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Abstract
This thesis describes an approach for online calibration of stereo cameras on embedded systems.

It introduces a new functionality for cyber physical systems by measuring the quality of service of

the calibration. Thus, the manuscript proposes a dynamic monitoring and calculation of the internal

sensor parameters required for many computer vision tasks. The method improves both security and

system e�ciency using stereo cameras. It prolongs the life of the devices thanks to this self-repair

capability, which increases autonomy. Systems such as mobile robots or smart glasses in particular can

directly bene�t from this technique.

The stereo camera is a sensor capable of providing a wide spectrum of data. Beforehand, this sensor

must be extrinsically calibrated, i.e. the relative positions of the two cameras must be determined..

However, camera extrinsic calibration can change over time due to interactions with the external

environment for example (shocks, vibrations...). Thus, a recalibration operation allow correcting these

e�ects. Indeed, misunderstood data can lead to errors and malfunction of applications. In order to

counter such a scenario, the system must have an internal mechanism, a quality of service, to decide

whether the current parameters are correct and/or calculate new ones, if necessary.

The approach proposed in this thesis is a self-calibration method based on the use of data coming

only from the observed scene, without controlled models. First of all, we consider calibration as a

system process running in the background and having to run continuously in real time. This internal

calibration is not the main task of the system, but the procedure on which high-level applications rely.

For this reason, system constraints severely limit the algorithm in terms of complexity, memory and

time. The proposed calibration method requires few resources and uses standard data from computer

vision applications, so it is hidden within the application pipeline.

In this manuscript, we present many discussions to topics related to the online stereo calibration

on embedded systems, such as problems on the extraction of robust points of interest, the calculation

of the scale factor, hardware implementation aspects, high-level applications requiring this approach,

etc. Finally, this thesis describes and explains a methodology for the building of a new type of dataset

to represent the change of the camera position to validate the approach. The manuscript also explains

the di�erent work environments used in the realization of the datasets and the camera calibration

procedure. In addition, it presents the �rst prototype of a smart helmet, on which the proposed self-

calibration service is dynamically executed. Finally, this thesis characterizes the real-time calibration

on an embedded ARM Cortex A7 processor.

Kew words: online stereo camera calibration; smart glasses; extrinsic parameters; embedded systems;

processing on embedded systems; calibration; auto-adaptation; self-healing; self-calibration; online

camera monitoring; quality of services; real time;

2



Résumé

Résumé : cette thèse décrit une approche de calibration en ligne des caméras stéréo pour des

systèmes embarqués. Le manuscrit introduit une nouvelle mesure de la qualité du service de cette

fonctionnalité dans les systèmes cyber physiques. Ainsi, le suivi et le calcul des paramètres internes

du capteur (requis pour de nombreuses tâches de vision par ordinateur) est réalisé dynamiquement.

La méthode permet à la fois d'augmenter la sécurité et d'améliorer les performances des systèmes

utilisant des caméras stéréo. Elle prolonge la durée de vie des appareils grâce à cette procédure d'auto-

réparation, et peut accroître l'autonomie. Des systèmes tels que les robots mobiles ou les lunettes

intelligentes en particulier peuvent directement béné�cier de cette technique.

La caméra stéréo est un capteur capable de fournir un large spectre de données. Au préalable, le

capteur doit être calibrée extrinsèquement, c'est à dire que les positions relatives des deux caméras

doivent être déterminées. Cependant, cette calibration extrinsèque peut varier au cours du temps

à cause d'interactions avec l'environnement extérieur par exemple (chocs, vibrations. . . ). Ainsi, une

opération de recalibration permet de corriger ces e�ets. En e�et, des données mal comprises peuvent

entraîner des erreurs et le mauvais fonctionnement des applications. A�n de contrer un tel scénario, le

système doit disposer d'un mécanisme interne, la qualité des services, pour décider si les paramètres

actuels sont corrects et/ou en calculer des nouveaux, si nécessaire.

L'approche proposée dans cette thèse est une méthode d'auto-calibration basée sur l'utilisation

de données issues uniquement de la scène observée (sans modèles contrôlés). Tout d'abord, nous

considérons la calibration comme un processus système s'exécutant en arrière-plan devant fonctionner

en continu et en temps réel. Cette calibration interne n'est pas la tâche principale du système, mais

la procédure sur laquelle s'appuient les applications de haut niveau. Pour cette raison, les contraintes

systèmes limitent considérablement l'algorithme en termes de complexité, de mémoire et de temps. La

méthode de calibration proposée nécessite peu de ressources et utilise des données standards provenant

d'applications de vision par ordinateur, de sorte qu'elle est masquée à l'intérieur du pipeline applicatif.

Dans ce manuscrit, de nombreuses discussions sont consacrées aux sujets liés à la calibration de

caméras en ligne pour des systèmes embarqués, tels que des problématiques sur l'extraction de points

d'intérêts robustes et au calcul du facteur d'échelle, les aspects d'implémentation matérielle, les ap-

plications de haut niveau nécessitant cette approche, etc. En�n, cette thèse décrit et explique une

méthodologie pour la constitution d'un nouveau type d'ensemble de données, permettant de représen-

ter un changement de position d'une caméra, pour valider l'approche. Le manuscrit explique également

les di�érents environnements de travail utilisés dans la réalisation des jeux de données et la procédure

de calibration de la caméra. De plus, il présente un premier prototype de casque intelligent, sur lequel

s'exécute dynamiquement le service d'auto-calibration proposé. En�n, une caractérisation en temps

réel sur un processeur embarqué ARM Cortex A7 est réalisée.
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Chapter 1

Background and motivation

Research is what I am doing when I do not

know what I am doing.

Wernher von Braun

The �rst chapter describes the guiding motivation and each of the three main contexts of this work.

Then it brie�y explains goals and challenges of each context. Next paragraphs in this section present

the global approach to real-time stereo camera calibration on special devices. The chapter ends with a

description of the structure and content of the entire manuscript. After this chapter, the reader should

understand the main elements, problems and motivation of this thesis.

Objective :

Identify the main features of online stereo camera calibration applications in the embedded

system and Cyber Physical System contexts. Presents the main motivation in the speci�c

context of this work.

To do this, we :

• study basic concepts of the cyber physical systems.

• study stereo camera sensors, its parameters and limitations.

• study applications and hardware setups, where stereo camera calibration is required.

• present targeted system together with the application.
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1.1 Cyber Physical Systems

In the twentieth century, the microcomputer evolution began and it continues. This sentence describes

the rapid development of microprocessor-based computers. In the last �fty years, it completely changed

our way of thinking, working conditions, communications, education systems and almost all aspects of

our life. Despite many improvements, humans have not rested on our laurels. The Moore's law [120]

is a perfect proof of such sentence. This observation says that the number of transistors in a dense

integrated circuit doubles every two years (see Fig 1.16a). However, scientists expect that the law have

its limits. Microprocessors have almost reached their limit regarding energy e�ciency, according to

[48] and [34]. The manufacture process in Semiconductor IC device fabrication is now (in 2018) 7 nm

and it will reach 5 nm in 2020. CMOS scaling does not provide longer e�ciency gains proportional to

the increase in transistor density [3].

Nowadays, academic research and industrial work focuses more on the design of specialized hard-

ware accelerators. It results in the recent development tendency, that those very popular personal

computers (PC) used by us every day are becoming less and less important in our daily lives. The ded-

icated systems, which are called the Cyber Physical System (CPS) [2] have taken their role. Following

chapter presents some of their aspects. One of the key results of CPS concept is that these systems are

heterogeneous. Instead of one type of processors or core, the system achieves better performance not

only by adding the same type of processor, but also by adding di�erent processors that are dedicated

to speci�c tasks. It is one of the main strategies for creating modern CPS [151].

CPS connects the physical world, through sensors or actuators, with the virtual world [95]. System

typically consists of various components working together to perform missions and activities. Physical

elements through a network or other communication technology interact with the environment [64].

An embedded system executes the programs and device's logic on di�erent processors architecture due

to heterogeneous technology. Fig 1.1 shows the standard CPS scheme.

Nowadays, in di�erent areas such as: automotive, avionics systems, intelligent and smart buildings,

Internet of Things (IOT), medical segment, automated and robotic manufacturing, devices to aug-

mented reality and many others are based on the CPS. They can operate together on a large-scale

system for many various purposes covering a wide range of applications. For this reason, they are

becoming an important part of our lives. These systems capture more and more responsibilities in

many areas of knowledge.

Their success and wide range of application are the result of signi�cant price reduction compared

to electronic systems a few years earlier. Today, some of the CPS performs speci�c tasks in real time,

without the need for huge and powerful motherboards or cloud computing.
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Figure 1.1: The standard cyber physical system (CPS) scheme.

Today, one of the main challenges for scientists and engineers is to create a modern CPS more

independent, with a higher degree of autonomy. These systems should be automatic and sometimes

even autonomous to allow mobility and portability, also to work in any environment in real time. To

achieve these objectives, those systems must to be more intelligent. They have to increase perception,

sense and better interact with the world around them. The acquisition, analyze and understanding

of the environment must be properly satis�ed. In order to carry mission, the CPS must monitor and

control physical processes in the real time. Therefore, it is essential, that all components of the system

operate as fast and accurately as possible to realize the task together.
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1.1.1 Sensors in Cyber Physical Systems

There are many di�erent approaches to increasing the ability to understand the world for the CPS.

Many sensors designed for speci�c measurements can do this. All of them have some advantages and

disadvantages. Regardless of their intended use, they have speci�c limitations and operating conditions.

Therefore, there is no ideal sensor and solution. In most cases, it strongly depends on the application

and devices. Certainly, the most popular methods provide a large number of sensors with su�ciently

strong processing motherboard. Then CPS is usually continuously power, this solution works well.

However, customers must take into account higher price of such a system. Moreover, it does not work

for portable systems, which base on the smallest possible batteries. In addition, data fusion between

multiple sensors requires good calibration. It is usually a complex and resources-intensive process.

This subsection presents some of most interesting and popular sensors currently used in the CPS for

localization and understanding the environment.

Inertial measurement unit knows as an IMU. An electronic device measures linear and angular

motion, usually with a triad of gyroscopes and accelerometers [33]. It is presented is in Fig 1.2b and 1.2c.

This commonly used sensor to collects data, which allows to position tracking by dead reckoning method

[181], thus integrating angular velocity and acceleration in the sensor/body frame. Unfortunately, the

measurement error of such sensor is signi�cant and accumulated over time. Therefore, in the CPS,

the GPS usually supports the IMU in order to correct the drift error. Depending on the requirements,

especially such as precision, speci�c application uses di�erent types of IMU. The price of a tool heavily

depends on its precision and purpose. IMU may cost from few elike those one which are mounted in

mobile phones to hundreds efor sensors in airplanes. For example: new IMU dedicated for drones and

robotics proposed by Bosch (Fig 1.2a) is a 3×4.5×0.5 mm chip and it consumes around 5.2 mA.

(a) IMU chip. (b) IMU ax explanation.
(c) Results obtained by
IMU.

Figure 1.2: IMU presentation.

LIDAR is a sensor widely used in many devices and robots, to understand the local environment [7].

It measures distance to the target, by illuminating scene with pulsating laser light and by measuring

the time from re�ected impulses, Fig 1.3b shows this principle. It emits light in the near-infrared,

visible or ultraviolet spectrum as opposed to radar, which operates on the same principles but in
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the microwave domain. The received impulses are usually converted and interpreted as a 3D point

cloud (Fig. 1.3c). Di�erent precision and quality of measurements allow using this type of sensors

in many �elds such as: geodesy, archaeology, geophysics, robotics where it helps to detect and avoid

obstacles [31]. The main disadvantage and the problem of the LIDAR is the computational load. It

has to detect all points from the scene, optimize their position through time of light technique. If it

is implemented using e�cient hardware, it can work in the real time. This work [141] proves that a

laptop equipped with 2.5 GHz quad cores and 6 GB memory, can handle necessary processing data,

with some optimization. They propose to use a three-dimensional grid, which signi�cantly reduced

the number of points detected [187]. The various purposes of the sensors require di�erent operating

parameters, so there are various types of LIDAR available on the market. For example, the MRS6000

from SICK has an operating range of 0.5 m to 200 m. Its weight is a 2.2 kg, and require 20 W of power

consumption. The URG-04LN HOKUYO operates at a distance of 0.6 cm to 40 cm and requires only

800 mA for full operation; the weight of this sensor is much smaller than the previous example and

is about 0.2 kg. Fig 1.3a shows the Velodyne LIDAR, this model is widely used in the automotive

industry. It is a sensor capable of delivering the most accurate real-time 3D data on the market 1.3a.

The sensor creates a full 360-degree �eld of vision of up to 200 meters of environment. It requires 20

watts. Its size is signi�cant 7 × 14 cm in size and weighs about 1 kg. The price of the sensor largely

depends on the parameters of the detector and producer company. The reliable and widely used model

on the market cost about 4 thousand e.

(a) Velodyne LIDAR.
(b) Principle of LIDAR
work.

(c) Results obtained by LI-
DAR.

Figure 1.3: LIDAR presentation.

Satellite navigation is a system that uses an arti�cial satellites with radio waves to provide an

autonomous principle of Geo-spatial positioning [70], as it is shown in Figure 1.4b. Based on the radio

signal, it is possible to estimate the position given in latitude and longitude with an error between

6-12 m on the Earth's surface [127]. This position can be placed on the map, as it is shown in

Fig 1.4c. Moreover, the continuous position of motion can be determined, wherever the signal is

available. The most popular system is the Global Positioning System (GPS), but there are also many

other alternatives, such as Galileo, Baid, A-GPS or GLONAS [9]. GPS signal receiver (see Fig 1.4a)

is a module available in many modern devices, such as smartphones, laptops, mobile robots, cars,

etc. Depending on the application, there is a very wide range of sensors with di�erent performance,
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precision, size and weight range. The NEO-6 u-blox 6, UBX-M8230-CT or module GTPA010 are a

GPS chip, it reaches the size of a 3×3×0.4 mm, which consumes 20 mW for 30 minutes of track and

requires power supply of 2.7 V - 3.6 V. The precision of this type of chips vary, depends on the model,

and it is proportional to the price [1].

(a) Module GTPA010. (b) Principle of GPS work. (c) Results obtained by GPS.

Figure 1.4: GPS presentation.

Odometer is a method of measuring the distance, through translation determined by the position

of the sensor or agent in relation to its initial position in time. It is not a basic sensor, but a method

that uses impulses from actuators to estimate motion data [16]. For robot platform on wheels or legs,

a mileage counter or rotary encoders can be an interesting and necessary source of data, for estimating

the current and past locations. This allows estimating the relative position and the distance traveled

from the starting point of your journey. Unfortunately, the odometer su�ers heavily with precision

problems. The wheels used to slip and slide on the �oor, so the method accumulates the measurement

error over time. On the other hand, the main advantage is cost. It does not require any special and

advanced mechanical or electronic components. It can only process the pulse received on the wheel

and send it to the microcomputer.

Figure 1.5: Principle of the odometry.

1.1.2 Cameras in Cyber Physical Systems

By interpreting the images provided by the camera, it is possible to obtain all the information necessary

for understanding the surrounding environment and performing multiple missions. Object detection
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and recognition, 3D mapping and location, navigation and many other tasks can be performed using

camera's data. Today, these are widely used in many applications and CPS [56]. Many heterogeneous

single-boards computer, such as the Raspberry Pi (RPi) (it is shown in Fig 1.6c) are already equipped

with a camera and able to do simple image processing in the real time [45].

Active camera is usually complex system, equipped with many other sensors, where camera is only

one of them. The Microsoft Kinect V1 & V2 [4] or Asus Xtion Pro [5] are an examples of the active

camera sensor systems with heterogeneous architecture. Another common connection of sensors is a

combination between LIDAR and camera [57] [50]. It is highly di�cult to estimate the distances in the

real environment by a single camera [75]. Therefore, the combination with LIDAR is suitable for this

and used in many robots and mobile vehicles that require navigation. Another increasingly popular

method of active vision is a combination of standard camera with infrared camera citeAlhwarin2014.

For example, the smartphone may use it to improve facial detection and increase camera parameter

settings [158] [91]. There are many di�erent camera models on the market adapted to work with

di�erent sensors due to di�erent applications associated with various restrictions and requirements.

Active image processing and storage can take place on small, integrated circuits, in many devices such

as smartphones. The size of powerful CMOS cameras (see Fig 1.6) is around 32×32×20 mm and may

cost less than 100 e[53]. The weight of such sensors is less than 5 g, and power consumption is around

100 mA.

(a) IDS camera.
(b) IDS camera on
chip.

(c) Camera connected
with RPi Pi.

Figure 1.6: Cameras presentation.

Stereo cameras are a set of two parallel cameras called a passive 3d depth sensor. This can eliminate

the need to use a LIDAR or other sensor in the depth estimation process. This type of solution can

estimate distance in the local environment up to a certain range.

This sensor imitates a biological process and creates a vision system known as binocular (stereopsis)

vision [19]. It can create a depth map, which is a three-dimensional image of the surrounding environ-

ment, obtained from a two-dimensional view, done from two vantage points of the cameras. The depth

map helps to recognize and identify an object from the images, it allows compute a distance in the

image, etc. Of course, it has its price, larger amount of data requires more data processing, in order to

interpret information from images [66]. However, stereo cameras are becoming more and more popular
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and promising sensors, due to the extremely large amount of data, they can provide [99]. Formula

presented in 1.1 shows, that camera's parameters limit the depth extracted from images. Focal length,

pixel speci�cation and baseline (refer to real distance between two cameras) impact on measured data.

As depth becomes greater, disparity tends to zero. The disparity and size of pixel represent the �eld

of view. It has a signi�cant impact on depth calculation, but higher resolution cameras compensate it

[86].

depth =
baseline ∗ focal length

pixel disparity ∗ pixel size
(1.1)

In traditional approaches of modern passive stereo camera systems (stereo cameras without additional

sensor), the whole construction is usually mounted into one rigid and stable cage. The biggest disad-

vantages of this solution are that the baseline between the two cameras is strict, construction is heavy

and big which does not �t many of applications. On the other hand, such a design prevents the camera

from movement. This note is extremely important, because it assures that once determined camera's

parameters (focal length, position etc. see at 1.2.1), are constant and does not change during any

mission, where passive stereo vision is used.

There are some of passive stereo vision sensors available in the market. Fig 1.7b presents ZED

sensor, it costs 450 e. Many applications from mobile robots to augmented reality devices can use it

[8]. It provides two CMOS sensors with 4 M pixel resolution, which use 380 mA. The system provides

depth resolution at a distance of 0.5-20 m where the stereo baseline is 12 cm. The size of the sensors

is signi�cant and equals 17×3×3 cm with weight of 160 g. It can operate with 60 frames per second

with resolution 2560×720.

Fig 1.7c shows another interesting stereo sensor the Blaxtair [6] product. Its purpose is to distin-

guish a person from another obstacle in real time. Once detected, warn the operator in case of danger

up to 6 meters. The sensor operates in harsh outdoor conditions mounted in a construction vehicle.

There is a more passive stereo sensor in the market like sensor from Fig 1.7a but all of them are limited

due to a �xed and constant position of cameras.

Another interesting stereo sensor is the Blaxtair product is shown in . Its purpose is to distinguish

a person from another obstacle in real time. Once detected, warn the operator in case of danger up to

6 meters. The sensor is mounted on a construction vehicle that operates in harsh outdoor conditions.

There are more passive stereo sensor in the market like 1.7a but all of them are limited due to �xed

and constant position of cameras.

The infrared radiation camera (IR) is an active vision sensor independent of lighting conditions.

Fig 1.8 presents this sensor where the main principle of working is similar to standard camera. How-

ever, the wavelength range in the infrared radiation camera spectrum is di�erent and is between 700
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(a) HD3D Lite 3D FPV
Camera.

(b) StereoLabs ZED cam-
era. (c) Blaxtair camera.

Figure 1.7: Passive stereo vision sensors (stereo cameras).

(a) Thermographic camera. (b) IR camera with display. (c) Thermograpic image.

Figure 1.8: Infrared radiation (IR) Camera presentation.

nanometers to 1 micrometer, where standard light visible camera operates from 380 to 700 nanometers.

Signi�cant reduction of sensor costs in recent years allows searching for new applications [139]. Infrared

cameras can be used to improve image understanding from the standard camera, in processes such as

face recognition, depth extraction, etc. 1.3.3. For example, the Microsoft's Kinect motion sensor uses

the IR camera. Operating conditions, miniaturization and other parameters are similar to standard

camera. Fig 1.8a presents model than costs less than 4 eand it is available in small chip's dimensions

2cm×2cm where weight does not exceed 50 g.

1.1.3 Conclusion

IMU, LIDAR, GPS, odometry, cameras and other sensors can provide a wide range of valuable infor-

mation. This is required to react and accomplish many missions, in a known or unknown environment.

However, higher amount of di�erent sensors cause a complication in the CPS. More data from the

sensors into the system requires more computing processing, consumes more time and resources [35]

[47]. Di�erent data spectrum provided by many sensors requires synchronization and calibration. This

process is a challenging task, which requires many resources. In addition, as the number of sensors

increases, the cost of the whole system growths proportionally. However, it is not always possible to

place all sensors due to the constructions, maximal size, weight, required power supply energy, design

etc. There are always speci�c scenario and device's requirements. For example, the size and energy

required by LIDAR are signi�cant for some of the devices, like smartphones. In addition, the price

of the sensor can be higher than the whole device. We conclude that, the use of sensors correlates
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and enforces the target devices and application. One of the main criteria in many aspects is price and

simplicity, so the simplest and cheapest possible solutions are the most valued by industry and market.

The stereo camera is forward-looking sensor, which can provide enough data to understand and

localize system in the surrounding world. It can eliminate and replace many other sensors. Obviously,

it has some disadvantages, the biggest one is its standard design. Stereo camera sensor is in large,

weight and rigid cage, which is usually very di�cult to �x and install. After assembly the cage and

use the two parallel set of camera sensor can be susceptible to many di�erent external factors or

forces. Then, it requires a human intervention such us maintenance or repair which is complicated or

sometimes impossible. From this reason, the sensor requires tough and robust construction, which can

guarantee the stability. Those cameras cannot move and change it pose in respect to each other. This

solution results in high price on the market. Finally, this consideration hides the underlying crucial

stereo camera problem. That the camera's pose exposes to unexpected changes. It must be guarantee

that it does not happened, in order to work properly. For this reason, our work has focused on one of

the classic problems, in the �eld of computer vision, which is online stereo camera calibration, in the

speci�c CPS context. This is the subject of the next subsection.
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1.2 Stereo camera calibration context

The calibration is a process that determines the relationship between the values of the measured

quantity indicated by the measuring instrument and the corresponding values of physical quantities.

The calibration is extremely important and is required for many activities and tasks [81]. Without this

process, it is impossible to obtain a reference to actual values and correct interpretation of the results.

For the same reason, the cameras require calibration. The camera calibration is the process, which

provides a multiple parameters that de�ne and relate to the speci�c characteristics of the camera [69].

These are critical during extracting 3D information from 2D images, measure object size in global

units, visual-odometer process, reconstruct a 3D scene and many applications in computer vision and

robotics domain citeSong2013 [72].

1.2.1 Cameras parameters

Fig 1.9 presents the simplest representation of the projection model known as the pinhole projection,

which referees to camera. There is the light-sensitive surface (sensor) and the image plane with lens

(projection) in a given position and orientation in the space. In order to describe it, there are two

group of parameters.

First presented group is intrinsic or internal camera parameters. Those represents the relationships

between the coordinates of pixels and the coordinates of the camera frame. They remove distortions

caused by camera lens imperfections. They �nd the true center of the image and set correct distance

of focal length.

The second group of parameters is extrinsic or external camera parameters. These express the

relation between the coordinates of the di�erent camera poses (Fig 1.9b). Moreover, in a stereo

camera case, it represents the relation between two camera's positions. They allows reconstructing

the 3D world model from cameras views. They represents the related position, which are used to the

understanding of the environment.

(a) Pinhole camera model. (b) Extrinsic parameters.

Figure 1.9: Intrinsic and extrinsic camera parameters.
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1.2.2 Limitation of standard approach

The computer vision application requires all camera parameters in order to work properly. Because

of this, many studies investigated the camera calibration process. It led to the fact that calibration

procedures run in the manufacturing process of the cameras. Many of calibration methods are dedicated

to monocular camera calibration, which allows user to �nd only intrinsic camera parameters of one

camera [188] [118] [190]. On the other hand, many stereo camera calibration methods try to estimate

all the necessary, i.e. intrinsic (distortion) and extrinsic parameters. The most popular methods use

classical and traditional approach [170] [144] [160] [189] [12]. Those methods try to �nd a known

pattern or special calibration object with known size in the scene and link with the observed scene.

Fig 1.10 shows the examples of 2D patterns.

Figure 1.10: Di�erent calibrations patterns

The camera construction guarantees constant focal length of the camera. If this is satis�ed, the

intrinsic camera parameters can be set once at production level. On the other hand, the extrinsic

camera parameters should be constant if the camera's position does not change. This is true, if and

only if, cameras are well �xed and mounted in the rigid frame. Fig 1.11b shows the example of such

camera. However, real scenarios and the impact of environment expose the sensor on unpredictable

strong shocks, vibration etc. In that case, camera's position can change. Then in the classical approach,

the user must send back the sensor to the manufacturer. There are usually specially trained employees,

who uses the traditional method to calibrate, thus compute a new camera pose/parameters. This type

of the o�ine camera calibration consumes a lot of time. It requires special patterns, knowledge, etc.,

which it is not always available. This kind of method is not practical and it is expensive. This is why

researchers are trying to �nd a new procedure, which allow realizing cheaper, easier and more general

available camera calibration method.

1.2.3 Case of loosely attached cameras

The research subject in this work focuses on loosely mounted stereo cameras. Fig 1.11b shows the

proposition of such type of sensor, where two cameras are not into a rigid cage. Many CPS such as

smart glasses, vehicles or robot platform can bene�t from such easily mounted cameras. In this setup,

unfavorable environmental conditions and forces exposes cameras to at any time. The mechanical

vibration, impact of obstacles, large temperature �uctuations, material tensile strength and many
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others exist in real life scenarios and may change camera's parameters. Then, during a long-term

mission, the system cannot assume and guarantee that the position of stereo cameras does not change.

Many functions and applications require well-calibrated camera parameters. Therefore, the system

must be able to verify the parameters of the calibration at any the time. The procedure should run

from time to time or online during the whole mission. In a real environment, it is di�cult to determine

the period when calibrate the cameras. It is because an unexpected change in the position of the

camera may occur unexpectedly. In this situation, when the cameras are loosely connected, continuous

online camera calibration seems to be necessary. The existing traditional approaches cannot handle

this challenge.

Many calibration methods without patterns appear in the last thirty years [71] [170] [182] [160].

The self-calibration knows also as camera auto-calibration method. They use only camera motion in

a static environment [111] [159]. This group of methods aspires to be online, i.e. executes while the

system is working. The methods do not require any special calibration object in the scene. They seem

to be a good candidate for that type of sensor in order to, calculate continuously extrinsic camera

parameters. In theory, it is possible to perform these methods anywhere, if there are not any special

method's limitations [121]. Successively some of the methods try to analyze camera motion in a stable

environment, using Krupp equations, epipolar lines [80], absolute dual quadric and its projections.

Unfortunately, some of them only calculate the intrinsic and distortion parameters of the camera, thus

are dedicated for monocular camera.

1.2.4 Conclusion

Many computer vision processes requires knowledge of intrinsic and extrinsic camera parameters. They

are very important and critical for many di�erent applications, because of this they must update.

The intrinsic parameters that de�nes internal parameters of the camera can be set only once at

the beginning. In this work, we determine that they will not change because you can be sure that the

focal length of the camera is �xed.

(a) Stereo camera mounted in to
a rigid metal cage. (b) Loosely attached stereo cameras.

Figure 1.11: Two types of stereo cameras, loosely attached and �xed into rigid cage.
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Unfortunately, it is not case for the extrinsic camera parameters. In some system, where cameras

are loosely connected and attached to devices, see Fig 1.11b the camera's positions and orientations

can change due to initial position. Then, the continuously extrinsic camera parameter estimation is

required.

As presented in section 1.2, there are many di�erent approaches to solve one of the classic problem

in the computer vision - camera calibration. Unfortunately, the best, most practical and precise method

does not exist. There are many of them dedicated to di�erent speci�c CPS, application, environment

or to a special scenario. In second chapter, we present a division into several groups of methods, which

we explore and describe with the details.

Therefore, this work challenges the topic of online stereo camera calibration and tries to optimize

and explore what can be done in a speci�c context. The main aim of this work is not to develop a

new calibration method, but to explore existing methods and their possible use in a speci�c CPS. Such

calibration should be performed online in real time during the mission, in an unknown environment,

without special patterns and other attributes. It must be based solely on camera data.

This type of improvement has a positive impact on many aspects of the whole systems. It increases

ability to perform operations for a long time without errors. Such systems equipped with this func-

tionality will avoid returning to manufacturing when the recalibration process is required. This is a

requirement improvement necessary to obtain the new functionalities and con�dence in CPS. It will

allow cameras mount without in a heavy rigid frame. The online calibration is the key to e�cient and

more accurate operation of the future equipment.
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1.3 Application and devices context

The motivation of this work is to �nd one, most universal calibration method, that can be done online

on speci�c CPS in an independent environment. The best stereo calibration method does not exist.

Engineers strongly adjust many di�erent procedures to the speci�c environment's and the application's

requirements. In this section presents the analysis of di�erent types of applications and missions.

1.3.1 Environment

The short study related to di�erent types of environment is a very important context for the analysis

of applications. We divide the main environmental categories in four main groups: known, unknown,

static and dynamic areas.

Missions carried out in a static and known environment are less complicated because they are

more predictable. The easiest scenarios to analyze are those where missions always take place in

the same known locations. For example: devices on production lines or robotic mobile platform for

warehouse can operate on the same path or repeat the action in closed, limited areas, in such situations,

the environment can be upgraded, so that a calibration pattern is always available. This is perfect

scenario for the traditional calibration method. This approach to solve the problem of stereo calibration

is appropriate and often used. However, the system requires this speci�c and adapted environment.

Therefore, it is not suitable for all type of CPS that may work in unprepared or random, unde�ned

environments.

The systems, which realize mission in a dynamic and unknown environment, are much more com-

plex. It is hard to predict and test all possible behaviors. The scenarios cannot rely on proper scene

construction because it is impossible to ensure that some speci�c elements are available to use at any

time. In a dynamic scenario, many di�erent conditions can occur when using the devices. The system

must be prepared and capable of reacting, so it must be more versatile and independent. Therefore,

it may have a wider range of applications. Advanced autonomous systems should be able to work in a

dynamic and unknown environment, without prepared a scene.

Of course, all the time several special conditions must be satis�ed in each environment, in order to

record correct images from cameras. The most important factor for a stereo sensor is su�cient lighting,

to make the camera work e�ciently. Night scenarios, or those with little light, require additional sensors

to support camera data and in such case, the ability to di�erentiate elements on stage is required. A

situation in which the image is uniform and homogeneous for a long time is unacceptable. For example,

if there is a perfect white wall without any elements in the whole camera's view, it is impossible to

distinguish any information. Then, this kind of data from cameras is not su�cient for any CPS mission.

The stereo camera calibration method without any limitations, except the su�cient light and
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heterogeneous scenes is sought. It should have a possibility to run in any dynamic environment, i.e.

internal: in buildings, station, public transport and external in a city, forests, roads, etc. Fig 1.12

presents how looks like a typical environment for camera calibration.

Figure 1.12: Examples of analysed type of scene - local environment.

1.3.2 Mobile robot platforms

Mobile robot platforms are CPS that need to interact with the environment. They expect to become

increasingly useful in many di�erent areas, such as autonomous vehicles, warehouse systems, cleaning

robots etc. The wide spectrum of mobile robot application requires di�erent approaches for stereo

camera calibration.

Car and ADAS

Automotive production is one of the largest market values in the world [113]. Its economic potential

constantly drives and enforces change. Continuous optimization improves many features of new car

models. Road safety is a very important automotive aspect. According to World Health Organization

(WHO), tra�c accidents are one of the main causes of death in the world [132] because of this, there

is a huge need to improve the car safety and reduce this statistic. Advanced driver-assistance system

(ADAS) can help to solve this problem. It supports behavior on the road and improve driver safety. It

can perform many activities such as human and road signs detection; calculate automatic maneuvers to

generate collision-free trajectories, emergency stop systems to avoid collisions, etc. Fig 1.13c illustrates

the center of the car in which the ADAS supports a driver. Today's cars often have more than 150

di�erent subsystems. Many of them like: mirror and seat adjustment, air condition, brake control, etc.

are a separate system usually controlled by CPU, such as ARM, Intel or other processor, like nVidia's

DrivePX which is dedicated to the Arti�cial Intelligence (AI) [55] [129]. It leads modern vehicles, to

have up to 50 processors and multiple sensors. Moreover, cars contain a huge amount of software that

can have up to 10 million lines of code [149].

The 1rst models of vehicles equipped with a stereo camera sensor already appear in the automo-

tive market [171]. Usually the current stereo camera exists as one sensor (one box), which makes it

impossible to get a wide base line between the cameras. The most common location of such a sensor

is under the front mirrors on the windshield. Nowadays, this sensor provides only additional data to
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support more complex ADAS. Undoubtedly, car with motor can power all necessary electronics, which

consumes a lot of energy, so the extra processor board does not complicate a system. The capacity

and size of the whole car are su�cient comparing to the heavy cage, stereo sensors. Moreover, the use

of a large number of sensors and electronics is possible because the car is a unique type of system for

which many people are willing to pay more than for other products. Health and comfort are highly

valued. Thus, in such type of the system, it can be equipped with expensive stereo camera systems. It

is signi�cant that the price of stereo camera in the comparison with the whole cost of a car (an engine,

bodywork etc.) is negligible.

For these reasons, the automotive application is di�erent from other CPS and the problem of the

online stereo camera calibration is mostly overlooked because the cameras do not have the right to

change their location in the expensive, rigid and complex stereo camera system. Nowadays ADAS try

to propose a news solution, for example mount the cameras on the side mirrors. This solution increases

a baseline between cameras, thus depth and �eld of view. In such case, it is mandatory to look at

the online camera calibration because this type of installation requires continuous monitoring of the

camera's position, because the mirrors are movable.

Currently, the system is full of data from various sensors, di�erent applications, etc., which can

be used to calibrate stereo cameras. The odometer and IMU data provide an additional location

information; this data overcomes the limitations of GPS/GNSStechnology, the dead reckoning. This

data helps when satellite signals are not available e.g. in tunnels, parking garages. The calibration

method could use the road infrastructure. Some methods can work with standardized sizes of road signs,

pedestrian and route lines, etc. and try to use them as a traditional calibration pattern. Moreover,

if camera are attached in mirrors to aid di�erent drivers, the movement of this is limited due to its

construction. Onboard there are many di�erent sensors. These type of methods can calibrate stereo

cameras in the car. However, all of them are limited to this speci�c application context. They are not

relatively universal and not possible to perform in real time. At the TED conference Elon Musk said,

�Vision is the most critical sensor for the future autonomous driving system. Once you solve cameras

for vision, autonomy is solved; if you don't solve vision, it's not solved� [124]. These words suggest

that the vision becomes more popular and stereo camera can be the sensor providing required data.

Vacuum mobile robots

Fig 1.14 illustrates the vacuum mobile robot, which must have the intelligence to move and localize itself

in the environment. New models comes with a new supplementary function, such as understanding a

local area, ground, etc. In the current popular models, the micro-controller is the heart of a system.

A bumper equipped with infrared sensors and an odometer to measure the traveled distance usually

provides the data. It has a common DCpower unit consisting of a 12V battery, which allows vacuuming
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(a) Mobile Robot Pioneer. (b) Autonomous car. (c) Advanced driver-assistance.

Figure 1.13: Di�erent CPS where stereo camera can provide a key data.

(a) The Roomba 960 presentation.
(b) The Roomba 960 presenta-
tion.

(c) The Roomba 960 recognize vi-
sual landmarks and construct the �oor
plan.

Figure 1.14: Vacuum robot presentation.

and navigating. The price of the mobile vacuum robot is in ranges from 150 to 1000 e. Fig 1.14a

shows one of the latest and most advanced models Roomba 960. This model is equipped with a camera

sensor. It runs on built-in Linux, executed on ARM9 System on Chip, where 2 MByte FLASH and

16 MByte SDRAM is available. The system has a WiFi Router that allows to control it through a

network.

Roomba 960 unlike to older generation robots does not use a random pattern to decide where to

go. It uses information from the environment provided by camera and navigation algorithms [83] [134].

Thanks for this data, the robot understands where it has already been, where to go along the straight

lines and not to repeat the same cleaning area, if it is not necessary. Roomba can slow down the

speed of movement in front of the obstacle. Fig 1.14b shows application realized to create a map with

detected objects such as a table, chairs, walls, etc. After making sure it has cleaned the entire surface,

its navigation allows the robot to return to base and recharge the batteries.

Generally, customers do not want to spend a lot of money on consumer electronics devices. For

popularization and more frequent use vacuum cleaning robot, it has to cost as less as it is possible.

Expensive, heavy and rigid stereo cameras are not a good candidate as a main sensor. However, two

loosely connected cameras can be a good and optimal alternative. Due to the commercial scope of the

robot, technical documentation is not available. Probably the precise environment mapping is a result
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of correct data fusion provided by the robot's wheel odometer, gyroscope, accelerometer, and camera.

In the future, the stereo camera can provide a wide su�cient spectrum of data to the system. Thus, it

can eliminate and replace other sensors and electronic equipment used in robot so far. The demanding

customers require more precise and more complex vacuum robots for lower price. Two loosely attached

stereo camera can reduce number of other sensors so minimize a price and increase perception of robot.

The last aspects that we analyzed in such context is an importance and priority of cleaning mission.

It is de�nitely di�erent from ADAS. If the mission goes wrong, there is no accident involving casual

lives, unlike to vehicles or cars. For this reason, the vacuum robot calibration method has completely

di�erent limitations. It can be less complex and provide parameters with worse precision.

1.3.3 Virtual and augmented reality devices

The virtual and augmented reality devices collect, process and control data from internal and external

sensors, in order to add the 2D, 3D �gures or arti�cial information generated by computers to the

display with real environments. Fig 1.18shows the example of such information. Fig 1.15 presents the

special devices like portable smart glasses or helmets. Those are able to change the optical properties

of the universal environment around us in the real time. This area is quickly gaining popularity in

recent years.

(a) The Hololens proposed by Mi-
crosoft.

(b) The smart helmet proposed
by our lab. (c) The Hololens details.

Figure 1.15: Augmented and virtual reality devices presentation.

The �rst successes of virtual reality motion sensor, which try to capture the information, received in

the real world and pass it to the computers was Microsoft's Kinect. It entered into the Guinness Book

of Records as "the fastest-selling consumer electronics device" after more than 8 million copies were

sold in the �rst 60 days [155]. It shows a huge potential and great perspective in the future for this kind

of devices. The Kinect is equipped with two cameras. The �rst standard RGB video camera provides

video images with a resolution of 640 × 480. The second camera is part of the whole sensor subsystem,

which returns information about the depth of the local environment. It uses the infrared illuminator,

which displays a cloud of points in front of the camera. The infrared camera sees its positions and

size. Thanks to this data, it can calculate the distance to the local environment. The obtained 300 on
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200 resolution of depth interpolates to the resolution of the video camera (640×480). The operating

range of the distance sensor is between 0.4 and 6.5 m. This data allows detecting people and gestures

through a software application. The use of the structural light method can �awless operation of the

sensor only indoor - the reading is sensitive to excessive sunlight [114].

There are already several models of smart glasses or helmets available on the market. Fig 1.15a

presents the Hololens, one of the most interesting models proposed by Microsoft [109]. It is a �rst

generation of these kind devices, still large in size and weight (half a kilogram). This makes it uncom-

fortable for a long time of use. Intel ×32-bit architecture inside can run the Windows 10. Moreover,

custom Microsoft Holographic Processing Unit supports the main processor. It has a 64 GB Flash and

2 GB glsram memory. It has a wide range of sensors: glsimu, 4 environment understanding cameras,

1 depth camera, 12 MP HD video camera, 4 microphones, 1 ambient light sensors and mixed reality

capture. All sensors work together for the perception of the local environment. These elements and the

expensive in term of power allow to active use during only 2-3 hours. Other companies o�er commercial

smart-glasses products such as Atheer [156] or Lumus [62].

Only during last 30 years, engineers were able to reduce the size and price of smartphones several

times. That nowadays everyone can use it, due to its low costs and wide range of applications. If

similar process will run for such virtual and augmented reality devices, those can be also widely use

and change many aspect of everyday life. There is a high probability that the same history repeat.

For this to happen, the price of such device must fall drastically. At present, an energy-intensive

processor does not allow for long-term use, so the life of the device (without charging) should be

extended. Loosely mounted cameras can replace multiple sensors that need costly hardware. It can

eliminate expensive electronics and gain many computation operations. It can reduce the data fusion

and other mathematical operation etc. Particularly, the device cannot be heavy and large, while the

devices is located on the head. According to its use cases, it has to face many limitations. Such as

in smartphones, the design, size and weight of the product are very critical. We could not imagine

a walking with big phones carried in suitcases, but we do it with small devices �tting our pockets.

Therefore, extending the size of battery increases the weight and size of the devices. Because of its

proximity to the user's head location, we must consider the temperature and cooling process of the

device. The many high complex processing has to reduced, accelerated and optimized in order to

use less energy. Searching for less complex algorithms, optimizing the code and converting it to less

powerful processors are desirable solutions. Devices of virtual and augmented reality must understand

the surrounding environment. One of the best sensors in terms of size, power consumption, data

spectrum and price is the stereo camera, in the form of two loosely connected cameras. Therefore,

the question of their exact parameters estimation during the mission is important. Thus, the online
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calibration of cameras can be a milestone for virtual and augmented reality devices.

1.3.4 Conclusion

Section 1.3 recalls some of the applications that can signi�cantly bene�t from the use of a stereo

camera. It is a matter of time, when these mentioned examples use a stereo camera.

The mobile robot platform can use a stereo camera for navigation purpose. It can provide a wide

range of data about the local environment. It can allow for safer movement, avoidance of barriers, etc.

Depending on the platform, sensors and applications running on it, the calibration of stereo camera

cameras may use di�erent variants and methods.

Future augmented and virtual reality glasses and helmet can be much cheaper thanks to use only

stereo cameras. This sensor can provide all the necessary information for proper functioning. The cali-

bration method required by the augmented reality devices has de�nitely less data to use in the system.

It has limited battery power, etc. than robots mobile platform such autonomous car. Depending on

construction of smart helmets or glasses, it can be less susceptible to decalibration. Not less, certain

form of veri�cation whether the extrinsic camera parameters are correct, is required.

Section 1.2.4 shows existing methods with limitations. Additionally, this part speci�es what kind

of method is looking for in this work. The conclusion is that the ideal calibration method does not

exist because it depends strongly on environment application and devices.

When exploring di�erent calibration methods, it is important to �nd a speci�c context for the

work. It is mandatory to know the target system, its possibilities, limitations and purpose in order to

propose the best method. Therefore, for the purpose of this work, section 1.5 presents in detail our

motivations.
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1.4 Embedded system context

Embedded system is a special purpose computer system (controller programmed and controlled by

a real-time operating system (RTOS)), which becomes an integral part of the computer's hardware.

It must meet speci�c requirements strictly de�ned for its tasks. Therefore, it is not a typical multi-

functional personal computer. Each embedded system is based on a microprocessor (or micro-controller)

which is usually a part of System on Chip (SOC), and software programmed to perform a limited num-

ber of tasks (or even just one), very often with real-time computing constraints. Embedded systems

are not always standalone devices. Many of them consist of small parts within a larger device that

supply a more general purpose.

Over the past decades, the SOC has taken a big step forward. The Moore law is a good represen-

tation of these changes, it shows in Fig 1.16a how the number of transistors on the same surface in the

processor, increase in relation to the limited period of time.

Fifty years ago, the huge computer occupied an entire room. They realized simple data process

and had less computing power than a modern smartphone, which �ts into pockets. Twenty years ago

microwave had a simple CPU, which was high, modern embedded technology at that time. Nowadays,

many children's toys use similar CPU, which costs less than 10 euro. SOC integrates all components

of a computer or other electronic system used in an embedded system. These components typically

include a complete system consisting of multiple electronic part such as a central processing unit

(CPUs), graphics processing units (GPUs), multipliers, caches, memory, input/output ports, etc. Fig

1.16b shows SOC diagram, which presents ARM processor supported by all peripheral devices. The

SOC is a complex embedded system, but fully integrated on one chip.

Nowadays, various technologies and languages implements speci�c programs depending on the

task. The most common and popular programs use standard form of code that follows the instructions

executed on the CPU. There are some of limitations and restrictions of such approach i.e. number of

computation or speed. According to this, there are other solution, for example, use a data processing

through other speci�c integrated circuit (ASCI) or �eld-programmable gate array (FPGA).

1.4.1 Vision vs Hardware

Many years ago, computer science had a high spectrum of knowledge. Development of this �eld of

science created new specializations and communities. That has resulted in the fact that the knowledge

and region of interest of the hardware development community that deals with embedded systems and

computer vision community that focus on computer architecture signi�cantly diverges.

The algorithm for vision applications and advanced systems require an extremely large number of

mathematical operations so a lot of computational power. Moreover, the scientists and engineers are

usually interested in the fastest and most precise so the most complex algorithms. Luckily, for them,
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(a) A plot of CPU transistor counts against dates of
introduction.

(b) Microcontroller-based system on a chip.

Figure 1.16: CPU presentation.

they have access to advanced, intelligent and heterogeneous hardware architecture that often consists

of several powerful CPUs and GPUs. On such systems, they perform multiple complex processes

simultaneously, without caring about many other restrictions. Modern hardware architecture performs

and accelerates increasingly complex tasks. That is why nowadays, many algorithms are not well

adapted and optimized to work on embedded systems. Many systems have reached the point where

there is a strong need to use these computer vision algorithms and implement them in the new CPS with

the low performance CPU. Therefore, the subject of research on the borderline between a computer

vision and an embedded system is very signi�cant and promising nowadays.

1.4.2 Personal Computer

The researchers of computer vision algorithms work on a standard personal computer (PC), and they

do not worry about hardware limitations. The huge computational power is available due to expensive

technology and high power consumption of such systems. It is possible thanks to many speci�cations

such as the connection to a �xed power supply, a cooling fan because the temperature of processing

units often exceeds 60 degrees Celsius, etc. The cost of this type of heterogeneous architecture often

exceeds 500 e.

The standard PC contains the hardware, so all physical parts of computer and software, which

provides instructions to realize di�erent tasks. Thanks to today's solutions, it is hard to see the

boundary between hardware and software in a modern PC. The motherboard connects all processors,

memory, and peripherals together with embedded libraries and other solutions. RAM, graphics card

and processor are in most cases mounted directly on the same motherboard. Today's the average
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consumer does not need to know and understand their parameters to use them. In order to add a new

hardware to PC, usually plug and play concept works. The most important software on each PC is

the Operating System (OS). Mainly thanks to it, it is possible to communicate with the hardware. It

helps and translates many instructions to speci�c computer languages. It allows to carry out speci�c

tasks by use of particular commends. Due to this software, many of electronics elements and missions

work. However, many processes require the operation system with special library, in order to use new

tools and new user applications. There are available di�erent OS, but the most popular for robots and

CPS in the world is the Linux. It is free and open-source software, which gives great possibilities for

internal interference.

1.4.3 Single-board (Ready-made) Computers

Fig 1.17 presents some of already-made worldwide-accepted boards such as the Arduino, Orange Pi,

ZYNQ, Pynq or Raspberry Pi (RPi). This type of devices are perfect examples of SOC, which allows

testing and creating new prototypes, very fast and cheap. It is interesting to see a performance of

RPi, which has an Advanced RISC Machine (ARM) architectures family. Those CPU use 32 bits

instructions sets to execute code. The reduced instruction set computing (RISC) allows having a lower

number of cycles per instructions compared to most CPU used in modern PC, which usually have ×

86 architecture.

In Fig 1.17a presents some processors characteristics, for example, the ARM Cortex A7 in the RPi

3 is about 7 times less powerful that CPU Intel 7 [20]. However, the price of the Cortex ARM family

is much cheaper than the Intel processors. Moreover, the power consumption is signi�cantly lower and

it translates into less heat dissipation. These ARM's performances are ideal for lightweight, portable,

battery-powered and low-cost devices. These processors can be dedicated devices for augmented reality,

low-performances tablets and other CPS.

Of course, the construction of the CPU's system has some limitations. During the designing process,

the engineers of embedded systems challenge the limitation of computational power and memory. As a

result, it is impossible to implement the latest and the most complex algorithms in embedded systems

based on ARM processors. This forces the search for a certain balance between simple and complicated

algorithms. Moreover, we must consider the amount of data and the not linear calculations, in order

to implement it on limited CPU.

1.4.4 Conclusion

Huge changes in an embedded system in recent years allow analyzing and creating new devices with

new functionalities. Until recently, many functionality innovations have been outside the scope of

technology. Fortunately, today's continuous improvements create a new possibilities and insights on

complex subjects. One of them is to look at solving the stereo camera calibration during real-time on
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(a) Some characteristic between
ARM Cortex A7 and Intel Core
I7. (b) ZYNQ Berry. (c) Raspberry Pi - RPi

Figure 1.17: Embedded platforms equipped with ARM processor

embedded systems.

The typical SOC equipped with embedded processor has low power consumption, small size, rugged

operating ranges, and low per-unit cost compared to the PC. This comes at the price of limited

processing resources, which make them signi�cantly more di�cult to program and interact with other

components. Those kind of integrated circuits equipped with ARM architecture on ×32 bits can be

acceptable candidates for many CPS.

In this work, we select an embedded systems platform with the ARM Cortex processor as a target

system. For this reason, we consider only the most primitive methods of online stereo camera calibra-

tion. Many methods were developed and characterized on the ×86-bit architecture. Therefore, this

research tries to �nd and suggest a method with methodology, which executes in real time on selected

limited embedded systems.
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1.5 Our motivation

Finally, after presenting all four contexts of this work, we present our particular motivation. At this

stage, we presented that the stereo camera is a good sensor for modern CPS, because it provides a

high spectrum of data, on the other hand it can be cheap, small and require low energy. These features

perfectly respects a low performance of embedded systems. Some devices and applications already use

stereo camera, but it has still some limitations. One of them is camera calibration. There are many

di�erent camera calibration procedures. However, there is no ideal method to calculate the extrinsic

parameters of a stereo camera in each possible scenario and applications. Moreover, there are not

many studies about online calibration procedures.

The goal of this work is to show and illustrate an approach to extrinsic online stereo camera

calibration that performs on embedded systems. It is important to mention that the goal is not to

develop and create a new calibration method, but to investigate whether one of the existing procedures

can be adapted and performed in real time on limited embedded systems on CPS.

1.5.1 Main aim of approach

In this thesis, we would like to execute the online stereo camera calibration in speci�c CPS with a

particular mission. We consider the calibration method in the �rst generation of virtual reality devices

seen as intelligent glass or helmet. Its main objective of such devices is the pedestrian guidance. Fig

1.18 presents possible scenario. This type of device must monitor and control the movement of the

user, localize itself everywhere in the dynamic environment. In order to detect and avoid obstacles,

interact, a high spectrum of data in the system is required. The important approach is that this CPS

has a special dedicated group of recipients. It must support visual impaired people and facilitates

their mobility. This type of system can be an alternative to a guide dog. The mission goal has a very

high priority and it is important from the user's point of view. It must provide trusted and accurate

information, because the health of the user and the success of many activities are important.

In this section, we consider limitations of such system. The smart glasses must be relatively small

and lightweight to be portable and comfortable. It forces the use of a small battery, thus a system has

a very limited amount of power. It requires the use of a small energy demanding processors. Moreover,

in the glasses frame, it is hard to build a large CPU or GPU. These limitations led to the reduction of

all electronics components. Sensors that consume too much energy or are too large do not �t into this

type of system. It is important to remember that the vibrations, unpredicted forces and much more

may a�ect the construction of the glasses.

1.5.2 Navigation

The system has a speci�c mission to realize, it supports the person during the guiding along route. The

history of navigation is very long and has always been with humanity. Etymology of the word derives
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Figure 1.18: Interface for application to led a pedestrian presentation.

from the Latin term for a sail. Over the centuries, humans distinguished many types of navigation:

dead reckoning, which is a process of calculating one's current position by using a previously determined

position, celestial navigation, which based on celestial bodies, radio, radar or satellite one. Section

1.1.1 describes some of the sensors used in navigation.

Nowadays, navigation referees as the classic problem of how to deal with the determination of the

current location and optimal route to the destination for people, ships, land vehicles and other moving

objects based mainly on satellite navigation. Due to its small size and weight, quite low price of the

signal receiver chip, many devices such as smartphones, cars and planes obtain a satellite navigation

module that can obtain signals from satellites. The GPS is an excellent type of navigation in an outdoor

open space, environment, such as motorways or urban environment. Unfortunately, due to an error and

lack of precision and signal in internal scenarios, this method is not su�cient for navigation requiring

by a pedestrian guidance. Another problem that satellite navigation does not solve is information

about the local environment and obstacles around the user. In a realistic dynamic scenario, in cities

and inside buildings, there are a huge number of obstacles to avoid. It is an important aspect for the

CPS, which must help navigate a visually impaired person.

There are sensors that can provide information about the local environment as part of smart glass.

The LIDAR and radar seem to be the right choice for this type of task. Unfortunately, they have many

disadvantages, especially in the context of glasses. This type of device must be portable, which makes

it necessary to minimize the device with small batteries. The LIDAR sensor consumes a lot of energy

and requires a huge amount of data processing. Mounting this sensor in glasses would be complicated

due to its large size and embedded system's limitations. In addition, the cost of this LIDAR often

exceeds what users want to pay for such product. Therefore, it is not ideal sensors for this type of

equipment. Glasses cannot use a traditional odometer technique. Another sensor that can provide

data to the system is the IMU. Unfortunately, the error in estimating the position due to the IMU

accumulates over time. The price of this sensor is close to a price of the camera, but the spectrum of

provided data is limited.

Two cameras as a stereo camera can provide su�cient data for a navigation mission. Such solution

can reduce need of other sensors so the cost of the devices may decrease. It eliminates data fusion, thus
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the whole system requires less computing power. The camera is an optimal sensor for smart glasses

devices. The size and weight of the product is su�cient to mount it in the glasses frame.

Figure 1.19: Smart portable devices in our context of work.

1.5.3 Conclusion

The goal of this work is to realize the online stereo camera calibration on a smart glasses/helmet

equipped with embedded systems. This CPS is dedicated to navigation of visually impaired people.

The stereo camera provides data to the system. Its working conditions create many limitations. Due

to the design and dynamic missions of the devices, the position of cameras can change. Therefore, it

is necessary to calibrate extrinsic camera parameters all the time.

In order to accomplish its mission, the system must provide data, which allows moving from any

location to another. Unlike other navigation devices, this type of system must be capable of under-

standing the surrounding dynamic environment. It must know the distances to the local environment,

which help for obstacles detection and avoidance. It should be able to locate, track and measure dis-

tances traveled, select correct route, path, corridors, etc. Fig 1.18 presents an application, which leads

the user to the closest exit and can display additional information.

To realize navigation, many missions must realize a depth map extraction, SLAM, visual odometer

and path selection, etc. There may be many additional functions such as the object detection and

recognition. The sound signal and many other lateral functions can help to avoid any barriers and

obstacles. All these functions have to work together, process data in the real time. Immediate reaction

and decision-making are the key in this type of system.

The online stereo camera calibration can be of great innovation for this CPS. It increases its

reliability and creates the ability to carry out a long-term mission without the need for maintenance or

operator assistance. As a result, research topic relates to self-healing and self-adaptation of the device.

Auto-calibration (self-calibration) creates a continuous measurement of the stereo camera parameters

in the real time independent of location or mission.
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1.6 Summary of background and motivation

1st chapter gives all the necessary background information and motivations to understand the basic

principles of online stereo camera calibration, it is divided into four di�erent sections. Fig 1.20 sums

up all the di�erent aspects and contexts of this manuscript refereed in the �rst chapter.

Figure 1.20: Summary of the �rst chapter in the diagram form.

Section 1.1 provides fundamental facts about the CPS. It shows many trends in the development of

new systems. We point to the fact that, the modern systems need to be more intelligent, autonomous,

independent and operate longer without the help of people. In order to carry many tasks, the CPS

need to collect data from the environment. Section 1.1.3 presents the advantages and disadvantages

of various types of sensors used in systems.

The one of the most future-oriented sensor is a stereo camera. Most of the models currently used

are built into a rigid metal frame. However, due to its size, weight and cost, it does not t the most

CPS. Removal of these restrictions by setting up loosely attached two cameras can be a big impulse

to popularize and widely use this sensor in many new devices.

Part 1.1.2 shows that the use of stereo cameras can provide a very wide spectrum of data. Thus the

system can reduce or even eliminate the need for other sensors thus reduce cost of many CPS. However,

the processing based on the data from the stereo cameras has a some restrictions and limitations.

All computer vision processes require the intrinsic and extrinsic camera parameters, which describes

the relation internal and external setup of stereo camera sensor. In order to calculate them, the

camera calibration method is required. Section 1.2 presents the limitations of the standard, traditional

calibration approaches. Unfortunately, removing rigid metal cage in the sensor creates new restrictions,

such as the need for the continuous stereo camera calibration. The extrinsic parameters so a relative

camera's position can change. In this case, the classical approaches are not suitable for the sensor.
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In the literature, the perfect stereo calibration method does not exist, which can compute parameters

repeatedly. The targeted application, devices or hardware strongly correlate and force the calibration

procedure. Following, section 1.3 gives analyze of some of targeted environments and applications,

which can signi�cantly take pro�ts of use online stereo camera calibration.

The next part of the 1st chapter shows embedded systems as another context of this work. The

di�erent CPS are based on various embedded CPU, those are usually a several times weaker than

standard used in PC. The computing and memory limitations must be considered during calibration

procedure executed on embedded systems.

The last part of this chapter describes our speci�c motivation to realize the online extrinsic camera

calibration. Section 1.5 presents the smart-glasses with particular mission to realize, its working

conditions and limitations. In this the selected CPS, the stereo cameras are mounted in a fragile design,

which is exposed to many external factors that can cause camera's position movement. Therefore, the

approach to real time calibration is extremely important. In such targeted CPS, an embedded system

is an additional problematic aspect, due to its construction. For this reason, we consider the hardware

limitations.

This PhD thesis is not focused on the creating a new camera calibration method, but in implementing

and testing one selected procedure on the targeted embedded systems. Section 1.3.4 characterizes the

particular method. This research is future-oriented in order to realize more autonomous and reliable

CPS. The proposed method allows creating a system with the highly demanded functions such as:

self-healing and self-adapting

Next 2nd chapter presents the state of the art. It presents the survey of much method. It ex-

plains the technical background and the basic concepts associated with the stereo camera calibration

problems.

The 3rd chapter describes the developed approach to the online stereo extrinsic camera calibration.

It presents an algorithm and the suggestion about the whole methodology of advanced calibration. In

this chapter, we present the system improvements like: additional �ltering or accumulation strategy.

Moreover, many aspects of camera calibration, such as: frequency of execution, use of data from the

system, acceleration of calculations, scale extraction, quality of calibration services are addressed and

discussed in this chapter.

The 4th chapter presents di�erent environments of tests. It shows the methodology used for real-

ization of the dataset. In this chapter, we present the online stereo monitoring and camera calibration

tests on the PC and the targeted embedded system. We characterize and comment the obtained result.

Last 5th chapter concludes and summarizes the work. It recalls the obtained results and the answers

to the questions raised in the manuscript. This chapter presents a perspective of the whole work and

proposes a future work.
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Chapter 2

State of the art

The only source of knowledge is experience.

Albert Einstein

The considered custom method has to be a part of the whole CPS in a speci�c application domain.

This chapter describes the existing stereo camera calibration methods. It describes the some speci�c

parameters, limitations and constraints of presenting methods. The chapter ends with a description of

the datasets available in the literature. After this chapter, the reader should know the most popular

calibration methods.

Objective :

Selection of the best method for online calibration pipeline on embedded system in speci�c

selected device and application context and the best database to test an approach.

To do this, we :

• study stereo camera calibration methods.

• study methods that aspire to real time execution.

• study methods that execute on an embedded system.

• study datasets for online stereo camera calibration.
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2.1 Introduction to state of the art of calibration methods

In the last decade, scientists have studied various methods of calibrating cameras. This section provides

an overview and in-depth analysis of some of these procedures. In Fig 2.1, we categorize the most

important methods due to their limitations. We assess them according to the criteria presented in the

�rst chapter, namely: embedded system and application context. The section 2.2 presents traditional

methods, which use a calibration object in order to work. Many computer vision applications use

them. This kind of group is popular when engineers assume that the camera parameters are �xed. In

this thesis, we negate this statement. The section 2.3 presents self-calibration methods. These do not

require any special calibration objects. However, they need a camera motion into static environment,

which is usually the case for many computer vision processes. This group is less precise and stable.

The third group represents these methods, which use a di�erent constraint than calibration patter

and motion, for example: the know rotation of camera, vanishing lines or information from additional

sensors.

Various assumptions are obligatory depending on a speci�c method. Every calibration method

requires well-synchronized images provided by cameras. The scenery must have su�cient light, in

order to detect many features in the images. Another, very important aspect is the overlapping view

of cameras. Both cameras must simultaneously observe the larger part of the image (scene). There

are methods to calibrate cameras that do not overlap views such as [176]. However, this is not the

research subject of this thesis to consider these methods.

Stereo camera calibration methods
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tool

Online

Self-calibration, auto-calibration

Offline

Online

Based on additional constraint

Offline

Online

EM
B

ED
D

ED
 C

O
N

TEX
T

Figure 2.1: Global calibration methods characterization.
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2.2 Traditional Camera Calibration

This section presents the most popular approaches of the traditional camera calibration methods.

Those require a special calibration tool or pattern, in order to work. Fig 2.2 shows the four various

forms of that tool. The pattern must be clearly visible (the whole tool) in the camera view from

many di�erent positions in relation to the static position of the camera. There is a reverse option

in which the calibration tool has a stable position and it is observed from multiple camera positions

(orientation). Depending on the di�erent methods with a particular pattern, a various number of

images from many perspectives is required. The traditional camera calibration method usually must

stop application, system or current task to realize this procedure. Then, it must �nd and detect a

calibration pattern, from many di�erent views. Therefore, the traditional calibration method does not

aspirate to have a potential to run in real time (during task). The procedure has to know the size

of the calibration pattern. Each traditional method extracts clearly the coordinates of the calibration

object. It creates a set of collinear equations thanks to its position. Then, the algebraic assumptions

of the projection geometry solve this system of equations. Finally, the method usually estimates all

camera (intrinsic and extrinsic) parameters. Linking the image views obtained from cameras with the

particular calibration patterns can provide very accurate results not achievable by other methods.

Stereo camera calibration methods

Offline

Traditional, based on calibration 
tool

Online

Self-calibration, auto-calibration

Offline

Online

Based on additional constraint

Offline

Online

- Using 3D structure

- Using 2D pattern, 
chessboard

- Using 1D line 

- Using environment 
structure as a 

calibration tool

Figure 2.2: Traditional calibration methods characterization.
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3-dimensional pattern structure

The �rst group of method presents calibration, which uses an apparatus or other calibration object with

3-dimensional geometry. The left part of Fig 1.3 shows the calibration object proposed by Faugeras

[49]. Such apparatus normally consists of two or three perpendicular planes. Fig 1.3 presents type

of calibration pattern with the 2-dimensional structure (in di�erent planes), in order to imitate a 3-

dimensional tool. This calibration room proposed by Geiger et al. realizes the procedure with only one

camera shot (image) [58]. Thanks to the 3-dimensional of pattern, there is no need to move cameras

and take images from di�erent poses. Heikkila describes all necessary steps required by traditional

method [71].

Figure 2.3: Di�erent 3-dimensional apparatus for calibrating cameras.

2-dimensional pattern structure

The second group is the most common type of the traditional calibration method, which uses 2-

dimensional classical chessboard pattern. This group has a huge representation. During this thesis,

we considered some of them [170], [144], [160], [189], [188], [12]. In the market, there are applications

to calibrate stereo cameras. One example is the Matlab stereo camera calibration toolbox [108].

However, the license of such software is not free. The other one, the OpenCV is open source software,

recommended by us [131]. Both applications have implemented the same Zhang method [189]. There

is much more application available on the market. However, in this thesis, we use these two as the

reference methods.

In these methods, the structure and parameters of the 2-dimensional calibration pattern is important.

It has to be easy to detect, so the high contrast of pattern is required. We recommend printing the

black squares on the white background page. Fig 2.4 shows how the most common pattern, which looks

like the chessboard. We recommend using the chessboard, that contains an even number of squares

and the other side has an odd number of squares. In this con�guration, the program that detects the

pattern will never confuse the left top corner with the bottom one. The calibration method must know

the size of square, so the real scale and the precise value of the parameters can be determined.

The 2-dimensional pattern-based method is more �exible compared to another pattern-based method
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because if a printer is available, it can be easily prepared. Of course, we should properly protect our-

selves against bending the �exible sheet of paper where the pattern is present. To calibrate the cameras,

we should only detect the pattern on one plane. Therefore, sheets of paper with a chessboard printed

on should be on a solid, �at surface.

There are commercially patterns created on the solid material such as glass or metal one. Those

calibration tools are precisely prepared to obtain the most accurate precision. They are much more

expensive than those prepared by the standard printer. Moreover, their weight is much higher, which

makes it more di�cult to use.

(a) Good structure of
pattern size 7x8.

(b) Good structure of
pattern size 8x7.

(c) Bad structure of
pattern size 7x7.

Figure 2.4: Pattern examples.

The traditional calibration requires points detected from many di�erent planes. The two-dimensional

pattern plane, so it should be well distributed in each part of the image during the whole calibration

sequence. It depends on calibration method but it is generally recommended to use 10 or 20 di�erent

images of a calibration pattern. For best results, the control board should be at an angle of less than

45 degrees to the camera plane and at di�erent image depths. Fig 2.5a shows all these tips about

the pattern's position and distribution. During calibration one element, camera or pattern position

remains stationary, cannot move. If the camera is portable, the 2-dimensional pattern must be in a

static position. If the camera is not moving, we must put the calibration structure well distributed in

whole camera's view with various rotation, scale and skews. This is very important to achieve a high

precision of calibration parameters. In the case of stereo camera calibration, the chessboard must be

fully visible in both images of each sensor. Finally, as these methods use points from the image, so the

high quality images (which allow for detailed detection of squares) increase the quality of the results.

These methods are accurate and widely used in the �eld of computer vision.

Some traditional 2-dimensional calibration methods use landmarks as standard calibration patterns.

Fig 2.5b presents one of the most popular landmarks - the aprilgrid patterns [130]. The Kalibr appli-

cation [112] is a tool where the o�ine method recognizes these tags and calculate very precise camera

parameters.

Other works also use landmarks system. Tang et al. [165] presents a work where the multi sen-

sor system uses the landmarks to calibrate. He calibrates the cameras with laser, while the method

proposed by G.Antonelli et al. [11] estimates simultaneously camera parameters and odometry param-

44



(a) Pattern distribution recommended. (b) April Tags

Figure 2.5: Pattern examples - landmarks that represent 2-dimensional calibration pattern.

eters.

1-dimensional structure

Another subgroup of traditional camera calibration, that has the least elaborate representation, is the

one that require a 1-dimensional calibration pattern. This type of method requires a special calibration

device and movement around the vicinity point. For this reason, it is far less practical than the methods

based on standard 2 or 3 dimensional patterns. This method usually needs more measurements and

still seems to be less precise. For example, Miyagawa et al. [118] and Zhang et al. [190] proposed

approach, which use the distance measurements of a �xed-length object (stick), where at least two

points on the objects are tracked and known. This method estimates the camera intrinsic parameters,

while it observes a moving line around a �xed point. However, that method does not calculate the

stereo extrinsic parameters.

Online approaches of traditional methods

The standard traditional camera calibration methods should be treated as o�ine procedure. They

must be performed before the application or computer vision process. They require the use of a special

calibration tool, 3, 2 or 1 dimensional, depending on the method. It cannot be guaranteed that a special

apparatus, chessboard or other calibration pattern is always ready to use when needed. However, it is

worth paying attention to the approach that attempts to adapt the working area. Some approaches

realizes the mission in the same, custom place, then working conditions can be adjusted and patterns

always visible. In special cases, when the place of mission is signi�cantly limited, it is possible. Some

methods do not adapt the environment but try to extract special elements of scene. Then some of

particular objects can be used as calibration patterns, for examples: tra�c sign or crosswalks. There

are some approaches that mount calibration tool with camera sensor.

Qin et al. [135] equip the device with the attached calibration pattern. In such case, the pattern is

always available and ready to use during the whole mission at any time. This approach proposes to
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build a stereo vision system that has half-mirror with light source displaying the pattern in the real

cameras scene. This sensor is mounted on top of the devices and it is presented in Fig 2.6.

Figure 2.6: Embedded calibration stereovision system (left) and embedded stereo pair (right).

[85] and [153] propose a similar standard traditional calibration method which uses 2-dimensional

pattern always visible by the camera. Calibration pattern is available at the robot's hands, it allows

to be carried with its and use calibration whenever required. This type of approach can be performed

online.

The same methodology is proposed in the another approach. Wang et al. [173] present the intrinsic

and extrinsic camera calibration method. This procedure is based on traditional pattern procedure

but they propose to replace the calibration tool by invisible infrared ray. It is displayed in front of

camera all the time in each environment.

Many methods in this group consider only intrinsic parameters due to special video/television appli-

cations. A camera calibration method for stationary cameras designed to work in special environment

is presented in: [85],[153],[41], [32] and [10]. Aleman et. al.[10] proposed to calibrate the camera for

sports event scenarios. They took advantage of the lines on the pitches, their size, coordinates and

position which are constant. This information allows to treat a pitch infrastructure as one large cali-

bration pattern. The method based on the extraction of primitives corners of the image in this di�cult

terrain is able to cope with the problems of shaded regions and lens distortion.

The automotive industry looks at the stereo camera sensor very promising. Therefore a large part

of the methods are dedicated to operate in that context. It is possible to detect and use many elements

(a) Scale model, showing line detection and recon-
struction. (b) The set up for stereo vision.

Figure 2.7: Examples of traditional online camera calibration methods.
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of the road-infrastructure, which are standardized and occur very often or always, such as: horizontal

road lanes or vertical tra�c signs. In addition, vehicles have many sensors which provide additional

information that can be used to calibration or scale extraction. Many of methods look for road markers

as calibration patterns, [76], [63]. Martita et al. [107] propose to use road lines, where Zhaoxue [191]

a crosswalks in order to calibrate camera.

The stereo cameras could be calibrated online base on the traditional method. However, this kind

of approach is not universal and not perfect due to fact that the calibration pattern is always required.

It is worth paying attention to the fact that none of the above mentioned works pays attention to the

important aspect of the possibility to be realized online. For each run not only speci�c pattern must be

available, which is a major concern for most of the works, but also the process cannot be complicated

to be done in the real time. Most of the presented processes do not describe the complexity of its

algorithm. Additionally, none of the above mentioned work characterizes the method in terms of the

time needed to obtain a parameters and the hardware on which it is performed. If any calibration

method can be performed on PC or in cloud in real time, it is not synonymous that it can be realized

on embedded systems which can be several times or even several hundred of times weaker in terms of

computing power.
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2.3 Self-calibration method

The second widely analyzed group of camera calibration is the self-calibration or auto-calibration

methods. The procedures do not make usage of any particular calibration object, the researchers try

to get rid of all calibration patterns in the contrast to the traditional group. Those methods can be

considered as 0 dimension approach because typically only the set of corresponding POI across a several

camera's views are required. Thanks to it, they can compute the parameters and poses of camera in

any stable unknown scene. Methods do not require the user interaction. However, the motion of

camera in the scene is required and obligatory. Maybank and Faugeras [111] described the theory of

camera motion during the self-calibration procedure, then Sturm [159] characterizes and categorizes

speci�c movements in that context.

Fig 2.8 presents a large variety of methods that can compute the camera parameters with compu-

tationally �exible approach and di�erent constraints. Since they are based on the standard POI, it is

possible to use those methods online, while performing other tasks. The most popular strategies such

as bundle adjustment (BA) optimization or epipolar constraint are detailed explain in the following

section.

There are some of self-calibration methods in the literature that try to calculate only intrinsic

camera parameters, for example: those which are based on Kruppa equations [111], [80], [28] [105]. It

is not the subject of this work, so those procedures are omitted.

Stereo camera calibration methods

Offline

Traditional, based on calibration 
tool

Online

Self-calibration, auto-calibration

Offline

Online

Based on additional constraint

Offline

Online

- Using Bundle 
adjustment

- Using Epipolar 
geometry

- Using absolute dual 
quadric and its 

projection

Figure 2.8: Self-calibration methods characterization.

2.3.1 Bundle adjustment camera calibration methods

The camera calibration can be achieved by optimization of POI position from di�erent camera poses.

The bundle adjustment (BA) method is the one of procedure which can realize it. This technique is

adapted in the �eld of computer vision, where it calculates and optimizes the positions of multiple 3-

dimensional POI from di�erent view of the observer. Globally, the BA refers to a visual reconstruction

where it creates the optimal 3-dimensional structure of the scene geometry. In addition, it can estimate
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the relative motion and vision parameters (camera position and/or calibration)[169].

For the multidimensional optimization problem, the BA �nds a set of camera parameters by min-

imizing the projection error between the measurements (all POI in each frame) and the predicted

3-dimensional position of observed points. The main di�culty is to �nd optimal parameters by mini-

mizing cost of functions due to the scale problem. More precise camera parameters allow to minimize

the error of POI positions and estimate the position of future frames and compare it with future

measurements.

The 3-dimensional map of the world scenery reconstruction is created from the merge between the

all of POI. As a result, the standard BA is expressed as the sum of the squares of a large number of

non-linear functions that must be solved by appropriate algorithms. Due to the large size of problem,

the several modi�cations and improvements have been developed on the BA context, such as: [90], [69]

and [154].

The Levenberg-Marquardt algorithm has been proved to one of the most successful algorithm in

computer vision to solve the BA due to its simplicity and availability in literature. It is an iterative

algorithm that localize the minimum of a multidimensional function. It solve sum of squares of non-

linear real value functions [96] [172]. It has become a standard technique commonly used in a wide

range of disciplines where non-linear problems with the smallest squares has to be solve. There are some

free C++ implementations available such as: [103] or [106]. There is a brief description of instruction

how to implement this algorithm [104].

O�ine camera calibration methods based on bundle adjustment

There are some calibration tools, which are based on solving BA by Levenberg-Marquardt algorithm.

The MicMac [142] is a interesting, free, open-source solution for photogrammetry software for 3-

dimensional reconstruction. It is a o�ine self-calibration method, that provides a very precise camera

parameters. This powerful procedure does not require any characteristic scene on the image, but

a several images of the same point from a few views. However, a high precision is burdened by

computation amount which relates to a dozen minutes sometimes even hours on Intel core I7 to compute

all parameters.

The main goal of Carrera et al. [25], [26] is to calibrate the relative transformation between multiple

cameras on a robot platform up to scale. His approach calibrates the cameras with non-overlapping

�eld of views. From this reason, the method requires precalibration movement (full rotation 360

degree) of the whole system. This ensures that cameras see the same part of environment. Carrera

creates a globally consistent POI map for each camera. After, each feature is matched between each

correspondences from pair of map via threshold matching between SURF descriptor. These steps can

be consider as a local BA, based on 3-dimensional similarity transform supported by RANSAC [69] to
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�nd inlier feature correspondences. The global BA optimizes camera, robot poses and 3-dimensional

POI position. Moreover, this approach requires two optimization steps. First one it a local level

between images view and second is a global level between di�erent frames. It is very computation

costly thus it is not considered as an online method. This approach can be precise in some scenarios

like close and small environments but can fail in outdoor scenarios, when the majority of natural

features are located far away from cameras.

L. Heng [74] proposes self-calibration method, which is very similar to Carrera work. His method

does not need the overlapping view. He extends and upgrades the approach that it overcomes outdoor

environment di�culties. He maximizes the number of POI correspondences between the images, after

thanks to BA the most recent images are recti�ed to the common image plane.

Both described works [25] and [74] do not need a prior map. However, in the second [73] Heng's

paper, he presents a new update of his work. The higher accuracy thanks to environment's infras-

tructure is achieved. It is possible due to a prior map which removes the need to �nd inter-camera

POI correspondences and loop closures. It signi�cantly accelerates the calibration procedure. His new

method gets rid of global BA. It results in a simpler, more robust and faster algorithm, compared to

his previous work. Unfortunately, this method is still not online thus to �rst local BA optimization.

T. Dang works on similar problem and proposes another method for estimating the relative trans-

formation between multiple camera images to the external coordinate system - vehicle. This method

compute the extrinsic parameters representing the whole camera system to global frame, not determine

the extrinsic stereo parameters between two cameras [37],[38],[36]. [37] is based on geometric error cri-

teria. It relies on a consistent derivation of a robust, recursive optimization scheme for Gauss�Helmert

models. The algorithm allows to combine di�erent geometric constraints in a common framework

where implicit Iterated Extended Kalman Filter (IEKF) is used. The three main constraints work

together: epipolar for stereo images, trilinear for image triplets and collinearity in the BA, that create

a large number of computation.

Next similar paper is Pagel's work [133]. He targets non overlapping �eld of view for cameras on

a mobile platform and calibration without using any pattern or known scene structure. The motion

scale and extrinsic camera parameters are estimated due to BA. However, similar to Dang paper, it

does not prove that stereo extrinsic parameters between two cameras can be established.

There are other approaches that solve calibration based on BA like [168] or [30]. Civera et. al.

present a method that can calculate all parameters and camera pose for monocular camera. Tresadern's

work does not determine all degrees of freedom of camera which represent extrinsic parameters.
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Online camera calibration methods based on bundle adjustment

There are some approaches in the literature, that try to solve BA online. Hansen et al. [67] propose

continuous online extrinsic re-calibration. Method obtains 5 degrees of freedom which represent the

extrinsic pose of stereo frame. They estimate the whole camera's setup position, not each of camera

separately. They assume that both cameras move with the same translation. Procedure is able to

perform calculation in real time using only sparse stereo correspondences. It minimize the stereo

epipolar errors by Kalman Filter (KF) [177]. The current extrinsic position estimated from each stereo

pair is enable to remove a temporal drift. He says that enough correspondences (around 1000) is

su�cient to realize a good calibration. This method is su�cient to compensate an odometry drift, and

support navigation purpose.

Warren [176] work tackles the similar problem, the whole camera's setup position in the world frame

reference. The method is based on modi�ed BA algorithm that take advantages of rigidly-linked pair

of cameras with overlapping views. Cameras do not have possibility to move their R and T between

each other. He shows that, it is possible to recover an accurate setup position online from real world

data by explicit by BA. Warren shows the ability to compute camera parameters with high precision

online but does not provide a speci�cation for hardware where algorithm is executed. Method seems

to be a high computation load so it is not a good candidate for embedded processors.

Sappa et al. [146] [145] present an e�cient technique for estimating the pose of an onboard stereo

vision system relative to the environment's dominant surface area (it is supposed to be the road

surface). This method can be used in vision-based ADAS. The procedure basically consists of �tting a

plane to 3-D points belonging to the road and then determining the camera pose with respect to that

plane. The road region is always in front of the vehicle (up to 50 m away). Then, it is approximated

along frames as a piece wise linear curve, since the plane parameters are continuously computed and

updated. Road data points are identi�ed by assuming that the road surface is the most predominant

geometry in the scene, which holds in most situations, but it cannot be guaranteed.

One of the newest and very interesting calibration work is method proposed by E. Rehder et al.[46].

They implement BA to recalculate extrinsic parameters in real time. This work shows good update

of parameters on the �y and proves results on open-source dataset. Several accelerations step which

optimize BA process are proposed in order to computes each camera parameter in real time. The

method does not need any plane or other calibration tool. However, their experimental setup is

realized on Intel 7 which can not be consider as a embedded processor for small CPS due to high

electricity consumption around 90 W.
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2.3.2 Epipolar geometry

Another most popular method from self-calibration group is based on epipolar geometry. The mathe-

matical theory of epipolar constraint is explained in section 6.3.

It can be represented in the fundamental matrix (F). There are some algorithms that can calculate

F or E, for example: eight point algorithm (8PA) [102], [68], [29],[14], [15], [94], �ve point algorithm

[97],[128] or point to point algorithm. All of them have many improvements and have been implemented

in many open-source library, for example: openGV C++ [88]. The obtained matrix has to be converted

into essential matrix (E). Then, thank to the singular value property by singular value decomposition

(SVD) can be transformed to the extrinsic parameters (R and T).

There are many papers that try use these algorithms. For example: Yan [184] work calculates the

extrinsic parameters in binocular stereo vision of moving robot. The intrinsic parameters are assumed

to be know. Based on matching stereo points, the F and E are calculated. This work provides neither

execution time nor hardware used to do computation. Other work like [18] tries to overcome a limitation

in image resolution and �eld of view. They propose continuously external camera calibration. Then,

the linear estimation of E is used to convert it to relative pose, followed by a non-linear re�nement

incorporating depth ordering constraint in real time. Experimental testing was done on 195MHz MIPS

R10K processor into small indoor sequences with stationary camera.

The fundamental matrix F

Many work based on the F, which is an algebraic representation of epipolar geometry. Given a pair of

images, where to each point x = (x, y, 1)T in one image, there exists a corresponding epipolar line l′

in the other image. Any point x′ = (x′, y′, 1)T in the second image matching the point x must lie on

this epipolar line l′. The epipolar line is the projection in the second image of the ray from the point

x through the camera centre C of the �rst camera. Thus, there is a map x 7→ l′ from a point in one

image to its corresponding epipolar line in the other image. It is the nature of this singular map, which

is a projective points to lines and represented by a F matrix. Its properties are described in section

6.3.1.

The F satis�es the condition that for any pair of corresponding points x↔ x in the two images:

x
′TFx = 0 (2.1)

Let f be the vector representation (row-major) of F then each correspondences satis�es pTr Fpl = 0

[
x′i y′i 1

] 
f11 f12 f13

f21 f22 f31

f31 f32 f33



x′i

y′i

1

 = 0
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that becomes

xix
′
if11 + xiy

′
if21 + xif31 + yix

′
if12 + yiy

′
if22 + yif32 + x′if13 + y′if23 + f33 = 0

(x′x, x′y, x′, y′x, y′y, y′, x, y, 1)T f = 0.

f is a 9-vector and looks

f =
[
f11 f21 f31 f12 f22 f32 f13 f23 f33

]T
It is set up a homogeneous linear system with 9 unknowns variables.

The equation 2.1 is true because if points x and x′ correspond, then x′ lies on the epipolar line

l′ = Fx corresponding to the point x. In other words 0 = x
′T l′ = x

′TFx. Conversely, if image points

satisfy the relation x
′TFx = 0 then the rays de�ned by these points are coplanar. This is a necessary

condition for points to correspond.

Af =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

: : : : : : : : :

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0

If there is more than 8 point matches, there is need to select the best points, it can be realized by

RANSAC Robust estimation model.

Robust estimation Robust statistical methods have been established for many common problems,

such as estimating pose, scale etc to not unduly a�ected by outliers and other external factors. Another

motivation is to provide good performance methods in the case of small deviations from parametric

distributions. In case where many points can create a di�erent model, an very important step is to

select the best one. In order to realize it the robust statistical method are used in epipolar geometry

constraints. parametric distributions.

The set of correspondences xi/leftrightarrowx
′
i are presented. In many practical situations the

source of error arrives from many things, such as: the measurement of the point's position, mismatched

etc. These points are outliers to the Gaussian error distribution. These outliers can severely disturb

the estimated homography, and consequently should be identi�ed. The goal then is to determine a

set of inliers from the presented correspondences. The homography can be estimated in an optimal

manner from these inliers using the algorithms described in the previous sections.

The Random sample consensus RANSAC is an one of example of robust iterative method to

estimate parameters of a mathematical model from a set of observed data that contains outliers. It is

recommended tool to use with the eight point algorithm.

Objective is to �t the best model to a data set S which contains outliers.

53



Figure 2.9: Robust line estimation.

• Randomly select a sample of s data points from S and instantiate the model from this subset.

• Determine the set of data points Si which are within a distance threshold t of the model. The

set Si is the consensus set of the sample and de�nes the inliers of S

• If the size of Si (the number of inliers) is greater than some threshold T , re-estimate the model

using all the points in Si and terminate.

• If the size of Si is less than T , select a new subset and repeat the above.

• After N trials the largest consensus set Si is selected, and the model is re-estimated using all the

points in the subset Si

In the literature, RANSAC problem and optimization has been considered many times[119], [166],

[161].

The essential matrix E

The results of the algorithm depends on the coordinates frame where points are expressed. The E is

the special form of the F, which has a fewer degrees of freedom and additional properties, compared

to the F. In the literature, it can be refereed while input points are normalized image coordinates by

simple intrinsic parameters. Data normalization improves the accuracy of results. However, in the

state of the art di�erent normalization exists:

• intrinsic parameters

• isotropic

• bearing scaling

Intrinsic parameters normalization , consider a camera matrix decomposed as P = K[R|t], and

let x = PX be a point in the image. If the intirnsic parameters of camera K are known, then its

inverse to the point x to obtain the point x̂ = K−1x must be applied. Then x̂ = [R||t]X, where x̂ is

the image point expressed in normalized coordinates. It may be thought of as the image of the point X

with respect to a camera [R|t] having the identity matrix I as calibration matrix. The K−1P = [R|t]
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is called a normalized camera matrix, the e�ect of the known calibration matrix having been removed.

The de�ning equation for the E is x̂
′TEx̂ = 0. Replacement for x̂ and x̂

′
gives x

′TK
′−TEK−1x = 0.

Comparing this with the relation x
′TFx = 0 for the F, it matrices is

E = K
′TFK (2.2)

Isotropic scaling. As a �rst step of normalization, the coordinates in each image are translated

(by a di�erent T for each image) so it is required to bring the centroid of the set of all points to the

origin. The coordinates are also scaled so that on the average a point x is of the form x = (x, y, w)T ,

with each of x, y and w having the same average magnitude. Rather than choose di�erent scale factors

for each coordinate direction, anisotropic scaling factor is chosen so that the x and y-coordinates of a

point are scaled equally.

The average distance of a point x from the origin is equal to
√

2 . This means that the average

point is equal to (1, 1, 1)T . In summary the transformation is as follows:

• The points are translated so that their centroid is at the origin.

• The points are then scaled so that the average distance from the origin is equal to
√

2.

• This transformation is applied to each of the two images independently.

Bearing vector according to the openGV [88], the bearing vector is de�ned to be a 3-vector with

unit norm bearing at a spatial 3D point from a camera reference frame. It has 2 degrees of freedom,

which are the azimuth and elevation in the camera reference frame. Because it has only two degrees of

freedom, it is frequently refereed to it as a 2D information. It is normally expressed in a camera reference

frame. So points must be multiplied by intrinsic parameters, as it is shown in the E computation. Then

the radial and tangent distortion must be removed, before the set of equation composition. Finally,

the point is expressed in camera frame, it is normalized by sum of all elements, then it represents the

bearing point.

According to E matrix properties described in section 6.3.2, the best E estimated in iterative eight

point algorithm on the base of bearing vectors has to be converted to R and T. Its rank of E is greater

than 8 then the least-squares solution can be found by use the singular value decomposition (SVD)

[13]. This method is implemented in many programming tools or libraries such as: Matlab.

Determining the extrinsic parameters is realized in the following steps due to the least squares

solution for E:

E = U
∑

V T
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where U and V are orthogonal 3x3 matrices and
∑

is a 3x3 diagonal matrix with
∑

=


s 0 0

0 s 0

0 0 0


The diagonal entries of

∑
are the singular values of E which, according to the internal constraints of

the E, must consist of two identical and one zero value. De�ne W =


0 −1 0

1 0 0

0 0 1

 and W−1 = W T =


0 1 0

−1 0 0

0 0 1

 and make the following model:

[t]x = UW
∑

UT

and

R = UW−1V T

This kind of solution provides four possible choices for the second camera matrix, two di�erent R

matrices and T which have the same value, but opposite signs. It has to be determined which one is

correct. It is usually realized by the reconstruction of point X in front of both cameras in one of these

four solutions only (see section 6.3.2).

2.4 Method based on additional constraint

The two most popular camera calibration groups have been presented and discussed. There are many

other methods that rely on other constraints. Some of them use another sensor, special environment

structures, vanishing lines or compose from a several methods. Many constraints in the custom CPS

with embedded contexts, eliminate the possibility of use those methods, because they require addi-

tional aspect of devices, environment or need many computation. However, some of them should be

characterized and presented, in order to know why they can not be used.

2.4.1 Method which uses data from another sensors

In the CPS, vehicles and robots usually many senors supports camera. Some of methods try to use this

approach and propose calibration procedure with the data from other sensor such as: LIDAR, IMU

or GPS. These approaches have huge representation. However, they are dedicated to speci�c system

with certain conditions.

There is many stereo camera calibration methods dedicated for the vehicles applications. For

example, the modern car has many additional senors. There is a calibration method [84] which use a
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GPS and IMU. Xu et al. [182] propose an hybrid procedure between traditional and self-calibration

method which use the crosswalk corners connected with its real world positions. These detected points

are localized and positioned by the GPS that knows their position (cross-walks) with great precision.

Method requires the well detected infrastructure and GPS signal.

The modern cameras are mounted very often with IMU sensor. There are some methods [51],[117]

and [98] that try to inject into calibration procedure data provided by this sensor. It can be an in-

teresting approach for mobile robots and aerial vehicles, where IMU is one of the base sensor. The

information can help estimate a 3-dimensional motion and be compared with visual odometry. Nor-

mally this approach is used in order to �nd the position of the whole agent in the monocular camera

setup. They are more interested in global camera pose, which is not enough precise for stereo cameras

position. Unfortunately, this approach usually su�er on precision and accumulated error which has to

be corrected time to time.

Fleps's [51] proposes real-time capable and deliver very noisy data, but can be dedicated for drones

and di�erent �ying vehicles which are already equipped with working IMU systems.

Tan et al. [163] and [164] publish automatic extrinsic calibration method for automotive domain

in general drive conditions. Those approaches require the visible road surface to work properly. The

method is based on the synchronization of the video stream with the position of the vehicle, which is

estimated on the basis of IMU.

The continuous extrinsic online calibration for stereo cameras proposed by Mueller [122] estimate

the relative 6 degree of freedom between the two cameras sensor. This algorithm runs in real time on

Dual Intel Xeon e5-2667 and requires a high precision of IMU to �nd the global position of system

according to the vehicle motion.

For many mobile robot and vehicles, the odometry is a base procedure for motion and navigation

strategy. This data can be used to analyze the extrinsic camera calibration problem. All [116], [27] and

[65] methods provide a global parameters in the reference to global frame, but not parameters of each

(left and right) camera into stereo sets. Moreover, these procedures can be used only with cameras

where odometry is available.

2.4.2 Pure rotation and translation

There are some methods that try to rely on pure rotation or translation. It is not universal type of

method. However, this kind of methods are perfect candidates for camera mounted on manipulators

or other robots with electrics engines. If motion can be perfectly controlled, it can be used for camera

calibration [183], [174].

Moutinho et al. [121] proposes an online stereo calibration method, which rely on information from

the cameras and the motor encoders. Procedure is dedicated to humanoid robot. It controls and can

use an engine's rotation to calibrate camera.
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2.4.3 Minimization of matching cost

The methods which are based on the minimization of matching cost (non-linear optimization) are very

complex in term of computation and does not �t for embedded constraints. Procedures present a

camera poses optimization while large number of correspondences points can be detected only from

one stereo frame. There is no need for any calibration pattern, motion or additional data. Usually, the

initial guess is required in order to compute the scale factor.

Spangenberg et al. [157] shows that number of matched pixels can be used as a valuable source

of information to improve relative stereo calibration. The nonlinear problem is solved by Monte-Carlo

algorithm.

Kuhn et al. [92] use a PatchMatch stereo with simultaneous Total Variation to achieve a reliable

and accurate parameters re-calibration. This method relies on disparity map extraction and potentially

detect inaccurate calibration parameters.

Ling [152] proposes online stereo extrinsic method that is adequate for block matching-based dense

disparity computation in the whole processing pipeline. They execute the method on a Lenovo Y510

laptop with i7-4720HQ CPU which has signi�cant higher power than standard embedded processors.

2.4.4 Vanishing points and lines

In contrast of using calibration patterns, it is possible to formulate another scene constraints for camera

calibration. The perpendicularly vanishing lines are one of the example of such restriction, proposed

and used by Caprile and Torre [24], [100]. However, these methods are not available when speci�c

geometric structures are not guaranteed.

Grammatikopoulos et al. [61] present an approach for the automatic estimation of interior orienta-

tion from images with three vanishing points of orthogonal directions. The Tan [163] and [164] works

was already characterized in other group but they also contains a vanishing point constraints.

These works [89], [178], [125] estimate the extrinsic camera parameters online using ground plane.

This approach is developed only for monocular camera pose. It can be tested if those methods can be

realized separate for two cameras and then merge it in the one global sensor.

Nedevschi's approach requires a special designed scene with road marking point. Moreover, it needs

a �at ground, ruler, and something that can be used as the straight lines. The interactive operation

is used to verify the locations of the calibration lines, which makes the method robust to di�erent

environments.

There are some calibration methods, which are dedicated for special, not common scenarios. The

Nelson's [126] focuses on night situation when there is not enough light to detect and recognize any

features in the scene. They adopt this method to localize a night arti�cial light source. This scenarios

is extreme for speci�c mission and can not provide precise extrinsic stereo parameters.
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2.5 Dataset

The dataset is a collection of statistical data normally presented in special, adapted form. The datasets

for image processing and computer vision refers as the vision benchmark. There are many of them

in the literature, because wide spectrum of applications in the computer vision domain requires many

di�erent data from various environments, scenarios and sensors, etc.

One of the most popular vision benchmarks for computer vision processing is one proposed by

the Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago (KITTI) [59].

It provides many data recorded from di�erent sensors such as stereo camera, GPS, IMU and LIDAR

installed in the autonomous driving platform. Fig 2.10a shows the KITTI's setup, which has a wide

range of scenarios recorded in di�erent places, such as city, road, campus, etc. The stereo optical �ow

with other data gives possibility to verify many applications, such as visual odometry, 3-dimensional

object detection, 3-dimensional tracking etc.

The University of Queensland's St Lucia proposes another vision benchmark dedicated for computer

vision application [60]. Fig 2.10b presents their sensors setup to record high spectrum of data, similar

to KITTI.

Swiss Federal Institute of Technology Zurich creates the EuRoCMAV - dataset recorded by drone

[23]. It contains stereo images, synchronized IMU measurements, accurate motion and structure

ground-truth.

Dosovitskiy et al. present a relatively new and very interesting work about CARLA [44]. It is the

simulator with open source code to test, train and validate the autonomous urban driving systems.

Wide range parameters in the simulation allow testing many aspects such as: weather conditions,

unpredictable behavior of other cars, motorcycles and bicycles in tra�c, etc. This is an extremely

interesting project that can be used to test a various number of computer vision applications. Fig

2.11c presents a screen of work from CARLA simulation.

(a) KITTI sensor setup . (b) STLUCIA sensors setup.

Figure 2.10: Sensors setup.
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(a) KITTI view . (b) STLUCIA view. (c) CARLA view. (d) EuRoCMAV view.

Figure 2.11: Views form di�erent datasets.

2.6 Summary of calibration methods

Based on this chapter, we sustain and continue the hypothesis that the ideal, universal stereo camera

calibration method in the real time does not exist. The speci�c application or system adapts the

calibration process that usually requires and depends on many factors. The calibration strongly relies

upon in the input data form, environment, required precision, etc. The speci�c procedures usually

create many limitations and constraints. The left part of Fig 2.12 shows that the computer vision

community use a powerful PC and calibrate cameras considering it, as only �rst phase of more complex

tasks. In this chapter, we present some of calibration methods for speci�c procedures, for special

targets or environments. We categorized some methods taking into account di�erent constraints such

as if method can be executed everywhere, how much computation it needs. We veri�ed if method

satisfy a glasses context and provide a su�cient precision. We remind that the main motivation is

to estimate the extrinsic parameters in the smart glasses context, with consideration that intrinsic

camera parameters are constant. They can be stable due to the internal camera construction of the

static focal length. However, in this thesis, we consider the glasses do not guarantee the stability of

the extrinsic parameters, which describe the mutual position and orientation between two cameras in

the three-dimensional space, because the cameras are subject to a number of di�erent strengths and

unforeseen conditions. However, we look on this problem in di�erent way compare to current state of

the art. In the right part of Fig 2.12 we presents how the existing methods see a calibration problem,

as completely separate task from application. In our work, we would like to see a calibration process

in the main application. The next chapter presents this point of view.

Figure 2.12: Summary of main aspects after second chapter.
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The �rst, presented group is the most numerous and concerns the traditional calibration methods.

The advantage over other methods is that it simultaneously provides very accurate and stable intrinsic

and extrinsic parameters. For this reason, in this work we use a traditional method as the reference

method. Those methods implies the use of some kind of known calibration patterns in the camera's

view. It is a huge constraint when dealing with real time applications, because it is impossible to

ensure that calibration tool is available. Moreover, it is hard to automatize this kind of procedure,

so the current mission usually must stop in order to run the traditional method. These methods

perform o�ine before the �rst time camera use in computer-vision tasks. There are some of the

traditional methods that try to simulate the calibration tool and use some standardize objects from

the environment. However, it is impossible to ensure that the speci�c elements of the scene are always

available. Moreover, it is hard to guarantee a good distribution of calibration objects in the scene,

thus the obtained parameters are not always accurate.

The most interesting group in our context of work is the self-calibration methods. They get rid of

the calibration tool and they require a moving camera in a stable environment. These procedures can

work in an online context but they still need to respect some of additional constraints. They require

a good feature detection and matching. We distinguish two main leading group in the self-calibration

methods. The �rst group relies on epipolar geometry, which many algorithms can solve. Some of them

are low complex and can compute the essential matrix that converts to extrinsic parameters. After the

analyses of the state of the art, we would like to use the Hartley universal eight point. This algorithm

seems to be e�cient and constraint of low processing power because it does not require huge amount

of calculations. Method requires small number of simple stereo matched point of interest, which exists

in many computer vision's application pipelines. However, algorithm has some drawbacks described in

literature as very sensitive and requires a scale factor from another source.

The second group relies on bundle adjustment, which is an optimization of the 3-dimensional point

cloud from several 2-dimensional views. This estimation requires many computations and remains time

consuming, especially in the larger environment, this is a big limitation of this method. The higher

number of input POI in the process signi�cantly increase the number of computations. Rehder et al.

realizes implementation on powerful hardware - PC with Intel i7 CPU. It does not allow assuming

that the same method can operate with the limitations of embedded systems. We consider the bundle

adjustment as method too complex and demanding in terms of calculations. A subgroup of self-

calibration methods seems to be the only choice, thus ful�lls the assumptions presented in the Fig2.13.

The methods, which use a known rotation or translation, do not �t into glasses context.

Finally, we must test selected Eight-point algorithm in the special dataset. In fact, some work

that targets the same problem does not provide any dataset where such changes of camera's position

happens. For this reason, we must create a reasonable dataset. According to system restrictions,

selected method must recalculate extrinsic parameters: online, without special patterns (that can
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Figure 2.13: Summary of methods analyze in all context of work.

apply everywhere) and realize computation on embedded systems.
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Chapter 3

Approach of online calibration pipeline on

embedded systems

Innovation distinguishes between a leader

and a follower.

Steve Jobs

This chapter presents the discussion about online calibration in the application pipeline. We create

a new concept of camera calibration hidden in to system. It should verify if current extrinsic parameters

are up to date. Moreover, this section propose and explain additional functions realized into calibration

pipeline.

Objective :

Present the primitive and advance approach of online calibration in the whole application

pipeline on an embedded system.

To do this, we :

• study di�erent application pipelines.

• study low level computer vision processing.

• present results from the �rst primitive online calibration pipeline.

• study di�erent optimization of online calibration pipeline.

• present advanced online calibration pipeline.

• study stereo camera monitoring.
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3.1 Introduction

1st chapter describes the background and context of the entire manuscript. It explains the modern,

global trends of most CPS. It shows that they require a higher autonomy, reliability and longer working

time to realize more complicated mission. Section 1.1 presents a various model of sensors used to

deliver data about the local environment to CPS. One of them is the stereo camera, which is becoming

increasingly important. It can replace many sensors, providing a high data spectrum. It is relatively

cheap, small, and compact; moreover, it does not consume much power compared to other sensors such

as LIDAR. On the other hand, the section 1.2 explains the some limitations related to the use of stereo

camera. One of them is the possibility to change the extrinsic camera parameters. In order to solve

this problem, the system has to be able to recalculate continuously the parameters.

In addition, 1st chapter lists another essential contexts of this work, which must be repeated before

explaining the approach of online calibration pipeline: the application and embedded system (sections

1.3 and 1.4).

Section 1.5 presents the targeted �nal system, which has unique needs and limitations. The smart

glasses that require the online stereo camera calibration. They should guide and navigate pedestrians

in complex, indoor and outdoor environments without human intervention. The whole system must

understand and be capable of self localization, in order to lead a user correctly. In addition, the device

must plan and decide, the right path in an e�cient and safe mode, taking into account the dynamics

unpredictable changes in the real world.

Moreover, it has embedded processors such as ARM Cortex, which is very constrained by memory

and processing power. This CPS requires a low-power processor to perform tasks, due to low energy

availability (small battery, portability needs). The selected embedded processor is a several times

weaker in terms of mathematical operations per second than processors, which are widely used in a

standard PC, such as Intel.

The 2nd chapter describes many methods of the camera calibration according to three main contexts

of work: CPS, application and embedded systems. It allows distinguishing between di�erent existing

methods, which uses various criteria, contains advantages and disadvantages. The emphasis put several

times attention on the fact that the best camera calibration procedure does not exist. Moreover, another

important point shows that there is no sense in looking for the problem of camera calibration without

context of the application and devices.

Section 2.6 describes the selected method, which run in the speci�c custom context of the smart

glasses. The procedure uses only on stereo points and does not require a large number of complex

mathematical operations. Therefore, it is suitable for an embedded system, which use only from

stereo cameras data. The chosen procedure seems to be a universal and ready to realize in a general

environment, without any special patterns or other known objects.
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This method is appropriate for any type of application and CPS. The most important information

from the 1st and 2nd chapter are presented in summary Table 3.1

Objective Realize an online calibration pipeline on embedded systems

Context CPS, Embedded systems, Application Camera calibration

limited: processing power, memory, simplest method,
Requirements battery powered system, hidden in pipeline system,

no additional sensors, without calibration pattern
universal at any environment and mission,

Table 3.1: Table of summary.

Throughout this chapter, many of the critical questions and fundamental re�ections related to the

online calibration pipeline on embedded systems appears. We begin with study of the high-level

applications, which need such approach with the updated extrinsic parameters. We analyze that the

stereo camera calibration is not a key task of any devices and computer vision application. It is an input

data, providing process, which feed the pipeline with the stereo camera parameters. The calibration

method is not important from the user's point of view, because the procedure is usually not visible

to the operator. If camera calibration is not principal purpose of any CPS and application, it cannot

consume a lot of computing power and resources from the system.

In practice, in the real scenarios, the extrinsic parameters of a stereo camera can change at any

time. Therefore, the system must constantly monitor and have the possibility to recalculate the

parameters during the mission. This chapter presents the approach of the online calibration hidden in

the application pipeline, which monitor and recalculate the extrinsic camera parameters. In order to

know what kind of precision we can estimate from perfect points and real world, we implement and

test the primitive online stereo calibration procedure on the standard PC. Thanks to conclusion from

�rst tests, it allows to propose some of the optimization techniques for advanced online calibration

pipeline. We elaborate these topics and many other related discussions in detail in this manuscript.
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3.2 The whole navigation pipeline of the CPS

We divide the study of the whole navigation pipeline on the custom CPS in three main parts. The �rst

presents some of speci�c applications used in to navigation pipeline. The second proposes the whole

approach divided in special small part of functions. The third presents the low-level computer vision

processes commonly used in the many applications and in the targeted smart glasses.

According to section 1.5, the navigation is a main goal of the custom smart glasses. This system

requires the online calibration procedure in order to enhance the device's reliability, precision and

safety.

Over the last few decades, the area of autonomous mobile systems has developed very successfully.

Nowadays, these systems are able to carry out a navigation and many other complex missions on their

own in real time [77]. It creates a new opportunities to hide the online calibration in these navigation

pipelines.

3.2.1 The purpose and aim of the CPS

The standard navigation mission contains a several separate phase. First, it has to create a reliable

map. Then it should localize itself, �nally the decision making algorithm can select the path [138].

The custom target navigation system has to realize the same goals and some additional task such as

object detection and recognition. The system must detect and avoid obstacles in the local environment

in real time. In order to do this, we analyzed the various applications for custom navigation, in terms

of input, output and complexity. We present them in the Table 3.2 and Fig 3.1 bellow.

Description Application

Understanding of the local environment
Disparity and Depth
map extraction

Understanding of the local trajectory Visual odometry

Understanding of the global trajectory Visual SLAM

Understanding of the local environment
Object Extraction and
Tracking

Table 3.2: Table presents the most important application in CPS dedicated for navigation.

In all types of missions under analysis, the calibration of the stereo camera is not directly the main

task. The calibration provides only some of the necessary input data (extrinsic camera parameters)

required for each of these applications. In the following section, we describe each of these.

Visual Odometry

The visual odometry stands to VO, it is the process of estimating the position and orientation of

monocular or stereocular camera's data. It increases navigation accuracy at any type of movement

on any surface in robots and vehicles domain. VO calculates the 3D movement of the agent base on

di�erent input images from one or more cameras [186] [147] [54]. The relation between the reference
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Figure 3.1: The whole navigation pipeline of selected CPS in the embedded domain.

frame's position and the current frame's position represents the continuous problem of optimizing the

two 3D positions. Today, many solutions propose to use only small parts of the trajectory. Where each

frame with respect to the previous one computers the translation and rotation between them. This

kind of assumption allows for reduction a large number of data.

Fig 3.2 illustrates simpli�ed schema and results of the VO. The �rst step detects and match points

between di�erent frames. In the next phase, some of optimization algorithms gradually estimate the

path and the poses of the camera/robot. Usually the complex non-linear process calculates a new

sensor position in a three-dimensional map. There are a many methods, which enable this type of

process, such as pose-graph optimization, bundle adjustment and many more [52] [87].

One of the most popular solution is the bundle adjustment (BA) that allows reconstructing the

3D structure and viewing parameter estimation [169]. It is a very complex problem, which tackles

many additional constraints. Faessler et al. have signi�cantly reduced costs of bundle adjustment by

introducing many restrictions when navigating the unmanned aerial vehicle (drone) in space. Their

implementation works in the real time [110]. Their vision-based system runs with a speed of 20 fps on

ARM Cortex A9.

Speci�cation Description

Purpose of speci�c application Local consistency of the trajectory

Input data Stereo parameters, point of interests, features

Output data
Local pose estimation of the camera, position in local refer-
ence frame, trajectory

Table 3.3: Table presents the most important information about visual odometry.

Visual SLAM

SLAM stands to Simultaneous Localization And Mapping. This process allows locating itself in known

or unknown area and built a map of this local environment at the same time. Many di�erent approaches
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(a) Diagram block shows the main components of visual odometry.

(b) Visualization of the output data.

Figure 3.2: Real time visual odometry VO as a high-level application developed in the laboratory.

use speci�c constraints and sensors in order to realize SLAM [93] [162] [42]. The Visual-SLAM is the

one that relies only on visual information so data only provided by cameras. The high spectrum of

camera's data can replace use of other sensors like LIDAR, sonar, etc. [115]. Nowadays, when the

stereo cameras become cheaper and easier to use, the visual stereo SLAM is an ideal candidate for

navigation's applications.

The main di�erences between visual odometry and VSLAM is the loop closure procedure and

default data fuzzy from the other sensors [186]. While the �rst focuses on local consistency and only

images data, the second tries to interpreted information from the mission to a previously reviewed

area. This process increases the precision of navigation and localization missions. It reduces a drift

in the position and trajectory estimations. However, the global optimization on huge data and loop

closure requires a large number of processing that translate to very computationally expensive process.

Moreover, it is important to remember, that camera still needs calibration.

Fig 3.3 presents simpli�ed scheme of SLAM. It is one of the most fundamental process in the

navigation pipeline. To achieve control and full autonomy of the system, it must have knowledge

where it is located and the ability to explore its environment. Everything must realize without user

intervention in the real time.
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Image sequence
Feature 

Detection
Data Fusion State Prediction State Correction

Another sensorsIntrinsic camera
parameters

Extrinsic camera
parameters

Figure 3.3: A block diagram shows the main components of SLAM.

Speci�cation Description

Purpose of speci�c application Global consistency of the trajectory and map

Input data Stereo parameters, point of interests, features

Output data
Global pose estimation of the camera, position in initial ref-
erence frame, trajectory

Table 3.4: Table presents a most important information about visual odometry.

Disparity and depth extraction

The visual SLAM and VO applications can deliver data for the navigation and localization mission.

However, they do not provide any information about local environment such as the distances to the

objects observed from camera (system). The depth map obtained by the disparity from the stereo

images supplies this data. Data from cameras allows conversing the 2D images into the depth map,

other words the 3D information about observed scene. Today, there are neural network procedures,

simple algorithm based on geometric information and many di�erent methods to extract depth map

[40] [175] [123]. Fig 3.4a shows the scheme of disparity map extraction, which use simple computer

geometry computation to get a depth map. Some publications show the real time depth extraction is

possible due to hardware accelerators on the GPU or FPGA [140].

Speci�cation Description

Purpose of speci�c application 3D information around an agent in local environment

Input data Stereo images + stereo parameters = recti�ed image

Output data Estimating the 3D motion of the camera sequentially

Table 3.5: Table presents the most important information about disparity map.

Recti�cation is a step required before a depth map extraction while its algorithm uses the epipolar

geometry. A transformation process projects input images into a common image plane. The goal of

this is to simplify the correspondence problem, which search for matching points between left and right

images [39]. If the planes of the image are co-planar, the images are directly in the epipolar geometry.

If the centers of the images are in the same line, then the corresponding points from the left image is

in the same parallel line in the right image, as shown in Fig 3.5a. It is explained in section 6.3.

Unfortunately, to the nature of the 3D world such situation does not happen in practice. The
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Image sequence
Feature 

Detection
Rectification

Initial disparity 
map computing

Refinement of 
the initial 

disparity map

SegmentationIntrinsic camera
parameters

Extrinsic camera
parameters

(a) A block diagram shows the main components of depth extraction.

(b) Input image. (c) Depth map.

Figure 3.4: Real time disparity map computation as a high level application developed in the laboratory.

images need recti�cation (adjustment), in order to be in co-plane positions. Before recti�cation, the

center of the image is not on the same line as shown in Fig 3.5b. The linear transformation can

transform images into a common plane if and only if precisely knows extrinsic camera parameters.

(a) Two views in co-planar plane, after recti�cation
process. Green lines are epipolar lines.

(b) Two views in not co-planar plane, before recti�-
cation process. Green lines are not epipolar lines.

Figure 3.5: Stereo images in the one plane with green lines on the same high of both images.
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3.2.2 The whole navigation pipeline separation

This subsection, together with Fig 3.1 presents the global navigation pipeline for custom CPS, build

from the previous mentioned applications. The VO, visual SLAM, depth extraction, object detection

and tracking are su�cient to carry out navigation missions on the smart glasses. Data processed by

these functions allows choosing a good trajectory with possibilities to avoid obstacle etc. Each of

these applications realizes task at the same level of the importance. The analysis of the application

presented in Tables 3.3, 3.4 and 3.5 allow drawing an important conclusion. Each table demonstrates

that proposed functions use the same input data: the stereo image sequence, intrinsic and extrinsic

camera parameters. We can separate and extract the �rst step of each pipeline from many other

computer vision applications [143] as presented in the Fig 3.6.

Figure 3.6: Navigation pipeline divided in small blocks.

The pre-processing data that detect extract and describe corners known also as point of interest

detection (POI). These particular pre-processing functions are the most common functions for all image-

based applications. This approach is fundamentally and very important, because in such system we do

not need repeat some of calculations. It saves computational loads, thus creates less complex systems.

In the practice, computing power and memory limits each application. In contrast to programs realized

in the on the PC or computer cloud, where the limitations are not strict, the application parameters in

an embedded system must be very restricted. The �rst proposition for whole pipeline is to use common

pre-processing functions for all applications once. This methodology can accelerate a global navigation

pipeline. If it is necessary, it can perform the speci�c adjustment of the output data. Appropriate

precision of points detection and features descriptions have a signi�cant impact on the quality of the

computer vision application. Therefore, it is a very important step of the whole navigation pipeline.

In order to accomplish pre-processing with higher precision, it is necessary to eliminate distortions

and the impact of the focal length. For this reason, functions require initial intrinsic (internal) camera

parameters [22]. Initial parameters are in the system and system guarantees the stability of these
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parameters. In that case, the monitoring and recalibration of intrinsic camera parameters is not

necessary. On the other hand, many forces can change the camera positions so the extrinsic camera

parameters in the setup mounted in the custom smart glasses frame. Therefore, the whole system must

have the possibility to update the extrinsic camera parameters while it is required.

Figure 3.7: Navigation pipeline divided in two groups of functions, preprocessing that does not need
extrinsic parameters and post process, which need.

Fig 3.7 shows that the pre-processing functions do not require the extrinsic camera parameters.

Those are mandatory for post process so high-level applications that realize the navigation processing.

Non-precise or not actual extrinsic parameters can lead to serious errors in the high-level application

and fail the navigation mission. The online calibration must be included in the whole navigation

pipeline. The traditional approach in the classical computer vision pipelines provides the intrinsic

and extrinsic camera parameters o�ine once at the beginning. It is always before the �rst use some-

times during the production process. While the current state so the extrinsic parameters change, the

pre-processing output is constantly true. This work propose to hide the online calibration between

preprocessing and post processing data. The selected calibration algorithm from the second chapter

can rely on the output from the pre-processing functions. In this custom approach, the calibration

procedure does not require any input data preparation, because all necessary data are already in the

system generated for other purpose by the pre-processing functions. This can signi�cantly reduce the

whole calibration costs and allow realizing it in real time on embedded system. We present the �nal

simpli�ed approach with online camera calibration service in Fig 3.8.

3.2.3 Low level monocular pre-processing functions

Pre-processing functions use only the stereo image sequence and intrinsic camera parameters. In

practice, the left and right camera provides two-separated monocular raw video. Fig 3.9 presents the

most basic and popular pre-processing functions for custom system, which deliver data for high-level

application and CPS. However, in future, it is possible to expand the group of pre-processing methods

by other additional procedures.
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Figure 3.8: Simplistic navigation pipeline with online camera calibration block.

Intrinsic camera
parameters
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description

Points un-
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Corner detection
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description

Corner detection
Image sequence

right

Figure 3.9: Pre-processing pipeline based on divided functions.

POI detection is the �rst function in our navigation pipeline. In the literature, there are many

names used interchangeably for the same term: "Point of interest" ( POI), "Corner" or "Feature".

There are di�erent method to extract points for example: Harris, Stephens, Plessey or Shi�Tomasi

algorithms. They have di�erent parameters and complexity [82]. The standard POI has a well-de�ned

position in pixel coordinate. It usually represents as the intersection of two edges. It is possible to

detect point without knowing the intrinsic parameters of the camera. However, because of the camera

lens and radial distortions, the actual position of the point may be slightly di�erent in reality.

POI description is required in order to distinguish and characterize the di�erent detected POI. The

local image structure around the feature (neighborhood) is rich in terms of data information contents

that is used to speci�c corner descriptions. As for POI detection, various types of methods exist in

order to describe a POI such as ORB, SURF, FREAK or BRISK. All of them have unique speci�cation

and di�erent complexity [148].

POI matching is realized when POI are detected and described. Thanks to the unique descriptor

parameter, point can connect the same corners from di�erent views. Each descriptor contains local
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information and orientation that helps to compare a di�erent POI. Each time the closest value of

descriptor is paired and the connection between points is established. This allow tracking similar

features from more than two images frames. This process is necessary in order to track the speci�c

elements of the scene.

Removing distortion from the corner position is an essential process to increase precision

and achieve a true point position. The perfect camera's construction does not exist in the standard

computer vision applications. Therefore, the system must eliminate the distortion caused by a camera

lens. The most common image distortions are the radial and tangential distortions both can be

eliminated from a point in pixel coordinates or for whole image. There is the Brown-Conrad model

[78] which removes and corrects both distortion.

Hardware optimization is the way of solving and optimizing problems associated with many pre-

processing functions of computer vision applications. The frame per second (FPS) parameter represents

the number of images registered by camera during one second. The low-level functions use each of all

delivered by the cameras. The applications set the FPS and size of the image. However, many cameras

provide more than 20 images per second (20 FPS) with a size of 800 × 600 pixels. We can notice

that it represents a huge amount of data. If we consider that on each image we have to realize much

mathematical operation, it gives a lot of computation load. Then it cannot work in real time. The

standard pre-processing functions on PC have a many resources to use and the Haris POI detection and

SURF descriptions still take about 50ms while the image has resolution 640 × 480 [101]. Therefore,

it seems interesting to accelerate this type of procedure with the help of modern hardware solutions.

Linear mathematical operations can perform on the data �ow the low-level functions such detection,

description and matching. The hardware architecture relies on the GPU or FPGA accelerates many

repetitive computations [150], [21].

3.2.4 Conclusion

The �rst section presents and describes the whole navigation pipeline of the custom CPS. The main

goal and working condition place the purpose of devices in a global context. We analyzed the principal

applications of custom navigation target in term of input, processing and output data. We propose

the new approaches to divide the global navigation pipeline in two groups. Many complex functions

use the same low-level functions. Therefore, the �rst group refers to pre-processing functions. Those

require the monocular stream of one camera �ow with the intrinsic camera parameters. They detect,

describe, match and remove distortion of the point of interest. They do not need the extrinsic stereo

camera parameters to work properly so they are always true for the whole time of mission.

The second group is the process and post process data of the navigation that rely on stereocular
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data. They need the preprocessing functions and the extrinsic camera parameters in order to under-

stand the relation between the two image streams. The analyzed applications in custom CPS such as

VO, visual SLAM and depth extraction need the extrinsic parameters to work properly.

We propose to create and realize the online camera calibration block, just behind the pre-processing

functions. The input data are available in such system. This approach can reduce additional compu-

tation, because the input data for calibration are already in the navigation pipeline. It allows hiding

the online calibration in to completely custom pipeline and realizing the procedure as the background

operation.

The online calibration of the system increases the safety, reliability and precision of the whole

system. It can con�rm if currently working system to realize a mission with high precision or not. The

online self-calibration procedure in the system realizes the self-healing and self-adapting concept for

custom CPS. Many devices may apply the same methodology, and gain pro�ts for the stereo camera

use.
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3.3 Calibration based on primitive approach

As we presented in the 2nd chapter, we select the 8PA algorithm in order to solve the online calibration

in the navigation pipeline. According to embedded system constraints, the low-complicated algorithm

is required. The 8PA method uses only simple POI. The same kind of features are common to other

applications, so they must be available in the system, where the computer vision process exists. As

mentioned in section 3.2.3 the pre-processing functions deliver POI. This methodology allows simpli-

fying and accelerating the calibration process, because input data are already calculated. We propose

to use this methodology in the custom CPS. The low-processing functions that detect POI are in the

out navigation pipeline. The proposed 8PA algorithm takes pro�ts and hides in the whole processing

pipeline. Fig 3.10 presents the most basic primitive implementation of the selected algorithm, detailed

information about speci�c blocks can be found in section 2.3.2.

Figure 3.10: Pipeline of online calibration blocks.

Resuming, the epipolar geometry formulates the set of homogeneous linear equation. The formula

uses eight di�erent correspondences between stereo POI from the left and right images. The system

computes the fundamental matrix (F), when POI are not normalized, so they are in pixel coordinate

frame. On the other hand, the system calculates the essential matrix (E) if POI are normalized, so

expressed in the camera system coordinates. The singular value decomposition converts E to rotation

(R) and translation (T). It represents the normalized relation between two images. The section 6.3

explains those steps in details.
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3.3.1 Preparing input data

The 8PA algorithm computes model from only eight correspondences POI. Therefore, choosing the best

eight points is extremely important. More stable and precise features allow obtaining more accurate

model. However, it is usually a di�cult task since point localization is noisy, in order to multiple

aspects such: incorrect illumination, distortion, false matches, etc. That is why an algorithm requires

optimizations in order to select the best POI.

Removal of distortion

We use the pre-processing functions of the system to correct the distortion caused by imperfections of

camera sensor. We use the Brown-Conrad distortion model to correct radial and tangential distortion

[78]. Following equations 3.1, 3.2 undistort each point before 8PA block.

xu = xd + (xd − xc)(K1r
2 +K2r

4) + (P1(r
2 + 2(xd − xc)2) + 2P2(xd − xc)(yd − yc)) (3.1)

yu = yd + (yd − yc)(K1r
2 +K2r

4) + (2P1((xd − xc)(yd − yc) + P2(r
2 + 2(yd − yc)2)) (3.2)

xu, yu = distorted image point as projected on image plane using speci�ed lens
xd, yd = undistorted image point as projected by an ideal pinhole camera

xc, yc = distorted center assumed to be the principal point
Kn = radial distorted coe�cient

Pn = tangential distorted coe�cient

r =
√

(xd − xc)2 + (yd − yc)2 Euclidean distance

Table 3.6: Table presenting the parameters used in Brown-Conrad distortion model.

Normalizing

The normalizing block is the next preprocess function used as the supplementary part of the 8PA

pipeline, which increases the stability and precision of the estimated model. The section 2.3.2 describe

and explain the four di�erent normalization methods, which we studied the isotropic, non-isotropic,

by intrinsic parameters and bearing scaling. We extract the normalization part of the pre-processing

functions, Fig 3.11 shows that input data are already normalized as the �rst step in the completely

online calibration process.

If the system detects the POI with in�nite arithmetical precision, the normalization process does

not a�ect the results. However, in real case where the noise exists. We detect POI with pixel accuracy,

(alternatively we propose a sub-pixel precision) with camera distortion. In such case, the normalization

has a signi�cant impact on the precision of results. We tested each of normalization methods. In the

custom navigation pipeline, we use the bearing normalization.
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Figure 3.11: Pipeline of online calibration blocks with normalization block.

RANSAC, inliers and outliers

The preprocess functions detect and match many di�erent stereo pairs of POI in each stereo image.

If there is more than eight points, the algorithm must select the best points, in order to estimate the

best model. It is a di�cult task. In the real scenarios, the distance from the camera to the extracted

POI play an important role. Faraway detected corners have less precision so its displacement in pixel

coordinates is higher. The impact of the distortion on points detected farther from camera is much

bigger. There are also many aspects, which lead to a wrong POI matching. With more input points,

proportionally higher number of pairs are wrong match. Thus, many of them are less stable and lead to

not precise model estimations. It is crucial to eliminate those aspects and select the best POI. In order

to do that, it is popular to use a robust statistic tool such RANSAC. It allows to the robust estimation

of the model. The section presents the mathematical background of RANSAC (section 2.3.2). It is

usually better to estimate the model over the largest possible set of correspondences, but this has a

signi�cant impact on the length of the performed calculations.

The iteration is the one RANSAC's cycle. In the �rst cycle, the model uses an initial random set of

eight POI to estimate the model. Then, the rest of the stereo pairs from the system veri�es estimated

model. Those pairs of point, which satis�ed equation 1.4 and gives results smaller than the threshold,

is the inlier. The result of such equation stands for epipolar error and we use this term name in the

whole manuscript. The threshold value is an important feature in the RANSAC calculation [167]. In

the future tests the default value of threshold is equal to 2.0∗ (1.0−cos(atan(sqrt(2.0)∗0.5/800.0))) =

7.8125e− 07.

In contrast, the pairs of POI, which do not �t the current calculated model and give higher error

than the threshold value, are the outlier. The algorithm keeps the model that contains the highest

number of inliers compared to outliers, and with the smallest epipolar error. To prevent the in�nite

operations, RANSAC needs the maximal number iteration. Fig 3.12 illustrates the online camera

calibration pipeline with the robust estimation RANSAC.
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x
′
leftModelxright = 0 (3.3)

x
′
leftModelxright < threshold (3.4)

x
′
leftModelxright = epipolarerror (3.5)
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Figure 3.12: Pipeline of online calibration blocks.
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3.3.2 Representing the results

We must extract the extrinsic parameters from the model, which the 8PA calculates. The translation

T and rotation R express the actual distance and orientation between the two positions of the camera

(for details see section 6.1.1). In order to verify if the extrinsic parameters are precise, we compare

parameters found by online camera calibration method with parameters found by the o�ine camera

calibration method. To measure their di�erential, it is necessary to have them in the same scale and

norm. Comparing the simplest online method to the traditional o�ine method is ambiguous and

unreliable. Due to the fact, that one method uses the excellent, well-distributed POI and extracted

from known objects. In the contrast to the other, which uses features without guarantee of their

distribution and stability. Nevertheless, we compare both method by comparing the extrinsic camera

parameters in form of θ that represents the Error of Rotation and e1 the Error of Translation. In the

whole manuscript, we use the same, both parameters to present the precision of obtained results. The

following sections 3.3.2 explains in details, how we compute those errors.

However, in the real system, it is not always possible to compare the extrinsic parameters found

by the online and o�ine procedure. The o�ine method provides parameters in beginning of work.

When during the mission the online method recalculates parameters, it has not new parameters found

by o�ine method. That is why, the other possibility to verify and judge a precision of new camera

parameters must exist in the online camera calibration pipeline. In this work, we analyzed the high-level

(post process) application as another feasibility of parameters evaluation.

Error of Rotation express in θ

We realize all steps described by Huynh to compare between two R matrixes [79]. The �rst matrix

is found by the o�ine traditional stereo camera calibration method (reference value), the second by

online computation from 8PA andSVD. We use the Eigen library in order to convert both matrixes to

quaternion form by equations 3.6, 3.7, 3.8 and 3.9. Then, the equation 3.10 normalizes the scalar of

R. Finally, equation 3.11 compares two quaterians of R matrices. Where (〈Q1, Q2〉) is equal a1 ∗ a2 +

b1∗ b2 + c1∗ c2 +d1∗d2. The θ is in radians and express the Rotation Error. In the whole manuscript,

for all tests, we use this error to evaluate quality of results. We can convert θ in to angular degree, by

multiply by 180/π.
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a = (
√

1 +R00 +R11 +R22)/2 (3.6)

b = (R21 −R12)/(4 ∗ qw) (3.7)

c = (R02 −R20)/(4 ∗ qw) (3.8)

d = (R10 −R01)/(4 ∗ qw) (3.9)

Q1 = a+ bi+ cj + dk that satisfy a2 + b2 + c2 + d2 = 1 (3.10)

θ = arccos(2(〈Q1, Q2〉)2 − 1) (3.11)

Error of Translation express in e1

We realize two vectors subtraction to compare between two T vectors. The o�ine traditional stereo

camera calibration provides �rst reference vector and the 8PA with SVD calculates second vector. Both

vector are in the same scale, normalized by equation 3.12. The equation 3.13 present error in e0 form

when we consider that each ax represents the same direction in each vector. Therefore, we substrates

each normalized in each axis separately. In the equation 3.14, we present second methodology, because

during tests the continuing problem with axis sign appeared. In the error form of e1, we subtract the

absolute value. We call the e0 and e1 the Translation Error.

TTranslation =


x

y

z

 ;TTranslationnorm


xnorm

ynorm

znorm

 =
1√

x2 + y2 + z2


x

y

z

 (3.12)

e0 =
√

(xref − xcal)2 + (yref − ycal)2 + (zref − zcal)2 (3.13)

e1 =
√

(|xref | − |xcal|)2 + (|yref | − |ycal|)2 + (|zref | − |zcal|)2 (3.14)

Error estimation based on high-level application

In the following section, we extend the idea that the high-level functions validate the accuracy of R

and T. The particular CPS and application require di�erent precisions of extrinsic parameters. There

is not perfect stereo camera calibration method and universal precision quality that each high-level

application requires. The precision of parameters is good enough, if the mission of the application

works e�ectively. We analyzed some internal parameters and output data to judge precision of current

extrinsic parameters in the navigation pipeline. The visual odometry can use a triangulation or re-

projections error. In order to verify, if new estimated camera parameters are more precise than old

one. The depth map extraction has internal parameters describing erroneous points. The system can

use it for evaluation and new parameter veri�cation. We develop this type of project at the laboratory,

81



so in the future, it will be possible to use it, for such purposes.

Due to the limited duration of doctoral thesis, we only consider a methodology for precision ver-

i�cation by depth map extraction, without any future tests. Fig 3.13 presents stereo camera system

mounted on the helmet. It observes an adapted scene with speci�c objects with known standardize

dimensions. We propose to compare those sizes with the depth extracted from the images. It is im-

portant to verify images from several di�erent, relatively close distances from the camera. The system

analyzes the dependencies between depth map and known objects in the scene, only at the speci�c

moment. When the known objects, such as road signs, doors or other elements (which sizes can be

standardized), are detected and recognized on the scene.

2M 1M 

3M 

1M 0,5M 0,5M 

1M 0,5M 

Figure 3.13: Scenario for precision of extrinsic camera parameters estimation based on depth-map
extraction.
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3.4 First tests based on primitive of calibration

This section presents the basic test of the naive approach of 8PA with bearing normalization and

RANSAC. Fig 3.14 shows the primitive pipeline in order to verify and compare the o�ine and online

method on two basic recorded dataset. For the �rst, the perfect input points, for the second, the points

from one stereo frame are used. We present the results each time on the three charts. The �gures

illustrate the most important characteristic of the camera calibration parameters. We use the same

data to illustrate the results in each test for the whole manuscript: the error of R in θ (see section

3.3.2), error of T in e1 (see section 3.3.2), and number of iterations to estimate the best current model

(see section 3.3.1). We present the parameters according to the number of input stereo pairs and

number of inliers.

Comparison 
between dataset 
(offline) online 

computed 

Distortion 
removed, 

conversion to 
camera frame

Points in 
camera frame

STEREO 
images 

sequence

Dataset

Model 
Estimation 

8PA in RANSAC

Model 
estimation

Points 
extraction

Points in 
pixel frame

Determination of 
R and T from a 

model

Rotation 
Translation

Naive online camera calibration

Parameters 
found by 

offline 
method

Figure 3.14: The naive pipeline shows two online camera calibration methods in parallel.

3.4.1 Parameters found by reference o�ine method - Matlab API

We record �rst dataset in order to verify primitive approach. It contains two image streams registered

by a set of stereo camera shown in the left part of the pipeline from Fig 3.14. We use cameras,

which are in one stable position. We put the calibration pattern (chessboard) in their �eld of view,

as illustrated in Fig 3.15. In order to compare results to o�ine method, we realized the traditional

calibration procedure from Matlab stereo application. It provides all camera parameters: intrinsic,

distortion, extrinsic R, T), F and E matrix. Moreover, it gives the all POI detected from the camera

chessboard. Fig 3.15a presents the screen of the application. The method implemented in the Matlab

use the Zhang's traditional calibration procedures with classical chessboard pattern [189]. We know the

number and size of squares. In theory, this traditional o�ine method requires at least three di�erent

poses of the calibration pattern. However, in practice, to provide precise results, it requires between

10 and 20 images. It is important to distribute chessboard's poses, in the whole scene, not far from

the camera in order to obtain good parameters. In section 2.2, we describe this calibration method in

details, as it is a reference method in this work.
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(a) Matlab stereo camera application to calibrate
cameras.

(b) Perfect, stereo points from chessboard
(calibration pattern).

Figure 3.15: Traditional o�ine stereo camera calibration method in Matlab API. Detected points
from right image are used as input for naive approach.

3.4.2 Points from the chessboard.

At the beginning, we test the naive (pure) version of the 8PA. We realize it on the same input points,

which o�ine method used. To measure and verify, if with perfect input pairs of POI, this naive

approach can obtain similar precision of the extrinsic camera parameters as o�ine method. The

system accumulates and detects the stereo POI from few di�erent planes of calibration pattern with

a high �oat precision (such as: x=890.1125 y=752.5964). Fig 3.15b presents two di�erent planes of

chessboard at left and right image.

Fig 3.16 presents the average value from ten measurements of error in θ and in e1. Fig 3.17

illustrates the average number of the iterations to estimate the best model. For each plot, blue column

in Y-axis gives an average value of a measured parameter. The X-axis presents the number of test. We

indicate the number of input stereo pairs by the orange line with the indication on the right side of

the graph. The black line display the number of inliers to estimate a �nal model. Table 3.17a presents

the highest precision obtained for those tests.
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Figure 3.16: Average error of rotation in θ and translation in e1 is calculated from 10 measurements,
based on di�erent number of points from chessboard pattern.

The higher number of perfect input POI (detected from calibration pattern) decrease the error of
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R in θ and T in e1. However, it increases the number of 8PA iteration required to estimate extrinsic

parameters. Maximal tested value for primitive approach is 2862 input pairs. They allow calculating a

relative right camera pose expressed in the left, similar to those, found by the o�ine camera calibration

method. The di�erences in T error represented in e1 is equal to 0.02 of the Euclidean distances. For

example, with this error if real distances between the two cameras is equal 15 cm then the online

method recalculates 14.7 cm. The change between two R matrices is 1.5 degrees of θ.
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(a) The best precision obtained

Figure 3.17: Average number of iteration from 10 measurements and summary of the most precise
method.

The perfect stereo points input for the camera calibration based on 8PA can provide the precise

extrinsic camera parameters. Based on this we present the �rst hypothesis that the system must achieve

similar precision of extracted POI from the real dataset in order to the online camera calibration works

properly. In the next section, we will test it. From a practical point of view, in a single image, many

of the detected features are usually in multiple planes. Therefore, the estimation of parameters must

consider a large number of detected POI in a single stereo frame.

3.4.3 Points from one frame

The second dataset is recorded by the same stereo camera set, which was used in previous section 3.4.1.

The naive calibration pipeline method run continuously, that the extrinsic parameters are computed

from the pair of POI detected on only one stereo frame. Fig 3.18 shows points from the standard

stereo frame of this custom dataset. The POI are not well distributed in each part of the image (due

to the light and structures of the scene). However, in recorded scene, the features can be detected in

many di�erent planes. That is why, tests which are based on the one frame, theoretically, can provide

a positive result.

The plots 3.19 and 3.20 illustrate calculated error of R represented in the θ and T in the e1 in form of

blue column. It is based on the same methodology, as in the previous test. The number of input stereo

pairs from the current frame and a number of inliers are given in the X axis and in orange and black

line. Moreover, next to each plot, there is a small table, showing an average value of each monitored

parameter to increase readability.
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Figure 3.18: Input images with point detected on real stereo images recorded by custom camera set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
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Figure 3.19: Error in translation expressed in e1 calculated only on points from current frame.
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Rotation error express in     for all stereo points detected at one frame𝜃𝜃

Average error of R in θ 2.174

Average number of inliers 324

Input size of stereo match 500

Figure 3.20: Error in rotation expressed in θ calculated only on points from current frame.

Fig 3.21 presents blue columns which symbolize a number of algorithm iterations (RANSAC loops)

to estimate the best model. The average time required to estimate the best model is around 200

milliseconds (0.2 second) during a test on classical PC.
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Figure 3.21: Number of iteration required to estimate �nal model only on points from current frame.
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The precision of extrinsic parameters obtained by online method, cannot be higher, than that,

obtained while use the perfect input POI from calibration patter. Previous test 3.4.2 shows an error

of R (θ) around 1.5 and error of T (e1) around 0.02 of whole distance between cameras. That is why,

the average error obtained during this test from points detected at one frame, is considered as very

imprecise results, the θ equal 2.2 and e1 0.32 (if the Euclidean distance is equal 15, method recalculate

10.2). Moreover, both errors are very unstable and vary a lot. Therefore, it is not possible to precise

calibrate cameras when method is based on POI detected from only one, single image.

3.4.4 Discussion

The previous tests presented two di�erent naive approaches of 8PA. The �rst shows the continuous

calibration that performs the computation only on stereo POI detected in the current frames. The

obtained results are unstable and not precise. They implicate that it is impossible to have a good

enough POI in each of stereo images. On the other hand, the results of online calibration based

on perfect POI gave precise parameters, when the input data accumulated from many frames and

structures are distributed in the whole image's scene and many planes, etc.

We consider a hypothesis that the appropriate amount and precision of POI from many images of

the real scene allow calculating the extrinsic parameters. For the reason, we present in the next section

technique to accumulate POI for several or more than a dozen frames in order to perform calibration

procedure. Moreover, we propose the function to distinguish the best and most stable POI from the

whole group of input pairs. We consider that they must to be well distributed in a many di�erent

planes and distances from the cameras. To achieve, the same precision, system needs to have an ability

to understand the POI with their properties (this point is close from the camera; this point is in the

top-left part of the image, etc.).

The frequency of performing online camera calibration in the application pipeline is the other

important aspect of this work. If system has to accumulate and collect su�cient number of POI, the

question arrives, how to �nd a trigger, which inform that the system has already enough input data.

System consider the POI in term of good distribution, various distances, high precision, etc. that

allows performing calibration and obtaining the precise result.

We consider that maybe the camera calibration does not need to run each time, when there is enough

point in the system, but run when there it is required. Then, we propose an additional functionality

� the monitoring of extrinsic camera parameters. It triggers the algorithm in order to compute new

parameters because the old one are not precise anymore. Performed results show that if there is more

stereo POI, the results are more precise but algorithm requires more iteration, to estimates E so the

R and T. Each algorithm iteration costs a computation power. It is important for embedded systems

context to reduce the number of calculations to minimum. We realized the �rst tests on a PC equipped

with an Intel 7. It is several times faster than the standard embedded system processor (ARM Cortex).
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W present the detailed computer parameters into table 4.1.

Nevertheless, the algorithm needed approximately 200 milliseconds (0.2 second) to calculate the

extrinsic parameters from the model, the time needed to prepare the data (normalize) is negligible on

the architecture ×86-64 bits with 8 cores on the Intel 7 processor but must be considered for testing on

the ARM processor in ×32 bits architecture. Next section presents the advanced approach to online

calibration in the application pipeline on embedded system. It tries to propose a methodology to

obtain as precise extrinsic parameters as it is possible and �nd the answers on those asked question.
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3.5 Advanced stereo camera calibration approach

This part of the 3 chapter proposes di�erent optimizations of the whole online calibration pipeline.

We build the advance stereo calibration pipeline from the online stereo camera calibration procedure,

which stands to OSCC and the stereo camera calibration monitoring SCCM. The main task of is to

compute new extrinsic parameters, thanks to the 8PA. The second important task is to say if system

requires the new calibration by verifying if current extrinsic parameters are precise enough.

We suggest accumulating the input POI with appropriate information. We propose a di�erent

�ltering strategy, in order to choose the best stereo pairs and compute the precise extrinsic parameters.

This should increase the precision of results and reduce the number of iterations to �nd the best model

thus minimize the execution time of the calibration procedure.

3.5.1 Map Points of Interests, the accumulation strategy

We use the same pre-processing functions from naïve calibration pipeline before the advanced stereo

camera calibration. Stereo tracking is the detection of POI, matching between stereo frames. In

the advanced approach, we propose simultaneously additional matching between current and previous

frame. It stands to the temporal tracking and Fig 3.22 illustrates its idea. The system transmits the

detected POI into the accumulation block. There, we create the "Map Points of Interests� (MPOI). It

contains a basic information about points, which simple stereo-temporal tracking provides.

Long mission as a few minutes or hours, delivers a huge number of frames. For this reason, a simple

accumulation and saving strategy of all stereo pairs from each frame is impossible. The high number

of images signi�cantly increases the number of inputs POI. The memory always limits the program,

thus the reduction of an in�nite number of points must appear.

The left part of Fig 3.22 explains the stereo tracking. On the top, there is the last frame, so

the oldest, which arrived. The preprocessing functions detect two POI. Each of them gets a global

identi�cation data (ID) number, for example, P1L obtains the 101 it is the �rst element in the table 3.7.

It is unique and assigned to POI at the detection process. We push the global ID, with the position

represented in the pixel into the coordinate's vector of features, the �oat value represents position

and it strongly depends on the detector. For example, system allocates the �rst time detected POI:

P1L = (X1L, Y1L) as the �rst element of vector presented in the second row of the table 3.7.

If, this POI has an equivalent (matched) feature in the right image, it is the stereo track. When

system matches the point P1L with and P1R, it pushes coordinates P1R = (X1R, Y1R) to the vector of

POI correspondence from right camera (element 3rd in the table 3.7). If, it does not have a matched

correspondence (like examples P2L)), the P2R = (−1,−1) �lls the right vector.

The new group of POI arrive with the next frame (middle frame n-1). Thanks to the temporal

tracking, accumulation block knows if system tracks a new point in the previous left frame. If this
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Figure 3.22: Left part of image explains in graphic mode the methodology of stereo and temporal
tracking. The center of image presents the MPOI of detected points (for details see a table 3.7). In
the right part of image, the real situation is illustrated.

point already existed in MPOI, it contains the same global ID (it helps match points). When point

occurs P ′1L = (X ′1L, Y
′
1L) and it is a continuation match of P1L, it pushes the new position of POI into

vector. It allows having a history of the tracked points from �rst detection in the structure. If such

POI like P3L does not exist before, it adds the new ID to the MPOI in the system.

The temporal tracking data provides information how long certain matched points exist in the

system. Each POI has a global age (element 4th in the table 3.7), which is set at one when points

appear at the register. This value is incremented as long as continuous detection of feature is possible.

When detection is lost the incremental of age stops. The system consider the longer detected and

matched POI as more stable compared to that detected spontaneously.

The last frame appears as another parameter (element 5th in the table 3.7). It referees in which

frame, the POI was available last time. Based on this parameter, the system removes and cleans the

accumulated data about points if point appears su�cient number frames ago (from current frame).

In order to storage additional information, about POI in the MPOI, the system registers the

Euclidean distance between two matched points in element 6-th of the table 3.7. Each matched point

pushes the distance like (d1 = dist(P1L, P1R)) to the vector. The right part of Fig 3.22 illustrates this

methodology. The objects 1 and 3 has position �xed into the scene. P1 is much closer to the cameras

than P3. There is the same movement for both cameras in the system, from pose 0 to pose 1 in time

t. If the POI has larger di�erences in the distance (as in the case of P1), then its location is closer to

the observer. If the distance is stable and the changes are in small steps, it means that the feature is

far from the camera. Based on this information, in the future, the appropriate POI can be prioritize.

That the algorithm focuses on the points which are in the nearest from cameras. The features that

are far on the horizon usually have the smallest accuracy, due to the di�culty of detection and their
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precise description.

Last parameter in the MPOI is the status (element 7th in the table 3.7), which is only a control

value, used for organization. This parameter allows to fast interpretation of the selected POI. If the

values is equal �minus one�, it represents that POI is not tracked any more. While �zero� means that

point is tracked only in left image, and �one� means that point is matched between left and right frame.

Table 3.7 provides the whole structure of one POI with its temporal and stereo correspondence.

Data Format

1) Global ID unsigned int - global reference number

2) Position of the POI - camera left vector of pair �oating points - position of cam left points

3) Correspondence of the POI - camera right vector of pair �oating points - position of cam right points

4) Global age of point unsigned int - from how many frames point is track and matched

5) Last frame appear unsigned int - last number frame when point was seen

6) Distance between matched POI vector of �oating points - distance between left and right point

7) Status unsigned int - what is current status of point

Table 3.7: Table presenting the most important information about points of interests.

3.5.2 Filtering points strategy

In the application pipeline, the MPOI contains all possible matches from last several frames, due to

proposed accumulation strategy. It is an important and crucial to choose the most stable and precise

POI for 8PA. The �ltering with certain rules can search and choose the most appropriate points.

The function should give them the proper priority, so that the algorithm can reject wrong, imprecise

matched and base only on excellent POI.

The standard 8PA approach performs two loops. The �rst loop calculates the model from randomly

selected eight stereo pairs from input POI. The second is to verify the current calculated model, through

the rest of the POI pairs.

If the system during the �rst loop, thanks to �ltering strategy, knows which POI are more stable

and precise than others, can choose thus calculate more precise model faster. This methodology can

eliminate a huge randomness thus it accelerates the search of the best model and reduces a number

of loop iterations, so the whole computation. For the second loop, the �ltering can reduce a number

of input pairs so the algorithm has less point to verify, etc. In the following section, some of basic

�ltering methods are proposed:

Stereo-Temporal + age: the �rst �ltering method uses two parameters: status (4th) and global

age (7th) elements from the table 3.7. The POI must be stereo match at current frame and must

appear at least from n frames. Points tracked for longer period of time (at least one frame) should be

more.
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Stereo-Temporal + age + key frames: this �ltering strategy proposes to use tracked POI from

only some frames, period called key-frame. We explain this on the one example, when the camera starts

or drastically rotates and lose all previous tracked points. The points that appear in this new saturation

can be more stable and more precise. We test all point �ltering methods during the experimental phase.

Stereo-Temporal + age + key frames + distance: this strategy is similar to previous and inject

the distance parameter in to account. When the motion of camera is in the direction of POI, the long

tracked points start to appear far away and move closer to the camera. System can take the di�erences

in distances in to account. This �ltering method prioritizes from this distance and takes old points in

the MPOI structure. On the other hand, the POI, which is far away, has lower precision in location

detection. Therefore, system must �nd the appropriate balance between the length of tracking history

(age of points, 4th element in the table 3.7) and the distance between the points (how far is point from

the scene, 6th element the table 3.7)

In the 4 chapter, we explain and test the di�erent strategy of �ltering in the graphic form. We select

the best method in term of results precision. The time required by various method is measured and its

impact overall processing pipeline is veri�ed. Filtering strategy should e�ect on the number of inliers

(points satisfy a model) and outliers (points do not satisfy a model). Moreover, it has to reduce the

number of RANSAC iterations and allows �nding faster the best model.

This procedure should be meaningful while the code will transfer to embedded systems with a much

weaker processor. The purpose of �ltering is to select the best points in order to shorten the time of

estimation of new extrinsic parameters of cameras.

3.5.3 Stereo Camera Calibration Monitoring

This section proposes a discussion about the stereo camera calibration monitoring (SCCM). At the

beginning, it is worth to ask, whether the system must repeat calibration each time as separated thread

running with low priority, or realized as main task only when it is required? The separated thread

in an embedded system does not have many resources to disposition. That is why, on some small

processors, it can be not su�cient to perform even low-complex algorithm. On other hand, if system

realizes calibration only when it is necessary, it must recognize when parameters are not precise. How

to realize functions which knows that the current extrinsic camera parameters are no longer valid?

Fig 3.23 presents the whole approach of online calibration pipeline. The point accumulation block

creates MPOI just after normalization and preprocessing functions. Those points go directly to the

SCCM block. POI from MPOI go to �ltering process and then to online calibration block. The OSCC

runs only if the trigger decision comes from monitoring. Additionally, the SCCM can received some

information from the high-level application.
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Figure 3.24: Zoom of the whole pipeline from Fig 3.23

We analyze two separate stereo camera calibration monitoring methods in this work. The section

3.3.2 presents the proposition that uses the high-level application. The dash line from processing

block illustrates this feedback information from high-level. The second method relies on the epipolar

geometry, described in section 6.3. The system veri�es all �ltered input points from MPOI by the

same methodology used in the 8PA to select the best model. However, the method to check points

need to use the current extrinsic parameters of the system. Equation 3.15 illustrates how we determine

the threshold.

x
′
leftCurrentModelxright = epipolarerror < threshold (3.15)
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This methodology seems to be universal for all types of applications, because initial parameters

are usually available. Therefore, we describe this technique in details in the following section and test

in the next chapter. The system requires initial extrinsic parameters in order to realize SCCM, which

uses the epipolar geometry. The initial calibration provides the extrinsic parameters with the intrinsic

parameters.

The table 3.7 presents the 8th element which represents the epipolar error and extends the table

3.7. System veri�es by mathematical equalization of epipolar geometry Error = x′RExL each stereo

POI. Then pushes obtained result to vector of errors. The system has to dispose the history of this

point with correlated error. This error de�nes if point is inlier or outlier for a current existing model.

Data Format

8) Error of correspondence points vector of �oating value- representing the Error = x′RExL

Table 3.8: Table presenting a complemented value of following points.

We use speci�c dataset to test the SCCM approach. The two di�erent calibration exists in one

video stream. Fig 3.24 presents this kind of possible scenarios, where system has the calibrated and

then uncalibration arrives. The axes shows on x-axis the time of action depending on the number

of points �tting the current parameters on y-axis. The green line presents a hypothetical number of

inliers and red line represents the number of outliers.
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Figure 3.25: Scenario presents the whole approach of online camera monitoring.

In the beginning, system has a good initial calibration (nb 0) provided by an o�ine method. There

should be much more inliers than outliers. The online monitoring measures a number of those points.

At one moment, the uncalibration phase arrived. The ratio proportions between number of inliers to

outliers and other parameters such as the average error and the median of error drastically changes.

Based on those and other indicators the SCCM should be able to detect that extrinsic parameters of

cameras changed.

In the MPOI structure, there is a history of points according to the old calibration. Therefore, the

system cannot use it to estimate a new model. It needs to clean the old MPOI structure and starts

to accumulate new points that satisfy current calibration. The system can perform the OSCC, once
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there is enough new points accumulated. Once system calculates new extrinsic parameters, delivers

to the pipeline (in Fig 3.25 nb 1). Once the precision of calculated parameters is high, the situation

arrive to the similar state as with the initial parameters. The system is well calibrated, once the ratio

and other parameters arrive to correct values. The SCCM can run again, but now it rely on the model

calculated by OSCC.

3.5.4 Quality of Service current extrinsic parameters

Finally, in Fig 3.26 we propose the separate quality of service block that measure online camera current

parameters and compute a new one. The main objective of the SCCM is to provide information on

whether current external parameters are up to date with respect to previous excellent initial parameters.

If they are not, the system triggers signal and sent it the system. The OSCC then tries to calculate

the new parameters. Once they are delivered to the pipeline, they need to be veri�ed how accurate

they are.

Figure 3.26: The camera calibration quality of service block.

We consider the whole calibration procedure as the quality of services (QoS) in the system. It

provides the feedback data to the high-level application with information if the current system state

so rotation and translation are precise. The system must verify the new calculated parameters, we

propose the three levels of QoS.

• There is no OSCC function, then after decalibration phase detection, the system's mission must

be continued in the hand mode, directly to the o�ine method calibration.

• There is OSCC function that provides temporal parameters. These are not precise, but the

system can continue a mission in the safety mode. Then, the low quality of high-level application

can guarantee that the mission does not fail. The user must escort the system to the place where

it realizes the o�ine camera calibration, in order to provide new precise parameters.
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• There is OSCC function that guarantees to provide a precise and high quality of the parameters.

The mission and high-level application can continue the normal mode of work.

3.5.5 Scale Problem

The scale problem is one of the classic problems in the self-calibration method. It is the issue for

monocular, stereocular visual odometry, SLAM and camera calibration. For applications, the scale

provides information, which allows understanding the world. It can deliver the width of the road, the

height of the corridor, traveled distance, etc. For calibration, scale is required to convert the extrinsic

camera parameters from camera scale to real distances. We compare the obtained results (extrinsic

camera parameters) in the proposed advanced calibration approach to an o�ine method in form of e1

and θ, as described in section 3.3.2.

In the traditional calibration methods, the system uses patterns with known size, and then the scale

problem is easily solvable. The each method realizes calibration thanks to connection of the observed

world. However, the self-calibration methods must use di�erent approach, when the calibration pattern

is not available. We propose three main solutions in order to extract the scale:

• Scale extraction uses the sensor baseline. The distance between cameras cannot change, according

to some devices.

• Scale extraction uses the objects in the scene. This approach is similar to the traditional cali-

bration method but instead of known chessboard, it uses a known object. It is one proposition

for the future work.

• Scale extraction uses data from the other sensors. We analyzed this approach however, we keep

in mind that in the target devices we would like to limit the additional sensors.

• Scale extraction uses the deep convolution neural �elds [185], because of an embedded system

limitation, we do not consider this type of method.

Scale extracted from the baseline

In the beginning, the o�ine traditional calibration method provides the initial extrinsic parameters.

The calibration pattern provides the real scale, when provide the bassline. The many CPS such as

intelligent glasses do not allow change the camera's position signi�cantly. In such case, the approach

assumes that if the distance between the cameras essentially change, it destroys the system. In such

case, the system does not need the online calibration. However, changes in the rotation of the camera

in relation to the other camera is possible, if the construction of the glasses frame is delicate. This can

lead to small di�erences in the camera are relatively often.

The system with loosely attached camera, without special metal cage makes it easy to connect

to the robot or other CPS like smart glasses, helmet, etc. Fig 3.27 illustrates a mobile robot with
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di�erent setups of the stereo camera. The various orientations show what kind of camera position

changes are possible. The position changes can be similar in the context of glasses, mainly R, but T

changes minimal. With this assumption, we consider that the new calculated parameters may refer

as the initial value, as presented in the section 3.3.2. In future tests, this approach is used. The

recalculated parameters use the initial distance of the baseline between two cameras.

Figure 3.27: Possible settings of the camera without destroying the system.

Scale extracted from scene - object detection

We propose extract the scale factor directly from the objects localized in the scene. The principals of

this methodology uses the same assumptions as the traditional method, i.e. �nding a calibration object

with known parameters. However, it should not be a classical calibration pattern such as chessboard

etc. but some real object. The standardized object must appears broadly in the working scenario. The

standardized and characterized object in term of size and shape is suitable for detection. This type of

consideration is not generic and mainly based on the speci�c application, which works under certain

scenarios in which it is used. Some objects widely appear in some group of scenarios.

We analyzed several types of elements: road sign, pedestrian lanes or doors. All of them appear in

many environments and mission. They have constant standard sizes. Of course, it is hard to guarantee

that such elements exist every time when it is required. Fig 3.28 presents a signi�cant detection realized

on the KITTI dataset. The system can obtain scale from time to time when an object is available.

Figure 3.28: Tra�c sign detection experiments.
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Scale extracted from other sensor

In some particular examples, the computer vision application can combine di�erent data from various

sensors or application. We analyzed the visual data with the odometer that measure the traveled

distance. The visual odometry can provide a di�erent camera pose. The odometry realizes traveled

distances. Then the relation between two distances may provide a factor in order to extract scale.

The other example is the fuzzy of IMU data with the visual data. It provides similar information as

odometer but in the short distances. Then the global application compares two distances. Other type

of system, which can fuzzy di�erent type of data, is the devices with LIDAR. The sensor provides

information about the local environment. It allows con�rming the distance to speci�c elements of the

scene.
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3.6 Conclusions about the presented approach

In the beginning, the methodology presents an approach to camera calibration, which hides in to

processing pipeline, and use data from the system. The �rst section lists some of high-level applications

that can run on custom smart-glasses context. We propose the CPS on the embedded system where

input data comes from the loosely �xed stereo cameras. In order to satisfy a limitation of such

devices we present an approach to online calibration in the application pipeline. We divide analyzed

applications in pre-processing and post-processing group of functions.

The �rst pre-processing functions are similar for many computer vision applications. They realize

low-level functions such as POI detection and description, etc. This group uses on monocular camera

data, so it requires only intrinsic camera parameters, which are constant due to the camera construction.

Then, the post-processing functions of high-level application use the stereocular data from two cameras.

Therefore, they require all camera parameters (intrinsic, extrinsic) and data from low-level functions.

The section 3.2 proposes to use calibration method on the same data, which the post-processing

functions used. The low-level functions provide su�cient data for some of self-calibration algorithm.

Moreover, according to proposed methodology these data are available in the system, so calibration

procedure can use it without additional processing. Thanks to this, the computer vision processing

pipeline hides the calibration method. The next part of this chapter presents a primitive approach to

extrinsic camera calibration, which standard literature presents. It describes the chosen algorithm: 8PA

with basic steps. We recorded the dataset with sequences of stereo images by the custom stereo camera

setup in order to validate our approach. The �rst test proves that perfect input data extracted from

the chessboard (from o�ine camera calibration) allow estimating precise parameters. The obtained

results are close to the o�ine method due to perfect input points. In future work, we expect to obtain

the same similar precision of the extrinsic camera calibration.

After the second group of test realizes the same primitive approach of online stereo calibration on

all points detected on one image scene. This has not su�cient predispositions to �nd and select the

best points to estimate a precise model. The algorithm tries to calculate extrinsic camera parameters

continuously after each frame. It leads us to section 3.4.4 where we try to answer, how often the system

should perform the calibration. We consider that it should be possible to obtain a similar precision

of parameters based on the points from the scene. Therefore, we propose additional optimizations to

online stereo calibration pipeline in order to achieve more precise (closer to o�ine method) results.

There are three main developed strategies described in section 3.5.

We propose the stereo camera monitoring strategy in the advanced stereo camera calibration

pipeline. This technique allows realizing camera calibration only when it is required instead of contin-

uous calibration. The special monitoring policies track all the input points. They use them to decide

if current parameters are still valid.
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This methodology signi�cantly reduces the calibration costs. The system does not run calibration

continuously all the time, but only then when it is necessary. For this strategy, the system needs

initially calibration thus the intrinsic parameters of the �rst part of the pipeline (pre-processing), and

the extrinsic parameters to start monitoring of the extrinsic parameters. We propose additional accu-

mulation and �ltering points in order to improve the monitoring and precision of the online calibration

method. The accumulation saves the history and other basic information about the all tracked points.

It provides input data not only from one, but also from many frames to algorithm. The system ac-

cumulates much speci�c information about point such as how far point is from the camera, how long

it appears. After that block, we propose the �ltering of such points based on many parameters. The

main goal of this function is to reduce a number of input POI. Then it should select the most suitable

points for the 8PA. As the result, it should stabilize and determine the results for the algorithm and

reduces the workload and execution time.

We remind that the whole procedure runs on embedded systems. Thus, the autonomous, online

stereo self-calibration method has to consume low processing power. It should allow for the use

of loosely attached stereo camera, thus it enhances reliability, length of reliable operation of CPS,

which is equipped with such sensor. The main aim of calibration is to recalculate (self-heal) and

monitor extrinsic parameters in the system. The recalibration is a feedback loop in the whole system.

The proposed methodology considers the calibration as the process in the background of the entire

application. Moreover, it realizes a task in real time. In the next chapter, we present the results of our

approach.
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Chapter 4

Experiments and results

Nothing will work unless you do.

Maya Angelou

This chapter presents and comments the results of the online stereo camera calibration pipeline on

di�erent environment setups. We describe in detail the condition of work in the PC, RPi and CPS

prototype. We present the methodology and realization of new dataset required for the test validation.

This chapter realizes the online stereo camera monitoring, which use di�erent policies and optimization

blocks such as �ltering and points accumulation in order to detect calibration need. We realize the con-

tinuous and triggered online camera calibration on two di�erent datasets. The chapter �nally presents

the precision of the results and characteristic of the whole pipeline on an embedded system.
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Objective :

Illustrate the results and methodology of the advance approach to the online stereo camera

calibration in the application pipeline on an embedded system.

To do this, we :

• analyze di�erent working environments.

• demonstrate the prototype.

• realize the custom dataset.

• explain the stereo camera calibration monitoring strategies.

• present the continuous and triggered stereo camera calibration.

• select best �ltering method.

• realize the whole advanced online calibration.

• measure the impact on the high-level applications

• characterize the online stereo camera calibration on an embedded system.
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4.1 Environment of experiments

We analyze the di�erent environments of experiments and CPS, which need to realize the stereo camera

calibration. We prepare the PC that is the most practical environment in our methodology. A high

computational power with memory and easy interface are available. Additional, there is a large number

of tutorials and community, which help to solve many problems related to compilation or connection

of libraries for this environment. While PC can handle operation and mission with proper results. We

select Raspberry pi as an embedded target. It is a popular low-cost single-board computer with a huge

potential, widely supported by many open source projects. We propose some basic optimization and

code improvement in order to satisfy constraints of the second environment. An embedded processor

installed on board has similar parameters to the achievable processor in the third environments, which

is a future prototype.

The code transfer from the PC to an embedded processor is usually the most complicated and

tedious task. There appear many software and library's issues, compilation errors, memory leaks, lack

of processing power and many other problems.

Finally, the code migrates to the �nal prototype when everything works well on the target embed-

ded processor and the entire architecture. This means that the results must be close enough to the

version released on the PC. This chosen methodology allows getting the best results in the shortest

possible time. We use the Robot Operating System (ROS) to facilitate code transfer between di�erent

environments. This section describes all tested environments and interfaces with speci�c and detailed

information.

4.1.1 ROS interface

Robot Operating System can confuse and mislead the user because, it is not real OS, but collection

of libraries and tools that help software developers create and simulate robot applications or other

CPS. ROS provides a hardware abstraction layer, device drivers, libraries, visualizers, message-passing,

package management, etc. ROS perfectly �ts into custom approach, because community develops the

system on various machines with di�erent architecture type (×86-64, ×32ARM). The stationary PCs

or single-board computers, etc. has a speci�c dedicated version in order to run. The main programming

language to write a code is the C++, but also C, python, java exists.

Thanks to ROS, it is possible to interface and cooperate with other open sources packages and

with many more applications. For examples, a RQT software framework is available to visualize in the

graphic way many di�erent data available in the system. The machine vision provided by OpenCV

packages allows creating a map, which localize agent in the environment, etc. A large community

propose and support many other packages and applications.

The huge advantage of ROS is that every robot's component and function connect to speci�c pack-
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ages due to distributed message to the whole system. We can divide the program in small independent

blocks, known as the nodes. Those communicate and exchange data by publishing di�erent messages

to topics, between itself. A message is a data structure, and can contain each standard type such:

integer, char, string, etc. in each structure such: vector, matrix, etc. The advantage of ROS is to

receive and send packets of data with a customized form for each node. This activity is much easier

to realize than the exchanging data between di�erent programs not written in this environment.

Another interesting and useful command-line tool from ROS functionalities is the rosbag. It records

a bag, which is a �le format, which stores a ROS message data. There are varieties of tools that can

store, process, analyze and visualize the bag. The rosbag player can select many parameters, while

sending messages such as frequency, �rst frame, etc. in order to improve and accelerate results of

the tests. It is a powerful tool, which can provide the identical input sequence. For example, it

can play sequences of images with the same parameters and conditions, which allows monitoring and

determining the same results each time. The section 2.5 presents the datasets provided by the vision

community, each of them, we can convert to the rosbag, where the video stream in the ROS system

plays the data �ow.

Network con�guration is another advantage of the ROS. It is possible to design and build a network

consisting of many environments (devices) with di�erent nodes. These nodes can listen to each other

and exchange speci�c data, directly by network connection. The di�erent proposed environments can

communicate when its IP addresses is known. For example, it is possible to use a network, where the

master host and peripheral slave devices can connect to the same local network, con�gured on one

roscore server.

4.1.2 PC environment

The section introduces the �rst environment setup that uses the standard PC. The Linux OS is Ubuntu

16.04 distribution and others PC parameters, presented in Fig 4.1. Fig 4.2 shows synthesized view of

the �rst working environments with ROS Lunar Loggerhead, where we implement the whole concept

of the OSCC from the previous chapter. Following section, describe each separate node in the entire

processing pipeline. We present the messages with the speci�c data structure used to send information

between nodes in the arrow form. This approach makes it easier to create a calibration procedure,

as other environments or devices can use and apply this solution. It provides a future possibility to

extend and migrate the code to the other systems with similar environment.

• Dataset as known as rosbag feeds the pipeline. It contains of collected and synchronized time

stamped data from the stereo camera with initial intrinsic and extrinsic parameters.

OUTPUT: synchronized left and right image at demanded parameters as FPS, plus the initial

intrinsic and extrinsic parameters.
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Parameters Setting

OS Ubuntu 16.04

GNU C++ Compiler g++ 5

CPU model
Intel(R) Core(TM) i7-2600 CPU @
3.40GH

CPU MHz 1687.77

Memory size 8192 KB

Cache size 8192 KB

Core number of CPU 8

Architecture ×86-64

Figure 4.1: The parameters of the �rst test PC environment presentation.
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Figure 4.2: The whole processing pipeline executed on PC environment.

• Tracker contains functions to detect, describe and match POI between the synchronized input

images: left, right and previous left frame. The section 3.2.3 presents the methodology. This

approach divides the tracker in the local and global tracker. It returns the point cloud, which is

a ROS structure used for POI descriptions. The section 3.5.1 details and explains the structure

that contains all elements that allows realizing the point allocation. The system gives integer

pixel value precision of the point. We develop the tracker in the laboratory, realized in C language

with the hardware version realized on FPGA, described in section 4.1.4. During thesis, we use

also tracker from OpenCV.

OUTPUT: cloud of matched POI.

• Monitoring and Calibration block is responsible for the online calibration pipeline. It provides

information when calibration is required and computes the new extrinsic camera parameters. The

section presents the advanced approach with all the optimization. We implement all functions

in C++ language and use the 8PA method from OpenGV library [88]. It is a dedicated library

for solving calibrated central and non-central geometric vision problems.

OUTPUT: new extrinsic camera parameters and monitoring output.

• In this particular scenario, we use the recti�cation process of the high-level application. It is a

last block used to validate the calculated extrinsic parameters. It uses a geometric transformation

to change camera con�guration with non-parallel epipolar lines to the canonical one. The section

3.2.1 describes how it allows determining and �nding a line-wise matching points. There is in
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pre-installed default library into ROS, an OpenCV open source library [131], which contains

functions to realize a recti�cation task. OUTPUT: two recti�ed images.

We use the identical nodes with the same form of messages in the other environments, thanks to

the ROS environment.
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4.1.3 Raspberry Pi 2B environment

The second working environment is small single-board computers known as Raspberry Pi. It stands

to RPi. There are various models available on the market. We use 2B version with the Cortex A7

processor. The software setup in this embedded system platform is very similar to one used on thePC.

The OS is Linux but the Ubuntu Mate 16.04 distribution with ROS Kinetic [136]. There are many

tutorials, how to install and set up the whole environment on the ROS wiki web page. Table 4.3a

presents the parameters of the second environment where OSCC runs.

Parameters Setting

OS Ubuntu Mate 16.04

GNU C++ Compiler g++ 5

CPU model quad-core ARM Cortex-A7

CPU MHz 900

RAM size 1000 KB

Cache size 20 MB

SWAP size 2 GiB

Core number of CPU 4

Architecture ×32

(a) Parameters. (b) View.

Figure 4.3: RPi 2B the second environment presentation.
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Figure 4.4: Pipeline executed in the PC and RPi environment.

The Fig 4.4 presents the processing pipeline in the second working environment. In this approach,

we execute only monitoring and calibration node on the RPi. We characterize this node in term

of execution time and precision. The tracker run on the PC and generate the cloud of points to

the monitoring and calibration block. It returns the extrinsic camera parameters to the high-level

applications, which as trucker runs on PC. To realize these tasks, the system needs a ROS network

connection between di�erent environments. In this section, we presents how to realize these steps. The

last part of this section contains the instruction for lunching and compilation the entire pipeline in

the second environment. The master host on PC and peripheral slave devices RPi creates one local

network. The dataset with a tracker run on PC. It sends data packages to the RPi, where calibration

executes. The Script 4.6a presents the network con�guration.

Virtual memory (SWAP) allocation is required step in order to increase an available memory in
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the system. Small, limited size of memory characterize the embedded systems as presented in section.

The online camera calibration package requires compilation across several di�erent libraries that use

a complex structure. Thus, the system requires more that 2GiB RAM. On the RPi 2 B, only 1GiB

memory is accessible, so the compilation is a challenge, in order to realize it we use a SWAP memory.

It is a virtual memory able to stores the data in memory on disk. We are aware that reading from

the disk is several orders of magnitude slower than reading from the memory, but we use it only for

compilation level [17]. The Script 4.5c presents a code of bash.

We use the g++ 5 compiler to compile the monitoring and calibration node on ARM Cortex A7

processor in the RPi with the dynamic link to the. The system requires OpenGV library compilation,

on the same embedded target. This step is not possible due its large size. From this reason, we cross-

compile the library on the PC. Scripts 4.5a and 4.6b show the required commands. It is possible on

Linux OS due to GNU C compiler ARM-linux-gnueabihf[43]. RPi documentation delivers the toolchain

of ARM compiler, available in [137].

The execution of entire pipeline is possible due to the roslaunch tool. It is another interesting

aspect of ROS. It allows launching multiple nodes locally and remotely via secure shell (SSH) settings.

Each node from Fig 4.4 is launch from the same �le. This technique simpli�es the start of programs

and allows you to prede�ned parameters for di�erent functions. This is necessary for projects in which

there are several work environments and many nodes. The roslaunch uses the XML con�guration with

the .launch extension.

add_de�nitions(−Wall −march=armv7−a −O2)

(a) Compiler option for OpenGV library for spe-
ci�c ARM processor with optimization -02.

#roslaunch start
roslaunch calibration_whole_processing_pipeline.launch

(b) Examples, use of roslaunch tool.

#!/bin/bash
sudo fallocate −l 2G /swap�le && sudo mkswap /swap�le && sudo swapon /swap�le

(c) SWAP - Virtual memory allocation.

Figure 4.5: Scripts used to program compilation.

# addresses presented in master host roscore
export ROS_MASTER_URI=http://192.168.10.132:11311 #

present the host's roscore services address
export ROS_HOSTNAME=192.168.10.132
export ROS_IP=192.168.10.132 # present the raspberry address
# addresses presented in slave devices connected to master
export ROS_IP=192.168.10.210 # present local address
export ROS_MASTER_URI=http://192.168.10.132:11311 #

present host address

(a) Two scripts of network con�guration for PC
master host and slave RPI devices.

#Toolchain − ARM processor
set(CMAKE_SYSTEM_NAME Generic)
set(CMAKE_SYSTEM_PROCESSOR ARM)

execute_process(
COMMAND ${UTIL_SEARCH_CMD}

${TOOLCHAIN_PREFIX}gcc
OUTPUT_VARIABLE BINUTILS_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE)

set(TOOLCHAIN_PREFIX arm−linux−gnueabihf−)

(b) Toolchain form Make option to cross-compile
library on ARM A7.

Figure 4.6: Network and toolchain con�guration scripts.
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4.1.4 Prototype

We would like to dedicate the �nal device to help the visually impaired person in displacement. This

CPS should be capable to localize and guide to the speci�c destination with abilities to new route

and directions computations. The devices must be able to react to the local environment, as opposed

to a standard navigation device. The detection of the scene's elements and changing dynamic data

should enable on barriers and obstacle avoidance. The section 1.5 explains in the details the mission

and device contexts, where the �nal version of the SCCM and the OSCC run. The third environment

represents the software and hardware of this CPS prototype.

The hardware is the MIMOSA prototyping board designed and developed by CEA. It is equipped

with two FPGA, Intel I5 and ARM Cortex A9. Fig 4.7b presents the approximate schematic of the

whole pipeline. At this moment, the system realizes the low level processing functions such as point

extraction, description and matching on the Kintex7. It realizes and returns exactly the same point

cloud structure as the Tracker functions presented in the section 3.2.3. The same functions and output

data create possibility to switch the environments very �exible and fast for testing purpose. The system

can use the second FPGA for recti�cation and the depth map extraction. There is an ARM processor

dedicated for the SCCM and OSCC procedures (see section 3.5). On the Intel i5, the system realizes

the rest of high-level applications related to navigation.

The whole setup composes of the backpack and the helmet. Moreover, there is an electronic and

battery hidden in the backpack as illustrated in Fig 4.7d. The electronic board with SD 500 GB drive

is in the wooden box, visible in Fig 4.7e. The helmet is equipped with two stereo cameras presented

in Fig 4.7f. Thanks to this, the whole system is portable. In this prototype, we test the SCCM with

OSCC and present the results the following chapter.

In future, instead of using this smart helmet prototype, we would like to propose the smart glasses

concept. However, in order to realize it the system must reduce the size of electronics board and

battery.
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4.2 Dataset

We studied di�erent existing datasets from the literature. All of them are dedicated to the speci�c

computer vision application. However, none of them depicts the scenario, where the realization of

SCCM and OSCC make sense. The custom dataset requires scenario where the two di�erent calibra-

tions exists in one sequence. We compare the studied methods between each other in order to point

the missing points for our scenarios. This section presents the speci�cation of perfect dataset for this

calibration purpose. Moreover, we propose and explain the methodology of handmade data acquisition.

4.2.1 The study of existing datasets

This section presents the main drawbacks from the datasets presented in the section 2.5. Each work

provides the computer vision benchmark. The recorded data consists of many di�erent sensors such

IMU, LIDAR and the video �ow of stereo cameras. It shows that existing datasets have a wide spectrum

of applications. However, this work is interested only in the data from the stereo camera sensor, in

order to perform extrinsic camera calibration.

The stereo sensor used in the dataset is usually mounted to the rigid metal platform. It is very

reliable and stable approach. In all examples, it guarantees that the camera does not change intrinsic

or extrinsic parameters. The standard approach ensures that the camera and its internal focus length

are well �xed, thus the all camera parameters are constant from the beginning to the end of the mission.

The moment of the decalibration does not appear, so the calibration is stable. Then, there is no need

of re-calibration. Moreover, stereo camera position are usually ideally parallel to each other. In such

cases, the R is in the identity matrix form so the obtained image planes are directly co-planar. This

camera's setup is correct and desired by systems to simplify many calculations such as recti�cation

process.

In additions, the Euclidean distance between the two cameras is characteristic for the majority of

stereo sensors. The only signi�cant distance is the one, along the X-axis. The other distances along Y

and Z-axes are negligible. Those are disproportionately smaller compared to the X one, thus we omit

them. However, this is a result of the most speci�c placement of the camera stereo sensor. Table 4.1

presents the main parameters of the analyzed datasets. We do not present the StLucia parameters in

the table because the setup is similar the KITTI [60] [59].

From the analyzed dataset, the KITTI presents a very interesting collection of sequences, which

provides images in high resolutions with many structures. Moreover, the dataset is widely used in the

communities to present the computer vision results. The Fig 4.8 illustrates the three frames where

the software program matches the stereo POI. The system continuously provides the data �ow from

the same level of the ground. There are many points in each part of the image, detected on di�erent

structures localized on various distances from the cameras. We use this dataset for future tests, even
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if the moment of decalibration never happens in any sequences.

Dataset KITTI EuRoC [23] Carla [44]

Realization setup mounted on car setup mounted on dron simulation

Motion to ground plane respect unstable in any plane, fast dynamic
movements

can be programmed

Additional sensors LIDAR, IMU, GPS laser, IMU data similar to LIDAR

Stereo setup stable, parameters constant stable, parameters constant the camera pose can be programmed

Camera Resolution 1382 × 512 1024 × 1024 can be programmed

Scenarios many on roadway scenarios many inside/outside scenarios many, simulation on di�erent condi-
tions possible

Calibration sequence is not provide, only one shoot with
calibration patterns

rosbag with checkerboard 7x6 is not provided

Table 4.1: The main parameters of the analyzed datasets.

Figure 4.8: The recorded dataset by stereo cameras mounted on car. The distribution of scene (ground
plane, sky) is very similar at each image frame. There is not a big di�erences in the rotation and high
from ground compare to ground plane.

The existing datasets allow testing many computer vision applications. The all-traditional datasets

consider each camera parameter as constant. This is the desired assumption by many computer vision

applications. Some of their sequences are su�cient to test the camera calibration. This kind of dataset

can provide good input data for recalibration testing. However, the decalibration phase does not occur,

thus testing this kind of task does not make sense in those standard approaches. The system ensures

that once perfect calibrated parameters are available for the whole sequence. The decalibration must

appear in order to verify the sense of SCCM and OSCC. This kind of situation never happens in the

mentioned dataset. It is the reason why there is a need for a new dataset to fully realize and test our

approaches.

4.2.2 Speci�cation of the perfect dataset for SCCM and OSCC

This section catalogs in three paragraphs all the most important aspects which dataset for SCCM

and OSCC should provide. The most meaningful element of the dataset is the decalibration phase

during the sequence. Therefore, at least two di�erent calibrations must take place in an ideal dataset.

The sequence should clearly separate them from each other. At the beginning, the sequence with a

calibration pattern in the scene should appear, in order to realize the initial traditional calibration

method. After, the system should realize the particular movement with the same calibration setup.

In this period, the self-calibration methods can calculate the extrinsic parameters and con�rm them

with traditional method. These procedures do not require any calibration patter, but the motion of

the camera into static environment. In the more advanced dataset, the system should monitor the
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motion with the other sensor such as indoor GPS, GPS, system of lasers, etc. It allows verifying and

con�rming with high-level applications like SLAM or visual odometry the currently calculated camera

parameters. This strategy can con�rm that obtained parameters are precise.

We de�ne the type of dataset's movements in two categories. The �rst, where the system realizes

the motion mainly in a two-dimensional plane. The mobile robot platform with cameras can provide

the example of such motion. It records the dataset while the pose of the camera respects constant

position in the relation to the ground plane. The second type performs movement in three-dimensional

space. The drone or camera mounted on the human provides this kind of dataset movement. This type

of motion exposes to dynamic movements in di�erent directions and at di�erent angles. Both types of

motion should be su�cient to realize the self-camera calibration procedures. However, the �rst group

seems to be less complicated because some of extra limitation exists, the dynamic and rapid camera

motion in up-down direction cannot appear.

The dataset must de�ne precisely the decalibration moment at the time. To achieve it, we propose

to use some characteristic and known objects in the scene, in order to verify and see the moment in the

dataset. Controlled camera position change is advisable, but seems di�cult to achieve in real situations.

This process leads from the �rst calibration (1) with R1, T1, E1, F1 to the second calibration (2) with

di�erent parameters re�ned to R2, T2, E2 and F2. This work assumes that the intrinsic and distortion

parameters are constant. However, in future, such group of dataset can realize the same scenarios with

constant extrinsic parameters and change the intrinsic. Moreover, for the most complicated case, it is

possible to change two groups of parameters. The movement after decalibration should be similar to

these in the �rst phase, that the self-calibration can recalculate new parameters. We suggest realizing

the motion in the closed loop. This strategy allows arriving to the starting point and it can be an

additional veri�cation step for high-level applications. The glsslam can provides the di�erences between

the input and the output position. This can be a good indicator of the quality by parameters.

At the end of sequences, the dataset should have the calibration patter in the view in order to realize

the �nal traditional calibration method. The initial and �nal sequences with calibration pattern should

ensure that the su�cient number of frames with chessboard is available for the traditional calibration

method to calculate the most accurate parameters.

At the end of sequences, the dataset should have the calibration patter in the view in order to realize

the �nal traditional calibration method. The initial and �nal sequences with calibration pattern should

ensure that the su�cient number of frames with chessboard is available for the traditional calibration

method to calculate the most accurate parameters.

In accordance with the methodology of standard stereo camera calibration, the algorithm has to

base on the overlapping views coming from the left and right camera �ow. The dataset must guarantee

that left and right images present the same part of scene at exactly the same time, in order to match

the proper points. However, we present the di�erent setups of cameras, to test, illustrated in Fig 4.9.
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Figure 4.9: There di�erent camera setups. The di�erent systems can increase the various R and T
parameters, thereby increasing the di�culty and di�erences to calculate.

The setup needs the perfect synchronization between two left and right �ows. The dataset must record

the camera stream with a certain speed. The higher FPS allows for smoother records of datasets, on

the other hand the low FPS can lead to delays, lags and problems related to the continuity of frame

data.

The dataset requires a high resolution of the input images, which is an equivalent of pixels in the

one image. There are many standard display resolutions: 1024 × 768 (XGA/XVGA), 1280 × 1024

(SXGA), 1600 × 1200 (UXGA), etc. As a rule, a larger number of pixels allows for a more accurate

representation of the reality. It a�ects in the better and more accurate POI detection. Therefore,

we recommend using the maximum resolution. However, the system must consider that each pixel,

depending on the format, takes up space. It signi�cantly extends all the processes associated with the

image analysis such as (corner detection, etc.). For this reason, an appropriate balance between the

quality of the image and its size is necessary.

The dataset must meet certain additional constraints, in order to detect accurate and well-distributed

points. The adequate illumination of the observed scene is a necessary condition for proper operation

of the image analysis functions. The dataset should avoid the direct blindness from the light source,

the re�ection of rays and other special situation in order to create more useful and easy sequences. An-

other important point is to have a heterogeneous scenery. Where the each part of the image has clear

and non-repetitive structures. These elements should be localized on the di�erent distances from the

camera. Finally, we recommend that the static scene should dominate the data set over moving objects

in the frame, for more standard approaches. In order to extract the scale factor by the self-calibration

methods additionally information is required. According to the section 3.5.5, the perfect dataset for
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(a) Cameras mounted on the bar which can be di-
rectly attached to the helmet.

(b) The bar with camera mounted on the helmet.

Figure 4.10: Prototype of stereo camera used to realize custom dataset.

the OSCC, should have in the �eld of view several objects, which are suitable for easy recognition and

have standardized sizes. Such objects can be tra�c signs, doors, windows or people. We propose to

use this type of scenery elements to extract the scale.

Dataset aspect Conditions

Content two synchronized overlapping stereo �ows, high FPS, su�cient resolutions

Scene and environment static scene, perfect lighting conditions, well distributed elements of scene, known objects in the scene

Calibration aspects decalibration during sequences, all camera parameters for �rst and second calibration

Table 4.2: The table shows the summary of the speci�cation for dataset dedicated for SCCM and
OSCC.

4.2.3 Realization of custom dataset

Setup presentation

The Fig 4.10a presents the setup for dataset recording, where the stereo cameras are mounted in the

metal bar, which can be attached directly to the helmet. For such system, the camera planes are not

in the perfect parallel position to the ground due to the camera's setup settings. However, the distance

between two cameras is contained only in one direction X-axis. During dataset recording, we hold the

system in the hand so it is sensitive on motions in all directions. We compare this setup to a drone

based system, which is very complicated due to irregular movement. The camera setup can move in

the all degrees of freedom, in each: roll, pitch and yaw angular in the respect to the three directions.

Technical recording aspects

Images �ow send the overlapping images straight to the PC, thanks to the u-eye ROS node [180]. This

application allows setting various camera and dataset parameters such as exposure, frame rate, type

of recording les (MONO8, RGB8, BAYER) and many others. Due the trigger technology build in

cameras, it is possible to take already synchronized images from both cameras. The system sent the

data with the time stamp, which enables to merge the corresponding frames. It is critical and necessary

step for each image processing, in order to ensure that images present part of scene at the same time.
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It allows correcting POI matches by low level processing functions. These data with certain parameters

and speci�ed frequency are received as an image messages, recorded in form of rosbag. During test,

we play this as the movies for test purpose.

The resolution of images provided by stereo cameras is 1200 ×860 pixels. The weight of one

standard frame with current resolution is around 3,5 MB. The system records the regular videos with

22 FPS. It is around 77 MB per second for each camera. It gives more than 4.5 GB each minutes

for one camera. In the stereo camera setup, two must multiply this value. These values show how

important and useful can be ow processing. Instead of copy and special mathematical operation on

the image memory, the low-level image processing functions can realize computation on the stream of

data at real time (see section 3.2.3).

For additional optimization requirements, we suggest using the Bayer format, which can reduce

the size of the image. However, then system requires additional conversion to grey or to RGB the

computer vision process.

Condition of recording aspects

We acquire the dataset outdoor close to the o�ce. The sun is in the sky, so the lighting is not controlled

but it is su�cient without any disturbance. The close surrounding environment has road, buildings and

roadside elements. Fig 4.11 illustrates the view of camera, where for a few images the POI detection

applied.

Figure 4.11: The recorded dataset by stereo cameras mounted on helmet. The points detection and
stereo matching are applied. It is possible to see that, between image's frames position of camera is
the same compared to the ground plane.

The recorded dataset is set on the 20 FPS in the RGB8 format. It allows considering less than 3

MB for one image. Depending on the sequence, the system records the di�erent length of the rosbags.

Each dataset consists of several small sequences. The next section explains this methodology. However,

each sequence is no longer than a minute. We use to test the part of the dataset that has 30 s. The

completely one registered sequence has less than 20×3×2×20=2.4 Gigabyte.

Custom dataset methodology

One registered dataset usually consists of three separate parts: two of them consist of an illuminated

calibration standard for approximately 45s and one of approximately 30s of camera movement in a
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static environment. The �rst one is the sequence at the beginning, where the system observes the

chessboard. The second is the sequence at the end with exactly the same indication as the �rst.

The extrinsic camera parameters obtained by the OSCC compare to those calculated by o�ine

traditional method, which is the reference procedure. For this reason, in the beginning and in the

end of recording dataset, we present the pattern and record as the separate rosbag. Thanks to these

sequences, system can �nd all necessary parameters: intrinsic, distortion and extrinsic.

In the custom-recorded dataset during around 30s, two di�erent calibrations of the stereo camera

setup exists. Moreover, the system perfectly knows the moment of decalibration in term of frame and

time. The movement with the calibration 1 realizes during �rst 15 s of dataset. After that time, the

position of the right camera is changed. It is due to the physical force, which touched camera. The

images are continuously recorded during and 15s after decalibration. The second part of the dataset

realizes the sequence with the calibration 2. The Fig 4.12 presents this strategy with the methodology

and characteristic. During this sequence, the SCCM and OSCC can be tested and try to be proved, if

approach from 3rd chapter works properly.

L

R

INITIAL OFFLINE CALIBRATION MISSION WITH NOT CONSTANT PARAMETERS FINAL OFFLINE CALIBRATION 

DECALIBRATION

L

R

CALIBRATION 1  R1 T2 CALIBRATION 2  R2 T2

Different elements of scene 

TRADITIONAL CALIBRATION 2TRADITIONAL CALIBRATION 1

Good lighting conditions

Stereo cameras 
with overlapping view

Known structures

Figure 4.12: The speci�cation of dataset for OSCC. At the beginning the traditional camera calibration
(with pattern) is performed. Then during motion, one of camera is decalibrated. At the end of
sequences, the calibration chessboard is shown again, in order to calculate second calibration of camera
parameters.

Traditional calibration phase

The system must calculate the parameters during the recorded dataset. During the �rst phase, the

system observes the calibration pattern during the sequence. The Fig 4.13 shows this process. The

captured data from u-eye node �ll the o�ine camera calibration node [179], which is based on OpenCV.

We run this node with GUI presented in Fig 4.14. The Fig 4.15 shows the command to calibrate with

several parameters related to calibration tool and image �ow. The o�ine traditional calibration node

provides intrinsic parameters of the left and right cameras, and the extrinsic parameters of the stereo

pair. The R and T express the positon of right camera the left camera. This method computes

the parameters during procedure. This methodology ensures that in the recorded rosbag, there is a
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Figure 4.13: Dataset recording - the sequence for o�ine method is repeted on the beginning and on
the end of one scenario.

(a) API collecting data from two images streams. (b) API ready to calibrate parameters.

Figure 4.14: The GUI of ROS node used to traditional stereo camera calibration.

su�cient number of images of the calibration pattern to perform accurate calibration. The traditional

calibration needs a su�cient number of frames with enough pattern variation to estimate the correct

parameters (X, Y, size and skew, shown in Fig 4.14a). When the system has enough data to calibrate,

the blue button calibration is ready to use, as presents Fig 4.14b. This node provides the R and T

parameters and not the E matrix, which is required to compare selected approaches. It is possible to

obtain the E from the extrinsic parameters. There are four solutions, but it is di�cult to guarantee

which one is the best. E = R[t]x or E = −(R[t]x) or E = (R[t]x)′ or E = −(R[t]x)′.

The o�ine camera calibration based on the Matlab application can calculate the same parameters

plus E and F matrices (see section 3.4.1). However, this procedure does not inform the system, if there

is already a su�cient number of images to realize a proper calibration during the recorded sequence.

We use two di�erent camera calibration methods during this dataset. It can ensure that the calculated

extrinsic camera parameters are precise. Moreover, this approach provides F and E matrices, required

by OSCC.
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rosrun camera_calibration cameracalibrator.py −−approximate 0.5 −−size 9x6 −−square 0.25 right:=/right/image_raw left:=/left/image_raw
right_camera:=/right left_camera:=/left

Figure 4.15: The GUI of ROS node used to traditional stereo camera calibration. First parameter after
size informs about chessboard size. Next the square represents a real size in cm of one black square.
Following, right and left camera calls the name of image stream from ueye_ cam node.

4.3 Experiments on the Stereo Camera Calibration Monitoring -SCCM

This section presents characteristic and methodology of SCCM based on the approach from the section

3.5.3. This process monitors current quality of stereo camera calibration in the sense described in the

section 3.5.4. The several di�erent policies are used to de ne if current extrinsic camera parameters

are still valid or the camera's position is changed.

The standard scenario is related to dataset from section 4.2.3 with two phases. During the �rst

stage, a scenario is calibrated, and it uses initial parameters found by o�ine traditional method. The

second phase in the middle of dataset starts with decalibration. The initial extrinsic parameters are

not correct. The main task of SCCM is to detect when it happens. The system must detect this

moment as soon as possible because the wrong extrinsic camera parameters can lead to many errors

from high-level application.

4.3.1 Input data used to SCCM

The section 4.3.3 proposes and explains two di�erent groups of policies in order to realize SCCM. The

�rst group uses the amount of POI in a speci�c category. The second group of SCCM tactic depends

on the value of epipolar error in selected group. The �nal decision, if the system needs calibration is

based on a combination of those policies.

At this point, it is mandatory to remind the input POI after the �ltering tracker strategy from the

section 3.5.2. The whole detected and stereo matched points must satisfy two important conditions to

be considered as the inlier or outlier. It has to be temporally (at least once before left and previous

left) and the stereo (left - right) track. If it is not, then points move to �not considered" group.

Amount of POI in speci�c category

Fig 4.16 shows the number of points in each group. The grey bars on the background plot all stereo

matched points from the current frame. For almost entire sequences, the value is quite stable from frame

to frame and has between 100 and 200 points. Small irregularities occur in the frame range of 20th-

29th, 221th-230th, 253th-260th and 275th-285th. During these frames, there are not enough points in

the system. It is because imperfections of dataset (poor or too strong illumination, homogeneity of the

image, etc.) Then, the green color represents the amount of inliers. Parameter is stable until 157th

frame, when it starts dropping. The current number of outliers are marked with the red line, which
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Figure 4.16: The plot shows the number of points on each group from every frame of the analyzed
sequence.

signi�cantly starts to increase when the number of inliers decreases, around 153th frame.

The last group of points does not satisfy the tracker condition (the point is not tracked at least on

the frame before). In Fig 4.16, the yellow color plots the "not considered" points. We can see that the

amount of such points is stable during 300 frames.

Value of epipolar error in speci�c category

The second group of policy uses the sum and ratios between the epipolar error in speci�c categories, in

order to activate the triggers. The system must exceed the particular higher number relation between

the initial/global average value and the local/current average of epipolar error calculated from stereo

points. It calculates the epipolar error for each of the considered stereo pair, due to methodology

presented in the section 3.5.1. The whole calibration pipeline uses the same conditions for tracker in

this policy's group. To be stereo considered, the point has to be temporally (at least once before left

and previous left) and the stereo (left - right) track.
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Figure 4.17: The plot shows the sum of epipolar error on inliers and outliers group from every frame
of the analyzed sequence.

The Fig 4.17 shows the sum of epipolar error in each group: inliers and outliers. Moreover, the grey

color bar form in the background plots the sum calculated from all stereo matched points at current

frame. For almost entire �rst half of the sequences the value is quite stable and seldom exceeds 100.
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For the second half of the dataset, the sum is a few times higher. Then, the green color represents the

sum of error calculated from inliers. Parameter is quite stable for whole sequences. It is because the

epipolar error de�nes the point category such as inlier. If an error is higher than the threshold value,

the outlier is the point class. The current outliers are marked with the red line. The sum of epipolar

error from outliers signi�cantly starts to increase after 155th frame. An irregularity of epipolar sum

for outliers occur in the frame range of 20th-29th, 218th-232th, 253th-260th and 275th-285th. During

these frames, there are not enough points in the system, the dataset imperfections caused it.

The two diagrams shown in this section allow determining whether the current parameters are up

to date. Based on these charts, the section 4.3.3 proposes the di�erent techniques to detect the right

moment.

4.3.2 Average value and trigger methodology

It is di�cult task to determine the standard value of each monitored parameter from �rst or second

group of policies. Because it is strongly dependent on dataset and low-level functions. For example, the

various numbers of points detected on each image's frame signi�cantly depend to particular detector

or tracker, its method, internal parameters, speci�c condition etc.
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Figure 4.18: The plot explain the average construction technique and trigger simulation. It shows
that this technology is able to eliminate a false data.

To minimize these criteria e�ects, at the beginning of each scenario, every monitored parameter

is set as the initial or global (names are used alternatively) average value, it is based on the �rst 15

frames starting from the second image. The Fig 4.18 shows the initial average building process in a light

blue line. The number of frames used to calculate an average is found by experiments and recording

parameter - FPS. Thanks to this proposition, monitored value is independent from the current dataset.

The di�erent SCCM policy requires threshold value, in order to activate a trigger. This is presented

in the red line, its value is determined experimentally for each monitoring tactic. In the Fig 4.18, we

can observe that system calculates the 200

For each following plot in this section, the orange line or the orange bar represent the currently
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monitored parameter. We use these di�erent formats in order to increase readability of plots. In the

Fig 4.18, it intersects threshold line at 21th, 30th and 42th frame. However, due to not perfect and not

a deterministic condition of the dataset, it can happen that measured values �uctuate very intensive.

We propose the local average technique for SCCM, in order to avoid it, represented in the blue line.

The system construct it from 15 frames, tests for this value passed.

The alarm triggers, when and only when, local average value (not monitored parameter) is higher

than the threshold. This methodology eliminates false alarm at the 21th and 30th frame. It triggers

policy at 46th frame. This may result in a small delay in relation to the real changes of parameters.

The image's frames are taken at a speed of about 20 FPS (for this tested dataset), so delay is never

longer than 1 second. Additionally, positive aspects that allow to avoid false alarms are higher than

this small delay. This policy can detect a second phase of the scenario.

For each plot's �gures in the following section, the X-axis represents the frame number. The system

use the value interchangeably with time domain. However, in order to do it, it must recalculate. We

record the dataset sequence with a speed of 20 FPS, so 1 FPS is 0.05 s.

In each of following plots, there is a policy trigger. If, it represents value zero, the current extrinsic

parameters satisfy the particular conditions. When the value jumps to high value (1 or other positive

value like 0.9. 1.2 etc. sometimes uses to increase a readability), it symbolizes that the tested monitored

tactic detects decalibration and needs new extrinsic camera parameters.

The next section presents each policy with alarm (trigger) criterion. We present them on the

appropriate sequences, recorded based on the meteorology from the section 4.2. To validate and show

that this technique works properly, we test methodology on the KITTI and the inversion sequence of

custom dataset. Finally, we comment the obtained results in the last section of this chapter.
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4.3.3 SCCM policy

Policies rely on the number of points

We present the �rst group of policy, which bases on the ratios between the numbers of points in speci�c

categories. The system requires exceed the particular relation between the initial/global average value

and the local/current average number of points, in order to activate the triggers, as presented in the

section 4.3.2. The precise de�nition of each point's category is available in the section 3.3.1.

The �rst presented policy is based on the ratio between number of points satisfy and do not ful�ll

the epipolar geometry. Fig 4.19 shows the decision making process based on this criterion. The orange

bar presents the current monitored value. The presented ratio is very unstable and varies a lot in

the range between 10th and 150th frame but it does not tend to zero in that window. The number

of points causes a large variation. If there is only one current outliers (bad point in the considered

group) in relation to one hundred inliers (good points),then the ratio is several times higher than when

there is not one but several outliers (the same value divided by a higher number). The unfavorable

relation begins when the amount of outliers coincides with the number of inliers. In such case, the ratio

tends to reach 1, or less. It is clearly visible for orange bars after the 157th frame that the monitored

parameter certainly drops and stabilize, and then it is close to 0.

The system composes the global average in the light blue line. Then, based on this the threshold

(red color line) value is calculated. In this policy, it is 60 % of initial value. We select this value of

the experiment. We apply the local average ratio technique, in order to avoid deviations of current

measured parameters. The system compares the dark blue line with a threshold. In Fig 4.19, the local

average intersects the threshold twice, at frame number 25th and 150th. It implies and turns on the

ratio policy trigger, which presented in the black line in the plot. The ratio between 20th-29th frames

tends to be small due to a small number of points. It is the false alarm, which the other policies must

eliminate.
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Figure 4.19: 1st SCCM policy is based on ratio between the amount of the inliers to outliers.

The next policy rests upon on the ration between numbers of inliers to all stereo points. In this

policy, the threshold value is set on the 0.75% of global initial average. The system set this value because
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during the standard sequences in the dataset, the number of points satisfying epipolar geometry should

increase. If and only if the movements of the camera is smooth and camera's pose does not change.

However, the drop of inliers can happen, for example: when some object obscures in the camera view

or camera parameters changed. Fig 4.20 shows that in the �rst half of the test, the value of a measured

parameter systematically arises. Then after 153th frame the current ratio of inliers of all stereo points

decrease. The local average follows the same trend and activate a trigger at 161th frame. Moreover,

there is similar false alarm between 29th and 35th frame as in the previous policy.
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Figure 4.20: 2st SCCM policy is based on ratio of the inliers to all stereo points.

The last ratio policy in this category shows the number outliers to all stereo points. The Fig 4.21

illustrates monitored parameters and the decision making process with a similar methodology. The

threshold value is set on the 5 times higher number than the initial average. This value is set high

because, in the beginning of standard dataset the number of outliers should be very small. The system

starts with perfect extrinsic parameters from o�ine method. Test shows that proposed value is well

suited. For the �rst phase of sequences outliers ratio tends to zero, then during second phase when

camera must recalibrate, the value is very high. In this policy, the system does not activate the false

alarm. The trigger is turned on only once at 155th frame.
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Figure 4.21: 3st SCCM policy is based on ratio of the outliers to all stereo points.
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Policies rely on the epipolar error

The Fig 4.22 illustrates the decision making process according to median of epipolar error from all

stereo considered points. As for each plot, the orange bars provide a value of monitored parameter

from the current frame. The system calculates the local average median of error (dark blue color line)

from last 15 frames.

We construct the threshold on 3 × higher value than the initial/global average. In the Fig 4.22,

the value crosses the threshold only once at 157th frame. Until this moment, the current and average

median of error is low and stable. Then, it starts signi�cantly rising more than 100%. The high value

stabilizes and goes until the end of the sequences. The trigger turns on in the 157th frame. When

the extrinsic parameters are perfect, the error from perfect points should tend to zero. The median of

error from precise points should be naturally small. For the �rst half of sequences, it does not exceed

1. During the second half, the median starts to vary and hits the values higher than 4 × of previous

value.
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Figure 4.22: 1st SCCM policy is based on median of epipolar error of all points from current frame.

Another SCCM policy is based on the ratio sum of epipolar error from inliers to outliers. This

monitored parameter does not rely on local average value, but it is constructed on the current epipolar

error sum. The Fig 4.23 presents decision-making process with monitored parameters. The threshold

value is set on the 20% of initial average. Two halves of the dataset are well visible due to the value

of the ratio. The �rst half, it is more than 1, when the second half it tends to 0.

The Fig 4.24 presents the last SCCM policy in the second group of decision. The measured

parameter describes the whole epipolar error sum of considered outliers points. The same average

methodology, the system use to turn trigger. It computes the local average base on the last 15 frames.

If, it is higher than 5 × the initial average, it turns the trigger. In the Fig 4.24, the trigger turns on

three times, at the frame 158th, 239th and 295th. It is well visible that during the second part of the

sequence monitored parameter is a few times higher.
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Figure 4.23: 2st SCCM policy is based on the ratio of sum of epipolar error inliers and outliers (from
current frame).
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Figure 4.24: 3st SCCM policy is based on sum of the whole epipolar error calculated only from points
considered as outliers.

4.3.4 Combination of SCCM policies

Each of proposed SCCM policies can give a false alarm despite the methodology used. If there is

not enough data (considered points with low requirements - tracker parameters), it is impossible to

take up the correct decision. Such a situation can occur when there is insu�cient light quality of the

scene or the camera's view obscure, etc. Then, there is not enough points in the system for a certain

period. The SCCM should have the possibility to understand this kind of scenario. During this type of

sequences, it is unlikely to decide whether the current parameters are correct or not. If such a period is

long, there is a high probability that the environmental conditions are not su�cient to analyze whether

the current calibration is precise enough.

In the following section, Fig 4.25 presents the methodology to realize this type of problem. The

system monitors the ratio between numbers of not considered points to the whole stereo number

points, in order to decide when policies cannot take a decision. The average methodology presents

the three periods in the whole dataset, 25th- 37th, 238th-267th and 283th-289th, where the ratio of

not considered points is too high compare to the initial global value. The whole system during these

frames cannot decide if current parameters are good or bad.

The section 4.3.3 presents 6 di�erent triggers, which are responsible for SCCM policies. Each three
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Figure 4.25: Not considered points SCCM policy is based on number of the not considered points to
all stereo points.

of them create a one separate decision. First is based on the logical sum of the all three decisions

from ratio parameters, it is presented in the Fig 4.26 in red color. The second relies on the similar

conclusion, according to the value of epipolar error in the Fig 4.27. Both SCCM decisions at the same

time must be positive, in order to pass to next decision step. The third condition is based on the not

considered points. It allows knowing when the system cannot decide whether it needs or does not new

extrinsic parameters. Its decision from the Fig 4.21 must be equal 0, if it is not, the camera monitoring

policy provides the -1 which refer a lack of opportunities to take a calibration decision without having

regard to the other conditions. If and only if these three conditions are favorably satis�ed, the system

receives information that needs a new calibration. If the global trigger is set once, system must be

recalibrate. Even, if after a few frames, one or more policies are deactivated. Once, the high-level

applications received a signal, those are waiting for new extrinsic camera parameters. The Fig 4.28

illustrates the �nal decisions based on the three conditions. The list 4.1 presents the three decisions

with 7 di�erent triggers.

• Condition 1 - decision and policies are based on amount of points

� ratio between average inliers to average outliers

� ratio between local average inliers to all stereo points from current frame
Average(nbinliers)/nbstereo

� ratio between local average outliers to all stereo points from current frame
Average(nboutliers)/nbstereo

• Condition 2 - decision and policies are based on value of epipolar error

� median of error of pair of points based on epipolar geometry x′RExL = error

� sum of error, sum of error inliers and outliers
∑

(error)

� average error of one point, inliers and outliers(
∑

(error))/nbinlier

• Condition 3 - decision and policy is based on su�cient number of point

� ratio between local average nor considered points to all stereo points from current frame

List 4.1: List of all conditions with each trigger.
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Figure 4.26: First decision based on three di�erent ratio policies.
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Figure 4.27: First decision based on three di�erent epipolar error policies.

Custom dataset

The section 4.3.3 presents each policy on the custom-recorded dataset. We use the sequence where

position of camera change in order to visualize and explain the selected methodology. The whole

sequence has around 15 s. We record it with the speed of 20 FPS. The �rst phase is �nished, in

approximately half of this dataset. The second phase starts with the change of the right camera

position. On each of Fig 4.19 4.20 4.21 4.22 4.23 and 4.24, the moment when the extrinsic camera

parameter change, it is well visible and detectable thanks to the presented methodology. We show the

two main decisions together on the top of Fig 4.28. At the bottom, there is a �nal decision, which

composed from three presented conditions. If the �nal decision presents zero, it means that, the current

parameters are correct. If it is -1, the system cannot take a decision, and when it is 1, it requires new

parameters.

In this dataset, there are three di�erent periods with not su�cient number of points (inliers and

outliers). That is why, in that time some of the proposed policies triggered false alarms. On the other

hand, the other suggested policies choose a correct decision during the same time. To take a �nal

positive decision for calibration, there is need of policy consensus.

The system activates all proposed policies at 162th frame. It has a small delay compared to real

moment when camera pose changed. Moment, when the right camera moved (touched) happened

around the 157th-161th frame. The moment is clearly visible and can be can be detected by the
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proposed strategy. Even with a not perfect dataset, the used technique works well and fast.
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Figure 4.28: Final triggers from each condition for custom dataset, which are based on previously
presented policies.

Custom dataset inversion

We realize the second validation of this methodology on the inverted dataset from previous test. The

system �nds the extrinsic camera parameters on the end of the sequence. Then, we apply them as the

initial parameters. For this reason, the system during the �rst phase has wrong T, R and E. Then, for

the second half of the sequence, when the camera is touched, the extrinsic parameters are correct. The

Fig 4.29 illustrates the high epipolar error in the �rst half of the dataset, after it tends to zero. The

Fig 4.30 shows that the number of outliers in the beginning is higher than at the end of the dataset.

From both illustrations, it can be read that the parameters are changed somewhere between frames

157th-162th.

The system applies all policies to realize SCCM in this dataset. The Fig 4.31 presents only the

median of epipolar error policy. Despite the fact that on the two graphs a decalibration moment

is visible, the proposed SCCM technique does not work. Because the system must have ideal input

extrinsic parameters at the beginning of the mission. That, it can verify the parameters later on. The

last presented Fig 4.32 shows the decision making process based on all conditions. The system thinks

that the system does not need to recalibrate although it must. Unfortunately, this is due to poor input

parameters.

KITTI dataset

We preform the last test in this section on the KITTI dataset. The extrinsic parameters of the

calibration are very precise and stable during whole sequences. Anyway, we use this dataset to test,

129



0

100

200

300

400

500

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

Number of frame

Su
m

 o
f 

ep
o

p
o

la
r 

er
ro

r 
= 

x'
Ex

Sum of Epipolar Error

Sum of Epipolar Error from Inliers and Outliers

Sum of Epipolar Error from Inlier

Sum of Epipolar Error from Outlier

Figure 4.29: The plot shows the sum of epipolar error on inliers and outliers group from every frame
of the analyzed sequence (inverted dataset).
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Figure 4.30: The plot shows the number of points on each group from every frame of the analyzed
sequence (inverted dataset).
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Figure 4.31: SCCM policy presents median of epipolar error of all points from current frame (inverted
dataset).
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Figure 4.32: Parameters of SCCM, which is based on the parameters from the end (inverted dataset).
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because it has a di�erent numbers of points in the image. If proposed policies are not depended from

the di�erent dataset's parameters, it can show false information. In a previous test (custom dataset),

tracker detects usually between 100 to 200 points, for KITTI there is more than 700 points, what it

is shown in Fig 4.33. The Fig 4.34 illustrates the epipolar error of each point group. This section

presents only two policies, but the �nal tested system applies all policies to take a �nal decision. The

Fig 4.35 presents the one trigger, which base on the number of point. The Fig 4.36 presents the second

that relies on epipolar geometry. We plot the �nal decision in the last graph in this section 4.37. As

expected, the SCCM shows that the parameters of the camera are correct throughout the entire length

of the sequences. We carry on the tests on two di�erent scenarios provided by KITTI. In addition, it

is necessary to pay attention to a much smaller scale of error, which comes from dataset, where ideal

parameters and very high quality of images exist. The system should realize the point detection with

greater precision compared to custom dataset.
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Figure 4.33: The plot shows the number of points from each group, all stereo, inliers, outliers and not
considered from every frame of the analyzed sequence (KITTI dataset).
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Figure 4.34: The plot shows the sum of epipolar error on inliers and outliers group from every frame
of the analyzed sequence (KITTI dataset).

4.3.5 Conclusion

This part of chapter explains the characterization of SCCM. The section presents two groups with six

standard monitoring policies and their description. We design the techniques to be independent from
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Figure 4.35: Ratio between inliers and outliers - one of the SCCM, which is based on the number of
points, realized on KITTI dataset.
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epipolar error, realized on KITTI dataset.
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Figure 4.37: The �nal decision of SCCM realized on KITTI dataset.

the dataset. However, it requires the precise extrinsic input parameters. We describe and test each

of policy on one particular example in this section. Moreover, we run the same tests on the KITTI

sequence. This section presents and discuss the obtained results. In addition, we present the technique

that limits the level of decision-making, it runs when in the system is the insu�cient amount of data.

We perform the �rst test on the dataset recorded on the methodology from the section 4.2. It has

a two phase with di�erent camera's position. Unfortunately, the quality of dataset is not perfect. The

points are not equally distributed over each part of the image. Moreover, they are not in di�erent

depth of the image. The Fig 4.38a illustrates the example of one frame from the dataset. However,

the proposed monitored methodology is able to detect correct moment, when camera's pose changed.

We test the same dataset but in the reverse order during second test. The system con�rms that the

monitored indicators allow detecting the same moment when parameters are changed. However, the
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(a) Custom dataset example. (b) KITTI dataset example.

Figure 4.38: Statistic frame with points detected from each of dataset tested.

calibration trigger does not work correctly, because the methodology requires the ideal input extrinsic

parameters. The recorded dataset does not ful�ll this condition. Therefore, we realized the test as we

expected.

The Fig 4.38 shows the last tested dataset which one frame has perfect distribution of points,

good lighting, and many structures on many di�erent depths. This dataset is not prepared for OSCC

test, because it contain only one phase, where camera are perfectly calibrated, due to the same initial

parameters. SCCM technique shows the perfect stability of each parameter. The proposed policies do

not detect any changes, what is an expected result.

A technique, which, due to the limited number of points in the system, prevents system from

making a decision about calibration, works correctly. We run the same policy on each dataset. For

�rst tests, in the situation when the number of stereo points clearly drops, the technique blocks the

decision making process.

There is need to test proposed methodology on higher number of di�erent dataset, to decide if

proposed strategy works for various setups. So far, it works well on both datasets. It is not depending

on number of detected point. On the other hand, the methodology requires the perfect extrinsic

parameters at the beginning of sequences. The realized tests prove that proposed techniques have

sense. Thanks to SCCM system knows when parameters are not correct, and then calculation of a new

extrinsic camera calibration is possible.
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4.4 Analyze of online stereo camera calibration - OSCC

We show that the SCCM from previous section 4.3.4 can detect the need for new extrinsic camera

parameters in the system (that the camera's position has changed). If such situation occurs, there is

a need to �nd new R, T and E. When the system is able to detect decalibration moment, it should

start calibration procedure. In the 3nd chapter, the section 3.4.3 shows that it is impossible to obtain

a high accuracy of extrinsic parameters while the 8PA uses only points from one image frame. The

amount and precision of points detected only at one frame are not su�cient. That is why, to have

higher number of points to disposal, the calibration procedure should start the points accumulation

process (described in the section 3.5.1). However, the considered input points for future calibration

appears after a new camera's position acquisition. When system detects the moment when system is

uncalibrated, it removes all points from the pipeline. The old point in the map structure describes

old extrinsic parameters. The Fig 4.39 presents that the accumulation allows saving all the point in

the new map (structure). This example contains only points from last three frames. The stored data

permits to the di�erent �ltering strategy realization. The main goal is to choose best points for the

calibration to obtain new extrinsic parameters as precisely as it is possible. Once extrinsic parameters

are calculated and found, the system has to con�rm the parameters, restart the SCCM process until

the next uncalibration phase.
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Figure 4.39: Example of standard points accumulation from last three frames. It presents how points
look in the map structure. The history of points with its epipolar error is contained. While points
are removed and new extrinsic parameters arrived, the error is not longer true. The only information
storage in epipolar error is if point has a stereo match. The age and frame's number when point
appeared is stored.

Based on structure from Fig 4.39, the di�erent �ltering functions can choose the most interesting

points. The Fig 4.40 presents each techniques in graphic and text form. The system continuously

tracks every point between left and right image. The data allows monitoring in how many frames it

appears. System does not know the epipolar error value, because the E is not actual. The system �lls

the parameter with value -999 if and only if point is not stereo tracked.

4.4.1 Continuous stereo camera calibration and �ltering methods veri�cation

The continuous stereo camera calibration allows testing and choosing the best and most optimal

�ltering method for our pipeline. We run the calibration procedure on each frame for 40 continuous
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Figure 4.40: Filtering strategy points presentation.

• Technique 1 - All stereo from current frame (inliers, outliers, not considered points)

• Technique 2 - Stereo from current frame older than 1

• Technique 3 - Stereo older than 1 plus their history from the whole map point structure

• Technique 4 - All points older than 1 plus every second match of their history from the whole
map point structure

• Technique 5 - Stereo if their history is good

• Technique 6 - Stereo older than 1 plus their history if and only if whole history is good

List 4.2: List of all �ltering policies with description.

measurements in the same sequence. It starts on the 50th frame of input sequence, that the input

points �ll the map structure. The �ltering strategy selects points according to methodology from the

List 4.2. The points after �ltration moves directly as the input for the 8PA. We select the preference

from among methods based on comparing the obtained R and T to the parameters delivered by the

traditional o�ine method. Two Figs 4.41 and 4.42 show the error of each strategy which is presented

in a form of e1 and θ (see section 3.3.2). Moreover, in the right part of the each �gure, we present the

small table with the median and average computed from all measurements. The system preforms the

�ltering test on custom dataset, which runs for SCCM test.

We obtain the best results in the term of T by the technique 6. The average from 40 measurements

is equal 0.16. It provides all stereo points older than one with all stereo tracked history if and only if
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Figure 4.41: Two plots present the translation error - e1 calculated between the T obtained in the
continuous stereo camera calibration, which is based on the points provided by selected method and
the o�ine traditional method. In �rst (up) there are three (1-3) strategy methods, which seems be less
precise and more vary. On the second there are (4-6) another three methods, which are more stable
and precise.
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Figure 4.42: Two plots present the rotation error - θ calculated between the R obtained in the
continuous stereo camera calibration, which is based on the points provided by selected method and
the o�ine traditional method. On �rst there are three (1-3) strategy methods which seems be less
precise and more vary. On the second there are (4-6) another three methods, which are more stable
and precise.

the whole history of point has stereo matches. This method should have one of the highest number of

points among all methods. However, the di�erences between the technique 3 and 4 is negligibly small

on this test. This is probably because the RANSAC can handle and remove a small number of wrong

points without any problem. The R results are the same for each of the proposed �ltering methods

and is equal approximately 3 degrees. For the future tests, we propose to use only 6th technique to

provide points for the OSCC.

Nevertheless, the obtained results are not very precise. The R and T found by online method are

not the same as the parameters found by o�ine method. The two main facts cause it. The �rst,

the point detector provides a position in the integer precision, when the o�ine method uses points
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in the �oating magnitude. The second fact, we noticed in the part 4.3.5. The created dataset does

not provide a good enough structure to detect perfect points. The traditional method requires perfect

points in term of distribution and distance from camera relatively close between 2 m to 3 m in order

to calibrate o�ine. Therefore, the same type of point must be used to the OSCC. Unfortunately, the

environment is very poor in term of structures in the used dataset. It prevents to the detection of a

large number of points, from di�erent distance to the structures in the view of the cameras. Moreover,

the system has not same distribution of points in the each part of image, visible in Fig 4.38a.

Based on this dataset, the system proves that even with not well-developed structures and not

su�cient number of points in the integer precision, the algorithm is able to test and verify that the

current extrinsic parameters are not precise. On the other hand, the custom dataset is not good enough

to re-estimate the stereo extrinsic camera parameters, from the presented reasons.

We test the same �ltering strategy in the continuous stereo camera calculation on the KITTI

sequence. This dataset provides the perfect structure from each distance, which should allow computing

better camera parameters, in order to validate proposed method. The four plots presents the obtained

results of test. The Fig 4.44 shows the R error expressed in the θ, which is around 3. This result has

the same level of precision as tests performed on previous dataset. On other hand, the test realized in

this section use the perfect points and show that the θ reduces to 1.5. Fig 4.43 presents the T error e1.

For each axis, it is close to 0.07 of normalized value in the length distance, when for previous dataset

it is 0.15. The points from the chessboard give the 0.02 result. The last Fig 4.45 gives the number of

input points from the �ltering method and number of inliers. We can compare it with the number of

points from the same sequence presented in Fig 4.33, however we add history of points. That is why

the number of points is almost 1.5 times higher.
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Figure 4.45: The plot presents the number of input points delivered by the 6th �ltering strategy and
amount of the inliers used to estimate error.

4.4.2 Triggered stereo camera calibration

The previous sections show that the presented SCCM is able to check when the extrinsic parameters

are not up to date. This section presents the continuous stereo camera calibration. The proposed

accumulation and �ltering strategies, average techniques and all SCCM policies are applied. Following

section presents results of the OSCC, which activates the camera calibration, when it is required.

We realize all previously proposed methodologies on the same dataset. As for previous tests,

the traditional method provides the input extrinsic parameters. At the beginning of the sequence, the

SCCM procedure shall construct the initial global values with its thresholds in appropriate proportions.

Then, all policies verify each condition in real time. The QoS waits when all conditions are satis�ed.

Next, the system can decide that it has to recalibrate, then the system delates the existing parameters

and begins the data accumulation process.

In the previous tests, the system executes the continuous calibration when the point accumulation

process runs during the 50 frames. In the real scenario, where FPS equals 16, the accumulation can

take three seconds. For some applications, this time can be too long. For this reason, in this test, the

system executes the 8PA if there is minimum 100 points in the accumulated structure and minimum

10 frames passed from the calibration trigger. When both conditions are satis�ed, the algorithm starts

to compute model and extrinsic parameters based on the �ltered points from the map structure.

The newly estimated parameters are set in the system as soon as they are calculated. On this base,

during next 15 frames, the system executes the new process of initial global values. Then, it computes

and sets the new thresholds in the same proportions, as �rst ones. When done, the new SCCM process

begins again.
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Custom dataset

For the �rst test, the dataset created according to a methodology from the section 4.2 is used. Figs

4.46 and 4.47 presents the number of points and sum of epipolar error, which are the main parameters

on each every policy, runs. Due to the other �ltering techniques for former tests, the number of points

and sum of error is not equal to the previous measurements from Figs 4.16 and 4.17, even though they

are realized on the same sequence. Despite, all tendencies of the observed parameters occur and are

similar.

It is important to notice that the scale of epipolar error has changed. It is because instead of using

points expressed in pixel coordinates and F. The system computes the epipolar error on the base of

normalized points and E. This reduces order of error magnitude and a�ects each epipolar error policy.

Following, the two plots 4.47 and 4.48 presents selected SCCM policies. We present the ratio in

logarithmic scale, because the second half of the dataset has parameters on another order of magnitude.

The last Fig 4.50 illustrates the decision making process.
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Figure 4.46: The plot shows the number of points from each group, all stereo, inliers and outliers from
every frame of the analyzed sequence (on custom recorded dataset).
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Figure 4.47: The plot shows the sum of epipolar error on inliers and outliers group from every frame
of the analyzed sequence (on custom recorded dataset).

In each of �gure, the moment when the camera changes poses can be detected. The frame when

SCCM decided that system is decalibrated occurs at 161th frame. It is one frame earlier compared

to the test from Fig 4.28. After recalibration, the measured parameters are not as high as they were
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Figure 4.48: Ratio between inliers and outliers - one of the SCCM, which is based on the number of
points, realized on recorded dataset.
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Figure 4.49: Median of epipolar error measurement - one of the SCCM policy, which is based on the
epipolar error, realized on recorded dataset.
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Figure 4.50: The �nal decision of SCCM realized on recorded dataset.

before. However, most of the new thresholds are not intersected by the average measurement values,

as it is shown in Figs 4.19 and 4.22. Therefore, the system considers that it is correctly calibrated. It

suggests that the calculated parameters are more accurate than the initial, o�ine parameters.

From the monitored parameters, it can be concluded that the second change of the position of the

camera did not occur in the later part of the measurements. When camera changed position di�erences

in term of epipolar error and number of points is huge. It is observed that this kind of variation does

not appear after the system is recalibrated. Unfortunately, in spite of everything, it is di�cult to

decide if the system has been precisely calibrated with new parameters. The system calculates its new

global parameters, assuming that it has been correctly calibrated. According to the tests performed

in section 4.4.1, the results obtained are not always correct.
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Kitti dataset

For the second test, the KITTI scenario, which has perfect parameters for the whole sequence, is used.

In order to make this dataset usable, after 21 frames the algorithm automatically resets the existing

extrinsic parameters in the system. In this manner, it simulates parameters decalibration. This decision

is visible in Fig 4.51. Thus to this the process of accumulation start at 21th frame and goes until 33th.

Then during next 15 frames, the new global initial values and thresholds are constructed. At 48th

frame, system starts again the SCCM
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Figure 4.51: The �nal decision of SCCM realized on KITTI dataset.
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Figure 4.52: The plot shows the number of points from each group, all stereo, inliers, outliers and not
considered from every frame of the analyzed sequence (KITTI dataset).
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Figure 4.53: The plot shows the sum of epipolar error on inliers and outliers group from every frame
of the analyzed sequence (KITTI dataset).

The Fig 4.52 illustrates the number of inliers and outliers. We can observe that the proportion

between two numbers is clearly di�erent during �rst 20 and last 140 frames. This plot allows concluding
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Figure 4.54: Ratio between inliers and outliers - one of the SCCM policy, which is based on the
number of points, realized on KITTI dataset.
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Figure 4.55: Median of epipolar error measurement - one of the SCCM policy, which is based on the
epipolar error, realized on KITTI dataset.

that the calculated parameters are not as precise as those found by traditional method. We can draw

the similar conclusions from the Fig 4.53, which shows the amount of epipolar error.

Two policies presented in Figs 4.54 and 4.55 show that both obtained value can turn the alarm with

previous thresholds. However, the system calculates them from scratch that is why it cannot compare

it directly. This work presents that the quality of parameters obtained by the selected 8PA signi�cantly

deviates from the value of parameters calculated by means of the traditional algorithm. However, the

re-estimated parameters and thresholds allow considering that, the system is well calibrated.
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4.4.3 Precision of the results

The selected 8PA is not the most accurate choice possible, but it has been chosen because its parameters

allow testing it on an embedded systems. The results shown in the previous tests are described and

some aspects to improve the precision of the results are presented in this part of the chapter.

RANSAC parameters

The section 3.3.1 presents the importance of the RANSAC's parameters. Its threshold is a key variable

that de ne if current tested point is in inlier or outlier group. The �rst column in Table 4.3 presents

the constant parameter value for the whole previous tests. This allows to almost each time con�rm

model before the maximal number of iterations, which means that the best model is always found.

However, if the threshold value is smaller and searching model must be more precise, it can happened

that algorithm does not con�rm model, Then the procedure achieves the maximal number of iterations

(1000 here) with possibly the best, but not con�rmed model. The change the threshold parameter is

made and the results are shown in the second column of Table 4.3.

We can observe the signi�cant correction in both errors expressed in θ and e1 for the second column.

However, it does not result from precise measurements, but from the higher stability of the calculated

parameters. The �nal model �uctuates less. Therefore, the average of errors comes out appropriately

lower. With worse RANSAC threshold, it is possible to obtain the same precise of results, but as

the method sometimes indicates an inaccurate model, the average result of several measurements is

much higher. On the other hand, lowering the threshold parameter causes that the model is very often

not conformed before the maximum number of iterations. In such case, it is important to keep this

parameter relatively low so that the algorithm does not work too long, when it is not able to con�rm

the model. Both measurements come from the same sequence of KITTI dataset, where the 1036 input

points go to 8PA. In the next part of the work, we test the selected algorithm on an embedded system

processor with the lower value of the threshold.

Parameter Measurement 1 Measurement 2

RANSAC threshold 7.8125e-07 7.8125e-08

Number of iteration 826 9220

Number of input points 1036 1036

Error of R 3.2913 θ 1.907 θ

Error of T 0.0866 e1 0.0377 e1

Table 4.3: The table shows the results of the 8PA when the di�erent RANSAC parameter is used.
The averages values are calculated from 10 measurements of the same sequence.

Subpixelic approach

The precision of the points is extremely important in the 8PA. The tests from previous chapter proved

that calculation of the extrinsic parameters similar to the o�ine method is possible. However, the
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input points are expressed in �oat form, with accuracy to three decimal places.

According to the section 4.1.2 where we describe the C-tracker used in the tested pipeline. It

provides the precision of input points in the pixel integer. The position is expressed in this manner,

because it is a copy of the version, which is implemented on the FPGA available in the laboratory.

Precise point detection is a complex task, increasing precision can only be achieved if the point is more

accurately expressed between pixels. This type of improvement should de�nitely increase the precision

of the obtained results and increase their stability.

The extension to the �oat (subpixelic) form of input point must be realized in tracker for the

future tests. The conclusion from obtained results is that the need to more precise points is critical

and essential. It should have the high impact, especially on points detected from close distance from

camera. For this reason, we propose the subpixelic extension of the pipeline. The good distribution of

points in term of di�erent distance and all part of image can increase the quality of OSCC.

Impact of calibration on the image recti�cation procedure

We should not study the stereo camera calibration procedure itself in isolation to the high-level appli-

cations. The system considers the calibration as the input data provider. For this reason, we present

in section that some of the functions can measure the impact calibration method. The section presents

the aim and goal of the recti�cation procedure. The following part of the chapter shows the impact of

di�erent extrinsic parameters in this process building block for high-level application. The presented

�gures illustrated the captured image frame, from the custom-recorded dataset. The green lines are

not the epipolar line, but the horizontal lines. It allows �nding the same line in the both images.

However, if the image is recti�ed the lines should represent the epipolar lines.

We present the screens of recti�cation application to simplify understanding the results. In each

left corner of �gure, the text in the rectangle presents if the images are input or output. Moreover,

in the red circles there are characteristic POI, which describes the same interesting points in both

images. The Fig 4.56 shows results of the recti�cation, which use the parameters, found by the o�ine

method. The extrinsic parameters are very precise and allow computing well-recti�ed images. In the

center of the image on the black background, there is log from system, which informs that system is

well calibrated and gives a current number of frame.

The second Fig 4.57 presents the same dataset but during the second half, when we touched the

cameras. Thus, the image illustrates the wrong recti�cation. Because, there are the same initial

parameters from the �rst half of the dataset, obtained by the traditional approach. This type of

information allows us to interpret that the system is uncalibrated. The Last Fig 4.58 presents the

recti�cation results of the KITTI dataset. We can observe that the initial parameters are correct for

the recti�cation process.
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Figure 4.56: Recti�cation process realized on the extrinsic parameters which are based on the tradi-
tional method - it is realized on the �rst part of custom dataset.

Figure 4.57: Recti�cation process realized on the extrinsic parameters which are based on the tradi-
tional method - it is realized on the second part of custom dataset.
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Figure 4.58: Recti�cation process realized on the extrinsic parameters which are based on the tradi-
tional method - it is realized on KITTI dataset.

4.5 The whole approach characterization on RPi 2b

This chapter presents the detailed approach to online stereo camera calibration in real time. The previ-

ously tests show the results carried out on the PC. It is the �rst environment of this work according to

the section 4.1. It allows concluding on many aspects as precision and realization of the calibration. It

provides opportunity to transfer the entire methodology to embedded systems. In accordance with the

second working environment from section 4.1.3, the system realizes the method in the same structure

as for previous test. We properly adapt the code to the RPi environment. Then we execute system

on ARM Cortex A7 embedded processors, which is available in the RPi. This section presents the

characteristics of the time performances of each function.

The tested sequence is a fragment of a dataset recorded by us, used in the previous tests. The

Fig 4.59 presents the dataset explanation in the graphic view. The system creates the map points in

the �rst frame, and then at each time when input points arrive, the structure is expanding. We call

this function � the F1 in the order to facilitate a discussion. In the �ow, the second function (F2)

normalizes input points by the intrinsic parameters.

Once, after �rst 17 frames, the averages and threshold values are constructed for each policy on the

base of the last 15 frames (F3). If and only if the parameters are set the SCCM, start to work (F4). It

calculates all 7 policies based on the number of points and epipolar error. The decision making function

(F5) analyzes the SCCM output and decide if the current extrinsic parameters are precise. As long as

they are correct, nothing changes and only those four functions work on every frame. However, if the

decision is positive, the system removes the current map of points. From the next frame, the procedure

builds the new structure with appropriate �ltration (F6). The procedure performs the calibration (F7)

when there are su�cient number of points in the new structure.

The previous last position in Table 4.4 is sum of four functions used to the whole SCCM compu-

tation, from the received input points through normalization, to calculation and decision computation

(F8), while the last row is the OSCC function so the data �ltering and 8PA realization. From the
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analyzed sequence, in the Table 4.4, we present the average time of each functions. The whole tested

dataset has 60 frames, where at 37th the decalibration is detected. The second Table 4.5 shows the

details of the di�erent calibration measurements.
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Figure 4.59: Plot presents the analyzed sequences for time characteristic. According to the number of
frame di�erent functions is executed. Function 1 which create a map structure and Function 3, which
normalize data, are realized each frame.

Number - name Function Average time How often realize

F1 Map point structure creation 0.02417 s Each frame

F2 New points normalization 0.023951 s Each frame

F3 Averages and threshold constructions 2,00E-06 s Once after �rst 17 frames arrived, and there are not the
parameters in the system

F4 Monitoring SCCM 0,028181 s Each frame, when the threshold and averages are constructed

F5 Decision making 2,00E-06 s Each frame, when the SCCM works

F6 Points �ltering 0,010791 s If parameters are wrong as long as new parameters does not
arrive

F7 Calibration 21.857 s If parameters are wrong and there is enough point in the
�ltered structure, and passed at least 10 frames from cali-
bration decision

F8 Whole SCCM = F1 + F2 + F4 + F5 0.076 s Each frame when calibration are good and parameters set
F9 Whole OSCC = F6 + F7 21.867 s Once when monitoring signalized that parameters are not

precise and there is enough point in the system

Table 4.4: The table shows the average time in seconds for each function that is executed on custom
dataset. The right column of the table shows how often a function is performed in that sequence.

Description test call-
grind

1 2 3 4 5 Average

Time Required [s] 672.549 26.09 25.32 9.81 26.31 21.74 21.857

Error of T e1 0,02376 0,01603 0,07063 0,02251 0,02512 0,05444 0,03775

Error of R θ 1,919 1,925 1,881 1,915 1.917 1.898 1,907

Number of Input Points 1033 1036 1036 1037 1036 1036 1036

Number of inliers 424 435 415 496 441 441 447.2

Number of Iteration 10001 10001 10001 3513 10001 8534 8410

Table 4.5: The details of di�erent calibration measurement (six independent runs). The �rst column
shows the monitored parameters. The second column presents parameters obtained in the Callgrind
simulation, that is why the time required by �rst column is higher, and it is not included in average.
Next columns shows measurements from one run of program. In the last column the average from 10
execution is calculated.

The calibration clearly outperforms other functions by the amount of time. It is the most demanding

in term of computation function in the entire pipeline. An embedded processor such as Cortex ARM

A7 requires around 21 s to calculate the extrinsic parameters. The right column in Table 4.5 provides

an average time from di�erent measurement based on the same input points. These obtained results

are far from the actual real time calibration approach. During that time, many new frames arrived, for
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example if there is 20 FPS, more than 20 × 21 = 420 frames arrived. On the other hand, the SCCM

does not require many computation load and can be e�ectively executed in real time on an embedded

system with a tested processor. Each function required by SCCM i.e. F1 + F2 + F4 + F5 needs 0.076

s.

Another important aspect of this work is to place the stereo camera calibration as a function built

into the entire application pipelines. The section 3.2.3 presents the methodology of this solution.

The bene�ts of this approach are signi�cant. The external processing unit realizes some of the most

concerning functions such as POI detection, extraction and matching. In this work, we propose and

realize the low-level processing function on external processing unite. In our methodology, the stereo

matched points arrive directly to the calibration block. This approach allows omitting the impact of

the low-level functions on the time required by camera calibration procedure.

For the moment, we propose to execute the calibration on the same processor where we can realize the

high-level application. In such situation, when a system is well calibrated, only SCCM can work with

the other application such us recti�cation, because it does not need a many resources. On the other

hand, when the system detects that the system is not calibrated any more, the high-level application

does not make sense and can stop. The false data provided to the functions do not allow to proper

execution of functions. Then the calibration method has 100 % of resources to perform OSCC, Table

4.5 shows that it needs approximate 22 s. Once after, the system computers new extrinsic parameters,

they are in the system and the high-level application with SCCM can run again.

Finally, it is important to notice that time required to execute each function depends on the number

of input points. Each function performs mathematical operations based on input data. If the size of

input data increases, the number of required calculations grows. We execute the entire test on the

same custom dataset that we presented in previous sections of this chapter. Thanks to the similar

number of input points on each image with a similar precision, the system requires the same time to

execute a whole pipeline. In the future work, we would like to test the approach on other sequences

with a random number of points.
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4.6 Summary and conclusion of results and realization

This 4th chapter presents the experimental phase of the previously described approach to solve the

OSCC on embedded systems. The section 4.1 shows the di�erent environments setups used during the

implementation tests. The �rst one is a standard PC with an Intel i7-260 CPU. The second environment

is the RPi 2B equipped with the embedded processors ARM Cortex A7. This processor has similar

parameters to the target CPS environment. This third environment equipped with MIMOSA board,

where two FPGA, Intel i5 and ARM core is available. We select this setup as the �nal electronic

devices, because it is one of the project developed in the laboratory.

At the end of the �rst section, we explain the methodology for required data set. In the literature,

there is not dataset, which allows for the OSCC tests. The third environment allows creating a

necessary sequence to realize the future tasks. We present many details of the dataset that must be

satis�ed in order to run the calibration of camera parameters.

We point the well synchronization of the image streams, appropriate distribution of structures on

the image, even distribution of points and elements of the scene, which allows distinguishing POI

without problem, etc. Moreover, the system must see the structures at di�erent distances from the

camera, so that the majority of points is not located far from the cameras. Unfortunately, the future

tests show that the custom-recorded dataset does not meet all of these restrictions. On the other hand,

we use the KITTI dataset, which does not provide sequences with di�erent camera calibration setup.

However, it provides a well distributed structures in the images, which allows for precise POI detection

The second section 4.3 explains in the details the whole methodology and implementation of SCCM.

The need for and the sense of the SCCM is admitted in the base of the results of two di�erent datasets.

Both cases show proper and expected results, due to realized dataset. The proposed SCCM proved

that the system, which is equipped with this function, is able to detect if current extrinsic parameters

are precise, thanks to the proposed SCCM policies. There are two di�erent groups of techniques, which

run on the number of points and their epipolar error. The six various tactics are able to detect if one

of camera poses has changed, on the other hand, one policy is responsible for con�rmation if there

are su�cient number of detected point in the image. Each of SCCM policies is independent from the

dataset, but requires perfect initialization parameters.

It is important to remind that proposed solution, from the point of view of the CPS, hides the

SCCM and OSCC in the application pipeline. The selected algorithm is based on the simple POI, so

it can take pro�ts, because this kind of data exists into the system for other purpose.

Next section 4.4 provides analyze of the whole pipeline of OSCC. Moreover, it presents the impact of

the �ltering method on the precision of results and other aspects in the triggered calibration procedure.

The proposed optimization of whole approach such as point accumulation and �ltering can help the

8PA to select the best and most reliable input data thus increased the precision of the results. In
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the test, the SCCM triggers the calibration and inject new extrinsic parameters in the system. The

algorithm con�rms the new parameters, but the algorithm cannot con�rm how precise they are. It is

caused by the fact, that algorithm implicitly consider the calculated parameter as accurate.

Results in term of precision based on sequences from the KITTI dataset are satisfactory. They

allow looking with optimism at the future. However, the precision of extrinsic parameters found in

custom dataset is far from the expected results. This show how important in this approach is the

good dataset, where there is enough structure from di�erent distances and well distributed in the

scene. The appropriate data accumulation, �ltering functions and RANSAC parameters stabilize the

obtained results. The parameter precision depends on the precision of the input points. The presented

approach targets the embedded systems, which have many restrictions. One of them is the imperfect

detection of POI. Those are rounded to the size of pixels, thus to the numerical values of the integer.

The introduction of subpixel precision for POI detection can signi�cantly increase the expected results.

The last part of this section gives a time characterization of the second environment, where we test

the whole pipeline on an embedded processor. The SCCM can realize its task during the real time. We

propose to use it as an additional functionality for future models of the stereo cameras. It informs that

provided data from the sensor are correct and can be trusted. It introduces a greater reliability and

security into the system. On the other hand, the system knows when it needs calibration. It can stop

the task at a safe moment. This work proposes an approach to recalibration from data available in

the system. The method uses only on the POI provided by the cameras, so they must be precise. The

selected algorithm needs about 20 s to calculate new parameters on the selected embedded processor.

The obtained results are stable by appropriate real-time data accumulation and �ltering functions.

The results of the quality of the parameters are strongly dependent on the input dataset. We present

the discussed quality of results in the previous section.
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Chapter 5

Conclusion and future work

The last chapter of this manuscript concludes the whole work and present future goals. The 1st chapter

presented the main context and motivation of this work. The 2nd part shows the existing stereo camera

calibration methods and dataset in the literature. The 3rd chapter explains custom approach to online

stereo camera calibration in the application pipeline. The 4th chapter presents the whole realization

and results of the advanced calibration pipeline.

5.1 Conclusion

This manuscript presents the study of an online calibration pipeline on the embedded systems. The

main goal of this work was to select the best method from existing algorithms and test it in the targeted

smart glasses context with embedded system limitation.

Nowadays, there are many di�erent stereo calibration methods. The procedures are usually adapted

to speci�c sensor con�guration, applications and environments. The most popular stereo cameras

ensure that the parameters do not change. The system performs calibration once at the beginning

and it guarantees that the system is working properly. These methods require well-known calibration

patterns in many planes and distances from the camera. The operator must correctly prepare the

procedures. Moreover, mostly all of them are realized o�ine.

In this work, the main hypothesis is that the camera positions can change due to various circum-

stances. Stereo cameras are exposed to many factors that can change their position. For this reason,

the whole system must have ability to verify if the current parameters are up to date. In the situation,

when they are not valid, the selected algorithm should recalculate new precise extrinsic parameters.

Therefore, the method should be able to execute online during the system's mission, without the use

any special calibration tool. The self-calibration methods ful�l these restrictions. However, these

computer vision procedures run usually on the powerful hardware, like a PC. The context of this

work enforces to realize the self-calibration method on embedded systems, which is not a common

assumption in the literature.
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In increasingly intelligent systems should increase their reliability, safety, security and precision

data. Moreover, systems must be as self-automatic as it is possible. For this reason, the control of

camera parameters and their recalibration must be possible in the systems of the future. I am convinced

that the role of camera as leading sensors will force calibration processing in real time on the devices

such have an embedded processor.

The calibration is never the main task of any devices. The process feeds the pipeline with the right

parameters. Therefore, this work proposes the concept that the calibration method must hide into the

whole application pipeline to reduce the number of computation required by calibration procedure and

realize it online. We analyzed many algorithms in that context during the state of the art. We select

the method, which inject and use the basic data occurring in the majority low-level computer vision

processes.

Thus, we propose to use the 8PA low complex self-calibration method. The algorithm uses only

simple stereo matched point of interests (POI) which exist in many computer vision applications. It

allows considering that, the input points for the algorithm come with zero cost, because this data

are anyway in the system. We proved that the selected 8PA has ability to calculate the precise

extrinsic parameters with perfect input points. We postulated that the system could �nd the perfect

input POI from the real scene. To achieve it, we proposed the advanced calibration pipeline with

accumulation, �ltering, monitoring strategy and real scale extraction. The chosen methodology and

method is universal, independent from other sensors, environments and scenarios. The system should

realize the proposed method in the background of application pipeline. Thus to its input points,

it can be performed at any mission in the computer vision application pipeline. In this work, we

proposed another important concept related to the online camera calibration pipeline, the stereo camera

calibration monitoring SCCM. The approach, which veri�es if current extrinsic parameters in the

system are still precise enough. The proposed monitoring methodology uses several policies, which

measure quality of current R and T. In order to test and verify the selected approach, a dataset where

two di�erent calibrations exist in one scenario is required. This kind of computer vision benchmark

does not exist in the literature. We needed to specify and create this dataset.

Therefore, during this work, we proposed a methodology for perfect dataset. We recorded a custom

dataset according to our approach. During this activity, we solve many problems related to the dataset

such as a prototype device, synchronization between images, parameters of the camera settings, scene

elements, reference camera calibration, etc. We realized few scenarios, when during sequences we

changed the right camera pose with the programmed moment. We know the camera calibration due

to the o�ine camera calibration at the beginning and at the end of the dataset. We successfully tested

the proposed SCCM on two di�erent custom datasets, it is able to detect at perfect moment that
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system requires a new calibration. The control tactics and whole approach are independent from the

dataset. They detect a false alarm and if in the system, there is su�cient number of points take a right

decision. This procedure can guarantee that the system is well calibrated and the camera parameters

are updated.

The system can successfully detect the moment when the extrinsic parameters changed due to

custom methodology. We propose the online stereo camera calibration (OSCC) procedure in order to

avoid the return of stereo cameras to the manufacturing process. The advanced 8PA selects the best

stereo points detected from last frames in the system according to the proposed accumulation block

and MPOI strategy. The accumulation block collects the information about points thanks to temporal

and stereo tracking strategy proposed in this thesis. We proposed a �ltering the POI in order to select

the most stable and precise points. Thanks to this upgrades the whole advanced calibration pipeline

can obtain di�erent quality of extrinsic parameters, on the basis of the di�erent precision of the input

points.

We study the whole approach on di�erent environments. We obtain the �rst results on the standard

PC. Then, we characterize the whole pipeline in an embedded system - Raspberry Pi 2 Model B (RPi),

where the ARM Cortex A7 processor is used. Finally, we present the whole prototype as the custom

�nal target environment. In the �nal version, we test the whole online calibration pipeline, where the

SCCM trigger the OSCC. It successfully performs on the targeted processor. We solve many issues

with code transfer between di�erent coding environments in order to realize these tests. We measure

its performance on the �nal target. We prove that the SCCM needs the 76 ms to verify if current

parameters are precise as it is a background task. We consider it as the real time process without

any additional optimization. However, we need initially calibrate the whole system in order to run.

The OSCC with the 8PA requires around 20 s to compute new extrinsic parameters on the RPi, while

calibration is the background process.

The obtained results allows considering the online calibration pipeline as the one, which can handle

operation in the real time. However, the computation of new parameters take a while but the traditional

calibration method realized on the PC environment in Matlab or other application frequently takes

more time. The approach of SCCM satisfy the real time constraints on embedded systems and run on

ARM processor at near real time.

The advanced calibration approach adds the safety feedback loop in the application or cyber physi-

cal system. It guarantees that the stereo camera are precisely calibrated and provide correct data. The

proposed methodology increase a reliability and precision of the system where the stereo camera exists.

Thus, a new automatic functionality such as self-healing and self-adaptation for long-term missions

is proposed. The subject of online calibration has not yet been carefully analyzed in the literature.

This work is a prelude to re�ections on the calibration of an online stereo camera on an embedded
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system. In view of the results, I am convinced that the proposed approach can support and enhance

the autonomy of modern systems. I am aware of the quality of the obtained parameters, which can

sometimes be unstable and unsatisfactory for some applications with high functionality. However, I

strongly believe that the introduction of future work, which is in the next section of this chapter, help

to achieve this performance.

5.2 Future work

During this thesis, we successfully realized the whole concept of online stereo camera calibration with

parameters monitoring in the application pipeline. The proposed methodology performs the task

assigned to it, with several assumptions. We would like to eliminate them in future work.

The SCCM concept works properly if and only if input extrinsic parameters are precise. However,

if the precision of the calculated parameters by OSCC is not excellent, and algorithm chooses new

parameters not precise enough, the system fails but behaves as if it work well. Thus, we would like

to improve the precision of OSCC. Despite all this, we consider the selected 8PA algorithm as poorly

accurate. However, it is necessary to remember that we would like to execute this work with the whole

algorithm on embedded systems, where computing power and memory are limited.

This manuscript shows that the accuracy of input points is a key to improve method's precision.

According to selected prototype used in this thesis, the custom embedded tracker generates the point's

position in the integer. The tracker needs the subpixelic precision, which can signi�cantly increase the

quality of results.

The realized approach extracts the scale factor from the baseline. This assumption works well for

custom prototype. However, for future more universal CPS, the scale should be extracted from the

scene. The work proposes a methodology to detect the scale from objects. We propose to test it in

the future work.

We realized the datasets in the natural environment. Therefore, these are very complicated in the

analysis of camera calibration. There are many conditions that good dataset must satisfy. We did

not realize all of them during record of custom dataset. There is a lack of some elements of the scene

from close distances during the recorded sequences. Moreover, the number of POI detected at each

part of image is limited. In future we should realize more complete and various datasets. Then, we

must perform the custom approach, in order to validate the whole calibration pipeline on di�erent

sequences.

For this reason, we used the KITTI dataset. During the whole sequence, there is only one calibration

and there is no need to recalibrate. However, this sequence provides good image structures where the
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system can detect points from each part of the image and from many distances to the camera. These

datasets provide precise results realized by OSCC.

The assembly of the entire prototype and the implementation of a high-level application at the

end of the pipeline is necessary for a complete veri�cation of the whole concept. The application

should be able to inform and verify whether the calculated parameters are accurate. It generates

additional feedback, which can force OSCC of the camera on a similar principle as the SCCM. We

should implement and realize everything together on the presented prototype.
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Chapter 6

Appendix

6.1 Projective camera geometry

The basic pinhole, camera model. There are camera, image and the world coordinate systems. For each

of them, a special parameters are related. The camera and image coordinate system are described by

intrinsic or internal parameters which include a radial distortion parameters. The extrinsic, external

parameters characterize the world system.

We consider the central projection of points in space onto a plane. Let the center of projection be the

origin of a Euclidean coordinate system, and consider the plane Z = f , which is called the image plane

or focal plane. Under the pinhole camera model, a point in space with coordinates X = (X,Y, Z)T is

mapped to the point on the image plane where a line joining the point X to the center of projection

meets the image plane. This is shown in Fig 6.1.

Figure 6.1: Pinhol camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

By similar triangles, computes that the point (X,Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T

on the image plane. Ignoring the �nal image coordinate, we see that The centre of projection is called

the camera centre. It is also known as the optical centre. The line from the camera centre perpendicular

to the image plane is called the principal axis or principal ray of the camera, and the point where the

principal axis meets the image plane is called the principal point. The plane through the camera centre

parallel to the image plane is called the principal plane of the camera.
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6.1.1 Intrinsic parameters.

Central projection using homogeneous coordinates. If the world and image points are repre-

sented by homogeneous vectors, then central projection is very simply expressed as a linear mapping

between their homogeneous coordinates. In particular, may be written in terms of matrix multiplication

as: 
X

Y

Z

1

 7→

fX

fY

Z

 =


f 0

f 0

1 0



x

y

w

 (6.1)

Figure 6.2: Image (x, y) and camera (xcam , ycam ) coordinate systems

Principal point o�set. The origin of coordinates in the image plane is at the principal point. In

practice, it may not be, so that in general there is a mapping where (px, py)T are the coordinates of

the principal point:


X

Y

Z

1

 7→
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w

 (6.2)

Now writing

K =


f px

f py

1

 (6.3)

The matrix K is called the camera calibration matrix. In 6.3 we have written (X,Y, Z, 1)T as

Xcam to emphasize that the camera is assumed to be located at the origin of a Euclidean coordinate

system with the principal axis of the camera pointing straight down the Z -axis, and the point Xcam
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is expressed in this coordinate system. Such a coordinate system may be called the camera coordinate

frame.

Radial distortion. The assumption throughout these chapters has been that a linear model is

an accurate model of the imaging process. Thus the world point, image point and optical centre are

collinear, and world lines are imaged as lines and so on. For real (non-pinhole) lenses this assumption

will not hold. The most important deviation is generally a radial distortion. In practice this error

becomes more signi�cant as the focal length (and price) of the lens decreases. Lens distortion takes

place during the initial projection of the world onto the image plane. The actual projected point is

related to the ideal point by a radial displacement. Thus, radial (lens) distortion is modelled as

xd
yd

 = L(r̄)

x
y

 (6.4)

where:

• (x, y) is the ideal image position (which obeys linear projection).

• (xd, yd) is the actual image position, after radial distortion.

• r̄ is a radial distance
√

(x2 + y2) from the center for radial distortion.

• L(r̄) is a distortion factor, which is a function of the radius r̄ only.

In pixel coordinates the correction is written:

x̂ = xc + L(r)(x− xc) ŷ = yc + L(r)(y − yc) (6.5)

where (x, y) are the measured coordinates, (x̂ŷ) are the corrected coordinates, and (xc, yc) is the centre

of radial distortion, with r2 = (x − xc)2 + (y − yc)2. Note, if the aspect ratio is not unity then it is

necessary to correct for this when computing r. With this correction the coordinates (x̂, ŷ) are related

to the coordinates of the 3D world point by a linear projective camera.

x = K[I|0]Xcam (6.6)

6.1.2 Extrinsic parameters.

These kind of parameters known also as external camera parameters describe a transformation between

the unknown cameras reference frames and the known world reference frame. This is referred to

translation vector between the relative position of the origins of the two cameras and rotation matrix
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that can cover the corresponding axes of the two frames into alignment. In general, points in space

will be expressed in terms of a di�erent Euclidean coordinate frame, known as the world coordinate

frame. The two coordinate frames are related via a rotation and a translation. See Fig 6.1 if X̄ is

an inhomogeneous 3-vector representing the coordinates of a point in the world coordinate frame, and

X̄cam represents the same point in the camera coordinate frame, then we may write X̄cam = R(X̄− C̄)

where C̄ represent the coordinates of the camera center in the world coordinate frame, and R is a 3x3

rotation matrix representing the orientation of the camera coordinate frame. This equation mat be

written in homogeneous coordinates as

Xcam =

R −RC̄

0 1



X

Y

Z

1

 =

R −RC̄

0 1

X (6.7)

Putting this together with 6.6 leads to the formula

x = KR[I| − C̄]X (6.8)

Figure 6.3: The Euclidean transformation between the world and camera coordinate frames.

where X is now in a world coordinate frame. This is the general mapping given by a pinhole

camera. One sees that a general pinhole camera, P = KR[I‖ − C̄] has 9 degrees of freedom: 3 for K

(the elements f , px , py ), 3 for R, and 3 for C̄. The parameters contained in K are called the internal

camera parameters, or the internal orientation of the camera. The parameters of R and C which relate

the camera orientation and of the camera position to a world coordinate system are called the external

parameters or the exterior orientation.

It is often convenient not to make the camera centre explicit, and instead to represent the world to
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image transformation as X̄cam = RX̄ + t. In this case the camera matrix is simply:

P = K[R|t] (6.9)

where t = −RC̄

Camera rotation and translation for stereo cameras. In scenarios where there are two cam-

eras, the required knowledge includes intrinsic parameters for both cameras and extrinsic parameters

between the two cameras. Distances in space will be expressed in form of another Euclidean coordinate

frame, known as the world coordinate frame. Two frames of coordinates are linked by rotation R and

translation T. Fig 6.4 illustrates that the R and T describes pose of the right camera in the left frame

camera.

Figure 6.4: The Euclidean transformation between the one camera coordinate frame and second camera
coordinate frames.

6.2 Camera projections

The drop from three-dimensional world to a two-dimensional image is a projection process in which

we lose one dimension. The usual way of modelling this process is by central projection in which a

ray from a point in space is drawn from a 3D world point through a �xed point in space, the centre of

projection. This ray will intersect a speci�c plane in space chosen as the image plane. The intersection

of the ray with the image plane represents the image of the point. If the 3D structure lies on a plane

then there is no drop in dimension.

This model is in accord with a simple model of a camera, in which a ray of light from a point in

the world passes through the lens of a camera and impinges on a �lm or digital device, producing an

image of the point. Ignoring such e�ects as focus and lens thickness, a reasonable approximation is

that all the rays pass through a single point, the centre of the lens.

This matrix P is known as the camera matrix. In summary, the action of a projective camera on
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a point in space may be expressed in terms of a linear mapping of homogeneous coordinates as"


x

y

w

 = P3x4


X

Y

Z

T


Furthermore, if all the points lie on a plane (we may choose this as the plane Z = 0 then the linear

mapping reduces to 
x

y

w

 = H3x3


X

Y

T


which is a projective transformation.

Figure 6.5: Projective transformation between the world space points X (left) or the world plane (right)
to the image planes.

6.3 Epipolar geometry

The epipolar geometry between two views is essentially the geometry of the intersection of the image

planes with the pencil of planes having the baseline as axis (the baseline is the line joining the camera

centres). This geometry is usually motivated by considering the search for corresponding points in

stereo matching. It is independent of scene structure, and only depends on the cameras internal

parameters and relative pose. The F encapsulates this intrinsic geometry. It is a 3 x 3 matrix of

rank 2. If a point in 3-space X is imaged as x in the �rst view, and x′ in the second, then the image
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Figure 6.6: The camera centre is the essence, all the space points are coplanar.

points satisfy the relation x
′TFx = 0. The F is independent of scene structure. However, it can

be computed from correspondences of imaged scene points alone, without requiring knowledge of the

cameras internal parameters or relative pose.

Suppose a point X in 3-space is imaged in two views, at x in the �rst, and x′ in the second. What is

the relation between the corresponding image points x and x′ ? As shown in Fig 6.7 the image points

x and x′, space point X, and camera centers are coplanar. Denote this plane as π. Clearly, the rays

back-projected from x and x′ intersect at X , and the rays are coplanar, lying in π. It is this latter

property that is of most signi�cance in searching for a correspondence.

Supposing now that we know only x, we may ask how the corresponding point x′ is constrained.

The plane π is determined by the baseline and the ray de�ned by x. From above we know that the ray

corresponding to the (unknown) point x′ lies in π, hence the point x′ lies on the line of intersection l′

of π with the second image plane. This line l′ is the image in the second view of the ray back-projected

from x. It is the epipolar line corresponding to x. In terms of a stereo correspondence algorithm the

bene�t is that the search for the point corresponding to x need not cover the entire image plane but

can be restricted to the line l′.

The Epipol is the point of intersection of the line joining the camera centers (the baseline) with

the image plane. Equivalently, the epipole is the image in one view of the camera center of the other

view. It is also the vanishing point of the baseline (translation) direction.

An epipolar plane is a plane containing the baseline. There is a one-parameter family (a pencil)

of epipolar planes.
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Figure 6.7: Point correspondence geometry and Epipolar geometry.

An epipolar line is the intersection of an epipolar plane with the image plane. All epipolar lines

intersect at the epipole. An epipolar plane intersects the left and right image planes in epipolar lines,

and de�nes the correspondence between the lines.

Figure 6.8: Converging cameras.

6.3.1 Properties of the F

Suppose we have two images acquired by cameras with non-coincident centres, then the F F is the

unique 3x3 rank 2 homogeneous matrix which satis�es equation 2.1 .
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• Transpose: If F is the F of the pair of cameras (P, P ′), then F T is the F of the pair in the

opposite order: (P ′, P ).

• Epipolar lines: For any point x in the �rst image, the corresponding epipolar line is l′ = Fx.

Similarly, l = F Tx′ represents the epipolar line corresponding to x′ in the second image

• The epipole: for any point x (other than e) the epipolar line l′ = Fx contains the epipole e′.

Thus e′ satis�es e
′T (Fx) = (e

′TF )x = 0 for all x. It follows that e
′TF = 0, i.e. e′ is the left

null-vector of F . Similarly Fe = 0, i.e. e is the right null-vector of F .

• The degree of freedome: F is a rank 2 homogeneous matrix and has seven degrees of freedom: a

3x3 homogeneous matrix has eight independent ratios (there are nine elements, and the common

scaling is not signi�cant), however, F also satis�es the constraint det F = 0 which removes one

degree of freedom.

6.3.2 Properties of the E

The E, has only �ve degrees of freedom: both the R matrix R and the T t have three degrees of

freedom, but there is an overall scale ambiguity � like the F, the E is a homogeneousquantity. A 3x3

matrix is an E if and only if two of its singular values are equal, and the third is zero. Once it is

known, the camera matrices may be retrieved from E. It can be assumed that the �rst camera matrix

is P = [I|0]. In order to compute the second camera matrix, P ′ , it is necessary to factor E into the

product SR of a skew-symmetric matrix and R.

W =

∣∣∣∣∣∣∣∣∣
0 −1 0

1 0 0

0 0 1

∣∣∣∣∣∣∣∣∣ Z =

∣∣∣∣∣∣∣∣∣
0 1 0

−1 0 0

0 0 0

∣∣∣∣∣∣∣∣∣ (6.10)

Suppose that the Singular Value Decomposition (SVD) of E is U diag(1, 1, 0)V T . Using the

notation of 6.10 there are (ignoring signs) two possible factorizations E = SR as follows:

S = UZUT R = UWV T (6.11)

For a given E E = Udiag(1, 1, 0)V T , and �rst camera matrix P = [I|0], there are four possible choices

for the second camera matrix P ′, namely

P
′
1 = [UWUT |u3] P

′
2 = [UWV T | − u3] P

′
3 = [UW TV T |u3] P

′
4 = [UW TV T | − u3] (6.12)

164



Figure 6.9: The four possible solutions for calibrated reconstruction from E.

The four solutions are illustrated in Fig above 6.9, where it is shown that a reconstructed point X

will be in front of both cameras in one of these four solutions only. Thus, testing with a single point

to determine if it is in front of both cameras is su�cient to decide between the four di�erent solutions

for the camera matrix P ′.
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