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This thesis describes an approach for online calibration of stereo cameras on embedded systems.

It introduces a new functionality for cyber physical systems by measuring the quality of service of the calibration. Thus, the manuscript proposes a dynamic monitoring and calculation of the internal sensor parameters required for many computer vision tasks. The method improves both security and system eciency using stereo cameras. It prolongs the life of the devices thanks to this self-repair capability, which increases autonomy. Systems such as mobile robots or smart glasses in particular can directly benet from this technique.

The stereo camera is a sensor capable of providing a wide spectrum of data. Beforehand, this sensor must be extrinsically calibrated, i.e. the relative positions of the two cameras must be determined.. However, camera extrinsic calibration can change over time due to interactions with the external environment for example (shocks, vibrations...). Thus, a recalibration operation allow correcting these eects. Indeed, misunderstood data can lead to errors and malfunction of applications. In order to counter such a scenario, the system must have an internal mechanism, a quality of service, to decide whether the current parameters are correct and/or calculate new ones, if necessary.

The approach proposed in this thesis is a self-calibration method based on the use of data coming only from the observed scene, without controlled models. First of all, we consider calibration as a system process running in the background and having to run continuously in real time. This internal calibration is not the main task of the system, but the procedure on which high-level applications rely.

For this reason, system constraints severely limit the algorithm in terms of complexity, memory and time. The proposed calibration method requires few resources and uses standard data from computer vision applications, so it is hidden within the application pipeline.

In this manuscript, we present many discussions to topics related to the online stereo calibration on embedded systems, such as problems on the extraction of robust points of interest, the calculation of the scale factor, hardware implementation aspects, high-level applications requiring this approach, etc. Finally, this thesis describes and explains a methodology for the building of a new type of dataset to represent the change of the camera position to validate the approach. The manuscript also explains the dierent work environments used in the realization of the datasets and the camera calibration procedure. In addition, it presents the rst prototype of a smart helmet, on which the proposed selfcalibration service is dynamically executed. Finally, this thesis characterizes the real-time calibration on an embedded ARM Cortex A7 processor.

Résumé

Résumé : cette thèse décrit une approche de calibration en ligne des caméras stéréo pour des systèmes embarqués. Le manuscrit introduit une nouvelle mesure de la qualité du service de cette fonctionnalité dans les systèmes cyber physiques. Ainsi, le suivi et le calcul des paramètres internes du capteur (requis pour de nombreuses tâches de vision par ordinateur) est réalisé dynamiquement.

La méthode permet à la fois d'augmenter la sécurité et d'améliorer les performances des systèmes utilisant des caméras stéréo. Elle prolonge la durée de vie des appareils grâce à cette procédure d'autoréparation, et peut accroître l'autonomie. Des systèmes tels que les robots mobiles ou les lunettes intelligentes en particulier peuvent directement bénécier de cette technique.

La caméra stéréo est un capteur capable de fournir un large spectre de données. Au préalable, le capteur doit être calibrée extrinsèquement, c'est à dire que les positions relatives des deux caméras doivent être déterminées. Cependant, cette calibration extrinsèque peut varier au cours du temps à cause d'interactions avec l'environnement extérieur par exemple (chocs, vibrations. . . ). Ainsi, une opération de recalibration permet de corriger ces eets. En eet, des données mal comprises peuvent entraîner des erreurs et le mauvais fonctionnement des applications. An de contrer un tel scénario, le système doit disposer d'un mécanisme interne, la qualité des services, pour décider si les paramètres actuels sont corrects et/ou en calculer des nouveaux, si nécessaire. L'approche proposée dans cette thèse est une méthode d'auto-calibration basée sur l'utilisation de données issues uniquement de la scène observée (sans modèles contrôlés). Tout d'abord, nous considérons la calibration comme un processus système s'exécutant en arrière-plan devant fonctionner en continu et en temps réel. Cette calibration interne n'est pas la tâche principale du système, mais la procédure sur laquelle s'appuient les applications de haut niveau. Pour cette raison, les contraintes systèmes limitent considérablement l'algorithme en termes de complexité, de mémoire et de temps. La méthode de calibration proposée nécessite peu de ressources et utilise des données standards provenant d'applications de vision par ordinateur, de sorte qu'elle est masquée à l'intérieur du pipeline applicatif.

Dans ce manuscrit, de nombreuses discussions sont consacrées aux sujets liés à la calibration de caméras en ligne pour des systèmes embarqués, tels que des problématiques sur l'extraction de points d'intérêts robustes et au calcul du facteur d'échelle, les aspects d'implémentation matérielle, les applications de haut niveau nécessitant cette approche, etc. Enn, cette thèse décrit et explique une méthodologie pour la constitution d'un nouveau type d'ensemble de données, permettant de représenter un changement de position d'une caméra, pour valider l'approche. Le manuscrit explique également les diérents environnements de travail utilisés dans la réalisation des jeux de données et la procédure de calibration de la caméra. De plus, il présente un premier prototype de casque intelligent, sur lequel s'exécute dynamiquement le service d'auto-calibration proposé. Enn, une caractérisation en temps réel sur un processeur embarqué ARM Cortex A7 est réalisée.
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Chapter 1

Background and motivation

Research is what I am doing when I do not know what I am doing.

Wernher von Braun

The rst chapter describes the guiding motivation and each of the three main contexts of this work. Then it briey explains goals and challenges of each context. Next paragraphs in this section present the global approach to real-time stereo camera calibration on special devices. The chapter ends with a description of the structure and content of the entire manuscript. After this chapter, the reader should understand the main elements, problems and motivation of this thesis.

Objective :

Identify the main features of online stereo camera calibration applications in the embedded system and Cyber Physical System contexts. Presents the main motivation in the specic context of this work.

To do this, we :

• study basic concepts of the cyber physical systems.

• study stereo camera sensors, its parameters and limitations.

• study applications and hardware setups, where stereo camera calibration is required.

• present targeted system together with the application.

Cyber Physical Systems

In the twentieth century, the microcomputer evolution began and it continues. This sentence describes the rapid development of microprocessor-based computers. In the last fty years, it completely changed our way of thinking, working conditions, communications, education systems and almost all aspects of our life. Despite many improvements, humans have not rested on our laurels. The Moore's law [START_REF] Moore | Moore's law[END_REF] is a perfect proof of such sentence. This observation says that the number of transistors in a dense integrated circuit doubles every two years (see Fig 1.16a). However, scientists expect that the law have its limits. Microprocessors have almost reached their limit regarding energy eciency, according to [START_REF] Hadi Esmaeilzadeh | Dark silicon and the end of multicore scaling[END_REF] and [START_REF] Courtland | Transistors could stop shrinking in[END_REF]. The manufacture process in Semiconductor IC device fabrication is now (in 2018) 7 nm and it will reach 5 nm in 2020. CMOS scaling does not provide longer eciency gains proportional to the increase in transistor density [3].

Nowadays, academic research and industrial work focuses more on the design of specialized hardware accelerators. It results in the recent development tendency, that those very popular personal computers (PC) used by us every day are becoming less and less important in our daily lives. The dedicated systems, which are called the Cyber Physical System (CPS) [2] have taken their role. Following chapter presents some of their aspects. One of the key results of CPS concept is that these systems are heterogeneous. Instead of one type of processors or core, the system achieves better performance not only by adding the same type of processor, but also by adding dierent processors that are dedicated to specic tasks. It is one of the main strategies for creating modern CPS [START_REF] Shan | Heterogeneous processing: A strategy for augmenting moore's law[END_REF].

CPS connects the physical world, through sensors or actuators, with the virtual world [START_REF] Lee | Introduction to Embedded Systems A Cyber Physical Systems Approach[END_REF]. System typically consists of various components working together to perform missions and activities. Physical elements through a network or other communication technology interact with the environment [START_REF] Gunes | A survey on concepts, applications, and challenges in cyber-physical systems[END_REF].

An embedded system executes the programs and device's logic on dierent processors architecture due to heterogeneous technology. Fig 1 .1 shows the standard CPS scheme.

Nowadays, in dierent areas such as: automotive, avionics systems, intelligent and smart buildings, Internet of Things (IOT), medical segment, automated and robotic manufacturing, devices to augmented reality and many others are based on the CPS. They can operate together on a large-scale system for many various purposes covering a wide range of applications. For this reason, they are becoming an important part of our lives. These systems capture more and more responsibilities in many areas of knowledge.

Their success and wide range of application are the result of signicant price reduction compared to electronic systems a few years earlier. Today, some of the CPS performs specic tasks in real time, without the need for huge and powerful motherboards or cloud computing. Today, one of the main challenges for scientists and engineers is to create a modern CPS more independent, with a higher degree of autonomy. These systems should be automatic and sometimes even autonomous to allow mobility and portability, also to work in any environment in real time. To achieve these objectives, those systems must to be more intelligent. They have to increase perception, sense and better interact with the world around them. The acquisition, analyze and understanding of the environment must be properly satised. In order to carry mission, the CPS must monitor and control physical processes in the real time. Therefore, it is essential, that all components of the system operate as fast and accurately as possible to realize the task together.

Sensors in Cyber Physical Systems

There are many dierent approaches to increasing the ability to understand the world for the CPS.

Many sensors designed for specic measurements can do this. All of them have some advantages and disadvantages. Regardless of their intended use, they have specic limitations and operating conditions. Therefore, there is no ideal sensor and solution. In most cases, it strongly depends on the application and devices. Certainly, the most popular methods provide a large number of sensors with suciently strong processing motherboard. Then CPS is usually continuously power, this solution works well.

However, customers must take into account higher price of such a system. Moreover, it does not work for portable systems, which base on the smallest possible batteries. In addition, data fusion between multiple sensors requires good calibration. It is usually a complex and resources-intensive process.

This subsection presents some of most interesting and popular sensors currently used in the CPS for localization and understanding the environment.

Inertial measurement unit knows as an IMU. An electronic device measures linear and angular motion, usually with a triad of gyroscopes and accelerometers [START_REF] Corke | An introduction to inertial and visual sensing[END_REF]. It is presented is in Fig 1 .2b and 1.2c. This commonly used sensor to collects data, which allows to position tracking by dead reckoning method [START_REF] Xu | An improved dead reckoning method for mobile robot with redundant odometry information[END_REF], thus integrating angular velocity and acceleration in the sensor/body frame. Unfortunately, the measurement error of such sensor is signicant and accumulated over time. Therefore, in the CPS, the GPS usually supports the IMU in order to correct the drift error. Depending on the requirements, especially such as precision, specic application uses dierent types of IMU. The price of a tool heavily depends on its precision and purpose. IMU may cost from few elike those one which are mounted in mobile phones to hundreds efor sensors in airplanes. LIDAR is a sensor widely used in many devices and robots, to understand the local environment [START_REF]Fintan corrigan, 12 top lidar sensors for uavs and so many great uses dronezon[END_REF].

It measures distance to the target, by illuminating scene with pulsating laser light and by measuring the time from reected impulses, Fig 1.3b shows this principle. It emits light in the near-infrared, visible or ultraviolet spectrum as opposed to radar, which operates on the same principles but in the microwave domain. The received impulses are usually converted and interpreted as a 3D point cloud (Fig. 1.3c). Dierent precision and quality of measurements allow using this type of sensors in many elds such as: geodesy, archaeology, geophysics, robotics where it helps to detect and avoid obstacles [START_REF] Cole | Using laser range data for 3d slam in outdoor environments[END_REF]. The main disadvantage and the problem of the LIDAR is the computational load. It has to detect all points from the scene, optimize their position through time of light technique. If it is implemented using ecient hardware, it can work in the real time. This work [START_REF] Ruo | New infrared time of-ight measurement sensors for robotic platform[END_REF] proves that a laptop equipped with 2.5 GHz quad cores and 6 GB memory, can handle necessary processing data, with some optimization. They propose to use a three-dimensional grid, which signicantly reduced the number of points detected [START_REF] Zhang | Loam: Lidar odometry and mapping in real-time[END_REF]. The various purposes of the sensors require dierent operating parameters, so there are various types of LIDAR available on the market. For example, the MRS6000 from SICK has an operating range of 0.5 m to 200 m. Its weight is a 2.2 kg, and require 20 W of power consumption. The URG-04LN HOKUYO operates at a distance of 0.6 cm to 40 cm and requires only 800 mA for full operation; the weight of this sensor is much smaller than the previous example and is about 0.2 kg. Satellite navigation is a system that uses an articial satellites with radio waves to provide an autonomous principle of Geo-spatial positioning [START_REF] Hegarty | Evolution of the global navigation satellitesystem (gnss)[END_REF], as it is shown in Figure 1.4b. Based on the radio signal, it is possible to estimate the position given in latitude and longitude with an error between 6-12 m on the Earth's surface [START_REF](ngs). Frequently Asked Questions FAQ icon[END_REF]. This position can be placed on the map, as it is shown in Fig 1 .4c. Moreover, the continuous position of motion can be determined, wherever the signal is available. The most popular system is the Global Positioning System (GPS), but there are also many other alternatives, such as Galileo, Baid, A-GPS or GLONAS [START_REF] Ahammed | Lica: Robust localization using cluster analysis to improve gps coordinates[END_REF]. GPS signal receiver (see Odometer is a method of measuring the distance, through translation determined by the position of the sensor or agent in relation to its initial position in time. It is not a basic sensor, but a method that uses impulses from actuators to estimate motion data [START_REF] Bellis | who invented the odometer?[END_REF]. For robot platform on wheels or legs, a mileage counter or rotary encoders can be an interesting and necessary source of data, for estimating the current and past locations. This allows estimating the relative position and the distance traveled from the starting point of your journey. Unfortunately, the odometer suers heavily with precision problems. The wheels used to slip and slide on the oor, so the method accumulates the measurement error over time. On the other hand, the main advantage is cost. It does not require any special and advanced mechanical or electronic components. It can only process the pulse received on the wheel and send it to the microcomputer. 

Cameras in Cyber Physical Systems

By interpreting the images provided by the camera, it is possible to obtain all the information necessary for understanding the surrounding environment and performing multiple missions. Object detection and recognition, 3D mapping and location, navigation and many other tasks can be performed using camera's data. Today, these are widely used in many applications and CPS [START_REF] Fularz | The architecture of an embedded smart camera for intelligent inspection and surveillance[END_REF]. Many heterogeneous single-boards computer, such as the Raspberry Pi (RPi) (it is shown in Fig 1 .6c) are already equipped with a camera and able to do simple image processing in the real time [START_REF] Roland | Real-time multiple objects tracking on raspberry-pi-based smart embedded camera[END_REF].

Active camera is usually complex system, equipped with many other sensors, where camera is only one of them. The Microsoft Kinect V1 & V2 [START_REF]Kinect for windows features microsoft[END_REF] or Asus Xtion Pro [5] are an examples of the active camera sensor systems with heterogeneous architecture. Another common connection of sensors is a combination between LIDAR and camera [57] [50]. It is highly dicult to estimate the distances in the real environment by a single camera [START_REF] Hann | Distance and velocity estimation using optical ow from a monocular camera[END_REF]. Therefore, the combination with LIDAR is suitable for this and used in many robots and mobile vehicles that require navigation. Another increasingly popular method of active vision is a combination of standard camera with infrared camera citeAlhwarin2014.

For example, the smartphone may use it to improve facial detection and increase camera parameter settings [158] [91]. There are many dierent camera models on the market adapted to work with dierent sensors due to dierent applications associated with various restrictions and requirements.

Active image processing and storage can take place on small, integrated circuits, in many devices such as smartphones. The size of powerful CMOS cameras (see This sensor imitates a biological process and creates a vision system known as binocular (stereopsis) vision [START_REF] Blake | Binocular vision[END_REF]. It can create a depth map, which is a three-dimensional image of the surrounding environment, obtained from a two-dimensional view, done from two vantage points of the cameras. The depth map helps to recognize and identify an object from the images, it allows compute a distance in the image, etc. Of course, it has its price, larger amount of data requires more data processing, in order to interpret information from images [START_REF] Hakala | Why 3d cameras are not popular: A qualitative user study on stereoscopic photography acceptance[END_REF]. However, stereo cameras are becoming more and more popular and promising sensors, due to the extremely large amount of data, they can provide [START_REF] Li | Depth sensors are the key to unlocking next level computer vision applications[END_REF]. Formula presented in 1.1 shows, that camera's parameters limit the depth extracted from images. Focal length, pixel specication and baseline (refer to real distance between two cameras) impact on measured data.

As depth becomes greater, disparity tends to zero. The disparity and size of pixel represent the eld of view. It has a signicant impact on depth calculation, but higher resolution cameras compensate it [START_REF] Khoshelham | Accuracy and resolution of kinect depth data for indoor mapping applications[END_REF].

depth = baseline * focal length pixel disparity * pixel size (1.1)
In traditional approaches of modern passive stereo camera systems (stereo cameras without additional sensor), the whole construction is usually mounted into one rigid and stable cage. The biggest disadvantages of this solution are that the baseline between the two cameras is strict, construction is heavy and big which does not t many of applications. On the other hand, such a design prevents the camera from movement. This note is extremely important, because it assures that once determined camera's parameters (focal length, position etc. see at 1.2.1), are constant and does not change during any mission, where passive stereo vision is used.

There are some of passive stereo vision sensors available in the market. Another interesting stereo sensor is the Blaxtair product is shown in . Its purpose is to distinguish a person from another obstacle in real time. Once detected, warn the operator in case of danger up to 6 meters. The sensor is mounted on a construction vehicle that operates in harsh outdoor conditions.

There are more passive stereo sensor in the market like 1.7a but all of them are limited due to xed and constant position of cameras.

The infrared radiation camera (IR) is an active vision sensor independent of lighting conditions. 

Conclusion

IMU, LIDAR, GPS, odometry, cameras and other sensors can provide a wide range of valuable information. This is required to react and accomplish many missions, in a known or unknown environment.

However, higher amount of dierent sensors cause a complication in the CPS. More data from the sensors into the system requires more computing processing, consumes more time and resources [START_REF] James | Principles and techniques for sensor data fusion[END_REF] [47]. Dierent data spectrum provided by many sensors requires synchronization and calibration. This process is a challenging task, which requires many resources. In addition, as the number of sensors increases, the cost of the whole system growths proportionally. However, it is not always possible to place all sensors due to the constructions, maximal size, weight, required power supply energy, design etc. There are always specic scenario and device's requirements. For example, the size and energy required by LIDAR are signicant for some of the devices, like smartphones. In addition, the price of the sensor can be higher than the whole device. We conclude that, the use of sensors correlates and enforces the target devices and application. One of the main criteria in many aspects is price and simplicity, so the simplest and cheapest possible solutions are the most valued by industry and market.

The stereo camera is forward-looking sensor, which can provide enough data to understand and localize system in the surrounding world. It can eliminate and replace many other sensors. Obviously, it has some disadvantages, the biggest one is its standard design. Stereo camera sensor is in large, weight and rigid cage, which is usually very dicult to x and install. After assembly the cage and use the two parallel set of camera sensor can be susceptible to many dierent external factors or forces. Then, it requires a human intervention such us maintenance or repair which is complicated or sometimes impossible. From this reason, the sensor requires tough and robust construction, which can guarantee the stability. Those cameras cannot move and change it pose in respect to each other. This solution results in high price on the market. Finally, this consideration hides the underlying crucial stereo camera problem. That the camera's pose exposes to unexpected changes. It must be guarantee that it does not happened, in order to work properly. For this reason, our work has focused on one of the classic problems, in the eld of computer vision, which is online stereo camera calibration, in the specic CPS context. This is the subject of the next subsection.

1.2

Stereo camera calibration context

The calibration is a process that determines the relationship between the values of the measured quantity indicated by the measuring instrument and the corresponding values of physical quantities.

The calibration is extremely important and is required for many activities and tasks [START_REF] Jcgm | International vocabulary of metrology Basic and general concepts and associated terms (VIM)[END_REF]. Without this process, it is impossible to obtain a reference to actual values and correct interpretation of the results.

For the same reason, the cameras require calibration. The camera calibration is the process, which provides a multiple parameters that dene and relate to the specic characteristics of the camera [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF].

These are critical during extracting 3D information from 2D images, measure object size in global units, visual-odometer process, reconstruct a 3D scene and many applications in computer vision and robotics domain citeSong2013 [START_REF] Hemayed | A survey of camera self-calibration[END_REF]. 

Cameras parameters

Limitation of standard approach

The computer vision application requires all camera parameters in order to work properly. Because of this, many studies investigated the camera calibration process. It led to the fact that calibration procedures run in the manufacturing process of the cameras. Many of calibration methods are dedicated to monocular camera calibration, which allows user to nd only intrinsic camera parameters of one camera [START_REF] Zhang | Flexible camera calibration by viewing a plane from unknown orientations[END_REF] [118] [START_REF] Zhang | Camera calibration with one-dimensional objects[END_REF]. On the other hand, many stereo camera calibration methods try to estimate all the necessary, i.e. intrinsic (distortion) and extrinsic parameters. The most popular methods use classical and traditional approach [START_REF] Tsai | An ecient and accurate camera calibration technique for 3D machine vision[END_REF] [144] [START_REF] Sturm | On plane-based camera calibration: A general algorithm, singularities, applications[END_REF] [189] [START_REF] Rathnayaka | An ecient calibration method for a stereo camera system with heterogeneous lenses using an embedded checkerboard pattern[END_REF]. Those methods try to nd a known pattern or special calibration object with known size in the scene and link with the observed scene. camera. However, real scenarios and the impact of environment expose the sensor on unpredictable strong shocks, vibration etc. In that case, camera's position can change. Then in the classical approach, the user must send back the sensor to the manufacturer. There are usually specially trained employees, who uses the traditional method to calibrate, thus compute a new camera pose/parameters. This type of the oine camera calibration consumes a lot of time. It requires special patterns, knowledge, etc., which it is not always available. This kind of method is not practical and it is expensive. This is why researchers are trying to nd a new procedure, which allow realizing cheaper, easier and more general available camera calibration method.

Case of loosely attached cameras

The research subject in this work focuses on loosely mounted stereo cameras. Fig 1.11b shows the proposition of such type of sensor, where two cameras are not into a rigid cage. Many CPS such as smart glasses, vehicles or robot platform can benet from such easily mounted cameras. In this setup, unfavorable environmental conditions and forces exposes cameras to at any time. The mechanical vibration, impact of obstacles, large temperature uctuations, material tensile strength and many others exist in real life scenarios and may change camera's parameters. Then, during a long-term mission, the system cannot assume and guarantee that the position of stereo cameras does not change.

Many functions and applications require well-calibrated camera parameters. Therefore, the system must be able to verify the parameters of the calibration at any the time. The procedure should run from time to time or online during the whole mission. In a real environment, it is dicult to determine the period when calibrate the cameras. It is because an unexpected change in the position of the camera may occur unexpectedly. In this situation, when the cameras are loosely connected, continuous online camera calibration seems to be necessary. The existing traditional approaches cannot handle this challenge.

Many calibration methods without patterns appear in the last thirty years [START_REF] Heikkila | A four-step camera calibration procedure with implicit image correction[END_REF] [170] [182] [START_REF] Sturm | On plane-based camera calibration: A general algorithm, singularities, applications[END_REF].

The self-calibration knows also as camera auto-calibration method. They use only camera motion in a static environment [111] [159]. This group of methods aspires to be online, i.e. executes while the system is working. The methods do not require any special calibration object in the scene. They seem to be a good candidate for that type of sensor in order to, calculate continuously extrinsic camera parameters. In theory, it is possible to perform these methods anywhere, if there are not any special method's limitations [START_REF] Moutinho | Markerless online stereo calibration for a humanoid robot[END_REF]. Successively some of the methods try to analyze camera motion in a stable environment, using Krupp equations, epipolar lines [START_REF] Faugeras | Camera self-calibration: Theory and experiments, chapter Camera self-calibration: Theory and experiments[END_REF], absolute dual quadric and its projections.

Unfortunately, some of them only calculate the intrinsic and distortion parameters of the camera, thus are dedicated for monocular camera.

Conclusion

Many computer vision processes requires knowledge of intrinsic and extrinsic camera parameters. They are very important and critical for many dierent applications, because of this they must update.

The intrinsic parameters that denes internal parameters of the camera can be set only once at the beginning. In this work, we determine that they will not change because you can be sure that the focal length of the camera is xed. Unfortunately, it is not case for the extrinsic camera parameters. In some system, where cameras are loosely connected and attached to devices, see Fig 1 .11b the camera's positions and orientations can change due to initial position. Then, the continuously extrinsic camera parameter estimation is required.

As presented in section 1.2, there are many dierent approaches to solve one of the classic problem in the computer vision -camera calibration. Unfortunately, the best, most practical and precise method does not exist. There are many of them dedicated to dierent specic CPS, application, environment or to a special scenario. In second chapter, we present a division into several groups of methods, which we explore and describe with the details. This type of improvement has a positive impact on many aspects of the whole systems. It increases ability to perform operations for a long time without errors. Such systems equipped with this functionality will avoid returning to manufacturing when the recalibration process is required. This is a requirement improvement necessary to obtain the new functionalities and condence in CPS. It will allow cameras mount without in a heavy rigid frame. The online calibration is the key to ecient and more accurate operation of the future equipment.

Application and devices context

The motivation of this work is to nd one, most universal calibration method, that can be done online on specic CPS in an independent environment. The best stereo calibration method does not exist.

Engineers strongly adjust many dierent procedures to the specic environment's and the application's requirements. In this section presents the analysis of dierent types of applications and missions.

Environment

The short study related to dierent types of environment is a very important context for the analysis of applications. We divide the main environmental categories in four main groups: known, unknown, static and dynamic areas.

Missions carried out in a static and known environment are less complicated because they are more predictable. The easiest scenarios to analyze are those where missions always take place in the same known locations. For example: devices on production lines or robotic mobile platform for warehouse can operate on the same path or repeat the action in closed, limited areas, in such situations, the environment can be upgraded, so that a calibration pattern is always available. This is perfect scenario for the traditional calibration method. This approach to solve the problem of stereo calibration is appropriate and often used. However, the system requires this specic and adapted environment.

Therefore, it is not suitable for all type of CPS that may work in unprepared or random, undened environments.

The systems, which realize mission in a dynamic and unknown environment, are much more complex. It is hard to predict and test all possible behaviors. The scenarios cannot rely on proper scene construction because it is impossible to ensure that some specic elements are available to use at any time. In a dynamic scenario, many dierent conditions can occur when using the devices. The system must be prepared and capable of reacting, so it must be more versatile and independent. Therefore, it may have a wider range of applications. Advanced autonomous systems should be able to work in a dynamic and unknown environment, without prepared a scene.

Of course, all the time several special conditions must be satised in each environment, in order to record correct images from cameras. The most important factor for a stereo sensor is sucient lighting, to make the camera work eciently. Night scenarios, or those with little light, require additional sensors to support camera data and in such case, the ability to dierentiate elements on stage is required. A situation in which the image is uniform and homogeneous for a long time is unacceptable. For example, if there is a perfect white wall without any elements in the whole camera's view, it is impossible to distinguish any information. Then, this kind of data from cameras is not sucient for any CPS mission.

The stereo camera calibration method without any limitations, except the sucient light and heterogeneous scenes is sought. It should have a possibility to run in any dynamic environment, i.e.

internal: in buildings, station, public transport and external in a city, forests, roads, etc. Fig 1 .12 presents how looks like a typical environment for camera calibration. [START_REF] Schmerler | Autosar shaping the future of a global standard[END_REF].

The 1rst models of vehicles equipped with a stereo camera sensor already appear in the automotive market [START_REF] Rao | Autonomous cars: Radar, lidar, stereo cameras[END_REF]. Usually the current stereo camera exists as one sensor (one box), which makes it impossible to get a wide base line between the cameras. The most common location of such a sensor is under the front mirrors on the windshield. Nowadays, this sensor provides only additional data to support more complex ADAS. Undoubtedly, car with motor can power all necessary electronics, which consumes a lot of energy, so the extra processor board does not complicate a system. The capacity and size of the whole car are sucient comparing to the heavy cage, stereo sensors. Moreover, the use of a large number of sensors and electronics is possible because the car is a unique type of system for which many people are willing to pay more than for other products. Health and comfort are highly valued. Thus, in such type of the system, it can be equipped with expensive stereo camera systems. It is signicant that the price of stereo camera in the comparison with the whole cost of a car (an engine, bodywork etc.) is negligible.

For these reasons, the automotive application is dierent from other CPS and the problem of the online stereo camera calibration is mostly overlooked because the cameras do not have the right to change their location in the expensive, rigid and complex stereo camera system. Nowadays ADAS try to propose a news solution, for example mount the cameras on the side mirrors. This solution increases a baseline between cameras, thus depth and eld of view. In such case, it is mandatory to look at the online camera calibration because this type of installation requires continuous monitoring of the camera's position, because the mirrors are movable.

Currently, the system is full of data from various sensors, dierent applications, etc., which can be used to calibrate stereo cameras. The odometer and IMU data provide an additional location information; this data overcomes the limitations of GPS/GNSStechnology, the dead reckoning. This data helps when satellite signals are not available e.g. in tunnels, parking garages. The calibration method could use the road infrastructure. Some methods can work with standardized sizes of road signs, pedestrian and route lines, etc. and try to use them as a traditional calibration pattern. Moreover, if camera are attached in mirrors to aid dierent drivers, the movement of this is limited due to its construction. Onboard there are many dierent sensors. These type of methods can calibrate stereo cameras in the car. However, all of them are limited to this specic application context. They are not relatively universal and not possible to perform in real time. At the TED conference Elon Musk said, Vision is the most critical sensor for the future autonomous driving system. Once you solve cameras for vision, autonomy is solved; if you don't solve vision, it's not solved [START_REF] Musk | What will the future look like? TED conference[END_REF]. These words suggest that the vision becomes more popular and stereo camera can be the sensor providing required data. Roomba 960 unlike to older generation robots does not use a random pattern to decide where to go. It uses information from the environment provided by camera and navigation algorithms [83] [134].

Vacuum mobile robots

Thanks for this data, the robot understands where it has already been, where to go along the straight lines and not to repeat the same cleaning area, if it is not necessary. Roomba can slow down the speed of movement in front of the obstacle. Fig 1 .14b shows application realized to create a map with detected objects such as a table, chairs, walls, etc. After making sure it has cleaned the entire surface, its navigation allows the robot to return to base and recharge the batteries.

Generally, customers do not want to spend a lot of money on consumer electronics devices. For popularization and more frequent use vacuum cleaning robot, it has to cost as less as it is possible.

Expensive, heavy and rigid stereo cameras are not a good candidate as a main sensor. However, two loosely connected cameras can be a good and optimal alternative. Due to the commercial scope of the robot, technical documentation is not available. Probably the precise environment mapping is a result of correct data fusion provided by the robot's wheel odometer, gyroscope, accelerometer, and camera.

In the future, the stereo camera can provide a wide sucient spectrum of data to the system. Thus, it can eliminate and replace other sensors and electronic equipment used in robot so far. The demanding customers require more precise and more complex vacuum robots for lower price. Two loosely attached stereo camera can reduce number of other sensors so minimize a price and increase perception of robot.

The last aspects that we analyzed in such context is an importance and priority of cleaning mission.

It is denitely dierent from ADAS. If the mission goes wrong, there is no accident involving casual lives, unlike to vehicles or cars. For this reason, the vacuum robot calibration method has completely dierent limitations. It can be less complex and provide parameters with worse precision.

Virtual and augmented reality devices

The virtual and augmented reality devices collect, process and control data from internal and external sensors, in order to add the 2D, 3D gures or articial information generated by computers to the display with real environments. [START_REF] Yazdani | Smart-glasses company[END_REF] or Lumus [START_REF] Grobman | Smart-glasses company[END_REF].

Only during last 30 years, engineers were able to reduce the size and price of smartphones several times. That nowadays everyone can use it, due to its low costs and wide range of applications. If similar process will run for such virtual and augmented reality devices, those can be also widely use and change many aspect of everyday life. There is a high probability that the same history repeat.

For this to happen, the price of such device must fall drastically. At present, an energy-intensive processor does not allow for long-term use, so the life of the device (without charging) should be extended. Loosely mounted cameras can replace multiple sensors that need costly hardware. It can eliminate expensive electronics and gain many computation operations. It can reduce the data fusion and other mathematical operation etc. Particularly, the device cannot be heavy and large, while the devices is located on the head. According to its use cases, it has to face many limitations. Such as in smartphones, the design, size and weight of the product are very critical. We could not imagine a walking with big phones carried in suitcases, but we do it with small devices tting our pockets.

Therefore, extending the size of battery increases the weight and size of the devices. Because of its proximity to the user's head location, we must consider the temperature and cooling process of the device. The many high complex processing has to reduced, accelerated and optimized in order to use less energy. Searching for less complex algorithms, optimizing the code and converting it to less powerful processors are desirable solutions. Devices of virtual and augmented reality must understand the surrounding environment. One of the best sensors in terms of size, power consumption, data spectrum and price is the stereo camera, in the form of two loosely connected cameras. Therefore, the question of their exact parameters estimation during the mission is important. Thus, the online calibration of cameras can be a milestone for virtual and augmented reality devices. When exploring dierent calibration methods, it is important to nd a specic context for the work. It is mandatory to know the target system, its possibilities, limitations and purpose in order to propose the best method. Therefore, for the purpose of this work, section 1.5 presents in detail our motivations.

1.4

Embedded system context

Embedded system is a special purpose computer system (controller programmed and controlled by a real-time operating system (RTOS)), which becomes an integral part of the computer's hardware.

It must meet specic requirements strictly dened for its tasks. Therefore, it is not a typical multifunctional personal computer. Each embedded system is based on a microprocessor (or micro-controller)

which is usually a part of System on Chip (SOC), and software programmed to perform a limited number of tasks (or even just one), very often with real-time computing constraints. Embedded systems are not always standalone devices. Many of them consist of small parts within a larger device that supply a more general purpose.

Over the past decades, the SOC has taken a big step forward. The Moore law is a good representation of these changes, it shows in Fig 1 .16a how the number of transistors on the same surface in the processor, increase in relation to the limited period of time.

Fifty years ago, the huge computer occupied an entire room. They realized simple data process and had less computing power than a modern smartphone, which ts into pockets. Twenty years ago microwave had a simple CPU, which was high, modern embedded technology at that time. Nowadays, many children's toys use similar CPU, which costs less than 10 euro. SOC integrates all components of a computer or other electronic system used in an embedded system. These components typically include a complete system consisting of multiple electronic part such as a central processing unit (CPUs), graphics processing units (GPUs), multipliers, caches, memory, input/output ports, etc. Fig

1.
16b shows SOC diagram, which presents ARM processor supported by all peripheral devices. The SOC is a complex embedded system, but fully integrated on one chip.

Nowadays, various technologies and languages implements specic programs depending on the task. The most common and popular programs use standard form of code that follows the instructions executed on the CPU. There are some of limitations and restrictions of such approach i.e. number of computation or speed. According to this, there are other solution, for example, use a data processing through other specic integrated circuit (ASCI) or eld-programmable gate array (FPGA).

Vision vs Hardware

Many years ago, computer science had a high spectrum of knowledge. Development of this eld of science created new specializations and communities. That has resulted in the fact that the knowledge and region of interest of the hardware development community that deals with embedded systems and computer vision community that focus on computer architecture signicantly diverges.

The algorithm for vision applications and advanced systems require an extremely large number of mathematical operations so a lot of computational power. Moreover, the scientists and engineers are usually interested in the fastest and most precise so the most complex algorithms. Luckily, for them, (a) A plot of CPU transistor counts against dates of introduction.

(b) Microcontroller-based system on a chip. they have access to advanced, intelligent and heterogeneous hardware architecture that often consists of several powerful CPUs and GPUs. On such systems, they perform multiple complex processes simultaneously, without caring about many other restrictions. Modern hardware architecture performs and accelerates increasingly complex tasks. That is why nowadays, many algorithms are not well adapted and optimized to work on embedded systems. Many systems have reached the point where there is a strong need to use these computer vision algorithms and implement them in the new CPS with the low performance CPU. Therefore, the subject of research on the borderline between a computer vision and an embedded system is very signicant and promising nowadays.

Personal Computer

The researchers of computer vision algorithms work on a standard personal computer (PC), and they do not worry about hardware limitations. The huge computational power is available due to expensive technology and high power consumption of such systems. It is possible thanks to many specications such as the connection to a xed power supply, a cooling fan because the temperature of processing units often exceeds 60 degrees Celsius, etc. The cost of this type of heterogeneous architecture often exceeds 500 e.

The standard PC contains the hardware, so all physical parts of computer and software, which provides instructions to realize dierent tasks. In Fig 1 .17a presents some processors characteristics, for example, the ARM Cortex A7 in the RPi 3 is about 7 times less powerful that CPU Intel 7 [START_REF] Blem | A detailed analysis of contemporary arm and x86 architectures[END_REF]. However, the price of the Cortex ARM family is much cheaper than the Intel processors. Moreover, the power consumption is signicantly lower and it translates into less heat dissipation. These ARM's performances are ideal for lightweight, portable, battery-powered and low-cost devices. These processors can be dedicated devices for augmented reality, low-performances tablets and other CPS.

Of course, the construction of the CPU's system has some limitations. During the designing process, the engineers of embedded systems challenge the limitation of computational power and memory. As a result, it is impossible to implement the latest and the most complex algorithms in embedded systems based on ARM processors. This forces the search for a certain balance between simple and complicated algorithms. Moreover, we must consider the amount of data and the not linear calculations, in order to implement it on limited CPU.

Conclusion

Huge changes in an embedded system in recent years allow analyzing and creating new devices with new functionalities. Until recently, many functionality innovations have been outside the scope of technology. Fortunately, today's continuous improvements create a new possibilities and insights on complex subjects. One of them is to look at solving the stereo camera calibration during real-time on The typical SOC equipped with embedded processor has low power consumption, small size, rugged operating ranges, and low per-unit cost compared to the PC. This comes at the price of limited processing resources, which make them signicantly more dicult to program and interact with other components. Those kind of integrated circuits equipped with ARM architecture on ×32 bits can be acceptable candidates for many CPS.

In this work, we select an embedded systems platform with the ARM Cortex processor as a target system. For this reason, we consider only the most primitive methods of online stereo camera calibration. Many methods were developed and characterized on the ×86-bit architecture. Therefore, this research tries to nd and suggest a method with methodology, which executes in real time on selected limited embedded systems.

1.5

Our motivation

Finally, after presenting all four contexts of this work, we present our particular motivation. At this stage, we presented that the stereo camera is a good sensor for modern CPS, because it provides a high spectrum of data, on the other hand it can be cheap, small and require low energy. These features perfectly respects a low performance of embedded systems. Some devices and applications already use stereo camera, but it has still some limitations. One of them is camera calibration. There are many dierent camera calibration procedures. However, there is no ideal method to calculate the extrinsic parameters of a stereo camera in each possible scenario and applications. Moreover, there are not many studies about online calibration procedures.

The goal of this work is to show and illustrate an approach to extrinsic online stereo camera calibration that performs on embedded systems. It is important to mention that the goal is not to develop and create a new calibration method, but to investigate whether one of the existing procedures can be adapted and performed in real time on limited embedded systems on CPS.

Main aim of approach

In this thesis, we would like to execute the online stereo camera calibration in specic CPS with a particular mission. We consider the calibration method in the rst generation of virtual reality devices seen as intelligent glass or helmet. Its main objective of such devices is the pedestrian guidance. Fig

1.
18 presents possible scenario. This type of device must monitor and control the movement of the user, localize itself everywhere in the dynamic environment. In order to detect and avoid obstacles, interact, a high spectrum of data in the system is required. The important approach is that this CPS has a special dedicated group of recipients. It must support visual impaired people and facilitates their mobility. This type of system can be an alternative to a guide dog. The mission goal has a very high priority and it is important from the user's point of view. It must provide trusted and accurate information, because the health of the user and the success of many activities are important.

In this section, we consider limitations of such system. The smart glasses must be relatively small and lightweight to be portable and comfortable. It forces the use of a small battery, thus a system has a very limited amount of power. It requires the use of a small energy demanding processors. Moreover, in the glasses frame, it is hard to build a large CPU or GPU. These limitations led to the reduction of all electronics components. Sensors that consume too much energy or are too large do not t into this type of system. It is important to remember that the vibrations, unpredicted forces and much more may aect the construction of the glasses.

Navigation

The system has a specic mission to realize, it supports the person during the guiding along route. The history of navigation is very long and has always been with humanity. Etymology of the word derives from the Latin term for a sail. Over the centuries, humans distinguished many types of navigation:

dead reckoning, which is a process of calculating one's current position by using a previously determined position, celestial navigation, which based on celestial bodies, radio, radar or satellite one. Section 1.1.1 describes some of the sensors used in navigation.

Nowadays, navigation referees as the classic problem of how to deal with the determination of the current location and optimal route to the destination for people, ships, land vehicles and other moving objects based mainly on satellite navigation. Due to its small size and weight, quite low price of the signal receiver chip, many devices such as smartphones, cars and planes obtain a satellite navigation module that can obtain signals from satellites. The GPS is an excellent type of navigation in an outdoor open space, environment, such as motorways or urban environment. Unfortunately, due to an error and lack of precision and signal in internal scenarios, this method is not sucient for navigation requiring by a pedestrian guidance. Another problem that satellite navigation does not solve is information about the local environment and obstacles around the user. In a realistic dynamic scenario, in cities and inside buildings, there are a huge number of obstacles to avoid. It is an important aspect for the CPS, which must help navigate a visually impaired person.

There are sensors that can provide information about the local environment as part of smart glass.

The LIDAR and radar seem to be the right choice for this type of task. Unfortunately, they have many disadvantages, especially in the context of glasses. This type of device must be portable, which makes it necessary to minimize the device with small batteries. The LIDAR sensor consumes a lot of energy and requires a huge amount of data processing. Mounting this sensor in glasses would be complicated due to its large size and embedded system's limitations. In addition, the cost of this LIDAR often exceeds what users want to pay for such product. Therefore, it is not ideal sensors for this type of equipment. Glasses cannot use a traditional odometer technique. Another sensor that can provide data to the system is the IMU. Unfortunately, the error in estimating the position due to the IMU accumulates over time. The price of this sensor is close to a price of the camera, but the spectrum of provided data is limited.

Two cameras as a stereo camera can provide sucient data for a navigation mission. Such solution can reduce need of other sensors so the cost of the devices may decrease. It eliminates data fusion, thus the whole system requires less computing power. The camera is an optimal sensor for smart glasses devices. The size and weight of the product is sucient to mount it in the glasses frame. 

Conclusion

The goal of this work is to realize the online stereo camera calibration on a smart glasses/helmet equipped with embedded systems. This CPS is dedicated to navigation of visually impaired people.

The stereo camera provides data to the system. Its working conditions create many limitations. Due to the design and dynamic missions of the devices, the position of cameras can change. Therefore, it is necessary to calibrate extrinsic camera parameters all the time.

In order to accomplish its mission, the system must provide data, which allows moving from any location to another. Unlike other navigation devices, this type of system must be capable of understanding the surrounding dynamic environment. It must know the distances to the local environment, which help for obstacles detection and avoidance. It should be able to locate, track and measure distances traveled, select correct route, path, corridors, etc. Fig 1 .18 presents an application, which leads the user to the closest exit and can display additional information.

To realize navigation, many missions must realize a depth map extraction, SLAM, visual odometer and path selection, etc. There may be many additional functions such as the object detection and recognition. The sound signal and many other lateral functions can help to avoid any barriers and obstacles. All these functions have to work together, process data in the real time. Immediate reaction and decision-making are the key in this type of system.

The online stereo camera calibration can be of great innovation for this CPS. It increases its reliability and creates the ability to carry out a long-term mission without the need for maintenance or operator assistance. As a result, research topic relates to self-healing and self-adaptation of the device.

Auto-calibration (self-calibration) creates a continuous measurement of the stereo camera parameters in the real time independent of location or mission. We point to the fact that, the modern systems need to be more intelligent, autonomous, independent and operate longer without the help of people. In order to carry many tasks, the CPS need to collect data from the environment. Section 1.1.3 presents the advantages and disadvantages of various types of sensors used in systems.

The one of the most future-oriented sensor is a stereo camera. Most of the models currently used are built into a rigid metal frame. However, due to its size, weight and cost, it does not t the most CPS. Removal of these restrictions by setting up loosely attached two cameras can be a big impulse to popularize and widely use this sensor in many new devices.

Part 1.1.2 shows that the use of stereo cameras can provide a very wide spectrum of data. Thus the system can reduce or even eliminate the need for other sensors thus reduce cost of many CPS. However, the processing based on the data from the stereo cameras has a some restrictions and limitations.

All computer vision processes require the intrinsic and extrinsic camera parameters, which describes the relation internal and external setup of stereo camera sensor. In order to calculate them, the camera calibration method is required. Section 1.2 presents the limitations of the standard, traditional calibration approaches. Unfortunately, removing rigid metal cage in the sensor creates new restrictions, such as the need for the continuous stereo camera calibration. The extrinsic parameters so a relative camera's position can change. In this case, the classical approaches are not suitable for the sensor.

In the literature, the perfect stereo calibration method does not exist, which can compute parameters repeatedly. The targeted application, devices or hardware strongly correlate and force the calibration procedure. Following, section 1.3 gives analyze of some of targeted environments and applications, which can signicantly take prots of use online stereo camera calibration.

The next part of the 1st chapter shows embedded systems as another context of this work. The dierent CPS are based on various embedded CPU, those are usually a several times weaker than standard used in PC. The computing and memory limitations must be considered during calibration procedure executed on embedded systems.

The last part of this chapter describes our specic motivation to realize the online extrinsic camera calibration. Section 1.5 presents the smart-glasses with particular mission to realize, its working conditions and limitations. In this the selected CPS, the stereo cameras are mounted in a fragile design, which is exposed to many external factors that can cause camera's position movement. Therefore, the approach to real time calibration is extremely important. In such targeted CPS, an embedded system is an additional problematic aspect, due to its construction. For this reason, we consider the hardware limitations.

This PhD thesis is not focused on the creating a new camera calibration method, but in implementing and testing one selected procedure on the targeted embedded systems. Section 1.3.4 characterizes the particular method. This research is future-oriented in order to realize more autonomous and reliable CPS. The proposed method allows creating a system with the highly demanded functions such as:

self-healing and self-adapting Next 2nd chapter presents the state of the art. It presents the survey of much method. It explains the technical background and the basic concepts associated with the stereo camera calibration problems.

The 3rd chapter describes the developed approach to the online stereo extrinsic camera calibration.

It presents an algorithm and the suggestion about the whole methodology of advanced calibration. In this chapter, we present the system improvements like: additional ltering or accumulation strategy.

Moreover, many aspects of camera calibration, such as: frequency of execution, use of data from the system, acceleration of calculations, scale extraction, quality of calibration services are addressed and discussed in this chapter.

The 4th chapter presents dierent environments of tests. It shows the methodology used for realization of the dataset. In this chapter, we present the online stereo monitoring and camera calibration tests on the PC and the targeted embedded system. We characterize and comment the obtained result.

Last 5th chapter concludes and summarizes the work. It recalls the obtained results and the answers to the questions raised in the manuscript. This chapter presents a perspective of the whole work and proposes a future work.

Chapter 2

State of the art

The only source of knowledge is experience.

Albert Einstein

The considered custom method has to be a part of the whole CPS in a specic application domain. This chapter describes the existing stereo camera calibration methods. It describes the some specic parameters, limitations and constraints of presenting methods. The chapter ends with a description of the datasets available in the literature. After this chapter, the reader should know the most popular calibration methods.

Objective :

Selection of the best method for online calibration pipeline on embedded system in specic selected device and application context and the best database to test an approach.

To do this, we :

• study stereo camera calibration methods.

• study methods that aspire to real time execution.

• study methods that execute on an embedded system.

• study datasets for online stereo camera calibration.

Introduction to state of the art of calibration methods

In the last decade, scientists have studied various methods of calibrating cameras. This section provides an overview and in-depth analysis of some of these procedures. In Fig 2 .1, we categorize the most important methods due to their limitations. We assess them according to the criteria presented in the rst chapter, namely: embedded system and application context. The section 2.2 presents traditional methods, which use a calibration object in order to work. Many computer vision applications use them. This kind of group is popular when engineers assume that the camera parameters are xed. In this thesis, we negate this statement. The section 2.3 presents self-calibration methods. These do not require any special calibration objects. However, they need a camera motion into static environment, which is usually the case for many computer vision processes. This group is less precise and stable.

The third group represents these methods, which use a dierent constraint than calibration patter and motion, for example: the know rotation of camera, vanishing lines or information from additional sensors.

Various assumptions are obligatory depending on a specic method. Every calibration method requires well-synchronized images provided by cameras. The scenery must have sucient light, in order to detect many features in the images. Another, very important aspect is the overlapping view of cameras. Both cameras must simultaneously observe the larger part of the image (scene). There are methods to calibrate cameras that do not overlap views such as [START_REF] Warren | Online calibration of stereo rigs for long-term autonomy[END_REF]. However, this is not the research subject of this thesis to consider these methods. 

Stereo camera calibration methods

Traditional Camera Calibration

This section presents the most popular approaches of the traditional camera calibration methods.

Those require a special calibration tool or pattern, in order to work. Fig 2 .2 shows the four various forms of that tool. The pattern must be clearly visible (the whole tool) in the camera view from many dierent positions in relation to the static position of the camera. There is a reverse option in which the calibration tool has a stable position and it is observed from multiple camera positions (orientation). Depending on the dierent methods with a particular pattern, a various number of images from many perspectives is required. The traditional camera calibration method usually must stop application, system or current task to realize this procedure. Then, it must nd and detect a calibration pattern, from many dierent views. Therefore, the traditional calibration method does not aspirate to have a potential to run in real time (during task). The procedure has to know the size of the calibration pattern. Each traditional method extracts clearly the coordinates of the calibration object. It creates a set of collinear equations thanks to its position. Then, the algebraic assumptions of the projection geometry solve this system of equations. Finally, the method usually estimates all camera (intrinsic and extrinsic) parameters. Linking the image views obtained from cameras with the particular calibration patterns can provide very accurate results not achievable by other methods. 

Stereo camera calibration methods

3-dimensional pattern structure

The rst group of method presents calibration, which uses an apparatus or other calibration object with 

2-dimensional pattern structure

The second group is the most common type of the traditional calibration method, which uses 2dimensional classical chessboard pattern. This group has a huge representation. During this thesis, we considered some of them [START_REF] Tsai | An ecient and accurate camera calibration technique for 3D machine vision[END_REF], [START_REF] Samper | Analysis of tsai calibration method using two-and three-dimensional calibration objects[END_REF], [START_REF] Sturm | On plane-based camera calibration: A general algorithm, singularities, applications[END_REF], [START_REF] Zhang | A exible new technique for camera calibration[END_REF], [START_REF] Zhang | Flexible camera calibration by viewing a plane from unknown orientations[END_REF], [START_REF] Rathnayaka | An ecient calibration method for a stereo camera system with heterogeneous lenses using an embedded checkerboard pattern[END_REF]. In the market, there are applications to calibrate stereo cameras. One example is the Matlab stereo camera calibration toolbox [START_REF] Matlab | Image processing and computer vision[END_REF].

However, the license of such software is not free. The other one, the OpenCV is open source software, recommended by us [131]. Both applications have implemented the same Zhang method [START_REF] Zhang | A exible new technique for camera calibration[END_REF]. There is much more application available on the market. However, in this thesis, we use these two as the reference methods.

In these methods, the structure and parameters of the 2-dimensional calibration pattern is important.

It has to be easy to detect, so the high contrast of pattern is required. We recommend printing the black squares on the white background page. Fig 2.4 shows how the most common pattern, which looks like the chessboard. We recommend using the chessboard, that contains an even number of squares and the other side has an odd number of squares. In this conguration, the program that detects the pattern will never confuse the left top corner with the bottom one. The calibration method must know the size of square, so the real scale and the precise value of the parameters can be determined.

The 2-dimensional pattern-based method is more exible compared to another pattern-based method because if a printer is available, it can be easily prepared. Of course, we should properly protect ourselves against bending the exible sheet of paper where the pattern is present. To calibrate the cameras, we should only detect the pattern on one plane. Therefore, sheets of paper with a chessboard printed on should be on a solid, at surface.

There are commercially patterns created on the solid material such as glass or metal one. Those calibration tools are precisely prepared to obtain the most accurate precision. They are much more expensive than those prepared by the standard printer. Moreover, their weight is much higher, which makes it more dicult to use.

(a) Good structure of pattern size 7x8.

(b) Good structure of pattern size 8x7.

(c) Bad structure of pattern size 7x7. remains stationary, cannot move. If the camera is portable, the 2-dimensional pattern must be in a static position. If the camera is not moving, we must put the calibration structure well distributed in whole camera's view with various rotation, scale and skews. This is very important to achieve a high precision of calibration parameters. In the case of stereo camera calibration, the chessboard must be fully visible in both images of each sensor. Finally, as these methods use points from the image, so the high quality images (which allow for detailed detection of squares) increase the quality of the results.

These methods are accurate and widely used in the eld of computer vision.

Some traditional 2-dimensional calibration methods use landmarks as standard calibration patterns. 5b presents one of the most popular landmarks -the aprilgrid patterns [START_REF] Olson | AprilTag: A robust and exible visual ducial system[END_REF]. The Kalibr application [START_REF] Maye | Self-supervised calibration for robotic systems[END_REF] is a tool where the oine method recognizes these tags and calculate very precise camera parameters.

Other works also use landmarks system. Tang et al. [START_REF] Tang | Apriltag arrayaided extrinsic calibration of cameralaser multi-sensor system[END_REF] presents a work where the multi sensor system uses the landmarks to calibrate. He calibrates the cameras with laser, while the method proposed by G.Antonelli et al. [START_REF] Antonelli | Simultaneous calibration of odometry and camera for a dierential drive mobile robot[END_REF] estimates simultaneously camera parameters and odometry param- eters.

1-dimensional structure

Another subgroup of traditional camera calibration, that has the least elaborate representation, is the one that require a 1-dimensional calibration pattern. This type of method requires a special calibration device and movement around the vicinity point. For this reason, it is far less practical than the methods based on standard 2 or 3 dimensional patterns. This method usually needs more measurements and still seems to be less precise. For example, Miyagawa et al. [START_REF] Miyagawa | Simple camera calibration from a single image using ve points on two orthogonal 1-d objects[END_REF] and Zhang et al. [START_REF] Zhang | Camera calibration with one-dimensional objects[END_REF] proposed approach, which use the distance measurements of a xed-length object (stick), where at least two points on the objects are tracked and known. This method estimates the camera intrinsic parameters, while it observes a moving line around a xed point. However, that method does not calculate the stereo extrinsic parameters.

Online approaches of traditional methods

The standard traditional camera calibration methods should be treated as oine procedure. They must be performed before the application or computer vision process. They require the use of a special calibration tool, 3, 2 or 1 dimensional, depending on the method. It cannot be guaranteed that a special apparatus, chessboard or other calibration pattern is always ready to use when needed. However, it is worth paying attention to the approach that attempts to adapt the working area. Some approaches realizes the mission in the same, custom place, then working conditions can be adjusted and patterns always visible. In special cases, when the place of mission is signicantly limited, it is possible. Some methods do not adapt the environment but try to extract special elements of scene. Then some of particular objects can be used as calibration patterns, for examples: trac sign or crosswalks. There are some approaches that mount calibration tool with camera sensor.

Qin et al. [START_REF] Qin | Stereo camera calibration with an embedded calibration device and scene features[END_REF] equip the device with the attached calibration pattern. In such case, the pattern is always available and ready to use during the whole mission at any time. This approach proposes to build a stereo vision system that has half-mirror with light source displaying the pattern in the real cameras scene. This sensor is mounted on top of the devices and it is presented in [85] and [START_REF] Shu | Precise online camera calibration in a robot navigating vision system[END_REF] propose a similar standard traditional calibration method which uses 2-dimensional pattern always visible by the camera. Calibration pattern is available at the robot's hands, it allows to be carried with its and use calibration whenever required. This type of approach can be performed online.

The same methodology is proposed in the another approach. Wang et al. [START_REF] Wang | A new calibration method used in the infrared ray environment[END_REF] present the intrinsic and extrinsic camera calibration method. This procedure is based on traditional pattern procedure but they propose to replace the calibration tool by invisible infrared ray. It is displayed in front of camera all the time in each environment.

Many methods in this group consider only intrinsic parameters due to special video/television applications. A camera calibration method for stationary cameras designed to work in special environment is presented in: [START_REF] Khan | On the calibration of active binocular and rgbd vision systems for dual-arm robots[END_REF], [START_REF] Shu | Precise online camera calibration in a robot navigating vision system[END_REF], [START_REF] De Paula | Automatic on-the-y extrinsic camera calibration of onboard vehicular cameras[END_REF], [START_REF] Collado | Self-calibration of an on-board stereo-vision system for driver assistance systems[END_REF] and [START_REF] Alemán-Flores | Camera calibration in sport event scenarios[END_REF]. Aleman et. al. [START_REF] Alemán-Flores | Camera calibration in sport event scenarios[END_REF] proposed to calibrate the camera for sports event scenarios. They took advantage of the lines on the pitches, their size, coordinates and position which are constant. This information allows to treat a pitch infrastructure as one large calibration pattern. The method based on the extraction of primitives corners of the image in this dicult terrain is able to cope with the problems of shaded regions and lens distortion. of the road-infrastructure, which are standardized and occur very often or always, such as: horizontal road lanes or vertical trac signs. In addition, vehicles have many sensors which provide additional information that can be used to calibration or scale extraction. Many of methods look for road markers as calibration patterns, [START_REF] Hold | A novel approach for the online initial calibration of extrinsic parameters for a car-mounted camera[END_REF], [START_REF] Guiducci | Camera calibration for road applications[END_REF]. Martita et al. [START_REF] Marita | Camera calibration method for far range stereovision sensors used in vehicles[END_REF] propose to use road lines, where Zhaoxue [START_REF] Zhaoxue | Ecient method for camera calibration in trac scenes[END_REF] a crosswalks in order to calibrate camera.

The stereo cameras could be calibrated online base on the traditional method. However, this kind of approach is not universal and not perfect due to fact that the calibration pattern is always required.

It is worth paying attention to the fact that none of the above mentioned works pays attention to the important aspect of the possibility to be realized online. For each run not only specic pattern must be available, which is a major concern for most of the works, but also the process cannot be complicated to be done in the real time. Most of the presented processes do not describe the complexity of its algorithm. Additionally, none of the above mentioned work characterizes the method in terms of the time needed to obtain a parameters and the hardware on which it is performed. If any calibration method can be performed on PC or in cloud in real time, it is not synonymous that it can be realized on embedded systems which can be several times or even several hundred of times weaker in terms of computing power.

2.3

Self-calibration method

The second widely analyzed group of camera calibration is the self-calibration or auto-calibration methods. The procedures do not make usage of any particular calibration object, the researchers try to get rid of all calibration patterns in the contrast to the traditional group. Those methods can be considered as 0 dimension approach because typically only the set of corresponding POI across a several camera's views are required. Thanks to it, they can compute the parameters and poses of camera in any stable unknown scene. Methods do not require the user interaction. However, the motion of camera in the scene is required and obligatory. Maybank and Faugeras [START_REF] Maybank | A theory of self-calibration of a moving camera[END_REF] described the theory of camera motion during the self-calibration procedure, then Sturm [START_REF] Sturm | Critical motion sequences for monocular self-calibration and uncalibrated euclidean reconstruction[END_REF] characterizes and categorizes specic movements in that context. There are some of self-calibration methods in the literature that try to calculate only intrinsic camera parameters, for example: those which are based on Kruppa equations [START_REF] Maybank | A theory of self-calibration of a moving camera[END_REF], [START_REF] Faugeras | Camera self-calibration: Theory and experiments, chapter Camera self-calibration: Theory and experiments[END_REF], [28] [105]. It is not the subject of this work, so those procedures are omitted. 

Stereo camera calibration methods

Bundle adjustment camera calibration methods

The camera calibration can be achieved by optimization of POI position from dierent camera poses.

The bundle adjustment (BA) method is the one of procedure which can realize it. This technique is adapted in the eld of computer vision, where it calculates and optimizes the positions of multiple 3dimensional POI from dierent view of the observer. Globally, the BA refers to a visual reconstruction where it creates the optimal 3-dimensional structure of the scene geometry. In addition, it can estimate the relative motion and vision parameters (camera position and/or calibration) [START_REF] Triggs | Bundle adjustment -a modern synthesis[END_REF].

For the multidimensional optimization problem, the BA nds a set of camera parameters by minimizing the projection error between the measurements (all POI in each frame) and the predicted 3-dimensional position of observed points. The main diculty is to nd optimal parameters by minimizing cost of functions due to the scale problem. More precise camera parameters allow to minimize the error of POI positions and estimate the position of future frames and compare it with future measurements.

The 3-dimensional map of the world scenery reconstruction is created from the merge between the all of POI. As a result, the standard BA is expressed as the sum of the squares of a large number of non-linear functions that must be solved by appropriate algorithms. Due to the large size of problem, the several modications and improvements have been developed on the BA context, such as: [START_REF] Konolige | Sparse sparse bundle adjustment[END_REF], [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] and [START_REF] Sibley | Relative bundle adjustment[END_REF].

The Levenberg-Marquardt algorithm has been proved to one of the most successful algorithm in computer vision to solve the BA due to its simplicity and availability in literature. It is an iterative algorithm that localize the minimum of a multidimensional function. It solve sum of squares of nonlinear real value functions [96] [172]. It has become a standard technique commonly used in a wide range of disciplines where non-linear problems with the smallest squares has to be solve. There are some free C++ implementations available such as: [START_REF] Lourakis | levmar: Levenberg-marquardt nonlinear least squares algorithms inc/c++[END_REF] or [START_REF] Manolis | Sba: A software package for genericsparse bundle adjustmen[END_REF]. There is a brief description of instruction how to implement this algorithm [START_REF] Lourakis | A Brief Description of the Levenberg-Marquardt Algorithm Implemented by Levmar[END_REF].

Oine camera calibration methods based on bundle adjustment

There are some calibration tools, which are based on solving BA by Levenberg-Marquardt algorithm.

The MicMac [START_REF] Rupnik | Micmac a free, open-source solution for photogrammetry[END_REF] is a interesting, free, open-source solution for photogrammetry software for 3dimensional reconstruction. It is a oine self-calibration method, that provides a very precise camera parameters. This powerful procedure does not require any characteristic scene on the image, but a several images of the same point from a few views. However, a high precision is burdened by computation amount which relates to a dozen minutes sometimes even hours on Intel core I7 to compute all parameters.

The main goal of Carrera et al. [START_REF] Carrera | Slam-based automatic extrinsic calibration of a multicamera rig[END_REF], [START_REF] Carrera | Robot SLAM and Navigation with Multi-Camera Computer Vision[END_REF] is to calibrate the relative transformation between multiple cameras on a robot platform up to scale. His approach calibrates the cameras with non-overlapping eld of views. From this reason, the method requires precalibration movement (full rotation 360 degree) of the whole system. This ensures that cameras see the same part of environment. Carrera creates a globally consistent POI map for each camera. After, each feature is matched between each correspondences from pair of map via threshold matching between SURF descriptor. These steps can be consider as a local BA, based on 3-dimensional similarity transform supported by RANSAC [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] to nd inlier feature correspondences. The global BA optimizes camera, robot poses and 3-dimensional POI position. Moreover, this approach requires two optimization steps. First one it a local level between images view and second is a global level between dierent frames. It is very computation costly thus it is not considered as an online method. This approach can be precise in some scenarios like close and small environments but can fail in outdoor scenarios, when the majority of natural features are located far away from cameras.

L. Heng [START_REF] Heng | Camodocal: Automatic intrinsic and extrinsic calibration of a rig with multiple generic cameras and odometry[END_REF] proposes self-calibration method, which is very similar to Carrera work. His method does not need the overlapping view. He extends and upgrades the approach that it overcomes outdoor environment diculties. He maximizes the number of POI correspondences between the images, after thanks to BA the most recent images are rectied to the common image plane.

Both described works [START_REF] Carrera | Slam-based automatic extrinsic calibration of a multicamera rig[END_REF] and [START_REF] Heng | Camodocal: Automatic intrinsic and extrinsic calibration of a rig with multiple generic cameras and odometry[END_REF] do not need a prior map. However, in the second [ T. Dang works on similar problem and proposes another method for estimating the relative transformation between multiple camera images to the external coordinate system -vehicle. This method compute the extrinsic parameters representing the whole camera system to global frame, not determine the extrinsic stereo parameters between two cameras [START_REF] Dang | Continuous stereo self-calibration by camera parameter tracking[END_REF], [START_REF] Dang | Self-calibration for active automotive stereo vision[END_REF], [START_REF] Dang | Stereo calibration in vehicles[END_REF]. [START_REF] Dang | Continuous stereo self-calibration by camera parameter tracking[END_REF] is based on geometric error criteria. It relies on a consistent derivation of a robust, recursive optimization scheme for GaussHelmert models. The algorithm allows to combine dierent geometric constraints in a common framework where implicit Iterated Extended Kalman Filter (IEKF) is used. The three main constraints work together: epipolar for stereo images, trilinear for image triplets and collinearity in the BA, that create a large number of computation.

Next similar paper is Pagel's work [START_REF] Frank | Motion adjustment for extrinsic calibration of cameras with non-overlapping views[END_REF]. He targets non overlapping eld of view for cameras on a mobile platform and calibration without using any pattern or known scene structure. The motion scale and extrinsic camera parameters are estimated due to BA. However, similar to Dang paper, it does not prove that stereo extrinsic parameters between two cameras can be established.

There are other approaches that solve calibration based on BA like [START_REF] Tresadern | Camera calibration from human motion[END_REF] or [START_REF] Civera | Camera self-calibration for sequential bayesian structure from motion[END_REF]. Civera et. al.

present a method that can calculate all parameters and camera pose for monocular camera. Tresadern's work does not determine all degrees of freedom of camera which represent extrinsic parameters.

Online camera calibration methods based on bundle adjustment

There are some approaches in the literature, that try to solve BA online. Hansen et al. [START_REF] Hansen | Online continuous stereo extrinsic parameter estimation[END_REF] propose continuous online extrinsic re-calibration. Method obtains 5 degrees of freedom which represent the extrinsic pose of stereo frame. They estimate the whole camera's setup position, not each of camera separately. They assume that both cameras move with the same translation. Procedure is able to perform calculation in real time using only sparse stereo correspondences. It minimize the stereo epipolar errors by Kalman Filter (KF) [START_REF] Welch | Siggraph 2001 course 8 an introduction to the kalman lter[END_REF]. The current extrinsic position estimated from each stereo pair is enable to remove a temporal drift. He says that enough correspondences (around 1000) is sucient to realize a good calibration. This method is sucient to compensate an odometry drift, and support navigation purpose.

Warren [START_REF] Warren | Online calibration of stereo rigs for long-term autonomy[END_REF] work tackles the similar problem, the whole camera's setup position in the world frame reference. The method is based on modied BA algorithm that take advantages of rigidly-linked pair of cameras with overlapping views. Cameras do not have possibility to move their R and T between each other. He shows that, it is possible to recover an accurate setup position online from real world data by explicit by BA. Warren shows the ability to compute camera parameters with high precision online but does not provide a specication for hardware where algorithm is executed. Method seems to be a high computation load so it is not a good candidate for embedded processors.

Sappa et al. [START_REF] Sappa | On-board camera extrinsic parameter estimation[END_REF] [145] present an ecient technique for estimating the pose of an onboard stereo vision system relative to the environment's dominant surface area (it is supposed to be the road surface). This method can be used in vision-based ADAS. The procedure basically consists of tting a plane to 3-D points belonging to the road and then determining the camera pose with respect to that plane. The road region is always in front of the vehicle (up to 50 m away). Then, it is approximated along frames as a piece wise linear curve, since the plane parameters are continuously computed and updated. Road data points are identied by assuming that the road surface is the most predominant geometry in the scene, which holds in most situations, but it cannot be guaranteed.

One of the newest and very interesting calibration work is method proposed by E. Rehder et al. [START_REF] Bender Eike Rehder | Online stereo camera calibration from scratch[END_REF].

They implement BA to recalculate extrinsic parameters in real time. This work shows good update of parameters on the y and proves results on open-source dataset. Several accelerations step which optimize BA process are proposed in order to computes each camera parameter in real time. The method does not need any plane or other calibration tool. However, their experimental setup is realized on Intel 7 which can not be consider as a embedded processor for small CPS due to high electricity consumption around 90 W.

Epipolar geometry

Another most popular method from self-calibration group is based on epipolar geometry. The mathematical theory of epipolar constraint is explained in section 6.3.

It can be represented in the fundamental matrix (F).

There are some algorithms that can calculate F or E, for example: eight point algorithm (8PA) [START_REF] Longuet-Higgins | A computer algorithm for reconstructing a scene from two projections[END_REF], [START_REF] Hartley | In defence of the 8-point algorithm[END_REF], [START_REF] Chojnacki | Revisiting hartley's normalized eight-point algorithm[END_REF], [START_REF] Basta | Is the fundamental matrix really independent of the scene structure? In international journal of signal processing[END_REF], [START_REF] Basta | The eight-point algorithm is not in need of defense[END_REF], [START_REF] Lamoureux | Numerical stability of the 8-point algorithm[END_REF], ve point algorithm [START_REF] Li | Five-point motion estimation made easy[END_REF], [START_REF] Nister | An ecient solution to the ve-point relative pose problem[END_REF] or point to point algorithm. All of them have many improvements and have been implemented in many open-source library, for example: openGV C++ [START_REF] Kneip | Opengv: A unied and generalized approach to real-time calibrated geometric vision[END_REF]. The obtained matrix has to be converted into essential matrix (E). Then, thank to the singular value property by singular value decomposition (SVD) can be transformed to the extrinsic parameters (R and T).

There are many papers that try use these algorithms. For example: Yan [START_REF] Yan | Camera calibration in binocular stereo vision of moving robot[END_REF] work calculates the extrinsic parameters in binocular stereo vision of moving robot. The intrinsic parameters are assumed to be know. Based on matching stereo points, the F and E are calculated. This work provides neither execution time nor hardware used to do computation. Other work like [START_REF] Bjorkman | Real-time epipolar geometry estimation of binocular stereo heads[END_REF] tries to overcome a limitation in image resolution and eld of view. They propose continuously external camera calibration. Then, the linear estimation of E is used to convert it to relative pose, followed by a non-linear renement incorporating depth ordering constraint in real time. Experimental testing was done on 195MHz MIPS R10K processor into small indoor sequences with stationary camera.

The fundamental matrix F

Many work based on the F, which is an algebraic representation of epipolar geometry. Given a pair of images, where to each point x = (x, y, 1) T in one image, there exists a corresponding epipolar line l in the other image. Any point x = (x , y , 1) T in the second image matching the point x must lie on this epipolar line l . The epipolar line is the projection in the second image of the ray from the point

x through the camera centre C of the rst camera. Thus, there is a map x → l from a point in one image to its corresponding epipolar line in the other image. It is the nature of this singular map, which is a projective points to lines and represented by a F matrix. Its properties are described in section

6.3.1.
The F satises the condition that for any pair of corresponding points x ↔ x in the two images:

x T F x = 0 (2.1)
Let f be the vector representation (row-major) of F then each correspondences satises p T r F p l = 0

x i y i 1      f 11 f 12 f 13 f 21 f 22 f 31 f 31 f 32 f 33           x i y i 1      = 0 that becomes x i x i f 11 + x i y i f 21 + x i f 31 + y i x i f 12 + y i y i f 22 + y i f 32 + x i f 13 + y i f 23 + f 33 = 0 (x x, x y, x , y x, y y, y , x, y, 1) T f = 0.
f is a 9-vector and looks

f = f 11 f 21 f 31 f 12 f 22 f 32 f 13 f 23 f 33 T
It is set up a homogeneous linear system with 9 unknowns variables.

The equation 2.1 is true because if points x and x correspond, then x lies on the epipolar line l = F x corresponding to the point x. In other words 0 = x T l = x T F x. Conversely, if image points satisfy the relation x T F x = 0 then the rays dened by these points are coplanar. This is a necessary condition for points to correspond.

Af =      x 1 x 1 x 1 y 1 x 1 y 1 x 1 y 1 y 1 y 1 x 1 y 1 1
: : : : : : : : :

x n x n x n y n x n y n x n y n y n y n x n y n 1      f = 0
If there is more than 8 point matches, there is need to select the best points, it can be realized by RANSAC Robust estimation model.

Robust estimation Robust statistical methods have been established for many common problems, such as estimating pose, scale etc to not unduly aected by outliers and other external factors. Another motivation is to provide good performance methods in the case of small deviations from parametric distributions. In case where many points can create a dierent model, an very important step is to select the best one. In order to realize it the robust statistical method are used in epipolar geometry constraints. parametric distributions.

The set of correspondences x i /lef trightarrowx i are presented. In many practical situations the source of error arrives from many things, such as: the measurement of the point's position, mismatched etc. These points are outliers to the Gaussian error distribution. These outliers can severely disturb the estimated homography, and consequently should be identied. The goal then is to determine a set of inliers from the presented correspondences. The homography can be estimated in an optimal manner from these inliers using the algorithms described in the previous sections.

The Random sample consensus RANSAC is an one of example of robust iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers. It is recommended tool to use with the eight point algorithm.

Objective is to t the best model to a data set S which contains outliers. • Randomly select a sample of s data points from S and instantiate the model from this subset.

• Determine the set of data points S i which are within a distance threshold t of the model. The set S i is the consensus set of the sample and denes the inliers of S

• If the size of S i (the number of inliers) is greater than some threshold T , re-estimate the model using all the points in S i and terminate.

• If the size of S i is less than T , select a new subset and repeat the above.

• After N trials the largest consensus set S i is selected, and the model is re-estimated using all the points in the subset S i

In the literature, RANSAC problem and optimization has been considered many times [START_REF] Moisan | A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix[END_REF], [START_REF] Torr | MLESAC: A new robust estimator with application to estimating image geometry[END_REF], [START_REF] Sur | Computing the uncertainty of the 8 point algorithm for fundamental matrix estimation[END_REF].

The essential matrix E

The results of the algorithm depends on the coordinates frame where points are expressed. The E is the special form of the F, which has a fewer degrees of freedom and additional properties, compared to the F. In the literature, it can be refereed while input points are normalized image coordinates by simple intrinsic parameters. Data normalization improves the accuracy of results. However, in the state of the art dierent normalization exists:

• intrinsic parameters

• isotropic • bearing scaling
Intrinsic parameters normalization , consider a camera matrix decomposed as P = K[R|t], and let x = P X be a point in the image. If the intirnsic parameters of camera K are known, then its inverse to the point x to obtain the point x = K -1 x must be applied. Then x = [R||t]X, where x is the image point expressed in normalized coordinates. It may be thought of as the image of the point X with respect to a camera [R|t] having the identity matrix I as calibration matrix. The K -

1 P = [R|t]
is called a normalized camera matrix, the eect of the known calibration matrix having been removed.

The dening equation for the E is x T E x = 0. Replacement for x and x gives x T K -T EK -1 x = 0.

Comparing this with the relation x T F x = 0 for the F, it matrices is

E = K T F K (2.2)
Isotropic scaling. As a rst step of normalization, the coordinates in each image are translated (by a dierent T for each image) so it is required to bring the centroid of the set of all points to the origin. The coordinates are also scaled so that on the average a point x is of the form x = (x, y, w) T , with each of x, y and w having the same average magnitude. Rather than choose dierent scale factors for each coordinate direction, anisotropic scaling factor is chosen so that the x and y-coordinates of a point are scaled equally.

The average distance of a point x from the origin is equal to √ 2 . This means that the average point is equal to (1, 1, 1) T . In summary the transformation is as follows:

• The points are translated so that their centroid is at the origin.

• The points are then scaled so that the average distance from the origin is equal to √ 2.

• This transformation is applied to each of the two images independently.

Bearing vector according to the openGV [START_REF] Kneip | Opengv: A unied and generalized approach to real-time calibrated geometric vision[END_REF], the bearing vector is dened to be a 3-vector with unit norm bearing at a spatial 3D point from a camera reference frame. It has 2 degrees of freedom, which are the azimuth and elevation in the camera reference frame. Because it has only two degrees of freedom, it is frequently refereed to it as a 2D information. It is normally expressed in a camera reference frame. So points must be multiplied by intrinsic parameters, as it is shown in the E computation. Then the radial and tangent distortion must be removed, before the set of equation composition. Finally, the point is expressed in camera frame, it is normalized by sum of all elements, then it represents the bearing point.

According to E matrix properties described in section 6.3.2, the best E estimated in iterative eight point algorithm on the base of bearing vectors has to be converted to R and T. Its rank of E is greater than 8 then the least-squares solution can be found by use the singular value decomposition (SVD) [START_REF] Baker | Singular value decomposition tutorial[END_REF]. This method is implemented in many programming tools or libraries such as: Matlab.

Determining the extrinsic parameters is realized in the following steps due to the least squares solution for E:

E = U V T
where U and V are orthogonal 3x3 matrices and is a 3x3 diagonal matrix with

=      s 0 0 0 s 0 0 0 0     
The diagonal entries of are the singular values of E which, according to the internal constraints of the E, must consist of two identical and one zero value.

Dene W =      0 -1 0 1 0 0 0 0 1      and W -1 = W T =      0 1 0 -1 0 0 0 0 1     
and make the following model:

[t] x = U W U T and R = U W -1 V T
This kind of solution provides four possible choices for the second camera matrix, two dierent R matrices and T which have the same value, but opposite signs. It has to be determined which one is correct. It is usually realized by the reconstruction of point X in front of both cameras in one of these four solutions only (see section 6.3.2).

Method based on additional constraint

The two most popular camera calibration groups have been presented and discussed. There are many other methods that rely on other constraints. Some of them use another sensor, special environment structures, vanishing lines or compose from a several methods. Many constraints in the custom CPS with embedded contexts, eliminate the possibility of use those methods, because they require additional aspect of devices, environment or need many computation. However, some of them should be characterized and presented, in order to know why they can not be used.

Method which uses data from another sensors

In the CPS, vehicles and robots usually many senors supports camera. Some of methods try to use this approach and propose calibration procedure with the data from other sensor such as: LIDAR, IMU or GPS. These approaches have huge representation. However, they are dedicated to specic system with certain conditions.

There is many stereo camera calibration methods dedicated for the vehicles applications. For example, the modern car has many additional senors. There is a calibration method [START_REF] Kelly | Simultaneous mapping and stereo extrinsic parameter calibration using gps measurements[END_REF] which use a GPS and IMU. Xu et al. [START_REF] Xu | Online stereovision calibration using on-road markings[END_REF] propose an hybrid procedure between traditional and self-calibration method which use the crosswalk corners connected with its real world positions. These detected points are localized and positioned by the GPS that knows their position (cross-walks) with great precision.

Method requires the well detected infrastructure and GPS signal.

The modern cameras are mounted very often with IMU sensor. There are some methods [START_REF] Fleps | Optimization based imu camera calibration[END_REF], [START_REF] Mirzaei | A kalman lter-based algorithm for imu-camera calibration: Observability analysis and performance evaluation[END_REF] and [START_REF] Li | 3-d motion estimation and online temporal calibration for camera-imu systems[END_REF] that try to inject into calibration procedure data provided by this sensor. It can be an interesting approach for mobile robots and aerial vehicles, where IMU is one of the base sensor. The information can help estimate a 3-dimensional motion and be compared with visual odometry. Normally this approach is used in order to nd the position of the whole agent in the monocular camera setup. They are more interested in global camera pose, which is not enough precise for stereo cameras position. Unfortunately, this approach usually suer on precision and accumulated error which has to be corrected time to time.

Fleps's [START_REF] Fleps | Optimization based imu camera calibration[END_REF] proposes real-time capable and deliver very noisy data, but can be dedicated for drones and dierent ying vehicles which are already equipped with working IMU systems.

Tan et al. [START_REF] Tan | Automatic extrinsic calibration for an onboard camera[END_REF] and [START_REF] Tan | An interactive method for extrinsic parameter calibration of onboard camera[END_REF] publish automatic extrinsic calibration method for automotive domain in general drive conditions. Those approaches require the visible road surface to work properly. The method is based on the synchronization of the video stream with the position of the vehicle, which is estimated on the basis of IMU.

The continuous extrinsic online calibration for stereo cameras proposed by Mueller [START_REF] Mueller | Continuous extrinsic online calibration for stereo cameras[END_REF] estimate the relative 6 degree of freedom between the two cameras sensor. This algorithm runs in real time on Dual Intel Xeon e5-2667 and requires a high precision of IMU to nd the global position of system according to the vehicle motion.

For many mobile robot and vehicles, the odometry is a base procedure for motion and navigation strategy. This data can be used to analyze the extrinsic camera calibration problem. All [START_REF] Miksch | Automatic extrinsic camera self-calibration based on homography and epipolar geometry[END_REF], [START_REF] Censi | Simultaneous calibration of odometry and sensor parameters for mobile robots[END_REF] and [START_REF] Guo | An analytical least-squares solution to the odometer-camera extrinsic calibration problem[END_REF] methods provide a global parameters in the reference to global frame, but not parameters of each (left and right) camera into stereo sets. Moreover, these procedures can be used only with cameras where odometry is available.

Pure rotation and translation

There are some methods that try to rely on pure rotation or translation. It is not universal type of method. However, this kind of methods are perfect candidates for camera mounted on manipulators or other robots with electrics engines. If motion can be perfectly controlled, it can be used for camera calibration [START_REF] Yamashita | Camera calibration and 3-d measurement with an active stereo vision system for handling moving objects[END_REF], [START_REF] Wang | New stereovision self-calibration method and its application in vision guided approaching[END_REF].

Moutinho et al. [START_REF] Moutinho | Markerless online stereo calibration for a humanoid robot[END_REF] proposes an online stereo calibration method, which rely on information from the cameras and the motor encoders. Procedure is dedicated to humanoid robot. It controls and can use an engine's rotation to calibrate camera.

Minimization of matching cost

The methods which are based on the minimization of matching cost (non-linear optimization) are very complex in term of computation and does not t for embedded constraints. Procedures present a camera poses optimization while large number of correspondences points can be detected only from one stereo frame. There is no need for any calibration pattern, motion or additional data. Usually, the initial guess is required in order to compute the scale factor.

Spangenberg et al. [START_REF] Spangenberg | Proceedings, chapter On-line Stereo Self-calibration through Minimization of Matching Costs[END_REF] shows that number of matched pixels can be used as a valuable source of information to improve relative stereo calibration. The nonlinear problem is solved by Monte-Carlo algorithm.

Kuhn et al. [START_REF] Kuhn | Improvement of extrinsic parameters from a single stereo pair[END_REF] use a PatchMatch stereo with simultaneous Total Variation to achieve a reliable and accurate parameters re-calibration. This method relies on disparity map extraction and potentially detect inaccurate calibration parameters.

Ling [START_REF] Yonggen | High-precision online markerless stereo extrinsic calibration[END_REF] proposes online stereo extrinsic method that is adequate for block matching-based dense disparity computation in the whole processing pipeline. They execute the method on a Lenovo Y510 laptop with i7-4720HQ CPU which has signicant higher power than standard embedded processors.

Vanishing points and lines

In contrast of using calibration patterns, it is possible to formulate another scene constraints for camera calibration. The perpendicularly vanishing lines are one of the example of such restriction, proposed and used by Caprile and Torre [START_REF] Caprile | Using vanishing points for camera calibration[END_REF], [START_REF] Liebowitz | Metric rectication for perspective images of planes[END_REF]. However, these methods are not available when specic geometric structures are not guaranteed.

Grammatikopoulos et al. [START_REF] Grammatikopoulos | An automatic approach for camera calibration from vanishing points[END_REF] present an approach for the automatic estimation of interior orientation from images with three vanishing points of orthogonal directions. The Tan [START_REF] Tan | Automatic extrinsic calibration for an onboard camera[END_REF] and [START_REF] Tan | An interactive method for extrinsic parameter calibration of onboard camera[END_REF] works was already characterized in other group but they also contains a vanishing point constraints.

These works [START_REF] Knorr | Online extrinsic multi-camera calibration using ground plane induced homographies[END_REF], [START_REF] Westerho | A classication and temporal ltering based system for online extrinsic camera calibration[END_REF], [START_REF] Nedevschi | Online extrinsic parameters calibration for stereovision systems used in far-range detection vehicle applications[END_REF] estimate the extrinsic camera parameters online using ground plane.

This approach is developed only for monocular camera pose. It can be tested if those methods can be realized separate for two cameras and then merge it in the one global sensor.

Nedevschi's approach requires a special designed scene with road marking point. Moreover, it needs a at ground, ruler, and something that can be used as the straight lines. The interactive operation is used to verify the locations of the calibration lines, which makes the method robust to dierent environments.

There are some calibration methods, which are dedicated for special, not common scenarios. The Nelson's [START_REF] Nelson | From dusk till dawn: Localisation at night using articial light sources[END_REF] focuses on night situation when there is not enough light to detect and recognize any features in the scene. They adopt this method to localize a night articial light source. This scenarios is extreme for specic mission and can not provide precise extrinsic stereo parameters.

Dataset

The dataset is a collection of statistical data normally presented in special, adapted form. The datasets for image processing and computer vision refers as the vision benchmark. There are many of them in the literature, because wide spectrum of applications in the computer vision domain requires many dierent data from various environments, scenarios and sensors, etc.

One of the most popular vision benchmarks for computer vision processing is one proposed by the Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago (KITTI) [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF].

It provides many data recorded from dierent sensors such as stereo camera, GPS, IMU and LIDAR installed in the autonomous driving platform. 

Summary of calibration methods

Based on this chapter, we sustain and continue the hypothesis that the ideal, universal stereo camera calibration method in the real time does not exist. The specic application or system adapts the calibration process that usually requires and depends on many factors. The calibration strongly relies upon in the input data form, environment, required precision, etc. The specic procedures usually create many limitations and constraints. The left part of Fig 2 .12 shows that the computer vision community use a powerful PC and calibrate cameras considering it, as only rst phase of more complex tasks. In this chapter, we present some of calibration methods for specic procedures, for special targets or environments. We categorized some methods taking into account dierent constraints such as if method can be executed everywhere, how much computation it needs. We veried if method satisfy a glasses context and provide a sucient precision. We remind that the main motivation is to estimate the extrinsic parameters in the smart glasses context, with consideration that intrinsic camera parameters are constant. They can be stable due to the internal camera construction of the static focal length. However, in this thesis, we consider the glasses do not guarantee the stability of the extrinsic parameters, which describe the mutual position and orientation between two cameras in the three-dimensional space, because the cameras are subject to a number of dierent strengths and unforeseen conditions. However, we look on this problem in dierent way compare to current state of the art. In the right part of Fig 2 .12 we presents how the existing methods see a calibration problem, as completely separate task from application. In our work, we would like to see a calibration process in the main application. The next chapter presents this point of view.

Figure 2.12: Summary of main aspects after second chapter.

The rst, presented group is the most numerous and concerns the traditional calibration methods.

The advantage over other methods is that it simultaneously provides very accurate and stable intrinsic and extrinsic parameters. For this reason, in this work we use a traditional method as the reference method. Those methods implies the use of some kind of known calibration patterns in the camera's view. It is a huge constraint when dealing with real time applications, because it is impossible to ensure that calibration tool is available. Moreover, it is hard to automatize this kind of procedure, so the current mission usually must stop in order to run the traditional method. These methods perform oine before the rst time camera use in computer-vision tasks. There are some of the traditional methods that try to simulate the calibration tool and use some standardize objects from the environment. However, it is impossible to ensure that the specic elements of the scene are always available. Moreover, it is hard to guarantee a good distribution of calibration objects in the scene, thus the obtained parameters are not always accurate.

The most interesting group in our context of work is the self-calibration methods. They get rid of the calibration tool and they require a moving camera in a stable environment. These procedures can work in an online context but they still need to respect some of additional constraints. They require a good feature detection and matching. We distinguish two main leading group in the self-calibration methods. The rst group relies on epipolar geometry, which many algorithms can solve. Some of them are low complex and can compute the essential matrix that converts to extrinsic parameters. After the analyses of the state of the art, we would like to use the Hartley universal eight point. This algorithm seems to be ecient and constraint of low processing power because it does not require huge amount of calculations. Method requires small number of simple stereo matched point of interest, which exists in many computer vision's application pipelines. However, algorithm has some drawbacks described in literature as very sensitive and requires a scale factor from another source.

The second group relies on bundle adjustment, which is an optimization of the 3-dimensional point cloud from several 2-dimensional views. This estimation requires many computations and remains time consuming, especially in the larger environment, this is a big limitation of this method. The higher number of input POI in the process signicantly increase the number of computations. Rehder et al.

realizes implementation on powerful hardware -PC with Intel i7 CPU. It does not allow assuming that the same method can operate with the limitations of embedded systems. We consider the bundle adjustment as method too complex and demanding in terms of calculations. A subgroup of selfcalibration methods seems to be the only choice, thus fullls the assumptions presented in the Fig2.13.

The methods, which use a known rotation or translation, do not t into glasses context.

Finally, we must test selected Eight-point algorithm in the special dataset. In fact, some work that targets the same problem does not provide any dataset where such changes of camera's position happens. For this reason, we must create a reasonable dataset. According to system restrictions, selected method must recalculate extrinsic parameters: online, without special patterns (that can apply everywhere) and realize computation on embedded systems.

Chapter 3

Approach of online calibration pipeline on embedded systems

Innovation distinguishes between a leader and a follower.

Steve Jobs

This chapter presents the discussion about online calibration in the application pipeline. We create a new concept of camera calibration hidden in to system. It should verify if current extrinsic parameters are up to date. Moreover, this section propose and explain additional functions realized into calibration pipeline.

Objective :

Present the primitive and advance approach of online calibration in the whole application pipeline on an embedded system.

To do this, we :

• study dierent application pipelines.

• study low level computer vision processing.

• present results from the rst primitive online calibration pipeline.

• study dierent optimization of online calibration pipeline.

• present advanced online calibration pipeline.

• study stereo camera monitoring.

Introduction

1st chapter describes the background and context of the entire manuscript. It explains the modern, global trends of most CPS. It shows that they require a higher autonomy, reliability and longer working time to realize more complicated mission. Section 1.1 presents a various model of sensors used to deliver data about the local environment to CPS. One of them is the stereo camera, which is becoming increasingly important. It can replace many sensors, providing a high data spectrum. It is relatively cheap, small, and compact; moreover, it does not consume much power compared to other sensors such as LIDAR. On the other hand, the section 1.2 explains the some limitations related to the use of stereo camera. One of them is the possibility to change the extrinsic camera parameters. In order to solve this problem, the system has to be able to recalculate continuously the parameters.

In addition, 1st chapter lists another essential contexts of this work, which must be repeated before explaining the approach of online calibration pipeline: the application and embedded system (sections 1.3 and 1.4). Section 1.5 presents the targeted nal system, which has unique needs and limitations. The smart glasses that require the online stereo camera calibration. They should guide and navigate pedestrians in complex, indoor and outdoor environments without human intervention. The whole system must understand and be capable of self localization, in order to lead a user correctly. In addition, the device must plan and decide, the right path in an ecient and safe mode, taking into account the dynamics unpredictable changes in the real world.

Moreover, it has embedded processors such as ARM Cortex, which is very constrained by memory and processing power. This CPS requires a low-power processor to perform tasks, due to low energy availability (small battery, portability needs). The selected embedded processor is a several times weaker in terms of mathematical operations per second than processors, which are widely used in a standard PC, such as Intel.

The 2nd chapter describes many methods of the camera calibration according to three main contexts of work: CPS, application and embedded systems. It allows distinguishing between dierent existing methods, which uses various criteria, contains advantages and disadvantages. The emphasis put several times attention on the fact that the best camera calibration procedure does not exist. Moreover, another important point shows that there is no sense in looking for the problem of camera calibration without context of the application and devices. Section 2.6 describes the selected method, which run in the specic custom context of the smart glasses. The procedure uses only on stereo points and does not require a large number of complex mathematical operations. Therefore, it is suitable for an embedded system, which use only from stereo cameras data. The chosen procedure seems to be a universal and ready to realize in a general environment, without any special patterns or other known objects.

This method is appropriate for any type of application and CPS. The most important information from the 1st and 2nd chapter are presented in summary Table 3 Throughout this chapter, many of the critical questions and fundamental reections related to the online calibration pipeline on embedded systems appears. We begin with study of the high-level applications, which need such approach with the updated extrinsic parameters. We analyze that the stereo camera calibration is not a key task of any devices and computer vision application. It is an input data, providing process, which feed the pipeline with the stereo camera parameters. The calibration method is not important from the user's point of view, because the procedure is usually not visible to the operator. If camera calibration is not principal purpose of any CPS and application, it cannot consume a lot of computing power and resources from the system.

In practice, in the real scenarios, the extrinsic parameters of a stereo camera can change at any time. Therefore, the system must constantly monitor and have the possibility to recalculate the parameters during the mission. This chapter presents the approach of the online calibration hidden in the application pipeline, which monitor and recalculate the extrinsic camera parameters. In order to know what kind of precision we can estimate from perfect points and real world, we implement and test the primitive online stereo calibration procedure on the standard PC. Thanks to conclusion from rst tests, it allows to propose some of the optimization techniques for advanced online calibration pipeline. We elaborate these topics and many other related discussions in detail in this manuscript.

3.2

The whole navigation pipeline of the CPS

We divide the study of the whole navigation pipeline on the custom CPS in three main parts. The rst presents some of specic applications used in to navigation pipeline. The second proposes the whole approach divided in special small part of functions. The third presents the low-level computer vision processes commonly used in the many applications and in the targeted smart glasses.

According to section 1.5, the navigation is a main goal of the custom smart glasses. This system requires the online calibration procedure in order to enhance the device's reliability, precision and safety.

Over the last few decades, the area of autonomous mobile systems has developed very successfully.

Nowadays, these systems are able to carry out a navigation and many other complex missions on their own in real time [START_REF] Huang | A Survey of Mobile Indoor Navigation Systems[END_REF]. It creates a new opportunities to hide the online calibration in these navigation pipelines.

The purpose and aim of the CPS

The standard navigation mission contains a several separate phase. First, it has to create a reliable map. Then it should localize itself, nally the decision making algorithm can select the path [START_REF] Rauschnabel | Augmented reality smart glasses: Definition, conceptual insights, and managerial importance[END_REF].

The custom target navigation system has to realize the same goals and some additional task such as object detection and recognition. The system must detect and avoid obstacles in the local environment in real time. In order to do this, we analyzed the various applications for custom navigation, in terms of input, output and complexity. We present them in the Table 3 In all types of missions under analysis, the calibration of the stereo camera is not directly the main task. The calibration provides only some of the necessary input data (extrinsic camera parameters) required for each of these applications. In the following section, we describe each of these.

Visual Odometry

The visual odometry stands to VO, it is the process of estimating the position and orientation of monocular or stereocular camera's data. It increases navigation accuracy at any type of movement on any surface in robots and vehicles domain. VO calculates the 3D movement of the agent base on dierent input images from one or more cameras [START_REF] Yousif | An overview to visual odometry and visual slam: Applications to mobile robotics[END_REF] [147] [START_REF] Fraundorfer | Visual odometry: Part ii -matching, robustness, and applications[END_REF]. The relation between the reference The main dierences between visual odometry and VSLAM is the loop closure procedure and default data fuzzy from the other sensors [START_REF] Yousif | An overview to visual odometry and visual slam: Applications to mobile robotics[END_REF]. While the rst focuses on local consistency and only images data, the second tries to interpreted information from the mission to a previously reviewed area. This process increases the precision of navigation and localization missions. It reduces a drift in the position and trajectory estimations. However, the global optimization on huge data and loop closure requires a large number of processing that translate to very computationally expensive process.

Moreover, it is important to remember, that camera still needs calibration. 

Disparity and depth extraction

The visual SLAM and VO applications can deliver data for the navigation and localization mission.

However, they do not provide any information about local environment such as the distances to the objects observed from camera (system). The depth map obtained by the disparity from the stereo images supplies this data. Data from cameras allows conversing the 2D images into the depth map, other words the 3D information about observed scene. Today, there are neural network procedures, simple algorithm based on geometric information and many dierent methods to extract depth map Rectication is a step required before a depth map extraction while its algorithm uses the epipolar geometry. A transformation process projects input images into a common image plane. The goal of this is to simplify the correspondence problem, which search for matching points between left and right images [START_REF] Szeliski | A taxonomy and evaluation of dense two-frame stereo correspondence algorithm[END_REF]. If the planes of the image are co-planar, the images are directly in the epipolar geometry.

If the centers of the images are in the same line, then the corresponding points from the left image is in the same parallel line in the right image, as shown in Fig 3 .5a. It is explained in section 6.3.

Unfortunately, to the nature of the 3D world such situation does not happen in practice. The The pre-processing data that detect extract and describe corners known also as point of interest detection (POI). These particular pre-processing functions are the most common functions for all imagebased applications. This approach is fundamentally and very important, because in such system we do not need repeat some of calculations. It saves computational loads, thus creates less complex systems.

In the practice, computing power and memory limits each application. In contrast to programs realized in the on the PC or computer cloud, where the limitations are not strict, the application parameters in an embedded system must be very restricted. The rst proposition for whole pipeline is to use common pre-processing functions for all applications once. This methodology can accelerate a global navigation pipeline. If it is necessary, it can perform the specic adjustment of the output data. Appropriate precision of points detection and features descriptions have a signicant impact on the quality of the computer vision application. Therefore, it is a very important step of the whole navigation pipeline.

In order to accomplish pre-processing with higher precision, it is necessary to eliminate distortions and the impact of the focal length. For this reason, functions require initial intrinsic (internal) camera parameters [START_REF] Brito | Radial distortion self-calibration[END_REF]. Initial parameters are in the system and system guarantees the stability of these parameters. In that case, the monitoring and recalibration of intrinsic camera parameters is not necessary. On the other hand, many forces can change the camera positions so the extrinsic camera parameters in the setup mounted in the custom smart glasses frame. Therefore, the whole system must have the possibility to update the extrinsic camera parameters while it is required. Those are mandatory for post process so high-level applications that realize the navigation processing.

Non-precise or not actual extrinsic parameters can lead to serious errors in the high-level application and fail the navigation mission. The online calibration must be included in the whole navigation pipeline. The traditional approach in the classical computer vision pipelines provides the intrinsic and extrinsic camera parameters oine once at the beginning. It is always before the rst use sometimes during the production process. While the current state so the extrinsic parameters change, the pre-processing output is constantly true. This work propose to hide the online calibration between preprocessing and post processing data. The selected calibration algorithm from the second chapter can rely on the output from the pre-processing functions. In this custom approach, the calibration procedure does not require any input data preparation, because all necessary data are already in the system generated for other purpose by the pre-processing functions. This can signicantly reduce the whole calibration costs and allow realizing it in real time on embedded system. We present the nal simplied approach with online camera calibration service in Fig 3 .8.

Low level monocular pre-processing functions

Pre-processing functions use only the stereo image sequence and intrinsic camera parameters. In practice, the left and right camera provides two-separated monocular raw video. Fig 3.9 presents the most basic and popular pre-processing functions for custom system, which deliver data for high-level application and CPS. However, in future, it is possible to expand the group of pre-processing methods by other additional procedures. POI detection is the rst function in our navigation pipeline. In the literature, there are many names used interchangeably for the same term: "Point of interest" ( POI), "Corner" or "Feature".

There are dierent method to extract points for example: Harris, Stephens, Plessey or ShiTomasi algorithms. They have dierent parameters and complexity [START_REF] Jiang | Comparison and study of classic feature point detection algorithm[END_REF]. The standard POI has a well-dened position in pixel coordinate. It usually represents as the intersection of two edges. It is possible to detect point without knowing the intrinsic parameters of the camera. However, because of the camera lens and radial distortions, the actual position of the point may be slightly dierent in reality.

POI description is required in order to distinguish and characterize the dierent detected POI. The local image structure around the feature (neighborhood) is rich in terms of data information contents that is used to specic corner descriptions. As for POI detection, various types of methods exist in order to describe a POI such as ORB, SURF, FREAK or BRISK. All of them have unique specication and dierent complexity [START_REF] Schaeer | A comparison of keypoint descriptors in the context of pedestrian detection: Freak vs[END_REF].

POI matching is realized when POI are detected and described. Thanks to the unique descriptor parameter, point can connect the same corners from dierent views. Each descriptor contains local information and orientation that helps to compare a dierent POI. Each time the closest value of descriptor is paired and the connection between points is established. This allow tracking similar features from more than two images frames. This process is necessary in order to track the specic elements of the scene.

Removing distortion from the corner position is an essential process to increase precision and achieve a true point position. The perfect camera's construction does not exist in the standard computer vision applications. Therefore, the system must eliminate the distortion caused by a camera lens. The most common image distortions are the radial and tangential distortions both can be eliminated from a point in pixel coordinates or for whole image. There is the Brown-Conrad model [START_REF] Hugemann | Correcting lens distortions in digital photographs[END_REF] which removes and corrects both distortion.

Hardware optimization is the way of solving and optimizing problems associated with many preprocessing functions of computer vision applications. The frame per second (FPS) parameter represents the number of images registered by camera during one second. The low-level functions use each of all delivered by the cameras. The applications set the FPS and size of the image. However, many cameras provide more than 20 images per second (20 FPS) with a size of 800 × 600 pixels. We can notice that it represents a huge amount of data. If we consider that on each image we have to realize much mathematical operation, it gives a lot of computation load. Then it cannot work in real time. The standard pre-processing functions on PC have a many resources to use and the Haris POI detection and SURF descriptions still take about 50ms while the image has resolution 640 × 480 [START_REF] Fang | Fpga-based orb feature extraction for realtime visual slam[END_REF]. Therefore, it seems interesting to accelerate this type of procedure with the help of modern hardware solutions.

Linear mathematical operations can perform on the data ow the low-level functions such detection, description and matching. The hardware architecture relies on the GPU or FPGA accelerates many repetitive computations [START_REF] Victor | A harris corner detector implementation in soc-fpga for visual slam[END_REF], [START_REF] Brenot | Fpga based accelerator for visual features detection[END_REF].

Conclusion

The rst section presents and describes the whole navigation pipeline of the custom CPS. The main goal and working condition place the purpose of devices in a global context. We analyzed the principal applications of custom navigation target in term of input, processing and output data. We propose the new approaches to divide the global navigation pipeline in two groups. Many complex functions use the same low-level functions. Therefore, the rst group refers to pre-processing functions. Those require the monocular stream of one camera ow with the intrinsic camera parameters. They detect, describe, match and remove distortion of the point of interest. They do not need the extrinsic stereo camera parameters to work properly so they are always true for the whole time of mission.

The second group is the process and post process data of the navigation that rely on stereocular data. They need the preprocessing functions and the extrinsic camera parameters in order to understand the relation between the two image streams. The analyzed applications in custom CPS such as VO, visual SLAM and depth extraction need the extrinsic parameters to work properly.

We propose to create and realize the online camera calibration block, just behind the pre-processing functions. The input data are available in such system. This approach can reduce additional computation, because the input data for calibration are already in the navigation pipeline. It allows hiding the online calibration in to completely custom pipeline and realizing the procedure as the background operation.

The online calibration of the system increases the safety, reliability and precision of the whole system. It can conrm if currently working system to realize a mission with high precision or not. The online self-calibration procedure in the system realizes the self-healing and self-adapting concept for custom CPS. Many devices may apply the same methodology, and gain prots for the stereo camera use.

Calibration based on primitive approach

As we presented in the 2nd chapter, we select the 8PA algorithm in order to solve the online calibration in the navigation pipeline. According to embedded system constraints, the low-complicated algorithm is required. The 8PA method uses only simple POI. The same kind of features are common to other applications, so they must be available in the system, where the computer vision process exists. As mentioned in section 3. 

Preparing input data

The 8PA algorithm computes model from only eight correspondences POI. Therefore, choosing the best eight points is extremely important. More stable and precise features allow obtaining more accurate model. However, it is usually a dicult task since point localization is noisy, in order to multiple aspects such: incorrect illumination, distortion, false matches, etc. That is why an algorithm requires optimizations in order to select the best POI.

Removal of distortion

We use the pre-processing functions of the system to correct the distortion caused by imperfections of camera sensor. We use the Brown-Conrad distortion model to correct radial and tangential distortion [START_REF] Hugemann | Correcting lens distortions in digital photographs[END_REF]. Following equations 3.1, 3.2 undistort each point before 8PA block.

x u = x d + (x d -x c )(K 1 r 2 + K 2 r 4 ) + (P 1 (r 2 + 2(x d -x c ) 2 ) + 2P 2 (x d -x c )(y d -y c )) (3.1)
y u = y d + (y d -y c )(K 1 r 2 + K 2 r 4 ) + (2P 1 ((x d -x c )(y d -y c ) + P 2 (r 2 + 2(y d -y c ) 2 )) (3.2) 
x u , y u = distorted image point as projected on image plane using specied lens x d , y d = undistorted image point as projected by an ideal pinhole camera x c , y c = distorted center assumed to be the principal point 

K n = radial distorted coecient P n = tangential distorted coecient r = (x d -x c ) 2 + (y d -y c ) 2 Euclidean distance

Normalizing

The normalizing block is the next preprocess function used as the supplementary part of the 8PA pipeline, which increases the stability and precision of the estimated model. The section 2.3.2 describe and explain the four dierent normalization methods, which we studied the isotropic, non-isotropic, by intrinsic parameters and bearing scaling. We extract the normalization part of the pre-processing functions, Fig 3.11 shows that input data are already normalized as the rst step in the completely online calibration process.

If the system detects the POI with innite arithmetical precision, the normalization process does not aect the results. However, in real case where the noise exists. We detect POI with pixel accuracy, (alternatively we propose a sub-pixel precision) with camera distortion. In such case, the normalization has a signicant impact on the precision of results. We tested each of normalization methods. In the custom navigation pipeline, we use the bearing normalization. 

Rotation Translation

RANSAC, inliers and outliers

The preprocess functions detect and match many dierent stereo pairs of POI in each stereo image.

If there is more than eight points, the algorithm must select the best points, in order to estimate the best model. It is a dicult task. In the real scenarios, the distance from the camera to the extracted POI play an important role. Faraway detected corners have less precision so its displacement in pixel coordinates is higher. The impact of the distortion on points detected farther from camera is much bigger. There are also many aspects, which lead to a wrong POI matching. With more input points, proportionally higher number of pairs are wrong match. Thus, many of them are less stable and lead to not precise model estimations. It is crucial to eliminate those aspects and select the best POI. In order to do that, it is popular to use a robust statistic tool such RANSAC. It allows to the robust estimation of the model. The section presents the mathematical background of RANSAC (section 2.3.2). It is usually better to estimate the model over the largest possible set of correspondences, but this has a signicant impact on the length of the performed calculations.

The iteration is the one RANSAC's cycle. In the rst cycle, the model uses an initial random set of eight POI to estimate the model. Then, the rest of the stereo pairs from the system veries estimated model. Those pairs of point, which satised equation 1.4 and gives results smaller than the threshold, is the inlier. The result of such equation stands for epipolar error and we use this term name in the whole manuscript. The threshold value is an important feature in the RANSAC calculation [START_REF] Philip | Mlesac: A new robust estimator with application to estimating image geometry[END_REF]. In the future tests the default value of threshold is equal to 2.0 * (1.0 -cos(atan(sqrt(2.0) * 0.5/800.0))) = 7.8125e -07.

In contrast, the pairs of POI, which do not t the current calculated model and give higher error than the threshold value, are the outlier. The algorithm keeps the model that contains the highest number of inliers compared to outliers, and with the smallest epipolar error. To prevent the innite operations, RANSAC needs the maximal number iteration. Fig 3 .12 illustrates the online camera calibration pipeline with the robust estimation RANSAC.

x lef t M odel x right = 0

(3.3)
x lef t M odel x right < threshold (3.4)

x lef t M odel x right = epipolarerror 

(3.

Representing the results

We must extract the extrinsic parameters from the model, which the 8PA calculates. The translation T and rotation R express the actual distance and orientation between the two positions of the camera (for details see section 6.1.1). In order to verify if the extrinsic parameters are precise, we compare parameters found by online camera calibration method with parameters found by the oine camera calibration method. To measure their dierential, it is necessary to have them in the same scale and norm. Comparing the simplest online method to the traditional oine method is ambiguous and unreliable. Due to the fact, that one method uses the excellent, well-distributed POI and extracted from known objects. In the contrast to the other, which uses features without guarantee of their distribution and stability. Nevertheless, we compare both method by comparing the extrinsic camera parameters in form of θ that represents the Error of Rotation and e 1 the Error of Translation. In the whole manuscript, we use the same, both parameters to present the precision of obtained results. The following sections 3.3.2 explains in details, how we compute those errors.

However, in the real system, it is not always possible to compare the extrinsic parameters found by the online and oine procedure. The oine method provides parameters in beginning of work.

When during the mission the online method recalculates parameters, it has not new parameters found by oine method. That is why, the other possibility to verify and judge a precision of new camera parameters must exist in the online camera calibration pipeline. In this work, we analyzed the high-level (post process) application as another feasibility of parameters evaluation.

Error of Rotation express in θ

We realize all steps described by Huynh to compare between two R matrixes [START_REF] Du | Metrics for 3d rotations: Comparison and analysis[END_REF]. The rst matrix is found by the oine traditional stereo camera calibration method (reference value), the second by online computation from 8PA andSVD. We use the Eigen library in order to convert both matrixes to quaternion form by equations 3.6, 3.7, 3.8 and 3.9. Then, the equation 3. 

Q1 = a + bi + cj + dk that satisfy a 2 + b 2 + c 2 + d 2 = 1 (3.10) θ = arccos(2( Q1, Q2 ) 2 -1) (3.11)

Error of Translation express in e 1

We realize two vectors subtraction to compare between two T vectors. The oine traditional stereo camera calibration provides rst reference vector and the 8PA with SVD calculates second vector. Both vector are in the same scale, normalized by equation 3.12. The equation 3.13 present error in e0 form when we consider that each ax represents the same direction in each vector. Therefore, we substrates each normalized in each axis separately. In the equation 3.14, we present second methodology, because during tests the continuing problem with axis sign appeared. In the error form of e 1 , we subtract the absolute value. We call the e 0 and e 1 the Translation Error.

T T ranslation =      x y z      ; T T ranslationnorm      x norm y norm z norm      = 1 x 2 + y 2 + z 2      x y z      (3.12) e 0 = (x ref -x cal ) 2 + (y ref -y cal ) 2 + (z ref -z cal ) 2 (3.13) e 1 = (|x ref | -|x cal |) 2 + (|y ref | -|y cal |) 2 + (|z ref | -|z cal |) 2 (3.14) 
Error estimation based on high-level application

In the following section, we extend the idea that the high-level functions validate the accuracy of R and T. The particular CPS and application require dierent precisions of extrinsic parameters. There is not perfect stereo camera calibration method and universal precision quality that each high-level application requires. The precision of parameters is good enough, if the mission of the application works eectively. We analyzed some internal parameters and output data to judge precision of current extrinsic parameters in the navigation pipeline. The visual odometry can use a triangulation or reprojections error. In order to verify, if new estimated camera parameters are more precise than old one. The depth map extraction has internal parameters describing erroneous points. The system can use it for evaluation and new parameter verication. We develop this type of project at the laboratory, so in the future, it will be possible to use it, for such purposes.

Due to the limited duration of doctoral thesis, we only consider a methodology for precision verication by depth map extraction, without any future tests. [START_REF] Zhang | A exible new technique for camera calibration[END_REF]. We know the number and size of squares. In theory, this traditional oine method requires at least three dierent poses of the calibration pattern. However, in practice, to provide precise results, it requires between 10 and 20 images. It is important to distribute chessboard's poses, in the whole scene, not far from the camera in order to obtain good parameters. In section 2.2, we describe this calibration method in details, as it is a reference method in this work. 3.4.2 Points from the chessboard.

At the beginning, we test the naive (pure) version of the 8PA. We realize it on the same input points, which oine method used. To measure and verify, if with perfect input pairs of POI, this naive approach can obtain similar precision of the extrinsic camera parameters as oine method. The system accumulates and detects the stereo POI from few dierent planes of calibration pattern with a high oat precision (such as: x=890.1125 y=752.5964). The higher number of perfect input POI (detected from calibration pattern) decrease the error of R in θ and T in e 1 . However, it increases the number of 8PA iteration required to estimate extrinsic parameters. Maximal tested value for primitive approach is 2862 input pairs. They allow calculating a relative right camera pose expressed in the left, similar to those, found by the oine camera calibration method. The dierences in T error represented in e1 is equal to 0.02 of the Euclidean distances. For example, with this error if real distances between the two cameras is equal 15 cm then the online method recalculates 14.7 cm. The change between two R matrices is 1.5 degrees of θ. The perfect stereo points input for the camera calibration based on 8PA can provide the precise extrinsic camera parameters. Based on this we present the rst hypothesis that the system must achieve similar precision of extracted POI from the real dataset in order to the online camera calibration works properly. In the next section, we will test it. From a practical point of view, in a single image, many of the detected features are usually in multiple planes. Therefore, the estimation of parameters must consider a large number of detected POI in a single stereo frame.

Points from one frame

The second dataset is recorded by the same stereo camera set, which was used in previous section 3.4.1.

The naive calibration pipeline method run continuously, that the extrinsic parameters are computed from the pair of POI detected on only one stereo frame. e1 Translation 0,1616 0,259 0,1478 0,1544 0,4921 0,1123 0,2201 0,0653 0,1232 0,0917 0,3017 0,0262 0,0347 0,3767 0,0735 0,0692 0,0257 0,1466 0,3873 0,3292 0,2584 0,1363 0,1277 0,1904 0,1087 0,0471 0,2384 0,1097 0,1186 0,1278 0,2778 0,0868 0,6308 0,0957 0,1266 0,175 0,1616 0,1934 0,0369 0,1145 The precision of extrinsic parameters obtained by online method, cannot be higher, than that, obtained while use the perfect input POI from calibration patter. Previous test 3.4.2 shows an error of R (θ) around 1.5 and error of T (e 1 ) around 0.02 of whole distance between cameras. That is why, the average error obtained during this test from points detected at one frame, is considered as very imprecise results, the θ equal 2.2 and e 1 0.32 (if the Euclidean distance is equal 15, method recalculate 10.2). Moreover, both errors are very unstable and vary a lot. Therefore, it is not possible to precise calibrate cameras when method is based on POI detected from only one, single image.

Discussion

The previous tests presented two dierent naive approaches of 8PA. The rst shows the continuous calibration that performs the computation only on stereo POI detected in the current frames. The obtained results are unstable and not precise. They implicate that it is impossible to have a good enough POI in each of stereo images. On the other hand, the results of online calibration based on perfect POI gave precise parameters, when the input data accumulated from many frames and structures are distributed in the whole image's scene and many planes, etc.

We consider a hypothesis that the appropriate amount and precision of POI from many images of the real scene allow calculating the extrinsic parameters. For the reason, we present in the next section technique to accumulate POI for several or more than a dozen frames in order to perform calibration procedure. Moreover, we propose the function to distinguish the best and most stable POI from the whole group of input pairs. We consider that they must to be well distributed in a many dierent planes and distances from the cameras. To achieve, the same precision, system needs to have an ability to understand the POI with their properties (this point is close from the camera; this point is in the top-left part of the image, etc.).

The frequency of performing online camera calibration in the application pipeline is the other important aspect of this work. If system has to accumulate and collect sucient number of POI, the question arrives, how to nd a trigger, which inform that the system has already enough input data.

System consider the POI in term of good distribution, various distances, high precision, etc. that allows performing calibration and obtaining the precise result.

We consider that maybe the camera calibration does not need to run each time, when there is enough point in the system, but run when there it is required. Then, we propose an additional functionality the monitoring of extrinsic camera parameters. It triggers the algorithm in order to compute new parameters because the old one are not precise anymore. Performed results show that if there is more stereo POI, the results are more precise but algorithm requires more iteration, to estimates E so the R and T. Each algorithm iteration costs a computation power. It is important for embedded systems context to reduce the number of calculations to minimum. We realized the rst tests on a PC equipped with an Intel 7. It is several times faster than the standard embedded system processor (ARM Cortex).

W present the detailed computer parameters into table 4.1.

Nevertheless, the algorithm needed approximately 200 milliseconds (0.2 second) to calculate the extrinsic parameters from the model, the time needed to prepare the data (normalize) is negligible on the architecture ×86-64 bits with 8 cores on the Intel 7 processor but must be considered for testing on the ARM processor in ×32 bits architecture. Next section presents the advanced approach to online calibration in the application pipeline on embedded system. It tries to propose a methodology to obtain as precise extrinsic parameters as it is possible and nd the answers on those asked question.

Advanced stereo camera calibration approach

This part of the 3 chapter proposes dierent optimizations of the whole online calibration pipeline.

We build the advance stereo calibration pipeline from the online stereo camera calibration procedure, which stands to OSCC and the stereo camera calibration monitoring SCCM. The main task of is to compute new extrinsic parameters, thanks to the 8PA. The second important task is to say if system requires the new calibration by verifying if current extrinsic parameters are precise enough.

We suggest accumulating the input POI with appropriate information. We propose a dierent ltering strategy, in order to choose the best stereo pairs and compute the precise extrinsic parameters.

This should increase the precision of results and reduce the number of iterations to nd the best model thus minimize the execution time of the calibration procedure.

Map Points of Interests, the accumulation strategy

We use the same pre-processing functions from naïve calibration pipeline before the advanced stereo camera calibration. Stereo tracking is the detection of POI, matching between stereo frames. In the advanced approach, we propose simultaneously additional matching between current and previous frame. It stands to the temporal tracking and Fig 3 .22 illustrates its idea. The system transmits the detected POI into the accumulation block. There, we create the "Map Points of Interests (MPOI). It contains a basic information about points, which simple stereo-temporal tracking provides.

Long mission as a few minutes or hours, delivers a huge number of frames. For this reason, a simple accumulation and saving strategy of all stereo pairs from each frame is impossible. The high number of images signicantly increases the number of inputs POI. The memory always limits the program, thus the reduction of an innite number of points must appear.

The left part of Fig 3 .22 explains the stereo tracking. On the top, there is the last frame, so the oldest, which arrived. The preprocessing functions detect two POI. Each of them gets a global identication data (ID) number, for example, P 1L obtains the 101 it is the rst element in the table 3.7.

It is unique and assigned to POI at the detection process. We push the global ID, with the position represented in the pixel into the coordinate's vector of features, the oat value represents position and it strongly depends on the detector. For example, system allocates the rst time detected POI: The temporal tracking data provides information how long certain matched points exist in the system. Each POI has a global age (element 4th in the table 3.7), which is set at one when points appear at the register. This value is incremented as long as continuous detection of feature is possible.

P 1L = (X 1L , Y 1L )
When detection is lost the incremental of age stops. The system consider the longer detected and matched POI as more stable compared to that detected spontaneously.

The last frame appears as another parameter (element 5th in the table 3.7). It referees in which frame, the POI was available last time. Based on this parameter, the system removes and cleans the accumulated data about points if point appears sucient number frames ago (from current frame).

In order to storage additional information, about POI in the MPOI, the system registers the Euclidean distance between two matched points in element 6-th of the table 3.7. Each matched point pushes the distance like (d 1 = dist(P 1L , P 1R )) to the vector. The right part of Fig 3 .22 illustrates this methodology. The objects 1 and 3 has position xed into the scene. P1 is much closer to the cameras than P3. There is the same movement for both cameras in the system, from pose 0 to pose 1 in time t. If the POI has larger dierences in the distance (as in the case of P1), then its location is closer to the observer. If the distance is stable and the changes are in small steps, it means that the feature is far from the camera. Based on this information, in the future, the appropriate POI can be prioritize.

That the algorithm focuses on the points which are in the nearest from cameras. The features that are far on the horizon usually have the smallest accuracy, due to the diculty of detection and their precise description.

Last parameter in the MPOI is the status (element 7th in the table 3.7), which is only a control value, used for organization. This parameter allows to fast interpretation of the selected POI. If the values is equal minus one, it represents that POI is not tracked any more. While zero means that point is tracked only in left image, and one means that point is matched between left and right frame.

Table 3.7 provides the whole structure of one POI with its temporal and stereo correspondence. 

Filtering points strategy

In the application pipeline, the MPOI contains all possible matches from last several frames, due to proposed accumulation strategy. It is an important and crucial to choose the most stable and precise POI for 8PA. The ltering with certain rules can search and choose the most appropriate points.

The function should give them the proper priority, so that the algorithm can reject wrong, imprecise matched and base only on excellent POI.

The standard 8PA approach performs two loops. The rst loop calculates the model from randomly selected eight stereo pairs from input POI. The second is to verify the current calculated model, through the rest of the POI pairs.

If the system during the rst loop, thanks to ltering strategy, knows which POI are more stable and precise than others, can choose thus calculate more precise model faster. This methodology can eliminate a huge randomness thus it accelerates the search of the best model and reduces a number of loop iterations, so the whole computation. For the second loop, the ltering can reduce a number of input pairs so the algorithm has less point to verify, etc. In the following section, some of basic ltering methods are proposed:

Stereo-Temporal + age: the rst ltering method uses two parameters: status (4th) and global age (7th) elements from the table 3.7. The POI must be stereo match at current frame and must appear at least from n frames. Points tracked for longer period of time (at least one frame) should be more.

Stereo-Temporal + age + key frames: this ltering strategy proposes to use tracked POI from only some frames, period called key-frame. We explain this on the one example, when the camera starts or drastically rotates and lose all previous tracked points. The points that appear in this new saturation can be more stable and more precise. We test all point ltering methods during the experimental phase.

Stereo-Temporal + age + key frames + distance: this strategy is similar to previous and inject the distance parameter in to account. When the motion of camera is in the direction of POI, the long tracked points start to appear far away and move closer to the camera. System can take the dierences in distances in to account. This ltering method prioritizes from this distance and takes old points in the MPOI structure. On the other hand, the POI, which is far away, has lower precision in location detection. Therefore, system must nd the appropriate balance between the length of tracking history (age of points, 4th element in the table 3.7) and the distance between the points (how far is point from the scene, 6th element the table 3.7)

In the 4 chapter, we explain and test the dierent strategy of ltering in the graphic form. We select the best method in term of results precision. The time required by various method is measured and its impact overall processing pipeline is veried. Filtering strategy should eect on the number of inliers (points satisfy a model) and outliers (points do not satisfy a model). Moreover, it has to reduce the number of RANSAC iterations and allows nding faster the best model. This procedure should be meaningful while the code will transfer to embedded systems with a much weaker processor. The purpose of ltering is to select the best points in order to shorten the time of estimation of new extrinsic parameters of cameras.

Stereo Camera Calibration Monitoring

This section proposes a discussion about the stereo camera calibration monitoring (SCCM). At the beginning, it is worth to ask, whether the system must repeat calibration each time as separated thread running with low priority, or realized as main task only when it is required? The separated thread in an embedded system does not have many resources to disposition. That is why, on some small processors, it can be not sucient to perform even low-complex algorithm. On other hand, if system realizes calibration only when it is necessary, it must recognize when parameters are not precise. How to realize functions which knows that the current extrinsic camera parameters are no longer valid? We analyze two separate stereo camera calibration monitoring methods in this work. The section 3.3.2 presents the proposition that uses the high-level application. The dash line from processing block illustrates this feedback information from high-level. The second method relies on the epipolar geometry, described in section 6.3. The system veries all ltered input points from MPOI by the same methodology used in the 8PA to select the best model. However, the method to check points need to use the current extrinsic parameters of the system. Equation 3.15 illustrates how we determine the threshold.

x lef t CurrentM odel x right = epipolarerror < threshold (3.15) This methodology seems to be universal for all types of applications, because initial parameters are usually available. Therefore, we describe this technique in details in the following section and test in the next chapter. The system requires initial extrinsic parameters in order to realize SCCM, which uses the epipolar geometry. The initial calibration provides the extrinsic parameters with the intrinsic parameters.

The table 3 We use specic dataset to test the SCCM approach. The two dierent calibration exists in one video stream. In the beginning, system has a good initial calibration (nb 0) provided by an oine method. There should be much more inliers than outliers. The online monitoring measures a number of those points.

At one moment, the uncalibration phase arrived. The ratio proportions between number of inliers to outliers and other parameters such as the average error and the median of error drastically changes.

Based on those and other indicators the SCCM should be able to detect that extrinsic parameters of cameras changed.

In the MPOI structure, there is a history of points according to the old calibration. Therefore, the We consider the whole calibration procedure as the quality of services (QoS) in the system. It provides the feedback data to the high-level application with information if the current system state so rotation and translation are precise. The system must verify the new calculated parameters, we propose the three levels of QoS.

• There is no OSCC function, then after decalibration phase detection, the system's mission must be continued in the hand mode, directly to the oine method calibration.

• There is OSCC function that provides temporal parameters. These are not precise, but the system can continue a mission in the safety mode. Then, the low quality of high-level application can guarantee that the mission does not fail. The user must escort the system to the place where it realizes the oine camera calibration, in order to provide new precise parameters.

• There is OSCC function that guarantees to provide a precise and high quality of the parameters.

The mission and high-level application can continue the normal mode of work.

Scale Problem

The scale problem is one of the classic problems in the self-calibration method. It is the issue for monocular, stereocular visual odometry, SLAM and camera calibration. For applications, the scale provides information, which allows understanding the world. It can deliver the width of the road, the height of the corridor, traveled distance, etc. For calibration, scale is required to convert the extrinsic camera parameters from camera scale to real distances. We compare the obtained results (extrinsic camera parameters) in the proposed advanced calibration approach to an oine method in form of e 1 and θ, as described in section 3.3.2.

In the traditional calibration methods, the system uses patterns with known size, and then the scale problem is easily solvable. The each method realizes calibration thanks to connection of the observed world. However, the self-calibration methods must use dierent approach, when the calibration pattern is not available. We propose three main solutions in order to extract the scale:

• Scale extraction uses the sensor baseline. The distance between cameras cannot change, according to some devices.

• Scale extraction uses the objects in the scene. This approach is similar to the traditional calibration method but instead of known chessboard, it uses a known object. It is one proposition for the future work.

• Scale extraction uses data from the other sensors. We analyzed this approach however, we keep in mind that in the target devices we would like to limit the additional sensors.

• Scale extraction uses the deep convolution neural elds [START_REF] Yin | Scale recovery for monocular visual odometry using depth estimated with deep convolutional neural elds[END_REF], because of an embedded system limitation, we do not consider this type of method.

Scale extracted from the baseline

In the beginning, the oine traditional calibration method provides the initial extrinsic parameters.

The calibration pattern provides the real scale, when provide the bassline. The many CPS such as intelligent glasses do not allow change the camera's position signicantly. In such case, the approach assumes that if the distance between the cameras essentially change, it destroys the system. In such case, the system does not need the online calibration. However, changes in the rotation of the camera in relation to the other camera is possible, if the construction of the glasses frame is delicate. This can lead to small dierences in the camera are relatively often.

The system with loosely attached camera, without special metal cage makes it easy to connect to the robot or other CPS like smart glasses, helmet, etc. 

Scale extracted from scene -object detection

We propose extract the scale factor directly from the objects localized in the scene. The principals of this methodology uses the same assumptions as the traditional method, i.e. nding a calibration object with known parameters. However, it should not be a classical calibration pattern such as chessboard etc. but some real object. The standardized object must appears broadly in the working scenario. The standardized and characterized object in term of size and shape is suitable for detection. This type of consideration is not generic and mainly based on the specic application, which works under certain scenarios in which it is used. Some objects widely appear in some group of scenarios.

We analyzed several types of elements: road sign, pedestrian lanes or doors. All of them appear in many environments and mission. They have constant standard sizes. Of course, it is hard to guarantee that such elements exist every time when it is required. 

Scale extracted from other sensor

In some particular examples, the computer vision application can combine dierent data from various sensors or application. We analyzed the visual data with the odometer that measure the traveled distance. The visual odometry can provide a dierent camera pose. The odometry realizes traveled distances. Then the relation between two distances may provide a factor in order to extract scale.

The other example is the fuzzy of IMU data with the visual data. It provides similar information as odometer but in the short distances. Then the global application compares two distances. Other type of system, which can fuzzy dierent type of data, is the devices with LIDAR. The sensor provides information about the local environment. It allows conrming the distance to specic elements of the scene.

3.6

Conclusions about the presented approach

In the beginning, the methodology presents an approach to camera calibration, which hides in to processing pipeline, and use data from the system. The rst section lists some of high-level applications that can run on custom smart-glasses context. We propose the CPS on the embedded system where input data comes from the loosely xed stereo cameras. In order to satisfy a limitation of such devices we present an approach to online calibration in the application pipeline. We divide analyzed applications in pre-processing and post-processing group of functions.

The rst pre-processing functions are similar for many computer vision applications. They realize low-level functions such as POI detection and description, etc. This group uses on monocular camera data, so it requires only intrinsic camera parameters, which are constant due to the camera construction.

Then, the post-processing functions of high-level application use the stereocular data from two cameras.

Therefore, they require all camera parameters (intrinsic, extrinsic) and data from low-level functions.

The section 3.2 proposes to use calibration method on the same data, which the post-processing functions used. The low-level functions provide sucient data for some of self-calibration algorithm.

Moreover, according to proposed methodology these data are available in the system, so calibration procedure can use it without additional processing. Thanks to this, the computer vision processing pipeline hides the calibration method. The next part of this chapter presents a primitive approach to extrinsic camera calibration, which standard literature presents. It describes the chosen algorithm: 8PA with basic steps. We recorded the dataset with sequences of stereo images by the custom stereo camera setup in order to validate our approach. The rst test proves that perfect input data extracted from the chessboard (from oine camera calibration) allow estimating precise parameters. The obtained results are close to the oine method due to perfect input points. In future work, we expect to obtain the same similar precision of the extrinsic camera calibration.

After the second group of test realizes the same primitive approach of online stereo calibration on all points detected on one image scene. This has not sucient predispositions to nd and select the best points to estimate a precise model. The algorithm tries to calculate extrinsic camera parameters continuously after each frame. It leads us to section 3.4.4 where we try to answer, how often the system should perform the calibration. We consider that it should be possible to obtain a similar precision of parameters based on the points from the scene. Therefore, we propose additional optimizations to online stereo calibration pipeline in order to achieve more precise (closer to oine method) results.

There are three main developed strategies described in section 3.5.

We propose the stereo camera monitoring strategy in the advanced stereo camera calibration pipeline. This technique allows realizing camera calibration only when it is required instead of continuous calibration. The special monitoring policies track all the input points. They use them to decide if current parameters are still valid.

This methodology signicantly reduces the calibration costs. The system does not run calibration continuously all the time, but only then when it is necessary. For this strategy, the system needs initially calibration thus the intrinsic parameters of the rst part of the pipeline (pre-processing), and the extrinsic parameters to start monitoring of the extrinsic parameters. We propose additional accumulation and ltering points in order to improve the monitoring and precision of the online calibration method. The accumulation saves the history and other basic information about the all tracked points.

It provides input data not only from one, but also from many frames to algorithm. The system accumulates much specic information about point such as how far point is from the camera, how long it appears. After that block, we propose the ltering of such points based on many parameters. The main goal of this function is to reduce a number of input POI. Then it should select the most suitable points for the 8PA. As the result, it should stabilize and determine the results for the algorithm and reduces the workload and execution time.

We remind that the whole procedure runs on embedded systems. Thus, the autonomous, online stereo self-calibration method has to consume low processing power. It should allow for the use of loosely attached stereo camera, thus it enhances reliability, length of reliable operation of CPS, which is equipped with such sensor. The main aim of calibration is to recalculate (self-heal) and monitor extrinsic parameters in the system. The recalibration is a feedback loop in the whole system.

The proposed methodology considers the calibration as the process in the background of the entire application. Moreover, it realizes a task in real time. In the next chapter, we present the results of our approach.

Chapter 4

Experiments and results

Nothing will work unless you do.

Maya Angelou

This chapter presents and comments the results of the online stereo camera calibration pipeline on dierent environment setups. We describe in detail the condition of work in the PC, RPi and CPS prototype. We present the methodology and realization of new dataset required for the test validation. This chapter realizes the online stereo camera monitoring, which use dierent policies and optimization blocks such as ltering and points accumulation in order to detect calibration need. We realize the continuous and triggered online camera calibration on two dierent datasets. The chapter nally presents the precision of the results and characteristic of the whole pipeline on an embedded system.

Objective :

Illustrate the results and methodology of the advance approach to the online stereo camera calibration in the application pipeline on an embedded system.

To do this, we :

• analyze dierent working environments.

• demonstrate the prototype.

• realize the custom dataset.

• explain the stereo camera calibration monitoring strategies.

• present the continuous and triggered stereo camera calibration.

• select best ltering method.

• realize the whole advanced online calibration.

• measure the impact on the high-level applications

• characterize the online stereo camera calibration on an embedded system.

Environment of experiments

We analyze the dierent environments of experiments and CPS, which need to realize the stereo camera calibration. We prepare the PC that is the most practical environment in our methodology. A high computational power with memory and easy interface are available. Additional, there is a large number of tutorials and community, which help to solve many problems related to compilation or connection of libraries for this environment. While PC can handle operation and mission with proper results. We select Raspberry pi as an embedded target. It is a popular low-cost single-board computer with a huge potential, widely supported by many open source projects. We propose some basic optimization and code improvement in order to satisfy constraints of the second environment. An embedded processor installed on board has similar parameters to the achievable processor in the third environments, which is a future prototype.

The code transfer from the PC to an embedded processor is usually the most complicated and tedious task. There appear many software and library's issues, compilation errors, memory leaks, lack of processing power and many other problems.

Finally, the code migrates to the nal prototype when everything works well on the target embedded processor and the entire architecture. This means that the results must be close enough to the version released on the PC. This chosen methodology allows getting the best results in the shortest possible time. We use the Robot Operating System (ROS) to facilitate code transfer between dierent environments. This section describes all tested environments and interfaces with specic and detailed information.

ROS interface

Robot Operating System can confuse and mislead the user because, it is not real OS, but collection of libraries and tools that help software developers create and simulate robot applications or other CPS. ROS provides a hardware abstraction layer, device drivers, libraries, visualizers, message-passing, package management, etc. ROS perfectly ts into custom approach, because community develops the system on various machines with dierent architecture type (×86-64, ×32ARM). The stationary PCs or single-board computers, etc. has a specic dedicated version in order to run. The main programming language to write a code is the C++, but also C, python, java exists.

Thanks to ROS, it is possible to interface and cooperate with other open sources packages and with many more applications. For examples, a RQT software framework is available to visualize in the graphic way many dierent data available in the system. The machine vision provided by OpenCV packages allows creating a map, which localize agent in the environment, etc. A large community propose and support many other packages and applications.

The huge advantage of ROS is that every robot's component and function connect to specic pack-ages due to distributed message to the whole system. We can divide the program in small independent blocks, known as the nodes. Those communicate and exchange data by publishing dierent messages to topics, between itself. A message is a data structure, and can contain each standard type such: integer, char, string, etc. in each structure such: vector, matrix, etc. The advantage of ROS is to receive and send packets of data with a customized form for each node. This activity is much easier to realize than the exchanging data between dierent programs not written in this environment.

Another interesting and useful command-line tool from ROS functionalities is the rosbag. It records a bag, which is a le format, which stores a ROS message data. There are varieties of tools that can store, process, analyze and visualize the bag. The rosbag player can select many parameters, while sending messages such as frequency, rst frame, etc. in order to improve and accelerate results of the tests. It is a powerful tool, which can provide the identical input sequence. For example, it can play sequences of images with the same parameters and conditions, which allows monitoring and determining the same results each time. The section 2.5 presents the datasets provided by the vision community, each of them, we can convert to the rosbag, where the video stream in the ROS system plays the data ow.

Network conguration is another advantage of the ROS. It is possible to design and build a network consisting of many environments (devices) with dierent nodes. These nodes can listen to each other and exchange specic data, directly by network connection. The dierent proposed environments can communicate when its IP addresses is known. For example, it is possible to use a network, where the master host and peripheral slave devices can connect to the same local network, congured on one roscore server.

PC environment

The section introduces the rst environment setup that uses the standard PC. The Linux OS is Ubuntu of the OSCC from the previous chapter. Following section, describe each separate node in the entire processing pipeline. We present the messages with the specic data structure used to send information between nodes in the arrow form. This approach makes it easier to create a calibration procedure, as other environments or devices can use and apply this solution. It provides a future possibility to extend and migrate the code to the other systems with similar environment.

• Dataset as known as rosbag feeds the pipeline. It contains of collected and synchronized time stamped data from the stereo camera with initial intrinsic and extrinsic parameters.

OUTPUT: synchronized left and right image at demanded parameters as FPS, plus the initial intrinsic and extrinsic parameters. • Tracker contains functions to detect, describe and match POI between the synchronized input images: left, right and previous left frame. The section 3.2.3 presents the methodology. This approach divides the tracker in the local and global tracker. It returns the point cloud, which is a ROS structure used for POI descriptions. The section 3.5.1 details and explains the structure that contains all elements that allows realizing the point allocation. The system gives integer pixel value precision of the point. We develop the tracker in the laboratory, realized in C language with the hardware version realized on FPGA, described in section 4.1.4. During thesis, we use also tracker from OpenCV.

OUTPUT: cloud of matched POI.

• Monitoring and Calibration block is responsible for the online calibration pipeline. It provides information when calibration is required and computes the new extrinsic camera parameters. The section presents the advanced approach with all the optimization. We implement all functions in C++ language and use the 8PA method from OpenGV library [START_REF] Kneip | Opengv: A unied and generalized approach to real-time calibrated geometric vision[END_REF]. It is a dedicated library for solving calibrated central and non-central geometric vision problems.

OUTPUT: new extrinsic camera parameters and monitoring output.

• In this particular scenario, we use the rectication process of the high-level application. It is a last block used to validate the calculated extrinsic parameters. It uses a geometric transformation to change camera conguration with non-parallel epipolar lines to the canonical one. The section 3.2.1 describes how it allows determining and nding a line-wise matching points. There is in pre-installed default library into ROS, an OpenCV open source library [131], which contains functions to realize a rectication task. OUTPUT: two rectied images.

We use the identical nodes with the same form of messages in the other environments, thanks to the ROS environment.

Raspberry Pi 2B environment

The second working environment is small single-board computers known as Raspberry Pi. It stands to RPi. There are various models available on the market. We use 2B version with the Cortex A7 processor. The software setup in this embedded system platform is very similar to one used on thePC.

The OS is Linux but the Ubuntu Mate 16.04 distribution with ROS Kinetic [136]. There are many tutorials, how to install and set up the whole environment on the ROS wiki web page. Table 4.3a presents the parameters of the second environment where OSCC runs. we execute only monitoring and calibration node on the RPi. We characterize this node in term of execution time and precision. The tracker run on the PC and generate the cloud of points to the monitoring and calibration block. It returns the extrinsic camera parameters to the high-level applications, which as trucker runs on PC. To realize these tasks, the system needs a ROS network connection between dierent environments. In this section, we presents how to realize these steps. The last part of this section contains the instruction for lunching and compilation the entire pipeline in the second environment. The master host on PC and peripheral slave devices RPi creates one local network. The dataset with a tracker run on PC. It sends data packages to the RPi, where calibration executes. The Script 4.6a presents the network conguration.

Virtual memory (SWAP) allocation is required step in order to increase an available memory in the system. Small, limited size of memory characterize the embedded systems as presented in section.

The online camera calibration package requires compilation across several dierent libraries that use a complex structure. Thus, the system requires more that 2GiB RAM. On the RPi 2 B, only 1GiB memory is accessible, so the compilation is a challenge, in order to realize it we use a SWAP memory.

It is a virtual memory able to stores the data in memory on disk. We are aware that reading from the disk is several orders of magnitude slower than reading from the memory, but we use it only for compilation level [START_REF] Bhattacharjee | Architectural and Operating System Support for Virtual Memory[END_REF]. The Script 4.5c presents a code of bash.

We use the g++ 5 compiler to compile the monitoring and calibration node on ARM Cortex A7 processor in the RPi with the dynamic link to the. The system requires OpenGV library compilation, on the same embedded target. This step is not possible due its large size. From this reason, we crosscompile the library on the PC. Scripts 4.5a and 4.6b show the required commands. It is possible on Linux OS due to GNU C compiler ARM-linux-gnueabihf [START_REF] Developer | Gnu arm embedded toolchain[END_REF]. RPi documentation delivers the toolchain of ARM compiler, available in [137].

The execution of entire pipeline is possible due to the roslaunch tool. It is another interesting aspect of ROS. It allows launching multiple nodes locally and remotely via secure shell (SSH) settings. 

Each node from

Prototype

We would like to dedicate the nal device to help the visually impaired person in displacement. This CPS should be capable to localize and guide to the specic destination with abilities to new route and directions computations. The devices must be able to react to the local environment, as opposed to a standard navigation device. The detection of the scene's elements and changing dynamic data should enable on barriers and obstacle avoidance. The section 1.5 explains in the details the mission and device contexts, where the nal version of the SCCM and the OSCC run. The third environment represents the software and hardware of this CPS prototype.

The hardware is the MIMOSA prototyping board designed and developed by CEA. It is equipped with two FPGA, Intel I5 and ARM Cortex A9. Fig 4 .7b presents the approximate schematic of the whole pipeline. At this moment, the system realizes the low level processing functions such as point extraction, description and matching on the Kintex7. It realizes and returns exactly the same point cloud structure as the Tracker functions presented in the section 3.2.3. The same functions and output data create possibility to switch the environments very exible and fast for testing purpose. The system can use the second FPGA for rectication and the depth map extraction. There is an ARM processor dedicated for the SCCM and OSCC procedures (see section 3.5). On the Intel i5, the system realizes the rest of high-level applications related to navigation.

The whole setup composes of the backpack and the helmet. Moreover, there is an electronic and battery hidden in the backpack as illustrated in Fig 4 .7d. The electronic board with SD 500 GB drive is in the wooden box, visible in Fig 4 .7e. The helmet is equipped with two stereo cameras presented in Fig 4 .7f. Thanks to this, the whole system is portable. In this prototype, we test the SCCM with OSCC and present the results the following chapter.

In future, instead of using this smart helmet prototype, we would like to propose the smart glasses concept. However, in order to realize it the system must reduce the size of electronics board and battery. 

Monitoring and Calibration

Dataset

We studied dierent existing datasets from the literature. All of them are dedicated to the specic computer vision application. However, none of them depicts the scenario, where the realization of SCCM and OSCC make sense. The custom dataset requires scenario where the two dierent calibrations exists in one sequence. We compare the studied methods between each other in order to point the missing points for our scenarios. This section presents the specication of perfect dataset for this calibration purpose. Moreover, we propose and explain the methodology of handmade data acquisition.

The study of existing datasets

This section presents the main drawbacks from the datasets presented in the section 2.5. Each work provides the computer vision benchmark. The recorded data consists of many dierent sensors such IMU, LIDAR and the video ow of stereo cameras. It shows that existing datasets have a wide spectrum of applications. However, this work is interested only in the data from the stereo camera sensor, in order to perform extrinsic camera calibration.

The stereo sensor used in the dataset is usually mounted to the rigid metal platform. It is very reliable and stable approach. In all examples, it guarantees that the camera does not change intrinsic or extrinsic parameters. The standard approach ensures that the camera and its internal focus length are well xed, thus the all camera parameters are constant from the beginning to the end of the mission.

The moment of the decalibration does not appear, so the calibration is stable. Then, there is no need of re-calibration. Moreover, stereo camera position are usually ideally parallel to each other. In such cases, the R is in the identity matrix form so the obtained image planes are directly co-planar. This camera's setup is correct and desired by systems to simplify many calculations such as rectication process.

In additions, the Euclidean distance between the two cameras is characteristic for the majority of stereo sensors. The only signicant distance is the one, along the X-axis. The other distances along Y and Z-axes are negligible. Those are disproportionately smaller compared to the X one, thus we omit them. However, this is a result of the most specic placement of the camera stereo sensor. Table 4.1 presents the main parameters of the analyzed datasets. We do not present the StLucia parameters in the table because the setup is similar the KITTI [60] [START_REF] Geiger | Vision meets robotics: The kitti dataset[END_REF].

From the analyzed dataset, the KITTI presents a very interesting collection of sequences, which provides images in high resolutions with many structures. Moreover, the dataset is widely used in the communities to present the computer vision results. The Fig 4 .8 illustrates the three frames where the software program matches the stereo POI. The system continuously provides the data ow from the same level of the ground. There are many points in each part of the image, detected on dierent structures localized on various distances from the cameras. We use this dataset for future tests, even if the moment of decalibration never happens in any sequences. The existing datasets allow testing many computer vision applications. The all-traditional datasets consider each camera parameter as constant. This is the desired assumption by many computer vision applications. Some of their sequences are sucient to test the camera calibration. This kind of dataset can provide good input data for recalibration testing. However, the decalibration phase does not occur, thus testing this kind of task does not make sense in those standard approaches. The system ensures that once perfect calibrated parameters are available for the whole sequence. The decalibration must appear in order to verify the sense of SCCM and OSCC. This kind of situation never happens in the mentioned dataset. It is the reason why there is a need for a new dataset to fully realize and test our approaches.

Specication of the perfect dataset for SCCM and OSCC

This section catalogs in three paragraphs all the most important aspects which dataset for SCCM and OSCC should provide. The most meaningful element of the dataset is the decalibration phase during the sequence. Therefore, at least two dierent calibrations must take place in an ideal dataset.

The sequence should clearly separate them from each other. At the beginning, the sequence with a calibration pattern in the scene should appear, in order to realize the initial traditional calibration method. After, the system should realize the particular movement with the same calibration setup.

In this period, the self-calibration methods can calculate the extrinsic parameters and conrm them with traditional method. These procedures do not require any calibration patter, but the motion of the camera into static environment. In the more advanced dataset, the system should monitor the motion with the other sensor such as indoor GPS, GPS, system of lasers, etc. It allows verifying and conrming with high-level applications like SLAM or visual odometry the currently calculated camera parameters. This strategy can conrm that obtained parameters are precise.

We dene the type of dataset's movements in two categories. The rst, where the system realizes the motion mainly in a two-dimensional plane. The mobile robot platform with cameras can provide the example of such motion. It records the dataset while the pose of the camera respects constant position in the relation to the ground plane. The second type performs movement in three-dimensional space. The drone or camera mounted on the human provides this kind of dataset movement. This type of motion exposes to dynamic movements in dierent directions and at dierent angles. Both types of motion should be sucient to realize the self-camera calibration procedures. However, the rst group seems to be less complicated because some of extra limitation exists, the dynamic and rapid camera motion in up-down direction cannot appear.

The dataset must dene precisely the decalibration moment at the time. To achieve it, we propose to use some characteristic and known objects in the scene, in order to verify and see the moment in the dataset. Controlled camera position change is advisable, but seems dicult to achieve in real situations.

This process leads from the rst calibration (1) with R1, T1, E1, F1 to the second calibration (2) with dierent parameters rened to R2, T2, E2 and F2. This work assumes that the intrinsic and distortion parameters are constant. However, in future, such group of dataset can realize the same scenarios with constant extrinsic parameters and change the intrinsic. Moreover, for the most complicated case, it is possible to change two groups of parameters. The movement after decalibration should be similar to these in the rst phase, that the self-calibration can recalculate new parameters. We suggest realizing the motion in the closed loop. This strategy allows arriving to the starting point and it can be an additional verication step for high-level applications. The glsslam can provides the dierences between the input and the output position. This can be a good indicator of the quality by parameters.

At the end of sequences, the dataset should have the calibration patter in the view in order to realize the nal traditional calibration method. The initial and nal sequences with calibration pattern should ensure that the sucient number of frames with chessboard is available for the traditional calibration method to calculate the most accurate parameters.

At the end of sequences, the dataset should have the calibration patter in the view in order to realize the nal traditional calibration method. The initial and nal sequences with calibration pattern should ensure that the sucient number of frames with chessboard is available for the traditional calibration method to calculate the most accurate parameters.

In accordance with the methodology of standard stereo camera calibration, the algorithm has to base on the overlapping views coming from the left and right camera ow. The dataset must guarantee that left and right images present the same part of scene at exactly the same time, in order to match the proper points. However, we present the dierent setups of cameras, to test, illustrated in Fig 4 .9.

Left frame

Right frame R =

1 0 0 0 1 0 0 0 1
The easiest Perfect setup Calibration 1

Left frame

Right frame R = 0,98 0,02 0,01 0,02 0,99 -0,03 -0,03 -0,02 0,97 Calibration 2

Left frame

Right frame R = 0,99 0,01 0,01 0,01 0,99 -0,01 -0,01 -0,01 0,99

Calibration 2

The easiest Real setup

Left frame

Right frame R = 0,99 0,02 0,02 0,01 0,98 -0,01 -0,02 -0,01 0,99

Calibration 1

More complicated setup

Left frame Right frame R = 0,99 0,02 0,02 0,01 0,98 -0,01 -0,02 -0,01 0,99 Calibration 1

Left frame

Right frame R = 0,98 0,02 0,01 0,02 0,99 -0,03 -0,03 -0,02 0,97 Calibration 2 T = 1 0 0 T = 1 0 0 T = 0,99 0, 001 0,01 T = 0,99 0, 001 0,01 T = 0,89 0, 1 0,01 T = 0,84 0, 15 0,01 The setup needs the perfect synchronization between two left and right ows. The dataset must record the camera stream with a certain speed. The higher FPS allows for smoother records of datasets, on the other hand the low FPS can lead to delays, lags and problems related to the continuity of frame data.

The dataset requires a high resolution of the input images, which is an equivalent of pixels in the one image. There are many standard display resolutions: 1024 × 768 (XGA/XVGA), 1280 × 1024 (SXGA), 1600 × 1200 (UXGA), etc. As a rule, a larger number of pixels allows for a more accurate representation of the reality. It aects in the better and more accurate POI detection. Therefore, we recommend using the maximum resolution. However, the system must consider that each pixel, depending on the format, takes up space. It signicantly extends all the processes associated with the image analysis such as (corner detection, etc.). For this reason, an appropriate balance between the quality of the image and its size is necessary.

The dataset must meet certain additional constraints, in order to detect accurate and well-distributed points. The adequate illumination of the observed scene is a necessary condition for proper operation of the image analysis functions. The dataset should avoid the direct blindness from the light source, the reection of rays and other special situation in order to create more useful and easy sequences. Another important point is to have a heterogeneous scenery. Where the each part of the image has clear and non-repetitive structures. These elements should be localized on the dierent distances from the camera. Finally, we recommend that the static scene should dominate the data set over moving objects in the frame, for more standard approaches. In order to extract the scale factor by the self-calibration methods additionally information is required. According to the section 3.5.5, the perfect dataset for the OSCC, should have in the eld of view several objects, which are suitable for easy recognition and have standardized sizes. Such objects can be trac signs, doors, windows or people. We propose to use this type of scenery elements to extract the scale.

Dataset aspect Conditions

Content two synchronized overlapping stereo ows, high FPS, sucient resolutions Scene and environment static scene, perfect lighting conditions, well distributed elements of scene, known objects in the scene Calibration aspects decalibration during sequences, all camera parameters for rst and second calibration Table 4.2:

The table shows the summary of the specication for dataset dedicated for SCCM and OSCC.

Realization of custom dataset

Setup presentation

The Fig 4 .10a presents the setup for dataset recording, where the stereo cameras are mounted in the metal bar, which can be attached directly to the helmet. For such system, the camera planes are not in the perfect parallel position to the ground due to the camera's setup settings. However, the distance between two cameras is contained only in one direction X-axis. During dataset recording, we hold the system in the hand so it is sensitive on motions in all directions. We compare this setup to a drone based system, which is very complicated due to irregular movement. The camera setup can move in the all degrees of freedom, in each: roll, pitch and yaw angular in the respect to the three directions.

Technical recording aspects

Images ow send the overlapping images straight to the PC, thanks to the u-eye ROS node [180]. This application allows setting various camera and dataset parameters such as exposure, frame rate, type of recording les (MONO8, RGB8, BAYER) and many others. Due the trigger technology build in cameras, it is possible to take already synchronized images from both cameras. The system sent the data with the time stamp, which enables to merge the corresponding frames. It is critical and necessary step for each image processing, in order to ensure that images present part of scene at the same time.

It allows correcting POI matches by low level processing functions. These data with certain parameters and specied frequency are received as an image messages, recorded in form of rosbag. During test, we play this as the movies for test purpose.

The resolution of images provided by stereo cameras is 1200 ×860 pixels. The weight of one standard frame with current resolution is around 3,5 MB. The system records the regular videos with 22 FPS. It is around 77 MB per second for each camera. It gives more than 4.5 GB each minutes for one camera. In the stereo camera setup, two must multiply this value. These values show how important and useful can be ow processing. Instead of copy and special mathematical operation on the image memory, the low-level image processing functions can realize computation on the stream of data at real time (see section 3.2.3).

For additional optimization requirements, we suggest using the Bayer format, which can reduce the size of the image. However, then system requires additional conversion to grey or to RGB the computer vision process.

Condition of recording aspects

We acquire the dataset outdoor close to the oce. The sun is in the sky, so the lighting is not controlled but it is sucient without any disturbance. The close surrounding environment has road, buildings and roadside elements. MB for one image. Depending on the sequence, the system records the dierent length of the rosbags.

Each dataset consists of several small sequences. The next section explains this methodology. However, each sequence is no longer than a minute. We use to test the part of the dataset that has 30 s. The completely one registered sequence has less than 20×3×2×20=2.4 Gigabyte.

Custom dataset methodology

One registered dataset usually consists of three separate parts: two of them consist of an illuminated calibration standard for approximately 45s and one of approximately 30s of camera movement in a static environment. The rst one is the sequence at the beginning, where the system observes the chessboard. The second is the sequence at the end with exactly the same indication as the rst.

The extrinsic camera parameters obtained by the OSCC compare to those calculated by oine traditional method, which is the reference procedure. For this reason, in the beginning and in the end of recording dataset, we present the pattern and record as the separate rosbag. Thanks to these sequences, system can nd all necessary parameters: intrinsic, distortion and extrinsic.

In the custom-recorded dataset during around 30s, two dierent calibrations of the stereo camera setup exists. Moreover, the system perfectly knows the moment of decalibration in term of frame and time. The movement with the calibration 1 realizes during rst 15 s of dataset. After that time, the position of the right camera is changed. It is due to the physical force, which touched camera. The images are continuously recorded during and 15s after decalibration. The second part of the dataset realizes the sequence with the calibration 2. The Fig 4 .12 presents this strategy with the methodology and characteristic. During this sequence, the SCCM and OSCC can be tested and try to be proved, if approach from 3rd chapter works properly. 

Traditional calibration phase

The system must calculate the parameters during the recorded dataset. During the rst phase, the system observes the calibration pattern during the sequence. The Fig 4 .13 shows this process. The captured data from u-eye node ll the oine camera calibration node [START_REF] Wong | Ros camera calibration[END_REF], which is based on OpenCV.

We run this node with GUI presented in 

E = R[t] x or E = -(R[t] x ) or E = (R[t] x ) or E = -(R[t] x ) .
The oine camera calibration based on the Matlab application can calculate the same parameters plus E and F matrices (see section 3.4.1). However, this procedure does not inform the system, if there is already a sucient number of images to realize a proper calibration during the recorded sequence.

We use two dierent camera calibration methods during this dataset. It can ensure that the calculated extrinsic camera parameters are precise. Moreover, this approach provides F and E matrices, required by OSCC.

rosrun camera_calibration cameracalibrator.py --approximate 0.5 --size 9x6 --square 0.25 right:=/right/image_raw left:=/left/image_raw right_camera:=/right left_camera:=/left Following, right and left camera calls the name of image stream from ueye_ cam node.

Experiments on the Stereo Camera Calibration Monitoring -SCCM

This section presents characteristic and methodology of SCCM based on the approach from the section 3.5.3. This process monitors current quality of stereo camera calibration in the sense described in the section 3.5.4. The several dierent policies are used to de ne if current extrinsic camera parameters are still valid or the camera's position is changed.

The standard scenario is related to dataset from section 4.2.3 with two phases. During the rst stage, a scenario is calibrated, and it uses initial parameters found by oine traditional method. The second phase in the middle of dataset starts with decalibration. The initial extrinsic parameters are not correct. The main task of SCCM is to detect when it happens. The system must detect this moment as soon as possible because the wrong extrinsic camera parameters can lead to many errors from high-level application.

Input data used to SCCM

The section 4.3.3 proposes and explains two dierent groups of policies in order to realize SCCM. The rst group uses the amount of POI in a specic category. The second group of SCCM tactic depends on the value of epipolar error in selected group. The nal decision, if the system needs calibration is based on a combination of those policies.

At this point, it is mandatory to remind the input POI after the ltering tracker strategy from the section 3.5.2. The whole detected and stereo matched points must satisfy two important conditions to be considered as the inlier or outlier. It has to be temporally (at least once before left and previous left) and the stereo (left -right) track. If it is not, then points move to not considered" group. signicantly starts to increase when the number of inliers decreases, around 153th frame.

Amount of POI in specic category

The last group of points does not satisfy the tracker condition (the point is not tracked at least on the frame before). In Fig 4 .16, the yellow color plots the "not considered" points. We can see that the amount of such points is stable during 300 frames.

For the second half of the dataset, the sum is a few times higher. Then, the green color represents the sum of error calculated from inliers. Parameter is quite stable for whole sequences. It is because the epipolar error denes the point category such as inlier. If an error is higher than the threshold value, the outlier is the point class. The current outliers are marked with the red line. The sum of epipolar error from outliers signicantly starts to increase after 155th frame. An irregularity of epipolar sum for outliers occur in the frame range of 20th-29th, 218th-232th, 253th-260th and 275th-285th. During these frames, there are not enough points in the system, the dataset imperfections caused it.

The two diagrams shown in this section allow determining whether the current parameters are up to date. Based on these charts, the section 4.3.3 proposes the dierent techniques to detect the right moment.

Average value and trigger methodology

It is dicult task to determine the standard value of each monitored parameter from rst or second group of policies. Because it is strongly dependent on dataset and low-level functions. For example, the various numbers of points detected on each image's frame signicantly depend to particular detector or tracker, its method, internal parameters, specic condition etc. The dierent SCCM policy requires threshold value, in order to activate a trigger. This is presented in the red line, its value is determined experimentally for each monitoring tactic. In the Fig 4 .18, we can observe that system calculates the 200

For each following plot in this section, the orange line or the orange bar represent the currently monitored parameter. We use these dierent formats in order to increase readability of plots. In the We propose the local average technique for SCCM, in order to avoid it, represented in the blue line.

The system construct it from 15 frames, tests for this value passed.

The alarm triggers, when and only when, local average value (not monitored parameter) is higher than the threshold. This methodology eliminates false alarm at the 21th and 30th frame. It triggers policy at 46th frame. This may result in a small delay in relation to the real changes of parameters.

The image's frames are taken at a speed of about 20 FPS (for this tested dataset), so delay is never longer than 1 second. Additionally, positive aspects that allow to avoid false alarms are higher than this small delay. This policy can detect a second phase of the scenario.

For each plot's gures in the following section, the X-axis represents the frame number. The system use the value interchangeably with time domain. However, in order to do it, it must recalculate. We record the dataset sequence with a speed of 20 FPS, so 1 FPS is 0.05 s.

In each of following plots, there is a policy trigger. If, it represents value zero, the current extrinsic parameters satisfy the particular conditions. When the value jumps to high value (1 or other positive value like 0.9. 1.2 etc. sometimes uses to increase a readability), it symbolizes that the tested monitored tactic detects decalibration and needs new extrinsic camera parameters.

The next section presents each policy with alarm (trigger) criterion. We present them on the appropriate sequences, recorded based on the meteorology from the section 4.2. To validate and show that this technique works properly, we test methodology on the KITTI and the inversion sequence of custom dataset. Finally, we comment the obtained results in the last section of this chapter.

SCCM policy

Policies rely on the number of points

We present the rst group of policy, which bases on the ratios between the numbers of points in specic categories. The system requires exceed the particular relation between the initial/global average value and the local/current average number of points, in order to activate the triggers, as presented in the section 4.3.2. The precise denition of each point's category is available in the section 3.3.1.

The rst presented policy is based on the ratio between number of points satisfy and do not fulll the epipolar geometry. Fig 4.19 shows the decision making process based on this criterion. The orange bar presents the current monitored value. The presented ratio is very unstable and varies a lot in the range between 10th and 150th frame but it does not tend to zero in that window. The number of points causes a large variation. If there is only one current outliers (bad point in the considered group) in relation to one hundred inliers (good points),then the ratio is several times higher than when there is not one but several outliers (the same value divided by a higher number). The unfavorable relation begins when the amount of outliers coincides with the number of inliers. In such case, the ratio tends to reach 1, or less. It is clearly visible for orange bars after the 157th frame that the monitored parameter certainly drops and stabilize, and then it is close to 0.

The system composes the global average in the light blue line. Then, based on this the threshold (red color line) value is calculated. In this policy, it is 60 % of initial value. We select this value of the experiment. We apply the local average ratio technique, in order to avoid deviations of current measured parameters. The system compares the dark blue line with a threshold. In The next policy rests upon on the ration between numbers of inliers to all stereo points. In this policy, the threshold value is set on the 0.75% of global initial average. The system set this value because during the standard sequences in the dataset, the number of points satisfying epipolar geometry should increase. If and only if the movements of the camera is smooth and camera's pose does not change.

However, the drop of inliers can happen, for example: when some object obscures in the camera view or camera parameters changed. Fig 4.20 shows that in the rst half of the test, the value of a measured parameter systematically arises. Then after 153th frame the current ratio of inliers of all stereo points decrease. The local average follows the same trend and activate a trigger at 161th frame. Moreover, there is similar false alarm between 29th and 35th frame as in the previous policy. illustrates monitored parameters and the decision making process with a similar methodology. The threshold value is set on the 5 times higher number than the initial average. This value is set high because, in the beginning of standard dataset the number of outliers should be very small. The system starts with perfect extrinsic parameters from oine method. Test shows that proposed value is well suited. For the rst phase of sequences outliers ratio tends to zero, then during second phase when camera must recalibrate, the value is very high. In this policy, the system does not activate the false alarm. The trigger is turned on only once at 155th frame. 

Combination of SCCM policies

Each of proposed SCCM policies can give a false alarm despite the methodology used. If there is not enough data (considered points with low requirements -tracker parameters), it is impossible to take up the correct decision. Such a situation can occur when there is insucient light quality of the scene or the camera's view obscure, etc. Then, there is not enough points in the system for a certain period. The SCCM should have the possibility to understand this kind of scenario. During this type of sequences, it is unlikely to decide whether the current parameters are correct or not. If such a period is long, there is a high probability that the environmental conditions are not sucient to analyze whether the current calibration is precise enough.

In the following section, Fig 4 .25 presents the methodology to realize this type of problem. The system monitors the ratio between numbers of not considered points to the whole stereo number points, in order to decide when policies cannot take a decision. The average methodology presents the three periods in the whole dataset, 25th-37th, 238th-267th and 283th-289th, where the ratio of not considered points is too high compare to the initial global value. 

Custom dataset inversion

We realize the second validation of this methodology on the inverted dataset from previous test. The system nds the extrinsic camera parameters on the end of the sequence. Then, we apply them as the initial parameters. For this reason, the system during the rst phase has wrong T, R and E. Then, for the second half of the sequence, when the camera is touched, the extrinsic parameters are correct. The 4.30 shows that the number of outliers in the beginning is higher than at the end of the dataset.

From both illustrations, it can be read that the parameters are changed somewhere between frames 157th-162th.

The system applies all policies to realize SCCM in this dataset. The 

KITTI dataset

We preform the last test in this section on the KITTI dataset. the dataset. However, it requires the precise extrinsic input parameters. We describe and test each of policy on one particular example in this section. Moreover, we run the same tests on the KITTI sequence. This section presents and discuss the obtained results. In addition, we present the technique that limits the level of decision-making, it runs when in the system is the insucient amount of data.

We perform the rst test on the dataset recorded on the methodology from the section 4.2. It has a two phase with dierent camera's position. Unfortunately, the quality of dataset is not perfect. The points are not equally distributed over each part of the image. Moreover, they are not in dierent depth of the image. The Fig 4.38a illustrates the example of one frame from the dataset. However, the proposed monitored methodology is able to detect correct moment, when camera's pose changed.

We test the same dataset but in the reverse order during second test. The system conrms that the monitored indicators allow detecting the same moment when parameters are changed. However, the A technique, which, due to the limited number of points in the system, prevents system from making a decision about calibration, works correctly. We run the same policy on each dataset. For rst tests, in the situation when the number of stereo points clearly drops, the technique blocks the decision making process.

There is need to test proposed methodology on higher number of dierent dataset, to decide if proposed strategy works for various setups. So far, it works well on both datasets. It is not depending on number of detected point. On the other hand, the methodology requires the perfect extrinsic parameters at the beginning of sequences. The realized tests prove that proposed techniques have sense. Thanks to SCCM system knows when parameters are not correct, and then calculation of a new extrinsic camera calibration is possible.

4.4

Analyze of online stereo camera calibration -OSCC We show that the SCCM from previous section 4.3.4 can detect the need for new extrinsic camera parameters in the system (that the camera's position has changed). If such situation occurs, there is a need to nd new R, T and E. When the system is able to detect decalibration moment, it should start calibration procedure. In the 3nd chapter, the section 3.4.3 shows that it is impossible to obtain a high accuracy of extrinsic parameters while the 8PA uses only points from one image frame. The amount and precision of points detected only at one frame are not sucient. That is why, to have higher number of points to disposal, the calibration procedure should start the points accumulation process (described in the section 3.5.1). However, the considered input points for future calibration appears after a new camera's position acquisition. When system detects the moment when system is uncalibrated, it removes all points from the pipeline. The old point in the map structure describes old extrinsic parameters. The Fig 4 .39 presents that the accumulation allows saving all the point in the new map (structure). This example contains only points from last three frames. The stored data permits to the dierent ltering strategy realization. The main goal is to choose best points for the calibration to obtain new extrinsic parameters as precisely as it is possible. Once extrinsic parameters are calculated and found, the system has to conrm the parameters, restart the SCCM process until the next uncalibration phase. 

Continuous stereo camera calibration and ltering methods verication

The continuous stereo camera calibration allows testing and choosing the best and most optimal ltering method for our pipeline. We run the calibration procedure on each frame for 40 continuous • Technique 1 -All stereo from current frame (inliers, outliers, not considered points)

• Technique 2 -Stereo from current frame older than 1

• Technique 3 -Stereo older than 1 plus their history from the whole map point structure

• Technique 4 -All points older than 1 plus every second match of their history from the whole map point structure

• Technique 5 -Stereo if their history is good • Technique 6 -Stereo older than 1 plus their history if and only if whole history is good List 4.2: List of all ltering policies with description. measurements in the same sequence. It starts on the 50th frame of input sequence, that the input points ll the map structure. The ltering strategy selects points according to methodology from the List 4.2. The points after ltration moves directly as the input for the 8PA. We select the preference from among methods based on comparing the obtained R and T to the parameters delivered by the traditional oine method. Two Figs 4.41 and 4.42 show the error of each strategy which is presented in a form of e 1 and θ (see section 3.3.2). Moreover, in the right part of the each gure, we present the small table with the median and average computed from all measurements. The system preforms the ltering test on custom dataset, which runs for SCCM test.

We obtain the best results in the term of T by the technique 6. The average from 40 measurements is equal 0.16. It provides all stereo points older than one with all stereo tracked history if and only if Two plots present the rotation error -θ calculated between the R obtained in the continuous stereo camera calibration, which is based on the points provided by selected method and the oine traditional method. On rst there are three (1-3) strategy methods which seems be less precise and more vary. On the second there are (4-6) another three methods, which are more stable and precise.

the whole history of point has stereo matches. This method should have one of the highest number of points among all methods. However, the dierences between the technique 3 and 4 is negligibly small on this test. This is probably because the RANSAC can handle and remove a small number of wrong points without any problem. The R results are the same for each of the proposed ltering methods and is equal approximately 3 degrees. For the future tests, we propose to use only 6th technique to provide points for the OSCC.

Nevertheless, the obtained results are not very precise. The R and T found by online method are not the same as the parameters found by oine method. The two main facts cause it. The rst, the point detector provides a position in the integer precision, when the oine method uses points in the oating magnitude. The second fact, we noticed in the part 4.3.5. The created dataset does not provide a good enough structure to detect perfect points. The traditional method requires perfect points in term of distribution and distance from camera relatively close between 2 m to 3 m in order to calibrate oine. Therefore, the same type of point must be used to the OSCC. Unfortunately, the environment is very poor in term of structures in the used dataset. It prevents to the detection of a large number of points, from dierent distance to the structures in the view of the cameras. Moreover, the system has not same distribution of points in the each part of image, visible in Fig 4 .38a.

Based on this dataset, the system proves that even with not well-developed structures and not sucient number of points in the integer precision, the algorithm is able to test and verify that the current extrinsic parameters are not precise. On the other hand, the custom dataset is not good enough to re-estimate the stereo extrinsic camera parameters, from the presented reasons.

We test the same ltering strategy in the continuous stereo camera calculation on the KITTI sequence. This dataset provides the perfect structure from each distance, which should allow computing better camera parameters, in order to validate proposed method. The four plots presents the obtained results of test. The 

Triggered stereo camera calibration

The previous sections show that the presented SCCM is able to check when the extrinsic parameters are not up to date. This section presents the continuous stereo camera calibration. The proposed accumulation and ltering strategies, average techniques and all SCCM policies are applied. Following section presents results of the OSCC, which activates the camera calibration, when it is required.

We realize all previously proposed methodologies on the same dataset. As for previous tests, the traditional method provides the input extrinsic parameters. At the beginning of the sequence, the SCCM procedure shall construct the initial global values with its thresholds in appropriate proportions.

Then, all policies verify each condition in real time. The QoS waits when all conditions are satised.

Next, the system can decide that it has to recalibrate, then the system delates the existing parameters and begins the data accumulation process.

In the previous tests, the system executes the continuous calibration when the point accumulation process runs during the 50 frames. In the real scenario, where FPS equals 16, the accumulation can take three seconds. For some applications, this time can be too long. For this reason, in this test, the system executes the 8PA if there is minimum 100 points in the accumulated structure and minimum 10 frames passed from the calibration trigger. When both conditions are satised, the algorithm starts to compute model and extrinsic parameters based on the ltered points from the map structure.

The newly estimated parameters are set in the system as soon as they are calculated. On this base, during next 15 frames, the system executes the new process of initial global values. Then, it computes and sets the new thresholds in the same proportions, as rst ones. When done, the new SCCM process begins again.

0,1 From the monitored parameters, it can be concluded that the second change of the position of the camera did not occur in the later part of the measurements. When camera changed position dierences in term of epipolar error and number of points is huge. It is observed that this kind of variation does not appear after the system is recalibrated. Unfortunately, in spite of everything, it is dicult to decide if the system has been precisely calibrated with new parameters. The system calculates its new global parameters, assuming that it has been correctly calibrated. According to the tests performed in section 4.4.1, the results obtained are not always correct. previous thresholds. However, the system calculates them from scratch that is why it cannot compare it directly. This work presents that the quality of parameters obtained by the selected 8PA signicantly deviates from the value of parameters calculated by means of the traditional algorithm. However, the re-estimated parameters and thresholds allow considering that, the system is well calibrated.

input points are expressed in oat form, with accuracy to three decimal places.

According to the section 4.1.2 where we describe the C-tracker used in the tested pipeline. It provides the precision of input points in the pixel integer. The position is expressed in this manner, because it is a copy of the version, which is implemented on the FPGA available in the laboratory.

Precise point detection is a complex task, increasing precision can only be achieved if the point is more accurately expressed between pixels. This type of improvement should denitely increase the precision of the obtained results and increase their stability.

The extension to the oat (subpixelic) form of input point must be realized in tracker for the future tests. The conclusion from obtained results is that the need to more precise points is critical and essential. It should have the high impact, especially on points detected from close distance from camera. For this reason, we propose the subpixelic extension of the pipeline. The good distribution of points in term of dierent distance and all part of image can increase the quality of OSCC.

Impact of calibration on the image rectication procedure

We should not study the stereo camera calibration procedure itself in isolation to the high-level applications. The system considers the calibration as the input data provider. For this reason, we present in section that some of the functions can measure the impact calibration method. The section presents the aim and goal of the rectication procedure. The following part of the chapter shows the impact of dierent extrinsic parameters in this process building block for high-level application. The presented gures illustrated the captured image frame, from the custom-recorded dataset. The green lines are not the epipolar line, but the horizontal lines. It allows nding the same line in the both images.

However, if the image is rectied the lines should represent the epipolar lines.

We present the screens of rectication application to simplify understanding the results. In each left corner of gure, the text in the rectangle presents if the images are input or output. Moreover, in the red circles there are characteristic POI, which describes the same interesting points in both images. The Fig 4 .56 shows results of the rectication, which use the parameters, found by the oine method. The extrinsic parameters are very precise and allow computing well-rectied images. In the center of the image on the black background, there is log from system, which informs that system is well calibrated and gives a current number of frame.

The second Fig 4 .57 presents the same dataset but during the second half, when we touched the cameras. Thus, the image illustrates the wrong rectication. Because, there are the same initial parameters from the rst half of the dataset, obtained by the traditional approach. This type of information allows us to interpret that the system is uncalibrated. The Last 

The whole approach characterization on RPi 2b

This chapter presents the detailed approach to online stereo camera calibration in real time. The previously tests show the results carried out on the PC. It is the rst environment of this work according to the section 4.1. It allows concluding on many aspects as precision and realization of the calibration. It provides opportunity to transfer the entire methodology to embedded systems. In accordance with the second working environment from section 4.1.3, the system realizes the method in the same structure as for previous test. We properly adapt the code to the RPi environment. Then we execute system on ARM Cortex A7 embedded processors, which is available in the RPi. This section presents the characteristics of the time performances of each function.

The tested sequence is a fragment of a dataset recorded by us, used in the previous tests. The Fig 4.59 presents the dataset explanation in the graphic view. The system creates the map points in the rst frame, and then at each time when input points arrive, the structure is expanding. We call this function the F1 in the order to facilitate a discussion. In the ow, the second function (F2) normalizes input points by the intrinsic parameters.

Once, after rst 17 frames, the averages and threshold values are constructed for each policy on the base of the last 15 frames (F3 Another important aspect of this work is to place the stereo camera calibration as a function built into the entire application pipelines. The section 3.2.3 presents the methodology of this solution.

The benets of this approach are signicant. The external processing unit realizes some of the most concerning functions such as POI detection, extraction and matching. In this work, we propose and realize the low-level processing function on external processing unite. In our methodology, the stereo matched points arrive directly to the calibration block. This approach allows omitting the impact of the low-level functions on the time required by camera calibration procedure.

For the moment, we propose to execute the calibration on the same processor where we can realize the high-level application. In such situation, when a system is well calibrated, only SCCM can work with the other application such us rectication, because it does not need a many resources. On the other hand, when the system detects that the system is not calibrated any more, the high-level application does not make sense and can stop. The false data provided to the functions do not allow to proper execution of functions. Then the calibration method has 100 % of resources to perform OSCC, Table 4.5 shows that it needs approximate 22 s. Once after, the system computers new extrinsic parameters, they are in the system and the high-level application with SCCM can run again.

Finally, it is important to notice that time required to execute each function depends on the number of input points. Each function performs mathematical operations based on input data. If the size of input data increases, the number of required calculations grows. We execute the entire test on the same custom dataset that we presented in previous sections of this chapter. Thanks to the similar number of input points on each image with a similar precision, the system requires the same time to execute a whole pipeline. In the future work, we would like to test the approach on other sequences with a random number of points.

Summary and conclusion of results and realization

This 4th chapter presents the experimental phase of the previously described approach to solve the OSCC on embedded systems. The section 4.1 shows the dierent environments setups used during the implementation tests. The rst one is a standard PC with an Intel i7-260 CPU. The second environment is the RPi 2B equipped with the embedded processors ARM Cortex A7. This processor has similar parameters to the target CPS environment. This third environment equipped with MIMOSA board, where two FPGA, Intel i5 and ARM core is available. We select this setup as the nal electronic devices, because it is one of the project developed in the laboratory.

At the end of the rst section, we explain the methodology for required data set. In the literature, there is not dataset, which allows for the OSCC tests. The third environment allows creating a necessary sequence to realize the future tasks. We present many details of the dataset that must be satised in order to run the calibration of camera parameters.

We point the well synchronization of the image streams, appropriate distribution of structures on the image, even distribution of points and elements of the scene, which allows distinguishing POI without problem, etc. Moreover, the system must see the structures at dierent distances from the camera, so that the majority of points is not located far from the cameras. Unfortunately, the future tests show that the custom-recorded dataset does not meet all of these restrictions. On the other hand, we use the KITTI dataset, which does not provide sequences with dierent camera calibration setup.

However, it provides a well distributed structures in the images, which allows for precise POI detection

The second section 4.3 explains in the details the whole methodology and implementation of SCCM.

The need for and the sense of the SCCM is admitted in the base of the results of two dierent datasets.

Both cases show proper and expected results, due to realized dataset. The proposed SCCM proved that the system, which is equipped with this function, is able to detect if current extrinsic parameters are precise, thanks to the proposed SCCM policies. There are two dierent groups of techniques, which run on the number of points and their epipolar error. The six various tactics are able to detect if one of camera poses has changed, on the other hand, one policy is responsible for conrmation if there are sucient number of detected point in the image. Each of SCCM policies is independent from the dataset, but requires perfect initialization parameters.

It is important to remind that proposed solution, from the point of view of the CPS, hides the SCCM and OSCC in the application pipeline. The selected algorithm is based on the simple POI, so it can take prots, because this kind of data exists into the system for other purpose.

Next section 4.4 provides analyze of the whole pipeline of OSCC. Moreover, it presents the impact of the ltering method on the precision of results and other aspects in the triggered calibration procedure.

The proposed optimization of whole approach such as point accumulation and ltering can help the 8PA to select the best and most reliable input data thus increased the precision of the results. In Chapter 5

Conclusion and future work

The last chapter of this manuscript concludes the whole work and present future goals. The 1st chapter presented the main context and motivation of this work. The 2nd part shows the existing stereo camera calibration methods and dataset in the literature. The 3rd chapter explains custom approach to online stereo camera calibration in the application pipeline. The 4th chapter presents the whole realization and results of the advanced calibration pipeline.

Conclusion

This manuscript presents the study of an online calibration pipeline on the embedded systems. The main goal of this work was to select the best method from existing algorithms and test it in the targeted smart glasses context with embedded system limitation.

Nowadays, there are many dierent stereo calibration methods. The procedures are usually adapted to specic sensor conguration, applications and environments. The most popular stereo cameras ensure that the parameters do not change. The system performs calibration once at the beginning and it guarantees that the system is working properly. These methods require well-known calibration patterns in many planes and distances from the camera. The operator must correctly prepare the procedures. Moreover, mostly all of them are realized oine.

In this work, the main hypothesis is that the camera positions can change due to various circumstances. Stereo cameras are exposed to many factors that can change their position. For this reason, the whole system must have ability to verify if the current parameters are up to date. In the situation, when they are not valid, the selected algorithm should recalculate new precise extrinsic parameters.

Therefore, the method should be able to execute online during the system's mission, without the use any special calibration tool. The self-calibration methods full these restrictions. However, these computer vision procedures run usually on the powerful hardware, like a PC. The context of this work enforces to realize the self-calibration method on embedded systems, which is not a common assumption in the literature.

In increasingly intelligent systems should increase their reliability, safety, security and precision data. Moreover, systems must be as self-automatic as it is possible. For this reason, the control of camera parameters and their recalibration must be possible in the systems of the future. I am convinced that the role of camera as leading sensors will force calibration processing in real time on the devices such have an embedded processor.

The calibration is never the main task of any devices. The process feeds the pipeline with the right parameters. Therefore, this work proposes the concept that the calibration method must hide into the whole application pipeline to reduce the number of computation required by calibration procedure and realize it online. We analyzed many algorithms in that context during the state of the art. We select the method, which inject and use the basic data occurring in the majority low-level computer vision processes.

Thus, we propose to use the 8PA low complex self-calibration method. The algorithm uses only simple stereo matched point of interests (POI) which exist in many computer vision applications. It allows considering that, the input points for the algorithm come with zero cost, because this data are anyway in the system. We proved that the selected 8PA has ability to calculate the precise extrinsic parameters with perfect input points. We postulated that the system could nd the perfect input POI from the real scene. To achieve it, we proposed the advanced calibration pipeline with accumulation, ltering, monitoring strategy and real scale extraction. The chosen methodology and method is universal, independent from other sensors, environments and scenarios. The system should realize the proposed method in the background of application pipeline. Thus to its input points, it can be performed at any mission in the computer vision application pipeline. In this work, we proposed another important concept related to the online camera calibration pipeline, the stereo camera calibration monitoring SCCM. The approach, which veries if current extrinsic parameters in the system are still precise enough. The proposed monitoring methodology uses several policies, which measure quality of current R and T. In order to test and verify the selected approach, a dataset where two dierent calibrations exist in one scenario is required. This kind of computer vision benchmark does not exist in the literature. We needed to specify and create this dataset.

Therefore, during this work, we proposed a methodology for perfect dataset. We recorded a custom dataset according to our approach. During this activity, we solve many problems related to the dataset such as a prototype device, synchronization between images, parameters of the camera settings, scene elements, reference camera calibration, etc. We realized few scenarios, when during sequences we changed the right camera pose with the programmed moment. We know the camera calibration due to the oine camera calibration at the beginning and at the end of the dataset. We successfully tested the proposed SCCM on two dierent custom datasets, it is able to detect at perfect moment that system requires a new calibration. The control tactics and whole approach are independent from the dataset. They detect a false alarm and if in the system, there is sucient number of points take a right decision. This procedure can guarantee that the system is well calibrated and the camera parameters are updated.

The system can successfully detect the moment when the extrinsic parameters changed due to custom methodology. We propose the online stereo camera calibration (OSCC) procedure in order to avoid the return of stereo cameras to the manufacturing process. The advanced 8PA selects the best stereo points detected from last frames in the system according to the proposed accumulation block and MPOI strategy. The accumulation block collects the information about points thanks to temporal and stereo tracking strategy proposed in this thesis. We proposed a ltering the POI in order to select the most stable and precise points. Thanks to this upgrades the whole advanced calibration pipeline can obtain dierent quality of extrinsic parameters, on the basis of the dierent precision of the input points.

We study the whole approach on dierent environments. We obtain the rst results on the standard PC. Then, we characterize the whole pipeline in an embedded system -Raspberry Pi 2 Model B (RPi),

where the ARM Cortex A7 processor is used. Finally, we present the whole prototype as the custom nal target environment. In the nal version, we test the whole online calibration pipeline, where the SCCM trigger the OSCC. It successfully performs on the targeted processor. We solve many issues with code transfer between dierent coding environments in order to realize these tests. We measure its performance on the nal target. We prove that the SCCM needs the 76 ms to verify if current parameters are precise as it is a background task. We consider it as the real time process without any additional optimization. However, we need initially calibrate the whole system in order to run.

The OSCC with the 8PA requires around 20 s to compute new extrinsic parameters on the RPi, while calibration is the background process.

The obtained results allows considering the online calibration pipeline as the one, which can handle operation in the real time. However, the computation of new parameters take a while but the traditional calibration method realized on the PC environment in Matlab or other application frequently takes more time. The approach of SCCM satisfy the real time constraints on embedded systems and run on ARM processor at near real time.

The advanced calibration approach adds the safety feedback loop in the application or cyber physical system. It guarantees that the stereo camera are precisely calibrated and provide correct data. The proposed methodology increase a reliability and precision of the system where the stereo camera exists.

Thus, a new automatic functionality such as self-healing and self-adaptation for long-term missions is proposed. The subject of online calibration has not yet been carefully analyzed in the literature.

This work is a prelude to reections on the calibration of an online stereo camera on an embedded system. In view of the results, I am convinced that the proposed approach can support and enhance the autonomy of modern systems. I am aware of the quality of the obtained parameters, which can sometimes be unstable and unsatisfactory for some applications with high functionality. However, I strongly believe that the introduction of future work, which is in the next section of this chapter, help to achieve this performance.

Future work

During this thesis, we successfully realized the whole concept of online stereo camera calibration with parameters monitoring in the application pipeline. The proposed methodology performs the task assigned to it, with several assumptions. We would like to eliminate them in future work.

The SCCM concept works properly if and only if input extrinsic parameters are precise. However, if the precision of the calculated parameters by OSCC is not excellent, and algorithm chooses new parameters not precise enough, the system fails but behaves as if it work well. Thus, we would like to improve the precision of OSCC. Despite all this, we consider the selected 8PA algorithm as poorly accurate. However, it is necessary to remember that we would like to execute this work with the whole algorithm on embedded systems, where computing power and memory are limited.

This manuscript shows that the accuracy of input points is a key to improve method's precision.

According to selected prototype used in this thesis, the custom embedded tracker generates the point's position in the integer. The tracker needs the subpixelic precision, which can signicantly increase the quality of results.

The realized approach extracts the scale factor from the baseline. This assumption works well for custom prototype. However, for future more universal CPS, the scale should be extracted from the scene. The work proposes a methodology to detect the scale from objects. We propose to test it in the future work.

We realized the datasets in the natural environment. Therefore, these are very complicated in the analysis of camera calibration. There are many conditions that good dataset must satisfy. We did not realize all of them during record of custom dataset. There is a lack of some elements of the scene from close distances during the recorded sequences. Moreover, the number of POI detected at each part of image is limited. In future we should realize more complete and various datasets. Then, we must perform the custom approach, in order to validate the whole calibration pipeline on dierent sequences.

For this reason, we used the KITTI dataset. During the whole sequence, there is only one calibration and there is no need to recalibrate. However, this sequence provides good image structures where the The matrix K is called the camera calibration matrix. In 6.3 we have written (X, Y, Z, 1) T as X cam to emphasize that the camera is assumed to be located at the origin of a Euclidean coordinate system with the principal axis of the camera pointing straight down the Z -axis, and the point X cam is expressed in this coordinate system. Such a coordinate system may be called the camera coordinate frame.

Radial distortion.

The assumption throughout these chapters has been that a linear model is an accurate model of the imaging process. Thus the world point, image point and optical centre are collinear, and world lines are imaged as lines and so on. For real (non-pinhole) lenses this assumption where:

• (x, y) is the ideal image position (which obeys linear projection).

• (x d , y d ) is the actual image position, after radial distortion.

• r is a radial distance (x 2 + y 2 ) from the center for radial distortion.

• L(r) is a distortion factor, which is a function of the radius r only.

In pixel coordinates the correction is written:

x = x c + L(r)(x -x c ) ŷ = y c + L(r)(y -y c ) (6.5)

where (x, y) are the measured coordinates, (xŷ) are the corrected coordinates, and (x c , y c ) is the centre of radial distortion, with r 2 = (x -x c ) 2 + (y -y c ) 2 . Note, if the aspect ratio is not unity then it is necessary to correct for this when computing r. With this correction the coordinates (x, ŷ) are related to the coordinates of the 3D world point by a linear projective camera.

x = K[I|0]X cam (6.6)

6.1.2 Extrinsic parameters.

These kind of parameters known also as external camera parameters describe a transformation between the unknown cameras reference frames and the known world reference frame. This is referred to translation vector between the relative position of the origins of the two cameras and rotation matrix that can cover the corresponding axes of the two frames into alignment. In general, points in space will be expressed in terms of a dierent Euclidean coordinate frame, known as the world coordinate frame. The two coordinate frames are related via a rotation and a translation. See Fig 6 .1 if X is an inhomogeneous 3-vector representing the coordinates of a point in the world coordinate frame, and

Xcam represents the same point in the camera coordinate frame, then we may write Xcam = R( X -C)

where C represent the coordinates of the camera center in the world coordinate frame, and R is a 3x3 rotation matrix representing the orientation of the camera coordinate frame. This equation mat be written in homogeneous coordinates as

X cam =   R -R C 0 1           X Y Z 1         =   R -R C 0 1   X (6.7)
Putting this together with 6.6 leads to the formula where X is now in a world coordinate frame. This is the general mapping given by a pinhole It is often convenient not to make the camera centre explicit, and instead to represent the world to image transformation as Xcam = R X + t. In this case the camera matrix is simply: to the image planes.

P = K[R|t]

Epipolar geometry

The epipolar geometry between two views is essentially the geometry of the intersection of the image planes with the pencil of planes having the baseline as axis (the baseline is the line joining the camera centres). This geometry is usually motivated by considering the search for corresponding points in stereo matching. It is independent of scene structure, and only depends on the cameras internal parameters and relative pose. The F encapsulates this intrinsic geometry. It is a 3 x 3 matrix of rank 2. If a point in 3-space X is imaged as x in the rst view, and x in the second, then the image x and x , space point X, and camera centers are coplanar. Denote this plane as π. Clearly, the rays back-projected from x and x intersect at X , and the rays are coplanar, lying in π. It is this latter property that is of most signicance in searching for a correspondence.

Supposing now that we know only x, we may ask how the corresponding point x is constrained.

The plane π is determined by the baseline and the ray dened by x. From above we know that the ray corresponding to the (unknown) point x lies in π, hence the point x lies on the line of intersection l of π with the second image plane. This line l is the image in the second view of the ray back-projected from x. It is the epipolar line corresponding to x. In terms of a stereo correspondence algorithm the benet is that the search for the point corresponding to x need not cover the entire image plane but can be restricted to the line l .

The Epipol is the point of intersection of the line joining the camera centers (the baseline) with the image plane. Equivalently, the epipole is the image in one view of the camera center of the other view. It is also the vanishing point of the baseline (translation) direction.

An epipolar plane is a plane containing the baseline. There is a one-parameter family (a pencil) of epipolar planes. • Transpose: If F is the F of the pair of cameras (P, P ), then F T is the F of the pair in the opposite order: (P , P ).

• Epipolar lines: For any point x in the rst image, the corresponding epipolar line is l = F x.

Similarly, l = F T x represents the epipolar line corresponding to x in the second image

• The epipole: for any point x (other than e) the epipolar line l = F x contains the epipole e .

Thus e satises e T (F x) = (e T F )x = 0 for all x. It follows that e T F = 0, i.e. e is the left null-vector of F . Similarly F e = 0, i.e. e is the right null-vector of F .

• The degree of freedome: F is a rank 2 homogeneous matrix and has seven degrees of freedom: a 3x3 homogeneous matrix has eight independent ratios (there are nine elements, and the common scaling is not signicant), however, F also satises the constraint det F = 0 which removes one degree of freedom.

Properties of the E

The E, has only ve degrees of freedom: both the R matrix R and the T t have three degrees of freedom, but there is an overall scale ambiguity like the F, the E is a homogeneousquantity. A 3x3

matrix is an E if and only if two of its singular values are equal, and the third is zero. Once it is known, the camera matrices may be retrieved from E. It can be assumed that the rst camera matrix is P = [I|0]. In order to compute the second camera matrix, P , it is necessary to factor E into the product SR of a skew-symmetric matrix and R. The four solutions are illustrated in Fig above 6.9, where it is shown that a reconstructed point X will be in front of both cameras in one of these four solutions only. Thus, testing with a single point to determine if it is in front of both cameras is sucient to decide between the four dierent solutions for the camera matrix P .

Glossary 

θ
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 43 Two plots present the translation error -e 1 . On the top the error of each separate error is presented between the online and oine method. On the bottom the whole T error is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.44 The plot presents the rotation error -θ between the R obtained in the continuous stereo camera calibration which is based on the points from the ltering strategy number 6. and the oine traditional method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.45 The plot presents the number of input points delivered by the 6th ltering strategy and amount of the inliers used to estimate error. . . . . . . . . . . . . . . . . . . . . . . . . 4.46 The plot shows the number of points from each group, all stereo, inliers and outliers from every frame of the analyzed sequence (on custom recorded dataset). . . . . . . . . 4.47 The plot shows the sum of epipolar error on inliers and outliers group from every frame of the analyzed sequence (on custom recorded dataset). . . . . . . . . . . . . . . . . . . 4.48 Ratio between inliers and outliers -one of the SCCM, which is based on the number of points, realized on recorded dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.49 Median of epipolar error measurement -one of the SCCM policy, which is based on the epipolar error, realized on recorded dataset. . . . . . . . . . . . . . . . . . . . . . . . . 4.50 The nal decision of SCCM realized on recorded dataset. . . . . . . . . . . . . . . . . . 4.51 The nal decision of SCCM realized on KITTI dataset. . . . . . . . . . . . . . . . . . . 4.52 The plot shows the number of points from each group, all stereo, inliers, outliers and not considered from every frame of the analyzed sequence (KITTI dataset). . . . . . . 4.53 The plot shows the sum of epipolar error on inliers and outliers group from every frame of the analyzed sequence (KITTI dataset). . . . . . . . . . . . . . . . . . . . . . . . . . 4.54 Ratio between inliers and outliers -one of the SCCM policy, which is based on the number of points, realized on KITTI dataset. . . . . . . . . . . . . . . . . . . . . . . . 4.55 Median of epipolar error measurement -one of the SCCM policy, which is based on the epipolar error, realized on KITTI dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 4.56 Rectication process realized on the extrinsic parameters which are based on the traditional method -it is realized on the rst part of custom dataset. . . . . . . . . . . . . . 4.57 Rectication process realized on the extrinsic parameters which are based on the traditional method -it is realized on the second part of custom dataset. . . . . . . . . . . . 4.58 Rectication process realized on the extrinsic parameters which are based on the traditional method -it is realized on KITTI dataset. . . . . . . . . . . . . . . . . . . . . . . 4.59 Plot presents the analyzed sequences for time characteristic. According to the number of frame dierent functions is executed. Function 1 which create a map structure and Function 3, which normalize data, are realized each frame. . . . . . . . . . . . . . . . . 6.1 Pinhol camera geometry. C is the camera centre and p the principal point. The camera centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  OSCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 . 1 :

 11 Figure 1.1: The standard cyber physical system (CPS) scheme.

  For example: new IMU dedicated for drones and robotics proposed by Bosch (Fig 1.2a) is a 3×4.5×0.5 mm chip and it consumes around 5.2 mA. (a) IMU chip. (b) IMU ax explanation. (c) Results obtained by IMU.

Figure 1 . 2 :

 12 Figure 1.2: IMU presentation.

Fig 1 .

 1 3a shows the Velodyne LIDAR, this model is widely used in the automotive industry. It is a sensor capable of delivering the most accurate real-time 3D data on the market 1.3a. The sensor creates a full 360-degree eld of vision of up to 200 meters of environment. It requires 20 watts. Its size is signicant 7 × 14 cm in size and weighs about 1 kg. The price of the sensor largely depends on the parameters of the detector and producer company. The reliable and widely used model on the market cost about 4 thousand e. (a) Velodyne LIDAR. (b) Principle of LIDAR work. (c) Results obtained by LI-DAR.

Figure 1 . 3 :

 13 Figure 1.3: LIDAR presentation.

  Fig 1.4a) is a module available in many modern devices, such as smartphones, laptops, mobile robots, cars, etc. Depending on the application, there is a very wide range of sensors with dierent performance, precision, size and weight range. The NEO-6 u-blox 6, UBX-M8230-CT or module GTPA010 are a GPS chip, it reaches the size of a 3×3×0.4 mm, which consumes 20 mW for 30 minutes of track and requires power supply of 2.7 V -3.6 V. The precision of this type of chips vary, depends on the model, and it is proportional to the price [1]. (a) Module GTPA010. (b) Principle of GPS work. (c) Results obtained by GPS.

Figure 1 . 4 :

 14 Figure 1.4: GPS presentation.

Figure 1 . 5 :

 15 Figure 1.5: Principle of the odometry.

Fig 1 . 6 )

 16 is around 32×32×20 mm and may cost less than 100 e[53]. The weight of such sensors is less than 5 g, and power consumption is around 100 mA. (a) IDS camera. (b) IDS camera on chip. (c) Camera connected with RPi Pi.

Figure 1 . 6 :

 16 Figure 1.6: Cameras presentation.

Fig 1 .

 1 Fig 1.7c shows another interesting stereo sensor the Blaxtair[START_REF]Blaxtair perimeter protection devices around machinery blaxtair[END_REF] product. Its purpose is to distinguish a person from another obstacle in real time. Once detected, warn the operator in case of danger up to 6 meters. The sensor operates in harsh outdoor conditions mounted in a construction vehicle.There is a more passive stereo sensor in the market like sensor from Fig 1.7a but all of them are limited due to a xed and constant position of cameras.

Fig 1 . 8

 18 Fig 1.8 presents this sensor where the main principle of working is similar to standard camera. However, the wavelength range in the infrared radiation camera spectrum is dierent and is between 700

Figure 1 . 7 :

 17 Figure 1.7: Passive stereo vision sensors (stereo cameras).

Figure 1 . 8 :

 18 Figure 1.8: Infrared radiation (IR) Camera presentation.

Fig 1 . 9

 19 Fig 1.9 presents the simplest representation of the projection model known as the pinhole projection, which referees to camera. There is the light-sensitive surface (sensor) and the image plane with lens (projection) in a given position and orientation in the space. In order to describe it, there are two group of parameters.

Figure 1 . 9 :

 19 Figure 1.9: Intrinsic and extrinsic camera parameters.

Fig 1 .

 1 Fig 1.10 shows the examples of 2D patterns.

Figure 1 . 10 :

 110 Figure 1.10: Dierent calibrations patterns

  (a) Stereo camera mounted in to a rigid metal cage. (b) Loosely attached stereo cameras.

Figure 1 . 11 :

 111 Figure 1.11: Two types of stereo cameras, loosely attached and xed into rigid cage.

Figure 1 . 12 :

 112 Figure 1.12: Examples of analysed type of scene -local environment.

Fig 1 .

 1 Fig 1.14 illustrates the vacuum mobile robot, which must have the intelligence to move and localize itself in the environment. New models comes with a new supplementary function, such as understanding a local area, ground, etc. In the current popular models, the micro-controller is the heart of a system. A bumper equipped with infrared sensors and an odometer to measure the traveled distance usually provides the data. It has a common DCpower unit consisting of a 12V battery, which allows vacuuming

Figure 1 . 13 :

 113 Figure 1.13: Dierent CPS where stereo camera can provide a key data.

Figure 1 . 14 :

 114 Figure 1.14: Vacuum robot presentation.

  Fig 1.18shows the example of such information. Fig 1.15 presents the special devices like portable smart glasses or helmets. Those are able to change the optical properties of the universal environment around us in the real time. This area is quickly gaining popularity in recent years. (a) The Hololens proposed by Microsoft. (b) The smart helmet proposed by our lab.(c) The Hololens details.
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 115 Figure 1.15: Augmented and virtual reality devices presentation.

Figure 1 .

 1 Figure 1.16: CPU presentation.

Figure 1 . 17 :

 117 Figure 1.17: Embedded platforms equipped with ARM processor

Figure 1 . 18 :

 118 Figure 1.18: Interface for application to led a pedestrian presentation.

Figure 1 . 19 :

 119 Figure 1.19: Smart portable devices in our context of work.
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 16 Summary of background and motivation1st chapter gives all the necessary background information and motivations to understand the basic principles of online stereo camera calibration, it is divided into four dierent sections. Fig 1.20 sums up all the dierent aspects and contexts of this manuscript refereed in the rst chapter.

Figure 1 . 20 :

 120 Figure 1.20: Summary of the rst chapter in the diagram form.

Figure 2 . 1 :

 21 Figure 2.1: Global calibration methods characterization.

Figure 2 . 2 :

 22 Figure 2.2: Traditional calibration methods characterization.

3 -

 3 dimensional geometry. The left part ofFig 1.3 shows the calibration object proposed by Faugeras[START_REF] Faugeras | Three-dimensional Computer Vision: A Geometric Viewpoint[END_REF]. Such apparatus normally consists of two or three perpendicular planes. Fig 1.3 presents type of calibration pattern with the 2-dimensional structure (in dierent planes), in order to imitate a 3dimensional tool. This calibration room proposed by Geiger et al. realizes the procedure with only one camera shot (image)[START_REF] Geiger | Automatic camera and range sensor calibration using a single shot[END_REF]. Thanks to the 3-dimensional of pattern, there is no need to move cameras and take images from dierent poses. Heikkila describes all necessary steps required by traditional method[START_REF] Heikkila | A four-step camera calibration procedure with implicit image correction[END_REF].

Figure 2 . 3 :

 23 Figure 2.3: Dierent 3-dimensional apparatus for calibrating cameras.

Figure 2 . 4 :

 24 Figure 2.4: Pattern examples.

Fig 2 .

 2 Fig 2.5b presents one of the most popular landmarks -the aprilgrid patterns[START_REF] Olson | AprilTag: A robust and exible visual ducial system[END_REF]. The Kalibr appli-

Figure 2 . 5 :

 25 Figure 2.5: Pattern examples -landmarks that represent 2-dimensional calibration pattern.

  Fig 2.6.

Figure 2 . 6 :

 26 Figure 2.6: Embedded calibration stereovision system (left) and embedded stereo pair (right).

  The automotive industry looks at the stereo camera sensor very promising. Therefore a large part of the methods are dedicated to operate in that context. It is possible to detect and use many elements (a) Scale model, showing line detection and reconstruction. (b) The set up for stereo vision.

Figure 2 . 7 :

 27 Figure 2.7: Examples of traditional online camera calibration methods.

Fig 2 . 8

 28 Fig 2.8 presents a large variety of methods that can compute the camera parameters with computationally exible approach and dierent constraints. Since they are based on the standard POI, it is possible to use those methods online, while performing other tasks. The most popular strategies such as bundle adjustment (BA) optimization or epipolar constraint are detailed explain in the following section.

Figure 2 . 8 :

 28 Figure 2.8: Self-calibration methods characterization.

Figure 2 . 9 :

 29 Figure 2.9: Robust line estimation.

Fig 2 .

 2 10a shows the KITTI's setup, which has a wide range of scenarios recorded in dierent places, such as city, road, campus, etc. The stereo optical ow with other data gives possibility to verify many applications, such as visual odometry, 3-dimensional object detection, 3-dimensional tracking etc. The University of Queensland's St Lucia proposes another vision benchmark dedicated for computer vision application [60]. Fig 2.10b presents their sensors setup to record high spectrum of data, similar to KITTI. Swiss Federal Institute of Technology Zurich creates the EuRoCMAV -dataset recorded by drone [23]. It contains stereo images, synchronized IMU measurements, accurate motion and structure ground-truth. Dosovitskiy et al. present a relatively new and very interesting work about CARLA [44]. It is the simulator with open source code to test, train and validate the autonomous urban driving systems. Wide range parameters in the simulation allow testing many aspects such as: weather conditions, unpredictable behavior of other cars, motorcycles and bicycles in trac, etc. This is an extremely interesting project that can be used to test a various number of computer vision applications. Fig 2.11c presents a screen of work from CARLA simulation.(a) KITTI sensor setup . (b) STLUCIA sensors setup.

Figure 2 . 10 :

 210 Figure 2.10: Sensors setup.

Figure 2 . 11 :

 211 Figure 2.11: Views form dierent datasets.

Figure 2 . 13 :

 213 Figure 2.13: Summary of methods analyze in all context of work.
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 3132 Figure 3.1: The whole navigation pipeline of selected CPS in the embedded domain.

  (a) Diagram block shows the main components of visual odometry. (b) Visualization of the output data.

Figure 3 . 2 :

 32 Figure 3.2: Real time visual odometry VO as a high-level application developed in the laboratory.

Fig 3 . 3 Figure 3 . 3 :

 3333 Fig 3.3 presents simplied scheme of SLAM. It is one of the most fundamental process in the navigation pipeline. To achieve control and full autonomy of the system, it must have knowledge where it is located and the ability to explore its environment. Everything must realize without user intervention in the real time.

[ 40 ]

 40 [START_REF] Wang | Deep convolutional neural networks for action recognition using depth map sequences[END_REF] [START_REF] Muhlmann | Calculating dense disparity maps from color stereo images, an ecient implementation[END_REF].Fig 3.4a shows the scheme of disparity map extraction, which use simple computer geometry computation to get a depth map. Some publications show the real time depth extraction is possible due to hardware accelerators on the GPU or FPGA[START_REF] Haidi | Literature survey on stereo vision disparity map algorithms[END_REF].Specication DescriptionPurpose of specic application 3D information around an agent in local environmentInput data Stereo images + stereo parameters = rectied imageOutput data Estimating the 3D motion of the camera sequentially

  A block diagram shows the main components of depth extraction. (b) Input image. (c) Depth map.

Figure 3 . 4 :

 34 Figure 3.4: Real time disparity map computation as a high level application developed in the laboratory.

Figure 3 . 5 :

 35 Figure 3.5: Stereo images in the one plane with green lines on the same high of both images.

Figure 3 . 6 :

 36 Figure 3.6: Navigation pipeline divided in small blocks.

Figure 3 . 7 :

 37 Figure 3.7: Navigation pipeline divided in two groups of functions, preprocessing that does not need extrinsic parameters and post process, which need.

Figure 3 . 8 :Figure 3 . 9 :

 3839 Figure 3.8: Simplistic navigation pipeline with online camera calibration block.

2 . 3

 23 the pre-processing functions deliver POI. This methodology allows simplifying and accelerating the calibration process, because input data are already calculated. We propose to use this methodology in the custom CPS. The low-processing functions that detect POI are in the out navigation pipeline. The proposed 8PA algorithm takes prots and hides in the whole processing pipeline. Fig 3.10 presents the most basic primitive implementation of the selected algorithm, detailed information about specic blocks can be found in section 2.3.2.

Figure 3 . 10 :

 310 Figure 3.10: Pipeline of online calibration blocks.

Figure 3 . 11 :

 311 Figure 3.11: Pipeline of online calibration blocks with normalization block.
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 236 10 normalizes the scalar of R. Finally, equation 3.11 compares two quaterians of R matrices. Where ( Q1, Q2 ) is equal a1 * a2 + b1 * b2 + c1 * c2 + d1 * d2. The θ is in radians and express the Rotation Error. In the whole manuscript, for all tests, we use this error to evaluate quality of results. We can convert θ in to angular degree, by multiply by 180/π. a = ( 1 + R 00 + R 11 + R 22 )/b = (R 21 -R 12) /(4 * qw) (3.7) c = (R 02 -R 20) /(4 * qw) (3.8) d = (R 10 -R 01) /(4 * qw) (3.9)
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 3334314 Figure 3.13: Scenario for precision of extrinsic camera parameters estimation based on depth-map extraction.

  (a) Matlab stereo camera application to calibrate cameras. (b) Perfect, stereo points from chessboard (calibration pattern).

Figure 3 . 15 :

 315 Figure 3.15: Traditional oine stereo camera calibration method in Matlab API. Detected points from right image are used as input for naive approach.

Fig 3 .

 3 15b presents two dierent planes of chessboard at left and right image.

Fig 3 .

 3 Fig 3.16 presents the average value from ten measurements of error in θ and in e 1 . Fig 3.17 illustrates the average number of the iterations to estimate the best model. For each plot, blue column in Y-axis gives an average value of a measured parameter. The X-axis presents the number of test. We indicate the number of input stereo pairs by the orange line with the indication on the right side of the graph. The black line display the number of inliers to estimate a nal model. Table3.17a presents

Figure 3 . 16 :

 316 Figure 3.16: Average error of rotation in θ and translation in e 1 is calculated from 10 measurements, based on dierent number of points from chessboard pattern.

Figure 3 . 17 :

 317 Figure 3.17: Average number of iteration from 10 measurements and summary of the most precise method.

Fig 3 .

 3 [START_REF] Bjorkman | Real-time epipolar geometry estimation of binocular stereo heads[END_REF] shows points from the standard stereo frame of this custom dataset. The POI are not well distributed in each part of the image (due to the light and structures of the scene). However, in recorded scene, the features can be detected in many dierent planes. That is why, tests which are based on the one frame, theoretically, can provide a positive result.The plots 3.19 and 3.20 illustrate calculated error of R represented in the θ and T in the e 1 in form of blue column. It is based on the same methodology, as in the previous test. The number of input stereo pairs from the current frame and a number of inliers are given in the X axis and in orange and black line. Moreover, next to each plot, there is a small table, showing an average value of each monitored parameter to increase readability.

Figure 3 . 18 :

 318 Figure 3.18: Input images with point detected on real stereo images recorded by custom camera set.

Figure 3 . 19 :

 319 Figure 3.19: Error in translation expressed in e 1 calculated only on points from current frame.

Figure 3 . 21 :

 321 Figure 3.21: Number of iteration required to estimate nal model only on points from current frame.

Figure 3 . 22 :

 322 Figure 3.22: Left part of image explains in graphic mode the methodology of stereo and temporal tracking. The center of image presents the MPOI of detected points (for details see a table 3.7). In the right part of image, the real situation is illustrated.

2 )

 2 Position of the POI -camera left vector of pair oating points -position of cam left points 3) Correspondence of the POI -camera right vector of pair oating points -position of cam right points 4) Global age of point unsigned int -from how many frames point is track and matched 5) Last frame appear unsigned int -last number frame when point was seen 6) Distance between matched POI vector of oating points -distance between left and right point 7) Status unsigned int -what is current status of point

Fig 3 .

 3 Fig 3.23 presents the whole approach of online calibration pipeline. The point accumulation block creates MPOI just after normalization and preprocessing functions. Those points go directly to the SCCM block. POI from MPOI go to ltering process and then to online calibration block. The OSCC runs only if the trigger decision comes from monitoring. Additionally, the SCCM can received some information from the high-level application.

Figure 3 . 24 :

 324 Figure 3.24: Zoom of the whole pipeline from Fig 3.23

Fig 3 .Figure 3 . 25 :

 3325 Figure 3.25: Scenario presents the whole approach of online camera monitoring.

  system cannot use it to estimate a new model. It needs to clean the old MPOI structure and starts to accumulate new points that satisfy current calibration. The system can perform the OSCC, once there is enough new points accumulated. Once system calculates new extrinsic parameters, delivers to the pipeline (in Fig 3.25 nb 1). Once the precision of calculated parameters is high, the situation arrive to the similar state as with the initial parameters. The system is well calibrated, once the ratio and other parameters arrive to correct values. The SCCM can run again, but now it rely on the model calculated by OSCC. 3.5.4 Quality of Service current extrinsic parameters Finally, in Fig 3.26 we propose the separate quality of service block that measure online camera current parameters and compute a new one. The main objective of the SCCM is to provide information on whether current external parameters are up to date with respect to previous excellent initial parameters.If they are not, the system triggers signal and sent it the system. The OSCC then tries to calculate the new parameters. Once they are delivered to the pipeline, they need to be veried how accurate they are.
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 326 Figure 3.26: The camera calibration quality of service block.

Fig 3 .

 3 27 illustrates a mobile robot with dierent setups of the stereo camera. The various orientations show what kind of camera position changes are possible. The position changes can be similar in the context of glasses, mainly R, but T changes minimal. With this assumption, we consider that the new calculated parameters may refer as the initial value, as presented in the section 3.3.2. In future tests, this approach is used. The recalculated parameters use the initial distance of the baseline between two cameras.
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 327 Figure 3.27: Possible settings of the camera without destroying the system.

Fig 3 .

 3 [START_REF] Cheng | A new approach to solving kruppa equations for camera self-calibration[END_REF] presents a signicant detection realized on the KITTI dataset. The system can obtain scale from time to time when an object is available.

Figure 3 . 28 :

 328 Figure 3.28: Trac sign detection experiments.

  16.04 distribution and others PC parameters, presented in Fig 4.1. Fig 4.2 shows synthesized view of the rst working environments with ROS Lunar Loggerhead, where we implement the whole concept

Figure 4 . 2 :

 42 Figure 4.2: The whole processing pipeline executed on PC environment.

Figure 4 . 3 :

 43 Figure 4.3: RPi 2B the second environment presentation.

Figure 4 . 4 :

 44 Figure 4.4: Pipeline executed in the PC and RPi environment.

  Fig 4.4 is launch from the same le. This technique simplies the start of programs and allows you to predened parameters for dierent functions. This is necessary for projects in which there are several work environments and many nodes. The roslaunch uses the XML conguration with the .launch extension. add_denitions(-Wall -march=armv7-a -O2) (a) Compiler option for OpenGV library for specic ARM processor with optimization -02. #roslaunch start roslaunch calibration_whole_processing_pipeline.launch (b) Examples, use of roslaunch tool. #!/bin/bash sudo fallocate -l 2G /swaple && sudo mkswap /swaple && sudo swapon /swaple (c) SWAP -Virtual memory allocation.

Figure 4 . 5 :

 45 Figure 4.5: Scripts used to program compilation.

Figure 4 . 6 :

 46 Figure 4.6: Network and toolchain conguration scripts.

  Pipeline executed in the prototype environment. (b) Overview of MIMOSA board developed by the CEA. (c) Wooden box with MIMOSA board. (d) Wooden box protecting the MIMOSA board. (e) Backpack equipped with wooden box with batteries. (f) Cameras mounted on the helmet which can change the position.(g) Me with the whole prototype.

Figure 4 . 7 :

 47 Figure 4.7: Prototype presentation.

Figure 4 . 8 :

 48 Figure 4.8: The recorded dataset by stereo cameras mounted on car. The distribution of scene (ground plane, sky) is very similar at each image frame. There is not a big dierences in the rotation and high from ground compare to ground plane.

Figure 4 . 9 :

 49 Figure 4.9: There dierent camera setups. The dierent systems can increase the various R and T parameters, thereby increasing the diculty and dierences to calculate.

  (a) Cameras mounted on the bar which can be directly attached to the helmet. (b) The bar with camera mounted on the helmet.

Figure 4 . 10 :

 410 Figure 4.10: Prototype of stereo camera used to realize custom dataset.

Fig 4 .

 4 [START_REF] Antonelli | Simultaneous calibration of odometry and camera for a dierential drive mobile robot[END_REF] illustrates the view of camera, where for a few images the POI detection applied.

Figure 4 . 11 :

 411 Figure 4.11: The recorded dataset by stereo cameras mounted on helmet. The points detection and stereo matching are applied. It is possible to see that, between image's frames position of camera is the same compared to the ground plane.

Figure 4 . 12 :

 412 Figure 4.12: The specication of dataset for OSCC. At the beginning the traditional camera calibration (with pattern) is performed. Then during motion, one of camera is decalibrated. At the end of sequences, the calibration chessboard is shown again, in order to calculate second calibration of camera parameters.

Fig 4 . 14 .

 414 TheFig 4.15 shows the command to calibrate with several parameters related to calibration tool and image ow. The oine traditional calibration node provides intrinsic parameters of the left and right cameras, and the extrinsic parameters of the stereo pair. The R and T express the positon of right camera the left camera. This method computes the parameters during procedure. This methodology ensures that in the recorded rosbag, there is a

Figure 4 . 13 :

 413 Figure 4.13: Dataset recording -the sequence for oine method is repeted on the beginning and on the end of one scenario.

Figure 4 . 14 :

 414 Figure 4.14: The GUI of ROS node used to traditional stereo camera calibration.

Figure 4 . 15 :

 415 Figure 4.15: The GUI of ROS node used to traditional stereo camera calibration. First parameter after size informs about chessboard size. Next the square represents a real size in cm of one black square.

Fig 4 .

 4 Fig 4.16 shows the number of points in each group. The grey bars on the background plot all stereo matched points from the current frame. For almost entire sequences, the value is quite stable from frame to frame and has between 100 and 200 points. Small irregularities occur in the frame range of 20th-29th, 221th-230th, 253th-260th and 275th-285th. During these frames, there are not enough points in the system. It is because imperfections of dataset (poor or too strong illumination, homogeneity of the image, etc.) Then, the green color represents the amount of inliers. Parameter is stable until 157th frame, when it starts dropping. The current number of outliers are marked with the red line, which

Figure 4 . 16 :

 416 Figure 4.16: The plot shows the number of points on each group from every frame of the analyzed sequence.

Figure 4 . 18 :

 418 Figure 4.18:The plot explain the average construction technique and trigger simulation. It shows that this technology is able to eliminate a false data.

Fig 4 .

 4 Fig 4.18, it intersects threshold line at 21th, 30th and 42th frame. However, due to not perfect and not a deterministic condition of the dataset, it can happen that measured values uctuate very intensive.

Fig 4 .Figure 4 .

 44 Figure 4.19: 1st SCCM policy is based on ratio between the amount of the inliers to outliers.

Figure 4 .

 4 Figure 4.20: 2st SCCM policy is based on ratio of the inliers to all stereo points.

Figure 4 .

 4 Figure 4.24: 3st SCCM policy is based on sum of the whole epipolar error calculated only from points considered as outliers.

Figure 4 . 25 :

 425 Figure 4.25: Not considered points SCCM policy is based on number of the not considered points to all stereo points.

Figure 4 . 28 :

 428 Figure 4.28:Final triggers from each condition for custom dataset, which are based on previously presented policies.

Fig 4 .

 4 Fig 4.29 illustrates the high epipolar error in the rst half of the dataset, after it tends to zero. The

Fig

  Fig 4.30 shows that the number of outliers in the beginning is higher than at the end of the dataset.

Fig 4 .

 4 [START_REF] Cole | Using laser range data for 3d slam in outdoor environments[END_REF] presents only the median of epipolar error policy. Despite the fact that on the two graphs a decalibration moment is visible, the proposed SCCM technique does not work. Because the system must have ideal input extrinsic parameters at the beginning of the mission. That, it can verify the parameters later on. The last presentedFig 4.32 shows the decision making process based on all conditions. The system thinks that the system does not need to recalibrate although it must. Unfortunately, this is due to poor input parameters.

Figure 4 . 32 :

 432 Figure 4.32: Parameters of SCCM, which is based on the parameters from the end (inverted dataset).

Figure 4 . 35 :

 435 Figure 4.35: Ratio between inliers and outliers -one of the SCCM, which is based on the number of points, realized on KITTI dataset.

Figure 4 . 37 :

 437 Figure 4.37: The nal decision of SCCM realized on KITTI dataset.

  (a) Custom dataset example. (b) KITTI dataset example.

Figure 4 . 38 :

 438 Figure 4.38: Statistic frame with points detected from each of dataset tested.

Figure 4 . 39 :

 439 Figure 4.39: Example of standard points accumulation from last three frames. It presents how points look in the map structure. The history of points with its epipolar error is contained. While points are removed and new extrinsic parameters arrived, the error is not longer true. The only information storage in epipolar error is if point has a stereo match. The age and frame's number when point appeared is stored.

Figure 4 . 40 :

 440 Figure 4.40: Filtering strategy points presentation.

Figure 4

 4 Figure 4.42:

Fig 4 .

 4 [START_REF] Dosovitskiy | Carla: An open urban driving simulator[END_REF] shows the R error expressed in the θ, which is around 3. This result has the same level of precision as tests performed on previous dataset. On other hand, the test realized in this section use the perfect points and show that the θ reduces to 1.5. Fig 4.43 presents the T error e 1 .For each axis, it is close to 0.07 of normalized value in the length distance, when for previous dataset it is 0.15. The points from the chessboard give the 0.02 result. The last Fig 4.45 gives the number of input points from the ltering method and number of inliers. We can compare it with the number of points from the same sequence presented in Fig 4.33, however we add history of points. That is why the number of points is almost 1.5 times higher.

Figure 4 . 45 :

 445 Figure 4.45: The plot presents the number of input points delivered by the 6th ltering strategy and amount of the inliers used to estimate error.

Figure 4 . 50 :

 450 Figure 4.50: The nal decision of SCCM realized on recorded dataset.

Figure 4 . 55 :

 455 Figure 4.55: Median of epipolar error measurement -one of the SCCM policy, which is based on the epipolar error, realized on KITTI dataset.

Fig 4 .

 4 [START_REF] Geiger | Automatic camera and range sensor calibration using a single shot[END_REF] presents the rectication results of the KITTI dataset. We can observe that the initial parameters are correct for the rectication process.

Figure 4 . 56 :

 456 Figure 4.56: Rectication process realized on the extrinsic parameters which are based on the traditional method -it is realized on the rst part of custom dataset.

Figure 4 . 57 :

 457 Figure 4.57: Rectication process realized on the extrinsic parameters which are based on the traditional method -it is realized on the second part of custom dataset.

Figure 4 . 58 :

 458 Figure 4.58: Rectication process realized on the extrinsic parameters which are based on the traditional method -it is realized on KITTI dataset.

  The basic pinhole, camera model. There are camera, image and the world coordinate systems. For each of them, a special parameters are related. The camera and image coordinate system are described by intrinsic or internal parameters which include a radial distortion parameters. The extrinsic, external parameters characterize the world system.We consider the central projection of points in space onto a plane. Let the center of projection be the origin of a Euclidean coordinate system, and consider the plane Z = f , which is called the image plane or focal plane. Under the pinhole camera model, a point in space with coordinates X = (X, Y, Z) T is mapped to the point on the image plane where a line joining the point X to the center of projection meets the image plane. This is shown in Fig 6.1.

Figure 6 . 1 :

 61 Figure 6.1: Pinhol camera geometry. C is the camera centre and p the principal point. The camera centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera centre.

6. 1 . 1 Figure 6 . 2 :

 1162 Figure 6.2: Image (x, y) and camera (x cam , y cam ) coordinate systems

  will not hold. The most important deviation is generally a radial distortion. In practice this error becomes more signicant as the focal length (and price) of the lens decreases. Lens distortion takes place during the initial projection of the world onto the image plane. The actual projected point is related to the ideal point by a radial displacement. Thus, radial (lens) distortion is modelled as

x( 6 . 8 )Figure 6 . 3 :

 6863 Figure 6.3: The Euclidean transformation between the world and camera coordinate frames.

  camera. One sees that a general pinhole camera, P = KR[I -C] has 9 degrees of freedom: 3 for K (the elements f , p x , p y ), 3 for R, and 3 for C. The parameters contained in K are called the internal camera parameters, or the internal orientation of the camera. The parameters of R and C which relate the camera orientation and of the camera position to a world coordinate system are called the external parameters or the exterior orientation.

(6. 9 )

 9 where t = -R C Camera rotation and translation for stereo cameras. In scenarios where there are two cameras, the required knowledge includes intrinsic parameters for both cameras and extrinsic parameters between the two cameras. Distances in space will be expressed in form of another Euclidean coordinate frame, known as the world coordinate frame. Two frames of coordinates are linked by rotation R and translation T. Fig 6.4 illustrates that the R and T describes pose of the right camera in the left frame camera.

Figure 6 . 4 :

 64 Figure 6.4: The Euclidean transformation between the one camera coordinate frame and second camera coordinate frames.

Figure 6 . 5 :

 65 Figure 6.5: Projective transformation between the world space points X (left) or the world plane (right)

Figure 6 . 6 :

 66 Figure 6.6: The camera centre is the essence, all the space points are coplanar.

Figure 6 . 7 :

 67 Figure 6.7: Point correspondence geometry and Epipolar geometry.

Figure 6 . 8 :

 68 Figure 6.8: Converging cameras.

Figure 6 . 9 :

 69 Figure 6.9: The four possible solutions for calibrated reconstruction from E.
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  Therefore, this work challenges the topic of online stereo camera calibration and tries to optimize and explore what can be done in a specic context. The main aim of this work is not to develop a

new calibration method, but to explore existing methods and their possible use in a specic CPS. Such calibration should be performed online in real time during the mission, in an unknown environment, without special patterns and other attributes. It must be based solely on camera data.

Table 3 .

 3 .1

	Objective	Realize an online calibration pipeline on embedded systems
	Context	CPS, Embedded systems, Application	Camera calibration
		limited: processing power, memory,	simplest method,
	Requirements	battery powered system,	hidden in pipeline system,
		no additional sensors,	without calibration pattern
		universal at any environment and mission,	

1: Table of summary.

Table 3 .

 3 .2 and Fig 3.1 bellow. 2: Table presents the most important application in CPS dedicated for navigation.

	Description	Application	
	Understanding of the local environment	Disparity map extraction and	Depth
	Understanding of the local trajectory	Visual odometry	
	Understanding of the global trajectory	Visual SLAM	
	Understanding of the local environment	Object Extraction and Tracking

Table 3 .

 3 3: Table presents the most important information about visual odometry.

	Visual SLAM

SLAM stands to Simultaneous Localization And Mapping. This process allows locating itself in known or unknown area and built a map of this local environment at the same time. Many dierent approaches

Table 3 .

 3 4: Table presents a most important information about visual odometry.

Table 3 .

 3 5: Table presents the most important information about disparity map.

Table 3 . 6 :

 36 Table presenting the parameters used in Brown-Conrad distortion model.

Table 3

 3 

	.17a presents

  as the rst element of vector presented in the second row of the table 3.7.If, this POI has an equivalent (matched) feature in the right image, it is the stereo track. When system matches the point P 1L with and P 1R , it pushes coordinates P 1R = (X 1R , Y 1R ) to the vector of

POI correspondence from right camera (element 3rd in the table 3.7). If, it does not have a matched correspondence (like examples P 2L )), the P 2R = (-1, -1) lls the right vector.

The new group of POI arrive with the next frame (middle frame n-1). Thanks to the temporal tracking, accumulation block knows if system tracks a new point in the previous left frame. If this

Table 3 .

 3 7: Table presenting the most important information about points of interests.

Table 3 .

 3 .7 presents the 8th element which represents the epipolar error and extends the table3.7. System veries by mathematical equalization of epipolar geometry Error = x R Ex L each stereo POI. Then pushes obtained result to vector of errors. The system has to dispose the history of this point with correlated error. This error denes if point is inlier or outlier for a current existing model. 8: Table presenting a complemented value of following points.

	Data	Format
	8) Error of correspondence points	vector of oating value-representing the Error = x R Ex L

Table 4 .

 4 1: The main parameters of the analyzed datasets.

  The whole system during these frames cannot decide if current parameters are good or bad.

	1 1,2 Points						Number of not considered points to all stereo points Current NotConsidered/All stereo Trigger Number NotConsidered policy				1 1,2
	0,2 0,4 0,6 0,8 Considered to All						Local Average of NotConsidered/All Stereo Treshold Nb Lower Value				Initial/Global Average NotConsidered/All Stereo Treshold Nb Higher Value	0,2 0,4 0,6 0,8	Trigger
	Not	0																																					0
		1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137	145	153	161	169	177	185	193	201	209	217	225	233	241	249	257	265	273	281	289	297
																		Number of frame															
		The section 4.3.3 presents 6 dierent triggers, which are responsible for SCCM policies. Each three

•

  Condition 1 -decision and policies are based on amount of points ratio between average inliers to average outliers ratio between local average inliers to all stereo points from current frame Average(nb inliers )/nb stereo ratio between local average outliers to all stereo points from current frame Average(nb outliers )/nb stereo • Condition 2 -decision and policies are based on value of epipolar error median of error of pair of points based on epipolar geometry x R Ex L = e rror sum of error, sum of error inliers and outliers (e rror ) average error of one point, inliers and outliers( (e rror ))/nb inlier • Condition 3 -decision and policy is based on sucient number of point ratio between local average nor considered points to all stereo points from current frame List 4.1: List of all conditions with each trigger.proposed strategy. Even with a not perfect dataset, the used technique works well and fast.

					Global Calibration Decision
			Two Decision	Three conditions based on Epipolar Error	Three conditions based on Number of Points
	Decision Trigger	0 0,5 1	1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295	0 1
					Number of frame
					Global Calibration Decision with moments when system cannot decide
	Trigger	0,8	Final Decision
	Decision	-0,2	1 8 15 22 29 36 43 50 57 64 71 78	85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295
		-1,2			Number of frame

  The extrinsic parameters of the calibration are very precise and stable during whole sequences. Anyway, we use this dataset to test,

	of = x'Ex error epopolar	100 200 500 400 300			Sum of Epipolar Error Sum of Epipolar Error from Inliers and Outliers Sum of Epipolar Error from Inlier Sum of Epipolar Error from Outlier
	Sum			0		
				1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295
							Number of frame
	Figure 4.29: The plot shows the sum of epipolar error on inliers and outliers group from every frame
	of the analyzed sequence (inverted dataset).
				140	Number All Points Stereo Number of Outliers	Number of Points in Current Frame
	Points	90	Number of Inliers Number of Not Considered Points
	of			
	Number	40		
				-10	1 8 15 22	29 36 43	50 57 64	71 78 85 92 99	106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 281 288 295
							Number of frame
	Figure 4.30: The plot shows the number of points on each group from every frame of the analyzed
	sequence (inverted dataset).
	8					1,2
	1 2 4 5 6 7 of Error Epipolar 3 Mediana					Median of Epipolar Error =x'Ex	Median of Error from Current Frame Triger Median Error policy Local Average of Mediana of Error Initial/Global Average Median of Erro Treshold Mediana of Error	0,6 0,8 1 0,2 0,4	Trigger
	0					0
				1 8 15 22 29 36 43 50 57 64 71 78 85 92 99	106 113 120 127 134 141 148 155 162 169 176	183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288
							Number of frame
	Figure 4.31: SCCM policy presents median of epipolar error of all points from current frame (inverted
	dataset).	
							Global Callibration Decision with moments when system cannot decide
	Trigger		0,8		Final Decision
	Decision	-0,2	1 8 15 22 29 36 43 50 57 64 71 78 85 92 99	106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246	253 260 267 281 288 295
			-1,2			Number of frame

  [START_REF] Fraundorfer | Visual odometry: Part ii -matching, robustness, and applications[END_REF] [START_REF] French | Nvidia brings articial intrlligence to automobiles[END_REF] [START_REF] Fularz | The architecture of an embedded smart camera for intelligent inspection and surveillance[END_REF] [START_REF] Cagle | Lidar and camera detection fusion in a real-time industrial multi-sensor collision avoidance system[END_REF] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8889 90 Two plots present the translation error -e 1 calculated between the T obtained in the continuous stereo camera calibration, which is based on the points provided by selected method and the oine traditional method. In rst (up) there are three (1-3) strategy methods, which seems be less precise and more vary. On the second there are (4-6) another three methods, which are more stable and precise.

	1,5		e1 Translation Error for first 3 Filtering Strategies		
	0 0,5 1 51 52 53 e1 Translation Technique 1 All stereo points from current frame Error Technique 3 All stereo older than 1 and their history	Number of frame Technique 2 All stereo older than 1 from current frame
	0,8		e1 Translation Error for second 3 Filtering Strategies		
	0,6 Error	Technique 4 All stereo older than 1 plus history every second	Technique 5 stereo valid plus its history		Technique 6 stereo older than 1 plus their history
	0,2 0,4 e1 Translation						Filtering Nb Technique 1 Technique 2 Technique 3	T Average e1 T Medians e1 0,394179 0,215774 0,241214 0,180959 0,193432 0,155055
		0						Technique 4	0,276511	0,240591
			51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	Technique 5	0,186161	0,169653
					Number of frame			Technique 6	0,161861	0,139783
	2 4 6 Figure 4.41: 0 θ Rotation Error Technique 1 All stereo points from current frame	θ Rotation Error for first 3 Filtering Strategies Technique 2 All stereo older than 1 from current frame	Technique 3 All stereo older than 1 and their history
			51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
					Number of frame		
		8		θ Rotation Error for second 3 Filtering Strategies		
	Error	6					
	θ Rotation	2 4	Technique 4 All stereo older than 1 plus history every second	Technique 5 stereo valid plus its history	Technique 6 stereo older than 1 plus their history	Filtering Nb Technique 1 Technique 2 Technique 3	R Average θ R Medians θ 3.182956 2.83877 3,486938 3,15278 2,876492 2,75434
		0						Technique 4	2,974363	2,68922
			51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	Technique 5	3,155563	2,98101
					Number of frame			Technique 6	3,141539	2,98655

  Two plots present the translation error -e 1 . On the top the error of each separate error is presented between the online and oine method. On the bottom the whole T error is shown. The plot presents the rotation error -θ between the R obtained in the continuous stereo camera calibration which is based on the points from the ltering strategy number 6. and the oine traditional method.

	Error	4 6	Average Rotation Error Continous Rotation Error	θ Rotation Errror from 6th filtering strategy
	Rotation	2		
	θ			
	50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Number of frame e1 each ax separate Translation Error from 6thfiltering strategy for X translation Error Y Translation Error Z Translation Error 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Number of frame e1 Translation Error from 6thfiltering strategy for Average Translation Error Continous Translation Error 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 0 0,05 each ax 0,1 0,15 0,2 0,25 Number of frame Figure 4.44: 0 e1 Translation Error for e1 Translation Error 500 1000 1500 Number of points Number of points Number of all points Number of inliers Figure 4.43: 0 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Number of frame	Filtering Nb Technique 6 for e1 Technique 6 for X axis Technique 6 for Y axis Technique 6 for Z axis Filtering Nb R Average θ T Average e1 0,076692218 0,052534208 -0,030248358 -0,025748553 Technique 6 3,291326 For Technique 6 Average number of points All input points 787 inliers 289

  Median of epipolar error measurement -one of the SCCM policy, which is based on the epipolar error, realized on recorded dataset.

	Inliers to Value Outliers	1 10			Ratio of inliers to outliers Current Ratio of Inliers to Outliers Trigger ratio policy Local Average of Ratio Initial/Global Average Ratio Treshold Ratio Value	0,4 0,6 0,8 1 1,2 Trigger
	Ratio					0 0,2
			1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295
						Number of frame
	Figure 4.48: Ratio between inliers and outliers -one of the SCCM, which is based on the number of
	points, realized on recorded dataset.	
	Error	0,04 0,05	Median of Epipolar Error =x'Ex Median of Error from Current Frame Triger Median Error policy Local Average of Mediana of Error Initial/Global Average Median of Erro	0,8 1
	Mediana of Epipolar	0,01 0,02 0,03	Treshold Mediana of Error	0,2 0,4 0,6	Trigger
			0			0
				1 8 15 22 29 36 43 50 57 64 71 78 85 92 99	106 113 120	127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295
						Number of frame
	-1,2 -0,2 Figure 4.49: Decision forced 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 Decision 0,8 Trigger Final Decision	106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295 Number of frame Global Callibration Decision with moments when system cannot decide

  ). If and only if the parameters are set the SCCM, start to work (F4). It calculates all 7 policies based on the number of points and epipolar error. The decision making function (F5) analyzes the SCCM output and decide if the current extrinsic parameters are precise. As long as they are correct, nothing changes and only those four functions work on every frame. However, if the decision is positive, the system removes the current map of points. From the next frame, the procedure builds the new structure with appropriate ltration (F6). The procedure performs the calibration (F7) From the analyzed sequence, in the Table4.4, we present the average time of each functions. The whole tested dataset has 60 frames, where at 37th the decalibration is detected. The second Table4.5 shows the details of the dierent calibration measurements. Figure 4.59: Plot presents the analyzed sequences for time characteristic. According to the number of frame dierent functions is executed. Function 1 which create a map structure and Function 3, which normalize data, are realized each frame.

	Function marker	0 1 2	0 0,5 1 Monitoring plus decision making 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 averages and thresholds value averages and thresholds value Data collected to create Data collected to create When each function is called Calibration decision Monitoring plus decision making Filtering plus decision making
			F4 Monitoring	F5 Decision Making	Frame number F6 Filtering	F3 Average Construct	F7 Calibration
			Number -name Function		Average time	How often realize
			F1 Map point structure creation	0.02417 s	Each frame
			F2 New points normalization		0.023951 s	Each frame
			F3 Averages and threshold constructions	2,00E-06 s	Once after rst 17 frames arrived, and there are not the
						parameters in the system
			F4 Monitoring SCCM		0,028181 s	Each frame, when the threshold and averages are constructed
			F5 Decision making		2,00E-06 s	Each frame, when the SCCM works
			F6 Points ltering		0,010791 s	If parameters are wrong as long as new parameters does not
						arrive
			F7 Calibration		21.857 s	If parameters are wrong and there is enough point in the
						ltered structure, and passed at least 10 frames from cali-
						bration decision
			F8 Whole SCCM = F1 + F2 + F4 + F5	0.076 s	Each frame when calibration are good and parameters set
			F9 Whole OSCC = F6 + F7		21.867 s

when there are sucient number of points in the new structure.

The previous last position in

Table 4.4 

is sum of four functions used to the whole SCCM computation, from the received input points through normalization, to calculation and decision computation (F8), while the last row is the OSCC function so the data ltering and 8PA realization.

Once when monitoring signalized that parameters are not precise and there is enough point in the system

Table 4 .

 4 4: The table shows the average time in seconds for each function that is executed on custom dataset. The right column of the table shows how often a function is performed in that sequence.

	Description	test	call-	1	2	3	4	5	Average
		grind							
	Time Required [s]	672.549		26.09	25.32	9.81	26.31	21.74	21.857
	Error of T e 1	0,02376		0,01603	0,07063	0,02251	0,02512	0,05444	0,03775
	Error of R θ	1,919		1,925	1,881	1,915	1.917	1.898	1,907
	Number of Input Points	1033		1036	1036	1037	1036	1036	1036
	Number of inliers	424		435	415	496	441	441	447.2
	Number of Iteration	10001		10001	10001	3513	10001	8534	8410

Table 4 .

 4 5: The details of dierent calibration measurement (six independent runs). The rst column shows the monitored parameters. The second column presents parameters obtained in the Callgrind simulation, that is why the time required by rst column is higher, and it is not included in average. there is 20 FPS, more than 20 × 21 = 420 frames arrived. On the other hand, the SCCM does not require many computation load and can be eectively executed in real time on an embedded system with a tested processor. Each function required by SCCM i.e. F1 + F2 + F4 + F5 needs 0.076

	Next columns shows measurements from one run of program. In the last column the average from 10
	execution is calculated.
	The calibration clearly outperforms other functions by the amount of time. It is the most demanding

in term of computation function in the entire pipeline. An embedded processor such as Cortex ARM A7 requires around 21 s to calculate the extrinsic parameters. The right column in Table

4

.5 provides an average time from dierent measurement based on the same input points. These obtained results are far from the actual real time calibration approach. During that time, many new frames arrived, for example if s.
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The drop from three-dimensional world to a two-dimensional image is a projection process in which we lose one dimension. The usual way of modelling this process is by central projection in which a ray from a point in space is drawn from a 3D world point through a xed point in space, the centre of projection. This ray will intersect a specic plane in space chosen as the image plane. The intersection of the ray with the image plane represents the image of the point. If the 3D structure lies on a plane then there is no drop in dimension. This model is in accord with a simple model of a camera, in which a ray of light from a point in the world passes through the lens of a camera and impinges on a lm or digital device, producing an image of the point. Ignoring such eects as focus and lens thickness, a reasonable approximation is that all the rays pass through a single point, the centre of the lens. This matrix P is known as the camera matrix. In summary, the action of a projective camera on

Value of epipolar error in specic category

The second group of policy uses the sum and ratios between the epipolar error in specic categories, in order to activate the triggers. The system must exceed the particular higher number relation between the initial/global average value and the local/current average of epipolar error calculated from stereo points. It calculates the epipolar error for each of the considered stereo pair, due to methodology presented in the section 3.5.1. The whole calibration pipeline uses the same conditions for tracker in this policy's group. To be stereo considered, the point has to be temporally (at least once before left and previous left) and the stereo (left -right) track. The Fig 4.17 shows the sum of epipolar error in each group: inliers and outliers. Moreover, the grey color bar form in the background plots the sum calculated from all stereo matched points at current frame. For almost entire rst half of the sequences the value is quite stable and seldom exceeds 100.

Policies rely on the epipolar error

The Fig 4 .22 illustrates the decision making process according to median of epipolar error from all stereo considered points. As for each plot, the orange bars provide a value of monitored parameter from the current frame. The system calculates the local average median of error (dark blue color line) from last 15 frames.

We construct the threshold on 3 × higher value than the initial/global average. In the In this dataset, there are three dierent periods with not sucient number of points (inliers and outliers). That is why, in that time some of the proposed policies triggered false alarms. On the other hand, the other suggested policies choose a correct decision during the same time. To take a nal positive decision for calibration, there is need of policy consensus.

The system activates all proposed policies at 162th frame. 

Conclusion

This part of chapter explains the characterization of SCCM. The section presents two groups with six standard monitoring policies and their description. We design the techniques to be independent from

Custom dataset

For the rst test, the dataset created according to a methodology from the section 4.2 is used. It is important to notice that the scale of epipolar error has changed. It is because instead of using points expressed in pixel coordinates and F. The system computes the epipolar error on the base of normalized points and E. This reduces order of error magnitude and aects each epipolar error policy.

Following, the two plots 4.47 and 4.48 presents selected SCCM policies. We present the ratio in logarithmic scale, because the second half of the dataset has parameters on another order of magnitude. In each of gure, the moment when the camera changes poses can be detected. The frame when SCCM decided that system is decalibrated occurs at 161th frame. It is one frame earlier compared to the test from Fig 4 .28. After recalibration, the measured parameters are not as high as they were

Kitti dataset

For the second test, the KITTI scenario, which has perfect parameters for the whole sequence, is used.

In order to make this dataset usable, after 21 frames the algorithm automatically resets the existing extrinsic parameters in the system. In this manner, it simulates parameters decalibration. This decision is visible in Fig 4 .51. Thus to this the process of accumulation start at 21th frame and goes until 33th.

Then during next 15 frames, the new global initial values and thresholds are constructed. At 48th 

Precision of the results

The selected 8PA is not the most accurate choice possible, but it has been chosen because its parameters allow testing it on an embedded systems. The results shown in the previous tests are described and some aspects to improve the precision of the results are presented in this part of the chapter.

RANSAC parameters

The section 3. We can observe the signicant correction in both errors expressed in θ and e 1 for the second column.

However, it does not result from precise measurements, but from the higher stability of the calculated parameters. The nal model uctuates less. Therefore, the average of errors comes out appropriately lower. With worse RANSAC threshold, it is possible to obtain the same precise of results, but as the method sometimes indicates an inaccurate model, the average result of several measurements is much higher. On the other hand, lowering the threshold parameter causes that the model is very often not conformed before the maximum number of iterations. In such case, it is important to keep this parameter relatively low so that the algorithm does not work too long, when it is not able to conrm the model. Both measurements come from the same sequence of KITTI dataset, where the 1036 input points go to 8PA. In the next part of the work, we test the selected algorithm on an embedded system processor with the lower value of the threshold. The averages values are calculated from 10 measurements of the same sequence.

Subpixelic approach

The precision of the points is extremely important in the 8PA. The tests from previous chapter proved that calculation of the extrinsic parameters similar to the oine method is possible. However, the the test, the SCCM triggers the calibration and inject new extrinsic parameters in the system. The algorithm conrms the new parameters, but the algorithm cannot conrm how precise they are. It is caused by the fact, that algorithm implicitly consider the calculated parameter as accurate.

Results in term of precision based on sequences from the KITTI dataset are satisfactory. They allow looking with optimism at the future. However, the precision of extrinsic parameters found in custom dataset is far from the expected results. This show how important in this approach is the good dataset, where there is enough structure from dierent distances and well distributed in the scene. The appropriate data accumulation, ltering functions and RANSAC parameters stabilize the obtained results. The parameter precision depends on the precision of the input points. The presented approach targets the embedded systems, which have many restrictions. One of them is the imperfect detection of POI. Those are rounded to the size of pixels, thus to the numerical values of the integer.

The introduction of subpixel precision for POI detection can signicantly increase the expected results.

The last part of this section gives a time characterization of the second environment, where we test the whole pipeline on an embedded processor. The SCCM can realize its task during the real time. We propose to use it as an additional functionality for future models of the stereo cameras. It informs that provided data from the sensor are correct and can be trusted. It introduces a greater reliability and security into the system. On the other hand, the system knows when it needs calibration. It can stop the task at a safe moment. This work proposes an approach to recalibration from data available in the system. The method uses only on the POI provided by the cameras, so they must be precise. The selected algorithm needs about 20 s to calculate new parameters on the selected embedded processor.

The obtained results are stable by appropriate real-time data accumulation and ltering functions.

The results of the quality of the parameters are strongly dependent on the input dataset. We present the discussed quality of results in the previous section.

system can detect points from each part of the image and from many distances to the camera. These datasets provide precise results realized by OSCC.

The assembly of the entire prototype and the implementation of a high-level application at the end of the pipeline is necessary for a complete verication of the whole concept. The application should be able to inform and verify whether the calculated parameters are accurate. It generates additional feedback, which can force OSCC of the camera on a similar principle as the SCCM. We should implement and realize everything together on the presented prototype.