buy and
sell order flows. Consider the sequences

T T rtT T
l-a Tu
T AT T T
N, Ay = Tl Jo Asds, Z; = T af

l—a

xT
= TuT
u

(X7 = A7) (13)

defined for £ €[0,1]. The following result is borrowed from [JR16].

Proposition 2. The sequence (AT, xXT 7Ty is tight. Furthermore, for any limit point (A, X, Z) of
(AT, XT 7Ty, Z is a continuous martingale, [Z,Z] = X and A = X.

In addition, we have the following proposition which extends Theorem 3.1 in [JR16].

Proposition 3. Under Assumptions 1and 2, for any limit point (X, Z) of (XT,Z7T), there exists a
Brownian motion B on (Q, < ,P) (up to extension of the space) such that

Z[ = BX[

and X is a solution of the stochastic rough Volterra equation

t
X, = f FOMr—s)ds+ FOMt - 5)dBy,. (14)
0

1 t
vl
Moreover, for any € >0, the process X has Hilder regularity 1 A 2a — ¢).

Note that we are here under more general assumptions than in Theorem 3.1 in [JR16]. Indeed
in [JR16] we have

+00
[ P(s)ds=Kr %,
¢
while we only know that

t p+oo
f f Gwyduds = L)',
0 Js

with L a slowly varying function. To prove Proposition 3, it is enough to get the following
lemma. The rest of the proof is similar to that in [JR16].

Lemma 2. The sequence of functions p’ () = 1;—?TWT(TL‘)T converges weakly towards f**.
Furthermore [} p” (s)ds converges uniformly towards F¥".

Proof. The function p” is non-negative with integral equal to one. So it can be interpreted
as the density of a random variable. Hence it is enough to show that its Laplace transform
converges pointwise to get weak convergence. We have for z >0

1-al

al

P(Z)
1-aT(1-a") 1 (p(E)-1)

AT () — ST R
p(2) = V()
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I. No-arbitrage implies power-law market impact and rough volatility

Let t +00
R(t) = f f ¢(u)duds.
0 Js

Recall that from Theorem 1, R(¢) = t'"*L(#). By Karamata’s Tauberian theorem, see Theorem
5 in Appendix I.A.2, we have

5 wez 1
R(2) ~or 2" PLOIT2 - ).

Integrating by parts twice we obtain

N +00 1 R
R(z)zfo e “R(s)ds = ?(1—(/>(z)).

So we get

T

) Lk
a’a-ahH'a —</>(§)) ~Ttoo @' (1— aT)‘lT‘“L(T)%z“r(z— Q).

We have shown in Theorem 1 that
atQ-a")y'T7*L(T) oK

—+00

The function L being slowly varying, see Appendix 1.A.2, we deduce

lim a’(1-a")t(1- gf)(%)) =z2°T(2- a)K,

T—+00
and finally
1 A R
1' 5T = = = a’/l,
e A oyl i |

with A = (KT(2-@))~!. The uniform convergence in Lemma 2 is obviously deduced from
Dini’s theorem. ]

We finally show that the sequence (X7, Z7)7-o converges in law for the Skorokhod topology.
We already know that it is tight, so it is enough to prove that all the limit points have the same
law.

Let (X, Z) be a limit point of (X T ZTYr=0. Using Proposition 3 together with the stochastic
Fubini theorem, see [Verl2], we have

t 1
X =f BA(r—§)(s+ ——Z,)ds.
t 0 f ( m )

From Example 42.2 in [SKM93], this leads to

A
DaXt + AX}) - /11' = \/;Z[,
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4. Proofs

where D¢ is the fractional derivative operator defined in Appendix I.A.3. Thus the law of
(X, Z) is uniquely determined by the law of X. Consequently it is enough to prove uniqueness
in law for limit points of (X Y=o to get convergence in law of (X T ZT)rso. For this we prove
that the characteristic function of any limit point X of the sequence (X T)r=o is a functional of
the solution of a fractional Riccati equation. Uniqueness in law is then a consequence from the
uniqueness of the solution of this equation.

Proposition 4. Let X be a limit point of (X)) 750 and h a continuously differentiable function
Jfrom R* to R such that h(0) = 0. The function

w(h,t) =E[exp(ih * dX),]
satisfies
t
w(h, 1) = eXp(fO g(s)ds),

with g the unique continuous solution of the rough Volterra Riccati equation
1
g=f""x(67"28%+ih). (15)

To show this result, we are inspired by the methodology of [EER19]. However, note again that
we are in a more general setting.

Proof. Recall that

1-a’

T _ T
Xt = WNtT.

We introduce the following quantities

h' (=

1-a’ 1t
TH“T h(z), L (h",£) = Elexp(ih” * ANT)(1)) and y” = LT (k7 ¢1).

For every T, according to Proposition 1, there exists a function CT solution of
CT =exp(ih” +(CT 1) x ¢7)

such that .

L"h"p= exp(f
0

Now define the sequence g’

(CT(s)- l)qus).

gl =ct(s-1.
We have

T 8 (Ta-alu'1 dgT+1=exp(m % ins g7« (ToT(T 16
1/ _eXP(l—aT*( (l1-a )y R+))an g +1=exp( T,uTl +g" *(Tp" (-T)). (16)

An immediate adaptation of Proposition 6.4. in [EER19] gives that for any s € [0, 7]

1gT () <cma-ah), (17)
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I. No-arbitrage implies power-law market impact and rough volatility

with c(h) a positive constant depending only on /. Hence for T large enough we have
1
log(1+gh =gT—5(gT)2—€T(h,'), (18)

with €T (h, )| < c(h)(1 - aT)3. According to Equations (16) and (18), we get for every s€ [0, f]
1—al
gl(s)= g T2 +el(h,s) + —— T ih(s)+g" * (TpT (1)) (s).

Using that .
YTty =Ty (D),

izl
we deduce from Lemma 4.1 in [JR15] that

T T
Ty — T, —a
g ()= (Ty" ()= ( ghH2+el(n, )+ T )(s)+ 58 T2 +€l(n, s)+ T ih(s).

Consequently, letting 01 = (1 - aT)_lgT
1 1
07(s) = (T —-ay" (1) * (59%+ S+ ri (s),

with

ri(s) (T -aHyT (D) (e"(h,) A —a) 2 +(

1 1.
—T(l—aT),uT_6 )ih)(s)

+

orv-1looro o o T T L.
(1-a’) 2(g (N°+A-a’) e (h,s)+—TuTzh(s).

Because a goes to 1, we know from Lemma 2 that in the sense of weak convergence
Ta-ahyTcT) — N
T—+o00

Finally we have

1 1
Or = f%" « (502T+—ih)+r1T+r2T,

o

where

= (T -ahy" (1) - ) * (29% + %ih)

We now prove that (I’IT)Tzo and (rzT)TZO goes to 0 in CO([0, t],R) for the sup-norm.
Using Assumption 2, the second part of Lemma 2 and Equation (17), we get that (r])7=o
goes to zero in C°([0, t],R). The sequence (07)7=0 is bounded for the sup-norm according to

Equation (17). Moreover according to Lemma 3 (see after the proof) Or is differentiable, and
(07) r=0 is bounded for the sup-norm. By integration by parts we have

ri(t) = (fol T(1-al)y"(sT)ds - F**) * (04,07 + %ih’)(t),
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4. Proofs

where we have used the fact that 87(0) =0 and k(0) = 0. We then conclude that (rzT )T=0
converges towards 0 in C([0, 1], R) using dominated convergence. Lemma 3 together with the
Ascoli theorem gives that the sequence (07)7>0 is relatively compact in (CO([O, t, R, IIOO).
Moreover for any limit point 0 of the sequence (01)7x0, we have that 0 is solution of

0 = foN « (%02 + %ih).

The above equation has a unique continuous solution in C°([0, 7], R), see Section 6.2.4 in
[EER19]. Thus the sequence (01) =0 converges toward this solution.

Finally remark that
T () =Elexp(ih *dXT)(1)].

Thus convergence in law of (X Ty rso towards X implies that (1//T) T=0 converges pointwise
towards the function . Passing to the limit in (16) we get

t
y(0) = exp((0 + (O1g):) = exp(&fo 6(s)ds).
Letting g = 00, we have the result. O

It is enough to characterize the law of X to know (h, 1) for any t€ R* and he Cé([O, t],R).
Therefore uniqueness in law for the limit points of (X Tyrsois a corollary from the uniqueness
of continuous solution for the Volterra Riccati Equation (15), see Section 6.2.4 in [EERI19].

We now give the lemma we used in the proof of Proposition 4.

Lemma 3. The functions (O1)T=0 are continuously differentiable and (Q'T)Tzo is bounded in
Co([0, 1, R).

Proof. Using the proof of Proposition 1 we have
S
0r =(1-a")"" (Elexp((if +ih+ dN.?)T

with N a Hawkes processes with parameters (¢7,¢p7) where ¢7 = a’¢p. Because h(0) =0,
h+dN ? admits a derivative and for any s € [0, f]

(h+dNL)(s) = (0 * ANT)(s).

Furthermore we have
I(R *« dNL)($)| < 11 oo N/

Using that
t
AL =yT(s) +[ wl(t-s)dm!,
0
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I. No-arbitrage implies power-law market impact and rough volatility

we get
tT tT
1-ahEN 1=~ aT)[E[[ Alds < f 1-ahyl(sds=<1.
0 0

Consequently using derivation for integral with parameters, 07 is differentiable and

0p=01-a")” 1[E[(zh’+zh’>deT)1 aTexp((lh—l—lh*dN )__“T)]
T Tl ) )

Thus we have for all s€ [0, £]

16%(9)] < A= aDENR oo + 1 oo N1

1
Tu'(1-a")
The right hand side is finite and independent of s, consequently the sequence (6%) =0 is
bounded in C°([0, ], R). O

Finally we have proved that the sequence (X', ZT)r5¢ converges in law for the Skorokhod
topology.

424 Step4

Consider the sequence xeT zaTy,._, (resp. (Xb'T,Zb'T)Tzo) defined the same way as in
Equation (13) with (N®T)75¢ (resp. (N?T)75¢) instead of (N7)75¢. According to Lemma 1 we

have

— 1

P, = Ta ”f v du) (M = M) = — (M - M),
u

Thus,

—T 1

Pl = (77 - 20T),

¢
VTpTfa-al)
Using Step 3, we get that (Z%T) 150, and (Zb'T)Tzo converge for the Skorohod topology.

—T PN

These sequences being independent, (P )r=¢ converges towards a process P in the Skorokhod
topology. Furthermore we deduce from Proposition 3 together with Assumption 2 that there
exist two independent Brownian motions B* and BY such that

SO | b

Pi=—=(B%:~By)
where X (resp. X?) is the limit of the sequence (X*T) 7= (resp. (X*T)750) and is solution of
Equation (14) with Brownian motion B (resp. B?). Hence X = Xngb is solution of

2
- 5[ FoM (- s)ds+—f FOA (- 5)— (B§f+B§§).
Moreover there exists a Brownian motion W such that Wy, = \/LS(B?(” +B§’( »). Consequently
t t
2t a,A 1 ‘ a,A
=—| F% (t—s)ds+—f F®"(t—s)dWxk,.
5[0 svAJo
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425 Step5

We first recall a result from [JR16].

Proposition 5. Let X be a solution of the stochastic Volterra equation (8). Then for any € >0,
almost surely, X has Holder regularity 1 A 2Qa—¢€). And if @ > 1/2, X is almost surely differentiable.

We now give a new result on the regularity of the solution of Equation (8).

Proposition 6. Let a < % Let X be a solution of the stochastic Volterra equation (8). Then, almost
surely, X is not continuously differentiable.

Proof. As already seen in Step 3, X satisfies

21 A
DaXt:—/lxt‘l‘Ft‘l‘ %WXI. (19)

Applying the law of iterated logarithm we get for 0<r<1

. D*X, - DX~ 2 (t-5s) VA
limsup =5
s=1 \/Z(Xt — X)loglog ((X; — X))

Assume that X is continuously differentiable. According to Appendix I.A.3 we have

1

DaXt =
Ird-a

t
f (t—s5)"%X.ds.
0

Let ¢ be such that X; # 0. Such a point almost surely exists because X is not constant. Indeed
suppose it is constant, as Xy = 0 it implies that X = 0. But obviously the null function is not
solution of Equation (19). For such ¢ using that

Xp— Xs~s—y (£— S)X;,

we have

t—s
lim =0.

20X - X9 loglog [ (X, - X))

Hence

. D*X, - D%X; VA
limsup 5

= (20)
=1 \/ 2(X; - X;) loglog [(X; — X;) ]
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We now give a bound on |D%X; — D¥X], for s < t, where || X'[|o denotes the supremum norm
of X’

ID*X; — D* X|

N t
|f ((r—u)‘“—(s—u)‘“)xgdmf (t—w) "X, dul
0 N

: —a —a| |y 1 X" lloo 1-a
< |(t—w) ™% = (s— )| I1X loodu + ; (t—s)
0 _
N X/
< f (t—w) ™ —(s—u)™“ duIIX'||o<,+”1 ”oo(t—s)l_“
0 _
s —-a ! -a ! ”X/”oo 1-a
< ([ u du+f u”%du) | X lloo + g Y
0 s -
1 X'
< (—(t—s)l—“+(t—s)s—“)||X’||oo+” "°°(t—s)1—“.
l1-a l-a
We get
. D*X;— D*X;
lim =0.

= \/Z(X[ — X)loglog[(X; — X9

This is in contradiction with Equation (20), hence X cannot be continuously differentiable. []

4.3 Proof of Theorem 3

We have seen in Section 4.2.4 that X = (X% + X?)/8, with X% and X? independent copies of
the limit of the sequence (X?)7s¢. From Proposition 4, we immediately obtain Theorem 3.

ILA Appendix

ILA1 Mittag-Leffler functions
Let (a,f) € ([R{:)z. The Mittag-Leffler function E, g is defined for z € C by

Z}’l

Eap®= 2 Fan=pr

For (a,A) € (0,1] x R*, we also define
FOMN = A Egq(-At%), £>0,

t
F*Mp = / Fe(s)ds, t=0.
0

The function f** is a density function on R, called the Mittag-Leffler density function. Its
Laplace transform is

]2'05,/1 (Z) -

A+z9°
When a =1, the Mittag-Leffler density simply corresponds to the exponential law with
parameter A.
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L.A. Appendix

I.LA.2 Tauberian theorems
The following results can be found in [BGT89].
Definition 1. A measurable function L:R* — R is slowly varying if for all s >0

L(st)
L(t) t—+oo

Proposition 7. Let L be a slowly varying function and a >0, then
L) — 0.
f—+o0

Theorem 4. (Characterisation theorem) Let U be a positive measurable function on R, such that
for all se C, with C a set with positive Lebesgue measure

Ul(ts) (5)>0
U1 t—ro0® '
for some function g. Then the previous limit can be extended for all s> 0. Let § be this limiting

Sfunction extending g. There exist a € R such that g(t) = t* and a slowly varying function L such
that U(t) = t“L(1).

Theorem 5. (Karamata’s Tauberian theorem) Let U be a measurable non-negative function, ¢ =0,
p> -1 and assume U(z) = [ e U(s)ds is finite for any z>0. Then

L(1)

1) ~t00 CEP
Ut ~400 € Td+p)

Jfor L a slowly varying function implies

R 1
U(z) ~o+ cz P71L(=).
Z

I1.A.3 Fractional derivative

For a €[0,1), the fractional derivative operator D% is defined for f A-Holder function (with
A > a) by
1 d ¢t
— | (t-9)"%f(s)ds.
I'l-a) dtj; (£=9"f(9ds
Note that if the function f is continuously differentiable and f(0) = 0. The derivation for
integral with parameters gives

DYf (1) =

a _ 1 ! —-a ¢!
D f(t)—r(1 fo(t—s) f(s)ds.

More information on fractional differential operator can be found in [SKM93].
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I.LA.4 A result on inhomogenous Poisson process

We recall the following well known result.

Proposition 8. (Exponential formula) Let N be an inhomogenous Poisson process with intensity v
and f be a complex measurable function defined on R* such that Re(f) < 0. Consider the function

Ny
Ne(t) =) f(Ty),
i=1
where (T;)jen are the jump times of N. For any t =0 we have

t
Elexp(Nf(1))] = exp(fo e/ —1)v(s)ds).
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CHAPTER II

From quadratic Hawkes processes to
super-Heston rough volatility models with
Zumbach effect

Abstract

Using microscopic price models based on Hawkes processes, it has been shown that
under some no-arbitrage condition, the high degree of endogeneity of markets together
with the phenomenon of metaorders splitting generate rough Heston-type volatility at
the macroscopic scale. One additional important feature of financial dynamics, at the
heart of several influential works in econophysics, is the so-called feedback or Zumbach
effect. This essentially means that past trends in returns convey significant information
on future volatility. A natural way to reproduce this property in microstructure modeling
is to use quadratic versions of Hawkes processes. We show that after suitable rescaling,
the long term limits of these processes are refined versions of rough Heston models
where the volatility coefficient is enhanced compared to the square root characterizing
Heston-type dynamics. Furthermore the Zumbach effect remains explicit in these limiting
rough volatility models.

1 Introduction

Since the paper [GJR18], it has been well accepted that volatility is rough. This means that log-
volatility essentially behaves as fractional Brownian motion with Hurst parameter of order 0.1,
see also for example [BLP16, DFZ19, GH18, LMPRI18]. There are microstructural foundations
for rough volatility that use Hawkes processes to create a microscopic model for asset prices. In
this vein, the authors in [EEFR18] consider four stylized facts concerning market microstructure:
the high degree of endogeneity of markets, the no-arbitrage property, buying/selling asymmetry
and the long memory of the market order flow generated by metaorders. They show that when
only the three first stylized facts are taken into account, one obtains the Heston model for the
scaling limit of the price process. When the long memory property of the flow is added, the
limit is the rough Heston model introduced and developed in [EER18, EER19]. In the rough
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effect

Heston model, the spot variance V; can be written as follows:

A

Vi=Vo+
R N )

t
f (=51 (Bo(s) — V)ds + v/ VidBs, (1)
0

where A and v are some positive constants, 0y is a deterministic function, a € (1/2,1) and B is
a Brownian motion. The rough behavior is due to the singular kernel (¢ - $)%~ 1 which is the
same as that appearing in the Mandelbrot-van Ness representation of a fractional Brownian
motion with Hurst parameter a —1/2. More recently, assuming only that the order flow is
driven by a linear Hawkes process and that there is no statistical arbitrage on the market, it is
shown in [JRI8] that the price necessarily follows a rough Heston model. In fact, as far as we
know, all the works on microstructural foundations of rough volatility have hitherto produced
a rough Heston model.

However, in the context of rough models, there are other aspects of volatility that one could
wish to understand from a microstructural perspective. A first point is to go beyond the square
root associated to the dynamic of the volatility in the rough Heston model (1). A particularly
interesting case is when an additional additive or multiplicative factor appears, enhancing the
square root and leading to fatter volatility tails, see [AJEEL9, BDB17]. We call such models
super-Heston rough volatility models.

Another important stylized fact of financial time series is the feedback of price returns on
volatility. This phenomenon is introduced by Zumbach in [Zuml0] where he measures the
impact of price trends on future volatility, see also [LZ03, Zum09]. It is demonstrated that
price trends induce an increase of volatility. We refer to this property as Zumbach effect.
In the literature, see notably [CBI12], a way to reinterpret the Zumbach effect is to consider
that the predictive power of past squared returns on future volatility is stronger than that
of past volatility on future squared returns. To check this on data, one typically shows that
the covariance between past squared price returns and future realized volatility (over a given
duration) is larger than that between past realized volatility and future squared price returns,
see [BDB17, CB12, EEGRR20] for more details. We refer to this version of Zumbach effect as
weak Zumbach effect.

It has been proved in [EEGRR20] that the rough Heston model reproduces the weak form of
Zumbach effect. However, it is not obtained through feedback effect, which is the motivating
phenomenon in the original paper by Zumbach [Zuml0]. It is only due to the dependence
between price and volatility created by the correlation of the Brownian motions driving their
dynamics. In particular in the rough Heston model, the conditional law of the volatility
depends on the past dynamic of the price only through the past volatility, see [EER18]. From
now on, we speak about strong Zumbach effect when the conditional law of future volatility
depends not only on past volatility trajectory but also on past returns.

Inspired by the methodology of [EEFRI8], our goal in this paper is to propose microstructural
foundations for the strong Zumbach effect. We also wish to obtain models such that the
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instantaneous volatility of variance is equal to the classical square root term of Heston like
models multiplied by a non-trivial process, in order to enhance volatility tails. Any model
satisfying the latter property will be called a super-Heston model.

A convenient way to build a microscopic model, encoding Zumbach effect and leading naturally
to super-Heston rough volatility, is to use a quadratic Hawkes based price process, in the
spirit of [BDB17]. More precisely, we consider the following microstructural model for the
price (Py)s=0: it is piecewise constant with sizes of price jumps independent and identically
distributed taking values 1 or —1 with probability 1/2. The jump times are those of a
counting process N. We assume that N is a quadratic Hawkes type process as introduced in
[BDBI17, Oga8l]. This means the intensity (1;);=0 of N is given by

t t
)L[=u+f ¢(t — ) AN + Z2, with Z,:f k(t—s)dPs, (2)
0 0

where ¢ and k are two non-negative measurable functions supported on R, and p > 0. In the
definition of the intensity, the linear term with kernel ¢ enables us to model the self-exciting
nature of the order flow. The component Z; is a moving average of past returns. It can
be thought of as a proxy for price return over a given time horizon. If the price has been
essentially trending in the past, Z; is large leading to high intensity. On the contrary if it
has been oscillating, Z; is close to zero and there is low feedback from the returns on the
intensity. Hence Z; can obviously be understood as a (strong) Zumbach term. Note that of
course one can think that positive and negative price trends have different impact on the
volatility. However for simplicity we neglect this asymmetry in this paper. Finally recall that
the stability condition for Model (2) is [y + || kllg being strictly smaller than one, see [BDBI7].

Remark that if we forget the quadratic term Z? in the intensity, we are left with a linear
Hawkes process just as in [JR16]. In this case, at the scaling limit, if the kernel ¢ is heavy tailed
and if we are near instability, meaning ||¢|l; tends to one with the time parameter driving
the asymptotic, the rescaled intensity process converges in law to a rough dynamic similar to
(1), see [EEFRIS, JR16]. When the kernel norm [|¢|; is fixed and strictly smaller than one, a
deterministic limiting model is obtained. Thus we see that being in the near instability regime
is crucial so that roughness can arise from the kernel ¢. Recall that this regime corresponds to
a high degree of endogeneity of the market, see [FS12b, HBBI3, JR15, JRI6]

In [BDBI7], the authors study the long term behavior of the intensity of quadratic Hawkes
processes. That is, on the time horizon [0, T], letting T tend to infinity, they are interested in
the limiting dynamic of (A;7)e0,1], which can be viewed as the macroscopic (squared) volatility.
They work in a setting where [} + ||k||§ =2y <1 is fixed, not depending on T. Based on PDE
techniques, they obtain a diffusion process with power-law marginal distributions and strong
Zumbach effect for the asymptotic volatility. More precisely, their limiting model (P;, V;) for
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price and volatility writes as follows: dP; = v/V;dB; with
t
Ve=p+(Z)° +f yBe P9 vds
0

t
Zz=f Vyae “=9%24p
0

with B a Brownian motion and a, § some positive parameters defining the functions ¢ and k
taken exponential in [BDB17].

In this paper, we wish to go beyond the case treated in [BDB17] from which we draw inspiration.
We describe further relevant limiting price dynamics that can be generated from quadratic
Hawkes processes. We focus on finding microscopic basis for super-Heston rough volatility
processes with strong Zumbach effect. Our goal is to establish connections between micro-
parameters of the quadratic Hawkes dynamic and macro-phenomena such as the roughness of
the volatility and the strong Zumbach effect.

We first focus in Section 2 on the purely quadratic case, that is when ¢ is equal to zero.
Choosing appropriate scaling parameters, we obtain the following limiting model: dP; =

Vi=pu+Z} (3)

t
Z = \/?]0 k(t - s)dPs,

where y € (0,1) is related to the scaling of the kernel k. In contrast to the purely linear case,
we do not need any sort of near instability here so that a stochastic volatility model arises at
the scaling limit. In (3) the strong Zumbach effect is naturally encoded since the volatility is a
functional of past price returns through Z. We also have that the quadratic feedback of price
returns on volatility implies that V; is of super-Heston type (essentially log-normal here). This
can be seen for instance when p =0 where we get

t
Z = ﬂfo k(t— 5)| Z|dB.

Moreover taking for example k = fHH/Z']L for He (0,1/2) and A > 0 with f“'A the Mittag-
Leffler function!, we get that the volatility has Holder regularity H — € for any € > 0. Thus,
from a natural microscopic dynamic, we are able to obtain a super-Heston rough volatility
model with strong Zumbach effect at the macroscopic limit.

We then investigate the limiting models arising from quadratic Hawkes processes with non-
vanishing linear part. Knowing that roughness can be obtained from the linear part only in
the near instability regime, we treat separately this case and the stable one. We consider in

ISee [EER19] for a reminder and connections with the Mandelbrot-van Ness representation of fractional
Brownian motion.

72



2. Asymptotic behavior of purely quadratic Hawkes models

Section 3 the situation where the stability condition is not asymptotically violated. The result
is similar to (3) up to the addition of a drift term £ f0t<p(t — ) Vids in the dynamic of V;, where
p is a constant related to the scaling procedure.

We study the nearly unstable case where the L'? norm of the kernel driving the linear part

tends to one in Section 4. Assuming ¢(x) behaves as x~ 1+ g e (1/2,1), when x goes to
infinity, we prove that the following dynamic arises at the scaling limit: dP, = /V;dB'" with

Vi= ra )f (t=9)*A0%s) + 22 - Vy)ds +

Z[:f k(t—s)/VidBY,
0

Ta )f (t—9)* 1 Any/V,dB? (4)

with A, 17 some positive constants, 0° a deterministic function and (BY, B®) two independent
Brownian motions. As in the linear case, the near instability condition leads to appearance of
a second Brownian motion driving a rough Heston type term. We see that the strong Zumbach
effect is still reproduced thanks to the Z? term which is here convolved with a power-law
kernel. Interestingly, we also show that when k is regular, the ds term is proportional (up to a
finite variation term) to fot h(t—s)ZsdZ;, where h is a deterministic function with /(0) < +oo.
This can be interpreted as an essentially log-normal (non-rough) component, allowing us to
view (4) as a super-Heston rough volatility model.

2 Asymptotic behavior of purely quadratic Hawkes models

In this section we investigate the possible scaling limits of purely quadratic Hawkes based
price processes. This corresponds to (2) with ¢ = 0. We devote a specific section to this case
since it enables us to convey some of our main ideas in a simplified setting. More precisely, we
consider (NT)7=o with intensity given by

t
Al = pur+(zh?, with z! =f kr(t—s)dPl. (5)
0

For any T, the existence of the process (N',PT) can be obtained from [Jac75]. We are
interested in the long time behavior of the price PT and of its intensity A”. Before stating the
main result of this section we first discuss (in a non-rigorous manner) our scaling procedure.

2.1 Scaling procedure

The scaling procedure consists in finding appropriate factors wr so that the sequence wTA?T
converges towards a non-degenerate limit. Assume wT/ltTT converges towards some process V;.
Since [P, = NtT, we have

t
(PTyr, :fo TALds.

2We use the notation L” without reference to the underlying domain when no confusion is possible.
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Thus we expect the martingale P} 1 = \/w—TTPtTT to converge since its bracket does. Let P be its

limit. Since we wish to get P continuous, we need wr/T to go to zero. From the convergence
of (,/a)TZtTT)Z, we expect that of

t
\/_sztTTzf kr(T(t-s5))VTdP:"
0

too, which requires k7(T-)V/'T to converge. This leads us to consider, as in [BDB17], a sequence

of kernels k7 of the form
kr=k(IT)\/yIT

for some y >0 and wr =1 (since we observe that wr plays eventually no role). Finally passing
to the limit in (5) we obtain the following candidate for our limiting process:

t
Vi =u+ Z2, with Zt:f k(t—s)dPs.
0

2.2 Assumptions and results in the purely quadratic case

We now give our exact assumptions, the second of them being purely technical.

Assumption 1.

i) The sequence of kernels (k)10 is given by

- Yk~

with y € (0,1) and k a non-negative measurable function such that ||kl = 1. Furthermore
MT = > 0.

ii) The function k belongs to L**¢ for some € >0 and for any0<t<t' <1,
t
f k(' = 5) = k(t—s)Pds < Cl¢' - I,
0

for some r >0 and C >0 and

1! B el k(n) — k(s)|?
Efo k(D) t 2'7dt+[0 | —l |t—s|1+2’7| dsdf < +oc0

for somen €(0,1).

Note that for a € (1/2,1) and A > 0, the Mittag-Leffler function f”"’1 satisfies Assumption 1 ii)
for any €€ (0, 2a—1)/(1-)), n€ (0,@—1/2) and r =2a-1.
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2. Asymptotic behavior of purely quadratic Hawkes models

Under Assumption 1, for any T, we have | lelg =7y < 1. So the stability condition is not
violated at the limit. We now state the main result of this section. Consider the rescaled

pI’OCESSCS
T 1
xI'= L gnd prT= —pT .
t T t tT

VT

We have the following theorem.

Theorem 1. Under Assumption 1, as T goes to infinity, the sequence (XT,P*T)15¢ converges in law
for the Skorohod topology on [0,1] towards some processes (X, P) satisfying the following properties:

o X is almost surely continuously differentiable.

o There exists a Brownian motion B such that
t

P, = f v/ V.dB;,
0

where V is the derivative of X and the unique continuous solution of
t
Vi=u+Z2%, 7 :f VYk(t—$)\/VidBs, on [0,1]. (6)
0

o Foranye>0, ifk= fH“/Z'}L with He (0,1/2) and A >0, V has almost surely H—¢ Hilder
regularity.

Theorem 1 will be generalized in Section 3 and its proof is given in Section 5.1.

2.3 Discussion of Theorem 1

¢ IFrom Theorem 1, we see that we do not need to be in the near instability regime
[ lelg + o7l — 1 in order to obtain a stochastic model at the scaling limit. This is actually
not very surprising since quadratic Hawkes models share many similarities with GARCH and
QARCH models, see [Eng82, EB86, Sen95]. It is well known that GARCH like processes lead to
stochastic volatility at the scaling limit without any degeneracy in their parameters, see [Nel90].

» However, in the limiting model (6), volatility and price are driven by the same Brownian
motion B. This is in contrast to the GARCH case or to that of nearly unstable Hawkes
processes where a new Brownian motion appears in the volatility dynamic, see [EEFRI8].
Compared to the GARCH situation, the difference essentially lies in the very constrained law
of the returns here.

e The Zumbach effect is obviously present in the limiting model: the volatility is purely driven
by the returns via the term Z;.

¢ The use of Mittag-Leffler type kernels as in the last point of Theorem 1 is very standard in
the rough volatility literature, see for example [JR16]. It enables us to obtain at the limit a
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rough behavior for the sample paths of the volatility process.

e When k(#) = v2ve™"!, Model (6) is that of [BDB17] with ¢ = 0. Therefore Theorem 1 extends
the results of [BDB17] to any kernel k with suitable integrability conditions. In the next section
we provide an even more general extension that encompasses the case ¢ # 0 and clearly shows
the super-Heston nature of the dynamic (6).

3 General quadratic Hawkes models: the stable case

We now study the asymptotic behavior of a sequence of general quadratic Hawkes models for
which the stability condition is not violated at the limit. We consider (N Ty rso with intensity
given by (2) (with parameters depending on T) where [¢rll; + [ krll5 is a fixed constant
strictly smaller than one. As in the previous section, we first give intuitions about our scaling
procedure.

3.1 Suitable scaling in the general case

Using a scaling factor wr, the rescaled intensity becomes
T t T
wTA = UTOT +f (/)T(T(t— s))Ta)T)LTSds
0

t
+f0 ¢T(T(t—s))\/wTTd(,/w—J,TM%s)+(\/w_TZtTT)2, @)

where ,
M} =N} - f Alds.
0

Assume that (wT)LZT)TZO converges and consider the processes M;‘T = MzTT‘ / w—TT and P;‘T =
T w
P,/ 7. We have
t
@y, =Ty, :f wrAlds and (P*T,M*Ty, = 0.
0
Thus we expect P*T and M*! to converge towards two martingales M and P such that
(M, Py =0. As in the previous section, to obtain continuous martingales M and P, we pick wr

such that w7/T tends to zero.

One of our goals being to preserve Zumbach effect in the limit of (7), we need a non-degenerate
behavior for the feedback term \/wTZtTT. We have

t
\/w_TZtTT:f kr(T(t-9)vVTdP;T,
0
which leads us again to the specification

kr=k(-/T)\yIT
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for some positive y. Now, if \/wTZtTT converges, according to (7) we should also obtain
convergence of

t t
[.LTwT+f ¢T(T(I—S))TwT)L£SdS+f (bT(T(t—S))\/wTTdM:T.
0 0

Thus, since both wTAtTT and M*T are expected to converge, we set ur = p/wr and must
ensure the convergence of both ¢7(Tt)T and ¢pr(T'1) VorT. Because wr/T tends to zero, the
first integral dominates the second one. Consequently we only need to take care of the first
integral and again we can take wr = 1. A logical specification is therefore

¢ =¢CIT)(BIT)

for some positive §. Passing to the limit in Equation (7) we expect the following limiting model:
t t
V= ,u+f Bod(t—s)Vids+ Zt2, with Z; :f VYk(t—s)dP;.
0 0

3.2 Assumptions and results in the presence of a linear component in the
stable case

We now give our exact assumptions which are quite similar to those in the previous section.

Assumption 2.

i) The sequence of kernels is given by

_Jr. .t _B, .t
kT(t)—\/;k(T), ér(t) = T¢(T),

with0<y+ P <1 and k and ¢ non-negative measurable such that ||k||§ =|l¢lly = 1. Furthermore
pr=p>0.

ii) Assumption 1 ii) holds.

Assumption 2 implies that the stability condition is not violated at the limit. Nevertheless,
from a rescaling perspective, the choice of kernels ¢7 and kr does not seem really natural at
first sight. It would be probably more satisfactory to consider kernel sequences of the form
ar¢ and a;k (with ¢ and k not depending on T) and then investigate the limit of wTAtTT as in
[EEFRI18, JR15, JR16]. This would imply here ¢7(TH)T = ar¢p(Tt)T. According to Tauberian
theorems, see for example [BGT89], ar¢(Tt)T can only converge in that case towards a
power-law function of the form 79 for some positive 6 and ¢ has to be such that ¢(¢) ~400 'l
up to a slowly varying function. But recall that ¢ must be integrable and so we need 6 = 1.

However such choice would lead to difficulties for defining properly the limit of the integral

t
f Tard(T(t-s))wrAids.
0
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To be able to consider such types of natural but technically more intricate rescaling procedures,
we will drop the stability assumption in Section 4 where we work in the nearly unstable case.

Let us define the rescaled process XtT = N;7/T. We have the following theorem whose proof is
given in Section 5.2.

Theorem 2. Under Assumption 2, the sequence (X*,P*T) o is C-tight for the Skorohod topology
on [0,1] as T goes to infinity, with the following properties for any limit point (X, P):

o X is almost surely continuously differentiable.

o There exists a Brownian motion B such that

t
P, = f VV.dB,,
0
where V is the derivative of X and the unique continuous solution of
t
Vy=u+H; + Z?, with H, =f Bp(t—s)Vids (8)
0

and

t
thf VTk(t—5)\/VidBs, on [0,1].
0

o Foranye>0, ifk= fH“/Z”l with He (0,1/2) and A >0, V has almost surely H—¢ Holder
regularity.

3.3 Discussion of Theorem 2

e Compared to Theorem 1, only one new term appears in the volatility equation (8). It comes
from the self-exciting part in the Hawkes dynamic. Thus the elements in the discussion of the
purely quadratic case in Section 2.3 remain valid here.

e Let us consider the case where k is a continuously differentiable kernel with 0 < k(0) < +oo.
Using integration by parts and Fubini’s theorem we can write

t t t
Z,:/ \/?k(O)\/Vsst+f f VYK (s—uwds\/V,dBy
0 0 Ju
t t s
:f ﬂk(O)\/VSdBS+f f VYK (s—u)\/V,dB,ds.
0 0 JO

Therefore Z is a semi-martingale and up to a finite variation term we have

t
72 =f0 2/7k(0) Zs\/VdBs.

We see that the quadratic feedback term in the Hawkes dynamic induces a super-Heston type
volatility because of the multiplicative term Zs in front of the /V; in the equation above.
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e Let us take the kernel k as the Mittag-Leffler function f“”1 with ¢ € (1/2,1) and A >0 and
(1) =xe ™ for some k > 0. Adapting Theorem 2.1 in [EER18] we get for any & and £, positive

h
Zigen =00+ 2 with Zy = [ VT = 9dp,

and ,
St () = Zy, +f0 PN (h- 90, (s)ds
where
) =~ 21y + s Ot”(ro s+ ) Z— Z,)ds— % .-
Then we can write the forward volatility as
Vign = Hye ™+ (&, () + 281, (W) Zpy + p+ Hy, + (Z))? 9)

with N
ﬂh:fo d(h—$)Vyy45ds.

The function ¢;, only depends on (Z;)g<<s, and cannot be expressed as a function of (V;)o<;<y,-
So we get from (9) that conditional on the history of the market from time 0 to f, the law of
(Vip+n)h=0 does depend on past returns and not only through past volatility. It means Models
(6) and (8) can reproduce the strong Zumbach effect. So when k is a Mittag-Leffler function,
Model (8) is a super-Heston type rough volatility model with strong Zumbach effect.

In the case of exponential kernels k(t) = V2ve V! and o(r) =xe ! using similar computations
we prove that
Vigrh =+ Zp+ H+e 2" 22 + 27, e + e Hy.

¢ Finally remark that we do not prove uniqueness in law of the limit points (X, P) in general.
However we can show uniqueness in the special case ¢p = 0. This particular case can be treated
because Z is the solution of a stochastic Volterra equation which admits a unique strong
solution, see Section 5.1 for details and [AJLP19] for more results about uniqueness of rough
equations.

4 Nearly unstable quadratic Hawkes models

We now focus on the case where the instability condition becomes almost violated at the limit.
Let us consider a sequence of quadratic Hawkes processes (N7) 7o such that

lprily +Ikrls — 1.

Contrary to the sections before, we wish to work here with a natural renormalization (at least
for ¢, see comments below Assumption 2) and therefore take ¢7 of the form ¢ = Br¢ with
Bre(0,1) and [l¢ll; =1. We also assume that ¢ is heavy-tailed (¢p(x) ~ x~ 1+ with a € (0,1)
as x tends to infinity) since this type of kernels leads to rough volatility in the case of linear
Hawkes processes, see [EEFR18, JR16]. Again, we start with insights about the suitable scaling
procedure.
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4.1 An adapted scaling procedure in the nearly unstable case

Let ar = lkrl5 +ll¢7ll1. We have

t
EIA{1=pr +f0 (k5 + ) (t— 9EAL1ds

and therefore
KT

l—aT'

ElAl] <
So we naturally define the following renormalized processes:

1-a 1T 1-a’
LAl AT = ?f A3"ds and X[ = ———N/p.
0 HT

HT

*T _
At =

Let us assume that 1*T converges to some V. We can then expect that A*T and X*T converge
to some A and X. Consider the rescaled martingales

l-a l1-a
M7= IMT and P} = | —LpF,
Tur Tur

where MI = N - [fATds. Since [MT], = [PT], = NI, we have [M*T], = [P*T], = X].
Moreover (M*T,P*Ty =0 and so M*T and P*T are likely to converge towards some martingales
M and P with same bracket X and such that (M, P) =0.

Let .
vr=) ¢7.

i=1

Using Proposition 2.1 in [JR15], we deduce from (2) that

t t
AtT:,uT+(ZtT)2+f0 wT(t—s)(pT+(ZsT)2)ds+f0 wr(t—s)dM!.

So we have

l—dT

t
AT =Q-ar)+ (ZQ)%[O (l—aT)Tu/T(T(t—s))(l+ML(ZSTT)Z)ds (10)
T

BT

t
+f TA-ap)yr(T(t-s) dm:T.
0

1
Tur(1-ar)
The function Ty (T-) has L! norm equal to (1 —,BT)_I. Therefore T(1 - ar)wr(-T) is non-
vanishing only provided 1— 7 is of order 1—ar. Consequently we set 1 =2ar —1 (so that
Br < ar). Since |[¢rlly = B — 1 then || lelg — 0. However we will see that the sequence kr
still plays a role in the limit.

In (10) the first integral is
t
fo T(1—ar)yr(T(t-s)ds.
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It already appears in the case of a purely linear Hawkes process. We know from [JR15, JR18|
that this term is crucial in the limiting behavior of the intensity and that a necessary condition
to obtain a non-trivial scaling limit for it is that 7%(1 —ar) tends to a positive constant. Under
this specification, we need to impose additionally that Tur(1 —ar) converges in order to
obtain a non-degenerate asymptotic limit for the last integral in (10).

We now study the terms containing the quadratic feedback:

l—ar

T2 l—ar (! T2
(Z})? and o Tyr(T(t-9))(Z;p) ds.
T

Since |Tyr(-T)l; = (1 —,BT)_1 which tends to infinity, the second term dominates the first one.
To make the second term converge, we need a proper behavior of Z;T = ZtTT/,/pT. We have

t
z:T =] a fkT(T(t—s))dPS*T. (11)
I-arJo

Thus we wish 4/ 1_7;” k7(Tt) to converge and are naturally lead to assume that kr is of the

form
l-a
kr = k(-/T)y/ . Oy

4.2 Assumptions and results in the nearly unstable case

We now summarize the conditions derived in the above discussion into the following
assumption.

Assumption 3.

i) The sequence of kernels (b1) 10 satisfies ¢t = 2ar —1)¢p with (ar)r=0 a sequence in (0,1)
and ¢ a non-negative measurable function such that |||y = 1. Furthermore for some K >0 and
ac(0,1),
+00
lim ax“f P(s)ds =K.
X

X—+00

ii) The sequence of kernels (k1) r=o satisfies kT = k(-/T)y/ 1_75” with k a non-negative continuously
differentiable function such that | kllo =1 (in particular k(0) < +o00).

iii) Let 6 = K@. There are two positive constants A and u* such that

lim (1-ap)T*=A8 and lim TV =p* oL,

T—+o00 —+00

The choice of § in Point iii) is just for convenience of notation in the results and proofs.
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Recall that from Lemma 4.3 in [JR16], under Assumption 3, the function
t
FT (1) :f T(-ar)wr(Ts)ds
0

converges towards %F“’A(l‘) where

t
Fo\ (1) = f FeM(s)ds.
0
So )
T(1-ar)yr(Ts) ~ zfa'k(s)-
This provides us intuition for the form of the limit (V, Z) of (10)-(11):
1
VAR

with Z; = fotk(t—s)dPs and where M and P are martingales such that (M,P) =0 and
(M), =(P); = [ Vids.

1 1
Vt=f —f“'l(t—s)(1+ZS2)ds+f —fa'l(t—s) dMs,
0o 2 0o 2

We eventually state the main result of this section whose proof is given in Section 5.3.

Theorem 3. Under Assumption 3, the sequence (X*, M*T, P*T) 1~ is C-tight for the Skorohod
topology on [0,1] as T goes to infinity, with the following properties for any limit point (X, M, P):

o We have (M) =(P) =X and

1

VAu*

r1 r'1
X; :f —F¥(t-9)(1 +Z§)ds+f D) Mds (12)
0 2 0o 2
with .
7 =f k(t— s)dPs.
0
e If a €(1/2,1), the process X is almost surely continuously differentiable with derivative V

and up to an enlargement of the filtration there exists two Brownian motions BY and B®
such that V is solution of

_ [1 a,A 2 1 1)
Vt_fo 5f (t—s)((1+ZS)ds+ W\/VSdBS)

with

t
7, = f k(t—s)\/VidB®.
0
Moreover, for any € >0, V has almost surely a — 5 — e Holder regularity.
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4.3 Discussion of Theorem 3

¢ The form of the feedback is not the same in Model (12) as in Model (8). In (8) it is
instantaneous through the Z? term while in (12) it is digested via a convolution with a
fractional kernel.

¢ In Model (12) price and volatility are driven by two different Brownian motions. This
additional Brownian motion comes from the rescaling of the linear part of the intensity, as
already observed for example in [JR15].

* Rough volatility appears for very different reasons in Model (8) and Model (12). In (12) the
origin of rough volatility is the fat tail of the kernel ¢ while in (8) it arises from the behavior
of the kernel k in zero. Moreover it is clear from the proof of the last point of Theorem 3 that
the regularity of Z has no influence on that of V.

¢ As computed in the previous section we can write

t t prs
Z = f k(0)y/VsdB® + f f k' (s — u)\/V,dBPds.
0 0 JO

Therefore Z is a semi-martingale and up to a finite variation term we have
dZz? = 2k(0) Z;\/VsdB®.
Furthermore using integration by parts we get
t ¢
f f‘M(t—s)Zszdszf FOMt—s)dZ2.
0 0

So up to a finite variation term, we have in Model (12)
¢
f Ferr—s) \/VSdB(1)+f FOMt - 5)k(0) Zs/VsdB2,

Thus as in Model (6) and (8), the quadratlc feedback term in the volatility dynamic induces
that Model (12) is a super-Heston type rough volatility model. Note however that in that case,

the super-Heston and rough components are not the same.
¢ Using Lemma A.2 in [EER19], when a € (1/2,1), we get that Equation (12) is equivalent to

V= Vo+mf (t— )% TAZE +0o(s) - Vs)ds+mf (-9 Vi——=

\/_

with 0y a deterministic function. In the case k() = v2ve™"" with v > 0, direct adaptation of
Theorem 2.1 in [EERI18] gives that

1 [ A - _
Vfﬁhzvfﬁmf (h= )" "A(Z2 + 22 Zy e + 04, (5) — Viy4)ds
‘e )f (h- 9% 1\/vto+s\/_ dBY,
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where 0y, (h) is equal to

to ( —-a

[
(to— v+ BV, — V) do + L 10)

Oo(ty + h) + —ﬂ,r(l—a)

[04
B Vo—V; )+ Z2 e 2Vh
ra —A,) o ( 0 to) to

and
B h
Zy :fo k(h—s)dPy,+s.
The term Z;, cannot be written as a function of (Vi)o<s<s,. So Model (12) reproduces the

strong Zumbach effect. Finally Model (12) is a super-Heston type rough volatility model with
strong Zumbach effect.

5 Proofs

We gather all the proofs in this section. We first show Theorem 1 assuming that Theorem 2
holds. Then we give the proof of Theorem 2 and finally that of Theorem 3.

51 Proof of Theorem 1

Using the results of Theorem 2, we only need to prove that when ¢ =0, the limiting process
(X, P) in Theorem 2 ii) is unique in law.

Consider (X, P) a limit point of (XT,P*T)r~o. Then V the derivative of X satisfies
Vi=u+ 72

and there exists a Brownian motion B such that P; = fot v VsdB;s. Thus we can write
t
Zy :f k(t—s)\/u+ Z?% dB;. (13)
0

From Assumption 1 ii) together with Theorems 3.1 and 3.3 in [ZhalO], there is a unique process
Z satisfying (13) and it is continuous. Since P is a continuous martingale satisfying [P] = X,
X= fot Vids and V; = u+ Z2, the limiting process (X, P) is fully determined by the only solution
of (13). So we get convergence of (X©,P*T) for the Skorohod topology.

5.2 Proof of Theorem 2

We proceed in three steps. First we prove that the sequence (X7, P*T)7-q is C-tight for the
Skorohod topology. Then we show the results about the dynamics of the limit points. Finally
we establish the regularity properties of the limit points.
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5. Proofs

5.21 Tightness of the sequence XT,P*Tyrso
We consider the processes
t t
AT =[ A:Tds and Z;T =f k(t—s)dp:T

0 0
defined for € [0,1]. Remark that A*T is the predictable compensator of XT. We have the
following equality:

t
EA]] = pr +f0 (k3. +¢7)(t - $)E[A!1ds.

Thus

u
EA]) <
T 1= lgrih - llkrll3

and consequently

Ty_ria*l < B
EX/1=EIA ") = 7.
Since the processes X' and A*T are increasing for any T, using the last inequality, we
deduce from Theorem VI-3.21 together with Proposition VI-3.35 in [JS13] that (XT)750 and
(A*T) 5o are tight. Moreover since IAXT|+|AA*T| <1/T almost surely on [0, 1], according to
Proposition VI-3.26 in [JS13], (XT) =0 and (A*T) 15 are C-tight. The tightness of M* Ty
and (P*T) 7o follows from Theorem VI-4.13 in [JS13] using that (M* Ty, =(p*Ty, = A:‘T. We
then get C-tightness because |[AM*T|+|AP*T| <2/T. Finally (X7, A*T, M*T, P*T) 150 is C-
tight for the Skorohod topology on [0, 1].

We also show that the sequence (Z *Tyr oo is tight for the L2([0,1]) topology. For this, inspired
by [AJCLP19], we consider the Sobolev-Slobodeckij norm defined for any measurable function
o ! Lrtifo - for 112

I Flwnzqo = ( fo fls)y*ds+ fo | stdf) :
We recall that the closed balls of | - [lyyn2(j0,1}) are relatively compact in L2([0,1]), see [FGI)].
Therefore it is enough to show that ([E[IIZ*TII2 ])Tzo is uniformly bounded to conclude

wn2([0,11)
the tightness of (Z*T)7sq in L2([0,1]).

For any t € [0,1], we have using Ito’s formula

U

Ikl3
1-y-p ?

t
El(Z % =f K(t - s)E[A L 1ds <
0
and for0<ss<r=<1

t N
z:t-z:7T :f k(t—wdp:T +f (k(t—w) —k(s—w)dP:T.
s 0
Then we get
t N
(VAR ARE =f K2 (t - u)rﬁ[ﬁu]dmf (k(t = w) — k(s —w) EIAL 1du.
N 0
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Using that [E[/lLT, 1< 1_;1_ 5 we obtain

Elz T -Zz:14 < m f kz(t—u)du+f (k(t—w) — k(s —w) du)

According to [AJCLP19] we have

sVt k t— 2 1 1
fff Ksvizw®, dsdts—f k()2 21de
|t— |1+217 nJo

SVIE _ _ 2 1 1 _ 2
fff [k(t—u)—k(s—u)| dudsdts[ [k(t) = k(s)] dsdr,
0 JoO

|t—s|1+2’7 |t_s|1+2n

and

which is bounded from Assumption 2 ii). Finally using Fubini’s theorem we deduce that

([E[||Z*T||Wn2([0 1yD7=0 is bounded. So (Z*T) 150 is tight in L2([0,1]).

Before going to the next step we prove the following lemma.
Lemma 1. The sequence of martingales XT — A*T converges to O uniformly in probability on [0,1].

Proof. Since N[ - fot/ISTds is a true martingale, from Doob’s inequality we get

\ 1
El sup (X — A" < [E[NTT].
te[0,1]

Using that [E[NTT] = T[E[ATT] we deduce

1
E[sup (X] AT )< =———,
o Tl-y-p

which concludes the proof. O

5.2.2 Dynamic of the limit points

We now consider (X, X, M, P, Z) a limit point of X, AT M*T, p*T 25Ty . Using Skorohod
representation theorem and the fact that (X, X, M, P) is continuous, we may consider that
almost surely XTI, AT, M*T, P Ty converges uniformly on [0,1] towards (X, X, M, P) and
(Z*TYrs0 converges in L2([0,1]) towards Z:

sup X -X;| — 0, sup IM;T-M,|] — o0 (14)

te[0,1] T—+o0 telo, 1] T—+o0

sup |P; T—Ptl — 0and (Z*T Z)%ds — 0.

tel0,1] —+oo T—+oo
From Corollary IX-1.19 in [JSI3] we have that M and P are local martingales. Moreover
[M*T] = [P*T] = XT so Corollary VI-6.29 in [JS13] gives that [M] = [P] = X. Since M and P
are continuous we have

(M) =[M]=(P)=[P]=X.
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We also note that [E[XIT ] is uniformly bounded in T. So from Fatou’s lemma X is integrable
and M and P are true martingales. Moreover up to a subsequence (Z*T) 75 converges almost

surely towards Z. We deduce that Z is adapted. Moreover since E[ sup (Z; 2] is bounded
te[0,1]
we get

sup E[th] < +o0.
te(0,1]

We show that A*T converges almost surely uniformly on [0, 1] towards

t t
f(p+ZS2)ds+f Fi(t-s)dX;, (15)
0 0

where Fj(f) = fot Bp(s)ds. We have
t t pt
AT = f (u+ (Z;T)Z)ds+f f Beop(s—uydX]ds.
0 0 Jo
The almost sure convergence of (Z*7)7s¢ in L? towards Z implies that almost surely, uniformly
in t€[0,1],
t t
[ (Z:T?ds — [ Z2ds.
0 T—+00 Jo
Moreover using Ito’s formula together with Fubini’s theorem we get
t s t
f f Bo(s—wydXx]ds :f Bo(t—s)X!ds.
0 Jo 0
From Equation (14), we deduce that this quantity converges almost surely uniformly towards

t
f Bep(t— 5) Xds.
0

Again Ito’s formula together with Fubini’s theorem give

t t
fﬁ(b(t—s)Xsds:f Fi(t - $)dX;.
0 0

So we obtain the almost sure uniform convergence of (A*T)7-o towards (15). Consequently,
using Lemma 1, we deduce

t t
X,:f ,u+ZSst+f Fi(t-s)dX;
0 0
and eventually
t S
Xt:f u+Z§+f Bep(s — u)ydX,ds.
0 0

Thus X is absolutely continuous with respect to the Lebesgue measure with derivative V given

by )
V,=p+ 72 +f Bo(t—5)Vids.
0
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Letting ¥ = Y.;21 (B¢)*" we have
t
Vt=u+Z?+f w(t—s)Z2ds. (16)
0
The boundedness of ([E[th])te[(),l] gives that (V) seqo,1) is uniformly bounded in L.

We now prove that
t
7 =f k(t—s)dP;.
0

Using Cauchy-Schwarz inequality, the convergence of (Z*T)r5o implies that almost surely,

t t
f z:Tds — f Zsds.
0 T—+o0 Jo

t t
fzs*Tds=f k(t—s)P:Tds
0 0

and using Equation (14) we deduce that it converges almost surely uniformly towards

uniformly in ¢ € [0,1],

From Ito’s formula we get

t
f k(t— s)Psds.
0
Since F, (1) = fotykz(s)ds <1 we have

t s t
f f k(s— u)?‘quds=f F>(t—s)dX; < X; < +00.
0 JO 0

So we can use the stochastic Fubini theorem and show that

tr rs t
f f k(s— u)dPuds:f k(t—s)Psds.
0 Jo 0

Thus almost surely, for any ¢ €[0,1],

t t N
f Zyds = f f k(s—u)dP,ds
0 0 Jo

t
Zt=20+f VTk(t - s)dPs.
0

Moreover, from Theorem V-3.9 in [RY13], there exists a Brownian motion B such that

t
P, =f v/ V.dB;
0

and

and finally we get
t
Z; :fo Vrk(t—$)\/VdB.

We recall that (E[V}])seo,1) is bounded in I%. So using Assumption 2 ii) together with
Theorems 3.1 and 3.3 in [ZhalO] we obtain that the process Z is continuous. Therefore using
(16) V is also continuous. This concludes this part of the proof.
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5.2.3 Regularity property

We now consider that k is given by fHH/z’;L for He (0,1/2) and A > 0. We can write

t t
/sts:f VY FEY2A (- 5)Pgds.
0 0

Since P; = fo v VsdBjs, P has the same regularity as a Brownian motion. Thus we can use the
same arguments as in Section 4.4 in [JR16] to deduce that Z, and therefore V, are H —¢ Holder
for any £ > 0.

5.3 Proof of Theorem 3

We proceed again in three steps. First we show that the sequence (X7, M*T, P*T)7.¢ is C-tight
for the Skorohod topology. Then we prove the results about the dynamics of the limit points
and finally those on the regularity of the limit points.

5.31 Tightness of XT, M*T, P Ty oy

Recall the definition of the renormalized processes

l1-a 1—al ptT 1-al
A= “Aip AT = [ Adds, X/ = Nir. 2" =ZilVir
MT Tur Jo Tur
*T l-—ar r «T l—ar r
M; M, and P/~ = P,
Tur Tur
We have

t
EIM < pur +f0 (K&.(t = 5) + ¢r(t - $))E[A] 1ds.

Thus
KT

1=l —llkrls

ElA]] <

and consequently

1
[E[/I*T] #
1- ﬁT—”kT”z

So
ElX{1=E[A}T] <1,

which gives the tightness of the sequences ((XT)te[o 1])T>0 and ((At ) relo, 1])T>O’ both of them
being increasing. Actually we get C-tightness since |[AXT|+]AA*T| < 1 aT that goes to zero as
T goes to infinity. Remark that Lemma 1 still holds under Assumptlon 3

The tightness of (M*TY 2o and (P*T)rso follows from Theorem VI-4.13 in [JS13] because
(M*Ty, =(p*Ty, = A;T and (M*T P*Ty = 0. We then obtain C-tightness since IAM*T| +
IAP*T|<2/T. Finally X, AT, M*T P Ty oy is C-tight for the Skorohod topology on [0, 1].
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5.3.2 Dynamics of the limit points

We now take (X,X,M,P) a limit point of (XT,A*T,M*T P*T)r5. Since (X,X,M,P) is
continuous, according to the Skorohod representation theorem, we can consider that (X T AT M*T P Ty
converges almost surely uniformly towards (X, X, M, P):

sup IX] =X, — 0, sup |AJT-X; — 0,

t€(0,1] T—+o0 te[0,1] T—+o0

and
sup IM;T—M;| — o0, sup|P;T-P,] — o (17)
t€[0,1] T—+o0 1€0,1] T—+o0

From Corollary IX-1.19 in [JS13], we have that M and P are local martingales. Moreover since
(M*T] = [P*T] = XT, we have [M] = [P] = X and (M, P) = 0 using Corollary VI-6.29 in [JS13].
Because M and P are continuous, we deduce

(M) =[M]=(P)=[P]=X.

Because [E[XIT | is uniformly bounded in T, we get that X; is in L' and so M and P are true
martingales. In addition, the Dambis-Dubin-Schwarz theorem gives the existence of two
independent Brownian motions B M and B such that

M; =By and P, = BY.
Recall that for F7(f) = [ T(1 — ar)y1(Ts)ds we have

t Trs_
F (t—y9) dM;‘T
0 vT(A—ar)ur

t t
+f FT(t—s)(ij)st+f (1-ar)(Z:T)%ds.
0 0

t
A;‘T = t(l—aT)+f FT(t-s)ds+
0

According to Lemma 4.3 in [JR16], we have the uniform convergence

t tl
fFT(t—s)ds -~ —FY\ (¢t —s)ds.
0

T—+co Jo 2

Using integration by parts we obtain
t
zT = k(O)P;‘T+f K'(t-s)Pds.
0

Assumption 3 i) implies that k’ is bounded on [0,1]. As a consequence of (17) we have that
almost surely, Z *T converges uniformly on [0,1] towards

t t
k(O)P[+f k’(t—s)dPSds=f k(t—s)dP;
0 0
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which is continuous. This convergence together with Lemma 4.3 in [JR16] implies that almost
surely, uniformly in 7 € [0, 1],

t t
fFT(t—s)(ZS*T)st - fF“"(t—s)Zfds
0 T—+00 Jo
and

T—+o0

t
(1—aT)f (Zz:h2ds — o.
0

T
We now prove that [ —2=%_dM*T converges uniformly in probability towards
v T-ar)ur s
t Fa,A
(t—-s
MMSdS.
0 2y/Au*

Using integration by parts we have
t FT r— t T t—
(£=9 o7 - L9 g

o /TA—apur °  Jo yTa-appr °

Remark that . . )
ffT(t—s)M:Tds—f f“(t—s)zMsds
0 0

can be written
] t 1
f Ef‘“(t— M7 - Ms)ds+f (fTt-s9- 5f‘”(t— $))M;:Tds. (18)
0 0

The first term in (18) goes almost surely uniformly to zero using (17) and the fact that f®* e L',
Applying integration by parts again we obtain

t t
f(fT(t—s)—f“”l(t—s))M:Tds:f (FT(t—s)—%F“’A(t—s))dM:T
0 0

and using Burkholder-Davis-Gundy inequality we get (C denotes here a positive constant that
varies from line to line)

t 1 2
E| sup (f (F"(t=9)--F*A e - 9))dm; ") |
r€[0,11*J0 2

! T 1 a,) 2 T
<CE[ | (F (t=9) = 3F} (1= 5) dx!|
0

t 1 1-
< cf (FT(t=s) - —F*(t — )2 =—2TE[AL )ds
0 2 Hr
‘ 1
< Cf (FT(t—s) - 5F”‘v’t(t— $))’ds.
0

This converges to zero according to Lemma 4.3 in [JR16]. So we have proved that

1

2y/Au*

t 1 t
Xt:f 5F""’l(t—s)(l+Zsz)ds+f f‘”(t—s) Mds
0 0

with .
7%= f k(t— s)dPs.
0
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5.3.3 Regularity property
We can write X as

tl N
X,:fo Ef‘“(r—s)(sﬂufo ZZdu+ M;)ds.

Since Z is continuous, fot Z2ds is continuously differentiable. So using the same arguments as
in Sections 4.3 and 4.4 in [JR16] replacing s by s+ [y Z2du, we obtain that almost surely, X is
differentiable with derivative V satisfying

1
VAu*

We get the stated result using Theorem V-3.9 in [RY13] which gives the existence of two
independent Brownian motions B and B® such that

t t
M, = f V' VsdB{" and P, = f V' VsdB?.
0 0

The regularity property of V is also deduced using the same arguments as in Sections 4.3 and
4.4 in [JR16].

r1 1
Vth —f“'A(t—s)(1+Zf)ds+f —fa'/l(t—s) dM;.
0 2 0o 2
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CHAPTER III

The quadratic rough Heston model: fitting
simultaneously historical volatility together

with SPX and VIX smiles with a
continuous model

Abstract

Fitting simultaneously SPX and VIX smiles is known to be one of the most challenging
problems in volatility modeling. A long-standing conjecture due to Julien Guyon is that it
may not be possible to calibrate jointly these two quantities with a model with continuous
sample-paths. We present the quadratic rough Heston model as a counterexample to
this conjecture. The key idea is the combination of rough volatility together with a
price-feedback (Zumbach) effect.

Keywords: SPX smiles, VIX smiles, rough Heston model, Zumbach effect, quadratic rough
Heston model, Guyon’s conjecture.

1 Introduction

The Volatility Index, or VIX, was introduced in 1993 by the Chicago Board Options Exchange
(CBOE for short) and was originally designed according to [CBO03] to “measure the market’s
expectation of 30-day volatility implied by at-the-money S&P 100 Index option price”. Since
2003, the VIX has been redefined as the square root of the price of a specific basket of options
on the S&P 500 Index (SPX) with maturity 30 days. The basket coefficients are chosen so
that at any time ¢, the VIX represents the annualized square root of the price of a contract
with payoff equal to log(S;+a/S;) where A =30 days and S denotes the value of the SPX.
Consequently, it can be formally written via risk-neutral expectation under the form

VIX, = \/~ 2 Ellog(Sra/ S %] x 100, 1)

where (&) >0 is the natural filtration of the market.
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III. The quadratic rough Heston model: fitting simultaneously historical volatility together
with SPX and VIX smiles with a continuous model

Since 2004, investors have been able to trade VIX futures. Quoting the CBOE white paper,
they “provide market participants with a variety of opportunities to implement their view
using volatility trading strategies, including risk management, alpha generation and portfolio
diversification”. Subsequently in 2006, CBOE introduced VIX options “providing market
participants with another tool to manage volatility. VIX options enable market participants to
hedge portfolio volatility risk distinct from market price risk and trade based on their view
of the future direction or movement of volatility”?. Those products are now among the most
liquid financial instruments in the world. There are indeed more than 500,000 VIX options
traded each day, with most of the liquidity concentrated on the first three monthly contracts.

Nevertheless, despite that more vega is now traded in the VIX market than in the SPX market,
the wide bid-ask spreads in the VIX options market betray its lack of maturity. One of the
reasons underlying these wide spreads is that the market lacks a reliable pricing methodology
for VIX options; since the VIX is by definition a derivative of the SPX, any reasonable
methodology must necessarily be consistent with the pricing of SPX options. Designing a
model that jointly calibrates SPX and VIX options prices is known to be extremely challenging.
Indeed, this problem is sometimes considered to be the holy grail of volatility modeling. We
will simply refer to it as the joint calibration problem.

The joint calibration problem has been extensively studied by Julien Guyon who provides a
review of various approaches in [Guyl9b]. We can split the different attempts to solve it into
three categories. In probably the most technical and original proposal, and the first to have
succeeded in obtaining a perfect joint calibration, the joint calibration problem is interpreted
as a model-free constrained martingale transport problem, as initially observed in [DMHLI15].
In his recent paper [Guyl9b], using this viewpoint, Guyon manages to get a perfect calibration
of VIX options smile at time 77 and SPX options smiles at dates T; and T> = T; + 30 days. As
noticed by the author, although this methodology can theoretically be extended to any set of
maturities, it is much more intricate in practice because of the computational complexity.

This drawback is avoided in the second and third types of approach where models are in
continuous-time. Continuous-time models have the advantage that they rely on observable
properties of assets and so allow for practical intuition on their dynamics. The second
approach is to attempt joint calibration with models where SPX trajectories are continuous,
see in particular [GIP17]. Unfortunately, for now, continuous models have not been completely
successful in this task. An interpretation for this failure is given in [Guyl9b] where the author
explains that “the very large negative skew of short-term SPX options, which in continuous
models implies a very large volatility of volatility, seems inconsistent with the comparatively
low levels of VIX implied volatilities”. To circumvent this issue, it is then natural to think of
rough volatility models as recently introduced in [GJR18]. However, these models also appear
unsuccessful thus far, see [Guyl8].

1https://cfe.cboe.com/cfe—products/vx—cboe—volatility—index—vix—futures
2http://www.cboe.com/products/vix—index—volatility/vix—options—and—futures/
vix-options
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2. Rough volatility and the Zumbach effect

The last approach is to allow for jumps in the dynamic of the SPX, see [BBl4, CK13, KSI5,
PPRI8, PS14]. Doing so, one can reconcile the skewness of SPX options with the level of
VIX implied volatilities. Nevertheless, probably besides those in [CK13] and [PPR18], existing
models with jumps do not really achieve a satisfying accuracy for the joint calibration problem.
Specifically, most of them fail to reproduce VIX smiles for maturities shorter than one month.

As an aside, even though some models with jumps may satisfactorily resolve the joint calibration
problem, such models are unsatisfactory in other respects. For example, perfect hedging is
not possible in such models whereas in contrast, under rough volatility, derivatives hedging is
fully understood as shown in [EER18, EER19], see also [AJLP19, CT20]. Moreover, jumps are
conventionally modeled as Lévy jumps, giving rise to unrealistic model time series properties
that are at odds with those observed empirically, specifically the clustering of large moves
in the underlying. One could imagine trying to fix the latter problem by modeling with
self-exciting jump processes. But that would lead in the end back to rough volatility models,
which can be regarded as special limits of self-exciting jump processes.

In summary, according to Guyon in [Guyl9b], despite the many efforts “so far all the attempts
at solving the joint SPX/VIX smile calibration problem [using a continuous time model]| only
produced imperfect, approximate fits”. In particular, regarding continuous models, Guyon
concludes that “joint calibration seems out of the reach of continuous-time models with
continuous SPX paths”. In this paper, we provide a counterexample to Guyon’s conjecture,
namely a model with continuous SPX and VIX paths that enables us to fit SPX and VIX
options smiles simultaneously.

2 Rough volatility and the Zumbach effect

Recently rough volatility models, where volatility trajectories, though continuous, are very
irregular, have generated a lot of attention. The reason for this success is the ability of these
very parsimonious models to reproduce all the main stylized facts of historical volatility time
series and to fit SPX options smiles, see [BFG16, EEGR19, GJR18]. One particularly interesting
rough volatility model is the rough Heston model introduced in [EER19] which as its name
suggests, is a rough version of the classical Heston model. This model arises as limit of natural
Hawkes process-based models of price and order flow, see [EEFR18, JR16, JR18]. Moreover,
there is a quasi-closed form formula for the characteristic function of the rough Heston model,
just as in the classical case. So fast pricing of European options is possible, see [CGP18, GR19].

Despite these successes, a subtle question raised by Jean-Philippe Bouchaud remains: can a
rough volatility model reproduce the so-called Zumbach effect, the observation originally due
to Gilles Zumbach, see [LZ03, Zum09, Zuml0], that financial time series are not time-reversal
invariant? To answer this question, we introduce two notions, each of which corresponds to
different aspects of the Zumbach effect:
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- The weak Zumbach effect (typically considered in the econophysics literature, see
[ZumO9]): Past squared returns forecast better future integrated volatilities than past
integrated volatilities forecast future squared returns. This property is not satisfied in
classical stochastic volatility models. However, rough stochastic volatility models are
consistent with the weak Zumbach effect, see [EEGRR20] for explicit computations in
the rough Heston model.

- The strong Zumbach effect: Conditional dynamics of volatility with respect to the past
depend not only on the past volatility trajectory but also on the historical price path;
specifically, price trends tend to increase volatility, see [Zuml0]. Such feedback of the
historical price path on volatility also occurs on implied volatility as illustrated in Figure
1 of [FP08] and in [Zuml0]. Rough stochastic volatility models such as the rough Heston
model are not consistent with the strong Zumbach effect, see [EER18].

The quest for a rough volatility model consistent with the strong Zumbach effect and the
empirical success of quadratic Hawkes process-based models documented in [BDB17] led to the
development of super-Heston rough volatility models in [DJR19]. These extensions of the rough
Heston model arise as limits of quadratic Hawkes process-based microstructural models just as
the rough Heston model arises as the continuous-time limit of a linear Hawkes process-based
microstructural model.

The idea of using super-Heston rough volatility models to solve the joint calibration problem
came after a presentation of Julien Guyon at Ecole Polytechnique in March 2019. In this talk,
he gave a necessary condition for a continuous model to fit simultaneously SPX and VIX
smiles: The inversion of convex ordering between volatility and the local volatility implied by
option prices, see [AG19, Guyl9a]. The intuition behind this condition could be reinterpreted
as some kind of strong Zumbach effect. It was then natural for us to investigate the ability of
super-Heston rough volatility models to solve the joint calibration problem.

3 The quadratic rough Heston model

The quadratic rough Heston model that we consider is essentially a special case of the super-
Heston rough volatility models of [DJR19]. The joint dynamics of the asset S (here the SPX),
and its spot variance V satisfy

dS; = S[\/ V[dW[, Vt = a(Z[ - b)z +c,

where W is a Brownian motion, a, b and ¢ some positive constants and Z; is of rough Heston
type, in the sense that weighted past price returns are drivers of the volatility dynamics. More
precisely,

t A t A
_ _aa-1 _ _ a-1
Z; = fo (t—ys) ) Bo(s) — Zy)ds + fo (t—>s) _r(a)"‘/VSdWS’ (2)

with @ € (1/2,1), A >0, >0 and 0y a deterministic function. In this special case of a
super-Heston rough volatility model, the asset S and its volatility depend on the history of
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only one Brownian motion. The model is thus a pure feedback model; volatility is driven only
by the price dynamics, with no additional source of randomness. In general of course, the
volatility process does not need to depend only on the Brownian motion driving the asset
price S. For simplicity, we will refer to (2), a pure feedback version of a super-Heston rough
volatility model, as the quadratic rough Heston model.

As in the general case of super-Heston rough volatility models, because the effect of past
returns on Z cannot be reduced to an influence of past volatility dynamics on Z, the quadratic
rough Heston model also exhibits the strong Zumbach effect (see [DJR19] for more details).

3.1 The quadratic rough Heston process

The process Z; may be understood as a weighted moving average of past price log returns.
Indeed from Lemma A.l in [EERI18], we have that

t t
thf fa”l(t—s)Go(s)ds+f FOr - 9ny/ VedWs,
0 0

where f %A (1) is the Mittag-Leffler density function defined for £ =0 as
FoM0) = At Eq o (-A1Y),

with
z n

Eqp(2) = Z —F(an+ﬁ)'

n=0

The variable Z; is therefore path-dependent, a weighted average of past returns of the type
typically considered in path-dependent volatility models, see [HR98]. As explained in [Guyl4],
modeling with path-dependent variables is a natural way to reproduce the fact that volatility
depends on recent price changes. However the kernels used to model this dependency are
typically exponential, see for example [HR98]. Here a crucial idea, motivated by our previous
work [DJR19], is to use a rough kernel, more precisely the Mittag-Leffler density function.
Thanks to this kernel, the “memory” of Z decays as a power law and Z is highly sensitive to
recent returns since

A
& e land fOrMp) o~ o goL

a,A N
o t—+oo AI'(1 — &) t—0+ I'(a)

This essentially means that long periods of trends or sudden upwards or downwards moves of
the price generate large values for |Z| and so high volatility, in particular when Z is negative.
Such link is clearly observed on data, see Figure III.1 where the VIX index spikes almost
instantaneously after large negative returns of the SPX and then decreases slowly afterwards.
We plot in Figure III.2 an example of sample paths of SPX and VIX indexes in our model.
The feedback of negative price trends on volatility is very well reproduced. Finally the choice
of f%* as kernel ensures that the volatility process is rough, with Hurst parameter equal to
H=a-1/2. As shown in [GJR18], this enables us to reproduce the behavior of historical
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volatility time series provided H is taken of order 0.1.

As explained above, an immediate consequence of the feedback effect is that negative price
trends generate high volatility levels. But such trends also impact the instantaneous variance
of volatility in our model. To see this, consider the classical case with a = 1. In that case, an
application of Itd’s Formula gives that up to a drift term,

dV; =2a(Z, - b)An\/V,dW,.

Thus the “variance of instantaneous variance” coefficient is proportional to a(Z; — b)*> which,
up to ¢, is equal to the variance of logS. Thus when volatility is high, volatility of volatility is
also high. In particular, conditional on a large downwards move in SPX, we would expect V to
be high and so also the volatility of V. This explains why our model generates upward sloping
VIX smiles.

We remark that incorporating the influence of price trends on volatility and instantaneous
variance of volatility is the main motivation underlying the model of [GIP17]. That model,
although not solving the joint calibration problem, is probably the best of the continuous
models introduced so far. In this switching model, the price follows a classical Heston dynamic
where the parameters can change depending on the value of an hidden Markov chain with three
states. It is motivated by a 100-days rolling calibration of the classical Heston model performed
by the authors, see Figure 2 in [GIP17]. This rolling calibration suggests that volatility, leverage
and volatility of volatility are higher in period of crisis. Hence they introduce a Markov chain
to trigger crisis phases and switch the parameters of the Heston model depending on the
situation. The three possible states of the chain can therefore be interpreted as corresponding
to the following situations:

- Flat or increasing SPX.
- Transition phase between flat SPX and crisis.
- Crisis with dramatically decreasing SPX.

The Markov chain in [GIP17] can therefore somehow be seen as an ad hoc version of the
process Z in the quadratic rough Heston model.

3.2 Parameter interpretation

The parameters a, b and c in the specification
Vi=a(Z-b)*+c

can be interpreted in the following way.

- ¢ represents the minimal instantaneous variance. When calibrating the model, we use ¢
to shift upward or downward the smiles of SPX options.
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- b >0 encodes the asymmetry of the feedback effect. Indeed for the same absolute value
of Z, volatility is higher when Z is negative than when it is positive. Such asymmetry
aims at reproducing the empirical behavior of the VIX. This is illustrated in Figure III.1
where we observe that the VIX spikes when the SPX tumbles down, but not after it goes
up. From a calibration viewpoint, the higher b the more SPX options smiles are shifted
to the right.

- a is the sensitivity of the volatility to the feedback of price returns. The greater a,
the greater the role of feedback in the model and the higher is volatility of volatility.
Consistent with this SPX smiles become more extreme as a increases.

3.3 Infinite dimensional Markovian representation

Though the quadratic rough Heston model is not Markovian in the variables (S, V), it does
admit an infinite dimensional Markovian representation. Inspired by the computations in
[EERI18], we obtain that for any ¢ and fy positive

r r
Zt0+t=f0 (t—9)%" lm(eto(s) Zt0+s)d8+f0 (t—9)%" lr( )TI\/Vt0+det0+s, 3)

with 0;, a &;,-measurable function. More precisely 0, is given by

Io
9z0(u)=90(l‘o+u)+L (to—v+uw) 17%Z,dv.

AT1-a) Jo
Equation (3) implies that the law of (S, V)=, only depends on Sy, and 6;,. In view of (1) and
using the same methodology as in [EERI8], it means that we can express the VIX at time [ as
a function of 6; and S;. Consequently we can write the price of any European option with
pay-off depending on SPX and VIX as a function of time, S and 6.

4 Numerical results

In this section, we illustrate how successfully we can fit both SPX and VIX smiles on May
19, 20173, one of the dates considered in [EEGR19], an otherwise randomly chosen date. We
focus on short expirations, from 2 to 5 weeks, where the bulk of VIX liquidity is. Moreover,
short-dated smiles are the ones that are typically poorly fitted by conventional models.

In the quadratic rough Heston model, the function 8y(-) needs to be calibrated to market data.
In the rough Heston model there is a simple bijection between 0y (-) and the forward variance
curve. In the quadratic rough Heston model, this connection is more intricate and so for
simplicity we choose the following restrictive parametric form for Z:

t
Zi=Zo— | t-9* 1—st +f r—9)% 1 A VVedW,,
‘ Ofo( S T At ) T g

3Market data is from OptionMetrics via Wharton Data Research Services (WRDS).
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Figure III.1 - SPX (in blue) and VIX (in red) indexes from 25 November 2004 to 25 November
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Figure IIL.2 - SPX (in blue) and VIX (in red) indexes from simulation of the quadratic rough
Heston model.
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which is equivalent to taking
Zo

AMI'1l-a) !

Allowing 0y (-) to belong to a larger space would obviously lead to even better results, but

-a

0o(1) =

would require a more complex calibration methodology. Thus we are left to calibrate the
parameters v = (a, A, a, b, ¢, Zy). We use the following objective function:

1

#@VIX Z (O'O'mid _O'O'V)Z,

1 .
Fv) = 46 SPX Z (O'O'mld -0+
0e@VIX

o 0€0OSPX

where G5PX is the set of SPX options, GV the set of VIX options, 0®™% denotes the market
mid implied volatility for the option o0 and 0" is the implied volatility of the option o in the
quadratic rough Heston model with parameter v obtained by Monte-Carlo simulations. To
calibrate the model, we minimize the function F over a grid centered around an initial guess vy.

We obtain the following parameters:
a=051; 1=1.2; a=0.384; b=0.095; ¢c=0.0025, Z; =0.1. (4)

The corresponding SPX and VIX options smiles are plotted in Figures .2 and .3.
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Figure II1.3 - Implied volatility on SPX options for 19 May 2017. The blue and red points are
respectively the bid and ask of market implied volatilities. The implied volatility smiles from
the model are in green. The strikes are in log-moneyness and T is time to expiry in years.
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Figure II1.4 - Implied volatility on VIX options for 19 May 2017. The blue and red points are
respectively the bid and ask of market implied volatilities. The implied volatility smiles from
the model are in green. The strikes are in log-moneyness and T is time to expiry in years.

Despite that our calibration methodology is suboptimal and we only have six parameters,
VIX smiles generated by the model with parameters (4) fall systematically within market
bid-ask spreads. The overall shape of the shorter-dated SPX smiles shown in Figure 3, are
well reproduced. Obviously fits can be made even greater by reducing the range of strikes of
interest or by fine tuning the calibration, notably through improving the 0y (-) function. We are
currently working on a fast calibration approach, inspired by recent works on neural networks,
see for example [HMT19].
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CHAPTER IV

Optimal market making with persistent
order flow

Abstract

We address the issue of market making on electronic markets when taking into account
the self exciting property of market order flow. We consider a market with order flows
driven by Hawkes processes where one market maker operates, aiming at optimizing its
profit. We characterize an optimal control solving this problem by proving existence and
uniqueness of a viscosity solution to the associated Hamilton Jacobi Bellman equation.
Finally we propose a methodology to approximate the optimal strategy.

Keywords: Hawkes processes, market making, high frequency trading, stochastic control,
viscosity solutions.

1 Introduction

Most electronic exchanges are organized as an anonymous continuous double auction system.
Market participants can send limit orders to a central limit order book (LOB for short)
displaying a volume of shares and a price at which they are ready to buy or sell. Limit orders
in the LOB can be canceled (cancellation order). Market participants can also use market
orders specifying a volume in order to buy or sell instantaneously at the best available price.
In a very stylized view we can consider that there are two types of market participants: market
takers seeking to buy or sell shares for strategic purposes using market orders and market
makers filling the LOB with limit orders so that they play the role of intermediaries between
buyer and seller market takers.

In practice one of the main risk faced by a market maker is the inventory risk. For example
if he has a large positive inventory, price may decrease to his disadvantage. Market makers
thus adapt their strategies to mitigate this risk. Basically we expect a market maker with a
large positive inventory to set attractive ask prices and less competitive bid prices, in order to
attract more buy than sell market orders. To do so in a relevant way he must therefore adapt
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IV. Optimal market making with persistent order flow

his strategy to the main statistical features of the order flow.

Some key aspects that market makers should incorporate in their trading strategies are the
clustering and long memory properties of order flow. The clustering property refers to the
fact that buy and sell market orders are not distributed homogeneously in time but tend to
be clustered, see [Hew06]. In practice it means that after a buy (for say) market order it is
likely that a new one is going to be sent shortly. Long memory of order flow designates the
fact that the autocorrelation function of trade sign (+1 for a buy order and —1 for a sell order)
exhibits a power-law tail, see [LF04]. These two properties imply that market order flow is very
persistent. Our goal in this paper is to propose a method to design market making strategies
that take into account those two features. For this purpose we consider a market with one
market maker controlling the best bid and ask prices and with market takers using only market
orders (of unit volume).

The issue of market making while managing an inventory risk has been notably addressed
in [AS08, GLFT13] where market order flow is modeled using Poisson processes, see also the
books [CJP15, Guél6]. However these processes neither reproduce the clustering nor the long
memory property of order flow. To take them into account, the authors of [CJR14, CWZZ20]
use a refined model based on Hawkes processes with exponential kernels. Such modeling is
also used in [AB16, Hew06] to design optimal liquidation strategies. In this work we consider

generalized Hawkes processes. More precisely N is a generalized Hawkes process with intensity
Ay if

t
A= fo Kt 9)dNy),

where @ is a continuous function and K a completely monotone L' function!. In [AB16, CJR14]
the authors consider exponential functions for K. For such kernel Hawkes processes manage
to reproduce the clustering property of the order flow but not its long memory. However when
the kernel K has a power law tail: K(£) ~ P for some 8> 1, both properties are reproduced,
see [BJM16, JR16]. So in this paper we extend the works [AS08, CJR14, GLFT13] to market
order flows driven by Hawkes processes with general kernels.

We denote by N (resp. N?) the total number of buy (resp. sell) market orders sent between
time 0 and time ¢ and write i, := N’ — N for the market maker’s inventory, which is null
at time 0. As in [AS08] the market maker controls the bid and ask spreads, denoted by 6
and 6”. The corresponding best ask and bid prices are P+ and P — &%, where P is the
fundamental price of the underlying asset. The set of admissible controls is then

o =16=0%6" ¢ IR2+, s.t. § is predictable},

where predictability is relative to the natural filtration generated by (B N “,Nb), see Section
5.1 for more details. Since market takers are seeking for low transaction costs, their trading
intensity is decreasing with the spreads. More precisely we know from classical financial

Un this paper we consider complete monotony on R..
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economics results, see [DR15, MRR97, WBK* 08|, that the average number of trades per unit
of time is a decreasing function of the ratio between spread and volatility. To model this we
consider that when the spreads are 6% and 6” market order intensities are given by

190 = 7501 1@0 and AP0 = gm507 A0,
where k is a positive constant and o is the volatility of price and
t t
240 = q)(fo K(t-s5)dNZ), AP0 = q>(f0 K(t-s)dNY).
Regarding the dynamic of P we assume it is given by
dP; =d(t,P)dt +odW; 1)

where d is a Lipschitz function. Finally we formalize the market maker problem as a general
stochastic control problem

T
sup E°|G(ir, Pr)e” T + fo e™"%(g(is, P)ds + 54dNY + 5§’de)], @)
besd

where r is a positive constant and g and G are two continuous functions with at most quadratic
growth. The former represents a continuous reward received by the market maker (besides its
P&L) and the latter is a final lump sum payment paid to the market maker at the end of its
trading. Typical choices would be G(x,y) =xy and g(x,y) = x2. The notation E° denotes the
expectation under the law corresponding to the control § (see Section 5.1 for details).

In [AS08], to solve the market maker’s optimization problem in a Poisson context, the authors
study the associated Hamilton Jacobi Bellman equation (HJB for short). They can use this
method since (P.i, N% N?) is Markovian in this case. However when N% and N” are Hawkes
processes, notably when the kernel is not exponential, (B i, N4, N by is not Markovian?. In
order to circumvent this difficulty we consider auxiliary state variables enabling us to work in
a Markovian setting. More precisely we consider the process X = (P,i,0%,0%) where

t t
0¢ =f K(-—5)dN? and 6 =f K(--s)dN{.
0 0

Note that here 6¢ and ¢ are random functions from R, into [R€+3. The process (£, X¢) =0 is
Markovian. Moreover, studying the HJB equation associated with this representation, we prove
in Section 2 that the optimal control problem (2) admits a solution of the form

* =K, Xy,

where 6K is a feedback control function. In our approach the HJB equation is defined on
a subset of an infinite dimensional vector space. So in general we cannot rely on classical
numerical methods to approximate §X. To tackle this issue we propose the following strategy.

2In the exponential case the process (P, i, N4, Nb,ﬂlb,/la) is actually Markovian.
3To define 0? and 0? we consider that K is extended to R with value 0 on R*.
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- We show that if (K) ;>0 converges towards K in L' and uniformly on [0, T'] then 6% 120
converges point-wise towards §X.

- We show that when K(#) =" | a;e™"’ then there exists a Markovian representation of
the model in dimension 27 + 2. Therefore in this case the optimal control X can be
approximated numerically.

- Inspired by [AJ19], we prove that for any completely monotone kernel K in L!, we can
find a sequence (K},);=0, converging towards K in L! and uniformly on [0, T] and such
that for any n, Kj, is a linear combination of n decreasing exponential functions.

Those three points give a simple methodology to approximate 6X. However when 7 is large
we cannot rely on finite differences methods to compute 6% since the dimension is too large.
So for numerical experiments we use the probabilistic representation of semi-linear partial
differential equations (PDEs for short) introduced in [HLOT*19].

The paper is organized as follows. In Section 2 we prove existence of a solution to Problem (2)
based on the study of its associated HJB equation. In Section 3 we explain how to approximate
the optimal control obtained in Section 2. Finally in Section 4 we present some numerical
experiments. The proofs are relegated to the Appendix.

2 Solving the market maker problem using viscosity solutions

In this section we prove existence of a solution to Problem (2). First we define an appropriate
set for the process X. Then we show that the associated HJB equation has a unique viscosity
solution with polynomial growth and prove the existence of an optimal control solving (2).

2.1 Appropriate domain for the process X

To study the uniqueness of solution to a PDE in the sense of viscosity, it is convenient to deal
with locally compact domain. We have X = (B, 1,070 eRx 7 x L! x L', but since L! is not
locally compact we need to specify more precisely the set in which the processes 8¢ and 6”
belong. Obviously we have for j=a or b

0/ cOK = (Y K(--Ty), neN, Ty <---< T, <1} cOK.

n
i=1

We naturally endow ©X with the topology of L' and prove in Appendix IV.A that it enjoys the
following topological properties.

Lemma 1.
(i) The set ©% is a locally compact closed subset of L.

(ii) For any sequence (S,,0,)n=0 with values in [0, T] x @IT< such that for any n, 6, € @fn, if
(Sn,0n) n=0 converges towards (s,0) then we have 0 € @f and 0,,(s,) — 0(s) when n — +oo.
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(iii) Moreover if K is a sum of exponential functions then we have for any k =0,

00 (1) — 6% (T), when n — +oo.

From point (i) in Lemma 1 the set 91T< is adapted to our purpose. Points (ii) and (iii) are
purely technical and are used in Section 3. Based on the sets (©X)c(0,7) we define a locally
compact domain for X. More precisely for any ¢ € [0, T] we consider

ZK=11,040" e zx 0K x 05} and 2K = ((p,1,0%,0%) st. peR and (i,0%,60%) e ZK}.

The set ZX (resp. ZKX) is a locally compact closed subset of Z x L! x L! (resp. Rx Z x L! x LY).
We finally define
EX={(t,0) [0, TI x ZfF st xe [}

which is a locally compact closed subset of [0, T]xRxZ x L' x L!. Obviously we have (z, X;) € §X
for any 7€ [0, T]. To lighten the notations when we consider x € &X (resp. x € ZK, ze ZK)
we implicitly assume that x = (¢, p,i,@“,@b) (resp. X = (p,i,@”,@b), z=(i,0% 60 ) We also
define for any x = (p,1,0%,0%) e Rx L! x L x Z the norm || x| = \/pz +i2+11607]2 +67(1? and
for any non-negative R the set,

EX ={(t,x) e &, st. |xl <R},
which is a compact subset of &K as consequence of Lemma 1 (7).

Now that we have defined a set adapted to PDE analysis we derive in the next section the HJB
equation related to the stochastic control problem (2).

2.2 Hamilton-Jacobi-Bellman equation associated to the control problem

The stochastic control problem (2) is written in an unconventional way because of the integrals
T T
fo 59dN% and fo SPdN?.

However up to a P?-local martingale those terms are respectively equal to fOT 5?/1?’5ds and
fOT 6?1?’5ds. So as consequence of Appendix IV.B.3 for any § € o we have

T
[E5[G(iT,PT)e_'T+f0 e_”(g(is,Ps)ds+6deS”+5?stb)]
T
:[E5[G(iT,PT)e‘rT+f e_”(g(is,Ps)+6§%?'5+6§’A?’5)ds].
0

Thus (2) is equivalent to the stochastic control problem

T
sup E°[G(ir, Pr)e™" T + f e (gliy, Py) + 59220 +5227)ds). (3)
beof 0
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In order to give intuition on the HJB equation related to this stochastic control problem we
write the Ito formula related to X. We consider a function ¢ defined on [0, T] x R x Z x L'x 1!
that is C>2000 We call any function with such regularity a test function. For any s <t € [0, T]
we have

t i .
Pt X0 =95, X0 = [ (000 Xu0) + 29w Xu) + X DXt Xyde5%h0(0] )
s j=a,b

+0,9(u, Xy )odWy + DX (u, X, )dM®° + DX o (u, X,,-)dM2?,

where

t t
M = Nf - f A%%ds and M} = Nf - f AP0ds
0 0

are P?-uniformly integrable martingales, see Appendix IV.B.1 for details. The operator £7 is
the infinitesimal generator related to the diffusion of P and is defined for any test function ¢
and (r,x) € &K by

1
LPot,x)=dt, p)Op(t, x) + Eazaipcp(t, X).

The operators Dg and DII; correspond to the infinitesimal generators related to the diffusion
of N and N?. They are defined for (,x) € £X by

D§¢(t»x) = (P(t, p) l - l’ga +K( - t)reb) _(p(ty P, i,eu’eb)’
Dfp(t,x)=@(t,p,i+1,0%,0" +K(-— ) — p(t, p,i,0%,0").

Hence the HJB equation associated to the control problem (3) is

F(x,Ux),VU(x),85,U(x), DXU(x)) =0 for xe &K,

(H)B)g : { U(T,y)=G(i,p) for ye %TIS

with VU = (0,U,0,U), DXU = (D5 U, DX U) and where the function F is defined for (x,u, ¢, A,I) €
EX xR xR? x R x R? by
1, .
F(x,u,q,A,I)=ru—q1—d(t,p)qz—50 A-g(i,p)

— sup®(0%(1))e %5 + I) — sup®(6°(1)e ¥ (6 + I).
OeR, O€eR,

A simple computation gives the maximizers
§*=(o/k-1), and 6*Y = (0/k~-I),. (4)

Note that the dependence in K of (HJB) lies in the operator DX. It seems hard to prove
existence of a smooth solution to the integro-partial differential equation (IPDE for short)
(H)B) k. Therefore in the next section we look for viscosity solutions.
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2. Solving the market maker problem using viscosity solutions

2.3 Viscosity solutions: some definitions

Since we are dealing with an IPDE defined on a non usual set and in order to make things
precise we define the notion of viscosity solution in our framework. First we give the classical
definition and then its counterparts based on semi jets.

Definition 1.

- A locally bounded function U € USC(EX) (the set of upper semi-continuous function on X)
is a viscosity sub-solution of (HJB)x if for all x € X and test function ¢ such that x is a
maximum on X of U — ¢ we have

F(x,¢(x), V(x),05,¢(x), DX U (x)) <0.

- A locally bounded function U € LSC(EX) (the set of lower semi-continuous function on £X)
is a viscosity super-solution of (HJB) if for all x € &K and test function ¢ such that x is a
minimum on EX of U — ¢ we have

F(x,¢(x), Vop(x),05,,¢(x), DX U (x)) = 0.

- A continuous function U defined on EX is a viscosity solution of (HJB)x if it is a viscosity
super-solution and a viscosity sub-solution.

In the above definition it is equivalent to consider local (or local strict) extrema. We have not
replaced U by ¢ for the last operator DX. This is because DXU do not require regularity
assumption on the function U to be defined. However it is equivalent to replace DXU by DX¢
in Definition 1. Indeed in the case of sub-solution for say, we can always build a sequence of
test functions (¢p,) ;=0 satisfying U < ¢, with equality at point x and such that

(Vpn(x), 05, (X)) = (Vp(x), 07, p (1)) with DX p(x) — DXU(x).

By continuity of F we get the equivalence. This also holds for super-solution.

We now introduce the notions of semi super and sub-jets in our framework. For U a USC
function on &X and x = (¢, p,2) € &K the super-jet of U at point x is the set

FTUx) ={(g, A h) eR* x R x CO(Zf), s.t. for any y = (s, g, v) € X we have

1
U(s,y) < U(t,x)+g1(t—8)+gz(p—q)+EA(p—q)2+h(z— v)+o(t—sl+|p—ql?
and h(0) =0}

and the semi super-jet of U at point x is

?JrU(x) ={(g,Ah) e R® xR x C° (ZIK) s.t. there exists a sequence
(X1, &n> An, hy)p=o with for any n=0 (gn, An, h,) € f-'-U(xn)
and such that(x,, U(xp), §n, An, hn) T (x,U(x),8, A h)}.
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IV. Optimal market making with persistent order flow

In the above definition the convergence of h, is taken in the sense of locally uniform
convergence around 0. By analogy for a LSC function U we define the sub-jet #~U(x) and
the semi sub-jet # U(x). We can now give another characterization of viscosity sub and
super-solutions relying on the notions of semi jets.

Definition 2.

- A locally bounded function U € USC(EX) is a viscosity sub-solution of (HJB)x if for all
xe&X, and (g, A h) e ¢ U(x) we have

F(x,U(x),g A DXUx) <0.

- A locally bounded function U € LSC(&X) is a viscosity super-solution of (HJB)x if for all
xe &K, and (g, A, h) e ¢ U(x) we have

F(x,U(x),g A, DXU(x)) = 0.

We show that Definition 1 and 2 are equivalent in Appendix IV.C.

In the next section based on the study of (HJB)x we prove that the control problem (3) admits
a solution.

2.4 Existence of an optimal control

In this section we prove existence of a solution to Problem (3). Before stating the result we
present a sketch of the proof.

We start by proving uniqueness of a viscosity solution with polynomial growth to (HJB)g
using a comparison result. The main difficulty is to adapt the Crandall-Ishi’s lemma to our
framework, which is done in Appendix IV.D. Using a verification argument we then check
that the continuation utility function UX associated to the problem (3) is actually this unique
solution. The maximizers of the Hamiltonian given in Equation (4) then naturally provide a
control solving Problem (3). The full proof is given in Section 5.2.

Theorem 1.
(i) There exists a unique viscosity solution UX with polynomial growth to (HJB)x.

(ii) This solution satisfies

T
Uk (0) = sup [E5[G(iT,PT)e‘rT+f e_rs(g(is,Ps) +5920 +5§’/1§"5)ds].
x4 0

(iii) The problem (3) admits a solution given by
8; =651, Xp), with 6% = (6%,6}),

where
6% =(o/k—DLUX), and 6% = (o/k—DyU"),. (5)
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3. How to approach the optimal control

It is important to remark that to obtain existence of an admissible optimal control we
have benefited from the fact that we are controlling counting processes, whose infinitesimal
generators are defined for any finite functions. From a practical point of view Theorem 1
implies that if we manage to compute UX it is possible to implement the optimal control by
monitoring the processes 8% and #”. Note that to do this it is sufficient to monitor the arrival
times of buy and sell market orders. However since &X is a subset of an infinite dimensional
vector space, we cannot approximate UX using classic numerical methods. Therefore we need
to find another way to approach the control 5X. We tackle this problem in the next section.

3 How to approach the optimal control

In this section we explain how to approach numerically the feedback control §X. We proceed
in three steps:

- We show that if (K};) ;>0 converges towards K in L' and uniformly on [0, T'] then (6% 120
converges point-wise towards §X.

n
- We prove that when K(f) = ) a;e Vil there exists a Markovian representation of the
i=1
model in dimension 27 + 2.

- Inspired by [AJ19] we show that for any completely monotone function K in L' we can
find a sequence (Kj);=0 converging towards K in L! and uniformly on [0, T] such that
for any n, K, is a linear combination of n decreasing exponential functions.

Those three points give a simple method to implement an approximate version of the control
6% choose K, written as sum of positive decreasing exponential functions, close enough to K.
Use the finite dimensional representation to compute UX and implement 56X instead of §X.
We make precise this method in the last part of this section.

3.1 Convergence of solutions and optimal controls

Consider a completely monotone function K in L'. We show that if a sequence of continuous
L! functions (Kj) ;0 converges towards K in L' and uniformly on [0, 7] then the sequence
(6%7) n=0 converges point-wise towards 6. With respect to Equation (5) it is sufficient to prove
that the sequence (UX"),5¢ converges point-wise towards UK.

From Theorem 5.8 in [Toul2] we observe that the notion of viscosity solution is perfectly
adapted to prove the convergence of solutions to a sequence of IPDEs. Hence we prove
in Section 5.3 the following result which is an adaptation of Theorem 5.8 in [Toul2] to our
framework.

Proposition 1. Consider a sequence (K)o of continuous L' functions converging towards a
completely monotone function K in L' and uniformly on [0, T}, then for any x € &X we have

Ufx) = lim Uk (y) (6)

(y,n)e&—(x,+00)
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IV. Optimal market making with persistent order flow

where
ég_":éon{oo}U(U &Kn x{n}).
n=0

The main technical difficulty in the proof of Proposition 1, compared to Theorem 5.8 in [Toul2],
is that the functions (UX"),¢ are defined on different domains. From now on, when we
consider a limit as in Equation (6) we forget to write & to lighten notations. Proposition 1
perfectly fits our purpose of approaching UX for any K. Indeed suppose we manage to find
a dense* subset of the completely monotone L' functions such that for any K in this subset,
the function UX can be approximated numerically. Then Proposition 1 guarantees that for
any completely monotone function K in L! we can approach numerically UX. We show in the
next two sections that the set

n
FE=J1)_ aie"1g, s.t. a €R} and y e R}

n=0 j=1

satisfies those two conditions. Note that & is simply the set of positive linear combination of
decreasing exponential functions.

We start by studying Problem (3) when the function K is in .#&. Then we show that #& is
dense in the set of completely monotone functions in L!.

3.2 Solving the optimal control for K € &

We explain in this section how to solve the stochastic control problem (3) when the function K
belongs in #&.

We consider that the kernel of the Hawkes processes N* and N” is given by Ko,y (1) =

Y, a;eViflg, (1), where n is a positive integer, a € R} and y € R?. For i € {1,...,n} and

j =a or b we define the process
y t )
c/ :f a;e ViUIdN],
0
Then Y;W = (t, P, it,(c?”)lsisn, (Cf'l)lsisn) is a Markovian process since

M=o ¢y and de/’ = —y;c]"'dt + a;dN/ for j=a or b.
i=1
The domain associated to this representation is &” = [0, T] x R x Z x R} x R}, which is locally
compact. As for &K, when we have (t,x) € &" we implicitly consider that x = (p, i, c%, c?). We
can naturally go from the first representation to the second one. More precisely we prove

in Appendix IV.E that there exists a continuous function R®Y from &Xar into &" such that
for any £ >0 we have R¥7 (¢, X;) = (t, Yta’y). However notice that the second representation is

*Here dense is intended in the sense of convergence in L' together with uniform convergence on [0, T].
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3. How to approach the optimal control

somehow larger than the first one: if we consider y = (¢, p, i, c? cP) € &" there is a priori no
x € &Kar such that
y=2R%7 (x).

This is because in general there does not exist 7 =0 and (7})1<;<m in [0, T] such that for any
iefl,...,n}

m
cl=a; ) e ViUTTD,
j=1

The infinitesimal generators associated to the processes N% and N” for the new representation
are denoted by Dy and Dj. They are defined for any function U on &" and x € &”" by

DEUW) =U(t,p,i—1,c"+a,c?) - U, p,i,c% D),
DU =U(t,pi+1,¢% c’+a)-U(t,p,i,c% D).

The HJB equation related to Problem (3) in this new representation is therefore

(HIB),, . : { Gay (%, U(x), VU (%), VU (x),05,U(x), D*U (x)) = 0, for xe &",
oy U(T,y) = G(i,p) for (T,y) € &"
with VU = (VG U, Vi U) where for j = a or b, VU = (0, Uli=izn, VU (1, %) = (0:U(1,x),0,U (¢, X)),
D*U(t,x) = (D4U(t,x), D} U(t, x))

and where the function Gy is defined for (x,u, h,q, A, I) € E" xR x (R)? x R% x R x R2 by

1
Ga,y(x,u,q,h, A1) = ru—hy —d(t, p)hy — EazA— 0 a1y =<y, 42 — 8, p)

n ) n .
—sup®(Y. c*)e o0 (6 + 1) - sup®(Y. PHe 50 (5 + Iy).
0eR, =1 SeR, i=1

We can easily adapt the proof of Theorem 1 to (HJB),,, and prove the following result.
Theorem 2.
(i) There exists a unique continuous viscosity solution with polynomial growth U%Y to (HJB),y.

(ii) The solution U*Y satisfies

T
U*Y(0) = sup E°[G(ir, Pr)e” " + f e "5 (g(is, Ps) + 69A%0 4+ 52129 ds).
bedd 0

(iii) The stochastic control problem (3) admits a solution that is written
5% (1, Y™), with 6% = 637,607

where
6,7 =(0/k-DGU*Y), and 8,7 = (0/k-DyU*Y),.
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IV. Optimal market making with persistent order flow

(iv) We have UKar = U®Y 0 %7,

The proof of the three first points is exactly the same as the proof of Theorem 1. We deal with
point (iv) in Section 5.4. Points (iii) and (iv) of Theorem 2 imply that for any a and y in RY}
we can approach numerically §%=r. We just need to approximate U%? using any numerical
method, which is possible because the domain of (HJB)g,y is a subset of a finite dimensional
vector space. Then using the change of variable Z%7 one gets

§Kar = 5% 0 ™Y,

This shows that the optimal control processes given in Theorem 1 (iii) and Theorem 2 (iii) are
actually the same.

3.3 Density of .#& in the set of completely monotone function

In this section we show that #& is dense in the set of completely monotone functions in
L'. Before giving the result we present a sketch of the proof. The main point is that any
completely monotone function can be written as the Laplace transform of a positive measure
m, see Lemma 2.3 in [Merl4]:

+00
K(x) :f e "““m(du). 7)
0

Moreover if K(0) < +oo then m is L! and if K is in L! then f0+°°%d”) < co. Hence using a
Riemann sum to approach the integral in (7) we get a natural approximation of K by a function
in #&. Based on this idea we prove the following result in Appendix IV.F.

Lemma 2. For any completely monotone function K in L' we can find a sequence (an,Yn)n=0
where for any n (a,,yn) € RY x RY, such that the sequence (Ky, y,)n=0 converges towards K in L!
and uniformly on every compact set of R... Moreover we may choose (&, Y n) n=0 such that

IKa,,y, Il = 1Kl and Kq,,y,(0) = K(0).

Lemma 2 concludes on the existence of a procedure to approach 6K. In the next section we
sum up our results and explain how one may implement in practice an approximation of the
optimal control.

3.4 Conclusion on approaching the optimal control

We fix a completely monotone function K in L' and a sequence (@;,Yn)n=o0 such that
(Kg,,y,)n=0 converges towards K in L' and uniformly on [0,T]. We write K}, instead of
Ka,,y, to lighten notations. The existence of such sequence is given by Lemma 2. Moreover
from Proposition 1, for any x € £X we have

U= lim )UK" ).

(y,n)—(x,+00
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3. How to approach the optimal control

Therefore using point (iii) of Theorems 1 and 2 we get

6K (x) = lim &% ),

(y,1)— (x,+00)
and Theorem 2 (iv) gives that for any x € X

K= lim  §%YnoRnYn(y).

(y,n)— (x,+00)

For a given x = (¢, p, i,Q“,Hb) € &K we now explicit a sequence (x,),=0 converging towards x
and such that x, € &% for any n. By definition of ©X there exists 7, and mj, two non-negative
integers and two sequences (Tl.“)lsismu and (Tib)lsisma in [0, £] such that

mg mp
0°=Y K(-Tf) and 0”=) K(--T)).
i=1 i=1
Consequently for any n > 0 we naturally define :

my mp
0" =Y Ky(-—T" and 8™ =Y K,(-— T?) e ©F",
i=1 i=1

and x, = (t,p, i,0™a 9™P) which obviously belongs in &Xn_ Because of Lemma 2 the sequence
0™ p=o (resp. (0™),s0) converges in L' towards 0 (resp. 0”). Therefore we get (xy,n)
converges towards (x,+00) as 1 goes to infinity, consequently

6% x) = lim 59T 0 BT ().
Hence for n large enough we can consider that for any ¢ € [0, T]:
8% = 85X = gy T,
In conclusion to implement an approached version of the optimal control 6% one must:

1. Fix n positive and find @,y € R} such that Ky, is close to K. See Appendix IV.F for a
method to build Ky y.

2. Approach numerically U*7, the solution of (HJB)4,, which is equivalent to approach
numerically the feedback 6%7.

3. Monitor Y*7 and apply the control 6% (Y *7).

The only flaw of this method is that the set &” is a subset of a vector space of dimension
2n+2. Hence when 7 is larger than 2 it is very unlikely that simple finite differences methods
can be used to solve numerically (HJB)q,y. To tackle this issue one has to use other numerical
methods such as neural networks, see [BHLP18, HPBL18] for example, or probabilistic method,
see [HLOT™19]. In this article we propose to use the later method for numerical applications.
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IV. Optimal market making with persistent order flow

4 Numerical applications

In this section we present some numerical experiments illustrating our results.

We consider a simplified version of the market maker’s problem:

T

(N):sup E°[ f S9ANE +62dAN? — pui?).
deof 0

This corresponds to G =0 and g(i, p) = —pi’. We take k/o =50 and p = 0.02. We note U

the unique viscosity solution (with polynomial growth) of the HJB equation associated to (IN)

when the Hawkes processes’ kernel is K. In all this section we discard the price variable from

the IPDE:s since it does not appear in the optimization problem.

We first consider in Section 4.1 the cases of kernels in .#& with n =2. We use a finite differences
method to solve the IPDEs. Then in Section 4.2 we deal with more complex functions K. To
solve the IPDEs we use the probabilistic representation introduced in [HLOT*19] which is
described in Appendix IV.G.

41 The small dimension case

We consider three control functions 6%, §! and 62 computed in the following way:

- The control §° is computed by a market maker that believes buy and sell order flows are
Poisson processes with intensity fi.

- The control 6! is computed by a market maker that believes order flows are driven by
Hawkes processes with intensity p; and kernel Kj (#) = ale vt

- The control 62 is computed by a market maker that believes order flows are driven by
2 2
Hawkes processes with intensity i, and kernel K,(¢) = a%e‘ylt + a%e‘nt .

We use the following parameters settings:
- Hp=0.01
- p1=0.001, y' =1 and @' =0.9
- p2=0.001, y? = (1,1) and a? = (0.45,0.45).

These parameters are consistent with respect to the average intensity of market orders (in a
stationary version):
M

1=Kl 1=Kl
In order to estimate the gain made by market makers using refined strategies we compute the
value function associated to each control when the order flows actually follows the modeling of
the third market maker, see Figures IV.1, IV.2 and IV.3. As expected the control 52 is optimal

Ho

118



4. Numerical applications

and 6° is sub-optimal compared §'. We observe in Figure IV.I that considering a one factor
model for the order flows leads to a 10% gain compared with a strategy considering that
market order flows is a Poisson process. Using two factors leads to another 10% gain compared
to the one factor case.
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Figure IV.1 - Value function along the time for controls §° and §' with initial condition
¢®=(0,10), ¢’ =(0,10) and i = —10.

Figure IV.2 - Difference between the value function associated to control 62 and &' for
¢ =(10,0), c?! =10.

4.2 The large dimension case

In this section we apply the method presented in Section 3.4 to estimate Uk at several points
when the function K is a positive linear combination of 7 decreasing exponential functions
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IV. Optimal market making with persistent order flow

Figure IV.3 - Difference between the value function associated to control 6 and §° for
¢ =(10,0), c*! =10.

and n is large.
More precisely for n € {1,...,200} we consider the kernel K, given by K, (f) = Z;’:I a;e it
We write K = Ky and for any n <200 set a” = (&;)1<i<n. The parameters (a;)1<j<200 and

(Yi)1<i<200 are given in Figure IV.5. For any n using the probabilistic representation of
[HLOT*19], see Appendix IV.G for more details, we estimate Uk, at the points

xl =(0,0,K",0), x}'=(0,10,K",0) and x}' = (0,~-10,K",0) in &%,

We consider xg = (0,0,K,0), x; = (0,10,K,0) and x» = (0,—10,K,0) in &X. According to
Proposition 1 we have for any i € {1,...,2}

Uk, (x]) Pindt Uk (x;).

This convergence is clearly illustrated in Figure IV.4. This prove the tractability of our approach
to take into account the self exciting properties of market order flow into market making
strategies.
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2

0 50 100 150 200

n

Figure IV.4 - Estimation of the value function Uk, at points x? for n€{1,...,200} and

i€{0,1,2}.
Figure IV.5 - Parameters (a;)1<i<200 (in blue) and (y;)1<i<200 (in red).
5 Proofs

5.1 Formal definition of the probability space

In this section we make precise the probability space we are working on. In particular we
give a proper definition to E. First we define the canonical process and the probability space
associated to our stochastic control problem.

- Consider Qg the set of increasing piecewise constant cadlag functions from [0, T] into
N with jumps equal to 1 and Qp the set of continuous functions from [0, T] into R. We
define Q=Q) x QZ.

- We let (W,,Nf,Nf’)tE[o,T] be the canonical process on Q.
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- The associated filtration is F = (gt’)@?fi@gf)m[o,ﬂ where (gfl)te[oj] (resp. (gtp)te[o,T])
is the right continuous completed filtration associated with N“ (or N b) (resp. W).

- We denote by Py the probability measure on (Q,F) such that (M% = N%- sy, M? =
Nsb - s/lo) s€[0.T]? for Ag >0, are local martingales and (W) (0,17 is @ Brownian motion .

We now introduce some process related to our model. For a fixed (f,x) € &K we define
Xb% = (PbX,jb*, 0054 9b5b) that is the state of the system after time ¢ when starting from
point (,x). The dynamic of X** is given on [, T] by

dPl* =d(s, P")ds +odW;, P =p,

dit*=dN%-dN?, iP* =i,

doL%® = K(--s)dN?, 005 =07,

oL = K(-— )dN?, 015" =P,

Using those processes we explicit the change of measure associated to each control process.
For this we consider the functions

A9(t,x,8) = e 72" D(09(5) and AX(1,x,8) = e =0 (67 (1),

that represent the ask and bid intensity in the state (f,x) € &X when the control is §. For any
8 € of we define P“*0 by
dptxo _ Lo
dPy r

where L5 is the Doléans-Dade exponential of
Zt,x;6 _fs Aa(s»Xst'x»as)_/lo Ab(s,Xf'x,és)—/lo
: - 0 Ao Ao
Since A%(t,x,8) < C(1+ |x|) and A?(t,x,8) < C + |1 xI), by the Corrolary 2.6 in [Sokl3], for

any (f,x) € éaK, (L?x;a)se[;j] is a true Py martingale. Moreover by Theorem III-3.11 in [JS13]
the processes

1o, dM? + 1so,dM?.

MPE0 = N — f A%(w,6,, X )du and M0 = NP — f AP(w,6,, X ) du
t t
are P9 _Jocal martingales on [t, T]. Actually they are true martingales, see Appendix IV.B.1.

For (t,x) € &KX and & € of we note [E‘Z .. the expectation under the law P5%9 and note 9 instead
of [Eg o

Finally, for any F bounded continuous function, § € &/ and 0 stopping time with values in

[¢, T] we have:

0,x5*
ES ([F(XL¥)| Fp) =[E§_9X9,,X[F(XT ) (8)

where, 6% is the restriction to [0, T] of 8. This prove that for any (,x) € &X the process
(s, Xst’x)szt is Markovian.
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5.2 Proof of Theorem 1
We proceed in 5 steps.

1. Section 5.2.1: Using a comparison result we show that (HJB)x admits a unique viscosity
solution with polynomial growth.

2. Section 5.2.2: For any K we define UK the continuation utility function associated to (3).
3. Section 5.2.3: We prove a dynamic programming principle for UX.

4. Section 5.2.4: Using a verification argument we show that UX is the unique viscosity
solution (with polynomial growth) of (HJB)g.

5. Section 5.2.5: We show that the control given in Equation (5) solves the control problem

(3)

5.21 Comparison result for (HJB)x

We start by proving a comparison result for bounded solutions, then we extend it to functions
with polynomial growth.

Proposition 2. Let U € USC(EX) be a bounded from above viscosity sub-solution of (HJB) g and
V € LSC(&X) be a bounded from below viscosity super-solution of (HIB) k. such that U(T,-) < V(T,)
then

U<V on&X.

Proof. We suppose that there exists some (f, o) € &X such that
U (1o, x0) — V(to,x0) =6 > 0.

By hypothesis necessarily fy € [0, T). We show that this implies a contradiction. We consider
the following quantities

Ne= sup U(t,x) - V(t,x) - 2¢||x||*

(t,x)e&k

and

NY=  sup U(t,x)-V(t,y)—e(xI®+lyl®) - alx-yl?.
(t,x),(t,y)e&K

The function U and -V being bounded from above we have

Ut,x) - V(t,y)—alx—ylI* —ellxl> - el yl? = —o0

1m
lxl+1yll—+o0

uniformly in f. Thus we can restrict the supremums to bounded sets that depends only on &.
More precisely

N = sup U(t,x) - V(t,x)—2elx|? )
(t,x)eEK
N® = sup UL, -V(e,y)—elxl*+1yl® - alx-yl? (10)

(t,%),(1,y)e6X
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where R only depends on €. We remind that the set 6"}1?( is compact. Hence the supremum NZ
is achieved at some (t7,xZ, yZ). We show at the end of the proof that when @ — +oo, up to a
subsequence, we have

im0, )= (e, ) )

where (f, x¢) achieves the supremum N.. We also prove that

: a_ a2 _ : O _ : 2 _
Jm allxg = ye 17 =0, im Ng° = N, lim £]lxe " =0 (12)
and that
lim N, =N= sup U(t,x)-V(¢x). (13)
e—0 (t, )€K

A consequence of Equation (13) is that

Jim (U, %), Ve, x)) = (Ulte, xe), V (e, Xe)). (14)
We use the notations x¢ = (PZ, ig,eg'“,ef’“) and y¥ =(Q%,jg, f’a,ﬁf’a).

With respect to Lemma 5, which is an adaptation of the Crandall-Ishi’s lemma to our
@_mework, for any > 0 there exists (()Lg‘, pg),Af’a, h) e j+ U(tg,xg‘) and ((ig, qg),Bf'a,g) €
£ V(% y%) such that

Aﬁva’ 0 1 -1
—(B T +2e +4)]y < ( 0 Bﬁ,a) < Qe+ e + (2a+8ﬁ(“““2))( 11 )
— E -
with
pE =2eP +2a(P¢ - Qf), qf =-26Qf ~2a(Qf ~ P{), A =0 and Af =0.

Remark that for € small enough
a .a a .« 2 o
Ut ,x) -Vt ys)=6—¢lxoll >E

We now walk towards a contradiction by showing that

limsup limsup U(t%,x%) - V(t%,y%) <0.

e—0 a—+oo

According to the definition of sub-solution and super-solution we have
F(e&,x, U@, x2), (Ag,pg‘),Af'“,DKU(tg‘,xg)) <0

and
F(e&,y%, V&, y®), (A%, ¢%), BP*, DXV (12, y) = 0.

By definition of F:

r(UGS, x5 - V&, yH) < (1%, x8, U2, x%), (A%, p&), AP, DK U (12, x%)
— F(1%,x%, V(12 y®), (A%, po), AP DKU (12, x9),

124



5. Proofs

thus
(UG8, x3) - Ve, yH) < Fl, y&, Vel yH, A2, q&, BPS, DK v (i, y))
— (&, x2, V2, y&), AL, 2, AP, DK U (12, x8)
< A, PO~ AU, Q¢ + 50" AT~ 07 BE
+ H(t%, y*, DXV (1%, y®) - H(t%, x%, DX U (1%, x%))
where

H(t,x,) = —sup®(0%(0)e ¥ (6 + ) — sup®(0°(1)) e ¥° (5 + I) + g(i, p).
0€eR, OeR,

Note that the function H is Lipschitz continuous. Taking = a~! we get
o2 AP — 62BP* <2(2¢ + a 46D 02,

The RHS can be taken arbitrarly small when @ — +o0o and € — 0 by Equation (12). Using the
Lipschitz property of d we have

d(t, PE)pd - d (e, Q) ad = 2¢(d(tf, PE)PY + d(1, QN QF) +2a(P = Q) (d (g, PY) - d (1, q7))
<2eCA+IYE 117 + g 1%) + Callxd = yEI1.
Here again the RHS goes to zero when @ — +o0o and then € — 0 because of Equation (12).

Finally by Equation (14) and since U (resp. V) is a USC (resp. LSC) function and H is
continuous and decreasing with respect to its last variable we have

limsup H(£2, y%, DXV (t%, y*)-H(t%, x%, DXU(t%, x)) < H(te, e, DXV (te, X)) = H(te, e, DX U (2, x¢)).

a—+oo
Remark that for any z such that (, x. +2) € &X we have by definition of (Z, x)
Ulte, Xe) — V(te, Xe) = 2l X |1 = Ulte, Xe + 2) — V(Ie, Xe + 2) — 26| X + 2]|%.
Consequently we have
V(te, X +2) = Ve, Xe) = Ulle, Xe + 2) — Ulle, xe) — 2 (|| ¢ + 2lI° = | x %)

and so
DXV (e, xo) < DX(WU = 2¢ - N (2, x¢).

The monotony and Lipschitz regularity of H implies

limsup H(t%, y%, DXV (&, y®) - H(t%, x%, DXU (1%, x%))

a—+oo

< H(xz, DX(U - 2¢l| - |) (e, x¢)) — H(xe, DX U (2, x¢))

< Cell x| DXN - 12 (e, xe)
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Notice that for any x € &K

Ky 2 _ (109 +KC=DIT= 10917 +1i+ 11 = |i]?
PRI _(||6b+1<(-—t)n%—||9b||%+|i—1|2—|i|2
:(||K(~—t)||%+2||1<(-—t)||1||0“||1+1+2i)

IKCG= D13+ 21K - l1116°1 +1-2i)’

thus there exists C >0 such that | DX|-12(¢, ) < C(1 + || x]D). Consequently we get

limsup H(t%,y%, DXV (%, y®) — H(t% x% DXU (%, x%)) < Ce(1 + || x¢[1?)

a—+oo

that goes to zero when taking the limit € — 0. Finally we have shown that

limsup limsup U(¢&,x) -V (¢, y5) < 0.

e—0 a—+oo

We get a contradiction.

We finally prove the statements (11), (12) and (13). We consider (g, X¢, ye) € (25, X, y&) a=0 that
exists since &K is compact. Since N¥ > N, then necessarily x, = y.. We now prove the first
limit of (12) and that (Z,x¢) corresponds to a point where the supremum N, is achieved.
Passing to the lower limit we get

U(te, Xe) = V(te, x¢) — 2€]| xe |I> = limsup al|x% — y*|1? = N.
a——+oo

Hence by definition of N, we necessarily have that alirP allx% — y¥[1? =0 and that
—+00
Ne = U(t, x¢) — V(te, Xe) — 2€| xe ”2

To conclude we show that N, — N and that €| x.[> — 0. For & >0 consider (¢,x) that is
¢-optimal in the definition of N:

Ult,x)-V(t,x) = N-¢.

For € small enough 2¢]lx|1? is lower than ¢, and we get

N=N;>U(t,x) - V(t,x) -2l x|* = N-2¢.
Therefore we get convergence of Ny towards N and as consequence

Ulte, Xe) = V(te, Xe) = 2€] x| — N.

Since for any € we have
N = U(te, X¢) = V(te, Xe) = Ulle, X¢) = V(te, xe) — 2€ ] xell* = N,
12

we get that | x| — 0. This concludes the proof.
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Now we extend Proposition 2 to the case of functions with polynomial growth.

Proposition 3. Let U € USC(EX) with polynomial growth be a viscosity sub-solution of Equation
(HJB)k and V € LSC(EX) with polynomial growth be a viscosity super-solution of Equation (HJB)k
such that U(T,) < V(T,-). Then

U<V on&X.

Proof. There exists k>0 such that

U, 0)|+V(5,x)]
Il ]| —+o00 1+ ||x]|*

We introduce the following function

w(t, x) = eKT=00 + 1 x)125).

We have " .
—o(Por_0%1)  Pyi_ (@)
DKW(t, x) = eK(T 0+ 2k-1 2k—-1 ]
P3_ (16%10) P ()
with (Pé{c—l)irje{m} polynomials with degree 2k — 1. Consequently for some C >0
Il DX w(z, x)|l < Cw(z, x).
We have
0?05 w(t,x) < C(1+ [ x1%) e TP Qo lxl) < Cuw(t, )
and

d(t,x)0pw(t, x) < eXT=0CA + | x1)Qar—1 (I xID) < Cw(t, x)

where Q;_2 and Qyi_; are two polynomials with respective degree 2k —2 and 2k — 1.
Consequently for any constant B

1
—0,w(t,x)—d(t, x)dpw(t, x) — Eazaiw(a x) = Bl x| DX w(t, 0l = w(t, x)(K - C)

which is positive for K large enough. Hence for any € > 0 the function U —ew is a bounded
from above viscosity sub-solution of Equation (HJB)k. Indeed if U —ew < ¢ then U< +ew
consequently

F(t,x,U(t, ),V +ew)(t, x),05, (@ +ew)(t, x), DXU(t, x)) 0.
We have for K large enough

F(t’ X, U(ty x) —EW(t,x), v(p(ty x)yaip(p(t, x),DK(U—EW)(t, x))
—F(t,x,U(t, %), (V(p+ew)(t,x),05, (¢ +ew)(£,x), DX U (1, x))

1
<e(—rw(t,x)+@;+dop+ 5azaf,p)w(t,x) +ClxlIDXw(t, x))

<0.
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IV. Optimal market making with persistent order flow

It implies that
F(t’ X, U(t) x) —ELU(t, x)y (at(,b(t’ x)yap(p(t)x)))a%p(,b(t’ x)rDK(U_ €W)(t,x)) <0.

We show in the same way that V + ew is a bounded from below viscosity super-solution. Then
from Proposition 2 we have

U-ecw=sV+ew

and taking € to 0 we get the stated result. O

An immediate consequence from Proposition 3 is that there exists a unique viscosity solution
with polynomial growth to (HJB)x. We now prove the existence of such solution using a
verification argument.

5.2.2 Definition of the continuation utility function

For (t,x) € §X and 6 € of we define

T
JE(t,28) = B0 (G, PLye " T + f e "0 g (s, X1, 8)ds]
t
where

3(s5,x,8) = g(i, P) +6°A%(s,x,6) + AP (s, x,6).

We also define
UXt, x) = sup TK(t, x:6) (15)
besd
that is the maximal utility than can expect a market maker starting its trading from time ¢
with initial market condition given by x. By Lemma 3 we get that UK has polynomial growth.
More precisely there exists a positive constant x such that

UX(t,x) <x@ +1x]%).

We also define
oy ={0 € & s.t. § is independent of F;},

the set of controls starting from ¢ and independent from the past. Since under Py the processes
N and N? have independent increments, using the same arguments than in Remark 2.2-(iv)
in [Toul2] we get

UK, x) = sup]K(t, x;0).
o€,

In the next sections we show that the function UX is the unique viscosity solution with
polynomial growth to (HJB)g . For this we prove a dynamic programming principle for U K
and then conclude using a verification argument.
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5.2.3 Dynamic programming principle

Consider the lower and upper semi-continuous version of UK.

UK = 1i§rg£1f UX(y) and UX*(x) = limsup UX(y).

y—x

Inspired by [Toul2] we prove the following dynamic programming principle.

Theorem 3. Let (t,x) € EX be fixed and 10°, 5 € <4,} be a family of finite stopping times with
values in [, T). Assume that for any 8, (X{ Lye(; go))sero,1) is L°°-bounded. Then we have

1

0
UX(t, x) 2 sup Eofe™ @D Uf(Hﬁ,thsx)+ft e "6 g(s, X1, 85)ds]
€y

and

96
UX(t,x) < gup EO[e~T@° -0 K+ (95,Xet;;‘) + f e 70 g (s, XE¥,85)ds].
= t

The proof of Theorem 3 is the same as the one of Theorem 2.3 in [Toul2]. However since we
are working on non-usual domains we write the proof for the sake of completeness.

Proof. We first show the first inequality. We consider a continuous function ¥ such that
Uk > . By definition of UK for any (f,x) € &X there is an admissible control §7%¢ € of, that
is € optimal:

JK(5, %8 = U (1, %) — €.

The function G and & being lower semi-continuous, the function JK(;85%%) is also lower
semi-continuous by Fatou’s lemma. Then ¥ being upper semi continuous we can find a family
of positive real (rf»x)txeéfK such that for any (z,x) € &X we have

w(t,x)—w(s,y) = —€ and JX(t,x,67%) = JX(5,y;67%) <&, for (s,) € B(t,x; T4 )

where
B(t,x;1r) =1{(s,¥) e&K st se (t=n0), Ix=yl<r}.

The system (B(t,X; 7)) s.xes forms an open covering of &X. With the topology it is endowed
&X is second countable since [0, T] x Rx Z xL; xL; is second countable. So by the Lindelof
covering Theorem we can extract from (B(t, x;r(t, x)))(t,x)€ gk @ countable subfamily that
covers &K. Thus we have (t;, x;, 1) ;en such that

&X U B, xi;m1).
ieN

Set A" =Ug<j<pn Ai. Consider Ag={T} x ZX, C_; =@ and define the sequence

Ajy1=B(ti41,Xi+1;7i+1)\C;i, where C; =C;_1UA;, i =0.
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IV. Optimal market making with persistent order flow

Now fix 6 € of;. With the above construction, we have (Ga,XBt’&x) € Uj»0A; and for i =1, we
have
JK(;85%€) = ¢ — 3¢ on A;.

We define the control process 65" by
n
85" = 114,00 ()85 + Lgo, 1y (8) (Lane (0%, X )8+ )" 14,6°, X5 5).
i=1
The control 6" is in «f;. By Equation (8) we have

T
0 (G, Ph¥ye " T=0 4 f e "0 g (s, X, 65)ds| Fs11 40 (0, X51)

t
T
=(UX(T, x5 e 7T + ft e "0 g(s, XP¥,8)ds)14, (0%, X1

n 0°

Z( —r@%-0 ]K(66 théx’(st,,x,,e) +ft e_r(s_t)g(s,Xst’x,6s)d8)1Ai (05,X9t:$x)
i=1

n 0°
Z( =0y, X -3e+ ft e "0 g(s, XP¥,6)ds)14,(6°, X ;)

65
>(e7" O Ny, x5 - 3£+[t e "0 g(s, X¥,8)ds) Lan (6%, X3.5).

Thus we get
Uk, x) =75, x;65™

T
>[E§ [[E5 [G( .1,X PtX)e—r(T—[)+f e—r(S—t)g(s’Xst,x’é‘i,n)dSLg—H&]]
t
5

0
>E) [(e"“’&‘”w(eé,xggx)—3e+ [ D (s, X1, 55)ds)1 An(e‘s,xef;f)]
t

T
+E0, [(GGYY, P”)e‘r(T‘”+f e"‘s‘”g(s,X;'x,(ss)ds)lAnc(05,X(§;;‘)].
t

SEN . .SEN .
Since Lv%9" is a true martingale and L;’x’é = L?x'é for s € [t,0°] we have

13

0
UX(t,x) erf,x[(e‘”‘"s‘”w(e‘s,X;;;‘) ~3e+ f e "8 (s, XE¥,8,)ds)1a, (6%, X7;1)]
t
T
+E0; [(GGLY, P”)e‘”T‘”+f e_r(s_t)g(s,Xst'x,és)ds)lAnc(05,X;gx)].
t

By dominated convergence letting 7 — +oco we get

65
UX(t,0) = =36 +E2 [ " Dy (8%, X X))+ f e 70 g (s, X1, 85)ds].
t
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Since € is any positive real we have

1

6
UX(t,x) 2[E‘;x[e_’(gé_”w(e‘s,)(gt;x)+ f e "D g(s, X1, 5)ds)].
t

We now explain how to pass from 1 dominated by UX to UX. By hypothesis for any & we can
find r such that almost surely IIXSt’xII <r for any s€ [£,0°]. Then we can find an increasing
sequence of continuous functions on &K, (®,) =0 such that @, < UK < UK and such that @,
converges pointwise towards UX on ([0, T] x B, (x)) n&X (see Lemma 3.5. in [Ren99]), where

Br(x)={yeRxZxL'xL!st. |ly—x| <r}.

Consequently from monotone convergence Theorem we have

8

0
UX(t,x) 2 E 7@ 0UK 90, X1 + f e "0 g(s, X1, 85)ds)].
t
Then we can pass to the supremum in € of; to get the result.

Now we show the first inequality. Take & € <7, and consider & the controlled process obtained
after freezing the trajectory of 6 up to time 6°. By definition of UX we have

Lx I tLx

5 —r(T-6° _9",X§ o6 T__5~ 96'5
UK*(Hﬁ’XGI‘:iX)E[EgYX;x[e r(T-6 )G(ZT [ ’PT 0 )+j0‘6 e r(s—60 )g(Sst 0 ,65)(15].

t,x

Using Equation (8) this gives

1

%
UK* (G’Xet,x)e—r(95—t) +f e—r(S—t)g.(S’ X;,X’(C)‘S)ds
t

T
>E) [e"TTOGL, PRy + ft e "0 g(s, X, 8)ds| Fpol.

Now taking the average, by arbitrariness of 6 we get the second inequality

95
sup [E‘Zx[UK*(95,Xof;5x)e_r(96_t)+ f e "0 g(s, X1, 85)ds] = UK (¢, x).
Sest, t

O

In the next section we show that UX is a viscosity solution of (HJB)x using a verification
argument based on Theorem 3.

5.2.4 Verification

In this section using the dynamic programming principle proved previously we prove that UX*
(resp. UK) is a viscosity super (resp. sub)-solution of (HJB)g. The proof is inspired from the
proof of Propositions 6.2 and 6.3 in [Toul2].
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Proposition 4. The function UK (resp. UX*) is a viscosity sub (resp. super)-solution of (HJB).

Proof We first show that UK is a viscosity super-solution and then that UX* is a viscosity
sub-solution.

Let (t,x) € & and ¢ be a test function such that

UK —p)(1,x) =min uk_¢=0

and (#y, x;,) a sequence in &KX such that
(tn, Xn) — (t, %) and UX (t,, x) — UL (2, %).
Since ¢ is continuous we have
M = U (tn, Xn) = P, X) = 0.

Let 6 € R2 and consider the constant control process equal to 6. We use the notation
X" = X'*n and B = [E‘Zl x,- Finally, for all >0 we define the stopping time:

T =inf{s > t;, s.t. (s— 1, X' — xp) € [0, hp,) x By},

where By the ball for || ||, centered in 0 with radius @ positive and small enough such that if a
jump occurs then the stopping time 7, is immediatly reached. We take

h, = \/nnlnn;éO + I’l_llnn:().

Notice that 7,, — ¢ almost surely.

From the first inequality in the dynamic programming principle, we have

Tn
Os[E‘fl[UK(tn,xn)—e‘”’"‘t”)Uf(Tn,X,”n)—f e "7 g(s5, X1, 5)ds].

Iy

Now using that UK > ¢ we get
0 =0 +E [ty xn) — e "W ep(z,,, X1 ) - [:n e "M g (s, X1, 55)ds].
We can use the Ito formula since ¢ is smooth. Thus we get
0=, —[Efl[f:" e (—rp+ 8+ LOP) (5, X + §(s, X2, 85))ds] — EL M

where ‘o
LoP(s,0)=LPps, 0+ Y thp(s,x)e_ﬁ‘s{‘@(m(s))
j=a,b
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and with

N
M= f e "7 (DL (s, X AMD? + Dhp(s, XY AMLP + 5, (s, X dW5)
t

n

The function ¢ being continuous, the integrands in the term M" are all bounded so the
expectation of M” under P?, is 0. Consequently we have

1 [
0< Z—” -E [h—f e " (—rdp+0,p+ LOP) (s, X + §(s5, X, 6))ds].
n nJit,

Taking 7 — +oo using dominated convergence and arbitrariness of § we get
0<(rdp—0:,p— L°P)(1,x) - (1, x,0).
The control 6 being arbitrary we finally have that
F(t, %, (1, %), VU1, x),0% (L, x), DX (2, %)) 2 0.

Thus Uf is a viscosity supersolution of (HJB)g.

Now we suppose that UK* is not a viscosity subsolution of (HJB)x and exhibit a contradiction.
According to the definition of viscosity subsolution we can find ¢ a test function and (y, xo)
such that

0= (U = P)(to, X0) > (U™* =) (1,2, ¥ (£,x) € EX\{(20, X0)}

and that
F{(t9, X0, p(to, Xo), Vep(to, X0), 0% ,p (10, X0), DX p (10, x0)) > 0. (16)

By continuity of ¢ and F we have existence of a r > 0 small enough such that on By (%, x0)\{(%o, x0)}
we have

h=-F(,$,V$,05,¢,DX¢) <0.

Moreover we can find some 17> 0 (up to a change of r), such that

sup Uk* —¢p=-2ne"
0B, (to,X0)U £ (fo,Xo)

where _# (1, Xo) is the set of all values that can be reached if a jump occurs inside B; (£, Xo).
Note that it is a compact set. We consider a sequence (ty, X;) ;=0 € &X such that

lim_(ty, ) = (10, %0) and lim_UX (1, x) = U (10, %0).
Since UX(t,,, x,,) — ¢(t,, x,) — 0 we can assume that
| UK (tn, X) = p(tn, xp)| <7 for any n=>1.
For a fixed control § € o;, We define the stopping time

T, =inf{t > £, s.t X" ¢ B (f, Xo)}.
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IV. Optimal market making with persistent order flow

At the stopping time, either the process X’»*" has not jumped and so is on 0B, (fy, Xo) or has
jumped and is in _# (fp, xp). Thus
e_r(T”_[n)Qb(Tn,X;Z’xn) > 277 + e_r(Tn_tn) UK(Tn,X-fn'xn).

n

We derive from the Ito formula

UK(tny Xp) = N+ d(ty, Xn)

T,

—n+E[e” T (T, X)) —f e BT (1 +0,+ L0)p(s, X )ds).
tn

So by to Equation (16) we have

UX(t, x)

v

Ty
—n+E) (e T (T, XI) +f e " g (s, X1, )ds]

tﬂ

\%

Tn
n+ES[e T yKE (7, X1) +f e " g(s, X[, 6)ds].

In

Since 6 is any control and 7 is positive this contradict the second equation of Theorem 3.
Thus UKX* is a viscosity sub-solution of (HJB).
O

A direct consequence of Proposition 4 together with Proposition 3 is that
Uk = y%~,

But obviously we have UK < UX*| therefore UX = UK* = UK. In particular UX is continuous
and therefore is the unique continuous viscosity solution with polynomial growth to (HJB).

5.2.5 Proof of Theorem 1 (iii)

To prove Theorem 1 (iii) we must show that JX(-;6*) = UK.

As we did previously we can show that JX(;;6*) is the unique viscosity solution with polynomial
growth of

rU-0,U-2LU-g-Yzap e‘f‘sfq)(ef(u))(Dwaf) =0, on &K

(LHJB)k : . X
U(T,x) =G(i,P) for xe %T

But since UK is a viscosity solution of (HJB)x and by definition of 6%, UX is also a viscosity
solution with polynomial growth of (LHJB)k. So we get the result.

134



5. Proofs

5.3 Proof of Proposition 1.

We define the following functions on &X:

Ux)= limsup UX(p)and Ux)= liminf  U%(y),

(M) €E— (x,+00) ()€€ (x,+00)

We show that U and U are respectively a viscosity super-solution and a viscosity sub-solution
of (HJB)k.

Consider ¢ a test function and x € &X a strict minimizer of U — ¢. We have existence of a
sequence (X;,0)nen in & such that

(X, 0 ) — (+00,x) and UK (x,,) — U(x).

Consider B;(x) the closed ball of [0, T] xR x Z x L! x ! with radius r > 0 centered in x. Then
we can always suppose that x, € B;(x), Yn =0. Let x, be a minimizer of the difference Ukn—¢
on &Kn N Br(x) (exists because &kn s locally compact). We note x, = (tn,pn,in,en'“,en'b).
We show at the end of the proof that there exists x € &X such that (x,+00) is the limit of a
subsequence of (x,,0,)n>0 and that Hn’j(tn) — 07 (1) for j=a and b. So we can write

U®-¢@) = lm U () = plxn)
n—+oo
.. K,
zliminf U™ (x,) - $p(x,)
=2 U(x) — p(x).
Thus by definition of x we get that (x,),>0 converges towards x and that

Ubn(x,) — UW®).
n—+oo

As a consequence when 7 is large enough x, is a local minimizer of UX" — ¢ (because it is in

the interior of B) hence by definition of viscosity solutions
F(x,, U (x,),V(x,),05,¢(x,), DX U (x,)) 2 0.
Then by definition of U and since Ukn (x,) = U):

liminf DX UX" (x,) = DXU(x).
n—+00 — -

Finally since F is decreasing with respect to the last variable and since 8™/ (t,) converges
towards 07 (¢) for j = a and b we have

F(x, U(x), Vo (x),05,¢(x), DxU @) = limsup F(x,, U™ (x,), V(x,), 07,¢(x,), DX U (x,)) = 0.

n—+

So by Definition 1 U is a viscosity super-solution of (HJB)g. In the same way we can show that

Ky

U is a viscosity sub-solution of (HJB)g. Moreover since the a priori inequalities on U** can
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be chosen uniform in n (because [|K,|l; — K1) they are true for U and U. So Proposition 3
implies that U > U. Because we have the other inequality by definition we get U = U = UX,
the unique viscosity solution with polynomial growth of (HJB)g.

To complete the proof we show that (x,),=0 admits a subsequence converging towards some
x € &X and that for j=aand b, 8"%(t,) converges 6%(t).

We have x, = (ty, pn, in,H"’“,H"’b) with

mma mn,b

0™ =Y Ku(~T"") and o"™b = Kn(—T]."’b)
j=1 =1

J

n,b

where m™® and m™” are non-negative integers, (T;l'“)lsjs,nn,a and (T]{l'b)lstmn,b are in [0, £,,].

We recall that (||x,l) ,>0 is bounded. Hence up to a subsequence (¢, pp, in, 10™%l1, 1072111) n=0
converges towards some (%, p,i,l“,lb). Since we have assumed that | K|; is positive the
convergence of (0™l1) ;=0 and U16™2111) =0 imply those of (m™%),> and (m™b) 5. Consequently
those sequences are eventually constant equal to m® and m?” for n large enough. Then up
to a subsequence we have convergence of ((Tjn,a)lfjfm“)nzo and ((Tjn’h)lsjsmh)nzo since they
take their values in [0, T]™" and [0, T]mh which are compact sets. We consider (T]?l)lsjsma

and (ij)lsjsmb their limits. We now show that (8™%),>( converges in L' towards
ma
0%=) K(-T/) €O,
j=1

Since by comparison theorem T < ¢ it is enough to show that K, (- — T{"“) converges in L'
towards K(-— T}") to conclude. We write

1K= T = K- = T < 1K= T = K= TP + 1KC = T = K= O,
< | Ky = Kl + 1K= T} = K (- = TO1.

The first term goes to 0 by hypothesis, the second by dominated convergence. Same results
holds for (8™?),>¢ and 6°. Consequently we have proved the convergence of (x;),>0 towards

x=(t,p i,040% &k
We finally show that 8"%(¢,) converges towards 6(t), the same methodology holds for b. We

have for n large enough

ma

167 (2n) = 0“(D)] < Zl K (tn = T[") = K (£ = T}).
j:

The uniform convergence of K towards K implies that K, (t, - T;m) converges towards
K(t- T]fl). This concludes the proof.
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IV.A. Proof of Lemma 1

5.4 Proof of point (iv) of Theorem 2

We recall that the proof of Theorem 2 is exactly the same of Theorem 1. So for any (¢,y) € &"
we define for (t,y) € &" the process YV = (i, PtY, ¢4, cbVib) € &7 by analogy with the
process X"* defined in Section 5.2.2. Note that by construction for any (f,x) € &Xar and for
any s € [£, T] we have for (t,y) = Z%Y(t,x)

(s, YY) = 2% (5, X1%). (17)

Then as in Section 5.2.4 we prove that the function

T
U‘m’(t, y) = sup [E6[G(l;y,P;y) +f (g(l'st’y’P;’y) +5?/1?’6 +6?/1?’6)ds]
Sed; ¢

is the unique viscosity solution with polynomial growth of (HJB)y,. Moreover for any
(t,x) € &Xer and (t,y) = Z%7 (t, x) by Equation (17) we have:

T
U®(t,y) = sup E°[G(iL~, PL*) + f (g(ist’x,Pst’x) +69290 +6f/1?’5)d3] = UKer (1, ).
Oeod; t

Therefore for any (¢,x) € &Xay we have UKer(t,x) = UYY o B%Y (¢, x). This concludes on the
proof of point (iv) of Theorem 2.

IV.A Proof of Lemma 1

We first prove (i). Consider (0x)x>0 a sequence with values in @f that converges towards some
6 in L'. We have

Nie
0= K(-T}).
j=1

The convergence of [|0|l; towards [0, gives that Ny is constant equal to some N up to a
certain rank. Finally for any subsequence ((T]‘.T(k))lngN)kzo converging to some (T})1<j<n we
have :

N
Opky — Y K(-—T))=0, in L'
j=1

SO 85 is closed. Now with the same notation we consider a bounded sequence (0x)x>0. We can
find an extraction o such that Ny, is constant equal to some N and such that for j=1...N,
T]‘.T(k) — Tj. This implies that

N
Oo(k) — Z K(—1Tp.
=1

This show that that @f is locally compact.
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IV. Optimal market making with persistent order flow

Now we prove (ii). Consider a converging sequence (sk,0x) =0 such that 0 € G)ﬁ for any k
and let 6 = ZﬁvK(- —T}) be the limit of (0x)k=o. Then necessarily ((T;C)lsjsn)kzo converges
towards (7T)1<j<n. Moreover by comparison we have T; < s and by continuity of K that

N
Ok (sk) — Y K(s—Tj).
j=1
Finally consider now that K(f) = ae™ 7!, for [ € N we have
N k
(65)(1)(]*) — Z (X(—Y)le_Y(T_Ti ).
i=1

The convergence of (T;C)kzo thus imply that Hl(cl)(T) —00O(T).

IVB A priori inequalities

In this section we prove some a priori inequalities.

IVB.1 Hawkes processes

Consider a Hawkes process N with kernel K = clp, and exogenous intensity u. The intensity
of N is given by
)lt =u+ Nt C.

The existence of such process is proved in [Jac75]. Consider T} = inf{s s.t. Ny > p}, by to
[Jac75], Too = nlirp T, = +o0o. Then let NP = N7». We have for any 7€ [0, T]
—1+00

AT, ¢
E[N?] = [E[[O Asds] < [E[f0 C(1+ NP)ds].

thus using a Gronwall lemma we get [E[N;] < CTe®T. The RHS being independent of p and
using monotonous convergence we get

E[NT] < +00.
We also have

tAT),
E[(N?)?] = E[ fo @N” +1)dN]

tAT,

t/\Tp p
= [E[f @NZ +1)Ads] < [E[f C@2N? +1)(N? +1)sds].
0 0

Using again a Gronwall lemma we deduce that [E[(N;)Z] < CT?eCT with C independent of p,
o)
E[(N7)?] < +oo.
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IV.B. A priori inequalities

Now consider a Hawkes process N with kernel K bounded and intensity given by

t
Ar = q)(fo K(t—s))dN;

with @ non decreasing in its last variable and such that |®(x)| < C(1 +|x|) for some C > 0.
By thining we can see N as dominated by some Hawkes process N with kernel Clg, and
exogenous intensity C. Remark that as a consequence A dominates A. So we get

T
[E[NT+f Al < 400
0

then consequently
T
E[N7] < +00, E[N%] < +00 and E[ f 5e %) ds] < +oo.
0

This ensures that the function UX defined in Equation (15) is well defined. This also implies
that the martingales M**%% and M®%?% are uniformly integrable martingales.
IVB.2 A priori estimates on X

We prove here that the value function U K defined in Equation (15) has polynomial growth in x.
For this we show some inequalities on the norm of (X**); y)egx. More precisely we prove the
following result:

Lemma 3. There exists some positive constant C depending only on T and on the regularity
constants of G and g such that for any (t,x) €&

ES [ sup X% < C+x]%)
selt,T]

and
UK (£, x) < A+ 1xII%).

To prove Lemma 3, consider (,x) € &X and § € of, with x = (P, i,0%,0Y). We show differents
a priori estimates on the subprocesses composing X"* = (phx jtx gtxia guxby ynder the
probability P#*0.
A priori estimates on %% and 0%?: We have
S
N& - Nf = Mbriad +[ A%, X125, 8,)du
¢
since A%(t,x,6) < C(1+[60%]l1) and (105111 = [10%]l1 + (N = NM)IK|1 we have
N
N%— N% < Mb%ad +f C(L+1055 1 + 1K1 (NG — N®)du.
¢
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IV. Optimal market making with persistent order flow

Passing to the average under P“* using the fact that M">%%% is a true martingale and a
Grénwall lemma we get
E9 [N§— Nf < C(1+16ly) (18)

where C only depends on T and on the model constants. Consequently we have for some
positive constant C
E L [I054N1] < CL+110%11).

We now give an a priori estimate for the second order moment.

N

N
(N? -~ N%? = f (2(N%- - N+ 1)Audu+f (2(N% — N9 +1)dML5e0
t t
N N
< f (2(NG- - NH+1)CA+ 160551 + N — NHdu +f (2(N% — N% +1)d M50
t t
N N
sf C(NZ — N%?+ (N - NHC(1 + ||9,Qx?“||1)du+f (2(N% -~ N% +1)dML5e0,
t t

The average of the last term of the right hand side is 0 as consequence of Appendix IV.B.L
Thus taking the average and using a Gronwall lemma we get

ES [N = N < CL+110119). (19)

A priori estimates on P"*: We have
dPb* = d(s, Pb")ds + odW;, with P/* =P,

By assumptions there exists k >0 such that :|d(t, p) — d (¢, q)| < klp — ql. We have the classic
apriori estimates (see for exemple Theorem 1.2 in [Toul2)).

E0 ([sup P?] = C(1+ P?). (20)

s<T

Where C only depends only on the Lipshitz constant k and on T.
A priori estimates on X"*: We have

is=i+N¢— NI+ NP- NP

16711 = 1671 + 1K1 (N = NY), for j=a, b.
Thus we have

IXPXN2 < CL+ 2+ 1017 + 1671 + (NE = Nf)? + (N? = N)? + P2).

Taking the average and using Equations (18), (19) and (20) we get

E0  [sup X2¥I12] < A+ 2 + 1013 +10°12 + PH) = C(L + |1 x11?) (21)

s<T

where C is independent of 6.
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IV.C. Equivalence between the two definitions of viscosity solutions

A priori estimates on the value function: By the quadratic growth of G and g we get

T
U5 %8 <E [e " TICa+ 1X511P) + f e "0+ 1 X1
t

Because of the a priori estimates (18), (19), (20) and (21) we have
JX(t, %;6)1 < CA+ %+ 10912 + 116712 + P?) < C(1 + | x11?)

where C only depends on T and the regularity constants. We conclude by arbitrariness of 6.

IVB.3 Rewriting of the utility

We show that for any 6 € o we have
T T
E0[ f e TS84 dNT = E0[ f e 755900 ds).
0 0
The same result for b holds by the same arguments. To conclude it is enough to show that
_ t
M, = f e TS59AM®
0
is a true martingale. We have
_ t _ t
[M],; = f e~ 25 (69%dN? and (M), = f e~ 2692140 ds
0 0
and since (5?)21?’5 < C(1+ 1 X¢ll1) we get

_ T
<M>T5f e 2" °C+Xlh)ds< TC(L+ sup | X]).
0 s€l0,T]

The last term of the RHS is integrable by Lemma 3. So by the monotone convergence [M]7 is
also integrable so M is a uniformly integrable martingale. As consequence we get

T
[E5[G(iT,PT)e"T+f0 e (glis, Py)ds +65dNS +67dND)]
T
:[E5[G(iT,PT)e"T+f e_”(g(is,Ps)+6§’A?'5+5§’A?'6)ds].
0

IV.C Equivalence between the two definitions of viscosity
solutions

Lemma 4. Definition 1and Definition 2 are equivalent.
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IV. Optimal market making with persistent order flow

Proof. We show it for sub-solutions, the demonstration is the same for super-solutions.

Consider U a USC function sub-solution of (HJB) g in the sense of Definition 2. Now consider
¢ a test function such that 0 = U(ty, xo) — (%o, Xo) = sup U—¢ for 7 a neighborhood of (¢, xo)
V4

in &X. We show that
F(to, X0, U(l‘o,xo),V(P(to,xo),aipq)(foyxo)»DK(P(to,xo)) =0.

Writing x=(p,2)€ [RXZY{( we have ¢(t,p,z) = (/)(to,po,z0)+6,(/)(to,xo)(t— t0)+ap<p(t0,xo)(p—

Po) + a%p(b(t(), xo)% +o(lp— pol2 +|t—ty|%) + h(z — zp). where h is a modulus of continuity
of ¢. Thus we have
(Vop(to, X0), 0%, (10, X0), h) € £ " ulto, Xo).

Consequently
F1g, o, U(to, Xo), Vb 10, Xo), 05, (t0, X0), DX U (19, x0)) = 0.

So U is a viscocity sub-solution of (HJB) in the sense of Definition 1.
Now we show the opposite implication. Consider U a USC function sub-solution of (HJB)x

in the sense of Definition 1. Consider (d, A, h) € _£*U(ty,xo), we built a test function ¢
dominating U with equality at point (f, Xo) and such that

(Vp(x0), 0%, ¢(x0)) = (d, A).
pp

We will then get the expected inequality that will extend directly to }Jr U(tp, xo) by continuity
of F.

Using the notation (t,x) = (¢, p,2) € [0, T] x R x Z[K we have
1
U(t,x)sU(to,x0)+d1(l—t0)+d2(P—Po)+EA(P—P0)2+h(Z—Zo)+0(|I9—I90|2)+0(|t—fol).
hence
b _ el A(p— p? o2 _
U(t,p,2)— h(z—zp) = U(ty, x0) +d1(t—to) + da(p P0)+2A(P po) +o(lp—pol)+o(lt— o).

We take the supremum on z over a compact neighborhood of zp, and consider

U(t,p): sup U(t,p,z)—h(z—zp).

zEB,(zo)ﬂZ[K
Since U(tg,po) = U(1p, x0) we get
- - 1
U(t, p) < Ulty, po) + dy (t— ty) + do(p — po) + EA(p—Po)z +o(lp— pol®) + o(lt - ty)).
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IV.D. Crandall Ishi’s lemma

We prove at the end that U is a USC function and assume this is true. The last equation
means that (d, A) € _#* U(fy, po). Then by an argument developped for the analysis of viscosity
solutions on R (see for example [FS06] Lemma 4.1.) we have existence of a function ¢ € C!?
such that

T (t,p) - (1, p) < Ulty, po) — p(t, po) with (Vo(1o, po), &, ,p (10, po)) = (d, A).
So finally we have on a compact neighborhood of xo:
Ul(t, p,e) —¢(t, p) — h(e - ep) < Ulto, po, €o) — P(to, po) — h(eo — eo).
This local domination can then be extended to the whole domain &X.

Finally we show that U is a USC function. Fix € >0 and (¢, p). Since U is USC and h
continuous, for any e € B, (ep) we can find r, such that on B, (t, p,e) we have

U+h(-—ey) <Ul(t,p,e)+h(e—ey) +e.

The collection (B%e(t, p, e))eeBr(eo)

compact set by Lemma 1. Thus we may find a finite sequence (B, (f,p,e;)); ;- that covers
‘ <is

forms an open covering of {t} x {p} x Br(ep) which is a

{t} x {p} x B, (ey). Consider r, = min =&
1<isN

there is some i € {1,..., N} such that (t,p,e) € Brei/2(t’ p,e;). Hence we get

. Now take any (s, q) € By, (£, p), then fo any e € B, (ep)

Te.
I(s, g,e) — (t, p,e)ll < 76 +r* <1
so (s,q,e) € By, (,p,e;) and consequently
U(s,q,e)—h(e—ey) < U(t,p,e;) + hie;—ey) +e <U(t, p) +¢.

Passing to the supremum in e € B, (ep) in the LHS we get that U is USC. ]

IVD Crandall Ishi’s lemma

The most crucial point to prove comparison result for viscosity solutions is the Crandall-Ishi’s
lemma that allows to deal with the second order terms. In the general case the Crandall
Ishi’s lemma is proved for subset of R”, see [CIL92]. Hence our particular domain requires an
adaptation of the classic version of the Lemma.

Lemma 5. Let ¢ € C*([0,T]?), ¢ € C'(R?) and ¢35 € C°((ZF)?), u e USCEX) and ve
LSC(&EX). Suppose we have (ty, po, zo) € R? x R? x (.,Z%()2 such that

ulty, py, 2y) — V{5, P, 25) — 1 () — P2 (po) — P3(2o)

= sup u(tl,pl,zl)—U(l‘z,Pz,Zz)—¢1(f)—¢2(P)_¢3(Z)- (22)
1,p,z€R2x [0, T1? x (ZX)?
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IV. Optimal market making with persistent order flow

Then for any € there is (Ag, h) and (Bg, h) in R x CO(.Zf) such that

(V11 (10), V12 (po)), A, h) € F u(td, pl, 28), ((=Vapy (t0), —Vadha (po)), Be, B € £ v(i2, pE, 23)
and that
-1 Ag 0 2 IS
— (" +|Hp2(po)D 1 = ( 0 -B ) < Hoa(po) + eHda(po) (23)

where H is the Hessian operator and | A| denotes the spectral radius of the matrix A.

Note that even thought this extension is not straightforward we benefit from the fact that in
(H)B)x the second order derivative is related to a real variable. Therefore the strategy of the
proof is to bring back the problem in the classic framework.

Proof- We can consider that there exists 7 a compact neighborhood of (#, po, 29) in &X such
that on 7'\{ty, po, 20} we have

(u—v)(to, po, z0) = (u—v)(t, p,2) — P2(p) + P2(po) — P1(2) + 1 () — P3(2) + Pp3(2p)
> (u—v)(t, p,2) — P2(p) + P2 (po) + V1 (1) (g — 1) + O (||t — £ 11*) — p3(2) + P3(20)
> (U= 0)(x,¥,2) — Pa(p) + Pa(po) + Vb (o) (tg — 1) = Cllt — to|I* = h(zg — 2") — h(z§ — 2°)

where £ is any modulus of continuity of the function ¢3 and C a positive constant. For x € R
consider g;(x) =0;¢1(tp)x — Cx? for j=1or 2. So on 7'\(fy, po, z0) we have:

(u—v)(to, po,z0) > ulth, pt,z') — v(t?, p?, z2) — P2 (p) + P2 (po)

—h(zh - 2"~ h(z2 - 2%) + g1 (1} — t1) + g2 (12 - 12) (24

with equality at (Z, po, z9) and with /(0) = g;(0) =0, g} (0) =0 p1(to).

We can always assume that there exists r >0 so that 7 is of the form
7 = (Br (1) x B;(po) x By (29)) n&X

where B;(x) denotes the closed ball with center x and radius r. We define the following

functions
ap) = sup  u(',plZ)-hiz-zH)+ gy -t
t,z€B, (t9) x B (z9)

2

p(p?) = v(%, p*,2%) = hizg = 2°) + ga (i = °)

in
t,ZGBr (tO) XB,— (ZO)

where the supremums above are taken for (z,z) such that (¢,p,2) € &X . The functions i and ¥
are respectively USC and LSC functions since the supremums are taken over compact subsets
(see the proof of Lemma 4). And we have

i(p") = 5(p?) — Pa(p) < A(py) — D(PE) — pa(po).

Thus by the Crandall Ishi’s lemma (see for exemple Theorem 6.1. in [FS06]) there exists (A, Be)
satisfying (23) such that

012(po), Ae) € £ ii(pl) and (=022 (po), Be) € £ D(p).
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IV.D. Crandall Ishi’s lemma

Consequently there exist a sequence (g, Ay, p,ll, L?(p}l))neN such that
lim (qn, An, Py (pp)) = 0162(po), Ae, Po, Tipg), and ¥ 120, (qn, An, Py, (pp) € £ ilpy,).
So for any 1 we have
a(p") < a(py) + qn(p' = pp) + %An(;a1 —pp)?+olp' = pul).
Consider ¢} and z., such that
B(py) = iy P 2) = (2 = 23) + 811 = 1)

such maximizers exist by compacity. We show that (t},, p}l,z}l) converges towards (¢l p(l),zé),

we assume it for now. Equation (24) implies that for any (¢, p, z) we have
1
u(th, pt,2Y) < ulty, przp) + gn(p' — ph) + zAn(p1 —p)i+olp' - ppl*)
—h(zy—z) + hizg -z + g1ty — t) — g1 (13 — th).
Consider the function h,(z!) = —h(zé - z,ll) + h(zé - z}l —z1) such that h,(0) =0 and
hn(z' = z}) = —h(zy - z;) + h(z} — 2Y).

Since z}l converges towards z! the sequence (hy),=0 converges uniformly towards i because

h is continuous and because we are working on compact neighborhood. Consider g} =
01¢1 (to) —ZC(té — t}) that converges towards ;¢ (fo)

g -th-ag-th=qlt' -t} +Cth — 2.
Thus we have
u(t', p',2") sulty, bp,2n) + dn(p' = p) + %An(pl —p)’+o(p' = pul*)
+qitt —th+o(tt —tlp + hp(zt - 2))
hence ((qL, qn), An, hn) € £ u(tl, pl, zL) and
(@3 Gn), Ay hn) = (@101 (10), 01p2(p0)), Ae, h)

Finally we show that (t,ll, p}l,z}l) e (té, p(l),z(l)) which will imply the conclusion that
—+00

(011 (£0), 022(p0)), Aes ) € F " uleg, ph, 20).
We have for any n = 0:
B(pp) = Uty Py 2n) = hizg = 2p) = 81(1g = Ly).
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IV. Optimal market making with persistent order flow

Consider any (¢!, 2') € (), 2},) ,=0. Since @(p},) — @(p}), by upper semi-continuity of u and by
the definition of & we get

u(tl,p(l),zl) - h(zé - zl) +g1(té - tl) > u(tol,p(l),zé).

Which implies that (th,zh) = (t&,zé) since everywhere else the above inequality is false because
of Equation (24). So we get

((6]}1; qn)) An; hnr (xylp y}p Z;l)) n:oo ((al(ybl (t0)761¢2(p0));A£; h) (t(}r p(l)r Zé))

and so

(0101 (20),012(p0)), A, B) € F " u(td, ph, 2.

Similarly we get

((=02001 (f0), —02602(P0)), Be, h) € _F v(£5, p3, 25).

This concludes the proof. O

IVE Existence of Z%Y

Consider ¢ =0 we have for any j=0
() " ai : b(j) & b j
07 (1) =Y M~y e T and 0, (1) = Y P (—yp) e V10, (25)
i=1 i=1

So let A be the matrix with coefficient A;; = (—y,-)j . This is a Vandermonde matrix which is
invertible. By Equation (25) we have

n n
——— ) . ——— N
bl = eriT ”ZI(A 1;;67(T) and P = 1T ”ZI(A 1079 (T).
J= J=

So we define 2% for (t,x) € &Xar by
R (t,%) = (t,p, i,¢(t,x), (£, %))

where

c(t,x) = (VT Y (A™h);;099 (1))

1<jsn
j=i !

l=sj=n’

n .
and c’(,x) = (""" Y (47Y;;6°V(D))
=1

By Lemma 1 the map Z%7 is continuous and by construction we have for any =0
R (1, X0) = (1, Y.
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IV.F. Proof of Lemma 2

IVF Proof of Lemma 2

We are going to approximate the integral in Equation (7) by Riemann sum. We take A, = v/n

and (a;)o<i<n—1 a regular grid of [0, A,] with mesh \/Lﬁ We set

n—-1 ajs1
K,(1) = Z e‘“”ltf m(du) < K(1).
i=0 a;
For t e R, we have

n-1 raj ai1 +00
K(t)—Kn()=)_ m(du)[ te‘”’dv—f e~ "“m(duw).
P i u Ay,

Hence for any T and t<T:

n-1 a; +00
|Kn () - K(B)| < ) Tf m(du) (a1 — a;) +f m(du)
i=0 a; Ap

T n +00
< ﬁfo m(du)+fAH m(du)

+00 +00
m(du) +f m(du)
An

T

S RS
vnlJo
which goes to 0 when n goes to infinity, uniformly on ¢ € [0, T]. Hence the sequence K,
converges almost surely towards K and is dominated by K so K;, converges in ; towards K.

Set a, = K(0) — K,(0) and B, = m and consider K, = K, + @, P, we have for any n

K, (0) = K(0) and [IKy 1 = I1Klly

and K,, — K in L;. Thus the sequence (Kn) n=o0 gives the result.

IV.G Probabilistic representation of IPDE in high dimension

We are going to use a probabilistic representation based on branching processes. This method
is insensitive to the dimension of the domain of the IPDE. Theoretically the method works for
any semi-linear IPDE admitting a strong solution and with a generator that can be written as
a power serie. Thought this is not the case for (HJB)g4,y, in order to implement this method we
approximate the generator of the IPDE by a second order polynomial and assume that the
approached IPDE have a strong solution. Thus we are left with an IPDE of the form

(H)B),,: —0,U-ZLU~-f(U,D*U)=0, u(T,)=0onZxR"xR"
where
WU, DYU)(t, x) = fo(t,x) + fi (£, D) U(L, x)
+ 546, )DEU(t, %) + fy (£, )DL U(t, x)
+ £, (6, ) DEU(t, x) + £, (£, ) DI U (£, %)%
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IV. Optimal market making with persistent order flow

The operator £ is defined by LU(¢,x) = —(I, ViU (¢, X)) — (F,VZU(L‘, x)).

Consider a process Xbx starting at time ¢ with initial state x such that (¢, x) € £” and which
dynamic is driven by the infinitesimal generator £. The Feynman-Kac formula gives

(U,DU) (7, X"
U(t,x)z[E[f e T 1yr<rds] (26)

where 7 is a positive random variable with density p.

We show in Appendix IV.G.1 that there exists an appropriate probability measure P4 on the
set
T ={0,1,2,j,d,€), with d €{0,1,2}, j € {a, b}, £ €{0,1}%}

and a set of functions (g7)reg from [0, T] x Z x R} x R?? such that for any random variable ¢
with law P4 we have
fWU,D*U)(t, x) =E[g:(U,D*U)(t, x)]. (27)

The set (g7)reg is defined by
g (U, D*U)(t,x) = fo(t,x)P(I=0)"", g1(U,D*U)(t,x) = fi(t,x)P(=1)""U(t,x)

and

. da .
8e.j.de U, D )t x) = £ (6, 0P(1= 2, j,d, &) [ Ut x+ATe) (-1 %%,
k=1

where A% (resp. AP) is the jump corresponding to a ask (resp. bid) market order, namely
A% = (-1,a,0) and A? = (1,0, ) (We recall that the price variable is no longer part of the
domain).

We now define a branching process in the following way: any particle is noted by (¢, x, lp, l1, ..., ;)
where (x,t) € &" and the [;’s belong in 9. The variable x denotes the initial position of the
particle and ¢ its birth time, [, is the label of the particle, /,,_; the label of its parent, and so
on. The lifetime of the particles are i.i.d random variables with density p

We now describe the evolution of the particle. Consider a particle born at time s at the
state x with lifetime 7. During its lifetime the particle state is described by its position:
((ii,x,ci,x;a’cf,x;b

) s<t<ssr in Z xR x RY. The dynamic of the particle position is given by

dc{’i = —yl-c{'idt, forie{l,...,n} and j=a or b.

The other components are constants. Note that this dynamic corresponds to the infinitesimal
generator Z£. When the particle dies it gave birth to independent particles. The number and
type of child particles depend on the label /,, of the particle:

e if [, =0: 0 child
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IV.G. Probabilistic representation of IPDE in high dimension

e if [=1:1 child
e if [, =(2,d, j,€): d children

- if j = a the initial state of the i — th child particle is X, + A%;

S+T

- if j = b the initial state of the i — th child particle is X + Abe;

S+T

The labels of the child particles are ii.d. random variables with law Pg-. We note €, the set
of the child particles.

Considering a particle starting at point (z, x), Equations (27) and (26) give

a(l, t+1,X5%)
U(t,x) =E[———— [] UG +7,X)L4r<r]
p(T) CEBy

where X, denotes the initial position of the child particle ¢ and where a is defined by
a(i, t,x) = fo(t,x)P(l = i)~! fori=1lor2

, d
a((2,j,d,e),t,x) = f] ,(t, OP(1= ©2,j,d, &) [](-D'*
k=1

By iterating the above equality to the descendents of the particle and assuming that the number
of descendent particles born before the time horizon T is almost surely finite we can evaluate
U(t, x) using Monte Carlo simulation. For more details on this method we refer to [HLOT"19].

IV.G.1 Existence of a measure for the particle method

We have
fu, Du)(t, x) =Elf7(u, Du) (¢, x)]

where [ is a random variable with values in {0, 1,2}, and

folu, Du)(x) = fo(t, x)P(I=0)""
filu,Du)(x) = fi(t, x)u(t, )PU=1)""!
fo(u, Du)(x) = E[f(u, Du) (t, x)|P(I =2)""

where [ is a random variable with values in {(a,1), (b, 1), (a,2),(b,2)} and
Jij.a (w, Du)(t, x) = fZ{d(t,x)Dju(t, 0P =(j,d)7

Finally we have

. d .
Dlu(t, )% =29 B[] ult, x + A eg) (1)1 4]
k=1
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IV. Optimal market making with persistent order flow

with (€;)1<j<g i.i.d. random variables with law Ber(%). Thus finally
f(u,Du)(¢,x) =E[g;(u, Du)(t, x)]

with [ is a random variable whose law is the uniform probability on the set £ = {O, 1,2,j,d,e), with de
{0,1,2}, j€{a,b}, €€1{0,1}%} and where

go(u, Du)(t,x) = fo(t,x) P(1=0)""

g1(u, Du)(t,x) = fi(t, x)u(t,x) P(1=1)""
d

8e.jide) W DU = ] (6, 0P(1= @2, j,d,0)) " [] ult, x+ M) (-1)! .
k=1
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CHAPTER V

Scaling limit for stochastic control
problems in population dynamics

Abstract

Going from a scaling approach for birth/death processes, we investigate the convergence of
solutions to BSDEs driven a sequence of converging martingales. We apply our results to
non-Markovian stochastic control problems for discrete population models. In particular
we describe how the values and optimal controls of control problems converge when the
models converge towards a continuous population model.

Key words: stochastic control, population models, birth and death processes, backward
stochastic differential equation (BSDE), stability of BSDEs, martingale properties.

1 Introduction

The sustainability of natural resources has become a major subject of interest in the last
decades for public institutions. For instance, in 1983 the European Union has launched its
common fisheries policy to manage European fish stocks. In August 2010, a report of European
commission named Water Scarcity and Drought in the European Union, has emphasized that
"an adequate supply of good-quality water is a pre-requisite for economic and social progress,
so we need to do two things: we must learn to save water, and also to manage our available
resources more efficiently”. A large part of academic literature has dealt with such issues. For
example, Reed in [Ree79] or Clarke and Kirkwood in [CK86] have studied the exploitation of a
natural resource under uncertainty on its evolution in a multi-period model. May, Beddington,
Horwood and Sherpherd in [MBHS78] have considered the problem by assuming that the
intrinsic population growth rate is given by the difference between recruitment and mortality
for general recruitment functions. These models have been extended to stochastic differential
equations driven by a Brownian motion (see for instance the work of Saphores [Sap03]). Evans,
Hening and Shreiber in [EHS15] or more recently Kharroubi, Lim and Ly Vath in [LKIV18|
have modelled the dynamic of the natural resource as the solution of the logistic stochastic
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V. Scaling limit for stochastic control problems in population dynamics

differential equation to solve a control problem under interaction between species and delayed
renewal of the resource. All the models mentioned above use a Brownian motion to describe
the uncertainty of the system evolution. We refer to this class of model as continuous models.
On the other side of the literature, Getz in [Get75] has studied control problems related to
a birth/death process. This work has been extended more recently by Claisse in [Clal8] to
branching processes. We refer to those models as discrete models.

It is well known that some continuous population models can be seen as scaling limits
of discrete models, see for example the work of Bansaye and Méléard in [BM15]. Hence
continuous models can be considered as good approximations of the macroscopic evolution
of a population size. Therefore it is relevant to consider continuous models for resources
management purposes. Moreover those models are attractive from a tractability viewpoint
compared to discrete models. Indeed solving control problems in Brownian driven model
essentially boils down to solve a partial differential equation. Whereas for discrete models it
leads to integral-partial differential equation, which are often more complex to solve. Yet the
remaining question is the relevancy of designing a management policy based on a continuous
modeling while the controlled population (or resource) is naturally discrete.

To try to give an answer to this question we are going to consider a sequence of discrete
population models that converges towards a continuous population model. For each of those
models we consider a control problem. Each of them are the natural adaptations of the same
control problem to the different models. Therefore we expect the solutions of the discrete
control problems to converge towards the solution of the continuous limit problem. From
I'-convergence results adapted to stochastic control problems as in for instance the articles
of Buttazzo and Del Maso [BDM82] and Belloni, Buttazzo and Freddi [BBF93], we expect to
have convergence of value functions (see also for instance [DM12, Theorem 10.22]) and a kind
of weak convergence of optimal controls (see for instance [BBF93, Proposition 2.8]). This is
emphasized in a toy model (see Section 2) where besides convergence of the value functions
we also get convergence in law of the state process under the optimal control. In this paper
we prove the convergence of the controls as sequence of processes. This is stronger than
I'—convergence. Since we aim at dealing with non-Markovian stochastic control problems our
problematic is to prove the convergence of solutions to a sequence of Backward Stochastic
Differential Equations (BSDE for short) driven by a sequence of converging martingales.

We know from the seminal paper of Donsker [Donbl] that a scaling in time procedure leads
to the weak convergence of a random walk to a Brownian motion. Extending this result to
the theory of BSDE with fixed time horizon T > 0, Briand, Delyon and Mémin in [BDMO]]
have provided a time discretization of the Brownian motion to get the convergence of a
time discretized BSDE. More precisely, they consider a sequence of random walks (W") >
converging towards a Brownian motion W. Then they prove the convergence of the solutions
of a sequence of BSDEs driven the (W"),>¢ towards the solution of a BSDE driven by W. The
main idea is to prove the convergence of the terms involved in the martingale representation
with respect to W” when n goes to infinity. For this they use the convergence, in the sense of
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1. Introduction

Coquet, Mémin and Slominski [CMS01], of the filtrations associated to each of the (W") >
towards the natural filtration associated to W. Those results have been extended in [BDM02] to
a more general situation, without assuming that W" has a predictable representation property,
but assuming that the brackets of the martingales (W"),>¢ are uniformly bounded.

In the present paper we aim to extend the results of [BDMO0]] to a wider class of martingale
convergence. Starting from a scaling result in [BM15] showing that a sequence of scaled
birth/death processes (XX)g=o with scaling parameter K >0 converges in law to the solution X
of a stochastic Feller diffusion, we begin to extend it to more general birth and death intensities.
We then consider a sequence of BSDEs of the form

T T
(B)x : YtK:§K+f gK(Xf,YSK,Zf)-¢§dA§—f zK.dm¥K,
t t

where éK is some general terminal random condition, gK the generator of the BSDE, MK a
two dimensional martingale associated to the population model XX and ¢pXdAX denotes the
measure associated to the angle bracket of MX. We also consider the continuous counterpart
of Bk,

T T
B): YVi=¢ +f 8(Xs, Ys, Zs)d As —f ZdMY,
t t

where ¢ is some terminal condition, g is the generator of the BSDE, MX is a one dimensional
martingale related to the diffusion term of X and A is its angle bracket. The existence and
uniqueness of solutions to such BSDEs driven by general martingales have been studied,
for instance, by El Karoui and Huang in [EKH97], Confortola and Fuhrman in [CF13] or
more recently by Papapantoleon, Possamai and Saplaouras in [PPS18] in a general framework.
Inspired by [BDMO02], we prove that the solution of (B)x converges to the solution of (B)
when (€5 k=0 converges toward ¢ and (gK) k=0 towards g. The difficulty pointed at this step,
compared to [BDMO2], is that the brackets of the (MX) k¢ are not bounded. Therefore we
need a stronger assumption on the convergence of the sequence of terminal conditions. The
methods used are related to the so-called martingale problem as stated by Jacod and Shiryaev

in [JS13] and to the double-Picard iterations craftily used in [BDM02].

Finally we would like to point that after having published the first version of this paper
online, we have learnt that a paper of Papapantoleon, Possamai and Saplaouras dealing with
convergence of BSDES for a very general class of martingales is in progress and preliminary
results in the one dimensional case are written in the PhD Thesis of Alexandros Saplaouras.
Our study, made independently of their, has to be seen as a particular case of their works
more focused on applications in stochastic control theory for population models.

The structure of the paper is the following. In Section 2 we study the convergence of a rescaled
birth/death process to the solution of a stochastic Feller type SDE by extending [BM15] to
more general dynamics (see Theorem 1). We also provide fundamental properties of our state
processes such as exponential moments (see Proposition 1 and Corollary 1). Section 3 introduces
a toy model motivating our study and illustrated with numerical simulations. In Section 4 we
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V. Scaling limit for stochastic control problems in population dynamics

first provide a convergence result for a sequence of martingale representations (see Proposition
2). Then in Theorem 2 we extend the convergence result of [BDMO02] by showing that the
solutions to (B)x converge to the solution of (B). In Section 5 from our BSDE approach we
deduce convergence of the values and optimal controls to a sequence of control problems. Our
results go beyond I'-convergence since we obtain a strong form of convergence for the optimal
controls. Section 6 gives the main proofs of our results. Minor proofs are given in the appendix.

The technical spaces considered related to discrete and continuous models are defined in
Appendix V.A. We provide below the notations for classical spaces used in this paper.

Classical spaces.

e [P the set of real valued random variable Z such that

1ZII} =ElZIP] < +oo

« & dp is the set of F-predictable R? valued process X such that

X1, =E[ sup [X¢[1”] < +oo.

te[0,T]

2 TFrom a discrete to a continuous population model

In this section we define a sequence of discrete population models. We show that this sequence
converges in law towards a continuous Feller population model by extending [BM15, Theorem
III-3.2] to more general population dynamic models.

2.1 Definition of the discrete population models

We consider positive continuous functions f b, % and o defined from R into R* that satisfy
the following standing assumption.

Assumption 1.

(i) The functions f°, f¢ and o are null on R~ and there exists non negative constants v, i, n
and 1 such that for any x € R*

fb(x) <vX, fd(x) Spx, ns o%(x) < n(l+x),

(ii) f:=f?— f% and 0® are Lipschitz continuous.

We note Q the set of piecewise continuous increasing positive functions with jumps equal to
1. We consider F the natural filtration associated to the canonical process (N b Ny of Q‘?‘j.

154



2. From a discrete to a continuous population model

For a fixed K =0 and n =0 we define a population model on the stochastic basis (Q2,F). The
initial population is K7 and the processes N” and N represent respectively the number of
birth and death in the population. This means that when the process N” jumps there is a new
individual in the population and when N jumps there is one individual less in the population.
Therefore at time ¢ the population size is Kn+ N? — N9. As we are interested in the large
population limit (which corresponds to K large) we consider the rescaled population process

Nb _ Nd
xKn—py——— |
K
We define the birth intensity in the model with parameter K and initial population 7 as
2 K,n
oo (X,”7)
Af'n'b — )LK,b(X[K_,n) = fb(X{i,n)K_i_ t K2
and the intensity of death
2 K,n
o°(X.”7)
Afomd _ ARd(x Koy .- pdxKmypey 2 T g2,

Remark 1. Note that bix) = ux, f d(x) =vx and 0% (x) = 0%x satisfy Assumption 1. Consequently,
the model studied in Theorem III-3.2 in [BM15] is included in the scope of this paper.

Following Theorem 3.6 in [Jac75] there exists a unique probability measure PX" on (Q,F)
such that the processes

. . t 7
ME = N [ 2K mids, for i€ b d)
0

are local martingales. It means that under the probability PX”* the process N? (resp. N%) has
intensity AX™ (resp. AX4). Note that if m > n =0 then PX” is absolutely continuous with
respect to PX" and we have:

dpkn
=L" 1)
dpkm T
where
AK,I’l,l’ _AK,m,i © .
nm _ ynm t t ,m, i . nm _
dLy™ = L™ ( Y Wlxﬁmdet ) with L™ = 1.
lE{b,d} t

We justify this change of measure in Appendix V.B.

For the rest of this work we fix an initial population xp and do not write anymore the superscript

Xo to lighten the notations. We write E instead of EP* when there is no ambiguity on the
probability used. For any K we consider the processes MK = (M0, pKod) 1K = Af’b - Af’d
and for i € {b,d}

s t . s 3 s X
A =f AKig=24s N*'= N'K 2 and M = MKiK!,
0
—K —K,b —K,d . .
We note M = (M ,MK ). The rescaled population process is now noted

NP - Nd

XK=)C0+
K
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V. Scaling limit for stochastic control problems in population dynamics

2.2 Scaling limit of the sequence (XX)x=g

Intuitively, and having in mind [BM15, Theorem 3.2], a continuous version of the processes
(XK k=0, denoted by X, would be an Ito diffusion with drift equal to f(X) and volatility given
by 02(X). We formalize this intuition in the following result which extends [BM15, Theorem
3.2]. The proof is given in Section 6.1.

b — b —K,d
Theorem 1. The sequence (XX, MK N© N AK ,AK ) k=0 converges in law for the Skorokhod
topology towards (X, M, A, A, A, A) such that
(i) there exists a bi-dimensional Brownian motions (BY, BY) satisfying

o (Xs) b nd
M; = ——d(By, By),
= \/— ( )

(ii) with B = (BY + B%)/\/2, the process X is the unique strong solution of

t
S): X;=xg +f f(Xs)ds+o0(X,)dBg,
0

(iii) A= [y0°(Xs)ds.

Moreover, there exists a probability space (Q0,F,P) and a sequence (NKd NKDy o such that for any
K =0, (NK4 NKDY has the law of (N, N?) under PX. Moreover on this space the sequence

—K —K,b —K,d —K,b —K,d
XM N N R A 0
converges in 5”12 x 5”22 x 5”11 x 5”11 x 5”11 x 5”11 to (X,M, A, A, A, A) when K goes to +oo.

According to the last point of Theorem 1 from now on we work under the probability

K b d —.
space (,F,P) and we consider that the processes (XK M NK )K>0 and
(X,M,A A A A) are defined on this space. For any K we note FK the natural filtration
associated to XX and FX the natural filtration associated to X.

Before going to the next section, we define some processes that we will extensively use in the
rest of the paper. We note for i € {b, d}

. to(X .
M; ::f g(Xs) dBg,
0 V2

so that M = (Md,Mb) and MX := M? + M? that is written

t
MX = f o(X;)dB;.
0

We also consider the processes
K,b K,d K,b K,d
AK.— ftﬁd p Af— and p9 .= M
L T aKb K’ L "7 aKb, 4Kd®
0 K? A7+ A A7+ A
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Note that under the probability PX the random measure m associated to the process (NP, N4
interpreted as a compound jump process with values in E = {b,d} admits as predictable
compensator measure

X (de,dn) = (¢XP5,,(de) + pX 95 4 (de))dAK

with gb{( = ((/)f’b,(/)f’d) = (pf’b, pf'd)K2 and where §; denotes the Dirac measure at point
i € {b,d}. This point of view is introduced in order to draw a parallel with the framework of
[CF13] to which we will refer extensively in Section 4.2.

2.3 Uniform exponential moments

Finally we show that the sequence of processes (XX, [; XX) admits exponential moments
uniformly in K if o2 is linear. The proof of this result is postponed in Appendix V.F.

Proposition 1. If there exists a positive constant o such that 0°(x) = 0> x there exists some positive
constants Bo, Ko and T such that for any s < T we have

N
sup [E[exp(ﬁof XKdu+ Byx5)) < 0.
K=Ky 0

Without loss of of generality we assume that Ky = 0. From now we fix a positive constant f
strictly smaller than Bp. As a consequence of Proposition 1, for any integer g we have for any
ssT

N
sup E[exp(ﬁf XKdu+ x5 +1xK519) < +00
K=0 0

and

T K
sup [E[f exp(ﬁf XKdu+ x5 +1xK19)ds) < +oo.
K=0 0 0

We deduce from Fatou’s Lemma together with Proposition 1 that X inherits from the exponential
moments of XX as stated in the following corollary.

Corollary 1. If there exists o positive such that o°(x) = 6% x there exists some positive constants fBo
and T such that for any s< T we have

[E[exp(ﬁofo Xudu+ﬁ0Xs)] < 00.

In order to benefit from those exponential moments we now assume that o2(x) = 0% x for some
positive constant o fixed.
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3 Illustration of the study on a toy model

In this section, we illustrate the I'-convergence result applied to optimization problems in
population dynamics. We consider specific parameters f¢, f? and a sequence of control
problems for which we are able to make explicit computations. Then, we show that the
sequence of optimal controls converges in law to the optimal control of a continuous problem.
In this section, we aim at providing the general main ideas of the paper rather than being
perfectly accurate. Rigorous statements will be given in Section 5.

3.1 Discrete populations models

We consider a discrete birth/death model as studied in [BM15] by choosing:
- the initial population xp € N,
- the birth rate f”(x) = vx for some v >0,
- the death rate f%(x) = ux for some > 0.

Recall from Remark 1 and from [BM15, Theorem 3.2] that (XX),e(o, 1) converges in law for the
Skorokhod topology towards the continuous diffusion process (X;)se[o,1] solution of the Feller
stochastic differential equation

dX[= (V—M)Xtdt‘i‘(f\/ Xdet, (2)
for W a Brownian motion.
In this toy model, we assume that a resource manager regulates the population XX through an

FK -predictable control a. A control a is admissible if

PK,CL’

o there exists a unique law under which the death intensity of the population is

2
g
Afoda .- kXK u+ K=)+ kxKa,,

/1K’b

and the birth intensity is . When this probability exists, it is the law of the population

under the control a.

« A4 j5 a non negative process PX'® almost surely.

We denote by «/X the set of admissible controls.

The agent is assumed to be penalized if he fails at reaching a fixed level X > 0 of the resource at
time T determined by a regulator. We model this penalization by the square of the difference
between the effective population size at time T and the target X. So that the manager pays
)/(Xf —%)? at time T where y is a positive constant. The manager payoff is also assumed to
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la, X t |2

be penalized by the instantaneous amount per unit of time when its effort is a. The

problem of the resource manager is thus to solve

fT ((XSXK)Z
0

(TM)g: V& = sup EXY[—y (XK -5? - >

acaK

ds]

where EX'® denotes the expectation taken under the probability PX'*, We assume that o2 > 2yx
and y < (.

To solve this problem, as usual in stochastic control theory, we study the corresponding
Hamilton-Jacobi-Bellman (HJB for short) equation and use a verification argument. The HJB
equation associated to the control problem (TM)g is

B 0,UX(t,x) + HX (x, DXUX(t,x), DKUX (£,x)) =0, (¢,x)€[0,T) x (N*/K),
UK 0= —ya-%2  xeN*/K),
with Hamiltonian HX given by
K o+ o? o2 (ax)?
HY(x,p ,p_)=sup{Kx(v+—K)p++Kx(u+(x+—K)p_— }
o 2 2 2

and where

DXUX(t,x) = UX(t, x +1/K) = UX(t,x) and DXUX(t,x) = UX(t,x-1/K) - UX (¢, x).

K,

The maximizer of the Hamiltonian is a p 1,0, hence

o2 2
(Kp-)
HX(x, p* , P )—Kx(v+—K)p++Kx(u+—K)p + Z |

Note that we do not actually care about the value of the control when x = 0 since if the
population reaches 0, it is stuck at this value. The partial differential equation (PDE for short)
(H)B)k is quadratic, so we search for a solution under the form

UX(¢t,x) = ax () x® + b () x + cx (1).

Identifying the monomials, we get that UK is solution of (HJB)x if and only if (ax, bk, cx) is
solution of the following systems of ODEs:

ak(t)+2a1<(t)(v—,u)+2a§<(t)=0, ag(T) = -
(ODE); : b;((t)—ZaK(t)(“K (0 bK(t))+aK(t)(a2+“—;”)+b,<(t)(v—u) =0, bg(T)=2y%,
ch () + 3 (2D — pr(n)” = cx(T) = —y 2.

By Cauchy-Lipschitz theorem this system admits a unique solution. Thus the optimal effort of
the agent is
K« _ 1 d[((l') K
a,; = X_,/{((T — 2Xt ag(t) — bK(t))IX[K>O
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and the corresponding death intensity is given by

ax(nxK

2
K, o
At = KX S Ko+ (-2X S ax (0 + — bx (1)1 gk

Note that in view of (ODE)g and since ag(T) is negative and bg(T) positive, there exists a T
small enough, independent of K, such that for any K the control a®* is in «/X. We refer to
Appendix V.C for more details on this point. We assume that we are considering such short
enough time horizon here.

3.2 Continuous populations model

We now turn to the continuous version of the control problem. We assume that the manager
controls the drift term in (2) through an FX—predictable process @. We say that a is an
admissible control when the following SDE admits a unique weak solution

dXt =(v- M= at)Xtdt'F o/ X[th.

When such solution exists we note P its law that is the law of the population under the control
a. We denote by < the set of admissible controls.

The control problem in the continuous framework is written

T X 2
(TM): Vp=sup E*[-y(XT - %)? —f (@sXs) ds].
acel 0 2

The associated HJB equation is given by

(HJB) 0.U(t,x)+ H(x,DU(t,x),AU(t,x)) =0, (t,x)€[0,T)xR",
U(T,x)=-y(x—-%?% xeR",
where the Hamiltonian H is
lax> 1, 1, p?
Hx,p,q) = sup{(v—,u—a)xp— +—x0 q} =(Vv—-Wxp+=x0°q+—1y>0.
a 2 2 2 2

The maximizer of the Hamiltonian is
a*(x,p)= __x”1x>0
As previously, we are looking for a quadratic solution of the form
U(t,x) = a(t) x> + b(H)x + c(b).

Identifying the monomials, we get that U is solution of (HJB) if and only if (a, b, c) is solution
of the following system of ODEs.

a’(t)+2a(t)(v—u)+2a2(t):O, a(T) =-v,
(ODE): b’(t)+2a(t)b(t)+a(t)02+b(t)(v—u) =0, b(T)=2y%,
¢/(1) + DAL — g, o(T) = —y %2
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4. Convergence of BSDEs

Hence, the optimal control is given by

. DU,X,) _ 2a(0X+b()
ay = —TIX,>0 =TT x, e
Note that in view of (ODE) and since a(T) is negative and b(T) positive, there exists a T
small enough such that the control a* is in <7, see Appendix V.C for details. We assume that
we are considering such time horizon here. We also note that ax = a and as consequence
of Gronwall Lemma (bg, cx)x=0 converges to (b,c) when K goes to +oo. Consequently we

get the convergence of the value of the control problems, Klim VOK = V. Moreover a direct
—+00

adaption of the proof of Proposition 1 gives the convergence in law of the optimally controlled
population:

lim P =po,
K—+oo

Those convergences are illustrated in Figures V.1 and V.2 respectively.
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K

Figure V.1 - Convergence of (VOK)Kzo towards Vy with 02 =0.3, u=0.1, v=02, T =0.1,
X0 =50, X=20 and y=1.

4 Convergence of BSDEs

1 2 result on the

In this section we prove the main results of this paper. We first prove
convergence of a sequence of martingale representations. Then we extend it to the convergence

of a sequence of BSDEs driven by the sequence of martingales (MX)xo.

1After having finished the paper, it has been raised to our attention that a recent paper [PPS19] extends this
result to the convergence of general martingales.
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Figure V.2 - Empirical distribution of the discrete optimal controls at time ¢ = 0.1 for different
values of K (in red) compared to the distribution of the continuous optimal control. The
parameters are the same than in Figure V.1

4.1 Convergence of martingale representations

From Theorem 2 in [Dav76] we know any FX—martingale has the representation property with
respect to MX (in the sense of Definition IT1-4.22 in [JSI3]). Moreover we prove in Appendix
V.E that any FX— martingale has the representation property relative to M*.

For any K = 0 we consider &Ke1? an g:? -measurable real random variable and ¢ € L? an
37{( -measurable real random variable. We define the closed martingale QK by Qf =E[EX L@tK 1,

P—a.s.. Since QX is an FX-martingale and éX € 12, we know that there exists a unique process
ZX € 1(MX) such that

t
QK =Mz K :Q§+f0 zK.dmK,

Similarly considering the FX-martingale Q defined by Q; = E[{|F], P — a.s. since ¢ € 12 we
have existence and uniqueness of Z € L2(M”X) such that

t
Qi =EElFX) = Qo+ fo ZedmX.

We prove the following fundamental convergence result in Appendix 6.2
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4. Convergence of BSDEs

Proposition 2 (martingale representations convergence). If the sequence ((¥) k=0 and & are
in L2*¢ and () k=0 converges towards ¢ in [%*€ fore>0 then

(Q%,(Q,Q%),¢Q% M) — (.4 @,(Q, M) a5 K — +00

. 2+¢' 1+£'/2 2+¢' I
in F7TE x F x F5TE for any €' €10, ¢).

Compared to Theorem 5 in [BDM02] we have assumed that the convergence of (X) g~ takes

L2+E

—K
place in instead in L2. This is in order to extend the convergence of ((QK,M NK=0

beyond ,?él. Indeed if we only assume that (QK) € yll, (QK ,MK) is not squared integrable a
priori. In [BDMO2] the authors do not face this issue since they assume that the brackets of the
martingales they consider are bounded, see Hypothesis (H1). In our framework the sequence

—K
((M )T)k=0 is not bounded in general. However, if we instead consider a sequence of models

with a bounded population then ((Z\_/[K) T)x=0 would be bounded and we could get the same
result assuming only the convergence of (£X)xz¢ in L? only.

4.2 Convergence of BSDEs

We now extend the previous result to convergence of a sequence of BSDEs driven by MX.

For any K =0 we consider an #5 random variable ¢X and two continuous functions g{f and
gg from R3 into R. We write for (x, 1,2 ER xR x R?

g5 y,2) = (g (x,3,2"), 85 (x, 3, 29).

Note that in the above equation, we implicitly use the decomposition z = (2%, z%). We will
always assume such convention when we are dealing with a pair of elements such that one
element of the pair is related to the birth in the population and the other is related to the death.

We introduce the BSDE with generator gX and terminal value éX by setting
T T
(B)x : Y[K:5K+f gK(Xf,YSK,Zf)-gbfdAf—[ zK.dmf.
t t

Definition 1. A solution to BSDE (B)k is a pair of processes (Y, Z) € SK such that the relation
B)x holds P — a.s.
As a consequence of Theorem 3.4 in [CF13] we have the following result.
Lemma 1. Assume that
i) K eTk,

(ii) there exists a positive constant L such that > L? +2L and for any x,y,y', 2,z and K =0
we have for j € {b, d}

Kzlgf(x,y,z/K) —g]I-((x,y’,z'/K” < L(y-y1+1z-21),
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V. Scaling limit for stochastic control problems in population dynamics

(iii) g;(XK,0,0)eHX for je(b,a},
then the BSDE (B)x has a unique solution (YK zKye sk,

We also introduce a class of BSDE driven by the martingale M*. For an 3/71{( real valued
random variable ¢ and a continuous function g from R3 into R we consider the BSDE

T T
B): YVy=&+ f g(Xs, Yy, Zg)dAs — f Z,dMZE.
t

t

Definition 2. A4 solution to BSDE (B) is a pair of processes (Y,Z) €S such that the relation (B)
holds P — a.s.

We get the following result on existence and uniqueness of solution to (B) which is a
consequence of Theorem 6.1 in [EKH97] or Theorem 2.1 in [CFS08].

Lemma 2. Assume that
(i) €T,

(ii) there exists a positive constant L such that 5 > [?+2L and for any x,y,y',2,2' and K =0
we have:
1g(x,y,2)—g(x, Y, N <L(ly-y'1+1z—Z2'l),

(i) g(X;,0,0) € H,
then the BSDE (B) has a unique solution (Y,Z) € S.

We are interested in the convergence of the solutions to (B)x when &Y k=x and (gK) K=0
converge. Therefore we make the following converging assumptions on the drivers of the
BSDEs (B)k.

Assumption 2.
(i) The sequence (EX) k=0 converges towards & € T in L2€ for e >0,

(ii) there exists a positive constant C such that for any x,x',y,z, K=0 and j € {b, d}

K*|g} (x,y,2) - g} (&, y,2)| < Clx— ¥'l,

(iii) there exists a pair of continuous functions (gp, g4) from R® and a positive sequence (Vi) k=0
converging towards 0 such that for any K =0, x,y and z we have for j € {b,d}:

IK?g5 (x,,21 K) = gj(x, , D) S v (L+x° + y° + ]| z]1%).

Remark 2. Under Assumption 2 (iii) if for any K the pair (gllf, gg) satisfies assumptions (ii) and
(iii) in Lemma 1 then the function g = (gp + g4)/2 satisfies the assumptions (ii) and (iii) in Lemma
2.
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5. Application to a control problem

For any K =0 we consider (YK, ZzKy e SK the unique solution of (B)x. We have the following
convergence result for the sequence (YK, 2K k=0 whose proof is given in Section 6.3.

Theorem 2. Under Assumption 2 if the assumptions of Lemma 1 are satisfied for any K then the
BSDE driven by M* with generator g := w and terminal value { has a unique solution (Y, Z)
and we have the following convergence:

(YK,f z{(-de,wKﬁK),(YK)) - (Yf Z:dM, (Y, M), (Y)) as K — +o00
0 0

in FEx PEx L} x AL
The convergence in Theorem 2 implies the following convergence

.ZK,b ,ZK,d . . . .
([ t—/lf’bdt,f t—/lf’ddt,[ 1zK 2. fdAf)—»(f thAt/Z,f thA,/Z,[ Z}day),
o K 0o K 0 0 0 0

in 911 X 5”11 X 5”11 when K — +oo0.

5 Application to a control problem

In this section we apply the results of Section 4 to the convergence of a sequence of controls
problems.

5.1 The discrete problem

We first focus on the discrete control problem in the same spirit than Section 3. We consider
that a resource manager monitors his harvesting intensity through a control a, which is
assumed to be bounded with bounds g, a > 0. We assume that his harvesting modifies the
death rate of the natural resource according to a continuous function hE:R* x [-a,al— R
which satisfies the following assumption.

Assumption 3. There exists a positive constant C < 2 such that for any (x,a) € R* x [-a,a]

IhK (x, a)|?

gy~ S Cx and KFH @ +h @) 20

with equality if x = 0.
The set of admissible controls is defined by
AK =ja-FK predictable s.t. @ € [-a,al}.

For any a € /X we define

“hK (XK ay)
K,a s ¥s K,d
L _g’(fo Tk dm&)
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V. Scaling limit for stochastic control problems in population dynamics

where & denotes the Doleans-Dade exponential process. We deduce from Assumption 3,
Proposition 1 together with [Sokl3, Corollary 2.6] that (th(’a)te[o,T] is a true martingale. Hence
the law of the population process under the control a is given by PX'% characterized by

dpka

— LK,a'
dp r

Under the probability PX'% the death intensity of the population becomes
Afoda _ 3 Kd L pK (XK ay)
and the birth intensity is unchanged.

We assume that the manager receives at maturity T a lump sum random compensation ¢X € TX
for his action. In addition, the manager receives continuous incomes along the time depending
on the size of the population and on his control that is given by a function cX from R* x [— a,al
into R. This gain can be negative which corresponds to a cost related to the effort of the
manager. This is what we have considered in Section 3. Therefore, the goal of the manager is
to solve the following maximization problem

T
(P)g: V= sup J* with JX% = [EK’“[€K+f K (XK ag)ds),
0

aeadK

where EX% denotes the expectation taken under the probability pKa, Using the notations of
Section 4.2 the BSDE associated to this control problem is

T T
(BSDE), : YtK:§K+ft gK(XsK,ZSK)wpfdAf—ft zK.damk

with for any (x,z) € RY x R?

1

K K,d d K,d d K di K

(x,2) =(0,27%(x,z“)) where “(x,z2")= su c(x,a)+z°h" (x,«a .
g g g S (x,a) ( )) K

We need to assume that the functions cX and hX are chosen such that gX satisfies the
assumptions (ii) and (iii) of Lemma 1 and that the maximizer in the above equation is unique.
Formally we make the following assumption.

Assumption 4.
@) g&4(xK,0) eHk,

ii) there exists a positive L satisfying B> L* + 2L and such that for any x,z,z',a and K =0 we
P ying Ly

have
|KzhX(x,a) — Kz h¥(x, a)| ,
<Llz—-2z|.
/IK'd(x)
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5. Application to a control problem

(iii) For any x, z there exists a unique aX*(x, z) such that

K (x,af* (x, 2)) + 2hX (x, aX* (x, 2))

K,d _
g% (x,2) = AKd ()

We thus have the following characterization of the optimal control (we refer to Appendix 6.4
for the proof).

Theorem 3 (Verification for (P)). Let (YX,ZX) e SK be the unique solution of (BSDE)y. Then
VOK = YOK and af’* = afr(xK, ZtK’d) solves the problem (P)y.

We now define the continuous version of this control problem.

5.2 The continuous problem

As previously the resource manager monitors his harvesting intensity through a control «,
assumed to be bounded with bounds a@,a > 0. We assume that his harvesting modified the
death rate of the natural resource according to a continuous function h:R* x [-a,a] — R
which is assumed to satisfy the following assumption.

Assumption 5. There exists a positive constant C < 23 such that for any (x,a) € R* x [-a, al

h2(x, )

o2x

< Cx and h(x,a) + f*(x) = 0.

with equality if x = 0.
The set of admissible control is
o ={a-FX predictable s.t. a € [-ag,al}.

Considering the process

" h(Xs, ay) X
L?=<5”(f0 _o.g—Xdes)t’

where we recall that X is given by (S). We deduce from Assumption 5 and Corollary 2.6 in
[Sok13] that LY is a true martingale. Hence, we define the probability P* by

dpe
=%
dp r

which is the probability measure corresponding to the control a. Under P¢ the process X is a
strong solution of

¢ ¢
X=X +f (f(XS)—h(Xs,as))ds+f v/ XsdBY,
0 0
where BY := B+ fo h(L’;“)ds is a PY—Brownian motion.

ovX;
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V. Scaling limit for stochastic control problems in population dynamics

As in the discrete case we assume that the manager receives at maturity T’ a lump sum random
compensation ¢ € T for his action. In addition, the manager receives continuous incomes term
depending on the size of the population and his control. This term is given by a function
¢ from R x [-a,a] into R. Therefore, the goal of the manager is to solve the following
maximization problem

T
(P): Vo =sup J§ with J§ := [E“[§+f c(Xs, as)ds],
aesf 0

where E® denotes the expectation taken under the probability P*. The BSDE associated to
this control problem is

T T
(BSDE): Y, =¢+ f g(X;, Z)d Ag — / Z,dMX
t t

with for any (x,z) eR* xR

1
(x,z)= sup |c(x,a)+zh(x,a)l—.
g ae[_MD( (x, @) + zh( ))ng

We need to assume that the functions ¢ and h are chosen such that g satisfies the assumptions
(ii) and (iii) of Lemma 2 and that the maximizer in the above equation is unique. Formally we
make the following assumption.
Assumption 6.

(i) g(X,0) € Hy,

(ii) there exists a positive L satisfying > L? + 2L such that for any x,z,7z' and a we have

hix,a) -z h(x,
|zh(x, @) — z h(x a)ISle—z'I.

o2x
(iii) For any x,z there exists a unique a* (x, z) such that

c(x,a*(x,2)) + zh(x,a* (x, 2))
o%x

gx,z) =

We thus have the following characterization of the optimal control (we refer to Appendix 6.5
for the proof).

Theorem 4 (Verification for (P)). Let (Y,Z) €S be the unique solution of (BSDE). Then Vp = Yy
and & := a* (X, Z;) solves the problem (P).
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5. Application to a control problem

5.3 Convergence of the value functions and of the optimal controls

In this section, we show that under some natural assumptions the sequences of value functions
(VOK k=0 and of controls (aX*)g=o converge respectively towards Vp and a*. More precisely
we consider the following assumptions.

Assumption 7.
() (k=0 converges to & in ) Rand for some € >0,

(ii) there exists a positive sequence (k) k=0 that converges towards 0 such that for any x,a, z and
K we have

,cKkx,@) clx a) X (x,a) h(x,q)

K - +|K -
| AKd (x) 02x/2I | AKd(x)y  o2x/2

| =nx@+|x])

and

KhK(x,a)\2 [h(x,a)
J -

K, * —a¥
la™" (x,2/K) -« (x,z)|+|( 2K (x) o2x/2

2
) ’snK(1+|x|+|z|).

(iii) There exists a positive constant C > 0 such that for any x,x',z and K we have
cKix,a)—zK 'h&(x,a) KX, a) - zK1hE (x, @)
AK,d(x) AK,d (x/)

and for any x,x',z,z,a, @' and K we have

K2

|<Clx—x|

/

KhK , 2 KhK /’ !
Ko, D1 (B - (Rl )
K AKd (x) AKd ()

< 2
IaK'*(x,E)—a ) |sC(Ix—x'|+|a—a’|+|z—z'|).

Assumption 7 contains the natural assumptions ensuring that the problem (P) is the version of
the problems (P)k in the framework of the continuous population model X.

Using a slight abuse we note PX* the law of XX under the control a®* and P* the law of

X under the control a*. We have the following convergence result which proof is given in
Appendix 6.6.

Theorem 5. (i) We have in 5”12 x 911 x 5”11 :

lim (YK,fO af’*/lf'dK_zds,fO(af'*)zﬁf’dK_zds):(Y,fo asdAs/Z,fo aidAs/z).

K—+o00

(ii) The sequence (PX*)g=o converges for the Skorohod topology towards P*.

Since YOK = VOK and Yy = V) a consequence of Theorem 5 (i) is that (VOK )k=0 converges towards
Vo. The point (i) also implies that the sequence of controls (aX)g=o converges towards the
control a. But this convergence is in a weak sense and we do not get the convergence of
(aX*) k=0 towards a* in law for the Skorohod topology.

Remark 3. Note that the sequence of control problems considered in Section 3 when a € [—v,al (for
a positive) satisfy any of the assumptions of Section 5.
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6 Proofs

6.1 Proof of Theorem 1
We introduce the process

v\ = fo [ fx8ds.
The proof is divided in four main steps detailed below.

1. We prove that (S) admits a unique strong solution.

b — b —

2. We show that the sequence Yk, MK NK N AK )K>0 is C-tight.

3. We show that for any limit point (Y, M, NP N AP A9 of the above sequence we have
AP = NP = A9 = N9 and Y is almost surely differentiable with derivative X weak solution
of (S).

4. Finally, we prove that up to a probability space (Q,F,P) such that the above convergence

holds in probability, the process (XX, MK NP NKd AK PR ) k=0 actually converges

to (X, M, A, A, A, A) when K goes to +oo in yﬁ x FEx AL x yl x Al x AL

Step 1: Pathwise uniqueness under existence. The uniqueness result is a direct consequence of
[RY13, IX-Theorem 3.5 (ii)] under Assumption (A)(i7) — (7).

Step 2: Tightness property.
In order to show tightness we first show that the sequence (sup [E[Xf]) k>0 18 bounded

t€[0,1]
uniformly with respect to K. We have

t
ELXS] = ng +[ ELfP (x5 - fAx)ds.
0
Hence, according to (A)— (iii), there exists a positive constant C (independent of K) such that
t
E[XK) < n0+f CE[XKds.
0

By using Grénwall’s inequality we deduce that ( sup E[XX]) k>0 is bounded uniformly with
te[0,1] -
respect to K.
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We have
2 (XK)

t
ENS) sf E[fP x5k + T ds,
0

therefore ([E[NIT('b]) k>o is bounded and since NK'd _K'b then ([E[Nf'd]) k>0 is also bounded.
Moreover since f(XK) < CXX the sequence ( [Y ])Kzo bounded. Using Theorem VI-3.21 in

[JS13] and that the processes YX, N"" and A forie {b,d} are nondecreasing for any K we
get that the sequences (YX)xxo, (N )Kzo, (N d)KzO, (KK'b)Kzo and (KK'd)Kzo are tight.

Moreover since IAWK’iI = 1/K? for i € {b,d} and the processes Yk, AKD and AK4 are
continuous for any K following Proposition VI-3.26 in [JS13] we get that the sequences

—K,b —K,d —K,b —K,d .
(Y %20, (N D=0, (N D=0, (A k=0 and (A" )g=o C-are tight.

The_ tightness of (]\_/[K’b,]\_/[K'd) k=0 then follows from Theorem VI-4.13 in [JS13] since (]\_/IK’i) =

KK'I. We then get C-tightness since IAZ\_/IK'iI <KL, Since marginal tightness implies tightness
(Corollary TV-3.33 in [Jac75]) we get that (YK, MK NK "N N AKb )K>0 is C-tight.
Step 3: convergence of the processes and existence of a solution to (S)

We first show the following lemma:

Lemma 3. Forie{b,d} the process INK’i —KK'iI converges uniformly towards 0 in probability.

Proof of Lemma 3. Obviously we have Nf'i AKl MK so using the BDG inequality we
have i .y
—K,i —K,i
IM,"|?, _EIN7']
E[ sup < ——.
reo,r) K K
that converges towards 0. We conclude using Markov inequality. O

In view of the tightness result obtained in Step 1, we denote by (Y, M, Nb,Nd,Ab,Ad) a
—K —K,b — —K, b

limit point of (YX,M ,N NI )K>0 with M = (M, M%). By the Skorohod
representation theorem since the limit of each marginal is continuous we can consider that
—K —K,b —

YK M N N ) k=0 converges almost surely and uniformly on [0, T] towards (Y, M, N b ,Nd),
ie.

sup |YS-Y,| — 0
te(0,1] K—+o00

and for any 7 € {b, d}

—Ki —Ki —Ki
sup |M,”" -M!| — o, supINtl—N;IK—> 0, supIAtl—A’tIK—» 0.

te[0,1] K—+o0 te[0,1] —+oo te[0,1] —+oo

According to Corollary IX-1.19 in [JS13] we have that M is a local martingales. Moreover we
have (M1 =N"" and (M, M?] = 0 so Corollary VI-6.29 in [JS13] gives [M'] = Ni = A!
and [M? M%) = 0. Since M’ is a continuous martingale we get (MY = [M'] = Al. We also

~Ki . . . . P
notice that E[Ay Tis uniformly bounded in K, so according to Fatou’s lemma A’ is integrable,
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V. Scaling limit for stochastic control problems in population dynamics

therefore M’ is a true martingale.

We recall that

t —Kb —Kd
XtK:n0+f fxbds+m," -M, "
0

Then, xK converges almost surely and uniformly on [0, T'] towards
X;:=no+ Y+ MP - MY?

and YK converges almost surely uniformly on [0, T] towards

f F(XJds.
0

Since we have

t ~2
07X 45 and (MP, Méy =0

(Mby, = (Mm%, =f

0

we get from Theorem V-3.9 in [RY13] that there exists a bi-dimensional Brownian motion
(B?, B4) such that

o(Xy)
(MP, M%) = fo s d(BY, BY).
So finally we have shown that

t t Bb d
X,:n0+f0 f(XS)ds+[0 o (X)d( S\/ES).

This concludes the proof of the first part of Theorem 1 since xK, MK NK b NKd,KK b,KK d)

converges in law for the Skorohod topology to (X, M, A, A, A, A).

Step 4: convergence of a copy (XK,J\_/IK,NK'b,NK' AK b A )K>0 in 5”2 X YZ X 5’1 x 5”1 x 5”1

#1
-
In view of the conclusion of Step 3, and by the Skorohod representation theorem, there exists a

probability space (Q,F,[P) and a copy in law of the sequence of processes xKk, MK NK PN N AK P X )K>0

that converges in probability toward a copy of (X, M, A, A, A, A) when K goes to +oo. To prove
that the convergence actually holds in #? x #7 x #! x A x #! x F#! we show that:
(D) (NK'b)Kzo and (NK'b)Kzo are bounded in 912,
... —Kb —K,d s
(ii) (A" ")k=0 and (A" )¢ are bounded in 7,
(iiQ) (MK)KZO is bounded in %4,

(iv) (XX)k=o is bounded in #!.

172



6. Proofs

Then we will get the convergence using dominated convergence.
Proof of (i). We write

sup (NP2 = (NA")2 = f 5+ K~ HANKD,
te[0,T]

Therefore we have for a positive constant C independent of K such that

_ T T
E[ sup (Nf’b)z]ztE[f (2Nf’b+K‘2)A§'bds]s[E[f eNS? 4 k2)cxKds).
te[0,T] 0 0

Hence to conclude it is enough to show that (E[ﬁf’bX{(])te[o_T] is bounded. We have
—_— t —_— —_—
NP xK :f XKE 2+ NP + K3 dNE? - N PRk
0
'K 2 NI O S (L U G A
=f (XKK 2+ K 3)dNE +f N, K 'd(NEP - NKdy,
0 0
So we get
E(N"xK) = [E[f XK+ K‘l)K_Z/lf'bds+f NPT AKD - AKd) g
0 0
t t_ kb
s[E[f (X§+K‘1)cxfds+f N, CxXds).
0 0

Therefore by Proposition 1 and Grénwall lemma we get point (i) (since the same results follows
for NX:4),

Proof of (ii). We have

T
—K,d
sup A, SC[ xKds,
r€[0,T} 0

therefore point (ii) follows from Proposition 1. Same proof holds for NK'd
Proof of (iii). Using the Burkholder-Davis-Gundy inequality we get

—K,b —K,b
El sup (M, = CEI(Ny )2
te0,T]

Therefore because of point (i) we get point (iii). Same proof holds for ]\_4K'd
Proof of (iv). We write

r _ _

xK = x{§+f (AKb _AKd) k=145 4 M0 -2

0
t — —
< xK +f cxKds+ 3" -1
0

173



V. Scaling limit for stochastic control problems in population dynamics

So we have ’
—K,b —K,d
X5t < c((x§)4+ (/ xKds)*+ 101,714 + 1M, |4)
0
taking the supremum over ¢ € [0, T] and then the expectation we obtain point (iv) as corollary

of Proposition 1 and point (ii7).

6.2 Proof of Proposition 2.
The proof of Proposition 2 is inspired by that of Theorem 5 in [BDMO02].

It is easy to check using (I) that for any K the processes XX is a cad-lag Feller process. For
details on this point see Appendix V.D. Moreover, by Theorem 1.1 in [Kiih18] X is a continuous
Feller process. Hence from Proposition 4.B) in [CMS01] we get the weak convergence of FX
towards FX. So by Remark 1.2) in [CMS01] we have the convergence in probability of Q% k=0
towards Q for the Skorohod topology. Since Q is a Brownian martingale, it is a continuous
martingale and therefore Q8 k=0 converges in probability towards Q for the topology of the
uniform convergence.

Since (IMKIZ) k=0 is uniformly integrable it converges in 912 towards M. From Proposition 2
in [BDMO02], we obtain that

(@505, M")) = ((Q.@,(Q. M) ) as K = +00

in 5”11 X 5@1. We then extend this convergence and the one of QN k=0 using dominated
convergence theorem. For this we show that for any ¢’ < & we have:

(1) (QF)k=0 is bounded in F2*¢,
(ii) (<QK>)K20 is bounded in .5”1”5/,

(iii) ((QK,MK))KEO is bounded in 5”12”’.

Proof of (i): By Doob’s maximal inequality we have for a positive constant C

E[ sup |QX1%*¢] < CE[IQK[?*¢] < CE[1eX >+,
te(0,T]

Therefore we get (i) since (&) k=0 is bounded in L2*¢.

Proof of (ii): By Equation (100.2) p.183 in [DM80] and using BDG inequality we have

EKQ )y = CEL sup 1Qf "],
t€[0,T]

thus we get (i7).
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Proof of (iii): Using Kunita-Watanabe inequality we have

QK M ) 112 < (QXy ¢ AK) 7.

Therefore by Holder inequality we get for any p > 1 such that p(1+¢'/2) < (1+¢€/2):

—K ' ' 1/p « 1/p*
t€[0,T]

where px = (1—p~1)~! so (iii) follows from (ii) and Proposition L.

6.3 Proof of Theorem 2.
The proof of Theorem 2 is inspired from the proof of Theorem 12 in [BDMO02].
We proceed in 3 steps:

(i) We show that there exists a € (0,1) and some a—contracting functions (FK) k=0 and F
such that for any K, the unique solution of (B)x is the fixed point of FX and the fixed
point of F is solution to (B).

(ii) We introduce a double indexed sequence and prove a convergence result by induction.

(iii) We conclude.
6.3.1 Step (i)

For any K we define the function

FX:| s — sF
Y,z) — ¥,z

where (Y’, Z') is the unique solution of the BSDE:
K T K K K K T K
Y[‘,:f +f g (Xs )YS;ZS)'(/)S dAS _f Z‘;‘dMS'
t t

Since (Y, Z) € SX and because of assumptions (ii) and (iii) in Lemma 1 we have gK xKy,z2)e
HX. So we can properly define

T
Y/ =E[E" + f GO AVARUNENEZ)
t
and Z’ is the unique process in HX satisfying
Ko (7oK K K4 2K K k. [" K
[E[é +[ g (XS’YS»ZS)'(deAS |gt]:Y0, +/ Zs,‘dMS
0 0
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V. Scaling limit for stochastic control problems in population dynamics

Consider two pairs (Y1, 21), (Y2, 22) € SK and noting (¥, Z) = FK(Y', Z)) (resp. (Y, Z") =
FX(Y?2,Z2)). Using Ito’s formula on eﬁAﬂ?i —?ilz between 0 and T we get

Vo~ Tol*= | P (BT T -2 T g (XK, Y1 2D - g K, Y2, 20) - oK
+f0T PA Y -V NZ, - Z)-dMK
+ fo Teﬁf‘ﬁZ'b—Z?b 2dND + fo Te“ﬁ?i’d—ii'dﬁdzvf.
Taking the expectation we get
Vo~ Yol +EI fo e fo LN Z - gk ak)
s[E[fOTeﬁAfz|?1—?§||gK(X{(, v}, z1) - gK (XK, v2, 22)| - pKd K],

Therefore using the assumptions of Lemma 1 together with Young’s inequality we get for any
positive @ and 7y that

IV =TV 1 +1Z' -7 Iy = (I; + é)n?l SV N+ 12! = 22+ Lall Y = Y2
or equivalently
(B~ DN =V +1Z - Z g < Ly 2 = 220+ Lal Y = Y212
a y 1 2 2 1
Inspired by the proof of Theorem 3.4 in [CF13] we choose y = a/L and «a € (0,1) such that

I2+L
> L.

B-
We can make such choice since — L? — L > L. Therefore we obtain
7! _522 1 _ 522 1_y2)2 1_ 22
LY -Y +1Z -Z <al|lLlY -Y +1Z"-Z .
l ||H{< I ||H£< (LI ||H{< l ||H£()

Therefore for any K the function FX is an a—contraction on SX for the norm equivalent to

” : ”SK and deflned by

In the continuous case we consider

F: s — S
Y,zy — (Y,2z)

where (Y, Z") is the unique solution of the BSDE:

T T
Yt/=€+f g(Xs; Ys,Zs)dAS_f ZS,dMg(
t t
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Since (Y, Z) € S and because of Remark 2 we have g(X, Y, Z) € H,. So we can properly define

T
Yt/ =E[¢ +f g(Xs, Ys, Zs) '(PSdASLg}]
t

and Z’ is the unique process in Hy satisfying

T t
£+ [ g0t ¥ Z0-9fdasiza = [ Z)-du,
t
Similarly we obtain that F is an a—contraction for the equivalent norm on S:
1/2
1, 2015 = (LHY 13 + 1213

6.3.2 Step (i)

For any K = 0 we define the sequence (Y57, ZXP), . satisfying
(YK,O,ZK,O) — 0 and (YK,p+1’ZK,p+1) — FK(yK,ﬂ)zK,p)‘
We similarly consider the sequence (Y7, ZP),>q defined by
(v%, 2% =0 and (YP*!, ZPTY) = F(YP, ZP).

Since for any K > 0, FX is a contraction. For any K > 0 the sequence (Y57, ZK’p)pzo converges
towards (YX, ZX) in SX. In the same way (YP,ZP) )= converges towards (Y,Z) in S.

We use the following notation:

t
K, K, K, K,
; ”“:fo Z2P dME y f gk XK v P, Z5 Py pXd Ak,

prl fz”“dMX and y? := fg(Xs,Ysp,Zp)dAs

So that we can write:

K,p+1

. K.p Kp+l | oKp+l .
Y, :EKJFXT _Xt -Qr o tp+ )

and
1 1 1
R R A A )
We prove by induction that the following convergence holds for any p:
(Y57, Q5P QX7 M%), (@P)) — (Y, Q7. (QP, M), (Q")) as K — +00
2+ep 2+¢ep 2+€p I+ep/2

in & x x 7, xF where €, = /2P,
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V. Scaling limit for stochastic control problems in population dynamics

Obviously the result holds for p = 0. We assume that the converge holds for p and show that
it implies the convergence for p + 1.

We write

[E[fK"'XIT(’pngtK] _ YOK,p+1 +Q£CP+1 and [E[§+Xl;|37;X] — YOP+1 + Qltgﬂ'

We prove in Appen~dix 6.3.4 that the induction hypothesis implies that ()(K’p )k=0 converges

) 2 ~ ,
towards y” in A T¢r where Ep = (€p +€p41)/2. Therefore &K +)(’}K)K20 converges towards
(€ +xP) in L**¥». Since &, > &p+1 using Proposition 2 we get

(QK,p-Fl, <QK,[J+1’MK>’<QK,I)+1>) . (Qp-i—l, <Qp+1;M>; (Qp+1>)

2 2+€ps I+eps1/2 . . .
in A iias xS, it xS T From equations (3) and (4) we immediatly get that (YXP*1) kg
.2
converges towards Y” in .#] et Therefore we get the convergence for p+1.

6.3.3 Step (iii)

Note that a consequence of Step (i) is that for a certain positive constant C we have
1P, Z5P) = (v 5, Z5) sk + (Y P, ZP) = (Y, 2)]Is < Ca”. (5)

We write
1QX = Qll2 < 1QP = Qll2 + 1QX = QX P, + 1QXP - QP |l».

Notice that according to the BDG inequality there exists a positive constant C such that for
any K
1P = QXIZ+1Q7 - QIF = C(I1Z5P = ZXK12u + 127 - Z1F)

which converges towards 0 uniformly in K when p — +oco by Equation (5). Hence QY k=0
converges in 5”12 towards Q.

Similarly we write
1Y =¥ < YP =Y+ 1 YEP - YKy + ) YEP - YP,.

We proved in the previous section that the last term goes to 0 when K — +oo. Remark that we
have
K,p-1

T
vE -y el (g v 20 - gF ok,

AR R EE A

so using Jensen and Doob’s inequality we get

T T
El sup eP4 |y — v P2 < LZ[E[f ePAS | YK - YSK"”‘1|2dA§+f ePAS | ZK = ZEPT1 2. oK g AK)
te[0,T] 0 0

< LI(y*P=t, Z5r=h — (v K, ZF)1%,.
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Therefore || YK - YK’p”KK goes to 0 when p — +oo. In the same way we get that |V — Y7k
goes to 0 when p — +o00. So | Y-y, converges towards 0.

Finally notice that,
(YK 3%y = QK M, (vF) = (QX), (¥, M) =(Q, M) and (Y) = (Q).
So the convergence
(<YK,MK>, (Y5)) — (¢Y, M),(Y)) as K — +o0

in &)} x # follows from Proposition 2 in [BDM02] and from the convergence of (QX ,]\_/IK) K=0
in 912 X yzz towards (Q, M).

6.3.4 Convergence of (y”X)xs( towards y”

To prove the convergence we first prove that (y”X)x=o converges towards y” in probability
for the uniform topology. Then we show that (| )(p’K |+ %P k=0 is bounded in F2+Ep where
£, =(ep+E&p)/2>E,. We conclude by dominated convergence.

For any n we note ZP" = ZP1,zv|<,,. We write

K nK,p n,K,p n,K,p n,p
sup |¢p —¢e = Y TP+ TP+ TP+ T2
t€[0,T] i=b,d

where for i € b, d, we recall that g = (g, + g4)/2,

nK,p _
Ti,l

= sup | gl K(xK yKor, 7Kp)pKigaK [81 XK, Y5P, ZP" g pKid Ak
te[0,T)

T = sup | [ gl VI 20 100l aal - [ gioc, v8, 28R glaal
’ te[0,T]
t
/5P = sup | g,(Xs,Ysp,Zp' )K2pK1daK - fo 8i(Xs, Y, ZP") 12d Ay
’ te[0,T]

t
TV = sup || &i(X,, Y, Z0") - gi(X,, YT, ZE)d Al
’ tel0,T]

For i € {b,d} the sequence (Tl.n"lp Jn=0 obviously converges to 0 in probability by almost sure
convergence as 71 goes to infinity.

The sequence (J, K_ngf'idAf) k=0 converges towards A/2 in probability for the Skorohod
topology and satisfy the P-UT condition by Proposition VI-6.12 in [JSI13]. So for any n,
(Tln3K "P)k=0 converges towards 0 in probability (for the Skorohod topology) as a consequence

of Theorem VI-6.22 in [JS13].
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V. Scaling limit for stochastic control problems in population dynamics

For the second term we write
|K?gy (XK, Y5P, ZP"IK) - gy (X, YP, ZPT)|
< |K?gy (XX, YoP, zP" k) - K2 gl (X, YP, ZP" K|
+|K*gh (X, YP, ZP"K) - g(X, YP, ZP™).
So by assumptions of Lemma 1 and Assumption 2 we get:
IK?gh (XX, Y5P, ZP"K) - gp(X, YP, ZP™)|

<CIXK - X|+ LIYEP —YP| v v (1XP? +|YP)? + n?).

Thus there exits C >0

nK, nK, ~ 2K K K,
Ty P 1+ 1 Ty P <CA( sup IXF = X+ sup 1v7 = v/
’ ’ tel0,T] t€[0,T]

+vg( sup | X;*>+ sup IYtp|2+n2))
te[0,T] t€[0,T]

which obviously goes to 0 in probability when K — +o00 according to Slutsky’s theorem, in view
of the induction hypothesis and since (vx)x=0 goes to 0.

Finally we write:
IK2gK (XK, Y7, 5Py - k2 gK (XK, Y7, ZP" 10 ? < 121K 2570 - ZP 2,
So we have
t
TP 41T P < sup sz (KZEPY2 +(zP™? = 22"k ZEP) - k2 ¢KdAK
! ’ te[0,T] 0

Taking the average and going to the upper limit in K we get by induction hypothesis and from
Theorem VI-6.22 in [JS13] that

t
limsup E(IT,,"1+1T} 7} <L’E[ sup ((Zs”)2 +(ZP™? —27P" ZP)d A4
K—+o00 ’ t€[0,T]

<L*E[ sup (Zf—Zf’")ZdAs].
te[0,T1J0

The RHS converges to 0 when 1 — 400 by dominated convergence. Hence we have shown that
(x®P) k=0 converges to y” in probability for the uniform convergence.

To conclude we show that (IXK’pI +1xP k=0 is bounded in S2+€p We write
(pK
sup Ixt'p|<CAK(1+ sup | XX+ sup IYK|)+Cf IKZSKI-—Sszf.
t€[0,T] t€(0,T] t€(0,T] K

Using Kunita-Watanabe it is easy to see that the last term is bounded in L?*¢. The other terms

are bounded in L2*¢ by induction assumption and Proposition 1. So (yX'7)k=¢ is bounded in
2+¢ 2+¢
A "7 In the same way we show that y” € & "7 Therefore we obtain the convergence of

. 2+E .
(}(K’p )k=0 towards x? in A Tep by dominated convergence.
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6.4 Proof of Theorem 3

From Assumption 4 (i)-(ii) we get that the generator gX satisfies the conditions of Lemma
1. Therefore (BSDE)x admits a unique solution (YK zKy € sK. We consider alf'* =

aK’*(XtK,ZtK), and show that aX* solve the optimal control problem (C)kx. Since akx

is admissible according to Assumption 4 (iii) we have ](If'ak'* = YOK .
We now take any a € «/X and show that
K+
]é(,a > ]é(,a.
We write:
T
K*
Jloat 2 ¢k +f0 (KxK, af*y+ ZEpK (XK ol - K (XK @) — 259K (XK ap))ds
T p T
+f (K xK apn+ 25 h(Xf,a[))ds—f zK.amK,
0 0
By definition the first integrand term is almost surely non negative and therefore we have

) T T
jkat 25K+f0 (cK(Xf,a[)+Zf'dhK(X§<,at))ds—f0 zK.dmMmK,
or equivalently
€k T T
g ° 2€K+f CK(XtK,at)ds—f zK.dmke,
0 0
Taking the expectation with respect to PX'% we get the result.

6.5 Proof of Theorem 4
From Assumption 6 (i)-(if) we get that the generator g satisfies the conditions of Lemma 2.
Therefore (BSDE) admits a unique solution (Y, Z) € S. We consider a; = a™(X;, Z;), and show
that @™ solve the optimal control problem (C). Since a™* is admissible according to Assumption
6 (iii) we have ]g* =Y.
We now take any a € of and show that

J§ = 8.
We write:

T
Jo =€+f0 (c(Xp,ap) + Zeh( Xy, a)) — c(Xp, &) — Zeh(Xy, ap))ds

T T
+f (C(Xt,at)+Zth(X[,a[))ds—f zdMZE.
0 0
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V. Scaling limit for stochastic control problems in population dynamics

By definition the first integrand term is almost surely non negative and therefore we have
. T T
Jg zf+f (c(Xy ar) +th(Xt,at))ds—f Zg-dMZ,
0 0

or equivalently
T

T
Jg 26+[ c(Xt,at)ds—f ZsdMY{.
0 0

Taking the expectation with respect to P% we get the result.

6.6 Proof of Theorem 5

According to Assumption 7 the sequences (€8 k=0 and (gK) k=0 satisfy the assumptions of
Lemma 4 for any K and Assumption 2. So from Theorem 2 we have in ,%2 X yll X .711

(YK, f zKdpkdg=l4s, f IKZSK'dIZ/l’;'dK_st)
0 0
~(v, fo Zs0° X, 12ds, fo 720 X;/2ds) as K — +oo. (6)

6.6.1 Proof of point (i)

We write
T T T
|f af'*ﬂtf’dl(_zds—f a;f:dAs/:z]sf laf* — ol (X, Z, 1 KA K2ds
0 0 0
T T
+|f aK'*(Xt,Zt/K)/lf’dK_zds—f aX* (X, Z, 1 K)d Agl2
0 0
T
+f laX* (X, Z, 1K) — af|d A /2.
0

The second term converges towards 0 by Theorem 1. The last one terms goes to 0 from
Assumption 7 (ii). Using Assumption 7 (iii) we can dominate the first term by

T T
f laf* — ok (X, Z, 1 KA K2 ds < Afff laf* — o (X, 2,1 K2 AK A K2 d s
0 0
T
< Afffo (XK - X, +1KZK - 2,*)AK 9K 2ds.
that goes to 0 according to Theorem 1 and to the convergence (6).
In the same way, using that the control is bounded, we get that in probability
T T
f |a§’*|2;L§'dK—2ds—»f lat?dAs/2 as K — +oo.
0 0

We then extend the convergences to ., by uniform integrability since the control is bounded.
Thus we get the first statement of Theorem 5.

182



6. Proofs

6.6.2 Proof of point (ii)

We consider (#;)1<j<n € [0, T]" and a bounded continuous function f defined from R” into R.
We show that

ES f XS X1 = B [f (X4, ..., X)) as K — +00

*

where EX* (resp. E*) denotes the expectation under the control a®* (resp. a*). We write

K,
ES xS, X1 =ELF XK XL

and
E* [f(XE, o, X1 = ELf (X, oon X, ) LE 1.

Suppose we have shown that (LI;’QK'*) k=0 converges in probability surely towards L}. Then
writing
* K,* * K,* * K,*
LG - L5 1= 20 - L )e - (L - L)
we get that (L];'“K'*) k=0 converges towards L‘}* in L' by dominated converges and since
EILE ] =EKe™ =1,
Then we conclude noticing that:

* K, * * * K, *
Xy X)L =X, XEOLE 1< 1 Ky X )= F X XIS 4+ floo LS =154

We finally prove the convergence of (LITC“K'*) k=0 towards L7 in probability. We introduce the
following sequences

T hK(XK aKy*) ThK(XK a,Ky*) hK( ) 2
K s s K,d s s s K,d
eg=1] lo 1+—dN’—f - dNng4,
1 fo 8( AKd JaN; 0 AKd 2( /1§<d ) s
T hK( K K,*) 2 T hK( K K,*)
K Kd 2,Kd
£y = ————| dN, f ——— )" A%,
2 [) ( /le ) ( ﬂKd ) S
T nKxK h(X ag) 2
K K.d s
€3 = /1 ds f dA /2,
3 fo (—ka — AKd UZXS/Z $
t‘:K—fT hK( )d Kd fT h(XS)a:)de
4 Kd 2 $
0 Ag’ 0 0°X/2
and show that they all converges to 0 in probability.
For some C > 0 independent of K we have
T K (xK el ")y
K s s K,d
|81 |SC£ (—Agrd ) dNS lsup |hK(X§:Z§,*)I<1+|€1 |1 sup |hK(XKa§ )I 1
5€[0,T] As 5€[0,T] P
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V. Scaling limit for stochastic control problems in population dynamics

The first term of the RHS converges towards 0 in probability according to Markov inequality.
K yK
The second one since sup Ih(X—dI converges almost surely towards 0 from Assumption

0,1 M
7-(i). Remark that
K(yK oK
oK = T(h (X5 as ))szK,d
2 0 AK'd s
S

Consequently using Assumption 7 (iii) and Tchebychev inequality we get that (€X) x>0 converges
towards 0 in probability. Notice that we have

o =fT [ KhX(xK, af'*))z ~ (KhK(XS,aK,*(XS,ZS/K)))Z]K_ZAfddS

A5 ARA(X)
T KhX(X, af* (X, Zs1K)) |2 T KhX(X,, aX* (X, Zs/ 2
+[ ( (X5, (X5, Zs ))) K_Z/lf’dds—f (X5, (X SK))) dA,/2
0 AKd(X) AR (X)
+fT(KhK(Xs,aK’*(XS,Zs/K)))z (h(Xs,a:))sz P
0 AKd(X,) 02 X,/2 s

The second and last terms go to 0 in probability by Theorem 1, Assumption 7 (ii) and from
Proposition VI-6.12 and Theorem VI-6.22 in [JS13]. As we did in the proof of Theorem 5 (i),

the first term goes to 0 from Cauchy Schwarz inequality Assumption 7 (iii) together with the
convergence (6).

Finally we write

T khK(xK o)y KhK (X, a*)
ol [ S
UT KhK (X5, a!) —x fT KhX(X;,a})
/le(XS) s 0 ]LK,d(XS)
UT hXsa;)  KhX(X; @)
02X,/2 AKd (X))

dM;

The second and last terms converge towards 0 by Assumption 7 (ii), Theorem 1, Proposition
VI-6.12, Theorem VI-6.22 in [JSI3] and Theorem 5. Using Ito’s isometry, Cauch-Schwarz
inequality, Assumption 7 (iii) together with Theorem 1 and Theorem 5 (i) we get that the first
term goes to 0 in probability. Therefore (eX)x=o converges towards 0 in probability.

Thus we conclude that (LIT(’aK'*) k=0 converges toward L‘%* in probability.
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V.A Spaces and notations
e For any K =0 we consider the sets.

- L2(MX) is the set of FK predictable process R? valued Z such that

T
120, =EL[ 12 45 dAS) < 4cc.

TX is the set of 97{( measurable R valued random variable ¢ such that
K
IEN2 « = E[ePA7 1817 < +oo.

KK is the set of FK-optional R valued process Y such that

K
1Y 1%« = ELeP47 sup |Y;[*] < +o0.
t€(0,T]

HX is the set of FX-predictable R? valued process Z such that

T
1ZI2 = [E[fo ePAL 72 pKd AK] < +oo with 2% = (22, 7).

I]-[If is the set of FX-predictable R valued process Y such that
2 T paK 2 K
Y12, = E[fo P Y2 AN] < +oo.

- SX is the set of pair (Y, Z) e H{ x Hy, we note [[(Y, 2)IIZ, = ||Y||$H]K + ||Z||ﬁ,<.
1 2

¢ We also consider the sets related to the continuous model.

- L2(M¥) is the set of ZX predictable process R valued Z such that

T
121, g0, =EL| " 126242, < 4.

T is the set of 91{( measurable R valued random variable ¢ such that

112 = E[ePAT1E1?] < +oo.

K is the set of F¥-optional R valued process Y such that

1Y 12 =E[ePAT sup |Y;[?] < +o0.
tel0,T]

H is the set of FX-predictable R valued process Z such that

T
1Z1% = [E[fo ePA 72d A < +oo.
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V. Scaling limit for stochastic control problems in population dynamics

- S is the set of pair (¥, Z) € K x H, we note (Y, 2)[15 = | Y [I§ + I ZIIf;.
* Finally we consider the sets:
- LP the set of real valued random variable Z such that
1ZI17 =ElZIP] < +o0
- dp is the set of F-predictable R? valued process X such that

IX1, =E[ sup [X¢[P] < +oo.
te(0,T]

VB Change of measure for initial population

We consider m € R} and n € [0, m) and define the process
K,n,m d s s K,i
n,m _ i
Ql’ —f Z m,K,i IX:"'k>OdMS .

0 jethdy  As ‘

We have |[AQX™™| <1 and therefore AQX"" > 1. Moreover from Assumption 1 we have for
some constant C positive

Cnm t |A?’K’i _A?l,K,ilz
(Q Y >t: m,K,i IXXm,K>0dS

0 iebd) Ag
t C(K?+K)|n—m|?

< mK le'K>OdS
0 iemay  KPnX{" )

<ff C(1<2+K)|n—m|2d

< S

,K !

0 jepay KX,

where X nn;zI;: >0 is the lowest positive value that the process XK can take. Therefore by
Theorem 2.4 in [Sokl3] the process L™ is a uniformly integrable martingale.

Moreover according to Theorem III-3.11 in [JS13] under the probability PX™ for i € {b,d} the
processes
MK,m,i _ (QK,n,m MK,m,i>

are local martingales. Finally we conclude since

t
K,m,i K,n,m pK,m,iy _ pari m,K,i n,K,i m,K,i
M = QU M) = N = [ U AP s
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V.C. Admissibility of the controls in the toy model

V.C Admissibility of the controls in the toy model

V.C.1 Discrete models
We show that the control aX* is admissible. We have

ag(t)  bk(1)

- K o(.
XtK_K XtK— ) X >0

ﬂf’d’am =KXX (u+Ko? +KX£(_(—261K(1‘) +

By [Jac75] the probability pKa® exists. We recall that we have chosen T small enough such
that ag is negative and by positive on [0, T]. Hence we have

ak(t)

AR 5 g XK (u+ Ko?) + K(-2ax (0 XK + ~ b (D) 1xx 5

> X{SK(u — ag(D1yx o+ Ko? - KbK(t)).

We can always assume that T is small enough so that we can assume that for any ¢ € [0, T,
K,* K,*

02— bg(t) > 0. So AKda™" i pKa™ almost surely non negative and the control ak* s

admissible.

V.C.2 Continuous models

We have
Xra; = (—2a(t)X; - b())1x,50.
So the SDE
dX;=X;(v-p—-a;)dt+ov X, dW;
writes

dX; = (X (v = ) = (= 2a(0)X; = b(B) Lx,»0 |dt + 0 /X, dW,, Xo = %o.

Obviously this SDE admits a unique strong solution given by Y;1 int y,>0 where Y is the unique
sel0,t]

strong solution of

dY; = (Yi(v—w +2a()Y; + b(9))dt + 0/ Y:dW;, Yo = xo.

V.D Feller property of the model

We consider a non negative real x. We obviously have that when ¢ — 0 the X{( * converges
almost surely towards x. Now we consider a non negative sequence (x,),>o that converges
towards x and show that for any ¢ >0, (Xf’x”) n=0 converges in law towards Xg( . We fix xo
larger than x and any of the x,, and f a bounded continuous function on R,.

We write

[EK,x,, [f(X[K,x,,)] — EK,XO [f(Xf,xn)Lf,x;uxO] and EK,X[f(Xf,X)] — EK,X() [f(Xf,x)Li(,x,xol’
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V. Scaling limit for stochastic control problems in population dynamics

and
|FXm Lo — px KN pIonn) < px o) — FONILE 4 px Lo - R,

The first term of the right hand side (RHS for short) goes to 0 by dominated convergence. We
can dominate the second on by

I fllool L7 = L)
t t

that converges towards 0 according to Scheffé’s lemma. Therefore our model has the Feller
property.

VE Martingale representation with respect to M*

We show in this section that any (FX,P)—martingale has the representation property relative to
Mx,

We set A = 9’({( and Pg = €x,-y,, i.e. the probability measure on 7 such that that Po(Xp =
xo) = 1. For X a cadlag process adapted to the filtration FX and B and C two FX-predictable
processes with finite variation such that By = Cy = 0 we recall the definition of the martingale
problem associated with (A, X) and (Po, B, C).

Definition 3 (Definition III-2.6 in [JS13]). 4 solution to the martingale problem associated with
(#,X) and (Po, B,C) is a probability measure Q on (€2, FX) such that

o the restriction of Q to A equals Py,
e Xisa semi-martingale on (Q, [FX,Q) with characteristics (B, C).
We denote by s(A, X|Po; B,C) the set of solutions to this martingale problem.

From this definition we see that the projection of P on FX is a solution of s(#, X|Py; D, A)
where

t t
D,:f f(Xs)ds and A[=f 0% Xds.
0 0

We have MX = X; — D; so that MX is a FX-adapted process and it makes sense to consider
the set s(#, M*|Py;0, A). We show that

s(A, M|Py;0, A) =s(A, X|Pgy; D, A) (7

and that s(#, X|Py; D, A) is reduced to a singleton. This will be enough to conclude according
to Theorem III-4.29 in [JS13].

Consider Q € s(#, M|Py;0,C). We have X = MX + A and since D and C are continuous process
with finite variation, we deduce that under @ the characteristics of X are (4, C). Conversely, if

Q e s(A, X|Py; D, A) then by recalling that MX = X—D we obtain Q € s(A, M|Py;0, A). Hence,
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V.F. Proof of Proposition 1

(7) holds.

Since (S) admits a unique strong solution it admits a unique solution in law (see Theorem
IX-1.7 [RY13]). Therefore from Theorem III-2.26 in [JS13] the set s(#, X|Pgy; D, C) is reduced
to a singleton. As a consequence of (7), the set s(A, MX|P;0,C) is also reduced to a
singleton. Therefore, we deduce from Theorem III-4.29 that all (FX ,P)-martingales have the
representation property relative to MX,

V.F Proof of Proposition 1

For two non negative reals v and pu we say that N is a linear branching process with birth
rate v and intensity g if it can be written as N = N” — N4 where N” and N are two counting
processes with respective intensity vIN and puN. This corresponds to a branching process as

defined in Section III-3.3.1 in [Mél16] with parameters a=v+ u, po = ﬁ and p; = ﬁ

To prove Proposition 1 we proceed in two steps:
 Step 1: We prove a result similar to Proposition 1 for linear branching process.

o Step 2: We show that a under some assumption a population processes is almost surely
dominated by a linear branching process.

 Step 3: We conclude using the previous steps.

VF.1 Step 1: exponential moments for linear branching processes

We consider N a linear branching process with birth and death rate given by v and p.

We define the function F from N x (Ri)z R, into R, by
F(n,B,t) = [En[eﬁlfo[NsdHﬁzN[]

where [E,, is the expectation taker under the probability law that corresponds to initial condition
population of size n. We have the following lemma:

Lemma 4. For any B € R% consider

v+u-p v ’
Yvup= "5 Pvpp = VYo Bupup = \/ Svnp (e = yy,up),

A -1 —-a
| V1, B |) and t* . = V.1 B
AV,#,ﬁ +1

ayyp=log(

With those notations if B satisfies ¢y, 5> 0 and Ay, 5> 1, we have for any t €0, £

tw,ﬁ)
(pv,u,ﬁ 2 n
F(n,B,t) = -1)+ .
= i )
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V. Scaling limit for stochastic control problems in population dynamics

Note that since (0,0) satisfies the above conditions, they also hold for 8; and f, small enough.

Proof of Lemma 4. Consider a population starting with one individual. We call 7 the lifetime
of this particle and C =1 or 2 the size his offspring. Since all particles are independent and
follow the same law we can consider that:

C . .
t L ar(d) (1)
eﬁ] f() N5d3+ﬁ2N[ — 1T>teﬁ1 t+ﬁ2 + ITSteﬁlT | | eﬁ] fT NS,TdS‘FﬁgN[_T (8)
i=1

where (N®W);<;<, are independent copies of N.
Consider the stopping times
Ty =inf{s >0 s.t. Ny=n} and T” =inf{s >0 s.t. N’ = n} for i =1,2.
From Equation (8) we get
¢ DT Tl

C 0) 0)
t arTn Tn n
Pl Jo Ns"ds+B2 N, < 1T>[eﬁlt+ﬁ2 + lrsteﬁlr | I eﬁlfT Ne_p* ds+f2N,
i=1

and taking the average we have

t v
Fo(B,0) < e—(v+u)teﬁ1t+ﬁ2 +£) v+ ”)e—(v+u)seﬁ15(mFi(ﬂ, t—8)+ r'uu)ds.

where F,(B,1) =, [eP1Jo Ni"ds+B2Ni" | We therefore consider the following ODE:
Ry yp: f'=vf2=v+p=pOf+p f0)=e

We show that (R)v,up has a unique maximal solution defined on # € [0, t*u ﬁ) by

v,

‘/’v,u,ﬂ 2
OV 1)+ :
Jup v ( 1 —exp(@y,up+2/Vv,upt) S Yows

Using the change of variable g = f —v, , g, the ODE (R),,, g is equivalent to

R, 5 &=y up(——g?—1)
v p: 8 = Pv.up ‘/’wﬁg :

By Cauchy-Lispchitz theorem this ODE admits a maximal solution g. By hypothesis on 8 we
have

va,u,ﬁ(ng(O) —1) = ¢y, pA% 5~ 1) >0.
Py i

So for all ¢ such that (pv"ﬂﬁ gz(t) —1>0 we can write

g

V_o2(f) —
B 8 (-1

= d)v,,u,ﬁ- (9)
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V.F. Proof of Proposition 1

We recognize the derivative of

[y

1 [vpp Prpp ™ 1
x—=\— log( = ).
\/7364—1

bvpp

So integrating on both sides of (9) we have

(ybv‘,/u,ﬁ g(t) - 1
log(—) = a’v'#’ﬁ +2\ / V(/)V'#’ﬁ t.
—vajvﬂﬁ g +1

Therefore it is then easy to show that for any ¢ < t:# p we have

bv,up 2
)+ = - 1 + .
8N+ Yvup \/ v (1 —exp(@y,u,p+2/VPy,upt) ) Yvap

Reciprocally it is easy to show that this function is a maximal solution of (R),,, g defined on

(0,27, )

The function F,(f,-) being continuous a direct application of the Gronwall lemma gives that
for any t € [0, t;,v,ﬁ)’ Fn(B, t) < fuv,p(1). By monotone convergence we obtain that F(1, §, r)
is finite and taking the average in Equation (8) we obtain that F(1, §,-) is solution of (R) wv,p
therefore we have F(1,,1) = Tuv,p(0).

Finally if we consider a population N starting with 7 individual we can consider that
i (@)
N=) NV
i=1

where (N®),<;<,, are independent copies of the branching process starting with one individuals.
Therefore for ¢ < t:# p we get F(n,B,t) = F(1,B,1)" which concludes the proof. OJ

We now consider a sequence of branching process (NX)xs¢ with initial condition Kn and
parameters
pX = p+ak and v€ =v+ak.

We consider Bx = (B1/K, B2/K) such that (v — u)? > 4af; and note

(v—u 2a VvV v—w?—4ap,

A = _+ﬂ ) n: )
o) 20 2) /—(V—[.l)z—llaﬁl 2
Ao—1 N a
aoo:zlog(IA:+1|) and 13 = —ﬁ.

We assume that ) and B, satisfy Ao, > 1. Those conditions imply that for K large enough Bx
satisfies the assumption in Lemma 4.
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V. Scaling limit for stochastic control problems in population dynamics

To lighten the notations we use the under-script K instead of (vg, ik, Bx). One can easily
show the following convergence or equivalence:

v-pl ¢x 1 (v-w?—4ap;

Iy~ B Pk VTR —Rah 10

YK 2a K" vy K2 4a? (19)
lim Ax=As, li =n, li = d lim tp=1¢%. 11
Jm A= i =, Jim o= snd Jim =i

The convergence of the sequence (x)x=o implies that for any ¢ < ¢5, and K large enough
F(nK, Bk, t) is finite. Moreover from (10) and (11) we get that the sequence (F(nK, Bk, t))Kzo
converges. More precisely it is easy to check that for any ¢ < £J) we have

lim F(nKk,Bg, 1) =™ FhD

K—+o0
where )
—-v
wig,n=2""41 -1).
2a a'1-exp(ac +2nt)

Therefore we deduce that there exists KgeN, T >0 and f € [R_zF such that for any s€ [0, #) we
have

B ps B
sup [EnK[eTIfO Ny dut ZNS ) o 4o, (12)

K=K,

VF.2 Step 2: domination of XX by linear process

We begin by showing the following lemma.

Lemma 5. Consider two functions g; and gy, from Ry into Ry such that
8v(x) =vx, ga(x) = px, gq(0) =0.

We consider two counting processes N9 and N? with respective intensity g§4(N) and gp(N) where
N =NP"—N® Then up to an extension of the probability space there exists a linear branching
process N with birth rate v and death rate p.

Proof of Lemma 5. We proceed by thinning. We consider a multivariate point process X with
values in & = {b;, by, d;, d>} and let p be its corresponding random measure. For any e € & we

define: .
Ne:f flx:ep(dx,dt).
0 J&

For i =1 and 2 we note N* = N? — N9 and
AP =N A% =vNt AP = g (N?) and A% = gu(N?).
We set p(dx,dt) = m;(x)A,dt where A, = /1?2 + /1?1. The measure m; is defined by:

my(by) = €18y, my(by) = €1 €28y, my(da) = (1 — €84, me(dr) = (1—€})ebg,
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V.F. Proof of Proposition 1

where (€})1<;<3 are Bernoulli random variable with parameters

AD APz A%
=1L A—Zl and p:? =
t

pi== pi=

t
A 2%

For existence of the process X see [Jac75]. Basically we get that the when there is an event
either N N% jump. If N” has jumped, then N”2 may jump or not and If N% has jumped,
then N9! may jump or not. So almost surely we have N! > N2, According to Proposition 1. in
[Oga8l] for any e € & the process N° is a counting process with intensity A°. This concludes
the proof of the Lemma. 0

VF3 Step 3: conclusion

As consequence of Lemma 5 for any K up to an extension of the probability space we can
consider that there exists a branching process with birth and death rate given by

o? o?
VE=VvV+ ?K and pg = ?K

that dominates XX almost surely. So according to Equation (12) in Step 2, there exists some
positive constants Bo, T and Ky such that for any s< T

N
sup [E[exp(ﬁof XKdu+ Box5)) < +oo.
0

K=K,

This conclude the proof of the proposition.
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CHAPTER VI

How to design a derivatives market?

Abstract

We consider the problem of designing a derivatives exchange aiming at addressing clients
needs in terms of listed options and providing suitable liquidity. We proceed into two
steps. First we use a quantization method to select the options that should be displayed
by the exchange. Then, using a principal-agent approach, we design a make take fees
contract between the exchange and the market maker. The role of this contract is to
provide incentives to the market maker so that he offers small spreads for the whole range
of listed options, hence attracting transactions and meeting the commercial requirements
of the exchange.

Key words: Make take fees, market making, derivatives, market design, quantization,
Lloyd’s algorithm, financial regulation, high frequency trading, principal-agent problem,
stochastic control

1 Introduction

Nowadays a typical role of an exchange is to give the possibility to investors to buy or sell
financial products on electronic platforms, in sufficiently large quantity and at a reasonable
price. Therefore exchanges have to set up their markets in a relevant way in order to achieve this
goal. The issues related to market design cover a wide range of topics, from the microstructure
of electronic trading platforms to the basic question of selecting the products that will be
traded on the exchange.

Recently many papers have focused on the microstructural aspects of market design. For
example the way of choosing an optimal tick size is addressed in [DR16], where the authors
study the relations between tick size, volatility and bid-ask bounce frequency. In [BCS15,
JMR19], the relevance of continuous trading and its comparison with a frequent batch auction
system is discussed, while market fragmentation is analyzed in [LL18]. Macroscopic features
have also been investigated, see for example [KP04], where different market structures are
classified with respect to several criteria such as matching mechanism, information feedback
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VI. How to design a derivatives market?

and bid structure.

Most of the research on market design focuses on stock markets. However, even if exchanges
concentrate a large part of their activities on simple products such as stocks or futures, many
also offer to their clients the possibility to trade more complex financial instruments such as
derivatives. Actually there is very few academic literature on derivatives market design, mostly
addressing the relationship between stock and option markets. For example in [MMO4] the
authors investigate the factors influencing the selection of stocks for option listing. However,
they neither question the optimality of those factors, nor search for more relevant ones. The
papers dealing with market design can in fact be separated into two groups: the ones that
review and try to understand market practice and those proposing a theoretical framework in
order to help exchanges improve their market design. Surprisingly, to our knowledge, there is
no paper of the last kind dealing with derivatives market. In this article we propose a first
contribution in that direction.

We take the realistic point of view of an exchange who wants to organize, or reorganize, its
derivatives market. We consider that the market is made of vanilla European options only, that
we view as independent of the underlying. By this, we mean that we deal with options that are
used as hedging instruments and whose prices are essentially fixed by supply and demand.
Finally we suppose that the exchange has access to data allowing for the estimation of the
distribution of options market demand. For example, if the exchange already has a derivatives
market it can use its own data, otherwise that of other exchanges. We focus on two issues:
selecting the options that are going to be traded and attracting liquidity on those options.

The first issue faced by the exchange is the choice of the derivatives offered to the clients.
Obviously it is impossible for the exchange to propose all maturities and strikes on its platform.
This would be very hard to manage from a technical point of view and it would be impossible
to guarantee liquidity on each option. As the maturities are quite standardized, the main
challenge relies in strikes selection satisfying clients needs. Therefore, we consider that the
exchange’s problem is to select n call options (or equivalently 7 strikes), with fixed maturity,
with the aim of maximizing the clients satisfaction. We define a measurement of this satisfaction
and write the exchange objective under the form of a quantization problems. We refer to
[GLO7, PPP04] for an introduction to quantization. Such approach allows the exchange to
select automatically a set of options based only on the data at its disposal.

The next goal of the exchange is to attract liquidity on its platform in order to increase the
amount of executed orders. To do so, one way is to use a make take fees system: the exchange
typically associates a fee rebate to executed limit orders, while charging a transaction fee for
market orders. This enables it to subsidise liquidity provision and tax liquidity consumption.
In [EEMRT18] the authors design the optimal make take fees policy for a market with one
market maker and a single undeying asset. This work has been extended in [BPR19] to the
case of multiple market makers. The general principle of the approach in [BPR19, EEMRT18]
is to consider that the exchange offers a contract to the market maker whose pay-off depends
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2. Market driven selection of the listed options

on the market order flow he generates. The problem of the exchange then boils down into
designing the optimal contract in order to optimize the number of transactions.

However, in our setting the problem faced by the exchange is more complex to several extents.
The main difference with the framework of [BPR19, EEMRT18] is that the exchange has to
manage several assets simultaneously, namely the different options quoted on the platform.
In order to focus on this issue we assume that there is only one market maker setting bid
and ask quotes for all available options. Another challenge for a derivatives exchange is the
possible absence of quotations for far from the money options (or quotations with a too wide
spread). Such issue arises essentially for commercial reasons. Indeed, an exchange does not
wish to display to its clients a product with scarse liquidity. It wants to make sure that there is
sufficient available volume on the market for the whole range of listed options. Therefore, the
design of an optimal make take fees policy for options market must aim at providing incentives
to the market maker to lower the spreads, notably for far from the money options.

To do so, we are inspired by [BPR19, EEMRT18], using a principal-agent framework. The
exchange (the principal) has to design a contract towards the market maker (the agent) that
maximizes a certain utility that depends on the behavior of the market maker. The main point
is that the market maker’s behavior, here the quoted spread on every available option, cannot
be dictated by the exchange and depends on the contract. For example if the contract offers
high incentives for every executed ask market order, then it is likely that the ask price quoted
by the market maker will be close to the mid price. Formally, for a given contract, the market
maker determines its behavior by solving a stochastic control problem. Then in order to find
the optimal contract, the exchange maximizes its expected utility over the set of admissible
contracts, knowing the market maker’s response to each contract.

The paper is organized as follows. In Section 2 we explain how an exchange can select the
options that will be traded on its platform using only market data. Then in Section 3 we
design the optimal contract that the exchange should offer to the market maker in order to
maximize liquidity. Proofs and technical results are relegated to the Appendix.

2 Market driven selection of the listed options

In this section we build a method for the exchange to select the strikes that are going to be
traded on its platform. This approach uses only data from trades volume reports and is based
on a quantization algorithm. We illustrate this method by numerical experiments using data
provided by Euronext.
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2.1 How to choose the strikes in order to match market demand?

We consider European call options with strikes expressed in percentage of the spot price (in
moneyness) and that the exchange wishes to select n strikes.! Choosing relevant strikes, the
exchange’s objective is to maximize the satisfaction of the investors. So, we focus in this section
on the market taking side of the trading flow. Section 3 will be rather devoted to market makers.

We measure the regret of a market taker associated to the execution of a market order as
a function of the difference between the strike he would have ideally bought (or sold) and
the strike he actually bought (or sold). More precisely, for a given maturity, consider strikes
Ki <--- < K}, that represent the options listed by the exchange. When a market taker wants to
buy an option with strike K he sends a market order on the option whose strike is the nearest
from K. Hence he buys (or sells) the option with strike K; where i is such that

K; = argmin|K - Kj|.

l<j=<n

We consider that the regret associated to this market order is p(|K — K;|) where p is an
increasing function. Note that the regret of the market order can be written

minnp(IK—KjI).

1<j<

We finally assume that the strike K is randomly chosen according to the distribution P"*?,
This probability measure represents the law of market demand. Thus the higher the demand
for a given strike the higher the probability that K is close to this strike. The exchange can
easily estimate the distribution P"* using data from its own options market or from other
exchanges. The average regret of a market order is therefore written

rE’"“[gjigﬂpﬂK— K], 1)

where E™F? denotes the expectation when K ~ P"¥, The problem of the exchange is then
to find the n-uplet (K;)1<;<, that minimizes (1). Formally this corresponds to the following
minimization problem:
argminE™*'[ min p(IK - K;])]. )
Ki<--<K, I=j=n
This type of optimization is classical in the field of signal or image processing and is called
quantization problem. The main idea of quantization is to summarize the information contained
in a complex probability measure into a uniform probability with finite support. As an example,
it allows to compress a signal (or an image) by selecting among its spectrum a given number
of frequencies that summarizes the signal with the smallest possible loss of information. For
an introduction to quantization problem see [GL07, PPP04].

'We do not address here the problem of choosing the number of strikes to propose. This point is left for
further research.
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In this article we consider the quantization problem (2) when p is a power-law function of the
form p(x) = |x|P with p =2. The power-law function has the advantage to be symmetric and
convex. Therefore greater errors are increasingly penalized. As a consequence we expect the
solution of (2) to capture the features of the tails of P™k? Moreover the greater p, the more
large errors are penalized. Hence for a large p, the (K;)1<;<, solution of (2) are likely to be

more spread towards large strikes and contain more extreme values of the distribution P,

2.2 Solving the quantization problem

In this section we give some sufficient conditions that ensure that (2) has a unique solution.
We also explain how (2) can be solved.

To get existence of a solution to the problem (2) we need to make the following assumption.

Assumption 1. The probability P"™ " is absolutely continuous with respect to the Lebesgue measure
with density that is log-concave and compactly supported in [0,K],K > 0.

The assumption on the support of the probability is very reasonable since strikes between
0 and 200% of the spot price basically cover all the possible strikes of traded options. The
log-concavity assumption is not really restrictive since it allows us to consider a wide class of
probability distributions such as exponential type and Gaussian laws. It is shown in [GL07,
Theorem I-5.1] that under Assumption 1, Problem (2) admits a unique non degenerate solution.
The term non degenerate simply means that the optimal set of strikes satisfies K <+ < Kj,.

We now present a way to approximate numerically the solution of (2). The idea behind the
algorithm is that the solution (K;);<;<; can be seen as the fixed point of a function. This
provides us a numerical method to approximate the (K;)1<;<p that consists in iterating this
function. This is known as the Lloyd’s algorithm, which is a very intuitive approach that
searches step by step the solution of (2). A very convenient aspect of this algorithm is that it is
automatic and easy to implement.

The Lloyd’s algorithm starts with an initial set of strikes (K;)1<j<, and is made of three steps:

1. For any i, identify A; the set of "wished" strikes that corresponds to market orders sent
to the strike K;. Equivalently A; contains all the strikes K which are closer to K; than
from any other K;

A;=1{K, s.t i =argmin|K — Kj}.
l<jsn

2. Set Kl{ as the unique strike in A; that minimizes the average regret of market orders sent
with ideal strike in A;. More precisely K] is given by

K} = argmin E™*[|K = kIP Lgea, ).
kEA,'

3. Go back to Step 1 with (K;)1<i<p = (Kl{)lsiSn (or stop if a certain stopping criterion is
reached and consider (K})1<i<, as the approximate solution of (2)).
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The Lloyd’s algorithm has a very clear interpretation in terms of selecting the optimal set of
strikes: first it identifies the area "controlled” by the i — th strike and then improves the choice
of the strikes. It is then intuitive that the solution of (2) is a fixed point of the Lloyd’s algorithm.
The sets (A;)1<i<n form a covering of R, that is often called the Voronoi tesselation associated
to the (Kj)1<j<pn-. It is easy to show that, for Step 1

Ki+Ki—1 Kiq1+K;

A =[0,Ki], Ap,=I[K, Klandforie{2,...n—1}: A;=] PR

A usual stopping criterion for Step 3 is when (Kl{)lsisn is too close from (Kj)1<j<n. More
precisely the algorithm stops if

n
> IKi-Kil<e,
i=1

for a certain £ > 0. Note that, starting from a discrete valued P”**! (as will be the case here),
when p =2, Step 2 of the Lloyd’s algorithm boils down to compute the average realization of
Pk conditional on being in A;. This can be obtained instantaneously. However when p > 2,
Step 2 is not straightforward to compute in general. Yet the objective function being convex
and taking the derivative with respect to k, a necessary and sufficient condition for k to be
solution of Step 2 is

E[IK — kIP2(K = k)1kea,1 =0
or equivalently

_E™KIK ~ k1P Lgea )
©EPRIK = kP21 gen,]

This characterizes the solution of Step 2 as a fixed point. Thus one usually replaces Step 2 by

its iterative version:
, E"™MKIK - KilP % 1kea,]

PTOEMKK - K |P21gea,]

From now on, we call Lloyd’s algorithm the initial algorithm where we replace Step 2 by its
approximate version. We prove in Appendix 1 that (K;)1<;<p is solution of (2) if and only if it
is a fixed point of the Lloyd’s algorithm. The great strength of this method is that it is easy
to implement, transparent, and completely automatic. Note also that if P has a discrete
support, say 10 strikes, then the Lloyd’s algorithm will not necessarily select those strikes as
solution of (2).

We now turn to numerical experiments illustrating the efficiency of our method.

2.3 Application

In this section we apply our methodology to market data. First we describe the data and then
present our numerical results.
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2. Market driven selection of the listed options

2.3.1 Description of the data

We use data from Euronext, one of the main stock and option exchanges in Europe. The
dataset contains for every trading day from the 3-rd of December 2018 to the 24-th of May
2019 and for every available options the total number of trades (buy and sell) during the day.
Our dataset is only made of transactions that occurred on the Euronext platform. In particular
we neither use OTC data nor data from another exchange. We choose for our example the
most standard call options in terms of underlying on Euronext, namely options on the CAC
40 index. We report in Table VL1 the number of call options traded each month for different
ranges of maturity and in Table VI.2 the number of call options traded each month for each
strike.

In Figure VL1, we display the empirical distribution of traded option strikes (for all maturities)
and the quantile plot of the maturity distribution in log-scale. The distribution of the strikes is
unimodal, concentrated near the money and skewed towards in the money strikes. In Figure
V1.2, we provide the empirical distribution of traded options strikes for different ranges of
maturity. We see that the distribution of the strikes depends on the maturity. In particular,
the variance of the distribution is increasing with the maturity. The skewness towards in the
money strikes is present for any maturity.

Maturity December January ‘ February March ‘ April May

T<= 1M 135951 99202 96323 191357 | 161937 108491
IM<T= 3M 79016 61651 30371 117400 | 58914 121267
3M<T= 6M 10990 13279 15979 33901 | 11227 11779

6M<T 71977 30278 14197 17158 | 25354 21330

Table VI.1 - Number of options traded by maturity and month.

2.3.2 Numerical results

We now present our numerical results. Since the distribution of the strikes depends on the
maturity and because short maturities are over-represented in our data, we split our dataset
into four subsets depending on the maturity:

 maturity less than 1 month,
 maturity between 1 and 3 months,
* maturity between 3 and 6 months,
 maturity larger than 6 months.

For any of those subsets we approximate the solution of the quantization problem (2) using the
Lloyd’s algorithm for 7 =10 and with stopping parameter € = 1078. As initial value, we use
n points (K;)1<i<p generated with uniform law between the 10-th and 90-th percentile of the
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Figure VL1 - Empirical distribution of traded option strikes (left). Quantile plot in log-scale of
traded option maturities for the whole sample set (right).

dataset. In Figures VI.3 and V1.4 we plot a visualization of the quantization of the different
sets obtained for p =2 and p=8.

The strikes selected by the Lloyd’s algorithm manage to reproduce some of the statistical
properties of the demand distribution Pkt In particular, for any range of maturity, the
distribution of the (Kj)1<;<p is skewed towards in the money strikes. Also the variance of the
selected strikes is increasing with the maturity as for market data.

We observe that for p =8 the strikes selected by the quantization method are more spread
towards large strikes than for p = 2. This is not surprising since the penalization of large errors
is increasing with p for the regret function |-|”. Therefore, as expected, the larger p, the more
the solution of the quantization problem (2) contains extreme values of the distribution prke,
We also note that the selected strikes for p = 8 exhibit some kind of redundancy: some of

204



2. Market driven selection of the listed options
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Figure V1.2 - Empirical distribution of the strikes for different maturities.

Strike (%) | December January | February March | April May
20 0 0 0 0 55 10
30 1 1692 2 381 0 0
40 0 77 0 80 3 41
50 58 417 0 328 2031 1948
60 1933 152 31 323 691 2092
70 1402 1928 653 3837 2412 2956
80 12814 12952 3400 10118 | 14689 12147
90 113210 114463 10465 247877 | 184835 147362

100 159075 68747 | 130002 94714 | 50621 90528
110 5811 3586 12253 1766 83 2205
120 869 94 64 11 0 16
130 1 11 0 0 0 0
140 0 0 0 0 2012 1960
150 0 0 0 381 0 1602
160 1720 27 0 0 0 0
170 1040 20 0 0 0 0

Table VI.2 - Number of options traded by strike and month.
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Figure VL3 - Quantization of the option strikes using p =2 and € = 1078, Empirical
distribution of traded strikes is plotted in blue or red. The dotted lines correspond to
the optimal quantization of prmke,

them are very close to each other. In practice, one would of course discard one of two strikes
being very close (it may then be interesting to take a smaller n). For practical applications, the
easiest approach is probably to use p =2. With this choice, the Lloyd’s algorithm is very fast
and easy to implement. It also corresponds to the most documented case.

Finally we insist on the fact that when an exchange uses our methodology for strikes selection,
it is interesting, if possible, to include transactions from other exchanges and from the OTC
market in the dataset. This is because using only its own trade data may induce a bias in the
strikes selection. For example if for some reasons clients of an exchange go on other venues to
buy (or sell) out of the money options, then, in the exchange dataset, there will be very few
transactions reported on out of the money options. This will lead to inaccuracies since the
demand for out of the money options will be underestimated.

We now turn to the problem of providing incentives to the market maker to quote attractive
spreads in order to attract liquidity towards the selected options.
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Figure VL4 - Quantization of the option strikes using p = 8 and &€ = 1078, Empirical
distribution of traded strikes is plotted in blue or red. The dotted lines correspond to
the optimal quantization of pmkt,

3 Incentive policy of the exchange

In this section, we assume that the exchange has already selected a list of options. The goal is
to design a contract between the exchange and the market maker so that the latter receives
incentives to provide suitable liquidity on all the options. We first describe the market and
assumptions. In particular, due to the short time horizon we are working on, we can assume
a Bachelier model for the underlying asset and constant delta for the options. Then, we
introduce a class of tractable admissible contracts proposed to the market maker. These
contracts are indexed on the transactions induced by the behavior of the market maker. We
show that there is no loss of generality in considering such class of contracts. For a given
contract, the market maker solves an optimization problem to deduce its optimal quotes for
each option. Then, the exchange maximizes his expected utility over the set of admissible
contracts, knowing the response of the market maker to a given contract.

The utility of the exchange is made of two parts: one component related to the actual Profit
and Loss (PnL for short) due to transactions, and one aiming at ensuring that enough liquidity
is constantly posted on every option. As explained in the introduction, this second component
addresses commercial constraints in order to make the exchange competitive. In particular,
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VI. How to design a derivatives market?

our model is flexible and can be designed so that the exchange has more interest in reducing
the spreads for far from the money options, although not very traded, than for near the money
options. We derive explicitly the optimal incentives that should be offered, up to the resolution
of a two-dimensional linear PDE.

We conclude this section with numerical results showing the impact of the incentive policy on
the spread of the listed options.

3.1 The market

This section is devoted to the description of the market model.

We consider a finite trading horizon time T >0 and a probability space (Q, &, P9 under which
all stochastic processes are defined. Following Section 2, we work on a market where European
call options with strike k€ £ :={Kj,...,K;} and maturity 71 € 9 :={T,..., Tj} can be traded.
We focus on call options but our results can be extended to put options in a straightforward
manner. The price of the underlying, observable by all market participants, has a dynamic
given by

dSt = O'th, (3)

where 0 >0 is the volatility of the asset and W is a one-dimensional Brownian motion. The
choice of an arithmetic Brownian motion is motivated by the fact that we use a reasonably
short time horizon T (less than one day). On such scale, Bachelier and Black-Scholes type
dynamics are quite indistinguishable.

Assuming zero interest rate, we write the price at time ¢ of the call option with maturity 7 and
strike k as Cf’r. Its dynamic is given by

dck? = gakraw,, (4)
where AI;’T = AN (d;) is the Bachelier delta of the call option Ck7 at time t, N () is the
cumulative distribution function of the standard Gaussian law and d; := ‘Z’\_/;C

As we work over a short time horizon, the delta of the quoted options does not vary significantly.
Hence, throughout the paper, we assume it to be constant.

Assumption 2. We consider that
ART = pRT,

This assumption, which can be relaxed, leads to technical simplifications. Note that in our
problem setting, as the considered time horizon is one trading day, it is very reasonable to
assume a constant delta (by taking the one at the opening of the market) and recalibrate it at
the end of the day. This will lead to a different pay-off of the contract for the market maker in
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3. Incentive policy of the exchange

case of a significant price move from one day to another.

The market maker displays bid and ask quotes on the listed options. The market maker best
bid price and best ask price at time ¢ on the option with maturity 7 and strike k are

pkrb.—chr _ghnb pkra_chr skna ve o, 1),

where the superscript b (resp. a) stands for bid (resp. ask). So we consider that the market
maker controls the spreads kT .= (gkma skT.by on each option. The set of admissible controls
for the market maker is therefore defined as

o ={6)e0,11 = ") 10,11, k€ X, T €T i € {a, b}, predictable and s.t |67 <65}, (5)

where 0 >0 is a constant, assumed to be large enough to satisfy technical conditions (see

Appendix VI.A.7). In practice it is of course not restrictive to assume that the spreads are
bounded.

We now describe the dynamics of the market order flow. For every listed option, the arrival of
ask (resp. bid) market orders is modeled by a point process N¥7¢ (resp. N©™?). We expect
the intensity of buy (resp. sell) market order arrivals to be a decreasing function of both
the spread quoted by the market maker 657 and the transaction cost 7 collected by the
exchange. This has quite natural interpretation as a wider spread or higher fee decreases the
number of transactions on the considered option. Moreover, we know from the literature (see
[DR16], [MRR97] and [WBK*08]) that the average number of trades per unit of time for single
assets is a decreasing function of the ratio between spread and volatility. Assuming same kind
of behavior for the options, this leads to the following form of the intensity function:

. C .
ART@F") 1= Aexp - IR 5n)

where A and C are positive constants that can be calibrated using market data, and f*7
represents the fee fixed by the exchange for each market order. Furthermore, we assume that
all market orders are of unit size.

The main difficulty in our framework is that the market maker is dealing with multiple
derivatives. If the market maker strategy depends on its inventory on each option, then the
problem lies in dimension 7, which becomes intricate for large n. However, we will see that
we can circumvent this issue since in our case we can aggregate the risk factors related to the
inventories through the delta weighted cumulated inventory:

2= Yy ARTQPT, (6)
(k,1)e xT

where Q];’T = Nf’r’b - N;C'T'“ is the number of options C*7 held by the market maker at time
t. Each inventory is weighted by the corresponding A (see Section 3.2 for details). Thus, the
quantity 2 represents the marked-to-market value of the market maker’s portfolio. It therefore
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contains the market risk carried by the market maker. For example an out of the money option
will account for a small part of the total risk, and conversely for in the money options. Finally
we consider that the market maker has a critical absolute inventory g € N. The intensity of the
orders arrival is then

lifi=a

ki ._ gkt sk ith b(i) =
APTE= AP0 ") Ligny2,- - With </>(l)-—{ lifi=bh.

Remark 1. Note that there is a direct link between the spread quoted by the market maker and his
inventory process. Indeed a lower spread 5%77 (resp. 557%) on the bid (resp. ask) side of the listed
option C*7 increases the intensity of orders arrival \¥TP (resp. A¥"%). This leads to an increase
(resp. decrease) of the inventory process Q7. In other words, the market maker skews his quotes
depending on the level of its aggregated inventory.

3.2 Market maker’s problem and contract representation

In this section we exhibit the class of contracts used by the exchange. We also explain and
solve the market maker’s problem for any admissible contract.

The PnL of the market maker is defined as the sum of the cash earned from his executed orders
and of the value of his inventory on each traded option. Thus, using that )" e xg Qf’TAk'TSt
2,8, it writes

PL:=#2+2,S,, (7)
where

W= Y ftpbli,r,adNIJ,T,a _f[PIl;,T,bleuc,T,b
(ks xg <0 0

stands for his cash process at time ¢ € [0, T]. This expression shows the relevance of the

variable 2 for the market maker. It represents the volatility of the market maker’s PnL with

respect to the underlying price movements. Using (4), a direct integration by parts leads to the

following form of the PnL process:

t
rrl= Y ¥ f ShTIANRT 1 9,dS,,.
ie{a,b} (k,T)e# xT 0

Moreover, the exchange offers to the market maker a contract ¢, namely an &7-measurable
random variable, which is added to his PnL at the end of the trading period. This contract
aims at incentivizing the market maker to reduce the spread quoted for each option. More
details will be given in Section 3.3. The contract depends on all the transactions occuring
between time 0 and time T, as well as on the efficient price moves.

Thus taking an exponential utility function, the market maker maximizes the following
functional of his wealth:

VA (€) := sup E0 [ - exp( —y(E+ PL‘}))], (8)
deod
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where y > 0 denotes the market maker’s risk aversion parameter and E° the probability
measure associated to a given control process § € o/, see Appendix VI.A.2.2 for details. For

the well-posedness of Equation (8), we need integrability conditions on the contract ¢, see
Appendix VI.A.3 for details.

Finally we consider that the market maker accepts a contract ¢ only if its associated optimal
expected utility Vymv () is above some fixed threshold R < 0. This threshold, called reservation
utility of the agent, is the critical utility value under which the market maker has no interest
in the contract. This quantity has to be taken into account carefully by the exchange before
proposing a contract to the market makers.

We now introduce the class of contracts proposed to the market maker. Given ¥ > 0,
kT i

and predictable processes Z := (ZC", ZF") e 4 req ictap € Z (see Appendix VLA.3 for a

definition of Z), we introduce a special class of remuneration ¢ = Y;,O’Z of the form

T ; |k 1 - 2
v l=vor| (X Y ZEUanErezfack )+ (Sro?( Y Al -HZ, Qn)dr,
0 S=ablk1n)eX xT (K,T)EX T
©)

where for (z,q) € R H#AH#T R with z:= (Zk'r)(k,ﬂejgxg, the function H, called Hamiltonian
of the market maker, is defined by?

H(z,q):= sup h(d,z,q)

SER2*#H x#T

with

h(5, Z, q) = Z Z Y_l(l — eXp(—')/(Zk'T'i + 6k'T'i)))Ak’T (5k’1’i)]1{¢(l’)9>_a}.
i=a,b(k,1)e X xT

Actually, it turns out that it is enough to consider contracts of the form (9). More precisely,
we show that any admissible contract (in the sense of the integrability conditions specified in
Appendix 20), is of this form. We have the following lemma proved in Appendix VLA.5.

Lemma 1. Any contract ¢ satisfying (20) has a unique representation ¢ = Y1¥°’Z for some (Yo, Z) €
RxZ.

Furthermore, the terms defining (9) have natural interpretation.

* The compensation Y is calibrated by the exchange to ensure the reservation utility
constraint with level R of the market maker.3

o The term ZC€"" is the compensation given to the market maker with respect to the
volatility risk induced by the option C*7.

2This Hamiltonian term appears naturally when applying the dynamic programming principle for the market
maker’s problem.
3From Theorem 1, we see that taking Yy = —log(—R) ensures the reservation utility of the market maker.
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« Each time a trade is executed on the ask (resp. bid) side for the option C**, the market
maker is compensated by the term Z57@ (resp. ZF7b).

o2& L Rt Ak )2 . . .
e The term 3Y0 (kngglA(Z + Q"% )) — H(Z,Q) is a continuous coupon given to the
market maker.

Yo,

When the market maker remuneration is Y ¥, its optimal response can be computed explicitly

as a functional of Z.

Theorem 1. For & = Y07 the market maker utility is
V(Y %) = —exp(—y Yo),
associated to the optimal bid-ask policy Sf'r’i(f) = Ai(ZZC’T'i), where

. . 1
Al(ztkv”) = (_500)\/(—2;“"" +;10g(1+0_g))/\600 Jor (k,7,i) e X x T x{a,b}. (10)

Theorem 1 provides the optimal response of the market maker to any contract of the form (9),
see Appendix VI.A.6 for the proof. Moreover from Equation (10), we get that the exchange
can anticipate the optimal behavior of the market maker. It is therefore easy for the platform
to compute its own utility for a given contract.

3.3 Solving the exchange’s problem

In this section we formalize the goal of the exchange and solve the problem of designing the
optimal contract.

3.3.1 Description of the exchange’s problem

We recall that the exchange has two objectives. The first one is to receive a high number of
trades to collect the associated fees. The second is to have small spreads on its platform, in
particular for far from the money options for which spreads are typically large. This is because
the clients want to have sufficient liquidity on the whole list of options.

In order to quantify the first objective, we introduce a weighted version of the total number of

=/Vt — Z Z Ck,TNl{C,T,l,
i=a,b(k,T)e X xT

trades:

where for any (k,7) € £ x T, kT >0 represents the value attributed to a trade on the option
ckr by the exchange.4 Hence the more the exchange wants to attract liquidity on the option
Ck7 the higher c©* has to be. If the considered option is very liquid (at the money options

*One can for example take kT = 5T In this case, A7 represents the total amount of fees collected by the
exchange.
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for example), the exchange may choose a rather small ¢

To take into account the second objective, we consider the following quantity

T . .
L=y ¥ f w(6F" -8k ) AN, (1)
i=a,b ket xT JO

where w € [0, 1),5 and 6&7 can be seen as a spread threshold the exchange would like to impose
to the market maker. The more important the second objective for the exchange, the closer to
one w has to be chosen.

We thus consider that the exchange is looking for the contract ¢ that maximizes the following
quantity:

EO©

— exp( - (N - 229 —6))], (12)

where 1> 0 is the risk aversion of the exchange and §(¢) denotes the optimal response of the
market maker given the contract ¢.

According to Lemma 1, we know that it is enough for the exchange to consider contracts of
the form Y;,/“'Z with (Y, Z) e Rx Z. So, (12) becomes

po(y'o?) (13)

~exp{-nfo - )|

Moreover for a contract of the form YYZ from Theorem 1, the exchange knows the best
response O (Y Y0Z) of the market maker. Indeed we recall that the optimal controls are given by

8k,r,i(YYO,Z) — Ai(Z;C’T’i).
It implies that
5 T . . .
AR D YD) f (A (ZFT) - 65T )ANFT.
i=a,b(k,)et xg JO

As in [EEMRTI8], we notice that for a given contract Y4, the market maker’s optimal
response does not depend on Y;. The exchange objective function (13) being decreasing in
Yo, the maximization with respect to Yy is achieved at the level Yo = —log(—R).6 Finally, the
exchange problem becomes

VOE 1= sup A&
ZeZ

(14)

—exp(—n(JVTZ - L%~ Y;}‘)'Z)) .

5The choice of w € [0,1) is for technical reasons only.
6Note that — exp(— YO) =R.
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3.3.2 Stochastic control approach for the reduced exchange problem
In this section we solve the reduced exchange problem (14). We characterize the optimal

contract components Z* and explain how to compute them in practice.

To solve this stochastic control problem, we study the associated Hamilton-Jacobi-Bellman
(HJB for short) equation. This approach characterizes an optimal Z* solving (14) under the
form of a feedback function. The following result is proved in Appendix VL.A.7.

Theorem 2. The maximization problem (14) admits a solution Z* given by

and 2*C* (1, QF7) = - L b7,

, 1 bx,U(t,2+)
z*bri(,2,) = 1
(6, 2r) a—-Db og( )) Y+n

axFTU(t, 2, - ARTP(i)

(15)
for (k,7,i) € X xT x{a, b}, where a, b, (x{c’T)ke(l,TEg and x, are constants defined in Appendix
VIA.7 and where U := (—U)_‘”?“C-w) is the unique solution of the following linear PDE on [0, T] x R:

_ T T C Ak,T 1T k, . _
{ O_OtU(t,Q)—U(t,,,@)ﬁz(l‘iw)o@z+i:Zab(kﬂE§/X3_C T0(t,2 - ARTP(0))1 piy 257

Ur2) =1,
(16)
where C*T are defined in Apppendix VIA.7.
Theorem 2 provides the incentives Z* that maximize the exchange expected utility function,

see Appendix VI.A.7 for the proof. The optimal contract is therefore given by

f* _ Y?O'Z* _ Y/() +j(; k szr*k,r,idNrk,T,i +Zr*ck.rdclc,r) (17)
(k,1)eEX xT “i=a,

T

T R oL LI ‘b L —
| Gret( X AP b)) - HiZE Q)dr.
0 2 (k,T)EX xT

We now provide some comments on the interpretation of the optimal incentives.

e The term fOT zy Ck'TdCl’;’T in the optimal contract corresponds to part of the inventory
risk process of the market maker (Q’;”Cf "M tefo,7) that is supported by the exchange. As

in [EEMRT18], the proportion of risk handled by the platform on each option is #
Hence, the more risk averse the exchange, the smallest this proportion.
 An application of Ito’s formula gives the following approximation:
U(t,2) O - K
log| = =~d(i)2—=(T-CA*T 9, 18
g(U(t,Q—A’”(P(i))) pozet=h 19
where C := %ﬁ Thus, when the aggregated inventory is highly positive, the

exchange provides incentives to the market maker so that it attracts buy market orders
and tries to dissuade him to accept more sell market orders, and conversely for a
negative inventory.
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« Numerically, we show that the incentive Z**"% and Z*¥"? given by (15) are increasing
functions of the value c®7 that the principal associates to the option ckr, Hence, he
logically provides higher incentives to an option he is more interested in.

o Although the principal manages a large number of listed options, we circumvent the
curse of dimensionality by working with the aggregated inventory process. Note that
the pay-off of the optimal contract depends only on ¢ and 2. Thus it is very easy to
compute for the exchange at the end of the trading day.

In practice to implement the above methodology, one needs to compute the function U in
order to design the optimal contract. A first way to do this is to use a classical finite difference
scheme on the PDE (16). In Section 3.4 we use this technique for some numerical experiments
on our method.

Moreover, as PDE (16) is linear, we can also resort to a probabilistic representation to compute
U using a Monte-Carlo method. More precisely we have the following result which is a direct
consequence of the Feynman-Kac formula.

Lemma 2. We have the following representation:

U(t,q):=[E[exp(ftT—C‘(Qst’q)2+Z > A7), (19)

i=a,b(k,T)eX xT

where

$ —k1b —krT,
ort=qe [ ¥ AR
I (kT)eX xT

. ~kTi . g L RT
where for any (k,7) € X xJ and i=a or b, N "isa point process with intensity A, "~ =

ék’71{¢(i)a@t;q>_ﬁ}, with C*7 defined in Appendix VLA.7.

The proof is in the same vein as [EEMRTI18, Proposition 4.1]. We now turn to numerical
illustrations of our make take fees policy.

3.4 Numerical results

For numerical experiments, we consider three options which are characterized by their delta.
We fix the following parameters: A= 1.5sLo=C= 0.33_1/2,fk’T =1[0.5,0.8,0.8] the vector of
fees, and 65; =[2,3,3] the set of quotation thresholds. The first option is at the money, the
second one is in the money and the third is out of the money, hence the following set of deltas
[0.5,0.8,0.2]. Moreover, we take n =1,y =0.01, T = 100s, g = 40.

We analyze the impact of the penalty w and the weight associated to each options c®7 in the
value function of the exchange.

In Figure VL5, we display the average bid-ask spread at initial time on each option for w =0,
and c®7 being equal either to 0 or 0.1. We see that a higher c®7 leads to a decrease of the
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spread for the option C*7. This result is in line with the form of the incentives in Theorem 2.
Indeed Z*%77 is an increasing function of ¢®7 and §%77 is a decreasing function of Z**77,
Thus, increasing the interest of the principal for the option C** leads to a decrease of the
spread proposed by the market maker on this option. This shows that the exchange has a
direct control on each option he is interested in.

— A=0.5,c=0
2.00 A —— A=0.5,c=0.1
— A=0.8, c=0
A=0.8, c=0.1
1.95 A A=0.2, c=0
— A=0.2,c=0.1
e
©
<
& 1.90
1.85 A
1.80 A
-40 -30 -20 -10 0 10 20 30 40
Inventory

Figure VL5 - Spread at initial time with respect to the market maker inventory, w = 0.

In Figure VL6, we focus on the role of w, equal to 0.1 on the spreads proposed by the market
maker. As expected, a non-vanishing value of w leads to a decrease of the spread for all
the quoted options. This agrees with Theorem 2, where we see that the incentives are an
increasing function of w € [0,1). Thus, the exchange can influence the whole set of spreads
proposed on the quoted options.

1.7
— A=0.5, c=0
—— A=0.5, c=0.1
1.6 —— A=0.8, c=0
A=0.8,c=0.1
A=0.2,c=0
1.5 1 — A=0.2,c=0.1
kel
©
o
Q
(%]
1.4
1.3
1241 T T T T T
0 2000 4000 6000 8000 10000
Time

Figure VI.6 - Optimal ask spread for a null inventory with respect to the remaining trading
time (in seconds), w =0.1.
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We conclude by showing in Figure V1.7 the behavior of the average spread with a higher w,
equal to 0.2. We obtain similar effects as in Figure VI.6, namely a decrease of the spread on
all quoted options for a higher w.

—— A=0.5,c=0
1.2 —— A=0.5,¢=0.1
114 —— A=0.8, c=0

A=0.8, c=0.1
1.0 A A=0.2, c=0

- —— A=0.2,c=0.1

§ 09

Q.

0.8
0.7 1
0.6
0.5 1

-40 -30 -20 -10 0 10 20 30 40

Inventory

Figure VL7 - Spread at initial time with respect to the market maker inventory,  =0.2.

3.5 Conclusion

This work is, to our knowledge, the first to address the problem of designing a derivatives
exchange, based solely on market data. In the first part, a simple market driven methodology
enables us to choose which options the exchange should select to attract market takers. In the
second part, we provide a make take fees policy between the exchange and the market maker
which ensures a high quality of liquidity for the listed options.

VLA Appendix

VIL.A1 Proof of the convergence of the Lloyd’s algorithm

According to Paragraph 5.2 in [GL07], the set (K;)1<;<p is a solution of (2) if and only if for
any I, A; has positive Lebesgue measure and

f |K; — x|Psgin(x — K;)P"F (dx) = 0,
A
where sgin is the sign function. This is equivalent to

L G S T (L S VN
 Ja |Ki—xIPT2PREdx) BRI - KIPP1kea ]

i
Thus (K;)1<i<N is the solution of (2) if and only if it is a fixed point of the Lloyd’s algorithm.

We now give proofs and technical results for Section 3. They are mostly inspired by [EEMRT18].
However, for sake of completeness, we provide rigorous derivations.
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VI.A.2 Stochastic basis

VI.A.21 Canonical process

In this section, we give an accurate definition of the probability space defined in Section 3.1.
We consider a final horizon time T >0 and the space Q =:Q x sz#g“x#], with Q. the set of
continuous functions from [0, T] into R and Qg4 the set of piecewise constant cadlag functions
from [0, T] into N. We consider Q as a subspace of the Skorokhod space 2([0, T], R #T x# A +1)

. o
into RZX#J x# A +1

of cadlag functions from [0, T'] and & the trace Borel o—algebra on Q, where

the topology is the one associated to the usual Skorokhod distance on 2([0, T], RZ*#T x#H +1)

We define (1) teio,1] := (Wt, (Ntlc’r’i)i:a,b;kel;,eg-) as the canonical process on Q, that is for
any o = (w, nktiyeQ

W, () = w(t), NP () = ki),

VILA.2.2 Probability measure

We now properly define P? and the associated change of measure. We set the probability P°
on (Q,%) such that under P°, W, N kT are independent, W is a one-dimensional Brownian
motion and the N*™! ke #,7€ 9 ,i = a,b are Poisson processes with intensity AkTi0) 7
Finally, we endow the space (Q,%) with the (P°—completed) canonical filtration F := (/) te[0,1]
generated by (X refo,7)-

By (5), the control process must be predictable and uniformly bounded. The last assumption
is required to define the associated probability measure. So for § € &/ we introduce the
corresponding probability measure P® under which S; = So + oW, follows (3) and for k €
H,T€T ,i€{a,b} the

t
8,k,T,i ._ A7k, T,I k, 7T sk,T,i
Nl‘ = Nt —‘[0 A (51“ )]1{¢(l‘)Qr,>_a}dr

are martingales. This probability measure is defined by the corresponding Doléans-Dade
exponential:

) ! AR (@ k,7,i kT ok T)i
L= eXP( Z Z [ 1{¢(i)Q,—>—a}(10g(T)dNr’ ' —(/1 et )—A)dr)),
i=a,b (k) xg J0

which is a true martingale by the uniform boundedness of 5];’7’i.8 We can therefore define the
Girsanov change of measure %ﬁl F, = L‘E, for all £ € [0, T]. In particular, all the probability

measures P? indexed by § € o are equivalent. We shall write E¢ for the conditional expectation
with respect to %; under the probability measure P°.

"In other words, P is simply the product measure of the Wiener measure on Q. and the unique measure on
pa
Qéx#‘/ *#X that makes the canonical process an homogeneous Poisson process with the prescribed intensity.

8The associated Novikov criterion is given in [Sokl3].
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VI.LA.3 Well-posedness of the optimization problems
We give in this section the necessary integrability conditions ensuring that both exchange and

market maker’s problems are well defined. We consider the following assumptions:

sup [E‘s[exp(—)f’f)] < 400, for some Y’ >y, sup [E‘s[exp(n’f)] < 400, for some n’ >n. (20)
oed oed

Moreover, the next technical assumption is required in order to derive the best response of the
market maker in Theorem 1:

sup sup E° [exp(—y' YtO’Z)] < +oo, for some y' >y. (21)

deof tel0,T]
Finally, we define Z as the set of predictable processes (Z;)sjo,7) such that Conditions (20)
and (21) are satisfied. This is the set of admissible contract components of the exchange.
VI.LA4 Dynamic programming principle

In the spirit of [EEMRT18], we provide a proof of a dynamic programming principle for the
market maker’s problem. Note that a same type of dynamic programming principle exists for
the exchange’s problem.

For any [ stopping time 7 € [£, T] and u € o7, we define

rom=etf-enfrfer £ T [Tuani-ofrach))
i=a,b(k,1)e xT YT

where «/; denotes the restriction of & to controls on [7,T]. We also define the set ¢#; 7=
U (T, 1) pess, - The continuation utility of the market maker is defined for any % -stopping
time 7 by

Vr =ess sup Jr(T, ).
HES,

We first prove the following technical lemma.

Lemma 3. Let T be a stopping time with values in [t, T)]. Then there exists an increasing sequence
(U neN in <y such that V; =limy,_. oo J7 (T, u"™).

Proof. For p, ' € of; we define
(1:=ul +u'1
H= L awzgr @y R Ly @< u)-

We have fI € of; and by definition of f1, J7(r,) = max(Jr(t,w),Jr(r,1)). Thus # 1 is
increasing, and we obtain the same result as in [EEMRT18]. The conclusion follows. ]

219



VI. How to design a derivatives market?

We set
@t,T((S) = exp(_y( Z [ 5ledeTl+QdeCk‘[))
i= ab(kT)EJ,/XJ

Given Lemma 3, we can now prove the dynamic programming principle associated to (8).

Lemma 4. Let t€[0,T] and T be an T stopping time with values in [t,T]. Then

Vi=esssup E [ @”(5)%]
oesd

Proof- Let t€[0,T] and T be a stopping time with values in [¢, T]. First, by tower property, we
have

Vi=esssup E [ D,7(6)exp(— }/f)]
deod

= ess sup E} [@tr((S)[E [ D, 1(8)exp(— Yf)”
ded

Then, Bayes rule yields

L5
E —@T,T(é)exp(—yf)] =E; [ - L—g@r,r(&eXp( ‘75)]

<ess sup E [@T T(8)exp( - Yf)]
oed

=V,

Finally we obtain

Vi<esssup E [VT@”((S)]
pesd

We next prove the reverse inequality. Let 6 € o and p € «/;. We define (6 ®; ), =8, lpo<u<r +
Hulig<u<t)- Then 6 ®; L€ of and by tower property

Vv, =00 E0®H

- @01 WPy O)exp( - vE)| =E2

- Dy, 1 (Wexp(—Y9) | 21, )]

d®T U

L, L
Using Bayes formula and noting that 5®T - = L—,‘, we have

B2 [ - 2r r(wexp(-y0) | = EY | - %@TT(”}CXP(_Y‘()]

=Jr(@ Q.
This implies

v, =E2°* 2, 6) 1T, ).
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581# 5
We can therefore use again Bayes rule and the fact that 5@,,1 = %
t

to obtain
L

V>[E°L =91, O)Jr (T, )] E9 [EO[L
r = L l'T T I“t L6®“L6®u

5®rﬂ 6®T,Lt

D+ (8)Jr(T, u)]]

6®ru 5®T,Lt

_ 00 T T
=k, |E [L5®1.U]W@[’T(6)]T(T’u)]

6®ﬂu

L5® D001, 0]

=E|2,,®)Jr(x, u)]-

Since the previous inequality holds for any p € of;, we deduce from monotone convergence
theorem together with Lemma 3 that there exists a sequence (u"*),en of controls in f; such
that

Viz lim E|2,:0)Jr(ru")]| =B 24:(6) lim Jriz,u")]
=E [@,,, ) v,].
This concludes the proof. O

VI.A.5 Proof of Lemma 1

We divide the proof into six steps.

Step 1: Derivation of the martingale representation.

For 6 € o, it follows from the dynamic programming principle of Lemma 4 that the process
U} = Vi20,:0)

defines a P‘S—supermartingale for any 6 € of/. By standard analysis, we may then consider it in its

cadlag version (by taking right limits along rationals). By the Doob-Meyer decomposition, we

can write U2 = M? — A% where M? is a P°-martingale and A% = A‘z’c+A?’d is an integrable non-

decreasing predictable process such that Ag’c = Ag’d = 0 with pathwise continuous component
A%€ and with A%? a piecewise constant predictable process.

From the martingale representation theorem under P%, see Appendix A.l in [EEMRTI8], there
exists Z0 = (795, 70k, l)kej,/ red i=a,b predictable, such that

t . .
Mf:V0+f 708%ds,+ Y % fo'k'T'lde'k'”,
i=a,b(k)ex xT Y0

221



VI. How to design a derivatives market?

Step 2: Boundedness of the value function.

We show that V is a negative process. In fact, thanks to the uniform boundedness of 6 € o,
we have that

8

k . kcoo
Logr=exp(- ¥ Y SNS_ox#T x#H Ae 5 (e0 +1)(T-1),
le i=a b(kT)(—:JKXETU g

where co := max c®7. Therefore
k,T

T :
Vi<E)|-airexp(-y0e Y X N§’T”+ft Qkrdckn)e | <o.

i=a,b(k,T)eX xT

Step 3: Identification of the coefficients (1/2).

Let Y be the process defined for any ¢ € [0, T] by V; = —e """, As A%? is a predictable point
process and the jumps of N¥™ i = g, b are totally inaccessible stopping times under P°, we
have (NkTi ,A‘S'd)t =0 a.s. Using Ito’s formula, we obtain that

Yr=¢ anddY,= Y. Y ZFUIANFT 4 z3dS, —dI, - dAY,
i=a,b(k,T)e X xT

with
~0,k,T,a
k,t,a t k,t,a
Z0% = log|1+ -6,
t U?_ t
1 0,k,T,b
Ztk’r’b = ——log(l + L 5 ) —5?’”’
Y Ul
50,5
Z ’
ZtS __ Tt Z ;cerk,-r

YUQ (k,T)eEX xT

L 1
_ _ o,c
It—fo (h(&r,Zr,Qr)dr y fdAr )

_ 1
h(&, Zs, Qr) = h(8, Zy, Qp) — Eyaz(ZtS +Qp)?

o,d
~q 1 AAY
Af = ;Sgstlog(l— Uf_ )

In particular, the last relation between A% and A%? shows that Aa; =0 is independent of
6,d 6,d

. A . . . A
6 € o/, with a; = — 5= and abusing notations slightly, Aa; = ——7—.
[ [

In order to complete the proof, we argue in the subsequent steps that Z € Z and that, for
t€[0,T], A2 =—-¥ ., U Aas=0 so that A% =0 and I, = [ H(Z;,Q,)dr, where

- 1 5 802
H(Z;, Q) = H(Z:, Q) — EYU (Z9)°.
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Step 4: Identification of the coefficients (2/2).

Since Vr = -1, we get that
0=sup E°[U2] -V}
ded

= sup E° (U2 — M)
deod

of ;5 [F16 - da,
= ysup E [LT Ul (I, - h(8, Zy, Qu)dr + )].
beod 0 Y

Moreover, the controls being uniformly bounded, we have

) t
U< -P, = Vtexp(—)/(5oo Y Yy Nkm +f Q’Lj"dC’u‘”)) <0.
i=a,b(k,1)e X xT 0

Then, using A%d >0 U% <0 and dl; —E(&, Z,Qp)dt =0, we obtain

0 T — da,
0<sup E [ao,Tf ~Br-(dl; = 16, 7, Qdr + =)
Seod 0 Y

T _ d .
:_Eo[ao’Tfo Br-(dI, - H(Z, Qp)dr + ;l)]

The quantities aoleOTﬂr— (dI, —ﬁ(Zr, Qp))dr and ag fOT,Br— d;f’ being non-negative random
variables, the result follows.

Step 5: Admissibility of the process Z.

As ¢ satisfies the conditions in (20), to prove that Z € Z, it is enough to show that for some
p>0

sup sup E°[exp(—y(p+1)Y)] < +oo.
e te(0,T]

Using Holder inequality together with the boundedness of the intensities of the N¥™ we have

that sup [E‘S[IU;EIP’“] < +oo for some p’ > 0. We deduce
[

sup sup EO[IU|P*) = sup E[|US)P+!] < +o0
o€/ tel0,T] oeod

because U? is a P?-negative supermartingale. The conclusion follows using again Holder
inequality, the uniform boundedness of the intensities of the N¥ and the fact that

t . .
ewioyr=Ule(y( £ ¥ [ shranteigbract)).
i=a,b(k,T)eX xT Y0

223



VI. How to design a derivatives market?

Step 6: Uniqueness of the representation.

Let (YO,Z),(YO’,Z’) € Rx Z be such that ¢ = YTYO’Z = Y;/O’Z. By following the lines of the

!

- . . . Yz
verification argument in the proof of Theorem 1, we obtain the equality YtYO’Z =Y, " using

the fact that the value of the continuation utility of the market maker satisfies

!

!
Yy, Z Yy, Z
PSS 2 A O A _ e YPLI-PLI+O) |

= ess sup [E‘?
bed

This in turn implies that for ¢ € [0, T Ztk'r'idNtk’T’i = Z;k‘r'ide’T’i and Ztsazdt = Z’tSO'Zdt =
d(Y, 8. Consequently, (Yo, Z) = (Y,, Z).

VI.A.6 Proof of Theorem 1

Let ¢ = Y;/O‘Z with (Y, Z) € Rx Z. We first prove that for an arbitrary set of controls § € o/,

we have (8,8 < —e 7Y, where Jym(8,8) is such that V(&) = sup /Mm(6,8). Then, we
ded
will see that this inequality is in fact an equality when the corresponding Hamiltonian (6, z, q)

is maximized. Denote

t
v ._ vY,Z k,T,i k,T,i k,T k,T
Yo=v?%+ Y % f&u dNET 4+ Qbrdck
i=a,b (k,1)e A xT Y0

with €0, T]. A direct application of Ito’s formula leads to

de "Vt =ye 1V (—( Y QAR+ Z8dS, + (H(Z,, Q) - kS, Z:, Qu))dt
(k,1)eX xT

R (R S TR |
i=a,b(k,1)eX xT

Thus, e 7. is a P-local submartingale. Thanks to Condition (21), the uniform boundedness
of the intensities of the N*7¢ and Holder inequality, (e_yY‘ )[ 01 is uniformly integrable and
€

»

hence is a true submartingale. Doob-Meyer decomposition theorem gives us that

foye—YYr(_( Y QAR+ zHds,- Y Y y_l(l—exp(—}/(Ztk’T’i+6];’T’i)))de'k'T'i)
(k,7)

EX xT i=a,b(k,T)e X xT

is a true martingale. This implies that
Tm(6,8) =E° [~ eV ]
T —
=== [ ye T (H(Z0, Q0 - 106, 2, Qo)
0

<—eh,

224



VLA. Appendix

In addition to this, the previous inequality becomes an equality if and only if § is chosen as
the maximizer of the Hamiltonian / thus leading to the optimal quotes provided in Theorem
1. So we deduce Jyp(6,8) = —e T, Finally we have W\ ($) = —e Y with optimal response
(St)tE[O,T]'

VI.A.7 Proof of Theorem 2

We define for any map v: [0, T] x 7T, (oo, 0), xeR, (k,7) € £ xJ and (t,q) €
[O, T] % Z#Jx#g—

Ky, T K11T2’_. K, Tjv1 K, Tj Kn)Tm).

v(t, g ok, 1; X):=v(t,q . q »q . q —X, q Tjr2 yeer(

The Hamilton-Jacobi-Bellman equation of the stochastic control problem (14) is given by
O:atv(t»q)+L7£E(t’q’v(t"))’ U(T,CI):—L (22)

with

s (t,q,v(t,)) =sup hg(t, q, 5,2, v(t,"),
zeZ

2
hE(t, q, S, Z, V(t, )) :V(t, q)(g,}/az( Z Ak,‘[(zck'T + qk,‘[))z 4 %0_2( Z Ak,TZCk.T)Z)
(k1) e xT (k,T)e X xT

+ ) > h}c‘r(t,zk'”,v(t,q),v(t,qek,r¢(i)))1¢(i)g>_a
i=a,b (k,1)eX xT

and
Mo (62,9, Y) = (V5T = yxpe”) O
where
x{c,r:e—ﬂ(ck"+w(6’0‘5’—y‘llog(1+%y)), x2=(1+ﬂ1_(1+0_g)_1), Okr—(l"‘F) <o S
and

C C
a=nl-w)+—, b=—.

o o
Tedious but straightforward computations lead to the following optimizers:

Z*k,‘[,i = ]‘ log beU(t q)
a=b " axkTu(t,ger, i)
Z*C’” - Y kT
Y""?q

Note that from these computations, we get that this above optimization makes sense only if we
assume that there exists 6, large enough so that for i =a or b, ke £,7€ 9 and any t,q:

|- zxkmi, q)+—1og(1+—)|<5 (23)
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We will check that we can make such choice at the end of the verification argument. Equation
(22) is rewritten as

2 2 [of
Yn- o k,T kr ~k,T U(t*q) on(l-w)
0=0,uv(t,)+v(t,q) —& Ak v(t, q) chr(——=1___ Lyios_
t Y+ 2 ( ’T)&%w ) zza:b k,‘[)&zlxg— (V(f»qek,r (p(l))) P(H)2>-q
(24)
where
~ b _b_ b _a_
ChT =xp (= Z) @5 Op (=) @8 — (<)) > 0
xl a a
We now make the ansatz v(t,q) = u(t,2). We derive the following PDE
2 2 (o}
Yn© o° _, kT u(t,2) P
0=0,u(t,2)+u(t,2) — —2°—u(t,2) c* - | _Z,
‘ y+n 2 l-:zwk,n;m (uu,Q—Akwu))) e
(25)

with terminal condition u(7T,2) = —

Using the classical change of variable @ := (- u)_”"(lc*w) , PDE (25) becomes

C A
0=0,a(t, 2)-i(t,2) L 7 _ o2 CET (1, 2= AFTG) 1y 2570 (26)
y+n2d-w) G kner <
where CkT := CF7 Un(lc_ o7~ Eventually Cauchy-Lipschitz theorem provides existence and

uniqueness of a bounded solution to (26) and so to (24).

For the verification argument, we first introduce a technical lemma.

Lemma 5. Let Ze Z,é= YT?O'Z. We define

—eXp( 77( DO DCLLS /L f w(Al(Zsk'T'l)—(ng)dNSk'T'l—YtY"’Z)), telo,T).
i=a,b(k,T)e X xT 0

There exists € > 0 such that

sup 2252 [IKIZIHE] < 400,
t€(0,7]

where 5(2) is defined in Theorem 1.

The proof is borrowed from [EEMRT18]. We now verify that the unique solution v of Equation
(22) coincides at any point (0, Qo) with the value vf of the reduced problem (14). We also prove
that in (14), the maximum is achieved for feedback controls issued from (15).
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Using It6’s formula we get
d[l/(t, Qt)K[Z] = KtZ— [(hE(t7 Ql“: Sthl’r V(t) ')) _%E(t! Qt_! U(t; ')))dt

& & chr k,T
+v(t, Q)N Y. Y. Z;y  dCy

k=17=1
£ Z kT Zk,r,i k S(Z)k )
+ Y Y Y (A u(, QET - i) - v(r, Q))dN AT,
i=a,bk=11=1

The process KZ is uniformly integrable on [0, T] according to (21), Hélder inequality and the
boundedness of the intensity of the processes N¥". Moreover v being uniformly bounded
as a consequence of the Cauchy-Lipschitz theorem, the process (v(z, Qt)Kl’Z)tE[O,T] is a P02
supermartingale and the local martingale term in the above equation is a true martingale.
Hence . <

v(0,Qo) = E°P[u(T, Qp) K71 = -E° P [KF]. 27)

Since Z € Z is arbitrary, we get

v(0,Qo) = sup ~E'P (K7 = uf.
ZeZ
The feedback form of Z, issued from (15), being bounded according to Equation (23), it is

admissible. Considering the process Z*, we get an equality instead of an inequality in the
above equation.

For consistency we now check that there does exist some constant 0o, such that (23) is satisfied.
In the same vein as in Step 2 of the proof of Theorem 1, we can show that for any ¢ and g,
v(t, q) is negative. Because of the compactness of the domain of v, the function is uniformly

negative: we can find ¢ such that v < —¢ on [0,T] x 2. Consequently log(ﬁ) is
v\ ,g" O pli
uniformly bounded in i, k, 7, f and q. Thus we can always choose a 0 satisfying (23).
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CHAPTER VII

Optimal auction duration: A price
formation viewpoint

Abstract

We consider an auction market in which market makers fill the order book during a given
time period while some other investors send market orders. We define the clearing price of
the auction as the price maximizing the exchanged volume at the clearing time according
to the supply and demand of each market participants. Then we derive in a semi-explicit
form the error made between this clearing price and the efficient price as a function of
the auction duration. We study the impact of the behavior of market takers on this error.
To do so we consider the case of naive market takers and that of rational market takers
playing a Nash equilibrium to minimize their transaction costs. We compute the optimal
duration of the auctions for 77 stocks traded on Euronext and compare the quality of
price formation process under this optimal value to the case of a continuous limit order
book. Continuous limit order books are found to be usually sub-optimal. However, in
term of our metric, they only moderately impair the quality of price formation process.
Order of magnitude of optimal auction durations is from 2 to 10 minutes.

Keywords: Microstructure, market design, auctions, limit order books, continuous trading,
market making, Nash equilibrium, BSDEs.

1 Introduction

In most historical (lit) markets, trading operates through a continuous-time double auction
system: the continuous limit order book (CLOB). This mechanism allows market participants to
buy or sell shares at any time point at the quoted prices. However market orders systematically
pay (at least) the spread as transaction cost. Moreover volumes impact prices as market makers
readjust their positions in reaction to the order flow, resulting in additional trading costs.
Beyond this, it has been argued that some mechanical flaws are inherent to CLOBs, particularly
in the context of high frequency trading. The debate started in the academic literature notably
with the very influential paper [BCS15], see also [FS12a, WW13]. In this work, the authors
explain that CLOBs lead to obvious mechanical arbitrage and generate a competition in speed
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rather than in price between high frequency market makers, to the detriment of final investors.
They convincingly show that frequent batch auctions could be a way to remedy these flaws.

The idea that auctions could be a suitable mechanism for the functioning of financial markets
is not new. For example, in the important paper [Mad92], see also [GS79], the interest of
auctions compared to CLOB:s is already investigated. Of course the discussion in this work is
not about high frequency arbitrage opportunities, but rather on the fact that auctions could be
beneficial for the price formation process by enabling investors to trade directly between each
others, avoiding to pay spread costs to market makers.

In [BCSI15], the authors provide the order of magnitude of a lower bound for auction period
leading to elimination of the high frequency flaws of CLOBs (about 100 milliseconds). However,
the mentioned earlier literature suggests that longer auction times could be suitable, but
usually without giving figures. This is why, quoting [BCS15|, developing a richer understanding
of the costs of lengthening the time between auctions is an important topic. This is exactly what
we do in this paper. We provide a sound and operational quantitative analysis of the optimal
auction duration on a financial market, and compare the efficiency of this mechanism with
that of a CLOB. We work with a criterion based on quality of the price formation process as in
[Mad92], but in the context of modern high frequency markets as in [BCS15]. Thus we hope to
bridge the gap between these two seminal papers.

Actually, there seems to be a growing interest in practice for trading outside standard CLOB:s.
For example, a very important fraction of trading activity is still made over the counter and
a rising part of market participants turns to new forms of market structures such as dark
pools or auctions. Some auctions are already organized regularly in many markets where the
main mechanism is a CLOB, typically at the beginning and at the end of the trading day.
There also exist auction markets where auctions take place one after the other all along the
day, and without continuous trading phase between two auctions. During an auction, market
participants can send and cancel limit or market orders. Then at a certain time (possibly
random), a clearing price is fixed in order to maximize the exchanged volume and matched
orders are executed at this price. This is for example the case in the BATS-Cboe periodic
auctions market for European equities. In this market, auctions are triggered when a first order
is sent (limit or market). Then settlement takes place at a random time such that the auction
cannot last more than a pre-fixed duration (100 milliseconds)!.

In an auction context, the key issue for a regulator or an exchange is to set a proper time
period for the auction, and to compare the relevance of this mechanism with that of a CLOB.
In [DZ17], the authors study the efficiency of an auction market with respect to the duration of
the auction. They propose a microscopic agent-based model with deterministic or stochastic
arrival of private and public information. Agents optimize their demand schedules with respect
to their information and some personal characteristics. The average utility over all agents is
used as a criterion to prove that the optimal auction duration is related to the law of exogenous

Ihttps://markets.cboe.com/europe/equities/trading/periodic_auctions_book
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information arrival. The authors also study the impact of heterogenous speeds of agents. They
show that fast agents prefer short auction durations while slow ones prefer long ones. However,
in the case of heterogenous agents, they do not give any results on what the optimal auction
duration should be.

Most other works on this topic use a price formation point of view to assess the quality of
the specification of an auction. This is the case in [GS79] where the authors propose a simple
model for price formation in an auction market. The average squared difference between an
efficient price and the clearing price is used as a metric to show that a positive optimal auction
duration always exists. The suggested optimal duration is a trade-off between averaging effect
(a long duration allows a large number of agents to take part in the auction, hence reducing
uncertainty about the efficient price) and volatility risk (a short duration leads to small volatility
risk). This model has been refined in [FG18]. In this paper, the authors investigate several
generalizations of this framework such as the multi-assets case or the presence of a market
maker using filtering techniques and observing correlated assets to infer the efficient price at
the clearing time.

In our work, the same driving forces as in [FGI8, GS79] will be key to define our optimal
durations: averaging effect versus volatility risk. However, an important limitation in
[FG18, GS79] is that no market orders are considered so that all the agents can be seen
as liquidity providers. It is necessary to relax this assumption since one observes a large part
of market orders in the trading flows of actual auctions, see [BDLMI17]. For example, market
participants having a marked to market benchmark or seeking for priority in execution may
typically use market orders. This type of orders will have a crucial role when computing
optimal auction durations. This is because long durations induce large variance in the
imbalance of the market order flow leading to less accurate fixing prices.

Another important remark is that in [DZ17, FG18, GS79], no comparison between the auction
and CLOB markets can be made. This is because the CLOB structure is not included in the
range of their models. They obtain optimal durations for auction markets, but cannot say
wether CLOB markets are sub-optimal or not. In our modeling, CLOBs exactly correspond to
auctions with duration equal to zero, making the comparison between auctions and CLOBs

possible.

In this paper, inspired by the cited earlier literature, we take price discovery as our criterion to
compute an optimal auction duration. Our approach extends in several directions those in
[FG18, GS79, Mad92] and goes as follows. We consider a regenerative auction market with
auctions starting when a market order is sent and with constant duration h. More precisely,
we assume that after the (i —1)—th auction clearing (ended at time Tﬁ 1) the limit order book
is emptied and a new market phase starts independently of the past. A new auction opens at
time T;.)p when a first market order is sent. This new auction ends at time Tfl = T?p + h. Our
model encompasses both CLOB and auction market structures since CLOB corresponds to an
auction with duration 0 (because auctions are triggered by the arrival of a market order, as in
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several actual markets, and we assume that the LOB is never empty at the auction clearing).

We now describe briefly our model for liquidity and price formation with two kinds of agents.
During the i—th market phase the arrival of the k — th market maker sending limit orders is
given by Tﬁl + T;C’mm where T;.c'mm is the k—th event time of a counting process (NE™) .
The limit orders sent by the k—th market maker are represented by a supply function Si(p)
that gives, when positive, the number of shares the market maker is willing to sell at price p or
above (when Si(p) is negative, it means that the market maker wants to buy shares at price p
or below). The supply function S; depends on the market maker’s view on the efficient price
at the clearing time when he sends his limit orders. The efficient price process is (Ps)s>0. It
can be seen as the average of market makers’ opinions at a given time on the “fair”" value of
the underlying asset. More precisely, we take

Si(p) = K(p— Py), with Py = E(Pyot Fpet pimm] + 8k
where K is a positive constant, (gx) k>0 @ sequence of ii.d random variables with variance o?
representing the estimation noise in the inference of the efficient price by the market maker
and (%) =0 the natural filtration associated to the efficient price process. Hence the market
maker is willing to sell (resp. buy) shares above (resp. below) the price Py, which is his view on

the efficient price at the clearing time. In the sequel, we assume that Ps = Py + 0 f W, where
W is a Brownian motion and o ¢ a positive constant. Note that in this case, we simply have

Pk = PT§£1+T;’C,7nm +gk.

Then we consider market takers who send market orders with fixed volume v. During the
i—th market phase the k—th buy (resp. sell) market order is sent at time Tﬁl + Ti’a (resp. T;C’b),
where T;'C,a and T;.C’b are respectively the k—th event times of two counting processes (Nsi’a)szo
and (Nsi’b) s=0. The auction beginning time is then given by

i,b

e

op _ _cl i,a
T, =T +T)AT

l:

Consequently at time 7¢! = 7°7 + h, a clearing price P¢ is set in order to maximize the
q y i i g p T 1

exchanged volume. This clearing rule is used in most of electronic markets for the opening
and clearing auctions. This is also the rule considered in the academic literature (see for
instance [DZ17]). We have that this price corresponds to the equilibrium between supply and

demand curves and is the only solution to

Ny
l [, b
> Sk(Py) = v(NY“ = Ny?)
k=1 !
where A; = T?l - Tﬁl is the duration of the i—th market phase.
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To compare the different auction durations (0 corresponding to the CLOB market), we consider
as a metric the integrated quadratic error between the efficient price and the clearing price,
denoted by Z;:
N¢l-1
Ze= Y D (Pt = P +(1=15) (Pra = PS, ),
i=1 ! i ' N¢ el
with Nfl the number of cleared auctions before time ¢. Thus Z; measures the realized error of
the clearing price and therefore the quality of the price formation process?. We define our
optimal auction duration as the one leading to the smallest value for Z;, asymptotically as ¢
goes to infinity. Using the regeneration property for the marker order flow, we can show that
2t By =Ee, - Pa)?l.
[ t—+oo T 1

The optimal auction duration is therefore a minimizer of E(h). We are able to provide a
semi-explicit expression for E(h) in a very general setting for the market order flow counting
processes (N4, NY). In the Poisson case, we even obtain a closed-form formula.

In CLOB markets, there is competition between market makers optimizing their quotes and
market takers search for suitable execution times. In auction markets, market takers have
an additional possibility to access cheap liquidity: they can try to match their orders with
other market orders sent in the opposite direction. For example if a large volume of buy
market orders is sent before the auction clearing, it is a good opportunity for selling market
takers to execute their orders at a good price. In this context, a new form of competition
between buying and selling market takers may arise, with market makers playing a side role.
We also investigate this situation where market takers are strategic and act optimally in order
to reduce their trading costs. We notably show that there exists a Nash equilibrium for this
game. In this framework, we can compute the function E too, and thus find an optimal auction
duration. From a mathematical point of view, the existence of a Nash equilibrium in this
type of problems is up to our knowledge new and extends the results of [HM14] to the case of
counting processes.

Finally, based on Euronext exchange data, we use our model to compute the optimal auction
duration according to our price discovery criterion for 77 European stocks traded on Euronext.
The first striking result is that the suggested durations are much larger than a few milliseconds,
rather of order of 1 to 5 minutes. The second one is that in term of our metric, CLOB are
indeed sub-optimal. However, the quality of the price formation process in CLOB market
is not very far from that of the auction with optimal duration. Of course this work is only
a first step towards a full analysis of the auction issue since we focus here on one specific
(but crucial) criterion. Other aspects such as liquidity, tick size effects and fees or potential
arbitrage opportunities should certainly be addressed in future works. We also neglect potential
optimization of market makers strategies who could for example revise their quotes during

2Note that we of course have in mind cases with relatively frequent auctions during the day, so that Z; is close
to the integral of the quadratic error between the clearing price and the efficient price over the day.
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the auction according to the current market orders imbalance. Nevertheless, we believe our
results are original and striking enough to help exchanges and financial authorities rethink
their policies in terms of market design.

The paper is organized as follows. In Section 2 we describe the auction mechanism and our
model. We also provide our first main result on the computation of the function E. The case of
strategic market takers optimizing their trading cost is considered in Section 3. Our calibration
methodology and numerical results on equity data can be found in Section 4. Proofs are
relegated to an Appendix.

2 The model

In this section, we introduce our model for auction market. We describe the organization of
the market and the behavior of the two types of agents: market makers filling the limit order
book (LOB) with limit orders and market takers sending market orders. Then we explain the
clearing rule and compute the clearing price. Finally we provide a semi-explicit expression for
the quality of the price formation process.

2.1 Auction market design

We consider an auction market organized in independent sequential auctions triggered by
market orders. More precisely, after the opening of the market or after the clearing of an
auction, a new auction starts when a first market order is sent. We write (T?p)ieN* for the
sequence of opening times of the auctions and (Tfl)ieN, with T(C)l =0, for the sequence of
clearing times. An auction has a duration of & seconds and allows market takers to meet.
When h =0, our model corresponds to a CLOB market since any market order is matched
against the limit orders present in the LOB.

. . . . o
For a given auction starting at some time 7 l_p

cl _
i

, market participants can send market or limit

orders. At the auction clearing time 7 T?p + h, a clearing price, denoted by PTCI is set to

cl?

maximize the exchanged volume. More precisely, sellers who are willing to sell below the price
PTCCII sell their shares to buyers who are willing to buy above PTCf,. Each cleared share is sold at

the clearing price, independently of the posted price of the associated limit order if any (to the
benefit of participants sending limit orders).

2.2 Market makers and market takers

Along the day, market makers arrive randomly in the market and send limit orders to fill the
LOB. During the i—th market phase market makers arrival times are given by (Tlc.f 1 +T§C’mm)k20
where T;.C'mm is the k—th event time of a counting process (N."™™) . We describe the liquidity
provided by the k—th market maker by its supply function Si. When positive, the quantity

Sk(p) represents the number of shares the k—th market maker is willing to sell at price p or
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above. Negative values correspond to shares he is willing to buy at price p or below. We
assume that

Sk(p)=K(p-Pp),

where Py is the view on the price of the asset by the k—th market maker when he sends his
orders and K a positive constant. Linear supply functions are also considered in [DZ17, FG18].
This is equivalent to assume that each market maker sends uniform limit sell order above price
Py and uniform limit buy orders to price level below P;. We suppose that

Pk = Prﬁl_'_r;‘c,mm + gk,
where (g) k=0 is a sequence of i.i.d centered random variables with variance 2, independent

of all other processes, and (Ps)s> is the efficient price of the asset. It satisfies Py = Py + 0 rW;
with W a Brownian motion and oy a positive constant.

In practice there are different kinds of market makers and we could have assumed that each
market maker has its own noise. That said, there are typically not so many market makers in
the market and since they basically have the same technology, it is reasonable to assume that
they have the same noise parameter. Note also that a model with different variance parameters
would be very hard to calibrate because of the anonymity of our data.

Consequently, market makers inject information in the LOB since they reveal the knowledge
they have on the price through their supply function. However, the longer the auction duration,
the less reliable the views of market makers arrived early in term of the estimation of the
efficient price P at the clearing time3*. Finally to obtain a regenerative market we consider
that after the auction clearing time Tl?l
Since sequential auctions markets with sufficiently large durations do not really exist, it is hard

market makers cancel their unmatched limit orders.

to have an idea of what would be the market maker’s behavior. Of course, total cancellation
after the clearing is not so realistic. However, note that the times of interest of our analysis
are the auctions closing times, where the model is very reasonable. For example, when h =0,
which corresponds to a CLOB market, at each time a market order is sent, the LOB is already
filled thanks to Assumption 2 below. By recalling that A; = Tl?l - Tﬁl we deduce that at the

clearing there is Ni’.mm market makers in the LOB.

During the i—th market phase the arrival time of the k— th buy (resp. sell) market order is

given by Tﬁl + T;C'u (resp. T;C"b) where T;C’a (resp. T;C’b) is the k—th event time of the counting

process (Ny =0 (resp. (Nsl'b)gzo). Consequently the opening time of the i—th auction is
op j j

T, =

1

volume v. Moreover we assume that (N©™™M Nba NibDY ig independent of the efficient price
P. We define I' as the cumulated imbalance of the market takers: I} = vN;“ — UN;’h. The

Tfi LT T;'b. We suppose that each market taker sends market orders with constant

3T partially address this issue we extend our model allowing market makers to revise their position by
canceling their orders in Appendix 4.
“Note that a possible extension would be to consider that Py also depends on recently observed clearing

prices, see [FGI18|.
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aggregated demand of the market takers at the clearing of the i—th auction is thus given by Ii,"

We now make the following natural assumption, which states that market is regenerative.
Assumption 1. The market dynamics satisfy:

i) After each auction clearing the market regenerates: the processes (Nbmm Nba NLD gy
are independent and identically distributed.

ii) The random variables (Ti'“ A Ti'b)izo are i.i.d. with exponential law with parameter v.

iii) The random variables NTI;,“ and erglb are squared integrable.
1 1

Points i) and ii) of Assumption 1 imply that market order flow is basically a Poisson process,
which is the most standard dynamic used in the microstructure literature, see [AS08, Guél7].
This assumption is not perfectly realistic, in particular it does not enable us to reproduce the
long memory property of market order flow, see for example [BFL09]. A possible way to relax
this assumption would be to consider Hawkes-type intensities. However this would make the
model much more intricate in terms of computation and calibration. Point iii) is a classical
technical assumption.

;’fl - Tfl follows an
exponential random variable with parameter v. We also consider (N, N4, N b 1) a random
variable with the law of (NV™™ NL@ NLP 11y This will be useful to lighten some notations.

Note that Points i) and ii) of Assumption 1 mean that for any i =0, 7

In practice it is very unlikely that a market taker sends a market order if there is no liquidity
in the LOB and a situation with empty LOB is very unrealistic. A way to adapt the non empty
LOB assumption setting is to consider that the first market maker always arrives before the

< @A Ti’b) +h.

auction clearing occurs. It means that almost surely for any i we have 7,

Hence we consider the following assumption

Assumption 2. Let 1> 0. The density of (12", (r7* A11'P)) at point (s,1) € R? is given by

:ue_ﬂs -Vt
10535t+hmds ve "1podt.
Finally we assume that (N ;’:{'fnm —1)o<s<p is a Poisson process with intensity p that is independent
1
of P and (N}, N}P) . 1mm.
=71

Assumption 2 means that (Nsl'mm)ogg‘l’hh has the law of a Poisson process with intensity u

conditional on the fact that its first event occurs before time Tfl. This assumption® also allows
to obtain a non-degenerate CLOB at the limit 7 =0.

%An alternative idea leading to a very different approach would be to endogenize the market behavior of
market makers, see [DZ17]
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2.3 Clearing rule

We now explain how the clearing price is settled at the end of an auction. We denote by F~ (p)
(resp. F*(p)) the total number of shares that buyers (resp. sellers) are willing to buy (resp.
sell) at price p. The function F~ (resp. F*) is decreasing (resp. increasing). Assume that a
clearing price P is set. The total volume exchanged is then F~(P/) A F*(P¢!). Now suppose
that F~ and F* are continuous at point Pl and F~(PY) < F*(P°). If there is still remaining
liquidity on the bid side of the book (formally if F~ is not bounded by F~(P¢!)), the exchanged
volume is not optimal as it may be improved by decreasing the price. Conversely, assume that
F~(P°Y) > F*(P) and if there is liquidity on the ask side (formally, if F* is not bounded by
F* (PCl)), then the exchanged volume is not optimal as it may be improved by increasing the
price. Thus, when such equality is possible and in order to maximize volume at the clearing
time, the optimal clearing price has to satisfied

F~(Ph-Fr (=0, (1)

Note that the value F~(+00) (resp. F*(—00)) is the number of shares to be bought (resp. to be
sold) at any price.

The function F~ — F" is the algebraic supply-demand function of all market participants
together (market makers and market takers). Thus we have obtained that the clearing price is
a zero of the aggregated supply-demand of the agents. Consequently, in our framework, the
clearing price PTCL{, of the i — th auction, defined as a solution of (1), can be found solving the
following equatioln:

Ny

Y. Sk(p)—1I}, =0.

k=1

The i—th clearing price is then given by

i,mm

cl 1 < 5 1 Iii
P‘f’: i,mm Z Pet+— imm’ (2)
i NA’;‘ k=1 K NA’;‘

Finally, we define the mid-price P™Mid of the LOB as the obtained clearing price without taking
into account market orders in the auction clearing:

mm

. 1 Y B
P = —t Y Pr (3)
‘L'i Nklmm =1

2.4 A metric for the quality of the price formation process

One of the main roles of a financial market is to reveal with accuracy the price of the underlying
asset, guaranteeing fair transaction prices to market participants. In our framework, this is
equivalent to have a clearing price close to the efficient price. Therefore a natural criterion
to compare different auction durations is to assess, with respect to the auctions duration, the
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accumulated error between the efficient price and the clearing prices over the day. To do so,
we consider the following time-weighted quadratic error:

N¢ -1

Zp= ) Bin (P —PU?+ (-1 )(Prjjd—Pcfz 2, (4)
! ‘

cl
i=1 Nt TNCl
t

where Ntcl denotes the number of auctions cleared before time t. Thus, for each auction, we
consider the quadratic deviation between the clearing price and the efficient price and weight
this deviation by the time to wait until a new price is set. Note that (4) may be rewritten

t
—cl —
zh= f (P, —Py)?ds,
0

—cl —
where the processes PE and P; are respectively the clearing and efficient price at the last
auction clearing time before time s, that is

—cl —
(P, Ps) = (P, P,a), where i =sup{j =1, s.t 75 < s}.

We define an auction duration #* as optimal if almost surely, Z[h* is asymptotically smaller

—cl —
than Z!* for any h > 0. Using the fact that ((Pi —Py)?) ., is a regenerative process we obtain,
see Appendix 5, the following important result for our asymptotic computations.

Lemma 1. The following convergence holds almost surely:
: Zth cl 2
lim - = [E[(Prfl _Prfl) ].

t—+00
In light of Lemma 1, a duration h* is optimal if it is a minimizer of the function E given by
E(h) = [E[(P%l, - Prfl)z].
We also consider the efficiency of the mid-price defined in (3), denoted by E¢:
EMid(h) = [E[(P;’;%,’;‘jh = Pov ).

We now give our first main theorem. It provides a semi-explicit expression for the function E.
Its proof is given in Appendix 1.

Theorem 1. The quality of price formation process metric satisfies:

E(LZ,] +oo ut u
. ; 1 [Set—1
E(h) = E™%(h) + T21 (l—e_”hL)_lthf ve‘”e‘“t/ —f ¢ " dudsdr,

K v+u h o SJo u
with EM4 () given by

+00 ut S_l t
_ ,—uh V -1 _vh -Vt 2£ 2y ,—pt € 2% —ut
(1-e v+u) e fh ve ((Uf6+0 )e [0 S ds+0f3(1 e ))dt. )
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Remark 1. Note that we can simplify the double integrals by using the so-called Exponential
Integral function Ey :R% — Ry defined by Ey(x) = [ %udu. We thus get
E[1%,]
E(h) = By — 11 —e‘“hL)‘lth(f
K2 V+u h

+00 e—uu—l

” V+uE1((v+u)u)du

h p—pu=-1_,, h
"y, —v+h
+f0 B e +Ey (v )du),

where E™? is given by (5).

We remark from Theorem 1 that for given h >0, E(h) > E™id(p). This is quite intuitive: the
presence of market orders induces here additional deviations of clearing prices which are not
directly driven by information, rather by imbalance between supply and demand. Of course
when u =0, we get E(h) = E™id(). We also see that the price formation process is of higher
quality when K is large. In that case a large amount of liquidity is already present close to the
efficient price, leading to better transaction prices. Finally note that a similar expression as
the one in Theorem 1 can be obtained when we allow market makers to cancel their orders,
see Appendix 4.

If we have access to the quantity [E[IT2 ], which depends on the market takers behavior,

Pin
1

Theorem 1 enables us to compute the function E and therefore to find the optimal auction
duration by minimizing E. We can for example consider the standard assumption that N and
N? are independent Poisson processes with intensity v/2 along the auction (this is consistent

with Assumption 1). In this case we get

[E[ITZ =v’(vh+1),

oy h]
see Appendix 2. Therefore the function h — E(h) of Theorem 1 becomes fully explicit and
we can obtain numerically the optimal duration. We refer to Section 4 for numerical details,
empirical results and statistical methodology to estimate the parameters appearing in the
expression of E(h).

The Poisson assumption for the market order flow is very classical and leads to easy
computations and simple results. However, in an auction setting, market orders play a
crucial role and one should also investigate the possibility of strategic placements, taking into
account the auction environment. We deal with this situation in the next section.

3 Strategic market takers

In practice, market orders are sent through algorithms optimizing transaction times. So, in
this section, we consider that market takers aim at minimizing their trading costs by adapting
their trading intensities to the market state. We formalize this into a competitive game
between buying and selling market takers. We show that this game admits a Nash equilibrium.
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Moreover, when market takers follow the strategies corresponding to this Nash equilibrium,
we can compute the key quantity [E[ITZOer h] appearing in the expression of E(h). Note that it
would of course be interesting to also consider that market makers are also strategic alter their
behaviors in response to changing duration of the auction, see [BCS15, DZ17]. However we left
this case for further research and focus here on the specific feature of auction markets from a

market taker viewpoint.

3.1 Trading costs of market takers

We model the aggregated group of buying (resp. selling) market takers as a single player called
Player a (resp. b). During the auctions, Player a (resp. b) controls the intensity A% (resp. A?) of
the arrival process N4 (resp. N b ), wishing to get minimal costs. In practice, market orders are
often send to execute large metaorders over a specified time-interval. Consequently, whatever
the market design, market takers are usually required to buy or sell a certain volume on a
given period. To reproduce the fact that market takers intensities can neither be too high
nor too low, we assume that A% and A? are bounded from above and below by two positive
constants A, and A_.

The aggregated total trading cost at time ¢ of buying market takers, denoted by Cf, satisfies

N¢!
Cl=Y NP ~Pyu).
i=1 i '

From Theorem 3.1 in Chap VI in [Asm08] together with the fact that the market is regenerative
we obtain the following lemma on the asymptotic behavior of the trading costs.

Lemma 2. We have the following almost sure convergence:
. Ctu a cl v
AT = Mg Py = Pl T
Therefore, in the long run, the average trading cost of buying market takers is a multiple of
1

a cl _ K
ELN, (P = Prg)) = el

a a b
IEINZ, (N% = N2l
Now writing Nrdfl = NT“,,er W NT“,,,, + NT“,,p and using the fact that NT“,,,, is either equal to one or
1 1 1 1 1
zero, solving the problem of Player a is equivalent to be able to minimize
E[N/ (N} = N})]

when (N“,Né’) = (1,0) and when (N“,Nob) =(0,1). Consequently, for any (a,p) € N2, we
consider the more general problem for Player a minimizing

EINZ(N{ = N)I(NE, N) = (a, B)].
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In the same way, Player b minimizes [E[N;Z’(Nfl’ - N;;)I(N“,Né’) = (a, B)] . Each player aims at
deriving its own trading intensity which will lead to the smallest possible trading costs for him.

Note that in our setting, Assumption 1 implies that market takers reset their strategies at the
beginning of each auction. We could have considered the case where market takers optimize
their behavior all along the day. However, since we are interested in the effects of auction
durations in a stationary context, our framework remains reasonable.

3.2 Nash equilibrium

We now give our result on the existence of a Nash equilibrium in this game of competing
market takers. We consider that market takers control their trading intensities. The set of
admissible controls is denoted by % and defined as the set of [ — predictable processes with
values in [A_,A,] for fixed 0 < A_ < A,. Any couple of strategies (A4,Ap) € WU? of Player a and
b induces a probability measure PA«* such that

N%- f A%ds and N? - f Abds
0 0
are martingales under PA«*», In order to minimize its costs, Player a solves

inf VP (L, 1), (6)

with VP (Aq, Ap) = B [INE(N® ~ NDY | (NG, ND) = (@, B)], for fixed A, chosen by the selling
market taker, Player b. Symmetrically, Player b solves

. b,a,p
nf V""" (Aa, Ap), (7)
with VP (14, Ap) = EP'“"* NP (NP - N®)(NE, N) = (a, B)] for fixed A4 chosen by the buying
market taker, Player a. A Nash equilibrium is obtained if the two optimization problems (6)
and (7) can be addressed simultaneously.

Note that this framework is realistic regarding the information observable by market takers.
Indeed we only assume that market takers observe market orders imbalance. This information
is for example available on the Euronext platform for the opening and closing auctions and on
the auctions market of BATS-Cboe.

We prove that this game indeed admits a (non-necessarily unique) Nash equilibrium with
corresponding optimal controls (17,1}). More precisely using these notations we have the

following result.

Theorem 2. There exists a Nash equilibrium to the simultaneous optimization problem (6)7) given
. 6 * 1% P
by some Markovian controls’ (A7, A}) satisfying
AXAE
inf VP, A5 =E" "
AeU
0The notion of Markovian control has to be understood in the sense of |CD18, Definition 2.10]

[NF(N = NDIINE, NO) = (a, B)]
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VII. Optimal auction duration: A price formation viewpoint

and

. b,a, AXAE

nf v Pk Ay =" IND(ND - NOING, ND) = (a, B

The proof of Theorem 2 is provided in Appendix 3. The HJB equation related to the
optimization problem is somehow degenerated. This prevents us from using classical arguments
to obtain a solution. In order to give intuition about it we give here a short sketch of the proof.

Step 0. We first consider a smoothed version of the HJB equation associated with our problem.
Hence, the proof of Theorem 2 is reduced to the existence and then convergence of the
solutions of a (smooth) system of HJB equations (see Theorem 3).

Step 1. We consider the backward stochastic differential equation (BSDE for short) associated to
the smoothed HJB equation. The existence of a Nash equilibrium is then related to the
existence of a solution to this (Lipschitz) BSDE.

Step 2. We prove that the sequence of BSDEs converges in suitable spaces towards a solution of
a degenerate BSDE.

Step 3. We conclude by showing that the solution we obtain at the limit corresponds to a Nash
equilibrium of the competition between market takers.

Note that we do not get uniqueness of the Nash equilibrium, only the existence. Since the
generator of the BSDE associated to this problem has discontinuities there is almost no chance
that a uniqueness result can be found by classical methods. Moreover, even if the method
used give uniqueness of the limit Nash equilibrium, this limit will be strongly dependent of the
smoothing procedure.

The proof of Theorem 2 also provides a numerical method to approximate V]f '1'0(/1;,/12) and

Vf 1.0 (A7,A};) using solutions of some integro-differential equations, see Appendix 3.3. It is
particularly important since it enables us to compute optimal auction durations when market
takers are playing the Nash equilibrium. This is because the function E of Theorem 1 explicitly
depends on V;’I'O(AZ,AZ) and Vf‘l’o(/lz,)t’g), as stated in the following corollary.

Corollary 1. Under the Nash equilibrium (A, 1}), we have

2 _ 1,0 g% 4% b,1,0 4%
E[IT;,erh]_V}f A5, Ap) + V)P, A7),

4 Optimal auction durations for some European stocks
We give here the results obtained on real data when applying our methodology to derive

optimal auction durations. We consider both situations of non-strategic and strategic market
takers and compare with the CLOB case.
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4. Optimal auction durations for some European stocks

4.1 Description of the data

We have access to intra-day market data for 77 of the most liquid stocks traded on Euronext
exchange, for all trading days of September 2018. For each stock, every trade is reported with
the following information:

e Timestamp of the trade.
 Traded volume.

» Execution price.

Best bid and ask prices just before the transaction.
e Volumes at best bid and best ask just before the transaction.
We discard from our study trades related to 1% upper and lower quantiles in term of volume

in order to remove some outliers.

4.2 Calibration of model parameters

Our market data are CLOB data and not auction data. Still, we are able to calibrate the
parameters of our model as explained below.

4.21 Market takers parameters

The behavior of market takers is characterized by three parameters:
o Their intensity of arrival between two auctions v.
e The volume of market orders v.
* The upper and lower bounds for their trading intensity A_ and A..

CLOB corresponds to the case where auctions last zero second. Consequently, in our framework,
the market order flow in a CLOB market is given by two Poisson processes N* and N” with
intensity v. Thus we estimate v by the average number of market orders per day divided by
the duration of a trading day and v by the average volume of a market order. Finally we set
Ay =2v and A_ =v/4. This choice seems reasonable since the market order flow should have
similar order of magnitude irrespectively of the market design so that agents can complete
execution of their metaorders.

4.2.2 Market makers parameters and calibration of price volatility

The behavior of market makers is characterized by three parameters:

e The variance o of the (g;);>0. We assume that o is equal to the implicit spread of the
asset that we estimate from the uncertainty zones model of [DR15].
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VII. Optimal auction duration: A price formation viewpoint

 The intensity of market makers arrivals u.
 The slope of their supply function K.

Let a be the tick value of the asset. According to our model, in the CLOB case, the average
volume available in the first limit of the LOB when a market taker arrives, denoted by e,
satisfies

+
e= KaE[N"") = Ka X F
T
1 v

and the average squared volume of the first limit, denoted by ¢, satisfies
v+
¢ = K2a?E[(N"M?] = K2a2 L R (1425,
1 v v

Those results are a direct consequence of Assumption 2 and of some computations. Consequently
we have c .
K=QRe-2)a ' and p=v(— -1).
( e) M (a X )

So we can estimate ¢ and K from empirical measurements of e and ¢. Finally, we estimate the
volatility o 7 of the efficient price from the five minutes sampling based realized volatility of
the traded price.

4.3 Numerical results

Using our approach, we provide in Table VIL1 and VIL.2 the optimal auction durations for 77
stocks traded on Euronext. We give the results when assuming Poisson arrivals for the market
takers and when considering they optimize their trading costs, leading to a Nash equilibrium
(see Appendix 3.3 for numerical aspects in this case).

The first column is the stock name. In the Poisson (resp. Nash) case, the second (resp.
fourth) column is the optimal duration in seconds. The third (resp. fourth) one is the relative
difference of quality of the price formation process between the optimal duration case and the
CLOB situation: (E(0)— E(h*))/E(h*). In the optimal durations columns we provide estimated
optimal durations together with 90% confidence interval (with respect to the estimated value
for the parameter v).

The optimal duration range is essentially between 0 and 10 minutes and our results are very
robust to the parameter v. For all the assets such that the optimal auction duration for Poisson
market takers is positive, the optimal duration in the Nash case is smaller. Some assets have
the CLOB structure as optimal in the Poisson case. However, when considering the Nash
case, CLOB become always suboptimal. We also remark that no straightforward structural
explanation (sector, capitalization, ...) seems to explain the difference in optimal duration
between assets. Finding microstructural foundations for these results is left for further work.

As explained in Section 3, we constrain market takers trading intensities to the range [A_,1.].
From numerical experiments, by testing several ranges of controls [A_, 1], we have observed
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DurationPoisson | DiffrelPoisson | DurationNash | DiffrelNash

Bouygues 228 [226;230] 1% 152 [150;153] 20%
Arkema 397 [392;400] 23 % 268 [265; 272] 19 %
Michelin 1053 [1046;1060] 60% 763 |757;768] 89%
Eurofins Scient. 761 [749;773] 18% 554 [546;563] 37%
Engie 866 [857;875] 104% 866 [857;875] 158%
Stmicroelectronics 177 (1765179 2% 123 [122;124] 21%
Alstom 0 [050] 0% 180 [178;181] 14%
Legrand SA 325 [322;329] 0% 216 [214;221] 19%
Eiffage 0 [050] 0% 149 [147;150] 12%
Eramet 1086 [1074;1098] 30% 812 [803;822] 50%
SES Sa 0 [050] 0% 81 [80;83] 6%

Pernod Ricard 427 [423;430] 22% 301 [298;304] 45%
Iliad 163 [162;164] 0% 109 [108;110] 18%
Faurecia 0 [050] 0% 36 [35;37] 4%

Orange 382 [379;385] 21% 274 [273.6;278] 42%
Sodexo 0 [0;0] 0% 49 [51;47] 1%

Air France - KLM 295 [292;297] 17% 218 [216;220] 35%
Teleperformance 1241 [1224;1259] 27 % 881 [868;894] 50 %
Hermes 295 [292;298] 1% 205 [203;207] 19%
Eutelsat Com. 0 [0; 0] 0 % 40 [39; 42] 2%
Nexans 487 [480;494] 8% 360 [356;365] 23%
Ingenico Group 0 [050] 0% 143 [142;144] 15%
Unibail - Wfd Unibai 187 [186;188] 19% 142 [141;143] 36%
Plastic Omnium 0 [050] 0% 176.5 [176.3;176.8] 9%

Veolia Environ.

350 [346;353)

3%

253 [251;256]

21%

Schneider Electric
Peugeot

Vinci

CGG

Atos

246 [245;248]
386 [383;389)
350 [348;353]
837 [827;847]
962 [954;969]

39%
10%
39%
15%
66%

171 [170;172]
282 [280;285]
952 [250;253]
605 [597;613]
700 [694;706]

65%
29%
64%
36%
95%

Suez Environnement
Danone
Kering

0 [0;0]
204 [203;206]
133 [132;134]

0%
15%
19%

311 [308;315]
146 [145;147]
93.4 [93.1;94]

14%
35%
42%

Table VIL1 - Optimal auction durations (in seconds) Part 1 with a 90% confidence interval.

245



VII. Optimal auction duration: A price formation viewpoint

DurationPoisson | DiffrelPoisson DurationNash DiffrelNash
EssilorLuxottica 342 [339;345] 30% 238 [236;240] 55%
Lagardere 0 [0;0] 0 % 42 [39; 44] 3%
Credit Agricole 87.7 [87.2;88.5] 2% 58.6 [58;59.4] 22%
CapGemini 502 [497;508] 20% 354 [350;358] 43%
Lvmh 121 [120;122] 6% 87.3 [87;88] 25%
Valeo 0 [050] 0% 98 [97;98.2] 16%
Air Liquide 627 [622;632] 35% 459 [456;463] 58%
Total 359 [357;360] 60% 261 [260;263] 89%
Vivendi 1023 [1014;1031] 42% 750 [743;756] 67%
Casino Guichard 158 [157;159] 15% 119 [118;120] 28%
Societe Generale 104 [104;105] 18% 74.1[74;74.3] 40%
Klepierre 0 [050] 0% 219 [217;221] 14%
Publicis Groupe 601 [595;606] 32% 428 [424;432] 56%
Sanofi 124 [123;124] 12% 88.2 [88;89] 32%
Thales 644 [637;652] 23% 454 [449;460] 46%
TechnipFMC 331 [327;334] 7% 234 [232;236] 27%
Bnp Paribas 104.3 [104.2;104.8] 18% 73.4 [73.2;74] 41%
Safran 0 [050] 0% 107 [106;108] 16%
Saint Gobain 0 [050] 0% 58.2 [58;59] 11%
Orpea 834 [822;846] 29% 578 [569;587] 55%
Carrefour 410 [407;413] 34% 293 [291;295] 58%
Ipsen 827 [817;838] 65% 551 [544;559] 101%
Natixis 351 [348;354] 9% 253 |251;255] 28%
EDF 341 [338;344] 15% 246 [244;248] 35%
Axa 252 [251;254] 36% 182 [181;183] 60%

Dassault Systemes

316 [312;319]

7%

222 [220;224]

27%

Accor Hotels 0 [050] 0% 105.3 [105.8;104.7] 6%
Airbus 210 [209;211] 34% 146 [145;147] 60%
Ubi Soft Entertain 0 [0;0] 0% 43.4 [43;44] 1%
Renault 0 [050] 0% 41.7 [41;42.2] 3%
Solvay 528 [522;534] 11% 375 [371;380] 32%
Edenred 313 [309;316] 8% 210 [208;212] 29%

Table VIL.2 - Optimal auction durations (in seconds) Part 2 with a 90% confidence interval.

246



4. Optimal auction durations for some European stocks

that the optimal duration is quite robust to those parameters. Still we remark the following
sensitivities: if we allow for a smaller A_ without modifying 1., the optimal auction duration
becomes larger. This is because having a small A_ means that market takers can send less
market orders when the situation is not in their favor. This implies that [E[Ifop “h
slowlier with A. This moves the minimum of E to a higher level. For symmetric reasons, if we

raise A, without changing A_, the optimal auction duration becomes smaller.

] increases

We notice that CLOBs are sometimes optimal in the Poisson case. When they are not, the
difference in the values of the metric for 7 =0 and h = h”* is typically not very large. Therefore
even though CLOB markets are usually sub-optimal, they are in general leading to a fairly
satisfactory market microstructure. On BATS-Cboe the auction duration is approximately
100ms which is very small compared to the typical optimal auction durations we find. Moreover
according to the empirical study [BLF19], there is essentially only one market order involved
in each auction. This means that the duration of auctions chosen by BATS-Cboe does not
allow buyers and sellers market takers to match their orders, to the profit of market makers.
Indeed a larger auction duration may lead to smaller gains for market makers. For example if
market takers always match their orders with other market takers, market makers never collect
the spread. Hence it is possible that BATS-Cboe chose this short duration in order to keep its
platform attractive for market makers, which guarantee its liquidity. This is actually another
possible point of view on this problematic that we have not considered in this paper. It is also
likely that exchanges may be reluctant to change drastically their market design so that clients
are not too surprised. This could also explain why they decided to move only slightly from the
CLOB system.
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VII. Optimal auction duration: A price formation viewpoint

1 Proof of Theorem 1

We are reduced to compute :
E(h) = E[(Pg — PE()|0)

When N be a Poisson process with intensity ¢ and Q= {NT"ZZ'” > 0}. We are reduced to
1

compute
E(h) =E[(Pra = PE)?IQ.

Thus, recalling that Tlp +h= Tl , we get

Yi mm 2
E(h) =E|( Z |Q]+[E[ Z Nmm JIo]+ [E[ mmzm]
=1 el Ny
Ncl Nrﬁ;n 2
p, mm - P, ct il Iz,
- 2 8 2 1 7%
:I]:D(N:?lm>0) 1([E[1N:ﬁ;”>0{( Zl Nmm ) +(kzl lem) +F—Nmm2}])
1 k= = f Til
+00 1
:u»(NT’?,’">0)‘1thfh ve_”(g(t)+02f(t)+ﬁ€(t))dt (8)
with
NmmP'"’"_ 1N'"’">O m>0
g(t) = tE[lem>o(k§1 W) 2, f( = Bl ) and £(1) = E[I2 ][E[ tmmzl

A direct computation gives
v

PN >0)=1-e M
7] V+p

We now turn to the computation of the function g. We have the following lemma.

Lemma 3. We have for any t >0

t2 1 7 1
2 2 2
1) =02 —pE[————] + 02— pPE[—————]. 10
gy =0y p [(N;"m+1)2] Ok [(NZ"mez)z] (10)
Proof. Note that

NEP Wenm = W 2 N (W = W) (Wegm — W)

g(t) = Uf[E[lN”’m>0 Z ( ) ]"‘U?[E[IN[’”%O

N =141 kl=1 st. k] (N7"™ =2 +2)?

Consider X; the Poisson scatter made of the event times of N between time 0 and ¢. Then
we have

(Wx - W) (Wy, — W)
#H X \Mx, yH+2)2

o2 W))? 2
g = [E[Z—(#{Xt\{x}}+l)2]+af[E[ Y

xeX; X, Y€X; s.t. X#£y

248



1. Proof of Theorem 1

Since P; = 0 yW; is independent of N, we get

(f—x)2 , (t-x)A(t-Y)
t [E —_— |+ E :
§(1)= [XEX):( X \MxH + 1)2] o [x,yeXth;t. sy XA X, yH +2)2

Finally using Palm’s Formula, see for example [CMW17], we get

_Z;It_ Z;ftft_ N
g(t)—af[E[(N?m+l)2] O(t u),udu+af[E[(Ntmm+2)2] A O(t u) A (t—v)u~dudv,

and (10) follows.
O

To compute explicitly f, ¢ and g from Lemma 3, we need the following additional results.

Lemma 4. Let N be a general inhomogeneous Poisson process with intensity measure . The
Jollowing equalities hold:

1 migs— 1 1 Ml set—1
[E[—N‘>°]=e""rf ds, and E[ N’>° = "”[ f duds, (1)
Nt 0 N

1 e Mt M @S — 1 1 1 e gs—1
E - ds, d[E—:—l—_m’—_m’f ds), (12
EAL mtfo s 4 and o N2 m%( et ) T 12)

with m; = fotﬂt(ds).

Proof of (11). Note that

[E[INPO] _ iolm—?e_mf nd [E[th>0] +X°:° 1 my M -me
N; = n n 2 = n? nl

The functions e; and e; defined by

er(x) =) —— and ex(x) = > ——
= nn = n? nl

are continuously differentiable function, so that

+00 xn—l e — too 1«7
! = = d ! = —_—=
e (x) nX::l p” and xe;(x) 25 e1(x)
By integrating these functions, we get (11).
Proof of (12). Note that
1 +00 1 n +00 1 m”?
E = ~™ and E =) ———Le™
AT ,,LZO Crr € e s AL nzo crmE ¢
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Consider, for i > 0, the functions

+00 1 P Rc T e
ri) =) — and s;(X) = ) ——— .
= i+n)> n! n—ol+n n
We have -
+00 1 n+i— X s (s
rix) =) — hence r;(x) :f Lds.
i—ol+n n! 0o S
Since .
+oo ,n+i—1 . X1 1S .
six) =) =x'"'e* we get r;(x) :/ —f u'"le'duds.
= N o SJo
Taking i =1 and i =2 we get (12). O

Injecting Equations (11) and (9) into f and ¢ and Equation (12) into g in view of (10), using (8)
we obtain the formulas stated in Theorem 1.

2 Computation of the expected square imbalance in the Poisson
case

We want to compute E[ITZO,,+h] when N? and N? are independent Poisson processes with
1
intensity v/2. We have

2 _ 2 a N a \_ (arb b b )2
IE[IT I=v [E[((N NTTP +NT,1,,,) (N Np +N7fp)) 1.

op op Py
L th T, +h T, +h T

Using the strong Markov property of Poisson process and taking conditional expectation with

respect to T(fp we get

[E[If 1= v’(vh+1),

op
1 th

where we use E[N%,] = E[(Njo,,)z] =1/2.
1 1

3 Existence of a Nash equilibrium

In this section, we set &1 >0 as a terminal time of the auction to investigate the game played by
the market takers.

3.1 Nash equilibrium

We are interested in finding a Nash equilibrium to the game between buyers and sellers.
Starting at (N“,Né’) =(a,P) € N?, we set’

VP Ay Ap) =B INZ (N~ ND)J (13)

7Rigorously speaking we should write Vol‘a'ﬁ(/la,/lb, h) instead of Vé'a'ﬁ(/la,/lb) with i € {a, b}, since we define
here the value function of each market taker at time 0 and £ is a time horizon. Since we consider only value
functions of market takers at time 0, we make this slight abuse of notation.
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3. Existence of a Nash equilibrium

VPP (g, ) =EP Y [IND(ND - N (14)

Formally, we can thus compute the optimal P&L of market takers for buy orders and sell orders
by solving the following coupled system

Aj A%
inf VP A = EPU NGNS - ND) )
ntveePazan = e g - N
€

where 1 and A} are simultaneous optimizers of (13) and (14) respectively (depending on the
action of market takers having the opposite behavior).

We now investigate theoretically the existence of a Nash equilibrium associated with (15). First
we introduce some notations.

« Let Q be the set of piece-wise constant functions with jumps of size 1. Consider®
X = (N% N?T be the canonical processes in Q? and F = (%) g<s<p, the smallest filtration
for which X is adapted.

e Let P be a probability measure on (Q?, %}) such that
M = Xs— s, with Ly:= Ao, Ao) T, 0< Ao <Ay, s€[0, A,

is a local martingale. A proof of the existence of such measure P is given in [Jac75]. We
set M@ := My, (resp. M? := My ,) the first (resp. the second) component of M. Moreover

to any pair (A%, AY) € 92 of admissible controls we associate PAA’ the measure defined
by
d[pxl“,/lb h 14 FY ) )
- exp(fo log (2 )dN; - (A¢ — Ao)ds +log(7)dNy — (47 - Ao)ds).
Hence, under the measure [P’M'Ah,

==

S
(% - f (AL du)
0 0
is a martingale.

e For (E,|-I) a normed space, any 0< s<t<h and p > 1, we define
t
Jfft(E) =1{Y, E—valued and F —adapted process s.t.,IE[(f 1Yy ||2dr)g] < +oo}
S

S”SI;(E) ={Y, E—valued and F —adapted process s.t.,E[sup|| Y [|Pdr] < +oo}

S<t

8Here for the notation T denotes the transposition of a vector to identify as usual any element of N? with a
column vector.
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LP(E) = {, E—valued %, — measurable random variable, s.t. E[|&|P] < +o0}.

When s =0 we omit the index s in the previous definitions. If E = R2, we set [|- ]2
and || -|I; the classical Manhattan norm and Euclidean norm on R? respectively. For
any R?—valued process Y := (Y;)g<r<i, we denote by Y;,; and Y;, its first and second
coordinates respectively for any time r € [0, Al.

e For any z€ R% and €% e € [A_, A,], we set

AZ (z,€") = 1z1>0/1— + 1z1<0/1+ + 5a1z1:0
Af(z,6%)  =1g50A- +150hs +£01 .

)

Note that both z;1}(z,¢%) and zyl;(z,sb) do not depend on £% and £”. To alleviate
notations, when one of these products appears, we will denote it simply by z; A} (z) and
z2/1;(z) respectively.

e For any z,Z € R? and any € € [A_,1,], we set H**(z,Z,€) = z1A%(2) + ZZ/I;;(Z,E) and
H"*(2,2,€) = A} (2) + 211} (2, €).

o for x e N? we define g%(x) = x1(x] — X2) and gh(x) = X2 (X2 — X1).

* Let U be a map from [0, h] x N? into R. For any (s,a,f) €10, h] x N2 we set

DyU(s,a,f) = U(s,a,f+1)-U(s a,p))

DdU(S)a)ﬁ): U(s)a+1)ﬁ)_U(sva;ﬁ)
(D){
DU(s,a, )= (DyU(s,a,B),DpU(s,a,p) .

We first provide a very general result by associated to the existence of a Nash equilibrium for
(15) a system of coupled ODE on N2, as a direct extension of [DJVLS00, Theorem 8.5].

Proposition 1. Assume that there exist two maps €*,€? from [0, h] x N? into [A_,A,] such that
the following coupled system

A,V + HY*(DV4 DV, eb)y=0, se0,h), (a,p)eN?
Vi(h,a,p) = g%a,p),
0,Vl + HP*(DVP, DV% e%) =0, se[0,h), (a,p) e N?
VP(h,a,p) = g%, p),

S)

has a continuously differentiable (in time) solution denoted by (V*, V") on [0, h] x N? and assume
moreover that ‘
DV'(,N% NPy e #2R?), i = a,b.

Then, (AZ(DV“,s“),AZ(DVb,Eb)) is a Nash equilibrium for (15).

Proof- The proof follows a standard verification argument. Notice however that we need
feedback control for the thresholds (¢4,&”) in order to have classical HJB equations. See for
instance [DJVLS00, Theorem 8.5]. O
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3. Existence of a Nash equilibrium

Although the previous result provides sufficient conditions to get a Nash equilibrium for the
stochastic differential game (15), it is quite hard to justify such existence in practice. Note
indeed that the optimizers A7 and A are singular in view of their definition (L). Thus, the
main difficulty encountered in this proposition is to solve the bang-bang type system (S) of
ODEs on N2 for relevant thresholds £%,&”. As far as we now, we have no PDE results ensuring
the existence of a solution to (S).

Inspired by [HM14], we thus propose to study a smooth approximation of (S) and then to build a
sequence of processes converging (up to a subsequence) to a Nash equilibrium for the game (15).

Let n e N. We consider the smoothed control functions for any z€ R

A/+ if zZ=< _%
A z) =4 A ifz=1
nAte gy At jfze (-1 L

The functions A" and z— zA"(2) are Lipschitz continuous. Also consider @, the truncation
function defined for any x € R by

Du(x)=(xAn)v(-n).

Hence, we introduction the smoother of H* denoted by H*" and defined by for any (z;, 22, 2) €
R3 by

H*"(z1,22,2) = (211" (21)) + Py (22) A" (2).

Theorem 3. For any n € N, there exists a unique (viscosity) solution denoted by V*" to the
Jollowing system of integro-PDEs

A,V + H*™M(D, V4" D, V&" D, Vb =0, s€ [0, h), (a, B) € N?,
Ve (h,a,pB) = g%a, B),
A, Vb 4+ "D, VP, D, Vb D, V) =0, s€(0,h), (a,B) € N?,
VP (h,a,B) = g¥(a, B).

S"

Moreover,
o The system (S™) admits a unique viscosity solution.

o There exists a subsequence (ny) k=0 and two measurable applications V¢, 174 from [0, h] x N2
into R such that for any (s, a, B) € [0, h] x N2

lim V@ (s,a,p) = Vi(s,a,p), i € {a, b}

k—+00

and
nETmDVi'”(s, a,p)=DV'(s,a,p), i€ {a,b}.

253



VII. Optimal auction duration: A price formation viewpoint

o Moreover A" (D V@™ (-, N% N) 1 ya( na nvy=o and A" (D VO (L, N NO) 1 1o na N0
converges weakly in €2 (R?) to some progressively measurable and [A_, A*]-valued processes
denoted respectively by 0 and O.

Thus, (A;,)LZ) = (A} (DV(s, NS“,NSb),HS),AZ(DVb(s, NS“,NSI’),&))OSSS; is a Nash equilibrium
for the game (15) and Vé’a’ﬁ(/l;,itg) =Vi(0,a,p), i €{a,b}.

We give here the sketch of the proof of this result. The details are postponed to Appendix 3.2.

Sketch of the proof of Theorem 3 The proof will be divided in three steps. The main tool
used is the theory of BSDE with jumps (see [TL94, BP94, BBP97]) and their representations
through integro-partial differential equations.

Step 1. We associated to the system (S") a two dimensional BSDE for which it is well-known
that there exists a unique solutions in appropriate spaces.

Step 2. By mimicking the proof of Theorem 2.5 in [HMI14] extended to the case of counting
processes, we prove that the solution of the BSDE associated to (8") converges up to a
subsequence to a solution of a two-dimensional BSDE associated with the system (S).

Step 3. We prove that this approximation provides a Nash equilibrium for the game (15) with
well-chosen thresholds obtained in Step 2 as limits of functions of the components of
the solution to the approached BSDE considered, see Proposition 2 below.

We conclude thanks to semi-linear Feynman-Kac formula for BSDEs and the system (S™)
established in Step 1, together with convergence results.

3.2 Proof of Theorem 3

For the proof we follow the methodology of [HM14]. First we introduce a series of smoothed
BSDE with Lipschitz generator by smoothing the controls A}, 1. Then we show that the
solution of the smoothed BSDE converges (up to a subsequence) almost surely towards a
solution of Equation (28).

We have the following a priori estimates results which is a consequence of the BDG inequalities
and of the Gronwall Lemma.

Lemma 5. For (s,x) € [0, h] x N2 let X5* be the process in Q defined onto (s, h] by
X5 = x+ X, — X,
We have for any s€ [0, h] and p >0

E[ sup X5 171 < Co(L+x11° +]x217)

ssu<h
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3. Existence of a Nash equilibrium

and for any (Mg, Ap) € Y?

praiy :
E”"[ sup X517 < Co(1+x11° +]x217)
s<u<h

We now turn to the proof of Theorem 3.

3.2.1 Step 1: Approximation, existence and uniqueness

From now, s € [0, ). We recall the definition of smoothed control functions

Ay if z<—1
AMz)={ A ifz=1

Ao=Ae o | AptAo 11

n=5=tz+=5= if ze( )

Consider ®;,, the truncation function
O,(x)=(xAn)Vv(—n).
Now we define the system of smoothed BSDEs for any u € [s, h]:

—de’n;s’x — (H*,n(zﬁ,l:z;s,x’Zzayg;s,xyzzb’,g;s,x) - % Zg,n;s,x)du_ erlz,n;s,x.dMu’
yamsx  _ ga(X;l,x)

_dYu,n;s,x — (H*'n(ZZb,’LrLl;S’x’Zlb,’LrLl;s,x’Zﬁ,:;s,x) - % .Zg,n;s,x)du_zg,n;s,x_dMu,
Y}f},n;s,x — gb(X}sl,x)’

am
with Zf;'n;s'x = (Zli’Z;S’x,ZZi’Z;s’x)T for any i € {a, b}.

From Proposition 2.1. in [BP94] since @, is Lipschitz continuous there exists a unique solution
to (JM) such that

((Ya,n;s,x,Za,n;s,x)' (Yb,n;s,x,Zb,n;s,x)) € (ys?h(R) « %ih(Rz))Z.

Moreover (Proposition 3.8. in [BP94|) there exist measurable deterministic functions V%", ybn
defined on [s, h] x N? with values in R such that:

Vue[s, hl, Y25 = vili(s, X5%) and ZLWSY = DV (u, X5, for i = a, b. (16)

From Theorem 3.4. in [BBP97], we know that the unique solution of (J") provides a unique
viscosity solution denoted by (V4" V™) to (§") and given by (16).

Before going to the convergence of Y5" and Z"", notice that by considering the generator
functions

{ H(1,x) = (©p(DaV@ (1, )A(Dg V" (14, X)) + @y (Dp VA (14, X)) (D VI (1, 1)) )
HP™(1,x) = (©n(Dp VP (1, x) A" (Dp VI (1, X)) + @ (D VI (1, ) A (D, VA" (1, X)),
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VII. Optimal auction duration: A price formation viewpoint

we deduce from (16) that

a,n *, N 70,0;8X —a,0;8,X —b,n;s,x
H” (uXu)—H (Zl,u ’ZZ,u 'Zz,u ),

and
b,n $,X\ _ rpx,n,-bn;s,x —-bn;s,x —a,n;sx
H> (u,X,~)=H (Zz,u ,ZLM ’Zl,u )
so that (J®) becomes

(]’ﬁ) _le:z,n;s,x = (H®" (s, Xs'x)—$0 Za,n;s,x)du Zansx dMu, Yansx a(sz)
_de,n;s,x (an(u ngc) ansx)du ansx dMu, Ybnsx g (sz).

3.2.2 Step 2: Convergence to the solution of a bang-bang system of BSDEs

From now, we consider any index i equals to a or b, we set x € N2 and s€ [0, h].

Step 2a. Uniform estimates.

In order to use dominated convergence we give some uniform a priori estimates for processes
i,n;s,x i,n;s,x
Y Z ).

We first aim at using a comparison principle to control the upper bound of Y*" and introduce
the following BSDE

i,n;8,x

Y, =gi(X;"‘)+f aAA*\z,

i,n;8,x

h_. o
||1dr—f Z"dAM,, s<u<h. (17)

,nsx lnsx

) of the above

BSDE in the space yszh([}'\?) x stz h([R?‘) and there exists deterministic measurable functions V"
such that for any u € [s, hl:

Once again according to [BP94] there exists a unique solution (Y

YOSV, x5,
By comparison theorem for BSDE (see for instance? Theorem 2.5 in [Roy06]), for any time

s<u<h we get
lnsx

ypmsx <y p g, (18)

i,1;5,% S e s
YUY in view of

We now give a uniform estimates of Y to get a uniform estimates for

the previous relation. Consider the bi-dimensional process:

—1i,1;8,X

M =M, —4A,sign(Z,, ),
where the sign is taken coordinate by coordinate. The process M"" = (M{"",Mé’") is a
bi-dimensional martingale under the probability P"" equivalent to P with density given by

ln in

" = exp f log( )dN“ (y’;; AO)dH—log(Y—)dNb ()/ - p)dt)

9To be more accurate, we identlfy our pair of processes as a compound Poisson process with jumps in {-1,1},
so that we are in the framework of [Roy06] for a compensator A(dx) = 1¢(81(dx) +0-1(dx)).
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3. Existence of a Nash equilibrium

with )
; ) —i,mtx
y’[;l = Ao +4Asign(Z;," 7).

Consequently we get .
V" (s =E" 1gi (X)L,
By polynomial growth of g; we deduce that there exists a positive constant C such that
7" (5,01 < CE* "I X 5131,

Note that there exists a positive constant & such that

EP 11 X513 < R (11012 +1).
The previous equation implies the following polynomial growth bound
V" (s, 001 = CA+ I1x13),

where C:=C« > 0.
According to the comparison result (18) together with (16), we deduce that there exists some
positive constant C, which does not depend on 7, such that

VP (s,x) < CA+ |x1 1 + |21,
Similarly, by considering a BSDE similar to (17) but with a minus sign in the generator, we get
VP (s,x) = —C(L+|x11* + | x2 /).

We thus deduce that for any (s, x) € [0, h] x N2 and p =1 the following estimate holds for some
positive constant C),

E[ sup |Y"5¥|P] < Cp(l+1x1 %P + | x2/°P). (19)
ssu<h

Moreover, the characterization (16) allows to transfer the prior estimates of Y /55% to ZHS*,
In particular we get that for any p=>1

E[ sup |Z2"5¥|P] < Cp(1 + 12V + 1x2?P). (20)

ssu<h

Note that the constant C,, does not depend on n, so that Estimates (19) and (20) are uniform
with respect to n.

Step 2b. Convergence of the solutions of the smoothed BSDE.

We now turn to the convergence of (YDmsSX zLmsxy in (S”szh([R) x %fh(Rz). For any g <2,

there exists a positive constant C which does not depend on 71 such that
hoo h . -
rE[f |H""™ (r, X0)|9dr < [E[[ 24,01 2000 Tdr) < C.

0 0
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VII. Optimal auction duration: A price formation viewpoint

The sequence (H"™) >0 is bounded in L2([0, k] xNZ,dr x (0, 0; 1, dx)) where p(0,0;r,dx) is the
law of X?LO under P. Thus there exists a subsequence (7x)x>o such that (H Ly o converges
weakly in L2([0, h] x R, 1(0,0; r,dx)dr). We omit the index k and still write n instead of nj to
reduce the notations.

We now prove that for any (s,x) € [0, h] x N?, (VE(s, %)) 0 is a Cauchy sequence. We set
the function AY™™(¢t,x,z,,2m) = HY"(t,x) — H"™(t,x) — %Ly - (25, — 2;) with (n,m) € N and
(t,X,2n, 2m) € [0, T] x N> x B> x R?. Let § € [0, — s] and k € N, we have

. . h . .
VR (s, x) = VI (s, )] = [E[ f NI (5, X5 7S 71 ) )

N

< Ei—i—(s,h +Ei+5,h +ES,S+6’ (21)
with N
Ei+5’h = ||E[/ IIIXSECIIOOSkAiYn’m(r' X}S,_x,Zri,n;s,x’Z;',m;s,x)dr”,
s+0 "
+6,h h j i,n; i,m;
B0 B[ 1y oA XS, 21, 2 )
s+6 "
and

s+0 | o o
ES,S+6 = “E[f Al,n,I’ﬂ(r’ X;‘,ix’ Z:,n,S,X’Z;,m,S,X)dr]l.
N
We obtain from (20) that there exists some constant C independent of n and m such that
ES,S+6 < C6
We now turn to Ei+5'h. By using Cauchy Schwarz and Markov inequalities together with the

prior inequalities (19) and (20), there exists a positive constant C again independent of 7 and
m such that for any positive integer k

h h
+6,h i X 1S, [, 11;8,X2 i
Ei < |[E[[+61||erg||oo>kdr]|2 |[E[f+6Al n m(r,er—x,Zrl nsx’Zrt mis )2 4|2
s s

=

<o

Finally, we note that

h ) )
ALY A (5, p, q, DV (8, p, @), DV (8, p, )P(XP Y = (p, @) ps (1, p, @)1

(p,q)GNZ S
with t,x
P(X, " =(p,q)
<ps,x(r, p, q) = lpsqusk1r2s+6 ( tr(o,()) ) :
P(X"% = (p, @)
Since 19!
£,(0,0) _ “1_ 20 P4
I]:D(Xr =(p, Q)) =e (Aor)P+a
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3. Existence of a Nash equilibrium

is bounded for p and g lower than k and r lower than h. The function ¢, is bounded and
thus in 12([0, h] x Nz,,u(0,0; s,dx) x ds)) consequently by weak convergence of Hi'”, we have
that ES*%" goes to 0 when m, n go to infinity. Hence, taking the limit when & goes to 0 and
k,n, m go to infinity, we deduce from (21) that (VI (s, %)) n=0 is @ Cauchy sequence. We thus
denote by Vi(s, x) the limit of (V7 (s, X)) n=0. We recall that Vi depends on the subsequence
(nK) k=0

We have the P-almost sure convergence (up to the subsequence) of Y% since YUY =
Vi (u, X;7"). We denote by Y% the almost sure limit of Y"™%* Notice moreover that in
view of (D), we have

lim DV®"(s,x) = DV'(s,x), (s,x) € [0, ] x N2, (22)
n—-+oo

By Equation (19) and Lebesgue dominated convergence theorem we have for any p>1
—+00

B ;
[E[fs |y, msr -y Pdr) e 0. (23)

Let now 1, m be two positive integers. From Ito’s formula applied to (Y /55 — YEm$%)2 e
get forany ssu<h

|Ylﬁ,n;s,x _ Yli',m;s,x|2
& i i 2 h i i 2 b
i,1;8,% i,m;8,x i,1;8,% i,m;8,x
:_f | Zimsx _ Zhmisx, d(Mf+/10r)—[ | ZEmSY . ZEmisX24(MY + Agr)
u u
h . . . . . .
+2f (le,n,s,x _ le,m,s,x)((Hl,n _ Hl,WZ)(r, Xflx) _ go . (Zrl,n,s,x _ Z;,m,S,X))dr
u

L . . o
_ 2‘/ (le,n;s,x _ le,m;s,x) (Z;,n;s,x _ Z;,m,S,X) . er (24)
u

Using Young’s inequality and the definitions of H" and H™ we deduce that there exists a
positive constant ¢ (independent of n and m) such that for any £ >0

) . h . .
|Yut,n;s,x_ Yut,m,s,x|2+f AOHZrl'n’s’x_Zrl'm's'xngdr
u
< 6£|)L+|2f (IIZ,Z'”"'XII§+IIZ,"m'S'xllg)dr+—[ |y DIsX Y s X2 q
u EJu
h i . i . '] . '] .
_Zf (le,n,s,x_ le.m,s,x)(Zrl,n,S,x_Zrl,m,Syx) er
u
h j j 2 L i j 2 b
i,1;8,X i,m;s,x a i,n;8,X i,m;s,x
_fu | Zimisx _ Zhmisx|2q e —fu | Zimisx _ Zhmisx 2q b,

For u = s, by taking the expectation and by choosing n, m large enough, we obtain from (20)
and (22), (23) and the fact that € is arbitrary small that the following convergence holds

h .
lim sup [E[f | Zp"ms* — Zrl’m;s’xngdr] =0. (25)
S

n,m—+oo
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VII. Optimal auction duration: A price formation viewpoint

Hence, (Z""%%),en is a Cauchy sequence (along the subsequence) and thus converges in
stzh([Rz) to some process (Z)5) s<u<h-

Similarly, by using (24) and by noting that —fhlZli,’f;s'x - Zli,';n;s‘xlzd(Mf +Agr) <0 and

u
—fuh | Zy 5 - Zzl’;";s’xlzd(Mf’ +Apr) <0 since M*+ Ap- = X. is a non decreasing process
for a € {a, b}, we have

[E[ sup |Yli',n;s,x_ Yli,m;S,X|2]
u€(s,hl

h ) . 1 h .
< celd, [PE[ f (123715 + 1 25 Z)dr + f |, 9T s
S S
h : . : . '] . '3 .
+ 2[E[ f |Y,PHS% =y PISE|| ZD S ZE S Y@ N+ Apdr)]
i , ,
2 [ Y Y| 21 ZIS ANY + Aqdr)
i , ,
h - i 1 B i
< CelLPEL[ (12" 13-+ 1285 B)ar) + ~81 [ (s - yjmsstan
S S
+ 2[[ f |Y,PIS% — Y PIESE|| ZD Y — ZP S |(d M+ 2A0d )]
i , ,
h y . r . 5 . s .
+ 2] f | Y,y S|z Zhmis | (g b 42 00dr)]
i , ,
o o 1 (h —
< CelLPEL[ (1234 1285 B)ar) + ~1 [ (s -yt
S N
h ; . - . 5 . 5 .
+ 4/’1/()”5[‘/(‘) |le,n,s,x _ le,m,s,xl ”Z’f,n,s,x _ Z;,m,s,x” 1dr].

By using again Young inequality for the last term in the previous inequality with the same ¢,
we deduce that there exists a positive constant ¢ > 0 independent of n,m and € such that

[E[ Sup |Yli',n;s,x_ Ylj,m;S,X|2]
ue(s,hl

h . . 1 h .
< c(£|/1+|2[E[f (1Z7 55515+ 1 Z ™5 |15) dr] + —[E[f |y — y PN Edr).
s € Js
Since ¢ is arbitrary and because of Equations (19), (20) and (23) we deduce

limsup E[ sup |Y,2"5% — ypms¥2] =,
n,m—+oo uels,t]

So we have the convergence of (YBmSX), o in yfh(lR) towards a process (Y5 s<u<n up to a
subsequence.

Step 2c. Convergence of the generator
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3. Existence of a Nash equilibrium

We study the convergence of (H i’”)nzo, for i € {a, b} (still along the subsequence introduced in
Step 2b.). We focus on (H*") =0, the proof is identical for (HP™),~0. Recall that
H®™ (1, X375) = @ (Z S AR (ZE055) + @ (Zy YA (2 155,

1,u 1L,u

First note that
q)n(Za,n;s,xAZ (Za,n;s,x)) n: ZESX ) * (Za;s,x)

Lu Lu +oo Lu ratlLu

with convergence taking place P-a.s. and in Jfgu(Rz) by dominated convergence and uniform
integrability of (IZ%"*||3),=0. We split the remaining part in a continuous and a non
continuous parts

a,n;s$,x\ 1 n b,n;s,x\ _ a,n;s,x\ 1 n b,n;s,x a,n;s,x\ n b,n;s,x
O (Zyt A Zy) ) = @ (Zg P OAZy) N g g + @2y P VA 2y s,

We have the convergence of q)”(ZZa,’LIZ;S’an(ZZb,': 1 ds x dP a.e and the convergence
also holds in .#?2, (R*). Moreover, (/1"(Z2b':;5'x)1

weak limit in stz h(IRZ).

ZP5 207
0)n=0 being bounded we denote by 9 a

Zli;;s,x:

Now we show that for any stopping time 7 € [s, h] we have in the sense of weak convergence in
L2(R):
T

T
f O (ZETS N (ZIIN e du — [ Z8979,1 udu (26)
s ’ ’ ’ 2,u

b;s,x _
ZZ,u =0 n—+oo s

We have

T T
f O (Z3 VA (Zy )1 du = f (@n(Zg ) = Zg A (Zy N1 gnss_gdut
s N o

2=
T
a;s,x 4 n, b,n;s,x
+fs ZZ,L{ A (ZZ,M )].Zzb;;,xzods.

The first term in the previous equality converges to 0 in L.?(R) by dominated convergence
therefore it converges weakly. Now we show that the second term converges weakly. We prove
that for any random variable ¢ € L2(R) and &;-measurable the following convergence holds

T T
El¢ f Z A (21 odul — EI f Zyy " Oul yisx_odul. (27)
N N

b;s,x _
ZZ,u - —+00 ’ N7

Using a martingale decomposition result for martingales associated to jump processes, see
[Dav76], to the conditional expectation of ¢ with respect to the filtration & we have

E[¢1 5] :E[‘f]"‘f Ay -dM,,

N

for some A€ sth(Rz). Consequently

T T T
E[¢ f ZES A Zzb,,;z,s,x) 1 e _odul El f Ay -dM, f ZEsE A Z;’:'S’x) 1 psx_odu]
s oth s s ke

T
+E[E]E[ Zz“,;j’%"(zfy’j’”)l

N

Odu].

b;s,x _
ZZ,u -
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VII. Optimal auction duration: A price formation viewpoint

Notice moreover that
asx b,n;s,x asx
é]IE f 2,u An(ZZ,u )lzbsx Odu] n:; [E[é][E[[ ﬁulzbsx Odu]

since A”(ansx)lzbu _o converges to ﬁulzbsx o, and since Z%5% ¢ inh(Rz). Using Ito’s

formula, we get
[E[f Ay dMuf ZgE A Z?’j;“‘)lzm dul
b,
= [E[\/; (ﬁ asx}ln(Z & Sx)lzrlgs,x:odr)Au'dMujI
T u . b
+E[ fs fs Ar-dM; Z35 A2y 01 Zgi,xzodu].

The first term is equal to zero. Concerning the second term, we set ¥, = fSrAu -dM,,. Hence,
for any x =0

El f (9 “SX(A"(Z?’j?s’x)lz;;s,x:O—6u)du]

= E[f WMZZLT;;'XIW/”Z;;;.X'<K (An(zzby':;s'x) - 19u)12217;s,x:0du]
N ’ U
T

+E( f wuzz‘f’;xl,wuzza;;,x|2,<()t”(zz”_’j’s’x) = 9u)1 ypisx_odul.
N ’ U

The first term in the previous expression converges to 0 since A"(Z,’ bmsxy Zlisi—g CONVerges

weakly towards J. The second one goes to zero when x goes to 1nf1n1ty as wllZ“ S|, is in
s,h([R)' We have proved the convergence (27). Hence, the convergence (26) holds weakly in
L2(R).

We deduce that fST H%"(u, X;;*)du converges weakly to fOT H“’*(Zlf;s’x,Zg;s’x,q‘)u)du in L2(R)
along the subsequence (7x) k>0.

Step 2d. Convergence to the solution of a bang-bang BSDE

If we write the first BSDE in the system (J") in a forward way, we get

Yansx Yansx fT Ha'n(u,X;’—x)du+fT Zlil,n;s,deu'

N N

We recall that we write n instead of nj so that all the convergence that we obtain has to be
understood up to a subsequence. Thus, from the almost sure and {th([R) convergence of
(Y5 ,50 to Y4 together with

T T
f Zymst M, — f Z>* - dMy, in L2 (),
s n—+oo J¢
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3. Existence of a Nash equilibrium

and the convergence of the generator H*" proved in Step 2c, we deduce that
. . T . b. T .
Yt = Ys“’s’x—f H“’*(fo’s’x,Zu’s’x,ﬂu)du+f Zy > dMy, P - a.s.
N N

This result being true for any stopping time 7 € [s, h], the processes on both sides are
indistinguishable and we have

u u
P-a.s. V5% = y&H5* - f HY* (255, ZPs% 9,)dr + [ Z5*dM,, Yue [s, hl.

N N

Finally we have
. h . . h .
P-a.s Y55 = g“(Xfl'x) +f H“'*(Zr“’s’x,Zf"s'x,ﬁr)dr—f ZE5*AM,, Yue s, hl.
u u

with Y#5¥ ¢ 5”32,1 (R) and Z%5* € stzh([Rz). We have the same result by considering the index
b and by denoting 6,, the almost sure limit of (/1"(Z{f'";s’x)IZ;z,n;s,x:O)nZg which holds also in
stz , by the dominated convergence theorem.

Step 3: Nash equilibrium and conclusion.

We have seen in the previous step that we can build 9 and 6, which are functions of (, NL‘Z,NS)
ensuring the existence of a solution a solution (Y%, b, za zb) e (yszh (R))?2 x (J(,”Szh(lRQZ))2 to
the following coupled BSDE (by taking s = 0),

{ ~dY#= H**(ZZ,Z5,9,) - Z¢-dM,, Y/ = g*(x"") 28

—dylt= Hb*(z8,7zb,0.,)-Z0-dM,, V) = gb(x}?).

We could rely this BSDE to the system (S) and use Proposition 1. However, we are not able to
prove the continuous differentiability of the functions V' with respect to the time variable. It
is why we use the theory of BSDEs similarly to [HMI14] with the proposition below to conclude.

Proposition 2 (Extension of Theorems 2.5 and 2.6 in [HM14|). There exist a pair of deterministic
functions V., VP and some adapted processes 9 and 0 with values in [A_,Ay] such that

* BSDE (28) admits a solution (Y%, Y?, 2%, ZP) € (S} R))? x (F2(R?))?,

o V% and V? are two deterministic measurable functions with polynomial growth from [0, h] x
R? to R such that P—as, Vu<h, Y =V*u,X,) and Y = VP (u, X,).

o The pair of controls (A (Z1,0,), AZ (ij, 9u) u<t defined by (L) where ) and 0 are obtained as
an almost sure (up to a subsequence) and €7 (R?) limits of)t"(ZLlZ’")lzgzo and A" (Z;")1 za—¢
respectively is a bang-bang type Nash equilibrium point of the non zero-sum stochastic
differential game (15).

Proof. Properties 1. and 2. are direct consequences of the proof made in Step 2. Property
3. is obtained by adapting the proof of Proposition 2.4 in [HMI14] to the jump case, with
minimizations instead of maximizations. O
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VII. Optimal auction duration: A price formation viewpoint

Hence, Step 1 provides that the system (S™) admits a unique viscosity solution given by the
unique solution of (J™) which approaches the solution of (28) so that A"(lez’n)lzgz() and
AN (Zy™)1 za—o converge almost surely up to a subsequence (and in fact in Jt,”]g(le)) to a Nash
equilibrium for the game (15) by using Proposition 2. This concludes the proof of Theorem 3.

3.3 Proof of Corollary 1 and numerical method

In Theorem 3 we only get convergence results up to a subsequence. However numerically
we observe that the sequence (V") >0 converges for i = a or b. Therefore to approach the
solution of the system (S) we solve the approached system (S") for n large. To implement the
numerical method we need to bound the domain. In practice this means that there is only a
limited number of orders in auctions. Thus we consider the new system

dsV "+ H*"(DJve", Dvan, D2vhm) =0, se (0, h), (@, f) €10,..., QI
V& (h,a,B) = g%a,p),
o, vbn 4 gbnpQybn pQybn plyanyy —q se(0,h), (a,B) € 0,...,Q}2,
Vb’"(h,a,ﬁ) =g’(a,B),

(SB)

on the domain [0, k] x {0,...,Q}>. The operators (DaQ,DS) are defined similarly to (Dg, D)
with the following boundary conditions

DV (s,Q,m) =0 and D2V (s,n,Q) =0 for any (s,n,m) € [0, h] x 0,..., Q}*.

Interpreting (Sp) as an ordinary differential equation in RQ+D* according to Cauchy-Lipschitz

Theorem we have existence of a solution (Vg’n, Vé]’") for the system (Sg) which is unique.

Remember that in our model the auction starts at time 7 = inf{s > 0 s.t. N + Nf > 0}.
Consequently market takers optimize their behavior by controlling the processes (N, N7, ).
Now remark that

2 _ nja a b b b a
I1,'+h - NT+h(NT+h - Nr+h) + Nr+h(Nr+h - Nr+h)'

Consequently, the symmetry of the problem with respect to a and b leads to
E[%,,] =P(NY=1)(V%0,1,0)+ V(0,1,00) + P(N? = 1)(V*(0,0,1) + V¥ (0,0, 1)).

Now we assume that market takers controls their intensities using a pair of Nash Equilibrium
controls (A;,1) obtained in Theorem 3 as limit of the smoothed problem. According to the
first point of Theorem 3 and since V%(0,0,1) = V?(0,1,0) and V?(0,0,1) = V4(0,1,0), we get
Corollary 1 so that

ELf;1= lim V*"(0,1,0)+V""(0,1,0)= V*(0,1,0) + V"(0,1,0).

Let V%" (resp. V") be defined as the backward form of the solutions V®" (resp. V>") of
(8™), more precisely

Vin(es,- )= Vil (h—s,-,), s€l0,h], for i€ {a, b}.
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4. Model extension: Market makers can cancel their limit orders

In the same way, we denote by (Vg n Vé’ ™y the backward versions of the solution (V“’n V(g’n)

of (S ). The functions (V“ . Vb ') are computed by solving the backward system (S ).
Finally note that

E[f) = lim V" (h, 1,00+ V""(1,1,0) = V5" (h,1,0) + V5" (R, 1,0).

Hence we use the quantity Va "(h,1,0) + VQb’"(h, 1,0) for n =1000 and Q = 100 to approach

more accurately [E[IZ]

4 Model extension: Market makers can cancel their limit orders

We can extend our model and allow market makers to revise their position before the auction
clearing by cancelling their limit orders. Formally a market maker arrived at time 7 < Tl?l will
maintain its position until the auction clearing at time ¢ with a probability 6(f — T?l), where 0
is a [0,1]-valued decreasing function such that 8(0) = 1. Hence, the number of market makers
present at the i — th auction clearing is

mm
cl
1
Npa =Npa, with No= 3 1y g ey,

Ti71 mm
j= N +1
l 1

T

where (X}) j>0 is a sequence of i.i.d. random variables with uniform law on [0,1]. We can show

that during auction time (Ng)o<s<n = (N.

o, Js=0 has the same law than an inhomogeneous
1

Poisson process with intensity

A(S) = ul(t—ys).
Moreover we still have an explicit formula for E.

S

) +00 t my; t
E™Mid(py = (l—e_m”—v )_lthf ve_"t((az—+02)e_mff ¢ ds+02—(1—e_mf))dt
v+ n ’6 0 s I3

and
- [E[If"hh] v +oo m ] rSet—1
E(h) =Emld(h)+1—(1—e_mh—)_lthf ve‘m’e_m‘f —f dudsdt
K2 V+u h o sJo u

with

t
mtzf uo(s)ds.
0
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VII. Optimal auction duration: A price formation viewpoint

5 Proof of Lemma 1

Consider for any s> Tl , X5 = (P —Ps)2 We show that (Xj)

with renewal times given by (Tfl)izl.

¢>7cl 1S @ regenerative process
1

Consider Tl?l <s< Tffrl we have

i,mm 1 mm

—cl —= 1 il Ii
PS —Ps= Ni,mm kX:: (PTfl _PTﬁ +7 ’mm) + Ng Z,l 8kt KNt mm’ (29)
According to Assumption 1 the process (N;’ ,I!) ;>0 is independent from %, o with same

law as (N/"™,I;);>0. Same results holds for (P,c ,,— P.ct )= and (P; — P())t>0 smce Pisa
] . i-1 i-1
Brownian motion. Consequently N l’imm, Ii,— and (P,ﬁ 1”_pr£ 1)1‘20 are independent from

(XS)KTLI with same law as N”C’lm, ITLI and (P;— Py) 0.

Thus according to (29) and since X is piecewise continuous with jump at times (TCI),'>1, for

any TCI <s<71¢ ., X, is independent of (X;),_ .« and has the same distribution than X

+17 $<T;

Thus X is regenerative with renewal times equal to (7¢ : Biss1

Thus according to Theorem 3.1 Chap VI in [Asm08] we have the almost sure convergence

Tgl
fixds ELJ; i Xsds]
t t—+oo [E[TZ _Tll]
Elrs’ ~ 7 E[X, )
l l
Elr5' —7{']
= ElXa] = E[(Ppo - PCIZ) 1.

Thus we get the stated result.
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Titre : Quelques aspects du rble central de la microstructure des marchés financiers : volatilité, exécution

optimale et organisation des marchés

Mots clés : rough volatility, optimal control, market design, market microstructure

Résumé : Cette thése est organisée en trois parties. Dans
la premiere on examine les relations entre la dynamique
microscopique et macroscopique du marché en se concentrant
sur les propriétés de la volatilité. Dans la deuxiéme partie
on s’intéresse au contrdle optimal stochastique de processus
ponctuels. Finalement dans la troisieme partie on étudie deux
problématiques de market design. On commence cette these
par I'étude des liens entre le principe d’absence d’opportunité
d’arbitrage et lirrégularité de la volatilité. A I'aide d’'une méthode
de changement d’échelle on montre que 'on peut effectivement
connecter ces deux notions par I'analyse du market impact des
métaordres. Plus précisément on modélise le flux des ordres
marchés en utilisant des procesus de Hawkes linéaires. Puis
on montre que le principe d’absence d’opportunité d’arbitrage
ainsi que l'existence d'un market impact non trivial impliquent
que la volatilité est rugueuse et plus précisément qu’elle suit un
modeéle rough Heston. On examine ensuite une classe de modeles
microscopiques ou le flux d’ordre est un processus de Hawkes
quadratique. Lobjectif est d’étendre le modéle rough Heston a
des modeles continus permettant de reproduire I'effet Zumbach.
Finalement on utilise un de ces modeéles, le modéle rough Heston
quadratique, pour la calibration jointe des nappes de volatilité du
SPX et du VIX. Motivé par I'usage intensif de processus ponctuels
dans la premiére partie, on s'intéresse dans la deuxiéme au
contrdle stochastique de processus ponctuels. Notre objectif est de
fournir des résultats théoriques en vue d’applications en finance.
On commence par considérer le cas du contréle de processus de
Hawkes. On prouve I'existence d’'une solution puis I'on propose
une méthode permettant d’appliquer ce contréle en pratique. On
examine ensuite les limites d’échelles de problémes de contrdles

stochastiques dans le cadre de modéles de dynamique de
population. Plus exactement on considére une suite de modeles
de dynamique d’'une population discréte qui converge vers un
modele pour une population continue. Pour chacun des modéeles
on considére un probléme de contréle. On prouve que la suite
des contrbles optimaux associés aux modeles discrets converge
vers le controle optimal associé au modele continu. Ce résultat
repose sur la continuité, par rapport a différents paramétres, de
la solution d'une équation différentielle schostatique rétrograde.
Dans la derniere partie on s’intéresse a deux problematiques de
market design. On examine d’abord la question de 'organisation
d’un marché liquide de produits dérivés. En se concentrant sur
un marché d'options, on propose une méthode en deux étapes
pouvant facilement étre appliquée en pratique. La premiere étape
consiste a choisir les options qui seront listées sur le marché.
Pour cela on utilise un algorithme de quantification qui permet de
sélectionner les options les plus demandées par les investisseurs.
On propose ensuite une méthode d’incitation tarifaire visant a
encourager les market makers a proposer des prix attractifs. On
formalise ce probléme comme un probléme de type principal-agent
que l'on résoud explicitement. Finalement, on cherche la durée
optimale d’'une enchere pour les marchés organisés en enchéres
séquentielles, le cas de la durée nulle correspondant a celui d’'une
double enchere continue. On utilise un modele ou les market takers
sont en compétition et on considére que la durée optimale est
celle correspondant au processus de découverte du prix le plus
efficace. Aprés avoir prouvé I'existence d’un équilibre de Nash pour
la compétition entre les market takers, on applique nos résultats
sur des données de marchés. Pour la plupart des actifs, la durée
optimale se trouve entre 2 et 10 minutes.

Title : Some aspects of the central role of financial markets microstructure : volatility dynamics, optimal trading

and market design

Keywords : volatilité rugueuse, contréle optimal, organisation des marchés, microstructure des marchés

Abstract : This thesis is made of three parts. In the first one,
we study the connections between the dynamics of the market
at the microscopic and macroscopic scales, with a focus on the
properties of the volatility. In the second part we deal with optimal
control for point processes. Finally in the third part we study two
questions of market design. We begin this thesis with studying
the links between the no-arbitrage principle and the (ir)regularity
of volatility. Using a microscopic to macroscopic approach, we
show that we can connect those two notions through the market
impact of metaorders. We model the market order flow using
linear Hawkes processes and show that the no-arbitrage principle
together with the existence of a non-trivial market impact imply
that the volatility process has to be rough, more precisely a rough
Heston model. Then we study a class of microscopic models
where order flows are driven by quadratic Hawkes processes. The
objective is to extend the rough Heston model building continuous
models that reproduce the feedback of price trends on volatility:
the so-called Zumbach effect. We show that using appropriate
scaling procedures the microscopic models converge towards price
dynamics where volatility is rough and that reproduce the Zumbach
effect. Finally we use one of those models, the quadratic rough
Heston model, to solve the longstanding problem of joint calibration
of SPX and VIX options smiles. Motivated by the extensive use
of point processes in the first part of our work we focus in the
second part on stochastic control for point processes. Our aim
is to provide theoretical guarantees for applications in finance.
We begin with considering a general stochastic control problem
driven by Hawkes processes. We prove the existence of a solution
and more importantly provide a method to implement the optimal

control in practice. Then we study the scaling limits of solutions
to stochastic control problems in the framework of population
modeling. More precisely we consider a sequence of models for
the dynamics of a discrete population converging to a model with
continuous population. For each model we consider a stochastic
control problem. We prove that the sequence of optimal controls
associated to the discrete models converges towards the optimal
control associated to the continuous model. This result relies on
the continuity of the solution to a backward stochastic differential
equation with respect to the driving martingale and terminal value.
In the last part we address two questions of market design. We are
first interested in designing a liquid electronic market of derivatives.
We focus on options and propose a two steps method that can
be easily applied in practice. The first step is to select the listed
options. For this we use a quantization algorithm enabling us to
pick the options capturing most of market demand. The second
step is to design a make-take fees policy for market makers to
incentivize them to set attractive quotes. We formalize this issue
as a principal agent problem that we explicitly solve. Finally we look
for the optimal auction duration that should be used on a market
organized in sequential auctions, the case of auctions with 0 second
duration corresponding to the continuous double auctions situation.
To do so, we use an agent based model where market takers are
competing. We consider that the optimal auction duration is the one
leading to the best quality of price formation process. After proving
existence of a Nash equilibrium for the competition between market
takers we apply our results on stocks market data. We find that for
most of the stocks, the optimal auction duration lies between 2 and
10 minutes.
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